Introduction to hierarchical clustering

UNSUPERVISED LEARNING IN R

Hank Roark Senior Data Scientist at Boeing

Hierarchical clustering

- Number of clusters is not known ahead of time
- Two kinds: bottom-up and top-down, this course bottom-up

Simple example

Simple Example

Five clusters

5 Clusters Each point a cluster

Four clusters

4 Clusters

Three clusters

3 Clusters

Two clusters

One cluster

1 Cluster

Hierarchical clustering in R

Calculates similarity as Euclidean distance # between observations dist_matrix <- dist(x)</pre> # Returns hierarchical clustering model hclust(d = dist_matrix)

Call: hclust(d = s)Cluster method : complete Distance : euclidean Number of objects: 50

Let's practice!

Selecting number of clusters

UNSUPERVISED LEARNING IN R

Hank Roark Senior Data Scientist at Boeing

Interpreting results

Create hierarchical cluster model: hclust.out hclust.out <- hclust(dist(x))</pre> # Inspect the result summary(hclust.out)

	Length	Class	Mode
merge	98	-none-	numeric
height	49	-none-	numeric
order	50	-none-	numeric
labels	0	-none-	NULL
method	1	-none-	character
call	2	-none-	call
dist.method	1	-none-	character

tacamp

• Tree shaped structure used to interpret hierarchical clustering models

Camp

• Tree shaped structure used to interpret hierarchical clustering models

• Tree shaped structure used to interpret hierarchical clustering models

• Tree shaped structure used to interpret hierarchical clustering models

• Tree shaped structure used to interpret hierarchical clustering models

Dendrogram plotting in R

Draws a dendrogram plot(hclust.out) abline(h = 6, col = "red")

latacamp

Tree "cutting" in R

Cut by height h cutree(hclust.out, h = 6)

Cut by number of clusters k cutree(hclust.out, k = 2)

2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1

Let's practice!

Clustering linkage and practical matters

UNSUPERVISED LEARNING IN R

Hank Roark Senior Data Scientist at Boeing

Linking clusters in hierarchical clustering

- How is distance between clusters determined? Rules?
- Four methods to determine which cluster should be linked
 - *Complete*: pairwise similarity between all observations in cluster 1 and cluster 2, and uses 0 largest of similarities
 - Single: same as above but uses smallest of similarities 0
 - Average: same as above but uses average of similarities 0
 - *Centroid*: finds centroid of cluster 1 and centroid of cluster 2, and uses **similarity between** 0 two centroids

Linking methods: complete and average

tacamp

Linking method: single

R datacamp

Linking method: centroid

Centroid

dist(x) hclust (*, "centroid")

latacamp

Linkage in R

Fitting hierarchical clustering models using different methods hclust.complete <- hclust(d, method = "complete")</pre> hclust.average <- hclust(d, method = "average")</pre> hclust.single <- hclust(d, method = "single")</pre>

- Data on different scales can cause undesirable results in clustering methods
- Solution is to scale data so that features have same mean and standard deviation
 - Subtract mean of a feature from all observations 0
 - Divide each feature by the standard deviation of the feature 0
 - Normalized features have a mean of zero and a standard deviation of one 0

Check if scaling is necessary colMeans(x)

-0.1337828 0.0594019

apply(x, 2, sd)

1.974376 2.112357

Produce new matrix with columns of mean of 0 and sd of 1 scaled_x <- scale(x)</pre> colMeans(scaled_x)

2.775558e-17 3.330669e-17

```
apply(scaled_x, 2, sd)
```

1 1

Let's practice!

Review of hierarchical clustering

UNSUPERVISED LEARNING IN R

Hank Roark Senior Data Scientist at Boeing

Hierarchical clustering review

Fitting various hierarchical clustering models hclust.complete <- hclust(d, method = "complete")</pre> hclust.average <- hclust(d, method = "average")</pre> hclust.single <- hclust(d, method = "single")</pre>

Linking methods: complete and average

tacamp

Hierarchical clustering

datacamp

Iterating

R datacamp

& datacamp

How k-means and hierarchical clustering differ

Camp


```
# Scale the data
pokemon.scaled <- scale(pokemon)</pre>
# Create hierarchical and k-means clustering models
hclust.pokemon <- hclust(dist(pokemon.scaled), method = "complete")</pre>
km.pokemon <- kmeans(pokemon.scaled, centers = 3,</pre>
                      nstart = 20, iter.max = 50)
```

Compare results of the models cut.pokemon <- cutree(hclust.pokemon, k = 3)</pre> table(km.pokemon\$cluster, cut.pokemon) cut.pokemon

1 2	3
1 242 1	0
2 342 1	0

Let's practice!

