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Randomness
Assumption

The samples are random subsets of larger

populations.

Consequence
Sample is not representative of population.

How to check this
Understand how your data was collected.

Speak to the data collector/domain expert.

 Sampling techniques are discussed in "Sampling in R".1
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Independence of observations
Assumption

Each observation (row) in the dataset is independent.

Consequence
Increased chance of false negative/positive error.

How to check this
Understand how your data was collected.
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Large sample size
Assumption

The sample is big enough to mitigate uncertainty, and so that the Central Limit Theorem

applies.

Consequence
Really wide con�dence intervals.

Increased chance of false negative/positive error.

How to check this
It depends on the test.



HYPOTHESIS TESTING IN R

Large sample size: t-test
One sample

At least 30  observations in the sample.

n ≥ 30

n: sample size

Two samples
At least 30 observations in each sample.

n ≥ 30,n ≥ 30

n : sample size for group i

Paired samples
At least 30 pairs of observations across the

samples.

Number of rows in your data ≥ 30

ANOVA
At least pairs of 30 observations in each

sample.

n ≥ 30 for all values of i

 Sometimes you can get away with less than 30; the important thing is that the null distribution appears normal.
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Large sample size: proportion tests
One sample

Number of successes in sample is greater

than or equal to 10.

n× ≥ 10

Number of failures in sample is greater than

or equal to 10.

n× (1 − ) ≥ 10

n: sample size 

: proportion of successes in sample

Two samples
Number of successes in each sample is

greater than or equal to 10.

n × ≥ 10

n × ≥ 10

Number of failures in each sample is

greater than or equal to 10.

n × (1 − ) ≥ 10

n × (1 − ) ≥ 10
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Large sample size: chi-square tests
The number of successes in each group in greater than or equal to 5.

n × ≥ 5 for all values of i

The number of failures in each group in greater than or equal to 5.

n × (1 − ) ≥ 5 for all values of i

n : sample size for group i 

: proportion of successes in sample group i

i p̂ i

i p̂ i

i

p̂ i
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Sanity check
If the bootstrap distribution doesn't look normal, assumptions likely aren't valid.
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Imbalanced data

stack_overflow_imbalanced %>%  
  count(hobbyist, age_cat, .drop = FALSE) 

  hobbyist     age_cat    n 
1       No At least 30    0 
2       No    Under 30  191 
3      Yes At least 30   15 
4      Yes    Under 30 1025 

A sample is imbalanced if some groups are much bigger than others.



HYPOTHESIS TESTING IN R

Hypotheses
H : The proportion of hobbyists under 30 is the same as the proportion of hobbyists at least

30.

H : The proportion of hobbyists under 30 is di�erent from the proportion of hobbyists at least

30.

alpha <- 0.1

0

A
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Proceeding with a proportion test regardless

stack_overflow_imbalanced %>%  
  prop_test( 
    hobbyist ~ age_cat, 
    order = c("At least 30", "Under 30"), 
    success = "Yes", 
    alternative = "two.sided", 
    correct = FALSE 
  ) 

# A tibble: 1 x 6 
  statistic chisq_df p_value alternative lower_ci upper_ci 
      <dbl>    <dbl>   <dbl> <chr>          <dbl>    <dbl> 
1      2.79        1  0.0949 two.sided    0.00718   0.0217 
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A grammar of graphics

Plot type base-R ggplot2

Sca�er plot plot(, type = "p") ggplot() + geom_point()

Line plot plot(, type = "l") ggplot() + geom_line()

Histogram hist() ggplot() + geom_histogram()

Box plot boxplot() ggplot() + geom_boxplot()

Bar plot barplot() ggplot() + geom_bar()

Pie plot pie() ggplot() + geom_bar() + coord_polar()
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A grammar of hypothesis tests
Allen Downey's There is only one test

framework.

Implemented in R in the infer  package.

generate()  makes simulated data.

Computationally expensive.

Robust against small samples or

imbalanced data.

null_distn <- dataset %>%  
  specify() %>%  
  hypothesize() %>%  
  generate() %>%  
  calculate() 

obs_stat <- dataset %>%  
  specify() %>%  
  calculate() 

get_p_value(null_distn, obs_stat) 

 Allen Downey teaches "Exploratory Data Analysis in Python".1

https://allendowney.blogspot.com/2016/06/there-is-still-only-one-test.html
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Specifying the variables of interest
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specify()
specify()  selects the variable(s) you

want to test.

For 2 sample tests, use 

response ~ explanatory .

For 1 sample tests use response ~ NULL .

stack_overflow_imbalanced %>% 
  specify(hobbyist ~ age_cat, success = "Yes") 

Response: hobbyist (factor) 
Explanatory: age_cat (factor) 
# A tibble: 1,231 x 2 
  hobbyist age_cat     
  <fct>    <fct>       
1 Yes      At least 30 
2 Yes      At least 30 
3 Yes      At least 30 
4 Yes      Under 30    
5 Yes      At least 30 
6 Yes      At least 30 
7 No       Under 30    
# ... with 1,224 more rows 
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hypothesize()
hypothesize()  declares the type of null

hypothesis.

For 2 sample tests, use "independence"  or 

"point" .

For 1 sample tests, use "point" .

stack_overflow_imbalanced %>% 
  specify(hobbyist ~ age_cat, success = "Yes") %>% 
  hypothesize(null = "independence") 

Response: hobbyist (factor) 
Explanatory: age_cat (factor) 
Null Hypothesis: independence 
# A tibble: 1,231 x 2 
  hobbyist age_cat     
  <fct>    <fct>       
1 Yes      At least 30 
2 Yes      At least 30 
3 Yes      At least 30 
4 Yes      Under 30    
5 Yes      At least 30 
6 Yes      At least 30 
7 No       Under 30    
# ... with 1,224 more rows 
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Recap: hypotheses and dataset
H : The proportion of hobbyists under 30 is the same as the prop'n of hobbyists at least 30.

H : The proportion of hobbyists under 30 is di�erent from the prop'n of hobbyists at least 30.

alpha <- 0.1

stack_overflow_imbalanced %>%  
  count(hobbyist, age_cat, .drop = FALSE) 

  hobbyist     age_cat    n 
1       No At least 30    0 
2       No    Under 30  191 
3      Yes At least 30   15 
4      Yes    Under 30 1025 

0

A
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Recap: workflow
null_distn <- dataset %>%  
  specify() %>%  
  hypothesize() %>%  
  generate() %>%  
  calculate() 

observed_stat <- dataset %>%  
  specify() %>%  
  calculate() 

get_p_value(null_distn, observed_stat) 

Response: hobbyist (factor) 
Explanatory: age_cat (factor)
Null Hypothesis: independence
# A tibble: 1,231 x 2 
  hobbyist age_cat     
  <fct>    <fct>       
1 Yes      At least 30 
2 Yes      At least 30 
3 Yes      At least 30 
4 Yes      Under 30    
5 Yes      At least 30 
6 Yes      At least 30 
7 No       Under 30    
# ... with 1,224 more rows 

stack_overflow_imbalanced %>%
  specify(hobbyist ~ age_cat, success = "Yes") %>%  
  hypothesize(null = "independence") 
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Motivating generate()
H : The proportion of hobbyists under 30 is the same as the prop'n of hobbyists at least 30.

If H  is true, then

In each row, the hobbyist value could have appeared with either age category with equal

probability.

To simulate this, we can permute (shu�e) the hobbyist values while keeping the age

categories �xed.

0

0
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stack_overflow_imbalanced 

# A tibble: 1,231 x 2 
  hobbyist age_cat     
  <fct>    <fct>       
1 Yes      At least 30 
2 Yes      At least 30 
3 Yes      At least 30 
4 Yes      Under 30    
5 Yes      At least 30 
6 Yes      At least 30 
7 No       Under 30    
# ... with 1,224 more rows 

bind_cols( 
  stack_overflow_imbalanced %>%  
    select(hobbyist) %>%  
    slice_sample(prop = 1), 
  stack_overflow_imbalanced %>%  
    select(age_cat) 
) 

# A tibble: 1,231 x 2 
  hobbyist age_cat     
  <fct>    <fct>       
1 Yes      At least 30 
2 Yes      At least 30 
3 No       At least 30 
4 No       Under 30    
5 Yes      At least 30 
6 Yes      At least 30 
7 Yes      Under 30    
# ... with 1,224 more rows 
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Generating many replicates
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generate()
generate()  generates simulated data

re�ecting the null hypothesis.

For "independence" null hypotheses, set 

type  to "permute" .

For "point" null hypotheses, set type  to 

"bootstrap"  or "simulate" .

Response: hobbyist (factor) 
Explanatory: age_cat (factor) 
Null Hypothesis: independence 
# A tibble: 6,155,000 x 3 
# Groups:   replicate [5,000] 
  hobbyist age_cat     replicate 
  <fct>    <fct>           <int> 
1 Yes      At least 30         1 
2 Yes      At least 30         1 
3 Yes      At least 30         1 
4 Yes      Under 30            1 
5 Yes      At least 30         1 
6 Yes      At least 30         1 
7 Yes      Under 30            1 
# ... with 6,154,993 more rows 

stack_overflow_imbalanced %>% 
  specify(hobbyist ~ age_cat, success = "Yes") %>% 
  hypothesize(null = "independence") %>%  
  generate(reps = 5000, type = "permute") 
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Calculating the test statistic
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calculate()
calculate()  calculates a distribution of

test statistics known as the null distribution.

null_distn <- stack_overflow_imbalanced %>%
  specify( 
    hobbyist ~ age_cat,  
    success = "Yes" 
  ) %>% 
  hypothesize(null = "independence") %>% 
  generate(reps = 5000, type = "permute") %>% 
  calculate( 
    stat = "diff in props",  
    order = c("At least 30", "Under 30") 
  ) 

# A tibble: 5,000 x 2 
  replicate    stat 
      <int>   <dbl> 
1         1  0.0896 
2         2  0.0896 
3         3 -0.180  
4         4  0.157  
5         5  0.0896 
6         6 -0.113  
7         7  0.0221 
# ... with 4,993 more rows 

 The ?calculate help page lists all possible test statistics.1
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Visualizing the null distribution

visualize(null_distn) null_distn %>% count(stat) 

# A tibble: 9 x 2 
     stat     n 
    <dbl> <int> 
1 -0.383      2 
2 -0.315     22 
3 -0.248     63 
4 -0.180    246 
5 -0.113    641 
6 -0.0454  1132 
7  0.0221  1453 
8  0.0896  1063 
9  0.157    378 
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Calculating the test statistic on the original dataset
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Observed statistic: specify() %>% calculate()
obs_stat <- stack_overflow_imbalanced %>% 
  specify(hobbyist ~ age_cat, success = "Yes") %>% 
  # hypothesize(null = "independence") %>% 
  # generate(reps = 5000, type = "permute") %>% 
  calculate( 
    stat = "diff in props", 
    order = c("At least 30", "Under 30") 
  ) 

# A tibble: 1 x 1 
   stat 
  <dbl> 
1 0.157 
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Visualizing the null distribution vs the observed stat

visualize(null_distn) + 
  geom_vline( 
    aes(xintercept = stat), 
    data = observed_stat,  
    color = "red" 
  ) 
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Get the p-value

get_p_value( 
  null_distn, obs_stat,  
  direction = "two sided"   # Not alternative = "two.sided" 
) 

# A tibble: 1 x 1 
  p_value
    <dbl>
1   0.151

# A tibble: 1 x 6 
  statistic chisq_df p_value alternative lower_ci upper_ci 
      <dbl>    <dbl>   <dbl> <chr>          <dbl>    <dbl> 
1      2.79        1  0.0949 two.sided    0.00718   0.0217 
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Non-parametric tests
A non-parametric test is a hypothesis test that doesn't assume a probability distribution for

the test statistic.

There are two types of non-parametric hypothesis test:

1. Simulation-based.

2. Rank-based.
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t_test()
H : μ − μ = 0     H : μ − μ > 0

library(infer) 
stack_overflow %>%  
  t_test( 
    converted_comp ~ age_first_code_cut, 
    order = c("child", "adult"), 
    alternative = "greater" 
  ) 

# A tibble: 1 x 6 
  statistic  t_df p_value alternative lower_ci upper_ci 
      <dbl> <dbl>   <dbl> <chr>          <dbl>    <dbl> 
1      2.40 2083. 0.00814 greater        8438.      Inf 

0 child adult A child adult
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Calculating the null distribution
Simulation-based pipeline

null_distn <- stack_overflow %>%  
  specify(converted_comp ~ age_first_code_cut) %>%  
  hypothesize(null = "independence") %>%  
  generate(reps = 5000, type = "permute") %>%  
  calculate( 
    stat = "diff in means",  
    order = c("child", "adult") 
  ) 

t-test, for comparison

library(infer) 
stack_overflow %>%  
  t_test( 
    converted_comp ~ age_first_code_cut, 
    order = c("child", "adult"), 
    alternative = "greater" 
  ) 
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Calculating the observed statistic
Simulation-based pipeline t-test, for comparison

library(infer) 
stack_overflow %>%  
  t_test( 
    converted_comp ~ age_first_code_cut, 
    order = c("child", "adult"), 
    alternative = "greater" 
  ) 

obs_stat <- stack_overflow %>%  
  specify(converted_comp ~ age_first_code_cut) %>% 
  calculate( 
    stat = "diff in means",  
    order = c("child", "adult") 
  ) 
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Get the p-value
Simulation-based pipeline

get_p_value( 
  null_distn, obs_stat,  
  direction = "greater" 
) 

# A tibble: 1 x 1 
  p_value 
    <dbl> 
1  0.0066 

t-test, for comparison

library(infer) 
stack_overflow %>%  
  t_test( 
    converted_comp ~ age_first_code_cut, 
    order = c("child", "adult"), 
    alternative = "greater" 
  ) 

# A tibble: 1 x 6 
  statistic  t_df p_value alternative lower_ci upper_ci 
      <dbl> <dbl>   <dbl> <chr>          <dbl>    <dbl> 
1      2.40 2083. 0.00814 greater        8438.      Inf 
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Ranks of vectors

x <- c(1, 15, 3, 10, 6) 

rank(x) 

1 5 2 4 3 

A Wilcoxon-Mann-Whitney test (a.k.a. Wilcoxon rank sum test) is (very roughly) a t-test on the

ranks of the numeric input.
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Wilcoxon-Mann-Whitney test

wilcox.test( 
  converted_comp ~ age_first_code_cut, 
  data = stack_overflow, 
  alternative = "greater", 
  correct = FALSE 
)  

    Wilcoxon rank sum test 
 
data:  converted_comp by age_first_code_cut 
W = 967298, p-value <2e-16 
alternative hypothesis: true location shift is greater than 0 

 Also known as the "Wilcoxon rank-sum test" and the "Mann-Whitney U test".1
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Kruskal-Wallis test
Kruskal-Wallis test is to Wilcoxon-Mann-Whitney test as ANOVA is to t-test.

kruskal.test( 
  converted_comp ~ job_sat, 
  data = stack_overflow 
) 

    Kruskal-Wallis rank sum test 

data:  converted_comp by job_sat 
Kruskal-Wallis chi-square = 81, df = 4, p-value <2e-16 
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You learned things
Chapter 1

Work�ow for testing proportions vs. a

hypothesized value.

False negative/false positive errors.

Chapter 3

Testing di�erences in sample proportions

between two groups using proportion tests.

Using chi-square independence/goodness

of �t tests.

Chapter 2

Testing di�erences in sample means

between two groups using t-tests.

Extending this to more than two groups

using ANOVA and pairwise t-tests.

Chapter 4

Reviewing assumptions of parametric

hypothesis tests.

Examined nonparametric alternatives when

assumptions aren't valid
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More courses
Inference

Statistical Inference with R skill track

Bayesian statistics

Fundamentals of Bayesian Data Analysis in R

Applications

A/B Testing in R

https://learn.datacamp.com/skill-tracks/statistical-inference-with-r
https://learn.datacamp.com/courses/fundamentals-of-bayesian-data-analysis-in-r
https://learn.datacamp.com/courses/ab-testing-in-r
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