Welcome,
Bienvenue,
Willkommen, ??

WRITING EFFICIENT R CODE

®

Colin Gillespie

Jumping Rivers & Newcastle University

X datacamp

WRITING EFFICIENT R CODE

Time R - optimized for thinking/writing C - optimized for running

Writing code
Writing code

Running code

[Running code \

X datacawmp WRITING EFFICIENT R CODE

A typical R workflow

Load

data_set <- read.csv("dataset.csv")
Plot

plot(data_set$x, data_set$y)

Model

lm(y ~ x, data = data_set)

WRITING EFFICIENT R CODE

When to optimize

Premature optimization is the root of all evil

Popularized by Donald Knuth

WRITING EFFICIENT R CODE

R version

e v2.0 Lazy loading; fast e Main releases every April
loading of data with minimal °o e.g., 3.0, 3.1, 3.2

expense of system memory. Smaller bug fixes

o v2.13 Speeding up throughout the year
functions with the byte ° e.g., 3.3.0,3.3.1, 3.3.2
compiler

o v3.0 Support for large
vectors

WRITING EFFICIENT R CODE

Let's practice!

WRITING EFFICIENT R CODE

My code is slow!

WRITING EFFICIENT R CODE

®

Colin Gillespie

Jumping Rivers & Newcastle University

X datacamp

Is my code really slow?

e {1second?
e 1 minute?

e 1 hour?

X datacawp WRITING EFFICIENT R CODE

Is my code really slow?

WRITING EFFICIENT R CODE

Benchmarking

1. We construct a function around the feature we wish to
benchmark

2. We time the function under different scenarios, e.g., data set

WRITING EFFICIENT R CODE

Example: Sequence of numbers

1,2,3,...,n Option 1
1:n
Option 2 Option 3
seq(1, n) seq(1l, n, by = 1)

WRITING EFFICIENT R CODE

Function wrapping

colon <- function(n) 1:n
colon(5)

123 45

seq_default <- function(n) seq(1, n)

seq_by <- function(n) seq(1, n, by = 1)

WRITING EFFICIENT R CODE

Timing with system.time()

system.time(colon(le8)) e user time is the CPU time
charged for the execution of

user system elapsed

user instructions.
0.032 0.028 0.060

o system time is the CPU

system.time(seqg_default(1e8)) time cha rged for

execution by the system

user system elapsed

on behalf of the calling
0.060 0.028 0.086

process.

system.time(seq_by(1e8)) o elapsed time is

approximately the sum of

user system elapsed L.
1.088 0.520 1.600 user and system, this is

the number we typically
care about.

WRITING EFFICIENT R CODE

Storing the result
The trouble with

system.time(colon(1e8))

is we haven't stored the result.
We need to rerun to code store
the result

res <- colon(1e8)

The <- operator performs both:

e Argument passing

e Object assignment

system.time(res <- colon(1e8))

The = operator performs one
of:

e Argument passing
e object assignment

Raises an error
system.time(res = colon(1e8))

WRITING EFFICIENT R CODE

Relative time

Method Absolute time (secs) Relative time
colon(n) 0.060 0.060/0.060 = 1.00
seq_default(n) 0.086 0.086/0.060 = 1.40
seq_by(n) 1.607 1.60/0.060 = 26.7

WRITING EFFICIENT R CODE

Microbenchmark package

e Compares functions
o Each function is run multiple times

library("microbenchmark")
n <- 1e8
microbenchmark(colon(n),
seq_default(n),
seq_by(n),
times = 10) # Run each function 10 times

Unit: milliseconds
expr min median uq max neval cld
colon(n) 59 202 341 391 10 a

seq_default(n) 94 337 348 383 10 a
seq_by(n) 1945 2275 2359 2787 10 b

WRITING EFFICIENT R CODE

Let's practice!

WRITING EFFICIENT R CODE

How good is your
machine?

WRITING EFFICIENT R CODE

®

Colin Gillespie

Jumping Rivers & Newcastle University

X datacamp

Experiments!

Cost of experiment:

e Experimental equipment
e Researcher time

Not cheap!

X datacawp WRITING EFFICIENT R CODE

X datacawp WRITING EFFICIENT R CODE

To buy, or not to buy...

 Analysis takes twenty minutes on your current machine
o Ten minutes to run on a new machine

o Your time is charged at $100 per hour

o Run sixty analyses to pay back the cost of a S1000
machine

WRITING EFFICIENT R CODE

The benchmarkme package

install.packages("benchmarkme")

library("benchmarkme")
Run each benchmark 3 times
res <- benchmark_std(runs = 3)

plot(res)

My machine is ranked 75th out
400 machines

upload_results(res)

500 1

Total timing (secs)

10 1

50 ;

Relative timing

Benchmark: prog

N
o
o

—
o
o

20 1

0 100 200 300
Rank
Benchmark: prog

20 1

WRITING EFFICIENT R CODE

Let's practice!

WRITING EFFICIENT R CODE

