Introduction to the case study

Hank Roark Senior Data Scientist at Boeing

Objectives

- Complete analysis using unsupervised learning
- Reinforce what you've already learned
- Add steps not covered before (e.g., preparing data, selecting good features for supervised learning)
- Emphasize creativity

Example use case

- Human breast mass data:
 - Ten features measured of each cell nuclei 0
 - Summary information is provided for each group of cells 0
 - Includes diagnosis: benign (not cancerous) and malignant (cancerous) 0

¹ Source: K. P. Bennett and O. L. Mangasarian: "Robust Linear Programming Discrimination of Two Linearly Inseparable Sets"

Analysis

- Download data and prepare data for modeling \bullet
- Exploratory data analysis (# observations, # features, etc.)
- Perform PCA and interpret results
- Complete two types of clustering
- Understand and compare the two types
- Combine PCA and clustering \bullet

Review: PCA in R

```
pr.iris <- prcomp(x = iris[-5],</pre>
                    scale = FALSE,
                    center = TRUE)
summary(pr.iris)
```

Importance of components:

	PC1	PC2	PC3	PC4
Standard deviation	2.0563	0.49262	0.2797	0.15439
Proportion of Variance	0.9246	0.05307	0.0171	0.00521
Cumulative Proportion	0.9246	0.97769	0.9948	1.00000

Unsupervised learning is open-ended

- Steps in this use case are only one example of what can be done
- There are other approaches to analyzing this dataset

Let's practice!

PCA review and next steps

UNSUPERVISED LEARNING IN R

Hank Roark Senior Data Scientist at Boeing

Review thus far

- Downloaded data and prepared it for modeling \bullet
- Exploratory data analysis
- Performed principal component analysis

Next steps

- Complete hierarchical clustering
- Complete k-means clustering
- Combine PCA and clustering
- Contrast results of hierarchical clustering with diagnosis
- Compare hierarchical and k-means clustering results
- PCA as a pre-processing step for clustering

Review: hierarchical clustering in R

Calculates similarity as Euclidean distance between observations s <- dist(x)</pre>

Returns hierarchical clustering model hclust(s)

Call:	
hclust(d = s)	
Cluster method :	complete
Distance :	euclidean
Number of objects:	50

Review: k-means in R

k-means algorithm with 5 centers, run 20 times kmeans(x, centers = 5, nstart = 20)

- One observation per row, one feature per column
- k-means has a random component
- Run algorithm multiple times to improve odds of the best model

Let's practice!

Wrap-up and review UNSUPERVISED LEARNING IN R

Hank Roark Senior Data Scientist at Boeing

Case study wrap-up

- Entire data analysis process using unsupervised learning \bullet
- Creative approach to modeling
- Prepared to tackle real world problems

Types of clustering

latacamp

Dimensionality reduction

tacamp

Model selection

```
# Initialize total within sum of squares error: wss
wss <-0
```

```
# Look over 1 to 15 possible clusters
for (i in 1:15) {
  # Fit the model: km.out
  km.out <- kmeans(pokemon, centers = i, nstart = 20, iter.max = 50)</pre>
  # Save the within cluster sum of squares
  wss[i] <- km.out$tot.withinss</pre>
}
# Produce a scree plot
plot(1:15, wss, type = "b",
     xlab = "Number of Clusters",
     ylab = "Within groups sum of squares")
```

Interpreting PCA results

Importance of scaling data

datacamp

Course review

```
pr.iris <- prcomp(x = iris[-5],</pre>
                    scale = FALSE,
                   center = TRUE)
summary(pr.iris)
```

Importance of components:

	PC1	PC2	PC3	PC4
Standard deviation	2.0563	0.49262	0.2797	0.15439
Proportion of Variance	0.9246	0.05307	0.0171	0.00521
Cumulative Proportion	0.9246	0.97769	0.9948	1.00000

Dendrogram

R datacamp

Strengths and weaknesses of each algorithm

& datacamp

Course review

Repeat for components 1 and 3 plot(wisc.pr\$x[, c(1, 3)], col = (diagnosis + 1),xlab = "PC1", ylab = "PC3")

Hone your skills!

