Time for t hypothesis testing in r

Richie Cotton Data Evangelist at DataCamp

Two-sample problems

- Another problem is to compare sample statistics across groups of a variable. \bullet
- converted_comp is a numerical variable.
- age_first_code_cut is a categorical variable with levels ("child" and "adult").
- Do users who first programmed as a child tend to be compensated higher than those that started as adults?

Hypotheses

 H_0 : The mean compensation (in USD) is **the same** for those that coded first as a child and those that coded first as an adult.

 $H_0: \mu_{child} = \mu_{adult}$

 $H_0: \mu_{child} - \mu_{adult} = 0$

 H_A : The mean compensation (in USD) is greater for those that coded first as a child compared to those that coded first as an adult.

 $H_A: \mu_{child} > \mu_{adult}$

 $H_A: \mu_{child} - \mu_{adult} > 0$

Calculating groupwise summary statistics

stack_overflow %>% group_by(age_first_code_cut) %>% summarize(mean_compensation = mean(converted_comp))

#	A tibble: 2 x 2	
	age_first_code_cut	mean_compensation
	<chr></chr>	<dbl></dbl>
1	adult	111544.
2	child	138275.

Test statistics

- Sample mean estimates the population mean.
- $ar{x}$ denotes a sample mean.
- $ar{x}_{child}$ is the original sample mean compensation for coding first as a child.
- $ar{x}_{adult}$ is the original sample mean compensation for coding first as an adult.
- $ar{x}_{child} ar{x}_{adult}$ is a test statistic.
- z-scores are one type of (standardized) test statistic.

child. n adult.

Standardizing the test statistic

sample stat – population parameter z =

standard error

difference in sample stats – difference in population parameters t =

standard error

$$t = rac{(ar{x}_{ ext{child}} - ar{x}_{ ext{adult}}) - (\mu_{ ext{child}} - \mu_{ ext{adult}})}{SE(ar{x}_{ ext{child}} - ar{x}_{ ext{adult}})}$$

Standard error

$$SE(ar{x}_{ ext{child}} - ar{x}_{ ext{adult}}) pprox \sqrt{rac{s^2_{ ext{child}}}{n_{ ext{child}}}} + rac{s^2_{ ext{adult}}}{n_{ ext{adult}}}$$

 \boldsymbol{s} is the standard deviation of the variable.

n is the sample size (number of observations/rows in sample).

Assuming the null hypothesis is true

$$t = rac{(ar{x}_{ ext{child}} - ar{x}_{ ext{adult}}) - (\mu_{ ext{child}} - \mu_{ ext{adult}})}{SE(ar{x}_{ ext{child}} - ar{x}_{ ext{adult}})}$$

$$H_0: \mu_{ ext{child}} - \mu_{ ext{adult}} = 0$$

$$t = rac{(ar{x}_{ ext{child}} - ar{x}_{ ext{adult}})}{SE(ar{x}_{ ext{child}} - ar{x}_{ ext{adult}})}$$

$$t = rac{\left(ar{x}_{ ext{child}} - ar{x}_{ ext{adult}}
ight)}{\sqrt{rac{s^2_{ ext{child}}}{n_{ ext{child}}} + rac{s^2_{ ext{adult}}}{n_{ ext{adult}}}}}$$

stack_overflow %>% group_by(age_first_code_cut) %>% summarize(xbar = mean(converted_comp), s = sd(converted_comp), n = n()

#	A tibble: 2 x 4				
	age_first_code_cut	xbar	S	n	
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<int></int>	
1	adult	111544.	270381.	1579	
2	child	138275.	278130.	1001	

COMD

Calculating the test statistic

#	A tibble: 2 x 4				
	age_first_code_cut	xbar	S	n	
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<int></int>	
1	adult	111544.	270381.	1579	
2	child	138275.	278130.	1001	

numerator <- xbar_child - xbar_adult</pre> denominator <- sqrt(</pre> s_child ^ 2 / n_child + s_adult ^ 2 / n_adult t_stat <- numerator / denominator

2.4046

$$t = rac{\left(ar{x}_{ ext{child}} - ar{x}_{ ext{adult}}
ight)}{\sqrt{rac{s_{ ext{child}}^2}{n_{ ext{child}}} + rac{s_{ ext{adult}}^2}{n_{ ext{adult}}}}}$$

Iacamp

Let's practice!

Time for t hypothesis testing in r

Richie Cotton Data Evangelist at DataCamp

t-distributions

- The test statistic, t, follows a t-distribution.
- t-distributions have a parameter named *degrees of freedom*, or *df*.
- t-distributions look like normal distributions, with fatter tails.

Degrees of freedom

- As you increase the degrees of freedom, the t-distribution gets closer to the normal distribution.
- A normal distribution is a t-distribution with infinite degrees of freedom.
- Degrees of freedom are the maximum number of logically independent values in the data sample.

Calculating degrees of freedom

- Suppose your dataset has 5 independent observations.
- Four of the values are 2, 6, 8, and 5.
- You also know the sample mean is 5.
- The last value is no longer independent; it must be 4.
- There are 4 degrees of freedom.
- $\bullet \ df = n_{child} + n_{adult} 2$

Hypotheses

 H_0 : The mean compensation (in USD) is **the same** for those that coded first as a child and those that coded first as an adult.

 H_A : The mean compensation (in USD) is greater for those that coded first as a child compared to those that coded first as an adult.

Use a **right-tailed test**.

Significance level

lpha=0.1

If $p \leq lpha$ then reject H_0 .

Calculating p-values: one proportion vs. a value

p_value <- pnorm(z_score, lower.tail = FALSE)</pre>

tacamp

Calculating p-values: two means from different groups

```
numerator <- xbar_child - xbar_adult
denominator <- sqrt(s_child ^ 2 / n_child + s_adult ^ 2 / n_adult)
t_stat <- numerator / denominator</pre>
```


- Test statistic standard error used an approximation (not bootstrapping).
- Use t-distribution CDF not normal CDF.

p_value <- pt(t_stat, df = degrees_of_freedom, lower.tail = FALSE)</pre>

0.008130

Let's practice!

Pairing is caring HYPOTHESIS TESTING IN R

Richie Cotton Data Evangelist at DataCamp

US Republican presidents dataset

state	county	repub_percent_08	repub_percent_12
Alabama	Bullock	25.69	23.51
Alabama	Chilton	78.49	79.78
Alabama	Clay	73.09	72.31
Alabama	Cullman	81.85	84.16
Alabama	Escambia	63.89	62.46
Alabama	Fayette	73.93	76.19
Alabama	Franklin	68.83	69.68
•••	•••	•••	•••

500 rows; each row represents county-level votes in a presidential election.

¹ https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/VOQCHQ

Hypotheses

Question: Was the percentage of votes given to the Republican candidate lower in 2008 compared to 2012?

 $H_0: \mu_{2008} - \mu_{2012} = 0$

- $H_A: \mu_{2008} \mu_{2012} < 0$
- Set $\alpha = 0.05$ significance level.

The data is paired, since each voter percentage refers to the same county.

From two samples to one

sample_data <- repub_votes_potus_08_12 %>%
mutate(diff = repub_percent_08 - repub_percent_12)

ggplot(sample_data, aes(x = diff)) +
geom_histogram(binwidth = 1)

R datacamp

Calculate sample statistics of the difference

sample_data %>%

summarize(xbar_diff = mean(diff))

xbar_diff 1 - 2.643027

Revised hypotheses

Old hypotheses

- H_0 : $\mu_{2008} \mu_{2012} = 0$
- H_A : $\mu_{2008} \mu_{2012} < 0$

$$df = n_{diff} - 1$$

New hypotheses

 H_0 : $\mu_{
m diff}=0$

 H_A : $\mu_{
m diff} < 0$

R datacamp

Calculating the p-value

Testing differences between two means using t.test()

```
t.test(
 # Vector of differences
  sample_data$diff,
 # Choose between "two.sided", "less", "greater"
 alternative = "less",
 # Null hypothesis population parameter
 m U = 0
```

One Sample t-test

data: sample_data\$diff t = -16.064, df = 499, p-value < 2.2e-16 alternative hypothesis: true mean is less than 0 95 percent confidence interval: -Inf -2.37189 sample estimates: mean of x -2.643027

t.test() with paired = TRUE

```
t.test(
  sample_data$repub_percent_08,
  sample_data$repub_percent_12,
  alternative = "less",
  m \cup = \mathbf{0},
  paired = TRUE
```

```
Paired t-test
```

```
data: sample_data$repub_percent_08 and
       sample_data$repub_percent_12
t = -16.064, df = 499, p-value < 2.2e-16
alternative hypothesis: true difference in means
95 percent confidence interval:
     -Inf -2.37189
sample estimates:
mean of the differences
              -2.643027
```

is less than 0

Unpaired t.test()

```
t.test(
    x = sample_data$repub_percent_08,
    y = sample_data$repub_percent_12,
    alternative = "less",
    mu = 0
)
```

Unpaired t-test has more chance of false negative error (less statistical power).

R datacamp

Welch Two Sample t-test

Let's practice!

P-hacked to pieces

HYPOTHESIS TESTING IN R

Richie Cotton Data Evangelist at DataCamp

Job satisfaction: 5 categories

stack_overflow %>%
 count(job_sat)

#	A tibble: 5 x 2	
	job_sat	n
	<fct></fct>	<int></int>
1	Very dissatisfied	187
2	Slightly dissatisfied	385
3	Neither	245
4	Slightly satisfied	777
5	Very satisfied	981

R datacamp

Visualizing multiple distributions

Analysis of variance (ANOVA)

mdl_comp_vs_job_sat <- lm(converted_comp ~ job_sat, data = stack_overflow)</pre>

anova(mdl_comp_vs_job_sat)

```
Analysis of Variance Table
```

```
Response: converted_comp
           <u>Df</u> Sum Sq Mean Sq F value Pr(>F)
job_sat 4 1.09e+12 2.73e+11 3.65 0.0057 **
Residuals 2570 1.92e+14 7.47e+10
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

¹ Linear regressions with Im() are taught in "Introduction to Regression in R"

Pairwise tests

- $\mu_{\text{very dissatisfied}} \neq \mu_{\text{slightly dissatisfied}}$
- $\mu_{\mathrm{very \, dissatisfied}} \neq \mu_{\mathrm{neither}}$
- $\mu_{\text{very dissatisfied}} \neq \mu_{\text{slightly satisfied}}$
- $\mu_{\text{very dissatisfied}} \neq \mu_{\text{very satisfied}}$
- $\mu_{
 m slightly \, dissatisfied}
 eq \mu_{
 m neither}$

- $\mu_{\text{slightly dissatisfied}} \neq \mu_{\text{slightly satisfied}}$
- $\mu_{\text{slightly dissatisfied}} \neq \mu_{\text{very satisfied}}$
- $\mu_{\text{neither}} \neq \mu_{\text{slightly satisfied}}$
- $\mu_{\text{neither}} \neq \mu_{\text{very satisfied}}$
- $\mu_{\text{slightly satisfied}} \neq \mu_{\text{very satisfied}}$

Set significance level to $\alpha = 0.2$.

pairwise.t.test()

pairwise.t.test(stack_overflow\$converted_comp, stack_overflow\$job_sat, p.adjust.method = "none")

Pairwise comparisons using t tests with pooled SD							
data: stack_overflow\$converted_comp and stack_overflow\$job_sat							
	Very dissatisfied	Slightly dissatisfied	Neither	Slightly	sat		
Slightly dissatisfied	0.26860	-	-	-			
Neither	0.79578	0.36858	-	-			
Slightly satisfied	0.29570	0.82931	0.41248	-			
Very satisfied	0.34482	0.00384	0.15939	0.00084			
P value adjustment method: none							

Significant differences: "Very satisfied" vs. "Slightly dissatisfied"; "Very satisfied" vs. "Neither"; "Very satisfied" vs. "Slightly satisfied"

tacamp

isfied

As the no. of groups increases...

R datacamp

Bonferroni correction

pairwise.t.test(stack_overflow\$converted_comp, stack_overflow\$job_sat, p.adjust.method = "bonferroni")

Pairwise comparisons using t tests with pooled SD

stack_overflow\$converted_comp and stack_overflow\$job_sat data:

Very dissatisfied Slightly dissatisfied Neither Slightly satisfied

Slightly dissatisfied	1.0000	-	-	-
Neither	1.0000	1.0000	-	-
Slightly satisfied	1.0000	1.0000	1.0000	-
Verv satisfied	1.0000	0.0384	1.0000	0.0084

P value adjustment method: bonferroni

Significant differences: "Very satisfied" vs. "Slightly dissatisfied"; "Very satisfied" vs. "Slightly satisfied"

More methods

p.adjust.methods

"holm"	"hochberg"	"hommel"	"bonferroni"	"BH"	"BY"	"fdr"	"none"	

Bonferroni and Holm adjustments

p_values

0.268603 0.795778 0.295702 0.344819 0.368580 0.829315 0.003840 0.412482 0.159389 0.000838

Bonferroni

pmin(1, 10 * p_values)

1.00000 1.00000 1.00000 1.00000 1.00000 0.03840 1.00000 1.00000 0.00838

Holm (roughly)

```
pmin(1, 10:1 * sort(p_values))
```

0.00838 0.03456 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.82931

Let's practice!

