Pitanja: 1 - 10

pitanja (1 - 10)

Pitanja: 11 - 20

pitanja (11 - 20)

Pitanja: 21 - 30

pitanja (21 - 30)

Pitanja: 31 - 40

pitanja (31 - 40)

Pitanja: 41 - 50

pitanja (41 - 50)

Pitanja: 51 - 61

pitanja (51 - 61)

Pitanja: 1 - 10

pitanja (1 - 10)

Pitanja: 11 - 20

pitanja (11 - 20)

Pitanja: 21 - 30

pitanja (21 - 30)

Pitanja: 31 - 40

pitanja (31 - 40)

Pitanja: 41 - 50

pitanja (41 - 50)

Pitanja: 51 - 61

pitanja (51 - 61)

Q1

Row

ANOVA rezultati: Q1

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3   4.01  1.3352   1.981  0.119
Residuals      163 109.89  0.6742               

ONEWAY-test rezultati: Q1


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q1 and podaci$Country
F = 1.6372, num df = 3.000, denom df = 73.393, p-value = 0.1881

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)  
group   3  2.3458 0.0748 .
      163                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q1


    Kruskal-Wallis rank sum test

data:  Q1 by Country
Kruskal-Wallis chi-squared = 2.5413, df = 3, p-value = 0.4679

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia 0.0203106 -0.5407240 0.5813453 0.9997016
Portugal-Croatia -0.1542201 -0.6111113 0.3026712 0.8171950
Spain-Croatia -0.4148746 -0.9370828 0.1073337 0.1700022
Portugal-Finland -0.1745307 -0.6545903 0.3055289 0.7813180
Spain-Finland -0.4351852 -0.9777799 0.1074096 0.1633754
Spain-Portugal -0.2606545 -0.6947037 0.1733948 0.4051254

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland -0.0661016 0.9472969 0.9472969
Croatia - Portugal 0.7827357 0.4337823 1.0000000
Finland - Portugal 0.8222113 0.4109566 1.0000000
Croatia - Spain 1.3191140 0.1871310 0.9356550
Finland - Spain 1.3379001 0.1809290 1.0000000
Portugal - Spain 0.7631096 0.4453981 0.8907961

Q2

Row

ANOVA rezultati: Q2

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3   5.55  1.8484   2.096  0.103
Residuals      163 143.72  0.8817               

ONEWAY-test rezultati: Q2


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q2 and podaci$Country
F = 2.0269, num df = 3.000, denom df = 74.101, p-value = 0.1174

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value   Pr(>F)   
group   3  5.4662 0.001323 **
      163                    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q2


    Kruskal-Wallis rank sum test

data:  Q2 by Country
Kruskal-Wallis chi-squared = 3.6531, df = 3, p-value = 0.3014

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia 0.0836320 -0.5579946 0.7252586 0.9866201
Portugal-Croatia -0.1878038 -0.7103269 0.3347193 0.7871998
Spain-Croatia -0.4534050 -1.0506278 0.1438178 0.2033935
Portugal-Finland -0.2714358 -0.8204553 0.2775837 0.5748462
Spain-Finland -0.5370370 -1.1575748 0.0835007 0.1152558
Spain-Portugal -0.2656012 -0.7620011 0.2307986 0.5081320

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland -0.3854608 0.6998960 0.6998960
Croatia - Portugal 0.7219261 0.4703399 0.9406799
Finland - Portugal 1.1375642 0.2553025 1.0000000
Croatia - Spain 1.4020691 0.1608946 0.8044731
Finland - Spain 1.7479509 0.0804725 0.4828352
Portugal - Spain 0.9269233 0.3539664 1.0000000

Q3

Row

ANOVA rezultati: Q3

                Df Sum Sq Mean Sq F value   Pr(>F)    
podaci$Country   3  30.62  10.207   10.89 1.48e-06 ***
Residuals      163 152.81   0.937                     
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q3


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q3 and podaci$Country
F = 10.536, num df = 3.000, denom df = 70.176, p-value = 8.354e-06

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  0.2324 0.8737
      163               

Kruskal-Wallis rezultati: Q3


    Kruskal-Wallis rank sum test

data:  Q3 by Country
Kruskal-Wallis chi-squared = 26.457, df = 3, p-value = 7.652e-06

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia -0.0382318 -0.6998186 0.6233550 0.9987926
Portugal-Croatia -0.9200177 -1.4587958 -0.3812396 0.0000998
Spain-Croatia -0.1308244 -0.7466260 0.4849773 0.9460426
Portugal-Finland -0.8817859 -1.4478847 -0.3156871 0.0004676
Spain-Finland -0.0925926 -0.7324345 0.5472493 0.9818729
Spain-Portugal 0.7891933 0.2773511 1.3010355 0.0005466

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland 0.1263423 0.8994609 0.8994609
Croatia - Portugal 4.0103994 0.0000606 0.0003637
Finland - Portugal 3.6691987 0.0002433 0.0012166
Croatia - Spain 0.5662465 0.5712262 1.0000000
Finland - Spain 0.4143353 0.6786286 1.0000000
Portugal - Spain -3.5401922 0.0003998 0.0015993

Q4

Row

ANOVA rezultati: Q4

                Df Sum Sq Mean Sq F value   Pr(>F)    
podaci$Country   3  15.28   5.095   9.031 1.44e-05 ***
Residuals      163  91.96   0.564                     
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q4


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q4 and podaci$Country
F = 11.733, num df = 3.000, denom df = 75.531, p-value = 2.156e-06

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  1.9666 0.1211
      163               

Kruskal-Wallis rezultati: Q4


    Kruskal-Wallis rank sum test

data:  Q4 by Country
Kruskal-Wallis chi-squared = 23.315, df = 3, p-value = 3.471e-05

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia -0.1636798 -0.6769175 0.3495579 0.8412052
Portugal-Croatia -0.7547503 -1.1727170 -0.3367836 0.0000343
Spain-Croatia -0.4784946 -0.9562137 -0.0007755 0.0494612
Portugal-Finland -0.5910705 -1.0302317 -0.1519093 0.0034056
Spain-Finland -0.3148148 -0.8111836 0.1815539 0.3557380
Spain-Portugal 0.2762557 -0.1208150 0.6733264 0.2742641

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland 0.804110 0.4213335 0.4213335
Croatia - Portugal 4.363707 0.0000128 0.0000767
Finland - Portugal 3.213363 0.0013119 0.0065595
Croatia - Spain 2.437308 0.0147971 0.0591882
Finland - Spain 1.514296 0.1299508 0.2599016
Portugal - Spain -1.661002 0.0967130 0.2901391

Q5

Row

ANOVA rezultati: Q5

                Df Sum Sq Mean Sq F value   Pr(>F)    
podaci$Country   3  20.75   6.917   7.629 8.36e-05 ***
Residuals      163 147.79   0.907                     
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q5


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q5 and podaci$Country
F = 8.599, num df = 3.000, denom df = 75.762, p-value = 5.532e-05

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   3  3.8852 0.01025 *
      163                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q5


    Kruskal-Wallis rank sum test

data:  Q5 by Country
Kruskal-Wallis chi-squared = 21.39, df = 3, p-value = 8.737e-05

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia -0.0334528 -0.6840842 0.6171786 0.9991480
Portugal-Croatia -0.8152894 -1.3451458 -0.2854331 0.0005639
Spain-Croatia -0.4130824 -1.0186869 0.1925220 0.2912840
Portugal-Finland -0.7818366 -1.3385613 -0.2251120 0.0020167
Spain-Finland -0.3796296 -1.0088763 0.2496170 0.4009279
Spain-Portugal 0.4022070 -0.1011595 0.9055735 0.1659834

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland 0.3222672 0.7472503 0.7472503
Croatia - Portugal 3.9684029 0.0000724 0.0004341
Finland - Portugal 3.4002561 0.0006732 0.0033661
Croatia - Spain 1.9104937 0.0560697 0.2242787
Finland - Spain 1.5054929 0.1321974 0.2643948
Portugal - Spain -1.8787106 0.0602840 0.1808521

Q6

Row

ANOVA rezultati: Q6

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3   3.29   1.097   1.086  0.357
Residuals      163 164.64   1.010               

ONEWAY-test rezultati: Q6


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q6 and podaci$Country
F = 1.2518, num df = 3.000, denom df = 67.073, p-value = 0.298

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   3  3.7922 0.01156 *
      163                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q6


    Kruskal-Wallis rank sum test

data:  Q6 by Country
Kruskal-Wallis chi-squared = 4.8583, df = 3, p-value = 0.1825

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia 0.2485066 -0.4382139 0.9352271 0.7837189
Portugal-Croatia -0.0609810 -0.6202273 0.4982653 0.9920639
Spain-Croatia 0.2392473 -0.3999487 0.8784433 0.7658072
Portugal-Finland -0.3094876 -0.8970925 0.2781174 0.5217570
Spain-Finland -0.0092593 -0.6734088 0.6548903 0.9999829
Spain-Portugal 0.3002283 -0.2310588 0.8315155 0.4599137

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland -0.4390998 0.6605892 1.0000000
Croatia - Portugal 1.2201086 0.2224237 0.8896949
Finland - Portugal 1.6743904 0.0940539 0.4702695
Croatia - Spain -0.4274572 0.6690463 1.0000000
Finland - Spain 0.0426258 0.9659999 0.9659999
Portugal - Spain -1.7985946 0.0720828 0.4324970

Q7

Row

ANOVA rezultati: Q7

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3    5.5  1.8345   2.065  0.107
Residuals      163  144.8  0.8882               

ONEWAY-test rezultati: Q7


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q7 and podaci$Country
F = 3.2754, num df = 3.000, denom df = 74.774, p-value = 0.02564

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  0.7556 0.5206
      163               

Kruskal-Wallis rezultati: Q7


    Kruskal-Wallis rank sum test

data:  Q7 by Country
Kruskal-Wallis chi-squared = 6.0324, df = 3, p-value = 0.11

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia 0.3476703 -0.2962908 0.9916313 0.5002827
Portugal-Croatia -0.1789660 -0.7033902 0.3454582 0.8122260
Spain-Croatia -0.0412186 -0.6406143 0.5581771 0.9979726
Portugal-Finland -0.5266362 -1.0776532 0.0243808 0.0667178
Spain-Finland -0.3888889 -1.0116844 0.2339066 0.3697953
Spain-Portugal 0.1377473 -0.3604586 0.6359533 0.8899505

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland -1.1621758 0.2451641 0.9806562
Croatia - Portugal 1.0901736 0.2756367 0.8269101
Finland - Portugal 2.3957687 0.0165856 0.0995133
Croatia - Spain 0.5282171 0.5973487 1.0000000
Finland - Spain 1.7100428 0.0872580 0.4362898
Portugal - Spain -0.5120420 0.6086216 0.6086216

Q8

Row

ANOVA rezultati: Q8

                Df Sum Sq Mean Sq F value  Pr(>F)    
podaci$Country   3  26.80   8.934   15.85 4.3e-09 ***
Residuals      163  91.86   0.564                    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q8


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q8 and podaci$Country
F = 20.892, num df = 3.000, denom df = 67.656, p-value = 1.089e-09

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value    Pr(>F)    
group   3  5.9798 0.0006834 ***
      163                      
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q8


    Kruskal-Wallis rank sum test

data:  Q8 by Country
Kruskal-Wallis chi-squared = 49.984, df = 3, p-value = 8.051e-11

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia -0.5961768 -1.1091243 -0.0832293 0.0155456
Portugal-Croatia 0.3495360 -0.0681943 0.7672664 0.1354587
Spain-Croatia 0.6353047 0.1578557 1.1127536 0.0038934
Portugal-Finland 0.9457128 0.5068000 1.3846257 0.0000006
Spain-Finland 1.2314815 0.7353934 1.7275695 0.0000000
Spain-Portugal 0.2857686 -0.1110775 0.6826148 0.2454115

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland 3.328424 0.0008734 0.0034936
Croatia - Portugal -2.073505 0.0381253 0.0762506
Finland - Portugal -5.863288 0.0000000 0.0000000
Croatia - Spain -3.290085 0.0010016 0.0030047
Finland - Spain -6.608009 0.0000000 0.0000000
Portugal - Spain -1.775705 0.0757816 0.0757816

Q9

Row

ANOVA rezultati: Q9

                Df Sum Sq Mean Sq F value   Pr(>F)    
podaci$Country   3  42.04  14.013   11.99 3.89e-07 ***
Residuals      163 190.43   1.168                     
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q9


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q9 and podaci$Country
F = 13.87, num df = 3.000, denom df = 72.137, p-value = 3.113e-07

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   3  3.0891 0.02875 *
      163                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q9


    Kruskal-Wallis rank sum test

data:  Q9 by Country
Kruskal-Wallis chi-squared = 31.659, df = 3, p-value = 6.176e-07

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia 1.1290323 0.3904786 1.8675860 0.0006220
Portugal-Croatia -0.1312417 -0.7326996 0.4702161 0.9418953
Spain-Croatia -0.4265233 -1.1139654 0.2609188 0.3755662
Portugal-Finland -1.2602740 -1.8922309 -0.6283170 0.0000039
Spain-Finland -1.5555556 -2.2698347 -0.8412764 0.0000004
Spain-Portugal -0.2952816 -0.8666699 0.2761068 0.5379932

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland -3.5813107 0.0003419 0.0013675
Croatia - Portugal 0.9196218 0.3577704 0.7155408
Finland - Portugal 5.0606358 0.0000004 0.0000021
Croatia - Spain 1.4984026 0.1340287 0.4020861
Finland - Spain 5.1451248 0.0000003 0.0000016
Portugal - Spain 0.8347234 0.4038735 0.4038735

Q10

Row

ANOVA rezultati: Q10

                Df Sum Sq Mean Sq F value   Pr(>F)    
podaci$Country   3  28.32   9.439   7.679 7.85e-05 ***
Residuals      163 200.34   1.229                     
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q10


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q10 and podaci$Country
F = 8.0568, num df = 3.000, denom df = 72.628, p-value = 0.0001051

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   3  2.5784 0.05553 .
      163                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q10


    Kruskal-Wallis rank sum test

data:  Q10 by Country
Kruskal-Wallis chi-squared = 20.955, df = 3, p-value = 0.0001076

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia -0.0370370 -0.7945750 0.7205009 0.9992670
Portugal-Croatia -0.8630137 -1.4799318 -0.2460956 0.0021192
Spain-Croatia -0.9166667 -1.6217792 -0.2115542 0.0050695
Portugal-Finland -0.8259767 -1.4741778 -0.1777755 0.0063053
Spain-Finland -0.8796296 -1.6122690 -0.1469903 0.0115090
Spain-Portugal -0.0536530 -0.6397286 0.5324227 0.9952614

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland 0.0405047 0.9676907 0.9676907
Croatia - Portugal 3.4097022 0.0006503 0.0039020
Finland - Portugal 3.1978084 0.0013848 0.0069238
Croatia - Spain 3.1915982 0.0014149 0.0056595
Finland - Spain 3.0298016 0.0024471 0.0073414
Portugal - Spain 0.2506995 0.8020465 1.0000000

Q11

Row

ANOVA rezultati: Q11

                Df Sum Sq Mean Sq F value Pr(>F)  
podaci$Country   3  13.17   4.389   3.503 0.0168 *
Residuals      163 204.23   1.253                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q11


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q11 and podaci$Country
F = 4.6484, num df = 3.000, denom df = 69.133, p-value = 0.005106

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value   Pr(>F)   
group   3  5.4553 0.001342 **
      163                    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q11


    Kruskal-Wallis rank sum test

data:  Q11 by Country
Kruskal-Wallis chi-squared = 9.0817, df = 3, p-value = 0.02822

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia 0.0334528 -0.7314064 0.7983121 0.9994746
Portugal-Croatia -0.2942996 -0.9171800 0.3285808 0.6109927
Spain-Croatia -0.7535842 -1.4655114 -0.0416571 0.0334617
Portugal-Finland -0.3277524 -0.9822182 0.3267134 0.5643006
Spain-Finland -0.7870370 -1.5267571 -0.0473170 0.0321954
Spain-Portugal -0.4592846 -1.0510245 0.1324552 0.1867969

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland -0.0053817 0.9957060 0.9957060
Croatia - Portugal 1.2022470 0.2292679 0.6878036
Finland - Portugal 1.1505144 0.2499321 0.4998642
Croatia - Spain 2.6058310 0.0091652 0.0549910
Finland - Spain 2.5134888 0.0119544 0.0597718
Portugal - Spain 1.8695813 0.0615420 0.2461679

Q12

Row

ANOVA rezultati: Q12

                Df Sum Sq Mean Sq F value  Pr(>F)    
podaci$Country   3  63.88  21.293    18.8 1.6e-10 ***
Residuals      163 184.61   1.133                    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q12


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q12 and podaci$Country
F = 20.858, num df = 3.000, denom df = 69.251, p-value = 9.8e-10

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value    Pr(>F)    
group   3  6.2025 0.0005137 ***
      163                      
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q12


    Kruskal-Wallis rank sum test

data:  Q12 by Country
Kruskal-Wallis chi-squared = 42.581, df = 3, p-value = 3.02e-09

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia 0.0167264 -0.7104645 0.7439173 0.9999233
Portugal-Croatia 1.0309324 0.4387281 1.6231367 0.0000698
Spain-Croatia 1.6093190 0.9324534 2.2861846 0.0000000
Portugal-Finland 1.0142060 0.3919718 1.6364401 0.0002251
Spain-Finland 1.5925926 0.8893028 2.2958824 0.0000001
Spain-Portugal 0.5783866 0.0157892 1.1409840 0.0413563

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland 0.0001477 0.9998822 0.9998822
Croatia - Portugal -3.7571243 0.0001719 0.0006875
Finland - Portugal -3.5759730 0.0003489 0.0010468
Croatia - Spain -5.4022112 0.0000001 0.0000004
Finland - Spain -5.1993910 0.0000002 0.0000010
Portugal - Spain -2.5446010 0.0109403 0.0218805

Q13

Row

ANOVA rezultati: Q13

                Df Sum Sq Mean Sq F value   Pr(>F)    
podaci$Country   3  57.51  19.169   14.03 3.51e-08 ***
Residuals      163 222.67   1.366                     
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q13


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q13 and podaci$Country
F = 14.511, num df = 3.000, denom df = 73.118, p-value = 1.649e-07

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)  
group   3  3.0283 0.0311 *
      163                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q13


    Kruskal-Wallis rank sum test

data:  Q13 by Country
Kruskal-Wallis chi-squared = 37.054, df = 3, p-value = 4.482e-08

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia -0.1338112 -0.9324497 0.6648273 0.9723695
Portugal-Croatia -0.9323906 -1.5827799 -0.2820014 0.0015408
Spain-Croatia -1.6245520 -2.3679207 -0.8811833 0.0000004
Portugal-Finland -0.7985794 -1.4819490 -0.1152098 0.0148023
Spain-Finland -1.4907407 -2.2631298 -0.7183517 0.0000083
Spain-Portugal -0.6921613 -1.3100348 -0.0742879 0.0213823

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland 0.6168072 0.5373619 0.5373619
Croatia - Portugal 3.7859020 0.0001532 0.0006126
Finland - Portugal 2.8823408 0.0039473 0.0118420
Croatia - Spain 5.3445435 0.0000001 0.0000005
Finland - Spain 4.5059681 0.0000066 0.0000330
Portugal - Spain 2.4449284 0.0144881 0.0289762

Q14

Row

ANOVA rezultati: Q14

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3   7.23   2.409   1.841  0.142
Residuals      163 213.25   1.308               

ONEWAY-test rezultati: Q14


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q14 and podaci$Country
F = 1.8657, num df = 3.000, denom df = 68.659, p-value = 0.1435

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  0.6341  0.594
      163               

Kruskal-Wallis rezultati: Q14


    Kruskal-Wallis rank sum test

data:  Q14 by Country
Kruskal-Wallis chi-squared = 5.7602, df = 3, p-value = 0.1239

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia -0.6499403 -1.4315056 0.1316250 0.1393652
Portugal-Croatia -0.4759169 -1.1124022 0.1605684 0.2151662
Spain-Croatia -0.4740143 -1.2014914 0.2534627 0.3315576
Portugal-Finland 0.1740233 -0.4947373 0.8427839 0.9062609
Spain-Finland 0.1759259 -0.5799511 0.9318029 0.9306351
Spain-Portugal 0.0019026 -0.6027620 0.6065672 0.9999998

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland 2.1345177 0.0328004 0.1968025
Croatia - Portugal 2.0899592 0.0366215 0.1831073
Finland - Portugal -0.5054673 0.6132306 1.0000000
Croatia - Spain 1.7091814 0.0874173 0.3496694
Finland - Spain -0.5620950 0.5740513 1.0000000
Portugal - Spain -0.1436136 0.8858056 0.8858056

Q15

Row

ANOVA rezultati: Q15

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3   3.94   1.314   0.882  0.452
Residuals      163 243.00   1.491               

ONEWAY-test rezultati: Q15


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q15 and podaci$Country
F = 0.89209, num df = 3.000, denom df = 70.267, p-value = 0.4496

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  0.3317 0.8024
      163               

Kruskal-Wallis rezultati: Q15


    Kruskal-Wallis rank sum test

data:  Q15 by Country
Kruskal-Wallis chi-squared = 2.6299, df = 3, p-value = 0.4523

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia -0.1254480 -0.9597496 0.7088535 0.9797512
Portugal-Croatia 0.1378701 -0.5415622 0.8173024 0.9525115
Spain-Croatia 0.3467742 -0.4297895 1.1233379 0.6534275
Portugal-Finland 0.2633181 -0.4505672 0.9772035 0.7737195
Spain-Finland 0.4722222 -0.3346577 1.2791022 0.4284256
Spain-Portugal 0.2089041 -0.4365604 0.8543686 0.8352456

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland 0.5583438 0.5766096 1.0000000
Croatia - Portugal -0.5248638 0.5996779 0.5996779
Finland - Portugal -1.1520568 0.2492977 1.0000000
Croatia - Spain -0.9943398 0.3200575 1.0000000
Finland - Spain -1.5342992 0.1249561 0.7497363
Portugal - Spain -0.6438135 0.5196963 1.0000000

Q16

Row

ANOVA rezultati: Q16

                Df Sum Sq Mean Sq F value  Pr(>F)   
podaci$Country   3  16.13   5.377   5.025 0.00234 **
Residuals      163 174.42   1.070                   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q16


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q16 and podaci$Country
F = 5.6279, num df = 3.000, denom df = 72.325, p-value = 0.001595

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   3   2.612 0.05319 .
      163                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q16


    Kruskal-Wallis rank sum test

data:  Q16 by Country
Kruskal-Wallis chi-squared = 13.071, df = 3, p-value = 0.004486

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia -0.6224612 -1.3292911 0.0843688 0.1055495
Portugal-Croatia -0.6716748 -1.2472977 -0.0960519 0.0150015
Spain-Croatia -0.0483871 -0.7063009 0.6095267 0.9975242
Portugal-Finland -0.0492136 -0.6540255 0.5555983 0.9966574
Spain-Finland 0.5740741 -0.1095240 1.2576721 0.1332030
Spain-Portugal 0.6232877 0.0764427 1.1701327 0.0184597

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland 1.8760053 0.0606546 0.2426182
Croatia - Portugal 2.8506184 0.0043634 0.0218171
Finland - Portugal 0.5205991 0.6026461 1.0000000
Croatia - Spain 0.1130614 0.9099819 0.9099819
Finland - Spain -1.8309474 0.0671084 0.2013252
Portugal - Spain -2.8646081 0.0041753 0.0250515

Q17

Row

ANOVA rezultati: Q17

                Df Sum Sq Mean Sq F value Pr(>F)  
podaci$Country   3  13.26   4.421   3.581 0.0152 *
Residuals      163 201.25   1.235                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q17


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q17 and podaci$Country
F = 3.5341, num df = 3.000, denom df = 71.464, p-value = 0.01896

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   3  3.4127 0.01891 *
      163                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q17


    Kruskal-Wallis rank sum test

data:  Q17 by Country
Kruskal-Wallis chi-squared = 9.5251, df = 3, p-value = 0.02307

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia -0.4169654 -1.1762199 0.3422892 0.4853032
Portugal-Croatia 0.1878038 -0.4305123 0.8061199 0.8596370
Spain-Croatia 0.4811828 -0.2255276 1.1878931 0.2928400
Portugal-Finland 0.6047692 -0.0449009 1.2544392 0.0779985
Spain-Finland 0.8981481 0.1638486 1.6324477 0.0096085
Spain-Portugal 0.2933790 -0.2940248 0.8807827 0.5665161

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland 0.9378079 0.3483431 0.3483431
Croatia - Portugal -1.2171550 0.2235452 0.6706357
Finland - Portugal -2.2544082 0.0241705 0.1208525
Croatia - Spain -1.9370510 0.0527391 0.2109564
Finland - Spain -2.8339508 0.0045976 0.0275858
Portugal - Spain -1.0492740 0.2940520 0.5881041

Q18

Row

ANOVA rezultati: Q18

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3   0.74  0.2482   0.197  0.898
Residuals      163 205.18  1.2588               

ONEWAY-test rezultati: Q18


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q18 and podaci$Country
F = 0.19524, num df = 3.000, denom df = 70.514, p-value = 0.8993

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   3  2.8774 0.03779 *
      163                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q18


    Kruskal-Wallis rank sum test

data:  Q18 by Country
Kruskal-Wallis chi-squared = 0.84341, df = 3, p-value = 0.8391

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia 0.2114695 -0.5551653 0.9781044 0.8906236
Portugal-Croatia 0.0486080 -0.5757183 0.6729344 0.9970677
Spain-Croatia 0.0448029 -0.6687770 0.7583827 0.9984538
Portugal-Finland -0.1628615 -0.8188466 0.4931236 0.9173553
Spain-Finland -0.1666667 -0.9081039 0.5747706 0.9369378
Spain-Portugal -0.0038052 -0.5969187 0.5893084 0.9999983

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland -0.8955721 0.3704813 1.00000
Croatia - Portugal -0.3721058 0.7098141 1.00000
Finland - Portugal 0.6924873 0.4886314 1.00000
Croatia - Spain -0.4649621 0.6419586 1.00000
Finland - Spain 0.4785154 0.6322834 1.00000
Portugal - Spain -0.1677118 0.8668100 0.86681

Q19

Row

ANOVA rezultati: Q19

                Df Sum Sq Mean Sq F value Pr(>F)  
podaci$Country   3  11.42   3.806    2.58 0.0554 .
Residuals      163 240.49   1.475                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q19


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q19 and podaci$Country
F = 2.9236, num df = 3.00, denom df = 72.14, p-value = 0.0396

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  2.0168 0.1136
      163               

Kruskal-Wallis rezultati: Q19


    Kruskal-Wallis rank sum test

data:  Q19 by Country
Kruskal-Wallis chi-squared = 6.5875, df = 3, p-value = 0.08628

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia 0.0525687 -0.7774006 0.8825380 0.9984129
Portugal-Croatia -0.5466195 -1.2225237 0.1292847 0.1576974
Spain-Croatia -0.4659498 -1.2384811 0.3065814 0.4011700
Portugal-Finland -0.5991882 -1.3093666 0.1109901 0.1303212
Spain-Finland -0.5185185 -1.3212086 0.2841715 0.3392789
Spain-Portugal 0.0806697 -0.5614431 0.7227825 0.9879824

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland -0.2240244 0.8227383 0.8227383
Croatia - Portugal 1.9007110 0.0573399 0.2866994
Finland - Portugal 2.0707923 0.0383782 0.2302693
Croatia - Spain 1.3770354 0.1685013 0.5055040
Finland - Spain 1.5569349 0.1194859 0.4779437
Portugal - Spain -0.3440138 0.7308359 1.0000000

Q20

Row

ANOVA rezultati: Q20

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3   7.63   2.544   2.098  0.103
Residuals      163 197.64   1.212               

ONEWAY-test rezultati: Q20


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q20 and podaci$Country
F = 2.0219, num df = 3.000, denom df = 72.833, p-value = 0.1183

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  0.9133 0.4359
      163               

Kruskal-Wallis rezultati: Q20


    Kruskal-Wallis rank sum test

data:  Q20 by Country
Kruskal-Wallis chi-squared = 7.2886, df = 3, p-value = 0.06325

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia 0.0286738 -0.7237313 0.7810790 0.9996520
Portugal-Croatia 0.0256297 -0.5871084 0.6383678 0.9995402
Spain-Croatia -0.4991039 -1.1994389 0.2012310 0.2540007
Portugal-Finland -0.0030441 -0.6468534 0.6407651 0.9999993
Spain-Finland -0.5277778 -1.2554531 0.1998975 0.2395241
Spain-Portugal -0.5247336 -1.1068383 0.0573710 0.0933261

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland -0.0336823 0.9731305 0.9731305
Croatia - Portugal -0.3025697 0.7622178 1.0000000
Finland - Portugal -0.2486036 0.8036674 1.0000000
Croatia - Spain 1.9012563 0.0572685 0.2863423
Finland - Spain 1.8646489 0.0622306 0.2489225
Portugal - Spain 2.6059098 0.0091631 0.0549783

Q21

Row

ANOVA rezultati: Q21

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3   6.24   2.080   1.809  0.148
Residuals      163 187.37   1.149               

ONEWAY-test rezultati: Q21


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q21 and podaci$Country
F = 2.185, num df = 3.000, denom df = 71.136, p-value = 0.0973

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  1.5493 0.2038
      163               

Kruskal-Wallis rezultati: Q21


    Kruskal-Wallis rank sum test

data:  Q21 by Country
Kruskal-Wallis chi-squared = 5.8651, df = 3, p-value = 0.1184

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia -0.1481481 -0.8807407 0.5844444 0.9529645
Portugal-Croatia 0.0136986 -0.5829046 0.6103019 0.9999237
Spain-Croatia -0.4722222 -1.1541157 0.2096713 0.2782254
Portugal-Finland 0.1618468 -0.4650094 0.7887030 0.9081988
Spain-Finland -0.3240741 -1.0325880 0.3844398 0.6357439
Spain-Portugal -0.4859209 -1.0526973 0.0808556 0.1207040

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland 0.7438707 0.4569547 0.9139094
Croatia - Portugal 0.1118971 0.9109050 0.9109050
Finland - Portugal -0.7628479 0.4455541 1.0000000
Croatia - Spain 1.9648576 0.0494307 0.2471536
Finland - Spain 1.1218826 0.2619124 1.0000000
Portugal - Spain 2.2461508 0.0246944 0.1481661

Q22

Row

ANOVA rezultati: Q22

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3   1.21  0.4043   0.371  0.774
Residuals      163 177.75  1.0905               

ONEWAY-test rezultati: Q22


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q22 and podaci$Country
F = 0.43596, num df = 3.00, denom df = 74.98, p-value = 0.7279

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  1.9809 0.1189
      163               

Kruskal-Wallis rezultati: Q22


    Kruskal-Wallis rank sum test

data:  Q22 by Country
Kruskal-Wallis chi-squared = 0.92615, df = 3, p-value = 0.8191

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia -0.0107527 -0.7242892 0.7027838 0.9999784
Portugal-Croatia -0.1294741 -0.7105587 0.4516104 0.9384489
Spain-Croatia -0.2329749 -0.8971311 0.4311813 0.7992571
Portugal-Finland -0.1187215 -0.7292720 0.4918291 0.9578581
Spain-Finland -0.2222222 -0.9123064 0.4678620 0.8373058
Spain-Portugal -0.1035008 -0.6555344 0.4485328 0.9619695

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland -0.0063717 0.9949161 0.9949161
Croatia - Portugal 0.1001591 0.9202180 1.0000000
Finland - Portugal 0.1027718 0.9181441 1.0000000
Croatia - Spain 0.7800981 0.4353332 1.0000000
Finland - Spain 0.7573763 0.4488244 1.0000000
Portugal - Spain 0.8331125 0.4047813 1.0000000

Q23

Row

ANOVA rezultati: Q23

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3   3.01   1.004   0.689   0.56
Residuals      163 237.35   1.456               

ONEWAY-test rezultati: Q23


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q23 and podaci$Country
F = 0.72743, num df = 3.00, denom df = 73.08, p-value = 0.5389

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  1.8503 0.1401
      163               

Kruskal-Wallis rezultati: Q23


    Kruskal-Wallis rank sum test

data:  Q23 by Country
Kruskal-Wallis chi-squared = 2.619, df = 3, p-value = 0.4542

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia 0.2676225 -0.5569144 1.0921593 0.8340709
Portugal-Croatia 0.1250552 -0.5464249 0.7965354 0.9626822
Spain-Croatia -0.1397849 -0.9072597 0.6276898 0.9649608
Portugal-Finland -0.1425672 -0.8480972 0.5629628 0.9530642
Spain-Finland -0.4074074 -1.2048436 0.3900288 0.5476597
Spain-Portugal -0.2648402 -0.9027501 0.3730697 0.7036376

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland -0.8965250 0.3699724 1.0000000
Croatia - Portugal -0.6917150 0.4891163 1.0000000
Finland - Portugal 0.3894164 0.6969681 0.6969681
Croatia - Spain 0.4852931 0.6274684 1.0000000
Finland - Spain 1.3940527 0.1633017 0.9798101
Portugal - Spain 1.3119769 0.1895279 0.9476396

Q24

Row

ANOVA rezultati: Q24

                Df Sum Sq Mean Sq F value Pr(>F)  
podaci$Country   3  11.97   3.989   2.834   0.04 *
Residuals      163 229.43   1.408                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q24


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q24 and podaci$Country
F = 3.4255, num df = 3.000, denom df = 72.077, p-value = 0.02157

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)   
group   3  5.6167 0.00109 **
      163                   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q24


    Kruskal-Wallis rank sum test

data:  Q24 by Country
Kruskal-Wallis chi-squared = 9.9584, df = 3, p-value = 0.01892

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia 0.0561529 -0.7545192 0.8668251 0.9979284
Portugal-Croatia -0.1153336 -0.7755228 0.5448555 0.9688729
Spain-Croatia -0.6845878 -1.4391574 0.0699818 0.0901213
Portugal-Finland -0.1714866 -0.8651530 0.5221799 0.9182963
Spain-Finland -0.7407407 -1.5247679 0.0432865 0.0715126
Spain-Portugal -0.5692542 -1.1964376 0.0579292 0.0899151

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland -0.0288660 0.9769715 0.9769715
Croatia - Portugal 0.8087158 0.4186786 1.0000000
Finland - Portugal 0.8034211 0.4217314 0.8434628
Croatia - Spain 2.6850124 0.0072527 0.0435163
Finland - Spain 2.6139776 0.0089495 0.0447475
Portugal - Spain 2.3790860 0.0173556 0.0694225

Q26

Row

ANOVA rezultati: Q26

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3   3.46  1.1546   1.238  0.298
Residuals      163 152.01  0.9326               

ONEWAY-test rezultati: Q26


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q26 and podaci$Country
F = 1.2152, num df = 3.000, denom df = 71.009, p-value = 0.3105

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  0.2194 0.8828
      163               

Kruskal-Wallis rezultati: Q26


    Kruskal-Wallis rank sum test

data:  Q26 by Country
Kruskal-Wallis chi-squared = 3.5211, df = 3, p-value = 0.318

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia 0.1720430 -0.4878179 0.8319039 0.9057720
Portugal-Croatia 0.2222713 -0.3151013 0.7596439 0.7060594
Spain-Croatia 0.4498208 -0.1643744 1.0640160 0.2316470
Portugal-Finland 0.0502283 -0.5143937 0.6148503 0.9956466
Spain-Finland 0.2777778 -0.3603950 0.9159505 0.6716578
Spain-Portugal 0.2275495 -0.2829575 0.7380564 0.6547541

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland -0.6732259 0.5008036 1.0000000
Croatia - Portugal -1.1018136 0.2705427 1.0000000
Finland - Portugal -0.2618548 0.7934334 0.7934334
Croatia - Spain -1.8520902 0.0640129 0.3840772
Finland - Spain -1.0863978 0.2773030 1.0000000
Portugal - Spain -1.0684682 0.2853094 0.8559281

Q27

Row

ANOVA rezultati: Q27

                Df Sum Sq Mean Sq F value Pr(>F)  
podaci$Country   3  10.33   3.442   3.362 0.0202 *
Residuals      163 166.91   1.024                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q27


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q27 and podaci$Country
F = 3.6904, num df = 3.000, denom df = 70.127, p-value = 0.0158

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   3  2.7288 0.04577 *
      163                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q27


    Kruskal-Wallis rank sum test

data:  Q27 by Country
Kruskal-Wallis chi-squared = 9.8163, df = 3, p-value = 0.02019

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia -0.7359618 -1.4274004 -0.0445232 0.0320983
Portugal-Croatia -0.3473266 -0.9104152 0.2157621 0.3808673
Spain-Croatia -0.6433692 -1.2869568 0.0002184 0.0501133
Portugal-Finland 0.3886352 -0.2030068 0.9802773 0.3243667
Spain-Finland 0.0925926 -0.5761200 0.7613052 0.9840493
Spain-Portugal -0.2960426 -0.8309800 0.2388947 0.4785047

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland 2.8356075 0.0045739 0.0274432
Croatia - Portugal 1.6203036 0.1051671 0.3155012
Finland - Portugal -1.7718043 0.0764271 0.3057082
Croatia - Spain 2.4412721 0.0146356 0.0731781
Finland - Spain -0.5824267 0.5602793 0.5602793
Portugal - Spain 1.2315421 0.2181202 0.4362404

Q28

Row

ANOVA rezultati: Q28

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3   0.07  0.0226   0.024  0.995
Residuals      163 153.63  0.9425               

ONEWAY-test rezultati: Q28


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q28 and podaci$Country
F = 0.022009, num df = 3.000, denom df = 69.364, p-value = 0.9955

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  0.3409 0.7958
      163               

Kruskal-Wallis rezultati: Q28


    Kruskal-Wallis rank sum test

data:  Q28 by Country
Kruskal-Wallis chi-squared = 0.1226, df = 3, p-value = 0.989

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia -0.0119474 -0.6753224 0.6514275 0.9999632
Portugal-Croatia -0.0357932 -0.5760275 0.5044411 0.9981852
Spain-Croatia -0.0582437 -0.6757098 0.5592223 0.9948232
Portugal-Finland -0.0238458 -0.5914746 0.5437831 0.9995343
Spain-Finland -0.0462963 -0.6878676 0.5952750 0.9976603
Spain-Portugal -0.0224505 -0.5356762 0.4907751 0.9994744

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland 0.0691508 0.9448696 1.0000000
Croatia - Portugal 0.3157375 0.7522017 1.0000000
Finland - Portugal 0.2196847 0.8261168 1.0000000
Croatia - Spain 0.2207585 0.8252805 1.0000000
Finland - Spain 0.1409633 0.8878989 1.0000000
Portugal - Spain -0.0667569 0.9467752 0.9467752

Q29

Row

ANOVA rezultati: Q29

                Df Sum Sq Mean Sq F value   Pr(>F)    
podaci$Country   3  52.64  17.546   11.21 9.97e-07 ***
Residuals      163 255.10   1.565                     
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q29


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q29 and podaci$Country
F = 10.832, num df = 3.000, denom df = 68.453, p-value = 6.55e-06

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  0.5949 0.6192
      163               

Kruskal-Wallis rezultati: Q29


    Kruskal-Wallis rank sum test

data:  Q29 by Country
Kruskal-Wallis chi-squared = 25.603, df = 3, p-value = 1.155e-05

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia -1.3440860 -2.1988982 -0.4892738 0.0004038
Portugal-Croatia -1.4993372 -2.1954728 -0.8032016 0.0000006
Spain-Croatia -1.3718638 -2.1675187 -0.5762089 0.0000836
Portugal-Finland -0.1552511 -0.8866868 0.5761845 0.9461766
Spain-Finland -0.0277778 -0.8544943 0.7989387 0.9997613
Spain-Portugal 0.1274734 -0.5338594 0.7888061 0.9588843

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland 3.5757440 0.0003492 0.0013969
Croatia - Portugal 4.8731009 0.0000011 0.0000066
Finland - Portugal 0.4590280 0.6462141 1.0000000
Croatia - Spain 3.9077164 0.0000932 0.0004659
Finland - Spain 0.0636303 0.9492646 0.9492646
Portugal - Spain -0.4281434 0.6685467 1.0000000

Q30

Row

ANOVA rezultati: Q30

                Df Sum Sq Mean Sq F value  Pr(>F)   
podaci$Country   3  21.84   7.279   4.841 0.00297 **
Residuals      163 245.10   1.504                   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q30


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q30 and podaci$Country
F = 6.9813, num df = 3.000, denom df = 72.449, p-value = 0.0003434

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   3  3.1469 0.02668 *
      163                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q30


    Kruskal-Wallis rank sum test

data:  Q30 by Country
Kruskal-Wallis chi-squared = 12.994, df = 3, p-value = 0.004649

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia -1.0047790 -1.8426693 -0.1668886 0.0116428
Portugal-Croatia -0.9403447 -1.6226996 -0.2579898 0.0025581
Spain-Croatia -0.6899642 -1.4698683 0.0899400 0.1030813
Portugal-Finland 0.0644343 -0.6525219 0.7813905 0.9955131
Spain-Finland 0.3148148 -0.4955360 1.1251656 0.7447278
Spain-Portugal 0.2503805 -0.3978605 0.8986215 0.7481024

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland 2.9376899 0.0033067 0.0165334
Croatia - Portugal 3.3917981 0.0006944 0.0041661
Finland - Portugal -0.2051059 0.8374894 0.8374894
Croatia - Spain 2.2345833 0.0254447 0.1017789
Finland - Spain -0.8869014 0.3751320 1.0000000
Portugal - Spain -0.8818469 0.3778596 0.7557192

Q31

Row

ANOVA rezultati: Q31

                Df Sum Sq Mean Sq F value   Pr(>F)    
podaci$Country   3  52.53  17.510   11.94 4.13e-07 ***
Residuals      163 238.97   1.466                     
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q31


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q31 and podaci$Country
F = 14.812, num df = 3.000, denom df = 73.809, p-value = 1.212e-07

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)   
group   3  3.9404 0.00954 **
      163                   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q31


    Kruskal-Wallis rank sum test

data:  Q31 by Country
Kruskal-Wallis chi-squared = 31.047, df = 3, p-value = 8.307e-07

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia -0.0406213 -0.8679669 0.7867244 0.9992577
Portugal-Croatia -0.8011489 -1.4749165 -0.1273813 0.0126133
Spain-Croatia -1.5313620 -2.3014512 -0.7612728 0.0000042
Portugal-Finland -0.7605277 -1.4684611 -0.0525942 0.0299114
Spain-Finland -1.4907407 -2.2908934 -0.6905880 0.0000180
Spain-Portugal -0.7302131 -1.3702961 -0.0901301 0.0183173

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland 0.1052041 0.9162139 0.9162139
Croatia - Portugal 2.8488857 0.0043873 0.0175491
Finland - Portugal 2.5884450 0.0096410 0.0192821
Croatia - Spain 4.8023721 0.0000016 0.0000094
Finland - Spain 4.5131571 0.0000064 0.0000319
Portugal - Spain 2.7789647 0.0054532 0.0163597

Q32

Row

ANOVA rezultati: Q32

                Df Sum Sq Mean Sq F value   Pr(>F)    
podaci$Country   3  34.61  11.538   6.906 0.000209 ***
Residuals      163 272.32   1.671                     
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q32


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q32 and podaci$Country
F = 7.0989, num df = 3.000, denom df = 72.313, p-value = 0.0003019

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  1.6199 0.1868
      163               

Kruskal-Wallis rezultati: Q32


    Kruskal-Wallis rank sum test

data:  Q32 by Country
Kruskal-Wallis chi-squared = 18.346, df = 3, p-value = 0.0003732

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia 0.1063321 -0.7768642 0.9895284 0.9893887
Portugal-Croatia 0.0048608 -0.7143900 0.7241116 0.9999981
Spain-Croatia -1.0788530 -1.9009277 -0.2567784 0.0045610
Portugal-Finland -0.1014713 -0.8571944 0.6542517 0.9854126
Spain-Finland -1.1851852 -2.0393528 -0.3310176 0.0023495
Spain-Portugal -1.0837139 -1.7670062 -0.4004215 0.0003521

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland -0.3281060 0.7428315 1.0000000
Croatia - Portugal -0.1302842 0.8963416 0.8963416
Finland - Portugal 0.2594536 0.7952853 1.0000000
Croatia - Spain 3.1432586 0.0016708 0.0066831
Finland - Spain 3.3644161 0.0007671 0.0038353
Portugal - Spain 3.9188211 0.0000890 0.0005339

Q33

Row

ANOVA rezultati: Q33

                Df Sum Sq Mean Sq F value Pr(>F)  
podaci$Country   3  12.36   4.119   3.542  0.016 *
Residuals      163 189.54   1.163                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q33


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q33 and podaci$Country
F = 5.6967, num df = 3.00, denom df = 72.04, p-value = 0.001477

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value    Pr(>F)    
group   3  14.031 3.508e-08 ***
      163                      
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q33


    Kruskal-Wallis rank sum test

data:  Q33 by Country
Kruskal-Wallis chi-squared = 11.305, df = 3, p-value = 0.01019

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia -0.0836320 -0.8204533 0.6531892 0.9910718
Portugal-Croatia -0.0176757 -0.6177227 0.5823714 0.9998391
Spain-Croatia -0.6854839 -1.3713134 0.0003457 0.0501683
Portugal-Finland 0.0659564 -0.5645182 0.6964309 0.9929749
Spain-Finland -0.6018519 -1.3144555 0.1107518 0.1296927
Spain-Portugal -0.6678082 -1.2378563 -0.0977602 0.0144722

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland 0.1804427 0.8568050 1.0000000
Croatia - Portugal 0.2067039 0.8362411 1.0000000
Finland - Portugal -0.0141512 0.9887093 0.9887093
Croatia - Spain 2.7174223 0.0065793 0.0328963
Finland - Spain 2.4287478 0.0151511 0.0606043
Portugal - Spain 3.0517717 0.0022750 0.0136497

Q35

Row

ANOVA rezultati: Q35

                Df Sum Sq Mean Sq F value  Pr(>F)   
podaci$Country   3  14.72   4.907    4.68 0.00366 **
Residuals      163 170.91   1.049                   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q35


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q35 and podaci$Country
F = 5.4324, num df = 3.000, denom df = 72.287, p-value = 0.002

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  2.1106 0.1009
      163               

Kruskal-Wallis rezultati: Q35


    Kruskal-Wallis rank sum test

data:  Q35 by Country
Kruskal-Wallis chi-squared = 13.304, df = 3, p-value = 0.004022

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia -0.5507766 -1.2504569 0.1489038 0.1765453
Portugal-Croatia -0.7856827 -1.3554832 -0.2158823 0.0025401
Spain-Croatia -0.3378136 -0.9890726 0.3134453 0.5348274
Portugal-Finland -0.2349061 -0.8336004 0.3637881 0.7388766
Spain-Finland 0.2129630 -0.4637205 0.8896464 0.8464104
Spain-Portugal 0.4478691 -0.0934445 0.9891827 0.1426164

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland 1.8705198 0.0614117 0.2456467
Croatia - Portugal 3.4539481 0.0005524 0.0033147
Finland - Portugal 1.1012221 0.2708000 0.5416000
Croatia - Spain 1.2029738 0.2289864 0.6869593
Finland - Spain -0.7763134 0.4375639 0.4375639
Portugal - Spain -2.1884055 0.0286401 0.1432004

Q36

Row

ANOVA rezultati: Q36

                Df Sum Sq Mean Sq F value Pr(>F)  
podaci$Country   3    9.0   3.002   2.606 0.0536 .
Residuals      163  187.7   1.152                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q36


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q36 and podaci$Country
F = 3.42, num df = 3.000, denom df = 70.229, p-value = 0.02185

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   3   2.545 0.05796 .
      163                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q36


    Kruskal-Wallis rank sum test

data:  Q36 by Country
Kruskal-Wallis chi-squared = 7.7316, df = 3, p-value = 0.0519

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia -0.5053763 -1.2386492 0.2278965 0.2823355
Portugal-Croatia -0.5647371 -1.1618944 0.0324202 0.0710999
Spain-Croatia -0.6720430 -1.3545697 0.0104837 0.0553493
Portugal-Finland -0.0593607 -0.6867991 0.5680776 0.9947774
Spain-Finland -0.1666667 -0.8758385 0.5425052 0.9287728
Spain-Portugal -0.1073059 -0.6746087 0.4599969 0.9610112

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland 1.5562216 0.1196554 0.4786216
Croatia - Portugal 2.5262474 0.0115288 0.0691730
Finland - Portugal 0.5856065 0.5581400 1.0000000
Croatia - Spain 2.4623210 0.0138041 0.0690205
Finland - Spain 0.7606968 0.4468382 1.0000000
Portugal - Spain 0.3032470 0.7617017 0.7617017

Q37

Row

ANOVA rezultati: Q37

                Df Sum Sq Mean Sq F value Pr(>F)   
podaci$Country   3  17.61   5.872   5.037 0.0023 **
Residuals      163 190.00   1.166                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q37


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q37 and podaci$Country
F = 5.3107, num df = 3.000, denom df = 68.844, p-value = 0.002371

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  1.3549 0.2585
      163               

Kruskal-Wallis rezultati: Q37


    Kruskal-Wallis rank sum test

data:  Q37 by Country
Kruskal-Wallis chi-squared = 16.121, df = 3, p-value = 0.001071

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia -0.2520908 -0.9898193 0.4856377 0.8116207
Portugal-Croatia -0.5757844 -1.1765702 0.0250015 0.0656072
Spain-Croatia -0.9650538 -1.6517278 -0.2783798 0.0019975
Portugal-Finland -0.3236936 -0.9549444 0.3075573 0.5445606
Spain-Finland -0.7129630 -1.4264440 0.0005181 0.0502426
Spain-Portugal -0.3892694 -0.9600193 0.1814805 0.2913704

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland 0.8333721 0.4046349 0.4046349
Croatia - Portugal 2.4997670 0.0124275 0.0497100
Finland - Portugal 1.4051819 0.1599672 0.3199344
Croatia - Spain 3.7510674 0.0001761 0.0010565
Finland - Spain 2.7484376 0.0059880 0.0299400
Portugal - Spain 1.8816223 0.0598873 0.1796619

Q38

Row

ANOVA rezultati: Q38

                Df Sum Sq Mean Sq F value  Pr(>F)   
podaci$Country   3  12.38   4.126   5.561 0.00117 **
Residuals      163 120.94   0.742                   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q38


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q38 and podaci$Country
F = 7.6193, num df = 3.000, denom df = 73.608, p-value = 0.0001667

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value   Pr(>F)   
group   3  4.2917 0.006048 **
      163                    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q38


    Kruskal-Wallis rank sum test

data:  Q38 by Country
Kruskal-Wallis chi-squared = 16.26, df = 3, p-value = 0.001003

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia -0.3285544 -0.9171285 0.2600198 0.4708295
Portugal-Croatia -0.7308882 -1.2102068 -0.2515696 0.0006459
Spain-Croatia -0.5044803 -1.0523222 0.0433616 0.0829738
Portugal-Finland -0.4023338 -0.9059581 0.1012904 0.1661202
Spain-Finland -0.1759259 -0.7451550 0.3933031 0.8532924
Spain-Portugal 0.2264079 -0.2289475 0.6817633 0.5702092

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland 1.4460270 0.1481696 0.4445089
Croatia - Portugal 3.9148086 0.0000905 0.0005429
Finland - Portugal 2.0359358 0.0417568 0.1670272
Croatia - Spain 2.2725121 0.0230556 0.1152780
Finland - Spain 0.6919589 0.4889631 0.4889631
Portugal - Spain -1.3867486 0.1655184 0.3310369

Q39

Row

ANOVA rezultati: Q39

                Df Sum Sq Mean Sq F value Pr(>F)  
podaci$Country   3   3.47  1.1560   2.166 0.0941 .
Residuals      163  87.01  0.5338                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q39


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q39 and podaci$Country
F = 2.8464, num df = 3.000, denom df = 70.243, p-value = 0.04369

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)  
group   3  3.0409 0.0306 *
      163                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q39


    Kruskal-Wallis rank sum test

data:  Q39 by Country
Kruskal-Wallis chi-squared = 6.5643, df = 3, p-value = 0.08716

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia -0.2867384 -0.7859725 0.2124958 0.4453435
Portugal-Croatia -0.2699956 -0.6765581 0.1365670 0.3146929
Spain-Croatia -0.4534050 -0.9180896 0.0112796 0.0586691
Portugal-Finland 0.0167428 -0.4104360 0.4439216 0.9996215
Spain-Finland -0.1666667 -0.6494921 0.3161588 0.8069180
Spain-Portugal -0.1834094 -0.5696462 0.2028273 0.6070726

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland 1.4822150 0.1382831 0.5531323
Croatia - Portugal 1.7147835 0.0863849 0.4319247
Finland - Portugal -0.1002053 0.9201814 0.9201814
Croatia - Spain 2.5486894 0.0108129 0.0648771
Finland - Spain 0.9203418 0.3573942 0.7147884
Portugal - Spain 1.2613249 0.2071918 0.6215755

Q40

Row

ANOVA rezultati: Q40

                Df Sum Sq Mean Sq F value  Pr(>F)    
podaci$Country   3  20.36   6.786   7.674 7.9e-05 ***
Residuals      163 144.13   0.884                    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q40


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q40 and podaci$Country
F = 7.9495, num df = 3.000, denom df = 68.933, p-value = 0.000126

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  1.5618 0.2007
      163               

Kruskal-Wallis rezultati: Q40


    Kruskal-Wallis rank sum test

data:  Q40 by Country
Kruskal-Wallis chi-squared = 19.152, df = 3, p-value = 0.0002543

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia 0.7216249 0.0790835 1.3641662 0.0209327
Portugal-Croatia 0.9098542 0.3865862 1.4331222 0.0000714
Spain-Croatia 0.9345878 0.3365136 1.5326620 0.0004449
Portugal-Finland 0.1882293 -0.3615729 0.7380315 0.8107508
Spain-Finland 0.2129630 -0.4084595 0.8343854 0.8102867
Spain-Portugal 0.0247336 -0.4723739 0.5218412 0.9992276

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland -2.6763145 0.0074437 0.0297747
Croatia - Portugal -4.1016731 0.0000410 0.0002461
Finland - Portugal -0.7759730 0.4377649 0.8755298
Croatia - Spain -3.7224904 0.0001973 0.0009863
Finland - Spain -0.8153599 0.4148663 1.0000000
Portugal - Spain -0.1610341 0.8720665 0.8720665

Q41

Row

ANOVA rezultati: Q41

                Df Sum Sq Mean Sq F value Pr(>F)  
podaci$Country   3   9.04   3.014   2.986 0.0329 *
Residuals      163 164.50   1.009                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q41


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q41 and podaci$Country
F = 2.9508, num df = 3.00, denom df = 72.55, p-value = 0.03827

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  0.4943 0.6867
      163               

Kruskal-Wallis rezultati: Q41


    Kruskal-Wallis rank sum test

data:  Q41 by Country
Kruskal-Wallis chi-squared = 8.9156, df = 3, p-value = 0.03043

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia -0.1541219 -0.8405670 0.5323232 0.9371433
Portugal-Croatia -0.4631021 -1.0221241 0.0959200 0.1418085
Spain-Croatia -0.6541219 -1.2930615 -0.0151822 0.0425920
Portugal-Finland -0.3089802 -0.8963495 0.2783891 0.5228230
Spain-Finland -0.5000000 -1.1638832 0.1638832 0.2095449
Spain-Portugal -0.1910198 -0.7220939 0.3400543 0.7868205

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland 0.994376 0.3200398 0.6400797
Croatia - Portugal 2.429046 0.0151386 0.0756930
Finland - Portugal 1.149712 0.2502623 0.7507869
Croatia - Spain 2.686054 0.0072301 0.0433809
Finland - Spain 1.556963 0.1194792 0.4779170
Portugal - Spain 0.674738 0.4998423 0.4998423

Q42

Row

ANOVA rezultati: Q42

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3    3.6  1.1995   1.574  0.198
Residuals      163  124.2  0.7622               

ONEWAY-test rezultati: Q42


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q42 and podaci$Country
F = 1.4911, num df = 3.00, denom df = 67.74, p-value = 0.2248

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   3   3.261 0.02302 *
      163                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q42


    Kruskal-Wallis rank sum test

data:  Q42 by Country
Kruskal-Wallis chi-squared = 4.8775, df = 3, p-value = 0.181

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia 0.2771804 -0.3193560 0.8737168 0.6238661
Portugal-Croatia 0.2797172 -0.2060857 0.7655201 0.4431130
Spain-Croatia 0.4623656 -0.0928875 1.0176187 0.1385079
Portugal-Finland 0.0025368 -0.5079005 0.5129741 0.9999992
Spain-Finland 0.1851852 -0.3917444 0.7621148 0.8386137
Spain-Portugal 0.1826484 -0.2788671 0.6441639 0.7337144

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland -1.2850383 0.1987789 0.7951156
Croatia - Portugal -1.4166681 0.1565800 0.7828999
Finland - Portugal 0.1534971 0.8780062 0.8780062
Croatia - Spain -2.1980718 0.0279440 0.1676640
Finland - Spain -0.7867754 0.4314133 0.8628267
Portugal - Spain -1.1532977 0.2487882 0.7463647

Q43

Row

ANOVA rezultati: Q43

                Df Sum Sq Mean Sq F value Pr(>F)  
podaci$Country   3   5.32  1.7747   2.803 0.0416 *
Residuals      163 103.21  0.6332                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q43


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q43 and podaci$Country
F = 3.2645, num df = 3.000, denom df = 72.085, p-value = 0.0262

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)  
group   3  2.5498 0.0576 .
      163                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q43


    Kruskal-Wallis rank sum test

data:  Q43 by Country
Kruskal-Wallis chi-squared = 9.0036, df = 3, p-value = 0.02924

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia -0.2150538 -0.7587896 0.3286821 0.7340903
Portugal-Croatia 0.2598321 -0.1829715 0.7026356 0.4260467
Spain-Croatia 0.2293907 -0.2767159 0.7354973 0.6425287
Portugal-Finland 0.4748858 0.0096283 0.9401434 0.0434920
Spain-Finland 0.4444444 -0.0814201 0.9703089 0.1292678
Spain-Portugal -0.0304414 -0.4511073 0.3902245 0.9976405

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland 1.1054402 0.2689689 0.5379378
Croatia - Portugal -1.5690695 0.1166318 0.4665270
Finland - Portugal -2.7852468 0.0053487 0.0320922
Croatia - Spain -1.1082207 0.2677665 0.8032995
Finland - Spain -2.2095907 0.0271336 0.1356679
Portugal - Spain 0.3183327 0.7502326 0.7502326

Q44

Row

ANOVA rezultati: Q44

                Df Sum Sq Mean Sq F value Pr(>F)  
podaci$Country   3   5.76  1.9205   2.633 0.0517 .
Residuals      163 118.87  0.7293                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q44


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q44 and podaci$Country
F = 2.579, num df = 3.000, denom df = 69.885, p-value = 0.06046

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  0.4064 0.7486
      163               

Kruskal-Wallis rezultati: Q44


    Kruskal-Wallis rank sum test

data:  Q44 by Country
Kruskal-Wallis chi-squared = 8.3705, df = 3, p-value = 0.03894

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia 0.1003584 -0.4831660 0.6838828 0.9702291
Portugal-Croatia 0.3636765 -0.1115297 0.8388828 0.1973005
Spain-Croatia -0.0663082 -0.6094498 0.4768334 0.9889476
Portugal-Finland 0.2633181 -0.2359852 0.7626214 0.5206500
Spain-Finland -0.1666667 -0.7310120 0.3976786 0.8693785
Spain-Portugal -0.4299848 -0.8814334 0.0214638 0.0681310

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland -0.4923690 0.6224585 1.0000000
Croatia - Portugal -2.0398174 0.0413685 0.2068426
Finland - Portugal -1.3659527 0.1719538 0.6878153
Croatia - Spain 0.3405523 0.7334406 0.7334406
Finland - Spain 0.8368590 0.4026718 1.0000000
Portugal - Spain 2.5568848 0.0105614 0.0633685

Q45

Row

ANOVA rezultati: Q45

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3   1.73  0.5778   0.841  0.473
Residuals      163 111.97  0.6869               

ONEWAY-test rezultati: Q45


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q45 and podaci$Country
F = 0.74515, num df = 3.000, denom df = 68.166, p-value = 0.5289

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   3  2.2543 0.08406 .
      163                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q45


    Kruskal-Wallis rank sum test

data:  Q45 by Country
Kruskal-Wallis chi-squared = 2.1186, df = 3, p-value = 0.5482

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia 0.2879331 -0.2783878 0.8542540 0.5517228
Portugal-Croatia 0.2585064 -0.2026898 0.7197026 0.4671817
Spain-Croatia 0.1675627 -0.3595659 0.6946914 0.8424988
Portugal-Finland -0.0294267 -0.5140095 0.4551561 0.9986002
Spain-Finland -0.1203704 -0.6680776 0.4273368 0.9407375
Spain-Portugal -0.0909437 -0.5290827 0.3471953 0.9494153

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland -1.2871258 0.1980505 0.9902523
Croatia - Portugal -1.2933877 0.1958770 1.0000000
Finland - Portugal 0.2732675 0.7846476 1.0000000
Croatia - Spain -0.9156029 0.3598752 1.0000000
Finland - Spain 0.4496667 0.6529508 1.0000000
Portugal - Spain 0.2598832 0.7949539 0.7949539

Q46

Row

ANOVA rezultati: Q46

                Df Sum Sq Mean Sq F value Pr(>F)  
podaci$Country   3    5.3  1.7659   2.309 0.0784 .
Residuals      163  124.7  0.7649                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q46


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q46 and podaci$Country
F = 2.2716, num df = 3.000, denom df = 68.765, p-value = 0.08792

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  1.2901 0.2797
      163               

Kruskal-Wallis rezultati: Q46


    Kruskal-Wallis rank sum test

data:  Q46 by Country
Kruskal-Wallis chi-squared = 6.7771, df = 3, p-value = 0.07935

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia 0.1565114 -0.4410916 0.7541143 0.9046396
Portugal-Croatia 0.1524525 -0.3342190 0.6391240 0.8482013
Spain-Croatia 0.5268817 -0.0293642 1.0831276 0.0704303
Portugal-Finland -0.0040589 -0.5154088 0.5072911 0.9999968
Spain-Finland 0.3703704 -0.2075908 0.9483315 0.3464544
Spain-Portugal 0.3744292 -0.0879114 0.8367699 0.1567493

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland -0.6724426 0.5013020 1.0000000
Croatia - Portugal -0.7964040 0.4257973 1.0000000
Finland - Portugal 0.0278998 0.9777420 0.9777420
Croatia - Spain -2.4297837 0.0151078 0.0906470
Finland - Spain -1.6431961 0.1003424 0.4013695
Portugal - Spain -2.0849780 0.0370713 0.1853565

Q47

Row

ANOVA rezultati: Q47

                Df Sum Sq Mean Sq F value   Pr(>F)    
podaci$Country   3  13.71   4.571   8.867 1.77e-05 ***
Residuals      163  84.02   0.515                     
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q47


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q47 and podaci$Country
F = 9.4921, num df = 3.00, denom df = 73.44, p-value = 2.244e-05

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value    Pr(>F)    
group   3      11 1.288e-06 ***
      163                      
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q47


    Kruskal-Wallis rank sum test

data:  Q47 by Country
Kruskal-Wallis chi-squared = 27.862, df = 3, p-value = 3.883e-06

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia -0.0262843 -0.5168758 0.4643071 0.9990366
Portugal-Croatia 0.4856385 0.0861143 0.8851628 0.0102153
Spain-Croatia -0.1836918 -0.6403319 0.2729484 0.7237277
Portugal-Finland 0.5119229 0.0921393 0.9317065 0.0098954
Spain-Finland -0.1574074 -0.6318743 0.3170595 0.8248113
Spain-Portugal -0.6693303 -1.0488806 -0.2897800 0.0000546

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland 0.1013479 0.9192743 0.9192743
Croatia - Portugal -3.2918948 0.0009951 0.0049757
Finland - Portugal -3.2514665 0.0011481 0.0045925
Croatia - Spain 0.9858569 0.3242034 0.9726101
Finland - Spain 0.8440239 0.3986561 0.7973121
Portugal - Spain 4.6512245 0.0000033 0.0000198

Q48

Row

ANOVA rezultati: Q48

                Df Sum Sq Mean Sq F value  Pr(>F)   
podaci$Country   3   9.02   3.006   4.631 0.00389 **
Residuals      163 105.79   0.649                   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q48


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q48 and podaci$Country
F = 3.9758, num df = 3.000, denom df = 66.938, p-value = 0.01142

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   3  2.7779 0.04296 *
      163                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q48


    Kruskal-Wallis rank sum test

data:  Q48 by Country
Kruskal-Wallis chi-squared = 12.271, df = 3, p-value = 0.00651

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia -0.1158901 -0.6663564 0.4345762 0.9473818
Portugal-Croatia 0.3747238 -0.0735608 0.8230084 0.1360919
Spain-Croatia 0.5044803 -0.0078910 1.0168515 0.0553641
Portugal-Finland 0.4906139 0.0195974 0.9616304 0.0376665
Spain-Finland 0.6203704 0.0879967 1.1527441 0.0151854
Spain-Portugal 0.1297565 -0.2961164 0.5556294 0.8585159

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland 0.3532654 0.7238895 0.7238895
Croatia - Portugal -2.0302097 0.0423352 0.1270057
Finland - Portugal -2.3450822 0.0190229 0.0760915
Croatia - Spain -2.5846575 0.0097476 0.0487379
Finland - Spain -2.8528173 0.0043334 0.0260001
Portugal - Spain -0.9725728 0.3307656 0.6615313

Q49

Row

ANOVA rezultati: Q49

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3   2.04  0.6803   1.136  0.336
Residuals      163  97.64  0.5990               

ONEWAY-test rezultati: Q49


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q49 and podaci$Country
F = 1.203, num df = 3.000, denom df = 71.302, p-value = 0.315

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   3  2.5722 0.05597 .
      163                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q49


    Kruskal-Wallis rank sum test

data:  Q49 by Country
Kruskal-Wallis chi-squared = 4.6623, df = 3, p-value = 0.1983

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia 0.0107527 -0.5180839 0.5395893 0.9999470
Portugal-Croatia 0.2390632 -0.1916068 0.6697332 0.4758164
Spain-Croatia 0.2329749 -0.2592635 0.7252133 0.6096510
Portugal-Finland 0.2283105 -0.2241982 0.6808192 0.5581189
Spain-Finland 0.2222222 -0.2892327 0.7336771 0.6729120
Spain-Portugal -0.0060883 -0.4152272 0.4030506 0.9999792

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland 0.0086828 0.9930722 0.9930722
Croatia - Portugal -1.7088601 0.0874769 0.5248612
Finland - Portugal -1.6365356 0.1017275 0.5086377
Croatia - Spain -1.2514945 0.2107541 0.8430164
Finland - Spain -1.2134510 0.2249574 0.6748723
Portugal - Spain 0.2931059 0.7694412 1.0000000

Q50

Row

ANOVA rezultati: Q50

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3   2.79  0.9286   1.565    0.2
Residuals      163  96.71  0.5933               

ONEWAY-test rezultati: Q50


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q50 and podaci$Country
F = 1.7733, num df = 3.000, denom df = 69.177, p-value = 0.1603

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value    Pr(>F)    
group   3  6.3487 0.0004259 ***
      163                      
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q50


    Kruskal-Wallis rank sum test

data:  Q50 by Country
Kruskal-Wallis chi-squared = 4.2118, df = 3, p-value = 0.2395

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia 0.1827957 -0.3435310 0.7091224 0.8040361
Portugal-Croatia -0.0044189 -0.4330449 0.4242071 0.9999931
Spain-Croatia -0.2338710 -0.7237732 0.2560313 0.6029206
Portugal-Finland -0.1872146 -0.6375756 0.2631464 0.7028038
Spain-Finland -0.4166667 -0.9256942 0.0923608 0.1496071
Spain-Portugal -0.2294521 -0.6366492 0.1777450 0.4624544

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland -0.7898554 0.4296122 0.8592244
Croatia - Portugal -0.1223120 0.9026520 0.9026520
Finland - Portugal 0.8066771 0.4198526 1.0000000
Croatia - Spain 1.1872147 0.2351429 0.9405718
Finland - Spain 1.9593069 0.0500769 0.3004611
Portugal - Spain 1.5570966 0.1194476 0.5972378

Q51

Row

ANOVA rezultati: Q51

                Df Sum Sq Mean Sq F value   Pr(>F)    
podaci$Country   3  12.55   4.184   7.108 0.000162 ***
Residuals      163  95.94   0.589                     
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q51


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q51 and podaci$Country
F = 7.1803, num df = 3.000, denom df = 72.056, p-value = 0.0002768

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   3  3.2881 0.02222 *
      163                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q51


    Kruskal-Wallis rank sum test

data:  Q51 by Country
Kruskal-Wallis chi-squared = 23.242, df = 3, p-value = 3.595e-05

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia -0.0119474 -0.5361721 0.5122773 0.9999254
Portugal-Croatia 0.4710561 0.0441419 0.8979703 0.0242189
Spain-Croatia -0.1693548 -0.6573006 0.3185909 0.8043470
Portugal-Finland 0.4830036 0.0344411 0.9315660 0.0293826
Spain-Finland -0.1574074 -0.6644020 0.3495872 0.8515885
Spain-Portugal -0.6404110 -1.0459819 -0.2348401 0.0003777

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland 0.2476295 0.8044211 0.8044211
Croatia - Portugal -2.8776028 0.0040071 0.0160284
Finland - Portugal -3.0281248 0.0024608 0.0123038
Croatia - Spain 1.0365734 0.2999347 0.8998042
Finland - Spain 0.7415819 0.4583407 0.9166814
Portugal - Spain 4.2761477 0.0000190 0.0001141

Q52

Row

ANOVA rezultati: Q52

                Df Sum Sq Mean Sq F value Pr(>F)  
podaci$Country   3   5.05  1.6819   2.242 0.0854 .
Residuals      163 122.31  0.7504                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q52


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q52 and podaci$Country
F = 2.5943, num df = 3.000, denom df = 70.474, p-value = 0.05928

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)  
group   3  2.4938 0.0619 .
      163                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q52


    Kruskal-Wallis rank sum test

data:  Q52 by Country
Kruskal-Wallis chi-squared = 6.9435, df = 3, p-value = 0.07372

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia 0.3584229 -0.2334708 0.9503167 0.3975645
Portugal-Croatia 0.4299602 -0.0520618 0.9119823 0.0987294
Spain-Croatia 0.4973118 -0.0536199 1.0482436 0.0926395
Portugal-Finland 0.0715373 -0.4349274 0.5780020 0.9831010
Spain-Finland 0.1388889 -0.4335507 0.7113284 0.9223320
Spain-Portugal 0.0673516 -0.3905720 0.5252752 0.9810015

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland -1.6053363 0.1084198 0.4336792
Croatia - Portugal -2.4087823 0.0160058 0.0960351
Finland - Portugal -0.4164112 0.6771091 1.0000000
Croatia - Spain -2.3219825 0.0202339 0.1011694
Finland - Spain -0.5748473 0.5653946 1.0000000
Portugal - Spain -0.2580512 0.7963674 0.7963674

Q53

Row

ANOVA rezultati: Q53

                Df Sum Sq Mean Sq F value   Pr(>F)    
podaci$Country   3  16.18   5.392   9.759 5.87e-06 ***
Residuals      163  90.06   0.553                     
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q53


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q53 and podaci$Country
F = 7.4924, num df = 3.000, denom df = 69.248, p-value = 0.0002052

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value   Pr(>F)   
group   3  4.0369 0.008417 **
      163                    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q53


    Kruskal-Wallis rank sum test

data:  Q53 by Country
Kruskal-Wallis chi-squared = 21.276, df = 3, p-value = 9.224e-05

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia 0.2186380 -0.2892757 0.7265517 0.6793713
Portugal-Croatia 0.1851525 -0.2284785 0.5987834 0.6516771
Spain-Croatia -0.5869176 -1.0596811 -0.1141540 0.0082766
Portugal-Finland -0.0334855 -0.4680912 0.4011201 0.9971573
Spain-Finland -0.8055556 -1.2967753 -0.3143358 0.0002031
Spain-Portugal -0.7720700 -1.1650218 -0.3791183 0.0000055

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland -1.0005004 0.3170684 0.6341368
Croatia - Portugal -1.0725447 0.2834755 0.8504264
Finland - Portugal 0.1484799 0.8819641 0.8819641
Croatia - Spain 2.6818523 0.0073216 0.0292863
Finland - Spain 3.6155914 0.0002997 0.0014983
Portugal - Spain 4.3555465 0.0000133 0.0000796

Q58

Row

ANOVA rezultati: Q58

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3   1.91  0.6358   0.572  0.634
Residuals      163 181.07  1.1109               

ONEWAY-test rezultati: Q58


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q58 and podaci$Country
F = 0.70333, num df = 3.000, denom df = 73.881, p-value = 0.553

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  1.8757 0.1357
      163               

Kruskal-Wallis rezultati: Q58


    Kruskal-Wallis rank sum test

data:  Q58 by Country
Kruskal-Wallis chi-squared = 1.6155, df = 3, p-value = 0.6559

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia -0.3620072 -1.0821953 0.3581810 0.5612298
Portugal-Croatia -0.1763146 -0.7628161 0.4101869 0.8632841
Spain-Croatia -0.1953405 -0.8656880 0.4750070 0.8738102
Portugal-Finland 0.1856925 -0.4305496 0.8019347 0.8624570
Spain-Finland 0.1666667 -0.5298506 0.8631839 0.9251974
Spain-Portugal -0.0190259 -0.5762056 0.5381538 0.9997495

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland 1.2679064 0.2048314 1.0000000
Croatia - Portugal 0.7871259 0.4312082 1.0000000
Finland - Portugal -0.7326352 0.4637810 1.0000000
Croatia - Spain 0.6287782 0.5294943 1.0000000
Finland - Spain -0.7058422 0.4802862 1.0000000
Portugal - Spain -0.0720604 0.9425538 0.9425538

Q59

Row

ANOVA rezultati: Q59

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3   6.67   2.225   1.987  0.118
Residuals      163 182.55   1.120               

ONEWAY-test rezultati: Q59


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q59 and podaci$Country
F = 1.7624, num df = 3.00, denom df = 71.55, p-value = 0.1621

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  2.0951 0.1029
      163               

Kruskal-Wallis rezultati: Q59


    Kruskal-Wallis rank sum test

data:  Q59 by Country
Kruskal-Wallis chi-squared = 5.4816, df = 3, p-value = 0.1397

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia -0.2652330 -0.9883431 0.4578771 0.7766851
Portugal-Croatia -0.4904993 -1.0793804 0.0983817 0.1383381
Spain-Croatia -0.5430108 -1.2160780 0.1300565 0.1593424
Portugal-Finland -0.2252664 -0.8440087 0.3934760 0.7805887
Spain-Finland -0.2777778 -0.9771209 0.4215653 0.7315145
Spain-Portugal -0.0525114 -0.6119517 0.5069289 0.9948978

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland 0.7347331 0.4625021 0.9250041
Croatia - Portugal 2.1231464 0.0337416 0.2024495
Finland - Portugal 1.1620146 0.2452295 0.9809181
Croatia - Spain 1.8089519 0.0704585 0.3522924
Finland - Spain 0.9812828 0.3264533 0.9793599
Portugal - Spain -0.0585126 0.9533404 0.9533404

Q60

Row

ANOVA rezultati: Q60

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3   7.88   2.626   1.988  0.118
Residuals      163 215.35   1.321               

ONEWAY-test rezultati: Q60


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q60 and podaci$Country
F = 2.2069, num df = 3.000, denom df = 71.753, p-value = 0.09467

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  0.4267 0.7341
      163               

Kruskal-Wallis rezultati: Q60


    Kruskal-Wallis rank sum test

data:  Q60 by Country
Kruskal-Wallis chi-squared = 6.252, df = 3, p-value = 0.09997

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia -0.6905615 -1.4759672 0.0948442 0.1064131
Portugal-Croatia -0.1537782 -0.7933910 0.4858347 0.9242279
Spain-Croatia -0.1720430 -0.9030947 0.5590087 0.9285079
Portugal-Finland 0.5367834 -0.1352634 1.2088301 0.1662491
Spain-Finland 0.5185185 -0.2410727 1.2781097 0.2906122
Spain-Portugal -0.0182648 -0.6259006 0.5893709 0.9998290

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland 2.3852716 0.0170665 0.1023991
Croatia - Portugal 0.8104770 0.4176661 1.0000000
Finland - Portugal -2.0162504 0.0437738 0.2188690
Croatia - Spain 0.6706246 0.5024597 1.0000000
Finland - Spain -1.8209067 0.0686210 0.2744841
Portugal - Spain -0.0462946 0.9630754 0.9630754

Q61

Row

ANOVA rezultati: Q61

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3   3.86  1.2857   1.345  0.262
Residuals      163 155.77  0.9557               

ONEWAY-test rezultati: Q61


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q61 and podaci$Country
F = 1.2819, num df = 3.000, denom df = 71.025, p-value = 0.2873

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  0.5148 0.6726
      163               

Kruskal-Wallis rezultati: Q61


    Kruskal-Wallis rank sum test

data:  Q61 by Country
Kruskal-Wallis chi-squared = 3.6583, df = 3, p-value = 0.3008

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia -0.4778973 -1.1458739 0.1900794 0.2507721
Portugal-Croatia -0.2125497 -0.7565316 0.3314322 0.7413519
Spain-Croatia -0.3575269 -0.9792762 0.2642225 0.4442842
Portugal-Finland 0.2653475 -0.3062189 0.8369140 0.6245281
Spain-Finland 0.1203704 -0.5256514 0.7663922 0.9626327
Spain-Portugal -0.1449772 -0.6617630 0.3718087 0.8856790

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland 1.8211077 0.0685905 0.4115429
Croatia - Portugal 0.9890868 0.3226207 0.9678620
Finland - Portugal -1.1869350 0.2352533 0.9410131
Croatia - Spain 1.3319035 0.1828919 0.9144595
Finland - Spain -0.6011366 0.5477490 1.0000000
Portugal - Spain 0.5612864 0.5746023 0.5746023

Q62

Row

ANOVA rezultati: Q62

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3   1.94  0.6483   0.576  0.631
Residuals      163 183.41  1.1252               

ONEWAY-test rezultati: Q62


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q62 and podaci$Country
F = 0.54221, num df = 3.000, denom df = 71.145, p-value = 0.655

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  0.3111 0.8174
      163               

Kruskal-Wallis rezultati: Q62


    Kruskal-Wallis rank sum test

data:  Q62 by Country
Kruskal-Wallis chi-squared = 1.9833, df = 3, p-value = 0.5759

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia -0.3548387 -1.0796531 0.3699757 0.5828384
Portugal-Croatia -0.1082634 -0.6985323 0.4820056 0.9642605
Spain-Croatia -0.1048387 -0.7794923 0.5698149 0.9777360
Portugal-Finland 0.2465753 -0.3736253 0.8667760 0.7309402
Spain-Finland 0.2500000 -0.4509914 0.9509914 0.7911113
Spain-Portugal 0.0034247 -0.5573342 0.5641835 0.9999986

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland 1.3158681 0.1882183 1.0000000
Croatia - Portugal 0.3628263 0.7167346 1.0000000
Finland - Portugal -1.1925093 0.2330616 1.0000000
Croatia - Spain 0.5934908 0.5528528 1.0000000
Finland - Spain -0.7893956 0.4298809 1.0000000
Portugal - Spain 0.3321135 0.7398036 0.7398036

Q63

Row

ANOVA rezultati: Q63

                Df Sum Sq Mean Sq F value   Pr(>F)    
podaci$Country   3  45.58   15.19   12.45 2.28e-07 ***
Residuals      162 197.67    1.22                     
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
1 observation deleted due to missingness

ONEWAY-test rezultati: Q63


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q63 and podaci$Country
F = 10.745, num df = 3.00, denom df = 64.54, p-value = 8.096e-06

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  2.1154 0.1003
      162               

Kruskal-Wallis rezultati: Q63


    Kruskal-Wallis rank sum test

data:  Q63 by Country
Kruskal-Wallis chi-squared = 28.312, df = 3, p-value = 3.124e-06

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia 0.6339950 -0.1285639 1.3965540 0.1394917
Portugal-Croatia -0.8091030 -1.4238238 -0.1943822 0.0044142
Spain-Croatia -0.5412186 -1.2438197 0.1613824 0.1923872
Portugal-Finland -1.4430980 -2.0979950 -0.7882010 0.0000003
Spain-Finland -1.1752137 -1.9132223 -0.4372051 0.0003306
Spain-Portugal 0.2678843 -0.3161039 0.8518725 0.6335491

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland -1.687971 0.0914168 0.1828336
Croatia - Portugal 3.136926 0.0017073 0.0068292
Finland - Portugal 4.909949 0.0000009 0.0000055
Croatia - Spain 1.875588 0.0607119 0.1821357
Finland - Spain 3.529725 0.0004160 0.0020800
Portugal - Spain -1.045472 0.2958047 0.2958047

Q64

Row

ANOVA rezultati: Q64

                Df Sum Sq Mean Sq F value   Pr(>F)    
podaci$Country   3  34.09  11.363   9.739 6.05e-06 ***
Residuals      162 189.02   1.167                     
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
1 observation deleted due to missingness

ONEWAY-test rezultati: Q64


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q64 and podaci$Country
F = 8.8177, num df = 3.000, denom df = 65.501, p-value = 5.428e-05

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   3  3.0551 0.03006 *
      162                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q64


    Kruskal-Wallis rank sum test

data:  Q64 by Country
Kruskal-Wallis chi-squared = 23.39, df = 3, p-value = 3.349e-05

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia 0.3461538 -0.3995375 1.0918452 0.6245522
Portugal-Croatia -0.7945205 -1.3956439 -0.1933972 0.0042087
Spain-Croatia -0.7222222 -1.4092820 -0.0351625 0.0352350
Portugal-Finland -1.1406744 -1.7810853 -0.5002635 0.0000451
Spain-Finland -1.0683761 -1.7900602 -0.3466920 0.0009930
Spain-Portugal 0.0722983 -0.4987722 0.6433689 0.9877071

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland -0.8228845 0.4105737 0.8211474
Croatia - Portugal 3.2337032 0.0012220 0.0048879
Finland - Portugal 3.9934867 0.0000651 0.0003907
Croatia - Spain 2.6453180 0.0081614 0.0244843
Finland - Spain 3.3686615 0.0007553 0.0037767
Portugal - Spain -0.2212738 0.8248792 0.8248792

Q65

Row

ANOVA rezultati: Q65

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3   2.14  0.7121   0.958  0.414
Residuals      163 121.12  0.7431               

ONEWAY-test rezultati: Q65


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q65 and podaci$Country
F = 1.3899, num df = 3.000, denom df = 72.758, p-value = 0.2527

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  1.8533 0.1396
      163               

Kruskal-Wallis rezultati: Q65


    Kruskal-Wallis rank sum test

data:  Q65 by Country
Kruskal-Wallis chi-squared = 3.7038, df = 3, p-value = 0.2953

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia -0.3608124 -0.9498287 0.2282039 0.3871342
Portugal-Croatia -0.2562970 -0.7359756 0.2233817 0.5093435
Spain-Croatia -0.2034050 -0.7516584 0.3448484 0.7706003
Portugal-Finland 0.1045155 -0.3994871 0.6085180 0.9495489
Spain-Finland 0.1574074 -0.4122493 0.7270641 0.8901248
Spain-Portugal 0.0528919 -0.4028055 0.5085894 0.9904673

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland 1.8605702 0.0628049 0.3768294
Croatia - Portugal 1.2659420 0.2055338 1.0000000
Finland - Portugal -0.9695601 0.3322658 0.9967975
Croatia - Spain 0.7022308 0.4825352 0.9650705
Finland - Spain -1.2479547 0.2120476 0.8481906
Portugal - Spain -0.4877029 0.6257603 0.6257603

Q66

Row

ANOVA rezultati: Q66

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3   2.95  0.9833   1.162  0.326
Residuals      163 137.94  0.8462               

ONEWAY-test rezultati: Q66


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q66 and podaci$Country
F = 1.5993, num df = 3.000, denom df = 73.149, p-value = 0.1969

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   3  3.2434 0.02355 *
      163                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q66


    Kruskal-Wallis rank sum test

data:  Q66 by Country
Kruskal-Wallis chi-squared = 2.8998, df = 3, p-value = 0.4073

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia -0.1254480 -0.7540225 0.5031264 0.9546678
Portugal-Croatia -0.3141847 -0.8260785 0.1977091 0.3853603
Spain-Croatia -0.3476703 -0.9327442 0.2374037 0.4146495
Portugal-Finland -0.1887367 -0.7265879 0.3491145 0.7990840
Spain-Finland -0.2222222 -0.8301369 0.3856924 0.7784747
Spain-Portugal -0.0334855 -0.5197875 0.4528164 0.9979647

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland 0.4808838 0.6305991 1.0000000
Croatia - Portugal 1.4096622 0.1586395 0.7931973
Finland - Portugal 0.7796321 0.4356075 1.0000000
Croatia - Spain 1.4614601 0.1438892 0.8633352
Finland - Spain 0.9093234 0.3631794 1.0000000
Portugal - Spain 0.2744487 0.7837398 0.7837398

Q67

Row

ANOVA rezultati: Q67

                Df Sum Sq Mean Sq F value  Pr(>F)   
podaci$Country   3   20.5   6.832   5.486 0.00129 **
Residuals      163  203.0   1.245                   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q67


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q67 and podaci$Country
F = 5.5245, num df = 3.000, denom df = 68.746, p-value = 0.001857

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   3  2.4152 0.06845 .
      163                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q67


    Kruskal-Wallis rank sum test

data:  Q67 by Country
Kruskal-Wallis chi-squared = 13.879, df = 3, p-value = 0.003075

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Finland-Croatia 0.1063321 -0.6562137 0.8688780 0.9837196
Portugal-Croatia -0.6800707 -1.3010671 -0.0590743 0.0257303
Spain-Croatia -0.6899642 -1.3997380 0.0198097 0.0600706
Portugal-Finland -0.7864028 -1.4388891 -0.1339165 0.0110941
Spain-Finland -0.7962963 -1.5337790 -0.0588136 0.0287626
Spain-Portugal -0.0098935 -0.5998435 0.5800566 0.9999703

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Croatia - Finland -0.1769235 0.8595685 1.0000000
Croatia - Portugal 2.7068083 0.0067933 0.0339667
Finland - Portugal 2.7829406 0.0053869 0.0323212
Croatia - Spain 2.4029708 0.0162625 0.0487875
Finland - Spain 2.4956221 0.0125736 0.0502946
Portugal - Spain 0.0417791 0.9666748 0.9666748

Q1

Row

ANOVA rezultati: Q1

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   3.43  0.6865   1.001  0.419
Residuals            161 110.46  0.6861               

ONEWAY-test rezultati: Q1


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q1 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  1.1495 0.3366
      161               

Kruskal-Wallis rezultati: Q1


    Kruskal-Wallis rank sum test

data:  Q1 by Study field
Kruskal-Wallis chi-squared = 5.8635, df = 5, p-value = 0.3197

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities 0.5153846 -0.2473500 1.2781193 0.3764947
Other-Arts and Humanities -0.1000000 -1.5301475 1.3301475 0.9999533
Science and Mathematics-Arts and Humanities 0.1068966 -0.4757870 0.6895801 0.9949273
Social Sciences-Arts and Humanities 0.2414634 -0.2894917 0.7724185 0.7782201
Technical Sciences and Engineering-Arts and Humanities 0.0707317 -0.4602234 0.6016868 0.9988966
Other-Health Sciences -0.6153846 -2.1456435 0.9148742 0.8550514
Science and Mathematics-Health Sciences -0.4084881 -1.2059155 0.3889394 0.6790642
Social Sciences-Health Sciences -0.2739212 -1.0343709 0.4865285 0.9040506
Technical Sciences and Engineering-Health Sciences -0.4446529 -1.2051026 0.3157968 0.5426712
Science and Mathematics-Other 0.2068966 -1.2420507 1.6558438 0.9984581
Social Sciences-Other 0.3414634 -1.0874667 1.7703935 0.9829326
Technical Sciences and Engineering-Other 0.1707317 -1.2581984 1.5996618 0.9993490
Social Sciences-Science and Mathematics 0.1345669 -0.4451225 0.7142562 0.9850158
Technical Sciences and Engineering-Science and Mathematics -0.0361648 -0.6158542 0.5435245 0.9999735
Technical Sciences and Engineering-Social Sciences -0.1707317 -0.6983991 0.3569357 0.9373430

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences -1.8608403 0.0627667 0.9415011
Arts and Humanities - Other 0.7270541 0.4671928 1.0000000
Health Sciences - Other 1.6069973 0.1080550 1.0000000
Arts and Humanities - Science and Mathematics 0.0245333 0.9804273 0.9804273
Health Sciences - Science and Mathematics 1.7978093 0.0722072 1.0000000
Other - Science and Mathematics -0.7077548 0.4790975 1.0000000
Arts and Humanities - Social Sciences -1.1510325 0.2497189 1.0000000
Health Sciences - Social Sciences 1.0627669 0.2878877 1.0000000
Other - Social Sciences -1.1553686 0.2479395 1.0000000
Science and Mathematics - Social Sciences -1.0789256 0.2806209 1.0000000
Arts and Humanities - Technical Sciences and Engineering -0.1969898 0.8438355 1.0000000
Health Sciences - Technical Sciences and Engineering 1.7288910 0.0838286 1.0000000
Other - Technical Sciences and Engineering -0.8008700 0.4232069 1.0000000
Science and Mathematics - Technical Sciences and Engineering -0.2050890 0.8375026 1.0000000
Social Sciences - Technical Sciences and Engineering 0.9599869 0.3370618 1.0000000

Q2

Row

ANOVA rezultati: Q2

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   5.93  1.1854   1.331  0.254
Residuals            161 143.34  0.8903               

ONEWAY-test rezultati: Q2


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q2 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   5  1.9468 0.08942 .
      161                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q2


    Kruskal-Wallis rank sum test

data:  Q2 by Study field
Kruskal-Wallis chi-squared = 6.4468, df = 5, p-value = 0.2651

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities 0.6076923 -0.2611852 1.4765698 0.3371345
Other-Arts and Humanities 0.3000000 -1.3291681 1.9291681 0.9948376
Science and Mathematics-Arts and Humanities 0.0931034 -0.5706669 0.7568738 0.9985850
Social Sciences-Arts and Humanities 0.3975610 -0.2072823 1.0024043 0.4084624
Technical Sciences and Engineering-Arts and Humanities 0.1292683 -0.4755750 0.7341116 0.9897056
Other-Health Sciences -0.3076923 -2.0509034 1.4355188 0.9957686
Science and Mathematics-Health Sciences -0.5145889 -1.4229870 0.3938093 0.5774041
Social Sciences-Health Sciences -0.2101313 -1.0764059 0.6561432 0.9817517
Technical Sciences and Engineering-Health Sciences -0.4784240 -1.3446986 0.3878506 0.6043924
Science and Mathematics-Other -0.2068966 -1.8574806 1.4436875 0.9991783
Social Sciences-Other 0.0975610 -1.5302204 1.7253423 0.9999783
Technical Sciences and Engineering-Other -0.1707317 -1.7985131 1.4570497 0.9996554
Social Sciences-Science and Mathematics 0.3044575 -0.3559019 0.9648170 0.7680600
Technical Sciences and Engineering-Science and Mathematics 0.0361648 -0.6241946 0.6965243 0.9999861
Technical Sciences and Engineering-Social Sciences -0.2682927 -0.8693908 0.3328054 0.7915659

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences -1.8504288 0.0642518 0.9637765
Arts and Humanities - Other -0.2987858 0.7651035 1.0000000
Health Sciences - Other 0.6430797 0.5201724 1.0000000
Arts and Humanities - Science and Mathematics -0.0165999 0.9867558 0.9867558
Health Sciences - Science and Mathematics 1.7577946 0.0787825 1.0000000
Other - Science and Mathematics 0.2882336 0.7731679 1.0000000
Arts and Humanities - Social Sciences -1.6887000 0.0912769 1.0000000
Health Sciences - Social Sciences 0.6769183 0.4984578 1.0000000
Other - Social Sciences -0.3284388 0.7425799 1.0000000
Science and Mathematics - Social Sciences -1.5300460 0.1260053 1.0000000
Arts and Humanities - Technical Sciences and Engineering -0.2725186 0.7852233 1.0000000
Health Sciences - Technical Sciences and Engineering 1.6657131 0.0957706 1.0000000
Other - Technical Sciences and Engineering 0.1977792 0.8432178 1.0000000
Science and Mathematics - Technical Sciences and Engineering -0.2329224 0.8158217 1.0000000
Social Sciences - Technical Sciences and Engineering 1.4250050 0.1541557 1.0000000

Q3

Row

ANOVA rezultati: Q3

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   9.68   1.936   1.794  0.117
Residuals            161 173.75   1.079               

ONEWAY-test rezultati: Q3


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q3 and podaci$`Study field`
F = 1.8865, num df = 5.000, denom df = 20.029, p-value = 0.1418

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  1.5562 0.1754
      161               

Kruskal-Wallis rezultati: Q3


    Kruskal-Wallis rank sum test

data:  Q3 by Study field
Kruskal-Wallis chi-squared = 9.0144, df = 5, p-value = 0.1085

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.2288462 -1.1854427 0.7277504 0.9828476
Other-Arts and Humanities 0.2583333 -1.5353103 2.0519769 0.9983929
Science and Mathematics-Arts and Humanities 0.1318966 -0.5988859 0.8626790 0.9953010
Social Sciences-Arts and Humanities 0.5347561 -0.1311502 1.2006624 0.1936032
Technical Sciences and Engineering-Arts and Humanities 0.3640244 -0.3018819 1.0299307 0.6150250
Other-Health Sciences 0.4871795 -1.4320205 2.4063795 0.9776760
Science and Mathematics-Health Sciences 0.3607427 -0.6393644 1.3608498 0.9035404
Social Sciences-Health Sciences 0.7636023 -0.1901286 1.7173331 0.1963612
Technical Sciences and Engineering-Health Sciences 0.5928705 -0.3608603 1.5466014 0.4731677
Science and Mathematics-Other -0.1264368 -1.9436585 1.6907849 0.9999544
Social Sciences-Other 0.2764228 -1.5156941 2.0685396 0.9977682
Technical Sciences and Engineering-Other 0.1056911 -1.6864258 1.8978079 0.9999799
Social Sciences-Science and Mathematics 0.4028595 -0.3241676 1.1298867 0.6009005
Technical Sciences and Engineering-Science and Mathematics 0.2321278 -0.4948993 0.9591550 0.9406541
Technical Sciences and Engineering-Social Sciences -0.1707317 -0.8325147 0.4910513 0.9760271

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences 0.7337939 0.4630744 1.0000000
Arts and Humanities - Other -0.4008168 0.6885550 1.0000000
Health Sciences - Other -0.7403435 0.4590916 1.0000000
Arts and Humanities - Science and Mathematics -0.5297773 0.5962663 1.0000000
Health Sciences - Science and Mathematics -1.0889800 0.2761627 1.0000000
Other - Science and Mathematics 0.1825703 0.8551352 0.8551352
Arts and Humanities - Social Sciences -2.2588684 0.0238916 0.3344820
Health Sciences - Social Sciences -2.3131678 0.0207134 0.3107012
Other - Social Sciences -0.4381813 0.6612548 1.0000000
Science and Mathematics - Social Sciences -1.5364527 0.1244274 1.0000000
Arts and Humanities - Technical Sciences and Engineering -1.6549181 0.0979411 1.0000000
Health Sciences - Technical Sciences and Engineering -1.8914824 0.0585600 0.7612797
Other - Technical Sciences and Engineering -0.2137683 0.8307277 1.0000000
Science and Mathematics - Technical Sciences and Engineering -0.9832762 0.3254715 1.0000000
Social Sciences - Technical Sciences and Engineering 0.6077133 0.5433776 1.0000000

Q4

Row

ANOVA rezultati: Q4

                      Df Sum Sq Mean Sq F value  Pr(>F)   
podaci$`Study field`   5  10.46  2.0929   3.482 0.00514 **
Residuals            161  96.78  0.6011                   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q4


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q4 and podaci$`Study field`
F = 3.5331, num df = 5.000, denom df = 19.346, p-value = 0.01955

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  1.4297 0.2163
      161               

Kruskal-Wallis rezultati: Q4


    Kruskal-Wallis rank sum test

data:  Q4 by Study field
Kruskal-Wallis chi-squared = 17.036, df = 5, p-value = 0.004433

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.0288462 -0.7427937 0.6851014 0.9999969
Other-Arts and Humanities -0.2083333 -1.5470037 1.1303370 0.9976710
Science and Mathematics-Arts and Humanities 0.5043103 -0.0411028 1.0497235 0.0877068
Social Sciences-Arts and Humanities 0.5884146 0.0914212 1.0854080 0.0103045
Technical Sciences and Engineering-Arts and Humanities 0.3445122 -0.1524812 0.8415056 0.3472372
Other-Health Sciences -0.1794872 -1.6118655 1.2528911 0.9991796
Science and Mathematics-Health Sciences 0.5331565 -0.2132648 1.2795778 0.3135470
Social Sciences-Health Sciences 0.6172608 -0.0945479 1.3290695 0.1298661
Technical Sciences and Engineering-Health Sciences 0.3733583 -0.3384504 1.0851671 0.6565047
Science and Mathematics-Other 0.7126437 -0.6436240 2.0689113 0.6547908
Social Sciences-Other 0.7967480 -0.5407829 2.1342789 0.5218663
Technical Sciences and Engineering-Other 0.5528455 -0.7846854 1.8903764 0.8400685
Social Sciences-Science and Mathematics 0.0841043 -0.4585061 0.6267147 0.9977155
Technical Sciences and Engineering-Science and Mathematics -0.1597981 -0.7024086 0.3828123 0.9575887
Technical Sciences and Engineering-Social Sciences -0.2439024 -0.7378185 0.2500136 0.7122152

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences 0.5262436 0.5987190 1.0000000
Arts and Humanities - Other 0.6529673 0.5137773 1.0000000
Health Sciences - Other 0.3479512 0.7278768 0.7278768
Arts and Humanities - Science and Mathematics -2.4633031 0.0137663 0.1789625
Health Sciences - Science and Mathematics -2.3032947 0.0212623 0.2551472
Other - Science and Mathematics -1.6350946 0.1020292 0.8162338
Arts and Humanities - Social Sciences -3.1685092 0.0015322 0.0229834
Health Sciences - Social Sciences -2.7401159 0.0061418 0.0859845
Other - Social Sciences -1.8308633 0.0671210 0.7383305
Science and Mathematics - Social Sciences -0.4261074 0.6700296 1.0000000
Arts and Humanities - Technical Sciences and Engineering -1.7047128 0.0882480 0.7942320
Health Sciences - Technical Sciences and Engineering -1.7180757 0.0857828 0.8578280
Other - Technical Sciences and Engineering -1.2869527 0.1981108 1.0000000
Science and Mathematics - Technical Sciences and Engineering 0.9146283 0.3603868 1.0000000
Social Sciences - Technical Sciences and Engineering 1.4729167 0.1407735 0.9854146

Q5

Row

ANOVA rezultati: Q5

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   5.66   1.133    1.12  0.352
Residuals            161 162.88   1.012               

ONEWAY-test rezultati: Q5


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q5 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  1.8654 0.1032
      161               

Kruskal-Wallis rezultati: Q5


    Kruskal-Wallis rank sum test

data:  Q5 by Study field
Kruskal-Wallis chi-squared = 6.0792, df = 5, p-value = 0.2986

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.3019231 -1.2281103 0.6242642 0.9354123
Other-Arts and Humanities 0.7750000 -0.9616253 2.5116253 0.7916748
Science and Mathematics-Arts and Humanities 0.2232759 -0.4842757 0.9308274 0.9434416
Social Sciences-Arts and Humanities 0.0189024 -0.6258353 0.6636402 0.9999994
Technical Sciences and Engineering-Arts and Humanities 0.2628049 -0.3819329 0.9075427 0.8478220
Other-Health Sciences 1.0769231 -0.7812673 2.9351135 0.5525056
Science and Mathematics-Health Sciences 0.5251989 -0.4431157 1.4935136 0.6230938
Social Sciences-Health Sciences 0.3208255 -0.6025871 1.2442381 0.9166648
Technical Sciences and Engineering-Health Sciences 0.5647280 -0.3586847 1.4881406 0.4919423
Science and Mathematics-Other -0.5517241 -2.3111780 1.2077298 0.9448917
Social Sciences-Other -0.7560976 -2.4912447 0.9790496 0.8077866
Technical Sciences and Engineering-Other -0.5121951 -2.2473423 1.2229520 0.9571683
Social Sciences-Science and Mathematics -0.2043734 -0.9082891 0.4995422 0.9600664
Technical Sciences and Engineering-Science and Mathematics 0.0395290 -0.6643866 0.7434447 0.9999843
Technical Sciences and Engineering-Social Sciences 0.2439024 -0.3968431 0.8846480 0.8816018

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences 0.9514571 0.3413724 1.0000000
Arts and Humanities - Other -1.3781282 0.1681637 1.0000000
Health Sciences - Other -1.7622089 0.0780340 1.0000000
Arts and Humanities - Science and Mathematics -1.0692392 0.2849619 1.0000000
Health Sciences - Science and Mathematics -1.6913606 0.0907680 1.0000000
Other - Science and Mathematics 0.9302605 0.3522362 1.0000000
Arts and Humanities - Social Sciences -0.1389695 0.8894742 1.0000000
Health Sciences - Social Sciences -1.0513462 0.2930996 1.0000000
Other - Social Sciences 1.3276646 0.1842889 1.0000000
Science and Mathematics - Social Sciences 0.9474756 0.3433965 1.0000000
Arts and Humanities - Technical Sciences and Engineering -1.1693602 0.2422585 1.0000000
Health Sciences - Technical Sciences and Engineering -1.7707773 0.0765977 1.0000000
Other - Technical Sciences and Engineering 0.9447969 0.3447626 1.0000000
Science and Mathematics - Technical Sciences and Engineering 0.0037094 0.9970403 0.9970403
Social Sciences - Technical Sciences and Engineering -1.0368106 0.2998241 1.0000000

Q6

Row

ANOVA rezultati: Q6

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   5.14   1.027   1.016   0.41
Residuals            161 162.79   1.011               

ONEWAY-test rezultati: Q6


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q6 and podaci$`Study field`
F = 1.2814, num df = 5.000, denom df = 19.844, p-value = 0.311

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  0.8355 0.5263
      161               

Kruskal-Wallis rezultati: Q6


    Kruskal-Wallis rank sum test

data:  Q6 by Study field
Kruskal-Wallis chi-squared = 6.1788, df = 5, p-value = 0.2892

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities 0.0903846 -0.8355649 1.0163341 0.9997577
Other-Arts and Humanities 0.8083333 -0.9278462 2.5445129 0.7606053
Science and Mathematics-Arts and Humanities 0.4750000 -0.2323699 1.1823699 0.3836957
Social Sciences-Arts and Humanities 0.2554878 -0.3890845 0.9000601 0.8624795
Technical Sciences and Engineering-Arts and Humanities 0.2067073 -0.4378650 0.8512796 0.9395786
Other-Health Sciences 0.7179487 -1.1397647 2.5756621 0.8747126
Science and Mathematics-Health Sciences 0.3846154 -0.5834507 1.3526815 0.8612917
Social Sciences-Health Sciences 0.1651032 -0.7580724 1.0882788 0.9954988
Technical Sciences and Engineering-Health Sciences 0.1163227 -0.8068529 1.0394983 0.9991573
Science and Mathematics-Other -0.3333333 -2.0923356 1.4256689 0.9940968
Social Sciences-Other -0.5528455 -2.2875473 1.1818562 0.9410987
Technical Sciences and Engineering-Other -0.6016260 -2.3363278 1.1330757 0.9172461
Social Sciences-Science and Mathematics -0.2195122 -0.9232472 0.4842228 0.9460803
Technical Sciences and Engineering-Science and Mathematics -0.2682927 -0.9720276 0.4354423 0.8809165
Technical Sciences and Engineering-Social Sciences -0.0487805 -0.6893616 0.5918006 0.9999287

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences -0.1475773 0.8826764 1.0000000
Arts and Humanities - Other -1.4298280 0.1527664 1.0000000
Health Sciences - Other -1.2627292 0.2066865 1.0000000
Arts and Humanities - Science and Mathematics -2.1184136 0.0341401 0.5121008
Health Sciences - Science and Mathematics -1.4067768 0.1594936 1.0000000
Other - Science and Mathematics 0.5593717 0.5759080 1.0000000
Arts and Humanities - Social Sciences -1.2033327 0.2288476 1.0000000
Health Sciences - Social Sciences -0.6921606 0.4888365 1.0000000
Other - Social Sciences 0.9839175 0.3251561 1.0000000
Science and Mathematics - Social Sciences 1.0271867 0.3043326 1.0000000
Arts and Humanities - Technical Sciences and Engineering -1.1303622 0.2583236 1.0000000
Health Sciences - Technical Sciences and Engineering -0.6412117 0.5213851 1.0000000
Other - Technical Sciences and Engineering 1.0110315 0.3120014 1.0000000
Science and Mathematics - Technical Sciences and Engineering 1.0940226 0.2739451 1.0000000
Social Sciences - Technical Sciences and Engineering 0.0734251 0.9414678 0.9414678

Q7

Row

ANOVA rezultati: Q7

                      Df Sum Sq Mean Sq F value  Pr(>F)   
podaci$`Study field`   5  13.68  2.7356   3.224 0.00841 **
Residuals            161 136.60  0.8484                   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q7


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q7 and podaci$`Study field`
F = 2.7834, num df = 5.000, denom df = 19.629, p-value = 0.04637

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  1.4274 0.2171
      161               

Kruskal-Wallis rezultati: Q7


    Kruskal-Wallis rank sum test

data:  Q7 by Study field
Kruskal-Wallis chi-squared = 13.358, df = 5, p-value = 0.02024

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities 0.8615385 0.0133497 1.7097272 0.0441741
Other-Arts and Humanities 1.0666667 -0.5237094 2.6570427 0.3850738
Science and Mathematics-Arts and Humanities 0.6068966 -0.0410688 1.2548619 0.0804943
Social Sciences-Arts and Humanities 0.4731707 -0.1172707 1.0636122 0.1955120
Technical Sciences and Engineering-Arts and Humanities 0.6439024 0.0534610 1.2343439 0.0238039
Other-Health Sciences 0.2051282 -1.4965754 1.9068318 0.9993204
Science and Mathematics-Health Sciences -0.2546419 -1.1414103 0.6321265 0.9618923
Social Sciences-Health Sciences -0.3883677 -1.2340155 0.4572800 0.7709826
Technical Sciences and Engineering-Health Sciences -0.2176360 -1.0632838 0.6280117 0.9762822
Science and Mathematics-Other -0.4597701 -2.0710523 1.1515120 0.9629068
Social Sciences-Other -0.5934959 -2.1825183 0.9955264 0.8897754
Technical Sciences and Engineering-Other -0.4227642 -2.0117866 1.1662581 0.9725708
Social Sciences-Science and Mathematics -0.1337258 -0.7783615 0.5109098 0.9910221
Technical Sciences and Engineering-Science and Mathematics 0.0370059 -0.6076298 0.6816415 0.9999824
Technical Sciences and Engineering-Social Sciences 0.1707317 -0.4160537 0.7575171 0.9597018

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences -2.7004396 0.0069248 0.0969471
Arts and Humanities - Other -1.8839291 0.0595746 0.6553203
Health Sciences - Other -0.4146864 0.6783715 1.0000000
Arts and Humanities - Science and Mathematics -2.4924354 0.0126870 0.1649316
Health Sciences - Science and Mathematics 0.7617216 0.4462262 1.0000000
Other - Science and Mathematics 0.8571708 0.3913505 1.0000000
Arts and Humanities - Social Sciences -1.9966968 0.0458581 0.5502975
Health Sciences - Social Sciences 1.3144360 0.1886995 1.0000000
Other - Social Sciences 1.1436108 0.2527851 1.0000000
Science and Mathematics - Social Sciences 0.6764739 0.4987398 1.0000000
Arts and Humanities - Technical Sciences and Engineering -2.7089037 0.0067506 0.1012589
Health Sciences - Technical Sciences and Engineering 0.8171646 0.4138344 1.0000000
Other - Technical Sciences and Engineering 0.8789724 0.3794163 1.0000000
Science and Mathematics - Technical Sciences and Engineering 0.0241420 0.9807393 0.9807393
Social Sciences - Technical Sciences and Engineering -0.7166443 0.4735936 1.0000000

Q8

Row

ANOVA rezultati: Q8

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   1.62  0.3248   0.447  0.815
Residuals            161 117.03  0.7269               

ONEWAY-test rezultati: Q8


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q8 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   5  1.9442 0.08983 .
      161                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q8


    Kruskal-Wallis rank sum test

data:  Q8 by Study field
Kruskal-Wallis chi-squared = 5.6074, df = 5, p-value = 0.3463

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities 0.0884615 -0.6966453 0.8735684 0.9995109
Other-Arts and Humanities -0.4500000 -1.9220959 1.0220959 0.9504137
Science and Mathematics-Arts and Humanities 0.1017241 -0.4980504 0.7014987 0.9964950
Social Sciences-Arts and Humanities -0.1085366 -0.6550654 0.4379923 0.9926596
Technical Sciences and Engineering-Arts and Humanities -0.0841463 -0.6306752 0.4623825 0.9977874
Other-Health Sciences -0.5384615 -2.1136053 1.0366822 0.9218388
Science and Mathematics-Health Sciences 0.0132626 -0.8075546 0.8340798 1.0000000
Social Sciences-Health Sciences -0.1969981 -0.9797530 0.5857567 0.9785075
Technical Sciences and Engineering-Health Sciences -0.1726079 -0.9553627 0.6101470 0.9881255
Science and Mathematics-Other 0.5517241 -0.9397230 2.0431713 0.8937284
Social Sciences-Other 0.3414634 -1.1293795 1.8123063 0.9850104
Technical Sciences and Engineering-Other 0.3658537 -1.1049892 1.8366965 0.9795955
Social Sciences-Science and Mathematics -0.2102607 -0.8069532 0.3864318 0.9119136
Technical Sciences and Engineering-Science and Mathematics -0.1858705 -0.7825630 0.4108220 0.9463820
Technical Sciences and Engineering-Social Sciences 0.0243902 -0.5187545 0.5675350 0.9999948

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences -0.3206901 0.7484453 1.0000000
Arts and Humanities - Other 1.6616726 0.0965784 1.0000000
Health Sciences - Other 1.7128071 0.0867480 1.0000000
Arts and Humanities - Science and Mathematics -0.4864066 0.6266789 1.0000000
Health Sciences - Science and Mathematics -0.0486812 0.9611734 0.9611734
Other - Science and Mathematics -1.8357176 0.0663994 0.9959915
Arts and Humanities - Social Sciences 0.2498156 0.8027299 1.0000000
Health Sciences - Social Sciences 0.4960779 0.6198394 1.0000000
Other - Social Sciences -1.5702629 0.1163540 1.0000000
Science and Mathematics - Social Sciences 0.7177328 0.4729221 1.0000000
Arts and Humanities - Technical Sciences and Engineering 1.1530746 0.2488797 1.0000000
Health Sciences - Technical Sciences and Engineering 1.1267442 0.2598506 1.0000000
Other - Technical Sciences and Engineering -1.2346342 0.2169667 1.0000000
Science and Mathematics - Technical Sciences and Engineering 1.5450552 0.1223329 1.0000000
Social Sciences - Technical Sciences and Engineering 0.9088868 0.3634099 1.0000000

Q9

Row

ANOVA rezultati: Q9

                      Df Sum Sq Mean Sq F value Pr(>F)  
podaci$`Study field`   5  18.65   3.730   2.809 0.0184 *
Residuals            161 213.82   1.328                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q9


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q9 and podaci$`Study field`
F = 6.8259, num df = 5.000, denom df = 20.297, p-value = 0.0006984

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value   Pr(>F)   
group   5  4.1315 0.001476 **
      161                    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q9


    Kruskal-Wallis rank sum test

data:  Q9 by Study field
Kruskal-Wallis chi-squared = 11.779, df = 5, p-value = 0.03795

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.5365385 -1.5977243 0.5246474 0.6911437
Other-Arts and Humanities 1.5916667 -0.3980846 3.5814179 0.1971873
Science and Mathematics-Arts and Humanities -0.5922414 -1.4029238 0.2184410 0.2888568
Social Sciences-Arts and Humanities -0.2213415 -0.9600545 0.5173716 0.9543911
Technical Sciences and Engineering-Arts and Humanities -0.0018293 -0.7405423 0.7368838 1.0000000
Other-Health Sciences 2.1282051 -0.0008302 4.2572405 0.0501523
Science and Mathematics-Health Sciences -0.0557029 -1.1651565 1.0537507 0.9999910
Social Sciences-Health Sciences 0.3151970 -0.7428098 1.3732038 0.9554774
Technical Sciences and Engineering-Health Sciences 0.5347092 -0.5232976 1.5927160 0.6915224
Science and Mathematics-Other -2.1839080 -4.1998153 -0.1680008 0.0253173
Social Sciences-Other -1.8130081 -3.8010657 0.1750495 0.0959103
Technical Sciences and Engineering-Other -1.5934959 -3.5815535 0.3945617 0.1953403
Social Sciences-Science and Mathematics 0.3708999 -0.4356166 1.1774164 0.7699672
Technical Sciences and Engineering-Science and Mathematics 0.5904121 -0.2161044 1.3969286 0.2866306
Technical Sciences and Engineering-Social Sciences 0.2195122 -0.5146267 0.9536511 0.9547889

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences 1.2197892 0.2225448 1.0000000
Arts and Humanities - Other -2.2158036 0.0267050 0.3204595
Health Sciences - Other -2.6788287 0.0073880 0.1034323
Arts and Humanities - Science and Mathematics 1.6589720 0.0971214 0.8740929
Health Sciences - Science and Mathematics 0.0454966 0.9637115 0.9637115
Other - Science and Mathematics 2.8541974 0.0043146 0.0647186
Arts and Humanities - Social Sciences 0.6445127 0.5192430 1.0000000
Health Sciences - Social Sciences -0.7734479 0.4392574 1.0000000
Other - Social Sciences 2.4571762 0.0140034 0.1820442
Science and Mathematics - Social Sciences -1.0772122 0.2813855 1.0000000
Arts and Humanities - Technical Sciences and Engineering -0.3913729 0.6955216 1.0000000
Health Sciences - Technical Sciences and Engineering -1.4967156 0.1344673 1.0000000
Other - Technical Sciences and Engineering 2.0722668 0.0382406 0.4206463
Science and Mathematics - Technical Sciences and Engineering -2.0260113 0.0427636 0.4276363
Social Sciences - Technical Sciences and Engineering -1.0423397 0.2972542 1.0000000

Q10

Row

ANOVA rezultati: Q10

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   3.58   0.717   0.513  0.766
Residuals            161 225.07   1.398               

ONEWAY-test rezultati: Q10


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q10 and podaci$`Study field`
F = 0.50894, num df = 5.000, denom df = 18.964, p-value = 0.766

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  0.5199  0.761
      161               

Kruskal-Wallis rezultati: Q10


    Kruskal-Wallis rank sum test

data:  Q10 by Study field
Kruskal-Wallis chi-squared = 2.7031, df = 5, p-value = 0.7456

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities 0.2115385 -0.8772253 1.3003023 0.9933688
Other-Arts and Humanities 0.7500000 -1.2914606 2.7914606 0.8964891
Science and Mathematics-Arts and Humanities 0.1982759 -0.6334744 1.0300261 0.9831174
Social Sciences-Arts and Humanities 0.3353659 -0.4225448 1.0932765 0.7975364
Technical Sciences and Engineering-Arts and Humanities 0.0914634 -0.6664472 0.8493740 0.9993167
Other-Health Sciences 0.5384615 -1.6459029 2.7228260 0.9803951
Science and Mathematics-Health Sciences -0.0132626 -1.1515486 1.1250234 1.0000000
Social Sciences-Health Sciences 0.1238274 -0.9616747 1.2093295 0.9994805
Technical Sciences and Engineering-Health Sciences -0.1200750 -1.2055772 0.9654271 0.9995529
Science and Mathematics-Other -0.5517241 -2.6200205 1.5165722 0.9722552
Social Sciences-Other -0.4146341 -2.4543571 1.6250888 0.9918232
Technical Sciences and Engineering-Other -0.6585366 -2.6982596 1.3811864 0.9378958
Social Sciences-Science and Mathematics 0.1370900 -0.6903862 0.9645662 0.9968636
Technical Sciences and Engineering-Science and Mathematics -0.1068124 -0.9342886 0.7206637 0.9990527
Technical Sciences and Engineering-Social Sciences -0.2439024 -0.9971201 0.5093152 0.9371420

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences -0.5712913 0.5678022 1.0000000
Arts and Humanities - Other -1.0953583 0.2733597 1.0000000
Health Sciences - Other -0.7389470 0.4599392 1.0000000
Arts and Humanities - Science and Mathematics -0.5642904 0.5725565 1.0000000
Health Sciences - Science and Mathematics 0.1341074 0.8933176 0.8933176
Other - Science and Mathematics 0.8542210 0.3929826 1.0000000
Arts and Humanities - Social Sciences -1.3191620 0.1871150 1.0000000
Health Sciences - Social Sciences -0.3480468 0.7278050 1.0000000
Other - Social Sciences 0.6061234 0.5444328 1.0000000
Science and Mathematics - Social Sciences -0.6410555 0.5214866 1.0000000
Arts and Humanities - Technical Sciences and Engineering -0.3702555 0.7111921 1.0000000
Health Sciences - Technical Sciences and Engineering 0.3144910 0.7531481 1.0000000
Other - Technical Sciences and Engineering 0.9587136 0.3377030 1.0000000
Science and Mathematics - Technical Sciences and Engineering 0.2280768 0.8195866 1.0000000
Social Sciences - Technical Sciences and Engineering 0.9548187 0.3396694 1.0000000

Q11

Row

ANOVA rezultati: Q11

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   4.75  0.9491   0.719   0.61
Residuals            161 212.66  1.3208               

ONEWAY-test rezultati: Q11


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q11 and podaci$`Study field`
F = 0.69173, num df = 5.000, denom df = 18.966, p-value = 0.6359

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  0.9718 0.4368
      161               

Kruskal-Wallis rezultati: Q11


    Kruskal-Wallis rank sum test

data:  Q11 by Study field
Kruskal-Wallis chi-squared = 4.0599, df = 5, p-value = 0.5408

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities 0.2826923 -0.7756102 1.3409948 0.9720893
Other-Arts and Humanities -0.0250000 -2.0093449 1.9593449 1.0000000
Science and Mathematics-Arts and Humanities -0.1629310 -0.9714107 0.6455487 0.9921438
Social Sciences-Arts and Humanities -0.3176829 -1.0543888 0.4190230 0.8145473
Technical Sciences and Engineering-Arts and Humanities -0.0006098 -0.7373157 0.7360961 1.0000000
Other-Health Sciences -0.3076923 -2.4309429 1.8155583 0.9983447
Science and Mathematics-Health Sciences -0.4456233 -1.5520625 0.6608158 0.8542541
Social Sciences-Health Sciences -0.6003752 -1.6555073 0.4547569 0.5725958
Technical Sciences and Engineering-Health Sciences -0.2833021 -1.3384342 0.7718300 0.9714566
Science and Mathematics-Other -0.1379310 -2.1483609 1.8724988 0.9999575
Social Sciences-Other -0.2926829 -2.2753388 1.6899730 0.9981910
Technical Sciences and Engineering-Other 0.0243902 -1.9582657 2.0070461 1.0000000
Social Sciences-Science and Mathematics -0.1547519 -0.9590771 0.6495733 0.9936640
Technical Sciences and Engineering-Science and Mathematics 0.1623213 -0.6420039 0.9666464 0.9920927
Technical Sciences and Engineering-Social Sciences 0.3170732 -0.4150710 1.0492174 0.8117964

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences -1.0737481 0.2829356 1.0000000
Arts and Humanities - Other -0.2468280 0.8050414 1.0000000
Health Sciences - Other 0.3045135 0.7607367 1.0000000
Arts and Humanities - Science and Mathematics 0.2492995 0.8031291 1.0000000
Health Sciences - Science and Mathematics 1.2091979 0.2265868 1.0000000
Other - Science and Mathematics 0.3438794 0.7309370 1.0000000
Arts and Humanities - Social Sciences 1.1173431 0.2638477 1.0000000
Health Sciences - Social Sciences 1.8571168 0.0632945 0.9494181
Other - Social Sciences 0.6622153 0.5078333 1.0000000
Science and Mathematics - Social Sciences 0.7728213 0.4396281 1.0000000
Arts and Humanities - Technical Sciences and Engineering -0.1324361 0.8946394 0.8946394
Health Sciences - Technical Sciences and Engineering 0.9845060 0.3248668 1.0000000
Other - Technical Sciences and Engineering 0.1978283 0.8431794 1.0000000
Science and Mathematics - Technical Sciences and Engineering -0.3718895 0.7099751 1.0000000
Social Sciences - Technical Sciences and Engineering -1.2575660 0.2085488 1.0000000

Q12

Row

ANOVA rezultati: Q12

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   9.07   1.815    1.22  0.302
Residuals            161 239.42   1.487               

ONEWAY-test rezultati: Q12


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q12 and podaci$`Study field`
F = 1.1779, num df = 5.000, denom df = 20.492, p-value = 0.3538

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  1.5085   0.19
      161               

Kruskal-Wallis rezultati: Q12


    Kruskal-Wallis rank sum test

data:  Q12 by Study field
Kruskal-Wallis chi-squared = 6.1297, df = 5, p-value = 0.2938

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.3903846 -1.5133032 0.7325340 0.9164595
Other-Arts and Humanities -0.1083333 -2.2138351 1.9971684 0.9999898
Science and Mathematics-Arts and Humanities -0.4301724 -1.2880149 0.4276701 0.6986012
Social Sciences-Arts and Humanities -0.6530488 -1.4347352 0.1286377 0.1590696
Technical Sciences and Engineering-Arts and Humanities -0.3847561 -1.1664426 0.3969304 0.7150410
Other-Health Sciences 0.2820513 -1.9708372 2.5349397 0.9991831
Science and Mathematics-Health Sciences -0.0397878 -1.2137821 1.1342065 0.9999987
Social Sciences-Health Sciences -0.2626642 -1.3822188 0.8568904 0.9842824
Technical Sciences and Engineering-Health Sciences 0.0056285 -1.1139261 1.1251831 1.0000000
Science and Mathematics-Other -0.3218391 -2.4550184 1.8113402 0.9979920
Social Sciences-Other -0.5447154 -2.6484250 1.5589941 0.9756398
Technical Sciences and Engineering-Other -0.2764228 -2.3801323 1.8272868 0.9989675
Social Sciences-Science and Mathematics -0.2228764 -1.0763107 0.6305579 0.9747102
Technical Sciences and Engineering-Science and Mathematics 0.0454163 -0.8080180 0.8988506 0.9999880
Technical Sciences and Engineering-Social Sciences 0.2682927 -0.5085536 1.0451389 0.9186095

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences 1.0334072 0.3014134 1.0000000
Arts and Humanities - Other 0.3908762 0.6958887 1.0000000
Health Sciences - Other -0.1497817 0.8809368 1.0000000
Arts and Humanities - Science and Mathematics 1.5236418 0.1275982 1.0000000
Health Sciences - Science and Mathematics 0.1248835 0.9006158 1.0000000
Other - Science and Mathematics 0.2269167 0.8204885 1.0000000
Arts and Humanities - Social Sciences 2.4168331 0.0156562 0.2348429
Health Sciences - Social Sciences 0.6509495 0.5150791 1.0000000
Other - Social Sciences 0.5068262 0.6122768 1.0000000
Science and Mathematics - Social Sciences 0.6821392 0.4951509 1.0000000
Arts and Humanities - Technical Sciences and Engineering 1.5324989 0.1253994 1.0000000
Health Sciences - Technical Sciences and Engineering 0.0334968 0.9732784 0.9732784
Other - Technical Sciences and Engineering 0.1782295 0.8585428 1.0000000
Science and Mathematics - Technical Sciences and Engineering -0.1278494 0.8982681 1.0000000
Social Sciences - Technical Sciences and Engineering -0.8898442 0.3735496 1.0000000

Q13

Row

ANOVA rezultati: Q13

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5  11.15   2.231   1.335  0.252
Residuals            161 269.03   1.671               

ONEWAY-test rezultati: Q13


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q13 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   5  2.0476 0.07475 .
      161                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q13


    Kruskal-Wallis rank sum test

data:  Q13 by Study field
Kruskal-Wallis chi-squared = 6.5495, df = 5, p-value = 0.2564

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.7576923 -1.9480242 0.4326396 0.4457377
Other-Arts and Humanities 0.5500000 -1.6819035 2.7819035 0.9804237
Science and Mathematics-Arts and Humanities -0.1051724 -1.0145147 0.8041698 0.9994444
Social Sciences-Arts and Humanities 0.0865854 -0.7420289 0.9151996 0.9996616
Technical Sciences and Engineering-Arts and Humanities -0.3524390 -1.1810533 0.4761752 0.8231508
Other-Health Sciences 1.3076923 -1.0804462 3.6958308 0.6132896
Science and Mathematics-Health Sciences 0.6525199 -0.5919540 1.8969938 0.6568507
Social Sciences-Health Sciences 0.8442777 -0.3424883 2.0310437 0.3180281
Technical Sciences and Engineering-Health Sciences 0.4052533 -0.7815127 1.5920193 0.9221761
Science and Mathematics-Other -0.6551724 -2.9164151 1.6060703 0.9604141
Social Sciences-Other -0.4634146 -2.6934184 1.7665891 0.9909492
Technical Sciences and Engineering-Other -0.9024390 -3.1324428 1.3275647 0.8517231
Social Sciences-Science and Mathematics 0.1917578 -0.7129116 1.0964272 0.9900877
Technical Sciences and Engineering-Science and Mathematics -0.2472666 -1.1519360 0.6574028 0.9691668
Technical Sciences and Engineering-Social Sciences -0.4390244 -1.2625079 0.3844591 0.6404700

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences 1.8103148 0.0702470 0.9834577
Arts and Humanities - Other -0.6605969 0.5088709 1.0000000
Health Sciences - Other -1.5197042 0.1285853 1.0000000
Arts and Humanities - Science and Mathematics 0.1023108 0.9185100 0.9185100
Health Sciences - Science and Mathematics -1.6567965 0.0975606 1.0000000
Other - Science and Mathematics 0.6931693 0.4882033 1.0000000
Arts and Humanities - Social Sciences -0.3268180 0.7438055 1.0000000
Health Sciences - Social Sciences -2.0439426 0.0409592 0.6143882
Other - Social Sciences 0.5397222 0.5893887 1.0000000
Science and Mathematics - Social Sciences -0.4021818 0.6875502 1.0000000
Arts and Humanities - Technical Sciences and Engineering 1.1800285 0.2379889 1.0000000
Health Sciences - Technical Sciences and Engineering -0.9918443 0.3212735 1.0000000
Other - Technical Sciences and Engineering 1.0996291 0.2714938 1.0000000
Science and Mathematics - Technical Sciences and Engineering 0.9779848 0.3280819 1.0000000
Social Sciences - Technical Sciences and Engineering 1.5162350 0.1294599 1.0000000

Q14

Row

ANOVA rezultati: Q14

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   8.24   1.649   1.251  0.288
Residuals            161 212.24   1.318               

ONEWAY-test rezultati: Q14


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q14 and podaci$`Study field`
F = 1.0729, num df = 5.000, denom df = 19.215, p-value = 0.4059

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   5  2.0843 0.06999 .
      161                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q14


    Kruskal-Wallis rank sum test

data:  Q14 by Study field
Kruskal-Wallis chi-squared = 7.1557, df = 5, p-value = 0.2093

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities 0.3288462 -0.7284110 1.3861033 0.9467116
Other-Arts and Humanities 0.1750000 -1.8073849 2.1573849 0.9998522
Science and Mathematics-Arts and Humanities 0.4508621 -0.3568190 1.2585432 0.5931183
Social Sciences-Arts and Humanities 0.5652439 -0.1707343 1.3012221 0.2365362
Technical Sciences and Engineering-Arts and Humanities 0.5164634 -0.2195148 1.2524416 0.3333688
Other-Health Sciences -0.1538462 -2.2749995 1.9673072 0.9999440
Science and Mathematics-Health Sciences 0.1220159 -0.9833303 1.2273622 0.9995575
Social Sciences-Health Sciences 0.2363977 -0.8176921 1.2904876 0.9871789
Technical Sciences and Engineering-Health Sciences 0.1876173 -0.8664726 1.2417071 0.9955989
Science and Mathematics-Other 0.2758621 -1.7325820 2.2843061 0.9987211
Social Sciences-Other 0.3902439 -1.5904536 2.3709414 0.9929246
Technical Sciences and Engineering-Other 0.3414634 -1.6392341 2.3221609 0.9962139
Social Sciences-Science and Mathematics 0.1143818 -0.6891488 0.9179125 0.9984809
Technical Sciences and Engineering-Science and Mathematics 0.0656013 -0.7379293 0.8691320 0.9998995
Technical Sciences and Engineering-Social Sciences -0.0487805 -0.7802015 0.6826405 0.9999630

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences -0.4812678 0.6303261 1.0000000
Arts and Humanities - Other -0.0975497 0.9222898 0.9222898
Health Sciences - Other 0.1487128 0.8817802 1.0000000
Arts and Humanities - Science and Mathematics -1.6890343 0.0912129 1.0000000
Health Sciences - Science and Mathematics -0.7738546 0.4390168 1.0000000
Other - Science and Mathematics -0.5829488 0.5599278 1.0000000
Arts and Humanities - Social Sciences -2.2960827 0.0216712 0.3250673
Health Sciences - Social Sciences -1.1204386 0.2625269 1.0000000
Other - Social Sciences -0.7555347 0.4499282 1.0000000
Science and Mathematics - Social Sciences -0.4052935 0.6852618 1.0000000
Arts and Humanities - Technical Sciences and Engineering -2.0547933 0.0398990 0.5585856
Health Sciences - Technical Sciences and Engineering -0.9519674 0.3411135 1.0000000
Other - Technical Sciences and Engineering -0.6658775 0.5054894 1.0000000
Science and Mathematics - Technical Sciences and Engineering -0.1842891 0.8537866 1.0000000
Social Sciences - Technical Sciences and Engineering 0.2427928 0.8081659 1.0000000

Q15

Row

ANOVA rezultati: Q15

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   7.45   1.490   1.002  0.419
Residuals            161 239.50   1.488               

ONEWAY-test rezultati: Q15


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q15 and podaci$`Study field`
F = 1.0034, num df = 5.000, denom df = 20.584, p-value = 0.4405

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  0.8088 0.5449
      161               

Kruskal-Wallis rezultati: Q15


    Kruskal-Wallis rank sum test

data:  Q15 by Study field
Kruskal-Wallis chi-squared = 5.3853, df = 5, p-value = 0.3707

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.3769231 -1.5000259 0.7461797 0.9273752
Other-Arts and Humanities 0.0333333 -2.0725138 2.1391805 1.0000000
Science and Mathematics-Arts and Humanities -0.5413793 -1.3993625 0.3166039 0.4558902
Social Sciences-Arts and Humanities -0.1780488 -0.9598635 0.6037659 0.9862553
Technical Sciences and Engineering-Arts and Humanities -0.4707317 -1.2525464 0.3110830 0.5097393
Other-Health Sciences 0.4102564 -1.8430016 2.6635144 0.9951041
Science and Mathematics-Health Sciences -0.1644562 -1.3386431 1.0097306 0.9985949
Social Sciences-Health Sciences 0.1988743 -0.9208640 1.3186125 0.9956431
Technical Sciences and Engineering-Health Sciences -0.0938086 -1.2135469 1.0259296 0.9998858
Science and Mathematics-Other -0.5747126 -2.7082419 1.5588166 0.9710515
Social Sciences-Other -0.2113821 -2.3154368 1.8926726 0.9997209
Technical Sciences and Engineering-Other -0.5040650 -2.6081197 1.5999896 0.9827387
Social Sciences-Science and Mathematics 0.3633305 -0.4902438 1.2169048 0.8226848
Technical Sciences and Engineering-Science and Mathematics 0.0706476 -0.7829267 0.9242219 0.9998925
Technical Sciences and Engineering-Social Sciences -0.2926829 -1.0696566 0.4842908 0.8861642

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences 1.0834513 0.2786082 1.0000000
Arts and Humanities - Other 0.1869509 0.8516991 1.0000000
Health Sciences - Other -0.3653097 0.7148802 1.0000000
Arts and Humanities - Science and Mathematics 1.9823995 0.0474345 0.7115181
Health Sciences - Science and Mathematics 0.4122329 0.6801688 1.0000000
Other - Science and Mathematics 0.6126822 0.5400865 1.0000000
Arts and Humanities - Social Sciences 0.6491669 0.5162305 1.0000000
Health Sciences - Social Sciences -0.6334507 0.5264394 1.0000000
Other - Social Sciences 0.0541042 0.9568522 0.9568522
Science and Mathematics - Social Sciences -1.3980474 0.1620988 1.0000000
Arts and Humanities - Technical Sciences and Engineering 1.7051174 0.0881725 1.0000000
Health Sciences - Technical Sciences and Engineering 0.1038267 0.9173069 1.0000000
Other - Technical Sciences and Engineering 0.4464692 0.6552583 1.0000000
Science and Mathematics - Technical Sciences and Engineering -0.4308702 0.6665628 1.0000000
Social Sciences - Technical Sciences and Engineering 1.0625297 0.2879953 1.0000000

Q16

Row

ANOVA rezultati: Q16

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   5.56   1.113   0.968  0.439
Residuals            161 184.99   1.149               

ONEWAY-test rezultati: Q16


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q16 and podaci$`Study field`
F = 0.88618, num df = 5.000, denom df = 18.531, p-value = 0.5099

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  0.7086 0.6178
      161               

Kruskal-Wallis rezultati: Q16


    Kruskal-Wallis rank sum test

data:  Q16 by Study field
Kruskal-Wallis chi-squared = 6.1646, df = 5, p-value = 0.2905

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.3576923 -1.3447500 0.6293653 0.9017967
Other-Arts and Humanities -0.3833333 -2.2340923 1.4674256 0.9910860
Science and Mathematics-Arts and Humanities 0.1913793 -0.5626736 0.9454322 0.9776932
Social Sciences-Arts and Humanities 0.0963415 -0.5907694 0.7834524 0.9985875
Technical Sciences and Engineering-Arts and Humanities 0.2914634 -0.3956475 0.9785743 0.8248066
Other-Health Sciences -0.0256410 -2.0059545 1.9546725 1.0000000
Science and Mathematics-Health Sciences 0.5490716 -0.4828821 1.5810254 0.6424531
Social Sciences-Health Sciences 0.4540338 -0.5300669 1.4381345 0.7675352
Technical Sciences and Engineering-Health Sciences 0.6491557 -0.3349450 1.6332564 0.4043245
Science and Mathematics-Other 0.5747126 -1.3003752 2.4498005 0.9498630
Social Sciences-Other 0.4796748 -1.3695088 2.3288584 0.9754463
Technical Sciences and Engineering-Other 0.6747967 -1.1743869 2.5239804 0.8991289
Social Sciences-Science and Mathematics -0.0950378 -0.8452159 0.6551402 0.9991348
Technical Sciences and Engineering-Science and Mathematics 0.1000841 -0.6500939 0.8502621 0.9988886
Technical Sciences and Engineering-Social Sciences 0.1951220 -0.4877344 0.8779783 0.9626849

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences 1.1268760 0.2597949 1.0000000
Arts and Humanities - Other 0.3943688 0.6933088 1.0000000
Health Sciences - Other -0.1931058 0.8468761 0.8468761
Arts and Humanities - Science and Mathematics -1.0062823 0.3142798 1.0000000
Health Sciences - Science and Mathematics -1.8131449 0.0698095 0.9773327
Other - Science and Mathematics -0.7939210 0.4272414 1.0000000
Arts and Humanities - Social Sciences -0.7228703 0.4697596 1.0000000
Health Sciences - Social Sciences -1.6349786 0.1020535 1.0000000
Other - Social Sciences -0.6633055 0.5071349 1.0000000
Science and Mathematics - Social Sciences 0.3493811 0.7268032 1.0000000
Arts and Humanities - Technical Sciences and Engineering -1.4580130 0.1448370 1.0000000
Health Sciences - Technical Sciences and Engineering -2.1482641 0.0316928 0.4753917
Other - Technical Sciences and Engineering -0.9364663 0.3490331 1.0000000
Science and Mathematics - Technical Sciences and Engineering -0.3239585 0.7459695 1.0000000
Social Sciences - Technical Sciences and Engineering -0.7397231 0.4594680 1.0000000

Q17

Row

ANOVA rezultati: Q17

                      Df Sum Sq Mean Sq F value  Pr(>F)   
podaci$`Study field`   5  20.15   4.030   3.338 0.00677 **
Residuals            161 194.37   1.207                   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q17


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q17 and podaci$`Study field`
F = 3.4374, num df = 5.000, denom df = 18.481, p-value = 0.02287

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   5  2.2885 0.04837 *
      161                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q17


    Kruskal-Wallis rank sum test

data:  Q17 by Study field
Kruskal-Wallis chi-squared = 14.774, df = 5, p-value = 0.01137

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.9346154 -1.9463864 0.0771556 0.0882675
Other-Arts and Humanities -1.2166667 -3.1137638 0.6804305 0.4370289
Science and Mathematics-Arts and Humanities -0.7224138 -1.4953462 0.0505186 0.0816509
Social Sciences-Arts and Humanities -0.3304878 -1.0348022 0.3738266 0.7545324
Technical Sciences and Engineering-Arts and Humanities -0.7939024 -1.4982168 -0.0895881 0.0172821
Other-Health Sciences -0.2820513 -2.3119466 1.7478441 0.9986478
Science and Mathematics-Health Sciences 0.2122016 -0.8455896 1.2699927 0.9923082
Social Sciences-Health Sciences 0.6041276 -0.4046124 1.6128676 0.5157978
Technical Sciences and Engineering-Health Sciences 0.1407129 -0.8680270 1.1494529 0.9986221
Science and Mathematics-Other 0.4942529 -1.4277823 2.4162880 0.9763669
Social Sciences-Other 0.8861789 -1.0093035 2.7816612 0.7573866
Technical Sciences and Engineering-Other 0.4227642 -1.4727181 2.3182466 0.9874948
Social Sciences-Science and Mathematics 0.3919260 -0.3770346 1.1608865 0.6837521
Technical Sciences and Engineering-Science and Mathematics -0.0714886 -0.8404492 0.6974719 0.9998093
Technical Sciences and Engineering-Social Sciences -0.4634146 -1.1633679 0.2365386 0.4000747

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences 2.5959038 0.0094342 0.1226452
Arts and Humanities - Other 1.6103909 0.1073125 1.0000000
Health Sciences - Other 0.2111477 0.8327720 1.0000000
Arts and Humanities - Science and Mathematics 2.6097306 0.0090614 0.1268590
Health Sciences - Science and Mathematics -0.5760257 0.5645978 1.0000000
Other - Science and Mathematics -0.5400123 0.5891885 1.0000000
Arts and Humanities - Social Sciences 1.1278540 0.2593816 1.0000000
Health Sciences - Social Sciences -1.8162226 0.0693362 0.8320347
Other - Social Sciences -1.1926802 0.2329947 1.0000000
Science and Mathematics - Social Sciences -1.5901746 0.1117955 1.0000000
Arts and Humanities - Technical Sciences and Engineering 2.9157587 0.0035482 0.0532237
Health Sciences - Technical Sciences and Engineering -0.5678861 0.5701123 1.0000000
Other - Technical Sciences and Engineering -0.5283390 0.5972641 1.0000000
Science and Mathematics - Technical Sciences and Engineering 0.0474218 0.9621771 0.9621771
Social Sciences - Technical Sciences and Engineering 1.7990444 0.0720117 0.7921282

Q18

Row

ANOVA rezultati: Q18

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   6.24   1.248   1.006  0.416
Residuals            161 199.69   1.240               

ONEWAY-test rezultati: Q18


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q18 and podaci$`Study field`
F = 0.95773, num df = 5.00, denom df = 18.67, p-value = 0.4681

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  1.3424 0.2491
      161               

Kruskal-Wallis rezultati: Q18


    Kruskal-Wallis rank sum test

data:  Q18 by Study field
Kruskal-Wallis chi-squared = 5.0093, df = 5, p-value = 0.4147

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.0307692 -1.0562985 0.9947600 0.9999993
Other-Arts and Humanities -0.1333333 -2.0562276 1.7895609 0.9999552
Science and Mathematics-Arts and Humanities -0.2827586 -1.0662015 0.5006843 0.9033192
Social Sciences-Arts and Humanities 0.2243902 -0.4895015 0.9382820 0.9443518
Technical Sciences and Engineering-Arts and Humanities -0.2390244 -0.9529162 0.4748674 0.9280577
Other-Health Sciences -0.1025641 -2.1600624 1.9549342 0.9999913
Science and Mathematics-Health Sciences -0.2519894 -1.3241646 0.8201858 0.9841581
Social Sciences-Health Sciences 0.2551595 -0.7672976 1.2776165 0.9792964
Technical Sciences and Engineering-Health Sciences -0.2082552 -1.2307122 0.8142019 0.9917484
Science and Mathematics-Other -0.1494253 -2.0975967 1.7987461 0.9999262
Social Sciences-Other 0.3577236 -1.5635339 2.2789811 0.9945631
Technical Sciences and Engineering-Other -0.1056911 -2.0269486 1.8155665 0.9999858
Social Sciences-Science and Mathematics 0.5071489 -0.2722682 1.2865659 0.4202172
Technical Sciences and Engineering-Science and Mathematics 0.0437342 -0.7356828 0.8231513 0.9999843
Technical Sciences and Engineering-Social Sciences -0.4634146 -1.1728860 0.2460567 0.4157515

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences 0.2858156 0.7750194 1.0000000
Arts and Humanities - Other 0.2649633 0.7910377 1.0000000
Health Sciences - Other 0.1051686 0.9162420 1.0000000
Arts and Humanities - Science and Mathematics 1.1349665 0.2563894 1.0000000
Health Sciences - Science and Mathematics 0.5559438 0.5782493 1.0000000
Other - Science and Mathematics 0.1948930 0.8454767 1.0000000
Arts and Humanities - Social Sciences -0.9036460 0.3661831 1.0000000
Health Sciences - Social Sciences -0.9176109 0.3588226 1.0000000
Other - Social Sciences -0.6009616 0.5478656 1.0000000
Science and Mathematics - Social Sciences -1.9685057 0.0490099 0.7351481
Arts and Humanities - Technical Sciences and Engineering 0.8474532 0.3967426 1.0000000
Health Sciences - Technical Sciences and Engineering 0.3050276 0.7603452 1.0000000
Other - Technical Sciences and Engineering 0.0497036 0.9603586 0.9603586
Science and Mathematics - Technical Sciences and Engineering -0.3646207 0.7153946 1.0000000
Social Sciences - Technical Sciences and Engineering 1.7620096 0.0780677 1.0000000

Q19

Row

ANOVA rezultati: Q19

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5  12.35   2.470    1.66  0.147
Residuals            161 239.55   1.488               

ONEWAY-test rezultati: Q19


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q19 and podaci$`Study field`
F = 1.4909, num df = 5.000, denom df = 18.643, p-value = 0.2402

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  0.3439 0.8856
      161               

Kruskal-Wallis rezultati: Q19


    Kruskal-Wallis rank sum test

data:  Q19 by Study field
Kruskal-Wallis chi-squared = 10.369, df = 5, p-value = 0.06543

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.1576923 -1.2809319 0.9655473 0.9985789
Other-Arts and Humanities -0.1833333 -2.2894370 1.9227703 0.9998621
Science and Mathematics-Arts and Humanities -0.0913793 -0.9494670 0.7667084 0.9996287
Social Sciences-Arts and Humanities 0.2475610 -0.5343489 1.0294709 0.9426647
Technical Sciences and Engineering-Arts and Humanities 0.5890244 -0.1928855 1.3709343 0.2562877
Other-Health Sciences -0.0256410 -2.2791735 2.2278915 1.0000000
Science and Mathematics-Health Sciences 0.0663130 -1.1080169 1.2406429 0.9999838
Social Sciences-Health Sciences 0.4052533 -0.7146214 1.5251279 0.9023271
Technical Sciences and Engineering-Health Sciences 0.7467167 -0.3731579 1.8665913 0.3918437
Science and Mathematics-Other 0.0919540 -2.0418351 2.2257432 0.9999958
Social Sciences-Other 0.4308943 -1.6734167 2.5352053 0.9915434
Technical Sciences and Engineering-Other 0.7723577 -1.3319532 2.8766687 0.8968639
Social Sciences-Science and Mathematics 0.3389403 -0.5147380 1.1926186 0.8616324
Technical Sciences and Engineering-Science and Mathematics 0.6804037 -0.1732746 1.5340820 0.2005704
Technical Sciences and Engineering-Social Sciences 0.3414634 -0.4356049 1.1185317 0.8022285

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences 0.4777007 0.6328632 1.0000000
Arts and Humanities - Other 0.2431939 0.8078552 1.0000000
Health Sciences - Other -0.0108189 0.9913679 0.9913679
Arts and Humanities - Science and Mathematics 0.5291389 0.5967091 1.0000000
Health Sciences - Science and Mathematics -0.0702739 0.9439756 1.0000000
Other - Science and Mathematics -0.0272492 0.9782610 1.0000000
Arts and Humanities - Social Sciences -0.9517314 0.3412332 1.0000000
Health Sciences - Social Sciences -1.1436464 0.2527703 1.0000000
Other - Social Sciences -0.5970409 0.5504801 1.0000000
Science and Mathematics - Social Sciences -1.4035918 0.1604404 1.0000000
Arts and Humanities - Technical Sciences and Engineering -2.3398213 0.0192930 0.2701016
Health Sciences - Technical Sciences and Engineering -2.1128274 0.0346155 0.4500021
Other - Technical Sciences and Engineering -1.1128208 0.2657854 1.0000000
Science and Mathematics - Technical Sciences and Engineering -2.6749856 0.0074732 0.1120987
Social Sciences - Technical Sciences and Engineering -1.3967385 0.1624922 1.0000000

Q20

Row

ANOVA rezultati: Q20

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   8.73   1.745   1.429  0.216
Residuals            161 196.54   1.221               

ONEWAY-test rezultati: Q20


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q20 and podaci$`Study field`
F = 1.2092, num df = 5.000, denom df = 20.264, p-value = 0.3403

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  1.3036  0.265
      161               

Kruskal-Wallis rezultati: Q20


    Kruskal-Wallis rank sum test

data:  Q20 by Study field
Kruskal-Wallis chi-squared = 7.1862, df = 5, p-value = 0.2072

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.1942308 -1.2116528 0.8231913 0.9938901
Other-Arts and Humanities -0.0916667 -1.9993597 1.8160263 0.9999928
Science and Mathematics-Arts and Humanities -0.4594828 -1.2367322 0.3177667 0.5304351
Social Sciences-Arts and Humanities -0.3030488 -1.0112970 0.4051994 0.8194481
Technical Sciences and Engineering-Arts and Humanities -0.6201220 -1.3283701 0.0881262 0.1228720
Other-Health Sciences 0.1025641 -1.9386688 2.1437970 0.9999909
Science and Mathematics-Health Sciences -0.2652520 -1.3289512 0.7984472 0.9793653
Social Sciences-Health Sciences -0.1088180 -1.1231921 0.9055561 0.9996152
Technical Sciences and Engineering-Health Sciences -0.4258912 -1.4402653 0.5884829 0.8309802
Science and Mathematics-Other -0.3678161 -2.3005864 1.5649542 0.9939791
Social Sciences-Other -0.2113821 -2.1174513 1.6946871 0.9995473
Technical Sciences and Engineering-Other -0.5284553 -2.4345245 1.3776139 0.9672104
Social Sciences-Science and Mathematics 0.1564340 -0.6168214 0.9296894 0.9920026
Technical Sciences and Engineering-Science and Mathematics -0.1606392 -0.9338946 0.6126162 0.9909622
Technical Sciences and Engineering-Social Sciences -0.3170732 -1.0209359 0.3867895 0.7850628

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences 0.7155117 0.4742929 1.0000000
Arts and Humanities - Other 0.3201493 0.7488552 1.0000000
Health Sciences - Other -0.0574314 0.9542015 0.9542015
Arts and Humanities - Science and Mathematics 1.8696127 0.0615376 0.8615267
Health Sciences - Science and Mathematics 0.6817510 0.4953964 1.0000000
Other - Science and Mathematics 0.4358557 0.6629414 1.0000000
Arts and Humanities - Social Sciences 1.3851879 0.1659950 1.0000000
Health Sciences - Social Sciences 0.2494932 0.8029793 1.0000000
Other - Social Sciences 0.1942796 0.8459570 1.0000000
Science and Mathematics - Social Sciences -0.6105339 0.5415082 1.0000000
Arts and Humanities - Technical Sciences and Engineering 2.5275743 0.0114854 0.1722803
Health Sciences - Technical Sciences and Engineering 1.0471211 0.2950437 1.0000000
Other - Technical Sciences and Engineering 0.6187621 0.5360731 1.0000000
Science and Mathematics - Technical Sciences and Engineering 0.4358126 0.6629727 1.0000000
Social Sciences - Technical Sciences and Engineering 1.1495041 0.2503482 1.0000000

Q21

Row

ANOVA rezultati: Q21

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5  10.05   2.009   1.762  0.124
Residuals            161 183.56   1.140               

ONEWAY-test rezultati: Q21


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q21 and podaci$`Study field`
F = 1.8468, num df = 5.000, denom df = 19.925, p-value = 0.1495

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value   Pr(>F)   
group   5  3.2045 0.008729 **
      161                    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q21


    Kruskal-Wallis rank sum test

data:  Q21 by Study field
Kruskal-Wallis chi-squared = 7.659, df = 5, p-value = 0.1761

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.1500000 -1.1332407 0.8332407 0.9978825
Other-Arts and Humanities -0.8166667 -2.6602687 1.0269354 0.7967870
Science and Mathematics-Arts and Humanities -0.4258621 -1.1769990 0.3252749 0.5764956
Social Sciences-Arts and Humanities -0.1012195 -0.7856733 0.5832343 0.9981755
Technical Sciences and Engineering-Arts and Humanities -0.5890244 -1.2734782 0.0954294 0.1355706
Other-Health Sciences -0.6666667 -2.6393222 1.3059889 0.9253247
Science and Mathematics-Health Sciences -0.2758621 -1.3038252 0.7521011 0.9715218
Social Sciences-Health Sciences 0.0487805 -0.9315147 1.0290756 0.9999914
Technical Sciences and Engineering-Health Sciences -0.4390244 -1.4193195 0.5412708 0.7892007
Science and Mathematics-Other 0.3908046 -1.4770322 2.2586414 0.9906615
Social Sciences-Other 0.7154472 -1.1265856 2.5574800 0.8723750
Technical Sciences and Engineering-Other 0.2276423 -1.6143905 2.0696751 0.9992330
Social Sciences-Science and Mathematics 0.3246426 -0.4226345 1.0719196 0.8097672
Technical Sciences and Engineering-Science and Mathematics -0.1631623 -0.9104394 0.5841148 0.9886488
Technical Sciences and Engineering-Social Sciences -0.4878049 -1.1680206 0.1924108 0.3091384

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences 0.0033132 0.9973565 0.9973565
Arts and Humanities - Other 1.0624580 0.2880278 1.0000000
Health Sciences - Other 0.9912993 0.3215395 1.0000000
Arts and Humanities - Science and Mathematics 1.1449571 0.2522269 1.0000000
Health Sciences - Science and Mathematics 0.8334559 0.4045877 1.0000000
Other - Science and Mathematics -0.5882367 0.5563734 1.0000000
Arts and Humanities - Social Sciences 0.0607651 0.9515463 1.0000000
Health Sciences - Social Sciences 0.0391038 0.9688077 1.0000000
Other - Social Sciences -1.0407843 0.2979757 1.0000000
Science and Mathematics - Social Sciences -1.0952145 0.2734227 1.0000000
Arts and Humanities - Technical Sciences and Engineering 2.1981691 0.0279371 0.4190558
Health Sciences - Technical Sciences and Engineering 1.5314649 0.1256545 1.0000000
Other - Technical Sciences and Engineering -0.2465778 0.8052350 1.0000000
Science and Mathematics - Technical Sciences and Engineering 0.8624989 0.3884130 1.0000000
Social Sciences - Technical Sciences and Engineering 2.1507213 0.0314982 0.4409748

Q22

Row

ANOVA rezultati: Q22

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   3.55  0.7094   0.651  0.661
Residuals            161 175.41  1.0895               

ONEWAY-test rezultati: Q22


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q22 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   5  2.4122 0.03856 *
      161                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q22


    Kruskal-Wallis rank sum test

data:  Q22 by Study field
Kruskal-Wallis chi-squared = 2.0345, df = 5, p-value = 0.8444

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities 0.2903846 -0.6707844 1.2515536 0.9527860
Other-Arts and Humanities 0.6750000 -1.1272171 2.4772171 0.8886074
Science and Mathematics-Arts and Humanities 0.2956897 -0.4385859 1.0299652 0.8543309
Social Sciences-Arts and Humanities 0.3091463 -0.3599430 0.9782356 0.7664365
Technical Sciences and Engineering-Arts and Humanities 0.3335366 -0.3355527 1.0026259 0.7039042
Other-Health Sciences 0.3846154 -1.5437583 2.3129890 0.9925115
Science and Mathematics-Health Sciences 0.0053050 -0.9995825 1.0101926 1.0000000
Social Sciences-Health Sciences 0.0187617 -0.9395279 0.9770513 0.9999999
Technical Sciences and Engineering-Health Sciences 0.0431520 -0.9151376 1.0014416 0.9999948
Science and Mathematics-Other -0.3793103 -2.2052182 1.4465975 0.9909634
Social Sciences-Other -0.3658537 -2.1665367 1.4348294 0.9918427
Technical Sciences and Engineering-Other -0.3414634 -2.1421465 1.4592197 0.9940781
Social Sciences-Science and Mathematics 0.0134567 -0.7170456 0.7439590 0.9999999
Technical Sciences and Engineering-Science and Mathematics 0.0378469 -0.6926554 0.7683492 0.9999895
Technical Sciences and Engineering-Social Sciences 0.0243902 -0.6405561 0.6893365 0.9999981

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences -0.6309541 0.5280705 1.0000000
Arts and Humanities - Other -0.9851006 0.3245746 1.0000000
Health Sciences - Other -0.6061645 0.5444055 1.0000000
Arts and Humanities - Science and Mathematics -0.6156758 0.5381085 1.0000000
Health Sciences - Science and Mathematics 0.1536270 0.8779039 1.0000000
Other - Science and Mathematics 0.7247296 0.4686179 1.0000000
Arts and Humanities - Social Sciences -0.9891614 0.3225842 1.0000000
Health Sciences - Social Sciences -0.0577944 0.9539124 0.9539124
Other - Social Sciences 0.6183919 0.5363170 1.0000000
Science and Mathematics - Social Sciences -0.2871470 0.7739997 1.0000000
Arts and Humanities - Technical Sciences and Engineering -1.0992142 0.2716746 1.0000000
Health Sciences - Technical Sciences and Engineering -0.1346346 0.8929008 1.0000000
Other - Technical Sciences and Engineering 0.5774990 0.5636024 1.0000000
Science and Mathematics - Technical Sciences and Engineering -0.3879478 0.6980546 1.0000000
Social Sciences - Technical Sciences and Engineering -0.1107386 0.9118237 1.0000000

Q23

Row

ANOVA rezultati: Q23

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   7.12   1.424   0.983   0.43
Residuals            161 233.24   1.449               

ONEWAY-test rezultati: Q23


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q23 and podaci$`Study field`
F = 1.1444, num df = 5.000, denom df = 20.418, p-value = 0.3693

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  1.0064 0.4158
      161               

Kruskal-Wallis rezultati: Q23


    Kruskal-Wallis rank sum test

data:  Q23 by Study field
Kruskal-Wallis chi-squared = 4.6456, df = 5, p-value = 0.4606

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.6115385 -1.7198766 0.4967997 0.6053702
Other-Arts and Humanities 0.1833333 -1.8948297 2.2614964 0.9998527
Science and Mathematics-Arts and Humanities -0.5293103 -1.3760143 0.3173936 0.4666671
Social Sciences-Arts and Humanities -0.3207317 -1.0922684 0.4508050 0.8367932
Technical Sciences and Engineering-Arts and Humanities -0.2475610 -1.0190977 0.5239758 0.9394413
Other-Health Sciences 0.7948718 -1.4287643 3.0185078 0.9068525
Science and Mathematics-Health Sciences 0.0822281 -1.0765225 1.2409788 0.9999497
Social Sciences-Health Sciences 0.2908068 -0.8142111 1.3958246 0.9738446
Technical Sciences and Engineering-Health Sciences 0.3639775 -0.7410404 1.4689953 0.9326409
Science and Mathematics-Other -0.7126437 -2.8181249 1.3928376 0.9248680
Social Sciences-Other -0.5040650 -2.5804592 1.5723291 0.9816876
Technical Sciences and Engineering-Other -0.4308943 -2.5072885 1.6454999 0.9910069
Social Sciences-Science and Mathematics 0.2085786 -0.6337743 1.0509316 0.9800010
Technical Sciences and Engineering-Science and Mathematics 0.2817494 -0.5606036 1.1241023 0.9283500
Technical Sciences and Engineering-Social Sciences 0.0731707 -0.6935886 0.8399301 0.9997832

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences 1.4862944 0.1372013 1.0000000
Arts and Humanities - Other -0.2366113 0.8129583 1.0000000
Health Sciences - Other -0.9619531 0.3360731 1.0000000
Arts and Humanities - Science and Mathematics 1.7972192 0.0723008 1.0000000
Health Sciences - Science and Mathematics -0.1083963 0.9136814 0.9136814
Other - Science and Mathematics 0.9562799 0.3389308 1.0000000
Arts and Humanities - Social Sciences 1.2096876 0.2263988 1.0000000
Health Sciences - Social Sciences -0.6461419 0.5181874 1.0000000
Other - Social Sciences 0.6863029 0.4925221 1.0000000
Science and Mathematics - Social Sciences -0.6985126 0.4848567 1.0000000
Arts and Humanities - Technical Sciences and Engineering 0.9395362 0.3474555 1.0000000
Health Sciences - Technical Sciences and Engineering -0.8347649 0.4038501 1.0000000
Other - Technical Sciences and Engineering 0.5859213 0.5579284 1.0000000
Science and Mathematics - Technical Sciences and Engineering -0.9459524 0.3441728 1.0000000
Social Sciences - Technical Sciences and Engineering -0.2718346 0.7857492 1.0000000

Q24

Row

ANOVA rezultati: Q24

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   4.44  0.8877   0.603  0.698
Residuals            161 236.96  1.4718               

ONEWAY-test rezultati: Q24


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q24 and podaci$`Study field`
F = 0.48607, num df = 5.000, denom df = 19.015, p-value = 0.7824

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  1.0814 0.3727
      161               

Kruskal-Wallis rezultati: Q24


    Kruskal-Wallis rank sum test

data:  Q24 by Study field
Kruskal-Wallis chi-squared = 2.9046, df = 5, p-value = 0.7147

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.3019231 -1.4190723 0.8152262 0.9706340
Other-Arts and Humanities -0.2250000 -2.3196842 1.8696842 0.9996127
Science and Mathematics-Arts and Humanities -0.3974138 -1.2508489 0.4560213 0.7604694
Social Sciences-Arts and Humanities -0.3957317 -1.1734020 0.3819386 0.6852317
Technical Sciences and Engineering-Arts and Humanities -0.3713415 -1.1490118 0.4063289 0.7405615
Other-Health Sciences 0.0769231 -2.1643905 2.3182367 0.9999986
Science and Mathematics-Health Sciences -0.0954907 -1.2634533 1.0724718 0.9998988
Social Sciences-Health Sciences -0.0938086 -1.2076112 1.0199939 0.9998828
Technical Sciences and Engineering-Health Sciences -0.0694184 -1.1832210 1.0443842 0.9999736
Science and Mathematics-Other -0.1724138 -2.2946333 1.9498057 0.9999019
Social Sciences-Other -0.1707317 -2.2636329 1.9221695 0.9998999
Technical Sciences and Engineering-Other -0.1463415 -2.2392427 1.9465597 0.9999533
Social Sciences-Science and Mathematics 0.0016821 -0.8473675 0.8507316 1.0000000
Technical Sciences and Engineering-Science and Mathematics 0.0260723 -0.8229772 0.8751219 0.9999992
Technical Sciences and Engineering-Social Sciences 0.0243902 -0.7484647 0.7972452 0.9999991

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences 0.7886906 0.4302929 1.0000000
Arts and Humanities - Other 0.0519304 0.9585841 1.0000000
Health Sciences - Other -0.3445779 0.7304117 1.0000000
Arts and Humanities - Science and Mathematics 1.2024921 0.2291729 1.0000000
Health Sciences - Science and Mathematics 0.1242881 0.9010872 1.0000000
Other - Science and Mathematics 0.4323168 0.6655112 1.0000000
Arts and Humanities - Social Sciences 1.3672136 0.1715584 1.0000000
Health Sciences - Social Sciences 0.1635445 0.8700897 1.0000000
Other - Social Sciences 0.4560481 0.6483554 1.0000000
Science and Mathematics - Social Sciences 0.0435693 0.9652477 0.9652477
Arts and Humanities - Technical Sciences and Engineering 1.4384127 0.1503170 1.0000000
Health Sciences - Technical Sciences and Engineering 0.2132566 0.8311268 1.0000000
Other - Technical Sciences and Engineering 0.4825039 0.6294480 1.0000000
Science and Mathematics - Technical Sciences and Engineering 0.1087827 0.9133748 1.0000000
Social Sciences - Technical Sciences and Engineering 0.0716427 0.9428862 1.0000000

Q26

Row

ANOVA rezultati: Q26

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   3.48  0.6961   0.737  0.596
Residuals            161 151.99  0.9441               

ONEWAY-test rezultati: Q26


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q26 and podaci$`Study field`
F = 0.67907, num df = 5.000, denom df = 19.719, p-value = 0.6445

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5   0.625 0.6809
      161               

Kruskal-Wallis rezultati: Q26


    Kruskal-Wallis rank sum test

data:  Q26 by Study field
Kruskal-Wallis chi-squared = 3.8837, df = 5, p-value = 0.5663

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities 0.1076923 -0.7870169 1.0024016 0.9993252
Other-Arts and Humanities 0.1333333 -1.5442699 1.8109366 0.9999120
Science and Mathematics-Arts and Humanities 0.3862069 -0.2972973 1.0697111 0.5801450
Social Sciences-Arts and Humanities 0.1170732 -0.5057521 0.7398985 0.9943160
Technical Sciences and Engineering-Arts and Humanities 0.3121951 -0.3106302 0.9350204 0.6989637
Other-Health Sciences 0.0256410 -1.7693957 1.8206778 1.0000000
Science and Mathematics-Health Sciences 0.2785146 -0.6568903 1.2139195 0.9555830
Social Sciences-Health Sciences 0.0093809 -0.8826481 0.9014098 1.0000000
Technical Sciences and Engineering-Health Sciences 0.2045028 -0.6875261 1.0965317 0.9858364
Science and Mathematics-Other 0.2528736 -1.4467824 1.9525295 0.9981220
Social Sciences-Other -0.0162602 -1.6924355 1.6599152 1.0000000
Technical Sciences and Engineering-Other 0.1788618 -1.4973135 1.8550371 0.9996250
Social Sciences-Science and Mathematics -0.2691337 -0.9491256 0.4108582 0.8632116
Technical Sciences and Engineering-Science and Mathematics -0.0740118 -0.7540037 0.6059801 0.9995869
Technical Sciences and Engineering-Social Sciences 0.1951220 -0.4238468 0.8140907 0.9436801

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences -0.1772185 0.8593368 1.0000000
Arts and Humanities - Other 0.0019889 0.9984131 0.9984131
Health Sciences - Other 0.0901907 0.9281357 1.0000000
Arts and Humanities - Science and Mathematics -1.3790733 0.1678721 1.0000000
Health Sciences - Science and Mathematics -0.8381862 0.4019262 1.0000000
Other - Science and Mathematics -0.5565474 0.5778367 1.0000000
Arts and Humanities - Social Sciences -0.3452260 0.7299245 1.0000000
Health Sciences - Social Sciences -0.0632899 0.9495357 1.0000000
Other - Social Sciences -0.1302680 0.8963544 1.0000000
Science and Mathematics - Social Sciences 1.0699936 0.2846222 1.0000000
Arts and Humanities - Technical Sciences and Engineering -1.5706590 0.1162619 1.0000000
Health Sciences - Technical Sciences and Engineering -0.9189019 0.3581469 1.0000000
Other - Technical Sciences and Engineering -0.5856087 0.5581385 1.0000000
Science and Mathematics - Technical Sciences and Engineering -0.0524178 0.9581958 1.0000000
Social Sciences - Technical Sciences and Engineering -1.2330682 0.2175503 1.0000000

Q27

Row

ANOVA rezultati: Q27

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   0.54  0.1073   0.098  0.992
Residuals            161 176.70  1.0975               

ONEWAY-test rezultati: Q27


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q27 and podaci$`Study field`
F = 0.17381, num df = 5.000, denom df = 19.978, p-value = 0.9693

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5   0.388 0.8566
      161               

Kruskal-Wallis rezultati: Q27


    Kruskal-Wallis rank sum test

data:  Q27 by Study field
Kruskal-Wallis chi-squared = 1.5875, df = 5, p-value = 0.9028

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.0865385 -1.0512242 0.8781473 0.9998401
Other-Arts and Humanities -0.2916667 -2.1004778 1.5171444 0.9972420
Science and Mathematics-Arts and Humanities -0.0387931 -0.7757552 0.6981690 0.9999886
Social Sciences-Arts and Humanities 0.0579268 -0.6136106 0.7294642 0.9998681
Technical Sciences and Engineering-Arts and Humanities 0.0091463 -0.6623910 0.6806837 1.0000000
Other-Health Sciences -0.2051282 -2.1405574 1.7303010 0.9996373
Science and Mathematics-Health Sciences 0.0477454 -0.9608189 1.0563096 0.9999933
Social Sciences-Health Sciences 0.1444653 -0.8173305 1.1062611 0.9980342
Technical Sciences and Engineering-Health Sciences 0.0956848 -0.8661110 1.0574806 0.9997340
Science and Mathematics-Other 0.2528736 -1.5797150 2.0854621 0.9986923
Social Sciences-Other 0.3495935 -1.4576780 2.1568650 0.9935034
Technical Sciences and Engineering-Other 0.3008130 -1.5064585 2.1080845 0.9967936
Social Sciences-Science and Mathematics 0.0967199 -0.6364552 0.8298950 0.9989475
Technical Sciences and Engineering-Science and Mathematics 0.0479394 -0.6852356 0.7811145 0.9999665
Technical Sciences and Engineering-Social Sciences -0.0487805 -0.7161597 0.6185987 0.9999418

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences 0.2657983 0.7903946 1.000000
Arts and Humanities - Other 0.9017366 0.3671968 1.000000
Health Sciences - Other 0.7102607 0.4775425 1.000000
Arts and Humanities - Science and Mathematics 0.3266939 0.7438994 1.000000
Health Sciences - Science and Mathematics -0.0155179 0.9876190 0.987619
Other - Science and Mathematics -0.7586592 0.4480565 1.000000
Arts and Humanities - Social Sciences -0.4580364 0.6469263 1.000000
Health Sciences - Social Sciences -0.5864034 0.5576045 1.000000
Other - Social Sciences -1.0726998 0.2834058 1.000000
Science and Mathematics - Social Sciences -0.7479108 0.4545140 1.000000
Arts and Humanities - Technical Sciences and Engineering -0.0737735 0.9411906 1.000000
Health Sciences - Technical Sciences and Engineering -0.3181065 0.7504042 1.000000
Other - Technical Sciences and Engineering -0.9299172 0.3524140 1.000000
Science and Mathematics - Technical Sciences and Engineering -0.3959528 0.6921399 1.000000
Social Sciences - Technical Sciences and Engineering 0.3866570 0.6990101 1.000000

Q28

Row

ANOVA rezultati: Q28

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   3.96  0.7919   0.851  0.515
Residuals            161 149.74  0.9301               

ONEWAY-test rezultati: Q28


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q28 and podaci$`Study field`
F = 1.3595, num df = 5.00, denom df = 19.37, p-value = 0.2823

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   5  2.0704 0.07176 .
      161                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q28


    Kruskal-Wallis rank sum test

data:  Q28 by Study field
Kruskal-Wallis chi-squared = 4.8347, df = 5, p-value = 0.4364

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.0192308 -0.9072889 0.8688274 0.9999999
Other-Arts and Humanities -0.5833333 -2.2484656 1.0817990 0.9139084
Science and Mathematics-Arts and Humanities 0.1293103 -0.5491129 0.8077335 0.9939348
Social Sciences-Arts and Humanities 0.2865854 -0.3316100 0.9047807 0.7639022
Technical Sciences and Engineering-Arts and Humanities 0.2378049 -0.3803905 0.8560002 0.8768606
Other-Health Sciences -0.5641026 -2.3457954 1.2175903 0.9426648
Science and Mathematics-Health Sciences 0.1485411 -0.7799102 1.0769924 0.9973431
Social Sciences-Health Sciences 0.3058161 -0.5795816 1.1912139 0.9185738
Technical Sciences and Engineering-Health Sciences 0.2570356 -0.6283621 1.1424334 0.9600855
Science and Mathematics-Other 0.7126437 -0.9743774 2.3996647 0.8273283
Social Sciences-Other 0.8699187 -0.7937963 2.5336337 0.6595481
Technical Sciences and Engineering-Other 0.8211382 -0.8425768 2.4848532 0.7126687
Social Sciences-Science and Mathematics 0.1572750 -0.5176620 0.8322120 0.9847567
Technical Sciences and Engineering-Science and Mathematics 0.1084945 -0.5664425 0.7834315 0.9972825
Technical Sciences and Engineering-Social Sciences -0.0487805 -0.6631480 0.5655870 0.9999124

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences 0.0248898 0.9801428 0.9801428
Arts and Humanities - Other 1.3304567 0.1833678 1.0000000
Health Sciences - Other 1.2310106 0.2183189 1.0000000
Arts and Humanities - Science and Mathematics -0.4817360 0.6299935 1.0000000
Health Sciences - Science and Mathematics -0.3758135 0.7070556 1.0000000
Other - Science and Mathematics -1.5069209 0.1318309 1.0000000
Arts and Humanities - Social Sciences -1.1108707 0.2666240 1.0000000
Health Sciences - Social Sciences -0.8005879 0.4233703 1.0000000
Other - Social Sciences -1.7443622 0.0810960 1.0000000
Science and Mathematics - Social Sciences -0.5332560 0.5938564 1.0000000
Arts and Humanities - Technical Sciences and Engineering -1.2025443 0.2291527 1.0000000
Health Sciences - Technical Sciences and Engineering -0.8645955 0.3872608 1.0000000
Other - Technical Sciences and Engineering -1.7784259 0.0753339 1.0000000
Science and Mathematics - Technical Sciences and Engineering -0.6172227 0.5370879 1.0000000
Social Sciences - Technical Sciences and Engineering -0.0922448 0.9265035 1.0000000

Q29

Row

ANOVA rezultati: Q29

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   2.62  0.5236   0.276  0.926
Residuals            161 305.12  1.8951               

ONEWAY-test rezultati: Q29


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q29 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value   Pr(>F)   
group   5  3.6549 0.003691 **
      161                    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q29


    Kruskal-Wallis rank sum test

data:  Q29 by Study field
Kruskal-Wallis chi-squared = 1.2675, df = 5, p-value = 0.9382

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities 0.2903846 -0.9772830 1.5580522 0.9858881
Other-Arts and Humanities 0.6750000 -1.7019099 3.0519099 0.9636567
Science and Mathematics-Arts and Humanities 0.2956897 -0.6727324 1.2641117 0.9506532
Social Sciences-Arts and Humanities 0.1871951 -0.6952541 1.0696443 0.9900519
Technical Sciences and Engineering-Arts and Humanities 0.2115854 -0.6708638 1.0940345 0.9826734
Other-Health Sciences 0.3846154 -2.1586800 2.9279108 0.9979693
Science and Mathematics-Health Sciences 0.0053050 -1.3200221 1.3306322 1.0000000
Social Sciences-Health Sciences -0.1031895 -1.3670595 1.1606805 0.9998995
Technical Sciences and Engineering-Health Sciences -0.0787992 -1.3426692 1.1850707 0.9999735
Science and Mathematics-Other -0.3793103 -2.7874656 2.0288449 0.9975334
Social Sciences-Other -0.4878049 -2.8626916 1.8870818 0.9914221
Technical Sciences and Engineering-Other -0.4634146 -2.8383014 1.9114721 0.9932347
Social Sciences-Science and Mathematics -0.1084945 -1.0719402 0.8549511 0.9995122
Technical Sciences and Engineering-Science and Mathematics -0.0841043 -1.0475499 0.8793413 0.9998601
Technical Sciences and Engineering-Social Sciences 0.0243902 -0.8525948 0.9013753 0.9999995

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences -0.6404160 0.5219022 1.0000000
Arts and Humanities - Other -0.9008623 0.3676615 1.0000000
Health Sciences - Other -0.5227211 0.6011684 1.0000000
Arts and Humanities - Science and Mathematics -0.6862004 0.4925867 1.0000000
Health Sciences - Science and Mathematics 0.1111446 0.9115017 0.9115017
Other - Science and Mathematics 0.6132233 0.5397287 1.0000000
Arts and Humanities - Social Sciences -0.4689572 0.6391003 1.0000000
Health Sciences - Social Sciences 0.3149087 0.7528309 1.0000000
Other - Social Sciences 0.7273769 0.4669951 1.0000000
Science and Mathematics - Social Sciences 0.2602127 0.7946997 1.0000000
Arts and Humanities - Technical Sciences and Engineering -0.5918894 0.5539247 1.0000000
Health Sciences - Technical Sciences and Engineering 0.2290760 0.8188099 1.0000000
Other - Technical Sciences and Engineering 0.6816983 0.4954297 1.0000000
Science and Mathematics - Technical Sciences and Engineering 0.1476153 0.8826464 1.0000000
Social Sciences - Technical Sciences and Engineering -0.1236982 0.9015543 1.0000000

Q30

Row

ANOVA rezultati: Q30

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   4.24  0.8471   0.519  0.762
Residuals            161 262.70  1.6317               

ONEWAY-test rezultati: Q30


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q30 and podaci$`Study field`
F = 0.50412, num df = 5.000, denom df = 20.881, p-value = 0.7698

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5   1.097 0.3642
      161               

Kruskal-Wallis rezultati: Q30


    Kruskal-Wallis rank sum test

data:  Q30 by Study field
Kruskal-Wallis chi-squared = 2.6044, df = 5, p-value = 0.7607

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities 0.2865385 -0.8897122 1.4627891 0.9814022
Other-Arts and Humanities 0.1583333 -2.0471675 2.3638342 0.9999468
Science and Mathematics-Arts and Humanities 0.2732759 -0.6253092 1.1718609 0.9514655
Social Sciences-Arts and Humanities -0.1506098 -0.9694218 0.6682023 0.9948646
Technical Sciences and Engineering-Arts and Humanities 0.1420732 -0.6767389 0.9608852 0.9960968
Other-Health Sciences -0.1282051 -2.4880927 2.2316824 0.9999867
Science and Mathematics-Health Sciences -0.0132626 -1.2430148 1.2164896 1.0000000
Social Sciences-Health Sciences -0.4371482 -1.6098752 0.7355787 0.8905961
Technical Sciences and Engineering-Health Sciences -0.1444653 -1.3171922 1.0282616 0.9992448
Science and Mathematics-Other 0.1149425 -2.1195504 2.3494355 0.9999898
Social Sciences-Other -0.3089431 -2.5125667 1.8946805 0.9985882
Technical Sciences and Engineering-Other -0.0162602 -2.2198837 2.1873634 1.0000000
Social Sciences-Science and Mathematics -0.4238856 -1.3178531 0.4700819 0.7462425
Technical Sciences and Engineering-Science and Mathematics -0.1312027 -1.0251702 0.7627648 0.9982408
Technical Sciences and Engineering-Social Sciences 0.2926829 -0.5210590 1.1064249 0.9045998

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences -0.5527606 0.5804274 1.0000000
Arts and Humanities - Other 0.0631587 0.9496402 0.9496402
Health Sciences - Other 0.3345420 0.7379706 1.0000000
Arts and Humanities - Science and Mathematics -0.8822992 0.3776150 1.0000000
Health Sciences - Science and Mathematics -0.1159874 0.9076625 1.0000000
Other - Science and Mathematics -0.4171494 0.6765692 1.0000000
Arts and Humanities - Social Sciences 0.6097084 0.5420550 1.0000000
Health Sciences - Social Sciences 0.9801272 0.3270233 1.0000000
Other - Social Sciences 0.1633401 0.8702507 1.0000000
Science and Mathematics - Social Sciences 1.4453069 0.1483717 1.0000000
Arts and Humanities - Technical Sciences and Engineering -0.4307416 0.6666563 1.0000000
Health Sciences - Technical Sciences and Engineering 0.2536726 0.7997485 1.0000000
Other - Technical Sciences and Engineering -0.2232654 0.8233290 1.0000000
Science and Mathematics - Technical Sciences and Engineering 0.4923271 0.6224881 1.0000000
Social Sciences - Technical Sciences and Engineering -1.0469326 0.2951307 1.0000000

Q31

Row

ANOVA rezultati: Q31

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   6.99   1.398   0.791  0.558
Residuals            161 284.51   1.767               

ONEWAY-test rezultati: Q31


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q31 and podaci$`Study field`
F = 1.4815, num df = 5.00, denom df = 20.81, p-value = 0.2383

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   5  1.9722 0.08549 .
      161                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q31


    Kruskal-Wallis rank sum test

data:  Q31 by Study field
Kruskal-Wallis chi-squared = 4.1854, df = 5, p-value = 0.523

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.5442308 -1.7683344 0.6798729 0.7942773
Other-Arts and Humanities 0.5583333 -1.7368930 2.8535597 0.9815192
Science and Mathematics-Arts and Humanities -0.2577586 -1.1929004 0.6773832 0.9680242
Social Sciences-Arts and Humanities -0.4335366 -1.2856600 0.4185868 0.6854062
Technical Sciences and Engineering-Arts and Humanities -0.2140244 -1.0661478 0.6380990 0.9786983
Other-Health Sciences 1.1025641 -1.3533298 3.5584580 0.7874770
Science and Mathematics-Health Sciences 0.2864721 -0.9933095 1.5662538 0.9872881
Social Sciences-Health Sciences 0.1106942 -1.1097423 1.3311307 0.9998311
Technical Sciences and Engineering-Health Sciences 0.3302064 -0.8902301 1.5506429 0.9704914
Science and Mathematics-Other -0.8160920 -3.1414899 1.5093060 0.9133048
Social Sciences-Other -0.9918699 -3.2851426 1.3014028 0.8126322
Technical Sciences and Engineering-Other -0.7723577 -3.0656304 1.5209150 0.9263444
Social Sciences-Science and Mathematics -0.1757780 -1.1061144 0.7545584 0.9941779
Technical Sciences and Engineering-Science and Mathematics 0.0437342 -0.8866022 0.9740706 0.9999935
Technical Sciences and Engineering-Social Sciences 0.2195122 -0.6273349 1.0663593 0.9755239

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences 1.3443527 0.1788344 1.0000000
Arts and Humanities - Other -0.7214102 0.4706572 1.0000000
Health Sciences - Other -1.3442871 0.1788556 1.0000000
Arts and Humanities - Science and Mathematics 0.8606486 0.3894316 1.0000000
Health Sciences - Science and Mathematics -0.6569858 0.5111900 1.0000000
Other - Science and Mathematics 1.0581536 0.2899854 1.0000000
Arts and Humanities - Social Sciences 1.4936361 0.1352708 1.0000000
Health Sciences - Social Sciences -0.3055175 0.7599721 1.0000000
Other - Social Sciences 1.2770230 0.2015941 1.0000000
Science and Mathematics - Social Sciences 0.5029726 0.6149835 1.0000000
Arts and Humanities - Technical Sciences and Engineering 0.8579466 0.3909219 1.0000000
Health Sciences - Technical Sciences and Engineering -0.7493635 0.4536382 1.0000000
Other - Technical Sciences and Engineering 1.0408165 0.2979607 1.0000000
Science and Mathematics - Technical Sciences and Engineering -0.0792747 0.9368142 0.9368142
Social Sciences - Technical Sciences and Engineering -0.6396502 0.5224001 1.0000000

Q32

Row

ANOVA rezultati: Q32

                      Df Sum Sq Mean Sq F value   Pr(>F)    
podaci$`Study field`   5  38.66   7.733   4.641 0.000553 ***
Residuals            161 268.27   1.666                     
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q32


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q32 and podaci$`Study field`
F = 5.1986, num df = 5.000, denom df = 20.728, p-value = 0.003008

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   5  2.7365 0.02112 *
      161                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q32


    Kruskal-Wallis rank sum test

data:  Q32 by Study field
Kruskal-Wallis chi-squared = 20.6, df = 5, p-value = 0.0009638

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities -1.1134615 -2.3021192 0.0751961 0.0804248
Other-Arts and Humanities -0.2416667 -2.4704310 1.9870976 0.9995945
Science and Mathematics-Arts and Humanities -1.2646552 -2.1727184 -0.3565920 0.0012500
Social Sciences-Arts and Humanities -1.0384146 -1.8658634 -0.2109659 0.0052093
Technical Sciences and Engineering-Arts and Humanities -1.0384146 -1.8658634 -0.2109659 0.0052093
Other-Health Sciences 0.8717949 -1.5129846 3.2565743 0.8984373
Science and Mathematics-Health Sciences -0.1511936 -1.3939171 1.0915298 0.9992891
Social Sciences-Health Sciences 0.0750469 -1.1100499 1.2601437 0.9999714
Technical Sciences and Engineering-Health Sciences 0.0750469 -1.1100499 1.2601437 0.9999714
Science and Mathematics-Other -1.0229885 -3.2810507 1.2350737 0.7809925
Social Sciences-Other -0.7967480 -3.0236152 1.4301192 0.9065245
Technical Sciences and Engineering-Other -0.7967480 -3.0236152 1.4301192 0.9065245
Social Sciences-Science and Mathematics 0.2262405 -0.6771564 1.1296375 0.9789719
Technical Sciences and Engineering-Science and Mathematics 0.2262405 -0.6771564 1.1296375 0.9789719
Technical Sciences and Engineering-Social Sciences 0.0000000 -0.8223252 0.8223252 1.0000000

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences 2.5468480 0.0108701 0.1304409
Arts and Humanities - Other 0.3872444 0.6985753 1.0000000
Health Sciences - Other -0.9075279 0.3641277 1.0000000
Arts and Humanities - Science and Mathematics 3.7923356 0.0001492 0.0022386
Health Sciences - Science and Mathematics 0.3350303 0.7376022 1.0000000
Other - Science and Mathematics 1.1428401 0.2531050 1.0000000
Arts and Humanities - Social Sciences 3.4540868 0.0005522 0.0077302
Health Sciences - Social Sciences -0.1428158 0.8864356 1.0000000
Other - Social Sciences 0.8958789 0.3703174 1.0000000
Science and Mathematics - Social Sciences -0.6482207 0.5168422 1.0000000
Arts and Humanities - Technical Sciences and Engineering 3.3990066 0.0006763 0.0087920
Health Sciences - Technical Sciences and Engineering -0.1812735 0.8561529 1.0000000
Other - Technical Sciences and Engineering 0.8754125 0.3813495 1.0000000
Science and Mathematics - Technical Sciences and Engineering -0.6986703 0.4847581 1.0000000
Social Sciences - Technical Sciences and Engineering -0.0554234 0.9558011 0.9558011

Q33

Row

ANOVA rezultati: Q33

                      Df Sum Sq Mean Sq F value  Pr(>F)   
podaci$`Study field`   5  20.27   4.054   3.594 0.00415 **
Residuals            161 181.62   1.128                   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q33


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q33 and podaci$`Study field`
F = 2.5664, num df = 5.000, denom df = 18.905, p-value = 0.06188

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   5   2.649 0.02487 *
      161                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q33


    Kruskal-Wallis rank sum test

data:  Q33 by Study field
Kruskal-Wallis chi-squared = 16.367, df = 5, p-value = 0.00587

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.7596154 -1.7376497 0.2184189 0.2253822
Other-Arts and Humanities -0.3750000 -2.2088399 1.4588399 0.9915963
Science and Mathematics-Arts and Humanities -0.7543103 -1.5014699 -0.0071508 0.0463840
Social Sciences-Arts and Humanities -0.8628049 -1.5436344 -0.1819753 0.0046099
Technical Sciences and Engineering-Arts and Humanities -0.8140244 -1.4948540 -0.1331948 0.0092345
Other-Health Sciences 0.3846154 -1.5775947 2.3468255 0.9930918
Science and Mathematics-Health Sciences 0.0053050 -1.0172149 1.0278250 1.0000000
Social Sciences-Health Sciences -0.1031895 -1.0782939 0.8719149 0.9996400
Technical Sciences and Engineering-Health Sciences -0.0544090 -1.0295134 0.9206954 0.9999848
Science and Mathematics-Other -0.3793103 -2.2372568 1.4786361 0.9916593
Social Sciences-Other -0.4878049 -2.3200839 1.3444741 0.9724919
Technical Sciences and Engineering-Other -0.4390244 -2.2713034 1.3932546 0.9827267
Social Sciences-Science and Mathematics -0.1084945 -0.8518147 0.6348256 0.9982866
Technical Sciences and Engineering-Science and Mathematics -0.0597140 -0.8030342 0.6836061 0.9999072
Technical Sciences and Engineering-Social Sciences 0.0487805 -0.6278334 0.7253944 0.9999456

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences 1.8778816 0.0603974 0.7247683
Arts and Humanities - Other 0.2471857 0.8047645 1.0000000
Health Sciences - Other -0.7049875 0.4808180 1.0000000
Arts and Humanities - Science and Mathematics 2.8050704 0.0050306 0.0653973
Health Sciences - Science and Mathematics 0.2534939 0.7998866 1.0000000
Other - Science and Mathematics 0.8840601 0.3766638 1.0000000
Arts and Humanities - Social Sciences 3.3945086 0.0006875 0.0103128
Health Sciences - Social Sciences 0.4865624 0.6265685 1.0000000
Other - Social Sciences 1.0139192 0.3106213 1.0000000
Science and Mathematics - Social Sciences 0.2895745 0.7721418 1.0000000
Arts and Humanities - Technical Sciences and Engineering 3.3492520 0.0008103 0.0113442
Health Sciences - Technical Sciences and Engineering 0.4549638 0.6491353 1.0000000
Other - Technical Sciences and Engineering 0.9971029 0.3187145 1.0000000
Science and Mathematics - Technical Sciences and Engineering 0.2481226 0.8040395 1.0000000
Social Sciences - Technical Sciences and Engineering -0.0455385 0.9636781 0.9636781

Q35

Row

ANOVA rezultati: Q35

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   2.86  0.5727   0.505  0.773
Residuals            161 182.77  1.1352               

ONEWAY-test rezultati: Q35


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q35 and podaci$`Study field`
F = 0.52771, num df = 5.000, denom df = 20.008, p-value = 0.7526

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  1.0375 0.3975
      161               

Kruskal-Wallis rezultati: Q35


    Kruskal-Wallis rank sum test

data:  Q35 by Study field
Kruskal-Wallis chi-squared = 2.3057, df = 5, p-value = 0.8054

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.0403846 -1.0214944 0.9407252 0.9999966
Other-Arts and Humanities 0.2416667 -1.5979399 2.0812733 0.9989686
Science and Mathematics-Arts and Humanities 0.3681034 -0.3814056 1.1176125 0.7169543
Social Sciences-Arts and Humanities 0.0871951 -0.5957754 0.7701656 0.9991018
Technical Sciences and Engineering-Arts and Humanities 0.0628049 -0.6201656 0.7457754 0.9998193
Other-Health Sciences 0.2820513 -1.6863292 2.2504317 0.9984319
Science and Mathematics-Health Sciences 0.4084881 -0.6172473 1.4342234 0.8600963
Social Sciences-Health Sciences 0.1275797 -0.8505909 1.1057504 0.9990039
Technical Sciences and Engineering-Health Sciences 0.1031895 -0.8749812 1.0813602 0.9996455
Science and Mathematics-Other 0.1264368 -1.7373521 1.9902257 0.9999598
Social Sciences-Other -0.1544715 -1.9925123 1.6835692 0.9998840
Technical Sciences and Engineering-Other -0.1788618 -2.0169026 1.6591790 0.9997614
Social Sciences-Science and Mathematics -0.2809083 -1.0265659 0.4647493 0.8861305
Technical Sciences and Engineering-Science and Mathematics -0.3052986 -1.0509562 0.4403590 0.8453756
Technical Sciences and Engineering-Social Sciences -0.0243902 -0.7031318 0.6543513 0.9999983

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences -0.0453680 0.9638140 0.963814
Arts and Humanities - Other -0.2528889 0.8003541 1.000000
Health Sciences - Other -0.2137316 0.8307564 1.000000
Arts and Humanities - Science and Mathematics -1.4365237 0.1508534 1.000000
Health Sciences - Science and Mathematics -1.0062797 0.3142810 1.000000
Other - Science and Mathematics -0.3280799 0.7428513 1.000000
Arts and Humanities - Social Sciences -0.5323734 0.5944674 1.000000
Health Sciences - Social Sciences -0.3262052 0.7442691 1.000000
Other - Social Sciences 0.0552875 0.9559094 1.000000
Science and Mathematics - Social Sciences 0.9563267 0.3389072 1.000000
Arts and Humanities - Technical Sciences and Engineering -0.3867896 0.6989120 1.000000
Health Sciences - Technical Sciences and Engineering -0.2245569 0.8223240 1.000000
Other - Technical Sciences and Engineering 0.1093828 0.9128988 1.000000
Science and Mathematics - Technical Sciences and Engineering 1.0896713 0.2758579 1.000000
Social Sciences - Technical Sciences and Engineering 0.1464908 0.8835339 1.000000

Q36

Row

ANOVA rezultati: Q36

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   3.19  0.6383   0.531  0.753
Residuals            161 193.53  1.2020               

ONEWAY-test rezultati: Q36


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q36 and podaci$`Study field`
F = 0.57292, num df = 5.00, denom df = 20.07, p-value = 0.72

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  0.8215  0.536
      161               

Kruskal-Wallis rezultati: Q36


    Kruskal-Wallis rank sum test

data:  Q36 by Study field
Kruskal-Wallis chi-squared = 2.2735, df = 5, p-value = 0.8102

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities 0.1884615 -0.8211219 1.1980449 0.9944972
Other-Arts and Humanities 0.3166667 -1.5763286 2.2096620 0.9967164
Science and Mathematics-Arts and Humanities -0.1086207 -0.8798819 0.6626405 0.9985571
Social Sciences-Arts and Humanities 0.1865854 -0.5162062 0.8893769 0.9728221
Technical Sciences and Engineering-Arts and Humanities -0.1304878 -0.8332793 0.5723037 0.9946340
Other-Health Sciences 0.1282051 -1.8973013 2.1537115 0.9999715
Science and Mathematics-Health Sciences -0.2970822 -1.3525863 0.7584218 0.9650175
Social Sciences-Health Sciences -0.0018762 -1.0084351 1.0046828 1.0000000
Technical Sciences and Engineering-Health Sciences -0.3189493 -1.3255083 0.6876096 0.9424708
Science and Mathematics-Other -0.4252874 -2.3431668 1.4925921 0.9878198
Social Sciences-Other -0.1300813 -2.0214653 1.7613027 0.9999570
Technical Sciences and Engineering-Other -0.4471545 -2.3385385 1.4442296 0.9837331
Social Sciences-Science and Mathematics 0.2952061 -0.4720919 1.0625040 0.8767907
Technical Sciences and Engineering-Science and Mathematics -0.0218671 -0.7891650 0.7454308 0.9999995
Technical Sciences and Engineering-Social Sciences -0.3170732 -1.0155130 0.3813667 0.7794987

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences -0.6665422 0.5050646 1.0000000
Arts and Humanities - Other -0.3772894 0.7059585 1.0000000
Health Sciences - Other -0.0203787 0.9837413 0.9837413
Arts and Humanities - Science and Mathematics 0.3236087 0.7462343 1.0000000
Health Sciences - Science and Mathematics 0.8740059 0.3821150 1.0000000
Other - Science and Mathematics 0.5025310 0.6152940 1.0000000
Arts and Humanities - Social Sciences -0.8138224 0.4157467 1.0000000
Health Sciences - Social Sciences 0.1003244 0.9200868 1.0000000
Other - Social Sciences 0.0752145 0.9400440 1.0000000
Science and Mathematics - Social Sciences -1.0706850 0.2843111 1.0000000
Arts and Humanities - Technical Sciences and Engineering 0.3168998 0.7513196 1.0000000
Health Sciences - Technical Sciences and Engineering 0.8898082 0.3735689 1.0000000
Other - Technical Sciences and Engineering 0.4953630 0.6203439 1.0000000
Science and Mathematics - Technical Sciences and Engineering -0.0350220 0.9720622 1.0000000
Social Sciences - Technical Sciences and Engineering 1.1377673 0.2552177 1.0000000

Q37

Row

ANOVA rezultati: Q37

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   3.43  0.6869   0.542  0.745
Residuals            161 204.18  1.2682               

ONEWAY-test rezultati: Q37


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q37 and podaci$`Study field`
F = 0.98952, num df = 5.000, denom df = 20.087, p-value = 0.4487

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  1.2524 0.2872
      161               

Kruskal-Wallis rezultati: Q37


    Kruskal-Wallis rank sum test

data:  Q37 by Study field
Kruskal-Wallis chi-squared = 3.118, df = 5, p-value = 0.6818

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities 0.0038462 -1.0331571 1.0408494 1.0000000
Other-Arts and Humanities 0.5166667 -1.4277415 2.4610749 0.9727205
Science and Mathematics-Arts and Humanities -0.3224138 -1.1146221 0.4697945 0.8486694
Social Sciences-Arts and Humanities -0.0524390 -0.7743181 0.6694400 0.9999436
Technical Sciences and Engineering-Arts and Humanities -0.1743902 -0.8962693 0.5474888 0.9820820
Other-Health Sciences 0.5128205 -1.5676977 2.5933387 0.9804023
Science and Mathematics-Health Sciences -0.3262599 -1.4104310 0.7579111 0.9535566
Social Sciences-Health Sciences -0.0562852 -1.0901818 0.9776114 0.9999865
Technical Sciences and Engineering-Health Sciences -0.1782364 -1.2121330 0.8556602 0.9962142
Science and Mathematics-Other -0.8390805 -2.8090486 1.1308877 0.8222819
Social Sciences-Other -0.5691057 -2.5118588 1.3736475 0.9585303
Technical Sciences and Engineering-Other -0.6910569 -2.6338101 1.2516962 0.9086176
Social Sciences-Science and Mathematics 0.2699748 -0.5181626 1.0581122 0.9212029
Technical Sciences and Engineering-Science and Mathematics 0.1480235 -0.6401138 0.9361609 0.9943381
Technical Sciences and Engineering-Social Sciences -0.1219512 -0.8393604 0.5954579 0.9964573

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences -0.1593121 0.8734230 1.000000
Arts and Humanities - Other -0.8111995 0.4172511 1.000000
Health Sciences - Other -0.6787231 0.4973133 1.000000
Arts and Humanities - Science and Mathematics 1.2335257 0.2173797 1.000000
Health Sciences - Science and Mathematics 1.0537235 0.2920095 1.000000
Other - Science and Mathematics 1.2967277 0.1947249 1.000000
Arts and Humanities - Social Sciences 0.1209408 0.9037380 0.903738
Health Sciences - Social Sciences 0.2442331 0.8070503 1.000000
Other - Social Sciences 0.8568292 0.3915393 1.000000
Science and Mathematics - Social Sciences -1.1291239 0.2588456 1.000000
Arts and Humanities - Technical Sciences and Engineering 0.6318417 0.5274903 1.000000
Health Sciences - Technical Sciences and Engineering 0.6009502 0.5478731 1.000000
Other - Technical Sciences and Engineering 1.0466673 0.2952530 1.000000
Science and Mathematics - Technical Sciences and Engineering -0.6611741 0.5085006 1.000000
Social Sciences - Technical Sciences and Engineering 0.5140841 0.6071932 1.000000

Q38

Row

ANOVA rezultati: Q38

                      Df Sum Sq Mean Sq F value Pr(>F)  
podaci$`Study field`   5  11.72  2.3442   3.104 0.0106 *
Residuals            161 121.60  0.7553                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q38


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q38 and podaci$`Study field`
F = 3.5125, num df = 5.000, denom df = 19.272, p-value = 0.0201

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value    Pr(>F)    
group   5   4.392 0.0008932 ***
      161                      
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q38


    Kruskal-Wallis rank sum test

data:  Q38 by Study field
Kruskal-Wallis chi-squared = 13.257, df = 5, p-value = 0.02108

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.0192308 -0.8194911 0.7810296 0.9999998
Other-Arts and Humanities 0.4166667 -1.0838424 1.9171757 0.9669885
Science and Mathematics-Arts and Humanities 0.7500000 0.1386491 1.3613509 0.0068591
Social Sciences-Arts and Humanities 0.2378049 -0.3192726 0.7948824 0.8209131
Technical Sciences and Engineering-Arts and Humanities 0.4329268 -0.1241507 0.9900043 0.2247949
Other-Health Sciences 0.4358974 -1.1696484 2.0414433 0.9700491
Science and Mathematics-Health Sciences 0.7692308 -0.0674292 1.6058907 0.0910178
Social Sciences-Health Sciences 0.2570356 -0.5408273 1.0548986 0.9384433
Technical Sciences and Engineering-Health Sciences 0.4521576 -0.3457053 1.2500205 0.5769635
Science and Mathematics-Other 0.3333333 -1.1869005 1.8535671 0.9884287
Social Sciences-Other -0.1788618 -1.6780937 1.3203701 0.9993538
Technical Sciences and Engineering-Other 0.0162602 -1.4829717 1.5154920 1.0000000
Social Sciences-Science and Mathematics -0.5121951 -1.1204045 0.0960143 0.1525296
Technical Sciences and Engineering-Science and Mathematics -0.3170732 -0.9252826 0.2911362 0.6624222
Technical Sciences and Engineering-Social Sciences 0.1951220 -0.3585061 0.7487500 0.9118498

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences 0.3232642 0.7464952 1.0000000
Arts and Humanities - Other -0.6013459 0.5476096 1.0000000
Health Sciences - Other -0.7231313 0.4695992 1.0000000
Arts and Humanities - Science and Mathematics -3.2255146 0.0012575 0.0188620
Health Sciences - Science and Mathematics -2.6660972 0.0076738 0.1074325
Other - Science and Mathematics -0.7035736 0.4816983 1.0000000
Arts and Humanities - Social Sciences -0.8824107 0.3775548 1.0000000
Health Sciences - Social Sciences -0.9403452 0.3470405 1.0000000
Other - Social Sciences 0.2739762 0.7841029 1.0000000
Science and Mathematics - Social Sciences 2.4339483 0.0149351 0.1941566
Arts and Humanities - Technical Sciences and Engineering -1.7367722 0.0824274 0.9891286
Health Sciences - Technical Sciences and Engineering -1.5368707 0.1243250 1.0000000
Other - Technical Sciences and Engineering -0.0434835 0.9653162 0.9653162
Science and Mathematics - Technical Sciences and Engineering 1.6514126 0.0986544 1.0000000
Social Sciences - Technical Sciences and Engineering -0.8596848 0.3899628 1.0000000

Q39

Row

ANOVA rezultati: Q39

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   1.70  0.3405   0.617  0.687
Residuals            161  88.78  0.5514               

ONEWAY-test rezultati: Q39


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q39 and podaci$`Study field`
F = 0.69745, num df = 5.000, denom df = 19.315, p-value = 0.6318

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5   1.012 0.4125
      161               

Kruskal-Wallis rezultati: Q39


    Kruskal-Wallis rank sum test

data:  Q39 by Study field
Kruskal-Wallis chi-squared = 3.7843, df = 5, p-value = 0.5809

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.2096154 -0.8934023 0.4741716 0.9498278
Other-Arts and Humanities -0.1583333 -1.4404518 1.1237851 0.9992357
Science and Mathematics-Arts and Humanities 0.1405172 -0.3818550 0.6628895 0.9712254
Social Sciences-Arts and Humanities 0.0042683 -0.4717297 0.4802663 1.0000000
Technical Sciences and Engineering-Arts and Humanities -0.1176829 -0.5936809 0.3583151 0.9801370
Other-Health Sciences 0.0512821 -1.3205856 1.4231497 0.9999979
Science and Mathematics-Health Sciences 0.3501326 -0.3647562 1.0650215 0.7193320
Social Sciences-Health Sciences 0.2138837 -0.4678548 0.8956222 0.9447787
Technical Sciences and Engineering-Health Sciences 0.0919325 -0.5898060 0.7736710 0.9988296
Science and Mathematics-Other 0.2988506 -1.0001218 1.5978229 0.9856087
Social Sciences-Other 0.1626016 -1.1184255 1.4436287 0.9991268
Technical Sciences and Engineering-Other 0.0406504 -1.2403767 1.3216775 0.9999991
Social Sciences-Science and Mathematics -0.1362489 -0.6559369 0.3834390 0.9742741
Technical Sciences and Engineering-Science and Mathematics -0.2582002 -0.7778881 0.2614878 0.7068543
Technical Sciences and Engineering-Social Sciences -0.1219512 -0.5950018 0.3510994 0.9761046

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences 1.2518540 0.2106231 1.0000000
Arts and Humanities - Other 0.5295467 0.5964262 1.0000000
Health Sciences - Other -0.1290648 0.8973064 1.0000000
Arts and Humanities - Science and Mathematics -0.4345178 0.6639124 1.0000000
Health Sciences - Science and Mathematics -1.5148950 0.1297990 1.0000000
Other - Science and Mathematics -0.6974141 0.4855437 1.0000000
Arts and Humanities - Social Sciences 0.1196406 0.9047678 0.9047678
Health Sciences - Social Sciences -1.1720810 0.2411645 1.0000000
Other - Social Sciences -0.4855423 0.6272917 1.0000000
Science and Mathematics - Social Sciences 0.5463447 0.5848290 1.0000000
Arts and Humanities - Technical Sciences and Engineering 1.0309459 0.3025662 1.0000000
Health Sciences - Technical Sciences and Engineering -0.5357967 0.5920990 1.0000000
Other - Technical Sciences and Engineering -0.1469239 0.8831921 1.0000000
Science and Mathematics - Technical Sciences and Engineering 1.3810369 0.1672676 1.0000000
Social Sciences - Technical Sciences and Engineering 0.9169832 0.3591514 1.0000000

Q40

Row

ANOVA rezultati: Q40

                      Df Sum Sq Mean Sq F value Pr(>F)  
podaci$`Study field`   5  12.49  2.4983   2.646  0.025 *
Residuals            161 152.00  0.9441                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q40


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q40 and podaci$`Study field`
F = 2.3049, num df = 5.000, denom df = 18.633, p-value = 0.08596

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  0.0826 0.9949
      161               

Kruskal-Wallis rezultati: Q40


    Kruskal-Wallis rank sum test

data:  Q40 by Study field
Kruskal-Wallis chi-squared = 13.223, df = 5, p-value = 0.02137

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities 0.6596154 -0.2351150 1.5543457 0.2790618
Other-Arts and Humanities -0.0583333 -1.7359762 1.6193095 0.9999986
Science and Mathematics-Arts and Humanities -0.4491379 -1.1326583 0.2343824 0.4088168
Social Sciences-Arts and Humanities -0.2371951 -0.8600351 0.3856449 0.8813987
Technical Sciences and Engineering-Arts and Humanities -0.2128049 -0.8356449 0.4100351 0.9220025
Other-Health Sciences -0.7179487 -2.5130278 1.0771304 0.8578930
Science and Mathematics-Health Sciences -1.1087533 -2.0441802 -0.1733264 0.0101761
Social Sciences-Health Sciences -0.8968105 -1.7888605 -0.0047606 0.0479551
Technical Sciences and Engineering-Health Sciences -0.8724203 -1.7644702 0.0196297 0.0592346
Science and Mathematics-Other -0.3908046 -2.0905006 1.3088914 0.9856484
Social Sciences-Other -0.1788618 -1.8550766 1.4973531 0.9996251
Technical Sciences and Engineering-Other -0.1544715 -1.8306864 1.5217433 0.9998174
Social Sciences-Science and Mathematics 0.2119428 -0.4680651 0.8919508 0.9462569
Technical Sciences and Engineering-Science and Mathematics 0.2363331 -0.4436749 0.9163410 0.9165609
Technical Sciences and Engineering-Social Sciences 0.0243902 -0.5945931 0.6433736 0.9999973

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences -2.1890594 0.0285925 0.3431102
Arts and Humanities - Other 0.2646014 0.7913165 1.0000000
Health Sciences - Other 1.3383948 0.1807678 1.0000000
Arts and Humanities - Science and Mathematics 1.8040050 0.0712305 0.7835357
Health Sciences - Science and Mathematics 3.4120164 0.0006448 0.0096726
Other - Science and Mathematics 0.4642992 0.6424334 1.0000000
Arts and Humanities - Social Sciences 1.1358552 0.2560172 1.0000000
Health Sciences - Social Sciences 2.9887047 0.0028016 0.0392228
Other - Social Sciences 0.1572289 0.8750645 1.0000000
Science and Mathematics - Social Sciences -0.7729587 0.4395468 1.0000000
Arts and Humanities - Technical Sciences and Engineering 0.9147757 0.3603094 1.0000000
Health Sciences - Technical Sciences and Engineering 2.8343444 0.0045920 0.0596958
Other - Technical Sciences and Engineering 0.0750812 0.9401501 0.9401501
Science and Mathematics - Technical Sciences and Engineering -0.9754522 0.3293360 1.0000000
Social Sciences - Technical Sciences and Engineering -0.2224569 0.8239582 1.0000000

Q41

Row

ANOVA rezultati: Q41

                      Df Sum Sq Mean Sq F value Pr(>F)  
podaci$`Study field`   5  10.37   2.074   2.047 0.0749 .
Residuals            161 163.17   1.014                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q41


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q41 and podaci$`Study field`
F = 1.7812, num df = 5.00, denom df = 18.72, p-value = 0.1657

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  0.4584 0.8067
      161               

Kruskal-Wallis rezultati: Q41


    Kruskal-Wallis rank sum test

data:  Q41 by Study field
Kruskal-Wallis chi-squared = 10.192, df = 5, p-value = 0.06997

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities 0.0019231 -0.9251108 0.9289569 1.0000000
Other-Arts and Humanities 0.9250000 -0.8132128 2.6632128 0.6422928
Science and Mathematics-Arts and Humanities 0.6146552 -0.0935431 1.3228535 0.1292364
Social Sciences-Arts and Humanities 0.1445122 -0.5008149 0.7898393 0.9872645
Technical Sciences and Engineering-Arts and Humanities 0.4371951 -0.2081320 1.0825222 0.3734786
Other-Health Sciences 0.9230769 -0.9368120 2.7829659 0.7077952
Science and Mathematics-Health Sciences 0.6127321 -0.3564677 1.5819319 0.4536634
Social Sciences-Health Sciences 0.1425891 -0.7816676 1.0668458 0.9977661
Technical Sciences and Engineering-Health Sciences 0.4352720 -0.4889846 1.3595287 0.7516692
Science and Mathematics-Other -0.3103448 -2.0714070 1.4507173 0.9958004
Social Sciences-Other -0.7804878 -2.5172210 0.9562454 0.7867621
Technical Sciences and Engineering-Other -0.4878049 -2.2245381 1.2489283 0.9653281
Social Sciences-Science and Mathematics -0.4701430 -1.1747021 0.2344161 0.3909748
Technical Sciences and Engineering-Science and Mathematics -0.1774601 -0.8820191 0.5270990 0.9784315
Technical Sciences and Engineering-Social Sciences 0.2926829 -0.3486483 0.9340142 0.7756546

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences -0.1353156 0.8923624 0.8923624
Arts and Humanities - Other -1.4666300 0.1424767 1.0000000
Health Sciences - Other -1.3032353 0.1924944 1.0000000
Arts and Humanities - Science and Mathematics -2.5507989 0.0107476 0.1612145
Health Sciences - Science and Mathematics -1.7344508 0.0828381 0.9940576
Other - Science and Mathematics 0.4218157 0.6731596 1.0000000
Arts and Humanities - Social Sciences -0.6300969 0.5286312 1.0000000
Health Sciences - Social Sciences -0.3042190 0.7609610 1.0000000
Other - Social Sciences 1.2337510 0.2172957 1.0000000
Science and Mathematics - Social Sciences 1.9868494 0.0469391 0.6102081
Arts and Humanities - Technical Sciences and Engineering -1.9880307 0.0468083 0.6553161
Health Sciences - Technical Sciences and Engineering -1.2523447 0.2104443 1.0000000
Other - Technical Sciences and Engineering 0.7291764 0.4658938 1.0000000
Science and Mathematics - Technical Sciences and Engineering 0.7430765 0.4574354 1.0000000
Social Sciences - Technical Sciences and Engineering -1.3663946 0.1718151 1.0000000

Q42

Row

ANOVA rezultati: Q42

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   3.02  0.6046    0.78  0.566
Residuals            161 124.81  0.7752               

ONEWAY-test rezultati: Q42


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q42 and podaci$`Study field`
F = 0.67328, num df = 5.000, denom df = 18.658, p-value = 0.6488

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  0.7946  0.555
      161               

Kruskal-Wallis rezultati: Q42


    Kruskal-Wallis rank sum test

data:  Q42 by Study field
Kruskal-Wallis chi-squared = 3.7152, df = 5, p-value = 0.5911

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities 0.0826923 -0.7280727 0.8934573 0.9996995
Other-Arts and Humanities 0.1083333 -1.4118723 1.6285390 0.9999487
Science and Mathematics-Arts and Humanities -0.2939655 -0.9133414 0.3254104 0.7454745
Social Sciences-Arts and Humanities -0.2006098 -0.7649998 0.3637803 0.9088822
Technical Sciences and Engineering-Arts and Humanities 0.0189024 -0.5454876 0.5832925 0.9999988
Other-Health Sciences 0.0256410 -1.6009802 1.6522622 1.0000000
Science and Mathematics-Health Sciences -0.3766578 -1.2243003 0.4709846 0.7946433
Social Sciences-Health Sciences -0.2833021 -1.0916382 0.5250341 0.9137608
Technical Sciences and Engineering-Health Sciences -0.0637899 -0.8721260 0.7445463 0.9999150
Science and Mathematics-Other -0.4022989 -1.9424881 1.1378904 0.9746896
Social Sciences-Other -0.3089431 -1.8278548 1.2099686 0.9918013
Technical Sciences and Engineering-Other -0.0894309 -1.6083426 1.4294808 0.9999801
Social Sciences-Science and Mathematics 0.0933558 -0.5228373 0.7095489 0.9979514
Technical Sciences and Engineering-Science and Mathematics 0.3128680 -0.3033251 0.9290611 0.6872716
Technical Sciences and Engineering-Social Sciences 0.2195122 -0.3413831 0.7804075 0.8687470

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences -0.2493878 0.8030608 1.0000000
Arts and Humanities - Other -0.2640137 0.7917694 1.0000000
Health Sciences - Other -0.1224380 0.9025522 0.9025522
Arts and Humanities - Science and Mathematics 1.3116096 0.1896519 1.0000000
Health Sciences - Science and Mathematics 1.1969365 0.2313313 1.0000000
Other - Science and Mathematics 0.7880424 0.4306719 1.0000000
Arts and Humanities - Social Sciences 0.9765785 0.3287779 1.0000000
Health Sciences - Social Sciences 0.9319959 0.3513386 1.0000000
Other - Social Sciences 0.6271110 0.5305865 1.0000000
Science and Mathematics - Social Sciences -0.4239064 0.6716341 1.0000000
Arts and Humanities - Technical Sciences and Engineering -0.1565919 0.8755665 1.0000000
Health Sciences - Technical Sciences and Engineering 0.1408028 0.8880258 1.0000000
Other - Technical Sciences and Engineering 0.2060529 0.8367496 1.0000000
Science and Mathematics - Technical Sciences and Engineering -1.4618117 0.1437928 1.0000000
Social Sciences - Technical Sciences and Engineering -1.1402307 0.2541902 1.0000000

Q43

Row

ANOVA rezultati: Q43

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   4.98  0.9966   1.549  0.177
Residuals            161 103.56  0.6432               

ONEWAY-test rezultati: Q43


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q43 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   5  3.0497 0.01171 *
      161                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q43


    Kruskal-Wallis rank sum test

data:  Q43 by Study field
Kruskal-Wallis chi-squared = 8.282, df = 5, p-value = 0.1414

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.0807692 -0.8192822 0.6577437 0.9995771
Other-Arts and Humanities -0.8500000 -2.2347312 0.5347312 0.4876910
Science and Mathematics-Arts and Humanities -0.4017241 -0.9659038 0.1624555 0.3170275
Social Sciences-Arts and Humanities -0.0695122 -0.5836061 0.4445817 0.9988144
Technical Sciences and Engineering-Arts and Humanities -0.2646341 -0.7787280 0.2494597 0.6744931
Other-Health Sciences -0.7692308 -2.2508942 0.7124326 0.6663972
Science and Mathematics-Health Sciences -0.3209549 -1.0930590 0.4511491 0.8368159
Social Sciences-Health Sciences 0.0112570 -0.7250435 0.7475576 1.0000000
Technical Sciences and Engineering-Health Sciences -0.1838649 -0.9201655 0.5524357 0.9792378
Science and Mathematics-Other 0.4482759 -0.9546581 1.8512098 0.9404684
Social Sciences-Other 0.7804878 -0.6030647 2.1640403 0.5818974
Technical Sciences and Engineering-Other 0.5853659 -0.7981866 1.9689184 0.8263820
Social Sciences-Science and Mathematics 0.3322119 -0.2290686 0.8934924 0.5290746
Technical Sciences and Engineering-Science and Mathematics 0.1370900 -0.4241905 0.6983705 0.9811829
Technical Sciences and Engineering-Social Sciences -0.1951220 -0.7060326 0.3157887 0.8801325

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences 0.3415898 0.7326596 1.0000000
Arts and Humanities - Other 1.8681209 0.0617452 0.8644330
Health Sciences - Other 1.5756458 0.1151074 1.0000000
Arts and Humanities - Science and Mathematics 2.1824135 0.0290790 0.4361855
Health Sciences - Science and Mathematics 1.2679700 0.2048087 1.0000000
Other - Science and Mathematics -0.9662408 0.3339237 1.0000000
Arts and Humanities - Social Sciences 0.5867998 0.5573382 1.0000000
Health Sciences - Social Sciences 0.0670945 0.9465065 0.9465065
Other - Social Sciences -1.6516721 0.0986014 1.0000000
Science and Mathematics - Social Sciences -1.6562184 0.0976776 1.0000000
Arts and Humanities - Technical Sciences and Engineering 1.5626045 0.1181456 1.0000000
Health Sciences - Technical Sciences and Engineering 0.7484130 0.4542111 1.0000000
Other - Technical Sciences and Engineering -1.2890872 0.1973678 1.0000000
Science and Mathematics - Technical Sciences and Engineering -0.7624491 0.4457920 1.0000000
Social Sciences - Technical Sciences and Engineering 0.9818846 0.3261567 1.0000000

Q44

Row

ANOVA rezultati: Q44

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   3.23  0.6457   0.856  0.512
Residuals            161 121.41  0.7541               

ONEWAY-test rezultati: Q44


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q44 and podaci$`Study field`
F = 0.77547, num df = 5.000, denom df = 18.556, p-value = 0.5796

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  0.1091 0.9902
      161               

Kruskal-Wallis rezultati: Q44


    Kruskal-Wallis rank sum test

data:  Q44 by Study field
Kruskal-Wallis chi-squared = 4.4581, df = 5, p-value = 0.4855

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities 0.0500000 -0.7496339 0.8496339 0.9999732
Other-Arts and Humanities -0.2833333 -1.7826679 1.2160012 0.9941732
Science and Mathematics-Arts and Humanities -0.3637931 -0.9746655 0.2470793 0.5221602
Social Sciences-Arts and Humanities -0.1695122 -0.7261536 0.3871292 0.9511929
Technical Sciences and Engineering-Arts and Humanities -0.0231707 -0.5798122 0.5334707 0.9999965
Other-Health Sciences -0.3333333 -1.9376224 1.2709558 0.9909557
Science and Mathematics-Health Sciences -0.4137931 -1.2497982 0.4222120 0.7101775
Social Sciences-Health Sciences -0.2195122 -1.0167506 0.5777262 0.9681716
Technical Sciences and Engineering-Health Sciences -0.0731707 -0.8704092 0.7240677 0.9998210
Science and Mathematics-Other -0.0804598 -1.5995036 1.4385841 0.9999882
Social Sciences-Other 0.1138211 -1.3842372 1.6118795 0.9999295
Technical Sciences and Engineering-Other 0.2601626 -1.2378957 1.7582210 0.9960803
Social Sciences-Science and Mathematics 0.1942809 -0.4134524 0.8020142 0.9403511
Technical Sciences and Engineering-Science and Mathematics 0.3406224 -0.2671109 0.9483557 0.5888188
Technical Sciences and Engineering-Social Sciences 0.1463415 -0.4068532 0.6995362 0.9732450

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences -0.1701438 0.8648971 1.0000000
Arts and Humanities - Other 0.6045886 0.5454524 1.0000000
Health Sciences - Other 0.6498413 0.5157947 1.0000000
Arts and Humanities - Science and Mathematics 1.7548855 0.0792789 1.0000000
Health Sciences - Science and Mathematics 1.4450437 0.1484456 1.0000000
Other - Science and Mathematics 0.1089702 0.9132261 0.9132261
Arts and Humanities - Social Sciences 0.8769849 0.3804949 1.0000000
Health Sciences - Social Sciences 0.7829764 0.4336410 1.0000000
Other - Social Sciences -0.2792377 0.7800624 1.0000000
Science and Mathematics - Social Sciences -0.9606927 0.3367067 1.0000000
Arts and Humanities - Technical Sciences and Engineering 0.1234457 0.9017542 1.0000000
Health Sciences - Technical Sciences and Engineering 0.2568463 0.7972975 1.0000000
Other - Technical Sciences and Engineering -0.5592343 0.5760018 1.0000000
Science and Mathematics - Technical Sciences and Engineering -1.6508822 0.0987626 1.0000000
Social Sciences - Technical Sciences and Engineering -0.7582342 0.4483108 1.0000000

Q45

Row

ANOVA rezultati: Q45

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   0.31  0.0626   0.089  0.994
Residuals            161 113.39  0.7043               

ONEWAY-test rezultati: Q45


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q45 and podaci$`Study field`
F = 0.080052, num df = 5.000, denom df = 18.616, p-value = 0.9946

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  0.5901 0.7075
      161               

Kruskal-Wallis rezultati: Q45


    Kruskal-Wallis rank sum test

data:  Q45 by Study field
Kruskal-Wallis chi-squared = 0.72526, df = 5, p-value = 0.9816

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.0923077 -0.8650836 0.6804682 0.9993499
Other-Arts and Humanities -0.0666667 -1.5156418 1.3823085 0.9999942
Science and Mathematics-Arts and Humanities 0.0137931 -0.5765614 0.6041476 0.9999998
Social Sciences-Arts and Humanities -0.0585366 -0.5964816 0.4794085 0.9995874
Technical Sciences and Engineering-Arts and Humanities 0.0390244 -0.4989207 0.5769694 0.9999439
Other-Health Sciences 0.0256410 -1.5247634 1.5760455 1.0000000
Science and Mathematics-Health Sciences 0.1061008 -0.7018247 0.9140263 0.9989703
Social Sciences-Health Sciences 0.0337711 -0.7366898 0.8042320 0.9999954
Technical Sciences and Engineering-Health Sciences 0.1313321 -0.6391288 0.9017930 0.9964107
Science and Mathematics-Other 0.0804598 -1.3875626 1.5484822 0.9999861
Social Sciences-Other 0.0081301 -1.4396117 1.4558719 1.0000000
Technical Sciences and Engineering-Other 0.1056911 -1.3420507 1.5534328 0.9999422
Social Sciences-Science and Mathematics -0.0723297 -0.6596505 0.5149912 0.9992459
Technical Sciences and Engineering-Science and Mathematics 0.0252313 -0.5620896 0.6125521 0.9999959
Technical Sciences and Engineering-Social Sciences 0.0975610 -0.4370531 0.6321751 0.9950514

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences 0.5585644 0.5764590 1
Arts and Humanities - Other 0.0000000 1.0000000 1
Health Sciences - Other -0.2784081 0.7806991 1
Arts and Humanities - Science and Mathematics -0.1092542 0.9130009 1
Health Sciences - Science and Mathematics -0.6140961 0.5391518 1
Other - Science and Mathematics -0.0439358 0.9649556 1
Arts and Humanities - Social Sciences 0.1696122 0.8653151 1
Health Sciences - Social Sciences -0.4418175 0.6586213 1
Other - Social Sciences 0.0630237 0.9497476 1
Science and Mathematics - Social Sciences 0.2651715 0.7908773 1
Arts and Humanities - Technical Sciences and Engineering -0.3392245 0.7344406 1
Health Sciences - Technical Sciences and Engineering -0.7970934 0.4253968 1
Other - Technical Sciences and Engineering -0.1260474 0.8996944 1
Science and Mathematics - Technical Sciences and Engineering -0.2008875 0.8407865 1
Social Sciences - Technical Sciences and Engineering -0.5120071 0.6086461 1

Q46

Row

ANOVA rezultati: Q46

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5    6.2  1.2392   1.612   0.16
Residuals            161  123.8  0.7688               

ONEWAY-test rezultati: Q46


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q46 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value   Pr(>F)   
group   5  3.5278 0.004709 **
      161                    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q46


    Kruskal-Wallis rank sum test

data:  Q46 by Study field
Kruskal-Wallis chi-squared = 7.9207, df = 5, p-value = 0.1607

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.4057692 -1.2131831 0.4016446 0.6966346
Other-Arts and Humanities -1.1750000 -2.6889221 0.3389221 0.2260749
Science and Mathematics-Arts and Humanities -0.2094828 -0.8262985 0.4073330 0.9238462
Social Sciences-Arts and Humanities -0.0286585 -0.5907157 0.5333986 0.9999903
Technical Sciences and Engineering-Arts and Humanities -0.2725610 -0.8346182 0.2894962 0.7277729
Other-Health Sciences -0.7692308 -2.3891285 0.8506670 0.7450541
Science and Mathematics-Health Sciences 0.1962865 -0.6478524 1.0404253 0.9849014
Social Sciences-Health Sciences 0.3771107 -0.4278843 1.1821057 0.7558179
Technical Sciences and Engineering-Health Sciences 0.1332083 -0.6717868 0.9382033 0.9968811
Science and Mathematics-Other 0.9655172 -0.5683059 2.4993404 0.4586591
Social Sciences-Other 1.1463415 -0.3662920 2.6589749 0.2500937
Technical Sciences and Engineering-Other 0.9024390 -0.6101944 2.4150725 0.5201330
Social Sciences-Science and Mathematics 0.1808242 -0.4328219 0.7944704 0.9574835
Technical Sciences and Engineering-Science and Mathematics -0.0630782 -0.6767244 0.5505679 0.9996878
Technical Sciences and Engineering-Social Sciences -0.2439024 -0.8024794 0.3146745 0.8064375

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences 1.4445117 0.1485951 1.0000000
Arts and Humanities - Other 2.2140194 0.0268274 0.4024117
Health Sciences - Other 1.3491803 0.1772791 1.0000000
Arts and Humanities - Science and Mathematics 0.9698127 0.3321399 1.0000000
Health Sciences - Science and Mathematics -0.6730207 0.5009341 1.0000000
Other - Science and Mathematics -1.7952898 0.0726075 0.9438980
Arts and Humanities - Social Sciences 0.1430205 0.8862740 0.8862740
Health Sciences - Social Sciences -1.3489934 0.1773391 1.0000000
Other - Social Sciences -2.1627626 0.0305594 0.4278322
Science and Mathematics - Social Sciences -0.8438252 0.3987671 1.0000000
Arts and Humanities - Technical Sciences and Engineering 1.3856725 0.1658469 1.0000000
Health Sciences - Technical Sciences and Engineering -0.4813589 0.6302615 1.0000000
Other - Technical Sciences and Engineering -1.7010239 0.0889385 1.0000000
Science and Mathematics - Technical Sciences and Engineering 0.2943576 0.7684846 1.0000000
Social Sciences - Technical Sciences and Engineering 1.2503945 0.2111555 1.0000000

Q47

Row

ANOVA rezultati: Q47

                      Df Sum Sq Mean Sq F value   Pr(>F)    
podaci$`Study field`   5  15.99   3.198   6.299 2.29e-05 ***
Residuals            161  81.75   0.508                     
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q47


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q47 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value    Pr(>F)    
group   5  10.694 6.891e-09 ***
      161                      
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q47


    Kruskal-Wallis rank sum test

data:  Q47 by Study field
Kruskal-Wallis chi-squared = 31.468, df = 5, p-value = 7.571e-06

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.1307692 -0.7869219 0.5253834 0.9925382
Other-Arts and Humanities -0.9000000 -2.1303035 0.3303035 0.2874062
Science and Mathematics-Arts and Humanities -0.7620690 -1.2633303 -0.2608076 0.0002975
Social Sciences-Arts and Humanities -0.3146341 -0.7713954 0.1421271 0.3544169
Technical Sciences and Engineering-Arts and Humanities -0.7048780 -1.1616393 -0.2481168 0.0002275
Other-Health Sciences -0.7692308 -2.0856564 0.5471949 0.5434143
Science and Mathematics-Health Sciences -0.6312997 -1.3172974 0.0546979 0.0904677
Social Sciences-Health Sciences -0.1838649 -0.8380519 0.4703221 0.9652308
Technical Sciences and Engineering-Health Sciences -0.5741088 -1.2282958 0.0800782 0.1212345
Science and Mathematics-Other 0.1379310 -1.1085452 1.3844073 0.9995522
Social Sciences-Other 0.5853659 -0.6438904 1.8146221 0.7427931
Technical Sciences and Engineering-Other 0.1951220 -1.0341343 1.4243782 0.9974410
Social Sciences-Science and Mathematics 0.4474348 -0.0512507 0.9461203 0.1061877
Technical Sciences and Engineering-Science and Mathematics 0.0571909 -0.4414946 0.5558764 0.9994668
Technical Sciences and Engineering-Social Sciences -0.3902439 -0.8441769 0.0636891 0.1363465

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences 0.2257159 0.8214224 0.8214224
Arts and Humanities - Other 2.0837996 0.0371784 0.2974272
Health Sciences - Other 1.8349701 0.0665101 0.4655708
Arts and Humanities - Science and Mathematics 4.2805067 0.0000186 0.0002611
Health Sciences - Science and Mathematics 2.9118881 0.0035925 0.0467027
Other - Science and Mathematics -0.3353882 0.7373323 1.0000000
Arts and Humanities - Social Sciences 2.1958558 0.0281023 0.2529204
Health Sciences - Social Sciences 1.3067787 0.1912879 1.0000000
Other - Social Sciences -1.2696491 0.2042097 1.0000000
Science and Mathematics - Social Sciences -2.2913653 0.0219423 0.2413652
Arts and Humanities - Technical Sciences and Engineering 4.4348700 0.0000092 0.0001382
Health Sciences - Technical Sciences and Engineering 2.8700853 0.0041036 0.0492433
Other - Technical Sciences and Engineering -0.4376867 0.6616134 1.0000000
Science and Mathematics - Technical Sciences and Engineering -0.2405840 0.8098775 1.0000000
Social Sciences - Technical Sciences and Engineering 2.2529646 0.0242614 0.2426138

Q48

Row

ANOVA rezultati: Q48

                      Df Sum Sq Mean Sq F value Pr(>F)  
podaci$`Study field`   5   7.55  1.5092   2.265 0.0504 .
Residuals            161 107.26  0.6662                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q48


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q48 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value    Pr(>F)    
group   5  5.4979 0.0001061 ***
      161                      
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q48


    Kruskal-Wallis rank sum test

data:  Q48 by Study field
Kruskal-Wallis chi-squared = 9.7038, df = 5, p-value = 0.08408

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.1461538 -0.8977465 0.6054388 0.9933423
Other-Arts and Humanities -1.3000000 -2.7092559 0.1092559 0.0890657
Science and Mathematics-Arts and Humanities -0.0586207 -0.6327924 0.5155510 0.9996980
Social Sciences-Arts and Humanities 0.1146341 -0.4085648 0.6378331 0.9884676
Technical Sciences and Engineering-Arts and Humanities -0.2512195 -0.7744184 0.2719794 0.7360155
Other-Health Sciences -1.1538462 -2.6617510 0.3540587 0.2402443
Science and Mathematics-Health Sciences 0.0875332 -0.6982455 0.8733118 0.9995373
Social Sciences-Health Sciences 0.2607880 -0.4885531 1.0101290 0.9161076
Technical Sciences and Engineering-Health Sciences -0.1050657 -0.8544067 0.6442754 0.9985876
Science and Mathematics-Other 1.2413793 -0.1864017 2.6691604 0.1279427
Social Sciences-Other 1.4146341 0.0065778 2.8226905 0.0482060
Technical Sciences and Engineering-Other 1.0487805 -0.3592759 2.4568368 0.2681288
Social Sciences-Science and Mathematics 0.1732548 -0.3979664 0.7444761 0.9520040
Technical Sciences and Engineering-Science and Mathematics -0.1925988 -0.7638201 0.3786224 0.9260139
Technical Sciences and Engineering-Social Sciences -0.3658537 -0.8858129 0.1541056 0.3303530

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences 0.6623524 0.5077454 1.0000000
Arts and Humanities - Other 2.4416304 0.0146211 0.2046955
Health Sciences - Other 1.9517563 0.0509671 0.5606386
Arts and Humanities - Science and Mathematics 0.2207217 0.8253091 1.0000000
Health Sciences - Science and Mathematics -0.4722539 0.6367456 1.0000000
Other - Science and Mathematics -2.3211891 0.0202766 0.2635963
Arts and Humanities - Social Sciences -0.7074472 0.4792886 1.0000000
Health Sciences - Social Sciences -1.1582907 0.2467454 1.0000000
Other - Social Sciences -2.7065803 0.0067980 0.1019702
Science and Mathematics - Social Sciences -0.8698342 0.3843910 1.0000000
Arts and Humanities - Technical Sciences and Engineering 1.1215492 0.2620542 1.0000000
Health Sciences - Technical Sciences and Engineering 0.1187365 0.9054841 0.9054841
Other - Technical Sciences and Engineering -2.0269705 0.0426654 0.5119851
Science and Mathematics - Technical Sciences and Engineering 0.8053992 0.4205893 1.0000000
Social Sciences - Technical Sciences and Engineering 1.8403921 0.0657107 0.6571069

Q49

Row

ANOVA rezultati: Q49

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   2.15  0.4305   0.711  0.616
Residuals            161  97.52  0.6057               

ONEWAY-test rezultati: Q49


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q49 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   5  2.5863 0.02795 *
      161                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q49


    Kruskal-Wallis rank sum test

data:  Q49 by Study field
Kruskal-Wallis chi-squared = 4.1147, df = 5, p-value = 0.533

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities 0.2942308 -0.4224521 1.0109136 0.8438737
Other-Arts and Humanities -0.4750000 -1.8187991 0.8687991 0.9108356
Science and Mathematics-Arts and Humanities 0.0077586 -0.5397441 0.5552613 1.0000000
Social Sciences-Arts and Humanities 0.0371951 -0.4617024 0.5360926 0.9999358
Technical Sciences and Engineering-Arts and Humanities -0.0847561 -0.5836536 0.4141414 0.9964673
Other-Health Sciences -0.7692308 -2.2070968 0.6686353 0.6370069
Science and Mathematics-Health Sciences -0.2864721 -1.0357531 0.4628088 0.8796398
Social Sciences-Health Sciences -0.2570356 -0.9715715 0.4575002 0.9045500
Technical Sciences and Engineering-Health Sciences -0.3789869 -1.0935227 0.3355490 0.6455785
Science and Mathematics-Other 0.4827586 -0.8787052 1.8442224 0.9097356
Social Sciences-Other 0.5121951 -0.8304601 1.8548504 0.8806378
Technical Sciences and Engineering-Other 0.3902439 -0.9524114 1.7328992 0.9598836
Social Sciences-Science and Mathematics 0.0294365 -0.5152528 0.5741258 0.9999870
Technical Sciences and Engineering-Science and Mathematics -0.0925147 -0.6372040 0.4521746 0.9964711
Technical Sciences and Engineering-Social Sciences -0.1219512 -0.6177595 0.3738571 0.9805863

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences -1.4282642 0.1532158 1.0000000
Arts and Humanities - Other 1.0722242 0.2836194 1.0000000
Health Sciences - Other 1.7139749 0.0865333 1.0000000
Arts and Humanities - Science and Mathematics 0.0891248 0.9289827 1.0000000
Health Sciences - Science and Mathematics 1.4312501 0.1523585 1.0000000
Other - Science and Mathematics -1.0224714 0.3065578 1.0000000
Arts and Humanities - Social Sciences -0.0723305 0.9423389 0.9423389
Health Sciences - Social Sciences 1.3820538 0.1669552 1.0000000
Other - Social Sciences -1.1000138 0.2713261 1.0000000
Science and Mathematics - Social Sciences -0.1558348 0.8761632 1.0000000
Arts and Humanities - Technical Sciences and Engineering 0.2845979 0.7759522 1.0000000
Health Sciences - Technical Sciences and Engineering 1.6312655 0.1028343 1.0000000
Other - Technical Sciences and Engineering -0.9673880 0.3333501 1.0000000
Science and Mathematics - Technical Sciences and Engineering 0.1710868 0.8641555 1.0000000
Social Sciences - Technical Sciences and Engineering 0.3591523 0.7194811 1.0000000

Q50

Row

ANOVA rezultati: Q50

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   3.17  0.6344    1.06  0.384
Residuals            161  96.32  0.5983               

ONEWAY-test rezultati: Q50


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q50 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value    Pr(>F)    
group   5  4.8584 0.0003634 ***
      161                      
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q50


    Kruskal-Wallis rank sum test

data:  Q50 by Study field
Kruskal-Wallis chi-squared = 5.1325, df = 5, p-value = 0.3999

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.3442308 -1.0564938 0.3680323 0.7306196
Other-Arts and Humanities -0.5750000 -1.9105118 0.7605118 0.8155430
Science and Mathematics-Arts and Humanities 0.0456897 -0.4984366 0.5898159 0.9998845
Social Sciences-Arts and Humanities -0.2335366 -0.7293574 0.2622842 0.7515562
Technical Sciences and Engineering-Arts and Humanities -0.1115854 -0.6074061 0.3842354 0.9869742
Other-Health Sciences -0.2307692 -1.6597679 1.1982294 0.9972223
Science and Mathematics-Health Sciences 0.3899204 -0.3547397 1.1345806 0.6581696
Social Sciences-Health Sciences 0.1106942 -0.5994351 0.8208234 0.9976529
Technical Sciences and Engineering-Health Sciences 0.2326454 -0.4774839 0.9427747 0.9340975
Science and Mathematics-Other 0.6206897 -0.7323780 1.9737573 0.7718384
Social Sciences-Other 0.3414634 -0.9929116 1.6758385 0.9768695
Technical Sciences and Engineering-Other 0.4634146 -0.8709604 1.7977897 0.9168017
Social Sciences-Science and Mathematics -0.2792262 -0.8205564 0.2621039 0.6725571
Technical Sciences and Engineering-Science and Mathematics -0.1572750 -0.6986052 0.3840551 0.9599517
Technical Sciences and Engineering-Social Sciences 0.1219512 -0.3707994 0.6147019 0.9800453

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences 1.2025562 0.2291481 1.0000000
Arts and Humanities - Other 1.3336258 0.1823265 1.0000000
Health Sciences - Other 0.6469822 0.5176435 1.0000000
Arts and Humanities - Science and Mathematics 0.0278729 0.9777635 0.9777635
Health Sciences - Science and Mathematics -1.1298711 0.2585305 1.0000000
Other - Science and Mathematics -1.3051134 0.1918542 1.0000000
Arts and Humanities - Social Sciences 1.6042560 0.1086576 1.0000000
Health Sciences - Social Sciences -0.0860588 0.9314197 1.0000000
Other - Social Sciences -0.7386601 0.4601134 1.0000000
Science and Mathematics - Social Sciences 1.4413700 0.1494802 1.0000000
Arts and Humanities - Technical Sciences and Engineering 0.7473961 0.4548245 1.0000000
Health Sciences - Technical Sciences and Engineering -0.6843287 0.4937676 1.0000000
Other - Technical Sciences and Engineering -1.0570480 0.2904897 1.0000000
Science and Mathematics - Technical Sciences and Engineering 0.6565459 0.5114729 1.0000000
Social Sciences - Technical Sciences and Engineering -0.8621987 0.3885782 1.0000000

Q51

Row

ANOVA rezultati: Q51

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5    3.5  0.7006   1.074  0.377
Residuals            161  105.0  0.6521               

ONEWAY-test rezultati: Q51


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q51 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value   Pr(>F)   
group   5  3.2071 0.008686 **
      161                    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q51


    Kruskal-Wallis rank sum test

data:  Q51 by Study field
Kruskal-Wallis chi-squared = 6.8005, df = 5, p-value = 0.2359

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.2365385 -0.9801409 0.5070640 0.9415515
Other-Arts and Humanities -0.7750000 -2.1692740 0.6192740 0.5976253
Science and Mathematics-Arts and Humanities -0.2232759 -0.7913435 0.3447918 0.8666572
Social Sciences-Arts and Humanities -0.1408537 -0.6584904 0.3767831 0.9697546
Technical Sciences and Engineering-Arts and Humanities -0.3359756 -0.8536124 0.1816612 0.4231147
Other-Health Sciences -0.5384615 -2.0303358 0.9534127 0.9033072
Science and Mathematics-Health Sciences 0.0132626 -0.7641624 0.7906876 1.0000000
Social Sciences-Health Sciences 0.0956848 -0.6456900 0.8370596 0.9990533
Technical Sciences and Engineering-Health Sciences -0.0994371 -0.8408119 0.6419376 0.9988597
Science and Mathematics-Other 0.5517241 -0.8608781 1.9643264 0.8697179
Social Sciences-Other 0.6341463 -0.7589409 2.0272336 0.7775180
Technical Sciences and Engineering-Other 0.4390244 -0.9540628 1.8321116 0.9437479
Social Sciences-Science and Mathematics 0.0824222 -0.4827264 0.6475708 0.9982933
Technical Sciences and Engineering-Science and Mathematics -0.1126997 -0.6778483 0.4524488 0.9925175
Technical Sciences and Engineering-Social Sciences -0.1951220 -0.7095535 0.3193096 0.8831787

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences 0.7938590 0.4272775 1.0000000
Arts and Humanities - Other 1.7449802 0.0809883 1.0000000
Health Sciences - Other 1.2351343 0.2167805 1.0000000
Arts and Humanities - Science and Mathematics 1.3915923 0.1640459 1.0000000
Health Sciences - Science and Mathematics 0.2575209 0.7967767 1.0000000
Other - Science and Mathematics -1.1627207 0.2449428 1.0000000
Arts and Humanities - Social Sciences 1.1660893 0.2435783 1.0000000
Health Sciences - Social Sciences 0.0179332 0.9856921 0.9856921
Other - Social Sciences -1.3131768 0.1891234 1.0000000
Science and Mathematics - Social Sciences -0.3307235 0.7408533 1.0000000
Arts and Humanities - Technical Sciences and Engineering 2.1978993 0.0279563 0.4193442
Health Sciences - Technical Sciences and Engineering 0.7383553 0.4602986 1.0000000
Other - Technical Sciences and Engineering -0.9297817 0.3524841 1.0000000
Science and Mathematics - Technical Sciences and Engineering 0.6143426 0.5389889 1.0000000
Social Sciences - Technical Sciences and Engineering 1.0382388 0.2991589 1.0000000

Q52

Row

ANOVA rezultati: Q52

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   2.68  0.5351   0.691  0.631
Residuals            161 124.68  0.7744               

ONEWAY-test rezultati: Q52


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q52 and podaci$`Study field`
F = 0.68498, num df = 5.000, denom df = 18.682, p-value = 0.6406

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  1.3721 0.2375
      161               

Kruskal-Wallis rezultati: Q52


    Kruskal-Wallis rank sum test

data:  Q52 by Study field
Kruskal-Wallis chi-squared = 3.3736, df = 5, p-value = 0.6426

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities 0.0961538 -0.7141824 0.9064901 0.9993705
Other-Arts and Humanities 0.2500000 -1.2694018 1.7694018 0.9969642
Science and Mathematics-Arts and Humanities -0.2327586 -0.8518070 0.3862897 0.8869623
Social Sciences-Arts and Humanities 0.1036585 -0.4604330 0.6677501 0.9948874
Technical Sciences and Engineering-Arts and Humanities 0.1036585 -0.4604330 0.6677501 0.9948874
Other-Health Sciences 0.1538462 -1.4719149 1.7796072 0.9997920
Science and Mathematics-Health Sciences -0.3289125 -1.1761067 0.5182818 0.8725738
Social Sciences-Health Sciences 0.0075047 -0.8004040 0.8154134 1.0000000
Technical Sciences and Engineering-Health Sciences 0.0075047 -0.8004040 0.8154134 1.0000000
Science and Mathematics-Other -0.4827586 -2.0221335 1.0566162 0.9448699
Social Sciences-Other -0.1463415 -1.6644499 1.3717670 0.9997722
Technical Sciences and Engineering-Other -0.1463415 -1.6644499 1.3717670 0.9997722
Social Sciences-Science and Mathematics 0.3364172 -0.2794501 0.9522844 0.6158008
Technical Sciences and Engineering-Science and Mathematics 0.3364172 -0.2794501 0.9522844 0.6158008
Technical Sciences and Engineering-Social Sciences 0.0000000 -0.5605987 0.5605987 1.0000000

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences -0.3260363 0.7443969 1.000000
Arts and Humanities - Other -0.5002197 0.6169204 1.000000
Health Sciences - Other -0.3049868 0.7603762 1.000000
Arts and Humanities - Science and Mathematics 1.1430748 0.2530075 1.000000
Health Sciences - Science and Mathematics 1.1471013 0.2513398 1.000000
Other - Science and Mathematics 0.9534087 0.3403831 1.000000
Arts and Humanities - Social Sciences -0.4480109 0.6541453 1.000000
Health Sciences - Social Sciences 0.0142093 0.9886630 0.988663
Other - Social Sciences 0.3341761 0.7382467 1.000000
Science and Mathematics - Social Sciences -1.5593259 0.1189193 1.000000
Arts and Humanities - Technical Sciences and Engineering -0.4005892 0.6887226 1.000000
Health Sciences - Technical Sciences and Engineering 0.0473198 0.9622584 1.000000
Other - Technical Sciences and Engineering 0.3517969 0.7249906 1.000000
Science and Mathematics - Technical Sciences and Engineering -1.5158908 0.1295470 1.000000
Social Sciences - Technical Sciences and Engineering 0.0477172 0.9619416 1.000000

Q53

Row

ANOVA rezultati: Q53

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   4.24  0.8489    1.34   0.25
Residuals            161 102.00  0.6335               

ONEWAY-test rezultati: Q53


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q53 and podaci$`Study field`
F = 1.1714, num df = 5.000, denom df = 18.622, p-value = 0.36

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value   Pr(>F)   
group   5  3.2257 0.008383 **
      161                    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q53


    Kruskal-Wallis rank sum test

data:  Q53 by Study field
Kruskal-Wallis chi-squared = 5.7847, df = 5, p-value = 0.3277

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.1692308 -0.9021580 0.5636965 0.9853730
Other-Arts and Humanities -0.4000000 -1.7742578 0.9742578 0.9596401
Science and Mathematics-Arts and Humanities -0.3655172 -0.9254297 0.1943953 0.4164127
Social Sciences-Arts and Humanities -0.0585366 -0.5687422 0.4516690 0.9994657
Technical Sciences and Engineering-Arts and Humanities -0.3512195 -0.8614251 0.1589861 0.3551612
Other-Health Sciences -0.2307692 -1.7012261 1.2396877 0.9975760
Science and Mathematics-Health Sciences -0.1962865 -0.9625507 0.5699778 0.9767648
Social Sciences-Health Sciences 0.1106942 -0.6200374 0.8414258 0.9979527
Technical Sciences and Engineering-Health Sciences -0.1819887 -0.9127203 0.5487428 0.9794815
Science and Mathematics-Other 0.0344828 -1.3578402 1.4268057 0.9999997
Social Sciences-Other 0.3414634 -1.0316246 1.7145515 0.9796153
Technical Sciences and Engineering-Other 0.0487805 -1.3243076 1.4218685 0.9999984
Social Sciences-Science and Mathematics 0.3069807 -0.2500546 0.8640159 0.6066289
Technical Sciences and Engineering-Science and Mathematics 0.0142977 -0.5427375 0.5713330 0.9999997
Technical Sciences and Engineering-Social Sciences -0.2926829 -0.7997293 0.2143634 0.5569295

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences 0.7183232 0.4725580 1.0000000
Arts and Humanities - Other 0.8117841 0.4169155 1.0000000
Health Sciences - Other 0.4006387 0.6886861 1.0000000
Arts and Humanities - Science and Mathematics 1.8855454 0.0593562 0.8903435
Health Sciences - Science and Mathematics 0.6907040 0.4897516 1.0000000
Other - Science and Mathematics -0.0429931 0.9657071 0.9657071
Arts and Humanities - Social Sciences 0.3364612 0.7365231 1.0000000
Health Sciences - Social Sciences -0.4855603 0.6272789 1.0000000
Other - Social Sciences -0.6874550 0.4917960 1.0000000
Science and Mathematics - Social Sciences -1.5871096 0.1124878 1.0000000
Arts and Humanities - Technical Sciences and Engineering 1.7277047 0.0840412 1.0000000
Health Sciences - Technical Sciences and Engineering 0.4858225 0.6270930 1.0000000
Other - Technical Sciences and Engineering -0.1705034 0.8646143 1.0000000
Science and Mathematics - Technical Sciences and Engineering -0.3128274 0.7544118 1.0000000
Social Sciences - Technical Sciences and Engineering 1.3999117 0.1615398 1.0000000

Q58

Row

ANOVA rezultati: Q58

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   4.84  0.9683   0.875  0.499
Residuals            161 178.14  1.1065               

ONEWAY-test rezultati: Q58


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q58 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  1.7433 0.1276
      161               

Kruskal-Wallis rezultati: Q58


    Kruskal-Wallis rank sum test

data:  Q58 by Study field
Kruskal-Wallis chi-squared = 4.4666, df = 5, p-value = 0.4844

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.3365385 -1.3051567 0.6320797 0.9166580
Other-Arts and Humanities 0.1250000 -1.6911845 1.9411845 0.9999568
Science and Mathematics-Arts and Humanities -0.2543103 -0.9942766 0.4856559 0.9201672
Social Sciences-Arts and Humanities -0.2652439 -0.9395187 0.4090309 0.8662429
Technical Sciences and Engineering-Arts and Humanities -0.4603659 -1.1346407 0.2139090 0.3645609
Other-Health Sciences 0.4615385 -1.4817803 2.4048573 0.9833960
Science and Mathematics-Health Sciences 0.0822281 -0.9304475 1.0949037 0.9999021
Social Sciences-Health Sciences 0.0712946 -0.8944219 1.0370110 0.9999389
Technical Sciences and Engineering-Health Sciences -0.1238274 -1.0895439 0.8418891 0.9990828
Science and Mathematics-Other -0.3793103 -2.2193693 1.4607486 0.9912789
Social Sciences-Other -0.3902439 -2.2048825 1.4243947 0.9894089
Technical Sciences and Engineering-Other -0.5853659 -2.4000045 1.2292728 0.9381118
Social Sciences-Science and Mathematics -0.0109336 -0.7470974 0.7252302 1.0000000
Technical Sciences and Engineering-Science and Mathematics -0.2060555 -0.9422193 0.5301083 0.9658391
Technical Sciences and Engineering-Social Sciences -0.1951220 -0.8652217 0.4749778 0.9595712

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences 0.9796610 0.3272535 1.0000000
Arts and Humanities - Other -0.2954702 0.7676347 1.0000000
Health Sciences - Other -0.7644375 0.4446065 1.0000000
Arts and Humanities - Science and Mathematics 0.8238668 0.4100152 1.0000000
Health Sciences - Science and Mathematics -0.3350371 0.7375971 1.0000000
Other - Science and Mathematics 0.6229485 0.5333183 1.0000000
Arts and Humanities - Social Sciences 1.0567609 0.2906207 1.0000000
Health Sciences - Social Sciences -0.2447615 0.8066411 1.0000000
Other - Social Sciences 0.6883881 0.4912084 1.0000000
Science and Mathematics - Social Sciences 0.1397972 0.8888202 0.8888202
Arts and Humanities - Technical Sciences and Engineering 1.9653711 0.0493713 0.7405695
Health Sciences - Technical Sciences and Engineering 0.3896411 0.6968020 1.0000000
Other - Technical Sciences and Engineering 1.0260052 0.3048891 1.0000000
Science and Mathematics - Technical Sciences and Engineering 0.9720210 0.3310401 1.0000000
Social Sciences - Technical Sciences and Engineering 0.9142714 0.3605742 1.0000000

Q59

Row

ANOVA rezultati: Q59

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   4.84  0.9686   0.846  0.519
Residuals            161 184.38  1.1452               

ONEWAY-test rezultati: Q59


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q59 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value    Pr(>F)    
group   5  5.0034 0.0002748 ***
      161                      
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q59


    Kruskal-Wallis rank sum test

data:  Q59 by Study field
Kruskal-Wallis chi-squared = 4.4703, df = 5, p-value = 0.4839

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.5019231 -1.4873540 0.4835079 0.6843683
Other-Arts and Humanities 0.5750000 -1.2727089 2.4227089 0.9465987
Science and Mathematics-Arts and Humanities 0.0577586 -0.6950516 0.8105688 0.9999260
Social Sciences-Arts and Humanities -0.1810976 -0.8670761 0.5048810 0.9734825
Technical Sciences and Engineering-Arts and Humanities -0.1079268 -0.7939054 0.5780517 0.9975467
Other-Health Sciences 1.0769231 -0.9001268 3.0539730 0.6187039
Science and Mathematics-Health Sciences 0.5596817 -0.4705714 1.5899347 0.6214684
Social Sciences-Health Sciences 0.3208255 -0.6616533 1.3033044 0.9349595
Technical Sciences and Engineering-Health Sciences 0.3939962 -0.5884826 1.3764751 0.8565102
Science and Mathematics-Other -0.5172414 -2.3892390 1.3547563 0.9676886
Social Sciences-Other -0.7560976 -2.6022337 1.0900386 0.8452116
Technical Sciences and Engineering-Other -0.6829268 -2.5290630 1.1632093 0.8937318
Social Sciences-Science and Mathematics -0.2388562 -0.9877979 0.5100856 0.9409265
Technical Sciences and Engineering-Science and Mathematics -0.1656854 -0.9146272 0.5832563 0.9879499
Technical Sciences and Engineering-Social Sciences 0.0731707 -0.6085602 0.7549017 0.9996142

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences 1.2310133 0.2183179 1.0000000
Arts and Humanities - Other -1.2218336 0.2217706 1.0000000
Health Sciences - Other -1.7554800 0.0791772 1.0000000
Arts and Humanities - Science and Mathematics -0.5467903 0.5845228 1.0000000
Health Sciences - Science and Mathematics -1.5769989 0.1147958 1.0000000
Other - Science and Mathematics 0.9860928 0.3240876 1.0000000
Arts and Humanities - Social Sciences 0.4438681 0.6571380 1.0000000
Health Sciences - Social Sciences -0.9247982 0.3550709 1.0000000
Other - Social Sciences 1.3878049 0.1651965 1.0000000
Science and Mathematics - Social Sciences 0.9561668 0.3389880 1.0000000
Arts and Humanities - Technical Sciences and Engineering 0.2212568 0.8248925 0.8248925
Health Sciences - Technical Sciences and Engineering -1.0802281 0.2800406 1.0000000
Other - Technical Sciences and Engineering 1.3050880 0.1918629 1.0000000
Science and Mathematics - Technical Sciences and Engineering 0.7522704 0.4518885 1.0000000
Social Sciences - Technical Sciences and Engineering -0.2239983 0.8227586 1.0000000

Q60

Row

ANOVA rezultati: Q60

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5  12.26   2.452   1.871  0.102
Residuals            161 210.97   1.310               

ONEWAY-test rezultati: Q60


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q60 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   5  2.1554 0.06158 .
      161                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q60


    Kruskal-Wallis rank sum test

data:  Q60 by Study field
Kruskal-Wallis chi-squared = 8.2304, df = 5, p-value = 0.144

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities 0.3557692 -0.6983391 1.4098775 0.9257180
Other-Arts and Humanities 0.1250000 -1.8514807 2.1014807 0.9999716
Science and Mathematics-Arts and Humanities -0.2543103 -1.0595859 0.5509652 0.9432615
Social Sciences-Arts and Humanities -0.5091463 -1.2429326 0.2246399 0.3461405
Technical Sciences and Engineering-Arts and Humanities -0.4603659 -1.1941521 0.2734204 0.4625271
Other-Health Sciences -0.2307692 -2.3456051 1.8840666 0.9995818
Science and Mathematics-Health Sciences -0.6100796 -1.7121338 0.4919746 0.6019153
Social Sciences-Health Sciences -0.8649156 -1.9158660 0.1860349 0.1717689
Technical Sciences and Engineering-Health Sciences -0.8161351 -1.8670856 0.2348154 0.2255180
Science and Mathematics-Other -0.3793103 -2.3817726 1.6231519 0.9941083
Social Sciences-Other -0.6341463 -2.6089447 1.3406520 0.9392467
Technical Sciences and Engineering-Other -0.5853659 -2.5601642 1.3894325 0.9564115
Social Sciences-Science and Mathematics -0.2548360 -1.0559735 0.5463015 0.9415555
Technical Sciences and Engineering-Science and Mathematics -0.2060555 -1.0071930 0.5950820 0.9763456
Technical Sciences and Engineering-Social Sciences 0.0487805 -0.6804621 0.7780231 0.9999625

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences -0.9723788 0.3308622 1.0000000
Arts and Humanities - Other -0.3994012 0.6895976 1.0000000
Health Sciences - Other 0.1113958 0.9113025 0.9113025
Arts and Humanities - Science and Mathematics 0.7125078 0.4761504 1.0000000
Health Sciences - Science and Mathematics 1.4507069 0.1468615 1.0000000
Other - Science and Mathematics 0.6807488 0.4960304 1.0000000
Arts and Humanities - Social Sciences 1.8330202 0.0667996 0.8683943
Health Sciences - Social Sciences 2.2551372 0.0241247 0.3618707
Other - Social Sciences 1.0808464 0.2797654 1.0000000
Science and Mathematics - Social Sciences 0.9627310 0.3356825 1.0000000
Arts and Humanities - Technical Sciences and Engineering 1.5697519 0.1164728 1.0000000
Health Sciences - Technical Sciences and Engineering 2.0713201 0.0383289 0.5366044
Other - Technical Sciences and Engineering 0.9830224 0.3255964 1.0000000
Science and Mathematics - Technical Sciences and Engineering 0.7215956 0.4705432 1.0000000
Social Sciences - Technical Sciences and Engineering -0.2649086 0.7910799 1.0000000

Q61

Row

ANOVA rezultati: Q61

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   2.75  0.5491   0.564  0.728
Residuals            161 156.88  0.9744               

ONEWAY-test rezultati: Q61


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q61 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   5  1.9865 0.08334 .
      161                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q61


    Kruskal-Wallis rank sum test

data:  Q61 by Study field
Kruskal-Wallis chi-squared = 2.9817, df = 5, p-value = 0.7028

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities 0.2442308 -0.6647596 1.1532212 0.9713713
Other-Arts and Humanities 0.4750000 -1.2293808 2.1793808 0.9664691
Science and Mathematics-Arts and Humanities 0.1301724 -0.5642418 0.8245866 0.9943884
Social Sciences-Arts and Humanities -0.1103659 -0.7431326 0.5224009 0.9959997
Technical Sciences and Engineering-Arts and Humanities -0.0859756 -0.7187423 0.5467911 0.9987862
Other-Health Sciences 0.2307692 -1.5929195 2.0544580 0.9991397
Science and Mathematics-Health Sciences -0.1140584 -1.0643940 0.8362773 0.9993346
Social Sciences-Health Sciences -0.3545966 -1.2608639 0.5516707 0.8688567
Technical Sciences and Engineering-Health Sciences -0.3302064 -1.2364737 0.5760609 0.8997194
Science and Mathematics-Other -0.3448276 -2.0716131 1.3819579 0.9924692
Social Sciences-Other -0.5853659 -2.2882960 1.1175642 0.9201100
Technical Sciences and Engineering-Other -0.5609756 -2.2639057 1.1419545 0.9326146
Social Sciences-Science and Mathematics -0.2405383 -0.9313841 0.4503075 0.9159593
Technical Sciences and Engineering-Science and Mathematics -0.2161480 -0.9069938 0.4746978 0.9453991
Technical Sciences and Engineering-Social Sciences 0.0243902 -0.6044584 0.6532389 0.9999975

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences -0.7850071 0.4324494 1.000000
Arts and Humanities - Other -0.9089172 0.3633938 1.000000
Health Sciences - Other -0.4581797 0.6468233 1.000000
Arts and Humanities - Science and Mathematics -0.6141838 0.5390939 1.000000
Health Sciences - Science and Mathematics 0.3020680 0.7626003 1.000000
Other - Science and Mathematics 0.6501347 0.5156052 1.000000
Arts and Humanities - Social Sciences 0.4945888 0.6208904 1.000000
Health Sciences - Social Sciences 1.1326937 0.2573429 1.000000
Other - Social Sciences 1.0934685 0.2741882 1.000000
Science and Mathematics - Social Sciences 1.0703652 0.2844550 1.000000
Arts and Humanities - Technical Sciences and Engineering 0.2804811 0.7791084 1.000000
Health Sciences - Technical Sciences and Engineering 0.9832011 0.3255085 1.000000
Other - Technical Sciences and Engineering 1.0139114 0.3106250 1.000000
Science and Mathematics - Technical Sciences and Engineering 0.8742574 0.3819781 1.000000
Social Sciences - Technical Sciences and Engineering -0.2154417 0.8294230 0.829423

Q62

Row

ANOVA rezultati: Q62

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   5.83   1.166   1.045  0.393
Residuals            161 179.53   1.115               

ONEWAY-test rezultati: Q62


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q62 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  1.5311  0.183
      161               

Kruskal-Wallis rezultati: Q62


    Kruskal-Wallis rank sum test

data:  Q62 by Study field
Kruskal-Wallis chi-squared = 5.7676, df = 5, p-value = 0.3295

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities 0.4692308 -0.5031442 1.4416058 0.7318813
Other-Arts and Humanities -0.3000000 -2.1232286 1.5232286 0.9969637
Science and Mathematics-Arts and Humanities -0.0241379 -0.7669741 0.7186983 0.9999990
Social Sciences-Arts and Humanities -0.1536585 -0.8305485 0.5232315 0.9864538
Technical Sciences and Engineering-Arts and Humanities -0.2512195 -0.9281095 0.4256705 0.8923961
Other-Health Sciences -0.7692308 -2.7200867 1.1816252 0.8650820
Science and Mathematics-Health Sciences -0.4933687 -1.5099719 0.5232345 0.7271193
Social Sciences-Health Sciences -0.6228893 -1.5923513 0.3465727 0.4348942
Technical Sciences and Engineering-Health Sciences -0.7204503 -1.6899123 0.2490117 0.2705423
Science and Mathematics-Other 0.2758621 -1.5713335 2.1230576 0.9980877
Social Sciences-Other 0.1463415 -1.6753352 1.9680181 0.9999072
Technical Sciences and Engineering-Other 0.0487805 -1.7728962 1.8704572 0.9999996
Social Sciences-Science and Mathematics -0.1295206 -0.8685396 0.6094984 0.9959078
Technical Sciences and Engineering-Science and Mathematics -0.2270816 -0.9661006 0.5119374 0.9493336
Technical Sciences and Engineering-Social Sciences -0.0975610 -0.7702597 0.5751377 0.9983384

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences -1.0761957 0.2818397 1.0000000
Arts and Humanities - Other 1.0580792 0.2900194 1.0000000
Health Sciences - Other 1.5252720 0.1271913 1.0000000
Arts and Humanities - Science and Mathematics 0.4973738 0.6189255 1.0000000
Health Sciences - Science and Mathematics 1.3928079 0.1636779 1.0000000
Other - Science and Mathematics -0.8443356 0.3984819 1.0000000
Arts and Humanities - Social Sciences 0.8976326 0.3693815 1.0000000
Health Sciences - Social Sciences 1.7061672 0.0879769 1.0000000
Other - Social Sciences -0.7254425 0.4681806 1.0000000
Science and Mathematics - Social Sciences 0.3222261 0.7472814 0.7472814
Arts and Humanities - Technical Sciences and Engineering 1.3598396 0.1738807 1.0000000
Health Sciences - Technical Sciences and Engineering 2.0288857 0.0424699 0.6370489
Other - Technical Sciences and Engineering -0.5536978 0.5797857 1.0000000
Science and Mathematics - Technical Sciences and Engineering 0.7455757 0.4559238 1.0000000
Social Sciences - Technical Sciences and Engineering 0.4650869 0.6418692 1.0000000

Q63

Row

ANOVA rezultati: Q63

                      Df Sum Sq Mean Sq F value Pr(>F)  
podaci$`Study field`   5  15.88   3.176   2.235 0.0533 .
Residuals            160 227.37   1.421                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
1 observation deleted due to missingness

ONEWAY-test rezultati: Q63


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q63 and podaci$`Study field`
F = 3.186, num df = 5.000, denom df = 18.816, p-value = 0.02984

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  1.6219 0.1571
      160               

Kruskal-Wallis rezultati: Q63


    Kruskal-Wallis rank sum test

data:  Q63 by Study field
Kruskal-Wallis chi-squared = 10.222, df = 5, p-value = 0.06919

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.7038462 -1.8016510 0.3939587 0.4373085
Other-Arts and Humanities -0.2166667 -2.2750795 1.8417461 0.9996491
Science and Mathematics-Arts and Humanities 0.2086207 -0.6300364 1.0472778 0.9795801
Social Sciences-Arts and Humanities 0.4012195 -0.3629847 1.1654238 0.6555160
Technical Sciences and Engineering-Arts and Humanities 0.4000000 -0.3689071 1.1689071 0.6643891
Other-Health Sciences 0.4871795 -1.7153237 2.6896827 0.9879525
Science and Mathematics-Health Sciences 0.9124668 -0.2352714 2.0602050 0.2029041
Social Sciences-Health Sciences 1.1050657 0.0105496 2.1995817 0.0463598
Technical Sciences and Engineering-Health Sciences 1.1038462 0.0060413 2.2016510 0.0478928
Science and Mathematics-Other 0.4252874 -1.6601840 2.5107587 0.9916983
Social Sciences-Other 0.6178862 -1.4387745 2.6745469 0.9538601
Technical Sciences and Engineering-Other 0.6166667 -1.4417461 2.6750795 0.9544037
Social Sciences-Science and Mathematics 0.1925988 -0.6417487 1.0269463 0.9853835
Technical Sciences and Engineering-Science and Mathematics 0.1913793 -0.6472778 1.0300364 0.9861233
Technical Sciences and Engineering-Social Sciences -0.0012195 -0.7654238 0.7629847 1.0000000

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences 1.9064873 0.0565870 0.6790441
Arts and Humanities - Other 0.3296796 0.7416421 1.0000000
Health Sciences - Other -0.6421486 0.5207767 1.0000000
Arts and Humanities - Science and Mathematics -0.6856746 0.4929183 1.0000000
Health Sciences - Science and Mathematics -2.3245691 0.0200950 0.2612351
Other - Science and Mathematics -0.6011411 0.5477460 1.0000000
Arts and Humanities - Social Sciences -1.2293820 0.2189286 1.0000000
Health Sciences - Social Sciences -2.7705851 0.0055956 0.0783380
Other - Social Sciences -0.7867684 0.4314175 1.0000000
Science and Mathematics - Social Sciences -0.4368121 0.6622476 1.0000000
Arts and Humanities - Technical Sciences and Engineering -1.3776263 0.1683187 1.0000000
Health Sciences - Technical Sciences and Engineering -2.8713826 0.0040868 0.0613021
Other - Technical Sciences and Engineering -0.8442832 0.3985112 1.0000000
Science and Mathematics - Technical Sciences and Engineering -0.5773764 0.5636852 1.0000000
Social Sciences - Technical Sciences and Engineering -0.1567222 0.8754638 0.8754638

Q64

Row

ANOVA rezultati: Q64

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   9.13   1.827   1.366   0.24
Residuals            160 213.98   1.337               
1 observation deleted due to missingness

ONEWAY-test rezultati: Q64


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q64 and podaci$`Study field`
F = 1.9513, num df = 5.000, denom df = 18.792, p-value = 0.1333

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  1.1938 0.3146
      160               

Kruskal-Wallis rezultati: Q64


    Kruskal-Wallis rank sum test

data:  Q64 by Study field
Kruskal-Wallis chi-squared = 6.2751, df = 5, p-value = 0.2804

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.6538462 -1.7188315 0.4111392 0.4874137
Other-Arts and Humanities 0.1666667 -1.8302088 2.1635421 0.9998879
Science and Mathematics-Arts and Humanities -0.0517241 -0.8653091 0.7618608 0.9999708
Social Sciences-Arts and Humanities 0.2317073 -0.5096506 0.9730653 0.9456156
Technical Sciences and Engineering-Arts and Humanities 0.2000000 -0.5459202 0.9459202 0.9716172
Other-Health Sciences 0.8205128 -1.3161454 2.9571710 0.8776054
Science and Mathematics-Health Sciences 0.6021220 -0.5113039 1.7155480 0.6260386
Social Sciences-Health Sciences 0.8855535 -0.1762415 1.9473484 0.1604582
Technical Sciences and Engineering-Health Sciences 0.8538462 -0.2111392 1.9188315 0.1950674
Science and Mathematics-Other -0.2183908 -2.2415159 1.8047343 0.9996031
Social Sciences-Other 0.0650407 -1.9301351 2.0602164 0.9999990
Technical Sciences and Engineering-Other 0.0333333 -1.9635421 2.0302088 1.0000000
Social Sciences-Science and Mathematics 0.2834315 -0.5259728 1.0928357 0.9140224
Technical Sciences and Engineering-Science and Mathematics 0.2517241 -0.5618608 1.0653091 0.9478424
Technical Sciences and Engineering-Social Sciences -0.0317073 -0.7730653 0.7096506 0.9999959

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences 1.8157810 0.0694040 0.9022517
Arts and Humanities - Other -0.2460754 0.8056239 1.0000000
Health Sciences - Other -1.1350257 0.2563646 1.0000000
Arts and Humanities - Science and Mathematics 0.2058536 0.8369053 1.0000000
Health Sciences - Science and Mathematics -1.5863657 0.1126564 1.0000000
Other - Science and Mathematics 0.3256651 0.7446778 1.0000000
Arts and Humanities - Social Sciences -0.6741854 0.5001935 1.0000000
Health Sciences - Social Sciences -2.2919613 0.0219079 0.3067103
Other - Social Sciences -0.0042256 0.9966284 0.9966284
Science and Mathematics - Social Sciences -0.8244238 0.4096988 1.0000000
Arts and Humanities - Technical Sciences and Engineering -0.6819297 0.4952834 1.0000000
Health Sciences - Technical Sciences and Engineering -2.2934074 0.0218246 0.3273684
Other - Technical Sciences and Engineering -0.0086552 0.9930943 1.0000000
Science and Mathematics - Technical Sciences and Engineering -0.8310681 0.4059352 1.0000000
Social Sciences - Technical Sciences and Engineering -0.0119408 0.9904728 1.0000000

Q65

Row

ANOVA rezultati: Q65

                      Df Sum Sq Mean Sq F value Pr(>F)  
podaci$`Study field`   5   9.46  1.8927   2.678 0.0236 *
Residuals            161 113.79  0.7068                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q65


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q65 and podaci$`Study field`
F = 2.3388, num df = 5.000, denom df = 19.107, p-value = 0.08138

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   5  2.2137 0.05542 .
      161                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q65


    Kruskal-Wallis rank sum test

data:  Q65 by Study field
Kruskal-Wallis chi-squared = 11.765, df = 5, p-value = 0.03815

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.8423077 -1.6164681 -0.0681473 0.0243231
Other-Arts and Humanities -0.8166667 -2.2682377 0.6349044 0.5847702
Science and Mathematics-Arts and Humanities -0.1844828 -0.7758949 0.4069294 0.9460721
Social Sciences-Arts and Humanities -0.4426829 -0.9815917 0.0962259 0.1733904
Technical Sciences and Engineering-Arts and Humanities -0.3207317 -0.8596405 0.2181771 0.5228802
Other-Health Sciences 0.0256410 -1.5275411 1.5788231 1.0000000
Science and Mathematics-Health Sciences 0.6578249 -0.1515480 1.4671978 0.1827358
Social Sciences-Health Sciences 0.3996248 -0.3722165 1.1714660 0.6689951
Technical Sciences and Engineering-Health Sciences 0.5215760 -0.2502652 1.2934172 0.3764107
Science and Mathematics-Other 0.6321839 -0.8384686 2.1028364 0.8165450
Social Sciences-Other 0.3739837 -1.0763517 1.8243192 0.9760790
Technical Sciences and Engineering-Other 0.4959350 -0.9544005 1.9462704 0.9217517
Social Sciences-Science and Mathematics -0.2582002 -0.8465732 0.3301729 0.8031232
Technical Sciences and Engineering-Science and Mathematics -0.1362489 -0.7246220 0.4521241 0.9851801
Technical Sciences and Engineering-Social Sciences 0.1219512 -0.4136207 0.6575231 0.9862648

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences 2.5888813 0.0096288 0.1444324
Arts and Humanities - Other 2.0954168 0.0361340 0.4697415
Health Sciences - Other 0.6679429 0.5041701 1.0000000
Arts and Humanities - Science and Mathematics 1.1046408 0.2693153 1.0000000
Health Sciences - Science and Mathematics -1.6690841 0.0951007 1.0000000
Other - Science and Mathematics -1.6240059 0.1043745 1.0000000
Arts and Humanities - Social Sciences 2.3438507 0.0190858 0.2672013
Health Sciences - Social Sciences -0.9601555 0.3369769 1.0000000
Other - Social Sciences -1.2262849 0.2200915 1.0000000
Science and Mathematics - Social Sciences 1.0364577 0.2999887 1.0000000
Arts and Humanities - Technical Sciences and Engineering 1.7826042 0.0746508 0.8958090
Health Sciences - Technical Sciences and Engineering -1.3520246 0.1763674 1.0000000
Other - Technical Sciences and Engineering -1.4348302 0.1513355 1.0000000
Science and Mathematics - Technical Sciences and Engineering 0.5223949 0.6013954 0.6013954
Social Sciences - Technical Sciences and Engineering -0.5647434 0.5722483 1.0000000

Q66

Row

ANOVA rezultati: Q66

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   3.05  0.6098   0.712  0.615
Residuals            161 137.84  0.8561               

ONEWAY-test rezultati: Q66


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q66 and podaci$`Study field`
F = 0.88951, num df = 5.000, denom df = 19.369, p-value = 0.5071

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  1.3759  0.236
      161               

Kruskal-Wallis rezultati: Q66


    Kruskal-Wallis rank sum test

data:  Q66 by Study field
Kruskal-Wallis chi-squared = 3.7566, df = 5, p-value = 0.585

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.3615385 -1.2135674 0.4904905 0.8246057
Other-Arts and Humanities -0.5666667 -2.1642432 1.0309099 0.9096204
Science and Mathematics-Arts and Humanities -0.2793103 -0.9302094 0.3715887 0.8176489
Social Sciences-Arts and Humanities -0.2902439 -0.8833586 0.3028708 0.7200624
Technical Sciences and Engineering-Arts and Humanities -0.2902439 -0.8833586 0.3028708 0.7200624
Other-Health Sciences -0.2051282 -1.9145363 1.5042799 0.9993352
Science and Mathematics-Health Sciences 0.0822281 -0.8085551 0.9730114 0.9998159
Social Sciences-Health Sciences 0.0712946 -0.7781819 0.9207710 0.9998848
Technical Sciences and Engineering-Health Sciences 0.0712946 -0.7781819 0.9207710 0.9998848
Science and Mathematics-Other 0.2873563 -1.3312209 1.9059336 0.9956514
Social Sciences-Other 0.2764228 -1.3197939 1.8726395 0.9961325
Technical Sciences and Engineering-Other 0.2764228 -1.3197939 1.8726395 0.9961325
Social Sciences-Science and Mathematics -0.0109336 -0.6584878 0.6366207 1.0000000
Technical Sciences and Engineering-Science and Mathematics -0.0109336 -0.6584878 0.6366207 1.0000000
Technical Sciences and Engineering-Social Sciences 0.0000000 -0.5894421 0.5894421 1.0000000

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences 1.0165844 0.3093512 1.000000
Arts and Humanities - Other 1.3783690 0.1680894 1.000000
Health Sciences - Other 0.7814931 0.4345125 1.000000
Arts and Humanities - Science and Mathematics 1.1828061 0.2368860 1.000000
Health Sciences - Science and Mathematics -0.1080757 0.9139357 1.000000
Other - Science and Mathematics -0.8848281 0.3762493 1.000000
Arts and Humanities - Social Sciences 1.4554820 0.1455359 1.000000
Health Sciences - Social Sciences -0.0034040 0.9972840 0.997284
Other - Social Sciences -0.8387222 0.4016252 1.000000
Science and Mathematics - Social Sciences 0.1442047 0.8853388 1.000000
Arts and Humanities - Technical Sciences and Engineering 1.0839066 0.2784062 1.000000
Health Sciences - Technical Sciences and Engineering -0.2628424 0.7926721 1.000000
Other - Technical Sciences and Engineering -0.9767904 0.3286729 1.000000
Science and Mathematics - Technical Sciences and Engineering -0.1961325 0.8445064 1.000000
Social Sciences - Technical Sciences and Engineering -0.3738905 0.7084858 1.000000

Q67

Row

ANOVA rezultati: Q67

                      Df Sum Sq Mean Sq F value Pr(>F)  
podaci$`Study field`   5  17.31   3.462   2.704 0.0225 *
Residuals            161 206.19   1.281                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q67


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q67 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   5   3.118 0.01029 *
      161                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Kruskal-Wallis rezultati: Q67


    Kruskal-Wallis rank sum test

data:  Q67 by Study field
Kruskal-Wallis chi-squared = 12.57, df = 5, p-value = 0.02776

Row

Tukey multiple comparisons of means 95% family-wise confidence level

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.9096154 -1.9516936 0.1324628 0.1250758
Other-Arts and Humanities 0.4750000 -1.4789239 2.4289239 0.9815727
Science and Mathematics-Arts and Humanities -0.2146552 -1.0107404 0.5814301 0.9709269
Social Sciences-Arts and Humanities 0.2798780 -0.4455338 1.0052899 0.8754931
Technical Sciences and Engineering-Arts and Humanities 0.1823171 -0.5430947 0.9077289 0.9786370
Other-Health Sciences 1.3846154 -0.7060847 3.4753154 0.3997097
Science and Mathematics-Health Sciences 0.6949602 -0.3945166 1.7844371 0.4432864
Social Sciences-Health Sciences 1.1894934 0.1505371 2.2284498 0.0147494
Technical Sciences and Engineering-Health Sciences 1.0919325 0.0529761 2.1308888 0.0332073
Science and Mathematics-Other -0.6896552 -2.6692641 1.2899538 0.9157691
Social Sciences-Other -0.1951220 -2.1473827 1.7571388 0.9997279
Technical Sciences and Engineering-Other -0.2926829 -2.2449437 1.6595778 0.9980520
Social Sciences-Science and Mathematics 0.4945332 -0.2974612 1.2865277 0.4680121
Technical Sciences and Engineering-Science and Mathematics 0.3969722 -0.3950222 1.1889667 0.6990089
Technical Sciences and Engineering-Social Sciences -0.0975610 -0.8184810 0.6233591 0.9988095

Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

Comparison Z P.unadj P.adj
Arts and Humanities - Health Sciences 2.5290301 0.0114378 0.1486917
Arts and Humanities - Other -0.7061864 0.4800722 1.0000000
Health Sciences - Other -1.9205441 0.0547892 0.6574706
Arts and Humanities - Science and Mathematics 0.7886749 0.4303021 1.0000000
Health Sciences - Science and Mathematics -1.8427143 0.0653707 0.7190781
Other - Science and Mathematics 1.0141836 0.3104951 1.0000000
Arts and Humanities - Social Sciences -0.8882115 0.3744270 1.0000000
Health Sciences - Social Sciences -3.1567891 0.0015952 0.0239275
Other - Social Sciences 0.3767506 0.7063590 1.0000000
Science and Mathematics - Social Sciences -1.6062885 0.1082105 1.0000000
Arts and Humanities - Technical Sciences and Engineering -0.6634145 0.5070651 1.0000000
Health Sciences - Technical Sciences and Engineering -2.9998331 0.0027013 0.0378179
Other - Technical Sciences and Engineering 0.4602796 0.6453156 1.0000000
Science and Mathematics - Technical Sciences and Engineering -1.4003901 0.1613965 1.0000000
Social Sciences - Technical Sciences and Engineering 0.2261976 0.8210477 0.8210477
---
title: "eDesk - CECIIS"
output: 
  flexdashboard::flex_dashboard:
    social: menu
    orientation: columns
    vertical_layout: fill
    source_code: embed
---

```{css, echo=FALSE}
.sidebar { overflow: auto; }
.dataTables_scrollBody {
    height:95% !important;
    max-height:95% !important;
}
.chart-stage-flex {
    overflow:auto !important;
}
```

```{r setup, include=FALSE}
library(readxl)
library(tidyverse)
library(car)
library(lsr)
library(kableExtra)
library(FSA)

podaci <- read_excel('Podaci.xlsx')
imena <- names(podaci)
podaci <- podaci %>% rename_with(.fn = ~paste0("Q", substring(.,1,regexpr("\\.", .) - 1)), .cols = 9:length(imena))
podaci$Country <- factor(podaci$Country)

podaci9_18 <- podaci %>% select(Country, 9:18) %>%
  pivot_longer(!Country, names_to = "Question", values_to = "Answer")
podaci19_28 <- podaci %>% select(Country, 19:28) %>%
  pivot_longer(!Country, names_to = "Question", values_to = "Answer")
podaci29_38 <- podaci %>% select(Country, 29:38) %>%
  pivot_longer(!Country, names_to = "Question", values_to = "Answer")
podaci39_48 <- podaci %>% select(Country, 39:48) %>%
  pivot_longer(!Country, names_to = "Question", values_to = "Answer")
podaci49_58 <- podaci %>% select(Country, 49:58) %>%
  pivot_longer(!Country, names_to = "Question", values_to = "Answer")
podaci49_58$Answer = factor(podaci49_58$Answer)
levels(podaci49_58$Answer) <- c(levels(podaci49_58$Answer),4,5)
podaci59_69 <- podaci %>% select(Country, 59:69) %>% drop_na() %>%
  pivot_longer(!Country, names_to = "Question", values_to = "Answer")

ppodaci9_18 <- podaci %>% select("Study field", 9:18) %>%
  pivot_longer(!`Study field`, names_to = "Question", values_to = "Answer")

ppodaci19_28 <- podaci %>% select("Study field", 19:28) %>%
  pivot_longer(!`Study field`, names_to = "Question", values_to = "Answer")

ppodaci29_38 <- podaci %>% select("Study field", 29:38) %>%
  pivot_longer(!`Study field`, names_to = "Question", values_to = "Answer")

ppodaci39_48 <- podaci %>% select("Study field", 39:48) %>%
  pivot_longer(!`Study field`, names_to = "Question", values_to = "Answer")

ppodaci49_58 <- podaci %>% select("Study field", 49:58) %>%
  pivot_longer(!`Study field`, names_to = "Question", values_to = "Answer")
ppodaci49_58$Answer = factor(ppodaci49_58$Answer)
levels(ppodaci49_58$Answer) <- c(levels(ppodaci49_58$Answer),4,5)

ppodaci59_69 <- podaci %>% select("Study field", 59:69) %>% drop_na() %>%
  pivot_longer(!`Study field`, names_to = "Question", values_to = "Answer")

swr = function(string, nwrap=10) {
  paste(strwrap(string, width=nwrap), collapse="\n")
}
swr = Vectorize(swr)

ppodaci9_18$`Study field` = swr(ppodaci9_18$`Study field`)
ppodaci19_28$`Study field` = swr(ppodaci19_28$`Study field`)
ppodaci29_38$`Study field` = swr(ppodaci29_38$`Study field`)
ppodaci39_48$`Study field` = swr(ppodaci39_48$`Study field`)
ppodaci49_58$`Study field` = swr(ppodaci49_58$`Study field`)
ppodaci59_69$`Study field` = swr(ppodaci59_69$`Study field`)

Q1 <- aov(podaci$Q1 ~ podaci$Country)
Q2 <- aov(podaci$Q2 ~ podaci$Country)
Q3 <- aov(podaci$Q3 ~ podaci$Country)
Q4 <- aov(podaci$Q4 ~ podaci$Country)
Q5 <- aov(podaci$Q5 ~ podaci$Country)
Q6 <- aov(podaci$Q6 ~ podaci$Country)
Q7 <- aov(podaci$Q7 ~ podaci$Country)
Q8 <- aov(podaci$Q8 ~ podaci$Country)
Q9 <- aov(podaci$Q9 ~ podaci$Country)
Q10 <- aov(podaci$Q10 ~ podaci$Country)
Q11 <- aov(podaci$Q11 ~ podaci$Country)
Q12 <- aov(podaci$Q12 ~ podaci$Country)
Q13 <- aov(podaci$Q13 ~ podaci$Country)
Q14 <- aov(podaci$Q14 ~ podaci$Country)
Q15 <- aov(podaci$Q15 ~ podaci$Country)
Q16 <- aov(podaci$Q16 ~ podaci$Country)
Q17 <- aov(podaci$Q17 ~ podaci$Country)
Q18 <- aov(podaci$Q18 ~ podaci$Country)
Q19 <- aov(podaci$Q19 ~ podaci$Country)
Q20 <- aov(podaci$Q20 ~ podaci$Country)
Q21 <- aov(podaci$Q21 ~ podaci$Country)
Q22 <- aov(podaci$Q22 ~ podaci$Country)
Q23 <- aov(podaci$Q23 ~ podaci$Country)
Q24 <- aov(podaci$Q24 ~ podaci$Country)
Q26 <- aov(podaci$Q26 ~ podaci$Country)
Q27 <- aov(podaci$Q27 ~ podaci$Country)
Q28 <- aov(podaci$Q28 ~ podaci$Country)
Q29 <- aov(podaci$Q29 ~ podaci$Country)
Q30 <- aov(podaci$Q30 ~ podaci$Country)
Q31 <- aov(podaci$Q31 ~ podaci$Country)
Q32 <- aov(podaci$Q32 ~ podaci$Country)
Q33 <- aov(podaci$Q33 ~ podaci$Country)
Q35 <- aov(podaci$Q35 ~ podaci$Country)
Q36 <- aov(podaci$Q36 ~ podaci$Country)
Q37 <- aov(podaci$Q37 ~ podaci$Country)
Q38 <- aov(podaci$Q38 ~ podaci$Country)
Q39 <- aov(podaci$Q39 ~ podaci$Country)
Q40 <- aov(podaci$Q40 ~ podaci$Country)
Q41 <- aov(podaci$Q41 ~ podaci$Country)
Q42 <- aov(podaci$Q42 ~ podaci$Country)
Q43 <- aov(podaci$Q43 ~ podaci$Country)
Q44 <- aov(podaci$Q44 ~ podaci$Country)
Q45 <- aov(podaci$Q45 ~ podaci$Country)
Q46 <- aov(podaci$Q46 ~ podaci$Country)
Q47 <- aov(podaci$Q47 ~ podaci$Country)
Q48 <- aov(podaci$Q48 ~ podaci$Country)
Q49 <- aov(podaci$Q49 ~ podaci$Country)
Q50 <- aov(podaci$Q50 ~ podaci$Country)
Q51 <- aov(podaci$Q51 ~ podaci$Country)
Q52 <- aov(podaci$Q52 ~ podaci$Country)
Q53 <- aov(podaci$Q53 ~ podaci$Country)
Q58 <- aov(podaci$Q58 ~ podaci$Country)
Q59 <- aov(podaci$Q59 ~ podaci$Country)
Q60 <- aov(podaci$Q60 ~ podaci$Country)
Q61 <- aov(podaci$Q61 ~ podaci$Country)
Q62 <- aov(podaci$Q62 ~ podaci$Country)
Q63 <- aov(podaci$Q63 ~ podaci$Country)
Q64 <- aov(podaci$Q64 ~ podaci$Country)
Q65 <- aov(podaci$Q65 ~ podaci$Country)
Q66 <- aov(podaci$Q66 ~ podaci$Country)
Q67 <- aov(podaci$Q67 ~ podaci$Country)

PQ1 <- aov(podaci$Q1 ~ podaci$`Study field`)
PQ2 <- aov(podaci$Q2 ~ podaci$`Study field`)
PQ3 <- aov(podaci$Q3 ~ podaci$`Study field`)
PQ4 <- aov(podaci$Q4 ~ podaci$`Study field`)
PQ5 <- aov(podaci$Q5 ~ podaci$`Study field`)
PQ6 <- aov(podaci$Q6 ~ podaci$`Study field`)
PQ7 <- aov(podaci$Q7 ~ podaci$`Study field`)
PQ8 <- aov(podaci$Q8 ~ podaci$`Study field`)
PQ9 <- aov(podaci$Q9 ~ podaci$`Study field`)
PQ10 <- aov(podaci$Q10 ~ podaci$`Study field`)
PQ11 <- aov(podaci$Q11 ~ podaci$`Study field`)
PQ12 <- aov(podaci$Q12 ~ podaci$`Study field`)
PQ13 <- aov(podaci$Q13 ~ podaci$`Study field`)
PQ14 <- aov(podaci$Q14 ~ podaci$`Study field`)
PQ15 <- aov(podaci$Q15 ~ podaci$`Study field`)
PQ16 <- aov(podaci$Q16 ~ podaci$`Study field`)
PQ17 <- aov(podaci$Q17 ~ podaci$`Study field`)
PQ18 <- aov(podaci$Q18 ~ podaci$`Study field`)
PQ19 <- aov(podaci$Q19 ~ podaci$`Study field`)
PQ20 <- aov(podaci$Q20 ~ podaci$`Study field`)
PQ21 <- aov(podaci$Q21 ~ podaci$`Study field`)
PQ22 <- aov(podaci$Q22 ~ podaci$`Study field`)
PQ23 <- aov(podaci$Q23 ~ podaci$`Study field`)
PQ24 <- aov(podaci$Q24 ~ podaci$`Study field`)
PQ26 <- aov(podaci$Q26 ~ podaci$`Study field`)
PQ27 <- aov(podaci$Q27 ~ podaci$`Study field`)
PQ28 <- aov(podaci$Q28 ~ podaci$`Study field`)
PQ29 <- aov(podaci$Q29 ~ podaci$`Study field`)
PQ30 <- aov(podaci$Q30 ~ podaci$`Study field`)
PQ31 <- aov(podaci$Q31 ~ podaci$`Study field`)
PQ32 <- aov(podaci$Q32 ~ podaci$`Study field`)
PQ33 <- aov(podaci$Q33 ~ podaci$`Study field`)
PQ35 <- aov(podaci$Q35 ~ podaci$`Study field`)
PQ36 <- aov(podaci$Q36 ~ podaci$`Study field`)
PQ37 <- aov(podaci$Q37 ~ podaci$`Study field`)
PQ38 <- aov(podaci$Q38 ~ podaci$`Study field`)
PQ39 <- aov(podaci$Q39 ~ podaci$`Study field`)
PQ40 <- aov(podaci$Q40 ~ podaci$`Study field`)
PQ41 <- aov(podaci$Q41 ~ podaci$`Study field`)
PQ42 <- aov(podaci$Q42 ~ podaci$`Study field`)
PQ43 <- aov(podaci$Q43 ~ podaci$`Study field`)
PQ44 <- aov(podaci$Q44 ~ podaci$`Study field`)
PQ45 <- aov(podaci$Q45 ~ podaci$`Study field`)
PQ46 <- aov(podaci$Q46 ~ podaci$`Study field`)
PQ47 <- aov(podaci$Q47 ~ podaci$`Study field`)
PQ48 <- aov(podaci$Q48 ~ podaci$`Study field`)
PQ49 <- aov(podaci$Q49 ~ podaci$`Study field`)
PQ50 <- aov(podaci$Q50 ~ podaci$`Study field`)
PQ51 <- aov(podaci$Q51 ~ podaci$`Study field`)
PQ52 <- aov(podaci$Q52 ~ podaci$`Study field`)
PQ53 <- aov(podaci$Q53 ~ podaci$`Study field`)
PQ58 <- aov(podaci$Q58 ~ podaci$`Study field`)
PQ59 <- aov(podaci$Q59 ~ podaci$`Study field`)
PQ60 <- aov(podaci$Q60 ~ podaci$`Study field`)
PQ61 <- aov(podaci$Q61 ~ podaci$`Study field`)
PQ62 <- aov(podaci$Q62 ~ podaci$`Study field`)
PQ63 <- aov(podaci$Q63 ~ podaci$`Study field`)
PQ64 <- aov(podaci$Q64 ~ podaci$`Study field`)
PQ65 <- aov(podaci$Q65 ~ podaci$`Study field`)
PQ66 <- aov(podaci$Q66 ~ podaci$`Study field`)
PQ67 <- aov(podaci$Q67 ~ podaci$`Study field`)
```


Pitanja: 1 - 10 {data-navmenu="Pitanja vs države"}
=======================================================================

### pitanja (1 - 10)

```{r fig.width=10}
ggplot(podaci9_18, aes(x=factor(Answer), fill=Country, color=Country)) + 
  geom_bar(alpha=.5) + 
  facet_grid(Country ~ factor(Question,levels=c("Q1","Q2","Q3","Q4","Q5","Q6","Q7","Q8","Q9","Q10"))) + 
  theme(legend.position="none") + xlab("Answer") + ylim(0,50)
```

Pitanja: 11 - 20 {data-navmenu="Pitanja vs države"}
=======================================================================

### pitanja (11 - 20)

```{r fig.width=10}
ggplot(podaci19_28, aes(x=factor(Answer), fill=Country, color=Country)) + 
  geom_bar(alpha=.5) + facet_grid(Country ~ factor(Question)) + 
  theme(legend.position="none") + xlab("Answer") + ylim(0,50)
```

Pitanja: 21 - 30 {data-navmenu="Pitanja vs države"}
=======================================================================

### pitanja (21 - 30)

```{r fig.width=10}
ggplot(podaci29_38, aes(x=factor(Answer), fill=Country, color=Country)) + 
  geom_bar(alpha=.5) + facet_grid(Country ~ factor(Question)) + 
  theme(legend.position="none") + xlab("Answer") + ylim(0,50)
```

Pitanja: 31 - 40 {data-navmenu="Pitanja vs države"}
=======================================================================

### pitanja (31 - 40)

```{r fig.width=10}
ggplot(podaci39_48, aes(x=factor(Answer), fill=Country, color=Country)) + 
  geom_bar(alpha=.5) + facet_grid(Country ~ factor(Question)) + 
  theme(legend.position="none") + xlab("Answer") + ylim(0,50)
```

Pitanja: 41 - 50 {data-navmenu="Pitanja vs države"}
=======================================================================

### pitanja (41 - 50)

```{r fig.width=10}
ggplot(podaci49_58, aes(x=Answer, fill=Country, color=Country)) + 
  geom_bar(alpha=.5) + facet_grid(Country ~ factor(Question)) + 
  theme(legend.position="none") + xlab("Answer") + ylim(0,50) + scale_x_discrete(drop=FALSE)
```

Pitanja: 51 - 61 {data-navmenu="Pitanja vs države"}
=======================================================================

### pitanja (51 - 61)

```{r fig.width=11}
ggplot(podaci59_69, aes(x=factor(Answer), fill=Country, color=Country)) + 
  geom_bar(alpha=.5) + facet_grid(Country ~ factor(Question)) + 
  theme(legend.position="none") + xlab("Answer") + ylim(0,50)
```

Pitanja: 1 - 10 {data-navmenu="Pitanja vs područje"}
=======================================================================

### pitanja (1 - 10)

```{r fig.width=10}
ggplot(ppodaci9_18, aes(x=factor(Answer), fill=`Study field`, color=`Study field`)) + 
  geom_bar(alpha=.5) + 
  facet_grid(factor(`Study field`) ~ factor(Question,levels=c("Q1","Q2","Q3","Q4","Q5","Q6","Q7","Q8","Q9","Q10"))) + 
  theme(legend.position="none", strip.text.y = element_text(size = 7)) + xlab("Answer") + ylim(0,40)
```

Pitanja: 11 - 20 {data-navmenu="Pitanja vs područje"}
=======================================================================

### pitanja (11 - 20)

```{r fig.width=10}
ggplot(ppodaci19_28, aes(x=factor(Answer), fill=`Study field`, color=`Study field`)) + 
  geom_bar(alpha=.5) + 
  facet_grid(factor(`Study field`) ~ factor(Question)) + 
  theme(legend.position="none", strip.text.y = element_text(size = 7)) + xlab("Answer") + ylim(0,40)
```

Pitanja: 21 - 30 {data-navmenu="Pitanja vs područje"}
=======================================================================

### pitanja (21 - 30)

```{r fig.width=10}
ggplot(ppodaci29_38, aes(x=factor(Answer), fill=`Study field`, color=`Study field`)) + 
  geom_bar(alpha=.5) + 
  facet_grid(factor(`Study field`) ~ factor(Question)) + 
  theme(legend.position="none", strip.text.y = element_text(size = 7)) + xlab("Answer") + ylim(0,40)
```

Pitanja: 31 - 40 {data-navmenu="Pitanja vs područje"}
=======================================================================

### pitanja (31 - 40)

```{r fig.width=10}
ggplot(ppodaci39_48, aes(x=factor(Answer), fill=`Study field`, color=`Study field`)) + 
  geom_bar(alpha=.5) + 
  facet_grid(factor(`Study field`) ~ factor(Question)) + 
  theme(legend.position="none", strip.text.y = element_text(size = 7)) + xlab("Answer") + ylim(0,40)
```

Pitanja: 41 - 50 {data-navmenu="Pitanja vs područje"}
=======================================================================

### pitanja (41 - 50)

```{r fig.width=10}
ggplot(ppodaci49_58, aes(x=Answer, fill=`Study field`, color=`Study field`)) + 
  geom_bar(alpha=.5) + 
  facet_grid(factor(`Study field`) ~ factor(Question)) + 
  theme(legend.position="none", strip.text.y = element_text(size = 7)) + xlab("Answer") + ylim(0,40) + scale_x_discrete(drop=FALSE)
```

Pitanja: 51 - 61 {data-navmenu="Pitanja vs područje"}
=======================================================================

### pitanja (51 - 61)

```{r fig.width=10}
ggplot(ppodaci59_69, aes(x=factor(Answer), fill=`Study field`, color=`Study field`)) + 
  geom_bar(alpha=.5) + 
  facet_grid(factor(`Study field`) ~ factor(Question)) + 
  theme(legend.position="none", strip.text.y = element_text(size = 7)) + xlab("Answer") + ylim(0,40)
```

Q1 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q1** {data-height=200}

```{r, echo = F}
summary(Q1)
```

### ONEWAY-test rezultati: **Q1** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q1 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q1, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q1** {data-height=200}

```{r, echo = F}
kruskal.test(Q1 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q1)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q1 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q2 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q2** {data-height=200}

```{r, echo = F}
summary(Q2)
```

### ONEWAY-test rezultati: **Q2** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q2 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q2, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q2** {data-height=200}

```{r, echo = F}
kruskal.test(Q2 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q2)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q2 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q3 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q3** {data-height=200}

```{r, echo = F}
summary(Q3)
```

### ONEWAY-test rezultati: **Q3** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q3 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q3, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q3** {data-height=200}

```{r, echo = F}
kruskal.test(Q3 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q3)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q3 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q4 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q4** {data-height=200}

```{r, echo = F}
summary(Q4)
```

### ONEWAY-test rezultati: **Q4** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q4 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q4, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q4** {data-height=200}

```{r, echo = F}
kruskal.test(Q4 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q4)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q4 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q5 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q5** {data-height=200}

```{r, echo = F}
summary(Q5)
```

### ONEWAY-test rezultati: **Q5** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q5 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q5, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q5** {data-height=200}

```{r, echo = F}
kruskal.test(Q5 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q5)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q5 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q6 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q6** {data-height=200}

```{r, echo = F}
summary(Q6)
```

### ONEWAY-test rezultati: **Q6** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q6 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q6, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q6** {data-height=200}

```{r, echo = F}
kruskal.test(Q6 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q6)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q6 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q7 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q7** {data-height=200}

```{r, echo = F}
summary(Q7)
```

### ONEWAY-test rezultati: **Q7** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q7 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q7, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q7** {data-height=200}

```{r, echo = F}
kruskal.test(Q7 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q7)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q7 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q8 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q8** {data-height=200}

```{r, echo = F}
summary(Q8)
```

### ONEWAY-test rezultati: **Q8** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q8 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q8, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q8** {data-height=200}

```{r, echo = F}
kruskal.test(Q8 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q8)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q8 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q9 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q9** {data-height=200}

```{r, echo = F}
summary(Q9)
```

### ONEWAY-test rezultati: **Q9** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q9 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q9, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q9** {data-height=200}

```{r, echo = F}
kruskal.test(Q9 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q9)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q9 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q10 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q10** {data-height=200}

```{r, echo = F}
summary(Q10)
```

### ONEWAY-test rezultati: **Q10** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q10 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q10, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q10** {data-height=200}

```{r, echo = F}
kruskal.test(Q10 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q10)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q10 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q11 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q11** {data-height=200}

```{r, echo = F}
summary(Q11)
```

### ONEWAY-test rezultati: **Q11** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q11 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q11, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q11** {data-height=200}

```{r, echo = F}
kruskal.test(Q11 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q11)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q11 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q12 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q12** {data-height=200}

```{r, echo = F}
summary(Q12)
```

### ONEWAY-test rezultati: **Q12** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q12 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q12, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q12** {data-height=200}

```{r, echo = F}
kruskal.test(Q12 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q12)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q12 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q13 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q13** {data-height=200}

```{r, echo = F}
summary(Q13)
```

### ONEWAY-test rezultati: **Q13** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q13 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q13, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q13** {data-height=200}

```{r, echo = F}
kruskal.test(Q13 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q13)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q13 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q14 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q14** {data-height=200}

```{r, echo = F}
summary(Q14)
```

### ONEWAY-test rezultati: **Q14** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q14 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q14, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q14** {data-height=200}

```{r, echo = F}
kruskal.test(Q14 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q14)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q14 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q15 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q15** {data-height=200}

```{r, echo = F}
summary(Q15)
```

### ONEWAY-test rezultati: **Q15** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q15 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q15, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q15** {data-height=200}

```{r, echo = F}
kruskal.test(Q15 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q15)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q15 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q16 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q16** {data-height=200}

```{r, echo = F}
summary(Q16)
```

### ONEWAY-test rezultati: **Q16** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q16 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q16, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q16** {data-height=200}

```{r, echo = F}
kruskal.test(Q16 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q16)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q16 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q17 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q17** {data-height=200}

```{r, echo = F}
summary(Q17)
```

### ONEWAY-test rezultati: **Q17** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q17 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q17, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q17** {data-height=200}

```{r, echo = F}
kruskal.test(Q17 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q17)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q17 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q18 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q18** {data-height=200}

```{r, echo = F}
summary(Q18)
```

### ONEWAY-test rezultati: **Q18** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q18 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q18, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q18** {data-height=200}

```{r, echo = F}
kruskal.test(Q18 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q18)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q18 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q19 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q19** {data-height=200}

```{r, echo = F}
summary(Q19)
```

### ONEWAY-test rezultati: **Q19** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q19 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q19, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q19** {data-height=200}

```{r, echo = F}
kruskal.test(Q19 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q19)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q19 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q20 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q20** {data-height=200}

```{r, echo = F}
summary(Q20)
```

### ONEWAY-test rezultati: **Q20** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q20 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q20, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q20** {data-height=200}

```{r, echo = F}
kruskal.test(Q20 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q20)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q20 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q21 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q21** {data-height=200}

```{r, echo = F}
summary(Q21)
```

### ONEWAY-test rezultati: **Q21** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q21 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q21, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q21** {data-height=200}

```{r, echo = F}
kruskal.test(Q21 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q21)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q21 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q22 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q22** {data-height=200}

```{r, echo = F}
summary(Q22)
```

### ONEWAY-test rezultati: **Q22** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q22 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q22, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q22** {data-height=200}

```{r, echo = F}
kruskal.test(Q22 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q22)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q22 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q23 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q23** {data-height=200}

```{r, echo = F}
summary(Q23)
```

### ONEWAY-test rezultati: **Q23** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q23 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q23, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q23** {data-height=200}

```{r, echo = F}
kruskal.test(Q23 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q23)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q23 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q24 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q24** {data-height=200}

```{r, echo = F}
summary(Q24)
```

### ONEWAY-test rezultati: **Q24** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q24 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q24, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q24** {data-height=200}

```{r, echo = F}
kruskal.test(Q24 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q24)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q24 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q26 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q26** {data-height=200}

```{r, echo = F}
summary(Q26)
```

### ONEWAY-test rezultati: **Q26** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q26 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q26, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q26** {data-height=200}

```{r, echo = F}
kruskal.test(Q26 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q26)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q26 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q27 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q27** {data-height=200}

```{r, echo = F}
summary(Q27)
```

### ONEWAY-test rezultati: **Q27** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q27 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q27, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q27** {data-height=200}

```{r, echo = F}
kruskal.test(Q27 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q27)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q27 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q28 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q28** {data-height=200}

```{r, echo = F}
summary(Q28)
```

### ONEWAY-test rezultati: **Q28** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q28 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q28, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q28** {data-height=200}

```{r, echo = F}
kruskal.test(Q28 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q28)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q28 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q29 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q29** {data-height=200}

```{r, echo = F}
summary(Q29)
```

### ONEWAY-test rezultati: **Q29** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q29 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q29, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q29** {data-height=200}

```{r, echo = F}
kruskal.test(Q29 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q29)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q29 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q30 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q30** {data-height=200}

```{r, echo = F}
summary(Q30)
```

### ONEWAY-test rezultati: **Q30** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q30 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q30, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q30** {data-height=200}

```{r, echo = F}
kruskal.test(Q30 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q30)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q30 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q31 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q31** {data-height=200}

```{r, echo = F}
summary(Q31)
```

### ONEWAY-test rezultati: **Q31** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q31 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q31, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q31** {data-height=200}

```{r, echo = F}
kruskal.test(Q31 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q31)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q31 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q32 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q32** {data-height=200}

```{r, echo = F}
summary(Q32)
```

### ONEWAY-test rezultati: **Q32** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q32 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q32, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q32** {data-height=200}

```{r, echo = F}
kruskal.test(Q32 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q32)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q32 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q33 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q33** {data-height=200}

```{r, echo = F}
summary(Q33)
```

### ONEWAY-test rezultati: **Q33** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q33 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q33, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q33** {data-height=200}

```{r, echo = F}
kruskal.test(Q33 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q33)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q33 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q35 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q35** {data-height=200}

```{r, echo = F}
summary(Q35)
```

### ONEWAY-test rezultati: **Q35** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q35 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q35, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q35** {data-height=200}

```{r, echo = F}
kruskal.test(Q35 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q35)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q35 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q36 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q36** {data-height=200}

```{r, echo = F}
summary(Q36)
```

### ONEWAY-test rezultati: **Q36** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q36 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q36, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q36** {data-height=200}

```{r, echo = F}
kruskal.test(Q36 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q36)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q36 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q37 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q37** {data-height=200}

```{r, echo = F}
summary(Q37)
```

### ONEWAY-test rezultati: **Q37** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q37 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q37, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q37** {data-height=200}

```{r, echo = F}
kruskal.test(Q37 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q37)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q37 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q38 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q38** {data-height=200}

```{r, echo = F}
summary(Q38)
```

### ONEWAY-test rezultati: **Q38** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q38 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q38, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q38** {data-height=200}

```{r, echo = F}
kruskal.test(Q38 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q38)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q38 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q39 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q39** {data-height=200}

```{r, echo = F}
summary(Q39)
```

### ONEWAY-test rezultati: **Q39** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q39 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q39, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q39** {data-height=200}

```{r, echo = F}
kruskal.test(Q39 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q39)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q39 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q40 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q40** {data-height=200}

```{r, echo = F}
summary(Q40)
```

### ONEWAY-test rezultati: **Q40** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q40 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q40, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q40** {data-height=200}

```{r, echo = F}
kruskal.test(Q40 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q40)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q40 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q41 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q41** {data-height=200}

```{r, echo = F}
summary(Q41)
```

### ONEWAY-test rezultati: **Q41** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q41 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q41, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q41** {data-height=200}

```{r, echo = F}
kruskal.test(Q41 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q41)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q41 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q42 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q42** {data-height=200}

```{r, echo = F}
summary(Q42)
```

### ONEWAY-test rezultati: **Q42** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q42 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q42, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q42** {data-height=200}

```{r, echo = F}
kruskal.test(Q42 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q42)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q42 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q43 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q43** {data-height=200}

```{r, echo = F}
summary(Q43)
```

### ONEWAY-test rezultati: **Q43** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q43 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q43, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q43** {data-height=200}

```{r, echo = F}
kruskal.test(Q43 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q43)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q43 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q44 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q44** {data-height=200}

```{r, echo = F}
summary(Q44)
```

### ONEWAY-test rezultati: **Q44** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q44 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q44, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q44** {data-height=200}

```{r, echo = F}
kruskal.test(Q44 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q44)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q44 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q45 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q45** {data-height=200}

```{r, echo = F}
summary(Q45)
```

### ONEWAY-test rezultati: **Q45** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q45 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q45, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q45** {data-height=200}

```{r, echo = F}
kruskal.test(Q45 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q45)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q45 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q46 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q46** {data-height=200}

```{r, echo = F}
summary(Q46)
```

### ONEWAY-test rezultati: **Q46** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q46 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q46, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q46** {data-height=200}

```{r, echo = F}
kruskal.test(Q46 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q46)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q46 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q47 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q47** {data-height=200}

```{r, echo = F}
summary(Q47)
```

### ONEWAY-test rezultati: **Q47** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q47 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q47, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q47** {data-height=200}

```{r, echo = F}
kruskal.test(Q47 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q47)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q47 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q48 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q48** {data-height=200}

```{r, echo = F}
summary(Q48)
```

### ONEWAY-test rezultati: **Q48** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q48 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q48, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q48** {data-height=200}

```{r, echo = F}
kruskal.test(Q48 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q48)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q48 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q49 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q49** {data-height=200}

```{r, echo = F}
summary(Q49)
```

### ONEWAY-test rezultati: **Q49** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q49 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q49, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q49** {data-height=200}

```{r, echo = F}
kruskal.test(Q49 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q49)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q49 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q50 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q50** {data-height=200}

```{r, echo = F}
summary(Q50)
```

### ONEWAY-test rezultati: **Q50** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q50 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q50, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q50** {data-height=200}

```{r, echo = F}
kruskal.test(Q50 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q50)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q50 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q51 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q51** {data-height=200}

```{r, echo = F}
summary(Q51)
```

### ONEWAY-test rezultati: **Q51** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q51 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q51, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q51** {data-height=200}

```{r, echo = F}
kruskal.test(Q51 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q51)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q51 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q52 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q52** {data-height=200}

```{r, echo = F}
summary(Q52)
```

### ONEWAY-test rezultati: **Q52** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q52 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q52, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q52** {data-height=200}

```{r, echo = F}
kruskal.test(Q52 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q52)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q52 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q53 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q53** {data-height=200}

```{r, echo = F}
summary(Q53)
```

### ONEWAY-test rezultati: **Q53** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q53 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q53, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q53** {data-height=200}

```{r, echo = F}
kruskal.test(Q53 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q53)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q53 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q58 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q58** {data-height=200}

```{r, echo = F}
summary(Q58)
```

### ONEWAY-test rezultati: **Q58** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q58 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q58, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q58** {data-height=200}

```{r, echo = F}
kruskal.test(Q58 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q58)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q58 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q59 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q59** {data-height=200}

```{r, echo = F}
summary(Q59)
```

### ONEWAY-test rezultati: **Q59** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q59 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q59, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q59** {data-height=200}

```{r, echo = F}
kruskal.test(Q59 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q59)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q59 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q60 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q60** {data-height=200}

```{r, echo = F}
summary(Q60)
```

### ONEWAY-test rezultati: **Q60** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q60 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q60, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q60** {data-height=200}

```{r, echo = F}
kruskal.test(Q60 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q60)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q60 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q61 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q61** {data-height=200}

```{r, echo = F}
summary(Q61)
```

### ONEWAY-test rezultati: **Q61** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q61 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q61, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q61** {data-height=200}

```{r, echo = F}
kruskal.test(Q61 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q61)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q61 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q62 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q62** {data-height=200}

```{r, echo = F}
summary(Q62)
```

### ONEWAY-test rezultati: **Q62** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q62 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q62, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q62** {data-height=200}

```{r, echo = F}
kruskal.test(Q62 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q62)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q62 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q63 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q63** {data-height=200}

```{r, echo = F}
summary(Q63)
```

### ONEWAY-test rezultati: **Q63** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q63 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q63, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q63** {data-height=200}

```{r, echo = F}
kruskal.test(Q63 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q63)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q63 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q64 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q64** {data-height=200}

```{r, echo = F}
summary(Q64)
```

### ONEWAY-test rezultati: **Q64** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q64 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q64, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q64** {data-height=200}

```{r, echo = F}
kruskal.test(Q64 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q64)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q64 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q65 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q65** {data-height=200}

```{r, echo = F}
summary(Q65)
```

### ONEWAY-test rezultati: **Q65** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q65 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q65, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q65** {data-height=200}

```{r, echo = F}
kruskal.test(Q65 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q65)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q65 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q66 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q66** {data-height=200}

```{r, echo = F}
summary(Q66)
```

### ONEWAY-test rezultati: **Q66** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q66 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q66, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q66** {data-height=200}

```{r, echo = F}
kruskal.test(Q66 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q66)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q66 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q67 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q67** {data-height=200}

```{r, echo = F}
summary(Q67)
```

### ONEWAY-test rezultati: **Q67** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q67 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q67, podaci$Country, center=mean)
```

### Kruskal-Wallis rezultati: **Q67** {data-height=200}

```{r, echo = F}
kruskal.test(Q67 ~ Country, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(Q67)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q67 ~ Country, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q1 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q1** {data-height=200}

```{r, echo = F}
summary(PQ1)
```

### ONEWAY-test rezultati: **Q1** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q1 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q1, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q1** {data-height=200}

```{r, echo = F}
kruskal.test(Q1 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ1)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q1 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q2 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q2** {data-height=200}

```{r, echo = F}
summary(PQ2)
```

### ONEWAY-test rezultati: **Q2** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q2 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q2, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q2** {data-height=200}

```{r, echo = F}
kruskal.test(Q2 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ2)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q2 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q3 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q3** {data-height=200}

```{r, echo = F}
summary(PQ3)
```

### ONEWAY-test rezultati: **Q3** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q3 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q3, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q3** {data-height=200}

```{r, echo = F}
kruskal.test(Q3 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ3)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q3 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q4 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q4** {data-height=200}

```{r, echo = F}
summary(PQ4)
```

### ONEWAY-test rezultati: **Q4** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q4 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q4, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q4** {data-height=200}

```{r, echo = F}
kruskal.test(Q4 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ4)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q4 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q5 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q5** {data-height=200}

```{r, echo = F}
summary(PQ5)
```

### ONEWAY-test rezultati: **Q5** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q5 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q5, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q5** {data-height=200}

```{r, echo = F}
kruskal.test(Q5 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ5)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q5 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q6 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q6** {data-height=200}

```{r, echo = F}
summary(PQ6)
```

### ONEWAY-test rezultati: **Q6** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q6 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q6, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q6** {data-height=200}

```{r, echo = F}
kruskal.test(Q6 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ6)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q6 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q7 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q7** {data-height=200}

```{r, echo = F}
summary(PQ7)
```

### ONEWAY-test rezultati: **Q7** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q7 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q7, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q7** {data-height=200}

```{r, echo = F}
kruskal.test(Q7 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ7)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q7 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q8 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q8** {data-height=200}

```{r, echo = F}
summary(PQ8)
```

### ONEWAY-test rezultati: **Q8** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q8 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q8, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q8** {data-height=200}

```{r, echo = F}
kruskal.test(Q8 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ8)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q8 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q9 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q9** {data-height=200}

```{r, echo = F}
summary(PQ9)
```

### ONEWAY-test rezultati: **Q9** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q9 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q9, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q9** {data-height=200}

```{r, echo = F}
kruskal.test(Q9 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ9)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q9 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q10 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q10** {data-height=200}

```{r, echo = F}
summary(PQ10)
```

### ONEWAY-test rezultati: **Q10** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q10 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q10, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q10** {data-height=200}

```{r, echo = F}
kruskal.test(Q10 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ10)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q10 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q11 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q11** {data-height=200}

```{r, echo = F}
summary(PQ11)
```

### ONEWAY-test rezultati: **Q11** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q11 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q11, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q11** {data-height=200}

```{r, echo = F}
kruskal.test(Q11 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ11)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q11 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q12 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q12** {data-height=200}

```{r, echo = F}
summary(PQ12)
```

### ONEWAY-test rezultati: **Q12** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q12 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q12, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q12** {data-height=200}

```{r, echo = F}
kruskal.test(Q12 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ12)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q12 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q13 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q13** {data-height=200}

```{r, echo = F}
summary(PQ13)
```

### ONEWAY-test rezultati: **Q13** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q13 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q13, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q13** {data-height=200}

```{r, echo = F}
kruskal.test(Q13 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ13)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q13 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q14 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q14** {data-height=200}

```{r, echo = F}
summary(PQ14)
```

### ONEWAY-test rezultati: **Q14** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q14 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q14, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q14** {data-height=200}

```{r, echo = F}
kruskal.test(Q14 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ14)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q14 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q15 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q15** {data-height=200}

```{r, echo = F}
summary(PQ15)
```

### ONEWAY-test rezultati: **Q15** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q15 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q15, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q15** {data-height=200}

```{r, echo = F}
kruskal.test(Q15 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ15)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q15 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q16 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q16** {data-height=200}

```{r, echo = F}
summary(PQ16)
```

### ONEWAY-test rezultati: **Q16** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q16 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q16, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q16** {data-height=200}

```{r, echo = F}
kruskal.test(Q16 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ16)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q16 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q17 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q17** {data-height=200}

```{r, echo = F}
summary(PQ17)
```

### ONEWAY-test rezultati: **Q17** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q17 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q17, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q17** {data-height=200}

```{r, echo = F}
kruskal.test(Q17 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ17)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q17 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q18 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q18** {data-height=200}

```{r, echo = F}
summary(PQ18)
```

### ONEWAY-test rezultati: **Q18** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q18 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q18, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q18** {data-height=200}

```{r, echo = F}
kruskal.test(Q18 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ18)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q18 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q19 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q19** {data-height=200}

```{r, echo = F}
summary(PQ19)
```

### ONEWAY-test rezultati: **Q19** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q19 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q19, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q19** {data-height=200}

```{r, echo = F}
kruskal.test(Q19 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ19)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q19 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q20 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q20** {data-height=200}

```{r, echo = F}
summary(PQ20)
```

### ONEWAY-test rezultati: **Q20** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q20 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q20, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q20** {data-height=200}

```{r, echo = F}
kruskal.test(Q20 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ20)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q20 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q21 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q21** {data-height=200}

```{r, echo = F}
summary(PQ21)
```

### ONEWAY-test rezultati: **Q21** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q21 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q21, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q21** {data-height=200}

```{r, echo = F}
kruskal.test(Q21 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ21)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q21 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q22 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q22** {data-height=200}

```{r, echo = F}
summary(PQ22)
```

### ONEWAY-test rezultati: **Q22** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q22 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q22, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q22** {data-height=200}

```{r, echo = F}
kruskal.test(Q22 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ22)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q22 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q23 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q23** {data-height=200}

```{r, echo = F}
summary(PQ23)
```

### ONEWAY-test rezultati: **Q23** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q23 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q23, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q23** {data-height=200}

```{r, echo = F}
kruskal.test(Q23 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ23)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q23 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q24 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q24** {data-height=200}

```{r, echo = F}
summary(PQ24)
```

### ONEWAY-test rezultati: **Q24** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q24 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q24, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q24** {data-height=200}

```{r, echo = F}
kruskal.test(Q24 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ24)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q24 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q26 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q26** {data-height=200}

```{r, echo = F}
summary(PQ26)
```

### ONEWAY-test rezultati: **Q26** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q26 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q26, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q26** {data-height=200}

```{r, echo = F}
kruskal.test(Q26 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ26)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q26 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q27 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q27** {data-height=200}

```{r, echo = F}
summary(PQ27)
```

### ONEWAY-test rezultati: **Q27** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q27 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q27, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q27** {data-height=200}

```{r, echo = F}
kruskal.test(Q27 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ27)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q27 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q28 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q28** {data-height=200}

```{r, echo = F}
summary(PQ28)
```

### ONEWAY-test rezultati: **Q28** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q28 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q28, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q28** {data-height=200}

```{r, echo = F}
kruskal.test(Q28 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ28)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q28 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q29 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q29** {data-height=200}

```{r, echo = F}
summary(PQ29)
```

### ONEWAY-test rezultati: **Q29** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q29 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q29, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q29** {data-height=200}

```{r, echo = F}
kruskal.test(Q29 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ29)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q29 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q30 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q30** {data-height=200}

```{r, echo = F}
summary(PQ30)
```

### ONEWAY-test rezultati: **Q30** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q30 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q30, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q30** {data-height=200}

```{r, echo = F}
kruskal.test(Q30 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ30)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q30 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q31 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q31** {data-height=200}

```{r, echo = F}
summary(PQ31)
```

### ONEWAY-test rezultati: **Q31** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q31 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q31, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q31** {data-height=200}

```{r, echo = F}
kruskal.test(Q31 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ31)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q31 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q32 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q32** {data-height=200}

```{r, echo = F}
summary(PQ32)
```

### ONEWAY-test rezultati: **Q32** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q32 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q32, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q32** {data-height=200}

```{r, echo = F}
kruskal.test(Q32 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ32)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q32 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q33 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q33** {data-height=200}

```{r, echo = F}
summary(PQ33)
```

### ONEWAY-test rezultati: **Q33** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q33 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q33, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q33** {data-height=200}

```{r, echo = F}
kruskal.test(Q33 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ33)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q33 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q35 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q35** {data-height=200}

```{r, echo = F}
summary(PQ35)
```

### ONEWAY-test rezultati: **Q35** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q35 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q35, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q35** {data-height=200}

```{r, echo = F}
kruskal.test(Q35 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ35)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q35 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q36 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q36** {data-height=200}

```{r, echo = F}
summary(PQ36)
```

### ONEWAY-test rezultati: **Q36** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q36 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q36, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q36** {data-height=200}

```{r, echo = F}
kruskal.test(Q36 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ36)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q36 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q37 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q37** {data-height=200}

```{r, echo = F}
summary(PQ37)
```

### ONEWAY-test rezultati: **Q37** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q37 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q37, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q37** {data-height=200}

```{r, echo = F}
kruskal.test(Q37 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ37)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q37 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q38 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q38** {data-height=200}

```{r, echo = F}
summary(PQ38)
```

### ONEWAY-test rezultati: **Q38** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q38 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q38, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q38** {data-height=200}

```{r, echo = F}
kruskal.test(Q38 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ38)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q38 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q39 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q39** {data-height=200}

```{r, echo = F}
summary(PQ39)
```

### ONEWAY-test rezultati: **Q39** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q39 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q39, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q39** {data-height=200}

```{r, echo = F}
kruskal.test(Q39 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ39)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q39 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q40 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q40** {data-height=200}

```{r, echo = F}
summary(PQ40)
```

### ONEWAY-test rezultati: **Q40** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q40 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q40, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q40** {data-height=200}

```{r, echo = F}
kruskal.test(Q40 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ40)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q40 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q41 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q41** {data-height=200}

```{r, echo = F}
summary(PQ41)
```

### ONEWAY-test rezultati: **Q41** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q41 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q41, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q41** {data-height=200}

```{r, echo = F}
kruskal.test(Q41 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ41)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q41 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q42 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q42** {data-height=200}

```{r, echo = F}
summary(PQ42)
```

### ONEWAY-test rezultati: **Q42** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q42 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q42, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q42** {data-height=200}

```{r, echo = F}
kruskal.test(Q42 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ42)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q42 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q43 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q43** {data-height=200}

```{r, echo = F}
summary(PQ43)
```

### ONEWAY-test rezultati: **Q43** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q43 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q43, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q43** {data-height=200}

```{r, echo = F}
kruskal.test(Q43 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ43)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q43 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q44 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q44** {data-height=200}

```{r, echo = F}
summary(PQ44)
```

### ONEWAY-test rezultati: **Q44** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q44 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q44, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q44** {data-height=200}

```{r, echo = F}
kruskal.test(Q44 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ44)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q44 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q45 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q45** {data-height=200}

```{r, echo = F}
summary(PQ45)
```

### ONEWAY-test rezultati: **Q45** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q45 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q45, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q45** {data-height=200}

```{r, echo = F}
kruskal.test(Q45 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ45)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q45 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q46 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q46** {data-height=200}

```{r, echo = F}
summary(PQ46)
```

### ONEWAY-test rezultati: **Q46** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q46 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q46, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q46** {data-height=200}

```{r, echo = F}
kruskal.test(Q46 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ46)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q46 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q47 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q47** {data-height=200}

```{r, echo = F}
summary(PQ47)
```

### ONEWAY-test rezultati: **Q47** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q47 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q47, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q47** {data-height=200}

```{r, echo = F}
kruskal.test(Q47 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ47)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q47 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q48 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q48** {data-height=200}

```{r, echo = F}
summary(PQ48)
```

### ONEWAY-test rezultati: **Q48** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q48 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q48, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q48** {data-height=200}

```{r, echo = F}
kruskal.test(Q48 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ48)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q48 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q49 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q49** {data-height=200}

```{r, echo = F}
summary(PQ49)
```

### ONEWAY-test rezultati: **Q49** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q49 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q49, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q49** {data-height=200}

```{r, echo = F}
kruskal.test(Q49 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ49)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q49 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q50 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q50** {data-height=200}

```{r, echo = F}
summary(PQ50)
```

### ONEWAY-test rezultati: **Q50** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q50 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q50, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q50** {data-height=200}

```{r, echo = F}
kruskal.test(Q50 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ50)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q50 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q51 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q51** {data-height=200}

```{r, echo = F}
summary(PQ51)
```

### ONEWAY-test rezultati: **Q51** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q51 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q51, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q51** {data-height=200}

```{r, echo = F}
kruskal.test(Q51 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ51)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q51 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q52 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q52** {data-height=200}

```{r, echo = F}
summary(PQ52)
```

### ONEWAY-test rezultati: **Q52** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q52 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q52, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q52** {data-height=200}

```{r, echo = F}
kruskal.test(Q52 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ52)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q52 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q53 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q53** {data-height=200}

```{r, echo = F}
summary(PQ53)
```

### ONEWAY-test rezultati: **Q53** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q53 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q53, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q53** {data-height=200}

```{r, echo = F}
kruskal.test(Q53 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ53)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q53 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q58 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q58** {data-height=200}

```{r, echo = F}
summary(PQ58)
```

### ONEWAY-test rezultati: **Q58** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q58 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q58, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q58** {data-height=200}

```{r, echo = F}
kruskal.test(Q58 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ58)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q58 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q59 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q59** {data-height=200}

```{r, echo = F}
summary(PQ59)
```

### ONEWAY-test rezultati: **Q59** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q59 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q59, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q59** {data-height=200}

```{r, echo = F}
kruskal.test(Q59 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ59)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q59 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q60 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q60** {data-height=200}

```{r, echo = F}
summary(PQ60)
```

### ONEWAY-test rezultati: **Q60** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q60 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q60, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q60** {data-height=200}

```{r, echo = F}
kruskal.test(Q60 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ60)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q60 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q61 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q61** {data-height=200}

```{r, echo = F}
summary(PQ61)
```

### ONEWAY-test rezultati: **Q61** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q61 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q61, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q61** {data-height=200}

```{r, echo = F}
kruskal.test(Q61 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ61)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q61 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q62 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q62** {data-height=200}

```{r, echo = F}
summary(PQ62)
```

### ONEWAY-test rezultati: **Q62** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q62 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q62, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q62** {data-height=200}

```{r, echo = F}
kruskal.test(Q62 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ62)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q62 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q63 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q63** {data-height=200}

```{r, echo = F}
summary(PQ63)
```

### ONEWAY-test rezultati: **Q63** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q63 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q63, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q63** {data-height=200}

```{r, echo = F}
kruskal.test(Q63 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ63)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q63 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q64 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q64** {data-height=200}

```{r, echo = F}
summary(PQ64)
```

### ONEWAY-test rezultati: **Q64** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q64 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q64, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q64** {data-height=200}

```{r, echo = F}
kruskal.test(Q64 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ64)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q64 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q65 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q65** {data-height=200}

```{r, echo = F}
summary(PQ65)
```

### ONEWAY-test rezultati: **Q65** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q65 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q65, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q65** {data-height=200}

```{r, echo = F}
kruskal.test(Q65 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ65)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q65 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q66 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q66** {data-height=200}

```{r, echo = F}
summary(PQ66)
```

### ONEWAY-test rezultati: **Q66** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q66 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q66, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q66** {data-height=200}

```{r, echo = F}
kruskal.test(Q66 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ66)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q66 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

Q67 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q67** {data-height=200}

```{r, echo = F}
summary(PQ67)
```

### ONEWAY-test rezultati: **Q67** {data-height=200}

```{r, echo = F}
oneway.test(podaci$Q67 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q67, podaci$`Study field`, center=mean)
```

### Kruskal-Wallis rezultati: **Q67** {data-height=200}

```{r, echo = F}
kruskal.test(Q67 ~ `Study field`, data = podaci)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey multiple comparisons of means 95% family-wise confidence level

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ67)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Dunn (1964) Kruskal-Wallis multiple comparison p-values adjusted with the Holm method.

```{r, echo = F}
tablica <- dunnTest(Q67 ~ `Study field`, data = podaci)$res
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```