Introduction to PCA

UNSUPERVISED LEARNING IN R

Hank Roark Senior Data Scientist at Boeing

Two methods of clustering

- Two methods of clustering finding groups of homogeneous items
- Next up, dimensionality reduction
 - Find structure in features 0
 - Aid in visualization

Dimensionality reduction

- A popular method is principal component analysis (PCA) \bullet
- Three goals when finding lower dimensional representation of features:
 - Find linear combination of variables to create principal components 0
 - Maintain most variance in the data 0
 - Principal components are uncorrelated (i.e., orthogonal to each other) 0

PCA intuition

tacamp

PCA intuition

Regression line represents the principal component

tacamp

PCA intuition

Projected values on principal component is called component scores or factor scores

Visualization of high dimensional data

Visualization

datacamp

Principal Component 1

PCA in R

```
pr.iris <- prcomp(x = iris[-5],</pre>
                   scale = FALSE,
                    center = TRUE)
summary(pr.iris)
```

Importance of components:

	PC1	PC2	PC3	PC4
Standard deviation	2.0563	0.49262	0.2797	0.15439
Proportion of Variance	0.9246	0.05307	0.0171	0.00521
Cumulative Proportion	0.9246	0.97769	0.9948	1.00000

Let's practice!

Visualizing and interpreting PCA results

UNSUPERVISED LEARNING IN R

Hank Roark Senior Data Scientist at Boeing

Biplot

Scree plot

latacamp

Biplots in R

datacamp

Biplot

Scree plots in R

```
# Getting proportion of variance for a scree plot
pr.var <- pr.iris$sdev^2</pre>
pve <- pr.var / sum(pr.var)</pre>
# Plot variance explained for each principal component
plot(pve, xlab = "Principal Component",
       ylab = "Proportion of Variance Explained",
       ylim = c(0, 1), type = "b")
```

Scree plot

Principal Component

R datacamp

Let's practice!

Practical issues with PCA

UNSUPERVISED LEARNING IN R

Hank Roark Senior Data Scientist at Boeing

Practical issues with PCA

- Scaling the data
- Missing values:
 - Drop observations with missing values 0
 - Impute / estimate missing values 0
- Categorical data:
 - Do not use categorical data features 0
 - Encode categorical features as numbers 0

mtcars dataset

data(mtcars) head(mtcars)

	mpg	cyl	disp	hp	drat	wt	qsec	٧S
Mazda RX4	21.0	6	160	110	3.90	2.620	16.46	0
Mazda RX4 Wag	21.0	6	160	110	3.90	2.875	17.02	0
Datsun 710	22.8	4	108	93	3.85	2.320	18.61	1
Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	1
Hornet Sportabout	18.7	8	360	175	3.15	3.440	17.02	0
Valiant	18.1	6	225	105	2.76	3.460	20.22	1

Scaling

Means and standard deviations vary a lot round(colMeans(mtcars), 2)

mpg	cyl	disp	hp	drat	wt	qsec	VS
20.09	6.19 23	0.72 1 <i>4</i>	46.69	3.60	3.22	17.85	0.44

round(apply(mtcars, 2, sd), 2)

mpg	cyl disp	hp	drat	wt	qsec	VS	
6.03	1.79 123.94	68.56	0.53	0.98	1.79	0.50	

Importance of scaling data

datacamp

Scaling and PCA in R

prcomp(x, center = TRUE, scale = FALSE)

Let's practice!

Additional uses of PCA and wrap-up

Hank Roark Senior Data Scientist at Boeing

Dimensionality reduction

tacamp

Data visualization

Principal Component 1

datacamp

Interpreting PCA results

datacamp

Importance of data scaling

Up next

URL to cancer dataset hosted on DataCamp servers

url <- "https://assets.datacamp.com/production/course_1903/datasets/WisconsinCancer.csv"</pre>

```
# Download the data: wisc.df
wisc.df <- read.csv(url)</pre>
wisc.data[1:6, 1:5]
```

	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean
842302	17.99	10.38	122.80	1001.0	0.11840
842517	20.57	17.77	132.90	1326.0	0.08474
84300903	19.69	21.25	130.00	1203.0	0.10960
84348301	11.42	20.38	77.58	386.1	0.14250
84358402	20.29	14.34	135.10	1297.0	0.10030
843786	12.45	15.70	82.57	477.1	0.12780

Let's practice!

