Grammar of Graphics intro

VISUALIZATION BEST PRACTICES IN R

Nick Strayer Instructor

What is this course?

What you will learn

How to make better visualizations by thinking deeply about the data at hand.

How you will learn it

- Overviews of different data types
- Standard visualizations
- Alternatives

Course layout

Chapter 1: Proportions of a whole

Chapter 3: Single distributions

Chapter 2: Point data

Chapter 4: Multiple(or conditional) distributions

Warning!

- Topics here are not as cut and dry as other programming topics
- Every rule will have exceptions
- An emphasis on thinking through each problem is given to help you deal with these cases when you get to them

Tools used

- R
- The 'Tidyverse'
- Ggplot2

R datacamp

Data used

• Comes from the World Health Organization (WHO)

who_disease

# A tibble: 43,262 x 6								
	region	countryCode	country	disease	year	cases		
	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<int></int>	<dbl></dbl>		
1	EMR	AFG	Afghanistan	measles	2016	638		
2	EUR	ALB	Albania	measles	2016	17.0		
3	AFR	DZA	Algeria	measles	2016	41.0		
4	EUR	AND	Andorra	measles	2016	0		
5	AFR	AGO	Angola	measles	2016	53.0		
6	AMR	ATG	Antigua and Barbuc	da measles	2016	0		
7	AMR	ARG	Argentina	measles	2016	0		
8	EUR	ARM	Armenia	measles	2016	2.00		
# with 43,254 more rows								

R datacamp

WHO disease data

```
# Filter to AMR region
amr_region <- who_disease %>%
  filter(region == 'AMR')
```

Map x to year and y to cases, color by disease ggplot(amr_region, aes(x = year, y = cases, color = disease)) + $geom_point(alpha = 0.5)$

R datacamp

VISUALIZATION BEST PRACTICES IN R

disease

۰	diphtheria
٠	measles
•	mumps
•	pertussis
•	polio
•	rubella
•	yfever

Let's practice!

The pie chart and its friends

VISUALIZATION BEST PRACTICES IN R

Nick Strayer Instructor

What is a proportion?

- Parts making up a whole
- Often used to understand population

The pie chart

- Often the first technique people learn
- Also, the first technique people learn to \bullet dislike
- Dislike is not *entirely* warranted lacksquare

A sour pie

- Pie charts are not very precise Data encoded in angles 0
- Doesn't handle lots of classes well
 - After three slices it becomes hard to 0 compare

A sweet pie

• Intuitive and compact

```
who_disease %>%
mutate(
    region = ifelse(
        region %in% c('EUR', 'AFR'),
        region, 'Other')
) %>%
ggplot(aes(x = 1, fill = region)) +
    geom_bar(color = 'white') +
    coord_polar(theta = "y") +
    theme_void()
```

Proportion of observations by region.

The waffle chart

- More precise than pie charts
- Encode data in area, not angles

```
obs_by_region <- who_disease %>%
  group_by(region) %>% summarise(num_obs = n()) %>%
  mutate(percent = round(num_obs/sum(num_obs)*100))
```

Array of rounded percentages percent_by_region <- obs_by_region\$percent</pre> names(percent_by_region) <- obs_by_region\$region</pre>

Send array of percentages to waffle plot function waffle::waffle(percent_by_region, rows = 5)

The waffle chart

Proportion of observations by region.

AFR
AMR
EMR
EUR
SEAR
WPR

Let's practice!

When to use bars

VISUALIZATION BEST PRACTICES IN R

Nick Strayer Instructor

Why not use faceting?

• Almost impossible to compare

latacamp

VISUALIZATION BEST PRACTICES IN R

diphtheria

measles

mumps

pertussis

The stacked bar chart

- Allow each population to share the same y-axis
- Enables easier comparisons based on vertical position/size

```
who_disease %>%
 filter(region == 'SEAR') %>%
 ggplot(aes(x = countryCode, y = cases, fill = disease)) +
   geom_col(position = 'fill')
```


- diphtheria
- measles
- mumps
- pertussis
- rubella
- vfever

Caveats

- Worse in isolation than pie or waffle charts
- Accuracy degrades rapidly after 3 classes

Chapter recap

Proportions:

Pie charts:

Waffle charts:

Stacked bars:

Let's practice!

