CPUs - why do we
have more than
onhe?

WRITING EFFICIENT R CODE

®

Colin Gillespie

Jumping Rivers & Newcastle University

X datacamp

CPUs

e CPU: brains of the computer .. Py clock speed
3.4 GHz . N 3}
o Speed has slowly -
stabilized :
= CPUs were gettingtoo ¢
8 10’
hot

O MUIti—Core CPUS 1980 1985 1990 1995 2000 2005 2010

o But R only uses 1 core :(

WRITING EFFICIENT R CODE

Your CPU

library("parallel") library("benchmarkme")
detectCores() get_cpu()

"GenuineIntel"

$model_name

"Intel(R) Core(TM) i7-4702HQ CPU

$no_of_cores
8

WRITING EFFICIENT R CODE

Let's practice!

WRITING EFFICIENT R CODE

What sort of
problems benefit
from parallel
computing

WRITING EFFICIENT R CODE

®

Colin Gillespie

Jumping Rivers & Newcastle University

Cooking

AN EXTRA HAND TOO MANY COOKS

W‘p —— —

......
SRl Y
A y
y v

X datacawmp WRITING EFFICIENT R CODE

Running in parallel

e Not every analysis can make use of multiple cores
o Many statistical algorithms can only use a single core

So where can parallel computing help?

WRITING EFFICIENT R CODE

Monte-Carlo simulations

for(i in 1:8) e 8 core machine
sims[i] <- monte_carlo() o One simulation per core

. . o Combine the results at
User defined function

combine_simulations(sims) the end

e Embarrassingly parallel

WRITING EFFICIENT R CODE

Not everything runs in parallel

x <- 1:8 e Can we run this in parallel?
for(i in 2:8) o NO

x[i] <- x[i-1]

= But order of evaluation
x[8] = x[7] = ... x[2] = x[1] = 1 in parallel computing
can't be predicted

= We'll get the wrong
answer, since x[3]
may get evaluated
before x[2]

WRITING EFFICIENT R CODE

Rule of thumb

Can the loop be run forward and backwards?

for(i in 1:8)

sim[i] <- monte_carlo_simulation()

for(i in 8:1)

sim[i] <- monte_carlo_simulation()

e Both loops give the same result

e So we can run the loops in parallel

WRITING EFFICIENT R CODE

Rule of thumb

Can the loop be run forward and backwards?

X <- 1:8
for(i in 2:8)

x[1i] <- x[i-1]
for(i in 8:2)

x[1i] <- x[i-1]

e The loops give different answers
o The first: x[8] = x[7] = ... =1

o The second: x[8] = x[7]

I
~

e Can't use parallel computing

Remember: If you can run your loop in reverse, you can
probably use parallel computing.

WRITING EFFICIENT R CODE

Let's practice!

WRITING EFFICIENT R CODE

The parallel
package - parApply

WRITING EFFICIENT R CODE

®

Colin Gillespie

Jumping Rivers & Newcastle University

X datacamp

The parallel package

e Part of R since 2011

Library("parallel")

o Cross platform: Code works under Windows, Linux, Mac

o Has parallel versions of standard functions

WRITING EFFICIENT R CODE

The apply() function

e apply() is similar to a for loop
o We apply a function to each row/column of a matrix

e A 10 column, 10,000 row matrix:

m <- matrix(rnorm(100000), ncol = 10)

e apply is neater than a for loop

res <- apply(m, 1, median)

WRITING EFFICIENT R CODE

Converting to paraliel

* Load the package Library("parallel")

o Specify the number of

cores copies_of_r <- 7

o Create a cluster object
cl <- makeCluster(copies_of_r)

o Swap to parApply()
o Stop! parApply(cl, m, 1, median)

stopCluster(cl)

WRITING EFFICIENT R CODE

The bad news

As Lewis Caroll said
The hurrier | go, the behinder | get.

e Sometimes running in parallel is slower due to thread
communication

Serial version
apply(m, 1, median)

Parallel version
parApply(cl, m, 1, median)

e Benchmark both solutions

WRITING EFFICIENT R CODE

Let's practice!

WRITING EFFICIENT R CODE

The parallel
package -
parSapply

WRITING EFFICIENT R CODE

®

Colin Gillespie

Jumping Rivers & Newcastle University

X datacamp

The apply family

There are parallel versions of

e apply() - parApply()

* sapply() - parSapply()
o applying a function to a vector, i.e., a for loop

* lapply() - parLapply()
o applying a function to a list

WRITING EFFICIENT R CODE

The sapply() function

sapply() is just another way of writing a for loop

The loop

for(i in 1:10)

x[1i] <- simulate(i)

Can be written as

sapply(1:10, simulate)

We are applying a function to each value of a vector

WRITING EFFICIENT R CODE

Switching to parSapply()
It's the same recipe!

1. Load the package

2. Make a cluster

3. Switch to parSapply()
4. Stop!

WRITING EFFICIENT R CODE

Example: Pokemon battles

plot(pokemon$Defense, pokemon$Attack)
abline(lm(pokemon$Attack ~ pokemon$Defense), col = 2)
cor(pokemon$Attack, pokemon$Defense)

0.437

Pokemon Attack & Defense
Gotta catch them all

0 50 100 150 200 250

Defense

Brought to you by a parent of small children

WRITING EFFICIENT R CODE

Bootstrapping

In a perfect world, we would resample from the population; but
we can't

Instead, we assume the original sample is representative of the
population

1. Sample with replacement from your data
o The same point could appear multiple times

2. Calculate the correlation statistics from your new sample

3. Repeat

WRITING EFFICIENT R CODE

A single bootstrap

bootstrap <- function(data_set) {
Sample with replacement
s <- sample(l:nrow(data_set), replace = TRUE)
new_data <- data_set[s,]

Calculate the correlation
cor(new_data$Attack, new_data$Defense)

100 independent bootstrap simulations
sapply(1:100, function(i) bootstrap(pokemon))

WRITING EFFICIENT R CODE

Converting to paraliel

Load the package

Specify the number of cores
Create a cluster object
Export functions/data

Swap to parSapply()

Stop!

library("parallel")

no_of_cores <- 7

cl <- makeCluster(no_of_cores)

clusterExport(ct,
c("bootstrap", "pokemon"))

parSapply(cl, 1:100,
function(i) bootstrap(pokemon))

stopCluster(cl)

WRITING EFFICIENT R CODE

® o
Timings
Bootstrapping in parallel
Is it worth it?

£
-; 4 Sweet spot: switch to parallel
3
2
1
10 100 1000 10000
No. of bootstraps

WRITING EFFICIENT R CODE

Let's practice!

WRITING EFFICIENT R CODE

Congratulations!

WRITING EFFICIENT R CODE

®

Colin Gillespie

Jumping Rivers & Newcastle University

X datacamp

Final Slide

WRITING EFFICIENT R CODE

