Amazon vs. Google TEXT MINING WITH BAG-OF-WORDS IN R

Remember the workflow?

acamp

- 1 Problem definition & specific goals
- 2 Identify text to be collected

- 3 Text organization
- 4 Feature extraction
- 5 Analysis
- 6 Reach an insight, recommendation, or output

6. Organized state Insight, recommendation, analytical output

6. Organized state Insight, recommendation, analytical output

6. Organized state Insight, recommendation, analytical output

Let's practice!

Step 3: Text organization

TEXT MINING WITH BAG-OF-WORDS IN R

Text organization with qdap

- # qdap cleaning function
- qdap_clean <- function(x) {</pre>
 - x <- replace_abbreviation(x)</pre>
 - x <- replace_contraction(x)</pre>
 - x <- replace_number(x)</pre>
 - x <- replace_ordinal(x)</pre>
 - x <- replace_symbol(x)</pre>
 - x <- tolower(x)</pre>

return(x)

}

Text organization with tm

tm cleaning function

```
tm_clean <- function(corpus) {</pre>
```

```
tm_clean <- tm_map(corpus, removePunctuation)</pre>
```

corpus <- tm_map(corpus, stripWhitespace)</pre>

```
corpus <- tm_map(corpus, removeWords,</pre>
```

```
c(stopwords("en"), "Google", "Amazon", "company"))
return(corpus)
```

}

Cleaning your corpora

Let's practice!

Steps 4 & 5: Feature extraction & analysis

TEXT MINING WITH BAG-OF-WORDS IN R

Feature extraction

```
# Create bigram TDM
amzn_p_tdm <- TermDocumentMatrix(</pre>
  amzn_pros_corp,
   control = list(tokenize = tokenizer)
```

			Review 1	Review 2		Review N
		Bigram 1	0	0	0	0
		Bigram 2	1	1	0	0
	\rightarrow	Bigram 3	1	0	0	0
500			0	0	1	1
+		Bigram M	0	0	1	0
		Torm D		nt Matri	v (*	

Term Document Matrix (TDM)

Get term frequencies

```
# Convert TDM to matrix
amzn_p_m <- as.matrix(amzn_p_tdm)</pre>
# Compute term frequencies
amzn_p_freq <- rowSums(amzn_p_m)</pre>
# Sort in decreasing order of frequency
term_frequency <- sort(amzn_p_freq, decreasing = TRUE)</pre>
# View the top 5 most frequent bigrams
term_frequency[1:5]
```

good pay	great benefits	smart people
25	24	20
place work	fast paced	
17	16	

Create visuals with plotrix

```
# Find common words
```

```
common_words <- subset(all_tdm_m, all_tdm_m[, 1] > 0 & all_tdm_m[, 2] > 0)
```

- difference <- abs(common_words[, 1] common_words[, 2])
- common_words <- cbind(common_words, difference)</pre>
- common_words <- common_words[order(common_words[, 3], decreasing = TRUE),]</pre>
- # Create data frame: top 15 words
- $top15_df <- data.frame(x = common_words[1:15, 1], y = common_words[1:15, 2],$ labels = rownames(common_words[1:15,]))

Make pyramid plot

```
pyramid.plot(top15_df$x, top15_df$y, labels = top15_df$labels, gap = 12,
             main = "Words in Common", unit = NULL,
```

top.labels = c("Amzn", "Cons Words", "Google"))

Let's practice!

Step 6: Reach a conclusion

TEXT MINING WITH BAG-OF-WORDS IN R

Time to reach a conclusion!

6. Organized state Insight, recommendation, analytical output

Let's practice!

Finished!

TEXT MINING WITH BAG-OF-WORDS IN R

In this course, you learned how to...

- Organize and clean text data
- Tokenize into unigrams & bigrams
- Build TDMs & DTMs
- Extract features
 - Top terms 0
 - Word associations 0
- Visualize text data

Congratulations!

