
CPUs - why do we
have more than

one?
WRIT ING EFF IC IENT R CODE

Colin Gillespie
Jumping Rivers & Newcastle University

WRITING EFFICIENT R CODE

CPUs
CPU: brains of the computer

Speed has slowly
stabilized

CPUs were getting too
hot

Multi-core CPUs

But R only uses 1 core :(

WRITING EFFICIENT R CODE

Your CPU
library("parallel")
detectCores()

8

library("benchmarkme")
get_cpu()

$vendor_id
"GenuineIntel"

$model_name
"Intel(R) Core(TM) i7-4702HQ CPU

$no_of_cores
8

Let's practice!
WRIT ING EFF IC IENT R CODE

What sort of
problems benefit

from parallel
computing

WRIT ING EFF IC IENT R CODE

Colin Gillespie
Jumping Rivers & Newcastle University

WRITING EFFICIENT R CODE

Cooking
AN EXTRA HAND TOO MANY COOKS

WRITING EFFICIENT R CODE

Running in parallel
Not every analysis can make use of multiple cores

Many statistical algorithms can only use a single core

So where can parallel computing help?

WRITING EFFICIENT R CODE

Monte-Carlo simulations
for(i in 1:8)
 sims[i] <- monte_carlo()

User defined function
combine_simulations(sims)

8 core machine
One simulation per core

Combine the results at
the end

Embarrassingly parallel

WRITING EFFICIENT R CODE

Not everything runs in parallel
x <- 1:8
for(i in 2:8)
 x[i] <- x[i-1]

x[8] = x[7] = ... x[2] = x[1] = 1

Can we run this in parallel?
NO

But order of evaluation
in parallel computing
can't be predicted

We'll get the wrong
answer, since x[3]
may get evaluated
before x[2]

WRITING EFFICIENT R CODE

Rule of thumb
Can the loop be run forward and backwards?

for(i in 1:8)
 sim[i] <- monte_carlo_simulation()

for(i in 8:1)
 sim[i] <- monte_carlo_simulation()

Both loops give the same result

So we can run the loops in parallel

WRITING EFFICIENT R CODE

Rule of thumb
Can the loop be run forward and backwards?

x <- 1:8
for(i in 2:8)
 x[i] <- x[i-1]
for(i in 8:2)
 x[i] <- x[i-1]

The loops give different answers
The first: x[8] = x[7] = ... = 1

The second: x[8] = x[7] = 7

Can't use parallel computing

Remember: If you can run your loop in reverse, you can
probably use parallel computing.

Let's practice!
WRIT ING EFF IC IENT R CODE

The parallel
package - parApply

WRIT ING EFF IC IENT R CODE

Colin Gillespie
Jumping Rivers & Newcastle University

WRITING EFFICIENT R CODE

The parallel package
Part of R since 2011

library("parallel")

Cross platform: Code works under Windows, Linux, Mac

Has parallel versions of standard functions

WRITING EFFICIENT R CODE

The apply() function
apply() is similar to a for loop

We apply a function to each row/column of a matrix

A 10 column, 10,000 row matrix:

m <- matrix(rnorm(100000), ncol = 10)

apply is neater than a for loop

res <- apply(m, 1, median)

WRITING EFFICIENT R CODE

Converting to parallel
Load the package

Specify the number of
cores

Create a cluster object

Swap to parApply()

Stop!

library("parallel")

copies_of_r <- 7

cl <- makeCluster(copies_of_r)

parApply(cl, m, 1, median)

stopCluster(cl)

WRITING EFFICIENT R CODE

The bad news
As Lewis Caroll said

The hurrier I go, the behinder I get.

Sometimes running in parallel is slower due to thread
communication

Serial version
apply(m, 1, median)

Parallel version
parApply(cl, m, 1, median)

Benchmark both solutions

Let's practice!
WRIT ING EFF IC IENT R CODE

The parallel
package -
parSapply

WRIT ING EFF IC IENT R CODE

Colin Gillespie
Jumping Rivers & Newcastle University

WRITING EFFICIENT R CODE

The apply family
There are parallel versions of

apply() - parApply()

sapply() - parSapply()
applying a function to a vector, i.e., a for loop

lapply() - parLapply()
applying a function to a list

WRITING EFFICIENT R CODE

The sapply() function
sapply() is just another way of writing a for loop

The loop

for(i in 1:10)
 x[i] <- simulate(i)

Can be written as

sapply(1:10, simulate)

We are applying a function to each value of a vector

WRITING EFFICIENT R CODE

Switching to parSapply()
It's the same recipe!

1. Load the package

2. Make a cluster

3. Switch to parSapply()

4. Stop!

WRITING EFFICIENT R CODE

Example: Pokemon battles
plot(pokemon$Defense, pokemon$Attack)
abline(lm(pokemon$Attack ~ pokemon$Defense), col = 2)
cor(pokemon$Attack, pokemon$Defense)

0.437

WRITING EFFICIENT R CODE

Bootstrapping
In a perfect world, we would resample from the population; but
we can't

Instead, we assume the original sample is representative of the
population

1. Sample with replacement from your data
The same point could appear multiple times

2. Calculate the correlation statistics from your new sample

3. Repeat

WRITING EFFICIENT R CODE

A single bootstrap
bootstrap <- function(data_set) {
 # Sample with replacement
 s <- sample(1:nrow(data_set), replace = TRUE)
 new_data <- data_set[s,]

 # Calculate the correlation
 cor(new_data$Attack, new_data$Defense)
}

100 independent bootstrap simulations
sapply(1:100, function(i) bootstrap(pokemon))

WRITING EFFICIENT R CODE

Converting to parallel
Load the package

Specify the number of cores

Create a cluster object

Export functions/data

Swap to parSapply()

Stop!

library("parallel")

no_of_cores <- 7

cl <- makeCluster(no_of_cores)

clusterExport(cl,
 c("bootstrap", "pokemon"))

parSapply(cl, 1:100,
 function(i) bootstrap(pokemon))

stopCluster(cl)

WRITING EFFICIENT R CODE

Timings

Let's practice!
WRIT ING EFF IC IENT R CODE

Congratulations!
WRIT ING EFF IC IENT R CODE

Colin Gillespie
Jumping Rivers & Newcastle University

Final Slide
WRIT ING EFF IC IENT R CODE

