Scatterplots TIME SERIES ANALYSIS IN R

David S. Matteson Associate Professor at Cornell University

Stock prices: stock A and B over time

ts.plot(cbind(stock_A, stock_B))

R datacamp

Stock prices: scatterplot of stock B vs. A

plot(stock_A, stock_B)

Stock Prices

 $A_{\rm c}/A_{\rm c}$

R datacamp

Log returns for stock A and B

stock_A_logreturn = diff(log(stock_A))
stock_B_logreturn = diff(log(stock_B))
ts.plot(cbind(stock_A_logreturn, stock_B_logreturn))

R datacamp

Scatterplot of stock B vs A log returns

plot(stock_A_logreturn, stock_B_logreturn)

log Stock Returns

R datacamp

Let's practice!

Covariance and correlation

TIME SERIES ANALYSIS IN R

David S. Matteson Associate Professor at Cornell University

Stock prices for stock A

Stock prices for stock B

 \mathbf{x}_{i} \mathbf{x}_{i}

Time

Stock Prices

2.17

R datacamp

Covariance of stock A and B

cov(stock_A, stock_B)

2.86

Stock Prices

R datacamp

Correlations

- Standardized version of covariance
- +1: perfectly positive linear relationship
- -1: perfectly negative linear relationship
- **0**: no linear association

Correlation of stock A and B

 $= \exp(-A)$

0.71

ि datacamp

Covariance and correlation: log returns

cov(stock_A_logreturn, stock_B_logreturn)

0.001

cor(stock_A_logreturn, stock_B_logreturn)

0.74

Covariance and correlation: log returns

log Stock Returns

datacamp

Let's practice!

Autocorrelation

TIME SERIES ANALYSIS IN R

David S. Matteson Associate Professor at Cornell University

Autocorrelation - I

Lag 1 Autocorrelation: # Correlation of stock A "today" and stock A "yesterday" cor(stock_A[-100], stock_A[-1])

0.84

R datacamp

Autocorrelation - II

Lag 2 Autocorrelation:

Correlation of Stock A "today" and stock A "Two Days Earlier" cor(stock_A[-(99:100)],stock_A[-(1:2)])

0.76

R datacamp

Autocorrelations at lag 1 and 2 - I

cor(stock_A[-100],stock_A[-1])

0.84

cor(stock_A[-(99:100)],stock_A[-(1:2)])

0.76

acf(stock_A, lag.max = 2, plot = FALSE)

```
Autocorrelations of series 'stock_A', by lag
1 2
0.84 0.76
```

R datacamp

Autocorrelations at lag 1 and 2 - II

R datacamp

The autocorrelation function - I

Autocorrelation by lag: "The Autocorrelation Function"
(ACF)acf(stock_A, plot = FALSE)

Autocorrelations			ns of	serie	es 'st	'stock_A', by lag				
1	2	3	4	5	6	7	8	9	10	
0.84	0.76	0.64	0.57	0.52	0.46	0.41	0.36	0.29	0.25	

The autocorrelation function - II

acf(stock_A, plot = TRUE)

Series stock_A

R datacamp

Let's practice!

