Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 4.01 1.3352 1.981 0.119
Residuals 163 109.89 0.6742
One-way analysis of means (not assuming equal variances)
data: podaci$Q1 and podaci$Country
F = 1.6372, num df = 3.000, denom df = 73.393, p-value = 0.1881
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 2.3458 0.0748 .
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q1 by Country
Kruskal-Wallis chi-squared = 2.5413, df = 3, p-value = 0.4679
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | 0.0203106 | -0.5407240 | 0.5813453 | 0.9997016 |
Portugal-Croatia | -0.1542201 | -0.6111113 | 0.3026712 | 0.8171950 |
Spain-Croatia | -0.4148746 | -0.9370828 | 0.1073337 | 0.1700022 |
Portugal-Finland | -0.1745307 | -0.6545903 | 0.3055289 | 0.7813180 |
Spain-Finland | -0.4351852 | -0.9777799 | 0.1074096 | 0.1633754 |
Spain-Portugal | -0.2606545 | -0.6947037 | 0.1733948 | 0.4051254 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | -0.0661016 | 0.9472969 | 0.9472969 |
Croatia - Portugal | 0.7827357 | 0.4337823 | 1.0000000 |
Finland - Portugal | 0.8222113 | 0.4109566 | 1.0000000 |
Croatia - Spain | 1.3191140 | 0.1871310 | 0.9356550 |
Finland - Spain | 1.3379001 | 0.1809290 | 1.0000000 |
Portugal - Spain | 0.7631096 | 0.4453981 | 0.8907961 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 5.55 1.8484 2.096 0.103
Residuals 163 143.72 0.8817
One-way analysis of means (not assuming equal variances)
data: podaci$Q2 and podaci$Country
F = 2.0269, num df = 3.000, denom df = 74.101, p-value = 0.1174
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 5.4662 0.001323 **
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q2 by Country
Kruskal-Wallis chi-squared = 3.6531, df = 3, p-value = 0.3014
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | 0.0836320 | -0.5579946 | 0.7252586 | 0.9866201 |
Portugal-Croatia | -0.1878038 | -0.7103269 | 0.3347193 | 0.7871998 |
Spain-Croatia | -0.4534050 | -1.0506278 | 0.1438178 | 0.2033935 |
Portugal-Finland | -0.2714358 | -0.8204553 | 0.2775837 | 0.5748462 |
Spain-Finland | -0.5370370 | -1.1575748 | 0.0835007 | 0.1152558 |
Spain-Portugal | -0.2656012 | -0.7620011 | 0.2307986 | 0.5081320 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | -0.3854608 | 0.6998960 | 0.6998960 |
Croatia - Portugal | 0.7219261 | 0.4703399 | 0.9406799 |
Finland - Portugal | 1.1375642 | 0.2553025 | 1.0000000 |
Croatia - Spain | 1.4020691 | 0.1608946 | 0.8044731 |
Finland - Spain | 1.7479509 | 0.0804725 | 0.4828352 |
Portugal - Spain | 0.9269233 | 0.3539664 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 30.62 10.207 10.89 1.48e-06 ***
Residuals 163 152.81 0.937
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q3 and podaci$Country
F = 10.536, num df = 3.000, denom df = 70.176, p-value = 8.354e-06
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 0.2324 0.8737
163
Kruskal-Wallis rank sum test
data: Q3 by Country
Kruskal-Wallis chi-squared = 26.457, df = 3, p-value = 7.652e-06
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | -0.0382318 | -0.6998186 | 0.6233550 | 0.9987926 |
Portugal-Croatia | -0.9200177 | -1.4587958 | -0.3812396 | 0.0000998 |
Spain-Croatia | -0.1308244 | -0.7466260 | 0.4849773 | 0.9460426 |
Portugal-Finland | -0.8817859 | -1.4478847 | -0.3156871 | 0.0004676 |
Spain-Finland | -0.0925926 | -0.7324345 | 0.5472493 | 0.9818729 |
Spain-Portugal | 0.7891933 | 0.2773511 | 1.3010355 | 0.0005466 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | 0.1263423 | 0.8994609 | 0.8994609 |
Croatia - Portugal | 4.0103994 | 0.0000606 | 0.0003637 |
Finland - Portugal | 3.6691987 | 0.0002433 | 0.0012166 |
Croatia - Spain | 0.5662465 | 0.5712262 | 1.0000000 |
Finland - Spain | 0.4143353 | 0.6786286 | 1.0000000 |
Portugal - Spain | -3.5401922 | 0.0003998 | 0.0015993 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 15.28 5.095 9.031 1.44e-05 ***
Residuals 163 91.96 0.564
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q4 and podaci$Country
F = 11.733, num df = 3.000, denom df = 75.531, p-value = 2.156e-06
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 1.9666 0.1211
163
Kruskal-Wallis rank sum test
data: Q4 by Country
Kruskal-Wallis chi-squared = 23.315, df = 3, p-value = 3.471e-05
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | -0.1636798 | -0.6769175 | 0.3495579 | 0.8412052 |
Portugal-Croatia | -0.7547503 | -1.1727170 | -0.3367836 | 0.0000343 |
Spain-Croatia | -0.4784946 | -0.9562137 | -0.0007755 | 0.0494612 |
Portugal-Finland | -0.5910705 | -1.0302317 | -0.1519093 | 0.0034056 |
Spain-Finland | -0.3148148 | -0.8111836 | 0.1815539 | 0.3557380 |
Spain-Portugal | 0.2762557 | -0.1208150 | 0.6733264 | 0.2742641 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | 0.804110 | 0.4213335 | 0.4213335 |
Croatia - Portugal | 4.363707 | 0.0000128 | 0.0000767 |
Finland - Portugal | 3.213363 | 0.0013119 | 0.0065595 |
Croatia - Spain | 2.437308 | 0.0147971 | 0.0591882 |
Finland - Spain | 1.514296 | 0.1299508 | 0.2599016 |
Portugal - Spain | -1.661002 | 0.0967130 | 0.2901391 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 20.75 6.917 7.629 8.36e-05 ***
Residuals 163 147.79 0.907
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q5 and podaci$Country
F = 8.599, num df = 3.000, denom df = 75.762, p-value = 5.532e-05
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 3.8852 0.01025 *
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q5 by Country
Kruskal-Wallis chi-squared = 21.39, df = 3, p-value = 8.737e-05
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | -0.0334528 | -0.6840842 | 0.6171786 | 0.9991480 |
Portugal-Croatia | -0.8152894 | -1.3451458 | -0.2854331 | 0.0005639 |
Spain-Croatia | -0.4130824 | -1.0186869 | 0.1925220 | 0.2912840 |
Portugal-Finland | -0.7818366 | -1.3385613 | -0.2251120 | 0.0020167 |
Spain-Finland | -0.3796296 | -1.0088763 | 0.2496170 | 0.4009279 |
Spain-Portugal | 0.4022070 | -0.1011595 | 0.9055735 | 0.1659834 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | 0.3222672 | 0.7472503 | 0.7472503 |
Croatia - Portugal | 3.9684029 | 0.0000724 | 0.0004341 |
Finland - Portugal | 3.4002561 | 0.0006732 | 0.0033661 |
Croatia - Spain | 1.9104937 | 0.0560697 | 0.2242787 |
Finland - Spain | 1.5054929 | 0.1321974 | 0.2643948 |
Portugal - Spain | -1.8787106 | 0.0602840 | 0.1808521 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 3.29 1.097 1.086 0.357
Residuals 163 164.64 1.010
One-way analysis of means (not assuming equal variances)
data: podaci$Q6 and podaci$Country
F = 1.2518, num df = 3.000, denom df = 67.073, p-value = 0.298
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 3.7922 0.01156 *
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q6 by Country
Kruskal-Wallis chi-squared = 4.8583, df = 3, p-value = 0.1825
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | 0.2485066 | -0.4382139 | 0.9352271 | 0.7837189 |
Portugal-Croatia | -0.0609810 | -0.6202273 | 0.4982653 | 0.9920639 |
Spain-Croatia | 0.2392473 | -0.3999487 | 0.8784433 | 0.7658072 |
Portugal-Finland | -0.3094876 | -0.8970925 | 0.2781174 | 0.5217570 |
Spain-Finland | -0.0092593 | -0.6734088 | 0.6548903 | 0.9999829 |
Spain-Portugal | 0.3002283 | -0.2310588 | 0.8315155 | 0.4599137 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | -0.4390998 | 0.6605892 | 1.0000000 |
Croatia - Portugal | 1.2201086 | 0.2224237 | 0.8896949 |
Finland - Portugal | 1.6743904 | 0.0940539 | 0.4702695 |
Croatia - Spain | -0.4274572 | 0.6690463 | 1.0000000 |
Finland - Spain | 0.0426258 | 0.9659999 | 0.9659999 |
Portugal - Spain | -1.7985946 | 0.0720828 | 0.4324970 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 5.5 1.8345 2.065 0.107
Residuals 163 144.8 0.8882
One-way analysis of means (not assuming equal variances)
data: podaci$Q7 and podaci$Country
F = 3.2754, num df = 3.000, denom df = 74.774, p-value = 0.02564
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 0.7556 0.5206
163
Kruskal-Wallis rank sum test
data: Q7 by Country
Kruskal-Wallis chi-squared = 6.0324, df = 3, p-value = 0.11
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | 0.3476703 | -0.2962908 | 0.9916313 | 0.5002827 |
Portugal-Croatia | -0.1789660 | -0.7033902 | 0.3454582 | 0.8122260 |
Spain-Croatia | -0.0412186 | -0.6406143 | 0.5581771 | 0.9979726 |
Portugal-Finland | -0.5266362 | -1.0776532 | 0.0243808 | 0.0667178 |
Spain-Finland | -0.3888889 | -1.0116844 | 0.2339066 | 0.3697953 |
Spain-Portugal | 0.1377473 | -0.3604586 | 0.6359533 | 0.8899505 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | -1.1621758 | 0.2451641 | 0.9806562 |
Croatia - Portugal | 1.0901736 | 0.2756367 | 0.8269101 |
Finland - Portugal | 2.3957687 | 0.0165856 | 0.0995133 |
Croatia - Spain | 0.5282171 | 0.5973487 | 1.0000000 |
Finland - Spain | 1.7100428 | 0.0872580 | 0.4362898 |
Portugal - Spain | -0.5120420 | 0.6086216 | 0.6086216 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 26.80 8.934 15.85 4.3e-09 ***
Residuals 163 91.86 0.564
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q8 and podaci$Country
F = 20.892, num df = 3.000, denom df = 67.656, p-value = 1.089e-09
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 5.9798 0.0006834 ***
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q8 by Country
Kruskal-Wallis chi-squared = 49.984, df = 3, p-value = 8.051e-11
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | -0.5961768 | -1.1091243 | -0.0832293 | 0.0155456 |
Portugal-Croatia | 0.3495360 | -0.0681943 | 0.7672664 | 0.1354587 |
Spain-Croatia | 0.6353047 | 0.1578557 | 1.1127536 | 0.0038934 |
Portugal-Finland | 0.9457128 | 0.5068000 | 1.3846257 | 0.0000006 |
Spain-Finland | 1.2314815 | 0.7353934 | 1.7275695 | 0.0000000 |
Spain-Portugal | 0.2857686 | -0.1110775 | 0.6826148 | 0.2454115 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | 3.328424 | 0.0008734 | 0.0034936 |
Croatia - Portugal | -2.073505 | 0.0381253 | 0.0762506 |
Finland - Portugal | -5.863288 | 0.0000000 | 0.0000000 |
Croatia - Spain | -3.290085 | 0.0010016 | 0.0030047 |
Finland - Spain | -6.608009 | 0.0000000 | 0.0000000 |
Portugal - Spain | -1.775705 | 0.0757816 | 0.0757816 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 42.04 14.013 11.99 3.89e-07 ***
Residuals 163 190.43 1.168
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q9 and podaci$Country
F = 13.87, num df = 3.000, denom df = 72.137, p-value = 3.113e-07
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 3.0891 0.02875 *
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q9 by Country
Kruskal-Wallis chi-squared = 31.659, df = 3, p-value = 6.176e-07
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | 1.1290323 | 0.3904786 | 1.8675860 | 0.0006220 |
Portugal-Croatia | -0.1312417 | -0.7326996 | 0.4702161 | 0.9418953 |
Spain-Croatia | -0.4265233 | -1.1139654 | 0.2609188 | 0.3755662 |
Portugal-Finland | -1.2602740 | -1.8922309 | -0.6283170 | 0.0000039 |
Spain-Finland | -1.5555556 | -2.2698347 | -0.8412764 | 0.0000004 |
Spain-Portugal | -0.2952816 | -0.8666699 | 0.2761068 | 0.5379932 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | -3.5813107 | 0.0003419 | 0.0013675 |
Croatia - Portugal | 0.9196218 | 0.3577704 | 0.7155408 |
Finland - Portugal | 5.0606358 | 0.0000004 | 0.0000021 |
Croatia - Spain | 1.4984026 | 0.1340287 | 0.4020861 |
Finland - Spain | 5.1451248 | 0.0000003 | 0.0000016 |
Portugal - Spain | 0.8347234 | 0.4038735 | 0.4038735 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 28.32 9.439 7.679 7.85e-05 ***
Residuals 163 200.34 1.229
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q10 and podaci$Country
F = 8.0568, num df = 3.000, denom df = 72.628, p-value = 0.0001051
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 2.5784 0.05553 .
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q10 by Country
Kruskal-Wallis chi-squared = 20.955, df = 3, p-value = 0.0001076
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | -0.0370370 | -0.7945750 | 0.7205009 | 0.9992670 |
Portugal-Croatia | -0.8630137 | -1.4799318 | -0.2460956 | 0.0021192 |
Spain-Croatia | -0.9166667 | -1.6217792 | -0.2115542 | 0.0050695 |
Portugal-Finland | -0.8259767 | -1.4741778 | -0.1777755 | 0.0063053 |
Spain-Finland | -0.8796296 | -1.6122690 | -0.1469903 | 0.0115090 |
Spain-Portugal | -0.0536530 | -0.6397286 | 0.5324227 | 0.9952614 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | 0.0405047 | 0.9676907 | 0.9676907 |
Croatia - Portugal | 3.4097022 | 0.0006503 | 0.0039020 |
Finland - Portugal | 3.1978084 | 0.0013848 | 0.0069238 |
Croatia - Spain | 3.1915982 | 0.0014149 | 0.0056595 |
Finland - Spain | 3.0298016 | 0.0024471 | 0.0073414 |
Portugal - Spain | 0.2506995 | 0.8020465 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 13.17 4.389 3.503 0.0168 *
Residuals 163 204.23 1.253
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q11 and podaci$Country
F = 4.6484, num df = 3.000, denom df = 69.133, p-value = 0.005106
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 5.4553 0.001342 **
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q11 by Country
Kruskal-Wallis chi-squared = 9.0817, df = 3, p-value = 0.02822
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | 0.0334528 | -0.7314064 | 0.7983121 | 0.9994746 |
Portugal-Croatia | -0.2942996 | -0.9171800 | 0.3285808 | 0.6109927 |
Spain-Croatia | -0.7535842 | -1.4655114 | -0.0416571 | 0.0334617 |
Portugal-Finland | -0.3277524 | -0.9822182 | 0.3267134 | 0.5643006 |
Spain-Finland | -0.7870370 | -1.5267571 | -0.0473170 | 0.0321954 |
Spain-Portugal | -0.4592846 | -1.0510245 | 0.1324552 | 0.1867969 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | -0.0053817 | 0.9957060 | 0.9957060 |
Croatia - Portugal | 1.2022470 | 0.2292679 | 0.6878036 |
Finland - Portugal | 1.1505144 | 0.2499321 | 0.4998642 |
Croatia - Spain | 2.6058310 | 0.0091652 | 0.0549910 |
Finland - Spain | 2.5134888 | 0.0119544 | 0.0597718 |
Portugal - Spain | 1.8695813 | 0.0615420 | 0.2461679 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 63.88 21.293 18.8 1.6e-10 ***
Residuals 163 184.61 1.133
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q12 and podaci$Country
F = 20.858, num df = 3.000, denom df = 69.251, p-value = 9.8e-10
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 6.2025 0.0005137 ***
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q12 by Country
Kruskal-Wallis chi-squared = 42.581, df = 3, p-value = 3.02e-09
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | 0.0167264 | -0.7104645 | 0.7439173 | 0.9999233 |
Portugal-Croatia | 1.0309324 | 0.4387281 | 1.6231367 | 0.0000698 |
Spain-Croatia | 1.6093190 | 0.9324534 | 2.2861846 | 0.0000000 |
Portugal-Finland | 1.0142060 | 0.3919718 | 1.6364401 | 0.0002251 |
Spain-Finland | 1.5925926 | 0.8893028 | 2.2958824 | 0.0000001 |
Spain-Portugal | 0.5783866 | 0.0157892 | 1.1409840 | 0.0413563 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | 0.0001477 | 0.9998822 | 0.9998822 |
Croatia - Portugal | -3.7571243 | 0.0001719 | 0.0006875 |
Finland - Portugal | -3.5759730 | 0.0003489 | 0.0010468 |
Croatia - Spain | -5.4022112 | 0.0000001 | 0.0000004 |
Finland - Spain | -5.1993910 | 0.0000002 | 0.0000010 |
Portugal - Spain | -2.5446010 | 0.0109403 | 0.0218805 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 57.51 19.169 14.03 3.51e-08 ***
Residuals 163 222.67 1.366
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q13 and podaci$Country
F = 14.511, num df = 3.000, denom df = 73.118, p-value = 1.649e-07
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 3.0283 0.0311 *
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q13 by Country
Kruskal-Wallis chi-squared = 37.054, df = 3, p-value = 4.482e-08
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | -0.1338112 | -0.9324497 | 0.6648273 | 0.9723695 |
Portugal-Croatia | -0.9323906 | -1.5827799 | -0.2820014 | 0.0015408 |
Spain-Croatia | -1.6245520 | -2.3679207 | -0.8811833 | 0.0000004 |
Portugal-Finland | -0.7985794 | -1.4819490 | -0.1152098 | 0.0148023 |
Spain-Finland | -1.4907407 | -2.2631298 | -0.7183517 | 0.0000083 |
Spain-Portugal | -0.6921613 | -1.3100348 | -0.0742879 | 0.0213823 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | 0.6168072 | 0.5373619 | 0.5373619 |
Croatia - Portugal | 3.7859020 | 0.0001532 | 0.0006126 |
Finland - Portugal | 2.8823408 | 0.0039473 | 0.0118420 |
Croatia - Spain | 5.3445435 | 0.0000001 | 0.0000005 |
Finland - Spain | 4.5059681 | 0.0000066 | 0.0000330 |
Portugal - Spain | 2.4449284 | 0.0144881 | 0.0289762 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 7.23 2.409 1.841 0.142
Residuals 163 213.25 1.308
One-way analysis of means (not assuming equal variances)
data: podaci$Q14 and podaci$Country
F = 1.8657, num df = 3.000, denom df = 68.659, p-value = 0.1435
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 0.6341 0.594
163
Kruskal-Wallis rank sum test
data: Q14 by Country
Kruskal-Wallis chi-squared = 5.7602, df = 3, p-value = 0.1239
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | -0.6499403 | -1.4315056 | 0.1316250 | 0.1393652 |
Portugal-Croatia | -0.4759169 | -1.1124022 | 0.1605684 | 0.2151662 |
Spain-Croatia | -0.4740143 | -1.2014914 | 0.2534627 | 0.3315576 |
Portugal-Finland | 0.1740233 | -0.4947373 | 0.8427839 | 0.9062609 |
Spain-Finland | 0.1759259 | -0.5799511 | 0.9318029 | 0.9306351 |
Spain-Portugal | 0.0019026 | -0.6027620 | 0.6065672 | 0.9999998 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | 2.1345177 | 0.0328004 | 0.1968025 |
Croatia - Portugal | 2.0899592 | 0.0366215 | 0.1831073 |
Finland - Portugal | -0.5054673 | 0.6132306 | 1.0000000 |
Croatia - Spain | 1.7091814 | 0.0874173 | 0.3496694 |
Finland - Spain | -0.5620950 | 0.5740513 | 1.0000000 |
Portugal - Spain | -0.1436136 | 0.8858056 | 0.8858056 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 3.94 1.314 0.882 0.452
Residuals 163 243.00 1.491
One-way analysis of means (not assuming equal variances)
data: podaci$Q15 and podaci$Country
F = 0.89209, num df = 3.000, denom df = 70.267, p-value = 0.4496
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 0.3317 0.8024
163
Kruskal-Wallis rank sum test
data: Q15 by Country
Kruskal-Wallis chi-squared = 2.6299, df = 3, p-value = 0.4523
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | -0.1254480 | -0.9597496 | 0.7088535 | 0.9797512 |
Portugal-Croatia | 0.1378701 | -0.5415622 | 0.8173024 | 0.9525115 |
Spain-Croatia | 0.3467742 | -0.4297895 | 1.1233379 | 0.6534275 |
Portugal-Finland | 0.2633181 | -0.4505672 | 0.9772035 | 0.7737195 |
Spain-Finland | 0.4722222 | -0.3346577 | 1.2791022 | 0.4284256 |
Spain-Portugal | 0.2089041 | -0.4365604 | 0.8543686 | 0.8352456 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | 0.5583438 | 0.5766096 | 1.0000000 |
Croatia - Portugal | -0.5248638 | 0.5996779 | 0.5996779 |
Finland - Portugal | -1.1520568 | 0.2492977 | 1.0000000 |
Croatia - Spain | -0.9943398 | 0.3200575 | 1.0000000 |
Finland - Spain | -1.5342992 | 0.1249561 | 0.7497363 |
Portugal - Spain | -0.6438135 | 0.5196963 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 16.13 5.377 5.025 0.00234 **
Residuals 163 174.42 1.070
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q16 and podaci$Country
F = 5.6279, num df = 3.000, denom df = 72.325, p-value = 0.001595
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 2.612 0.05319 .
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q16 by Country
Kruskal-Wallis chi-squared = 13.071, df = 3, p-value = 0.004486
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | -0.6224612 | -1.3292911 | 0.0843688 | 0.1055495 |
Portugal-Croatia | -0.6716748 | -1.2472977 | -0.0960519 | 0.0150015 |
Spain-Croatia | -0.0483871 | -0.7063009 | 0.6095267 | 0.9975242 |
Portugal-Finland | -0.0492136 | -0.6540255 | 0.5555983 | 0.9966574 |
Spain-Finland | 0.5740741 | -0.1095240 | 1.2576721 | 0.1332030 |
Spain-Portugal | 0.6232877 | 0.0764427 | 1.1701327 | 0.0184597 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | 1.8760053 | 0.0606546 | 0.2426182 |
Croatia - Portugal | 2.8506184 | 0.0043634 | 0.0218171 |
Finland - Portugal | 0.5205991 | 0.6026461 | 1.0000000 |
Croatia - Spain | 0.1130614 | 0.9099819 | 0.9099819 |
Finland - Spain | -1.8309474 | 0.0671084 | 0.2013252 |
Portugal - Spain | -2.8646081 | 0.0041753 | 0.0250515 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 13.26 4.421 3.581 0.0152 *
Residuals 163 201.25 1.235
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q17 and podaci$Country
F = 3.5341, num df = 3.000, denom df = 71.464, p-value = 0.01896
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 3.4127 0.01891 *
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q17 by Country
Kruskal-Wallis chi-squared = 9.5251, df = 3, p-value = 0.02307
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | -0.4169654 | -1.1762199 | 0.3422892 | 0.4853032 |
Portugal-Croatia | 0.1878038 | -0.4305123 | 0.8061199 | 0.8596370 |
Spain-Croatia | 0.4811828 | -0.2255276 | 1.1878931 | 0.2928400 |
Portugal-Finland | 0.6047692 | -0.0449009 | 1.2544392 | 0.0779985 |
Spain-Finland | 0.8981481 | 0.1638486 | 1.6324477 | 0.0096085 |
Spain-Portugal | 0.2933790 | -0.2940248 | 0.8807827 | 0.5665161 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | 0.9378079 | 0.3483431 | 0.3483431 |
Croatia - Portugal | -1.2171550 | 0.2235452 | 0.6706357 |
Finland - Portugal | -2.2544082 | 0.0241705 | 0.1208525 |
Croatia - Spain | -1.9370510 | 0.0527391 | 0.2109564 |
Finland - Spain | -2.8339508 | 0.0045976 | 0.0275858 |
Portugal - Spain | -1.0492740 | 0.2940520 | 0.5881041 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 0.74 0.2482 0.197 0.898
Residuals 163 205.18 1.2588
One-way analysis of means (not assuming equal variances)
data: podaci$Q18 and podaci$Country
F = 0.19524, num df = 3.000, denom df = 70.514, p-value = 0.8993
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 2.8774 0.03779 *
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q18 by Country
Kruskal-Wallis chi-squared = 0.84341, df = 3, p-value = 0.8391
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | 0.2114695 | -0.5551653 | 0.9781044 | 0.8906236 |
Portugal-Croatia | 0.0486080 | -0.5757183 | 0.6729344 | 0.9970677 |
Spain-Croatia | 0.0448029 | -0.6687770 | 0.7583827 | 0.9984538 |
Portugal-Finland | -0.1628615 | -0.8188466 | 0.4931236 | 0.9173553 |
Spain-Finland | -0.1666667 | -0.9081039 | 0.5747706 | 0.9369378 |
Spain-Portugal | -0.0038052 | -0.5969187 | 0.5893084 | 0.9999983 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | -0.8955721 | 0.3704813 | 1.00000 |
Croatia - Portugal | -0.3721058 | 0.7098141 | 1.00000 |
Finland - Portugal | 0.6924873 | 0.4886314 | 1.00000 |
Croatia - Spain | -0.4649621 | 0.6419586 | 1.00000 |
Finland - Spain | 0.4785154 | 0.6322834 | 1.00000 |
Portugal - Spain | -0.1677118 | 0.8668100 | 0.86681 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 11.42 3.806 2.58 0.0554 .
Residuals 163 240.49 1.475
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q19 and podaci$Country
F = 2.9236, num df = 3.00, denom df = 72.14, p-value = 0.0396
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 2.0168 0.1136
163
Kruskal-Wallis rank sum test
data: Q19 by Country
Kruskal-Wallis chi-squared = 6.5875, df = 3, p-value = 0.08628
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | 0.0525687 | -0.7774006 | 0.8825380 | 0.9984129 |
Portugal-Croatia | -0.5466195 | -1.2225237 | 0.1292847 | 0.1576974 |
Spain-Croatia | -0.4659498 | -1.2384811 | 0.3065814 | 0.4011700 |
Portugal-Finland | -0.5991882 | -1.3093666 | 0.1109901 | 0.1303212 |
Spain-Finland | -0.5185185 | -1.3212086 | 0.2841715 | 0.3392789 |
Spain-Portugal | 0.0806697 | -0.5614431 | 0.7227825 | 0.9879824 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | -0.2240244 | 0.8227383 | 0.8227383 |
Croatia - Portugal | 1.9007110 | 0.0573399 | 0.2866994 |
Finland - Portugal | 2.0707923 | 0.0383782 | 0.2302693 |
Croatia - Spain | 1.3770354 | 0.1685013 | 0.5055040 |
Finland - Spain | 1.5569349 | 0.1194859 | 0.4779437 |
Portugal - Spain | -0.3440138 | 0.7308359 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 7.63 2.544 2.098 0.103
Residuals 163 197.64 1.212
One-way analysis of means (not assuming equal variances)
data: podaci$Q20 and podaci$Country
F = 2.0219, num df = 3.000, denom df = 72.833, p-value = 0.1183
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 0.9133 0.4359
163
Kruskal-Wallis rank sum test
data: Q20 by Country
Kruskal-Wallis chi-squared = 7.2886, df = 3, p-value = 0.06325
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | 0.0286738 | -0.7237313 | 0.7810790 | 0.9996520 |
Portugal-Croatia | 0.0256297 | -0.5871084 | 0.6383678 | 0.9995402 |
Spain-Croatia | -0.4991039 | -1.1994389 | 0.2012310 | 0.2540007 |
Portugal-Finland | -0.0030441 | -0.6468534 | 0.6407651 | 0.9999993 |
Spain-Finland | -0.5277778 | -1.2554531 | 0.1998975 | 0.2395241 |
Spain-Portugal | -0.5247336 | -1.1068383 | 0.0573710 | 0.0933261 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | -0.0336823 | 0.9731305 | 0.9731305 |
Croatia - Portugal | -0.3025697 | 0.7622178 | 1.0000000 |
Finland - Portugal | -0.2486036 | 0.8036674 | 1.0000000 |
Croatia - Spain | 1.9012563 | 0.0572685 | 0.2863423 |
Finland - Spain | 1.8646489 | 0.0622306 | 0.2489225 |
Portugal - Spain | 2.6059098 | 0.0091631 | 0.0549783 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 6.24 2.080 1.809 0.148
Residuals 163 187.37 1.149
One-way analysis of means (not assuming equal variances)
data: podaci$Q21 and podaci$Country
F = 2.185, num df = 3.000, denom df = 71.136, p-value = 0.0973
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 1.5493 0.2038
163
Kruskal-Wallis rank sum test
data: Q21 by Country
Kruskal-Wallis chi-squared = 5.8651, df = 3, p-value = 0.1184
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | -0.1481481 | -0.8807407 | 0.5844444 | 0.9529645 |
Portugal-Croatia | 0.0136986 | -0.5829046 | 0.6103019 | 0.9999237 |
Spain-Croatia | -0.4722222 | -1.1541157 | 0.2096713 | 0.2782254 |
Portugal-Finland | 0.1618468 | -0.4650094 | 0.7887030 | 0.9081988 |
Spain-Finland | -0.3240741 | -1.0325880 | 0.3844398 | 0.6357439 |
Spain-Portugal | -0.4859209 | -1.0526973 | 0.0808556 | 0.1207040 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | 0.7438707 | 0.4569547 | 0.9139094 |
Croatia - Portugal | 0.1118971 | 0.9109050 | 0.9109050 |
Finland - Portugal | -0.7628479 | 0.4455541 | 1.0000000 |
Croatia - Spain | 1.9648576 | 0.0494307 | 0.2471536 |
Finland - Spain | 1.1218826 | 0.2619124 | 1.0000000 |
Portugal - Spain | 2.2461508 | 0.0246944 | 0.1481661 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 1.21 0.4043 0.371 0.774
Residuals 163 177.75 1.0905
One-way analysis of means (not assuming equal variances)
data: podaci$Q22 and podaci$Country
F = 0.43596, num df = 3.00, denom df = 74.98, p-value = 0.7279
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 1.9809 0.1189
163
Kruskal-Wallis rank sum test
data: Q22 by Country
Kruskal-Wallis chi-squared = 0.92615, df = 3, p-value = 0.8191
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | -0.0107527 | -0.7242892 | 0.7027838 | 0.9999784 |
Portugal-Croatia | -0.1294741 | -0.7105587 | 0.4516104 | 0.9384489 |
Spain-Croatia | -0.2329749 | -0.8971311 | 0.4311813 | 0.7992571 |
Portugal-Finland | -0.1187215 | -0.7292720 | 0.4918291 | 0.9578581 |
Spain-Finland | -0.2222222 | -0.9123064 | 0.4678620 | 0.8373058 |
Spain-Portugal | -0.1035008 | -0.6555344 | 0.4485328 | 0.9619695 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | -0.0063717 | 0.9949161 | 0.9949161 |
Croatia - Portugal | 0.1001591 | 0.9202180 | 1.0000000 |
Finland - Portugal | 0.1027718 | 0.9181441 | 1.0000000 |
Croatia - Spain | 0.7800981 | 0.4353332 | 1.0000000 |
Finland - Spain | 0.7573763 | 0.4488244 | 1.0000000 |
Portugal - Spain | 0.8331125 | 0.4047813 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 3.01 1.004 0.689 0.56
Residuals 163 237.35 1.456
One-way analysis of means (not assuming equal variances)
data: podaci$Q23 and podaci$Country
F = 0.72743, num df = 3.00, denom df = 73.08, p-value = 0.5389
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 1.8503 0.1401
163
Kruskal-Wallis rank sum test
data: Q23 by Country
Kruskal-Wallis chi-squared = 2.619, df = 3, p-value = 0.4542
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | 0.2676225 | -0.5569144 | 1.0921593 | 0.8340709 |
Portugal-Croatia | 0.1250552 | -0.5464249 | 0.7965354 | 0.9626822 |
Spain-Croatia | -0.1397849 | -0.9072597 | 0.6276898 | 0.9649608 |
Portugal-Finland | -0.1425672 | -0.8480972 | 0.5629628 | 0.9530642 |
Spain-Finland | -0.4074074 | -1.2048436 | 0.3900288 | 0.5476597 |
Spain-Portugal | -0.2648402 | -0.9027501 | 0.3730697 | 0.7036376 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | -0.8965250 | 0.3699724 | 1.0000000 |
Croatia - Portugal | -0.6917150 | 0.4891163 | 1.0000000 |
Finland - Portugal | 0.3894164 | 0.6969681 | 0.6969681 |
Croatia - Spain | 0.4852931 | 0.6274684 | 1.0000000 |
Finland - Spain | 1.3940527 | 0.1633017 | 0.9798101 |
Portugal - Spain | 1.3119769 | 0.1895279 | 0.9476396 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 11.97 3.989 2.834 0.04 *
Residuals 163 229.43 1.408
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q24 and podaci$Country
F = 3.4255, num df = 3.000, denom df = 72.077, p-value = 0.02157
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 5.6167 0.00109 **
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q24 by Country
Kruskal-Wallis chi-squared = 9.9584, df = 3, p-value = 0.01892
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | 0.0561529 | -0.7545192 | 0.8668251 | 0.9979284 |
Portugal-Croatia | -0.1153336 | -0.7755228 | 0.5448555 | 0.9688729 |
Spain-Croatia | -0.6845878 | -1.4391574 | 0.0699818 | 0.0901213 |
Portugal-Finland | -0.1714866 | -0.8651530 | 0.5221799 | 0.9182963 |
Spain-Finland | -0.7407407 | -1.5247679 | 0.0432865 | 0.0715126 |
Spain-Portugal | -0.5692542 | -1.1964376 | 0.0579292 | 0.0899151 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | -0.0288660 | 0.9769715 | 0.9769715 |
Croatia - Portugal | 0.8087158 | 0.4186786 | 1.0000000 |
Finland - Portugal | 0.8034211 | 0.4217314 | 0.8434628 |
Croatia - Spain | 2.6850124 | 0.0072527 | 0.0435163 |
Finland - Spain | 2.6139776 | 0.0089495 | 0.0447475 |
Portugal - Spain | 2.3790860 | 0.0173556 | 0.0694225 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 3.46 1.1546 1.238 0.298
Residuals 163 152.01 0.9326
One-way analysis of means (not assuming equal variances)
data: podaci$Q26 and podaci$Country
F = 1.2152, num df = 3.000, denom df = 71.009, p-value = 0.3105
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 0.2194 0.8828
163
Kruskal-Wallis rank sum test
data: Q26 by Country
Kruskal-Wallis chi-squared = 3.5211, df = 3, p-value = 0.318
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | 0.1720430 | -0.4878179 | 0.8319039 | 0.9057720 |
Portugal-Croatia | 0.2222713 | -0.3151013 | 0.7596439 | 0.7060594 |
Spain-Croatia | 0.4498208 | -0.1643744 | 1.0640160 | 0.2316470 |
Portugal-Finland | 0.0502283 | -0.5143937 | 0.6148503 | 0.9956466 |
Spain-Finland | 0.2777778 | -0.3603950 | 0.9159505 | 0.6716578 |
Spain-Portugal | 0.2275495 | -0.2829575 | 0.7380564 | 0.6547541 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | -0.6732259 | 0.5008036 | 1.0000000 |
Croatia - Portugal | -1.1018136 | 0.2705427 | 1.0000000 |
Finland - Portugal | -0.2618548 | 0.7934334 | 0.7934334 |
Croatia - Spain | -1.8520902 | 0.0640129 | 0.3840772 |
Finland - Spain | -1.0863978 | 0.2773030 | 1.0000000 |
Portugal - Spain | -1.0684682 | 0.2853094 | 0.8559281 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 10.33 3.442 3.362 0.0202 *
Residuals 163 166.91 1.024
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q27 and podaci$Country
F = 3.6904, num df = 3.000, denom df = 70.127, p-value = 0.0158
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 2.7288 0.04577 *
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q27 by Country
Kruskal-Wallis chi-squared = 9.8163, df = 3, p-value = 0.02019
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | -0.7359618 | -1.4274004 | -0.0445232 | 0.0320983 |
Portugal-Croatia | -0.3473266 | -0.9104152 | 0.2157621 | 0.3808673 |
Spain-Croatia | -0.6433692 | -1.2869568 | 0.0002184 | 0.0501133 |
Portugal-Finland | 0.3886352 | -0.2030068 | 0.9802773 | 0.3243667 |
Spain-Finland | 0.0925926 | -0.5761200 | 0.7613052 | 0.9840493 |
Spain-Portugal | -0.2960426 | -0.8309800 | 0.2388947 | 0.4785047 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | 2.8356075 | 0.0045739 | 0.0274432 |
Croatia - Portugal | 1.6203036 | 0.1051671 | 0.3155012 |
Finland - Portugal | -1.7718043 | 0.0764271 | 0.3057082 |
Croatia - Spain | 2.4412721 | 0.0146356 | 0.0731781 |
Finland - Spain | -0.5824267 | 0.5602793 | 0.5602793 |
Portugal - Spain | 1.2315421 | 0.2181202 | 0.4362404 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 0.07 0.0226 0.024 0.995
Residuals 163 153.63 0.9425
One-way analysis of means (not assuming equal variances)
data: podaci$Q28 and podaci$Country
F = 0.022009, num df = 3.000, denom df = 69.364, p-value = 0.9955
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 0.3409 0.7958
163
Kruskal-Wallis rank sum test
data: Q28 by Country
Kruskal-Wallis chi-squared = 0.1226, df = 3, p-value = 0.989
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | -0.0119474 | -0.6753224 | 0.6514275 | 0.9999632 |
Portugal-Croatia | -0.0357932 | -0.5760275 | 0.5044411 | 0.9981852 |
Spain-Croatia | -0.0582437 | -0.6757098 | 0.5592223 | 0.9948232 |
Portugal-Finland | -0.0238458 | -0.5914746 | 0.5437831 | 0.9995343 |
Spain-Finland | -0.0462963 | -0.6878676 | 0.5952750 | 0.9976603 |
Spain-Portugal | -0.0224505 | -0.5356762 | 0.4907751 | 0.9994744 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | 0.0691508 | 0.9448696 | 1.0000000 |
Croatia - Portugal | 0.3157375 | 0.7522017 | 1.0000000 |
Finland - Portugal | 0.2196847 | 0.8261168 | 1.0000000 |
Croatia - Spain | 0.2207585 | 0.8252805 | 1.0000000 |
Finland - Spain | 0.1409633 | 0.8878989 | 1.0000000 |
Portugal - Spain | -0.0667569 | 0.9467752 | 0.9467752 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 52.64 17.546 11.21 9.97e-07 ***
Residuals 163 255.10 1.565
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q29 and podaci$Country
F = 10.832, num df = 3.000, denom df = 68.453, p-value = 6.55e-06
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 0.5949 0.6192
163
Kruskal-Wallis rank sum test
data: Q29 by Country
Kruskal-Wallis chi-squared = 25.603, df = 3, p-value = 1.155e-05
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | -1.3440860 | -2.1988982 | -0.4892738 | 0.0004038 |
Portugal-Croatia | -1.4993372 | -2.1954728 | -0.8032016 | 0.0000006 |
Spain-Croatia | -1.3718638 | -2.1675187 | -0.5762089 | 0.0000836 |
Portugal-Finland | -0.1552511 | -0.8866868 | 0.5761845 | 0.9461766 |
Spain-Finland | -0.0277778 | -0.8544943 | 0.7989387 | 0.9997613 |
Spain-Portugal | 0.1274734 | -0.5338594 | 0.7888061 | 0.9588843 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | 3.5757440 | 0.0003492 | 0.0013969 |
Croatia - Portugal | 4.8731009 | 0.0000011 | 0.0000066 |
Finland - Portugal | 0.4590280 | 0.6462141 | 1.0000000 |
Croatia - Spain | 3.9077164 | 0.0000932 | 0.0004659 |
Finland - Spain | 0.0636303 | 0.9492646 | 0.9492646 |
Portugal - Spain | -0.4281434 | 0.6685467 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 21.84 7.279 4.841 0.00297 **
Residuals 163 245.10 1.504
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q30 and podaci$Country
F = 6.9813, num df = 3.000, denom df = 72.449, p-value = 0.0003434
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 3.1469 0.02668 *
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q30 by Country
Kruskal-Wallis chi-squared = 12.994, df = 3, p-value = 0.004649
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | -1.0047790 | -1.8426693 | -0.1668886 | 0.0116428 |
Portugal-Croatia | -0.9403447 | -1.6226996 | -0.2579898 | 0.0025581 |
Spain-Croatia | -0.6899642 | -1.4698683 | 0.0899400 | 0.1030813 |
Portugal-Finland | 0.0644343 | -0.6525219 | 0.7813905 | 0.9955131 |
Spain-Finland | 0.3148148 | -0.4955360 | 1.1251656 | 0.7447278 |
Spain-Portugal | 0.2503805 | -0.3978605 | 0.8986215 | 0.7481024 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | 2.9376899 | 0.0033067 | 0.0165334 |
Croatia - Portugal | 3.3917981 | 0.0006944 | 0.0041661 |
Finland - Portugal | -0.2051059 | 0.8374894 | 0.8374894 |
Croatia - Spain | 2.2345833 | 0.0254447 | 0.1017789 |
Finland - Spain | -0.8869014 | 0.3751320 | 1.0000000 |
Portugal - Spain | -0.8818469 | 0.3778596 | 0.7557192 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 52.53 17.510 11.94 4.13e-07 ***
Residuals 163 238.97 1.466
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q31 and podaci$Country
F = 14.812, num df = 3.000, denom df = 73.809, p-value = 1.212e-07
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 3.9404 0.00954 **
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q31 by Country
Kruskal-Wallis chi-squared = 31.047, df = 3, p-value = 8.307e-07
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | -0.0406213 | -0.8679669 | 0.7867244 | 0.9992577 |
Portugal-Croatia | -0.8011489 | -1.4749165 | -0.1273813 | 0.0126133 |
Spain-Croatia | -1.5313620 | -2.3014512 | -0.7612728 | 0.0000042 |
Portugal-Finland | -0.7605277 | -1.4684611 | -0.0525942 | 0.0299114 |
Spain-Finland | -1.4907407 | -2.2908934 | -0.6905880 | 0.0000180 |
Spain-Portugal | -0.7302131 | -1.3702961 | -0.0901301 | 0.0183173 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | 0.1052041 | 0.9162139 | 0.9162139 |
Croatia - Portugal | 2.8488857 | 0.0043873 | 0.0175491 |
Finland - Portugal | 2.5884450 | 0.0096410 | 0.0192821 |
Croatia - Spain | 4.8023721 | 0.0000016 | 0.0000094 |
Finland - Spain | 4.5131571 | 0.0000064 | 0.0000319 |
Portugal - Spain | 2.7789647 | 0.0054532 | 0.0163597 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 34.61 11.538 6.906 0.000209 ***
Residuals 163 272.32 1.671
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q32 and podaci$Country
F = 7.0989, num df = 3.000, denom df = 72.313, p-value = 0.0003019
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 1.6199 0.1868
163
Kruskal-Wallis rank sum test
data: Q32 by Country
Kruskal-Wallis chi-squared = 18.346, df = 3, p-value = 0.0003732
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | 0.1063321 | -0.7768642 | 0.9895284 | 0.9893887 |
Portugal-Croatia | 0.0048608 | -0.7143900 | 0.7241116 | 0.9999981 |
Spain-Croatia | -1.0788530 | -1.9009277 | -0.2567784 | 0.0045610 |
Portugal-Finland | -0.1014713 | -0.8571944 | 0.6542517 | 0.9854126 |
Spain-Finland | -1.1851852 | -2.0393528 | -0.3310176 | 0.0023495 |
Spain-Portugal | -1.0837139 | -1.7670062 | -0.4004215 | 0.0003521 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | -0.3281060 | 0.7428315 | 1.0000000 |
Croatia - Portugal | -0.1302842 | 0.8963416 | 0.8963416 |
Finland - Portugal | 0.2594536 | 0.7952853 | 1.0000000 |
Croatia - Spain | 3.1432586 | 0.0016708 | 0.0066831 |
Finland - Spain | 3.3644161 | 0.0007671 | 0.0038353 |
Portugal - Spain | 3.9188211 | 0.0000890 | 0.0005339 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 12.36 4.119 3.542 0.016 *
Residuals 163 189.54 1.163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q33 and podaci$Country
F = 5.6967, num df = 3.00, denom df = 72.04, p-value = 0.001477
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 14.031 3.508e-08 ***
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q33 by Country
Kruskal-Wallis chi-squared = 11.305, df = 3, p-value = 0.01019
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | -0.0836320 | -0.8204533 | 0.6531892 | 0.9910718 |
Portugal-Croatia | -0.0176757 | -0.6177227 | 0.5823714 | 0.9998391 |
Spain-Croatia | -0.6854839 | -1.3713134 | 0.0003457 | 0.0501683 |
Portugal-Finland | 0.0659564 | -0.5645182 | 0.6964309 | 0.9929749 |
Spain-Finland | -0.6018519 | -1.3144555 | 0.1107518 | 0.1296927 |
Spain-Portugal | -0.6678082 | -1.2378563 | -0.0977602 | 0.0144722 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | 0.1804427 | 0.8568050 | 1.0000000 |
Croatia - Portugal | 0.2067039 | 0.8362411 | 1.0000000 |
Finland - Portugal | -0.0141512 | 0.9887093 | 0.9887093 |
Croatia - Spain | 2.7174223 | 0.0065793 | 0.0328963 |
Finland - Spain | 2.4287478 | 0.0151511 | 0.0606043 |
Portugal - Spain | 3.0517717 | 0.0022750 | 0.0136497 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 14.72 4.907 4.68 0.00366 **
Residuals 163 170.91 1.049
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q35 and podaci$Country
F = 5.4324, num df = 3.000, denom df = 72.287, p-value = 0.002
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 2.1106 0.1009
163
Kruskal-Wallis rank sum test
data: Q35 by Country
Kruskal-Wallis chi-squared = 13.304, df = 3, p-value = 0.004022
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | -0.5507766 | -1.2504569 | 0.1489038 | 0.1765453 |
Portugal-Croatia | -0.7856827 | -1.3554832 | -0.2158823 | 0.0025401 |
Spain-Croatia | -0.3378136 | -0.9890726 | 0.3134453 | 0.5348274 |
Portugal-Finland | -0.2349061 | -0.8336004 | 0.3637881 | 0.7388766 |
Spain-Finland | 0.2129630 | -0.4637205 | 0.8896464 | 0.8464104 |
Spain-Portugal | 0.4478691 | -0.0934445 | 0.9891827 | 0.1426164 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | 1.8705198 | 0.0614117 | 0.2456467 |
Croatia - Portugal | 3.4539481 | 0.0005524 | 0.0033147 |
Finland - Portugal | 1.1012221 | 0.2708000 | 0.5416000 |
Croatia - Spain | 1.2029738 | 0.2289864 | 0.6869593 |
Finland - Spain | -0.7763134 | 0.4375639 | 0.4375639 |
Portugal - Spain | -2.1884055 | 0.0286401 | 0.1432004 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 9.0 3.002 2.606 0.0536 .
Residuals 163 187.7 1.152
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q36 and podaci$Country
F = 3.42, num df = 3.000, denom df = 70.229, p-value = 0.02185
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 2.545 0.05796 .
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q36 by Country
Kruskal-Wallis chi-squared = 7.7316, df = 3, p-value = 0.0519
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | -0.5053763 | -1.2386492 | 0.2278965 | 0.2823355 |
Portugal-Croatia | -0.5647371 | -1.1618944 | 0.0324202 | 0.0710999 |
Spain-Croatia | -0.6720430 | -1.3545697 | 0.0104837 | 0.0553493 |
Portugal-Finland | -0.0593607 | -0.6867991 | 0.5680776 | 0.9947774 |
Spain-Finland | -0.1666667 | -0.8758385 | 0.5425052 | 0.9287728 |
Spain-Portugal | -0.1073059 | -0.6746087 | 0.4599969 | 0.9610112 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | 1.5562216 | 0.1196554 | 0.4786216 |
Croatia - Portugal | 2.5262474 | 0.0115288 | 0.0691730 |
Finland - Portugal | 0.5856065 | 0.5581400 | 1.0000000 |
Croatia - Spain | 2.4623210 | 0.0138041 | 0.0690205 |
Finland - Spain | 0.7606968 | 0.4468382 | 1.0000000 |
Portugal - Spain | 0.3032470 | 0.7617017 | 0.7617017 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 17.61 5.872 5.037 0.0023 **
Residuals 163 190.00 1.166
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q37 and podaci$Country
F = 5.3107, num df = 3.000, denom df = 68.844, p-value = 0.002371
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 1.3549 0.2585
163
Kruskal-Wallis rank sum test
data: Q37 by Country
Kruskal-Wallis chi-squared = 16.121, df = 3, p-value = 0.001071
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | -0.2520908 | -0.9898193 | 0.4856377 | 0.8116207 |
Portugal-Croatia | -0.5757844 | -1.1765702 | 0.0250015 | 0.0656072 |
Spain-Croatia | -0.9650538 | -1.6517278 | -0.2783798 | 0.0019975 |
Portugal-Finland | -0.3236936 | -0.9549444 | 0.3075573 | 0.5445606 |
Spain-Finland | -0.7129630 | -1.4264440 | 0.0005181 | 0.0502426 |
Spain-Portugal | -0.3892694 | -0.9600193 | 0.1814805 | 0.2913704 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | 0.8333721 | 0.4046349 | 0.4046349 |
Croatia - Portugal | 2.4997670 | 0.0124275 | 0.0497100 |
Finland - Portugal | 1.4051819 | 0.1599672 | 0.3199344 |
Croatia - Spain | 3.7510674 | 0.0001761 | 0.0010565 |
Finland - Spain | 2.7484376 | 0.0059880 | 0.0299400 |
Portugal - Spain | 1.8816223 | 0.0598873 | 0.1796619 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 12.38 4.126 5.561 0.00117 **
Residuals 163 120.94 0.742
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q38 and podaci$Country
F = 7.6193, num df = 3.000, denom df = 73.608, p-value = 0.0001667
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 4.2917 0.006048 **
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q38 by Country
Kruskal-Wallis chi-squared = 16.26, df = 3, p-value = 0.001003
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | -0.3285544 | -0.9171285 | 0.2600198 | 0.4708295 |
Portugal-Croatia | -0.7308882 | -1.2102068 | -0.2515696 | 0.0006459 |
Spain-Croatia | -0.5044803 | -1.0523222 | 0.0433616 | 0.0829738 |
Portugal-Finland | -0.4023338 | -0.9059581 | 0.1012904 | 0.1661202 |
Spain-Finland | -0.1759259 | -0.7451550 | 0.3933031 | 0.8532924 |
Spain-Portugal | 0.2264079 | -0.2289475 | 0.6817633 | 0.5702092 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | 1.4460270 | 0.1481696 | 0.4445089 |
Croatia - Portugal | 3.9148086 | 0.0000905 | 0.0005429 |
Finland - Portugal | 2.0359358 | 0.0417568 | 0.1670272 |
Croatia - Spain | 2.2725121 | 0.0230556 | 0.1152780 |
Finland - Spain | 0.6919589 | 0.4889631 | 0.4889631 |
Portugal - Spain | -1.3867486 | 0.1655184 | 0.3310369 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 3.47 1.1560 2.166 0.0941 .
Residuals 163 87.01 0.5338
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q39 and podaci$Country
F = 2.8464, num df = 3.000, denom df = 70.243, p-value = 0.04369
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 3.0409 0.0306 *
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q39 by Country
Kruskal-Wallis chi-squared = 6.5643, df = 3, p-value = 0.08716
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | -0.2867384 | -0.7859725 | 0.2124958 | 0.4453435 |
Portugal-Croatia | -0.2699956 | -0.6765581 | 0.1365670 | 0.3146929 |
Spain-Croatia | -0.4534050 | -0.9180896 | 0.0112796 | 0.0586691 |
Portugal-Finland | 0.0167428 | -0.4104360 | 0.4439216 | 0.9996215 |
Spain-Finland | -0.1666667 | -0.6494921 | 0.3161588 | 0.8069180 |
Spain-Portugal | -0.1834094 | -0.5696462 | 0.2028273 | 0.6070726 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | 1.4822150 | 0.1382831 | 0.5531323 |
Croatia - Portugal | 1.7147835 | 0.0863849 | 0.4319247 |
Finland - Portugal | -0.1002053 | 0.9201814 | 0.9201814 |
Croatia - Spain | 2.5486894 | 0.0108129 | 0.0648771 |
Finland - Spain | 0.9203418 | 0.3573942 | 0.7147884 |
Portugal - Spain | 1.2613249 | 0.2071918 | 0.6215755 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 20.36 6.786 7.674 7.9e-05 ***
Residuals 163 144.13 0.884
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q40 and podaci$Country
F = 7.9495, num df = 3.000, denom df = 68.933, p-value = 0.000126
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 1.5618 0.2007
163
Kruskal-Wallis rank sum test
data: Q40 by Country
Kruskal-Wallis chi-squared = 19.152, df = 3, p-value = 0.0002543
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | 0.7216249 | 0.0790835 | 1.3641662 | 0.0209327 |
Portugal-Croatia | 0.9098542 | 0.3865862 | 1.4331222 | 0.0000714 |
Spain-Croatia | 0.9345878 | 0.3365136 | 1.5326620 | 0.0004449 |
Portugal-Finland | 0.1882293 | -0.3615729 | 0.7380315 | 0.8107508 |
Spain-Finland | 0.2129630 | -0.4084595 | 0.8343854 | 0.8102867 |
Spain-Portugal | 0.0247336 | -0.4723739 | 0.5218412 | 0.9992276 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | -2.6763145 | 0.0074437 | 0.0297747 |
Croatia - Portugal | -4.1016731 | 0.0000410 | 0.0002461 |
Finland - Portugal | -0.7759730 | 0.4377649 | 0.8755298 |
Croatia - Spain | -3.7224904 | 0.0001973 | 0.0009863 |
Finland - Spain | -0.8153599 | 0.4148663 | 1.0000000 |
Portugal - Spain | -0.1610341 | 0.8720665 | 0.8720665 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 9.04 3.014 2.986 0.0329 *
Residuals 163 164.50 1.009
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q41 and podaci$Country
F = 2.9508, num df = 3.00, denom df = 72.55, p-value = 0.03827
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 0.4943 0.6867
163
Kruskal-Wallis rank sum test
data: Q41 by Country
Kruskal-Wallis chi-squared = 8.9156, df = 3, p-value = 0.03043
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | -0.1541219 | -0.8405670 | 0.5323232 | 0.9371433 |
Portugal-Croatia | -0.4631021 | -1.0221241 | 0.0959200 | 0.1418085 |
Spain-Croatia | -0.6541219 | -1.2930615 | -0.0151822 | 0.0425920 |
Portugal-Finland | -0.3089802 | -0.8963495 | 0.2783891 | 0.5228230 |
Spain-Finland | -0.5000000 | -1.1638832 | 0.1638832 | 0.2095449 |
Spain-Portugal | -0.1910198 | -0.7220939 | 0.3400543 | 0.7868205 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | 0.994376 | 0.3200398 | 0.6400797 |
Croatia - Portugal | 2.429046 | 0.0151386 | 0.0756930 |
Finland - Portugal | 1.149712 | 0.2502623 | 0.7507869 |
Croatia - Spain | 2.686054 | 0.0072301 | 0.0433809 |
Finland - Spain | 1.556963 | 0.1194792 | 0.4779170 |
Portugal - Spain | 0.674738 | 0.4998423 | 0.4998423 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 3.6 1.1995 1.574 0.198
Residuals 163 124.2 0.7622
One-way analysis of means (not assuming equal variances)
data: podaci$Q42 and podaci$Country
F = 1.4911, num df = 3.00, denom df = 67.74, p-value = 0.2248
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 3.261 0.02302 *
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q42 by Country
Kruskal-Wallis chi-squared = 4.8775, df = 3, p-value = 0.181
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | 0.2771804 | -0.3193560 | 0.8737168 | 0.6238661 |
Portugal-Croatia | 0.2797172 | -0.2060857 | 0.7655201 | 0.4431130 |
Spain-Croatia | 0.4623656 | -0.0928875 | 1.0176187 | 0.1385079 |
Portugal-Finland | 0.0025368 | -0.5079005 | 0.5129741 | 0.9999992 |
Spain-Finland | 0.1851852 | -0.3917444 | 0.7621148 | 0.8386137 |
Spain-Portugal | 0.1826484 | -0.2788671 | 0.6441639 | 0.7337144 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | -1.2850383 | 0.1987789 | 0.7951156 |
Croatia - Portugal | -1.4166681 | 0.1565800 | 0.7828999 |
Finland - Portugal | 0.1534971 | 0.8780062 | 0.8780062 |
Croatia - Spain | -2.1980718 | 0.0279440 | 0.1676640 |
Finland - Spain | -0.7867754 | 0.4314133 | 0.8628267 |
Portugal - Spain | -1.1532977 | 0.2487882 | 0.7463647 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 5.32 1.7747 2.803 0.0416 *
Residuals 163 103.21 0.6332
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q43 and podaci$Country
F = 3.2645, num df = 3.000, denom df = 72.085, p-value = 0.0262
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 2.5498 0.0576 .
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q43 by Country
Kruskal-Wallis chi-squared = 9.0036, df = 3, p-value = 0.02924
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | -0.2150538 | -0.7587896 | 0.3286821 | 0.7340903 |
Portugal-Croatia | 0.2598321 | -0.1829715 | 0.7026356 | 0.4260467 |
Spain-Croatia | 0.2293907 | -0.2767159 | 0.7354973 | 0.6425287 |
Portugal-Finland | 0.4748858 | 0.0096283 | 0.9401434 | 0.0434920 |
Spain-Finland | 0.4444444 | -0.0814201 | 0.9703089 | 0.1292678 |
Spain-Portugal | -0.0304414 | -0.4511073 | 0.3902245 | 0.9976405 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | 1.1054402 | 0.2689689 | 0.5379378 |
Croatia - Portugal | -1.5690695 | 0.1166318 | 0.4665270 |
Finland - Portugal | -2.7852468 | 0.0053487 | 0.0320922 |
Croatia - Spain | -1.1082207 | 0.2677665 | 0.8032995 |
Finland - Spain | -2.2095907 | 0.0271336 | 0.1356679 |
Portugal - Spain | 0.3183327 | 0.7502326 | 0.7502326 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 5.76 1.9205 2.633 0.0517 .
Residuals 163 118.87 0.7293
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q44 and podaci$Country
F = 2.579, num df = 3.000, denom df = 69.885, p-value = 0.06046
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 0.4064 0.7486
163
Kruskal-Wallis rank sum test
data: Q44 by Country
Kruskal-Wallis chi-squared = 8.3705, df = 3, p-value = 0.03894
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | 0.1003584 | -0.4831660 | 0.6838828 | 0.9702291 |
Portugal-Croatia | 0.3636765 | -0.1115297 | 0.8388828 | 0.1973005 |
Spain-Croatia | -0.0663082 | -0.6094498 | 0.4768334 | 0.9889476 |
Portugal-Finland | 0.2633181 | -0.2359852 | 0.7626214 | 0.5206500 |
Spain-Finland | -0.1666667 | -0.7310120 | 0.3976786 | 0.8693785 |
Spain-Portugal | -0.4299848 | -0.8814334 | 0.0214638 | 0.0681310 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | -0.4923690 | 0.6224585 | 1.0000000 |
Croatia - Portugal | -2.0398174 | 0.0413685 | 0.2068426 |
Finland - Portugal | -1.3659527 | 0.1719538 | 0.6878153 |
Croatia - Spain | 0.3405523 | 0.7334406 | 0.7334406 |
Finland - Spain | 0.8368590 | 0.4026718 | 1.0000000 |
Portugal - Spain | 2.5568848 | 0.0105614 | 0.0633685 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 1.73 0.5778 0.841 0.473
Residuals 163 111.97 0.6869
One-way analysis of means (not assuming equal variances)
data: podaci$Q45 and podaci$Country
F = 0.74515, num df = 3.000, denom df = 68.166, p-value = 0.5289
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 2.2543 0.08406 .
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q45 by Country
Kruskal-Wallis chi-squared = 2.1186, df = 3, p-value = 0.5482
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | 0.2879331 | -0.2783878 | 0.8542540 | 0.5517228 |
Portugal-Croatia | 0.2585064 | -0.2026898 | 0.7197026 | 0.4671817 |
Spain-Croatia | 0.1675627 | -0.3595659 | 0.6946914 | 0.8424988 |
Portugal-Finland | -0.0294267 | -0.5140095 | 0.4551561 | 0.9986002 |
Spain-Finland | -0.1203704 | -0.6680776 | 0.4273368 | 0.9407375 |
Spain-Portugal | -0.0909437 | -0.5290827 | 0.3471953 | 0.9494153 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | -1.2871258 | 0.1980505 | 0.9902523 |
Croatia - Portugal | -1.2933877 | 0.1958770 | 1.0000000 |
Finland - Portugal | 0.2732675 | 0.7846476 | 1.0000000 |
Croatia - Spain | -0.9156029 | 0.3598752 | 1.0000000 |
Finland - Spain | 0.4496667 | 0.6529508 | 1.0000000 |
Portugal - Spain | 0.2598832 | 0.7949539 | 0.7949539 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 5.3 1.7659 2.309 0.0784 .
Residuals 163 124.7 0.7649
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q46 and podaci$Country
F = 2.2716, num df = 3.000, denom df = 68.765, p-value = 0.08792
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 1.2901 0.2797
163
Kruskal-Wallis rank sum test
data: Q46 by Country
Kruskal-Wallis chi-squared = 6.7771, df = 3, p-value = 0.07935
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | 0.1565114 | -0.4410916 | 0.7541143 | 0.9046396 |
Portugal-Croatia | 0.1524525 | -0.3342190 | 0.6391240 | 0.8482013 |
Spain-Croatia | 0.5268817 | -0.0293642 | 1.0831276 | 0.0704303 |
Portugal-Finland | -0.0040589 | -0.5154088 | 0.5072911 | 0.9999968 |
Spain-Finland | 0.3703704 | -0.2075908 | 0.9483315 | 0.3464544 |
Spain-Portugal | 0.3744292 | -0.0879114 | 0.8367699 | 0.1567493 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | -0.6724426 | 0.5013020 | 1.0000000 |
Croatia - Portugal | -0.7964040 | 0.4257973 | 1.0000000 |
Finland - Portugal | 0.0278998 | 0.9777420 | 0.9777420 |
Croatia - Spain | -2.4297837 | 0.0151078 | 0.0906470 |
Finland - Spain | -1.6431961 | 0.1003424 | 0.4013695 |
Portugal - Spain | -2.0849780 | 0.0370713 | 0.1853565 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 13.71 4.571 8.867 1.77e-05 ***
Residuals 163 84.02 0.515
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q47 and podaci$Country
F = 9.4921, num df = 3.00, denom df = 73.44, p-value = 2.244e-05
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 11 1.288e-06 ***
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q47 by Country
Kruskal-Wallis chi-squared = 27.862, df = 3, p-value = 3.883e-06
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | -0.0262843 | -0.5168758 | 0.4643071 | 0.9990366 |
Portugal-Croatia | 0.4856385 | 0.0861143 | 0.8851628 | 0.0102153 |
Spain-Croatia | -0.1836918 | -0.6403319 | 0.2729484 | 0.7237277 |
Portugal-Finland | 0.5119229 | 0.0921393 | 0.9317065 | 0.0098954 |
Spain-Finland | -0.1574074 | -0.6318743 | 0.3170595 | 0.8248113 |
Spain-Portugal | -0.6693303 | -1.0488806 | -0.2897800 | 0.0000546 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | 0.1013479 | 0.9192743 | 0.9192743 |
Croatia - Portugal | -3.2918948 | 0.0009951 | 0.0049757 |
Finland - Portugal | -3.2514665 | 0.0011481 | 0.0045925 |
Croatia - Spain | 0.9858569 | 0.3242034 | 0.9726101 |
Finland - Spain | 0.8440239 | 0.3986561 | 0.7973121 |
Portugal - Spain | 4.6512245 | 0.0000033 | 0.0000198 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 9.02 3.006 4.631 0.00389 **
Residuals 163 105.79 0.649
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q48 and podaci$Country
F = 3.9758, num df = 3.000, denom df = 66.938, p-value = 0.01142
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 2.7779 0.04296 *
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q48 by Country
Kruskal-Wallis chi-squared = 12.271, df = 3, p-value = 0.00651
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | -0.1158901 | -0.6663564 | 0.4345762 | 0.9473818 |
Portugal-Croatia | 0.3747238 | -0.0735608 | 0.8230084 | 0.1360919 |
Spain-Croatia | 0.5044803 | -0.0078910 | 1.0168515 | 0.0553641 |
Portugal-Finland | 0.4906139 | 0.0195974 | 0.9616304 | 0.0376665 |
Spain-Finland | 0.6203704 | 0.0879967 | 1.1527441 | 0.0151854 |
Spain-Portugal | 0.1297565 | -0.2961164 | 0.5556294 | 0.8585159 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | 0.3532654 | 0.7238895 | 0.7238895 |
Croatia - Portugal | -2.0302097 | 0.0423352 | 0.1270057 |
Finland - Portugal | -2.3450822 | 0.0190229 | 0.0760915 |
Croatia - Spain | -2.5846575 | 0.0097476 | 0.0487379 |
Finland - Spain | -2.8528173 | 0.0043334 | 0.0260001 |
Portugal - Spain | -0.9725728 | 0.3307656 | 0.6615313 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 2.04 0.6803 1.136 0.336
Residuals 163 97.64 0.5990
One-way analysis of means (not assuming equal variances)
data: podaci$Q49 and podaci$Country
F = 1.203, num df = 3.000, denom df = 71.302, p-value = 0.315
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 2.5722 0.05597 .
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q49 by Country
Kruskal-Wallis chi-squared = 4.6623, df = 3, p-value = 0.1983
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | 0.0107527 | -0.5180839 | 0.5395893 | 0.9999470 |
Portugal-Croatia | 0.2390632 | -0.1916068 | 0.6697332 | 0.4758164 |
Spain-Croatia | 0.2329749 | -0.2592635 | 0.7252133 | 0.6096510 |
Portugal-Finland | 0.2283105 | -0.2241982 | 0.6808192 | 0.5581189 |
Spain-Finland | 0.2222222 | -0.2892327 | 0.7336771 | 0.6729120 |
Spain-Portugal | -0.0060883 | -0.4152272 | 0.4030506 | 0.9999792 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | 0.0086828 | 0.9930722 | 0.9930722 |
Croatia - Portugal | -1.7088601 | 0.0874769 | 0.5248612 |
Finland - Portugal | -1.6365356 | 0.1017275 | 0.5086377 |
Croatia - Spain | -1.2514945 | 0.2107541 | 0.8430164 |
Finland - Spain | -1.2134510 | 0.2249574 | 0.6748723 |
Portugal - Spain | 0.2931059 | 0.7694412 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 2.79 0.9286 1.565 0.2
Residuals 163 96.71 0.5933
One-way analysis of means (not assuming equal variances)
data: podaci$Q50 and podaci$Country
F = 1.7733, num df = 3.000, denom df = 69.177, p-value = 0.1603
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 6.3487 0.0004259 ***
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q50 by Country
Kruskal-Wallis chi-squared = 4.2118, df = 3, p-value = 0.2395
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | 0.1827957 | -0.3435310 | 0.7091224 | 0.8040361 |
Portugal-Croatia | -0.0044189 | -0.4330449 | 0.4242071 | 0.9999931 |
Spain-Croatia | -0.2338710 | -0.7237732 | 0.2560313 | 0.6029206 |
Portugal-Finland | -0.1872146 | -0.6375756 | 0.2631464 | 0.7028038 |
Spain-Finland | -0.4166667 | -0.9256942 | 0.0923608 | 0.1496071 |
Spain-Portugal | -0.2294521 | -0.6366492 | 0.1777450 | 0.4624544 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | -0.7898554 | 0.4296122 | 0.8592244 |
Croatia - Portugal | -0.1223120 | 0.9026520 | 0.9026520 |
Finland - Portugal | 0.8066771 | 0.4198526 | 1.0000000 |
Croatia - Spain | 1.1872147 | 0.2351429 | 0.9405718 |
Finland - Spain | 1.9593069 | 0.0500769 | 0.3004611 |
Portugal - Spain | 1.5570966 | 0.1194476 | 0.5972378 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 12.55 4.184 7.108 0.000162 ***
Residuals 163 95.94 0.589
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q51 and podaci$Country
F = 7.1803, num df = 3.000, denom df = 72.056, p-value = 0.0002768
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 3.2881 0.02222 *
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q51 by Country
Kruskal-Wallis chi-squared = 23.242, df = 3, p-value = 3.595e-05
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | -0.0119474 | -0.5361721 | 0.5122773 | 0.9999254 |
Portugal-Croatia | 0.4710561 | 0.0441419 | 0.8979703 | 0.0242189 |
Spain-Croatia | -0.1693548 | -0.6573006 | 0.3185909 | 0.8043470 |
Portugal-Finland | 0.4830036 | 0.0344411 | 0.9315660 | 0.0293826 |
Spain-Finland | -0.1574074 | -0.6644020 | 0.3495872 | 0.8515885 |
Spain-Portugal | -0.6404110 | -1.0459819 | -0.2348401 | 0.0003777 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | 0.2476295 | 0.8044211 | 0.8044211 |
Croatia - Portugal | -2.8776028 | 0.0040071 | 0.0160284 |
Finland - Portugal | -3.0281248 | 0.0024608 | 0.0123038 |
Croatia - Spain | 1.0365734 | 0.2999347 | 0.8998042 |
Finland - Spain | 0.7415819 | 0.4583407 | 0.9166814 |
Portugal - Spain | 4.2761477 | 0.0000190 | 0.0001141 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 5.05 1.6819 2.242 0.0854 .
Residuals 163 122.31 0.7504
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q52 and podaci$Country
F = 2.5943, num df = 3.000, denom df = 70.474, p-value = 0.05928
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 2.4938 0.0619 .
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q52 by Country
Kruskal-Wallis chi-squared = 6.9435, df = 3, p-value = 0.07372
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | 0.3584229 | -0.2334708 | 0.9503167 | 0.3975645 |
Portugal-Croatia | 0.4299602 | -0.0520618 | 0.9119823 | 0.0987294 |
Spain-Croatia | 0.4973118 | -0.0536199 | 1.0482436 | 0.0926395 |
Portugal-Finland | 0.0715373 | -0.4349274 | 0.5780020 | 0.9831010 |
Spain-Finland | 0.1388889 | -0.4335507 | 0.7113284 | 0.9223320 |
Spain-Portugal | 0.0673516 | -0.3905720 | 0.5252752 | 0.9810015 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | -1.6053363 | 0.1084198 | 0.4336792 |
Croatia - Portugal | -2.4087823 | 0.0160058 | 0.0960351 |
Finland - Portugal | -0.4164112 | 0.6771091 | 1.0000000 |
Croatia - Spain | -2.3219825 | 0.0202339 | 0.1011694 |
Finland - Spain | -0.5748473 | 0.5653946 | 1.0000000 |
Portugal - Spain | -0.2580512 | 0.7963674 | 0.7963674 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 16.18 5.392 9.759 5.87e-06 ***
Residuals 163 90.06 0.553
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q53 and podaci$Country
F = 7.4924, num df = 3.000, denom df = 69.248, p-value = 0.0002052
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 4.0369 0.008417 **
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q53 by Country
Kruskal-Wallis chi-squared = 21.276, df = 3, p-value = 9.224e-05
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | 0.2186380 | -0.2892757 | 0.7265517 | 0.6793713 |
Portugal-Croatia | 0.1851525 | -0.2284785 | 0.5987834 | 0.6516771 |
Spain-Croatia | -0.5869176 | -1.0596811 | -0.1141540 | 0.0082766 |
Portugal-Finland | -0.0334855 | -0.4680912 | 0.4011201 | 0.9971573 |
Spain-Finland | -0.8055556 | -1.2967753 | -0.3143358 | 0.0002031 |
Spain-Portugal | -0.7720700 | -1.1650218 | -0.3791183 | 0.0000055 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | -1.0005004 | 0.3170684 | 0.6341368 |
Croatia - Portugal | -1.0725447 | 0.2834755 | 0.8504264 |
Finland - Portugal | 0.1484799 | 0.8819641 | 0.8819641 |
Croatia - Spain | 2.6818523 | 0.0073216 | 0.0292863 |
Finland - Spain | 3.6155914 | 0.0002997 | 0.0014983 |
Portugal - Spain | 4.3555465 | 0.0000133 | 0.0000796 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 1.91 0.6358 0.572 0.634
Residuals 163 181.07 1.1109
One-way analysis of means (not assuming equal variances)
data: podaci$Q58 and podaci$Country
F = 0.70333, num df = 3.000, denom df = 73.881, p-value = 0.553
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 1.8757 0.1357
163
Kruskal-Wallis rank sum test
data: Q58 by Country
Kruskal-Wallis chi-squared = 1.6155, df = 3, p-value = 0.6559
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | -0.3620072 | -1.0821953 | 0.3581810 | 0.5612298 |
Portugal-Croatia | -0.1763146 | -0.7628161 | 0.4101869 | 0.8632841 |
Spain-Croatia | -0.1953405 | -0.8656880 | 0.4750070 | 0.8738102 |
Portugal-Finland | 0.1856925 | -0.4305496 | 0.8019347 | 0.8624570 |
Spain-Finland | 0.1666667 | -0.5298506 | 0.8631839 | 0.9251974 |
Spain-Portugal | -0.0190259 | -0.5762056 | 0.5381538 | 0.9997495 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | 1.2679064 | 0.2048314 | 1.0000000 |
Croatia - Portugal | 0.7871259 | 0.4312082 | 1.0000000 |
Finland - Portugal | -0.7326352 | 0.4637810 | 1.0000000 |
Croatia - Spain | 0.6287782 | 0.5294943 | 1.0000000 |
Finland - Spain | -0.7058422 | 0.4802862 | 1.0000000 |
Portugal - Spain | -0.0720604 | 0.9425538 | 0.9425538 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 6.67 2.225 1.987 0.118
Residuals 163 182.55 1.120
One-way analysis of means (not assuming equal variances)
data: podaci$Q59 and podaci$Country
F = 1.7624, num df = 3.00, denom df = 71.55, p-value = 0.1621
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 2.0951 0.1029
163
Kruskal-Wallis rank sum test
data: Q59 by Country
Kruskal-Wallis chi-squared = 5.4816, df = 3, p-value = 0.1397
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | -0.2652330 | -0.9883431 | 0.4578771 | 0.7766851 |
Portugal-Croatia | -0.4904993 | -1.0793804 | 0.0983817 | 0.1383381 |
Spain-Croatia | -0.5430108 | -1.2160780 | 0.1300565 | 0.1593424 |
Portugal-Finland | -0.2252664 | -0.8440087 | 0.3934760 | 0.7805887 |
Spain-Finland | -0.2777778 | -0.9771209 | 0.4215653 | 0.7315145 |
Spain-Portugal | -0.0525114 | -0.6119517 | 0.5069289 | 0.9948978 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | 0.7347331 | 0.4625021 | 0.9250041 |
Croatia - Portugal | 2.1231464 | 0.0337416 | 0.2024495 |
Finland - Portugal | 1.1620146 | 0.2452295 | 0.9809181 |
Croatia - Spain | 1.8089519 | 0.0704585 | 0.3522924 |
Finland - Spain | 0.9812828 | 0.3264533 | 0.9793599 |
Portugal - Spain | -0.0585126 | 0.9533404 | 0.9533404 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 7.88 2.626 1.988 0.118
Residuals 163 215.35 1.321
One-way analysis of means (not assuming equal variances)
data: podaci$Q60 and podaci$Country
F = 2.2069, num df = 3.000, denom df = 71.753, p-value = 0.09467
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 0.4267 0.7341
163
Kruskal-Wallis rank sum test
data: Q60 by Country
Kruskal-Wallis chi-squared = 6.252, df = 3, p-value = 0.09997
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | -0.6905615 | -1.4759672 | 0.0948442 | 0.1064131 |
Portugal-Croatia | -0.1537782 | -0.7933910 | 0.4858347 | 0.9242279 |
Spain-Croatia | -0.1720430 | -0.9030947 | 0.5590087 | 0.9285079 |
Portugal-Finland | 0.5367834 | -0.1352634 | 1.2088301 | 0.1662491 |
Spain-Finland | 0.5185185 | -0.2410727 | 1.2781097 | 0.2906122 |
Spain-Portugal | -0.0182648 | -0.6259006 | 0.5893709 | 0.9998290 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | 2.3852716 | 0.0170665 | 0.1023991 |
Croatia - Portugal | 0.8104770 | 0.4176661 | 1.0000000 |
Finland - Portugal | -2.0162504 | 0.0437738 | 0.2188690 |
Croatia - Spain | 0.6706246 | 0.5024597 | 1.0000000 |
Finland - Spain | -1.8209067 | 0.0686210 | 0.2744841 |
Portugal - Spain | -0.0462946 | 0.9630754 | 0.9630754 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 3.86 1.2857 1.345 0.262
Residuals 163 155.77 0.9557
One-way analysis of means (not assuming equal variances)
data: podaci$Q61 and podaci$Country
F = 1.2819, num df = 3.000, denom df = 71.025, p-value = 0.2873
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 0.5148 0.6726
163
Kruskal-Wallis rank sum test
data: Q61 by Country
Kruskal-Wallis chi-squared = 3.6583, df = 3, p-value = 0.3008
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | -0.4778973 | -1.1458739 | 0.1900794 | 0.2507721 |
Portugal-Croatia | -0.2125497 | -0.7565316 | 0.3314322 | 0.7413519 |
Spain-Croatia | -0.3575269 | -0.9792762 | 0.2642225 | 0.4442842 |
Portugal-Finland | 0.2653475 | -0.3062189 | 0.8369140 | 0.6245281 |
Spain-Finland | 0.1203704 | -0.5256514 | 0.7663922 | 0.9626327 |
Spain-Portugal | -0.1449772 | -0.6617630 | 0.3718087 | 0.8856790 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | 1.8211077 | 0.0685905 | 0.4115429 |
Croatia - Portugal | 0.9890868 | 0.3226207 | 0.9678620 |
Finland - Portugal | -1.1869350 | 0.2352533 | 0.9410131 |
Croatia - Spain | 1.3319035 | 0.1828919 | 0.9144595 |
Finland - Spain | -0.6011366 | 0.5477490 | 1.0000000 |
Portugal - Spain | 0.5612864 | 0.5746023 | 0.5746023 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 1.94 0.6483 0.576 0.631
Residuals 163 183.41 1.1252
One-way analysis of means (not assuming equal variances)
data: podaci$Q62 and podaci$Country
F = 0.54221, num df = 3.000, denom df = 71.145, p-value = 0.655
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 0.3111 0.8174
163
Kruskal-Wallis rank sum test
data: Q62 by Country
Kruskal-Wallis chi-squared = 1.9833, df = 3, p-value = 0.5759
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | -0.3548387 | -1.0796531 | 0.3699757 | 0.5828384 |
Portugal-Croatia | -0.1082634 | -0.6985323 | 0.4820056 | 0.9642605 |
Spain-Croatia | -0.1048387 | -0.7794923 | 0.5698149 | 0.9777360 |
Portugal-Finland | 0.2465753 | -0.3736253 | 0.8667760 | 0.7309402 |
Spain-Finland | 0.2500000 | -0.4509914 | 0.9509914 | 0.7911113 |
Spain-Portugal | 0.0034247 | -0.5573342 | 0.5641835 | 0.9999986 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | 1.3158681 | 0.1882183 | 1.0000000 |
Croatia - Portugal | 0.3628263 | 0.7167346 | 1.0000000 |
Finland - Portugal | -1.1925093 | 0.2330616 | 1.0000000 |
Croatia - Spain | 0.5934908 | 0.5528528 | 1.0000000 |
Finland - Spain | -0.7893956 | 0.4298809 | 1.0000000 |
Portugal - Spain | 0.3321135 | 0.7398036 | 0.7398036 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 45.58 15.19 12.45 2.28e-07 ***
Residuals 162 197.67 1.22
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
1 observation deleted due to missingness
One-way analysis of means (not assuming equal variances)
data: podaci$Q63 and podaci$Country
F = 10.745, num df = 3.00, denom df = 64.54, p-value = 8.096e-06
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 2.1154 0.1003
162
Kruskal-Wallis rank sum test
data: Q63 by Country
Kruskal-Wallis chi-squared = 28.312, df = 3, p-value = 3.124e-06
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | 0.6339950 | -0.1285639 | 1.3965540 | 0.1394917 |
Portugal-Croatia | -0.8091030 | -1.4238238 | -0.1943822 | 0.0044142 |
Spain-Croatia | -0.5412186 | -1.2438197 | 0.1613824 | 0.1923872 |
Portugal-Finland | -1.4430980 | -2.0979950 | -0.7882010 | 0.0000003 |
Spain-Finland | -1.1752137 | -1.9132223 | -0.4372051 | 0.0003306 |
Spain-Portugal | 0.2678843 | -0.3161039 | 0.8518725 | 0.6335491 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | -1.687971 | 0.0914168 | 0.1828336 |
Croatia - Portugal | 3.136926 | 0.0017073 | 0.0068292 |
Finland - Portugal | 4.909949 | 0.0000009 | 0.0000055 |
Croatia - Spain | 1.875588 | 0.0607119 | 0.1821357 |
Finland - Spain | 3.529725 | 0.0004160 | 0.0020800 |
Portugal - Spain | -1.045472 | 0.2958047 | 0.2958047 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 34.09 11.363 9.739 6.05e-06 ***
Residuals 162 189.02 1.167
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
1 observation deleted due to missingness
One-way analysis of means (not assuming equal variances)
data: podaci$Q64 and podaci$Country
F = 8.8177, num df = 3.000, denom df = 65.501, p-value = 5.428e-05
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 3.0551 0.03006 *
162
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q64 by Country
Kruskal-Wallis chi-squared = 23.39, df = 3, p-value = 3.349e-05
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | 0.3461538 | -0.3995375 | 1.0918452 | 0.6245522 |
Portugal-Croatia | -0.7945205 | -1.3956439 | -0.1933972 | 0.0042087 |
Spain-Croatia | -0.7222222 | -1.4092820 | -0.0351625 | 0.0352350 |
Portugal-Finland | -1.1406744 | -1.7810853 | -0.5002635 | 0.0000451 |
Spain-Finland | -1.0683761 | -1.7900602 | -0.3466920 | 0.0009930 |
Spain-Portugal | 0.0722983 | -0.4987722 | 0.6433689 | 0.9877071 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | -0.8228845 | 0.4105737 | 0.8211474 |
Croatia - Portugal | 3.2337032 | 0.0012220 | 0.0048879 |
Finland - Portugal | 3.9934867 | 0.0000651 | 0.0003907 |
Croatia - Spain | 2.6453180 | 0.0081614 | 0.0244843 |
Finland - Spain | 3.3686615 | 0.0007553 | 0.0037767 |
Portugal - Spain | -0.2212738 | 0.8248792 | 0.8248792 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 2.14 0.7121 0.958 0.414
Residuals 163 121.12 0.7431
One-way analysis of means (not assuming equal variances)
data: podaci$Q65 and podaci$Country
F = 1.3899, num df = 3.000, denom df = 72.758, p-value = 0.2527
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 1.8533 0.1396
163
Kruskal-Wallis rank sum test
data: Q65 by Country
Kruskal-Wallis chi-squared = 3.7038, df = 3, p-value = 0.2953
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | -0.3608124 | -0.9498287 | 0.2282039 | 0.3871342 |
Portugal-Croatia | -0.2562970 | -0.7359756 | 0.2233817 | 0.5093435 |
Spain-Croatia | -0.2034050 | -0.7516584 | 0.3448484 | 0.7706003 |
Portugal-Finland | 0.1045155 | -0.3994871 | 0.6085180 | 0.9495489 |
Spain-Finland | 0.1574074 | -0.4122493 | 0.7270641 | 0.8901248 |
Spain-Portugal | 0.0528919 | -0.4028055 | 0.5085894 | 0.9904673 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | 1.8605702 | 0.0628049 | 0.3768294 |
Croatia - Portugal | 1.2659420 | 0.2055338 | 1.0000000 |
Finland - Portugal | -0.9695601 | 0.3322658 | 0.9967975 |
Croatia - Spain | 0.7022308 | 0.4825352 | 0.9650705 |
Finland - Spain | -1.2479547 | 0.2120476 | 0.8481906 |
Portugal - Spain | -0.4877029 | 0.6257603 | 0.6257603 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 2.95 0.9833 1.162 0.326
Residuals 163 137.94 0.8462
One-way analysis of means (not assuming equal variances)
data: podaci$Q66 and podaci$Country
F = 1.5993, num df = 3.000, denom df = 73.149, p-value = 0.1969
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 3.2434 0.02355 *
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q66 by Country
Kruskal-Wallis chi-squared = 2.8998, df = 3, p-value = 0.4073
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | -0.1254480 | -0.7540225 | 0.5031264 | 0.9546678 |
Portugal-Croatia | -0.3141847 | -0.8260785 | 0.1977091 | 0.3853603 |
Spain-Croatia | -0.3476703 | -0.9327442 | 0.2374037 | 0.4146495 |
Portugal-Finland | -0.1887367 | -0.7265879 | 0.3491145 | 0.7990840 |
Spain-Finland | -0.2222222 | -0.8301369 | 0.3856924 | 0.7784747 |
Spain-Portugal | -0.0334855 | -0.5197875 | 0.4528164 | 0.9979647 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | 0.4808838 | 0.6305991 | 1.0000000 |
Croatia - Portugal | 1.4096622 | 0.1586395 | 0.7931973 |
Finland - Portugal | 0.7796321 | 0.4356075 | 1.0000000 |
Croatia - Spain | 1.4614601 | 0.1438892 | 0.8633352 |
Finland - Spain | 0.9093234 | 0.3631794 | 1.0000000 |
Portugal - Spain | 0.2744487 | 0.7837398 | 0.7837398 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 20.5 6.832 5.486 0.00129 **
Residuals 163 203.0 1.245
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q67 and podaci$Country
F = 5.5245, num df = 3.000, denom df = 68.746, p-value = 0.001857
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 2.4152 0.06845 .
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q67 by Country
Kruskal-Wallis chi-squared = 13.879, df = 3, p-value = 0.003075
diff | lwr | upr | p adj | |
---|---|---|---|---|
Finland-Croatia | 0.1063321 | -0.6562137 | 0.8688780 | 0.9837196 |
Portugal-Croatia | -0.6800707 | -1.3010671 | -0.0590743 | 0.0257303 |
Spain-Croatia | -0.6899642 | -1.3997380 | 0.0198097 | 0.0600706 |
Portugal-Finland | -0.7864028 | -1.4388891 | -0.1339165 | 0.0110941 |
Spain-Finland | -0.7962963 | -1.5337790 | -0.0588136 | 0.0287626 |
Spain-Portugal | -0.0098935 | -0.5998435 | 0.5800566 | 0.9999703 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Croatia - Finland | -0.1769235 | 0.8595685 | 1.0000000 |
Croatia - Portugal | 2.7068083 | 0.0067933 | 0.0339667 |
Finland - Portugal | 2.7829406 | 0.0053869 | 0.0323212 |
Croatia - Spain | 2.4029708 | 0.0162625 | 0.0487875 |
Finland - Spain | 2.4956221 | 0.0125736 | 0.0502946 |
Portugal - Spain | 0.0417791 | 0.9666748 | 0.9666748 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 3.43 0.6865 1.001 0.419
Residuals 161 110.46 0.6861
One-way analysis of means (not assuming equal variances)
data: podaci$Q1 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.1495 0.3366
161
Kruskal-Wallis rank sum test
data: Q1 by Study field
Kruskal-Wallis chi-squared = 5.8635, df = 5, p-value = 0.3197
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | 0.5153846 | -0.2473500 | 1.2781193 | 0.3764947 |
Other-Arts and Humanities | -0.1000000 | -1.5301475 | 1.3301475 | 0.9999533 |
Science and Mathematics-Arts and Humanities | 0.1068966 | -0.4757870 | 0.6895801 | 0.9949273 |
Social Sciences-Arts and Humanities | 0.2414634 | -0.2894917 | 0.7724185 | 0.7782201 |
Technical Sciences and Engineering-Arts and Humanities | 0.0707317 | -0.4602234 | 0.6016868 | 0.9988966 |
Other-Health Sciences | -0.6153846 | -2.1456435 | 0.9148742 | 0.8550514 |
Science and Mathematics-Health Sciences | -0.4084881 | -1.2059155 | 0.3889394 | 0.6790642 |
Social Sciences-Health Sciences | -0.2739212 | -1.0343709 | 0.4865285 | 0.9040506 |
Technical Sciences and Engineering-Health Sciences | -0.4446529 | -1.2051026 | 0.3157968 | 0.5426712 |
Science and Mathematics-Other | 0.2068966 | -1.2420507 | 1.6558438 | 0.9984581 |
Social Sciences-Other | 0.3414634 | -1.0874667 | 1.7703935 | 0.9829326 |
Technical Sciences and Engineering-Other | 0.1707317 | -1.2581984 | 1.5996618 | 0.9993490 |
Social Sciences-Science and Mathematics | 0.1345669 | -0.4451225 | 0.7142562 | 0.9850158 |
Technical Sciences and Engineering-Science and Mathematics | -0.0361648 | -0.6158542 | 0.5435245 | 0.9999735 |
Technical Sciences and Engineering-Social Sciences | -0.1707317 | -0.6983991 | 0.3569357 | 0.9373430 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | -1.8608403 | 0.0627667 | 0.9415011 |
Arts and Humanities - Other | 0.7270541 | 0.4671928 | 1.0000000 |
Health Sciences - Other | 1.6069973 | 0.1080550 | 1.0000000 |
Arts and Humanities - Science and Mathematics | 0.0245333 | 0.9804273 | 0.9804273 |
Health Sciences - Science and Mathematics | 1.7978093 | 0.0722072 | 1.0000000 |
Other - Science and Mathematics | -0.7077548 | 0.4790975 | 1.0000000 |
Arts and Humanities - Social Sciences | -1.1510325 | 0.2497189 | 1.0000000 |
Health Sciences - Social Sciences | 1.0627669 | 0.2878877 | 1.0000000 |
Other - Social Sciences | -1.1553686 | 0.2479395 | 1.0000000 |
Science and Mathematics - Social Sciences | -1.0789256 | 0.2806209 | 1.0000000 |
Arts and Humanities - Technical Sciences and Engineering | -0.1969898 | 0.8438355 | 1.0000000 |
Health Sciences - Technical Sciences and Engineering | 1.7288910 | 0.0838286 | 1.0000000 |
Other - Technical Sciences and Engineering | -0.8008700 | 0.4232069 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | -0.2050890 | 0.8375026 | 1.0000000 |
Social Sciences - Technical Sciences and Engineering | 0.9599869 | 0.3370618 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 5.93 1.1854 1.331 0.254
Residuals 161 143.34 0.8903
One-way analysis of means (not assuming equal variances)
data: podaci$Q2 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.9468 0.08942 .
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q2 by Study field
Kruskal-Wallis chi-squared = 6.4468, df = 5, p-value = 0.2651
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | 0.6076923 | -0.2611852 | 1.4765698 | 0.3371345 |
Other-Arts and Humanities | 0.3000000 | -1.3291681 | 1.9291681 | 0.9948376 |
Science and Mathematics-Arts and Humanities | 0.0931034 | -0.5706669 | 0.7568738 | 0.9985850 |
Social Sciences-Arts and Humanities | 0.3975610 | -0.2072823 | 1.0024043 | 0.4084624 |
Technical Sciences and Engineering-Arts and Humanities | 0.1292683 | -0.4755750 | 0.7341116 | 0.9897056 |
Other-Health Sciences | -0.3076923 | -2.0509034 | 1.4355188 | 0.9957686 |
Science and Mathematics-Health Sciences | -0.5145889 | -1.4229870 | 0.3938093 | 0.5774041 |
Social Sciences-Health Sciences | -0.2101313 | -1.0764059 | 0.6561432 | 0.9817517 |
Technical Sciences and Engineering-Health Sciences | -0.4784240 | -1.3446986 | 0.3878506 | 0.6043924 |
Science and Mathematics-Other | -0.2068966 | -1.8574806 | 1.4436875 | 0.9991783 |
Social Sciences-Other | 0.0975610 | -1.5302204 | 1.7253423 | 0.9999783 |
Technical Sciences and Engineering-Other | -0.1707317 | -1.7985131 | 1.4570497 | 0.9996554 |
Social Sciences-Science and Mathematics | 0.3044575 | -0.3559019 | 0.9648170 | 0.7680600 |
Technical Sciences and Engineering-Science and Mathematics | 0.0361648 | -0.6241946 | 0.6965243 | 0.9999861 |
Technical Sciences and Engineering-Social Sciences | -0.2682927 | -0.8693908 | 0.3328054 | 0.7915659 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | -1.8504288 | 0.0642518 | 0.9637765 |
Arts and Humanities - Other | -0.2987858 | 0.7651035 | 1.0000000 |
Health Sciences - Other | 0.6430797 | 0.5201724 | 1.0000000 |
Arts and Humanities - Science and Mathematics | -0.0165999 | 0.9867558 | 0.9867558 |
Health Sciences - Science and Mathematics | 1.7577946 | 0.0787825 | 1.0000000 |
Other - Science and Mathematics | 0.2882336 | 0.7731679 | 1.0000000 |
Arts and Humanities - Social Sciences | -1.6887000 | 0.0912769 | 1.0000000 |
Health Sciences - Social Sciences | 0.6769183 | 0.4984578 | 1.0000000 |
Other - Social Sciences | -0.3284388 | 0.7425799 | 1.0000000 |
Science and Mathematics - Social Sciences | -1.5300460 | 0.1260053 | 1.0000000 |
Arts and Humanities - Technical Sciences and Engineering | -0.2725186 | 0.7852233 | 1.0000000 |
Health Sciences - Technical Sciences and Engineering | 1.6657131 | 0.0957706 | 1.0000000 |
Other - Technical Sciences and Engineering | 0.1977792 | 0.8432178 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | -0.2329224 | 0.8158217 | 1.0000000 |
Social Sciences - Technical Sciences and Engineering | 1.4250050 | 0.1541557 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 9.68 1.936 1.794 0.117
Residuals 161 173.75 1.079
One-way analysis of means (not assuming equal variances)
data: podaci$Q3 and podaci$`Study field`
F = 1.8865, num df = 5.000, denom df = 20.029, p-value = 0.1418
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.5562 0.1754
161
Kruskal-Wallis rank sum test
data: Q3 by Study field
Kruskal-Wallis chi-squared = 9.0144, df = 5, p-value = 0.1085
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.2288462 | -1.1854427 | 0.7277504 | 0.9828476 |
Other-Arts and Humanities | 0.2583333 | -1.5353103 | 2.0519769 | 0.9983929 |
Science and Mathematics-Arts and Humanities | 0.1318966 | -0.5988859 | 0.8626790 | 0.9953010 |
Social Sciences-Arts and Humanities | 0.5347561 | -0.1311502 | 1.2006624 | 0.1936032 |
Technical Sciences and Engineering-Arts and Humanities | 0.3640244 | -0.3018819 | 1.0299307 | 0.6150250 |
Other-Health Sciences | 0.4871795 | -1.4320205 | 2.4063795 | 0.9776760 |
Science and Mathematics-Health Sciences | 0.3607427 | -0.6393644 | 1.3608498 | 0.9035404 |
Social Sciences-Health Sciences | 0.7636023 | -0.1901286 | 1.7173331 | 0.1963612 |
Technical Sciences and Engineering-Health Sciences | 0.5928705 | -0.3608603 | 1.5466014 | 0.4731677 |
Science and Mathematics-Other | -0.1264368 | -1.9436585 | 1.6907849 | 0.9999544 |
Social Sciences-Other | 0.2764228 | -1.5156941 | 2.0685396 | 0.9977682 |
Technical Sciences and Engineering-Other | 0.1056911 | -1.6864258 | 1.8978079 | 0.9999799 |
Social Sciences-Science and Mathematics | 0.4028595 | -0.3241676 | 1.1298867 | 0.6009005 |
Technical Sciences and Engineering-Science and Mathematics | 0.2321278 | -0.4948993 | 0.9591550 | 0.9406541 |
Technical Sciences and Engineering-Social Sciences | -0.1707317 | -0.8325147 | 0.4910513 | 0.9760271 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | 0.7337939 | 0.4630744 | 1.0000000 |
Arts and Humanities - Other | -0.4008168 | 0.6885550 | 1.0000000 |
Health Sciences - Other | -0.7403435 | 0.4590916 | 1.0000000 |
Arts and Humanities - Science and Mathematics | -0.5297773 | 0.5962663 | 1.0000000 |
Health Sciences - Science and Mathematics | -1.0889800 | 0.2761627 | 1.0000000 |
Other - Science and Mathematics | 0.1825703 | 0.8551352 | 0.8551352 |
Arts and Humanities - Social Sciences | -2.2588684 | 0.0238916 | 0.3344820 |
Health Sciences - Social Sciences | -2.3131678 | 0.0207134 | 0.3107012 |
Other - Social Sciences | -0.4381813 | 0.6612548 | 1.0000000 |
Science and Mathematics - Social Sciences | -1.5364527 | 0.1244274 | 1.0000000 |
Arts and Humanities - Technical Sciences and Engineering | -1.6549181 | 0.0979411 | 1.0000000 |
Health Sciences - Technical Sciences and Engineering | -1.8914824 | 0.0585600 | 0.7612797 |
Other - Technical Sciences and Engineering | -0.2137683 | 0.8307277 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | -0.9832762 | 0.3254715 | 1.0000000 |
Social Sciences - Technical Sciences and Engineering | 0.6077133 | 0.5433776 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 10.46 2.0929 3.482 0.00514 **
Residuals 161 96.78 0.6011
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q4 and podaci$`Study field`
F = 3.5331, num df = 5.000, denom df = 19.346, p-value = 0.01955
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.4297 0.2163
161
Kruskal-Wallis rank sum test
data: Q4 by Study field
Kruskal-Wallis chi-squared = 17.036, df = 5, p-value = 0.004433
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.0288462 | -0.7427937 | 0.6851014 | 0.9999969 |
Other-Arts and Humanities | -0.2083333 | -1.5470037 | 1.1303370 | 0.9976710 |
Science and Mathematics-Arts and Humanities | 0.5043103 | -0.0411028 | 1.0497235 | 0.0877068 |
Social Sciences-Arts and Humanities | 0.5884146 | 0.0914212 | 1.0854080 | 0.0103045 |
Technical Sciences and Engineering-Arts and Humanities | 0.3445122 | -0.1524812 | 0.8415056 | 0.3472372 |
Other-Health Sciences | -0.1794872 | -1.6118655 | 1.2528911 | 0.9991796 |
Science and Mathematics-Health Sciences | 0.5331565 | -0.2132648 | 1.2795778 | 0.3135470 |
Social Sciences-Health Sciences | 0.6172608 | -0.0945479 | 1.3290695 | 0.1298661 |
Technical Sciences and Engineering-Health Sciences | 0.3733583 | -0.3384504 | 1.0851671 | 0.6565047 |
Science and Mathematics-Other | 0.7126437 | -0.6436240 | 2.0689113 | 0.6547908 |
Social Sciences-Other | 0.7967480 | -0.5407829 | 2.1342789 | 0.5218663 |
Technical Sciences and Engineering-Other | 0.5528455 | -0.7846854 | 1.8903764 | 0.8400685 |
Social Sciences-Science and Mathematics | 0.0841043 | -0.4585061 | 0.6267147 | 0.9977155 |
Technical Sciences and Engineering-Science and Mathematics | -0.1597981 | -0.7024086 | 0.3828123 | 0.9575887 |
Technical Sciences and Engineering-Social Sciences | -0.2439024 | -0.7378185 | 0.2500136 | 0.7122152 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | 0.5262436 | 0.5987190 | 1.0000000 |
Arts and Humanities - Other | 0.6529673 | 0.5137773 | 1.0000000 |
Health Sciences - Other | 0.3479512 | 0.7278768 | 0.7278768 |
Arts and Humanities - Science and Mathematics | -2.4633031 | 0.0137663 | 0.1789625 |
Health Sciences - Science and Mathematics | -2.3032947 | 0.0212623 | 0.2551472 |
Other - Science and Mathematics | -1.6350946 | 0.1020292 | 0.8162338 |
Arts and Humanities - Social Sciences | -3.1685092 | 0.0015322 | 0.0229834 |
Health Sciences - Social Sciences | -2.7401159 | 0.0061418 | 0.0859845 |
Other - Social Sciences | -1.8308633 | 0.0671210 | 0.7383305 |
Science and Mathematics - Social Sciences | -0.4261074 | 0.6700296 | 1.0000000 |
Arts and Humanities - Technical Sciences and Engineering | -1.7047128 | 0.0882480 | 0.7942320 |
Health Sciences - Technical Sciences and Engineering | -1.7180757 | 0.0857828 | 0.8578280 |
Other - Technical Sciences and Engineering | -1.2869527 | 0.1981108 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | 0.9146283 | 0.3603868 | 1.0000000 |
Social Sciences - Technical Sciences and Engineering | 1.4729167 | 0.1407735 | 0.9854146 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 5.66 1.133 1.12 0.352
Residuals 161 162.88 1.012
One-way analysis of means (not assuming equal variances)
data: podaci$Q5 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.8654 0.1032
161
Kruskal-Wallis rank sum test
data: Q5 by Study field
Kruskal-Wallis chi-squared = 6.0792, df = 5, p-value = 0.2986
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.3019231 | -1.2281103 | 0.6242642 | 0.9354123 |
Other-Arts and Humanities | 0.7750000 | -0.9616253 | 2.5116253 | 0.7916748 |
Science and Mathematics-Arts and Humanities | 0.2232759 | -0.4842757 | 0.9308274 | 0.9434416 |
Social Sciences-Arts and Humanities | 0.0189024 | -0.6258353 | 0.6636402 | 0.9999994 |
Technical Sciences and Engineering-Arts and Humanities | 0.2628049 | -0.3819329 | 0.9075427 | 0.8478220 |
Other-Health Sciences | 1.0769231 | -0.7812673 | 2.9351135 | 0.5525056 |
Science and Mathematics-Health Sciences | 0.5251989 | -0.4431157 | 1.4935136 | 0.6230938 |
Social Sciences-Health Sciences | 0.3208255 | -0.6025871 | 1.2442381 | 0.9166648 |
Technical Sciences and Engineering-Health Sciences | 0.5647280 | -0.3586847 | 1.4881406 | 0.4919423 |
Science and Mathematics-Other | -0.5517241 | -2.3111780 | 1.2077298 | 0.9448917 |
Social Sciences-Other | -0.7560976 | -2.4912447 | 0.9790496 | 0.8077866 |
Technical Sciences and Engineering-Other | -0.5121951 | -2.2473423 | 1.2229520 | 0.9571683 |
Social Sciences-Science and Mathematics | -0.2043734 | -0.9082891 | 0.4995422 | 0.9600664 |
Technical Sciences and Engineering-Science and Mathematics | 0.0395290 | -0.6643866 | 0.7434447 | 0.9999843 |
Technical Sciences and Engineering-Social Sciences | 0.2439024 | -0.3968431 | 0.8846480 | 0.8816018 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | 0.9514571 | 0.3413724 | 1.0000000 |
Arts and Humanities - Other | -1.3781282 | 0.1681637 | 1.0000000 |
Health Sciences - Other | -1.7622089 | 0.0780340 | 1.0000000 |
Arts and Humanities - Science and Mathematics | -1.0692392 | 0.2849619 | 1.0000000 |
Health Sciences - Science and Mathematics | -1.6913606 | 0.0907680 | 1.0000000 |
Other - Science and Mathematics | 0.9302605 | 0.3522362 | 1.0000000 |
Arts and Humanities - Social Sciences | -0.1389695 | 0.8894742 | 1.0000000 |
Health Sciences - Social Sciences | -1.0513462 | 0.2930996 | 1.0000000 |
Other - Social Sciences | 1.3276646 | 0.1842889 | 1.0000000 |
Science and Mathematics - Social Sciences | 0.9474756 | 0.3433965 | 1.0000000 |
Arts and Humanities - Technical Sciences and Engineering | -1.1693602 | 0.2422585 | 1.0000000 |
Health Sciences - Technical Sciences and Engineering | -1.7707773 | 0.0765977 | 1.0000000 |
Other - Technical Sciences and Engineering | 0.9447969 | 0.3447626 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | 0.0037094 | 0.9970403 | 0.9970403 |
Social Sciences - Technical Sciences and Engineering | -1.0368106 | 0.2998241 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 5.14 1.027 1.016 0.41
Residuals 161 162.79 1.011
One-way analysis of means (not assuming equal variances)
data: podaci$Q6 and podaci$`Study field`
F = 1.2814, num df = 5.000, denom df = 19.844, p-value = 0.311
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 0.8355 0.5263
161
Kruskal-Wallis rank sum test
data: Q6 by Study field
Kruskal-Wallis chi-squared = 6.1788, df = 5, p-value = 0.2892
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | 0.0903846 | -0.8355649 | 1.0163341 | 0.9997577 |
Other-Arts and Humanities | 0.8083333 | -0.9278462 | 2.5445129 | 0.7606053 |
Science and Mathematics-Arts and Humanities | 0.4750000 | -0.2323699 | 1.1823699 | 0.3836957 |
Social Sciences-Arts and Humanities | 0.2554878 | -0.3890845 | 0.9000601 | 0.8624795 |
Technical Sciences and Engineering-Arts and Humanities | 0.2067073 | -0.4378650 | 0.8512796 | 0.9395786 |
Other-Health Sciences | 0.7179487 | -1.1397647 | 2.5756621 | 0.8747126 |
Science and Mathematics-Health Sciences | 0.3846154 | -0.5834507 | 1.3526815 | 0.8612917 |
Social Sciences-Health Sciences | 0.1651032 | -0.7580724 | 1.0882788 | 0.9954988 |
Technical Sciences and Engineering-Health Sciences | 0.1163227 | -0.8068529 | 1.0394983 | 0.9991573 |
Science and Mathematics-Other | -0.3333333 | -2.0923356 | 1.4256689 | 0.9940968 |
Social Sciences-Other | -0.5528455 | -2.2875473 | 1.1818562 | 0.9410987 |
Technical Sciences and Engineering-Other | -0.6016260 | -2.3363278 | 1.1330757 | 0.9172461 |
Social Sciences-Science and Mathematics | -0.2195122 | -0.9232472 | 0.4842228 | 0.9460803 |
Technical Sciences and Engineering-Science and Mathematics | -0.2682927 | -0.9720276 | 0.4354423 | 0.8809165 |
Technical Sciences and Engineering-Social Sciences | -0.0487805 | -0.6893616 | 0.5918006 | 0.9999287 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | -0.1475773 | 0.8826764 | 1.0000000 |
Arts and Humanities - Other | -1.4298280 | 0.1527664 | 1.0000000 |
Health Sciences - Other | -1.2627292 | 0.2066865 | 1.0000000 |
Arts and Humanities - Science and Mathematics | -2.1184136 | 0.0341401 | 0.5121008 |
Health Sciences - Science and Mathematics | -1.4067768 | 0.1594936 | 1.0000000 |
Other - Science and Mathematics | 0.5593717 | 0.5759080 | 1.0000000 |
Arts and Humanities - Social Sciences | -1.2033327 | 0.2288476 | 1.0000000 |
Health Sciences - Social Sciences | -0.6921606 | 0.4888365 | 1.0000000 |
Other - Social Sciences | 0.9839175 | 0.3251561 | 1.0000000 |
Science and Mathematics - Social Sciences | 1.0271867 | 0.3043326 | 1.0000000 |
Arts and Humanities - Technical Sciences and Engineering | -1.1303622 | 0.2583236 | 1.0000000 |
Health Sciences - Technical Sciences and Engineering | -0.6412117 | 0.5213851 | 1.0000000 |
Other - Technical Sciences and Engineering | 1.0110315 | 0.3120014 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | 1.0940226 | 0.2739451 | 1.0000000 |
Social Sciences - Technical Sciences and Engineering | 0.0734251 | 0.9414678 | 0.9414678 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 13.68 2.7356 3.224 0.00841 **
Residuals 161 136.60 0.8484
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q7 and podaci$`Study field`
F = 2.7834, num df = 5.000, denom df = 19.629, p-value = 0.04637
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.4274 0.2171
161
Kruskal-Wallis rank sum test
data: Q7 by Study field
Kruskal-Wallis chi-squared = 13.358, df = 5, p-value = 0.02024
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | 0.8615385 | 0.0133497 | 1.7097272 | 0.0441741 |
Other-Arts and Humanities | 1.0666667 | -0.5237094 | 2.6570427 | 0.3850738 |
Science and Mathematics-Arts and Humanities | 0.6068966 | -0.0410688 | 1.2548619 | 0.0804943 |
Social Sciences-Arts and Humanities | 0.4731707 | -0.1172707 | 1.0636122 | 0.1955120 |
Technical Sciences and Engineering-Arts and Humanities | 0.6439024 | 0.0534610 | 1.2343439 | 0.0238039 |
Other-Health Sciences | 0.2051282 | -1.4965754 | 1.9068318 | 0.9993204 |
Science and Mathematics-Health Sciences | -0.2546419 | -1.1414103 | 0.6321265 | 0.9618923 |
Social Sciences-Health Sciences | -0.3883677 | -1.2340155 | 0.4572800 | 0.7709826 |
Technical Sciences and Engineering-Health Sciences | -0.2176360 | -1.0632838 | 0.6280117 | 0.9762822 |
Science and Mathematics-Other | -0.4597701 | -2.0710523 | 1.1515120 | 0.9629068 |
Social Sciences-Other | -0.5934959 | -2.1825183 | 0.9955264 | 0.8897754 |
Technical Sciences and Engineering-Other | -0.4227642 | -2.0117866 | 1.1662581 | 0.9725708 |
Social Sciences-Science and Mathematics | -0.1337258 | -0.7783615 | 0.5109098 | 0.9910221 |
Technical Sciences and Engineering-Science and Mathematics | 0.0370059 | -0.6076298 | 0.6816415 | 0.9999824 |
Technical Sciences and Engineering-Social Sciences | 0.1707317 | -0.4160537 | 0.7575171 | 0.9597018 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | -2.7004396 | 0.0069248 | 0.0969471 |
Arts and Humanities - Other | -1.8839291 | 0.0595746 | 0.6553203 |
Health Sciences - Other | -0.4146864 | 0.6783715 | 1.0000000 |
Arts and Humanities - Science and Mathematics | -2.4924354 | 0.0126870 | 0.1649316 |
Health Sciences - Science and Mathematics | 0.7617216 | 0.4462262 | 1.0000000 |
Other - Science and Mathematics | 0.8571708 | 0.3913505 | 1.0000000 |
Arts and Humanities - Social Sciences | -1.9966968 | 0.0458581 | 0.5502975 |
Health Sciences - Social Sciences | 1.3144360 | 0.1886995 | 1.0000000 |
Other - Social Sciences | 1.1436108 | 0.2527851 | 1.0000000 |
Science and Mathematics - Social Sciences | 0.6764739 | 0.4987398 | 1.0000000 |
Arts and Humanities - Technical Sciences and Engineering | -2.7089037 | 0.0067506 | 0.1012589 |
Health Sciences - Technical Sciences and Engineering | 0.8171646 | 0.4138344 | 1.0000000 |
Other - Technical Sciences and Engineering | 0.8789724 | 0.3794163 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | 0.0241420 | 0.9807393 | 0.9807393 |
Social Sciences - Technical Sciences and Engineering | -0.7166443 | 0.4735936 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 1.62 0.3248 0.447 0.815
Residuals 161 117.03 0.7269
One-way analysis of means (not assuming equal variances)
data: podaci$Q8 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.9442 0.08983 .
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q8 by Study field
Kruskal-Wallis chi-squared = 5.6074, df = 5, p-value = 0.3463
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | 0.0884615 | -0.6966453 | 0.8735684 | 0.9995109 |
Other-Arts and Humanities | -0.4500000 | -1.9220959 | 1.0220959 | 0.9504137 |
Science and Mathematics-Arts and Humanities | 0.1017241 | -0.4980504 | 0.7014987 | 0.9964950 |
Social Sciences-Arts and Humanities | -0.1085366 | -0.6550654 | 0.4379923 | 0.9926596 |
Technical Sciences and Engineering-Arts and Humanities | -0.0841463 | -0.6306752 | 0.4623825 | 0.9977874 |
Other-Health Sciences | -0.5384615 | -2.1136053 | 1.0366822 | 0.9218388 |
Science and Mathematics-Health Sciences | 0.0132626 | -0.8075546 | 0.8340798 | 1.0000000 |
Social Sciences-Health Sciences | -0.1969981 | -0.9797530 | 0.5857567 | 0.9785075 |
Technical Sciences and Engineering-Health Sciences | -0.1726079 | -0.9553627 | 0.6101470 | 0.9881255 |
Science and Mathematics-Other | 0.5517241 | -0.9397230 | 2.0431713 | 0.8937284 |
Social Sciences-Other | 0.3414634 | -1.1293795 | 1.8123063 | 0.9850104 |
Technical Sciences and Engineering-Other | 0.3658537 | -1.1049892 | 1.8366965 | 0.9795955 |
Social Sciences-Science and Mathematics | -0.2102607 | -0.8069532 | 0.3864318 | 0.9119136 |
Technical Sciences and Engineering-Science and Mathematics | -0.1858705 | -0.7825630 | 0.4108220 | 0.9463820 |
Technical Sciences and Engineering-Social Sciences | 0.0243902 | -0.5187545 | 0.5675350 | 0.9999948 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | -0.3206901 | 0.7484453 | 1.0000000 |
Arts and Humanities - Other | 1.6616726 | 0.0965784 | 1.0000000 |
Health Sciences - Other | 1.7128071 | 0.0867480 | 1.0000000 |
Arts and Humanities - Science and Mathematics | -0.4864066 | 0.6266789 | 1.0000000 |
Health Sciences - Science and Mathematics | -0.0486812 | 0.9611734 | 0.9611734 |
Other - Science and Mathematics | -1.8357176 | 0.0663994 | 0.9959915 |
Arts and Humanities - Social Sciences | 0.2498156 | 0.8027299 | 1.0000000 |
Health Sciences - Social Sciences | 0.4960779 | 0.6198394 | 1.0000000 |
Other - Social Sciences | -1.5702629 | 0.1163540 | 1.0000000 |
Science and Mathematics - Social Sciences | 0.7177328 | 0.4729221 | 1.0000000 |
Arts and Humanities - Technical Sciences and Engineering | 1.1530746 | 0.2488797 | 1.0000000 |
Health Sciences - Technical Sciences and Engineering | 1.1267442 | 0.2598506 | 1.0000000 |
Other - Technical Sciences and Engineering | -1.2346342 | 0.2169667 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | 1.5450552 | 0.1223329 | 1.0000000 |
Social Sciences - Technical Sciences and Engineering | 0.9088868 | 0.3634099 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 18.65 3.730 2.809 0.0184 *
Residuals 161 213.82 1.328
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q9 and podaci$`Study field`
F = 6.8259, num df = 5.000, denom df = 20.297, p-value = 0.0006984
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 4.1315 0.001476 **
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q9 by Study field
Kruskal-Wallis chi-squared = 11.779, df = 5, p-value = 0.03795
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.5365385 | -1.5977243 | 0.5246474 | 0.6911437 |
Other-Arts and Humanities | 1.5916667 | -0.3980846 | 3.5814179 | 0.1971873 |
Science and Mathematics-Arts and Humanities | -0.5922414 | -1.4029238 | 0.2184410 | 0.2888568 |
Social Sciences-Arts and Humanities | -0.2213415 | -0.9600545 | 0.5173716 | 0.9543911 |
Technical Sciences and Engineering-Arts and Humanities | -0.0018293 | -0.7405423 | 0.7368838 | 1.0000000 |
Other-Health Sciences | 2.1282051 | -0.0008302 | 4.2572405 | 0.0501523 |
Science and Mathematics-Health Sciences | -0.0557029 | -1.1651565 | 1.0537507 | 0.9999910 |
Social Sciences-Health Sciences | 0.3151970 | -0.7428098 | 1.3732038 | 0.9554774 |
Technical Sciences and Engineering-Health Sciences | 0.5347092 | -0.5232976 | 1.5927160 | 0.6915224 |
Science and Mathematics-Other | -2.1839080 | -4.1998153 | -0.1680008 | 0.0253173 |
Social Sciences-Other | -1.8130081 | -3.8010657 | 0.1750495 | 0.0959103 |
Technical Sciences and Engineering-Other | -1.5934959 | -3.5815535 | 0.3945617 | 0.1953403 |
Social Sciences-Science and Mathematics | 0.3708999 | -0.4356166 | 1.1774164 | 0.7699672 |
Technical Sciences and Engineering-Science and Mathematics | 0.5904121 | -0.2161044 | 1.3969286 | 0.2866306 |
Technical Sciences and Engineering-Social Sciences | 0.2195122 | -0.5146267 | 0.9536511 | 0.9547889 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | 1.2197892 | 0.2225448 | 1.0000000 |
Arts and Humanities - Other | -2.2158036 | 0.0267050 | 0.3204595 |
Health Sciences - Other | -2.6788287 | 0.0073880 | 0.1034323 |
Arts and Humanities - Science and Mathematics | 1.6589720 | 0.0971214 | 0.8740929 |
Health Sciences - Science and Mathematics | 0.0454966 | 0.9637115 | 0.9637115 |
Other - Science and Mathematics | 2.8541974 | 0.0043146 | 0.0647186 |
Arts and Humanities - Social Sciences | 0.6445127 | 0.5192430 | 1.0000000 |
Health Sciences - Social Sciences | -0.7734479 | 0.4392574 | 1.0000000 |
Other - Social Sciences | 2.4571762 | 0.0140034 | 0.1820442 |
Science and Mathematics - Social Sciences | -1.0772122 | 0.2813855 | 1.0000000 |
Arts and Humanities - Technical Sciences and Engineering | -0.3913729 | 0.6955216 | 1.0000000 |
Health Sciences - Technical Sciences and Engineering | -1.4967156 | 0.1344673 | 1.0000000 |
Other - Technical Sciences and Engineering | 2.0722668 | 0.0382406 | 0.4206463 |
Science and Mathematics - Technical Sciences and Engineering | -2.0260113 | 0.0427636 | 0.4276363 |
Social Sciences - Technical Sciences and Engineering | -1.0423397 | 0.2972542 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 3.58 0.717 0.513 0.766
Residuals 161 225.07 1.398
One-way analysis of means (not assuming equal variances)
data: podaci$Q10 and podaci$`Study field`
F = 0.50894, num df = 5.000, denom df = 18.964, p-value = 0.766
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 0.5199 0.761
161
Kruskal-Wallis rank sum test
data: Q10 by Study field
Kruskal-Wallis chi-squared = 2.7031, df = 5, p-value = 0.7456
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | 0.2115385 | -0.8772253 | 1.3003023 | 0.9933688 |
Other-Arts and Humanities | 0.7500000 | -1.2914606 | 2.7914606 | 0.8964891 |
Science and Mathematics-Arts and Humanities | 0.1982759 | -0.6334744 | 1.0300261 | 0.9831174 |
Social Sciences-Arts and Humanities | 0.3353659 | -0.4225448 | 1.0932765 | 0.7975364 |
Technical Sciences and Engineering-Arts and Humanities | 0.0914634 | -0.6664472 | 0.8493740 | 0.9993167 |
Other-Health Sciences | 0.5384615 | -1.6459029 | 2.7228260 | 0.9803951 |
Science and Mathematics-Health Sciences | -0.0132626 | -1.1515486 | 1.1250234 | 1.0000000 |
Social Sciences-Health Sciences | 0.1238274 | -0.9616747 | 1.2093295 | 0.9994805 |
Technical Sciences and Engineering-Health Sciences | -0.1200750 | -1.2055772 | 0.9654271 | 0.9995529 |
Science and Mathematics-Other | -0.5517241 | -2.6200205 | 1.5165722 | 0.9722552 |
Social Sciences-Other | -0.4146341 | -2.4543571 | 1.6250888 | 0.9918232 |
Technical Sciences and Engineering-Other | -0.6585366 | -2.6982596 | 1.3811864 | 0.9378958 |
Social Sciences-Science and Mathematics | 0.1370900 | -0.6903862 | 0.9645662 | 0.9968636 |
Technical Sciences and Engineering-Science and Mathematics | -0.1068124 | -0.9342886 | 0.7206637 | 0.9990527 |
Technical Sciences and Engineering-Social Sciences | -0.2439024 | -0.9971201 | 0.5093152 | 0.9371420 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | -0.5712913 | 0.5678022 | 1.0000000 |
Arts and Humanities - Other | -1.0953583 | 0.2733597 | 1.0000000 |
Health Sciences - Other | -0.7389470 | 0.4599392 | 1.0000000 |
Arts and Humanities - Science and Mathematics | -0.5642904 | 0.5725565 | 1.0000000 |
Health Sciences - Science and Mathematics | 0.1341074 | 0.8933176 | 0.8933176 |
Other - Science and Mathematics | 0.8542210 | 0.3929826 | 1.0000000 |
Arts and Humanities - Social Sciences | -1.3191620 | 0.1871150 | 1.0000000 |
Health Sciences - Social Sciences | -0.3480468 | 0.7278050 | 1.0000000 |
Other - Social Sciences | 0.6061234 | 0.5444328 | 1.0000000 |
Science and Mathematics - Social Sciences | -0.6410555 | 0.5214866 | 1.0000000 |
Arts and Humanities - Technical Sciences and Engineering | -0.3702555 | 0.7111921 | 1.0000000 |
Health Sciences - Technical Sciences and Engineering | 0.3144910 | 0.7531481 | 1.0000000 |
Other - Technical Sciences and Engineering | 0.9587136 | 0.3377030 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | 0.2280768 | 0.8195866 | 1.0000000 |
Social Sciences - Technical Sciences and Engineering | 0.9548187 | 0.3396694 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 4.75 0.9491 0.719 0.61
Residuals 161 212.66 1.3208
One-way analysis of means (not assuming equal variances)
data: podaci$Q11 and podaci$`Study field`
F = 0.69173, num df = 5.000, denom df = 18.966, p-value = 0.6359
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 0.9718 0.4368
161
Kruskal-Wallis rank sum test
data: Q11 by Study field
Kruskal-Wallis chi-squared = 4.0599, df = 5, p-value = 0.5408
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | 0.2826923 | -0.7756102 | 1.3409948 | 0.9720893 |
Other-Arts and Humanities | -0.0250000 | -2.0093449 | 1.9593449 | 1.0000000 |
Science and Mathematics-Arts and Humanities | -0.1629310 | -0.9714107 | 0.6455487 | 0.9921438 |
Social Sciences-Arts and Humanities | -0.3176829 | -1.0543888 | 0.4190230 | 0.8145473 |
Technical Sciences and Engineering-Arts and Humanities | -0.0006098 | -0.7373157 | 0.7360961 | 1.0000000 |
Other-Health Sciences | -0.3076923 | -2.4309429 | 1.8155583 | 0.9983447 |
Science and Mathematics-Health Sciences | -0.4456233 | -1.5520625 | 0.6608158 | 0.8542541 |
Social Sciences-Health Sciences | -0.6003752 | -1.6555073 | 0.4547569 | 0.5725958 |
Technical Sciences and Engineering-Health Sciences | -0.2833021 | -1.3384342 | 0.7718300 | 0.9714566 |
Science and Mathematics-Other | -0.1379310 | -2.1483609 | 1.8724988 | 0.9999575 |
Social Sciences-Other | -0.2926829 | -2.2753388 | 1.6899730 | 0.9981910 |
Technical Sciences and Engineering-Other | 0.0243902 | -1.9582657 | 2.0070461 | 1.0000000 |
Social Sciences-Science and Mathematics | -0.1547519 | -0.9590771 | 0.6495733 | 0.9936640 |
Technical Sciences and Engineering-Science and Mathematics | 0.1623213 | -0.6420039 | 0.9666464 | 0.9920927 |
Technical Sciences and Engineering-Social Sciences | 0.3170732 | -0.4150710 | 1.0492174 | 0.8117964 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | -1.0737481 | 0.2829356 | 1.0000000 |
Arts and Humanities - Other | -0.2468280 | 0.8050414 | 1.0000000 |
Health Sciences - Other | 0.3045135 | 0.7607367 | 1.0000000 |
Arts and Humanities - Science and Mathematics | 0.2492995 | 0.8031291 | 1.0000000 |
Health Sciences - Science and Mathematics | 1.2091979 | 0.2265868 | 1.0000000 |
Other - Science and Mathematics | 0.3438794 | 0.7309370 | 1.0000000 |
Arts and Humanities - Social Sciences | 1.1173431 | 0.2638477 | 1.0000000 |
Health Sciences - Social Sciences | 1.8571168 | 0.0632945 | 0.9494181 |
Other - Social Sciences | 0.6622153 | 0.5078333 | 1.0000000 |
Science and Mathematics - Social Sciences | 0.7728213 | 0.4396281 | 1.0000000 |
Arts and Humanities - Technical Sciences and Engineering | -0.1324361 | 0.8946394 | 0.8946394 |
Health Sciences - Technical Sciences and Engineering | 0.9845060 | 0.3248668 | 1.0000000 |
Other - Technical Sciences and Engineering | 0.1978283 | 0.8431794 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | -0.3718895 | 0.7099751 | 1.0000000 |
Social Sciences - Technical Sciences and Engineering | -1.2575660 | 0.2085488 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 9.07 1.815 1.22 0.302
Residuals 161 239.42 1.487
One-way analysis of means (not assuming equal variances)
data: podaci$Q12 and podaci$`Study field`
F = 1.1779, num df = 5.000, denom df = 20.492, p-value = 0.3538
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.5085 0.19
161
Kruskal-Wallis rank sum test
data: Q12 by Study field
Kruskal-Wallis chi-squared = 6.1297, df = 5, p-value = 0.2938
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.3903846 | -1.5133032 | 0.7325340 | 0.9164595 |
Other-Arts and Humanities | -0.1083333 | -2.2138351 | 1.9971684 | 0.9999898 |
Science and Mathematics-Arts and Humanities | -0.4301724 | -1.2880149 | 0.4276701 | 0.6986012 |
Social Sciences-Arts and Humanities | -0.6530488 | -1.4347352 | 0.1286377 | 0.1590696 |
Technical Sciences and Engineering-Arts and Humanities | -0.3847561 | -1.1664426 | 0.3969304 | 0.7150410 |
Other-Health Sciences | 0.2820513 | -1.9708372 | 2.5349397 | 0.9991831 |
Science and Mathematics-Health Sciences | -0.0397878 | -1.2137821 | 1.1342065 | 0.9999987 |
Social Sciences-Health Sciences | -0.2626642 | -1.3822188 | 0.8568904 | 0.9842824 |
Technical Sciences and Engineering-Health Sciences | 0.0056285 | -1.1139261 | 1.1251831 | 1.0000000 |
Science and Mathematics-Other | -0.3218391 | -2.4550184 | 1.8113402 | 0.9979920 |
Social Sciences-Other | -0.5447154 | -2.6484250 | 1.5589941 | 0.9756398 |
Technical Sciences and Engineering-Other | -0.2764228 | -2.3801323 | 1.8272868 | 0.9989675 |
Social Sciences-Science and Mathematics | -0.2228764 | -1.0763107 | 0.6305579 | 0.9747102 |
Technical Sciences and Engineering-Science and Mathematics | 0.0454163 | -0.8080180 | 0.8988506 | 0.9999880 |
Technical Sciences and Engineering-Social Sciences | 0.2682927 | -0.5085536 | 1.0451389 | 0.9186095 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | 1.0334072 | 0.3014134 | 1.0000000 |
Arts and Humanities - Other | 0.3908762 | 0.6958887 | 1.0000000 |
Health Sciences - Other | -0.1497817 | 0.8809368 | 1.0000000 |
Arts and Humanities - Science and Mathematics | 1.5236418 | 0.1275982 | 1.0000000 |
Health Sciences - Science and Mathematics | 0.1248835 | 0.9006158 | 1.0000000 |
Other - Science and Mathematics | 0.2269167 | 0.8204885 | 1.0000000 |
Arts and Humanities - Social Sciences | 2.4168331 | 0.0156562 | 0.2348429 |
Health Sciences - Social Sciences | 0.6509495 | 0.5150791 | 1.0000000 |
Other - Social Sciences | 0.5068262 | 0.6122768 | 1.0000000 |
Science and Mathematics - Social Sciences | 0.6821392 | 0.4951509 | 1.0000000 |
Arts and Humanities - Technical Sciences and Engineering | 1.5324989 | 0.1253994 | 1.0000000 |
Health Sciences - Technical Sciences and Engineering | 0.0334968 | 0.9732784 | 0.9732784 |
Other - Technical Sciences and Engineering | 0.1782295 | 0.8585428 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | -0.1278494 | 0.8982681 | 1.0000000 |
Social Sciences - Technical Sciences and Engineering | -0.8898442 | 0.3735496 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 11.15 2.231 1.335 0.252
Residuals 161 269.03 1.671
One-way analysis of means (not assuming equal variances)
data: podaci$Q13 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 2.0476 0.07475 .
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q13 by Study field
Kruskal-Wallis chi-squared = 6.5495, df = 5, p-value = 0.2564
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.7576923 | -1.9480242 | 0.4326396 | 0.4457377 |
Other-Arts and Humanities | 0.5500000 | -1.6819035 | 2.7819035 | 0.9804237 |
Science and Mathematics-Arts and Humanities | -0.1051724 | -1.0145147 | 0.8041698 | 0.9994444 |
Social Sciences-Arts and Humanities | 0.0865854 | -0.7420289 | 0.9151996 | 0.9996616 |
Technical Sciences and Engineering-Arts and Humanities | -0.3524390 | -1.1810533 | 0.4761752 | 0.8231508 |
Other-Health Sciences | 1.3076923 | -1.0804462 | 3.6958308 | 0.6132896 |
Science and Mathematics-Health Sciences | 0.6525199 | -0.5919540 | 1.8969938 | 0.6568507 |
Social Sciences-Health Sciences | 0.8442777 | -0.3424883 | 2.0310437 | 0.3180281 |
Technical Sciences and Engineering-Health Sciences | 0.4052533 | -0.7815127 | 1.5920193 | 0.9221761 |
Science and Mathematics-Other | -0.6551724 | -2.9164151 | 1.6060703 | 0.9604141 |
Social Sciences-Other | -0.4634146 | -2.6934184 | 1.7665891 | 0.9909492 |
Technical Sciences and Engineering-Other | -0.9024390 | -3.1324428 | 1.3275647 | 0.8517231 |
Social Sciences-Science and Mathematics | 0.1917578 | -0.7129116 | 1.0964272 | 0.9900877 |
Technical Sciences and Engineering-Science and Mathematics | -0.2472666 | -1.1519360 | 0.6574028 | 0.9691668 |
Technical Sciences and Engineering-Social Sciences | -0.4390244 | -1.2625079 | 0.3844591 | 0.6404700 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | 1.8103148 | 0.0702470 | 0.9834577 |
Arts and Humanities - Other | -0.6605969 | 0.5088709 | 1.0000000 |
Health Sciences - Other | -1.5197042 | 0.1285853 | 1.0000000 |
Arts and Humanities - Science and Mathematics | 0.1023108 | 0.9185100 | 0.9185100 |
Health Sciences - Science and Mathematics | -1.6567965 | 0.0975606 | 1.0000000 |
Other - Science and Mathematics | 0.6931693 | 0.4882033 | 1.0000000 |
Arts and Humanities - Social Sciences | -0.3268180 | 0.7438055 | 1.0000000 |
Health Sciences - Social Sciences | -2.0439426 | 0.0409592 | 0.6143882 |
Other - Social Sciences | 0.5397222 | 0.5893887 | 1.0000000 |
Science and Mathematics - Social Sciences | -0.4021818 | 0.6875502 | 1.0000000 |
Arts and Humanities - Technical Sciences and Engineering | 1.1800285 | 0.2379889 | 1.0000000 |
Health Sciences - Technical Sciences and Engineering | -0.9918443 | 0.3212735 | 1.0000000 |
Other - Technical Sciences and Engineering | 1.0996291 | 0.2714938 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | 0.9779848 | 0.3280819 | 1.0000000 |
Social Sciences - Technical Sciences and Engineering | 1.5162350 | 0.1294599 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 8.24 1.649 1.251 0.288
Residuals 161 212.24 1.318
One-way analysis of means (not assuming equal variances)
data: podaci$Q14 and podaci$`Study field`
F = 1.0729, num df = 5.000, denom df = 19.215, p-value = 0.4059
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 2.0843 0.06999 .
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q14 by Study field
Kruskal-Wallis chi-squared = 7.1557, df = 5, p-value = 0.2093
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | 0.3288462 | -0.7284110 | 1.3861033 | 0.9467116 |
Other-Arts and Humanities | 0.1750000 | -1.8073849 | 2.1573849 | 0.9998522 |
Science and Mathematics-Arts and Humanities | 0.4508621 | -0.3568190 | 1.2585432 | 0.5931183 |
Social Sciences-Arts and Humanities | 0.5652439 | -0.1707343 | 1.3012221 | 0.2365362 |
Technical Sciences and Engineering-Arts and Humanities | 0.5164634 | -0.2195148 | 1.2524416 | 0.3333688 |
Other-Health Sciences | -0.1538462 | -2.2749995 | 1.9673072 | 0.9999440 |
Science and Mathematics-Health Sciences | 0.1220159 | -0.9833303 | 1.2273622 | 0.9995575 |
Social Sciences-Health Sciences | 0.2363977 | -0.8176921 | 1.2904876 | 0.9871789 |
Technical Sciences and Engineering-Health Sciences | 0.1876173 | -0.8664726 | 1.2417071 | 0.9955989 |
Science and Mathematics-Other | 0.2758621 | -1.7325820 | 2.2843061 | 0.9987211 |
Social Sciences-Other | 0.3902439 | -1.5904536 | 2.3709414 | 0.9929246 |
Technical Sciences and Engineering-Other | 0.3414634 | -1.6392341 | 2.3221609 | 0.9962139 |
Social Sciences-Science and Mathematics | 0.1143818 | -0.6891488 | 0.9179125 | 0.9984809 |
Technical Sciences and Engineering-Science and Mathematics | 0.0656013 | -0.7379293 | 0.8691320 | 0.9998995 |
Technical Sciences and Engineering-Social Sciences | -0.0487805 | -0.7802015 | 0.6826405 | 0.9999630 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | -0.4812678 | 0.6303261 | 1.0000000 |
Arts and Humanities - Other | -0.0975497 | 0.9222898 | 0.9222898 |
Health Sciences - Other | 0.1487128 | 0.8817802 | 1.0000000 |
Arts and Humanities - Science and Mathematics | -1.6890343 | 0.0912129 | 1.0000000 |
Health Sciences - Science and Mathematics | -0.7738546 | 0.4390168 | 1.0000000 |
Other - Science and Mathematics | -0.5829488 | 0.5599278 | 1.0000000 |
Arts and Humanities - Social Sciences | -2.2960827 | 0.0216712 | 0.3250673 |
Health Sciences - Social Sciences | -1.1204386 | 0.2625269 | 1.0000000 |
Other - Social Sciences | -0.7555347 | 0.4499282 | 1.0000000 |
Science and Mathematics - Social Sciences | -0.4052935 | 0.6852618 | 1.0000000 |
Arts and Humanities - Technical Sciences and Engineering | -2.0547933 | 0.0398990 | 0.5585856 |
Health Sciences - Technical Sciences and Engineering | -0.9519674 | 0.3411135 | 1.0000000 |
Other - Technical Sciences and Engineering | -0.6658775 | 0.5054894 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | -0.1842891 | 0.8537866 | 1.0000000 |
Social Sciences - Technical Sciences and Engineering | 0.2427928 | 0.8081659 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 7.45 1.490 1.002 0.419
Residuals 161 239.50 1.488
One-way analysis of means (not assuming equal variances)
data: podaci$Q15 and podaci$`Study field`
F = 1.0034, num df = 5.000, denom df = 20.584, p-value = 0.4405
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 0.8088 0.5449
161
Kruskal-Wallis rank sum test
data: Q15 by Study field
Kruskal-Wallis chi-squared = 5.3853, df = 5, p-value = 0.3707
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.3769231 | -1.5000259 | 0.7461797 | 0.9273752 |
Other-Arts and Humanities | 0.0333333 | -2.0725138 | 2.1391805 | 1.0000000 |
Science and Mathematics-Arts and Humanities | -0.5413793 | -1.3993625 | 0.3166039 | 0.4558902 |
Social Sciences-Arts and Humanities | -0.1780488 | -0.9598635 | 0.6037659 | 0.9862553 |
Technical Sciences and Engineering-Arts and Humanities | -0.4707317 | -1.2525464 | 0.3110830 | 0.5097393 |
Other-Health Sciences | 0.4102564 | -1.8430016 | 2.6635144 | 0.9951041 |
Science and Mathematics-Health Sciences | -0.1644562 | -1.3386431 | 1.0097306 | 0.9985949 |
Social Sciences-Health Sciences | 0.1988743 | -0.9208640 | 1.3186125 | 0.9956431 |
Technical Sciences and Engineering-Health Sciences | -0.0938086 | -1.2135469 | 1.0259296 | 0.9998858 |
Science and Mathematics-Other | -0.5747126 | -2.7082419 | 1.5588166 | 0.9710515 |
Social Sciences-Other | -0.2113821 | -2.3154368 | 1.8926726 | 0.9997209 |
Technical Sciences and Engineering-Other | -0.5040650 | -2.6081197 | 1.5999896 | 0.9827387 |
Social Sciences-Science and Mathematics | 0.3633305 | -0.4902438 | 1.2169048 | 0.8226848 |
Technical Sciences and Engineering-Science and Mathematics | 0.0706476 | -0.7829267 | 0.9242219 | 0.9998925 |
Technical Sciences and Engineering-Social Sciences | -0.2926829 | -1.0696566 | 0.4842908 | 0.8861642 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | 1.0834513 | 0.2786082 | 1.0000000 |
Arts and Humanities - Other | 0.1869509 | 0.8516991 | 1.0000000 |
Health Sciences - Other | -0.3653097 | 0.7148802 | 1.0000000 |
Arts and Humanities - Science and Mathematics | 1.9823995 | 0.0474345 | 0.7115181 |
Health Sciences - Science and Mathematics | 0.4122329 | 0.6801688 | 1.0000000 |
Other - Science and Mathematics | 0.6126822 | 0.5400865 | 1.0000000 |
Arts and Humanities - Social Sciences | 0.6491669 | 0.5162305 | 1.0000000 |
Health Sciences - Social Sciences | -0.6334507 | 0.5264394 | 1.0000000 |
Other - Social Sciences | 0.0541042 | 0.9568522 | 0.9568522 |
Science and Mathematics - Social Sciences | -1.3980474 | 0.1620988 | 1.0000000 |
Arts and Humanities - Technical Sciences and Engineering | 1.7051174 | 0.0881725 | 1.0000000 |
Health Sciences - Technical Sciences and Engineering | 0.1038267 | 0.9173069 | 1.0000000 |
Other - Technical Sciences and Engineering | 0.4464692 | 0.6552583 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | -0.4308702 | 0.6665628 | 1.0000000 |
Social Sciences - Technical Sciences and Engineering | 1.0625297 | 0.2879953 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 5.56 1.113 0.968 0.439
Residuals 161 184.99 1.149
One-way analysis of means (not assuming equal variances)
data: podaci$Q16 and podaci$`Study field`
F = 0.88618, num df = 5.000, denom df = 18.531, p-value = 0.5099
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 0.7086 0.6178
161
Kruskal-Wallis rank sum test
data: Q16 by Study field
Kruskal-Wallis chi-squared = 6.1646, df = 5, p-value = 0.2905
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.3576923 | -1.3447500 | 0.6293653 | 0.9017967 |
Other-Arts and Humanities | -0.3833333 | -2.2340923 | 1.4674256 | 0.9910860 |
Science and Mathematics-Arts and Humanities | 0.1913793 | -0.5626736 | 0.9454322 | 0.9776932 |
Social Sciences-Arts and Humanities | 0.0963415 | -0.5907694 | 0.7834524 | 0.9985875 |
Technical Sciences and Engineering-Arts and Humanities | 0.2914634 | -0.3956475 | 0.9785743 | 0.8248066 |
Other-Health Sciences | -0.0256410 | -2.0059545 | 1.9546725 | 1.0000000 |
Science and Mathematics-Health Sciences | 0.5490716 | -0.4828821 | 1.5810254 | 0.6424531 |
Social Sciences-Health Sciences | 0.4540338 | -0.5300669 | 1.4381345 | 0.7675352 |
Technical Sciences and Engineering-Health Sciences | 0.6491557 | -0.3349450 | 1.6332564 | 0.4043245 |
Science and Mathematics-Other | 0.5747126 | -1.3003752 | 2.4498005 | 0.9498630 |
Social Sciences-Other | 0.4796748 | -1.3695088 | 2.3288584 | 0.9754463 |
Technical Sciences and Engineering-Other | 0.6747967 | -1.1743869 | 2.5239804 | 0.8991289 |
Social Sciences-Science and Mathematics | -0.0950378 | -0.8452159 | 0.6551402 | 0.9991348 |
Technical Sciences and Engineering-Science and Mathematics | 0.1000841 | -0.6500939 | 0.8502621 | 0.9988886 |
Technical Sciences and Engineering-Social Sciences | 0.1951220 | -0.4877344 | 0.8779783 | 0.9626849 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | 1.1268760 | 0.2597949 | 1.0000000 |
Arts and Humanities - Other | 0.3943688 | 0.6933088 | 1.0000000 |
Health Sciences - Other | -0.1931058 | 0.8468761 | 0.8468761 |
Arts and Humanities - Science and Mathematics | -1.0062823 | 0.3142798 | 1.0000000 |
Health Sciences - Science and Mathematics | -1.8131449 | 0.0698095 | 0.9773327 |
Other - Science and Mathematics | -0.7939210 | 0.4272414 | 1.0000000 |
Arts and Humanities - Social Sciences | -0.7228703 | 0.4697596 | 1.0000000 |
Health Sciences - Social Sciences | -1.6349786 | 0.1020535 | 1.0000000 |
Other - Social Sciences | -0.6633055 | 0.5071349 | 1.0000000 |
Science and Mathematics - Social Sciences | 0.3493811 | 0.7268032 | 1.0000000 |
Arts and Humanities - Technical Sciences and Engineering | -1.4580130 | 0.1448370 | 1.0000000 |
Health Sciences - Technical Sciences and Engineering | -2.1482641 | 0.0316928 | 0.4753917 |
Other - Technical Sciences and Engineering | -0.9364663 | 0.3490331 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | -0.3239585 | 0.7459695 | 1.0000000 |
Social Sciences - Technical Sciences and Engineering | -0.7397231 | 0.4594680 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 20.15 4.030 3.338 0.00677 **
Residuals 161 194.37 1.207
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q17 and podaci$`Study field`
F = 3.4374, num df = 5.000, denom df = 18.481, p-value = 0.02287
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 2.2885 0.04837 *
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q17 by Study field
Kruskal-Wallis chi-squared = 14.774, df = 5, p-value = 0.01137
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.9346154 | -1.9463864 | 0.0771556 | 0.0882675 |
Other-Arts and Humanities | -1.2166667 | -3.1137638 | 0.6804305 | 0.4370289 |
Science and Mathematics-Arts and Humanities | -0.7224138 | -1.4953462 | 0.0505186 | 0.0816509 |
Social Sciences-Arts and Humanities | -0.3304878 | -1.0348022 | 0.3738266 | 0.7545324 |
Technical Sciences and Engineering-Arts and Humanities | -0.7939024 | -1.4982168 | -0.0895881 | 0.0172821 |
Other-Health Sciences | -0.2820513 | -2.3119466 | 1.7478441 | 0.9986478 |
Science and Mathematics-Health Sciences | 0.2122016 | -0.8455896 | 1.2699927 | 0.9923082 |
Social Sciences-Health Sciences | 0.6041276 | -0.4046124 | 1.6128676 | 0.5157978 |
Technical Sciences and Engineering-Health Sciences | 0.1407129 | -0.8680270 | 1.1494529 | 0.9986221 |
Science and Mathematics-Other | 0.4942529 | -1.4277823 | 2.4162880 | 0.9763669 |
Social Sciences-Other | 0.8861789 | -1.0093035 | 2.7816612 | 0.7573866 |
Technical Sciences and Engineering-Other | 0.4227642 | -1.4727181 | 2.3182466 | 0.9874948 |
Social Sciences-Science and Mathematics | 0.3919260 | -0.3770346 | 1.1608865 | 0.6837521 |
Technical Sciences and Engineering-Science and Mathematics | -0.0714886 | -0.8404492 | 0.6974719 | 0.9998093 |
Technical Sciences and Engineering-Social Sciences | -0.4634146 | -1.1633679 | 0.2365386 | 0.4000747 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | 2.5959038 | 0.0094342 | 0.1226452 |
Arts and Humanities - Other | 1.6103909 | 0.1073125 | 1.0000000 |
Health Sciences - Other | 0.2111477 | 0.8327720 | 1.0000000 |
Arts and Humanities - Science and Mathematics | 2.6097306 | 0.0090614 | 0.1268590 |
Health Sciences - Science and Mathematics | -0.5760257 | 0.5645978 | 1.0000000 |
Other - Science and Mathematics | -0.5400123 | 0.5891885 | 1.0000000 |
Arts and Humanities - Social Sciences | 1.1278540 | 0.2593816 | 1.0000000 |
Health Sciences - Social Sciences | -1.8162226 | 0.0693362 | 0.8320347 |
Other - Social Sciences | -1.1926802 | 0.2329947 | 1.0000000 |
Science and Mathematics - Social Sciences | -1.5901746 | 0.1117955 | 1.0000000 |
Arts and Humanities - Technical Sciences and Engineering | 2.9157587 | 0.0035482 | 0.0532237 |
Health Sciences - Technical Sciences and Engineering | -0.5678861 | 0.5701123 | 1.0000000 |
Other - Technical Sciences and Engineering | -0.5283390 | 0.5972641 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | 0.0474218 | 0.9621771 | 0.9621771 |
Social Sciences - Technical Sciences and Engineering | 1.7990444 | 0.0720117 | 0.7921282 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 6.24 1.248 1.006 0.416
Residuals 161 199.69 1.240
One-way analysis of means (not assuming equal variances)
data: podaci$Q18 and podaci$`Study field`
F = 0.95773, num df = 5.00, denom df = 18.67, p-value = 0.4681
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.3424 0.2491
161
Kruskal-Wallis rank sum test
data: Q18 by Study field
Kruskal-Wallis chi-squared = 5.0093, df = 5, p-value = 0.4147
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.0307692 | -1.0562985 | 0.9947600 | 0.9999993 |
Other-Arts and Humanities | -0.1333333 | -2.0562276 | 1.7895609 | 0.9999552 |
Science and Mathematics-Arts and Humanities | -0.2827586 | -1.0662015 | 0.5006843 | 0.9033192 |
Social Sciences-Arts and Humanities | 0.2243902 | -0.4895015 | 0.9382820 | 0.9443518 |
Technical Sciences and Engineering-Arts and Humanities | -0.2390244 | -0.9529162 | 0.4748674 | 0.9280577 |
Other-Health Sciences | -0.1025641 | -2.1600624 | 1.9549342 | 0.9999913 |
Science and Mathematics-Health Sciences | -0.2519894 | -1.3241646 | 0.8201858 | 0.9841581 |
Social Sciences-Health Sciences | 0.2551595 | -0.7672976 | 1.2776165 | 0.9792964 |
Technical Sciences and Engineering-Health Sciences | -0.2082552 | -1.2307122 | 0.8142019 | 0.9917484 |
Science and Mathematics-Other | -0.1494253 | -2.0975967 | 1.7987461 | 0.9999262 |
Social Sciences-Other | 0.3577236 | -1.5635339 | 2.2789811 | 0.9945631 |
Technical Sciences and Engineering-Other | -0.1056911 | -2.0269486 | 1.8155665 | 0.9999858 |
Social Sciences-Science and Mathematics | 0.5071489 | -0.2722682 | 1.2865659 | 0.4202172 |
Technical Sciences and Engineering-Science and Mathematics | 0.0437342 | -0.7356828 | 0.8231513 | 0.9999843 |
Technical Sciences and Engineering-Social Sciences | -0.4634146 | -1.1728860 | 0.2460567 | 0.4157515 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | 0.2858156 | 0.7750194 | 1.0000000 |
Arts and Humanities - Other | 0.2649633 | 0.7910377 | 1.0000000 |
Health Sciences - Other | 0.1051686 | 0.9162420 | 1.0000000 |
Arts and Humanities - Science and Mathematics | 1.1349665 | 0.2563894 | 1.0000000 |
Health Sciences - Science and Mathematics | 0.5559438 | 0.5782493 | 1.0000000 |
Other - Science and Mathematics | 0.1948930 | 0.8454767 | 1.0000000 |
Arts and Humanities - Social Sciences | -0.9036460 | 0.3661831 | 1.0000000 |
Health Sciences - Social Sciences | -0.9176109 | 0.3588226 | 1.0000000 |
Other - Social Sciences | -0.6009616 | 0.5478656 | 1.0000000 |
Science and Mathematics - Social Sciences | -1.9685057 | 0.0490099 | 0.7351481 |
Arts and Humanities - Technical Sciences and Engineering | 0.8474532 | 0.3967426 | 1.0000000 |
Health Sciences - Technical Sciences and Engineering | 0.3050276 | 0.7603452 | 1.0000000 |
Other - Technical Sciences and Engineering | 0.0497036 | 0.9603586 | 0.9603586 |
Science and Mathematics - Technical Sciences and Engineering | -0.3646207 | 0.7153946 | 1.0000000 |
Social Sciences - Technical Sciences and Engineering | 1.7620096 | 0.0780677 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 12.35 2.470 1.66 0.147
Residuals 161 239.55 1.488
One-way analysis of means (not assuming equal variances)
data: podaci$Q19 and podaci$`Study field`
F = 1.4909, num df = 5.000, denom df = 18.643, p-value = 0.2402
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 0.3439 0.8856
161
Kruskal-Wallis rank sum test
data: Q19 by Study field
Kruskal-Wallis chi-squared = 10.369, df = 5, p-value = 0.06543
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.1576923 | -1.2809319 | 0.9655473 | 0.9985789 |
Other-Arts and Humanities | -0.1833333 | -2.2894370 | 1.9227703 | 0.9998621 |
Science and Mathematics-Arts and Humanities | -0.0913793 | -0.9494670 | 0.7667084 | 0.9996287 |
Social Sciences-Arts and Humanities | 0.2475610 | -0.5343489 | 1.0294709 | 0.9426647 |
Technical Sciences and Engineering-Arts and Humanities | 0.5890244 | -0.1928855 | 1.3709343 | 0.2562877 |
Other-Health Sciences | -0.0256410 | -2.2791735 | 2.2278915 | 1.0000000 |
Science and Mathematics-Health Sciences | 0.0663130 | -1.1080169 | 1.2406429 | 0.9999838 |
Social Sciences-Health Sciences | 0.4052533 | -0.7146214 | 1.5251279 | 0.9023271 |
Technical Sciences and Engineering-Health Sciences | 0.7467167 | -0.3731579 | 1.8665913 | 0.3918437 |
Science and Mathematics-Other | 0.0919540 | -2.0418351 | 2.2257432 | 0.9999958 |
Social Sciences-Other | 0.4308943 | -1.6734167 | 2.5352053 | 0.9915434 |
Technical Sciences and Engineering-Other | 0.7723577 | -1.3319532 | 2.8766687 | 0.8968639 |
Social Sciences-Science and Mathematics | 0.3389403 | -0.5147380 | 1.1926186 | 0.8616324 |
Technical Sciences and Engineering-Science and Mathematics | 0.6804037 | -0.1732746 | 1.5340820 | 0.2005704 |
Technical Sciences and Engineering-Social Sciences | 0.3414634 | -0.4356049 | 1.1185317 | 0.8022285 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | 0.4777007 | 0.6328632 | 1.0000000 |
Arts and Humanities - Other | 0.2431939 | 0.8078552 | 1.0000000 |
Health Sciences - Other | -0.0108189 | 0.9913679 | 0.9913679 |
Arts and Humanities - Science and Mathematics | 0.5291389 | 0.5967091 | 1.0000000 |
Health Sciences - Science and Mathematics | -0.0702739 | 0.9439756 | 1.0000000 |
Other - Science and Mathematics | -0.0272492 | 0.9782610 | 1.0000000 |
Arts and Humanities - Social Sciences | -0.9517314 | 0.3412332 | 1.0000000 |
Health Sciences - Social Sciences | -1.1436464 | 0.2527703 | 1.0000000 |
Other - Social Sciences | -0.5970409 | 0.5504801 | 1.0000000 |
Science and Mathematics - Social Sciences | -1.4035918 | 0.1604404 | 1.0000000 |
Arts and Humanities - Technical Sciences and Engineering | -2.3398213 | 0.0192930 | 0.2701016 |
Health Sciences - Technical Sciences and Engineering | -2.1128274 | 0.0346155 | 0.4500021 |
Other - Technical Sciences and Engineering | -1.1128208 | 0.2657854 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | -2.6749856 | 0.0074732 | 0.1120987 |
Social Sciences - Technical Sciences and Engineering | -1.3967385 | 0.1624922 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 8.73 1.745 1.429 0.216
Residuals 161 196.54 1.221
One-way analysis of means (not assuming equal variances)
data: podaci$Q20 and podaci$`Study field`
F = 1.2092, num df = 5.000, denom df = 20.264, p-value = 0.3403
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.3036 0.265
161
Kruskal-Wallis rank sum test
data: Q20 by Study field
Kruskal-Wallis chi-squared = 7.1862, df = 5, p-value = 0.2072
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.1942308 | -1.2116528 | 0.8231913 | 0.9938901 |
Other-Arts and Humanities | -0.0916667 | -1.9993597 | 1.8160263 | 0.9999928 |
Science and Mathematics-Arts and Humanities | -0.4594828 | -1.2367322 | 0.3177667 | 0.5304351 |
Social Sciences-Arts and Humanities | -0.3030488 | -1.0112970 | 0.4051994 | 0.8194481 |
Technical Sciences and Engineering-Arts and Humanities | -0.6201220 | -1.3283701 | 0.0881262 | 0.1228720 |
Other-Health Sciences | 0.1025641 | -1.9386688 | 2.1437970 | 0.9999909 |
Science and Mathematics-Health Sciences | -0.2652520 | -1.3289512 | 0.7984472 | 0.9793653 |
Social Sciences-Health Sciences | -0.1088180 | -1.1231921 | 0.9055561 | 0.9996152 |
Technical Sciences and Engineering-Health Sciences | -0.4258912 | -1.4402653 | 0.5884829 | 0.8309802 |
Science and Mathematics-Other | -0.3678161 | -2.3005864 | 1.5649542 | 0.9939791 |
Social Sciences-Other | -0.2113821 | -2.1174513 | 1.6946871 | 0.9995473 |
Technical Sciences and Engineering-Other | -0.5284553 | -2.4345245 | 1.3776139 | 0.9672104 |
Social Sciences-Science and Mathematics | 0.1564340 | -0.6168214 | 0.9296894 | 0.9920026 |
Technical Sciences and Engineering-Science and Mathematics | -0.1606392 | -0.9338946 | 0.6126162 | 0.9909622 |
Technical Sciences and Engineering-Social Sciences | -0.3170732 | -1.0209359 | 0.3867895 | 0.7850628 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | 0.7155117 | 0.4742929 | 1.0000000 |
Arts and Humanities - Other | 0.3201493 | 0.7488552 | 1.0000000 |
Health Sciences - Other | -0.0574314 | 0.9542015 | 0.9542015 |
Arts and Humanities - Science and Mathematics | 1.8696127 | 0.0615376 | 0.8615267 |
Health Sciences - Science and Mathematics | 0.6817510 | 0.4953964 | 1.0000000 |
Other - Science and Mathematics | 0.4358557 | 0.6629414 | 1.0000000 |
Arts and Humanities - Social Sciences | 1.3851879 | 0.1659950 | 1.0000000 |
Health Sciences - Social Sciences | 0.2494932 | 0.8029793 | 1.0000000 |
Other - Social Sciences | 0.1942796 | 0.8459570 | 1.0000000 |
Science and Mathematics - Social Sciences | -0.6105339 | 0.5415082 | 1.0000000 |
Arts and Humanities - Technical Sciences and Engineering | 2.5275743 | 0.0114854 | 0.1722803 |
Health Sciences - Technical Sciences and Engineering | 1.0471211 | 0.2950437 | 1.0000000 |
Other - Technical Sciences and Engineering | 0.6187621 | 0.5360731 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | 0.4358126 | 0.6629727 | 1.0000000 |
Social Sciences - Technical Sciences and Engineering | 1.1495041 | 0.2503482 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 10.05 2.009 1.762 0.124
Residuals 161 183.56 1.140
One-way analysis of means (not assuming equal variances)
data: podaci$Q21 and podaci$`Study field`
F = 1.8468, num df = 5.000, denom df = 19.925, p-value = 0.1495
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 3.2045 0.008729 **
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q21 by Study field
Kruskal-Wallis chi-squared = 7.659, df = 5, p-value = 0.1761
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.1500000 | -1.1332407 | 0.8332407 | 0.9978825 |
Other-Arts and Humanities | -0.8166667 | -2.6602687 | 1.0269354 | 0.7967870 |
Science and Mathematics-Arts and Humanities | -0.4258621 | -1.1769990 | 0.3252749 | 0.5764956 |
Social Sciences-Arts and Humanities | -0.1012195 | -0.7856733 | 0.5832343 | 0.9981755 |
Technical Sciences and Engineering-Arts and Humanities | -0.5890244 | -1.2734782 | 0.0954294 | 0.1355706 |
Other-Health Sciences | -0.6666667 | -2.6393222 | 1.3059889 | 0.9253247 |
Science and Mathematics-Health Sciences | -0.2758621 | -1.3038252 | 0.7521011 | 0.9715218 |
Social Sciences-Health Sciences | 0.0487805 | -0.9315147 | 1.0290756 | 0.9999914 |
Technical Sciences and Engineering-Health Sciences | -0.4390244 | -1.4193195 | 0.5412708 | 0.7892007 |
Science and Mathematics-Other | 0.3908046 | -1.4770322 | 2.2586414 | 0.9906615 |
Social Sciences-Other | 0.7154472 | -1.1265856 | 2.5574800 | 0.8723750 |
Technical Sciences and Engineering-Other | 0.2276423 | -1.6143905 | 2.0696751 | 0.9992330 |
Social Sciences-Science and Mathematics | 0.3246426 | -0.4226345 | 1.0719196 | 0.8097672 |
Technical Sciences and Engineering-Science and Mathematics | -0.1631623 | -0.9104394 | 0.5841148 | 0.9886488 |
Technical Sciences and Engineering-Social Sciences | -0.4878049 | -1.1680206 | 0.1924108 | 0.3091384 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | 0.0033132 | 0.9973565 | 0.9973565 |
Arts and Humanities - Other | 1.0624580 | 0.2880278 | 1.0000000 |
Health Sciences - Other | 0.9912993 | 0.3215395 | 1.0000000 |
Arts and Humanities - Science and Mathematics | 1.1449571 | 0.2522269 | 1.0000000 |
Health Sciences - Science and Mathematics | 0.8334559 | 0.4045877 | 1.0000000 |
Other - Science and Mathematics | -0.5882367 | 0.5563734 | 1.0000000 |
Arts and Humanities - Social Sciences | 0.0607651 | 0.9515463 | 1.0000000 |
Health Sciences - Social Sciences | 0.0391038 | 0.9688077 | 1.0000000 |
Other - Social Sciences | -1.0407843 | 0.2979757 | 1.0000000 |
Science and Mathematics - Social Sciences | -1.0952145 | 0.2734227 | 1.0000000 |
Arts and Humanities - Technical Sciences and Engineering | 2.1981691 | 0.0279371 | 0.4190558 |
Health Sciences - Technical Sciences and Engineering | 1.5314649 | 0.1256545 | 1.0000000 |
Other - Technical Sciences and Engineering | -0.2465778 | 0.8052350 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | 0.8624989 | 0.3884130 | 1.0000000 |
Social Sciences - Technical Sciences and Engineering | 2.1507213 | 0.0314982 | 0.4409748 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 3.55 0.7094 0.651 0.661
Residuals 161 175.41 1.0895
One-way analysis of means (not assuming equal variances)
data: podaci$Q22 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 2.4122 0.03856 *
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q22 by Study field
Kruskal-Wallis chi-squared = 2.0345, df = 5, p-value = 0.8444
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | 0.2903846 | -0.6707844 | 1.2515536 | 0.9527860 |
Other-Arts and Humanities | 0.6750000 | -1.1272171 | 2.4772171 | 0.8886074 |
Science and Mathematics-Arts and Humanities | 0.2956897 | -0.4385859 | 1.0299652 | 0.8543309 |
Social Sciences-Arts and Humanities | 0.3091463 | -0.3599430 | 0.9782356 | 0.7664365 |
Technical Sciences and Engineering-Arts and Humanities | 0.3335366 | -0.3355527 | 1.0026259 | 0.7039042 |
Other-Health Sciences | 0.3846154 | -1.5437583 | 2.3129890 | 0.9925115 |
Science and Mathematics-Health Sciences | 0.0053050 | -0.9995825 | 1.0101926 | 1.0000000 |
Social Sciences-Health Sciences | 0.0187617 | -0.9395279 | 0.9770513 | 0.9999999 |
Technical Sciences and Engineering-Health Sciences | 0.0431520 | -0.9151376 | 1.0014416 | 0.9999948 |
Science and Mathematics-Other | -0.3793103 | -2.2052182 | 1.4465975 | 0.9909634 |
Social Sciences-Other | -0.3658537 | -2.1665367 | 1.4348294 | 0.9918427 |
Technical Sciences and Engineering-Other | -0.3414634 | -2.1421465 | 1.4592197 | 0.9940781 |
Social Sciences-Science and Mathematics | 0.0134567 | -0.7170456 | 0.7439590 | 0.9999999 |
Technical Sciences and Engineering-Science and Mathematics | 0.0378469 | -0.6926554 | 0.7683492 | 0.9999895 |
Technical Sciences and Engineering-Social Sciences | 0.0243902 | -0.6405561 | 0.6893365 | 0.9999981 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | -0.6309541 | 0.5280705 | 1.0000000 |
Arts and Humanities - Other | -0.9851006 | 0.3245746 | 1.0000000 |
Health Sciences - Other | -0.6061645 | 0.5444055 | 1.0000000 |
Arts and Humanities - Science and Mathematics | -0.6156758 | 0.5381085 | 1.0000000 |
Health Sciences - Science and Mathematics | 0.1536270 | 0.8779039 | 1.0000000 |
Other - Science and Mathematics | 0.7247296 | 0.4686179 | 1.0000000 |
Arts and Humanities - Social Sciences | -0.9891614 | 0.3225842 | 1.0000000 |
Health Sciences - Social Sciences | -0.0577944 | 0.9539124 | 0.9539124 |
Other - Social Sciences | 0.6183919 | 0.5363170 | 1.0000000 |
Science and Mathematics - Social Sciences | -0.2871470 | 0.7739997 | 1.0000000 |
Arts and Humanities - Technical Sciences and Engineering | -1.0992142 | 0.2716746 | 1.0000000 |
Health Sciences - Technical Sciences and Engineering | -0.1346346 | 0.8929008 | 1.0000000 |
Other - Technical Sciences and Engineering | 0.5774990 | 0.5636024 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | -0.3879478 | 0.6980546 | 1.0000000 |
Social Sciences - Technical Sciences and Engineering | -0.1107386 | 0.9118237 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 7.12 1.424 0.983 0.43
Residuals 161 233.24 1.449
One-way analysis of means (not assuming equal variances)
data: podaci$Q23 and podaci$`Study field`
F = 1.1444, num df = 5.000, denom df = 20.418, p-value = 0.3693
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.0064 0.4158
161
Kruskal-Wallis rank sum test
data: Q23 by Study field
Kruskal-Wallis chi-squared = 4.6456, df = 5, p-value = 0.4606
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.6115385 | -1.7198766 | 0.4967997 | 0.6053702 |
Other-Arts and Humanities | 0.1833333 | -1.8948297 | 2.2614964 | 0.9998527 |
Science and Mathematics-Arts and Humanities | -0.5293103 | -1.3760143 | 0.3173936 | 0.4666671 |
Social Sciences-Arts and Humanities | -0.3207317 | -1.0922684 | 0.4508050 | 0.8367932 |
Technical Sciences and Engineering-Arts and Humanities | -0.2475610 | -1.0190977 | 0.5239758 | 0.9394413 |
Other-Health Sciences | 0.7948718 | -1.4287643 | 3.0185078 | 0.9068525 |
Science and Mathematics-Health Sciences | 0.0822281 | -1.0765225 | 1.2409788 | 0.9999497 |
Social Sciences-Health Sciences | 0.2908068 | -0.8142111 | 1.3958246 | 0.9738446 |
Technical Sciences and Engineering-Health Sciences | 0.3639775 | -0.7410404 | 1.4689953 | 0.9326409 |
Science and Mathematics-Other | -0.7126437 | -2.8181249 | 1.3928376 | 0.9248680 |
Social Sciences-Other | -0.5040650 | -2.5804592 | 1.5723291 | 0.9816876 |
Technical Sciences and Engineering-Other | -0.4308943 | -2.5072885 | 1.6454999 | 0.9910069 |
Social Sciences-Science and Mathematics | 0.2085786 | -0.6337743 | 1.0509316 | 0.9800010 |
Technical Sciences and Engineering-Science and Mathematics | 0.2817494 | -0.5606036 | 1.1241023 | 0.9283500 |
Technical Sciences and Engineering-Social Sciences | 0.0731707 | -0.6935886 | 0.8399301 | 0.9997832 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | 1.4862944 | 0.1372013 | 1.0000000 |
Arts and Humanities - Other | -0.2366113 | 0.8129583 | 1.0000000 |
Health Sciences - Other | -0.9619531 | 0.3360731 | 1.0000000 |
Arts and Humanities - Science and Mathematics | 1.7972192 | 0.0723008 | 1.0000000 |
Health Sciences - Science and Mathematics | -0.1083963 | 0.9136814 | 0.9136814 |
Other - Science and Mathematics | 0.9562799 | 0.3389308 | 1.0000000 |
Arts and Humanities - Social Sciences | 1.2096876 | 0.2263988 | 1.0000000 |
Health Sciences - Social Sciences | -0.6461419 | 0.5181874 | 1.0000000 |
Other - Social Sciences | 0.6863029 | 0.4925221 | 1.0000000 |
Science and Mathematics - Social Sciences | -0.6985126 | 0.4848567 | 1.0000000 |
Arts and Humanities - Technical Sciences and Engineering | 0.9395362 | 0.3474555 | 1.0000000 |
Health Sciences - Technical Sciences and Engineering | -0.8347649 | 0.4038501 | 1.0000000 |
Other - Technical Sciences and Engineering | 0.5859213 | 0.5579284 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | -0.9459524 | 0.3441728 | 1.0000000 |
Social Sciences - Technical Sciences and Engineering | -0.2718346 | 0.7857492 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 4.44 0.8877 0.603 0.698
Residuals 161 236.96 1.4718
One-way analysis of means (not assuming equal variances)
data: podaci$Q24 and podaci$`Study field`
F = 0.48607, num df = 5.000, denom df = 19.015, p-value = 0.7824
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.0814 0.3727
161
Kruskal-Wallis rank sum test
data: Q24 by Study field
Kruskal-Wallis chi-squared = 2.9046, df = 5, p-value = 0.7147
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.3019231 | -1.4190723 | 0.8152262 | 0.9706340 |
Other-Arts and Humanities | -0.2250000 | -2.3196842 | 1.8696842 | 0.9996127 |
Science and Mathematics-Arts and Humanities | -0.3974138 | -1.2508489 | 0.4560213 | 0.7604694 |
Social Sciences-Arts and Humanities | -0.3957317 | -1.1734020 | 0.3819386 | 0.6852317 |
Technical Sciences and Engineering-Arts and Humanities | -0.3713415 | -1.1490118 | 0.4063289 | 0.7405615 |
Other-Health Sciences | 0.0769231 | -2.1643905 | 2.3182367 | 0.9999986 |
Science and Mathematics-Health Sciences | -0.0954907 | -1.2634533 | 1.0724718 | 0.9998988 |
Social Sciences-Health Sciences | -0.0938086 | -1.2076112 | 1.0199939 | 0.9998828 |
Technical Sciences and Engineering-Health Sciences | -0.0694184 | -1.1832210 | 1.0443842 | 0.9999736 |
Science and Mathematics-Other | -0.1724138 | -2.2946333 | 1.9498057 | 0.9999019 |
Social Sciences-Other | -0.1707317 | -2.2636329 | 1.9221695 | 0.9998999 |
Technical Sciences and Engineering-Other | -0.1463415 | -2.2392427 | 1.9465597 | 0.9999533 |
Social Sciences-Science and Mathematics | 0.0016821 | -0.8473675 | 0.8507316 | 1.0000000 |
Technical Sciences and Engineering-Science and Mathematics | 0.0260723 | -0.8229772 | 0.8751219 | 0.9999992 |
Technical Sciences and Engineering-Social Sciences | 0.0243902 | -0.7484647 | 0.7972452 | 0.9999991 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | 0.7886906 | 0.4302929 | 1.0000000 |
Arts and Humanities - Other | 0.0519304 | 0.9585841 | 1.0000000 |
Health Sciences - Other | -0.3445779 | 0.7304117 | 1.0000000 |
Arts and Humanities - Science and Mathematics | 1.2024921 | 0.2291729 | 1.0000000 |
Health Sciences - Science and Mathematics | 0.1242881 | 0.9010872 | 1.0000000 |
Other - Science and Mathematics | 0.4323168 | 0.6655112 | 1.0000000 |
Arts and Humanities - Social Sciences | 1.3672136 | 0.1715584 | 1.0000000 |
Health Sciences - Social Sciences | 0.1635445 | 0.8700897 | 1.0000000 |
Other - Social Sciences | 0.4560481 | 0.6483554 | 1.0000000 |
Science and Mathematics - Social Sciences | 0.0435693 | 0.9652477 | 0.9652477 |
Arts and Humanities - Technical Sciences and Engineering | 1.4384127 | 0.1503170 | 1.0000000 |
Health Sciences - Technical Sciences and Engineering | 0.2132566 | 0.8311268 | 1.0000000 |
Other - Technical Sciences and Engineering | 0.4825039 | 0.6294480 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | 0.1087827 | 0.9133748 | 1.0000000 |
Social Sciences - Technical Sciences and Engineering | 0.0716427 | 0.9428862 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 3.48 0.6961 0.737 0.596
Residuals 161 151.99 0.9441
One-way analysis of means (not assuming equal variances)
data: podaci$Q26 and podaci$`Study field`
F = 0.67907, num df = 5.000, denom df = 19.719, p-value = 0.6445
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 0.625 0.6809
161
Kruskal-Wallis rank sum test
data: Q26 by Study field
Kruskal-Wallis chi-squared = 3.8837, df = 5, p-value = 0.5663
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | 0.1076923 | -0.7870169 | 1.0024016 | 0.9993252 |
Other-Arts and Humanities | 0.1333333 | -1.5442699 | 1.8109366 | 0.9999120 |
Science and Mathematics-Arts and Humanities | 0.3862069 | -0.2972973 | 1.0697111 | 0.5801450 |
Social Sciences-Arts and Humanities | 0.1170732 | -0.5057521 | 0.7398985 | 0.9943160 |
Technical Sciences and Engineering-Arts and Humanities | 0.3121951 | -0.3106302 | 0.9350204 | 0.6989637 |
Other-Health Sciences | 0.0256410 | -1.7693957 | 1.8206778 | 1.0000000 |
Science and Mathematics-Health Sciences | 0.2785146 | -0.6568903 | 1.2139195 | 0.9555830 |
Social Sciences-Health Sciences | 0.0093809 | -0.8826481 | 0.9014098 | 1.0000000 |
Technical Sciences and Engineering-Health Sciences | 0.2045028 | -0.6875261 | 1.0965317 | 0.9858364 |
Science and Mathematics-Other | 0.2528736 | -1.4467824 | 1.9525295 | 0.9981220 |
Social Sciences-Other | -0.0162602 | -1.6924355 | 1.6599152 | 1.0000000 |
Technical Sciences and Engineering-Other | 0.1788618 | -1.4973135 | 1.8550371 | 0.9996250 |
Social Sciences-Science and Mathematics | -0.2691337 | -0.9491256 | 0.4108582 | 0.8632116 |
Technical Sciences and Engineering-Science and Mathematics | -0.0740118 | -0.7540037 | 0.6059801 | 0.9995869 |
Technical Sciences and Engineering-Social Sciences | 0.1951220 | -0.4238468 | 0.8140907 | 0.9436801 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | -0.1772185 | 0.8593368 | 1.0000000 |
Arts and Humanities - Other | 0.0019889 | 0.9984131 | 0.9984131 |
Health Sciences - Other | 0.0901907 | 0.9281357 | 1.0000000 |
Arts and Humanities - Science and Mathematics | -1.3790733 | 0.1678721 | 1.0000000 |
Health Sciences - Science and Mathematics | -0.8381862 | 0.4019262 | 1.0000000 |
Other - Science and Mathematics | -0.5565474 | 0.5778367 | 1.0000000 |
Arts and Humanities - Social Sciences | -0.3452260 | 0.7299245 | 1.0000000 |
Health Sciences - Social Sciences | -0.0632899 | 0.9495357 | 1.0000000 |
Other - Social Sciences | -0.1302680 | 0.8963544 | 1.0000000 |
Science and Mathematics - Social Sciences | 1.0699936 | 0.2846222 | 1.0000000 |
Arts and Humanities - Technical Sciences and Engineering | -1.5706590 | 0.1162619 | 1.0000000 |
Health Sciences - Technical Sciences and Engineering | -0.9189019 | 0.3581469 | 1.0000000 |
Other - Technical Sciences and Engineering | -0.5856087 | 0.5581385 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | -0.0524178 | 0.9581958 | 1.0000000 |
Social Sciences - Technical Sciences and Engineering | -1.2330682 | 0.2175503 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 0.54 0.1073 0.098 0.992
Residuals 161 176.70 1.0975
One-way analysis of means (not assuming equal variances)
data: podaci$Q27 and podaci$`Study field`
F = 0.17381, num df = 5.000, denom df = 19.978, p-value = 0.9693
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 0.388 0.8566
161
Kruskal-Wallis rank sum test
data: Q27 by Study field
Kruskal-Wallis chi-squared = 1.5875, df = 5, p-value = 0.9028
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.0865385 | -1.0512242 | 0.8781473 | 0.9998401 |
Other-Arts and Humanities | -0.2916667 | -2.1004778 | 1.5171444 | 0.9972420 |
Science and Mathematics-Arts and Humanities | -0.0387931 | -0.7757552 | 0.6981690 | 0.9999886 |
Social Sciences-Arts and Humanities | 0.0579268 | -0.6136106 | 0.7294642 | 0.9998681 |
Technical Sciences and Engineering-Arts and Humanities | 0.0091463 | -0.6623910 | 0.6806837 | 1.0000000 |
Other-Health Sciences | -0.2051282 | -2.1405574 | 1.7303010 | 0.9996373 |
Science and Mathematics-Health Sciences | 0.0477454 | -0.9608189 | 1.0563096 | 0.9999933 |
Social Sciences-Health Sciences | 0.1444653 | -0.8173305 | 1.1062611 | 0.9980342 |
Technical Sciences and Engineering-Health Sciences | 0.0956848 | -0.8661110 | 1.0574806 | 0.9997340 |
Science and Mathematics-Other | 0.2528736 | -1.5797150 | 2.0854621 | 0.9986923 |
Social Sciences-Other | 0.3495935 | -1.4576780 | 2.1568650 | 0.9935034 |
Technical Sciences and Engineering-Other | 0.3008130 | -1.5064585 | 2.1080845 | 0.9967936 |
Social Sciences-Science and Mathematics | 0.0967199 | -0.6364552 | 0.8298950 | 0.9989475 |
Technical Sciences and Engineering-Science and Mathematics | 0.0479394 | -0.6852356 | 0.7811145 | 0.9999665 |
Technical Sciences and Engineering-Social Sciences | -0.0487805 | -0.7161597 | 0.6185987 | 0.9999418 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | 0.2657983 | 0.7903946 | 1.000000 |
Arts and Humanities - Other | 0.9017366 | 0.3671968 | 1.000000 |
Health Sciences - Other | 0.7102607 | 0.4775425 | 1.000000 |
Arts and Humanities - Science and Mathematics | 0.3266939 | 0.7438994 | 1.000000 |
Health Sciences - Science and Mathematics | -0.0155179 | 0.9876190 | 0.987619 |
Other - Science and Mathematics | -0.7586592 | 0.4480565 | 1.000000 |
Arts and Humanities - Social Sciences | -0.4580364 | 0.6469263 | 1.000000 |
Health Sciences - Social Sciences | -0.5864034 | 0.5576045 | 1.000000 |
Other - Social Sciences | -1.0726998 | 0.2834058 | 1.000000 |
Science and Mathematics - Social Sciences | -0.7479108 | 0.4545140 | 1.000000 |
Arts and Humanities - Technical Sciences and Engineering | -0.0737735 | 0.9411906 | 1.000000 |
Health Sciences - Technical Sciences and Engineering | -0.3181065 | 0.7504042 | 1.000000 |
Other - Technical Sciences and Engineering | -0.9299172 | 0.3524140 | 1.000000 |
Science and Mathematics - Technical Sciences and Engineering | -0.3959528 | 0.6921399 | 1.000000 |
Social Sciences - Technical Sciences and Engineering | 0.3866570 | 0.6990101 | 1.000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 3.96 0.7919 0.851 0.515
Residuals 161 149.74 0.9301
One-way analysis of means (not assuming equal variances)
data: podaci$Q28 and podaci$`Study field`
F = 1.3595, num df = 5.00, denom df = 19.37, p-value = 0.2823
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 2.0704 0.07176 .
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q28 by Study field
Kruskal-Wallis chi-squared = 4.8347, df = 5, p-value = 0.4364
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.0192308 | -0.9072889 | 0.8688274 | 0.9999999 |
Other-Arts and Humanities | -0.5833333 | -2.2484656 | 1.0817990 | 0.9139084 |
Science and Mathematics-Arts and Humanities | 0.1293103 | -0.5491129 | 0.8077335 | 0.9939348 |
Social Sciences-Arts and Humanities | 0.2865854 | -0.3316100 | 0.9047807 | 0.7639022 |
Technical Sciences and Engineering-Arts and Humanities | 0.2378049 | -0.3803905 | 0.8560002 | 0.8768606 |
Other-Health Sciences | -0.5641026 | -2.3457954 | 1.2175903 | 0.9426648 |
Science and Mathematics-Health Sciences | 0.1485411 | -0.7799102 | 1.0769924 | 0.9973431 |
Social Sciences-Health Sciences | 0.3058161 | -0.5795816 | 1.1912139 | 0.9185738 |
Technical Sciences and Engineering-Health Sciences | 0.2570356 | -0.6283621 | 1.1424334 | 0.9600855 |
Science and Mathematics-Other | 0.7126437 | -0.9743774 | 2.3996647 | 0.8273283 |
Social Sciences-Other | 0.8699187 | -0.7937963 | 2.5336337 | 0.6595481 |
Technical Sciences and Engineering-Other | 0.8211382 | -0.8425768 | 2.4848532 | 0.7126687 |
Social Sciences-Science and Mathematics | 0.1572750 | -0.5176620 | 0.8322120 | 0.9847567 |
Technical Sciences and Engineering-Science and Mathematics | 0.1084945 | -0.5664425 | 0.7834315 | 0.9972825 |
Technical Sciences and Engineering-Social Sciences | -0.0487805 | -0.6631480 | 0.5655870 | 0.9999124 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | 0.0248898 | 0.9801428 | 0.9801428 |
Arts and Humanities - Other | 1.3304567 | 0.1833678 | 1.0000000 |
Health Sciences - Other | 1.2310106 | 0.2183189 | 1.0000000 |
Arts and Humanities - Science and Mathematics | -0.4817360 | 0.6299935 | 1.0000000 |
Health Sciences - Science and Mathematics | -0.3758135 | 0.7070556 | 1.0000000 |
Other - Science and Mathematics | -1.5069209 | 0.1318309 | 1.0000000 |
Arts and Humanities - Social Sciences | -1.1108707 | 0.2666240 | 1.0000000 |
Health Sciences - Social Sciences | -0.8005879 | 0.4233703 | 1.0000000 |
Other - Social Sciences | -1.7443622 | 0.0810960 | 1.0000000 |
Science and Mathematics - Social Sciences | -0.5332560 | 0.5938564 | 1.0000000 |
Arts and Humanities - Technical Sciences and Engineering | -1.2025443 | 0.2291527 | 1.0000000 |
Health Sciences - Technical Sciences and Engineering | -0.8645955 | 0.3872608 | 1.0000000 |
Other - Technical Sciences and Engineering | -1.7784259 | 0.0753339 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | -0.6172227 | 0.5370879 | 1.0000000 |
Social Sciences - Technical Sciences and Engineering | -0.0922448 | 0.9265035 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 2.62 0.5236 0.276 0.926
Residuals 161 305.12 1.8951
One-way analysis of means (not assuming equal variances)
data: podaci$Q29 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 3.6549 0.003691 **
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q29 by Study field
Kruskal-Wallis chi-squared = 1.2675, df = 5, p-value = 0.9382
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | 0.2903846 | -0.9772830 | 1.5580522 | 0.9858881 |
Other-Arts and Humanities | 0.6750000 | -1.7019099 | 3.0519099 | 0.9636567 |
Science and Mathematics-Arts and Humanities | 0.2956897 | -0.6727324 | 1.2641117 | 0.9506532 |
Social Sciences-Arts and Humanities | 0.1871951 | -0.6952541 | 1.0696443 | 0.9900519 |
Technical Sciences and Engineering-Arts and Humanities | 0.2115854 | -0.6708638 | 1.0940345 | 0.9826734 |
Other-Health Sciences | 0.3846154 | -2.1586800 | 2.9279108 | 0.9979693 |
Science and Mathematics-Health Sciences | 0.0053050 | -1.3200221 | 1.3306322 | 1.0000000 |
Social Sciences-Health Sciences | -0.1031895 | -1.3670595 | 1.1606805 | 0.9998995 |
Technical Sciences and Engineering-Health Sciences | -0.0787992 | -1.3426692 | 1.1850707 | 0.9999735 |
Science and Mathematics-Other | -0.3793103 | -2.7874656 | 2.0288449 | 0.9975334 |
Social Sciences-Other | -0.4878049 | -2.8626916 | 1.8870818 | 0.9914221 |
Technical Sciences and Engineering-Other | -0.4634146 | -2.8383014 | 1.9114721 | 0.9932347 |
Social Sciences-Science and Mathematics | -0.1084945 | -1.0719402 | 0.8549511 | 0.9995122 |
Technical Sciences and Engineering-Science and Mathematics | -0.0841043 | -1.0475499 | 0.8793413 | 0.9998601 |
Technical Sciences and Engineering-Social Sciences | 0.0243902 | -0.8525948 | 0.9013753 | 0.9999995 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | -0.6404160 | 0.5219022 | 1.0000000 |
Arts and Humanities - Other | -0.9008623 | 0.3676615 | 1.0000000 |
Health Sciences - Other | -0.5227211 | 0.6011684 | 1.0000000 |
Arts and Humanities - Science and Mathematics | -0.6862004 | 0.4925867 | 1.0000000 |
Health Sciences - Science and Mathematics | 0.1111446 | 0.9115017 | 0.9115017 |
Other - Science and Mathematics | 0.6132233 | 0.5397287 | 1.0000000 |
Arts and Humanities - Social Sciences | -0.4689572 | 0.6391003 | 1.0000000 |
Health Sciences - Social Sciences | 0.3149087 | 0.7528309 | 1.0000000 |
Other - Social Sciences | 0.7273769 | 0.4669951 | 1.0000000 |
Science and Mathematics - Social Sciences | 0.2602127 | 0.7946997 | 1.0000000 |
Arts and Humanities - Technical Sciences and Engineering | -0.5918894 | 0.5539247 | 1.0000000 |
Health Sciences - Technical Sciences and Engineering | 0.2290760 | 0.8188099 | 1.0000000 |
Other - Technical Sciences and Engineering | 0.6816983 | 0.4954297 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | 0.1476153 | 0.8826464 | 1.0000000 |
Social Sciences - Technical Sciences and Engineering | -0.1236982 | 0.9015543 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 4.24 0.8471 0.519 0.762
Residuals 161 262.70 1.6317
One-way analysis of means (not assuming equal variances)
data: podaci$Q30 and podaci$`Study field`
F = 0.50412, num df = 5.000, denom df = 20.881, p-value = 0.7698
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.097 0.3642
161
Kruskal-Wallis rank sum test
data: Q30 by Study field
Kruskal-Wallis chi-squared = 2.6044, df = 5, p-value = 0.7607
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | 0.2865385 | -0.8897122 | 1.4627891 | 0.9814022 |
Other-Arts and Humanities | 0.1583333 | -2.0471675 | 2.3638342 | 0.9999468 |
Science and Mathematics-Arts and Humanities | 0.2732759 | -0.6253092 | 1.1718609 | 0.9514655 |
Social Sciences-Arts and Humanities | -0.1506098 | -0.9694218 | 0.6682023 | 0.9948646 |
Technical Sciences and Engineering-Arts and Humanities | 0.1420732 | -0.6767389 | 0.9608852 | 0.9960968 |
Other-Health Sciences | -0.1282051 | -2.4880927 | 2.2316824 | 0.9999867 |
Science and Mathematics-Health Sciences | -0.0132626 | -1.2430148 | 1.2164896 | 1.0000000 |
Social Sciences-Health Sciences | -0.4371482 | -1.6098752 | 0.7355787 | 0.8905961 |
Technical Sciences and Engineering-Health Sciences | -0.1444653 | -1.3171922 | 1.0282616 | 0.9992448 |
Science and Mathematics-Other | 0.1149425 | -2.1195504 | 2.3494355 | 0.9999898 |
Social Sciences-Other | -0.3089431 | -2.5125667 | 1.8946805 | 0.9985882 |
Technical Sciences and Engineering-Other | -0.0162602 | -2.2198837 | 2.1873634 | 1.0000000 |
Social Sciences-Science and Mathematics | -0.4238856 | -1.3178531 | 0.4700819 | 0.7462425 |
Technical Sciences and Engineering-Science and Mathematics | -0.1312027 | -1.0251702 | 0.7627648 | 0.9982408 |
Technical Sciences and Engineering-Social Sciences | 0.2926829 | -0.5210590 | 1.1064249 | 0.9045998 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | -0.5527606 | 0.5804274 | 1.0000000 |
Arts and Humanities - Other | 0.0631587 | 0.9496402 | 0.9496402 |
Health Sciences - Other | 0.3345420 | 0.7379706 | 1.0000000 |
Arts and Humanities - Science and Mathematics | -0.8822992 | 0.3776150 | 1.0000000 |
Health Sciences - Science and Mathematics | -0.1159874 | 0.9076625 | 1.0000000 |
Other - Science and Mathematics | -0.4171494 | 0.6765692 | 1.0000000 |
Arts and Humanities - Social Sciences | 0.6097084 | 0.5420550 | 1.0000000 |
Health Sciences - Social Sciences | 0.9801272 | 0.3270233 | 1.0000000 |
Other - Social Sciences | 0.1633401 | 0.8702507 | 1.0000000 |
Science and Mathematics - Social Sciences | 1.4453069 | 0.1483717 | 1.0000000 |
Arts and Humanities - Technical Sciences and Engineering | -0.4307416 | 0.6666563 | 1.0000000 |
Health Sciences - Technical Sciences and Engineering | 0.2536726 | 0.7997485 | 1.0000000 |
Other - Technical Sciences and Engineering | -0.2232654 | 0.8233290 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | 0.4923271 | 0.6224881 | 1.0000000 |
Social Sciences - Technical Sciences and Engineering | -1.0469326 | 0.2951307 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 6.99 1.398 0.791 0.558
Residuals 161 284.51 1.767
One-way analysis of means (not assuming equal variances)
data: podaci$Q31 and podaci$`Study field`
F = 1.4815, num df = 5.00, denom df = 20.81, p-value = 0.2383
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.9722 0.08549 .
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q31 by Study field
Kruskal-Wallis chi-squared = 4.1854, df = 5, p-value = 0.523
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.5442308 | -1.7683344 | 0.6798729 | 0.7942773 |
Other-Arts and Humanities | 0.5583333 | -1.7368930 | 2.8535597 | 0.9815192 |
Science and Mathematics-Arts and Humanities | -0.2577586 | -1.1929004 | 0.6773832 | 0.9680242 |
Social Sciences-Arts and Humanities | -0.4335366 | -1.2856600 | 0.4185868 | 0.6854062 |
Technical Sciences and Engineering-Arts and Humanities | -0.2140244 | -1.0661478 | 0.6380990 | 0.9786983 |
Other-Health Sciences | 1.1025641 | -1.3533298 | 3.5584580 | 0.7874770 |
Science and Mathematics-Health Sciences | 0.2864721 | -0.9933095 | 1.5662538 | 0.9872881 |
Social Sciences-Health Sciences | 0.1106942 | -1.1097423 | 1.3311307 | 0.9998311 |
Technical Sciences and Engineering-Health Sciences | 0.3302064 | -0.8902301 | 1.5506429 | 0.9704914 |
Science and Mathematics-Other | -0.8160920 | -3.1414899 | 1.5093060 | 0.9133048 |
Social Sciences-Other | -0.9918699 | -3.2851426 | 1.3014028 | 0.8126322 |
Technical Sciences and Engineering-Other | -0.7723577 | -3.0656304 | 1.5209150 | 0.9263444 |
Social Sciences-Science and Mathematics | -0.1757780 | -1.1061144 | 0.7545584 | 0.9941779 |
Technical Sciences and Engineering-Science and Mathematics | 0.0437342 | -0.8866022 | 0.9740706 | 0.9999935 |
Technical Sciences and Engineering-Social Sciences | 0.2195122 | -0.6273349 | 1.0663593 | 0.9755239 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | 1.3443527 | 0.1788344 | 1.0000000 |
Arts and Humanities - Other | -0.7214102 | 0.4706572 | 1.0000000 |
Health Sciences - Other | -1.3442871 | 0.1788556 | 1.0000000 |
Arts and Humanities - Science and Mathematics | 0.8606486 | 0.3894316 | 1.0000000 |
Health Sciences - Science and Mathematics | -0.6569858 | 0.5111900 | 1.0000000 |
Other - Science and Mathematics | 1.0581536 | 0.2899854 | 1.0000000 |
Arts and Humanities - Social Sciences | 1.4936361 | 0.1352708 | 1.0000000 |
Health Sciences - Social Sciences | -0.3055175 | 0.7599721 | 1.0000000 |
Other - Social Sciences | 1.2770230 | 0.2015941 | 1.0000000 |
Science and Mathematics - Social Sciences | 0.5029726 | 0.6149835 | 1.0000000 |
Arts and Humanities - Technical Sciences and Engineering | 0.8579466 | 0.3909219 | 1.0000000 |
Health Sciences - Technical Sciences and Engineering | -0.7493635 | 0.4536382 | 1.0000000 |
Other - Technical Sciences and Engineering | 1.0408165 | 0.2979607 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | -0.0792747 | 0.9368142 | 0.9368142 |
Social Sciences - Technical Sciences and Engineering | -0.6396502 | 0.5224001 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 38.66 7.733 4.641 0.000553 ***
Residuals 161 268.27 1.666
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q32 and podaci$`Study field`
F = 5.1986, num df = 5.000, denom df = 20.728, p-value = 0.003008
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 2.7365 0.02112 *
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q32 by Study field
Kruskal-Wallis chi-squared = 20.6, df = 5, p-value = 0.0009638
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -1.1134615 | -2.3021192 | 0.0751961 | 0.0804248 |
Other-Arts and Humanities | -0.2416667 | -2.4704310 | 1.9870976 | 0.9995945 |
Science and Mathematics-Arts and Humanities | -1.2646552 | -2.1727184 | -0.3565920 | 0.0012500 |
Social Sciences-Arts and Humanities | -1.0384146 | -1.8658634 | -0.2109659 | 0.0052093 |
Technical Sciences and Engineering-Arts and Humanities | -1.0384146 | -1.8658634 | -0.2109659 | 0.0052093 |
Other-Health Sciences | 0.8717949 | -1.5129846 | 3.2565743 | 0.8984373 |
Science and Mathematics-Health Sciences | -0.1511936 | -1.3939171 | 1.0915298 | 0.9992891 |
Social Sciences-Health Sciences | 0.0750469 | -1.1100499 | 1.2601437 | 0.9999714 |
Technical Sciences and Engineering-Health Sciences | 0.0750469 | -1.1100499 | 1.2601437 | 0.9999714 |
Science and Mathematics-Other | -1.0229885 | -3.2810507 | 1.2350737 | 0.7809925 |
Social Sciences-Other | -0.7967480 | -3.0236152 | 1.4301192 | 0.9065245 |
Technical Sciences and Engineering-Other | -0.7967480 | -3.0236152 | 1.4301192 | 0.9065245 |
Social Sciences-Science and Mathematics | 0.2262405 | -0.6771564 | 1.1296375 | 0.9789719 |
Technical Sciences and Engineering-Science and Mathematics | 0.2262405 | -0.6771564 | 1.1296375 | 0.9789719 |
Technical Sciences and Engineering-Social Sciences | 0.0000000 | -0.8223252 | 0.8223252 | 1.0000000 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | 2.5468480 | 0.0108701 | 0.1304409 |
Arts and Humanities - Other | 0.3872444 | 0.6985753 | 1.0000000 |
Health Sciences - Other | -0.9075279 | 0.3641277 | 1.0000000 |
Arts and Humanities - Science and Mathematics | 3.7923356 | 0.0001492 | 0.0022386 |
Health Sciences - Science and Mathematics | 0.3350303 | 0.7376022 | 1.0000000 |
Other - Science and Mathematics | 1.1428401 | 0.2531050 | 1.0000000 |
Arts and Humanities - Social Sciences | 3.4540868 | 0.0005522 | 0.0077302 |
Health Sciences - Social Sciences | -0.1428158 | 0.8864356 | 1.0000000 |
Other - Social Sciences | 0.8958789 | 0.3703174 | 1.0000000 |
Science and Mathematics - Social Sciences | -0.6482207 | 0.5168422 | 1.0000000 |
Arts and Humanities - Technical Sciences and Engineering | 3.3990066 | 0.0006763 | 0.0087920 |
Health Sciences - Technical Sciences and Engineering | -0.1812735 | 0.8561529 | 1.0000000 |
Other - Technical Sciences and Engineering | 0.8754125 | 0.3813495 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | -0.6986703 | 0.4847581 | 1.0000000 |
Social Sciences - Technical Sciences and Engineering | -0.0554234 | 0.9558011 | 0.9558011 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 20.27 4.054 3.594 0.00415 **
Residuals 161 181.62 1.128
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q33 and podaci$`Study field`
F = 2.5664, num df = 5.000, denom df = 18.905, p-value = 0.06188
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 2.649 0.02487 *
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q33 by Study field
Kruskal-Wallis chi-squared = 16.367, df = 5, p-value = 0.00587
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.7596154 | -1.7376497 | 0.2184189 | 0.2253822 |
Other-Arts and Humanities | -0.3750000 | -2.2088399 | 1.4588399 | 0.9915963 |
Science and Mathematics-Arts and Humanities | -0.7543103 | -1.5014699 | -0.0071508 | 0.0463840 |
Social Sciences-Arts and Humanities | -0.8628049 | -1.5436344 | -0.1819753 | 0.0046099 |
Technical Sciences and Engineering-Arts and Humanities | -0.8140244 | -1.4948540 | -0.1331948 | 0.0092345 |
Other-Health Sciences | 0.3846154 | -1.5775947 | 2.3468255 | 0.9930918 |
Science and Mathematics-Health Sciences | 0.0053050 | -1.0172149 | 1.0278250 | 1.0000000 |
Social Sciences-Health Sciences | -0.1031895 | -1.0782939 | 0.8719149 | 0.9996400 |
Technical Sciences and Engineering-Health Sciences | -0.0544090 | -1.0295134 | 0.9206954 | 0.9999848 |
Science and Mathematics-Other | -0.3793103 | -2.2372568 | 1.4786361 | 0.9916593 |
Social Sciences-Other | -0.4878049 | -2.3200839 | 1.3444741 | 0.9724919 |
Technical Sciences and Engineering-Other | -0.4390244 | -2.2713034 | 1.3932546 | 0.9827267 |
Social Sciences-Science and Mathematics | -0.1084945 | -0.8518147 | 0.6348256 | 0.9982866 |
Technical Sciences and Engineering-Science and Mathematics | -0.0597140 | -0.8030342 | 0.6836061 | 0.9999072 |
Technical Sciences and Engineering-Social Sciences | 0.0487805 | -0.6278334 | 0.7253944 | 0.9999456 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | 1.8778816 | 0.0603974 | 0.7247683 |
Arts and Humanities - Other | 0.2471857 | 0.8047645 | 1.0000000 |
Health Sciences - Other | -0.7049875 | 0.4808180 | 1.0000000 |
Arts and Humanities - Science and Mathematics | 2.8050704 | 0.0050306 | 0.0653973 |
Health Sciences - Science and Mathematics | 0.2534939 | 0.7998866 | 1.0000000 |
Other - Science and Mathematics | 0.8840601 | 0.3766638 | 1.0000000 |
Arts and Humanities - Social Sciences | 3.3945086 | 0.0006875 | 0.0103128 |
Health Sciences - Social Sciences | 0.4865624 | 0.6265685 | 1.0000000 |
Other - Social Sciences | 1.0139192 | 0.3106213 | 1.0000000 |
Science and Mathematics - Social Sciences | 0.2895745 | 0.7721418 | 1.0000000 |
Arts and Humanities - Technical Sciences and Engineering | 3.3492520 | 0.0008103 | 0.0113442 |
Health Sciences - Technical Sciences and Engineering | 0.4549638 | 0.6491353 | 1.0000000 |
Other - Technical Sciences and Engineering | 0.9971029 | 0.3187145 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | 0.2481226 | 0.8040395 | 1.0000000 |
Social Sciences - Technical Sciences and Engineering | -0.0455385 | 0.9636781 | 0.9636781 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 2.86 0.5727 0.505 0.773
Residuals 161 182.77 1.1352
One-way analysis of means (not assuming equal variances)
data: podaci$Q35 and podaci$`Study field`
F = 0.52771, num df = 5.000, denom df = 20.008, p-value = 0.7526
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.0375 0.3975
161
Kruskal-Wallis rank sum test
data: Q35 by Study field
Kruskal-Wallis chi-squared = 2.3057, df = 5, p-value = 0.8054
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.0403846 | -1.0214944 | 0.9407252 | 0.9999966 |
Other-Arts and Humanities | 0.2416667 | -1.5979399 | 2.0812733 | 0.9989686 |
Science and Mathematics-Arts and Humanities | 0.3681034 | -0.3814056 | 1.1176125 | 0.7169543 |
Social Sciences-Arts and Humanities | 0.0871951 | -0.5957754 | 0.7701656 | 0.9991018 |
Technical Sciences and Engineering-Arts and Humanities | 0.0628049 | -0.6201656 | 0.7457754 | 0.9998193 |
Other-Health Sciences | 0.2820513 | -1.6863292 | 2.2504317 | 0.9984319 |
Science and Mathematics-Health Sciences | 0.4084881 | -0.6172473 | 1.4342234 | 0.8600963 |
Social Sciences-Health Sciences | 0.1275797 | -0.8505909 | 1.1057504 | 0.9990039 |
Technical Sciences and Engineering-Health Sciences | 0.1031895 | -0.8749812 | 1.0813602 | 0.9996455 |
Science and Mathematics-Other | 0.1264368 | -1.7373521 | 1.9902257 | 0.9999598 |
Social Sciences-Other | -0.1544715 | -1.9925123 | 1.6835692 | 0.9998840 |
Technical Sciences and Engineering-Other | -0.1788618 | -2.0169026 | 1.6591790 | 0.9997614 |
Social Sciences-Science and Mathematics | -0.2809083 | -1.0265659 | 0.4647493 | 0.8861305 |
Technical Sciences and Engineering-Science and Mathematics | -0.3052986 | -1.0509562 | 0.4403590 | 0.8453756 |
Technical Sciences and Engineering-Social Sciences | -0.0243902 | -0.7031318 | 0.6543513 | 0.9999983 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | -0.0453680 | 0.9638140 | 0.963814 |
Arts and Humanities - Other | -0.2528889 | 0.8003541 | 1.000000 |
Health Sciences - Other | -0.2137316 | 0.8307564 | 1.000000 |
Arts and Humanities - Science and Mathematics | -1.4365237 | 0.1508534 | 1.000000 |
Health Sciences - Science and Mathematics | -1.0062797 | 0.3142810 | 1.000000 |
Other - Science and Mathematics | -0.3280799 | 0.7428513 | 1.000000 |
Arts and Humanities - Social Sciences | -0.5323734 | 0.5944674 | 1.000000 |
Health Sciences - Social Sciences | -0.3262052 | 0.7442691 | 1.000000 |
Other - Social Sciences | 0.0552875 | 0.9559094 | 1.000000 |
Science and Mathematics - Social Sciences | 0.9563267 | 0.3389072 | 1.000000 |
Arts and Humanities - Technical Sciences and Engineering | -0.3867896 | 0.6989120 | 1.000000 |
Health Sciences - Technical Sciences and Engineering | -0.2245569 | 0.8223240 | 1.000000 |
Other - Technical Sciences and Engineering | 0.1093828 | 0.9128988 | 1.000000 |
Science and Mathematics - Technical Sciences and Engineering | 1.0896713 | 0.2758579 | 1.000000 |
Social Sciences - Technical Sciences and Engineering | 0.1464908 | 0.8835339 | 1.000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 3.19 0.6383 0.531 0.753
Residuals 161 193.53 1.2020
One-way analysis of means (not assuming equal variances)
data: podaci$Q36 and podaci$`Study field`
F = 0.57292, num df = 5.00, denom df = 20.07, p-value = 0.72
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 0.8215 0.536
161
Kruskal-Wallis rank sum test
data: Q36 by Study field
Kruskal-Wallis chi-squared = 2.2735, df = 5, p-value = 0.8102
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | 0.1884615 | -0.8211219 | 1.1980449 | 0.9944972 |
Other-Arts and Humanities | 0.3166667 | -1.5763286 | 2.2096620 | 0.9967164 |
Science and Mathematics-Arts and Humanities | -0.1086207 | -0.8798819 | 0.6626405 | 0.9985571 |
Social Sciences-Arts and Humanities | 0.1865854 | -0.5162062 | 0.8893769 | 0.9728221 |
Technical Sciences and Engineering-Arts and Humanities | -0.1304878 | -0.8332793 | 0.5723037 | 0.9946340 |
Other-Health Sciences | 0.1282051 | -1.8973013 | 2.1537115 | 0.9999715 |
Science and Mathematics-Health Sciences | -0.2970822 | -1.3525863 | 0.7584218 | 0.9650175 |
Social Sciences-Health Sciences | -0.0018762 | -1.0084351 | 1.0046828 | 1.0000000 |
Technical Sciences and Engineering-Health Sciences | -0.3189493 | -1.3255083 | 0.6876096 | 0.9424708 |
Science and Mathematics-Other | -0.4252874 | -2.3431668 | 1.4925921 | 0.9878198 |
Social Sciences-Other | -0.1300813 | -2.0214653 | 1.7613027 | 0.9999570 |
Technical Sciences and Engineering-Other | -0.4471545 | -2.3385385 | 1.4442296 | 0.9837331 |
Social Sciences-Science and Mathematics | 0.2952061 | -0.4720919 | 1.0625040 | 0.8767907 |
Technical Sciences and Engineering-Science and Mathematics | -0.0218671 | -0.7891650 | 0.7454308 | 0.9999995 |
Technical Sciences and Engineering-Social Sciences | -0.3170732 | -1.0155130 | 0.3813667 | 0.7794987 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | -0.6665422 | 0.5050646 | 1.0000000 |
Arts and Humanities - Other | -0.3772894 | 0.7059585 | 1.0000000 |
Health Sciences - Other | -0.0203787 | 0.9837413 | 0.9837413 |
Arts and Humanities - Science and Mathematics | 0.3236087 | 0.7462343 | 1.0000000 |
Health Sciences - Science and Mathematics | 0.8740059 | 0.3821150 | 1.0000000 |
Other - Science and Mathematics | 0.5025310 | 0.6152940 | 1.0000000 |
Arts and Humanities - Social Sciences | -0.8138224 | 0.4157467 | 1.0000000 |
Health Sciences - Social Sciences | 0.1003244 | 0.9200868 | 1.0000000 |
Other - Social Sciences | 0.0752145 | 0.9400440 | 1.0000000 |
Science and Mathematics - Social Sciences | -1.0706850 | 0.2843111 | 1.0000000 |
Arts and Humanities - Technical Sciences and Engineering | 0.3168998 | 0.7513196 | 1.0000000 |
Health Sciences - Technical Sciences and Engineering | 0.8898082 | 0.3735689 | 1.0000000 |
Other - Technical Sciences and Engineering | 0.4953630 | 0.6203439 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | -0.0350220 | 0.9720622 | 1.0000000 |
Social Sciences - Technical Sciences and Engineering | 1.1377673 | 0.2552177 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 3.43 0.6869 0.542 0.745
Residuals 161 204.18 1.2682
One-way analysis of means (not assuming equal variances)
data: podaci$Q37 and podaci$`Study field`
F = 0.98952, num df = 5.000, denom df = 20.087, p-value = 0.4487
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.2524 0.2872
161
Kruskal-Wallis rank sum test
data: Q37 by Study field
Kruskal-Wallis chi-squared = 3.118, df = 5, p-value = 0.6818
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | 0.0038462 | -1.0331571 | 1.0408494 | 1.0000000 |
Other-Arts and Humanities | 0.5166667 | -1.4277415 | 2.4610749 | 0.9727205 |
Science and Mathematics-Arts and Humanities | -0.3224138 | -1.1146221 | 0.4697945 | 0.8486694 |
Social Sciences-Arts and Humanities | -0.0524390 | -0.7743181 | 0.6694400 | 0.9999436 |
Technical Sciences and Engineering-Arts and Humanities | -0.1743902 | -0.8962693 | 0.5474888 | 0.9820820 |
Other-Health Sciences | 0.5128205 | -1.5676977 | 2.5933387 | 0.9804023 |
Science and Mathematics-Health Sciences | -0.3262599 | -1.4104310 | 0.7579111 | 0.9535566 |
Social Sciences-Health Sciences | -0.0562852 | -1.0901818 | 0.9776114 | 0.9999865 |
Technical Sciences and Engineering-Health Sciences | -0.1782364 | -1.2121330 | 0.8556602 | 0.9962142 |
Science and Mathematics-Other | -0.8390805 | -2.8090486 | 1.1308877 | 0.8222819 |
Social Sciences-Other | -0.5691057 | -2.5118588 | 1.3736475 | 0.9585303 |
Technical Sciences and Engineering-Other | -0.6910569 | -2.6338101 | 1.2516962 | 0.9086176 |
Social Sciences-Science and Mathematics | 0.2699748 | -0.5181626 | 1.0581122 | 0.9212029 |
Technical Sciences and Engineering-Science and Mathematics | 0.1480235 | -0.6401138 | 0.9361609 | 0.9943381 |
Technical Sciences and Engineering-Social Sciences | -0.1219512 | -0.8393604 | 0.5954579 | 0.9964573 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | -0.1593121 | 0.8734230 | 1.000000 |
Arts and Humanities - Other | -0.8111995 | 0.4172511 | 1.000000 |
Health Sciences - Other | -0.6787231 | 0.4973133 | 1.000000 |
Arts and Humanities - Science and Mathematics | 1.2335257 | 0.2173797 | 1.000000 |
Health Sciences - Science and Mathematics | 1.0537235 | 0.2920095 | 1.000000 |
Other - Science and Mathematics | 1.2967277 | 0.1947249 | 1.000000 |
Arts and Humanities - Social Sciences | 0.1209408 | 0.9037380 | 0.903738 |
Health Sciences - Social Sciences | 0.2442331 | 0.8070503 | 1.000000 |
Other - Social Sciences | 0.8568292 | 0.3915393 | 1.000000 |
Science and Mathematics - Social Sciences | -1.1291239 | 0.2588456 | 1.000000 |
Arts and Humanities - Technical Sciences and Engineering | 0.6318417 | 0.5274903 | 1.000000 |
Health Sciences - Technical Sciences and Engineering | 0.6009502 | 0.5478731 | 1.000000 |
Other - Technical Sciences and Engineering | 1.0466673 | 0.2952530 | 1.000000 |
Science and Mathematics - Technical Sciences and Engineering | -0.6611741 | 0.5085006 | 1.000000 |
Social Sciences - Technical Sciences and Engineering | 0.5140841 | 0.6071932 | 1.000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 11.72 2.3442 3.104 0.0106 *
Residuals 161 121.60 0.7553
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q38 and podaci$`Study field`
F = 3.5125, num df = 5.000, denom df = 19.272, p-value = 0.0201
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 4.392 0.0008932 ***
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q38 by Study field
Kruskal-Wallis chi-squared = 13.257, df = 5, p-value = 0.02108
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.0192308 | -0.8194911 | 0.7810296 | 0.9999998 |
Other-Arts and Humanities | 0.4166667 | -1.0838424 | 1.9171757 | 0.9669885 |
Science and Mathematics-Arts and Humanities | 0.7500000 | 0.1386491 | 1.3613509 | 0.0068591 |
Social Sciences-Arts and Humanities | 0.2378049 | -0.3192726 | 0.7948824 | 0.8209131 |
Technical Sciences and Engineering-Arts and Humanities | 0.4329268 | -0.1241507 | 0.9900043 | 0.2247949 |
Other-Health Sciences | 0.4358974 | -1.1696484 | 2.0414433 | 0.9700491 |
Science and Mathematics-Health Sciences | 0.7692308 | -0.0674292 | 1.6058907 | 0.0910178 |
Social Sciences-Health Sciences | 0.2570356 | -0.5408273 | 1.0548986 | 0.9384433 |
Technical Sciences and Engineering-Health Sciences | 0.4521576 | -0.3457053 | 1.2500205 | 0.5769635 |
Science and Mathematics-Other | 0.3333333 | -1.1869005 | 1.8535671 | 0.9884287 |
Social Sciences-Other | -0.1788618 | -1.6780937 | 1.3203701 | 0.9993538 |
Technical Sciences and Engineering-Other | 0.0162602 | -1.4829717 | 1.5154920 | 1.0000000 |
Social Sciences-Science and Mathematics | -0.5121951 | -1.1204045 | 0.0960143 | 0.1525296 |
Technical Sciences and Engineering-Science and Mathematics | -0.3170732 | -0.9252826 | 0.2911362 | 0.6624222 |
Technical Sciences and Engineering-Social Sciences | 0.1951220 | -0.3585061 | 0.7487500 | 0.9118498 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | 0.3232642 | 0.7464952 | 1.0000000 |
Arts and Humanities - Other | -0.6013459 | 0.5476096 | 1.0000000 |
Health Sciences - Other | -0.7231313 | 0.4695992 | 1.0000000 |
Arts and Humanities - Science and Mathematics | -3.2255146 | 0.0012575 | 0.0188620 |
Health Sciences - Science and Mathematics | -2.6660972 | 0.0076738 | 0.1074325 |
Other - Science and Mathematics | -0.7035736 | 0.4816983 | 1.0000000 |
Arts and Humanities - Social Sciences | -0.8824107 | 0.3775548 | 1.0000000 |
Health Sciences - Social Sciences | -0.9403452 | 0.3470405 | 1.0000000 |
Other - Social Sciences | 0.2739762 | 0.7841029 | 1.0000000 |
Science and Mathematics - Social Sciences | 2.4339483 | 0.0149351 | 0.1941566 |
Arts and Humanities - Technical Sciences and Engineering | -1.7367722 | 0.0824274 | 0.9891286 |
Health Sciences - Technical Sciences and Engineering | -1.5368707 | 0.1243250 | 1.0000000 |
Other - Technical Sciences and Engineering | -0.0434835 | 0.9653162 | 0.9653162 |
Science and Mathematics - Technical Sciences and Engineering | 1.6514126 | 0.0986544 | 1.0000000 |
Social Sciences - Technical Sciences and Engineering | -0.8596848 | 0.3899628 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 1.70 0.3405 0.617 0.687
Residuals 161 88.78 0.5514
One-way analysis of means (not assuming equal variances)
data: podaci$Q39 and podaci$`Study field`
F = 0.69745, num df = 5.000, denom df = 19.315, p-value = 0.6318
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.012 0.4125
161
Kruskal-Wallis rank sum test
data: Q39 by Study field
Kruskal-Wallis chi-squared = 3.7843, df = 5, p-value = 0.5809
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.2096154 | -0.8934023 | 0.4741716 | 0.9498278 |
Other-Arts and Humanities | -0.1583333 | -1.4404518 | 1.1237851 | 0.9992357 |
Science and Mathematics-Arts and Humanities | 0.1405172 | -0.3818550 | 0.6628895 | 0.9712254 |
Social Sciences-Arts and Humanities | 0.0042683 | -0.4717297 | 0.4802663 | 1.0000000 |
Technical Sciences and Engineering-Arts and Humanities | -0.1176829 | -0.5936809 | 0.3583151 | 0.9801370 |
Other-Health Sciences | 0.0512821 | -1.3205856 | 1.4231497 | 0.9999979 |
Science and Mathematics-Health Sciences | 0.3501326 | -0.3647562 | 1.0650215 | 0.7193320 |
Social Sciences-Health Sciences | 0.2138837 | -0.4678548 | 0.8956222 | 0.9447787 |
Technical Sciences and Engineering-Health Sciences | 0.0919325 | -0.5898060 | 0.7736710 | 0.9988296 |
Science and Mathematics-Other | 0.2988506 | -1.0001218 | 1.5978229 | 0.9856087 |
Social Sciences-Other | 0.1626016 | -1.1184255 | 1.4436287 | 0.9991268 |
Technical Sciences and Engineering-Other | 0.0406504 | -1.2403767 | 1.3216775 | 0.9999991 |
Social Sciences-Science and Mathematics | -0.1362489 | -0.6559369 | 0.3834390 | 0.9742741 |
Technical Sciences and Engineering-Science and Mathematics | -0.2582002 | -0.7778881 | 0.2614878 | 0.7068543 |
Technical Sciences and Engineering-Social Sciences | -0.1219512 | -0.5950018 | 0.3510994 | 0.9761046 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | 1.2518540 | 0.2106231 | 1.0000000 |
Arts and Humanities - Other | 0.5295467 | 0.5964262 | 1.0000000 |
Health Sciences - Other | -0.1290648 | 0.8973064 | 1.0000000 |
Arts and Humanities - Science and Mathematics | -0.4345178 | 0.6639124 | 1.0000000 |
Health Sciences - Science and Mathematics | -1.5148950 | 0.1297990 | 1.0000000 |
Other - Science and Mathematics | -0.6974141 | 0.4855437 | 1.0000000 |
Arts and Humanities - Social Sciences | 0.1196406 | 0.9047678 | 0.9047678 |
Health Sciences - Social Sciences | -1.1720810 | 0.2411645 | 1.0000000 |
Other - Social Sciences | -0.4855423 | 0.6272917 | 1.0000000 |
Science and Mathematics - Social Sciences | 0.5463447 | 0.5848290 | 1.0000000 |
Arts and Humanities - Technical Sciences and Engineering | 1.0309459 | 0.3025662 | 1.0000000 |
Health Sciences - Technical Sciences and Engineering | -0.5357967 | 0.5920990 | 1.0000000 |
Other - Technical Sciences and Engineering | -0.1469239 | 0.8831921 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | 1.3810369 | 0.1672676 | 1.0000000 |
Social Sciences - Technical Sciences and Engineering | 0.9169832 | 0.3591514 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 12.49 2.4983 2.646 0.025 *
Residuals 161 152.00 0.9441
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q40 and podaci$`Study field`
F = 2.3049, num df = 5.000, denom df = 18.633, p-value = 0.08596
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 0.0826 0.9949
161
Kruskal-Wallis rank sum test
data: Q40 by Study field
Kruskal-Wallis chi-squared = 13.223, df = 5, p-value = 0.02137
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | 0.6596154 | -0.2351150 | 1.5543457 | 0.2790618 |
Other-Arts and Humanities | -0.0583333 | -1.7359762 | 1.6193095 | 0.9999986 |
Science and Mathematics-Arts and Humanities | -0.4491379 | -1.1326583 | 0.2343824 | 0.4088168 |
Social Sciences-Arts and Humanities | -0.2371951 | -0.8600351 | 0.3856449 | 0.8813987 |
Technical Sciences and Engineering-Arts and Humanities | -0.2128049 | -0.8356449 | 0.4100351 | 0.9220025 |
Other-Health Sciences | -0.7179487 | -2.5130278 | 1.0771304 | 0.8578930 |
Science and Mathematics-Health Sciences | -1.1087533 | -2.0441802 | -0.1733264 | 0.0101761 |
Social Sciences-Health Sciences | -0.8968105 | -1.7888605 | -0.0047606 | 0.0479551 |
Technical Sciences and Engineering-Health Sciences | -0.8724203 | -1.7644702 | 0.0196297 | 0.0592346 |
Science and Mathematics-Other | -0.3908046 | -2.0905006 | 1.3088914 | 0.9856484 |
Social Sciences-Other | -0.1788618 | -1.8550766 | 1.4973531 | 0.9996251 |
Technical Sciences and Engineering-Other | -0.1544715 | -1.8306864 | 1.5217433 | 0.9998174 |
Social Sciences-Science and Mathematics | 0.2119428 | -0.4680651 | 0.8919508 | 0.9462569 |
Technical Sciences and Engineering-Science and Mathematics | 0.2363331 | -0.4436749 | 0.9163410 | 0.9165609 |
Technical Sciences and Engineering-Social Sciences | 0.0243902 | -0.5945931 | 0.6433736 | 0.9999973 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | -2.1890594 | 0.0285925 | 0.3431102 |
Arts and Humanities - Other | 0.2646014 | 0.7913165 | 1.0000000 |
Health Sciences - Other | 1.3383948 | 0.1807678 | 1.0000000 |
Arts and Humanities - Science and Mathematics | 1.8040050 | 0.0712305 | 0.7835357 |
Health Sciences - Science and Mathematics | 3.4120164 | 0.0006448 | 0.0096726 |
Other - Science and Mathematics | 0.4642992 | 0.6424334 | 1.0000000 |
Arts and Humanities - Social Sciences | 1.1358552 | 0.2560172 | 1.0000000 |
Health Sciences - Social Sciences | 2.9887047 | 0.0028016 | 0.0392228 |
Other - Social Sciences | 0.1572289 | 0.8750645 | 1.0000000 |
Science and Mathematics - Social Sciences | -0.7729587 | 0.4395468 | 1.0000000 |
Arts and Humanities - Technical Sciences and Engineering | 0.9147757 | 0.3603094 | 1.0000000 |
Health Sciences - Technical Sciences and Engineering | 2.8343444 | 0.0045920 | 0.0596958 |
Other - Technical Sciences and Engineering | 0.0750812 | 0.9401501 | 0.9401501 |
Science and Mathematics - Technical Sciences and Engineering | -0.9754522 | 0.3293360 | 1.0000000 |
Social Sciences - Technical Sciences and Engineering | -0.2224569 | 0.8239582 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 10.37 2.074 2.047 0.0749 .
Residuals 161 163.17 1.014
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q41 and podaci$`Study field`
F = 1.7812, num df = 5.00, denom df = 18.72, p-value = 0.1657
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 0.4584 0.8067
161
Kruskal-Wallis rank sum test
data: Q41 by Study field
Kruskal-Wallis chi-squared = 10.192, df = 5, p-value = 0.06997
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | 0.0019231 | -0.9251108 | 0.9289569 | 1.0000000 |
Other-Arts and Humanities | 0.9250000 | -0.8132128 | 2.6632128 | 0.6422928 |
Science and Mathematics-Arts and Humanities | 0.6146552 | -0.0935431 | 1.3228535 | 0.1292364 |
Social Sciences-Arts and Humanities | 0.1445122 | -0.5008149 | 0.7898393 | 0.9872645 |
Technical Sciences and Engineering-Arts and Humanities | 0.4371951 | -0.2081320 | 1.0825222 | 0.3734786 |
Other-Health Sciences | 0.9230769 | -0.9368120 | 2.7829659 | 0.7077952 |
Science and Mathematics-Health Sciences | 0.6127321 | -0.3564677 | 1.5819319 | 0.4536634 |
Social Sciences-Health Sciences | 0.1425891 | -0.7816676 | 1.0668458 | 0.9977661 |
Technical Sciences and Engineering-Health Sciences | 0.4352720 | -0.4889846 | 1.3595287 | 0.7516692 |
Science and Mathematics-Other | -0.3103448 | -2.0714070 | 1.4507173 | 0.9958004 |
Social Sciences-Other | -0.7804878 | -2.5172210 | 0.9562454 | 0.7867621 |
Technical Sciences and Engineering-Other | -0.4878049 | -2.2245381 | 1.2489283 | 0.9653281 |
Social Sciences-Science and Mathematics | -0.4701430 | -1.1747021 | 0.2344161 | 0.3909748 |
Technical Sciences and Engineering-Science and Mathematics | -0.1774601 | -0.8820191 | 0.5270990 | 0.9784315 |
Technical Sciences and Engineering-Social Sciences | 0.2926829 | -0.3486483 | 0.9340142 | 0.7756546 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | -0.1353156 | 0.8923624 | 0.8923624 |
Arts and Humanities - Other | -1.4666300 | 0.1424767 | 1.0000000 |
Health Sciences - Other | -1.3032353 | 0.1924944 | 1.0000000 |
Arts and Humanities - Science and Mathematics | -2.5507989 | 0.0107476 | 0.1612145 |
Health Sciences - Science and Mathematics | -1.7344508 | 0.0828381 | 0.9940576 |
Other - Science and Mathematics | 0.4218157 | 0.6731596 | 1.0000000 |
Arts and Humanities - Social Sciences | -0.6300969 | 0.5286312 | 1.0000000 |
Health Sciences - Social Sciences | -0.3042190 | 0.7609610 | 1.0000000 |
Other - Social Sciences | 1.2337510 | 0.2172957 | 1.0000000 |
Science and Mathematics - Social Sciences | 1.9868494 | 0.0469391 | 0.6102081 |
Arts and Humanities - Technical Sciences and Engineering | -1.9880307 | 0.0468083 | 0.6553161 |
Health Sciences - Technical Sciences and Engineering | -1.2523447 | 0.2104443 | 1.0000000 |
Other - Technical Sciences and Engineering | 0.7291764 | 0.4658938 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | 0.7430765 | 0.4574354 | 1.0000000 |
Social Sciences - Technical Sciences and Engineering | -1.3663946 | 0.1718151 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 3.02 0.6046 0.78 0.566
Residuals 161 124.81 0.7752
One-way analysis of means (not assuming equal variances)
data: podaci$Q42 and podaci$`Study field`
F = 0.67328, num df = 5.000, denom df = 18.658, p-value = 0.6488
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 0.7946 0.555
161
Kruskal-Wallis rank sum test
data: Q42 by Study field
Kruskal-Wallis chi-squared = 3.7152, df = 5, p-value = 0.5911
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | 0.0826923 | -0.7280727 | 0.8934573 | 0.9996995 |
Other-Arts and Humanities | 0.1083333 | -1.4118723 | 1.6285390 | 0.9999487 |
Science and Mathematics-Arts and Humanities | -0.2939655 | -0.9133414 | 0.3254104 | 0.7454745 |
Social Sciences-Arts and Humanities | -0.2006098 | -0.7649998 | 0.3637803 | 0.9088822 |
Technical Sciences and Engineering-Arts and Humanities | 0.0189024 | -0.5454876 | 0.5832925 | 0.9999988 |
Other-Health Sciences | 0.0256410 | -1.6009802 | 1.6522622 | 1.0000000 |
Science and Mathematics-Health Sciences | -0.3766578 | -1.2243003 | 0.4709846 | 0.7946433 |
Social Sciences-Health Sciences | -0.2833021 | -1.0916382 | 0.5250341 | 0.9137608 |
Technical Sciences and Engineering-Health Sciences | -0.0637899 | -0.8721260 | 0.7445463 | 0.9999150 |
Science and Mathematics-Other | -0.4022989 | -1.9424881 | 1.1378904 | 0.9746896 |
Social Sciences-Other | -0.3089431 | -1.8278548 | 1.2099686 | 0.9918013 |
Technical Sciences and Engineering-Other | -0.0894309 | -1.6083426 | 1.4294808 | 0.9999801 |
Social Sciences-Science and Mathematics | 0.0933558 | -0.5228373 | 0.7095489 | 0.9979514 |
Technical Sciences and Engineering-Science and Mathematics | 0.3128680 | -0.3033251 | 0.9290611 | 0.6872716 |
Technical Sciences and Engineering-Social Sciences | 0.2195122 | -0.3413831 | 0.7804075 | 0.8687470 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | -0.2493878 | 0.8030608 | 1.0000000 |
Arts and Humanities - Other | -0.2640137 | 0.7917694 | 1.0000000 |
Health Sciences - Other | -0.1224380 | 0.9025522 | 0.9025522 |
Arts and Humanities - Science and Mathematics | 1.3116096 | 0.1896519 | 1.0000000 |
Health Sciences - Science and Mathematics | 1.1969365 | 0.2313313 | 1.0000000 |
Other - Science and Mathematics | 0.7880424 | 0.4306719 | 1.0000000 |
Arts and Humanities - Social Sciences | 0.9765785 | 0.3287779 | 1.0000000 |
Health Sciences - Social Sciences | 0.9319959 | 0.3513386 | 1.0000000 |
Other - Social Sciences | 0.6271110 | 0.5305865 | 1.0000000 |
Science and Mathematics - Social Sciences | -0.4239064 | 0.6716341 | 1.0000000 |
Arts and Humanities - Technical Sciences and Engineering | -0.1565919 | 0.8755665 | 1.0000000 |
Health Sciences - Technical Sciences and Engineering | 0.1408028 | 0.8880258 | 1.0000000 |
Other - Technical Sciences and Engineering | 0.2060529 | 0.8367496 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | -1.4618117 | 0.1437928 | 1.0000000 |
Social Sciences - Technical Sciences and Engineering | -1.1402307 | 0.2541902 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 4.98 0.9966 1.549 0.177
Residuals 161 103.56 0.6432
One-way analysis of means (not assuming equal variances)
data: podaci$Q43 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 3.0497 0.01171 *
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q43 by Study field
Kruskal-Wallis chi-squared = 8.282, df = 5, p-value = 0.1414
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.0807692 | -0.8192822 | 0.6577437 | 0.9995771 |
Other-Arts and Humanities | -0.8500000 | -2.2347312 | 0.5347312 | 0.4876910 |
Science and Mathematics-Arts and Humanities | -0.4017241 | -0.9659038 | 0.1624555 | 0.3170275 |
Social Sciences-Arts and Humanities | -0.0695122 | -0.5836061 | 0.4445817 | 0.9988144 |
Technical Sciences and Engineering-Arts and Humanities | -0.2646341 | -0.7787280 | 0.2494597 | 0.6744931 |
Other-Health Sciences | -0.7692308 | -2.2508942 | 0.7124326 | 0.6663972 |
Science and Mathematics-Health Sciences | -0.3209549 | -1.0930590 | 0.4511491 | 0.8368159 |
Social Sciences-Health Sciences | 0.0112570 | -0.7250435 | 0.7475576 | 1.0000000 |
Technical Sciences and Engineering-Health Sciences | -0.1838649 | -0.9201655 | 0.5524357 | 0.9792378 |
Science and Mathematics-Other | 0.4482759 | -0.9546581 | 1.8512098 | 0.9404684 |
Social Sciences-Other | 0.7804878 | -0.6030647 | 2.1640403 | 0.5818974 |
Technical Sciences and Engineering-Other | 0.5853659 | -0.7981866 | 1.9689184 | 0.8263820 |
Social Sciences-Science and Mathematics | 0.3322119 | -0.2290686 | 0.8934924 | 0.5290746 |
Technical Sciences and Engineering-Science and Mathematics | 0.1370900 | -0.4241905 | 0.6983705 | 0.9811829 |
Technical Sciences and Engineering-Social Sciences | -0.1951220 | -0.7060326 | 0.3157887 | 0.8801325 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | 0.3415898 | 0.7326596 | 1.0000000 |
Arts and Humanities - Other | 1.8681209 | 0.0617452 | 0.8644330 |
Health Sciences - Other | 1.5756458 | 0.1151074 | 1.0000000 |
Arts and Humanities - Science and Mathematics | 2.1824135 | 0.0290790 | 0.4361855 |
Health Sciences - Science and Mathematics | 1.2679700 | 0.2048087 | 1.0000000 |
Other - Science and Mathematics | -0.9662408 | 0.3339237 | 1.0000000 |
Arts and Humanities - Social Sciences | 0.5867998 | 0.5573382 | 1.0000000 |
Health Sciences - Social Sciences | 0.0670945 | 0.9465065 | 0.9465065 |
Other - Social Sciences | -1.6516721 | 0.0986014 | 1.0000000 |
Science and Mathematics - Social Sciences | -1.6562184 | 0.0976776 | 1.0000000 |
Arts and Humanities - Technical Sciences and Engineering | 1.5626045 | 0.1181456 | 1.0000000 |
Health Sciences - Technical Sciences and Engineering | 0.7484130 | 0.4542111 | 1.0000000 |
Other - Technical Sciences and Engineering | -1.2890872 | 0.1973678 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | -0.7624491 | 0.4457920 | 1.0000000 |
Social Sciences - Technical Sciences and Engineering | 0.9818846 | 0.3261567 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 3.23 0.6457 0.856 0.512
Residuals 161 121.41 0.7541
One-way analysis of means (not assuming equal variances)
data: podaci$Q44 and podaci$`Study field`
F = 0.77547, num df = 5.000, denom df = 18.556, p-value = 0.5796
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 0.1091 0.9902
161
Kruskal-Wallis rank sum test
data: Q44 by Study field
Kruskal-Wallis chi-squared = 4.4581, df = 5, p-value = 0.4855
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | 0.0500000 | -0.7496339 | 0.8496339 | 0.9999732 |
Other-Arts and Humanities | -0.2833333 | -1.7826679 | 1.2160012 | 0.9941732 |
Science and Mathematics-Arts and Humanities | -0.3637931 | -0.9746655 | 0.2470793 | 0.5221602 |
Social Sciences-Arts and Humanities | -0.1695122 | -0.7261536 | 0.3871292 | 0.9511929 |
Technical Sciences and Engineering-Arts and Humanities | -0.0231707 | -0.5798122 | 0.5334707 | 0.9999965 |
Other-Health Sciences | -0.3333333 | -1.9376224 | 1.2709558 | 0.9909557 |
Science and Mathematics-Health Sciences | -0.4137931 | -1.2497982 | 0.4222120 | 0.7101775 |
Social Sciences-Health Sciences | -0.2195122 | -1.0167506 | 0.5777262 | 0.9681716 |
Technical Sciences and Engineering-Health Sciences | -0.0731707 | -0.8704092 | 0.7240677 | 0.9998210 |
Science and Mathematics-Other | -0.0804598 | -1.5995036 | 1.4385841 | 0.9999882 |
Social Sciences-Other | 0.1138211 | -1.3842372 | 1.6118795 | 0.9999295 |
Technical Sciences and Engineering-Other | 0.2601626 | -1.2378957 | 1.7582210 | 0.9960803 |
Social Sciences-Science and Mathematics | 0.1942809 | -0.4134524 | 0.8020142 | 0.9403511 |
Technical Sciences and Engineering-Science and Mathematics | 0.3406224 | -0.2671109 | 0.9483557 | 0.5888188 |
Technical Sciences and Engineering-Social Sciences | 0.1463415 | -0.4068532 | 0.6995362 | 0.9732450 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | -0.1701438 | 0.8648971 | 1.0000000 |
Arts and Humanities - Other | 0.6045886 | 0.5454524 | 1.0000000 |
Health Sciences - Other | 0.6498413 | 0.5157947 | 1.0000000 |
Arts and Humanities - Science and Mathematics | 1.7548855 | 0.0792789 | 1.0000000 |
Health Sciences - Science and Mathematics | 1.4450437 | 0.1484456 | 1.0000000 |
Other - Science and Mathematics | 0.1089702 | 0.9132261 | 0.9132261 |
Arts and Humanities - Social Sciences | 0.8769849 | 0.3804949 | 1.0000000 |
Health Sciences - Social Sciences | 0.7829764 | 0.4336410 | 1.0000000 |
Other - Social Sciences | -0.2792377 | 0.7800624 | 1.0000000 |
Science and Mathematics - Social Sciences | -0.9606927 | 0.3367067 | 1.0000000 |
Arts and Humanities - Technical Sciences and Engineering | 0.1234457 | 0.9017542 | 1.0000000 |
Health Sciences - Technical Sciences and Engineering | 0.2568463 | 0.7972975 | 1.0000000 |
Other - Technical Sciences and Engineering | -0.5592343 | 0.5760018 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | -1.6508822 | 0.0987626 | 1.0000000 |
Social Sciences - Technical Sciences and Engineering | -0.7582342 | 0.4483108 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 0.31 0.0626 0.089 0.994
Residuals 161 113.39 0.7043
One-way analysis of means (not assuming equal variances)
data: podaci$Q45 and podaci$`Study field`
F = 0.080052, num df = 5.000, denom df = 18.616, p-value = 0.9946
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 0.5901 0.7075
161
Kruskal-Wallis rank sum test
data: Q45 by Study field
Kruskal-Wallis chi-squared = 0.72526, df = 5, p-value = 0.9816
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.0923077 | -0.8650836 | 0.6804682 | 0.9993499 |
Other-Arts and Humanities | -0.0666667 | -1.5156418 | 1.3823085 | 0.9999942 |
Science and Mathematics-Arts and Humanities | 0.0137931 | -0.5765614 | 0.6041476 | 0.9999998 |
Social Sciences-Arts and Humanities | -0.0585366 | -0.5964816 | 0.4794085 | 0.9995874 |
Technical Sciences and Engineering-Arts and Humanities | 0.0390244 | -0.4989207 | 0.5769694 | 0.9999439 |
Other-Health Sciences | 0.0256410 | -1.5247634 | 1.5760455 | 1.0000000 |
Science and Mathematics-Health Sciences | 0.1061008 | -0.7018247 | 0.9140263 | 0.9989703 |
Social Sciences-Health Sciences | 0.0337711 | -0.7366898 | 0.8042320 | 0.9999954 |
Technical Sciences and Engineering-Health Sciences | 0.1313321 | -0.6391288 | 0.9017930 | 0.9964107 |
Science and Mathematics-Other | 0.0804598 | -1.3875626 | 1.5484822 | 0.9999861 |
Social Sciences-Other | 0.0081301 | -1.4396117 | 1.4558719 | 1.0000000 |
Technical Sciences and Engineering-Other | 0.1056911 | -1.3420507 | 1.5534328 | 0.9999422 |
Social Sciences-Science and Mathematics | -0.0723297 | -0.6596505 | 0.5149912 | 0.9992459 |
Technical Sciences and Engineering-Science and Mathematics | 0.0252313 | -0.5620896 | 0.6125521 | 0.9999959 |
Technical Sciences and Engineering-Social Sciences | 0.0975610 | -0.4370531 | 0.6321751 | 0.9950514 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | 0.5585644 | 0.5764590 | 1 |
Arts and Humanities - Other | 0.0000000 | 1.0000000 | 1 |
Health Sciences - Other | -0.2784081 | 0.7806991 | 1 |
Arts and Humanities - Science and Mathematics | -0.1092542 | 0.9130009 | 1 |
Health Sciences - Science and Mathematics | -0.6140961 | 0.5391518 | 1 |
Other - Science and Mathematics | -0.0439358 | 0.9649556 | 1 |
Arts and Humanities - Social Sciences | 0.1696122 | 0.8653151 | 1 |
Health Sciences - Social Sciences | -0.4418175 | 0.6586213 | 1 |
Other - Social Sciences | 0.0630237 | 0.9497476 | 1 |
Science and Mathematics - Social Sciences | 0.2651715 | 0.7908773 | 1 |
Arts and Humanities - Technical Sciences and Engineering | -0.3392245 | 0.7344406 | 1 |
Health Sciences - Technical Sciences and Engineering | -0.7970934 | 0.4253968 | 1 |
Other - Technical Sciences and Engineering | -0.1260474 | 0.8996944 | 1 |
Science and Mathematics - Technical Sciences and Engineering | -0.2008875 | 0.8407865 | 1 |
Social Sciences - Technical Sciences and Engineering | -0.5120071 | 0.6086461 | 1 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 6.2 1.2392 1.612 0.16
Residuals 161 123.8 0.7688
One-way analysis of means (not assuming equal variances)
data: podaci$Q46 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 3.5278 0.004709 **
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q46 by Study field
Kruskal-Wallis chi-squared = 7.9207, df = 5, p-value = 0.1607
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.4057692 | -1.2131831 | 0.4016446 | 0.6966346 |
Other-Arts and Humanities | -1.1750000 | -2.6889221 | 0.3389221 | 0.2260749 |
Science and Mathematics-Arts and Humanities | -0.2094828 | -0.8262985 | 0.4073330 | 0.9238462 |
Social Sciences-Arts and Humanities | -0.0286585 | -0.5907157 | 0.5333986 | 0.9999903 |
Technical Sciences and Engineering-Arts and Humanities | -0.2725610 | -0.8346182 | 0.2894962 | 0.7277729 |
Other-Health Sciences | -0.7692308 | -2.3891285 | 0.8506670 | 0.7450541 |
Science and Mathematics-Health Sciences | 0.1962865 | -0.6478524 | 1.0404253 | 0.9849014 |
Social Sciences-Health Sciences | 0.3771107 | -0.4278843 | 1.1821057 | 0.7558179 |
Technical Sciences and Engineering-Health Sciences | 0.1332083 | -0.6717868 | 0.9382033 | 0.9968811 |
Science and Mathematics-Other | 0.9655172 | -0.5683059 | 2.4993404 | 0.4586591 |
Social Sciences-Other | 1.1463415 | -0.3662920 | 2.6589749 | 0.2500937 |
Technical Sciences and Engineering-Other | 0.9024390 | -0.6101944 | 2.4150725 | 0.5201330 |
Social Sciences-Science and Mathematics | 0.1808242 | -0.4328219 | 0.7944704 | 0.9574835 |
Technical Sciences and Engineering-Science and Mathematics | -0.0630782 | -0.6767244 | 0.5505679 | 0.9996878 |
Technical Sciences and Engineering-Social Sciences | -0.2439024 | -0.8024794 | 0.3146745 | 0.8064375 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | 1.4445117 | 0.1485951 | 1.0000000 |
Arts and Humanities - Other | 2.2140194 | 0.0268274 | 0.4024117 |
Health Sciences - Other | 1.3491803 | 0.1772791 | 1.0000000 |
Arts and Humanities - Science and Mathematics | 0.9698127 | 0.3321399 | 1.0000000 |
Health Sciences - Science and Mathematics | -0.6730207 | 0.5009341 | 1.0000000 |
Other - Science and Mathematics | -1.7952898 | 0.0726075 | 0.9438980 |
Arts and Humanities - Social Sciences | 0.1430205 | 0.8862740 | 0.8862740 |
Health Sciences - Social Sciences | -1.3489934 | 0.1773391 | 1.0000000 |
Other - Social Sciences | -2.1627626 | 0.0305594 | 0.4278322 |
Science and Mathematics - Social Sciences | -0.8438252 | 0.3987671 | 1.0000000 |
Arts and Humanities - Technical Sciences and Engineering | 1.3856725 | 0.1658469 | 1.0000000 |
Health Sciences - Technical Sciences and Engineering | -0.4813589 | 0.6302615 | 1.0000000 |
Other - Technical Sciences and Engineering | -1.7010239 | 0.0889385 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | 0.2943576 | 0.7684846 | 1.0000000 |
Social Sciences - Technical Sciences and Engineering | 1.2503945 | 0.2111555 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 15.99 3.198 6.299 2.29e-05 ***
Residuals 161 81.75 0.508
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q47 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 10.694 6.891e-09 ***
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q47 by Study field
Kruskal-Wallis chi-squared = 31.468, df = 5, p-value = 7.571e-06
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.1307692 | -0.7869219 | 0.5253834 | 0.9925382 |
Other-Arts and Humanities | -0.9000000 | -2.1303035 | 0.3303035 | 0.2874062 |
Science and Mathematics-Arts and Humanities | -0.7620690 | -1.2633303 | -0.2608076 | 0.0002975 |
Social Sciences-Arts and Humanities | -0.3146341 | -0.7713954 | 0.1421271 | 0.3544169 |
Technical Sciences and Engineering-Arts and Humanities | -0.7048780 | -1.1616393 | -0.2481168 | 0.0002275 |
Other-Health Sciences | -0.7692308 | -2.0856564 | 0.5471949 | 0.5434143 |
Science and Mathematics-Health Sciences | -0.6312997 | -1.3172974 | 0.0546979 | 0.0904677 |
Social Sciences-Health Sciences | -0.1838649 | -0.8380519 | 0.4703221 | 0.9652308 |
Technical Sciences and Engineering-Health Sciences | -0.5741088 | -1.2282958 | 0.0800782 | 0.1212345 |
Science and Mathematics-Other | 0.1379310 | -1.1085452 | 1.3844073 | 0.9995522 |
Social Sciences-Other | 0.5853659 | -0.6438904 | 1.8146221 | 0.7427931 |
Technical Sciences and Engineering-Other | 0.1951220 | -1.0341343 | 1.4243782 | 0.9974410 |
Social Sciences-Science and Mathematics | 0.4474348 | -0.0512507 | 0.9461203 | 0.1061877 |
Technical Sciences and Engineering-Science and Mathematics | 0.0571909 | -0.4414946 | 0.5558764 | 0.9994668 |
Technical Sciences and Engineering-Social Sciences | -0.3902439 | -0.8441769 | 0.0636891 | 0.1363465 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | 0.2257159 | 0.8214224 | 0.8214224 |
Arts and Humanities - Other | 2.0837996 | 0.0371784 | 0.2974272 |
Health Sciences - Other | 1.8349701 | 0.0665101 | 0.4655708 |
Arts and Humanities - Science and Mathematics | 4.2805067 | 0.0000186 | 0.0002611 |
Health Sciences - Science and Mathematics | 2.9118881 | 0.0035925 | 0.0467027 |
Other - Science and Mathematics | -0.3353882 | 0.7373323 | 1.0000000 |
Arts and Humanities - Social Sciences | 2.1958558 | 0.0281023 | 0.2529204 |
Health Sciences - Social Sciences | 1.3067787 | 0.1912879 | 1.0000000 |
Other - Social Sciences | -1.2696491 | 0.2042097 | 1.0000000 |
Science and Mathematics - Social Sciences | -2.2913653 | 0.0219423 | 0.2413652 |
Arts and Humanities - Technical Sciences and Engineering | 4.4348700 | 0.0000092 | 0.0001382 |
Health Sciences - Technical Sciences and Engineering | 2.8700853 | 0.0041036 | 0.0492433 |
Other - Technical Sciences and Engineering | -0.4376867 | 0.6616134 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | -0.2405840 | 0.8098775 | 1.0000000 |
Social Sciences - Technical Sciences and Engineering | 2.2529646 | 0.0242614 | 0.2426138 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 7.55 1.5092 2.265 0.0504 .
Residuals 161 107.26 0.6662
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q48 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 5.4979 0.0001061 ***
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q48 by Study field
Kruskal-Wallis chi-squared = 9.7038, df = 5, p-value = 0.08408
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.1461538 | -0.8977465 | 0.6054388 | 0.9933423 |
Other-Arts and Humanities | -1.3000000 | -2.7092559 | 0.1092559 | 0.0890657 |
Science and Mathematics-Arts and Humanities | -0.0586207 | -0.6327924 | 0.5155510 | 0.9996980 |
Social Sciences-Arts and Humanities | 0.1146341 | -0.4085648 | 0.6378331 | 0.9884676 |
Technical Sciences and Engineering-Arts and Humanities | -0.2512195 | -0.7744184 | 0.2719794 | 0.7360155 |
Other-Health Sciences | -1.1538462 | -2.6617510 | 0.3540587 | 0.2402443 |
Science and Mathematics-Health Sciences | 0.0875332 | -0.6982455 | 0.8733118 | 0.9995373 |
Social Sciences-Health Sciences | 0.2607880 | -0.4885531 | 1.0101290 | 0.9161076 |
Technical Sciences and Engineering-Health Sciences | -0.1050657 | -0.8544067 | 0.6442754 | 0.9985876 |
Science and Mathematics-Other | 1.2413793 | -0.1864017 | 2.6691604 | 0.1279427 |
Social Sciences-Other | 1.4146341 | 0.0065778 | 2.8226905 | 0.0482060 |
Technical Sciences and Engineering-Other | 1.0487805 | -0.3592759 | 2.4568368 | 0.2681288 |
Social Sciences-Science and Mathematics | 0.1732548 | -0.3979664 | 0.7444761 | 0.9520040 |
Technical Sciences and Engineering-Science and Mathematics | -0.1925988 | -0.7638201 | 0.3786224 | 0.9260139 |
Technical Sciences and Engineering-Social Sciences | -0.3658537 | -0.8858129 | 0.1541056 | 0.3303530 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | 0.6623524 | 0.5077454 | 1.0000000 |
Arts and Humanities - Other | 2.4416304 | 0.0146211 | 0.2046955 |
Health Sciences - Other | 1.9517563 | 0.0509671 | 0.5606386 |
Arts and Humanities - Science and Mathematics | 0.2207217 | 0.8253091 | 1.0000000 |
Health Sciences - Science and Mathematics | -0.4722539 | 0.6367456 | 1.0000000 |
Other - Science and Mathematics | -2.3211891 | 0.0202766 | 0.2635963 |
Arts and Humanities - Social Sciences | -0.7074472 | 0.4792886 | 1.0000000 |
Health Sciences - Social Sciences | -1.1582907 | 0.2467454 | 1.0000000 |
Other - Social Sciences | -2.7065803 | 0.0067980 | 0.1019702 |
Science and Mathematics - Social Sciences | -0.8698342 | 0.3843910 | 1.0000000 |
Arts and Humanities - Technical Sciences and Engineering | 1.1215492 | 0.2620542 | 1.0000000 |
Health Sciences - Technical Sciences and Engineering | 0.1187365 | 0.9054841 | 0.9054841 |
Other - Technical Sciences and Engineering | -2.0269705 | 0.0426654 | 0.5119851 |
Science and Mathematics - Technical Sciences and Engineering | 0.8053992 | 0.4205893 | 1.0000000 |
Social Sciences - Technical Sciences and Engineering | 1.8403921 | 0.0657107 | 0.6571069 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 2.15 0.4305 0.711 0.616
Residuals 161 97.52 0.6057
One-way analysis of means (not assuming equal variances)
data: podaci$Q49 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 2.5863 0.02795 *
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q49 by Study field
Kruskal-Wallis chi-squared = 4.1147, df = 5, p-value = 0.533
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | 0.2942308 | -0.4224521 | 1.0109136 | 0.8438737 |
Other-Arts and Humanities | -0.4750000 | -1.8187991 | 0.8687991 | 0.9108356 |
Science and Mathematics-Arts and Humanities | 0.0077586 | -0.5397441 | 0.5552613 | 1.0000000 |
Social Sciences-Arts and Humanities | 0.0371951 | -0.4617024 | 0.5360926 | 0.9999358 |
Technical Sciences and Engineering-Arts and Humanities | -0.0847561 | -0.5836536 | 0.4141414 | 0.9964673 |
Other-Health Sciences | -0.7692308 | -2.2070968 | 0.6686353 | 0.6370069 |
Science and Mathematics-Health Sciences | -0.2864721 | -1.0357531 | 0.4628088 | 0.8796398 |
Social Sciences-Health Sciences | -0.2570356 | -0.9715715 | 0.4575002 | 0.9045500 |
Technical Sciences and Engineering-Health Sciences | -0.3789869 | -1.0935227 | 0.3355490 | 0.6455785 |
Science and Mathematics-Other | 0.4827586 | -0.8787052 | 1.8442224 | 0.9097356 |
Social Sciences-Other | 0.5121951 | -0.8304601 | 1.8548504 | 0.8806378 |
Technical Sciences and Engineering-Other | 0.3902439 | -0.9524114 | 1.7328992 | 0.9598836 |
Social Sciences-Science and Mathematics | 0.0294365 | -0.5152528 | 0.5741258 | 0.9999870 |
Technical Sciences and Engineering-Science and Mathematics | -0.0925147 | -0.6372040 | 0.4521746 | 0.9964711 |
Technical Sciences and Engineering-Social Sciences | -0.1219512 | -0.6177595 | 0.3738571 | 0.9805863 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | -1.4282642 | 0.1532158 | 1.0000000 |
Arts and Humanities - Other | 1.0722242 | 0.2836194 | 1.0000000 |
Health Sciences - Other | 1.7139749 | 0.0865333 | 1.0000000 |
Arts and Humanities - Science and Mathematics | 0.0891248 | 0.9289827 | 1.0000000 |
Health Sciences - Science and Mathematics | 1.4312501 | 0.1523585 | 1.0000000 |
Other - Science and Mathematics | -1.0224714 | 0.3065578 | 1.0000000 |
Arts and Humanities - Social Sciences | -0.0723305 | 0.9423389 | 0.9423389 |
Health Sciences - Social Sciences | 1.3820538 | 0.1669552 | 1.0000000 |
Other - Social Sciences | -1.1000138 | 0.2713261 | 1.0000000 |
Science and Mathematics - Social Sciences | -0.1558348 | 0.8761632 | 1.0000000 |
Arts and Humanities - Technical Sciences and Engineering | 0.2845979 | 0.7759522 | 1.0000000 |
Health Sciences - Technical Sciences and Engineering | 1.6312655 | 0.1028343 | 1.0000000 |
Other - Technical Sciences and Engineering | -0.9673880 | 0.3333501 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | 0.1710868 | 0.8641555 | 1.0000000 |
Social Sciences - Technical Sciences and Engineering | 0.3591523 | 0.7194811 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 3.17 0.6344 1.06 0.384
Residuals 161 96.32 0.5983
One-way analysis of means (not assuming equal variances)
data: podaci$Q50 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 4.8584 0.0003634 ***
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q50 by Study field
Kruskal-Wallis chi-squared = 5.1325, df = 5, p-value = 0.3999
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.3442308 | -1.0564938 | 0.3680323 | 0.7306196 |
Other-Arts and Humanities | -0.5750000 | -1.9105118 | 0.7605118 | 0.8155430 |
Science and Mathematics-Arts and Humanities | 0.0456897 | -0.4984366 | 0.5898159 | 0.9998845 |
Social Sciences-Arts and Humanities | -0.2335366 | -0.7293574 | 0.2622842 | 0.7515562 |
Technical Sciences and Engineering-Arts and Humanities | -0.1115854 | -0.6074061 | 0.3842354 | 0.9869742 |
Other-Health Sciences | -0.2307692 | -1.6597679 | 1.1982294 | 0.9972223 |
Science and Mathematics-Health Sciences | 0.3899204 | -0.3547397 | 1.1345806 | 0.6581696 |
Social Sciences-Health Sciences | 0.1106942 | -0.5994351 | 0.8208234 | 0.9976529 |
Technical Sciences and Engineering-Health Sciences | 0.2326454 | -0.4774839 | 0.9427747 | 0.9340975 |
Science and Mathematics-Other | 0.6206897 | -0.7323780 | 1.9737573 | 0.7718384 |
Social Sciences-Other | 0.3414634 | -0.9929116 | 1.6758385 | 0.9768695 |
Technical Sciences and Engineering-Other | 0.4634146 | -0.8709604 | 1.7977897 | 0.9168017 |
Social Sciences-Science and Mathematics | -0.2792262 | -0.8205564 | 0.2621039 | 0.6725571 |
Technical Sciences and Engineering-Science and Mathematics | -0.1572750 | -0.6986052 | 0.3840551 | 0.9599517 |
Technical Sciences and Engineering-Social Sciences | 0.1219512 | -0.3707994 | 0.6147019 | 0.9800453 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | 1.2025562 | 0.2291481 | 1.0000000 |
Arts and Humanities - Other | 1.3336258 | 0.1823265 | 1.0000000 |
Health Sciences - Other | 0.6469822 | 0.5176435 | 1.0000000 |
Arts and Humanities - Science and Mathematics | 0.0278729 | 0.9777635 | 0.9777635 |
Health Sciences - Science and Mathematics | -1.1298711 | 0.2585305 | 1.0000000 |
Other - Science and Mathematics | -1.3051134 | 0.1918542 | 1.0000000 |
Arts and Humanities - Social Sciences | 1.6042560 | 0.1086576 | 1.0000000 |
Health Sciences - Social Sciences | -0.0860588 | 0.9314197 | 1.0000000 |
Other - Social Sciences | -0.7386601 | 0.4601134 | 1.0000000 |
Science and Mathematics - Social Sciences | 1.4413700 | 0.1494802 | 1.0000000 |
Arts and Humanities - Technical Sciences and Engineering | 0.7473961 | 0.4548245 | 1.0000000 |
Health Sciences - Technical Sciences and Engineering | -0.6843287 | 0.4937676 | 1.0000000 |
Other - Technical Sciences and Engineering | -1.0570480 | 0.2904897 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | 0.6565459 | 0.5114729 | 1.0000000 |
Social Sciences - Technical Sciences and Engineering | -0.8621987 | 0.3885782 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 3.5 0.7006 1.074 0.377
Residuals 161 105.0 0.6521
One-way analysis of means (not assuming equal variances)
data: podaci$Q51 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 3.2071 0.008686 **
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q51 by Study field
Kruskal-Wallis chi-squared = 6.8005, df = 5, p-value = 0.2359
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.2365385 | -0.9801409 | 0.5070640 | 0.9415515 |
Other-Arts and Humanities | -0.7750000 | -2.1692740 | 0.6192740 | 0.5976253 |
Science and Mathematics-Arts and Humanities | -0.2232759 | -0.7913435 | 0.3447918 | 0.8666572 |
Social Sciences-Arts and Humanities | -0.1408537 | -0.6584904 | 0.3767831 | 0.9697546 |
Technical Sciences and Engineering-Arts and Humanities | -0.3359756 | -0.8536124 | 0.1816612 | 0.4231147 |
Other-Health Sciences | -0.5384615 | -2.0303358 | 0.9534127 | 0.9033072 |
Science and Mathematics-Health Sciences | 0.0132626 | -0.7641624 | 0.7906876 | 1.0000000 |
Social Sciences-Health Sciences | 0.0956848 | -0.6456900 | 0.8370596 | 0.9990533 |
Technical Sciences and Engineering-Health Sciences | -0.0994371 | -0.8408119 | 0.6419376 | 0.9988597 |
Science and Mathematics-Other | 0.5517241 | -0.8608781 | 1.9643264 | 0.8697179 |
Social Sciences-Other | 0.6341463 | -0.7589409 | 2.0272336 | 0.7775180 |
Technical Sciences and Engineering-Other | 0.4390244 | -0.9540628 | 1.8321116 | 0.9437479 |
Social Sciences-Science and Mathematics | 0.0824222 | -0.4827264 | 0.6475708 | 0.9982933 |
Technical Sciences and Engineering-Science and Mathematics | -0.1126997 | -0.6778483 | 0.4524488 | 0.9925175 |
Technical Sciences and Engineering-Social Sciences | -0.1951220 | -0.7095535 | 0.3193096 | 0.8831787 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | 0.7938590 | 0.4272775 | 1.0000000 |
Arts and Humanities - Other | 1.7449802 | 0.0809883 | 1.0000000 |
Health Sciences - Other | 1.2351343 | 0.2167805 | 1.0000000 |
Arts and Humanities - Science and Mathematics | 1.3915923 | 0.1640459 | 1.0000000 |
Health Sciences - Science and Mathematics | 0.2575209 | 0.7967767 | 1.0000000 |
Other - Science and Mathematics | -1.1627207 | 0.2449428 | 1.0000000 |
Arts and Humanities - Social Sciences | 1.1660893 | 0.2435783 | 1.0000000 |
Health Sciences - Social Sciences | 0.0179332 | 0.9856921 | 0.9856921 |
Other - Social Sciences | -1.3131768 | 0.1891234 | 1.0000000 |
Science and Mathematics - Social Sciences | -0.3307235 | 0.7408533 | 1.0000000 |
Arts and Humanities - Technical Sciences and Engineering | 2.1978993 | 0.0279563 | 0.4193442 |
Health Sciences - Technical Sciences and Engineering | 0.7383553 | 0.4602986 | 1.0000000 |
Other - Technical Sciences and Engineering | -0.9297817 | 0.3524841 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | 0.6143426 | 0.5389889 | 1.0000000 |
Social Sciences - Technical Sciences and Engineering | 1.0382388 | 0.2991589 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 2.68 0.5351 0.691 0.631
Residuals 161 124.68 0.7744
One-way analysis of means (not assuming equal variances)
data: podaci$Q52 and podaci$`Study field`
F = 0.68498, num df = 5.000, denom df = 18.682, p-value = 0.6406
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.3721 0.2375
161
Kruskal-Wallis rank sum test
data: Q52 by Study field
Kruskal-Wallis chi-squared = 3.3736, df = 5, p-value = 0.6426
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | 0.0961538 | -0.7141824 | 0.9064901 | 0.9993705 |
Other-Arts and Humanities | 0.2500000 | -1.2694018 | 1.7694018 | 0.9969642 |
Science and Mathematics-Arts and Humanities | -0.2327586 | -0.8518070 | 0.3862897 | 0.8869623 |
Social Sciences-Arts and Humanities | 0.1036585 | -0.4604330 | 0.6677501 | 0.9948874 |
Technical Sciences and Engineering-Arts and Humanities | 0.1036585 | -0.4604330 | 0.6677501 | 0.9948874 |
Other-Health Sciences | 0.1538462 | -1.4719149 | 1.7796072 | 0.9997920 |
Science and Mathematics-Health Sciences | -0.3289125 | -1.1761067 | 0.5182818 | 0.8725738 |
Social Sciences-Health Sciences | 0.0075047 | -0.8004040 | 0.8154134 | 1.0000000 |
Technical Sciences and Engineering-Health Sciences | 0.0075047 | -0.8004040 | 0.8154134 | 1.0000000 |
Science and Mathematics-Other | -0.4827586 | -2.0221335 | 1.0566162 | 0.9448699 |
Social Sciences-Other | -0.1463415 | -1.6644499 | 1.3717670 | 0.9997722 |
Technical Sciences and Engineering-Other | -0.1463415 | -1.6644499 | 1.3717670 | 0.9997722 |
Social Sciences-Science and Mathematics | 0.3364172 | -0.2794501 | 0.9522844 | 0.6158008 |
Technical Sciences and Engineering-Science and Mathematics | 0.3364172 | -0.2794501 | 0.9522844 | 0.6158008 |
Technical Sciences and Engineering-Social Sciences | 0.0000000 | -0.5605987 | 0.5605987 | 1.0000000 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | -0.3260363 | 0.7443969 | 1.000000 |
Arts and Humanities - Other | -0.5002197 | 0.6169204 | 1.000000 |
Health Sciences - Other | -0.3049868 | 0.7603762 | 1.000000 |
Arts and Humanities - Science and Mathematics | 1.1430748 | 0.2530075 | 1.000000 |
Health Sciences - Science and Mathematics | 1.1471013 | 0.2513398 | 1.000000 |
Other - Science and Mathematics | 0.9534087 | 0.3403831 | 1.000000 |
Arts and Humanities - Social Sciences | -0.4480109 | 0.6541453 | 1.000000 |
Health Sciences - Social Sciences | 0.0142093 | 0.9886630 | 0.988663 |
Other - Social Sciences | 0.3341761 | 0.7382467 | 1.000000 |
Science and Mathematics - Social Sciences | -1.5593259 | 0.1189193 | 1.000000 |
Arts and Humanities - Technical Sciences and Engineering | -0.4005892 | 0.6887226 | 1.000000 |
Health Sciences - Technical Sciences and Engineering | 0.0473198 | 0.9622584 | 1.000000 |
Other - Technical Sciences and Engineering | 0.3517969 | 0.7249906 | 1.000000 |
Science and Mathematics - Technical Sciences and Engineering | -1.5158908 | 0.1295470 | 1.000000 |
Social Sciences - Technical Sciences and Engineering | 0.0477172 | 0.9619416 | 1.000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 4.24 0.8489 1.34 0.25
Residuals 161 102.00 0.6335
One-way analysis of means (not assuming equal variances)
data: podaci$Q53 and podaci$`Study field`
F = 1.1714, num df = 5.000, denom df = 18.622, p-value = 0.36
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 3.2257 0.008383 **
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q53 by Study field
Kruskal-Wallis chi-squared = 5.7847, df = 5, p-value = 0.3277
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.1692308 | -0.9021580 | 0.5636965 | 0.9853730 |
Other-Arts and Humanities | -0.4000000 | -1.7742578 | 0.9742578 | 0.9596401 |
Science and Mathematics-Arts and Humanities | -0.3655172 | -0.9254297 | 0.1943953 | 0.4164127 |
Social Sciences-Arts and Humanities | -0.0585366 | -0.5687422 | 0.4516690 | 0.9994657 |
Technical Sciences and Engineering-Arts and Humanities | -0.3512195 | -0.8614251 | 0.1589861 | 0.3551612 |
Other-Health Sciences | -0.2307692 | -1.7012261 | 1.2396877 | 0.9975760 |
Science and Mathematics-Health Sciences | -0.1962865 | -0.9625507 | 0.5699778 | 0.9767648 |
Social Sciences-Health Sciences | 0.1106942 | -0.6200374 | 0.8414258 | 0.9979527 |
Technical Sciences and Engineering-Health Sciences | -0.1819887 | -0.9127203 | 0.5487428 | 0.9794815 |
Science and Mathematics-Other | 0.0344828 | -1.3578402 | 1.4268057 | 0.9999997 |
Social Sciences-Other | 0.3414634 | -1.0316246 | 1.7145515 | 0.9796153 |
Technical Sciences and Engineering-Other | 0.0487805 | -1.3243076 | 1.4218685 | 0.9999984 |
Social Sciences-Science and Mathematics | 0.3069807 | -0.2500546 | 0.8640159 | 0.6066289 |
Technical Sciences and Engineering-Science and Mathematics | 0.0142977 | -0.5427375 | 0.5713330 | 0.9999997 |
Technical Sciences and Engineering-Social Sciences | -0.2926829 | -0.7997293 | 0.2143634 | 0.5569295 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | 0.7183232 | 0.4725580 | 1.0000000 |
Arts and Humanities - Other | 0.8117841 | 0.4169155 | 1.0000000 |
Health Sciences - Other | 0.4006387 | 0.6886861 | 1.0000000 |
Arts and Humanities - Science and Mathematics | 1.8855454 | 0.0593562 | 0.8903435 |
Health Sciences - Science and Mathematics | 0.6907040 | 0.4897516 | 1.0000000 |
Other - Science and Mathematics | -0.0429931 | 0.9657071 | 0.9657071 |
Arts and Humanities - Social Sciences | 0.3364612 | 0.7365231 | 1.0000000 |
Health Sciences - Social Sciences | -0.4855603 | 0.6272789 | 1.0000000 |
Other - Social Sciences | -0.6874550 | 0.4917960 | 1.0000000 |
Science and Mathematics - Social Sciences | -1.5871096 | 0.1124878 | 1.0000000 |
Arts and Humanities - Technical Sciences and Engineering | 1.7277047 | 0.0840412 | 1.0000000 |
Health Sciences - Technical Sciences and Engineering | 0.4858225 | 0.6270930 | 1.0000000 |
Other - Technical Sciences and Engineering | -0.1705034 | 0.8646143 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | -0.3128274 | 0.7544118 | 1.0000000 |
Social Sciences - Technical Sciences and Engineering | 1.3999117 | 0.1615398 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 4.84 0.9683 0.875 0.499
Residuals 161 178.14 1.1065
One-way analysis of means (not assuming equal variances)
data: podaci$Q58 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.7433 0.1276
161
Kruskal-Wallis rank sum test
data: Q58 by Study field
Kruskal-Wallis chi-squared = 4.4666, df = 5, p-value = 0.4844
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.3365385 | -1.3051567 | 0.6320797 | 0.9166580 |
Other-Arts and Humanities | 0.1250000 | -1.6911845 | 1.9411845 | 0.9999568 |
Science and Mathematics-Arts and Humanities | -0.2543103 | -0.9942766 | 0.4856559 | 0.9201672 |
Social Sciences-Arts and Humanities | -0.2652439 | -0.9395187 | 0.4090309 | 0.8662429 |
Technical Sciences and Engineering-Arts and Humanities | -0.4603659 | -1.1346407 | 0.2139090 | 0.3645609 |
Other-Health Sciences | 0.4615385 | -1.4817803 | 2.4048573 | 0.9833960 |
Science and Mathematics-Health Sciences | 0.0822281 | -0.9304475 | 1.0949037 | 0.9999021 |
Social Sciences-Health Sciences | 0.0712946 | -0.8944219 | 1.0370110 | 0.9999389 |
Technical Sciences and Engineering-Health Sciences | -0.1238274 | -1.0895439 | 0.8418891 | 0.9990828 |
Science and Mathematics-Other | -0.3793103 | -2.2193693 | 1.4607486 | 0.9912789 |
Social Sciences-Other | -0.3902439 | -2.2048825 | 1.4243947 | 0.9894089 |
Technical Sciences and Engineering-Other | -0.5853659 | -2.4000045 | 1.2292728 | 0.9381118 |
Social Sciences-Science and Mathematics | -0.0109336 | -0.7470974 | 0.7252302 | 1.0000000 |
Technical Sciences and Engineering-Science and Mathematics | -0.2060555 | -0.9422193 | 0.5301083 | 0.9658391 |
Technical Sciences and Engineering-Social Sciences | -0.1951220 | -0.8652217 | 0.4749778 | 0.9595712 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | 0.9796610 | 0.3272535 | 1.0000000 |
Arts and Humanities - Other | -0.2954702 | 0.7676347 | 1.0000000 |
Health Sciences - Other | -0.7644375 | 0.4446065 | 1.0000000 |
Arts and Humanities - Science and Mathematics | 0.8238668 | 0.4100152 | 1.0000000 |
Health Sciences - Science and Mathematics | -0.3350371 | 0.7375971 | 1.0000000 |
Other - Science and Mathematics | 0.6229485 | 0.5333183 | 1.0000000 |
Arts and Humanities - Social Sciences | 1.0567609 | 0.2906207 | 1.0000000 |
Health Sciences - Social Sciences | -0.2447615 | 0.8066411 | 1.0000000 |
Other - Social Sciences | 0.6883881 | 0.4912084 | 1.0000000 |
Science and Mathematics - Social Sciences | 0.1397972 | 0.8888202 | 0.8888202 |
Arts and Humanities - Technical Sciences and Engineering | 1.9653711 | 0.0493713 | 0.7405695 |
Health Sciences - Technical Sciences and Engineering | 0.3896411 | 0.6968020 | 1.0000000 |
Other - Technical Sciences and Engineering | 1.0260052 | 0.3048891 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | 0.9720210 | 0.3310401 | 1.0000000 |
Social Sciences - Technical Sciences and Engineering | 0.9142714 | 0.3605742 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 4.84 0.9686 0.846 0.519
Residuals 161 184.38 1.1452
One-way analysis of means (not assuming equal variances)
data: podaci$Q59 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 5.0034 0.0002748 ***
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q59 by Study field
Kruskal-Wallis chi-squared = 4.4703, df = 5, p-value = 0.4839
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.5019231 | -1.4873540 | 0.4835079 | 0.6843683 |
Other-Arts and Humanities | 0.5750000 | -1.2727089 | 2.4227089 | 0.9465987 |
Science and Mathematics-Arts and Humanities | 0.0577586 | -0.6950516 | 0.8105688 | 0.9999260 |
Social Sciences-Arts and Humanities | -0.1810976 | -0.8670761 | 0.5048810 | 0.9734825 |
Technical Sciences and Engineering-Arts and Humanities | -0.1079268 | -0.7939054 | 0.5780517 | 0.9975467 |
Other-Health Sciences | 1.0769231 | -0.9001268 | 3.0539730 | 0.6187039 |
Science and Mathematics-Health Sciences | 0.5596817 | -0.4705714 | 1.5899347 | 0.6214684 |
Social Sciences-Health Sciences | 0.3208255 | -0.6616533 | 1.3033044 | 0.9349595 |
Technical Sciences and Engineering-Health Sciences | 0.3939962 | -0.5884826 | 1.3764751 | 0.8565102 |
Science and Mathematics-Other | -0.5172414 | -2.3892390 | 1.3547563 | 0.9676886 |
Social Sciences-Other | -0.7560976 | -2.6022337 | 1.0900386 | 0.8452116 |
Technical Sciences and Engineering-Other | -0.6829268 | -2.5290630 | 1.1632093 | 0.8937318 |
Social Sciences-Science and Mathematics | -0.2388562 | -0.9877979 | 0.5100856 | 0.9409265 |
Technical Sciences and Engineering-Science and Mathematics | -0.1656854 | -0.9146272 | 0.5832563 | 0.9879499 |
Technical Sciences and Engineering-Social Sciences | 0.0731707 | -0.6085602 | 0.7549017 | 0.9996142 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | 1.2310133 | 0.2183179 | 1.0000000 |
Arts and Humanities - Other | -1.2218336 | 0.2217706 | 1.0000000 |
Health Sciences - Other | -1.7554800 | 0.0791772 | 1.0000000 |
Arts and Humanities - Science and Mathematics | -0.5467903 | 0.5845228 | 1.0000000 |
Health Sciences - Science and Mathematics | -1.5769989 | 0.1147958 | 1.0000000 |
Other - Science and Mathematics | 0.9860928 | 0.3240876 | 1.0000000 |
Arts and Humanities - Social Sciences | 0.4438681 | 0.6571380 | 1.0000000 |
Health Sciences - Social Sciences | -0.9247982 | 0.3550709 | 1.0000000 |
Other - Social Sciences | 1.3878049 | 0.1651965 | 1.0000000 |
Science and Mathematics - Social Sciences | 0.9561668 | 0.3389880 | 1.0000000 |
Arts and Humanities - Technical Sciences and Engineering | 0.2212568 | 0.8248925 | 0.8248925 |
Health Sciences - Technical Sciences and Engineering | -1.0802281 | 0.2800406 | 1.0000000 |
Other - Technical Sciences and Engineering | 1.3050880 | 0.1918629 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | 0.7522704 | 0.4518885 | 1.0000000 |
Social Sciences - Technical Sciences and Engineering | -0.2239983 | 0.8227586 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 12.26 2.452 1.871 0.102
Residuals 161 210.97 1.310
One-way analysis of means (not assuming equal variances)
data: podaci$Q60 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 2.1554 0.06158 .
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q60 by Study field
Kruskal-Wallis chi-squared = 8.2304, df = 5, p-value = 0.144
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | 0.3557692 | -0.6983391 | 1.4098775 | 0.9257180 |
Other-Arts and Humanities | 0.1250000 | -1.8514807 | 2.1014807 | 0.9999716 |
Science and Mathematics-Arts and Humanities | -0.2543103 | -1.0595859 | 0.5509652 | 0.9432615 |
Social Sciences-Arts and Humanities | -0.5091463 | -1.2429326 | 0.2246399 | 0.3461405 |
Technical Sciences and Engineering-Arts and Humanities | -0.4603659 | -1.1941521 | 0.2734204 | 0.4625271 |
Other-Health Sciences | -0.2307692 | -2.3456051 | 1.8840666 | 0.9995818 |
Science and Mathematics-Health Sciences | -0.6100796 | -1.7121338 | 0.4919746 | 0.6019153 |
Social Sciences-Health Sciences | -0.8649156 | -1.9158660 | 0.1860349 | 0.1717689 |
Technical Sciences and Engineering-Health Sciences | -0.8161351 | -1.8670856 | 0.2348154 | 0.2255180 |
Science and Mathematics-Other | -0.3793103 | -2.3817726 | 1.6231519 | 0.9941083 |
Social Sciences-Other | -0.6341463 | -2.6089447 | 1.3406520 | 0.9392467 |
Technical Sciences and Engineering-Other | -0.5853659 | -2.5601642 | 1.3894325 | 0.9564115 |
Social Sciences-Science and Mathematics | -0.2548360 | -1.0559735 | 0.5463015 | 0.9415555 |
Technical Sciences and Engineering-Science and Mathematics | -0.2060555 | -1.0071930 | 0.5950820 | 0.9763456 |
Technical Sciences and Engineering-Social Sciences | 0.0487805 | -0.6804621 | 0.7780231 | 0.9999625 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | -0.9723788 | 0.3308622 | 1.0000000 |
Arts and Humanities - Other | -0.3994012 | 0.6895976 | 1.0000000 |
Health Sciences - Other | 0.1113958 | 0.9113025 | 0.9113025 |
Arts and Humanities - Science and Mathematics | 0.7125078 | 0.4761504 | 1.0000000 |
Health Sciences - Science and Mathematics | 1.4507069 | 0.1468615 | 1.0000000 |
Other - Science and Mathematics | 0.6807488 | 0.4960304 | 1.0000000 |
Arts and Humanities - Social Sciences | 1.8330202 | 0.0667996 | 0.8683943 |
Health Sciences - Social Sciences | 2.2551372 | 0.0241247 | 0.3618707 |
Other - Social Sciences | 1.0808464 | 0.2797654 | 1.0000000 |
Science and Mathematics - Social Sciences | 0.9627310 | 0.3356825 | 1.0000000 |
Arts and Humanities - Technical Sciences and Engineering | 1.5697519 | 0.1164728 | 1.0000000 |
Health Sciences - Technical Sciences and Engineering | 2.0713201 | 0.0383289 | 0.5366044 |
Other - Technical Sciences and Engineering | 0.9830224 | 0.3255964 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | 0.7215956 | 0.4705432 | 1.0000000 |
Social Sciences - Technical Sciences and Engineering | -0.2649086 | 0.7910799 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 2.75 0.5491 0.564 0.728
Residuals 161 156.88 0.9744
One-way analysis of means (not assuming equal variances)
data: podaci$Q61 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.9865 0.08334 .
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q61 by Study field
Kruskal-Wallis chi-squared = 2.9817, df = 5, p-value = 0.7028
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | 0.2442308 | -0.6647596 | 1.1532212 | 0.9713713 |
Other-Arts and Humanities | 0.4750000 | -1.2293808 | 2.1793808 | 0.9664691 |
Science and Mathematics-Arts and Humanities | 0.1301724 | -0.5642418 | 0.8245866 | 0.9943884 |
Social Sciences-Arts and Humanities | -0.1103659 | -0.7431326 | 0.5224009 | 0.9959997 |
Technical Sciences and Engineering-Arts and Humanities | -0.0859756 | -0.7187423 | 0.5467911 | 0.9987862 |
Other-Health Sciences | 0.2307692 | -1.5929195 | 2.0544580 | 0.9991397 |
Science and Mathematics-Health Sciences | -0.1140584 | -1.0643940 | 0.8362773 | 0.9993346 |
Social Sciences-Health Sciences | -0.3545966 | -1.2608639 | 0.5516707 | 0.8688567 |
Technical Sciences and Engineering-Health Sciences | -0.3302064 | -1.2364737 | 0.5760609 | 0.8997194 |
Science and Mathematics-Other | -0.3448276 | -2.0716131 | 1.3819579 | 0.9924692 |
Social Sciences-Other | -0.5853659 | -2.2882960 | 1.1175642 | 0.9201100 |
Technical Sciences and Engineering-Other | -0.5609756 | -2.2639057 | 1.1419545 | 0.9326146 |
Social Sciences-Science and Mathematics | -0.2405383 | -0.9313841 | 0.4503075 | 0.9159593 |
Technical Sciences and Engineering-Science and Mathematics | -0.2161480 | -0.9069938 | 0.4746978 | 0.9453991 |
Technical Sciences and Engineering-Social Sciences | 0.0243902 | -0.6044584 | 0.6532389 | 0.9999975 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | -0.7850071 | 0.4324494 | 1.000000 |
Arts and Humanities - Other | -0.9089172 | 0.3633938 | 1.000000 |
Health Sciences - Other | -0.4581797 | 0.6468233 | 1.000000 |
Arts and Humanities - Science and Mathematics | -0.6141838 | 0.5390939 | 1.000000 |
Health Sciences - Science and Mathematics | 0.3020680 | 0.7626003 | 1.000000 |
Other - Science and Mathematics | 0.6501347 | 0.5156052 | 1.000000 |
Arts and Humanities - Social Sciences | 0.4945888 | 0.6208904 | 1.000000 |
Health Sciences - Social Sciences | 1.1326937 | 0.2573429 | 1.000000 |
Other - Social Sciences | 1.0934685 | 0.2741882 | 1.000000 |
Science and Mathematics - Social Sciences | 1.0703652 | 0.2844550 | 1.000000 |
Arts and Humanities - Technical Sciences and Engineering | 0.2804811 | 0.7791084 | 1.000000 |
Health Sciences - Technical Sciences and Engineering | 0.9832011 | 0.3255085 | 1.000000 |
Other - Technical Sciences and Engineering | 1.0139114 | 0.3106250 | 1.000000 |
Science and Mathematics - Technical Sciences and Engineering | 0.8742574 | 0.3819781 | 1.000000 |
Social Sciences - Technical Sciences and Engineering | -0.2154417 | 0.8294230 | 0.829423 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 5.83 1.166 1.045 0.393
Residuals 161 179.53 1.115
One-way analysis of means (not assuming equal variances)
data: podaci$Q62 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.5311 0.183
161
Kruskal-Wallis rank sum test
data: Q62 by Study field
Kruskal-Wallis chi-squared = 5.7676, df = 5, p-value = 0.3295
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | 0.4692308 | -0.5031442 | 1.4416058 | 0.7318813 |
Other-Arts and Humanities | -0.3000000 | -2.1232286 | 1.5232286 | 0.9969637 |
Science and Mathematics-Arts and Humanities | -0.0241379 | -0.7669741 | 0.7186983 | 0.9999990 |
Social Sciences-Arts and Humanities | -0.1536585 | -0.8305485 | 0.5232315 | 0.9864538 |
Technical Sciences and Engineering-Arts and Humanities | -0.2512195 | -0.9281095 | 0.4256705 | 0.8923961 |
Other-Health Sciences | -0.7692308 | -2.7200867 | 1.1816252 | 0.8650820 |
Science and Mathematics-Health Sciences | -0.4933687 | -1.5099719 | 0.5232345 | 0.7271193 |
Social Sciences-Health Sciences | -0.6228893 | -1.5923513 | 0.3465727 | 0.4348942 |
Technical Sciences and Engineering-Health Sciences | -0.7204503 | -1.6899123 | 0.2490117 | 0.2705423 |
Science and Mathematics-Other | 0.2758621 | -1.5713335 | 2.1230576 | 0.9980877 |
Social Sciences-Other | 0.1463415 | -1.6753352 | 1.9680181 | 0.9999072 |
Technical Sciences and Engineering-Other | 0.0487805 | -1.7728962 | 1.8704572 | 0.9999996 |
Social Sciences-Science and Mathematics | -0.1295206 | -0.8685396 | 0.6094984 | 0.9959078 |
Technical Sciences and Engineering-Science and Mathematics | -0.2270816 | -0.9661006 | 0.5119374 | 0.9493336 |
Technical Sciences and Engineering-Social Sciences | -0.0975610 | -0.7702597 | 0.5751377 | 0.9983384 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | -1.0761957 | 0.2818397 | 1.0000000 |
Arts and Humanities - Other | 1.0580792 | 0.2900194 | 1.0000000 |
Health Sciences - Other | 1.5252720 | 0.1271913 | 1.0000000 |
Arts and Humanities - Science and Mathematics | 0.4973738 | 0.6189255 | 1.0000000 |
Health Sciences - Science and Mathematics | 1.3928079 | 0.1636779 | 1.0000000 |
Other - Science and Mathematics | -0.8443356 | 0.3984819 | 1.0000000 |
Arts and Humanities - Social Sciences | 0.8976326 | 0.3693815 | 1.0000000 |
Health Sciences - Social Sciences | 1.7061672 | 0.0879769 | 1.0000000 |
Other - Social Sciences | -0.7254425 | 0.4681806 | 1.0000000 |
Science and Mathematics - Social Sciences | 0.3222261 | 0.7472814 | 0.7472814 |
Arts and Humanities - Technical Sciences and Engineering | 1.3598396 | 0.1738807 | 1.0000000 |
Health Sciences - Technical Sciences and Engineering | 2.0288857 | 0.0424699 | 0.6370489 |
Other - Technical Sciences and Engineering | -0.5536978 | 0.5797857 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | 0.7455757 | 0.4559238 | 1.0000000 |
Social Sciences - Technical Sciences and Engineering | 0.4650869 | 0.6418692 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 15.88 3.176 2.235 0.0533 .
Residuals 160 227.37 1.421
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
1 observation deleted due to missingness
One-way analysis of means (not assuming equal variances)
data: podaci$Q63 and podaci$`Study field`
F = 3.186, num df = 5.000, denom df = 18.816, p-value = 0.02984
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.6219 0.1571
160
Kruskal-Wallis rank sum test
data: Q63 by Study field
Kruskal-Wallis chi-squared = 10.222, df = 5, p-value = 0.06919
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.7038462 | -1.8016510 | 0.3939587 | 0.4373085 |
Other-Arts and Humanities | -0.2166667 | -2.2750795 | 1.8417461 | 0.9996491 |
Science and Mathematics-Arts and Humanities | 0.2086207 | -0.6300364 | 1.0472778 | 0.9795801 |
Social Sciences-Arts and Humanities | 0.4012195 | -0.3629847 | 1.1654238 | 0.6555160 |
Technical Sciences and Engineering-Arts and Humanities | 0.4000000 | -0.3689071 | 1.1689071 | 0.6643891 |
Other-Health Sciences | 0.4871795 | -1.7153237 | 2.6896827 | 0.9879525 |
Science and Mathematics-Health Sciences | 0.9124668 | -0.2352714 | 2.0602050 | 0.2029041 |
Social Sciences-Health Sciences | 1.1050657 | 0.0105496 | 2.1995817 | 0.0463598 |
Technical Sciences and Engineering-Health Sciences | 1.1038462 | 0.0060413 | 2.2016510 | 0.0478928 |
Science and Mathematics-Other | 0.4252874 | -1.6601840 | 2.5107587 | 0.9916983 |
Social Sciences-Other | 0.6178862 | -1.4387745 | 2.6745469 | 0.9538601 |
Technical Sciences and Engineering-Other | 0.6166667 | -1.4417461 | 2.6750795 | 0.9544037 |
Social Sciences-Science and Mathematics | 0.1925988 | -0.6417487 | 1.0269463 | 0.9853835 |
Technical Sciences and Engineering-Science and Mathematics | 0.1913793 | -0.6472778 | 1.0300364 | 0.9861233 |
Technical Sciences and Engineering-Social Sciences | -0.0012195 | -0.7654238 | 0.7629847 | 1.0000000 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | 1.9064873 | 0.0565870 | 0.6790441 |
Arts and Humanities - Other | 0.3296796 | 0.7416421 | 1.0000000 |
Health Sciences - Other | -0.6421486 | 0.5207767 | 1.0000000 |
Arts and Humanities - Science and Mathematics | -0.6856746 | 0.4929183 | 1.0000000 |
Health Sciences - Science and Mathematics | -2.3245691 | 0.0200950 | 0.2612351 |
Other - Science and Mathematics | -0.6011411 | 0.5477460 | 1.0000000 |
Arts and Humanities - Social Sciences | -1.2293820 | 0.2189286 | 1.0000000 |
Health Sciences - Social Sciences | -2.7705851 | 0.0055956 | 0.0783380 |
Other - Social Sciences | -0.7867684 | 0.4314175 | 1.0000000 |
Science and Mathematics - Social Sciences | -0.4368121 | 0.6622476 | 1.0000000 |
Arts and Humanities - Technical Sciences and Engineering | -1.3776263 | 0.1683187 | 1.0000000 |
Health Sciences - Technical Sciences and Engineering | -2.8713826 | 0.0040868 | 0.0613021 |
Other - Technical Sciences and Engineering | -0.8442832 | 0.3985112 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | -0.5773764 | 0.5636852 | 1.0000000 |
Social Sciences - Technical Sciences and Engineering | -0.1567222 | 0.8754638 | 0.8754638 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 9.13 1.827 1.366 0.24
Residuals 160 213.98 1.337
1 observation deleted due to missingness
One-way analysis of means (not assuming equal variances)
data: podaci$Q64 and podaci$`Study field`
F = 1.9513, num df = 5.000, denom df = 18.792, p-value = 0.1333
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.1938 0.3146
160
Kruskal-Wallis rank sum test
data: Q64 by Study field
Kruskal-Wallis chi-squared = 6.2751, df = 5, p-value = 0.2804
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.6538462 | -1.7188315 | 0.4111392 | 0.4874137 |
Other-Arts and Humanities | 0.1666667 | -1.8302088 | 2.1635421 | 0.9998879 |
Science and Mathematics-Arts and Humanities | -0.0517241 | -0.8653091 | 0.7618608 | 0.9999708 |
Social Sciences-Arts and Humanities | 0.2317073 | -0.5096506 | 0.9730653 | 0.9456156 |
Technical Sciences and Engineering-Arts and Humanities | 0.2000000 | -0.5459202 | 0.9459202 | 0.9716172 |
Other-Health Sciences | 0.8205128 | -1.3161454 | 2.9571710 | 0.8776054 |
Science and Mathematics-Health Sciences | 0.6021220 | -0.5113039 | 1.7155480 | 0.6260386 |
Social Sciences-Health Sciences | 0.8855535 | -0.1762415 | 1.9473484 | 0.1604582 |
Technical Sciences and Engineering-Health Sciences | 0.8538462 | -0.2111392 | 1.9188315 | 0.1950674 |
Science and Mathematics-Other | -0.2183908 | -2.2415159 | 1.8047343 | 0.9996031 |
Social Sciences-Other | 0.0650407 | -1.9301351 | 2.0602164 | 0.9999990 |
Technical Sciences and Engineering-Other | 0.0333333 | -1.9635421 | 2.0302088 | 1.0000000 |
Social Sciences-Science and Mathematics | 0.2834315 | -0.5259728 | 1.0928357 | 0.9140224 |
Technical Sciences and Engineering-Science and Mathematics | 0.2517241 | -0.5618608 | 1.0653091 | 0.9478424 |
Technical Sciences and Engineering-Social Sciences | -0.0317073 | -0.7730653 | 0.7096506 | 0.9999959 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | 1.8157810 | 0.0694040 | 0.9022517 |
Arts and Humanities - Other | -0.2460754 | 0.8056239 | 1.0000000 |
Health Sciences - Other | -1.1350257 | 0.2563646 | 1.0000000 |
Arts and Humanities - Science and Mathematics | 0.2058536 | 0.8369053 | 1.0000000 |
Health Sciences - Science and Mathematics | -1.5863657 | 0.1126564 | 1.0000000 |
Other - Science and Mathematics | 0.3256651 | 0.7446778 | 1.0000000 |
Arts and Humanities - Social Sciences | -0.6741854 | 0.5001935 | 1.0000000 |
Health Sciences - Social Sciences | -2.2919613 | 0.0219079 | 0.3067103 |
Other - Social Sciences | -0.0042256 | 0.9966284 | 0.9966284 |
Science and Mathematics - Social Sciences | -0.8244238 | 0.4096988 | 1.0000000 |
Arts and Humanities - Technical Sciences and Engineering | -0.6819297 | 0.4952834 | 1.0000000 |
Health Sciences - Technical Sciences and Engineering | -2.2934074 | 0.0218246 | 0.3273684 |
Other - Technical Sciences and Engineering | -0.0086552 | 0.9930943 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | -0.8310681 | 0.4059352 | 1.0000000 |
Social Sciences - Technical Sciences and Engineering | -0.0119408 | 0.9904728 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 9.46 1.8927 2.678 0.0236 *
Residuals 161 113.79 0.7068
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q65 and podaci$`Study field`
F = 2.3388, num df = 5.000, denom df = 19.107, p-value = 0.08138
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 2.2137 0.05542 .
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q65 by Study field
Kruskal-Wallis chi-squared = 11.765, df = 5, p-value = 0.03815
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.8423077 | -1.6164681 | -0.0681473 | 0.0243231 |
Other-Arts and Humanities | -0.8166667 | -2.2682377 | 0.6349044 | 0.5847702 |
Science and Mathematics-Arts and Humanities | -0.1844828 | -0.7758949 | 0.4069294 | 0.9460721 |
Social Sciences-Arts and Humanities | -0.4426829 | -0.9815917 | 0.0962259 | 0.1733904 |
Technical Sciences and Engineering-Arts and Humanities | -0.3207317 | -0.8596405 | 0.2181771 | 0.5228802 |
Other-Health Sciences | 0.0256410 | -1.5275411 | 1.5788231 | 1.0000000 |
Science and Mathematics-Health Sciences | 0.6578249 | -0.1515480 | 1.4671978 | 0.1827358 |
Social Sciences-Health Sciences | 0.3996248 | -0.3722165 | 1.1714660 | 0.6689951 |
Technical Sciences and Engineering-Health Sciences | 0.5215760 | -0.2502652 | 1.2934172 | 0.3764107 |
Science and Mathematics-Other | 0.6321839 | -0.8384686 | 2.1028364 | 0.8165450 |
Social Sciences-Other | 0.3739837 | -1.0763517 | 1.8243192 | 0.9760790 |
Technical Sciences and Engineering-Other | 0.4959350 | -0.9544005 | 1.9462704 | 0.9217517 |
Social Sciences-Science and Mathematics | -0.2582002 | -0.8465732 | 0.3301729 | 0.8031232 |
Technical Sciences and Engineering-Science and Mathematics | -0.1362489 | -0.7246220 | 0.4521241 | 0.9851801 |
Technical Sciences and Engineering-Social Sciences | 0.1219512 | -0.4136207 | 0.6575231 | 0.9862648 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | 2.5888813 | 0.0096288 | 0.1444324 |
Arts and Humanities - Other | 2.0954168 | 0.0361340 | 0.4697415 |
Health Sciences - Other | 0.6679429 | 0.5041701 | 1.0000000 |
Arts and Humanities - Science and Mathematics | 1.1046408 | 0.2693153 | 1.0000000 |
Health Sciences - Science and Mathematics | -1.6690841 | 0.0951007 | 1.0000000 |
Other - Science and Mathematics | -1.6240059 | 0.1043745 | 1.0000000 |
Arts and Humanities - Social Sciences | 2.3438507 | 0.0190858 | 0.2672013 |
Health Sciences - Social Sciences | -0.9601555 | 0.3369769 | 1.0000000 |
Other - Social Sciences | -1.2262849 | 0.2200915 | 1.0000000 |
Science and Mathematics - Social Sciences | 1.0364577 | 0.2999887 | 1.0000000 |
Arts and Humanities - Technical Sciences and Engineering | 1.7826042 | 0.0746508 | 0.8958090 |
Health Sciences - Technical Sciences and Engineering | -1.3520246 | 0.1763674 | 1.0000000 |
Other - Technical Sciences and Engineering | -1.4348302 | 0.1513355 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | 0.5223949 | 0.6013954 | 0.6013954 |
Social Sciences - Technical Sciences and Engineering | -0.5647434 | 0.5722483 | 1.0000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 3.05 0.6098 0.712 0.615
Residuals 161 137.84 0.8561
One-way analysis of means (not assuming equal variances)
data: podaci$Q66 and podaci$`Study field`
F = 0.88951, num df = 5.000, denom df = 19.369, p-value = 0.5071
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.3759 0.236
161
Kruskal-Wallis rank sum test
data: Q66 by Study field
Kruskal-Wallis chi-squared = 3.7566, df = 5, p-value = 0.585
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.3615385 | -1.2135674 | 0.4904905 | 0.8246057 |
Other-Arts and Humanities | -0.5666667 | -2.1642432 | 1.0309099 | 0.9096204 |
Science and Mathematics-Arts and Humanities | -0.2793103 | -0.9302094 | 0.3715887 | 0.8176489 |
Social Sciences-Arts and Humanities | -0.2902439 | -0.8833586 | 0.3028708 | 0.7200624 |
Technical Sciences and Engineering-Arts and Humanities | -0.2902439 | -0.8833586 | 0.3028708 | 0.7200624 |
Other-Health Sciences | -0.2051282 | -1.9145363 | 1.5042799 | 0.9993352 |
Science and Mathematics-Health Sciences | 0.0822281 | -0.8085551 | 0.9730114 | 0.9998159 |
Social Sciences-Health Sciences | 0.0712946 | -0.7781819 | 0.9207710 | 0.9998848 |
Technical Sciences and Engineering-Health Sciences | 0.0712946 | -0.7781819 | 0.9207710 | 0.9998848 |
Science and Mathematics-Other | 0.2873563 | -1.3312209 | 1.9059336 | 0.9956514 |
Social Sciences-Other | 0.2764228 | -1.3197939 | 1.8726395 | 0.9961325 |
Technical Sciences and Engineering-Other | 0.2764228 | -1.3197939 | 1.8726395 | 0.9961325 |
Social Sciences-Science and Mathematics | -0.0109336 | -0.6584878 | 0.6366207 | 1.0000000 |
Technical Sciences and Engineering-Science and Mathematics | -0.0109336 | -0.6584878 | 0.6366207 | 1.0000000 |
Technical Sciences and Engineering-Social Sciences | 0.0000000 | -0.5894421 | 0.5894421 | 1.0000000 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | 1.0165844 | 0.3093512 | 1.000000 |
Arts and Humanities - Other | 1.3783690 | 0.1680894 | 1.000000 |
Health Sciences - Other | 0.7814931 | 0.4345125 | 1.000000 |
Arts and Humanities - Science and Mathematics | 1.1828061 | 0.2368860 | 1.000000 |
Health Sciences - Science and Mathematics | -0.1080757 | 0.9139357 | 1.000000 |
Other - Science and Mathematics | -0.8848281 | 0.3762493 | 1.000000 |
Arts and Humanities - Social Sciences | 1.4554820 | 0.1455359 | 1.000000 |
Health Sciences - Social Sciences | -0.0034040 | 0.9972840 | 0.997284 |
Other - Social Sciences | -0.8387222 | 0.4016252 | 1.000000 |
Science and Mathematics - Social Sciences | 0.1442047 | 0.8853388 | 1.000000 |
Arts and Humanities - Technical Sciences and Engineering | 1.0839066 | 0.2784062 | 1.000000 |
Health Sciences - Technical Sciences and Engineering | -0.2628424 | 0.7926721 | 1.000000 |
Other - Technical Sciences and Engineering | -0.9767904 | 0.3286729 | 1.000000 |
Science and Mathematics - Technical Sciences and Engineering | -0.1961325 | 0.8445064 | 1.000000 |
Social Sciences - Technical Sciences and Engineering | -0.3738905 | 0.7084858 | 1.000000 |
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 17.31 3.462 2.704 0.0225 *
Residuals 161 206.19 1.281
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q67 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 3.118 0.01029 *
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Kruskal-Wallis rank sum test
data: Q67 by Study field
Kruskal-Wallis chi-squared = 12.57, df = 5, p-value = 0.02776
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.9096154 | -1.9516936 | 0.1324628 | 0.1250758 |
Other-Arts and Humanities | 0.4750000 | -1.4789239 | 2.4289239 | 0.9815727 |
Science and Mathematics-Arts and Humanities | -0.2146552 | -1.0107404 | 0.5814301 | 0.9709269 |
Social Sciences-Arts and Humanities | 0.2798780 | -0.4455338 | 1.0052899 | 0.8754931 |
Technical Sciences and Engineering-Arts and Humanities | 0.1823171 | -0.5430947 | 0.9077289 | 0.9786370 |
Other-Health Sciences | 1.3846154 | -0.7060847 | 3.4753154 | 0.3997097 |
Science and Mathematics-Health Sciences | 0.6949602 | -0.3945166 | 1.7844371 | 0.4432864 |
Social Sciences-Health Sciences | 1.1894934 | 0.1505371 | 2.2284498 | 0.0147494 |
Technical Sciences and Engineering-Health Sciences | 1.0919325 | 0.0529761 | 2.1308888 | 0.0332073 |
Science and Mathematics-Other | -0.6896552 | -2.6692641 | 1.2899538 | 0.9157691 |
Social Sciences-Other | -0.1951220 | -2.1473827 | 1.7571388 | 0.9997279 |
Technical Sciences and Engineering-Other | -0.2926829 | -2.2449437 | 1.6595778 | 0.9980520 |
Social Sciences-Science and Mathematics | 0.4945332 | -0.2974612 | 1.2865277 | 0.4680121 |
Technical Sciences and Engineering-Science and Mathematics | 0.3969722 | -0.3950222 | 1.1889667 | 0.6990089 |
Technical Sciences and Engineering-Social Sciences | -0.0975610 | -0.8184810 | 0.6233591 | 0.9988095 |
Comparison | Z | P.unadj | P.adj |
---|---|---|---|
Arts and Humanities - Health Sciences | 2.5290301 | 0.0114378 | 0.1486917 |
Arts and Humanities - Other | -0.7061864 | 0.4800722 | 1.0000000 |
Health Sciences - Other | -1.9205441 | 0.0547892 | 0.6574706 |
Arts and Humanities - Science and Mathematics | 0.7886749 | 0.4303021 | 1.0000000 |
Health Sciences - Science and Mathematics | -1.8427143 | 0.0653707 | 0.7190781 |
Other - Science and Mathematics | 1.0141836 | 0.3104951 | 1.0000000 |
Arts and Humanities - Social Sciences | -0.8882115 | 0.3744270 | 1.0000000 |
Health Sciences - Social Sciences | -3.1567891 | 0.0015952 | 0.0239275 |
Other - Social Sciences | 0.3767506 | 0.7063590 | 1.0000000 |
Science and Mathematics - Social Sciences | -1.6062885 | 0.1082105 | 1.0000000 |
Arts and Humanities - Technical Sciences and Engineering | -0.6634145 | 0.5070651 | 1.0000000 |
Health Sciences - Technical Sciences and Engineering | -2.9998331 | 0.0027013 | 0.0378179 |
Other - Technical Sciences and Engineering | 0.4602796 | 0.6453156 | 1.0000000 |
Science and Mathematics - Technical Sciences and Engineering | -1.4003901 | 0.1613965 | 1.0000000 |
Social Sciences - Technical Sciences and Engineering | 0.2261976 | 0.8210477 | 0.8210477 |
---
title: "eDesk - CECIIS"
output:
flexdashboard::flex_dashboard:
social: menu
orientation: columns
vertical_layout: fill
source_code: embed
---
```{css, echo=FALSE}
.sidebar { overflow: auto; }
.dataTables_scrollBody {
height:95% !important;
max-height:95% !important;
}
.chart-stage-flex {
overflow:auto !important;
}
```
```{r setup, include=FALSE}
library(readxl)
library(tidyverse)
library(car)
library(lsr)
library(kableExtra)
library(FSA)
podaci <- read_excel('Podaci.xlsx')
imena <- names(podaci)
podaci <- podaci %>% rename_with(.fn = ~paste0("Q", substring(.,1,regexpr("\\.", .) - 1)), .cols = 9:length(imena))
podaci$Country <- factor(podaci$Country)
podaci9_18 <- podaci %>% select(Country, 9:18) %>%
pivot_longer(!Country, names_to = "Question", values_to = "Answer")
podaci19_28 <- podaci %>% select(Country, 19:28) %>%
pivot_longer(!Country, names_to = "Question", values_to = "Answer")
podaci29_38 <- podaci %>% select(Country, 29:38) %>%
pivot_longer(!Country, names_to = "Question", values_to = "Answer")
podaci39_48 <- podaci %>% select(Country, 39:48) %>%
pivot_longer(!Country, names_to = "Question", values_to = "Answer")
podaci49_58 <- podaci %>% select(Country, 49:58) %>%
pivot_longer(!Country, names_to = "Question", values_to = "Answer")
podaci49_58$Answer = factor(podaci49_58$Answer)
levels(podaci49_58$Answer) <- c(levels(podaci49_58$Answer),4,5)
podaci59_69 <- podaci %>% select(Country, 59:69) %>% drop_na() %>%
pivot_longer(!Country, names_to = "Question", values_to = "Answer")
ppodaci9_18 <- podaci %>% select("Study field", 9:18) %>%
pivot_longer(!`Study field`, names_to = "Question", values_to = "Answer")
ppodaci19_28 <- podaci %>% select("Study field", 19:28) %>%
pivot_longer(!`Study field`, names_to = "Question", values_to = "Answer")
ppodaci29_38 <- podaci %>% select("Study field", 29:38) %>%
pivot_longer(!`Study field`, names_to = "Question", values_to = "Answer")
ppodaci39_48 <- podaci %>% select("Study field", 39:48) %>%
pivot_longer(!`Study field`, names_to = "Question", values_to = "Answer")
ppodaci49_58 <- podaci %>% select("Study field", 49:58) %>%
pivot_longer(!`Study field`, names_to = "Question", values_to = "Answer")
ppodaci49_58$Answer = factor(ppodaci49_58$Answer)
levels(ppodaci49_58$Answer) <- c(levels(ppodaci49_58$Answer),4,5)
ppodaci59_69 <- podaci %>% select("Study field", 59:69) %>% drop_na() %>%
pivot_longer(!`Study field`, names_to = "Question", values_to = "Answer")
swr = function(string, nwrap=10) {
paste(strwrap(string, width=nwrap), collapse="\n")
}
swr = Vectorize(swr)
ppodaci9_18$`Study field` = swr(ppodaci9_18$`Study field`)
ppodaci19_28$`Study field` = swr(ppodaci19_28$`Study field`)
ppodaci29_38$`Study field` = swr(ppodaci29_38$`Study field`)
ppodaci39_48$`Study field` = swr(ppodaci39_48$`Study field`)
ppodaci49_58$`Study field` = swr(ppodaci49_58$`Study field`)
ppodaci59_69$`Study field` = swr(ppodaci59_69$`Study field`)
Q1 <- aov(podaci$Q1 ~ podaci$Country)
Q2 <- aov(podaci$Q2 ~ podaci$Country)
Q3 <- aov(podaci$Q3 ~ podaci$Country)
Q4 <- aov(podaci$Q4 ~ podaci$Country)
Q5 <- aov(podaci$Q5 ~ podaci$Country)
Q6 <- aov(podaci$Q6 ~ podaci$Country)
Q7 <- aov(podaci$Q7 ~ podaci$Country)
Q8 <- aov(podaci$Q8 ~ podaci$Country)
Q9 <- aov(podaci$Q9 ~ podaci$Country)
Q10 <- aov(podaci$Q10 ~ podaci$Country)
Q11 <- aov(podaci$Q11 ~ podaci$Country)
Q12 <- aov(podaci$Q12 ~ podaci$Country)
Q13 <- aov(podaci$Q13 ~ podaci$Country)
Q14 <- aov(podaci$Q14 ~ podaci$Country)
Q15 <- aov(podaci$Q15 ~ podaci$Country)
Q16 <- aov(podaci$Q16 ~ podaci$Country)
Q17 <- aov(podaci$Q17 ~ podaci$Country)
Q18 <- aov(podaci$Q18 ~ podaci$Country)
Q19 <- aov(podaci$Q19 ~ podaci$Country)
Q20 <- aov(podaci$Q20 ~ podaci$Country)
Q21 <- aov(podaci$Q21 ~ podaci$Country)
Q22 <- aov(podaci$Q22 ~ podaci$Country)
Q23 <- aov(podaci$Q23 ~ podaci$Country)
Q24 <- aov(podaci$Q24 ~ podaci$Country)
Q26 <- aov(podaci$Q26 ~ podaci$Country)
Q27 <- aov(podaci$Q27 ~ podaci$Country)
Q28 <- aov(podaci$Q28 ~ podaci$Country)
Q29 <- aov(podaci$Q29 ~ podaci$Country)
Q30 <- aov(podaci$Q30 ~ podaci$Country)
Q31 <- aov(podaci$Q31 ~ podaci$Country)
Q32 <- aov(podaci$Q32 ~ podaci$Country)
Q33 <- aov(podaci$Q33 ~ podaci$Country)
Q35 <- aov(podaci$Q35 ~ podaci$Country)
Q36 <- aov(podaci$Q36 ~ podaci$Country)
Q37 <- aov(podaci$Q37 ~ podaci$Country)
Q38 <- aov(podaci$Q38 ~ podaci$Country)
Q39 <- aov(podaci$Q39 ~ podaci$Country)
Q40 <- aov(podaci$Q40 ~ podaci$Country)
Q41 <- aov(podaci$Q41 ~ podaci$Country)
Q42 <- aov(podaci$Q42 ~ podaci$Country)
Q43 <- aov(podaci$Q43 ~ podaci$Country)
Q44 <- aov(podaci$Q44 ~ podaci$Country)
Q45 <- aov(podaci$Q45 ~ podaci$Country)
Q46 <- aov(podaci$Q46 ~ podaci$Country)
Q47 <- aov(podaci$Q47 ~ podaci$Country)
Q48 <- aov(podaci$Q48 ~ podaci$Country)
Q49 <- aov(podaci$Q49 ~ podaci$Country)
Q50 <- aov(podaci$Q50 ~ podaci$Country)
Q51 <- aov(podaci$Q51 ~ podaci$Country)
Q52 <- aov(podaci$Q52 ~ podaci$Country)
Q53 <- aov(podaci$Q53 ~ podaci$Country)
Q58 <- aov(podaci$Q58 ~ podaci$Country)
Q59 <- aov(podaci$Q59 ~ podaci$Country)
Q60 <- aov(podaci$Q60 ~ podaci$Country)
Q61 <- aov(podaci$Q61 ~ podaci$Country)
Q62 <- aov(podaci$Q62 ~ podaci$Country)
Q63 <- aov(podaci$Q63 ~ podaci$Country)
Q64 <- aov(podaci$Q64 ~ podaci$Country)
Q65 <- aov(podaci$Q65 ~ podaci$Country)
Q66 <- aov(podaci$Q66 ~ podaci$Country)
Q67 <- aov(podaci$Q67 ~ podaci$Country)
PQ1 <- aov(podaci$Q1 ~ podaci$`Study field`)
PQ2 <- aov(podaci$Q2 ~ podaci$`Study field`)
PQ3 <- aov(podaci$Q3 ~ podaci$`Study field`)
PQ4 <- aov(podaci$Q4 ~ podaci$`Study field`)
PQ5 <- aov(podaci$Q5 ~ podaci$`Study field`)
PQ6 <- aov(podaci$Q6 ~ podaci$`Study field`)
PQ7 <- aov(podaci$Q7 ~ podaci$`Study field`)
PQ8 <- aov(podaci$Q8 ~ podaci$`Study field`)
PQ9 <- aov(podaci$Q9 ~ podaci$`Study field`)
PQ10 <- aov(podaci$Q10 ~ podaci$`Study field`)
PQ11 <- aov(podaci$Q11 ~ podaci$`Study field`)
PQ12 <- aov(podaci$Q12 ~ podaci$`Study field`)
PQ13 <- aov(podaci$Q13 ~ podaci$`Study field`)
PQ14 <- aov(podaci$Q14 ~ podaci$`Study field`)
PQ15 <- aov(podaci$Q15 ~ podaci$`Study field`)
PQ16 <- aov(podaci$Q16 ~ podaci$`Study field`)
PQ17 <- aov(podaci$Q17 ~ podaci$`Study field`)
PQ18 <- aov(podaci$Q18 ~ podaci$`Study field`)
PQ19 <- aov(podaci$Q19 ~ podaci$`Study field`)
PQ20 <- aov(podaci$Q20 ~ podaci$`Study field`)
PQ21 <- aov(podaci$Q21 ~ podaci$`Study field`)
PQ22 <- aov(podaci$Q22 ~ podaci$`Study field`)
PQ23 <- aov(podaci$Q23 ~ podaci$`Study field`)
PQ24 <- aov(podaci$Q24 ~ podaci$`Study field`)
PQ26 <- aov(podaci$Q26 ~ podaci$`Study field`)
PQ27 <- aov(podaci$Q27 ~ podaci$`Study field`)
PQ28 <- aov(podaci$Q28 ~ podaci$`Study field`)
PQ29 <- aov(podaci$Q29 ~ podaci$`Study field`)
PQ30 <- aov(podaci$Q30 ~ podaci$`Study field`)
PQ31 <- aov(podaci$Q31 ~ podaci$`Study field`)
PQ32 <- aov(podaci$Q32 ~ podaci$`Study field`)
PQ33 <- aov(podaci$Q33 ~ podaci$`Study field`)
PQ35 <- aov(podaci$Q35 ~ podaci$`Study field`)
PQ36 <- aov(podaci$Q36 ~ podaci$`Study field`)
PQ37 <- aov(podaci$Q37 ~ podaci$`Study field`)
PQ38 <- aov(podaci$Q38 ~ podaci$`Study field`)
PQ39 <- aov(podaci$Q39 ~ podaci$`Study field`)
PQ40 <- aov(podaci$Q40 ~ podaci$`Study field`)
PQ41 <- aov(podaci$Q41 ~ podaci$`Study field`)
PQ42 <- aov(podaci$Q42 ~ podaci$`Study field`)
PQ43 <- aov(podaci$Q43 ~ podaci$`Study field`)
PQ44 <- aov(podaci$Q44 ~ podaci$`Study field`)
PQ45 <- aov(podaci$Q45 ~ podaci$`Study field`)
PQ46 <- aov(podaci$Q46 ~ podaci$`Study field`)
PQ47 <- aov(podaci$Q47 ~ podaci$`Study field`)
PQ48 <- aov(podaci$Q48 ~ podaci$`Study field`)
PQ49 <- aov(podaci$Q49 ~ podaci$`Study field`)
PQ50 <- aov(podaci$Q50 ~ podaci$`Study field`)
PQ51 <- aov(podaci$Q51 ~ podaci$`Study field`)
PQ52 <- aov(podaci$Q52 ~ podaci$`Study field`)
PQ53 <- aov(podaci$Q53 ~ podaci$`Study field`)
PQ58 <- aov(podaci$Q58 ~ podaci$`Study field`)
PQ59 <- aov(podaci$Q59 ~ podaci$`Study field`)
PQ60 <- aov(podaci$Q60 ~ podaci$`Study field`)
PQ61 <- aov(podaci$Q61 ~ podaci$`Study field`)
PQ62 <- aov(podaci$Q62 ~ podaci$`Study field`)
PQ63 <- aov(podaci$Q63 ~ podaci$`Study field`)
PQ64 <- aov(podaci$Q64 ~ podaci$`Study field`)
PQ65 <- aov(podaci$Q65 ~ podaci$`Study field`)
PQ66 <- aov(podaci$Q66 ~ podaci$`Study field`)
PQ67 <- aov(podaci$Q67 ~ podaci$`Study field`)
```
Pitanja: 1 - 10 {data-navmenu="Pitanja vs države"}
=======================================================================
### pitanja (1 - 10)
```{r fig.width=10}
ggplot(podaci9_18, aes(x=factor(Answer), fill=Country, color=Country)) +
geom_bar(alpha=.5) +
facet_grid(Country ~ factor(Question,levels=c("Q1","Q2","Q3","Q4","Q5","Q6","Q7","Q8","Q9","Q10"))) +
theme(legend.position="none") + xlab("Answer") + ylim(0,50)
```
Pitanja: 11 - 20 {data-navmenu="Pitanja vs države"}
=======================================================================
### pitanja (11 - 20)
```{r fig.width=10}
ggplot(podaci19_28, aes(x=factor(Answer), fill=Country, color=Country)) +
geom_bar(alpha=.5) + facet_grid(Country ~ factor(Question)) +
theme(legend.position="none") + xlab("Answer") + ylim(0,50)
```
Pitanja: 21 - 30 {data-navmenu="Pitanja vs države"}
=======================================================================
### pitanja (21 - 30)
```{r fig.width=10}
ggplot(podaci29_38, aes(x=factor(Answer), fill=Country, color=Country)) +
geom_bar(alpha=.5) + facet_grid(Country ~ factor(Question)) +
theme(legend.position="none") + xlab("Answer") + ylim(0,50)
```
Pitanja: 31 - 40 {data-navmenu="Pitanja vs države"}
=======================================================================
### pitanja (31 - 40)
```{r fig.width=10}
ggplot(podaci39_48, aes(x=factor(Answer), fill=Country, color=Country)) +
geom_bar(alpha=.5) + facet_grid(Country ~ factor(Question)) +
theme(legend.position="none") + xlab("Answer") + ylim(0,50)
```
Pitanja: 41 - 50 {data-navmenu="Pitanja vs države"}
=======================================================================
### pitanja (41 - 50)
```{r fig.width=10}
ggplot(podaci49_58, aes(x=Answer, fill=Country, color=Country)) +
geom_bar(alpha=.5) + facet_grid(Country ~ factor(Question)) +
theme(legend.position="none") + xlab("Answer") + ylim(0,50) + scale_x_discrete(drop=FALSE)
```
Pitanja: 51 - 61 {data-navmenu="Pitanja vs države"}
=======================================================================
### pitanja (51 - 61)
```{r fig.width=11}
ggplot(podaci59_69, aes(x=factor(Answer), fill=Country, color=Country)) +
geom_bar(alpha=.5) + facet_grid(Country ~ factor(Question)) +
theme(legend.position="none") + xlab("Answer") + ylim(0,50)
```
Pitanja: 1 - 10 {data-navmenu="Pitanja vs područje"}
=======================================================================
### pitanja (1 - 10)
```{r fig.width=10}
ggplot(ppodaci9_18, aes(x=factor(Answer), fill=`Study field`, color=`Study field`)) +
geom_bar(alpha=.5) +
facet_grid(factor(`Study field`) ~ factor(Question,levels=c("Q1","Q2","Q3","Q4","Q5","Q6","Q7","Q8","Q9","Q10"))) +
theme(legend.position="none", strip.text.y = element_text(size = 7)) + xlab("Answer") + ylim(0,40)
```
Pitanja: 11 - 20 {data-navmenu="Pitanja vs područje"}
=======================================================================
### pitanja (11 - 20)
```{r fig.width=10}
ggplot(ppodaci19_28, aes(x=factor(Answer), fill=`Study field`, color=`Study field`)) +
geom_bar(alpha=.5) +
facet_grid(factor(`Study field`) ~ factor(Question)) +
theme(legend.position="none", strip.text.y = element_text(size = 7)) + xlab("Answer") + ylim(0,40)
```
Pitanja: 21 - 30 {data-navmenu="Pitanja vs područje"}
=======================================================================
### pitanja (21 - 30)
```{r fig.width=10}
ggplot(ppodaci29_38, aes(x=factor(Answer), fill=`Study field`, color=`Study field`)) +
geom_bar(alpha=.5) +
facet_grid(factor(`Study field`) ~ factor(Question)) +
theme(legend.position="none", strip.text.y = element_text(size = 7)) + xlab("Answer") + ylim(0,40)
```
Pitanja: 31 - 40 {data-navmenu="Pitanja vs područje"}
=======================================================================
### pitanja (31 - 40)
```{r fig.width=10}
ggplot(ppodaci39_48, aes(x=factor(Answer), fill=`Study field`, color=`Study field`)) +
geom_bar(alpha=.5) +
facet_grid(factor(`Study field`) ~ factor(Question)) +
theme(legend.position="none", strip.text.y = element_text(size = 7)) + xlab("Answer") + ylim(0,40)
```
Pitanja: 41 - 50 {data-navmenu="Pitanja vs područje"}
=======================================================================
### pitanja (41 - 50)
```{r fig.width=10}
ggplot(ppodaci49_58, aes(x=Answer, fill=`Study field`, color=`Study field`)) +
geom_bar(alpha=.5) +
facet_grid(factor(`Study field`) ~ factor(Question)) +
theme(legend.position="none", strip.text.y = element_text(size = 7)) + xlab("Answer") + ylim(0,40) + scale_x_discrete(drop=FALSE)
```
Pitanja: 51 - 61 {data-navmenu="Pitanja vs područje"}
=======================================================================
### pitanja (51 - 61)
```{r fig.width=10}
ggplot(ppodaci59_69, aes(x=factor(Answer), fill=`Study field`, color=`Study field`)) +
geom_bar(alpha=.5) +
facet_grid(factor(`Study field`) ~ factor(Question)) +
theme(legend.position="none", strip.text.y = element_text(size = 7)) + xlab("Answer") + ylim(0,40)
```
Q1 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q1** {data-height=200}
```{r, echo = F}
summary(Q1)
```
### ONEWAY-test rezultati: **Q1** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q1 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q1, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q1** {data-height=200}
```{r, echo = F}
kruskal.test(Q1 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q1)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q1 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q2 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q2** {data-height=200}
```{r, echo = F}
summary(Q2)
```
### ONEWAY-test rezultati: **Q2** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q2 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q2, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q2** {data-height=200}
```{r, echo = F}
kruskal.test(Q2 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q2)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q2 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q3 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q3** {data-height=200}
```{r, echo = F}
summary(Q3)
```
### ONEWAY-test rezultati: **Q3** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q3 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q3, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q3** {data-height=200}
```{r, echo = F}
kruskal.test(Q3 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q3)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q3 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q4 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q4** {data-height=200}
```{r, echo = F}
summary(Q4)
```
### ONEWAY-test rezultati: **Q4** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q4 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q4, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q4** {data-height=200}
```{r, echo = F}
kruskal.test(Q4 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q4)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q4 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q5 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q5** {data-height=200}
```{r, echo = F}
summary(Q5)
```
### ONEWAY-test rezultati: **Q5** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q5 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q5, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q5** {data-height=200}
```{r, echo = F}
kruskal.test(Q5 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q5)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q5 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q6 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q6** {data-height=200}
```{r, echo = F}
summary(Q6)
```
### ONEWAY-test rezultati: **Q6** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q6 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q6, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q6** {data-height=200}
```{r, echo = F}
kruskal.test(Q6 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q6)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q6 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q7 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q7** {data-height=200}
```{r, echo = F}
summary(Q7)
```
### ONEWAY-test rezultati: **Q7** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q7 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q7, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q7** {data-height=200}
```{r, echo = F}
kruskal.test(Q7 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q7)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q7 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q8 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q8** {data-height=200}
```{r, echo = F}
summary(Q8)
```
### ONEWAY-test rezultati: **Q8** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q8 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q8, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q8** {data-height=200}
```{r, echo = F}
kruskal.test(Q8 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q8)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q8 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q9 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q9** {data-height=200}
```{r, echo = F}
summary(Q9)
```
### ONEWAY-test rezultati: **Q9** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q9 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q9, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q9** {data-height=200}
```{r, echo = F}
kruskal.test(Q9 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q9)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q9 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q10 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q10** {data-height=200}
```{r, echo = F}
summary(Q10)
```
### ONEWAY-test rezultati: **Q10** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q10 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q10, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q10** {data-height=200}
```{r, echo = F}
kruskal.test(Q10 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q10)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q10 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q11 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q11** {data-height=200}
```{r, echo = F}
summary(Q11)
```
### ONEWAY-test rezultati: **Q11** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q11 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q11, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q11** {data-height=200}
```{r, echo = F}
kruskal.test(Q11 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q11)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q11 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q12 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q12** {data-height=200}
```{r, echo = F}
summary(Q12)
```
### ONEWAY-test rezultati: **Q12** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q12 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q12, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q12** {data-height=200}
```{r, echo = F}
kruskal.test(Q12 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q12)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q12 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q13 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q13** {data-height=200}
```{r, echo = F}
summary(Q13)
```
### ONEWAY-test rezultati: **Q13** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q13 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q13, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q13** {data-height=200}
```{r, echo = F}
kruskal.test(Q13 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q13)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q13 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q14 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q14** {data-height=200}
```{r, echo = F}
summary(Q14)
```
### ONEWAY-test rezultati: **Q14** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q14 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q14, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q14** {data-height=200}
```{r, echo = F}
kruskal.test(Q14 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q14)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q14 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q15 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q15** {data-height=200}
```{r, echo = F}
summary(Q15)
```
### ONEWAY-test rezultati: **Q15** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q15 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q15, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q15** {data-height=200}
```{r, echo = F}
kruskal.test(Q15 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q15)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q15 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q16 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q16** {data-height=200}
```{r, echo = F}
summary(Q16)
```
### ONEWAY-test rezultati: **Q16** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q16 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q16, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q16** {data-height=200}
```{r, echo = F}
kruskal.test(Q16 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q16)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q16 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q17 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q17** {data-height=200}
```{r, echo = F}
summary(Q17)
```
### ONEWAY-test rezultati: **Q17** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q17 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q17, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q17** {data-height=200}
```{r, echo = F}
kruskal.test(Q17 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q17)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q17 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q18 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q18** {data-height=200}
```{r, echo = F}
summary(Q18)
```
### ONEWAY-test rezultati: **Q18** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q18 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q18, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q18** {data-height=200}
```{r, echo = F}
kruskal.test(Q18 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q18)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q18 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q19 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q19** {data-height=200}
```{r, echo = F}
summary(Q19)
```
### ONEWAY-test rezultati: **Q19** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q19 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q19, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q19** {data-height=200}
```{r, echo = F}
kruskal.test(Q19 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q19)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q19 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q20 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q20** {data-height=200}
```{r, echo = F}
summary(Q20)
```
### ONEWAY-test rezultati: **Q20** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q20 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q20, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q20** {data-height=200}
```{r, echo = F}
kruskal.test(Q20 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q20)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q20 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q21 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q21** {data-height=200}
```{r, echo = F}
summary(Q21)
```
### ONEWAY-test rezultati: **Q21** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q21 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q21, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q21** {data-height=200}
```{r, echo = F}
kruskal.test(Q21 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q21)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q21 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q22 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q22** {data-height=200}
```{r, echo = F}
summary(Q22)
```
### ONEWAY-test rezultati: **Q22** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q22 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q22, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q22** {data-height=200}
```{r, echo = F}
kruskal.test(Q22 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q22)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q22 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q23 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q23** {data-height=200}
```{r, echo = F}
summary(Q23)
```
### ONEWAY-test rezultati: **Q23** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q23 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q23, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q23** {data-height=200}
```{r, echo = F}
kruskal.test(Q23 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q23)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q23 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q24 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q24** {data-height=200}
```{r, echo = F}
summary(Q24)
```
### ONEWAY-test rezultati: **Q24** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q24 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q24, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q24** {data-height=200}
```{r, echo = F}
kruskal.test(Q24 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q24)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q24 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q26 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q26** {data-height=200}
```{r, echo = F}
summary(Q26)
```
### ONEWAY-test rezultati: **Q26** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q26 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q26, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q26** {data-height=200}
```{r, echo = F}
kruskal.test(Q26 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q26)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q26 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q27 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q27** {data-height=200}
```{r, echo = F}
summary(Q27)
```
### ONEWAY-test rezultati: **Q27** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q27 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q27, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q27** {data-height=200}
```{r, echo = F}
kruskal.test(Q27 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q27)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q27 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q28 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q28** {data-height=200}
```{r, echo = F}
summary(Q28)
```
### ONEWAY-test rezultati: **Q28** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q28 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q28, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q28** {data-height=200}
```{r, echo = F}
kruskal.test(Q28 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q28)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q28 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q29 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q29** {data-height=200}
```{r, echo = F}
summary(Q29)
```
### ONEWAY-test rezultati: **Q29** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q29 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q29, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q29** {data-height=200}
```{r, echo = F}
kruskal.test(Q29 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q29)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q29 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q30 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q30** {data-height=200}
```{r, echo = F}
summary(Q30)
```
### ONEWAY-test rezultati: **Q30** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q30 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q30, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q30** {data-height=200}
```{r, echo = F}
kruskal.test(Q30 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q30)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q30 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q31 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q31** {data-height=200}
```{r, echo = F}
summary(Q31)
```
### ONEWAY-test rezultati: **Q31** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q31 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q31, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q31** {data-height=200}
```{r, echo = F}
kruskal.test(Q31 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q31)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q31 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q32 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q32** {data-height=200}
```{r, echo = F}
summary(Q32)
```
### ONEWAY-test rezultati: **Q32** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q32 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q32, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q32** {data-height=200}
```{r, echo = F}
kruskal.test(Q32 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q32)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q32 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q33 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q33** {data-height=200}
```{r, echo = F}
summary(Q33)
```
### ONEWAY-test rezultati: **Q33** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q33 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q33, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q33** {data-height=200}
```{r, echo = F}
kruskal.test(Q33 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q33)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q33 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q35 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q35** {data-height=200}
```{r, echo = F}
summary(Q35)
```
### ONEWAY-test rezultati: **Q35** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q35 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q35, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q35** {data-height=200}
```{r, echo = F}
kruskal.test(Q35 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q35)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q35 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q36 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q36** {data-height=200}
```{r, echo = F}
summary(Q36)
```
### ONEWAY-test rezultati: **Q36** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q36 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q36, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q36** {data-height=200}
```{r, echo = F}
kruskal.test(Q36 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q36)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q36 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q37 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q37** {data-height=200}
```{r, echo = F}
summary(Q37)
```
### ONEWAY-test rezultati: **Q37** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q37 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q37, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q37** {data-height=200}
```{r, echo = F}
kruskal.test(Q37 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q37)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q37 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q38 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q38** {data-height=200}
```{r, echo = F}
summary(Q38)
```
### ONEWAY-test rezultati: **Q38** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q38 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q38, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q38** {data-height=200}
```{r, echo = F}
kruskal.test(Q38 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q38)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q38 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q39 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q39** {data-height=200}
```{r, echo = F}
summary(Q39)
```
### ONEWAY-test rezultati: **Q39** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q39 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q39, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q39** {data-height=200}
```{r, echo = F}
kruskal.test(Q39 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q39)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q39 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q40 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q40** {data-height=200}
```{r, echo = F}
summary(Q40)
```
### ONEWAY-test rezultati: **Q40** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q40 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q40, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q40** {data-height=200}
```{r, echo = F}
kruskal.test(Q40 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q40)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q40 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q41 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q41** {data-height=200}
```{r, echo = F}
summary(Q41)
```
### ONEWAY-test rezultati: **Q41** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q41 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q41, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q41** {data-height=200}
```{r, echo = F}
kruskal.test(Q41 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q41)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q41 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q42 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q42** {data-height=200}
```{r, echo = F}
summary(Q42)
```
### ONEWAY-test rezultati: **Q42** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q42 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q42, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q42** {data-height=200}
```{r, echo = F}
kruskal.test(Q42 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q42)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q42 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q43 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q43** {data-height=200}
```{r, echo = F}
summary(Q43)
```
### ONEWAY-test rezultati: **Q43** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q43 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q43, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q43** {data-height=200}
```{r, echo = F}
kruskal.test(Q43 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q43)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q43 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q44 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q44** {data-height=200}
```{r, echo = F}
summary(Q44)
```
### ONEWAY-test rezultati: **Q44** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q44 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q44, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q44** {data-height=200}
```{r, echo = F}
kruskal.test(Q44 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q44)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q44 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q45 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q45** {data-height=200}
```{r, echo = F}
summary(Q45)
```
### ONEWAY-test rezultati: **Q45** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q45 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q45, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q45** {data-height=200}
```{r, echo = F}
kruskal.test(Q45 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q45)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q45 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q46 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q46** {data-height=200}
```{r, echo = F}
summary(Q46)
```
### ONEWAY-test rezultati: **Q46** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q46 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q46, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q46** {data-height=200}
```{r, echo = F}
kruskal.test(Q46 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q46)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q46 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q47 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q47** {data-height=200}
```{r, echo = F}
summary(Q47)
```
### ONEWAY-test rezultati: **Q47** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q47 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q47, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q47** {data-height=200}
```{r, echo = F}
kruskal.test(Q47 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q47)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q47 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q48 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q48** {data-height=200}
```{r, echo = F}
summary(Q48)
```
### ONEWAY-test rezultati: **Q48** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q48 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q48, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q48** {data-height=200}
```{r, echo = F}
kruskal.test(Q48 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q48)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q48 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q49 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q49** {data-height=200}
```{r, echo = F}
summary(Q49)
```
### ONEWAY-test rezultati: **Q49** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q49 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q49, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q49** {data-height=200}
```{r, echo = F}
kruskal.test(Q49 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q49)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q49 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q50 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q50** {data-height=200}
```{r, echo = F}
summary(Q50)
```
### ONEWAY-test rezultati: **Q50** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q50 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q50, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q50** {data-height=200}
```{r, echo = F}
kruskal.test(Q50 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q50)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q50 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q51 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q51** {data-height=200}
```{r, echo = F}
summary(Q51)
```
### ONEWAY-test rezultati: **Q51** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q51 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q51, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q51** {data-height=200}
```{r, echo = F}
kruskal.test(Q51 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q51)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q51 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q52 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q52** {data-height=200}
```{r, echo = F}
summary(Q52)
```
### ONEWAY-test rezultati: **Q52** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q52 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q52, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q52** {data-height=200}
```{r, echo = F}
kruskal.test(Q52 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q52)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q52 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q53 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q53** {data-height=200}
```{r, echo = F}
summary(Q53)
```
### ONEWAY-test rezultati: **Q53** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q53 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q53, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q53** {data-height=200}
```{r, echo = F}
kruskal.test(Q53 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q53)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q53 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q58 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q58** {data-height=200}
```{r, echo = F}
summary(Q58)
```
### ONEWAY-test rezultati: **Q58** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q58 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q58, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q58** {data-height=200}
```{r, echo = F}
kruskal.test(Q58 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q58)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q58 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q59 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q59** {data-height=200}
```{r, echo = F}
summary(Q59)
```
### ONEWAY-test rezultati: **Q59** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q59 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q59, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q59** {data-height=200}
```{r, echo = F}
kruskal.test(Q59 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q59)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q59 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q60 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q60** {data-height=200}
```{r, echo = F}
summary(Q60)
```
### ONEWAY-test rezultati: **Q60** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q60 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q60, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q60** {data-height=200}
```{r, echo = F}
kruskal.test(Q60 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q60)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q60 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q61 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q61** {data-height=200}
```{r, echo = F}
summary(Q61)
```
### ONEWAY-test rezultati: **Q61** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q61 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q61, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q61** {data-height=200}
```{r, echo = F}
kruskal.test(Q61 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q61)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q61 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q62 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q62** {data-height=200}
```{r, echo = F}
summary(Q62)
```
### ONEWAY-test rezultati: **Q62** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q62 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q62, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q62** {data-height=200}
```{r, echo = F}
kruskal.test(Q62 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q62)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q62 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q63 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q63** {data-height=200}
```{r, echo = F}
summary(Q63)
```
### ONEWAY-test rezultati: **Q63** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q63 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q63, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q63** {data-height=200}
```{r, echo = F}
kruskal.test(Q63 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q63)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q63 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q64 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q64** {data-height=200}
```{r, echo = F}
summary(Q64)
```
### ONEWAY-test rezultati: **Q64** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q64 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q64, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q64** {data-height=200}
```{r, echo = F}
kruskal.test(Q64 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q64)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q64 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q65 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q65** {data-height=200}
```{r, echo = F}
summary(Q65)
```
### ONEWAY-test rezultati: **Q65** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q65 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q65, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q65** {data-height=200}
```{r, echo = F}
kruskal.test(Q65 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q65)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q65 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q66 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q66** {data-height=200}
```{r, echo = F}
summary(Q66)
```
### ONEWAY-test rezultati: **Q66** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q66 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q66, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q66** {data-height=200}
```{r, echo = F}
kruskal.test(Q66 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q66)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q66 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q67 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q67** {data-height=200}
```{r, echo = F}
summary(Q67)
```
### ONEWAY-test rezultati: **Q67** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q67 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q67, podaci$Country, center=mean)
```
### Kruskal-Wallis rezultati: **Q67** {data-height=200}
```{r, echo = F}
kruskal.test(Q67 ~ Country, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q67)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q67 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q1 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q1** {data-height=200}
```{r, echo = F}
summary(PQ1)
```
### ONEWAY-test rezultati: **Q1** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q1 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q1, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q1** {data-height=200}
```{r, echo = F}
kruskal.test(Q1 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ1)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q1 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q2 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q2** {data-height=200}
```{r, echo = F}
summary(PQ2)
```
### ONEWAY-test rezultati: **Q2** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q2 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q2, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q2** {data-height=200}
```{r, echo = F}
kruskal.test(Q2 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ2)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q2 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q3 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q3** {data-height=200}
```{r, echo = F}
summary(PQ3)
```
### ONEWAY-test rezultati: **Q3** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q3 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q3, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q3** {data-height=200}
```{r, echo = F}
kruskal.test(Q3 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ3)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q3 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q4 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q4** {data-height=200}
```{r, echo = F}
summary(PQ4)
```
### ONEWAY-test rezultati: **Q4** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q4 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q4, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q4** {data-height=200}
```{r, echo = F}
kruskal.test(Q4 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ4)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q4 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q5 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q5** {data-height=200}
```{r, echo = F}
summary(PQ5)
```
### ONEWAY-test rezultati: **Q5** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q5 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q5, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q5** {data-height=200}
```{r, echo = F}
kruskal.test(Q5 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ5)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q5 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q6 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q6** {data-height=200}
```{r, echo = F}
summary(PQ6)
```
### ONEWAY-test rezultati: **Q6** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q6 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q6, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q6** {data-height=200}
```{r, echo = F}
kruskal.test(Q6 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ6)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q6 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q7 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q7** {data-height=200}
```{r, echo = F}
summary(PQ7)
```
### ONEWAY-test rezultati: **Q7** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q7 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q7, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q7** {data-height=200}
```{r, echo = F}
kruskal.test(Q7 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ7)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q7 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q8 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q8** {data-height=200}
```{r, echo = F}
summary(PQ8)
```
### ONEWAY-test rezultati: **Q8** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q8 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q8, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q8** {data-height=200}
```{r, echo = F}
kruskal.test(Q8 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ8)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q8 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q9 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q9** {data-height=200}
```{r, echo = F}
summary(PQ9)
```
### ONEWAY-test rezultati: **Q9** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q9 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q9, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q9** {data-height=200}
```{r, echo = F}
kruskal.test(Q9 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ9)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q9 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q10 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q10** {data-height=200}
```{r, echo = F}
summary(PQ10)
```
### ONEWAY-test rezultati: **Q10** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q10 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q10, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q10** {data-height=200}
```{r, echo = F}
kruskal.test(Q10 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ10)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q10 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q11 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q11** {data-height=200}
```{r, echo = F}
summary(PQ11)
```
### ONEWAY-test rezultati: **Q11** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q11 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q11, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q11** {data-height=200}
```{r, echo = F}
kruskal.test(Q11 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ11)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q11 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q12 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q12** {data-height=200}
```{r, echo = F}
summary(PQ12)
```
### ONEWAY-test rezultati: **Q12** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q12 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q12, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q12** {data-height=200}
```{r, echo = F}
kruskal.test(Q12 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ12)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q12 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q13 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q13** {data-height=200}
```{r, echo = F}
summary(PQ13)
```
### ONEWAY-test rezultati: **Q13** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q13 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q13, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q13** {data-height=200}
```{r, echo = F}
kruskal.test(Q13 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ13)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q13 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q14 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q14** {data-height=200}
```{r, echo = F}
summary(PQ14)
```
### ONEWAY-test rezultati: **Q14** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q14 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q14, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q14** {data-height=200}
```{r, echo = F}
kruskal.test(Q14 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ14)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q14 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q15 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q15** {data-height=200}
```{r, echo = F}
summary(PQ15)
```
### ONEWAY-test rezultati: **Q15** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q15 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q15, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q15** {data-height=200}
```{r, echo = F}
kruskal.test(Q15 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ15)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q15 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q16 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q16** {data-height=200}
```{r, echo = F}
summary(PQ16)
```
### ONEWAY-test rezultati: **Q16** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q16 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q16, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q16** {data-height=200}
```{r, echo = F}
kruskal.test(Q16 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ16)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q16 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q17 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q17** {data-height=200}
```{r, echo = F}
summary(PQ17)
```
### ONEWAY-test rezultati: **Q17** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q17 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q17, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q17** {data-height=200}
```{r, echo = F}
kruskal.test(Q17 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ17)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q17 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q18 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q18** {data-height=200}
```{r, echo = F}
summary(PQ18)
```
### ONEWAY-test rezultati: **Q18** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q18 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q18, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q18** {data-height=200}
```{r, echo = F}
kruskal.test(Q18 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ18)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q18 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q19 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q19** {data-height=200}
```{r, echo = F}
summary(PQ19)
```
### ONEWAY-test rezultati: **Q19** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q19 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q19, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q19** {data-height=200}
```{r, echo = F}
kruskal.test(Q19 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ19)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q19 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q20 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q20** {data-height=200}
```{r, echo = F}
summary(PQ20)
```
### ONEWAY-test rezultati: **Q20** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q20 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q20, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q20** {data-height=200}
```{r, echo = F}
kruskal.test(Q20 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ20)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q20 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q21 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q21** {data-height=200}
```{r, echo = F}
summary(PQ21)
```
### ONEWAY-test rezultati: **Q21** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q21 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q21, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q21** {data-height=200}
```{r, echo = F}
kruskal.test(Q21 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ21)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q21 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q22 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q22** {data-height=200}
```{r, echo = F}
summary(PQ22)
```
### ONEWAY-test rezultati: **Q22** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q22 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q22, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q22** {data-height=200}
```{r, echo = F}
kruskal.test(Q22 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ22)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q22 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q23 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q23** {data-height=200}
```{r, echo = F}
summary(PQ23)
```
### ONEWAY-test rezultati: **Q23** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q23 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q23, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q23** {data-height=200}
```{r, echo = F}
kruskal.test(Q23 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ23)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q23 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q24 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q24** {data-height=200}
```{r, echo = F}
summary(PQ24)
```
### ONEWAY-test rezultati: **Q24** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q24 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q24, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q24** {data-height=200}
```{r, echo = F}
kruskal.test(Q24 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ24)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q24 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q26 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q26** {data-height=200}
```{r, echo = F}
summary(PQ26)
```
### ONEWAY-test rezultati: **Q26** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q26 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q26, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q26** {data-height=200}
```{r, echo = F}
kruskal.test(Q26 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ26)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q26 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q27 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q27** {data-height=200}
```{r, echo = F}
summary(PQ27)
```
### ONEWAY-test rezultati: **Q27** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q27 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q27, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q27** {data-height=200}
```{r, echo = F}
kruskal.test(Q27 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ27)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q27 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q28 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q28** {data-height=200}
```{r, echo = F}
summary(PQ28)
```
### ONEWAY-test rezultati: **Q28** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q28 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q28, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q28** {data-height=200}
```{r, echo = F}
kruskal.test(Q28 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ28)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q28 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q29 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q29** {data-height=200}
```{r, echo = F}
summary(PQ29)
```
### ONEWAY-test rezultati: **Q29** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q29 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q29, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q29** {data-height=200}
```{r, echo = F}
kruskal.test(Q29 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ29)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q29 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q30 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q30** {data-height=200}
```{r, echo = F}
summary(PQ30)
```
### ONEWAY-test rezultati: **Q30** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q30 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q30, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q30** {data-height=200}
```{r, echo = F}
kruskal.test(Q30 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ30)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q30 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q31 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q31** {data-height=200}
```{r, echo = F}
summary(PQ31)
```
### ONEWAY-test rezultati: **Q31** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q31 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q31, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q31** {data-height=200}
```{r, echo = F}
kruskal.test(Q31 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ31)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q31 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q32 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q32** {data-height=200}
```{r, echo = F}
summary(PQ32)
```
### ONEWAY-test rezultati: **Q32** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q32 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q32, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q32** {data-height=200}
```{r, echo = F}
kruskal.test(Q32 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ32)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q32 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q33 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q33** {data-height=200}
```{r, echo = F}
summary(PQ33)
```
### ONEWAY-test rezultati: **Q33** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q33 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q33, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q33** {data-height=200}
```{r, echo = F}
kruskal.test(Q33 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ33)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q33 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q35 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q35** {data-height=200}
```{r, echo = F}
summary(PQ35)
```
### ONEWAY-test rezultati: **Q35** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q35 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q35, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q35** {data-height=200}
```{r, echo = F}
kruskal.test(Q35 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ35)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q35 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q36 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q36** {data-height=200}
```{r, echo = F}
summary(PQ36)
```
### ONEWAY-test rezultati: **Q36** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q36 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q36, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q36** {data-height=200}
```{r, echo = F}
kruskal.test(Q36 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ36)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q36 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q37 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q37** {data-height=200}
```{r, echo = F}
summary(PQ37)
```
### ONEWAY-test rezultati: **Q37** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q37 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q37, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q37** {data-height=200}
```{r, echo = F}
kruskal.test(Q37 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ37)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q37 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q38 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q38** {data-height=200}
```{r, echo = F}
summary(PQ38)
```
### ONEWAY-test rezultati: **Q38** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q38 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q38, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q38** {data-height=200}
```{r, echo = F}
kruskal.test(Q38 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ38)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q38 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q39 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q39** {data-height=200}
```{r, echo = F}
summary(PQ39)
```
### ONEWAY-test rezultati: **Q39** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q39 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q39, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q39** {data-height=200}
```{r, echo = F}
kruskal.test(Q39 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ39)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q39 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q40 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q40** {data-height=200}
```{r, echo = F}
summary(PQ40)
```
### ONEWAY-test rezultati: **Q40** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q40 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q40, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q40** {data-height=200}
```{r, echo = F}
kruskal.test(Q40 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ40)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q40 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q41 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q41** {data-height=200}
```{r, echo = F}
summary(PQ41)
```
### ONEWAY-test rezultati: **Q41** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q41 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q41, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q41** {data-height=200}
```{r, echo = F}
kruskal.test(Q41 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ41)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q41 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q42 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q42** {data-height=200}
```{r, echo = F}
summary(PQ42)
```
### ONEWAY-test rezultati: **Q42** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q42 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q42, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q42** {data-height=200}
```{r, echo = F}
kruskal.test(Q42 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ42)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q42 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q43 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q43** {data-height=200}
```{r, echo = F}
summary(PQ43)
```
### ONEWAY-test rezultati: **Q43** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q43 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q43, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q43** {data-height=200}
```{r, echo = F}
kruskal.test(Q43 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ43)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q43 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q44 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q44** {data-height=200}
```{r, echo = F}
summary(PQ44)
```
### ONEWAY-test rezultati: **Q44** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q44 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q44, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q44** {data-height=200}
```{r, echo = F}
kruskal.test(Q44 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ44)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q44 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q45 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q45** {data-height=200}
```{r, echo = F}
summary(PQ45)
```
### ONEWAY-test rezultati: **Q45** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q45 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q45, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q45** {data-height=200}
```{r, echo = F}
kruskal.test(Q45 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ45)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q45 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q46 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q46** {data-height=200}
```{r, echo = F}
summary(PQ46)
```
### ONEWAY-test rezultati: **Q46** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q46 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q46, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q46** {data-height=200}
```{r, echo = F}
kruskal.test(Q46 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ46)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q46 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q47 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q47** {data-height=200}
```{r, echo = F}
summary(PQ47)
```
### ONEWAY-test rezultati: **Q47** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q47 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q47, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q47** {data-height=200}
```{r, echo = F}
kruskal.test(Q47 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ47)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q47 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q48 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q48** {data-height=200}
```{r, echo = F}
summary(PQ48)
```
### ONEWAY-test rezultati: **Q48** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q48 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q48, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q48** {data-height=200}
```{r, echo = F}
kruskal.test(Q48 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ48)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q48 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q49 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q49** {data-height=200}
```{r, echo = F}
summary(PQ49)
```
### ONEWAY-test rezultati: **Q49** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q49 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q49, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q49** {data-height=200}
```{r, echo = F}
kruskal.test(Q49 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ49)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q49 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q50 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q50** {data-height=200}
```{r, echo = F}
summary(PQ50)
```
### ONEWAY-test rezultati: **Q50** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q50 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q50, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q50** {data-height=200}
```{r, echo = F}
kruskal.test(Q50 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ50)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q50 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q51 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q51** {data-height=200}
```{r, echo = F}
summary(PQ51)
```
### ONEWAY-test rezultati: **Q51** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q51 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q51, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q51** {data-height=200}
```{r, echo = F}
kruskal.test(Q51 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ51)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q51 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q52 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q52** {data-height=200}
```{r, echo = F}
summary(PQ52)
```
### ONEWAY-test rezultati: **Q52** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q52 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q52, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q52** {data-height=200}
```{r, echo = F}
kruskal.test(Q52 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ52)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q52 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q53 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q53** {data-height=200}
```{r, echo = F}
summary(PQ53)
```
### ONEWAY-test rezultati: **Q53** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q53 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q53, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q53** {data-height=200}
```{r, echo = F}
kruskal.test(Q53 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ53)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q53 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q58 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q58** {data-height=200}
```{r, echo = F}
summary(PQ58)
```
### ONEWAY-test rezultati: **Q58** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q58 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q58, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q58** {data-height=200}
```{r, echo = F}
kruskal.test(Q58 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ58)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q58 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q59 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q59** {data-height=200}
```{r, echo = F}
summary(PQ59)
```
### ONEWAY-test rezultati: **Q59** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q59 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q59, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q59** {data-height=200}
```{r, echo = F}
kruskal.test(Q59 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ59)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q59 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q60 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q60** {data-height=200}
```{r, echo = F}
summary(PQ60)
```
### ONEWAY-test rezultati: **Q60** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q60 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q60, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q60** {data-height=200}
```{r, echo = F}
kruskal.test(Q60 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ60)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q60 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q61 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q61** {data-height=200}
```{r, echo = F}
summary(PQ61)
```
### ONEWAY-test rezultati: **Q61** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q61 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q61, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q61** {data-height=200}
```{r, echo = F}
kruskal.test(Q61 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ61)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q61 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q62 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q62** {data-height=200}
```{r, echo = F}
summary(PQ62)
```
### ONEWAY-test rezultati: **Q62** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q62 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q62, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q62** {data-height=200}
```{r, echo = F}
kruskal.test(Q62 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ62)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q62 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q63 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q63** {data-height=200}
```{r, echo = F}
summary(PQ63)
```
### ONEWAY-test rezultati: **Q63** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q63 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q63, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q63** {data-height=200}
```{r, echo = F}
kruskal.test(Q63 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ63)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q63 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q64 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q64** {data-height=200}
```{r, echo = F}
summary(PQ64)
```
### ONEWAY-test rezultati: **Q64** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q64 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q64, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q64** {data-height=200}
```{r, echo = F}
kruskal.test(Q64 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ64)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q64 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q65 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q65** {data-height=200}
```{r, echo = F}
summary(PQ65)
```
### ONEWAY-test rezultati: **Q65** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q65 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q65, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q65** {data-height=200}
```{r, echo = F}
kruskal.test(Q65 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ65)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q65 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q66 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q66** {data-height=200}
```{r, echo = F}
summary(PQ66)
```
### ONEWAY-test rezultati: **Q66** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q66 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q66, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q66** {data-height=200}
```{r, echo = F}
kruskal.test(Q66 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ66)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q66 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
Q67 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q67** {data-height=200}
```{r, echo = F}
summary(PQ67)
```
### ONEWAY-test rezultati: **Q67** {data-height=200}
```{r, echo = F}
oneway.test(podaci$Q67 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q67, podaci$`Study field`, center=mean)
```
### Kruskal-Wallis rezultati: **Q67** {data-height=200}
```{r, echo = F}
kruskal.test(Q67 ~ `Study field`, data = podaci)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey multiple comparisons of means 95% family-wise confidence level
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ67)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.
```{r, echo = F}
tablica <- dunnTest(Q67 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```