
How do I find the
bottleneck?

WRIT ING EFF IC IENT R CODE

Colin Gillespie
Jumping Rivers & Newcastle University

WRITING EFFICIENT R CODE

WRITING EFFICIENT R CODE

Code profiling
The general idea is to:

Run the code

Every few milliseconds, record what is being currently
executed

Rprof() comes with R and does exactly this
Tricky to use

Use profvis instead

WRITING EFFICIENT R CODE

IMDB data set
From the ggplot2movies package

data(movies, package = "ggplot2movies")
dim(movies)

58788 24

Data frame: around 60,000 rows and 24 columns

Each row corresponds to a particular movie

WRITING EFFICIENT R CODE

Braveheart
braveheart = movies[7288,]

Year Length Rating

1995 177 8.3

WRITING EFFICIENT R CODE

Example: Braveheart
Load data
data(movies,
 package = "ggplot2movies")
braveheart <- movies[7288,]
movies <- movies[movies$Action==1,]
plot(movies$year, movies$rating,
 xlab = "Year", ylab = "Rating")
local regression line
model <- loess(rating ~ year,
 data = movies)
j <- order(movies$year)
lines(movies$year[j],
 model$fitted[j],
 col = "forestgreen")
points(braveheart$year,
 braveheart$rating,
 pch = 21,
 bg = "steelblue")

WRITING EFFICIENT R CODE

Profvis
RStudio has integrated support for profiling with profvis

Highlight the code you want to profile

Profile -> Profile Selected lines

WRITING EFFICIENT R CODE

Command line
library("profvis")
profvis({
data(movies, package = "ggplot2movies") # Load data
braveheart <- movies[7288,]
movies <- movies[movies$Action == 1,]
plot(movies$year, movies$rating, xlab = "Year", ylab="Rating")
model <- loess(rating ~ year, data = movies) # loess regression line
j <- order(movies$year)
lines(movies$year[j], model$fitted[j], col="forestgreen", lwd=2)
points(braveheart$year, braveheart$rating,
 pch = 21, bg = "steelblue", cex = 3)
})

Which line do you think will be the slowest?

WRITING EFFICIENT R CODE

WRITING EFFICIENT R CODE

Let's practice!
WRIT ING EFF IC IENT R CODE

Profvis
WRIT ING EFF IC IENT R CODE

Colin Gillespie
Jumping Rivers & Newcastle University

WRITING EFFICIENT R CODE

Monopoly
40 squares

28 properties (22 streets + 4 stations + 2 utilities)
Players take turns moving by rolling dice

Buying properties

Charging other players
Sent to jail: three consecutive doubles in a single turn

WRITING EFFICIENT R CODE

Monopoly Code

Around 100 lines of code
Simplified game

Reject the capitalist system: no money

No friends, only 1 player

simulate_monopoly(no_of_rolls)

WRITING EFFICIENT R CODE

WRITING EFFICIENT R CODE

WRITING EFFICIENT R CODE

Monopoly profvis

How would you optimize this code?

Let's practice!
WRIT ING EFF IC IENT R CODE

Monopoly recap
WRIT ING EFF IC IENT R CODE

Colin Gillespie
Jumping Rivers & Newcastle University

WRITING EFFICIENT R CODE

Data frames vs. matrices
Original
rolls <- data.frame(d1 = sample(1:6, 3, replace = TRUE),
 d2 = sample(1:6, 3, replace = TRUE))

Updated
rolls <- matrix(sample(1:6, 6, replace = TRUE), ncol = 2)

Total Monopoly simulation time: 2 seconds to 0.5 seconds

Creating a data frame is slower than a matrix

In the Monopoly simulation, we created 10,000 data frames

WRITING EFFICIENT R CODE

apply vs. rowSums
Original
total <- apply(df, 1, sum)

Updated
total <- rowSums(df)

0.5 seconds to 0.16 seconds - 3 fold speed up

WRITING EFFICIENT R CODE

& vs. &&
Original
is_double[1] & is_double[2] & is_double[3]

Updated
is_double[1] && is_double[2] && is_double[3]

Limited speed-up

0.16 seconds to 0.15 seconds

WRITING EFFICIENT R CODE

Overview
Method Time (secs) Speed-up

Original 2.00 1.0

Matrix 0.50 4.0

Matrix + rowSums 0.20 10.0

Matrix + rowSums + && 0.19 10.5

Let's practice!
WRIT ING EFF IC IENT R CODE

