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A bit about RBF Kernels
Highly flexible kernel.

Can fit complex decision boundaries.

Commonly used in practice.
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Generate a complex dataset
600 points (x1, x2)

x1 and x2 distributed differently

n <- 600 
set.seed(42) 

df <- data.frame(x1 = rnorm(n, mean = -0.5, sd = 1), 
                 x2 = runif(n, min = -1, max = 1)) 
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Generate boundary
Boundary consists of two equi-radial circles with a single point in common.

# Set radius and centers 
radius <- 0.7 
radius_squared <- radius ^ 2 
center_1 <- c(-0.7, 0) 
center_2 <- c(0.7, 0)  
# Classify points 
df$y <-  
    factor(ifelse( 
        (df$x1 - center_1[1]) ^ 2 + (df$x2 - center_1[2]) ^ 2 < radius_squared | 
        (df$x1 - center_2[1]) ^ 2 + (df$x2 - center_2[2]) ^ 2 < radius_squared, 
        -1, 1), levels = c(-1, 1)) 
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Visualizing the dataset
Visualize the dataset using ggplot; distinguish classes by color

library(ggplot2) 

p <- ggplot(data = df, aes(x = x1, y = x2, color = y)) +  
     geom_point() +  
     guides(color = "none") + 
     scale_color_manual(values = c("red", "blue")) 

p 
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# Function to generate points on a circle 
circle <- function(x1_center, x2_center, r, npoint = 100) { 
   theta <- seq(0, 2 * pi, length.out = npoint) 
   x1_circ <- x1_center + r * cos(theta) 
   x2_circ <- x2_center + r * sin(theta) 
   data.frame(x1c = x1_circ, x2c = x2_circ) 
}  
# Generate boundary and plot it 
boundary_1 <- circle(x1_center = center_1[1], x2_center = center_1[2], r = radius) 
p <- p +  
     geom_path(data = boundary_1, 
               aes(x = x1c, y = x2c), 
               inherit.aes = FALSE) 
boundary_2 <- circle(x1_center = center_2[1], x2_center = center_2[2], r = radius) 
p <- p +  
     geom_path(data = boundary_2, 
               aes(x = x1c, y = x2c), 
               inherit.aes = FALSE) 
p 
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Time to practice!
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Motivating the RBF
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Quadratic kernel (default parameters)
Partition data into test/train (not shown)

Use degree 2 polynomial kernel (default
params)

.... 
Number of Support Vectors:  204 

# Predictions 
pred_test <- predict(svm_model, testset) 
mean(pred_test == testset$y) 

0.8666667 

plot(svm_model, trainset) 

svm_model <- svm(y ~ ., data = trainset,  
                type = "C-classification",  
                kernel = "polynomial",  
                degree = 2) 
svm_model 
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Try higher degree polynomial
Rule out odd degrees -3,5,9 etc.

Try degree 4

svm_model <- svm(y ~ ., data = trainset, 
                type = "C-classification",  
                kernel = "polynomial",  
                degree = 4) 
svm_model 

... 
Number of Support Vectors: 203 

# Predictions 
pred_test <- predict(svm_model, testset) 
mean(pred_test == testset$y) 

0.8583333 

plot(svm_model, trainset) 
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Another approach
Heuristic: points close to each other have the same classification:

Akin to K-Nearest Neighbors algorithm.

For a given point in the dataset, say X1 = (a, b):
The kernel should have a maximum at (a, b)

Should decay as one moves away from (a, b)

The rate of decay should be the same in all directions

The rate of decay should be tunable

A simple function with this property is exp(-gamma * r) , where r  is the distance between
X1 and any other point X
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How does the RBF kernel vary with gamma (code)
#rbf function 
rbf <- function(r, gamma) exp(-gamma * r)  
ggplot(data.frame(r = c(-0, 10)), aes(r)) +  
  stat_function(fun = rbf, args = list(gamma = 0.2), aes(color = "0.2")) + 
  stat_function(fun = rbf, args = list(gamma = 0.4), aes(color = "0.4")) +  
  stat_function(fun = rbf, args = list(gamma = 0.6), aes(color = "0.6")) + 
  stat_function(fun = rbf, args = list(gamma = 0.8), aes(color = "0.8")) + 
  stat_function(fun = rbf, args = list(gamma = 1), aes(color = "1")) + 
  stat_function(fun = rbf, args = list(gamma = 2), aes(color = "2")) + 
  scale_color_manual("gamma",  
                     values = c("red","orange","yellow", 
                                "green","blue","violet")) + 
  ggtitle("Radial basis function (gamma = 0.2 to 2)") 
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RBF Kernel in a nutshell
Decreasing function of distance between two points in dataset.

Simulates k-NN algorithm.
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Building an SVM using the RBF kernel
Build RBF kernel SVM for complex dataset

svm_model <- svm(y ~ .,  
                data = trainset,  
                type = "C-classification", 
                kernel = "radial") 

Calculate training/test accuracy and plot
against training dataset.

pred_train <- predict(svm_model, trainset) 
mean(pred_train == trainset$y) 

0.93125 

pred_test <- predict(svm_model, testset) 
mean(pred_test == testset$y)

0.9416667 

#plot decision boundary 
plot(svm_model, trainset) 
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Refining the decision boundary
Tune gamma  and cost  using tune.svm() Print best parameters

# Print best values of cost and gamma 
tune_out$best.parameters$cost 

1 

tune_out$best.parameters$gamma 

5 

# Tune parameters 
tune_out <- tune.svm(x = trainset[,-3], 
                     y = trainset[,3], 
                     gamma = 5 * 10 ^ (-2:2), 
                     cost = c(0.01, 0.1, 1, 10, 100
                     type = "C-classification", 
                     kernel = "radial") 
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The tuned model
Build tuned model using best.parameters

svm_model <- svm(y ~ ., data = trainset,  
              type = "C-classification",  
              kernel = "radial",
              cost = tune_out$best.parameters$cost, 
              gamma = tune_out$best.parameters$gamma) 

Calculate test accuracy

mean(pred_test == testset$y) 

0.95 

Plot decision boundary

plot(svm_model, trainset) 



SUPPORT VECTOR MACHINES IN R



Time to practice!
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