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Chapter 1 overview

e Unsupervised learning
e Three major types of machine learning

e EXxecute one type of unsupervised learning using R
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Types of machine learning

e Unsupervised learning
o Finding structure in unlabeled data

e Supervised learning
o Making predictions based on labeled data

o Predictions like regression or classification

e Reinforcement learning
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Labeled vs. unlabeled data
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! Sample from Murphy, Machine Learning: A Probabilistic Perspective
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Labeled vs. unlabeled data
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Unsupervised learning - clustering

e Finding homogeneous subgroups within larger group

People have features such as income, education attainment, and gender
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Unsupervised learning - clustering

e Finding homogeneous subgroups within larger group
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Unsupervised learning - clustering

e Finding homogeneous subgroups within larger group

Clustering

Subgroup B
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Clustering examples
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Clustering examples
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Unsupervised learning - dimensionality reduction

e Finding homogeneous subgroups within larger group
o Clustering

e Finding patterns in the features of the data
o Dimensionality reduction
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Unsupervised learning - dimensionality reduction

 Find patterns in the features of the data
e Visualization of high dimensional data

* Pre-processing before supervised learning
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Challenges and benefits

 No single goal of analysis
e Requires more creativity

e Much more unlabeled data available than cleanly labeled data
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Let's practice!
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Introduction to k-
means clustering
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k-means clustering algorithm

e First of two clustering algorithms covered in this course

e Breaks observations into pre-defined number of clusters
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k-meadns in R

# k-means algorithm with 5 centers, run 20 times
kmeans(x, centers = 5, nstart = 20)

e One observation per row, one feature per column
e k-means has a random component

* Run algorithm multiple times to improve odds of the best model
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First exercises

e First exercise uses synthetic data
e Synthetic data generated from 3 subgroups
e Selecting the best number of subgroups for k-means

e Example with more fun data later in the chapter
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Let's practice!
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How k-means works
and practical
matters
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Objectives

e Explain how k-means algorithm is implemented visually

e Model selection: determining number of clusters
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Random Cluster Assignment
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Cluster Centers Calculated
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Iteration 1 - After Reassignment
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Iteration 2
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Iteration 3
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Iteration 4
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Iteration 5
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Model selection

e Recall k-means has a random component

e Best outcome is based on total within cluster sum of squares:
o For each cluster
= For each observation in the cluster
= Determine squared distance from observation to cluster center

= Sum all of them together
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Model selection

# k-means algorithm with 5 centers, run 20 times
kmeans(x, centers = 5, nstart = 20)

 Running algorithm multiple times helps find the global minimum total within cluster sum of
squares

e You'll see an example in the exercises
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ldentical groupings
and Total Within SS,
but different cluster

labels
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Determining the best number of clusters

e Trial and error is not the best approach Scree plot
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Determining the best number of clusters

e Trial and error is not the best approach
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Let's practice!
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Introduction to the
Pokemon data
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"Real” data exercise
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The Pokemon dataset

head(pokemon)

HitPoints Attack Defense SpecialAttack

1] 45
2] 60
3., 80
4,] 80
5., 39
6,) 58

49
62
82
100
52
64

49
63
83
123
43
58

65
80
100
122
60
80

SpecialDefense
65
80
100
120
50
65

! https://www.kaggle.com/abcsds/pokemon 2 https://pokemondb.net/pokedex

Speed
45
60
80
80
65
80
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Data challenges

Selecting the variables to cluster upon
Scaling the data (will handle in last chapter)

Determining the number of clusters
o Often no clean "elbow" in scree plot

o This will be a core part of the exercises

Visualize the results for interpretation
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Let's practice!
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Review of k-means
clustering

UNSUPERVISED LEARNING IN R

Hank Roark
Senior Data Scientist at Boeing

X datacamp




Chapter review

Unsupervised vs. supervised learning

How to create k-means cluster model in R
How k-means algorithm works

Model selection

Application to "real" (and hopefully fun) dataset

UNSUPERVISED LEARNING IN R



Coming up: chapter 2
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Coming up: chapter 3

PC1 describes most of data variance
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Principal Component 1
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Coming up: chapter 4

# Repeat for components 1 and 3
plot(wisc.pr$x[, c(1, 3)], col = (diagnosis + 1),
xlab = "PC1", ylab = "PC3")

PC3
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See you in the next
chapter!

UNSUPERVISED LEARNING IN R



