Linear Support Vector Machines

SUPPORT VECTOR MACHINES IN R

Kailash Awati Instructor

Split into training and test sets

- The dataset generated in previous chapter is in dataframe df.
- Split dataset into training and test sets
- Random 80/20 split

```
# Set seed for reproducibility
set.seed(1)
# Set the upper bound for the number of rows to be in the training set
sample_size <- floor(0.8 * nrow(df))</pre>
# Assign rows to training/test sets randomly in 80/20 proportion
train <- sample(seq_len(nrow(df)), size = sample_size)</pre>
# Separate training and test sets
trainset <- df[train, ]</pre>
testset <- df[-train, ]</pre>
```

Decision boundaries and kernels

- Decision boundaries can have different shapes lines, polynomials or more complex \bullet functions.
- Type of decision boundary is called a **kernel**.
- Kernel must be specified upfront.
- This chapter focuses on linear kernels.

SVM with linear kernel

- We'll use the svm function from the e1071 library.
- The function has a number of parameters. We'll set the following explicitly:
 - formula a formula specifying the dependent variable. y in our case. 0
 - **data** dataframe containing the data i.e. trainset. 0
 - **type** set to C-classification (classification problem). 0
 - **kernel** this is the form of the decision boundary, linear in this case. 0
 - **cost** and **gamma** these are parameters that are used to tune the model. 0
 - **scale** Boolean indicating whether to scale data. 0

Building a linear SVM

• Load e1071 library and invoke svm() function

library(e1071)

```
svm_model < - svm(y ~ .,
                data = trainset,
                type = "C-classification",
                kernel = "linear",
                scale = FALSE)
```


Overview of model

- Entering svm_model gives:
 - an overview of the model including classification and kernel type
 - tuning parameter values

svm_model

Call:

```
svm(formula = y ~ .,
    data = trainset,
    type = "C-classification",
    kernel = "linear",
    scale = FALSE)
```

Parameters:

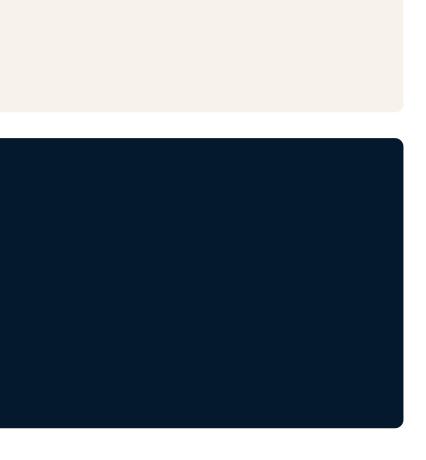
- SVM-Kernel: linear
 - cost: 1
 - 0.5 gamma:

Number of Support Vectors: 55

SVM-Type: C-classification

Index of support vectors in training dataset
svm_model\$index
Support vectors
svm_model\$SV
Negative intercept (unweighted)
svm_model\$rho
Weighting coefficients for support vectors
svm_model\$coefs

4	8	10	11	18	37	38	39	47	59	60	74	76	77	78	80	83
			Х	1		x2										
5	5 0.519095949 0.44232464															
-0.1087075																
[,1]																
[]	[1,] 1.000000															



- Obtain class predictions for training and test sets.
- Evaluate the training and test set accuracy of the model.

```
# Training accuracy
pred_train <- predict(svm_model, trainset)
mean(pred_train == trainset$y)</pre>
```

1

```
# Test accuracy
pred_test <- predict(svm_model, testset)
mean(pred_test == testset$y)</pre>
```

1

Perfect!!

Time to practice!

Visualizing linear SVMs

SUPPORT VECTOR MACHINES IN R

Kailash Awati Instructor

• Plot the training data using ggplot().

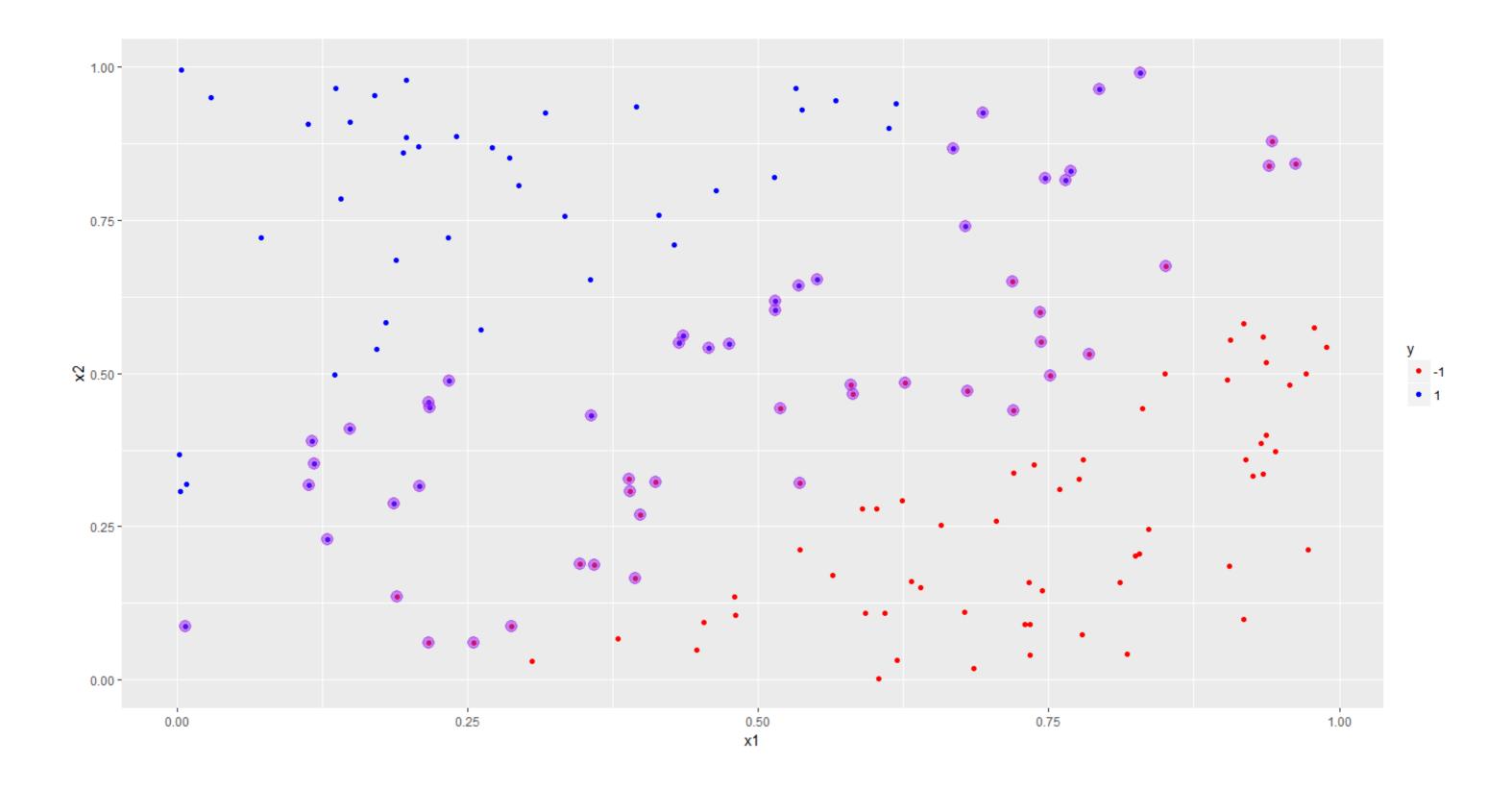
Visualize training data, distinguish classes using color

```
p <- ggplot(data = trainset, aes(x = x1, y = x2, color = y)) +</pre>
     qeom_point() +
     scale_color_manual(values = c("red", "blue"))
# Render plot
```

р

Mark out the support vectors using index from svm_model.

```
# Identify support vectors
df_sv <- trainset[svm_model$index, ]</pre>
# Mark out support vectors in plot
p <- p + geom_point(data = df_sv,</pre>
                     aes(x = x1, y = x2),
                     color = "purple",
                     size = 4, alpha = 0.5)
# Display plot
р
```



datacamp V

Find slope and intercept of the boundary:

• Build the weight vector, w, from coefs and SV elements of svm_model.

```
# Build weight vector
w <- t(svm_model$coefs) %*% svm_model$SV</pre>
```

• slope = -w[1] / w[2]

Calculate slope and save it to a variable slope_1 <- -w[1] / w[2]</pre>

• intercept = svm_model\$rho / w[2]

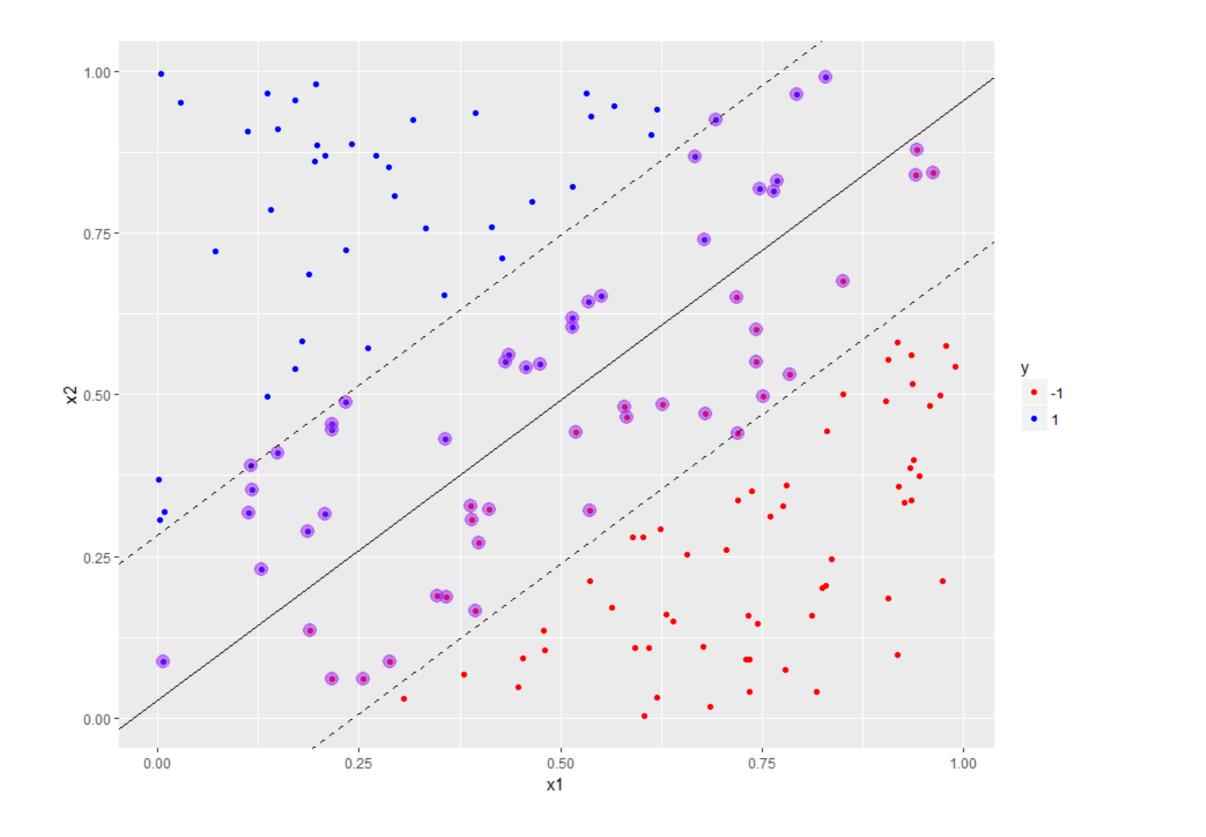
Calculate intercept and save it to a variable intercept_1 <- svm_model\$rho / w[2]</pre>

- Add decision boundary using slope and intercept calculated in previous slide.
- We use geom_abline() to add the decision boundary to the plot.

```
# Plot decision boundary based on calculated slope and intercept
p <- p + geom_abline(slope = slope_1,</pre>
                      intercept = intercept_1)
```

Margins parallel to decision boundary, offset by 1 / w[2] on either side of it.

```
# Add margins to plot
p <- p +
    geom_abline(slope = slope_1,
                intercept = intercept_1 - 1 / w[2],
                linetype = "dashed") +
    geom_abline(slope = slope_1,
                intercept = intercept_1 + 1 / w[2],
                linetype = "dashed")
# Display plot
р
```

R datacamp

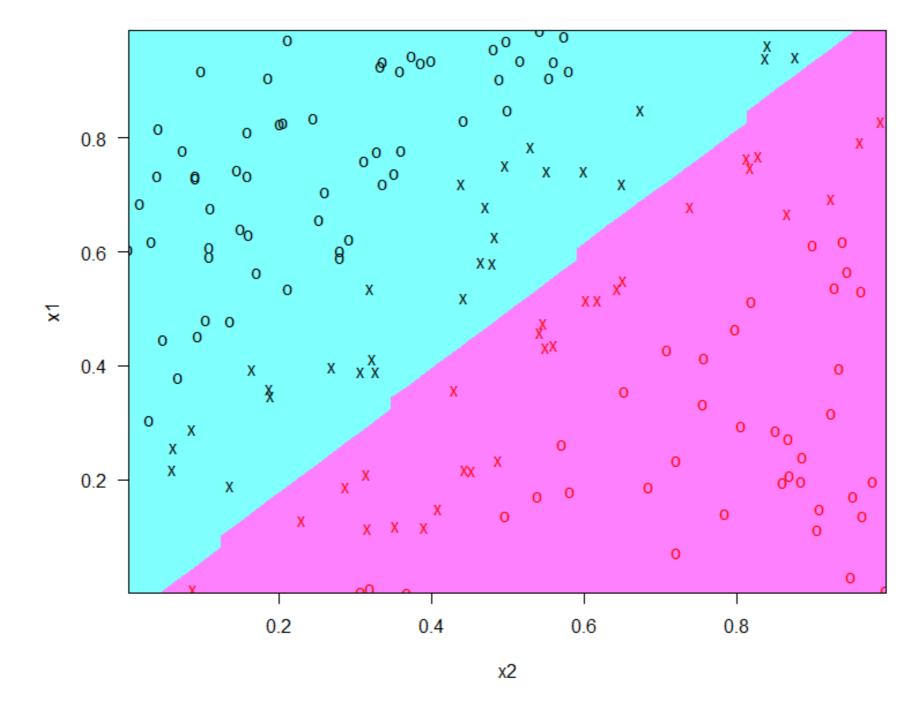
Soft margin classifiers

- Allow for uncertainty in location / shape of boundary
 - Never perfectly linear 0
 - Usually unknown 0
- Our decision boundary is linear, so we can reduce margin \bullet

Visualizing the decision boundary using the svm plot() function

• The svm plot() function in e1071 offers an easy way to plot the decision boundary.

```
# Visualize decision boundary using built in plot function
plot(x = svm_model,
     data = trainset)
```

SVM classification plot

datacamp

- 5

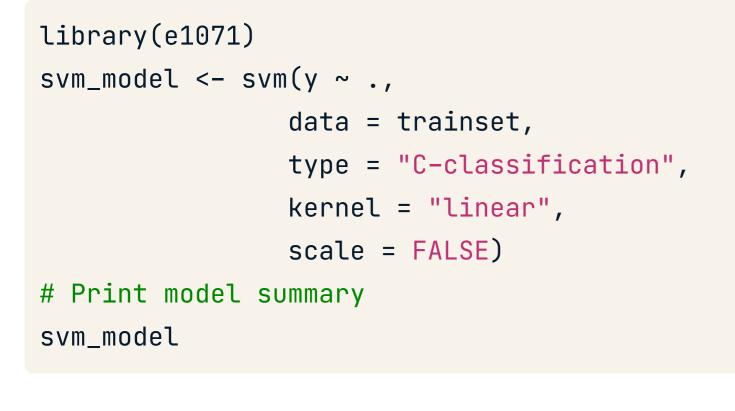
Time to practice!

Tuning linear SVMs

SUPPORT VECTOR MACHINES IN R

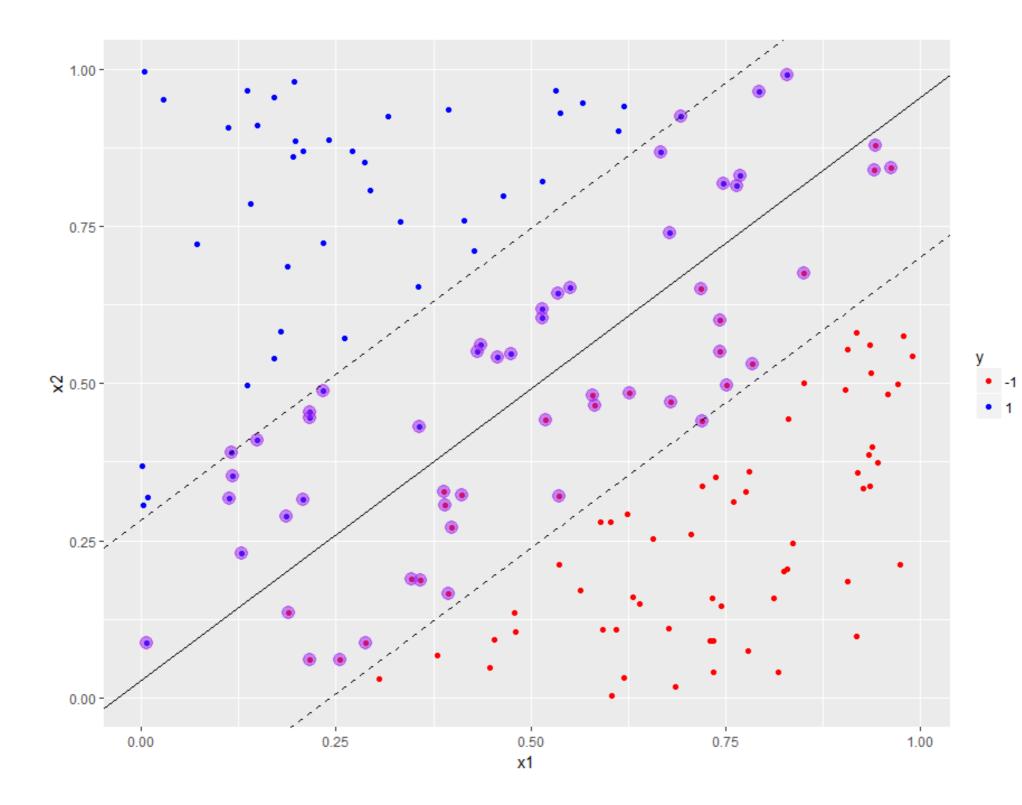
Kailash Awati Instructor

Linear SVM, default cost



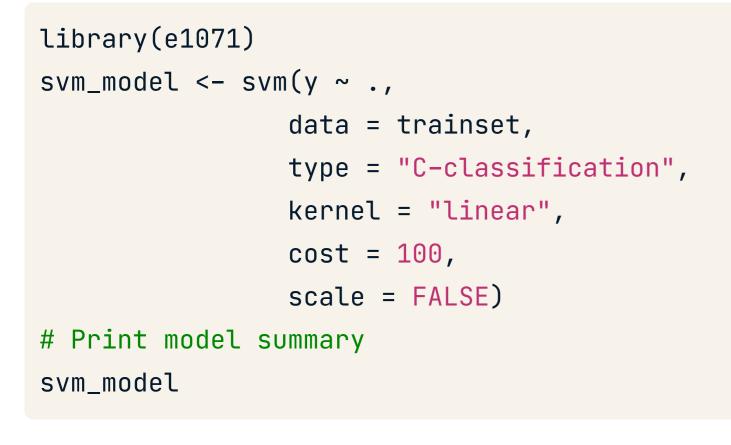
Call: svm(formula = y ~ ., data = trainset, type = "C-classification", kernel = "linear", scale = FALSE)

```
Parameters:
SVM-Type: C-classification
SVM-Kernel: linear
      cost: 1
     gamma: 0.5
Number of Support Vectors: 55
```

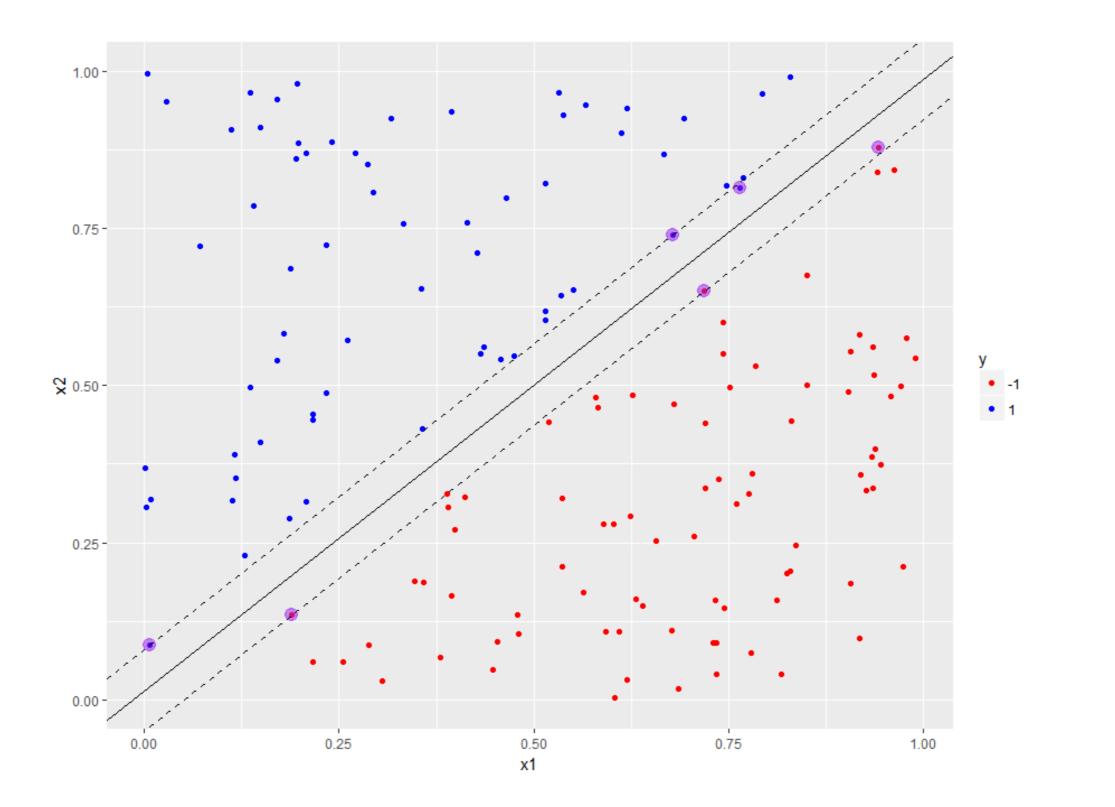
R datacamp

Linear SVM with cost = 100



Call: svm(formula = y ~ ., data = trainset, type = "C-classification", kernel = "linear", cost = 100,scale = FALSE)

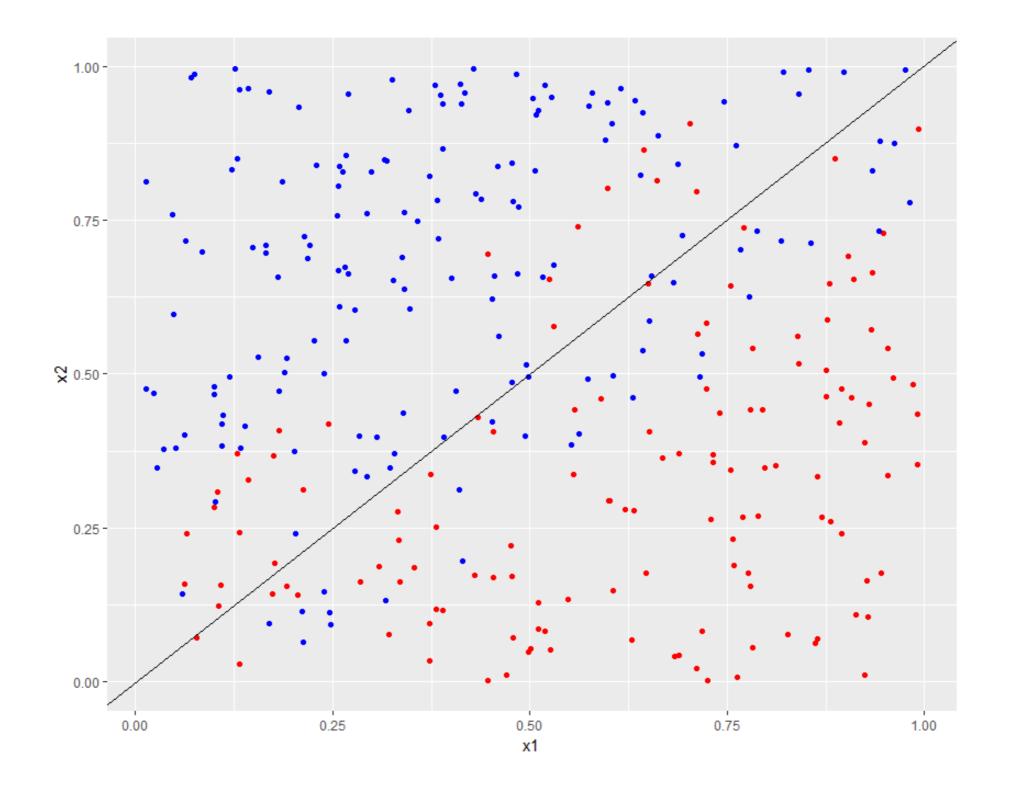
Parameters: SVM-Type: C-classification SVM-Kernel: linear cost: 100 gamma: 0.5 Number of Support Vectors: 6



R datacamp

Implication

- Can be useful to reduce margin if decision boundary is known to be linear
- ...but this is rarely the case in real life



Nonlinear dataset, linear SVM (cost = 100)

Build cost=100 model using training set composed of 80% of data

```
# Build model
library(e1071)
svm_model<- svm(y ~ .,</pre>
                 data = trainset,
                 type = "C-classification",
                 kernel = "linear",
                 cost = 100,
                 scale = FALSE)
```

Calculate accuracy

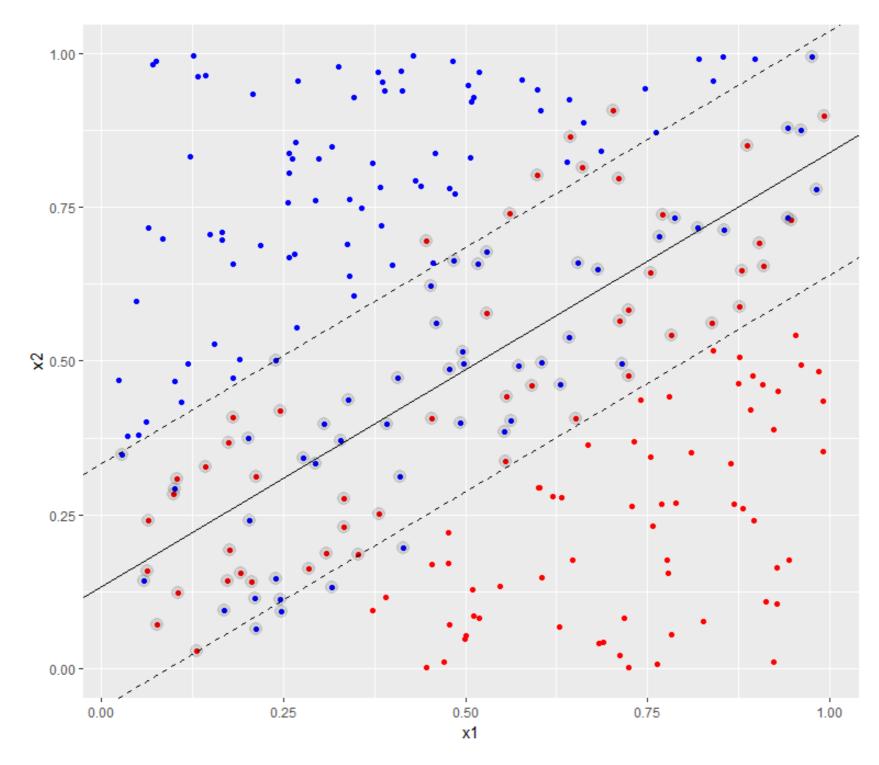
Train and test accuracy pred_train <- predict(svm_model, trainset)</pre> mean(pred_train == trainset\$y)

0.8208333

pred_test <- predict(svm_model, testset)</pre> mean(pred_test == testset\$y)

0.85

• Average test accuracy over 50 random train/test splits: 82.9%



R datacamp

Nonlinear dataset, linear SVM (cost = 1)

Rebuild model setting cost =1

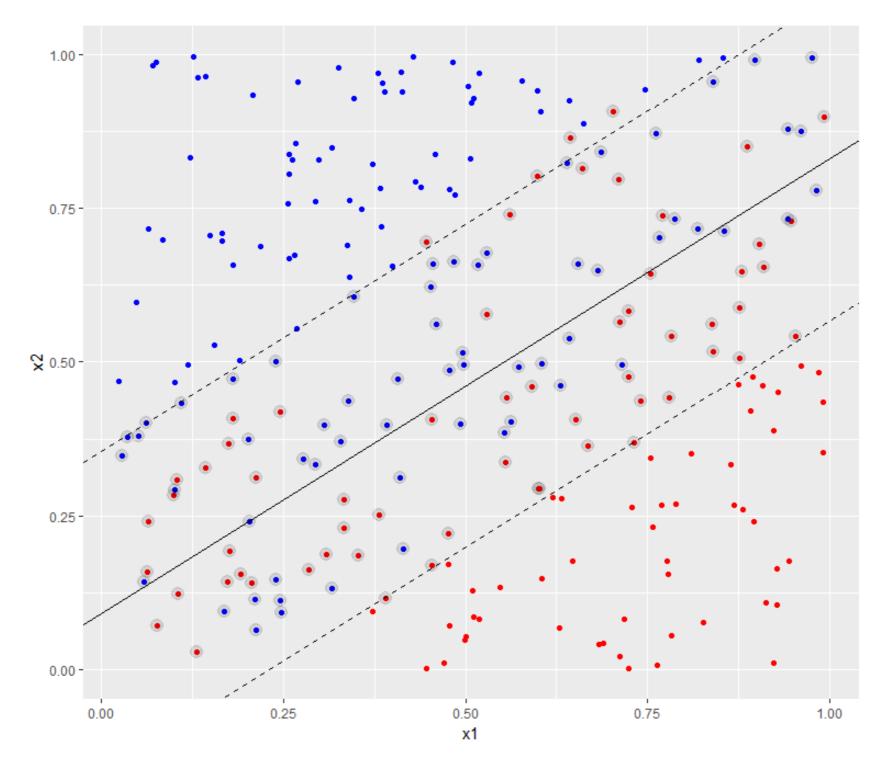
```
# Trainset contains 80% of data
# Same train/test split as before.
# Build model
svm_model <- svm(y ~ .,</pre>
                 data = trainset,
                 type = "C-classification",
                 kernel = "linear",
                 cost = 1,
                 scale = FALSE)
```

Calculate test accuracy

Test accuracy pred_test <- predict(svm_model, testset)</pre> mean(pred_test == testset\$y)

0.8666667

• Average test accuracy over 50 random train/test splits: 83.7%



Time to practice!

Multiclass problems

SUPPORT VECTOR MACHINES IN R

Kailash Awati Instructor

The iris dataset - an introduction

- 150 measurements of 5 attributes
 - Petal width and length number (predictor variables) 0
 - Sepal width and length number (predictor variables) 0
 - Species category: setosa, virginica or versicolor (predicted variable) 0
- Dataset available from UCI ML repository \bullet

Visualizing the iris dataset

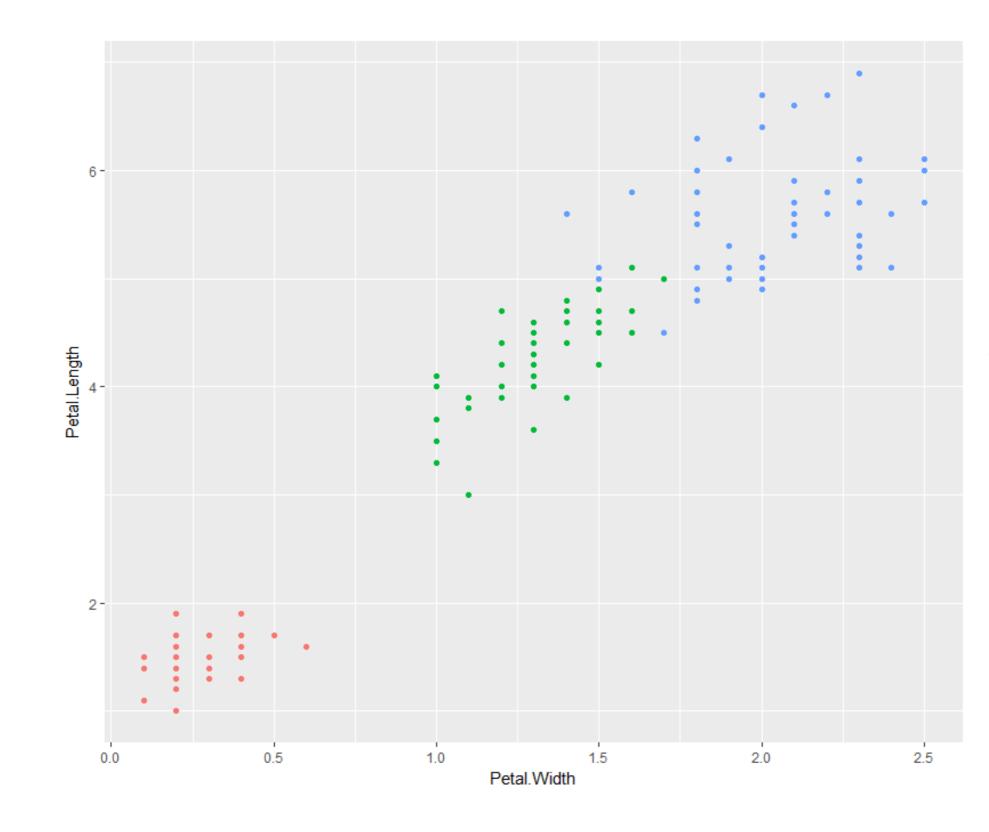
• Plot petal length vs petal width.

```
library(ggplot2)
```

```
# Plot petal length vs width for dataset, distinguish species by color
p <- ggplot(data = iris,</pre>
            aes(x = Petal.Width,
                 y = Petal.Length,
                 color = Species)) +
     geom_point()
```

```
# Display plot
```

р



R datacamp

Species

- setosa
- versicolor
- virginica

How does the SVM algorithm deal with multiclass problems?

- SVMs are essentially binary classifiers.
- Can be applied to multiclass problems using the following voting strategy:
 - Partition the data into subsets containing two classes each. 0
 - Solve the binary classification problem for each subset. 0
 - Use majority vote to assign a class to each data point. 0
- Called **one-against-one** classification strategy.

Building a multiclass linear SVM

• Build a linear SVM for the iris dataset 80/20 training / test split (seed 10), default cost

```
library(e1071)
# Build model
svm_model <- svm(Species ~ .,</pre>
                 data = trainset,
                 type = "C-classification",
                 kernel = "linear")
```

Calculate accuracy

pred_train <- predict(svm_model, trainset)</pre> mean(pred_train == trainset\$Species)

0.9756098

pred_test <- predict(svm_model, testset)</pre> mean(pred_test == testset\$Species)

0.962963

Time to practice!

