
The nature of HTTP
requests

WEB SCRAP ING IN R

Timo Grossenbacher

Instructor

WEB SCRAPING IN R

Hypertext Transfer Protocol (HTTP)

 h�ps://developer.mozilla.org/en-US/docs/Web/HTTP/Overview1

WEB SCRAPING IN R

The anatomy of requests
A request is sent to the web server

Typical status codes: 200 (OK), 404 (NOT

FOUND), 3xx (redirects), 5xx (server errors)

A response is received from the web server

 h�ps://developer.mozilla.org/en-US/docs/Web/HTTP/Overview1

WEB SCRAPING IN R

Request methods: GET and POST
GET: Used to fetch a resource without submi�ing data (GET /index.html)

POST: Used to send data to a server, e.g. a�er �lling out a form on a page

POST /test HTTP/1.1
Host: foo.example
Content-Type: application/x-www-form-urlencoded
Content-Length: 27

field1=value1&field2=value2

POST requests are also answered with a response!

 h�ps://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/POST1

WEB SCRAPING IN R

HTTP requests with httr

library(httr)
GET('https://httpbin.org')

Response [https://httpbin.org/]
 Date: 2020-09-19 13:02
 Status: 200
 Content-Type: text/html; charset=utf-8
 Size: 9.59 kB
<!DOCTYPE html>
<html lang="en">

<head>
 <meta charset="UTF-8">
 ...

WEB SCRAPING IN R

HTTP requests with httr

library(httr)
response <- GET('https://httpbin.org')
content(response)

{html_document}
<html lang="en">
[1] <head>\n<meta http-equiv="Content-Type" content="text/html; charset=UTF ...
[2] <body>\n <a href="https://github.com/requests/httpbin" class="github ...

Let's practice!
WEB SCRAP ING IN R

Telling who you are
with custom user

agents
WEB SCRAP ING IN R

Timo Grossenbacher

Instructor

WEB SCRAPING IN R

Show yourself!
Web server already registers your IP address

Be�er to explicitly identify yourself

There's an HTTP header for that!

 h�ps://developer.mozilla.org/en-US/docs/Web/HTTP/Overview1

WEB SCRAPING IN R

Modify headers with httr

response <- GET('http://example.com', user_agent("Hey, it's me, Timo!
 Reach me at timo@timogrossenbacher.ch."))

Alternatively:

set_config(add_headers(`User-Agent` = "Hey, it's me, Timo!
 Reach me at timo@timogrossenbacher.ch."))
response <- GET('http://example.com')

Let's try this!
WEB SCRAP ING IN R

How to be gentle
and slow down your

requests
WEB SCRAP ING IN R

Timo Grossenbacher

Instructor

WEB SCRAPING IN R

Don't try this at home!
library(httr)
while(TRUE){
 print(Sys.time())
 response <-
 GET("https://httpbin.org")
 print(status_code(response))
}

[1] "2020-06-20 10:31:17 CEST"
[1] 200
[1] "2020-06-20 10:31:17 CEST"
[1] 200
[1] "2020-06-20 10:31:17 CEST"
[1] 200
[1] "2020-06-20 10:31:17 CEST"
[1] 200
[1] "2020-06-20 10:31:17 CEST"
[1] 200
[1] "2020-06-20 10:31:18 CEST"
[1] 200
...

WEB SCRAPING IN R

A nicer way of requesting data from websites

while(TRUE){
 # Wait one second
 # ...
 print(Sys.time())
 response <-
 GET("https://httpbin.org")
 print(status_code(response))
}

[1] "2020-06-20 10:36:06 CEST"
[1] 200
[1] "2020-06-20 10:36:07 CEST"
[1] 200
[1] "2020-06-20 10:36:08 CEST"
[1] 200
[1] "2020-06-20 10:36:09 CEST"
[1] 200
[1] "2020-06-20 10:36:10 CEST"
[1] 200
[1] "2020-06-20 10:36:11 CEST"
[1] 200
...

WEB SCRAPING IN R

A tidy approach to throttling
Thro�ling a function = introducing a time

delay between calls

library(httr)
library(purrr)
throttled_GET <- slowly(
 ~ GET("https://httbin.org"),
 rate = rate_delay(3))
while(TRUE){
 print(Sys.time())
 response <- throttled_GET()
 print(status_code(response))
}

[1] "2020-06-20 10:53:44 CEST"
[1] 200
[1] "2020-06-20 10:53:47 CEST"
[1] 200
[1] "2020-06-20 10:53:50 CEST"
[1] 200
[1] "2020-06-20 10:53:53 CEST"
[1] 200
[1] "2020-06-20 10:53:56 CEST"
[1] 200
...

WEB SCRAPING IN R

Query custom URLs in a throttled function

library(httr)
library(purrr)
throttled_GET <-
 # instead of GET("https://...")
 slowly(~ GET(.), rate = rate_delay(3))
while(TRUE){
 print(Sys.time())
 response <-
 throttled_GET("https://wikipedia.org")
 print(status_code(response))
}

[1] "2020-06-20 10:53:44 CEST"
[1] 200
[1] "2020-06-20 10:53:47 CEST"
[1] 200
[1] "2020-06-20 10:53:50 CEST"
[1] 200
[1] "2020-06-20 10:53:53 CEST"
[1] 200
[1] "2020-06-20 10:53:56 CEST"
[1] 200
...

WEB SCRAPING IN R

Looping over a list of URLs

library(httr)
url_list <- c("https://httbin.org/anything/1",
 "https://httbin.org/anything/2",
 "https://httbin.org/anything/3")

for(url in url_list){
 response <- throttled_GET(url)
 print(status_code(response))
}

[1] 200
[1] 200
[1] 200

library(httr)
url_list <- c("https://wikipedia.org/wiki/K2",
 "https://wikipedia.org/wiki/\
 Mount_Everest")

for(url in url_list){
 response <- throttled_GET(url)
 print(status_code(response))
}

[1] 200
[1] 200

Let's apply this to a
real world example!

WEB SCRAP ING IN R

Recap: Web
Scraping in R

WEB SCRAP ING IN R

Timo Grossenbacher

Instructor

WEB SCRAPING IN R

Concepts covered
Chapter 1: Introduction to HTML and Web Scraping

Chapter 2: Navigation and Selection with CSS

Fundamental web technologies and how to exploit them for scraping

The rvest package

Chapter 3: Advanced Selection with XPATH

XPATH functions like position() or text()

Node selection based on surrounding nodes (e.g. children)

Chapter 4: Scraping Best Practices

Behind everything: HTTP (and the httr package)

Best practices like thro�ling and identifying user agents

WEB SCRAPING IN R

What to do with the scraped data?
DataCamp courses:

Cleaning Data in R

Working with Data in the Tidyverse

Dealing with Missing Data in R

Communicating with Data in the Tidyverse

https://learn.datacamp.com/courses/cleaning-data-in-r
https://learn.datacamp.com/courses/working-with-data-in-the-tidyverse
https://learn.datacamp.com/courses/dealing-with-missing-data-in-r
https://learn.datacamp.com/courses/communicating-with-data-in-the-tidyverse

Happy scraping!
WEB SCRAP ING IN R

