A sense of proportion нуротнезія теятімс ім к

Richie Cotton Data Evangelist at DataCamp

Chapter 1 recap

- Is a claim about an unknown population proportion feasible?
- Standard error of sample statistic calculated using bootstrap distribution.
- This was used to compute a standardized test statistic, ...
- which was used to calculate a p-value, ...
- which was used to decide which hypothesis made most sense.
- Here, we'll calculate the test statistic without using the bootstrap distribution.

Standardized test statistic for proportions

p: population proportion (unknown population parameter)

 \hat{p} : sample proportion (sample statistic)

 p_0 : hypothesized population proportion

$$z = rac{\hat{p} - ext{mean}(\hat{p})}{ ext{standard error}(\hat{p})} = rac{\hat{p} - p}{ ext{standard error}(\hat{p})}$$

Assuming H_0 is true, $p=p_0$, so

$$z = rac{\hat{p} - p_0}{ ext{standard error}(\hat{p})}$$

Easier standard error calculations

Assuming H_0 is true,

$$z=rac{\hat{p}-p_0}{\sqrt{rac{p_0*(1-p_0)}{n}}}$$

This only uses sample information (\hat{p} and n) and the hypothesized parameter (p_0).

R datacamp

Why z instead of t?

- s is calculated from $ar{x}$, so $ar{x}$ is used to estimate the population mean *and* to estimate the population standard deviation.
- This increases uncertainty in our estimate of the population parameter.
- t-distribution has fatter tails than a normal distribution.
- This gives an extra level of caution.
- \hat{p} only appears in the numerator, so z-scores are fine.

Stack Overflow age categories

 H_0 : The proportion of SO users under thirty is equal to 0.5.

 H_A : The proportion of SO users under thirty is not equal to 0.5.

alpha <- 0.01
stack_overflow %>%
 count(age_cat)

#	A tibble: 2	x 2
	age_cat	n
	<chr></chr>	<int></int>
1	At least 30	1050
2	Under 30	1216

R datacamp

Variables for z

p_hat <- stack_overflow %>%
 summarize(prop_under_30 = mean(age_cat == "Under 30")) %>%
 pull(prop_under_30)

0.5366

p_0 <- 0.50

n <- nrow(stack_overflow)</pre>

2266

R datacamp

Calculating the z-score

$$z = rac{\hat{p} - p_0}{\sqrt{rac{p_0 * (1 - p_0)}{n}}}$$

numerator <- p_hat - p_0
denominator <- sqrt(p_0 * (1 - p_0) / n)
z_score <- numerator / denominator</pre>

3.487

Calculating the p-value

Left-tailed ("less than")

p_value <- pnorm(z_score)</pre>

Right-tailed ("greater than")

p_value <- pnorm(z_score, lower.tail = FALSE)</pre>

Two-tailed ("not equal")

p_value <- pnorm(z_score) +</pre> pnorm(z_score, lower.tail = FALSE)

p_value <- 2 * pnorm(z_score)</pre>

0.000244

p_value <= alpha</pre>

TRUE

Let's practice!

A sense of proportion нуротнезія теятімс ім к

Richie Cotton Data Evangelist at DataCamp

Comparing two proportions

 H_0 : The proportion of SO users who are hobbyists is the same for those under thirty as those at least thirty.

 $H_0: p_{>30} - p_{<30} = 0$

 H_A : The proportion of SO users who are hobbyists is different for those under thirty as those at least thirty.

$$H_A: p_{\geq 30} - p_{< 30}
eq 0$$

alpha <- 0.05

Calculating the z-score

$$egin{aligned} &z = rac{(\hat{p}_{\geq 30} - \hat{p}_{< 30}) - 0}{ ext{SE}(\hat{p}_{\geq 30} - \hat{p}_{< 30})} \ & ext{SE}(\hat{p}_{\geq 30} - \hat{p}_{< 30}) = \sqrt{rac{\hat{p} imes (1 - \hat{p})}{n_{\geq 30}} + rac{\hat{p} imes (1 - \hat{p})}{n_{< 30}}} \end{aligned}$$

 \hat{p} is a *pooled estimate* for p (common unknown proportion of successes).

$$\hat{p} = rac{n_{\geq 30} imes \hat{p}_{\geq 30} + n_{<30} imes \hat{p}_{<30}}{n_{\geq 30} + n_{<30}}$$

We only need to calculate 4 numbers: $\hat{p}_{>30}$, $\hat{p}_{<30}$, $n_{>30}$, $n_{<30}$.

 $\hat{p})$

Getting the numbers for the z-score

```
stack_overflow %>%
group_by(age_cat) %>%
summarize(
   p_hat = mean(hobbyist == "Yes"),
   n = n()
)
```

z_score

-4.217

# A tibble: 2	x 3	
age_cat	p_hat	n
<chr></chr>	<dbl></dbl>	<int></int>
1 At least 30	0.773	1050
2 Under 30	0.843	1216

R datacamp

Proportion tests using prop_test()

```
library(infer)
stack_overflow %>%
 prop_test(
   hobbyist ~ age_cat,
                             # proportions ~ categories
   order = c("At least 30", "Under 30"), # which p-hat to subtract
   success = "Yes",
                                        # which response value to count proportions of
   alternative = "two-sided",
                              # type of alternative hypothesis
                                        # should Yates' continuity correction be applied?
   correct = FALSE
  )
```

#	A tibble:	1 x 6				
	statistic	chisq_df	p_value	alternative	lower_ci	upper_ci
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<chr></chr>	<dbl></dbl>	<dbl></dbl>
1	17.8	1	0.0000248	two.sided	0.0605	0.165

Let's practice!

Declaration of independence

HYPOTHESIS TESTING IN R

Richie Cotton Data Evangelist at DataCamp

Revisiting the proportion test

```
library(infer)
stack_overflow %>%
prop_test(
    hobbyist ~ age_cat,
    order = c("At least 30", "Under 30"),
    alternative = "two-sided",
    correct = FALSE
)
```

#	A tibble:	1 x 6				
	statistic	chisq_df	p_value	alternative	lower_ci	upper_ci
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<chr></chr>	<dbl></dbl>	<dbl></dbl>
1	17.8	1	0.0000248	two.sided	0.0605	0.165

R datacamp

Independence of variables

Previous hypothesis test result: there is evidence that the hobbyist and age_cat variables have an association.

If the proportion of successes in the response variable is the same across all categories of the explanatory variable, the two variables are *statistically independent*.

¹ Response and explanatory variables are defined in "Introduction to Regression in R", Chapter 1.

Job satisfaction and age category

stack_overflow %>%
 count(age_cat)

A tibble: 2 x 2

- age_cat n
- <chr> <int>
- 1 At least 30 1050
- 2 Under 30 1211

stack_overflow %>%
 count(job_sat)

- # A tibble: 5 x 2
 job_sat
 - <fct>
- 1 Very dissatisfied
- 2 Slightly dissatis
- 3 Neither
- 4 Slightly satisfie
- 5 Very satisfied

	n	
	<int></int>	
	159	
fied	342	
	201	
d	680	
	879	

Declaring the hypotheses

 H_0 : Age categories are independent of job satisfaction levels.

 H_A : Age categories are not independent of job satisfaction levels.

alpha <- 0.1

- Test statistic denoted χ^2 .
- Assuming independence, how far away are the observed results from the expected values? \bullet

Exploratory visualization: proportional stacked bar plot

ggplot(stack_overflow, aes(job_sat, fill = age_cat)) +
 geom_bar(position = "fill") +
 ylab("proportion")

R datacamp

Chi-square independence test using chisq_test()

library(infer) stack_overflow %>% chisq_test(age_cat ~ job_sat)

#	A tibble:	1 x 3	
	statistic	chisq_df	p_value
	<dbl></dbl>	<int></int>	<dbl></dbl>
1	5.55	4	0.235

Degrees of freedom:

(No. of response categories -1) × (No. of explanatory categories -1)

$$(2-1)*(5-1)=4$$

tacamp

Swapping the variables?

ggplot(stack_overflow, aes(age_cat, fill = job_sat)) +
geom_bar(position = "fill") +
ylab("proportion")

R datacamp

job_sat

Very dissatisfied Slightly dissatisfied Neither Slightly satisfied Very satisfied

chi-square both ways

library(infer) stack_overflow %>% chisq_test(age_cat ~ job_sat)

A tibble: 1 x 3 statistic chisq_df p_value <dbl> <int> <dbl> 5.55 4 0.235 1

library(infer) stack_overflow %>% chisq_test(job_sat ~ age_cat)

A tibble: 1 x 3 statistic chisq_df p_value <dbl> <int> <dbl> 5.55 1

Not

Are the variables X and Y independent?

Ask

- 0.235 4

Is variable X independent from variable Y?

What about direction and tails?

args(chisq_test)

function (x, formula, response = NULL, explanatory = NULL, ...)

- Observed and expected counts squared must be non-negative.
- chi-square tests are almost always right-tailed. ¹

¹ Left-tailed chi-square tests are used in statistical forensics to detect is a fit is suspiciously good because the data was fabricated. Chi-square tests of variance can be two-tailed. These are niche uses though.

R datacamp

Let's practice!

Does this dress make my fit look good?

Richie Cotton Data Evangelist at DataCamp

Purple links

You search for a coding solution online and the first result link is purple because you already visited it. How do you feel?

purple_link_counts <- stack_overflow %>% count(purple_link)

#	A tibble: 4 x 2		
	purple_link	n	
	<fct></fct>	<int></int>	
1	Hello, old friend	1330	
2	Amused	409	
3	Indifferent	426	
4	Annoyed	290	

Declaring the hypotheses

hypothesized <- tribble(</pre> ~ purple_link, ~ prop, "Hello, old friend", 1 / 2, "Amused" , 1 / 6, "Indifferent" , 1 / 6, "Annoyed" , 1 / 6

 H_0 : The sample matches with the hypothesized distribution.

 H_A : The sample does not match with the hypothesized distribution.

#	A tibble: 4 x 2	
	purple_link	pro
	<chr></chr>	<dbl< td=""></dbl<>
1	Hello, old friend	0.5
2	Amused	0.16
3	Indifferent	0.16
4	Annoyed	0.16

The test statistic, χ^2 , measures how far observed results are from expectations in each group.

alpha <- 0.01

¹ tribble is short for "row-wise tibble"; not to be confused with the alien species from Star Trek

р			
>			
_			
57			
57			
-			
o7			

Hypothesized counts by category

n_total <- nrow(stack_overflow)</pre> hypothesized <- tribble(</pre> ~ purple_link, ~ prop, "Hello, old friend", 1 / 2, "Amused" , 1 / 6, "Indifferent" , 1 / 6, "Annoyed" , 1 / 6) %>%

mutate(n = prop * n_total)

A tibble: 4×3 purple_link <chr>

- 1 Hello, old friend 0.5 1228.
- 2 Amused
- 3 Indifferent
- 4 Annoyed

prop n

- <dbl> <dbl>
- 0.167 409.
- 0.167 409.
- 0.167 409.

Visualizing counts

```
ggplot(purple_link_counts, aes(purple_link, n)) +
geom_col() +
geom_point(data = hypothesized, color = "purple")
```


R datacamp

chi-square goodness of fit test using chisq_test()

1 x 3	tibble:	#
chisq_d1	statistic	
<dbl></dbl>	<dbl></dbl>	
Ţ	44.0	1

Let's practice!

