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Predicting Probabilities

e Predicting whether an event occurs (yes/no): classification
e Predicting the probability that an event occurs: regression
 Linear regression: predicts values in [—00, o0]

e Probabilities: limited to [0,1] interval
o So we'll call it non-linear
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Example: Predicting Duchenne Muscular Dystrophy
(DMD)
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e outcome: has_dmd inputs: CK, H
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A Linear Regression Model

model <- lm(has_dmd ~ CK + H, Model predicts values outside
data = train) the range [0:1]
-t e S-t $ p re d <— p re d iC -t ( DistribLlJtion of probability predictions (linear model)
model,

newdata = test
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e 1: TRUE

SUPERVISED LEARNING IN R: REGRESSION



Logistic Regression

109(%?) = Bo + Bix1 + Boxa + ...

glm(formula, data, family = binomial)

e Generalized linear model
 Assumes inputs additive, linear in log-odds: log(p/(1 — p))

e family: describes error distribution of the model
o |ogistic regression: family = binomial
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DMD model

model <- glm(has_dmd ~ CK + H, data = train, family = binomial)

e outcome: two classes, e.g. @ and b

e model returns Prob(b)
o Recommend: O/1 or FALSE/TRUE
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Interpreting Logistic Regression Models

mode'l

Call: glm(formula = has_dmd ~ CK + H, family = binomial, data = train)

Coefficients:
(Intercept) CK H
-16.22046 0.07128 0.12552

Degrees of Freedom: 86 Total (i.e. Null); 84 Residual
Null Deviance: 110.8
Residual Deviance: 45.16 AIC: 51.16
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Predicting with a gim() model

predict(model, newdata, type = "response")

e newdata : by default, training data

e To get probabilities: use type = "response"
o By default: returns log-odds
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DMD Model

model <- glm(has_dmd ~ CK + H, data
test$pred <- predict(model, newdata

train, family = binomial)

test, type = "response")

Distribution of probability predictions (logistic model)
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Evaluating a logistic regression model: pseudo-?*

P2 _ 1 RSS
B SSTot
pseudoR? = 1 deviance

null.deviance

e Deviance: analogous to variance (RSS)
e Null deviance: Similar to S.S7,;

e pseudo R"2: Deviance explained
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Pseudo-RR* on Training data

Using broom::glance()

glance(model) %>%
summarize(pR2 = 1 - deviance/null.deviance)

pseudoR2

1 0.5922402

Using sigr::wrapChiSqTest()

wrapChiSqTest(model)

. pseudo-R2=0.59 ...
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Pseudo-12? on Test data

# Test data
test %>%

mutate(pred = predict(model, newdata = test, type = "response")) %>%

wrapChiSqTest("pred", "has_dmd", TRUE)

Arguments:

data frame
prediction column name
outcome column name

target value (target event)
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The Gain Curve Plot

GainCurvePlot(test, "pred","has_dmd", "DMD model on test")

DMD model on test
has_dmd~pred

relative Gini score: 0.87
alt. hyp.: relGini(pred)>permuted relGini, p=5.6e-05
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sort_criterion —=— model: sort by pred -4 wizard: sort by has_dmd
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Let's practice!
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Poisson and
quasipoisson
regression to predict
counts
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Predicting Counts

e Linear regression: predicts values in |[—00, 00

e Counts: integers in range |0, 0o]

SUPERVISED LEARNING IN R: REGRESSION



Poisson/Quasipoisson Regression

glm(formula, data, family)

e family: either poisson or quasipoisson

 inputs additive and linear in log(count)
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Poisson/Quasipoisson Regression

glm(formula, data, family)

e family: either poisson or quasipoisson
 inputs additive and linear in log(count)

e outcome: integer
o counts: e.g. number of traffic tickets a driver gets

o rates: e.g. number of website hits/day

e prediction: expected rate or intensity (not integral)
o expected # traffic tickets; expected hits/day
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Poisson vs. Quasipoisson

e Poisson assumes that mean(y) = var(y)
e |f var(y) much different from mean(y) - quasipoisson
e Generally requires a large sample size

e If rates/counts >> O - regular regression is fine
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Example: Predicting Bike Rentals
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Fit the model

bikesJdan %>%

summarize(mean = mean(cnt), var = var(cnt))

mean var

1 130.5587 14351.25

Since var(cnt) >> mean(cnt) — use quasipoisson

fmla <- cnt ~ hr + holiday + workingday +
weathersit + temp + atemp + hum + windspeed

model <- glm(fmla, data = bikesJan, family = quasipoisson)
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Check model fit

5 deviance
pseudoR* =1

null.deviance

glance(model) %>%
summarize(pseudoR2 = 1 - deviance/null.deviance)

pseudoR?2

1 0.7654358
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Predicting from the model

predict(model, newdata = bikesFeb, type = "response")

Prediction vs. Bike Rental Counts, February
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Evaluate the model

You can evaluate count models by RMSE

bikesFeb %>%
mutate(residual = pred - cnt) %>%
summarize(rmse = sqgrt(mean(residual”2)))

rmse

1 69.32869

sd(bikesFeb$cnt)

134.2865
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Compare Predictions and Actual Outcomes

Predicted and Actual Bike Rental Counts, First 2 Weeks of February
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Let's practice!
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GAM to learn non-
linear
transformations
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Generalized Additive Models (GAMs)

y ~ b0 + sl(zl) + s2(x2) + ....
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Learning Non-linear Relationships

Anxiety as a function of hassles
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gam() in the mgcv package

gam(formula, family, data)
family:

e gaussian (default): "regular” regression
e binomial: probabilities
e poisson/quasipoisson: counts

Best for larger datasets
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The s() function

anx ~ s(hassles)

e s() designates that variable should be non-linear

e Use s() with continuous variables
o More than about 10 unique values
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Revisit the hassles data
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Revisit the hassles data

Model RMSE (cross-val) R? (training)
Linear (hassles) 7.69 0.53
Quadratic (hassles?) 6.89 0.63
Cubic (hassles?) 6.70 0.65
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GAM of the hassles data

model <- gam(
anx ~ s(hassles),
data = hassleframe,
family = gaussian

)

summary (model)

R-sq.(adj) = 0.619 Deviance explained = 64.1%
GCV = 49.132 Scale est. = 45.153 n = 40
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Examining the Transformations

plot(model)

s(hassles,2.24)
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"terms")

y values: predict(model, type
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Predicting with the Model

predict(model, newdata = hassleframe, type = "response")

Comparing model fits
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Comparing out-of-sample performance

Knowing the correct transformation is best, but GAM is useful

when transformation isn't known

Model RMSE (cross-val) R? (training)
Linear (hassles) 7.69 0.53
Quadratic (hassles?) 6.89 0.63
Cubic (hassles?) 6.70 0.65
GAM 7.06 0.64

e Small dataset — noisier GAM
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Let's practice!
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