Straight to the point (estimate)

SAMPLING IN R

Richie Cotton Data Evangelist at DataCamp

Sample is number of rows

```
coffee_ratings %>%
  slice_sample(n = 300) %>%
  nrow()
```

300

coffee_ratings %>% slice_sample(prop = 0.25) %>% nrow()

334

Various sample sizes

coffee_ratings %>% summarize(mean_points = mean(total_cup_points)) %>% pull(mean_points)

coffee_ratings %>% slice_sample(n = 10) %>% pull(mean_points)

82.82

coffee_ratings %>% slice_sample(n = 100) %>% summarize(mean_points = mean(total_cup_points)) %>% pull(mean_points)

coffee_ratings %>% slice_sample(n = 1000) %>% pull(mean_points)

82.02

82.15

82.16

summarize(mean_points = mean(total_cup_points)) %>%

Relative errors

Population parameter

```
population_mean <- coffee_ratings %>%
    summarize(mean_points = mean(total_cup_points)) %>%
    pull(mean_points)
```

Point estimate

```
sample_mean <- coffee_ratings %>%
   slice_sample(n = sample_size) %>%
   summarize(mean_points = mean(total_cup_points)) %>%
   pull(mean_points)
```

Relative error as a percentage

100 * abs(population_mean - sample_mean) / population_mean

R datacamp

Relative error vs. sample size

ggplot(errors, aes(sample_size, relative_error)) + geom_line() + geom_smooth(method = "loess")

acamp

Let's practice! SAMPLING IN R

Baby back dist-ribution

SAMPLING IN R

Richie Cotton Data Evangelist at DataCamp

Same code, different answer

coffee_ratings %>%	
<pre>slice_sample(n = 30) %>%</pre>	
summarize(mean_cup_points = mean(total_cup_points)) %>%	
pull(mean_cup_points)	

coffee_ratings %>% slice_sample(n = 30) %>% pull(mean_cup_points)

83.33

coffee_ratings %>%	coffee_ratings %>%
slice_sample(n = <mark>30</mark>) %>%	<pre>slice_sample(n = 30)</pre>
summarize(mean_cup_points = mean(total_cup_points)) %>%	summarize(mean_cup_po
pull(mean_cup_points)	<pre>pull(mean_cup_points)</pre>

82.16

82.25

82.59

latacamp

Same code, 1000 times

```
mean_cup_points_1000 <- replicate(
    n = 1000,
    expr = coffee_ratings %>%
    slice_sample(n = 30) %>%
    summarize(
        mean_cup_points = mean(total_cup_points)
    ) %>%
    pull(mean_cup_points)
)
```

[1] 81.65 81.57 82.66 [8] 82.20 80.43 82.45 [15] 82.14 81.72 81.97 [22] 82.78 82.14 82.39 [29] 82.56 82.14 82.72 [36] 82.12 82.31 81.02 [43] 82.76 82.26 81.57 [50] 82.68 82.05 82.43 [967] 81.84 83.12 81.54 [974] 82.05 82.08 81.98 [981] 81.97 82.65 81.12 [988] 81.71 81.96 81.78 [995] 81.95 82.60 81.84

R datacamp

5	82.27	81.76	81.74	82.71
5	82.29	82.63	82.28	82.11
7	82.58	81.78	82.47	81.73
)	81.69	82.36	82.64	82.68
2	82.43	81.68	82.74	82.80
2	82.83	81.71	82.25	82.11
7	82.00	81.75	81.47	81.99
3	82.40	82.66	80.78	82.43
/ 	81.83	82.24	82.36	82.49
3	82.45	82.04	81.42	83.06
2	82.48	81.64	81.92	81.96
3	82.30	81.76	82.46	82.43
4	82.78	82.23	82.56	

Preparing for plotting

```
library(tibble)
sample_means <- tibble(</pre>
  sample_mean = mean_cup_points_1000
)
```

A tibble: 1,000 x 1 sample_mean <dbl> 83.3 1 2 82.6 3 82.2 82.2 4 5 81.7 81.6 6 7 82.7 8 82.3 9 81.8 10 81.7 # ... with 990 more rows

tacamp

Distribution of sample means for size 30

ggplot(sample_means, aes(sample_mean)) +
geom_histogram(binwidth = 0.1)

A *sampling distribution* is a distribution of several replicates of point estimates.

Different sample sizes

Sample size 6

Sample size 150

R datacamp

Let's practice! SAMPLING IN R

Be our guess, put our samples to the test

SAMPLING IN R

Richie Cotton Data Evangelist at DataCamp

4 dice

library(tidyr)
dice <- expand_grid(
 die1 = 1:6,
 die2 = 1:6,
 die3 = 1:6,
 die4 = 1:6</pre>

datacamp

# A tibble: 1,296 x 4					
	di	_e1	die2	die3	die4
	<in< td=""><td>nt> <</td><td>int> <</td><td>int></td><td><int></int></td></in<>	nt> <	int> <	int>	<int></int>
1		1	1	1	1
2		1	1	1	2
3		1	1	1	3
4		1	1	1	4
5		1	1	1	5
6		1	1	1	6
7		1	1	2	1
8		1	1	2	2
9		1	1	2	3
10		1	1	2	4
#.	•••	with	1,286	more	rows

Mean roll

latacamp

```
dice <- expand_grid(
    die1 = 1:6,
    die2 = 1:6,
    die3 = 1:6,
    die4 = 1:6
) %>%
    mutate(
        mean_roll = (die1 + die2 + die3 + die4) / 4
    )
```

# A	tibbl	.e: 1,2	96 x 5		
	die1	die2	die3	die4	mean_roll
	<int></int>	<int></int>	<int></int>	<int></int>	<dbl></dbl>
1	1	1	1	1	1
2	1	1	1	2	1.25
3	1	1	1	3	1.5
4	1	1	1	4	1.75
5	1	1	1	5	2
6	1	1	1	6	2.25
7	1	1	2	1	1.25
8	1	1	2	2	1.5
9	1	1	2	3	1.75
10	1	1	2	4	2
#.	wit	h 1,28	6 more	rows	

Exact sampling distribution

ggplot(dice, aes(factor(mean_roll))) +
geom_bar()

& datacamp

The number of outcomes increases fast

```
outcomes <- tibble(
 n_dice = 1:100,
 n_outcomes = 6 ^ n_dice
)
ggplot(outcomes, aes(n_dice, n_outcomes)) +
 geom_point()
```

0e+00 -

0

25

R datacamp

Simulating the mean of four dice rolls

```
four_rolls <- sample(
    1:6, size = 4, replace = TRUE
)
mean(four_rolls)</pre>
```


Simulating the mean of four dice rolls

```
sample_means_1000 <- replicate(</pre>
  n = 1000,
  expr = {
    four_rolls <- sample(</pre>
      1:6, size = 4, replace = TRUE
    mean(four_rolls)
  }
```

```
sample_means <- tibble(</pre>
  sample_mean = sample_means_1000
```

A tibble: 1,000 x 1 sample_mean <dbl> 4 1 2 4.5 2.5 3 3.75 4 5 3.75 6 4 3 7 4.75 8 3.75 9 4.25 10 ... with 990 more rows

Approximate sampling distribution

ggplot(sample_means, aes(factor(sample_mean))) +
geom_bar()

& datacamp

Let's practice! SAMPLING IN R

Err on the side of Gaussian

SAMPLING IN R

Richie Cotton Data Evangelist at DataCamp

Sampling distribution of mean cup points

datacamp

Sample size 320

Consequences of the central limit theorem

Averages of independent samples have approximately normal distributions.

As the sample size increases,

- the distribution of the averages gets closer to being normally distributed, and
- the width of the sampling distribution gets narrower. \bullet

Population & sampling distribution means

coffee_ratings %>%	Sample size	Mean sample mean
<pre>summarize(mean cup points = mean(total cup points)</pre>	5	82.1496
) %>%	20	82.1610
pull(mean_cup_points)	80	82.1496
82.1512	320	82.1521

Population & sampling distribution standard deviations

coffee_ratings %>%	Sample size	Std dev
summarize(5	
<pre>sd_cup_points = sd(total_cup_points)) %>%</pre>	20	
<pre>pull(sd_cup_points)</pre>	80	
2.68686	320	

sample mean

- 1.1929
- 0.6028
- 0.2865
- 0.1304

Population mean over square root sample size

Sample size	Std dev sample mean	Calculation	Result
5	1.1929	2.68686 / sqrt(5)	1.2016
20	0.6028	2.68686 / sqrt(20)	0.6008
80	0.2865	2.68686 / sqrt(80)	0.3004
320	0.1304	2.68686 / sqrt(320)	0.1502

Let's practice! SAMPLING IN R

