To the lab for testing

HYPOTHESIS TESTING IN R

Richie Cotton Data Evangelist at DataCamp

A/B testing

tacamp

- Electronic Arts (EA) is a video game company.
- In 2013, they released SimCity 5.
- Their goal was to increase pre-orders of the game.
- They used A/B testing to test different advertising scenarios.
- This involves splitting users into *control* and *treatment* groups.

¹ Image credit: "Electronic Arts" by majaX1 CC BY-NC-SA 2.0

Retail webpage A/B test

Control

Treatment

& datacamp

A/B test results

- The treatment group (no ad) got 43.4% more purchases than the control group (with ad).
- The intuition that "showing an ad would increase sales" was completely wrong.
- Was this result *statistically significant* or just by chance?
- You need EA's data to determine this.
- You'd use techniques from Sampling in R + this course to do so.

trol group (with ad). ely wrong.

Stack Overflow Developer Survey 2020

library(dplyr) glimpse(stack_overflow)

Rows: 2,261

Columns: 8

\$ respondent <dbl> 36, 47, 69, 125, 147, 152, 166, 170, 187, 196, 221,... \$ age_first_code_cut <chr> "adult", "child", "child", "adult", "adult", "adult", "adult... \$ converted_comp <dbl> 77556, 74970, 594539, 2000000, 37816, 121980, 48644... \$ job_sat <fct> Slightly satisfied, Very satisfied, Very satisfied,... \$ purple_link <chr> "Hello, old friend", "Hello, old friend", "Hello, o... \$ age_cat <chr> "At least 30", "At least 30", "Under 30", "At least... \$ age <dbl> 34, 53, 25, 41, 28, 30, 28, 26, 43, 23, 24, 35, 37,... \$ hobbyist <chr> "Yes", "Yes", "Yes", "Yes", "No", "Yes", "Yes", "Ye...

Hypothesizing about the mean

A hypothesis:

The mean annual compensation of the population of data scientists is \$110,000.

The point estimate (sample statistic):

mean_comp_samp <- mean(stack_overflow\$converted_comp)</pre>

mean_comp_samp <- stack_overflow %>% summarize(mean_compensation = mean(converted_comp)) %>% pull(mean_compensation)

121915.4

Generating a bootstrap distribution

```
# Step 3. Repeat steps 1 & 2 many times
so_boot_distn <- replicate(
    n = 5000,
    expr = {</pre>
```

```
# Step 1. Resample
stack_overflow %>%
slice_sample(prop = 1, replace = TRUE) %>%
```

```
# Step 2. Calculate point estimate
summarize(mean_compensation = mean(converted_comp)) %>%
pull(mean_compensation)
```

})

¹ Bootstrap distributions are taught in Chapter 4 of Sampling in R

R datacamp

Visualizing the bootstrap distribution

tibble(resample_mean = so_boot_distn) %>%
ggplot(aes(resample_mean)) +
geom_histogram(binwidth = 1000)

R datacamp

Standard error

std_error <- sd(so_boot_distn)</pre>

5344.653

z-scores

2.233

tacamp

Testing the hypothesis

- Is 2.233 a high or low number?
- This is the goal of the course!

Hypothesis testing use case:

Determine whether sample statistics are close to or far away from expected (or "hypothesized" values).

Standard normal (z) distribution

Standard normal distribution: the normal distribution with mean zero, standard deviation 1.

```
tibble(x = seq(-4, 4, 0.01)) %>%
ggplot(aes(x)) +
stat_function(fun = dnorm) +
ylab("PDF(x)")
```


Let's practice!

A tail of two z's

HYPOTHESIS TESTING IN R

Richie Cotton Data Evangelist at DataCamp

Criminal trials

- Two possible true states.
 - 1. Defendant committed the crime.
 - 2. Defendant did not commit the crime.
- Two possible verdicts.
 - 1. Guilty.
 - 2. Not guilty.
- Initially the defendant is assumed to be not guilty.
- If the evidence is "beyond a reasonable doubt" that the defendant committed the crime, then a "guilty" verdict is given, else a "not guilty" verdict is given.

Age of first programming experience

- age_first_code_cut classifies when Stack Overflow user first started programming
 - "adult" means they started at 14 or older
 - 2. "child" means they started before 14
- Previous research suggests that 35% of software developers started programming as children
- Does our sample provide evidence that data scientists have a greater proportion starting programming as a child?

Definitions

A hypothesis is a statement about an unknown population parameter.

A hypothesis test is a test of two competing hypotheses.

- The null hypothesis (H_0) is the existing "champion" idea.
- The alternative hypothesis (H_A) is the new "challenger" idea of the researcher. For our problem
- H_0 : The proportion of data scientists starting programming as children is the same as that of software developers (35%).
- H_A : The proportion of data scientists starting programming as children is greater than 35%.

¹ "Naught" is British English for "zero". For historical reasons, "H-naught" is the international convention for pronouncing the null hypothesis.

- Two possible true states.
 - 1. Defendant committed the crime.
 - 2. Defendant did not commit the crime.
- Two possible verdicts.
 - 1. Guilty.
 - 2. Not guilty.
- Initially the defendant is assumed to be not guilty.
- If the evidence is "beyond a reasonable doubt" that the defendant committed the crime, then a "guilty" verdict is given, else a "not guilty" verdict is given.

- In reality, either H_A or H_0 is true (but not both).
- The test ends in either "reject H_0 " verdict or "fail to reject H_0 ".
- Initially the null hypothesis, H_0 , is assumed \bullet to be true.
- If the evidence from the sample is "significant" that H_A is true, choose that hypothesis, else choose H_0 .

Significance level is "beyond a reasonable doubt" for hypothesis testing.

One-tailed and two-tailed tests

Hypothesis tests determine whether the sample statistics lie in the tails of the null distribution.

Test

alternative different fr

alternative greater th

alternative less than

 H_A : The proportion of data scientists starting programming as children is greater than 35%.

Our alternative hypothesis uses "greater than," so we need a **right-tailed** test.

	Tails
<i>om</i> null	two-tailed
<i>an</i> null	right-tailed
<i>n</i> null	left-tailed

p-values

- The larger the p-value, the stronger the support for H_0 . ٠
- The smaller the p-value, the stronger the evidence against H_0 .
- Small p-values mean the statistic is in the tail of the *null distribution* (the distribution of the statistic if the null hypothesis was true).
 - The "p" in *p-value* stands for probability. 0
 - For p-values, "small" means "close to zero". 0

Defining p-values

A *p-value* is

the probability of observing a test statistic

as extreme or more extreme

than what was observed in our original sample,

assuming the null hypothesis is true.

Calculating the z-score

prop_child_samp <- stack_overflow %>% summarize(point_estimate = mean(age_first_code_cut == "child")) %>% pull(point_estimate)

Calculating the p-value

- pnorm() is normal CDF.
- Left-tailed test → use default lower.tail = TRUE.
- Right-tailed test → set lower.tail = FALSE.

p_value <- pnorm(z_score, lower.tail = FALSE)</pre>

3.818e-05

Let's practice!

Statistically significant other

HYPOTHESIS TESTING IN R

Richie Cotton Data Evangelist at DataCamp

p-value recap

- p-values quantify evidence for the null hypothesis.
- Large p-value \rightarrow fail to reject null hypothesis.
- Small p-value \rightarrow reject null hypothesis.
- Where is the cutoff point?

Significance level

The significance level of a hypothesis test (α) is the threshold point for "beyond a reasonable" doubt".

- Common values of α are 0.1, 0.05, and 0.01.
- If $p \leq \alpha$, reject H_0 , else fail to reject H_0 .
- α should be set **prior** to conducting the hypothesis test.

Calculating the p-value

prop_child_samp <- stack_overflow %>% summarize(point_estimate = mean(age_first_code_cut == "child")) %>% pull(point_estimate) prop_child_hyp <- 0.35 std_error <- 0.0096028 z_score <- (prop_child_samp - prop_child_hyp) / std_error</pre>

p_value <= alpha

TRUE

p_value is less than or equal to alpha , so reject H_0 and accept H_A .

The proportion of data scientists starting programming as children is greater than 35%.

p_value <- pnorm(z_score, lower.tail = FALSE)</pre>

3.818e-05

alpha <- 0.05

R datacamp

Confidence intervals

For a significance level of 0.05, it's common to choose a confidence interval of -0.05 = 0.95.

```
conf_int <- first_code_boot_distn %>%
  summarize(
    lower = quantile(first_code_child_rate, 0.025),
    upper = quantile(first_code_child_rate, 0.975)
```

```
# A tibble: 1 x 2
  lower upper
  <dbl> <dbl>
1 0.369 0.407
```


Types of errors

	Truly didn't commit crime	Truly committed crime
Verdict not guilty	correct	they got away with it
Verdict guilty	wrongful conviction	correct

	actual H_0	actual H_A
chosen H_0	correct	false negative
chosen H_A	false positive	correct

False positives are *Type I errors*; false negatives are *Type II errors*.

HYPOTHESIS TESTING IN R

9

Possible errors in our example

If $p < \alpha$, we reject H_0 :

• A false positive (Type I) error could have occurred: we thought that data scientists started coding as children at a higher rate when in reality they did not.

If $p > \alpha$, we fail to reject H_0 :

A false negative (Type II) error could have occurred: we thought that data scientists coded as children at the same rate as software engineers when in reality they coded as children at a higher rate.

Let's practice!

