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Objectives

e Complete analysis using unsupervised learning
* Reinforce what you've already learned

» Add steps not covered before (e.g., preparing data, selecting good features for supervised
learning)

e Emphasize creativity
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Example use case

e Human breast mass data:
o Ten features measured of each cell nuclei

o Summary information is provided for each group of cells

o Includes diagnosis: benign (not cancerous) and malignant (cancerous)

! Source: K. P. Bennett and O. L. Mangasarian: "Robust Linear Programming Discrimination of Two Linearly
Inseparable Sets"
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Analysis

e Download data and prepare data for modeling

e Exploratory data analysis (# observations, # features, etc.)
e Perform PCA and interpret results

e Complete two types of clustering

e Understand and compare the two types

e Combine PCA and clustering
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Review: PCA In R

pr.iris <- prcomp(x = iris[-5],
scale = FALSE,
center = TRUE)

summary(pr.iris)

Importance of components:

PC1 PC2 PC3 PC4
Standard deviation 2.0563 0.49262 0.2797 0.15439

Proportion of Variance 0.9246 0.05307 0.0171 0.00521
Cumulative Proportion 0.9246 0.97769 0.9948 1.00000
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Unsupervised learning is open-ended

e Steps in this use case are only one example of what can be done

 There are other approaches to analyzing this dataset
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Let's practice!
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PCA review and
hext steps
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Review thus far

e Downloaded data and prepared it for modeling

e Exploratory data analysis

e Performed principal component analysis
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Next steps

Complete hierarchical clustering

Complete k-means clustering

Combine PCA and clustering

Contrast results of hierarchical clustering with diagnosis
Compare hierarchical and k-means clustering results

PCA as a pre-processing step for clustering
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Review: hierarchical clustering in R

# Calculates similarity as Euclidean distance between observations
s <- dist(x)

# Returns hierarchical clustering model
hclust(s)

Call:
hclust(d = s)

Cluster method : complete

Distance : euclidean
Number of objects: 50
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Review: k-means in R

# k-means algorithm with 5 centers, run 20 times

kmeans(x, centers = 5, nstart = 20)

e One observation per row, one feature per column
e k-means has a random component

e Run algorithm multiple times to improve odds of the best model
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Let's practice!
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Wrap-up and review
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Case study wrap-up

e Entire data analysis process using unsupervised learning
e Creative approach to modeling

 Prepared to tackle real world problems

UNSUPERVISED LEARNING IN R



Types of clustering

Iteration 5

height
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Dimensionality reduction

O -
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Model selection

# Initialize total within sum of squares error: wss
wss <- 0

# Look over 1 to 15 possible clusters
for (i in 1:15) {
# Fit the model: km.out
km.out <- kmeans(pokemon, centers = i, nstart = 20, iter.max = 50)
# Save the within cluster sum of squares
wss[i] <- km.out$tot.withinss

# Produce a scree plot
plot(1:15, wss, type = "b",
xLlab = "Number of Clusters",
ylab = "Within groups sum of squares")
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Interpreting PCA results
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Importance of scaling data

Without Scaling
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Course review

pr.iris <- prcomp(x = iris[-5],
scale = FALSE,
center = TRUE)

summary(pr.iris)

Importance of components:

PC1 PC2 PC3 PC4
Standard deviation 2.0563 0.49262 0.2797 0.15439

Proportion of Variance 0.9246 0.05307 0.0171 0.00521
Cumulative Proportion 0.9246 0.97769 0.9948 1.00000
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Dendrogram

height
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Strengths and weaknesses of each algorithm
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Course review

# Repeat for components 1 and 3
plot(wisc.pr$x[, c(1, 3)], col = (diagnosis + 1),
xlab = "PC1", ylab = "PC3")

PC3
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Hone your skKills!
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