Welcome to the course!

UNSUPERVISED LEARNING IN R

Hank RoarkSenior Data Scientist at Boeing

Chapter 1 overview

- Unsupervised learning
- Three major types of machine learning
- Execute one type of unsupervised learning using R

Types of machine learning

- Unsupervised learning
 - Finding structure in unlabeled data
- Supervised learning
 - Making predictions based on labeled data
 - Predictions like regression or classification
- Reinforcement learning

Labeled vs. unlabeled data

Features ————

Observations

Color	Shape	Size
Blue	Square	10
Red	Ellipse	2.4
Red	Ellipse	20.7

Unlabeled data

¹ Sample from Murphy, Machine Learning: A Probabilistic Perspective

Labeled vs. unlabeled data

Features

Observations

Color	Shape	Size	Label
Blue	Square	10	1
Red	Ellipse	2.4	1
Red	Ellipse	20.7	2

Labeled data

¹ Sample from Murphy, Machine Learning: A Probabilistic Perspective

Unsupervised learning - clustering

Finding homogeneous subgroups within larger group

People have features such as income, education attainment, and gender

Unsupervised learning - clustering

• Finding homogeneous subgroups within larger group

Unsupervised learning - clustering

• Finding homogeneous subgroups within larger group

Clustering

Clustering examples

Clustering examples

Unsupervised learning - dimensionality reduction

- Finding homogeneous subgroups within larger group
 - Clustering
- Finding patterns in the features of the data
 - Dimensionality reduction

Unsupervised learning - dimensionality reduction

- Find patterns in the features of the data
- Visualization of high dimensional data
- Pre-processing before supervised learning

Challenges and benefits

- No single goal of analysis
- Requires more creativity
- Much more unlabeled data available than cleanly labeled data

Let's practice!

UNSUPERVISED LEARNING IN R

Introduction to kmeans clustering

UNSUPERVISED LEARNING IN R

Hank Roark
Senior Data Scientist at Boeing

k-means clustering algorithm

- First of two clustering algorithms covered in this course
- Breaks observations into pre-defined number of clusters

k-means in R

```
# k-means algorithm with 5 centers, run 20 times
kmeans(x, centers = 5, nstart = 20)
```

- One observation per row, one feature per column
- k-means has a random component
- Run algorithm multiple times to improve odds of the best model

First exercises

- First exercise uses synthetic data
- Synthetic data generated from 3 subgroups
- Selecting the best number of subgroups for k-means
- Example with more fun data later in the chapter

Let's practice!

UNSUPERVISED LEARNING IN R

How k-means works and practical matters

UNSUPERVISED LEARNING IN R

Hank Roark
Senior Data Scientist at Boeing

Objectives

- Explain how k-means algorithm is implemented visually
- Model selection: determining number of clusters

Observations

Random Cluster Assignment

Cluster Centers Calculated

Iteration 1 - After Reassignment

Model selection

- Recall k-means has a random component
- Best outcome is based on total within cluster sum of squares:
 - For each cluster
 - For each observation in the cluster
 - Determine squared distance from observation to cluster center
 - Sum all of them together

Model selection

```
# k-means algorithm with 5 centers, run 20 times
kmeans(x, centers = 5, nstart = 20)
```

- Running algorithm multiple times helps find the global minimum total within cluster sum of squares
- You'll see an example in the exercises

Identical groupings and Total Within SS, but different cluster labels

Determining the best number of clusters

Trial and error is not the best approach

Determining the best number of clusters

Trial and error is not the best approach

Let's practice!

UNSUPERVISED LEARNING IN R

Introduction to the Pokemon data

UNSUPERVISED LEARNING IN R

Hank Roark
Senior Data Scientist at Boeing

"Real" data exercise

The Pokemon dataset

head(pokemon)

	HitPoints	Attack	Defense	SpecialAttack	SpecialDefense	Speed
[1,]	45	49	49	65	65	45
[2,]	60	62	63	80	80	60
[3,]	80	82	83	100	100	80
[4,]	80	100	123	122	120	80
[5,]	39	52	43	60	50	65
[6,]	58	64	58	80	65	80

¹ https://www.kaggle.com/abcsds/pokemon ² https://pokemondb.net/pokedex

Data challenges

- Selecting the variables to cluster upon
- Scaling the data (will handle in last chapter)
- Determining the number of clusters
 - Often no clean "elbow" in scree plot
 - This will be a core part of the exercises
- Visualize the results for interpretation

Let's practice!

UNSUPERVISED LEARNING IN R

Review of k-means clustering

UNSUPERVISED LEARNING IN R

Hank Roark
Senior Data Scientist at Boeing

Chapter review

- Unsupervised vs. supervised learning
- How to create k-means cluster model in R
- How k-means algorithm works
- Model selection
- Application to "real" (and hopefully fun) dataset

Coming up: chapter 2

Coming up: chapter 3

Coming up: chapter 4

See you in the next chapter!

UNSUPERVISED LEARNING IN R

