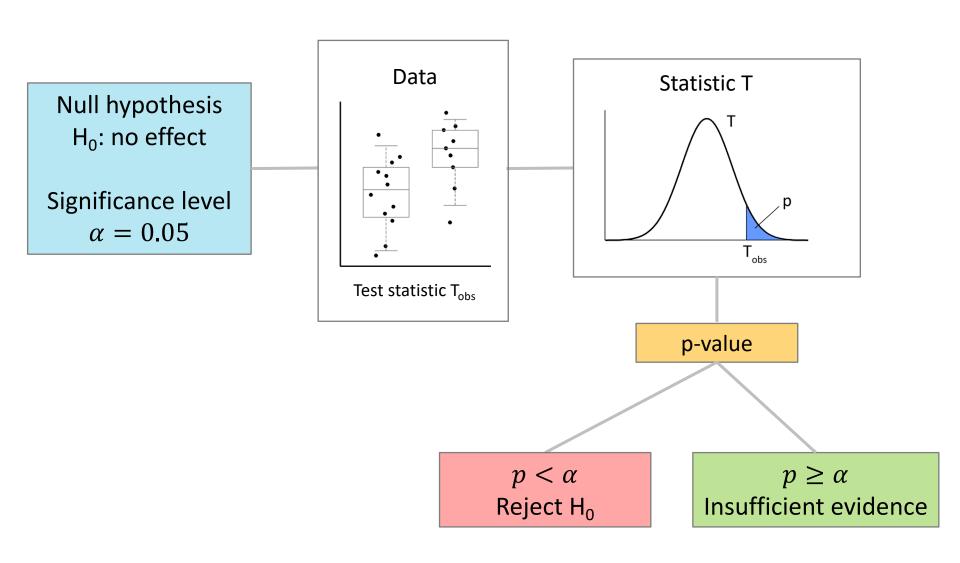
P-values and statistical tests 5. Non-parametric methods

Marek Gierliński Division of Computational Biology

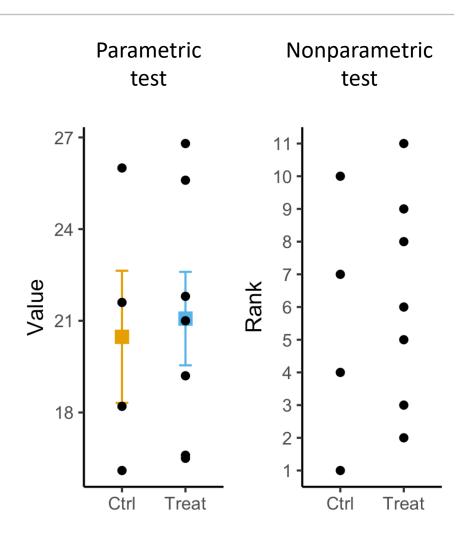
Hand-outs available at http://is.gd/statlec

Statistical test



Nonparametric methods

- Parametric methods:
 - □ require finding parameters (e.g. mean)
 - □ sensitive to distributions
 - □ don't work in some cases
 - □ more powerful
- Nonparametric methods:
 - □ based on ranks
 - □ distribution-free
 - □ wider application
 - □ less powerful



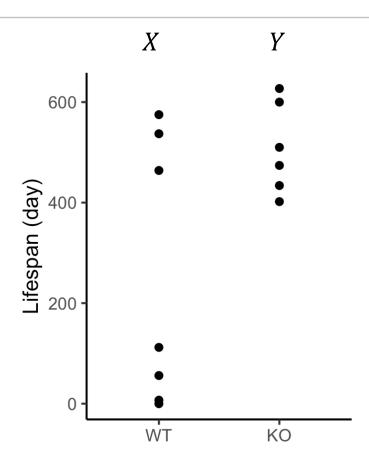
(Wilcoxon rank-sum test)

a nonparametric alternative to t-test

- Two samples representing random variables X and Y
- Null hypothesis: there is no shift in location (and/or change in shape)

$$H_0$$
: $P(X > Y) = P(Y > X)$

Only ranks matter, not actual values



Two samples:

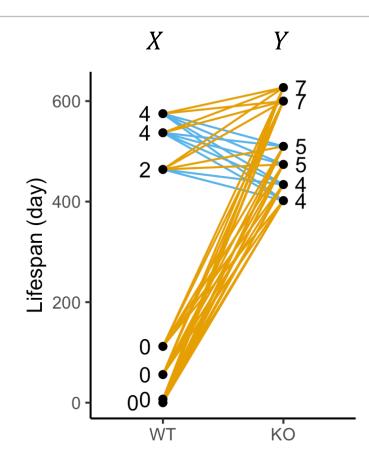
$$x_1, x_2, \dots, x_{n_x}$$

$$y_1, y_2, \dots, y_{n_y}$$

- For each x_i count the number of y_j , such that $x_i > y_j$
- The sum of these counts over all x_i is U_x
- lacksquare Do the same for y_i and find U_y

Test statistic

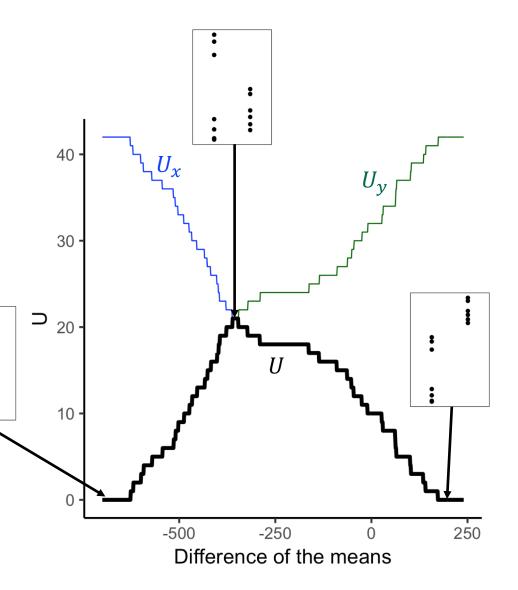
$$U = \min(U_x, U_y)$$



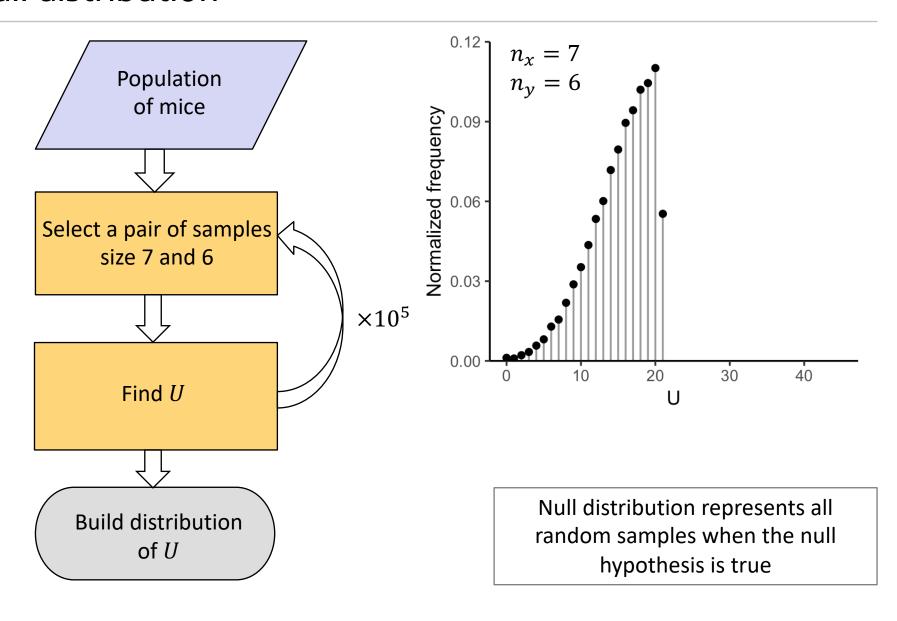
$$U_x = 10 \qquad U_y = 32$$
$$U = 10$$

- U measures difference in location between the samples
- With no overlap U=0
- Direction not important

• $U = \max = \left\lfloor \frac{n_x n_y}{2} \right\rfloor$ when samples most similar



Null distribution



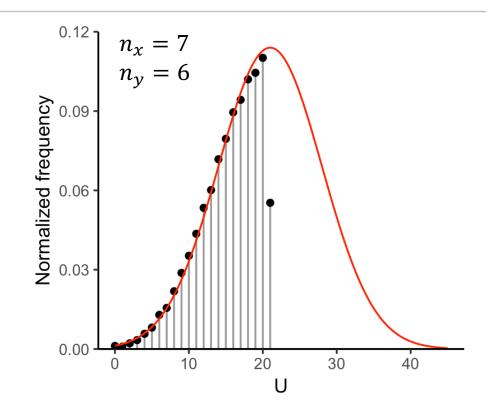
Null distribution

 For large samples *U* is approximately normally distributed (half of it) with

$$\mu_U = \frac{n_x n_y}{2}$$

$$\sigma_U = \sqrt{\frac{n_x n_y (n_x + n_y + 1)}{12}}$$

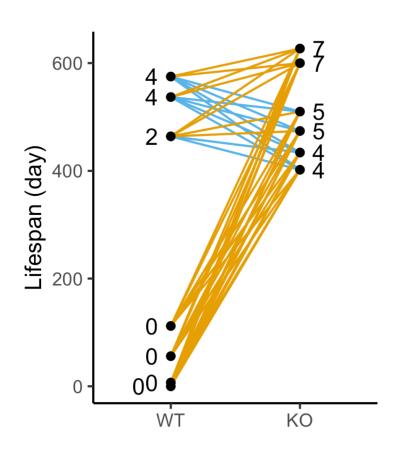
 For smaller samples exact solutions are available (tables or software)



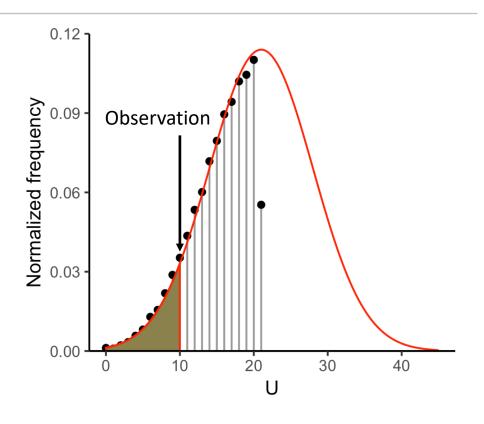
$$\mu_U = \frac{7 \times 6}{2} = 21$$

$$\sigma_U = \sqrt{\frac{7 \times 6 \times (7 + 6 + 1)}{12}} = 7$$

P-value



$$U_x = 10 \qquad U_y = 32$$
$$U = 10$$



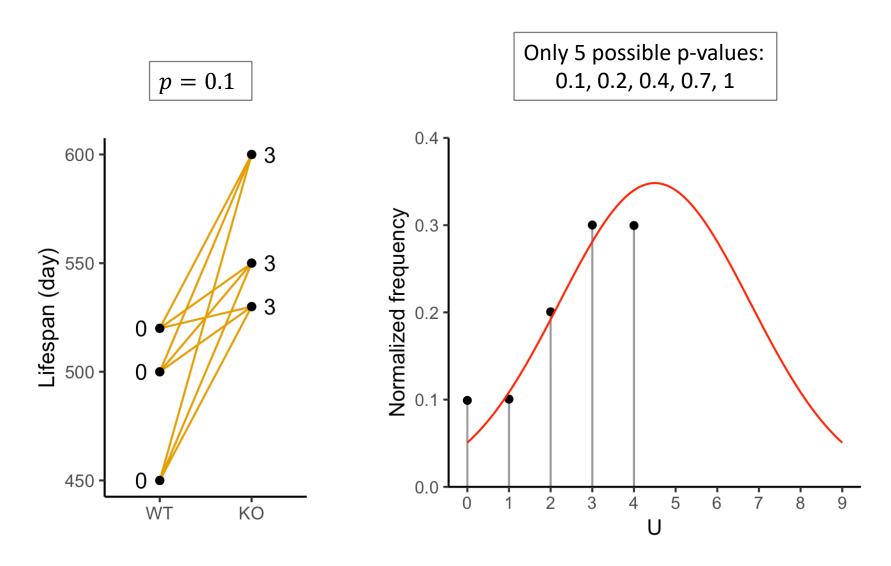
$$\mu_U = 21$$

$$\sigma_U = 7$$

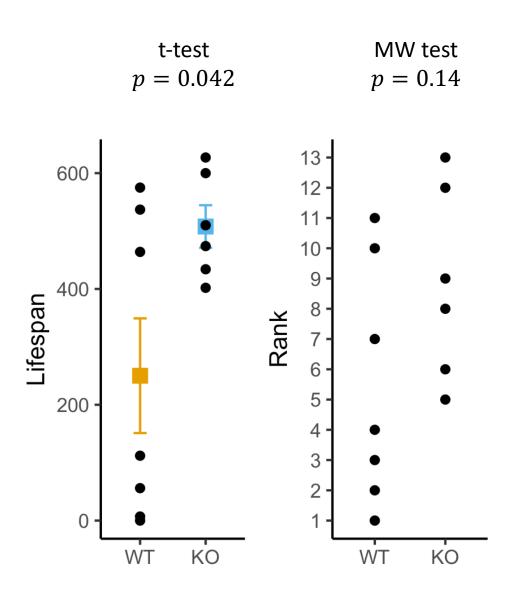
$$Z = \frac{U - \mu_U}{\sigma_U} = -1.57$$

$$p = 0.12$$
Exact solution: $p = 0.14$

Limited usage for small samples



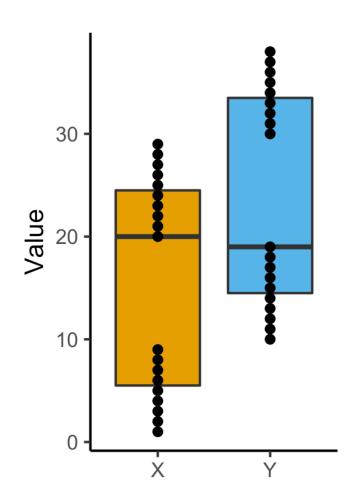
Comparison to t-test



Mann-Whitney can compare medians, but...

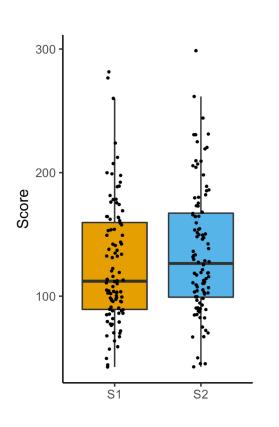
- Consider two samples in the figure
- Yes, I know they are contrived
- Medians are similar, but med X > med Y
- Mann-Whitney test gives U = 100 and one-sided p = 0.02
- \blacksquare Y exceeds X!

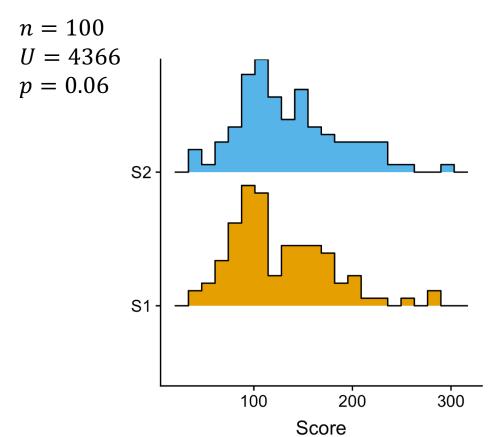
- Mann-Whitney test is sensitive to change in location (median) and/or shape
- If shapes are similar, then MW test can be a test of medians
- Otherwise, use Mood's test for medians



What is Mann-Whitney test good for?

- If data are distributed (roughly) normally, use t-test
- MW test is good for weird distributions, e.g. 'scores'





What is Mann-Whitney test good for?

- Ordinal variables, e.g., APGAR score
- New pre-natal care program in a rural community

Usual care	8	7	6	2	5	8	7	3
New program	9	8	7	8	10	9	6	

$$U = 9.5$$

$$p = 0.03$$

How to do it in R?

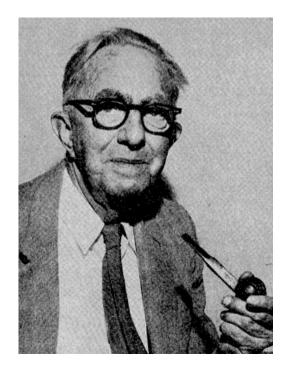
```
> x <- c(0, 7, 56, 112, 464, 537, 575)
> y <- c(402, 434, 472, 510, 600, 627)
# Mann-Whitney test
> wilcox.test(x, y)
          Wilcoxon rank sum test
data: x and y
W = 10, p-value = 0.1375
alternative hypothesis: true location shift is not equal to 0
# Mood's test for medians
> mood.test(x,y)
          Mood two-sample test of scale
```

data: x and y Z = 0.55995, p-value = 0.5755 alternative hypothesis: two.sided

Mann-Whitney test: summary

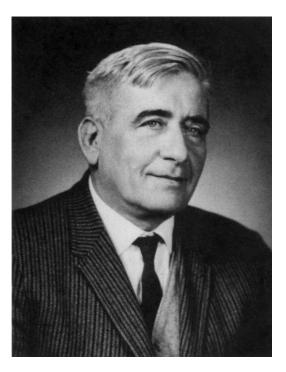
Input	two samples of n_1 and n_2 values values can be ordinal
Assumptions	Samples are random and independent (no before/after tests) If used for medians, both distributions must be the same
Usage	Compare location and shape of two samples
Null hypothesis	There is no shift in location and/or change in shape Stronger version: both samples are from the same distribution
Comments	Also known as Wilcoxon rank-sum test Non-parametric counterpart of t-test Less powerful than t-test (use t-test if distributions symmetric) Not very useful for small samples Doesn't really give the effect size

Mann-Whitney-Wilcoxon



Frank Wilcoxon (1892-1965)

Wilcoxon, F. (1945) "Individual Comparisons by Ranking Methods" *Biometrics Bulletin* **1**, 80–83



Henry Berthold Mann (1905-2000)

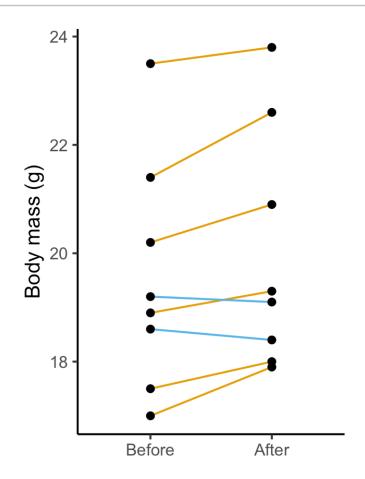
Donald Ransom Whitney (1915-2007)

Mann, H. B.; Whitney, D. R. (1947). "On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other" *Annals of Mathematical Statistics* **18**, 50–60

a nonparametric alternative to paired t-test

Paired data

- Samples are paired
- For example: mouse weight before and after obesity treatment
- Null hypothesis: difference between pairs follows a symmetric distribution around zero
- Example: mouse body mass (g)



Before: 21.4 20.2 23.5 17.5 18.6 17.0 18.9 19.2

After: 22.6 20.9 23.8 18.0 18.4 17.9 19.3 19.1

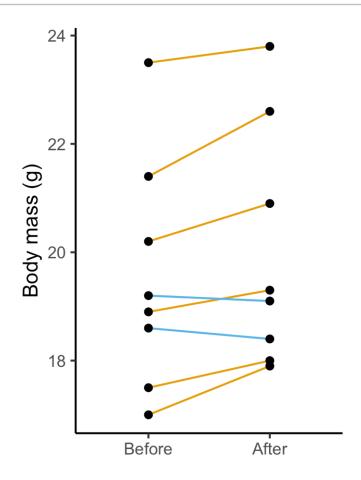
Find the differences:

$$\Delta_i = |y_i - x_i|$$

$$s_i = \operatorname{sgn}(y_i - x_i)$$

- lacksquare Order and rank the pairs according to Δ_i
 - R_i rank of the *i*-the pair
- Test statistic:

$$W = \sum_{i=1}^{n} s_i R_i$$



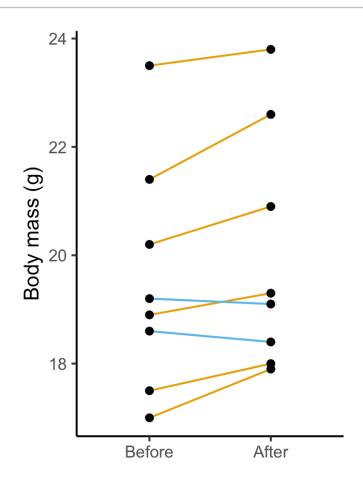
$$\Delta_i = |y_i - x_i|$$

$$s_i = \operatorname{sgn}(y_i - x_i)$$

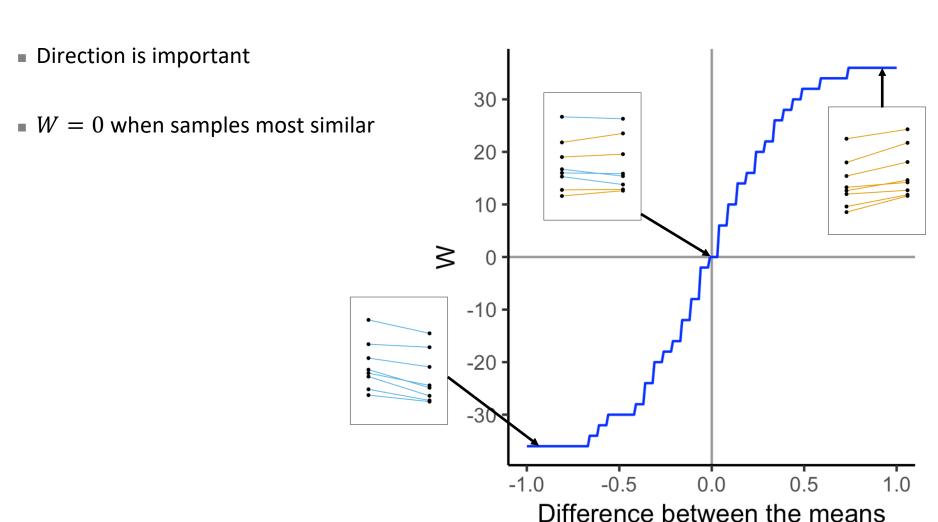
 R_i - rank of the *i*-the pair

$$W = \sum_{i=1}^{n} s_i R_i$$

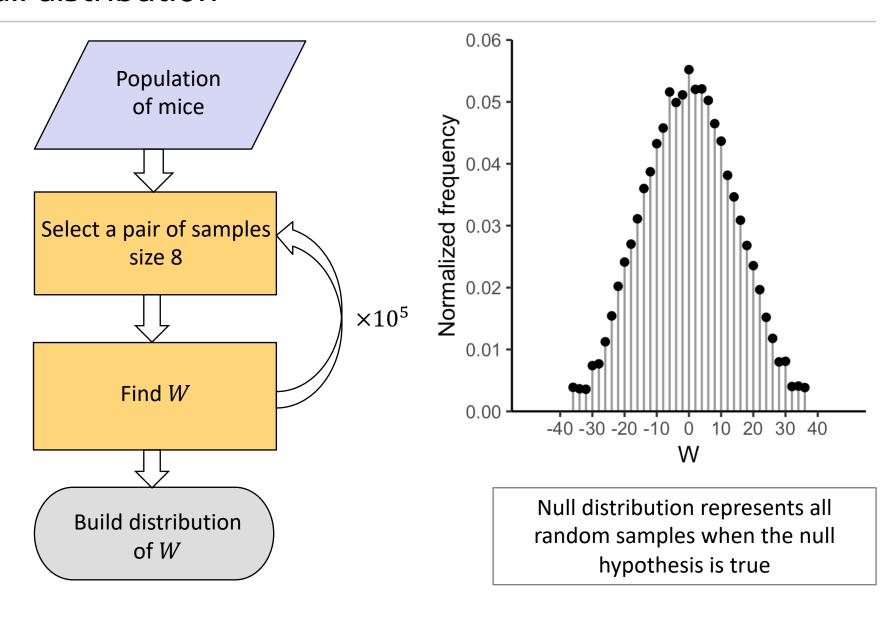
x_i	${\mathcal Y}_i$	Δ_i	R_i	s_i	$s_i R_i$
19.2	19.1	0.1	1	-1	-1
18.6	18.4	0.2	2	-1	-2
23.5	23.8	0.3	3	1	3
18.9	19.3	0.4	4	1	4
17.5	18.0	0.5	5	1	5
20.2	20.9	0.7	6	1	6
17.0	17.9	0.9	7	1	7
21.4	22.6	1.2	8	1	8
					30



 W measures difference in location between pairs of points



Null distribution



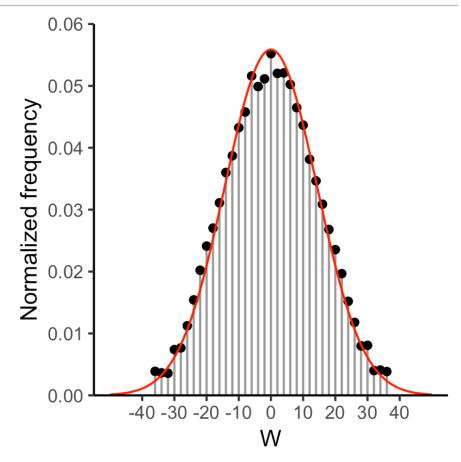
Null distribution

 For large samples W is approximately normally distributed with

$$\mu_W = 0$$

$$\sigma_W = \sqrt{\frac{n(n+1)(2n+1)}{6}}$$

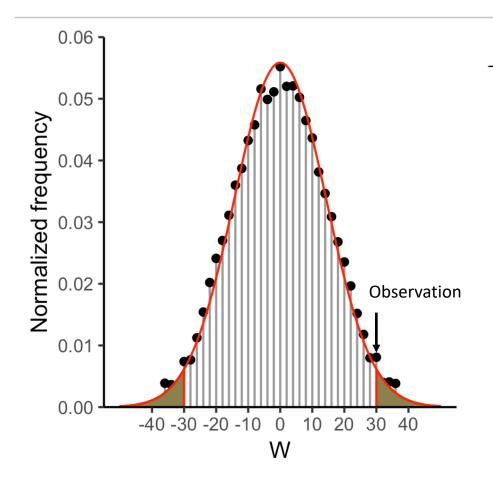
 For smaller samples exact solutions are available (tables or software)



$$n = 8$$

$$\sigma_W = \sqrt{\frac{8 \times 9 \times 17}{6}} = \sqrt{204} \approx 14.3$$

P-value



x_i	${y_i}$	Δ_i	R_i	s_i	$s_i R_i$
19.2	19.1	0.1	1	-1	-1
18.6	18.4	0.2	2	-1	-2
23.5	23.8	0.3	3	1	3
18.9	19.3	0.4	4	1	4
17.5	18.0	0.5	5	1	5
20.2	20.9	0.7	6	1	6
17.0	17.9	0.9	7	1	7
21.4	22.6	1.2	8	1	8
					30

$$n = 8$$
 $W = 30$
 $\sigma_W = 14.3$
 $Z = W/\sigma_W = 2.10$
 $p = 0.036$
 $p_{\text{exact}} = 0.039$

How to do it in R?

Wilcoxon signed-rank test: summary

Input	Sample of n pairs of data (before and after) Values can be ordinal
Assumptions	Pairs should be random and independent
Usage	Discover change in individual points between before and after
Null hypothesis	There is no change between <i>before</i> and <i>after</i> is zero The difference between <i>before</i> and <i>after</i> follows a symmetric distribution around zero
Comments	Non-parametric counterpart of paired t-test Paired data only Doesn't care about distributions Not very useful for small samples

Kruskal-Wallis test

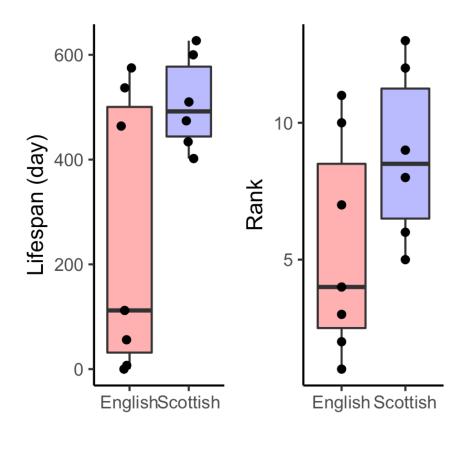
a nonparametric alternative to one-way ANOVA

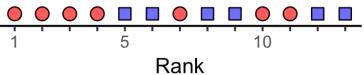
Alternative formulation of the Mann-Whitney test

Rank pooled data from the smallest to the largest

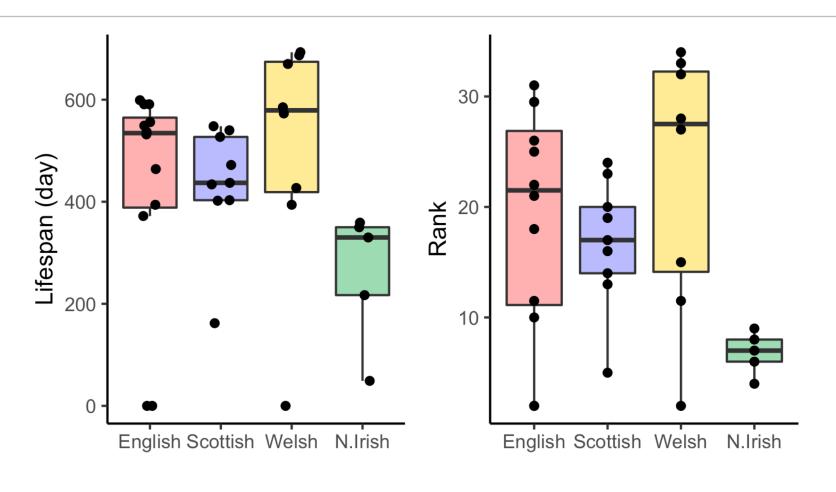
 Null hypothesis: both samples are randomly distributed between available rank slots

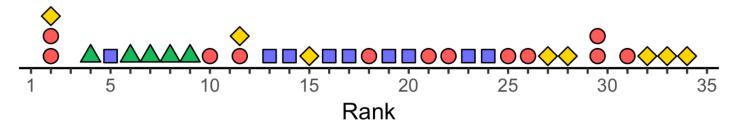
Can be extended to more than 2 samples





Ranked ANOVA





Test statistic: use variance between groups

Sum of square residuals

$$SS_B = \sum_{g=1}^n n_g (\bar{r}_g - \bar{r})^2$$

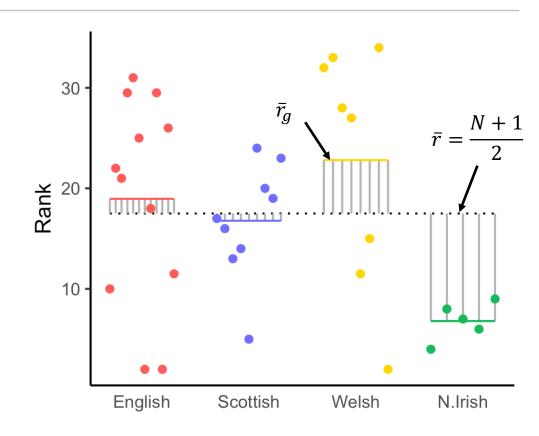
■ Rank variance (ranks are 1, ..., N)

$$\sigma^2 = \frac{1}{12}N(N+1)$$

Test statistic

$$H = \frac{SS_B}{\sigma^2}$$

$$H = \frac{12}{N(N+1)} \sum_{g=1}^{n} n_g \left(\bar{r}_g - \frac{N+1}{2} \right)^2$$

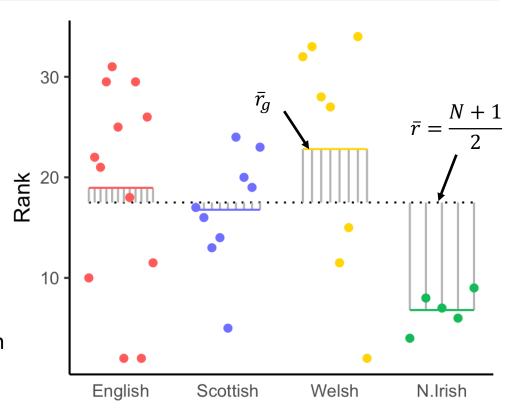


Test statistic

$$H = \frac{12}{N(N+1)} \sum_{g=1}^{n} n_g \left(\bar{r}_g - \frac{N+1}{2} \right)^2$$

- where
 - $\ \square \ n_g$ number of points in group g
 - $\ \square \ ar{r}_g$ mean rank in group g
 - $\Box \bar{r} = (N+1)/2$ mean rank
 - \square *N* number of all points
 - \square *n* number of groups
- H is distributed with χ^2 distribution with n-1 degrees of freedom
- Null hypothesis: mean group rank is the same as total mean rank

$$H_0: \bar{r}_g = \frac{N+1}{2}$$

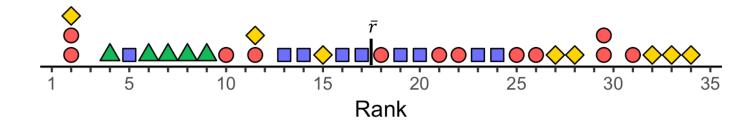


$$H = \frac{1}{\sigma^2} \sum_{g=1}^n n_g (\bar{r}_g - \bar{r})^2$$

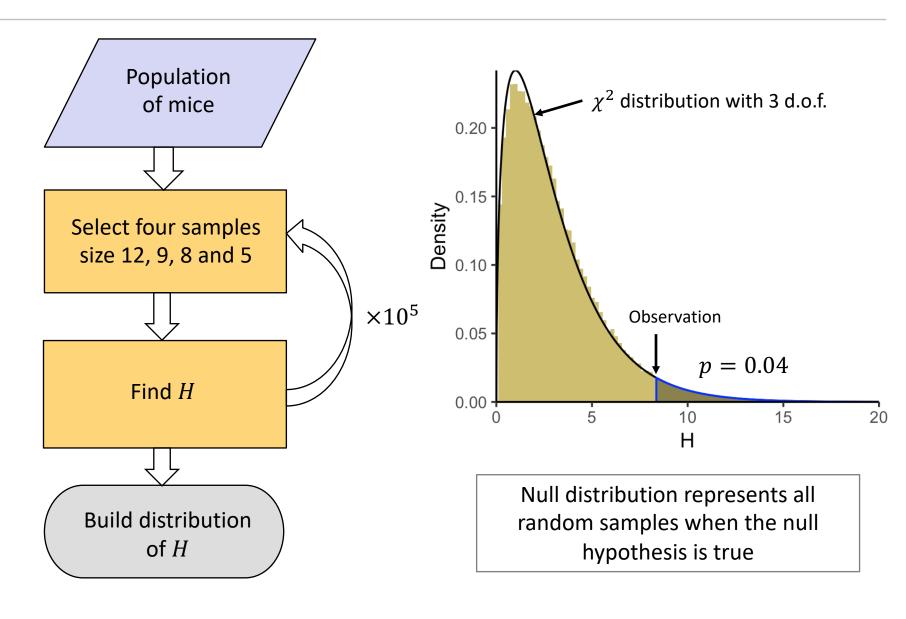
$$\bar{r} = \frac{N+1}{2} = 17.5$$
 $\sigma^2 = \frac{N(N+1)}{12} = 99.2$

		English	Scottish	Welsh	N. Irish
Number	n_g	12	9	8	5
Mean rank	$ar{ au}_g$	18.96	16.78	22.81	6.80
Contribution to H	$\frac{n_g \big(\bar{r}_g - \bar{r}\big)^2}{\sigma^2}$	0.258	0.047	2.27	5.77

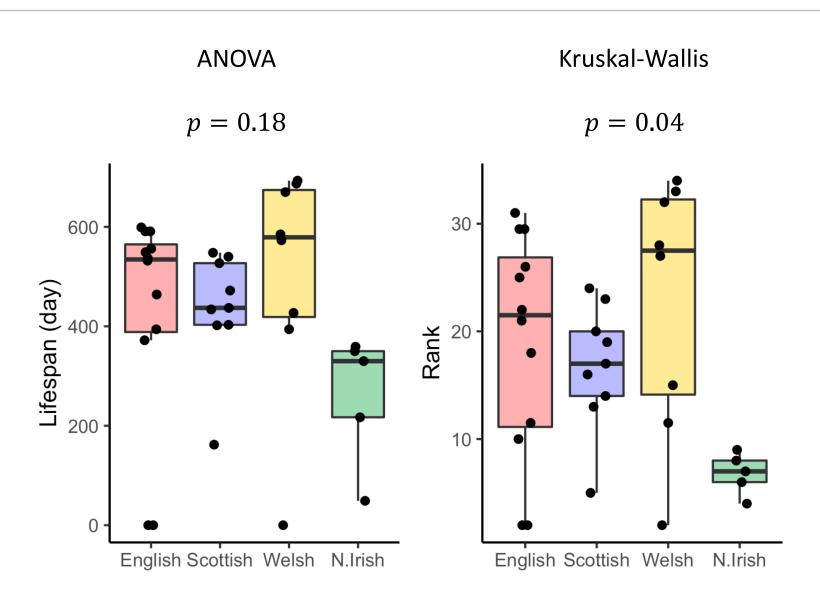
$$H = 8.36$$



Null distribution



Comparison to ANOVA



How to do it in R?

```
> mice <- read.table('http://tiny.cc/mice_kruskal', header=TRUE)
> kruskal.test(Lifespan ~ Country, data=mice)

Kruskal-Wallis rank sum test

data: Lifespan by Country
Kruskal-Wallis chi-squared = 8.3617, df = 3, p-value = 0.0391
```

What about two-way test?

- Scheirer-Ray-Hare extension to Kruskal-Wallis test
- Briefly: replace values with ranks and carry out two-way ANOVA

Scheirer C.J., Ray W.S. and Hare N (1976), The Analysis of Ranked Data Derived from Completely Randomized Factorial Designs, *Biometrics*, **32**, 429-434

Kruskal-Wallis test: summary

Input	n samples of values N values divided into n groups
Assumptions	Samples are random and independent
Usage	Compare location and shape of n samples
Null hypothesis	Mean rank in each group is the same as total mean rank There is no change between groups
Comments	Doesn't care about distributions

Hand-outs available at http://tiny.cc/statlec