Logistic regression to predict probabilities

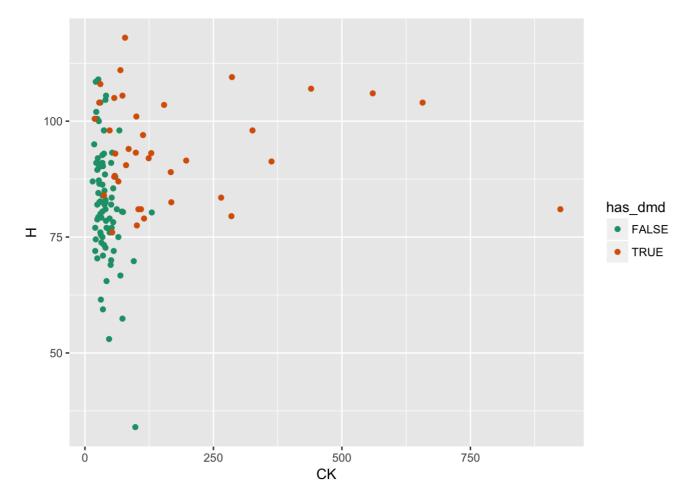
SUPERVISED LEARNING IN R: REGRESSION

Nina Zumel and John Mount Win-Vector LLC

Predicting Probabilities

- Predicting *whether* an event occurs (yes/no): classification
- Predicting *the probability* that an event occurs: **regression**
- Linear regression: predicts values in $[-\infty, \infty]$ \bullet
- Probabilities: limited to [0,1] interval \bullet
 - So we'll call it non-linear 0

Example: Predicting Duchenne Muscular Dystrophy (DMD)



inputs: CK, H outcome: has_dmd ${\bullet}$

tacamp

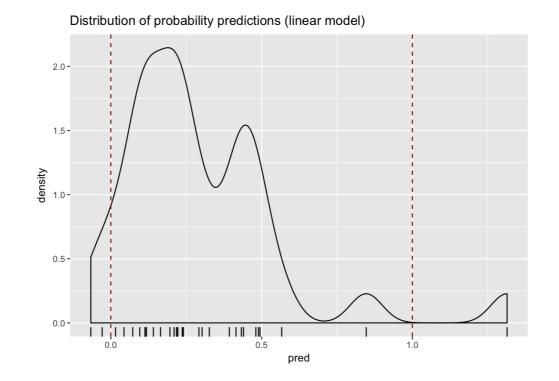
A Linear Regression Model

```
test$pred <- predict(
    model,
    newdata = test
)</pre>
```

outcome: has_dmd \in {0,1}

- 0: FALSE
- 1: TRUE

Model predicts values outside the range [0:1]



R datacamp

Logistic Regression
$$log(rac{p}{1-p}) = eta_0 + eta_1 x_1 + eta_2 x_2 + ..$$

glm(formula, data, family = binomial)

- Generalized linear model
- Assumes inputs additive, linear in *log-odds*: log(p/(1-p)) \bullet
- family: describes error distribution of the model \bullet
 - logistic regression: family = binomial 0

DMD model

model <- glm(has_dmd ~ CK + H, data = train, family = binomial)</pre>

- outcome: two classes, e.g. a and bullet
- model returns Prob(b)
 - Recommend: 0/1 or FALSE/TRUE 0

Interpreting Logistic Regression Models

model

Call:	glm(formu	la = has_dmd	~ CK + H, f	amily =	binomial,	data = train)		
Coefficients:								
(Inter	cept)	СК	Н					
-16.	22046	0.07128	0.12552					
Degrees of Freedom: 86 Total (i.e. Null); 84 Residual								
Null D	eviance:	110.8						
Residual Deviance: 45.16 AIC: 51.16								

Predicting with a glm() model

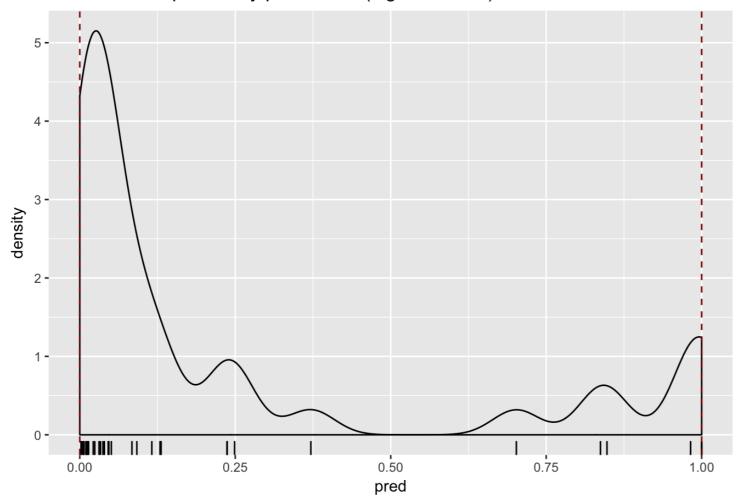
predict(model, newdata, type = "response")

- newdata : by default, training data
- To get probabilities: use **type = "response"** •
 - By default: returns log-odds 0

DMD Model

model <- glm(has_dmd ~ CK + H, data = train, family = binomial)
test\$pred <- predict(model, newdata = test, type = "response")</pre>

Distribution of probability predictions (logistic model)



atacamp

Evaluating a logistic regression model: pseudo- R^2

$$R^2 = 1 - rac{RSS}{SS_{Tot}}$$

$$pseudoR^2 = 1 - rac{deviance}{null.deviance}$$

- Deviance: analogous to variance (RSS) \bullet
- Null deviance: Similar to SS_{Tot} \bullet
- pseudo R²: Deviance explained \bullet

Pseudo- R^2 on Training data

Using broom::glance()

glance(model) %>%
 summarize(pR2 = 1 - deviance/null.deviance)

pseudoR2

1 0.5922402

Using sigr::wrapChiSqTest()

```
wrapChiSqTest(model)
```

"... pseudo-R2=0.59 ..."

${\rm Pseudo-} R^2 \text{ on Test data}$

```
# Test data
test %>%
  mutate(pred = predict(model, newdata = test, type = "response")) %>%
  wrapChiSqTest("pred", "has_dmd", TRUE)
```

Arguments:

- data frame
- prediction column name
- outcome column name
- target value (target event)

The Gain Curve Plot

GainCurvePlot(test, "pred", "has_dmd", "DMD model on test")

DMD model on test has_dmd~pred relative Gini score: 0.87 alt. hyp.: relGini(pred)>permuted relGini, p=5.6e-05 1.0 -0.9 fraction total sum has_dmd 0.8 **-**0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 -0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 fraction items in sort order sort_criterion --- model: sort by pred ---- wizard: sort by has_dmd

& datacamp

Let's practice!

Poisson and quasipoisson counts

regression to predict SUPERVISED LEARNING IN R: REGRESSION

Predicting Counts

- Linear regression: predicts values in $[-\infty,\infty]$
- Counts: integers in range $[0,\infty]$

Poisson/Quasipoisson Regression

glm(formula, data, family)

- family: either poisson or quasipoisson
- inputs additive and linear in log(count)

Poisson/Quasipoisson Regression

glm(formula, data, family)

- family: either poisson or quasipoisson
- inputs additive and linear in log(count)
- outcome: *integer*
 - counts: e.g. number of traffic tickets a driver gets 0
 - rates: e.g. number of website hits/day 0
- prediction: expected *rate* or *intensity* (not integral)
 - expected # traffic tickets; expected hits/day 0

Poisson vs. Quasipoisson

- Poisson assumes that mean(y) = var(y)
- If var(y) much different from mean(y) quasipoisson \bullet
- Generally requires a large sample size
- If rates/counts >> 0 regular regression is fine

Example: Predicting Bike Rentals

Count of bikes rented by hour, first 2 weeks of January



tacamp

Fit the model

bikesJan %>% summarize(mean = mean(cnt), var = var(cnt))

mean var 1 130.5587 14351.25

Since var(cnt) >> mean(cnt) \rightarrow use quasipoisson

fmla <- cnt ~ hr + holiday + workingday +</pre> weathersit + temp + atemp + hum + windspeed

model <- glm(fmla, data = bikesJan, family = quasipoisson)</pre>

Check model fit

$$pseudoR^2 = 1 - rac{deviance}{null.deviance}$$

glance(model) %>%

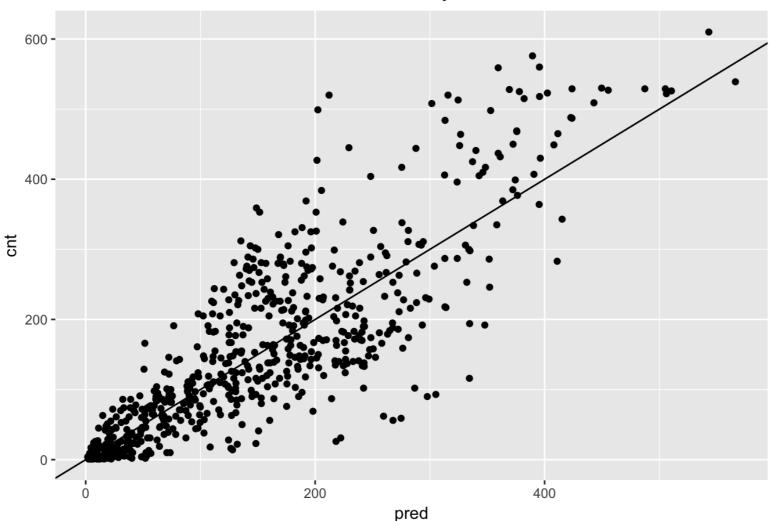
summarize(pseudoR2 = 1 - deviance/null.deviance)

pseudoR2

1 0.7654358

Predicting from the model

predict(model, newdata = bikesFeb, type = "response")



Prediction vs. Bike Rental Counts, February

R datacamp

Evaluate the model

You can evaluate count models by RMSE

bikesFeb %>% mutate(residual = pred - cnt) %>% summarize(rmse = sqrt(mean(residual^2)))

rmse

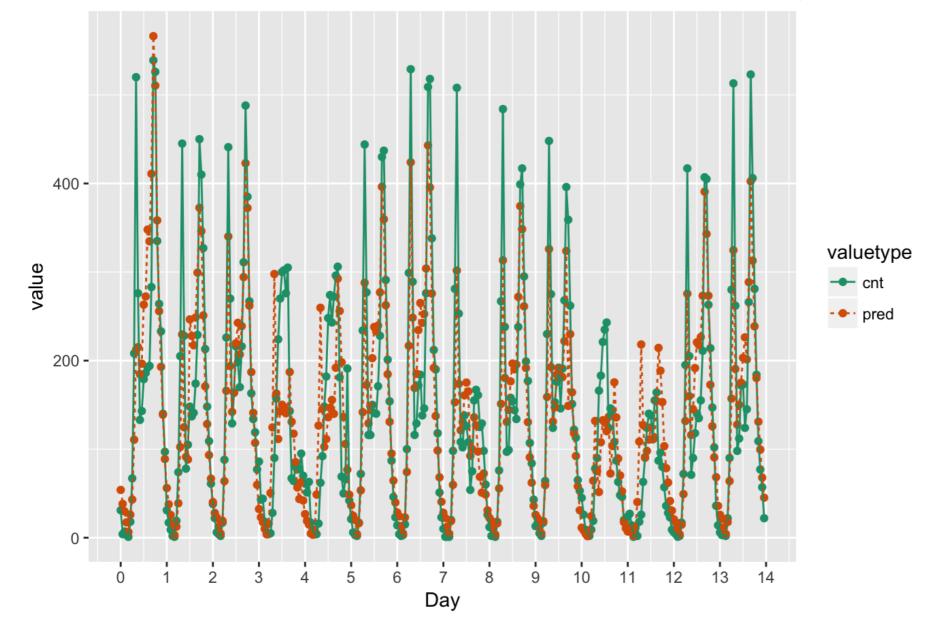
1 69.32869

sd(bikesFeb\$cnt)

134.2865

Compare Predictions and Actual Outcomes

Predicted and Actual Bike Rental Counts, First 2 Weeks of February



tacamp

Let's practice!

GAM to learn nonlinear transformations

SUPERVISED LEARNING IN R: REGRESSION

Nina Zumel and John Mount Win-Vector, LLC

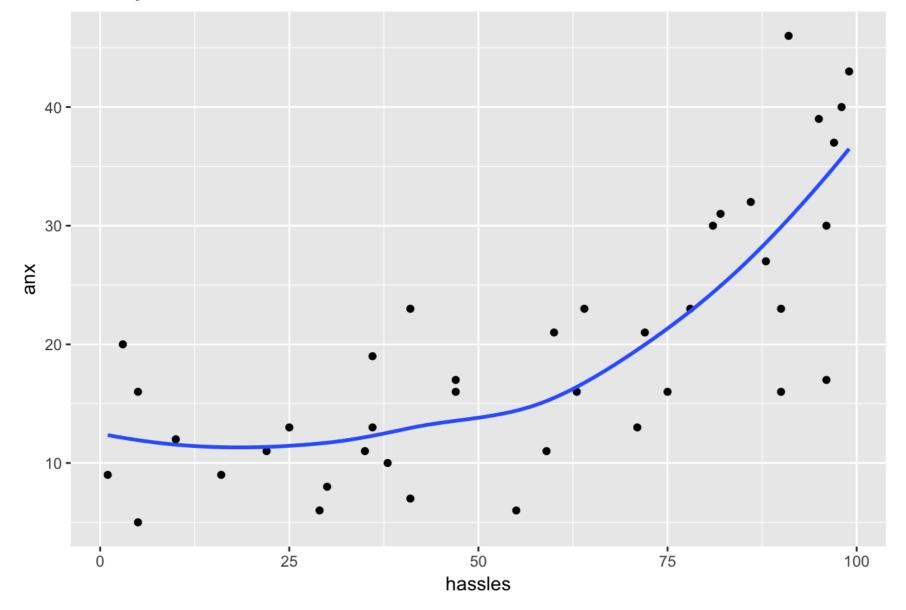
Generalized Additive Models (GAMs)

 $y \sim b0 + s1(x1) + s2(x2) +$

Learning Non-linear Relationships

Anxiety as a function of hassles

tacamp



gam() in the mgcv package

gam(formula, family, data)

family:

- gaussian (default): "regular" regression
- binomial: probabilities
- poisson/quasipoisson: counts

Best for larger datasets

The s() function

anx ~ s(hassles)

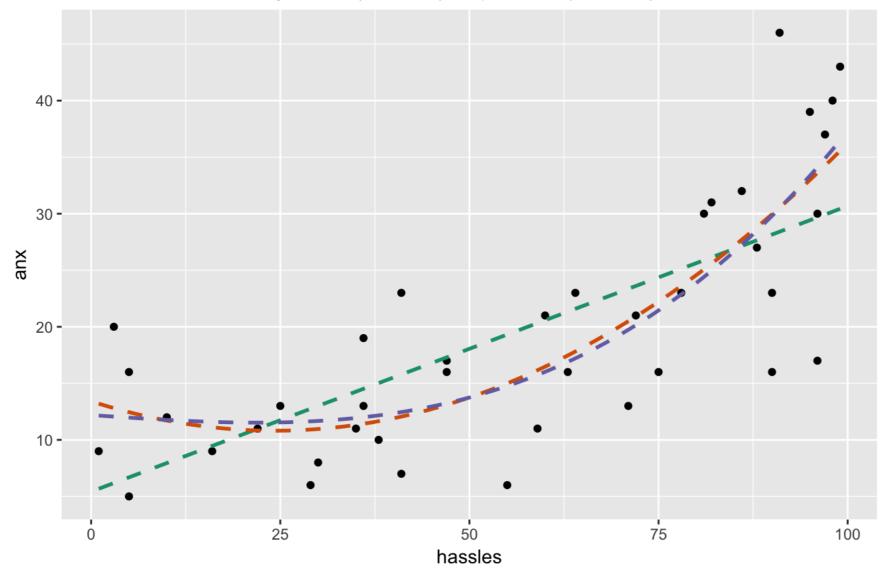
- s() designates that variable should be non-linear \bullet
- Use s() with continuous variables
 - More than about 10 unique values 0

Revisit the hassles data

Anxiety vs hassles

tacamp

Green: anx ~ hassles; Orange: anx ~ I(hassles^2); Purple: anx ~ I(hassles^3)



Revisit the hassles data

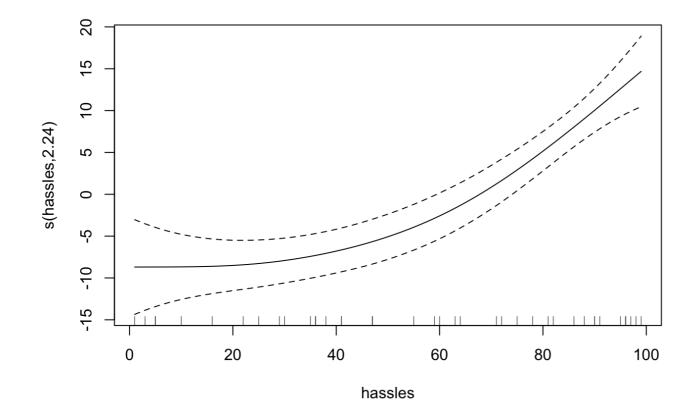
Model	RMSE (cross-val)	R^2 (training)
Linear (<i>hassles</i>)	7.69	0.53
Quadratic ($hassles^2$)	6.89	0.63
Cubic ($hassles^3$)	6.70	0.65

GAM of the hassles data

```
model <- gam(</pre>
  anx ~ s(hassles),
  data = hassleframe,
 family = gaussian
)
summary(model)
• • •
R-sq.(adj) = 0.619 Deviance explained = 64.1%
GCV = 49.132 Scale est. = 45.153 n = 40
```


Examining the Transformations

plot(model)

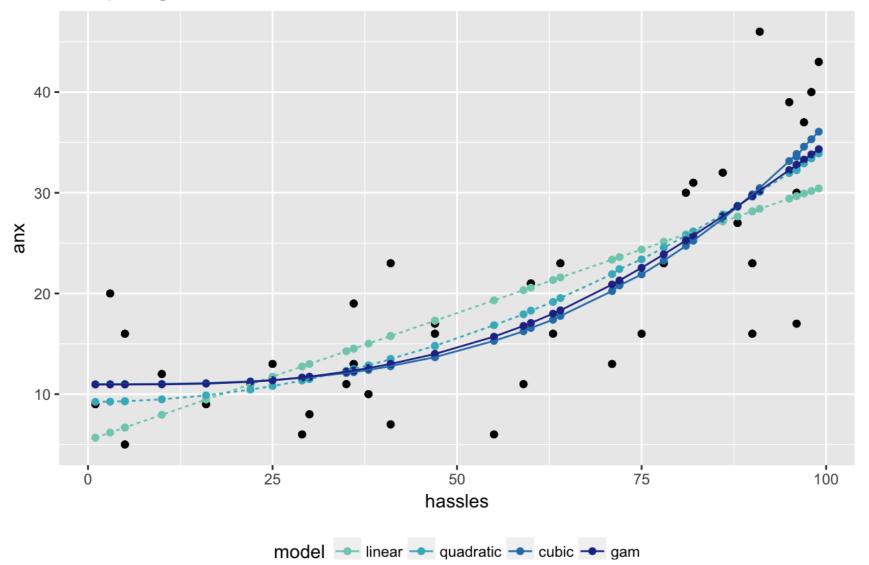


y values: predict(model, type = "terms")

R datacamp

Predicting with the Model

predict(model, newdata = hassleframe, type = "response")



Comparing model fits

SL

R datacamp

Comparing out-of-sample performance

Knowing the correct transformation is best, but GAM is useful when transformation isn't known

Model	RMSE (cross-val)	R^2 (training)
Linear (<i>hassles</i>)	7.69	0.53
Quadratic ($hassles^2$)	6.89	0.63
Cubic ($hassles^3$)	6.70	0.65
GAM	7.06	0.64

- Small dataset ightarrow noisier GAM

Let's practice!

