
General principle:
Memory allocation

WRIT ING EFF IC IENT R CODE

Colin Gillespie
Jumping Rivers & Newcastle University

WRITING EFFICIENT R CODE

WRITING EFFICIENT R CODE

If we programmed in C...
WE'RE IN CHARGE OF MEMORY ALLOCATION

// C code: request memory for a number
x = (double *) malloc(sizeof(double));

// Free the memory
free(x);

In R, memory allocation happens automatically

R allocates memory in RAM to store variables

Minimize variable assignment for speed

WRITING EFFICIENT R CODE

Example: Sequence of integers
1, 2,… ,n The obvious and best way

Method 1
x <- 1:n

Not so bad

Method 2
x <- vector("numeric", n) # length n
for(i in 1:n)
 x[i] <- i

Don't ever do this!

Method 3
x <- NULL # Length zero
for(i in 1:n)
 x <- c(x, i)

WRITING EFFICIENT R CODE

Benchmarking
Method 1: 1:n

Method 2: Preallocate

Method 3: Growing

TIME IN SECONDS

n 1 2 3

10 0.00 0.02 0.2

10 0.00 0.2 30

10 0.00 2 3800

5

6

7

WRITING EFFICIENT R CODE

Welcome to R club!
The first rule of R club: never, ever grow a vector.

Let's practice!
WRIT ING EFF IC IENT R CODE

The importance of
vectorizing your

code
WRIT ING EFF IC IENT R CODE

Colin Gillespie
Jumping Rivers & Newcastle University

WRITING EFFICIENT R CODE

General rule
Calling an R function eventually leads to C or FORTRAN code

This code is very heavily optimized

Goal

Access the underlying C or FORTRAN code as quickly as
possible; the fewer functions call the better.

WRITING EFFICIENT R CODE

Vectorized functions
Many R functions are vectorized

Single number but return a vector

rnorm(4)

-0.7247 0.2502 0.3510 0.6919

Vector as input

mean(c(36, 48))

42

WRITING EFFICIENT R CODE

Generating random numbers
library(microbenchmark)
n <- 1e6
x <- vector("numeric", n)
microbenchmark(
 x <- rnorm(n),
 {
 for(i in seq_along(x))
 x[i] <- rnorm(1)
 },
 times = 10
)

Unit: milliseconds
expr lq mean uq cld
rnorm(n) 60 70 80 a
Looping 2600 2700 2800 b

Output trimmed for presentation

Compare

x <- vector("numeric", n)
for(i in seq_along(x))
 x[i] <- rnorm(1)

to

x <- rnorm(n)

WRITING EFFICIENT R CODE

Why is the loop slow?
LOOPING

x <- vector("numeric", n)
for(i in seq_along(x))
 x[i] <- rnorm(1)

ALLOCATION

x <- vector("numeric", n)

Loop: One-off cost

Vectorized: Comparable

GENERATION
Loop: one million calls to
rnorm()

Vectorized: a single call to
rnorm()

ASSIGNMENT
Loop: One million calls to
the assignment method

Vectorized: a single
assignment

WRITING EFFICIENT R CODE

R club
The second rule of R club: use a vectorized solution wherever
possible.

Let's practice!
WRIT ING EFF IC IENT R CODE

Data frames and
matrices

WRIT ING EFF IC IENT R CODE

Colin Gillespie
Jumping Rivers & Newcastle University

WRITING EFFICIENT R CODE

The data frame
Key data structure in R

Copied in other languages
Python: pandas data frame

If you can't beat them, join them!

WRITING EFFICIENT R CODE

Data frames
Tabular structure: rows and
colums

read.csv() and friends
returns a data frame

Columns

Data must be the same
type

Rows

Different type

STORAGE

SELECTION

WRITING EFFICIENT R CODE

Matrices
It's a rectangular data
structure

You can perform usual
subsetting and extracting
operations

BUT - every element must
be the same data type

STORAGE

SELECTION

WRITING EFFICIENT R CODE

R club
The third rule of R club: Use a matrix whenever appropriate.

Let's practice!
WRIT ING EFF IC IENT R CODE

