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Example: Predict animal intelligence from Gestation
Time and Litter Size

Intelligence as a function of Litter and Gestation time
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Decision Trees

intelligence ~ Gestation + Litter RUIeS Of the fOrm:

Litt >|=1.15 | ‘

i e e ifa AND b AND ¢ THEN y
L ‘ ‘ ' Non-linear concepts

e intervals

>= 140

0.161 0.274 0.315
7.3% 16.7% 12.5%

e non-monotonic relationships

non-additive interactions

e AND: similar to
multiplication
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Decision Trees

intelligence ~ Gestation + Litter

Litter >=1.15

I
Litter >=4.3

<1.15

|
Gestation < 268

Gestation >= 232

< 232

Gestatlon <140

268

>= 140
0.073 0.131 0.148 0 161
13.5% 39.6% 10.4% 7. 3/

e |F Litter < 1.15 AND Gestation > 268 — intelligence = 0.315

e |F Litter IN [1.15, 4.3) — intelligence = 0.131
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Decision Trees

Pro: Trees Have an Expressive
Concept Space

Model RMSE
linear 0.1200419
tree 0.1072732

SUPERVISED LEARNING IN R: REGRESSION



Decision Trees

Con: Coarse-Grained Predictions

Predicted vs. actual intelligence

pred.Im

intelligence
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It's Hard for Trees to Express Linear Relationships

Trees Predict Axis-Aligned Regions

Decision tree concept regions
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It's Hard for Trees to Express Linear Relationships
It's Hard to Express Lines with Steps

Linear vs Tree model predictions on linear data

0.00 0.25 0.50 0.75
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Other Issues with Trees

e Tree with too many splits (deep tree):
o Too complex - danger of overfit

* Tree with too few splits (shallow tree):
o Predictions too coarse-grained
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Ensembles of Trees

Ensembles Give Finer-grained Predictions than Single Trees

Predicted vs. actual intelligence
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Ensembles of Trees

Ensemble Model Fits Animal Intelligence Data Better than

Single Tree
Model RMSE
linear 0.1200419
tree 0.1072732

random forest 0.0901681
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Let's practice!
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Random forests
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Random Forests

Multiple diverse decision trees averaged together

e Reduces overfit

* |ncreases model expressiveness

e Finer grain predictions
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Building a Random Forest Model

1. Draw bootstrapped sample from training data

2. For each sample grow a tree
o At each node, pick best variable to split on (from a random

subset of all variables)
o Continue until tree is grown

3. To score a datum, evaluate it with all the trees and average
the results.
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Example: Bike Rental Data

cnt ~ hr + holiday + workingday +
weathersit + temp + atemp + hum + windspeed

Count of bikes rented by hour, first 2 weeks of January
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Random Forests with ranger()

model <- ranger(fmla, bikesJan,
num.trees = 500,
respect.unordered.factors = "order")

e formula, data
e num.trees (default 500) - use at least 200

e mtry - number of variables to try at each node
o default: square root of the total number of variables

e prespect.unordered.factors - recommend set to "order"
o "safe" hashing of categorical variables
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Random Forests with ranger()

model

Ranger result

00B prediction error (MSE): 3103.623
R squared (00B): 0.7837386

Random forest algorithm returns estimates of out-of-sample
performance.
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Predicting with a ranger() model

bikesFeb$pred <- predict(model, bikesFeb)$predictions

predict() inputs:

e model

e data

Predictions can be accessed in the element predictions .
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Evaluating the model
Calculate RMSE:

bikesFeb %>%
mutate(residual = pred - cnt) %>%
summarize(rmse = sqgrt(mean(residual”2)))

rmse

1 67.15169

Model RMSE

Quasipoisson  69.3
Random forests 67/.15
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Evaluating the model

Bike rentals, predictions vs actual, February - Random Forest
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Evaluating the model

Predicted and Actual Hourly Bike Rentals, February - Random Forest
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Let's practice!
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One-Hot-Encoding
Categorical
Variables
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Why Convert Categoricals Manually?

e Most R functions manage the conversion for you
o model.matrix()

e xgboost() does not
o Must convert categorical variables to numeric
representation

e Conversion to indicators: one-hot encoding
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One-hot-encoding and data cleaning with “vtreat’

Basic idea:
e designTreatmentsZ() to design a treatment plan from the
training data, then

e prepare() to created "clean" data
o all numerical

© no missing values
= use prepare() with treatment plan for all future data
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A Small vtreat Example

Training Data

X
one
two
three

two

u

44 0.4855671
24 1.36835726
66 2.0352837

22 1.6396267

Test Data
X u y
one 5 2.6488148
three 12 1.5012938
one 56 0.1995/31
two 28 1.2778516
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Create the Treatment Plan

vars <- C(IIXII, "U")
treatplan <- designTreatmentsZ(dframe, varslist, verbose = FALSE)

Inputs to designTreatmentsZ()

e dframe : training data
e varlist : list of input variable names

* set verbose = FALSE to suppress progress messages
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Get the New Variables

The scoreFrame describes the variable mapping and types

(scoreFrame <- treatplan$scoreFrame %>%
select(varName, origName, code))

varName origName code

1 x_lev_x.one lev
2 x_lev_x.three lev
3 x_lev_x.two lev
4 x_catP catP
5 u_clean u clean

Get the names of the new 1lev and clean variables

(newvars <- scoreFrame %>%
filter(code %in% c("clean", "lev")) %>%
use_series(varName))

"x_lev_x.one" "X_lev_x.three" "x_lev_x.two" "u_clean"
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Prepare the Training Data for Modeling

training.treat <- prepare(treatmentplan, dframe, varRestriction = newvars)

Inputs to prepare() :

e treatmentplan : treatment plan
e dframe : data frame

e varRestriction : list of variables to prepare (optional)
o default: prepare all variables
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Before and After Data Treatment

Training Data Treated Training Data
X u y x_lev x_lev x_lev

_X. _X. _X. u_clean
one 44 0.485567/1 ohe three two
two 24 1.3683/26 1 0 0 44
three 66 2.0352837 0 0 1 24
two 22 1.6396267/ 0 1 0 66

O O 1 22
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Prepare the Test Data Before Model Application

(test.treat <- prepare(treatplan, test, varRestriction = newvars))

X_lev_x.one x_lev_x.three x_lev_x.two u_clean
1 0 0 5
12

0 1 0
1 0 0 56
0 0 1 28
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vtreat Treatment is Robust

Previously unseen x level: four fourencodes to (O, O, 0)

X u Y prepare(treatplan, toomany, ...)
one 4 0.2331301

X_lev x_lev x_lev
two 14 1.9331/60 _X. _X. _X. u_c|eqn
three 66 3.1251029 o UIE0. e
four 25 4.0332491 1 O O 4

@) @) 1 14

@) 1 0] 66

0) o) 0) 25
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Let's practice!
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Gradient boosting
machines
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How Gradient Boosting Works

One tree: My =T,

1. Fit a shallow tree 17 to the
data: My = 1}
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How Gradient Boosting Works

2 ——— 1. Fit a shallow tree T} to the
/
data: My =17
2. Fit a tree T_2 to the

residuals. Find 7y such that
\ My = My + 15 is the
best fit to data
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How Gradient Boosting Works

Next model: My = My +1#y25T,

Regularization: learning rate

' A m n e (0,1)
sese0s M2 — Ml -+ ’r]’)’TQ

> 0.0-

—

e Larger n: faster learning

p——— . Smaller 7n: less risk of overfit
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How Gradient Boosting Works

100 terations: Mgy - Mo-rne 3, T 1. Fit a shallow tree 17 to the
data

- oo ‘ J 2. Fit a tree T_2 to the
residuals.

o My = My + ny1>

3. Repeat (2) until stopping
condition met

Final Model:

M =M +n)Y wT
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Cross-validation to Guard Against Overfit

Training and Estimated out-of-sample RMSE

100 - \

RMSE

50 - estimated test RMSE

aining RMSE

1 1 1 1
0 25 50 75
Number of Trees

Training error keeps decreasing, but test error doesn't
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Best Practice (with xgboost())

1. Run xgb.cv() with alarge number of rounds (trees).
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Best Practice (with xgboost())

1. Run xgb.cv() with alarge number of rounds (trees).

2. xgb.cv()$evaluation_1log : records estimated RMSE for
each round.
o Find the number of trees that minimizes estimated RMSE:

Npest
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Best Practice (with xgboost())

1. Run xgb.cv() with alarge number of rounds (trees).

2. xgb.cv()$evaluation_1log : records estimated RMSE for
each round.
o Find the number of trees that minimizes estimated RMSE:

Npest

3. Run xgboost() , setting nrounds = NMpest
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Example: Bike Rental Model

First, prepare the data

treatplan <- designTreatmentsZ(bikesJan, vars)

newvars <- treatplan$scoreFrame %>%
filter(code %in% c("clean", "lev")) %>%
use_series(varName)

bikesJan.treat <- prepare(treatplan, bikesJan, varRestriction = newvars)

For xgboost() :

e |Input data: as.matrix(bikesJan.treat)

e Qutcome: bikesJan$cnt
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Training a model with xgboost() / xgb.cv()

cv <- xgh.cv(data = as.matrix(bikesJan.treat), label = bikesJan$cnt,
objective = "reg:squarederror",
nrounds = 100, nfold = 5, eta = 0.3, max_depth = 6)

Key inputs to xgb.cv() and xgboost()

e data :input data as matrix ; label : outcome

e objective : for regression - "reg:squarederror"
e nrounds : maximum number of trees to fit

e eta:learning rate

e max_depth : maximum depth of individual trees

e nfold (xgb.cv() only): number of folds for cross validation
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Find the Right Number of Trees

Optimum number of trees: 78

140 -

120 -

test_rmse_mean
® o
o o

60 -

Optimum number of trees: 78

0 25 50 75
Number of trees

elog <- as.data.frame(cv$evaluation_log)
(nrounds <- which.min(elog$test_rmse_mean))
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Run xgboost() for final model

nrounds <- 78

model <- xgboost(data = as.matrix(bikesJan.treat),

label = bikesJan$cnt,

nrounds =
objective
eta = 0.3,
max_depth

nrounds,

"reg:squarederror",

6)
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Predict with an xgboost() model

Prepare February data, and predict

bikesFeb.treat <- prepare(treatplan, bikesFeb, varRestriction = newvars)

bikesFeb$pred <- predict(model, as.matrix(bikesFeb.treat))

Model performances on Febrary Data

Model RMSE

Quasipoisson 69.3
Random forests 67.15
Gradient Boosting 54.0
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Visualize the Results

Predictions vs. Actual Bike Predictions and Hourly Bike
Rentals, February Rentals, February
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Let's practice!

SUPERVISED LEARNING IN R: REGRESSION



