The intuition behind
tree-based methods

SUPERVISED LEARNING IN R: REGRESSION

Nina Zumel and John Mount
Win-Vector, LLC

Example: Predict animal intelligence from Gestation
Time and Litter Size

Intelligence as a function of Litter and Gestation time

O
600 -
C400 P
ke
I |
w
[1)]
0) o
°
o°®
200 -
[]
$: s o °
." o
. co ¢
e °*9
® 8 Y []
0-
2 4 6 8

Litter

intelligence @ 0.25 @ 0.50 @ 0.75 @ 1.00

SUPERVISED LEARNING IN R: REGRESSION

Decision Trees

intelligence ~ Gestation + Litter RUIeS Of the fOrm:

Litt >|=1.15 | ‘

i e e ifa AND b AND ¢ THEN y
L ‘ ‘ ' Non-linear concepts

e intervals

>= 140

0.161 0.274 0.315
7.3% 16.7% 12.5%

e non-monotonic relationships

non-additive interactions

e AND: similar to
multiplication

SUPERVISED LEARNING IN R: REGRESSION

Decision Trees

intelligence ~ Gestation + Litter

Litter >=1.15

I
Litter >=4.3

<1.15

|
Gestation < 268

Gestation >= 232

< 232

Gestatlon <140

268

>= 140
0.073 0.131 0.148 0 161
13.5% 39.6% 10.4% 7. 3/

e |F Litter < 1.15 AND Gestation > 268 — intelligence = 0.315

e |F Litter IN [1.15, 4.3) — intelligence = 0.131

SUPERVISED LEARNING IN R: REGRESSION

Decision Trees

Pro: Trees Have an Expressive
Concept Space

Model RMSE
linear 0.1200419
tree 0.1072732

SUPERVISED LEARNING IN R: REGRESSION

Decision Trees

Con: Coarse-Grained Predictions

Predicted vs. actual intelligence

pred.Im

intelligence

SUPERVISED LEARNING IN R: REGRESSION

It's Hard for Trees to Express Linear Relationships

Trees Predict Axis-Aligned Regions

Decision tree concept regions

600 -

400 -

Gestation

200 -

]
7.5

0 -
0.0 2.5 5.0
Litter

SUPERVISED LEARNING IN R: REGRESSION

X datacawp

It's Hard for Trees to Express Linear Relationships
It's Hard to Express Lines with Steps

Linear vs Tree model predictions on linear data

0.00 0.25 0.50 0.75

SUPERVISED LEARNING IN R: REGRESSION

Other Issues with Trees

e Tree with too many splits (deep tree):
o Too complex - danger of overfit

* Tree with too few splits (shallow tree):
o Predictions too coarse-grained

SUPERVISED LEARNING IN R: REGRESSION

Ensembles of Trees

Ensembles Give Finer-grained Predictions than Single Trees

Predicted vs. actual intelligence

1.00- L]
0.75-

0.50 - Y

0.25-

0.00

1.00-
0.75-
0.50 -

- L —H + ;ir

0.00 —

intelligence

pred.rf
1.00 - L]

0.75-

050_ ®

0.25- o - —®

0.00 ' . ' '
0.1 0.2 0.3 0.4
pred

SUPERVISED LEARNING IN R: REGRESSION

Ensembles of Trees

Ensemble Model Fits Animal Intelligence Data Better than

Single Tree
Model RMSE
linear 0.1200419
tree 0.1072732

random forest 0.0901681

SUPERVISED LEARNING IN R: REGRESSION

Let's practice!

SUPERVISED LEARNING IN R: REGRESSION

Random forests

SUPERVISED LEARNING IN R: REGRESSION

Nina Zumel and John Mount
Win-Vector, LCC

X datacamp

®

Random Forests

Multiple diverse decision trees averaged together

e Reduces overfit

* |ncreases model expressiveness

e Finer grain predictions

SUPERVISED LEARNING IN R: REGRESSION

Building a Random Forest Model

1. Draw bootstrapped sample from training data

2. For each sample grow a tree
o At each node, pick best variable to split on (from a random

subset of all variables)
o Continue until tree is grown

3. To score a datum, evaluate it with all the trees and average
the results.

SUPERVISED LEARNING IN R: REGRESSION

Example: Bike Rental Data

cnt ~ hr + holiday + workingday +
weathersit + temp + atemp + hum + windspeed

Count of bikes rented by hour, first 2 weeks of January

500 - [

400 -

300~

cnt

200-

100 -

SUPERVISED LEARNING IN R: REGRESSION

Random Forests with ranger()

model <- ranger(fmla, bikesJan,
num.trees = 500,
respect.unordered.factors = "order")

e formula, data
e num.trees (default 500) - use at least 200

e mtry - number of variables to try at each node
o default: square root of the total number of variables

e prespect.unordered.factors - recommend set to "order"
o "safe" hashing of categorical variables

SUPERVISED LEARNING IN R: REGRESSION

Random Forests with ranger()

model

Ranger result

00B prediction error (MSE): 3103.623
R squared (00B): 0.7837386

Random forest algorithm returns estimates of out-of-sample
performance.

SUPERVISED LEARNING IN R: REGRESSION

Predicting with a ranger() model

bikesFeb$pred <- predict(model, bikesFeb)$predictions

predict() inputs:

e model

e data

Predictions can be accessed in the element predictions .

SUPERVISED LEARNING IN R: REGRESSION

Evaluating the model
Calculate RMSE:

bikesFeb %>%
mutate(residual = pred - cnt) %>%
summarize(rmse = sqgrt(mean(residual”2)))

rmse

1 67.15169

Model RMSE

Quasipoisson 69.3
Random forests 67/.15

SUPERVISED LEARNING IN R: REGRESSION

Evaluating the model

Bike rentals, predictions vs actual, February - Random Forest

600 -

400 -

cnt

200~

0 100 200 300 400

SUPERVISED LEARNING IN R: REGRESSION

Evaluating the model

Predicted and Actual Hourly Bike Rentals, February - Random Forest

400 -

valuetype

—o— cnt

-®- pred

1 1 1 1 1 L] 1 1 1 1 1 1 I 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

X datacamp SUPERVISED LEARNING IN R: REGRESSION

Let's practice!

SUPERVISED LEARNING IN R: REGRESSION

One-Hot-Encoding
Categorical
Variables

SUPERVISED LEARNING IN R: REGRESSION

Nina Zumel and John Mount
Win-Vector, LLC

Why Convert Categoricals Manually?

e Most R functions manage the conversion for you
o model.matrix()

e xgboost() does not
o Must convert categorical variables to numeric
representation

e Conversion to indicators: one-hot encoding

SUPERVISED LEARNING IN R: REGRESSION

One-hot-encoding and data cleaning with “vtreat’

Basic idea:
e designTreatmentsZ() to design a treatment plan from the
training data, then

e prepare() to created "clean" data
o all numerical

© no missing values
= use prepare() with treatment plan for all future data

SUPERVISED LEARNING IN R: REGRESSION

A Small vtreat Example

Training Data

X
one
two
three

two

u

44 0.4855671
24 1.36835726
66 2.0352837

22 1.6396267

Test Data
X u y
one 5 2.6488148
three 12 1.5012938
one 56 0.1995/31
two 28 1.2778516

SUPERVISED LEARNING IN R: REGRESSION

Create the Treatment Plan

vars <- C(IIXII, "U")
treatplan <- designTreatmentsZ(dframe, varslist, verbose = FALSE)

Inputs to designTreatmentsZ()

e dframe : training data
e varlist : list of input variable names

* set verbose = FALSE to suppress progress messages

SUPERVISED LEARNING IN R: REGRESSION

Get the New Variables

The scoreFrame describes the variable mapping and types

(scoreFrame <- treatplan$scoreFrame %>%
select(varName, origName, code))

varName origName code

1 x_lev_x.one lev
2 x_lev_x.three lev
3 x_lev_x.two lev
4 x_catP catP
5 u_clean u clean

Get the names of the new 1lev and clean variables

(newvars <- scoreFrame %>%
filter(code %in% c("clean", "lev")) %>%
use_series(varName))

"x_lev_x.one" "X_lev_x.three" "x_lev_x.two" "u_clean"

SUPERVISED LEARNING IN R: REGRESSION

Prepare the Training Data for Modeling

training.treat <- prepare(treatmentplan, dframe, varRestriction = newvars)

Inputs to prepare() :

e treatmentplan : treatment plan
e dframe : data frame

e varRestriction : list of variables to prepare (optional)
o default: prepare all variables

SUPERVISED LEARNING IN R: REGRESSION

Before and After Data Treatment

Training Data Treated Training Data
X u y x_lev x_lev x_lev

_X. _X. _X. u_clean
one 44 0.485567/1 ohe three two
two 24 1.3683/26 1 0 0 44
three 66 2.0352837 0 0 1 24
two 22 1.6396267/ 0 1 0 66

O O 1 22

SUPERVISED LEARNING IN R: REGRESSION

Prepare the Test Data Before Model Application

(test.treat <- prepare(treatplan, test, varRestriction = newvars))

X_lev_x.one x_lev_x.three x_lev_x.two u_clean
1 0 0 5
12

0 1 0
1 0 0 56
0 0 1 28

SUPERVISED LEARNING IN R: REGRESSION

vtreat Treatment is Robust

Previously unseen x level: four fourencodes to (O, O, 0)

X u Y prepare(treatplan, toomany, ...)
one 4 0.2331301

X_lev x_lev x_lev
two 14 1.9331/60 _X. _X. _X. u_c|eqn
three 66 3.1251029 o UIE0. e
four 25 4.0332491 1 O O 4

@) @) 1 14

@) 1 0] 66

0) o) 0) 25

SUPERVISED LEARNING IN R: REGRESSION

Let's practice!

SUPERVISED LEARNING IN R: REGRESSION

Gradient boosting
machines

SUPERVISED LEARNING IN R: REGRESSION

Nina Zumel and John Mount
Win-Vector, LLC

X datacamp

How Gradient Boosting Works

One tree: My =T,

1. Fit a shallow tree 17 to the
data: My = 1}

SUPERVISED LEARNING IN R: REGRESSION

How Gradient Boosting Works

2 ——— 1. Fit a shallow tree T} to the
/
data: My =17
2. Fit a tree T_2 to the

residuals. Find 7y such that
\ My = My + 15 is the
best fit to data

SUPERVISED LEARNING IN R: REGRESSION

How Gradient Boosting Works

Next model: My = My +1#y25T,

Regularization: learning rate

' A m n e (0,1)
sese0s M2 — Ml -+ ’r]’)’TQ

> 0.0-

—

e Larger n: faster learning

p——— . Smaller 7n: less risk of overfit

SUPERVISED LEARNING IN R: REGRESSION

How Gradient Boosting Works

100 terations: Mgy - Mo-rne 3, T 1. Fit a shallow tree 17 to the
data

- oo ‘ J 2. Fit a tree T_2 to the
residuals.

o My = My + ny1>

3. Repeat (2) until stopping
condition met

Final Model:

M =M +n)Y wT

SUPERVISED LEARNING IN R: REGRESSION

Cross-validation to Guard Against Overfit

Training and Estimated out-of-sample RMSE

100 - \

RMSE

50 - estimated test RMSE

aining RMSE

1 1 1 1
0 25 50 75
Number of Trees

Training error keeps decreasing, but test error doesn't

SUPERVISED LEARNING IN R: REGRESSION

Best Practice (with xgboost())

1. Run xgb.cv() with alarge number of rounds (trees).

SUPERVISED LEARNING IN R: REGRESSION

Best Practice (with xgboost())

1. Run xgb.cv() with alarge number of rounds (trees).

2. xgb.cv()$evaluation_1log : records estimated RMSE for
each round.
o Find the number of trees that minimizes estimated RMSE:

Npest

SUPERVISED LEARNING IN R: REGRESSION

Best Practice (with xgboost())

1. Run xgb.cv() with alarge number of rounds (trees).

2. xgb.cv()$evaluation_1log : records estimated RMSE for
each round.
o Find the number of trees that minimizes estimated RMSE:

Npest

3. Run xgboost() , setting nrounds = NMpest

SUPERVISED LEARNING IN R: REGRESSION

Example: Bike Rental Model

First, prepare the data

treatplan <- designTreatmentsZ(bikesJan, vars)

newvars <- treatplan$scoreFrame %>%
filter(code %in% c("clean", "lev")) %>%
use_series(varName)

bikesJan.treat <- prepare(treatplan, bikesJan, varRestriction = newvars)

For xgboost() :

e |Input data: as.matrix(bikesJan.treat)

e Qutcome: bikesJan$cnt

SUPERVISED LEARNING IN R: REGRESSION

Training a model with xgboost() / xgb.cv()

cv <- xgh.cv(data = as.matrix(bikesJan.treat), label = bikesJan$cnt,
objective = "reg:squarederror",
nrounds = 100, nfold = 5, eta = 0.3, max_depth = 6)

Key inputs to xgb.cv() and xgboost()

e data :input data as matrix ; label : outcome

e objective : for regression - "reg:squarederror"
e nrounds : maximum number of trees to fit

e eta:learning rate

e max_depth : maximum depth of individual trees

e nfold (xgb.cv() only): number of folds for cross validation

SUPERVISED LEARNING IN R: REGRESSION

Find the Right Number of Trees

Optimum number of trees: 78

140 -

120 -

test_rmse_mean
® o
o o

60 -

Optimum number of trees: 78

0 25 50 75
Number of trees

elog <- as.data.frame(cv$evaluation_log)
(nrounds <- which.min(elog$test_rmse_mean))

SUPERVISED LEARNING IN R: REGRESSION

Run xgboost() for final model

nrounds <- 78

model <- xgboost(data = as.matrix(bikesJan.treat),

label = bikesJan$cnt,

nrounds =
objective
eta = 0.3,
max_depth

nrounds,

"reg:squarederror",

6)

SUPERVISED LEARNING IN R: REGRESSION

Predict with an xgboost() model

Prepare February data, and predict

bikesFeb.treat <- prepare(treatplan, bikesFeb, varRestriction = newvars)

bikesFeb$pred <- predict(model, as.matrix(bikesFeb.treat))

Model performances on Febrary Data

Model RMSE

Quasipoisson 69.3
Random forests 67.15
Gradient Boosting 54.0

SUPERVISED LEARNING IN R: REGRESSION

Visualize the Results

Predictions vs. Actual Bike Predictions and Hourly Bike
Rentals, February Rentals, February

SUPERVISED LEARNING IN R: REGRESSION

Let's practice!

SUPERVISED LEARNING IN R: REGRESSION

