
RBF Kernels:
Generating a

complex dataset
SUPPORT VECTOR MACHINES IN R

Kailash Awati
Instructor

SUPPORT VECTOR MACHINES IN R

A bit about RBF Kernels
Highly flexible kernel.

Can fit complex decision boundaries.

Commonly used in practice.

SUPPORT VECTOR MACHINES IN R

Generate a complex dataset
600 points (x1, x2)

x1 and x2 distributed differently

n <- 600
set.seed(42)

df <- data.frame(x1 = rnorm(n, mean = -0.5, sd = 1),
 x2 = runif(n, min = -1, max = 1))

SUPPORT VECTOR MACHINES IN R

Generate boundary
Boundary consists of two equi-radial circles with a single point in common.

Set radius and centers
radius <- 0.7
radius_squared <- radius ^ 2
center_1 <- c(-0.7, 0)
center_2 <- c(0.7, 0)
Classify points
df$y <-
 factor(ifelse(
 (df$x1 - center_1[1]) ^ 2 + (df$x2 - center_1[2]) ^ 2 < radius_squared |
 (df$x1 - center_2[1]) ^ 2 + (df$x2 - center_2[2]) ^ 2 < radius_squared,
 -1, 1), levels = c(-1, 1))

SUPPORT VECTOR MACHINES IN R

Visualizing the dataset
Visualize the dataset using ggplot; distinguish classes by color

library(ggplot2)

p <- ggplot(data = df, aes(x = x1, y = x2, color = y)) +
 geom_point() +
 guides(color = "none") +
 scale_color_manual(values = c("red", "blue"))

p

SUPPORT VECTOR MACHINES IN R

SUPPORT VECTOR MACHINES IN R

Function to generate points on a circle
circle <- function(x1_center, x2_center, r, npoint = 100) {
 theta <- seq(0, 2 * pi, length.out = npoint)
 x1_circ <- x1_center + r * cos(theta)
 x2_circ <- x2_center + r * sin(theta)
 data.frame(x1c = x1_circ, x2c = x2_circ)
}
Generate boundary and plot it
boundary_1 <- circle(x1_center = center_1[1], x2_center = center_1[2], r = radius)
p <- p +
 geom_path(data = boundary_1,
 aes(x = x1c, y = x2c),
 inherit.aes = FALSE)
boundary_2 <- circle(x1_center = center_2[1], x2_center = center_2[2], r = radius)
p <- p +
 geom_path(data = boundary_2,
 aes(x = x1c, y = x2c),
 inherit.aes = FALSE)
p

SUPPORT VECTOR MACHINES IN R

Time to practice!
SUPPORT VECTOR MACHINES IN R

Motivating the RBF
kernel

SUPPORT VECTOR MACHINES IN R

Kailash Awati
Instructor

SUPPORT VECTOR MACHINES IN R

Quadratic kernel (default parameters)
Partition data into test/train (not shown)

Use degree 2 polynomial kernel (default
params)

....
Number of Support Vectors: 204

Predictions
pred_test <- predict(svm_model, testset)
mean(pred_test == testset$y)

0.8666667

plot(svm_model, trainset)

svm_model <- svm(y ~ ., data = trainset,
 type = "C-classification",
 kernel = "polynomial",
 degree = 2)
svm_model

SUPPORT VECTOR MACHINES IN R

SUPPORT VECTOR MACHINES IN R

Try higher degree polynomial
Rule out odd degrees -3,5,9 etc.

Try degree 4

svm_model <- svm(y ~ ., data = trainset,
 type = "C-classification",
 kernel = "polynomial",
 degree = 4)
svm_model

...
Number of Support Vectors: 203

Predictions
pred_test <- predict(svm_model, testset)
mean(pred_test == testset$y)

0.8583333

plot(svm_model, trainset)

SUPPORT VECTOR MACHINES IN R

SUPPORT VECTOR MACHINES IN R

Another approach
Heuristic: points close to each other have the same classification:

Akin to K-Nearest Neighbors algorithm.

For a given point in the dataset, say X1 = (a, b):
The kernel should have a maximum at (a, b)

Should decay as one moves away from (a, b)

The rate of decay should be the same in all directions

The rate of decay should be tunable

A simple function with this property is exp(-gamma * r) , where r is the distance between
X1 and any other point X

SUPPORT VECTOR MACHINES IN R

How does the RBF kernel vary with gamma (code)
#rbf function
rbf <- function(r, gamma) exp(-gamma * r)
ggplot(data.frame(r = c(-0, 10)), aes(r)) +
 stat_function(fun = rbf, args = list(gamma = 0.2), aes(color = "0.2")) +
 stat_function(fun = rbf, args = list(gamma = 0.4), aes(color = "0.4")) +
 stat_function(fun = rbf, args = list(gamma = 0.6), aes(color = "0.6")) +
 stat_function(fun = rbf, args = list(gamma = 0.8), aes(color = "0.8")) +
 stat_function(fun = rbf, args = list(gamma = 1), aes(color = "1")) +
 stat_function(fun = rbf, args = list(gamma = 2), aes(color = "2")) +
 scale_color_manual("gamma",
 values = c("red","orange","yellow",
 "green","blue","violet")) +
 ggtitle("Radial basis function (gamma = 0.2 to 2)")

SUPPORT VECTOR MACHINES IN R

Time to practice!
SUPPORT VECTOR MACHINES IN R

The RBF Kernel
SUPPORT VECTOR MACHINES IN R

Kailash Awati
Instructor

SUPPORT VECTOR MACHINES IN R

RBF Kernel in a nutshell
Decreasing function of distance between two points in dataset.

Simulates k-NN algorithm.

SUPPORT VECTOR MACHINES IN R

SUPPORT VECTOR MACHINES IN R

Building an SVM using the RBF kernel
Build RBF kernel SVM for complex dataset

svm_model <- svm(y ~ .,
 data = trainset,
 type = "C-classification",
 kernel = "radial")

Calculate training/test accuracy and plot
against training dataset.

pred_train <- predict(svm_model, trainset)
mean(pred_train == trainset$y)

0.93125

pred_test <- predict(svm_model, testset)
mean(pred_test == testset$y)

0.9416667

#plot decision boundary
plot(svm_model, trainset)

SUPPORT VECTOR MACHINES IN R

SUPPORT VECTOR MACHINES IN R

Refining the decision boundary
Tune gamma and cost using tune.svm() Print best parameters

Print best values of cost and gamma
tune_out$best.parameters$cost

1

tune_out$best.parameters$gamma

5

Tune parameters
tune_out <- tune.svm(x = trainset[,-3],
 y = trainset[,3],
 gamma = 5 * 10 ^ (-2:2),
 cost = c(0.01, 0.1, 1, 10, 100
 type = "C-classification",
 kernel = "radial")

SUPPORT VECTOR MACHINES IN R

The tuned model
Build tuned model using best.parameters

svm_model <- svm(y ~ ., data = trainset,
 type = "C-classification",
 kernel = "radial",
 cost = tune_out$best.parameters$cost,
 gamma = tune_out$best.parameters$gamma)

Calculate test accuracy

mean(pred_test == testset$y)

0.95

Plot decision boundary

plot(svm_model, trainset)

SUPPORT VECTOR MACHINES IN R

Time to practice!
SUPPORT VECTOR MACHINES IN R

