The autoregressive model

TIME SERIES ANALYSIS IN R

David S. Matteson Associate Professor at Cornell University

The autoregressive model - I

The Autoregressive (AR) recursion:

Today = Constant + Slope * Yesterday + Noise

Mean centered version:

(Today - Mean) =

Slope * (Yesterday - Mean) + Noise

The autoregressive model - II

(Today - Mean) =

Slope * (Yesterday - Mean) + Noise

More formally:

$$Y_t - \mu = \phi(Y_{t-1} - \mu) + \epsilon_t$$

where ϵ_t is mean zero white noise (WN).

- The mean μ
- The slope ϕ
- The WN variance σ^2

acamp

AR processes - I

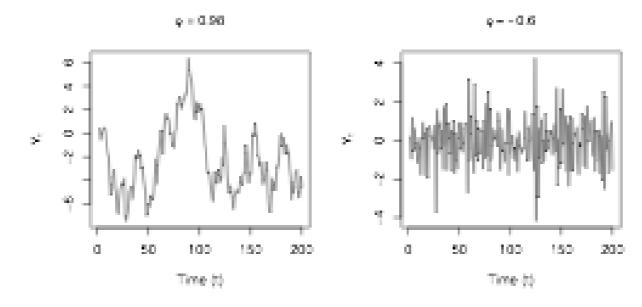
$$Y_t - \mu = \phi(Y_{t-1} - \mu) + \epsilon_t$$

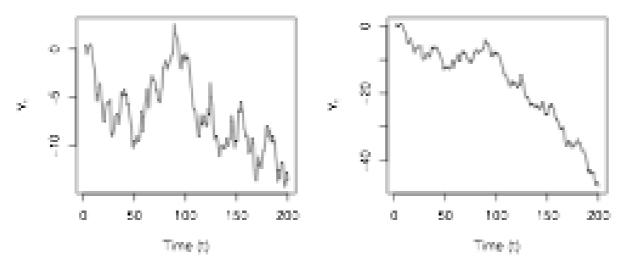
- If slope $\phi=0$ then: $Y_t=\mu+\epsilon_t$ and

And Y_t is white noise: (μ, σ_ϵ^2)

- If slope $\phi
 eq 0$ then: Y_t depends on both ϵ_t and Y_{t-1} And the process $\{Y_t\}$ is autocorrelated
- Large values of ϕ lead to greater autocorrelation
- Negative values of ϕ result in oscillatory time series

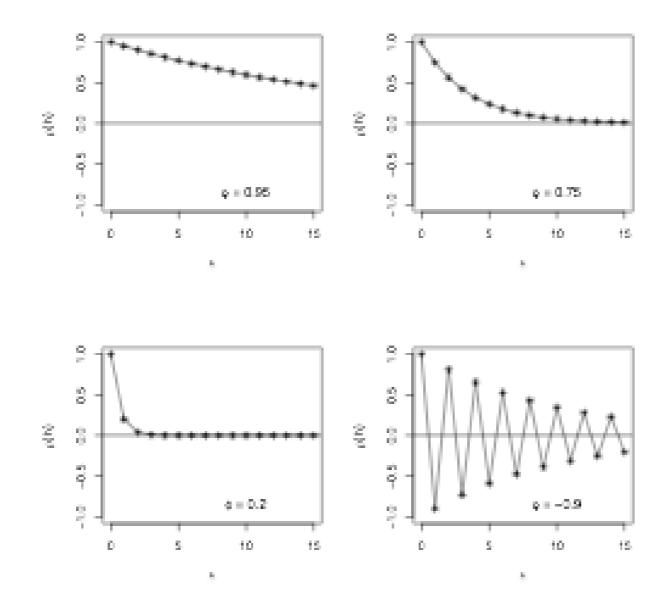
AR examples





R datacamp

Autocorrelations



& datacamp

Random walk

If $\mu=0$ and slope $\phi=1$, then:

$$Y_t = Y_{t-1} + \epsilon_t$$

Which is:

$$Today = Yesterday + Noise$$

But this is a **random walk**.

And $\{Y_t\}$ is **not** stationary in this case.

Let's practice!

AR model estimation and forecasting

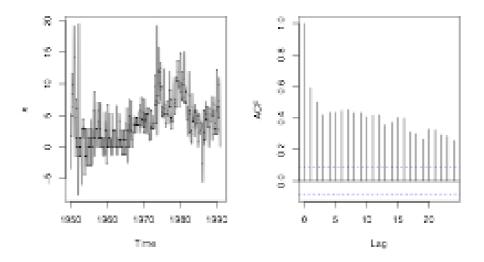
TIME SERIES ANALYSIS IN R

David S. Matteson Associate Professor at Cornell University

AR processes: inflation rate

- One-month US inflation rate (in percent, annual rate).
- Monthly observations from 1950 through 1990

```
data(Mishkin, package = "Ecdat")
inflation <- as.ts(Mishkin[, 1])
ts.plot(inflation) ; acf(inflation)</pre>
```



R datacamp

(Today - Mean) = Slope * (Yesterday - Mean) + Noise $Y_t - \mu = \phi(Y_{t-1} - \mu) + \epsilon_t$ $\epsilon_t \ WhiteNoise(0, \sigma_\epsilon^2)$

AR_inflation <- arima(inflation, order = c(1, 0, 0))
print(AR_inflation)</pre>

Coefficients:					
ar1	intercept				
0.5960	3.9745				
s.e. 0.0364	0.3471				
sigma^2 estimated as 9.713					

ar1 =
$$\hat{\phi}$$
, intercept = $\hat{\mu}$, sigma^2 = $\hat{\sigma}_{\epsilon}^2$

R datacamp

AR processes: fitted values - I

• AR fitted values:

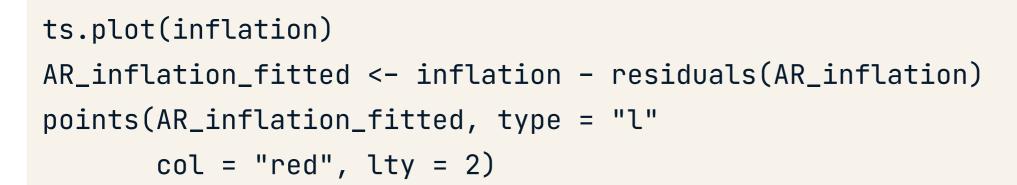
$$\widehat{Today} = \widehat{Mean} + \widehat{Slope} * (Yesterday - \widehat{Mean})$$

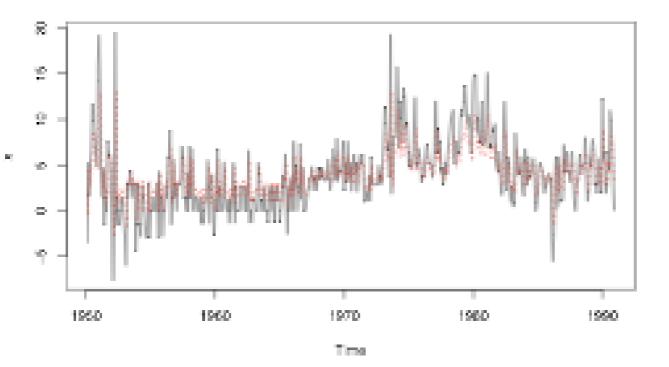
$$\hat{Y}_t = \hat{\mu} + \hat{\phi}(Y_{t-1} - \hat{\mu})$$

• Residuals =

$$Today - \widehat{Today}$$
 $\hat{\epsilon_t} = Y_t - \hat{Y_t}$

AR processes: fitted values - II





& datacamp

Forecasting

• 1-step ahead forecasts

predict(AR_inflation)\$pred

Jan 1991 1.605797

predict(AR_inflation)\$se

Jan 1991 3.116526

Forecasting (cont.)

• h-step ahead forecasts

predict(AR_inflation, n.ahead = 6)\$pred

	Jan	Feb	Mar	Apr	May	Jun
1991	1.605797	2.562810	3.133165	3.473082	3.675664	3.796398

predict(AR_inflation, n.ahead = 6)\$se

	Jan	Feb	Mar	Apr	May	Jun
1991	3.116526	3.628023	3.793136	3.850077	3.870101	3.877188

Let's practice!

