
Linear Support
Vector Machines
SUPPORT VECTOR MACHINES IN R

Kailash Awati
Instructor

SUPPORT VECTOR MACHINES IN R

Split into training and test sets
The dataset generated in previous chapter is in dataframe df .

Split dataset into training and test sets

Random 80/20 split

Set seed for reproducibility
set.seed(1)
Set the upper bound for the number of rows to be in the training set
sample_size <- floor(0.8 * nrow(df))
Assign rows to training/test sets randomly in 80/20 proportion
train <- sample(seq_len(nrow(df)), size = sample_size)
Separate training and test sets
trainset <- df[train,]
testset <- df[-train,]

SUPPORT VECTOR MACHINES IN R

Decision boundaries and kernels
Decision boundaries can have different shapes - lines, polynomials or more complex
functions.

Type of decision boundary is called a kernel.

Kernel must be specified upfront.

This chapter focuses on linear kernels.

SUPPORT VECTOR MACHINES IN R

SVM with linear kernel
We'll use the svm function from the e1071 library.

The function has a number of parameters. We'll set the following explicitly:
formula - a formula specifying the dependent variable. y in our case.

data - dataframe containing the data - i.e. trainset.

type - set to C-classification (classification problem).

kernel - this is the form of the decision boundary, linear in this case.

cost and gamma - these are parameters that are used to tune the model.

scale - Boolean indicating whether to scale data.

SUPPORT VECTOR MACHINES IN R

Building a linear SVM
Load e1071 library and invoke svm() function

library(e1071)

svm_model<- svm(y ~ .,
 data = trainset,
 type = "C-classification",
 kernel = "linear",
 scale = FALSE)

SUPPORT VECTOR MACHINES IN R

Overview of model
Entering svm_model gives:

an overview of the model including
classification and kernel type

tuning parameter values

svm_model

Call:
svm(formula = y ~ .,
 data = trainset,
 type = "C-classification",
 kernel = "linear",
 scale = FALSE)

Parameters:
 SVM-Type: C-classification
 SVM-Kernel: linear
 cost: 1
 gamma: 0.5
Number of Support Vectors: 55

SUPPORT VECTOR MACHINES IN R

Index of support vectors in training dataset
svm_model$index
Support vectors
svm_model$SV
Negative intercept (unweighted)
svm_model$rho
Weighting coefficients for support vectors
svm_model$coefs

4 8 10 11 18 37 38 39 47 59 60 74 76 77 78 80 83 ...
 x1 x2
5 0.519095949 0.44232464
-0.1087075
 [,1]
 [1,] 1.0000000

SUPPORT VECTOR MACHINES IN R

Obtain class predictions for training and test sets.

Evaluate the training and test set accuracy of the model.

Training accuracy
pred_train <- predict(svm_model, trainset)
mean(pred_train == trainset$y)

1

Test accuracy
pred_test <- predict(svm_model, testset)
mean(pred_test == testset$y)

1
Perfect!!

Time to practice!
SUPPORT VECTOR MACHINES IN R

Visualizing linear
SVMs

SUPPORT VECTOR MACHINES IN R

Kailash Awati
Instructor

SUPPORT VECTOR MACHINES IN R

Plot the training data using ggplot() .

Visualize training data, distinguish classes using color
p <- ggplot(data = trainset, aes(x = x1, y = x2, color = y)) +
 geom_point() +
 scale_color_manual(values = c("red", "blue"))
Render plot
p

Mark out the support vectors using index from svm_model .

Identify support vectors
df_sv <- trainset[svm_model$index,]
Mark out support vectors in plot
p <- p + geom_point(data = df_sv,
 aes(x = x1, y = x2),
 color = "purple",
 size = 4, alpha = 0.5)
Display plot
p

SUPPORT VECTOR MACHINES IN R

SUPPORT VECTOR MACHINES IN R

Find slope and intercept of the boundary:

Build the weight vector, w , from coefs and SV elements of svm_model .

Build weight vector
w <- t(svm_model$coefs) %*% svm_model$SV

slope = -w[1] / w[2]

Calculate slope and save it to a variable
slope_1 <- -w[1] / w[2]

intercept = svm_model$rho / w[2]

Calculate intercept and save it to a variable
intercept_1 <- svm_model$rho / w[2]

SUPPORT VECTOR MACHINES IN R

Add decision boundary using slope and intercept calculated in previous slide.

We use geom_abline() to add the decision boundary to the plot.

Plot decision boundary based on calculated slope and intercept
p <- p + geom_abline(slope = slope_1,
 intercept = intercept_1)

Margins parallel to decision boundary, offset by 1 / w[2] on either side of it.

Add margins to plot
p <- p +
 geom_abline(slope = slope_1,
 intercept = intercept_1 - 1 / w[2],
 linetype = "dashed") +
 geom_abline(slope = slope_1,
 intercept = intercept_1 + 1 / w[2],
 linetype = "dashed")
Display plot
p

SUPPORT VECTOR MACHINES IN R

SUPPORT VECTOR MACHINES IN R

Soft margin classifiers
Allow for uncertainty in location / shape of boundary

Never perfectly linear

Usually unknown

Our decision boundary is linear, so we can reduce margin

SUPPORT VECTOR MACHINES IN R

Visualizing the decision boundary using the svm plot()
function

The svm plot() function in e1071 offers an easy way to plot the decision boundary.

Visualize decision boundary using built in plot function
plot(x = svm_model,
 data = trainset)

SUPPORT VECTOR MACHINES IN R

Time to practice!
SUPPORT VECTOR MACHINES IN R

Tuning linear SVMs
SUPPORT VECTOR MACHINES IN R

Kailash Awati
Instructor

SUPPORT VECTOR MACHINES IN R

Linear SVM, default cost
Call:
svm(formula = y ~ .,
 data = trainset,
 type = "C-classification",
 kernel = "linear",
 scale = FALSE)

Parameters:
SVM-Type: C-classification
 SVM-Kernel: linear
 cost: 1
 gamma: 0.5
Number of Support Vectors: 55

library(e1071)
svm_model <- svm(y ~ .,
 data = trainset,
 type = "C-classification",
 kernel = "linear",
 scale = FALSE)
Print model summary
svm_model

SUPPORT VECTOR MACHINES IN R

SUPPORT VECTOR MACHINES IN R

Linear SVM with cost = 100
Call:
svm(formula = y ~ .,
 data = trainset,
 type = "C-classification",
 kernel = "linear",
 cost = 100,
 scale = FALSE)

Parameters:
SVM-Type: C-classification
 SVM-Kernel: linear
 cost: 100
 gamma: 0.5
Number of Support Vectors: 6

library(e1071)
svm_model <- svm(y ~ .,
 data = trainset,
 type = "C-classification",
 kernel = "linear",
 cost = 100,
 scale = FALSE)
Print model summary
svm_model

SUPPORT VECTOR MACHINES IN R

SUPPORT VECTOR MACHINES IN R

Implication
Can be useful to reduce margin if decision boundary is known to be linear

...but this is rarely the case in real life

SUPPORT VECTOR MACHINES IN R

SUPPORT VECTOR MACHINES IN R

Nonlinear dataset, linear SVM (cost = 100)
Build cost=100 model using training set
composed of 80% of data

Build model
library(e1071)
svm_model<- svm(y ~ .,
 data = trainset,
 type = "C-classification",
 kernel = "linear",
 cost = 100,
 scale = FALSE)

Calculate accuracy

Train and test accuracy
pred_train <- predict(svm_model, trainset)
mean(pred_train == trainset$y)

0.8208333

pred_test <- predict(svm_model, testset)
mean(pred_test == testset$y)

0.85

Average test accuracy over 50 random
train/test splits: 82.9%

SUPPORT VECTOR MACHINES IN R

SUPPORT VECTOR MACHINES IN R

Nonlinear dataset, linear SVM (cost = 1)
Rebuild model setting cost =1 Calculate test accuracy

Test accuracy
pred_test <- predict(svm_model, testset)
mean(pred_test == testset$y)

0.8666667

Average test accuracy over 50 random
train/test splits: 83.7%

Trainset contains 80% of data
Same train/test split as before.
Build model
svm_model <- svm(y ~ .,
 data = trainset,
 type = "C-classification",
 kernel = "linear",
 cost = 1,
 scale = FALSE)

SUPPORT VECTOR MACHINES IN R

Time to practice!
SUPPORT VECTOR MACHINES IN R

Multiclass problems
SUPPORT VECTOR MACHINES IN R

Kailash Awati
Instructor

SUPPORT VECTOR MACHINES IN R

The iris dataset - an introduction
150 measurements of 5 attributes

Petal width and length - number (predictor variables)

Sepal width and length - number (predictor variables)

Species - category: setosa, virginica or versicolor (predicted variable)

Dataset available from UCI ML repository

https://archive.ics.uci.edu/ml/datasets/iris

SUPPORT VECTOR MACHINES IN R

Visualizing the iris dataset
Plot petal length vs petal width.

library(ggplot2)

Plot petal length vs width for dataset, distinguish species by color
p <- ggplot(data = iris,
 aes(x = Petal.Width,
 y = Petal.Length,
 color = Species)) +
 geom_point()

Display plot
p

SUPPORT VECTOR MACHINES IN R

SUPPORT VECTOR MACHINES IN R

How does the SVM algorithm deal with multiclass
problems?

SVMs are essentially binary classifiers.

Can be applied to multiclass problems using the following voting strategy:
Partition the data into subsets containing two classes each.

Solve the binary classification problem for each subset.

Use majority vote to assign a class to each data point.

Called one-against-one classification strategy.

SUPPORT VECTOR MACHINES IN R

Building a multiclass linear SVM
Build a linear SVM for the iris dataset

80/20 training / test split (seed 10),
default cost

Calculate accuracy

pred_train <- predict(svm_model, trainset)
mean(pred_train == trainset$Species)

0.9756098

pred_test <- predict(svm_model, testset)
mean(pred_test == testset$Species)

0.962963

library(e1071)

Build model
svm_model <- svm(Species ~ .,
 data = trainset,
 type = "C-classification",
 kernel = "linear")

Time to practice!
SUPPORT VECTOR MACHINES IN R

