The simple moving average model

TIME SERIES ANALYSIS IN R

David S. Matteson Associate Professor at Cornell University

The simple moving average model

The simple moving average (MA) model:

Today = Mean + Noise + Slope * (Yesterday'sNoise)

More formally:

$$Y_t = \mu + \epsilon_t + \theta \epsilon_{t-1}$$

where ϵ_t is mean zero white noise (WN).

Three parameters:

- The mean μ
- The slope heta
- The WN variance σ^2

R datacamp

MA processes - I

Today = Mean + Noise + Slope * (Yesterday'sNoise)

$$Y_t = \mu + \epsilon_t + heta \epsilon_{t-1}$$

- If slope θ is zero then:
- $Y_t = \mu + \epsilon_t$
- And Y_t is White Noise (μ, σ_ϵ^2)

MA processes - II

Today = Mean + Noise + Slope * (Yesterday'sNoise)

$$Y_t = \mu + \epsilon_t + heta \epsilon_{t-1}$$

- If slope heta is **not** zero then Y_t depends on both ϵ_t and ϵ_{t-1} And the process Y_t is autocorrelated
- Large values of $\boldsymbol{\theta}$ lead to greater autocorrelation
- Negative values of $\boldsymbol{\theta}$ result in oscillatory time series

MA examples

R datacamp

Autocorrelations

tacamp

Only lag 1 autocorrelation non-zero for the MA model.

Let's practice!

MA model estimation and forecasting

TIME SERIES ANALYSIS IN R

David S. Matteson Associate Professor at Cornell University

R datacamp

- One-month US inflation rate (in percent, annual rate)
- Monthly observations from 1950 through 1990

```
data(Mishkin, package = "Ecdat")
inflation <- as.ts(Mishkin[, 1])
inflation_changes <- diff(inflation)
ts.plot(inflation) ; ts.plot(inflation_changes)</pre>
```


R datacamp

MA processes: changes in inflation tate - II

- Inflation_changes : changes in one-month US inflation rate
- Plot the series and its sample ACF:

```
ts.plot(inflation_changes)
acf(inflation_changes, lag.max = 24)
```


R datacamp

 $Today = Mean + Noise + Slope * (Yesterday'sNoise) \ Y_t = \mu + \epsilon_t + heta \epsilon_{t-1}$

 $\epsilon_t WhiteNoise(0,\sigma_\epsilon^2)$

ma1 = $\hat{\theta}$, intercept = $\hat{\mu}$, sigma^2 = $\hat{\sigma_{\epsilon}^2}$

R datacamp

MA processes: fitted values - I

• MA fitted values:

$$\widehat{Today} = \widehat{Mean} + \widehat{Slope} * Yesterday'sNoise$$
$$\hat{Y_t} = \hat{\mu} + \hat{\theta} \hat{\epsilon_{t-1}}$$

• Residuals =

$$Today - \widehat{Today} \ \hat{\epsilon_t} = Y_t - \hat{Y_t}$$

ts.plot(inflation_changes)
MA_inflation_changes_fitted < inflation_changes - residuals(MA_inflation_changes)
points(MA_inflation_changes_fitted, type = "l",</pre>

col = "red", lty = 2)

& datacamp

Forecasting

• 1-step ahead forecasts:

predict(MA_inflation_changes)\$pred

Jan 1991 4.831632

predict(MA_inflation_changes)\$se

Jan 1991 2.980203

Forecasting (cont.)

• h-step ahead forecasts:

predict(MA_inflation_changes, n.ahead = 6)\$pred

	Jan	Feb	Mar	Apr	May	Jun
1991	4.831632	0.001049	0.001049	0.001049	0.001049	0.001049

predict(MA_inflation_changes, n.ahead = 6)\$se

	Jan	Feb	Mar	Apr	May	Jun
1991	2.980203	3.803826	3.803826	3.803826	3.803826	3.803826

Let's practice!

Compare AR and MA models

TIME SERIES ANALYSIS IN R

David S. Matteson Associate Professor at Cornell University

MA and AR processes

- MA model: Today = Mean + Noise + Slope * (Yesterday'sNoise) $Y_t = \mu + \epsilon_t + heta \epsilon_{t-1}$
- AR model:

(Today - Mean) = Slope * (Yesterday - Mean) + Noise

$$Y_t - \mu = \phi(Y_{t-1} - \mu) + \epsilon_t$$

• Where:

$$\epsilon_t \sim WhiteNoise(0,\sigma_t^2)$$

MA and AR processes: autocorrelations

AR: $\phi = -0.48$

R datacamp

MA and AR processes: simulations

AR: $\phi = -0.48$

& datacamp

MA and AR processes: fitted values

• Changes in one-month US inflation rate

R datacamp

MA and AR processes: forecasts

• Changes in one-month US inflation rate

R datacamp

MA_inflation_changes <arima(inflation_changes,
order = c(0,0,1))</pre>

		ma1	inte	rcep	ot
	-0.	.7932	0	.001	LO
s.e.	0.	.0355	0	.028	31
sigm	a^2	estim	nated	as	8.882:
log	like	elihoc	od = -	-123	30.85,
aic	= 24	467 . 7			

AR_inflation_changes <arima(inflation_changes,
order = c(1,0,0))</pre>

	ar1 intercept
	-0.3849 0.0038
	s.e. 0.0420 0.1051
:	sigma^2 estimated as 10.37:
	log likelihood = -1268.34,
	aic = 2542.68

AIC(MA_inflation_changes)
BIC(MA_inflation_changes)

AIC(AR_inflation_changes)
BIC(AR_inflation_changes)

2467.703 2480.286 2542.679 2555.262

R datacamp

Let's practice!

Congratulations! TIME SERIES ANALYSIS IN R

David S. Matteson Associate Professor at Cornell University

What you've learned

- Manipulating ts objects, including log() and diff()
- Time series models: white noise, random walk, autoregression, simple moving average
- Time series simulation (arima.sim), fitting (arima), and forecasting (predict).

R datacamp

Let's practice!

