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Split into training and test sets
The dataset generated in previous chapter is in dataframe df .

Split dataset into training and test sets

Random 80/20 split

# Set seed for reproducibility 
set.seed(1) 
# Set the upper bound for the number of rows to be in the training set 
sample_size <- floor(0.8 * nrow(df)) 
# Assign rows to training/test sets randomly in 80/20 proportion 
train <- sample(seq_len(nrow(df)), size = sample_size) 
# Separate training and test sets 
trainset <- df[train, ] 
testset <- df[-train, ] 
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Decision boundaries and kernels
Decision boundaries can have different shapes - lines, polynomials or more complex
functions.

Type of decision boundary is called a kernel.

Kernel must be specified upfront.

This chapter focuses on linear kernels.
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SVM with linear kernel
We'll use the svm function from the e1071  library.

The function has a number of parameters. We'll set the following explicitly:
formula - a formula specifying the dependent variable. y in our case.

data - dataframe containing the data - i.e. trainset.

type - set to C-classification (classification problem).

kernel - this is the form of the decision boundary, linear in this case.

cost and gamma - these are parameters that are used to tune the model.

scale - Boolean indicating whether to scale data.
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Building a linear SVM
Load e1071 library and invoke svm()  function

library(e1071) 

svm_model<- svm(y ~ ., 
                data = trainset,  
                type = "C-classification",  
                kernel = "linear",  
                scale = FALSE) 
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Overview of model
Entering svm_model  gives:

an overview of the model including
classification and kernel type

tuning parameter values

svm_model 

Call: 
svm(formula = y ~ ., 
    data = trainset, 
    type = "C-classification", 
    kernel = "linear",  
    scale = FALSE) 
 
Parameters: 
   SVM-Type:  C-classification  
 SVM-Kernel:  linear  
       cost:  1  
      gamma:  0.5  
Number of Support Vectors:  55 
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# Index of support vectors in training dataset 
svm_model$index  
# Support vectors 
svm_model$SV  
# Negative intercept (unweighted) 
svm_model$rho  
# Weighting coefficients for support vectors 
svm_model$coefs 

4   8  10  11  18  37  38  39  47  59  60  74  76  77  78  80  83 ...  
             x1         x2 
5   0.519095949 0.44232464  
-0.1087075  
            [,1] 
 [1,]  1.0000000 
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Obtain class predictions for training and test sets.

Evaluate the training and test set accuracy of the model.

# Training accuracy 
pred_train <- predict(svm_model, trainset) 
mean(pred_train == trainset$y) 

1 

# Test accuracy 
pred_test <- predict(svm_model, testset) 
mean(pred_test == testset$y) 

1 
# Perfect!! 
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Plot the training data using ggplot() .

# Visualize training data, distinguish classes using color 
p <- ggplot(data = trainset, aes(x = x1, y = x2, color = y)) + 
     geom_point() + 
     scale_color_manual(values = c("red", "blue")) 
# Render plot
p 

Mark out the support vectors using index  from svm_model .

# Identify support vectors 
df_sv <- trainset[svm_model$index, ] 
# Mark out support vectors in plot 
p <- p + geom_point(data = df_sv, 
                    aes(x = x1, y = x2), 
                    color = "purple", 
                    size = 4, alpha = 0.5) 
# Display plot 
p 
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Find slope and intercept of the boundary:

Build the weight vector, w , from coefs  and SV  elements of svm_model .

# Build weight vector 
w <- t(svm_model$coefs) %*% svm_model$SV 

slope = -w[1] / w[2]

# Calculate slope and save it to a variable 
slope_1 <- -w[1] / w[2] 

intercept = svm_model$rho / w[2]

# Calculate intercept and save it to a variable 
intercept_1 <- svm_model$rho / w[2] 
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Add decision boundary using slope and intercept calculated in previous slide.

We use geom_abline()  to add the decision boundary to the plot.

# Plot decision boundary based on calculated slope and intercept 
p <- p + geom_abline(slope = slope_1, 
                     intercept = intercept_1) 

Margins parallel to decision boundary, offset by 1 / w[2]  on either side of it.

# Add margins to plot 
p <- p +  
    geom_abline(slope = slope_1, 
                intercept = intercept_1 - 1 / w[2], 
                linetype = "dashed") +  
    geom_abline(slope = slope_1, 
                intercept = intercept_1 + 1 / w[2], 
                linetype = "dashed") 
# Display plot 
p 
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Soft margin classifiers
Allow for uncertainty in location / shape of boundary

Never perfectly linear

Usually unknown

Our decision boundary is linear, so we can reduce margin
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Visualizing the decision boundary using the svm plot()
function

The svm plot()  function in e1071  offers an easy way to plot the decision boundary.

# Visualize decision boundary using built in plot function 
plot(x = svm_model, 
     data = trainset) 
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Linear SVM, default cost
Call: 
svm(formula = y ~ ., 
    data = trainset, 
    type = "C-classification",  
    kernel = "linear", 
    scale = FALSE) 
 
Parameters: 
SVM-Type:  C-classification 
 SVM-Kernel:  linear  
       cost:  1  
      gamma:  0.5  
Number of Support Vectors:  55 

library(e1071) 
svm_model <- svm(y ~ .,  
                data = trainset,  
                type = "C-classification",  
                kernel = "linear",  
                scale = FALSE) 
# Print model summary 
svm_model 
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Linear SVM with cost = 100
Call: 
svm(formula = y ~ ., 
    data = trainset, 
    type = "C-classification",  
    kernel = "linear", 
    cost = 100, 
    scale = FALSE) 
 
Parameters: 
SVM-Type:  C-classification 
 SVM-Kernel:  linear  
       cost:  100  
      gamma:  0.5  
Number of Support Vectors:  6 

library(e1071) 
svm_model <- svm(y ~ .,  
                data = trainset,  
                type = "C-classification",  
                kernel = "linear",  
                cost = 100, 
                scale = FALSE) 
# Print model summary 
svm_model 
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Implication
Can be useful to reduce margin if decision boundary is known to be linear

...but this is rarely the case in real life



SUPPORT VECTOR MACHINES IN R



SUPPORT VECTOR MACHINES IN R

Nonlinear dataset, linear SVM (cost = 100)
Build cost=100 model using training set
composed of 80% of data

# Build model 
library(e1071) 
svm_model<- svm(y ~ .,  
                data = trainset,  
                type = "C-classification",  
                kernel = "linear",  
                cost = 100, 
                scale = FALSE) 

Calculate accuracy

# Train and test accuracy 
pred_train <- predict(svm_model, trainset) 
mean(pred_train == trainset$y) 

0.8208333 

pred_test <- predict(svm_model, testset) 
mean(pred_test == testset$y) 

0.85 

Average test accuracy over 50 random
train/test splits: 82.9%
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Nonlinear dataset, linear SVM (cost = 1)
Rebuild model setting cost =1 Calculate test accuracy

# Test accuracy 
pred_test <- predict(svm_model, testset) 
mean(pred_test == testset$y) 

0.8666667 

Average test accuracy over 50 random
train/test splits: 83.7%

# Trainset contains 80% of data 
# Same train/test split as before. 
# Build model 
svm_model <- svm(y ~ .,  
                data = trainset,  
                type = "C-classification",  
                kernel = "linear",  
                cost = 1, 
                scale = FALSE) 
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The iris dataset - an introduction
150 measurements of 5 attributes

Petal width and length - number (predictor variables)

Sepal width and length - number (predictor variables)

Species - category: setosa, virginica or versicolor (predicted variable)

Dataset available from UCI ML repository

https://archive.ics.uci.edu/ml/datasets/iris
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Visualizing the iris dataset
Plot petal length vs petal width.

library(ggplot2) 
 
# Plot petal length vs width for dataset, distinguish species by color 
p <- ggplot(data = iris,
            aes(x = Petal.Width, 
                y = Petal.Length, 
                color = Species)) + 
     geom_point() 
 
# Display plot 
p 
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How does the SVM algorithm deal with multiclass
problems?

SVMs are essentially binary classifiers.

Can be applied to multiclass problems using the following voting strategy:
Partition the data into subsets containing two classes each.

Solve the binary classification problem for each subset.

Use majority vote to assign a class to each data point.

Called one-against-one classification strategy.
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Building a multiclass linear SVM
Build a linear SVM for the iris dataset

80/20 training / test split (seed 10),
default cost

Calculate accuracy

pred_train <- predict(svm_model, trainset) 
mean(pred_train == trainset$Species) 

0.9756098 

pred_test <- predict(svm_model, testset) 
mean(pred_test == testset$Species) 

0.962963 

library(e1071) 
 
# Build model 
svm_model <- svm(Species ~ .,  
                data = trainset,  
                type = "C-classification",  
                kernel = "linear") 
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