Updating from evidence

FOUNDATIONS OF PROBABILITY IN R

David Robinson Chief Data Scientist, DataCamp

20 flips of a coin

Two piles of 50,000 coins

```
fair <- rbinom(50000, 20, .5)
sum(fair == 14)
# 1888</pre>
```

biased <- rbinom(50000, 20, .75)
sum(biased == 14)
8372</pre>

1888 + 8372 # [1] 10260

Pr(Biased|14 Heads) = $\frac{\# \text{ biased w/14 Heads}}{\# \text{ total w/14 Heads}}$ $= \frac{8372}{1888 + 8372} = 82\%$

FOUNDATIONS OF PROBABILITY IN R

R datacamp

Let's practice!

Prior probability FOUNDATIONS OF PROBABILITY IN R

David Robinson Chief Data Scientist, DataCamp

Differently sized piles

90,000 Fair / 10,000 Biased

R datacamp

Simulating with differently sized piles

```
fair <- rbinom(90000, 20, .5)
sum(fair == 14)
# [1] 3410</pre>
```

```
biased <- rbinom(10000, 20, .75)
sum(biased == 14)
# [1] 1706</pre>
```

 $\frac{\# \text{ of biased w}/14 \text{ Heads}}{\# \text{ total w}/14 \text{ Heads}}$

$$\frac{1706}{1706 + 3410} = .333$$

Let's practice!

Bayes' theorem FOUNDATIONS OF PROBABILITY IN R

David Robinson Chief Data Scientist, DataCamp

Probabilities

90% Fair / 10% Biased

R datacamp

Probability of fair coin with 14 heads

 $\Pr(14 \text{ Heads}|\text{Biased}) \cdot \Pr(\text{Biased})$

Iacamp

Conditional probability

Pr(14 Heads and Biased)

 $\Pr(\text{Biased}|14 \text{ Heads}) = \frac{1}{\Pr(14 \text{ Heads and Biased}) + \Pr(14 \text{ Heads and Fair})}$

Pr(14 Heads|Biased) Pr(Biased)

Pr(14 Heads|Biased) Pr(Biased) + Pr(14 Heads|Fair) Pr(Fair)

prob_14_fair <- dbinom(14, 20, .5) * .9 prob_14_biased <- dbinom(14, 20, .75) * .1

prob_14_biased / (prob_14_fair + prob_14_biased)

Bayes' Theorem

 $\Pr(A|B) = \frac{\Pr(B|A)\Pr(A)}{\Pr(B|A)\Pr(A) + \Pr(B|\text{not } A)\Pr(\text{not } A)}$

A = Biased

B = 14 Heads

Let's practice!

