Trend spotting! TIME SERIES ANALYSIS IN R

David S. Matteson Associate Professor at Cornell University

Trends

Some time series do not exhibit any clear trends over time:

R datacamp

Trends: linear

Examples of linear trends over time:

R datacamp

Trends: rapid growth

Examples of rapid growth trends over time:

R datacamp

Trends: periodic

Examples of periodic or sinusoidal trends over time:

R datacamp

Trends: variance

Examples of increasing variance trends over time:

R datacamp

Sample transformations: log()

The log() function can linearize a rapid growth trend:

R datacamp

Sample transformations: diff()

The diff() function can remove a linear trend:

R datacamp

Sample transformations: diff(..., s)

The diff(..., s) function, or seasonal difference transformation, can remove periodic trends.

diff(x, s = 4)

& datacamp

Let's practice!

The white noise (WN) model

TIME SERIES ANALYSIS IN R

David S. Matteson Associate Professor at Cornell University

White noise

White Noise (WN) is the simplest example of a stationary process.

A *weak white* noise process has:

- A fixed, constant mean.
- A fixed, constant variance.
- No correlation over time.

White noise

Time series plots of White Noise:

R datacamp

White noise

Time series plots of White Noise?

Time

Time .

R datacamp

Simulate n = 50 observations from the WN model
WN_1 <- arima.sim(model = list(order = c(0, 0, 0)), n = 50)
head(WN_1)</pre>

-0.0050529840.0426697653.2611540662.4864312350.2831193221.543525773

ts.plot(WN_1)

R datacamp

ts.plot(WN_2)

R datacamp

Estimating white noise

<pre># Fit the WN model with # arima() arima(WN_2,</pre>	<pre># Calculate the sample # mean and sample variance # of WN mean(WN_2)</pre>
Coefficients:	4.0739
4.0739 s.e. 0.2698	var(WN_2)
sigma^2 estimated as 3.639	3.713

Let's practice!

The random walk (RW) model

TIME SERIES ANALYSIS IN R

David S. Matteson Associate Professor at Cornell University

Random walk

Random Walk (RW) is a simple example of a non-stationary process.

A random walk has:

- No specified mean or variance.
- Strong dependence over time.
- Its changes or increments are white noise (WN).

Random walk

Time series plots of Random Walk:

 $\{d\}$

R datacamp

Random walk

The random walk recursion:

$$Today = Yesterday + Noise$$

More formally:

$$Y_t = Y_{t-1} + \epsilon_t$$

where ϵ_t is mean zero white noise (WN).

- Simulation requires an initial point Y_0 .
- Only one parameter, the WN variance σ_ϵ^2 .

Random walk - I

The random walk process:

$$Y_t = Y_{t-1} + \epsilon_t$$

where ϵ_t is mean zero WN

As $Y_t - Y_{t-1} = \epsilon_t o ext{diff(Y)}$ is WN

Random walk - II

R datacamp

Random walk with drift - I

The random walk with a drift:

$$Today = Constant + Yesterday + Noise$$

More formally:

$$Y_t = c + Y_{t-1} + \epsilon_t$$

where ϵ_t is mean zero white noise (WN).

- Two parameters, the constant c , and the WN variance $\sigma_\epsilon^2.$
- $Y_t Y_{t-1} = ? o \mathsf{WN}$ with mean c!

Random walk with drift - II

Time series plots of Random Walk with drift:

 $\{2\}$

100

Time.

R datacamp

Let's practice!

Stationary processes

TIME SERIES ANALYSIS IN R

David S. Matteson Associate Professor at Cornell University

Stationarity

- Stationary models are parsimonious.
- Stationary processes have distributional stability over time.

Observed time series:

- Fluctuate randomly.
- But behave similarly from one time period to the next.

Weak stationarity - I

Weak stationary: mean, variance, covariance constant over time.

 Y_1, Y_2 , ... is a *weakly stationary* process if:

- Mean μ of Y_t is same (constant) for all t.
- Variance σ^2 of Y_t is same (constant) for all t.
- And....

Weak stationarity - II

Covariance of Y_t and Y_s is same (constant) for all |t - s| = h, for all h.

$$Cov(Y_2,Y_5)=Cov(Y_7,Y_{10})$$

since each pair is separated by three units of time.

Stationarity: why?

A stationary process can be modeled with **fewer parameters**.

For example, we do not need a different expectation for each Y_t ; rather they all have a common expectation, μ .

- Estimate μ accurately by \bar{y} .

Stationarity: when?

Many financial time series do not exhibit stationarity, however:

- The **changes** in the series are often approximately stationary.
- A stationary series should show random oscillation around some fixed level; a phenomenon called **mean-reversion**.

Stationarity example

Inflation rates and *changes* in inflation rates:

R datacamp

Let's practice!

