Bars and dots: point data

VISUALIZATION BEST PRACTICES IN R

Nick Strayer Instructor

What is point data?

- One categorical axis, one numeric
- Counts, averages, rates, etc.

A single observation

- Represents a singular observation of something \bullet
- E.g. population of a state, rate of cell growth

The bar chart

- Popular
- Simple
- Accurate

```
ggplot(who_disease) +
  geom_col(aes(x = disease, y = cases))
```


R datacamp

yfe	ver	

Not always the best

- Bar charts are frequently used when other charts are more appropriate \bullet
- A few principles can be followed to help avoid this

The stacking principle

- Should be used for data that represents a meaningful quantity
- Ask: 'Could I stack what I'm measuring to make the bars?'

Why quantities?

"...viewers judge points that fall within the bar as being more likely than points equidistant from the mean, but outside the bar..."

- Scholl & Newman, 2012

- People view the bar as 'containing' the values below top
- Quantities fulfill this assumption

A big deal?

- Not really...
- ... but alternatives are not *worse,* so they may as well be used

(ソ)

Let's practice!

Point charts

VISUALIZATION BEST PRACTICES IN R

Nick Strayer Instructor

When a bar chart isn't ideal

- Not a quantity
- Non-linear transformations

Point charts

- Simply replace bar with a point
- Sometimes called point charts or dot plots

Benefits of point charts

- High precision
- Efficient representation
- Simple

Data for lesson

- Working with a subset of WHO data
- Countries are an 'interesting' subset -- let's see if we can find out why

```
interestingCountries <- c("NGA", "SDN", "FRA", "NPL", "MYS", "TZA", "YEM", "UKR", "BGD", "VNM")</pre>
who_subset <- who_disease %>%
  filter(
    countryCode %in% interestingCountries,
    disease == 'measles',
   year %in% c(2006, 2016)) %>%
  mutate(year = paste0('cases_', year)) %>%
  arrange(year, region) %>%
  pivot_wider(names_from = year, values_from = cases)
```


who_subset

who_subset

# #	\ ti	bble:	10	Х	6	
-----	------	-------	----	---	---	--

	region	countryCode	country	disease	cases_2006	cases_2016
	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>
1	AFR	NGA	Nigeria	measles	704	17136
2	AFR	TZA	Tanzania	measles	2362	33
3	EMR	SDN	Sudan (the)	measles	228	1767
4	EMR	YEM	Yemen	measles	8079	143
5	EUR	FRA	France	measles	40	79
6	EUR	UKR	Ukraine	measles	42724	102
7	SEAR	BGD	Bangladesh	measles	6192	972
8	SEAR	NPL	Nepal	measles	2838	1269
9	WPR	MYS	Malaysia	measles	564	1569
10	WPR	VNM	Viet Nam	measles	1978	46

R datacamp

Code for point charts

geom_point() with one categorical and one numerical axis \bullet

```
who_subset %>%
```

We log transform our values here so bars are not appropriate ggplot(aes(y = country, x = log10(cases_2016))) + # Simple geom_point() geom_point()

R datacamp

Ordering your point charts

- Ordering can vastly help legibility
- Use the reorder() function in the aesthetic assignment

who_subset %>%

calculate the log fold change between 2016 and 2006 mutate(logFoldChange = log2(cases_2016/cases_2006)) %>% ggplot(aes(x = logFoldChange, y = reorder(country, logFoldChange))) + geom_point()

reorder

R datacamp

Let's practice!

Tuning your bar and point charts

VISUALIZATION BEST PRACTICES IN R

Nick Strayer Instructor

A busy bar chart

```
who_disease %>%
  filter(region == 'EMR', disease == 'measles', year == 2015) %>%
  ggplot(aes(x = country, y = cases)) +
    geom_col()
```


R datacamp

Flipping the bar

geom_bar() and geom_col() don't allow categories on y-axis

```
busy_bars <- who_disease %>%
filter(region == 'EMR', disease == 'measles', year == 2015) %>%
ggplot(aes(x = country, y = cases)) +
geom_col()
```

• So we have to flip!

busy_bars + coord_flip() # swap x and y axes!

R datacamp

Excess grid

- No need for parallel grid lines in bars
- In point charts, only grids in line with point locations are needed

R datacamp

R datacamp

Removing vertical grid

```
plot <- who_disease %>%
filter(country == "India", year == 1980) %>%
ggplot(aes(x = disease, y = cases)) +
geom_col()
```

```
# Remove vertical grid lines
plot + theme(
    panel.grid.major.x = element_blank()
)
```


R datacamp

Lighter background for point charts

- Default gray background can be too low-contrast for points
- theme_minimal() is a quick fix
- Making points bigger helps too

```
who_subset %>%
  ggplot(aes(y = reorder(country, cases_2016), x = log10(cases_2016))) +
  # Point size increased
  geom_point(size = 2) +
  # Theme minimal for light background
  theme_minimal()
```


size=2 + theme_minimal()

reorder(country, cases_2016)

R datacamp

•					
) _20	3 (16)	.5	4	.0	

Let's try it out! VISUALIZATION BEST PRACTICES IN R

