Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 4.01 1.3352 1.981 0.119
Residuals 163 109.89 0.6742
One-way analysis of means (not assuming equal variances)
data: podaci$Q1 and podaci$Country
F = 1.6372, num df = 3.000, denom df = 73.393, p-value = 0.1881
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 2.3458 0.0748 .
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$Country 0.03516957 0.03516957
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q1 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia 0.02031063 -0.5407240 0.5813453 0.9997016
Portugal-Croatia -0.15422006 -0.6111113 0.3026712 0.8171950
Spain-Croatia -0.41487455 -0.9370828 0.1073337 0.1700022
Portugal-Finland -0.17453070 -0.6545903 0.3055289 0.7813180
Spain-Finland -0.43518519 -0.9777799 0.1074096 0.1633754
Spain-Portugal -0.26065449 -0.6947037 0.1733948 0.4051254
Pairwise comparisons using t tests with pooled SD
data: podaci$Q1 and podaci$Country
Croatia Finland Portugal
Finland 1.00 - -
Portugal 1.00 1.00 -
Spain 0.24 0.23 0.73
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 5.55 1.8484 2.096 0.103
Residuals 163 143.72 0.8817
One-way analysis of means (not assuming equal variances)
data: podaci$Q2 and podaci$Country
F = 2.0269, num df = 3.000, denom df = 74.101, p-value = 0.1174
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 5.4662 0.001323 **
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$Country 0.03714839 0.03714839
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q2 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia 0.08363202 -0.5579946 0.72525860 0.9866201
Portugal-Croatia -0.18780380 -0.7103269 0.33471927 0.7871998
Spain-Croatia -0.45340502 -1.0506278 0.14381779 0.2033935
Portugal-Finland -0.27143582 -0.8204553 0.27758368 0.5748462
Spain-Finland -0.53703704 -1.1575748 0.08350074 0.1152558
Spain-Portugal -0.26560122 -0.7620011 0.23079864 0.5081320
Pairwise comparisons using t tests with pooled SD
data: podaci$Q2 and podaci$Country
Croatia Finland Portugal
Finland 1.00 - -
Portugal 1.00 1.00 -
Spain 0.30 0.16 1.00
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 30.62 10.207 10.89 1.48e-06 ***
Residuals 163 152.81 0.937
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q3 and podaci$Country
F = 10.536, num df = 3.000, denom df = 70.176, p-value = 8.354e-06
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 0.2324 0.8737
163
eta.sq eta.sq.part
podaci$Country 0.1669321 0.1669321
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q3 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia -0.03823178 -0.6998186 0.6233550 0.9987926
Portugal-Croatia -0.92001768 -1.4587958 -0.3812396 0.0000998
Spain-Croatia -0.13082437 -0.7466260 0.4849773 0.9460426
Portugal-Finland -0.88178590 -1.4478847 -0.3156871 0.0004676
Spain-Finland -0.09259259 -0.7324345 0.5472493 0.9818729
Spain-Portugal 0.78919330 0.2773511 1.3010355 0.0005466
Pairwise comparisons using t tests with pooled SD
data: podaci$Q3 and podaci$Country
Croatia Finland Portugal
Finland 1.00000 - -
Portugal 0.00010 0.00049 -
Spain 1.00000 1.00000 0.00057
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 15.28 5.095 9.031 1.44e-05 ***
Residuals 163 91.96 0.564
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q4 and podaci$Country
F = 11.733, num df = 3.000, denom df = 75.531, p-value = 2.156e-06
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 1.9666 0.1211
163
eta.sq eta.sq.part
podaci$Country 0.1425207 0.1425207
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q4 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia -0.1636798 -0.6769175 0.3495579039 0.8412052
Portugal-Croatia -0.7547503 -1.1727170 -0.3367836281 0.0000343
Spain-Croatia -0.4784946 -0.9562137 -0.0007755328 0.0494612
Portugal-Finland -0.5910705 -1.0302317 -0.1519093046 0.0034056
Spain-Finland -0.3148148 -0.8111836 0.1815539393 0.3557380
Spain-Portugal 0.2762557 -0.1208150 0.6733264262 0.2742641
Pairwise comparisons using t tests with pooled SD
data: podaci$Q4 and podaci$Country
Croatia Finland Portugal
Finland 1.0000 - -
Portugal 3.5e-05 0.0037 -
Spain 0.0611 0.6098 0.4366
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 20.75 6.917 7.629 8.36e-05 ***
Residuals 163 147.79 0.907
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q5 and podaci$Country
F = 8.599, num df = 3.000, denom df = 75.762, p-value = 5.532e-05
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 3.8852 0.01025 *
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$Country 0.1231295 0.1231295
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q5 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia -0.03345281 -0.6840842 0.6171786 0.9991480
Portugal-Croatia -0.81528944 -1.3451458 -0.2854331 0.0005639
Spain-Croatia -0.41308244 -1.0186869 0.1925220 0.2912840
Portugal-Finland -0.78183663 -1.3385613 -0.2251120 0.0020167
Spain-Finland -0.37962963 -1.0088763 0.2496170 0.4009279
Spain-Portugal 0.40220700 -0.1011595 0.9055735 0.1659834
Pairwise comparisons using t tests with pooled SD
data: podaci$Q5 and podaci$Country
Croatia Finland Portugal
Finland 1.00000 - -
Portugal 0.00059 0.00215 -
Spain 0.47103 0.71569 0.23787
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 3.29 1.097 1.086 0.357
Residuals 163 164.64 1.010
One-way analysis of means (not assuming equal variances)
data: podaci$Q6 and podaci$Country
F = 1.2518, num df = 3.000, denom df = 67.073, p-value = 0.298
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 3.7922 0.01156 *
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$Country 0.01960258 0.01960258
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q6 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia 0.248506571 -0.4382139 0.9352271 0.7837189
Portugal-Croatia -0.060980999 -0.6202273 0.4982653 0.9920639
Spain-Croatia 0.239247312 -0.3999487 0.8784433 0.7658072
Portugal-Finland -0.309487570 -0.8970925 0.2781174 0.5217570
Spain-Finland -0.009259259 -0.6734088 0.6548903 0.9999829
Spain-Portugal 0.300228311 -0.2310588 0.8315155 0.4599137
Pairwise comparisons using t tests with pooled SD
data: podaci$Q6 and podaci$Country
Croatia Finland Portugal
Finland 1.00 - -
Portugal 1.00 1.00 -
Spain 1.00 1.00 0.87
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 5.5 1.8345 2.065 0.107
Residuals 163 144.8 0.8882
One-way analysis of means (not assuming equal variances)
data: podaci$Q7 and podaci$Country
F = 3.2754, num df = 3.000, denom df = 74.774, p-value = 0.02564
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 0.7556 0.5206
163
eta.sq eta.sq.part
podaci$Country 0.03662186 0.03662186
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q7 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia 0.34767025 -0.2962908 0.9916313 0.5002827
Portugal-Croatia -0.17896597 -0.7033902 0.3454582 0.8122260
Spain-Croatia -0.04121864 -0.6406143 0.5581771 0.9979726
Portugal-Finland -0.52663623 -1.0776532 0.0243808 0.0667178
Spain-Finland -0.38888889 -1.0116844 0.2339066 0.3697953
Spain-Portugal 0.13774734 -0.3604586 0.6359533 0.8899505
Pairwise comparisons using t tests with pooled SD
data: podaci$Q7 and podaci$Country
Croatia Finland Portugal
Finland 0.978 - -
Portugal 1.000 0.085 -
Spain 1.000 0.642 1.000
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 26.80 8.934 15.85 4.3e-09 ***
Residuals 163 91.86 0.564
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q8 and podaci$Country
F = 20.892, num df = 3.000, denom df = 67.656, p-value = 1.089e-09
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 5.9798 0.0006834 ***
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$Country 0.2258736 0.2258736
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q8 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia -0.5961768 -1.10912430 -0.08322935 0.0155456
Portugal-Croatia 0.3495360 -0.06819433 0.76726635 0.1354587
Spain-Croatia 0.6353047 0.15785572 1.11275360 0.0038934
Portugal-Finland 0.9457128 0.50679997 1.38462571 0.0000006
Spain-Finland 1.2314815 0.73539343 1.72756954 0.0000000
Spain-Portugal 0.2857686 -0.11107753 0.68261482 0.2454115
Pairwise comparisons using t tests with pooled SD
data: podaci$Q8 and podaci$Country
Croatia Finland Portugal
Finland 0.0178 - -
Portugal 0.1878 5.5e-07 -
Spain 0.0042 7.6e-09 0.3803
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 42.04 14.013 11.99 3.89e-07 ***
Residuals 163 190.43 1.168
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q9 and podaci$Country
F = 13.87, num df = 3.000, denom df = 72.137, p-value = 3.113e-07
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 3.0891 0.02875 *
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$Country 0.1808407 0.1808407
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q9 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia 1.1290323 0.3904786 1.8675860 0.0006220
Portugal-Croatia -0.1312417 -0.7326996 0.4702161 0.9418953
Spain-Croatia -0.4265233 -1.1139654 0.2609188 0.3755662
Portugal-Finland -1.2602740 -1.8922309 -0.6283170 0.0000039
Spain-Finland -1.5555556 -2.2698347 -0.8412764 0.0000004
Spain-Portugal -0.2952816 -0.8666699 0.2761068 0.5379932
Pairwise comparisons using t tests with pooled SD
data: podaci$Q9 and podaci$Country
Croatia Finland Portugal
Finland 0.00065 - -
Portugal 1.00000 3.9e-06 -
Spain 0.65531 4.1e-07 1.00000
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 28.32 9.439 7.679 7.85e-05 ***
Residuals 163 200.34 1.229
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q10 and podaci$Country
F = 8.0568, num df = 3.000, denom df = 72.628, p-value = 0.0001051
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 2.5784 0.05553 .
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$Country 0.1238334 0.1238334
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q10 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia -0.03703704 -0.7945750 0.7205009 0.9992670
Portugal-Croatia -0.86301370 -1.4799318 -0.2460956 0.0021192
Spain-Croatia -0.91666667 -1.6217792 -0.2115542 0.0050695
Portugal-Finland -0.82597666 -1.4741778 -0.1777755 0.0063053
Spain-Finland -0.87962963 -1.6122690 -0.1469903 0.0115090
Spain-Portugal -0.05365297 -0.6397286 0.5324227 0.9952614
Pairwise comparisons using t tests with pooled SD
data: podaci$Q10 and podaci$Country
Croatia Finland Portugal
Finland 1.0000 - -
Portugal 0.0023 0.0069 -
Spain 0.0055 0.0130 1.0000
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 13.17 4.389 3.503 0.0168 *
Residuals 163 204.23 1.253
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q11 and podaci$Country
F = 4.6484, num df = 3.000, denom df = 69.133, p-value = 0.005106
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 5.4553 0.001342 **
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$Country 0.06056499 0.06056499
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q11 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia 0.03345281 -0.7314064 0.79831205 0.9994746
Portugal-Croatia -0.29429960 -0.9171800 0.32858077 0.6109927
Spain-Croatia -0.75358423 -1.4655114 -0.04165708 0.0334617
Portugal-Finland -0.32775241 -0.9822182 0.32671337 0.5643006
Spain-Finland -0.78703704 -1.5267571 -0.04731698 0.0321954
Spain-Portugal -0.45928463 -1.0510245 0.13245523 0.1867969
Pairwise comparisons using t tests with pooled SD
data: podaci$Q11 and podaci$Country
Croatia Finland Portugal
Finland 1.000 - -
Portugal 1.000 1.000 -
Spain 0.040 0.038 0.273
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 63.88 21.293 18.8 1.6e-10 ***
Residuals 163 184.61 1.133
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q12 and podaci$Country
F = 20.858, num df = 3.000, denom df = 69.251, p-value = 9.8e-10
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 6.2025 0.0005137 ***
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$Country 0.2570634 0.2570634
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q12 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia 0.0167264 -0.7104645 0.7439173 0.9999233
Portugal-Croatia 1.0309324 0.4387281 1.6231367 0.0000698
Spain-Croatia 1.6093190 0.9324534 2.2861846 0.0000000
Portugal-Finland 1.0142060 0.3919718 1.6364401 0.0002251
Spain-Finland 1.5925926 0.8893028 2.2958824 0.0000001
Spain-Portugal 0.5783866 0.0157892 1.1409840 0.0413563
Pairwise comparisons using t tests with pooled SD
data: podaci$Q12 and podaci$Country
Croatia Finland Portugal
Finland 1.00000 - -
Portugal 7.1e-05 0.00023 -
Spain 3.1e-08 1.4e-07 0.05032
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 57.51 19.169 14.03 3.51e-08 ***
Residuals 163 222.67 1.366
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q13 and podaci$Country
F = 14.511, num df = 3.000, denom df = 73.118, p-value = 1.649e-07
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 3.0283 0.0311 *
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$Country 0.2052518 0.2052518
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q13 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia -0.1338112 -0.9324497 0.66482727 0.9723695
Portugal-Croatia -0.9323906 -1.5827799 -0.28200136 0.0015408
Spain-Croatia -1.6245520 -2.3679207 -0.88118326 0.0000004
Portugal-Finland -0.7985794 -1.4819490 -0.11520979 0.0148023
Spain-Finland -1.4907407 -2.2631298 -0.71835167 0.0000083
Spain-Portugal -0.6921613 -1.3100348 -0.07428788 0.0213823
Pairwise comparisons using t tests with pooled SD
data: podaci$Q13 and podaci$Country
Croatia Finland Portugal
Finland 1.0000 - -
Portugal 0.0016 0.0169 -
Spain 3.8e-07 8.4e-06 0.0249
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 7.23 2.409 1.841 0.142
Residuals 163 213.25 1.308
One-way analysis of means (not assuming equal variances)
data: podaci$Q14 and podaci$Country
F = 1.8657, num df = 3.000, denom df = 68.659, p-value = 0.1435
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 0.6341 0.594
163
eta.sq eta.sq.part
podaci$Country 0.03277204 0.03277204
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q14 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia -0.649940263 -1.4315056 0.1316250 0.1393652
Portugal-Croatia -0.475916924 -1.1124022 0.1605684 0.2151662
Spain-Croatia -0.474014337 -1.2014914 0.2534627 0.3315576
Portugal-Finland 0.174023338 -0.4947373 0.8427839 0.9062609
Spain-Finland 0.175925926 -0.5799511 0.9318029 0.9306351
Spain-Portugal 0.001902588 -0.6027620 0.6065672 0.9999998
Pairwise comparisons using t tests with pooled SD
data: podaci$Q14 and podaci$Country
Croatia Finland Portugal
Finland 0.19 - -
Portugal 0.32 1.00 -
Spain 0.56 1.00 1.00
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 3.94 1.314 0.882 0.452
Residuals 163 243.00 1.491
One-way analysis of means (not assuming equal variances)
data: podaci$Q15 and podaci$Country
F = 0.89209, num df = 3.000, denom df = 70.267, p-value = 0.4496
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 0.3317 0.8024
163
eta.sq eta.sq.part
podaci$Country 0.01596725 0.01596725
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q15 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia -0.1254480 -0.9597496 0.7088535 0.9797512
Portugal-Croatia 0.1378701 -0.5415622 0.8173024 0.9525115
Spain-Croatia 0.3467742 -0.4297895 1.1233379 0.6534275
Portugal-Finland 0.2633181 -0.4505672 0.9772035 0.7737195
Spain-Finland 0.4722222 -0.3346577 1.2791022 0.4284256
Spain-Portugal 0.2089041 -0.4365604 0.8543686 0.8352456
Pairwise comparisons using t tests with pooled SD
data: podaci$Q15 and podaci$Country
Croatia Finland Portugal
Finland 1.00 - -
Portugal 1.00 1.00 -
Spain 1.00 0.78 1.00
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 16.13 5.377 5.025 0.00234 **
Residuals 163 174.42 1.070
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q16 and podaci$Country
F = 5.6279, num df = 3.000, denom df = 72.325, p-value = 0.001595
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 2.612 0.05319 .
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$Country 0.08465568 0.08465568
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q16 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia -0.6224612 -1.32929110 0.08436876 0.1055495
Portugal-Croatia -0.6716748 -1.24729766 -0.09605188 0.0150015
Spain-Croatia -0.0483871 -0.70630085 0.60952666 0.9975242
Portugal-Finland -0.0492136 -0.65402553 0.55559833 0.9966574
Spain-Finland 0.5740741 -0.10952396 1.25767211 0.1332030
Spain-Portugal 0.6232877 0.07644269 1.17013265 0.0184597
Pairwise comparisons using t tests with pooled SD
data: podaci$Q16 and podaci$Country
Croatia Finland Portugal
Finland 0.141 - -
Portugal 0.017 1.000 -
Spain 1.000 0.184 0.021
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 13.26 4.421 3.581 0.0152 *
Residuals 163 201.25 1.235
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q17 and podaci$Country
F = 3.5341, num df = 3.000, denom df = 71.464, p-value = 0.01896
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 3.4127 0.01891 *
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$Country 0.06182716 0.06182716
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q17 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia -0.4169654 -1.17621992 0.3422892 0.4853032
Portugal-Croatia 0.1878038 -0.43051228 0.8061199 0.8596370
Spain-Croatia 0.4811828 -0.22552755 1.1878931 0.2928400
Portugal-Finland 0.6047692 -0.04490088 1.2544392 0.0779985
Spain-Finland 0.8981481 0.16384855 1.6324477 0.0096085
Spain-Portugal 0.2933790 -0.29402476 0.8807827 0.5665161
Pairwise comparisons using t tests with pooled SD
data: podaci$Q17 and podaci$Country
Croatia Finland Portugal
Finland 0.936 - -
Portugal 1.000 0.101 -
Spain 0.474 0.011 1.000
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 0.74 0.2482 0.197 0.898
Residuals 163 205.18 1.2588
One-way analysis of means (not assuming equal variances)
data: podaci$Q18 and podaci$Country
F = 0.19524, num df = 3.000, denom df = 70.514, p-value = 0.8993
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 2.8774 0.03779 *
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$Country 0.003615403 0.003615403
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q18 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia 0.211469534 -0.5551653 0.9781044 0.8906236
Portugal-Croatia 0.048608042 -0.5757183 0.6729344 0.9970677
Spain-Croatia 0.044802867 -0.6687770 0.7583827 0.9984538
Portugal-Finland -0.162861492 -0.8188466 0.4931236 0.9173553
Spain-Finland -0.166666667 -0.9081039 0.5747706 0.9369378
Spain-Portugal -0.003805175 -0.5969187 0.5893084 0.9999983
Pairwise comparisons using t tests with pooled SD
data: podaci$Q18 and podaci$Country
Croatia Finland Portugal
Finland 1 - -
Portugal 1 1 -
Spain 1 1 1
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 11.42 3.806 2.58 0.0554 .
Residuals 163 240.49 1.475
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q19 and podaci$Country
F = 2.9236, num df = 3.00, denom df = 72.14, p-value = 0.0396
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 2.0168 0.1136
163
eta.sq eta.sq.part
podaci$Country 0.04532785 0.04532785
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q19 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia 0.05256870 -0.7774006 0.8825380 0.9984129
Portugal-Croatia -0.54661953 -1.2225237 0.1292847 0.1576974
Spain-Croatia -0.46594982 -1.2384811 0.3065814 0.4011700
Portugal-Finland -0.59918823 -1.3093666 0.1109901 0.1303212
Spain-Finland -0.51851852 -1.3212086 0.2841715 0.3392789
Spain-Portugal 0.08066971 -0.5614431 0.7227825 0.9879824
Pairwise comparisons using t tests with pooled SD
data: podaci$Q19 and podaci$Country
Croatia Finland Portugal
Finland 1.00 - -
Portugal 0.22 0.18 -
Spain 0.72 0.57 1.00
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 7.63 2.544 2.098 0.103
Residuals 163 197.64 1.212
One-way analysis of means (not assuming equal variances)
data: podaci$Q20 and podaci$Country
F = 2.0219, num df = 3.000, denom df = 72.833, p-value = 0.1183
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 0.9133 0.4359
163
eta.sq eta.sq.part
podaci$Country 0.03718062 0.03718062
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q20 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia 0.02867384 -0.7237313 0.78107900 0.9996520
Portugal-Croatia 0.02562970 -0.5871084 0.63836781 0.9995402
Spain-Croatia -0.49910394 -1.1994389 0.20123101 0.2540007
Portugal-Finland -0.00304414 -0.6468534 0.64076507 0.9999993
Spain-Finland -0.52777778 -1.2554531 0.19989754 0.2395241
Spain-Portugal -0.52473364 -1.1068383 0.05737101 0.0933261
Pairwise comparisons using t tests with pooled SD
data: podaci$Q20 and podaci$Country
Croatia Finland Portugal
Finland 1.00 - -
Portugal 1.00 1.00 -
Spain 0.40 0.37 0.12
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 6.24 2.080 1.809 0.148
Residuals 163 187.37 1.149
One-way analysis of means (not assuming equal variances)
data: podaci$Q21 and podaci$Country
F = 2.185, num df = 3.000, denom df = 71.136, p-value = 0.0973
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 1.5493 0.2038
163
eta.sq eta.sq.part
podaci$Country 0.03222472 0.03222472
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q21 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia -0.14814815 -0.8807407 0.5844444 0.9529645
Portugal-Croatia 0.01369863 -0.5829046 0.6103019 0.9999237
Spain-Croatia -0.47222222 -1.1541157 0.2096713 0.2782254
Portugal-Finland 0.16184678 -0.4650094 0.7887030 0.9081988
Spain-Finland -0.32407407 -1.0325880 0.3844398 0.6357439
Spain-Portugal -0.48592085 -1.0526973 0.0808556 0.1207040
Pairwise comparisons using t tests with pooled SD
data: podaci$Q21 and podaci$Country
Croatia Finland Portugal
Finland 1.00 - -
Portugal 1.00 1.00 -
Spain 0.44 1.00 0.16
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 1.21 0.4043 0.371 0.774
Residuals 163 177.75 1.0905
One-way analysis of means (not assuming equal variances)
data: podaci$Q22 and podaci$Country
F = 0.43596, num df = 3.00, denom df = 74.98, p-value = 0.7279
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 1.9809 0.1189
163
eta.sq eta.sq.part
podaci$Country 0.00677706 0.00677706
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q22 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia -0.01075269 -0.7242892 0.7027838 0.9999784
Portugal-Croatia -0.12947415 -0.7105587 0.4516104 0.9384489
Spain-Croatia -0.23297491 -0.8971311 0.4311813 0.7992571
Portugal-Finland -0.11872146 -0.7292720 0.4918291 0.9578581
Spain-Finland -0.22222222 -0.9123064 0.4678620 0.8373058
Spain-Portugal -0.10350076 -0.6555344 0.4485328 0.9619695
Pairwise comparisons using t tests with pooled SD
data: podaci$Q22 and podaci$Country
Croatia Finland Portugal
Finland 1 - -
Portugal 1 1 -
Spain 1 1 1
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 3.01 1.004 0.689 0.56
Residuals 163 237.35 1.456
One-way analysis of means (not assuming equal variances)
data: podaci$Q23 and podaci$Country
F = 0.72743, num df = 3.00, denom df = 73.08, p-value = 0.5389
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 1.8503 0.1401
163
eta.sq eta.sq.part
podaci$Country 0.01252785 0.01252785
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q23 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia 0.2676225 -0.5569144 1.0921593 0.8340709
Portugal-Croatia 0.1250552 -0.5464249 0.7965354 0.9626822
Spain-Croatia -0.1397849 -0.9072597 0.6276898 0.9649608
Portugal-Finland -0.1425672 -0.8480972 0.5629628 0.9530642
Spain-Finland -0.4074074 -1.2048436 0.3900288 0.5476597
Spain-Portugal -0.2648402 -0.9027501 0.3730697 0.7036376
Pairwise comparisons using t tests with pooled SD
data: podaci$Q23 and podaci$Country
Croatia Finland Portugal
Finland 1 - -
Portugal 1 1 -
Spain 1 1 1
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 11.97 3.989 2.834 0.04 *
Residuals 163 229.43 1.408
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q24 and podaci$Country
F = 3.4255, num df = 3.000, denom df = 72.077, p-value = 0.02157
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 5.6167 0.00109 **
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$Country 0.04957748 0.04957748
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q24 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia 0.05615293 -0.7545192 0.86682508 0.9979284
Portugal-Croatia -0.11533363 -0.7755228 0.54485552 0.9688729
Spain-Croatia -0.68458781 -1.4391574 0.06998176 0.0901213
Portugal-Finland -0.17148656 -0.8651530 0.52217987 0.9182963
Spain-Finland -0.74074074 -1.5247679 0.04328646 0.0715126
Spain-Portugal -0.56925419 -1.1964376 0.05792921 0.0899151
Pairwise comparisons using t tests with pooled SD
data: podaci$Q24 and podaci$Country
Croatia Finland Portugal
Finland 1.000 - -
Portugal 1.000 1.000 -
Spain 0.118 0.091 0.118
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 3.46 1.1546 1.238 0.298
Residuals 163 152.01 0.9326
One-way analysis of means (not assuming equal variances)
data: podaci$Q26 and podaci$Country
F = 1.2152, num df = 3.000, denom df = 71.009, p-value = 0.3105
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 0.2194 0.8828
163
eta.sq eta.sq.part
podaci$Country 0.0222783 0.0222783
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q26 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia 0.17204301 -0.4878179 0.8319039 0.9057720
Portugal-Croatia 0.22227132 -0.3151013 0.7596439 0.7060594
Spain-Croatia 0.44982079 -0.1643744 1.0640160 0.2316470
Portugal-Finland 0.05022831 -0.5143937 0.6148503 0.9956466
Spain-Finland 0.27777778 -0.3603950 0.9159505 0.6716578
Spain-Portugal 0.22754947 -0.2829575 0.7380564 0.6547541
Pairwise comparisons using t tests with pooled SD
data: podaci$Q26 and podaci$Country
Croatia Finland Portugal
Finland 1.00 - -
Portugal 1.00 1.00 -
Spain 0.35 1.00 1.00
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 10.33 3.442 3.362 0.0202 *
Residuals 163 166.91 1.024
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q27 and podaci$Country
F = 3.6904, num df = 3.000, denom df = 70.127, p-value = 0.0158
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 2.7288 0.04577 *
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$Country 0.05826878 0.05826878
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q27 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia -0.73596177 -1.4274004 -0.044523175 0.0320983
Portugal-Croatia -0.34732656 -0.9104152 0.215762051 0.3808673
Spain-Croatia -0.64336918 -1.2869568 0.000218402 0.0501133
Portugal-Finland 0.38863521 -0.2030068 0.980277265 0.3243667
Spain-Finland 0.09259259 -0.5761200 0.761305169 0.9840493
Spain-Portugal -0.29604262 -0.8309800 0.238894726 0.4785047
Pairwise comparisons using t tests with pooled SD
data: podaci$Q27 and podaci$Country
Croatia Finland Portugal
Finland 0.038 - -
Portugal 0.668 0.541 -
Spain 0.062 1.000 0.917
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 0.07 0.0226 0.024 0.995
Residuals 163 153.63 0.9425
One-way analysis of means (not assuming equal variances)
data: podaci$Q28 and podaci$Country
F = 0.022009, num df = 3.000, denom df = 69.364, p-value = 0.9955
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 0.3409 0.7958
163
eta.sq eta.sq.part
podaci$Country 0.0004415315 0.0004415315
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q28 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia -0.01194743 -0.6753224 0.6514275 0.9999632
Portugal-Croatia -0.03579319 -0.5760275 0.5044411 0.9981852
Spain-Croatia -0.05824373 -0.6757098 0.5592223 0.9948232
Portugal-Finland -0.02384576 -0.5914746 0.5437831 0.9995343
Spain-Finland -0.04629630 -0.6878676 0.5952750 0.9976603
Spain-Portugal -0.02245053 -0.5356762 0.4907751 0.9994744
Pairwise comparisons using t tests with pooled SD
data: podaci$Q28 and podaci$Country
Croatia Finland Portugal
Finland 1 - -
Portugal 1 1 -
Spain 1 1 1
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 52.64 17.546 11.21 9.97e-07 ***
Residuals 163 255.10 1.565
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q29 and podaci$Country
F = 10.832, num df = 3.000, denom df = 68.453, p-value = 6.55e-06
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 0.5949 0.6192
163
eta.sq eta.sq.part
podaci$Country 0.1710506 0.1710506
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q29 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia -1.34408602 -2.1988982 -0.4892738 0.0004038
Portugal-Croatia -1.49933716 -2.1954728 -0.8032016 0.0000006
Spain-Croatia -1.37186380 -2.1675187 -0.5762089 0.0000836
Portugal-Finland -0.15525114 -0.8866868 0.5761845 0.9461766
Spain-Finland -0.02777778 -0.8544943 0.7989387 0.9997613
Spain-Portugal 0.12747336 -0.5338594 0.7888061 0.9588843
Pairwise comparisons using t tests with pooled SD
data: podaci$Q29 and podaci$Country
Croatia Finland Portugal
Finland 0.00042 - -
Portugal 5.6e-07 1.00000 -
Spain 8.6e-05 1.00000 1.00000
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 21.84 7.279 4.841 0.00297 **
Residuals 163 245.10 1.504
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q30 and podaci$Country
F = 6.9813, num df = 3.000, denom df = 72.449, p-value = 0.0003434
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 3.1469 0.02668 *
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$Country 0.08180295 0.08180295
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q30 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia -1.0047790 -1.8426693 -0.16688863 0.0116428
Portugal-Croatia -0.9403447 -1.6226996 -0.25798978 0.0025581
Spain-Croatia -0.6899642 -1.4698683 0.08993998 0.1030813
Portugal-Finland 0.0644343 -0.6525219 0.78139047 0.9955131
Spain-Finland 0.3148148 -0.4955360 1.12516561 0.7447278
Spain-Portugal 0.2503805 -0.3978605 0.89862150 0.7481024
Pairwise comparisons using t tests with pooled SD
data: podaci$Q30 and podaci$Country
Croatia Finland Portugal
Finland 0.0131 - -
Portugal 0.0027 1.0000 -
Spain 0.1376 1.0000 1.0000
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 52.53 17.510 11.94 4.13e-07 ***
Residuals 163 238.97 1.466
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q31 and podaci$Country
F = 14.812, num df = 3.000, denom df = 73.809, p-value = 1.212e-07
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 3.9404 0.00954 **
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$Country 0.1802045 0.1802045
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q31 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia -0.04062127 -0.8679669 0.78672440 0.9992577
Portugal-Croatia -0.80114892 -1.4749165 -0.12738132 0.0126133
Spain-Croatia -1.53136201 -2.3014512 -0.76127280 0.0000042
Portugal-Finland -0.76052765 -1.4684611 -0.05259422 0.0299114
Spain-Finland -1.49074074 -2.2908934 -0.69058804 0.0000180
Spain-Portugal -0.73021309 -1.3702961 -0.09013008 0.0183173
Pairwise comparisons using t tests with pooled SD
data: podaci$Q31 and podaci$Country
Croatia Finland Portugal
Finland 1.000 - -
Portugal 0.014 0.036 -
Spain 4.2e-06 1.8e-05 0.021
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 34.61 11.538 6.906 0.000209 ***
Residuals 163 272.32 1.671
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q32 and podaci$Country
F = 7.0989, num df = 3.000, denom df = 72.313, p-value = 0.0003019
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 1.6199 0.1868
163
eta.sq eta.sq.part
podaci$Country 0.1127727 0.1127727
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q32 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia 0.106332139 -0.7768642 0.9895284 0.9893887
Portugal-Croatia 0.004860804 -0.7143900 0.7241116 0.9999981
Spain-Croatia -1.078853047 -1.9009277 -0.2567784 0.0045610
Portugal-Finland -0.101471334 -0.8571944 0.6542517 0.9854126
Spain-Finland -1.185185185 -2.0393528 -0.3310176 0.0023495
Spain-Portugal -1.083713851 -1.7670062 -0.4004215 0.0003521
Pairwise comparisons using t tests with pooled SD
data: podaci$Q32 and podaci$Country
Croatia Finland Portugal
Finland 1.00000 - -
Portugal 1.00000 1.00000 -
Spain 0.00497 0.00252 0.00037
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 12.36 4.119 3.542 0.016 *
Residuals 163 189.54 1.163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q33 and podaci$Country
F = 5.6967, num df = 3.00, denom df = 72.04, p-value = 0.001477
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 14.031 3.508e-08 ***
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$Country 0.06120588 0.06120588
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q33 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia -0.08363202 -0.8204533 0.6531892459 0.9910718
Portugal-Croatia -0.01767565 -0.6177227 0.5823713585 0.9998391
Spain-Croatia -0.68548387 -1.3713134 0.0003456698 0.0501683
Portugal-Finland 0.06595637 -0.5645182 0.6964309334 0.9929749
Spain-Finland -0.60185185 -1.3144555 0.1107517707 0.1296927
Spain-Portugal -0.66780822 -1.2378563 -0.0977601854 0.0144722
Pairwise comparisons using t tests with pooled SD
data: podaci$Q33 and podaci$Country
Croatia Finland Portugal
Finland 1.000 - -
Portugal 1.000 1.000 -
Spain 0.062 0.179 0.016
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 14.72 4.907 4.68 0.00366 **
Residuals 163 170.91 1.049
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q35 and podaci$Country
F = 5.4324, num df = 3.000, denom df = 72.287, p-value = 0.002
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 2.1106 0.1009
163
eta.sq eta.sq.part
podaci$Country 0.07929659 0.07929659
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q35 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia -0.5507766 -1.25045692 0.1489038 0.1765453
Portugal-Croatia -0.7856827 -1.35548318 -0.2158823 0.0025401
Spain-Croatia -0.3378136 -0.98907257 0.3134453 0.5348274
Portugal-Finland -0.2349061 -0.83360039 0.3637881 0.7388766
Spain-Finland 0.2129630 -0.46372047 0.8896464 0.8464104
Spain-Portugal 0.4478691 -0.09344454 0.9891827 0.1426164
Pairwise comparisons using t tests with pooled SD
data: podaci$Q35 and podaci$Country
Croatia Finland Portugal
Finland 0.2558 - -
Portugal 0.0027 1.0000 -
Spain 1.0000 1.0000 0.1993
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 9.0 3.002 2.606 0.0536 .
Residuals 163 187.7 1.152
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q36 and podaci$Country
F = 3.42, num df = 3.000, denom df = 70.229, p-value = 0.02185
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 2.545 0.05796 .
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$Country 0.04577334 0.04577334
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q36 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia -0.50537634 -1.2386492 0.22789654 0.2823355
Portugal-Croatia -0.56473707 -1.1618944 0.03242023 0.0710999
Spain-Croatia -0.67204301 -1.3545697 0.01048372 0.0553493
Portugal-Finland -0.05936073 -0.6867991 0.56807760 0.9947774
Spain-Finland -0.16666667 -0.8758385 0.54250521 0.9287728
Spain-Portugal -0.10730594 -0.6746087 0.45999687 0.9610112
Pairwise comparisons using t tests with pooled SD
data: podaci$Q36 and podaci$Country
Croatia Finland Portugal
Finland 0.453 - -
Portugal 0.091 1.000 -
Spain 0.069 1.000 1.000
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 17.61 5.872 5.037 0.0023 **
Residuals 163 190.00 1.166
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q37 and podaci$Country
F = 5.3107, num df = 3.000, denom df = 68.844, p-value = 0.002371
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 1.3549 0.2585
163
eta.sq eta.sq.part
podaci$Country 0.08484147 0.08484147
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q37 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia -0.2520908 -0.9898193 0.4856376994 0.8116207
Portugal-Croatia -0.5757844 -1.1765702 0.0250014803 0.0656072
Spain-Croatia -0.9650538 -1.6517278 -0.2783797730 0.0019975
Portugal-Finland -0.3236936 -0.9549444 0.3075573015 0.5445606
Spain-Finland -0.7129630 -1.4264440 0.0005180757 0.0502426
Spain-Portugal -0.3892694 -0.9600193 0.1814805174 0.2913704
Pairwise comparisons using t tests with pooled SD
data: podaci$Q37 and podaci$Country
Croatia Finland Portugal
Finland 1.0000 - -
Portugal 0.0832 1.0000 -
Spain 0.0021 0.0621 0.4712
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 12.38 4.126 5.561 0.00117 **
Residuals 163 120.94 0.742
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q38 and podaci$Country
F = 7.6193, num df = 3.000, denom df = 73.608, p-value = 0.0001667
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 4.2917 0.006048 **
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$Country 0.09284543 0.09284543
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q38 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia -0.3285544 -0.9171285 0.26001980 0.4708295
Portugal-Croatia -0.7308882 -1.2102068 -0.25156956 0.0006459
Spain-Croatia -0.5044803 -1.0523222 0.04336159 0.0829738
Portugal-Finland -0.4023338 -0.9059581 0.10129038 0.1661202
Spain-Finland -0.1759259 -0.7451550 0.39330314 0.8532924
Spain-Portugal 0.2264079 -0.2289475 0.68176332 0.5702092
Pairwise comparisons using t tests with pooled SD
data: podaci$Q38 and podaci$Country
Croatia Finland Portugal
Finland 0.89557 - -
Portugal 0.00068 0.23810 -
Spain 0.10786 1.00000 1.00000
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 3.47 1.1560 2.166 0.0941 .
Residuals 163 87.01 0.5338
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q39 and podaci$Country
F = 2.8464, num df = 3.000, denom df = 70.243, p-value = 0.04369
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 3.0409 0.0306 *
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$Country 0.0383298 0.0383298
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q39 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia -0.28673835 -0.7859725 0.2124958 0.4453435
Portugal-Croatia -0.26999558 -0.6765581 0.1365670 0.3146929
Spain-Croatia -0.45340502 -0.9180896 0.0112796 0.0586691
Portugal-Finland 0.01674277 -0.4104360 0.4439216 0.9996215
Spain-Finland -0.16666667 -0.6494921 0.3161588 0.8069180
Spain-Portugal -0.18340944 -0.5696462 0.2028273 0.6070726
Pairwise comparisons using t tests with pooled SD
data: podaci$Q39 and podaci$Country
Croatia Finland Portugal
Finland 0.828 - -
Portugal 0.520 1.000 -
Spain 0.074 1.000 1.000
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 20.36 6.786 7.674 7.9e-05 ***
Residuals 163 144.13 0.884
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q40 and podaci$Country
F = 7.9495, num df = 3.000, denom df = 68.933, p-value = 0.000126
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 1.5618 0.2007
163
eta.sq eta.sq.part
podaci$Country 0.123755 0.123755
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q40 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia 0.72162485 0.07908355 1.3641662 0.0209327
Portugal-Croatia 0.90985418 0.38658618 1.4331222 0.0000714
Spain-Croatia 0.93458781 0.33651359 1.5326620 0.0004449
Portugal-Finland 0.18822933 -0.36157287 0.7380315 0.8107508
Spain-Finland 0.21296296 -0.40845947 0.8343854 0.8102867
Spain-Portugal 0.02473364 -0.47237390 0.5218412 0.9992276
Pairwise comparisons using t tests with pooled SD
data: podaci$Q40 and podaci$Country
Croatia Finland Portugal
Finland 0.02433 - -
Portugal 7.3e-05 1.00000 -
Spain 0.00046 1.00000 1.00000
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 9.04 3.014 2.986 0.0329 *
Residuals 163 164.50 1.009
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q41 and podaci$Country
F = 2.9508, num df = 3.00, denom df = 72.55, p-value = 0.03827
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 0.4943 0.6867
163
eta.sq eta.sq.part
podaci$Country 0.0520938 0.0520938
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q41 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia -0.1541219 -0.8405670 0.53232323 0.9371433
Portugal-Croatia -0.4631021 -1.0221241 0.09591996 0.1418085
Spain-Croatia -0.6541219 -1.2930615 -0.01518221 0.0425920
Portugal-Finland -0.3089802 -0.8963495 0.27838906 0.5228230
Spain-Finland -0.5000000 -1.1638832 0.16388320 0.2095449
Spain-Portugal -0.1910198 -0.7220939 0.34005430 0.7868205
Pairwise comparisons using t tests with pooled SD
data: podaci$Q41 and podaci$Country
Croatia Finland Portugal
Finland 1.000 - -
Portugal 0.198 1.000 -
Spain 0.052 0.314 1.000
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 3.6 1.1995 1.574 0.198
Residuals 163 124.2 0.7622
One-way analysis of means (not assuming equal variances)
data: podaci$Q42 and podaci$Country
F = 1.4911, num df = 3.00, denom df = 67.74, p-value = 0.2248
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 3.261 0.02302 *
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$Country 0.02815087 0.02815087
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q42 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia 0.277180406 -0.31935602 0.8737168 0.6238661
Portugal-Croatia 0.279717190 -0.20608570 0.7655201 0.4431130
Spain-Croatia 0.462365591 -0.09288753 1.0176187 0.1385079
Portugal-Finland 0.002536783 -0.50790050 0.5129741 0.9999992
Spain-Finland 0.185185185 -0.39174445 0.7621148 0.8386137
Spain-Portugal 0.182648402 -0.27886708 0.6441639 0.7337144
Pairwise comparisons using t tests with pooled SD
data: podaci$Q42 and podaci$Country
Croatia Finland Portugal
Finland 1.00 - -
Portugal 0.82 1.00 -
Spain 0.19 1.00 1.00
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 5.32 1.7747 2.803 0.0416 *
Residuals 163 103.21 0.6332
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q43 and podaci$Country
F = 3.2645, num df = 3.000, denom df = 72.085, p-value = 0.0262
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 2.5498 0.0576 .
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$Country 0.04905348 0.04905348
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q43 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia -0.2150538 -0.758789632 0.3286821 0.7340903
Portugal-Croatia 0.2598321 -0.182971483 0.7026356 0.4260467
Spain-Croatia 0.2293907 -0.276715940 0.7354973 0.6425287
Portugal-Finland 0.4748858 0.009628323 0.9401434 0.0434920
Spain-Finland 0.4444444 -0.081420060 0.9703089 0.1292678
Spain-Portugal -0.0304414 -0.451107276 0.3902245 0.9976405
Pairwise comparisons using t tests with pooled SD
data: podaci$Q43 and podaci$Country
Croatia Finland Portugal
Finland 1.000 - -
Portugal 0.778 0.053 -
Spain 1.000 0.178 1.000
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 5.76 1.9205 2.633 0.0517 .
Residuals 163 118.87 0.7293
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q44 and podaci$Country
F = 2.579, num df = 3.000, denom df = 69.885, p-value = 0.06046
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 0.4064 0.7486
163
eta.sq eta.sq.part
podaci$Country 0.0462279 0.0462279
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q44 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia 0.10035842 -0.4831660 0.68388284 0.9702291
Portugal-Croatia 0.36367654 -0.1115297 0.83888280 0.1973005
Spain-Croatia -0.06630824 -0.6094498 0.47683335 0.9889476
Portugal-Finland 0.26331811 -0.2359852 0.76262143 0.5206500
Spain-Finland -0.16666667 -0.7310120 0.39767862 0.8693785
Spain-Portugal -0.42998478 -0.8814334 0.02146384 0.0681310
Pairwise comparisons using t tests with pooled SD
data: podaci$Q44 and podaci$Country
Croatia Finland Portugal
Finland 1.000 - -
Portugal 0.292 1.000 -
Spain 1.000 1.000 0.087
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 1.73 0.5778 0.841 0.473
Residuals 163 111.97 0.6869
One-way analysis of means (not assuming equal variances)
data: podaci$Q45 and podaci$Country
F = 0.74515, num df = 3.000, denom df = 68.166, p-value = 0.5289
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 2.2543 0.08406 .
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$Country 0.01524531 0.01524531
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q45 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia 0.28793309 -0.2783878 0.8542540 0.5517228
Portugal-Croatia 0.25850641 -0.2026898 0.7197026 0.4671817
Spain-Croatia 0.16756272 -0.3595659 0.6946914 0.8424988
Portugal-Finland -0.02942669 -0.5140095 0.4551561 0.9986002
Spain-Finland -0.12037037 -0.6680776 0.4273368 0.9407375
Spain-Portugal -0.09094368 -0.5290827 0.3471953 0.9494153
Pairwise comparisons using t tests with pooled SD
data: podaci$Q45 and podaci$Country
Croatia Finland Portugal
Finland 1.00 - -
Portugal 0.89 1.00 -
Spain 1.00 1.00 1.00
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 5.3 1.7659 2.309 0.0784 .
Residuals 163 124.7 0.7649
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q46 and podaci$Country
F = 2.2716, num df = 3.000, denom df = 68.765, p-value = 0.08792
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 1.2901 0.2797
163
eta.sq eta.sq.part
podaci$Country 0.04075876 0.04075876
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q46 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia 0.156511350 -0.44109165 0.7541143 0.9046396
Portugal-Croatia 0.152452497 -0.33421898 0.6391240 0.8482013
Spain-Croatia 0.526881720 -0.02936416 1.0831276 0.0704303
Portugal-Finland -0.004058853 -0.51540877 0.5072911 0.9999968
Spain-Finland 0.370370370 -0.20759077 0.9483315 0.3464544
Spain-Portugal 0.374429224 -0.08791142 0.8367699 0.1567493
Pairwise comparisons using t tests with pooled SD
data: podaci$Q46 and podaci$Country
Croatia Finland Portugal
Finland 1.00 - -
Portugal 1.00 1.00 -
Spain 0.09 0.59 0.22
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 13.71 4.571 8.867 1.77e-05 ***
Residuals 163 84.02 0.515
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q47 and podaci$Country
F = 9.4921, num df = 3.00, denom df = 73.44, p-value = 2.244e-05
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 11 1.288e-06 ***
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$Country 0.1402964 0.1402964
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q47 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia -0.02628435 -0.51687585 0.4643071 0.9990366
Portugal-Croatia 0.48563853 0.08611429 0.8851628 0.0102153
Spain-Croatia -0.18369176 -0.64033186 0.2729484 0.7237277
Portugal-Finland 0.51192288 0.09213931 0.9317065 0.0098954
Spain-Finland -0.15740741 -0.63187428 0.3170595 0.8248113
Spain-Portugal -0.66933029 -1.04888057 -0.2897800 0.0000546
Pairwise comparisons using t tests with pooled SD
data: podaci$Q47 and podaci$Country
Croatia Finland Portugal
Finland 1.000 - -
Portugal 0.011 0.011 -
Spain 1.000 1.000 5.6e-05
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 9.02 3.006 4.631 0.00389 **
Residuals 163 105.79 0.649
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q48 and podaci$Country
F = 3.9758, num df = 3.000, denom df = 66.938, p-value = 0.01142
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 2.7779 0.04296 *
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$Country 0.07854076 0.07854076
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q48 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia -0.1158901 -0.666356367 0.4345762 0.9473818
Portugal-Croatia 0.3747238 -0.073560812 0.8230084 0.1360919
Spain-Croatia 0.5044803 -0.007890971 1.0168515 0.0553641
Portugal-Finland 0.4906139 0.019597377 0.9616304 0.0376665
Spain-Finland 0.6203704 0.087996664 1.1527441 0.0151854
Spain-Portugal 0.1297565 -0.296116450 0.5556294 0.8585159
Pairwise comparisons using t tests with pooled SD
data: podaci$Q48 and podaci$Country
Croatia Finland Portugal
Finland 1.000 - -
Portugal 0.189 0.046 -
Spain 0.069 0.017 1.000
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 2.04 0.6803 1.136 0.336
Residuals 163 97.64 0.5990
One-way analysis of means (not assuming equal variances)
data: podaci$Q49 and podaci$Country
F = 1.203, num df = 3.000, denom df = 71.302, p-value = 0.315
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 2.5722 0.05597 .
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$Country 0.02047582 0.02047582
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q49 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia 0.01075269 -0.5180839 0.5395893 0.9999470
Portugal-Croatia 0.23906319 -0.1916068 0.6697332 0.4758164
Spain-Croatia 0.23297491 -0.2592635 0.7252133 0.6096510
Portugal-Finland 0.22831050 -0.2241982 0.6808192 0.5581189
Spain-Finland 0.22222222 -0.2892327 0.7336771 0.6729120
Spain-Portugal -0.00608828 -0.4152272 0.4030506 0.9999792
Pairwise comparisons using t tests with pooled SD
data: podaci$Q49 and podaci$Country
Croatia Finland Portugal
Finland 1.00 - -
Portugal 0.91 1.00 -
Spain 1.00 1.00 1.00
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 2.79 0.9286 1.565 0.2
Residuals 163 96.71 0.5933
One-way analysis of means (not assuming equal variances)
data: podaci$Q50 and podaci$Country
F = 1.7733, num df = 3.000, denom df = 69.177, p-value = 0.1603
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 6.3487 0.0004259 ***
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$Country 0.02799976 0.02799976
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q50 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia 0.182795699 -0.3435310 0.70912237 0.8040361
Portugal-Croatia -0.004418913 -0.4330449 0.42420708 0.9999931
Spain-Croatia -0.233870968 -0.7237732 0.25603126 0.6029206
Portugal-Finland -0.187214612 -0.6375756 0.26314641 0.7028038
Spain-Finland -0.416666667 -0.9256942 0.09236084 0.1496071
Spain-Portugal -0.229452055 -0.6366492 0.17774505 0.4624544
Pairwise comparisons using t tests with pooled SD
data: podaci$Q50 and podaci$Country
Croatia Finland Portugal
Finland 1.00 - -
Portugal 1.00 1.00 -
Spain 1.00 0.21 0.87
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 12.55 4.184 7.108 0.000162 ***
Residuals 163 95.94 0.589
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q51 and podaci$Country
F = 7.1803, num df = 3.000, denom df = 72.056, p-value = 0.0002768
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 3.2881 0.02222 *
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$Country 0.1156854 0.1156854
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q51 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia -0.01194743 -0.53617213 0.5122773 0.9999254
Portugal-Croatia 0.47105612 0.04414192 0.8979703 0.0242189
Spain-Croatia -0.16935484 -0.65730056 0.3185909 0.8043470
Portugal-Finland 0.48300355 0.03444112 0.9315660 0.0293826
Spain-Finland -0.15740741 -0.66440203 0.3495872 0.8515885
Spain-Portugal -0.64041096 -1.04598185 -0.2348401 0.0003777
Pairwise comparisons using t tests with pooled SD
data: podaci$Q51 and podaci$Country
Croatia Finland Portugal
Finland 1.00000 - -
Portugal 0.02839 0.03488 -
Spain 1.00000 1.00000 0.00039
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 5.05 1.6819 2.242 0.0854 .
Residuals 163 122.31 0.7504
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q52 and podaci$Country
F = 2.5943, num df = 3.000, denom df = 70.474, p-value = 0.05928
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 2.4938 0.0619 .
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$Country 0.03962029 0.03962029
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q52 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia 0.35842294 -0.23347082 0.9503167 0.3975645
Portugal-Croatia 0.42996023 -0.05206180 0.9119823 0.0987294
Spain-Croatia 0.49731183 -0.05361992 1.0482436 0.0926395
Portugal-Finland 0.07153729 -0.43492741 0.5780020 0.9831010
Spain-Finland 0.13888889 -0.43355067 0.7113284 0.9223320
Spain-Portugal 0.06735160 -0.39057204 0.5252752 0.9810015
Pairwise comparisons using t tests with pooled SD
data: podaci$Q52 and podaci$Country
Croatia Finland Portugal
Finland 0.71 - -
Portugal 0.13 1.00 -
Spain 0.12 1.00 1.00
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 16.18 5.392 9.759 5.87e-06 ***
Residuals 163 90.06 0.553
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q53 and podaci$Country
F = 7.4924, num df = 3.000, denom df = 69.248, p-value = 0.0002052
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 4.0369 0.008417 **
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$Country 0.1522664 0.1522664
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q53 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia 0.21863799 -0.2892757 0.7265517 0.6793713
Portugal-Croatia 0.18515245 -0.2284785 0.5987834 0.6516771
Spain-Croatia -0.58691756 -1.0596811 -0.1141540 0.0082766
Portugal-Finland -0.03348554 -0.4680912 0.4011201 0.9971573
Spain-Finland -0.80555556 -1.2967753 -0.3143358 0.0002031
Spain-Portugal -0.77207002 -1.1650218 -0.3791183 0.0000055
Pairwise comparisons using t tests with pooled SD
data: podaci$Q53 and podaci$Country
Croatia Finland Portugal
Finland 1.00000 - -
Portugal 1.00000 1.00000 -
Spain 0.00921 0.00021 5.6e-06
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 1.91 0.6358 0.572 0.634
Residuals 163 181.07 1.1109
One-way analysis of means (not assuming equal variances)
data: podaci$Q58 and podaci$Country
F = 0.70333, num df = 3.000, denom df = 73.881, p-value = 0.553
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 1.8757 0.1357
163
eta.sq eta.sq.part
podaci$Country 0.010424 0.010424
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q58 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia -0.36200717 -1.0821953 0.3581810 0.5612298
Portugal-Croatia -0.17631463 -0.7628161 0.4101869 0.8632841
Spain-Croatia -0.19534050 -0.8656880 0.4750070 0.8738102
Portugal-Finland 0.18569254 -0.4305496 0.8019347 0.8624570
Spain-Finland 0.16666667 -0.5298506 0.8631839 0.9251974
Spain-Portugal -0.01902588 -0.5762056 0.5381538 0.9997495
Pairwise comparisons using t tests with pooled SD
data: podaci$Q58 and podaci$Country
Croatia Finland Portugal
Finland 1 - -
Portugal 1 1 -
Spain 1 1 1
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 6.67 2.225 1.987 0.118
Residuals 163 182.55 1.120
One-way analysis of means (not assuming equal variances)
data: podaci$Q59 and podaci$Country
F = 1.7624, num df = 3.00, denom df = 71.55, p-value = 0.1621
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 2.0951 0.1029
163
eta.sq eta.sq.part
podaci$Country 0.03527422 0.03527422
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q59 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia -0.26523297 -0.9883431 0.45787713 0.7766851
Portugal-Croatia -0.49049934 -1.0793804 0.09838168 0.1383381
Spain-Croatia -0.54301075 -1.2160780 0.13005651 0.1593424
Portugal-Finland -0.22526636 -0.8440087 0.39347600 0.7805887
Spain-Finland -0.27777778 -0.9771209 0.42156534 0.7315145
Spain-Portugal -0.05251142 -0.6119517 0.50692886 0.9948978
Pairwise comparisons using t tests with pooled SD
data: podaci$Q59 and podaci$Country
Croatia Finland Portugal
Finland 1.00 - -
Portugal 0.19 1.00 -
Spain 0.23 1.00 1.00
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 7.88 2.626 1.988 0.118
Residuals 163 215.35 1.321
One-way analysis of means (not assuming equal variances)
data: podaci$Q60 and podaci$Country
F = 2.2069, num df = 3.000, denom df = 71.753, p-value = 0.09467
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 0.4267 0.7341
163
eta.sq eta.sq.part
podaci$Country 0.03529556 0.03529556
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q60 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia -0.69056153 -1.4759672 0.09484415 0.1064131
Portugal-Croatia -0.15377817 -0.7933910 0.48583466 0.9242279
Spain-Croatia -0.17204301 -0.9030947 0.55900866 0.9285079
Portugal-Finland 0.53678336 -0.1352634 1.20883007 0.1662491
Spain-Finland 0.51851852 -0.2410727 1.27810970 0.2906122
Spain-Portugal -0.01826484 -0.6259006 0.58937094 0.9998290
Pairwise comparisons using t tests with pooled SD
data: podaci$Q60 and podaci$Country
Croatia Finland Portugal
Finland 0.14 - -
Portugal 1.00 0.24 -
Spain 1.00 0.47 1.00
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 3.86 1.2857 1.345 0.262
Residuals 163 155.77 0.9557
One-way analysis of means (not assuming equal variances)
data: podaci$Q61 and podaci$Country
F = 1.2819, num df = 3.000, denom df = 71.025, p-value = 0.2873
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 0.5148 0.6726
163
eta.sq eta.sq.part
podaci$Country 0.02416329 0.02416329
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q61 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia -0.4778973 -1.1458739 0.1900794 0.2507721
Portugal-Croatia -0.2125497 -0.7565316 0.3314322 0.7413519
Spain-Croatia -0.3575269 -0.9792762 0.2642225 0.4442842
Portugal-Finland 0.2653475 -0.3062189 0.8369140 0.6245281
Spain-Finland 0.1203704 -0.5256514 0.7663922 0.9626327
Spain-Portugal -0.1449772 -0.6617630 0.3718087 0.8856790
Pairwise comparisons using t tests with pooled SD
data: podaci$Q61 and podaci$Country
Croatia Finland Portugal
Finland 0.39 - -
Portugal 1.00 1.00 -
Spain 0.82 1.00 1.00
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 1.94 0.6483 0.576 0.631
Residuals 163 183.41 1.1252
One-way analysis of means (not assuming equal variances)
data: podaci$Q62 and podaci$Country
F = 0.54221, num df = 3.000, denom df = 71.145, p-value = 0.655
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 0.3111 0.8174
163
eta.sq eta.sq.part
podaci$Country 0.0104928 0.0104928
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q62 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia -0.354838710 -1.0796531 0.3699757 0.5828384
Portugal-Croatia -0.108263367 -0.6985323 0.4820056 0.9642605
Spain-Croatia -0.104838710 -0.7794923 0.5698149 0.9777360
Portugal-Finland 0.246575342 -0.3736253 0.8667760 0.7309402
Spain-Finland 0.250000000 -0.4509914 0.9509914 0.7911113
Spain-Portugal 0.003424658 -0.5573342 0.5641835 0.9999986
Pairwise comparisons using t tests with pooled SD
data: podaci$Q62 and podaci$Country
Croatia Finland Portugal
Finland 1 - -
Portugal 1 1 -
Spain 1 1 1
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 45.58 15.19 12.45 2.28e-07 ***
Residuals 162 197.67 1.22
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
1 observation deleted due to missingness
One-way analysis of means (not assuming equal variances)
data: podaci$Q63 and podaci$Country
F = 10.745, num df = 3.00, denom df = 64.54, p-value = 8.096e-06
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 2.1154 0.1003
162
eta.sq eta.sq.part
podaci$Country 0.1873776 0.1873776
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q63 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia 0.6339950 -0.1285639 1.3965540 0.1394917
Portugal-Croatia -0.8091030 -1.4238238 -0.1943822 0.0044142
Spain-Croatia -0.5412186 -1.2438197 0.1613824 0.1923872
Portugal-Finland -1.4430980 -2.0979950 -0.7882010 0.0000003
Spain-Finland -1.1752137 -1.9132223 -0.4372051 0.0003306
Spain-Portugal 0.2678843 -0.3161039 0.8518725 0.6335491
Pairwise comparisons using t tests with pooled SD
data: podaci$Q63 and podaci$Country
Croatia Finland Portugal
Finland 0.19429 - -
Portugal 0.00481 3e-07 -
Spain 0.28327 0.00034 1.00000
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 34.09 11.363 9.739 6.05e-06 ***
Residuals 162 189.02 1.167
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
1 observation deleted due to missingness
One-way analysis of means (not assuming equal variances)
data: podaci$Q64 and podaci$Country
F = 8.8177, num df = 3.000, denom df = 65.501, p-value = 5.428e-05
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 3.0551 0.03006 *
162
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$Country 0.1527907 0.1527907
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q64 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia 0.34615385 -0.3995375 1.09184522 0.6245522
Portugal-Croatia -0.79452055 -1.3956439 -0.19339719 0.0042087
Spain-Croatia -0.72222222 -1.4092820 -0.03516246 0.0352350
Portugal-Finland -1.14067439 -1.7810853 -0.50026351 0.0000451
Spain-Finland -1.06837607 -1.7900602 -0.34669197 0.0009930
Spain-Portugal 0.07229833 -0.4987722 0.64336890 0.9877071
Pairwise comparisons using t tests with pooled SD
data: podaci$Q64 and podaci$Country
Croatia Finland Portugal
Finland 1.0000 - -
Portugal 0.0046 4.6e-05 -
Spain 0.0424 0.0010 1.0000
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 2.14 0.7121 0.958 0.414
Residuals 163 121.12 0.7431
One-way analysis of means (not assuming equal variances)
data: podaci$Q65 and podaci$Country
F = 1.3899, num df = 3.000, denom df = 72.758, p-value = 0.2527
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 1.8533 0.1396
163
eta.sq eta.sq.part
podaci$Country 0.01733172 0.01733172
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q65 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia -0.36081243 -0.9498287 0.2282039 0.3871342
Portugal-Croatia -0.25629695 -0.7359756 0.2233817 0.5093435
Spain-Croatia -0.20340502 -0.7516584 0.3448484 0.7706003
Portugal-Finland 0.10451547 -0.3994871 0.6085180 0.9495489
Spain-Finland 0.15740741 -0.4122493 0.7270641 0.8901248
Spain-Portugal 0.05289193 -0.4028055 0.5085894 0.9904673
Pairwise comparisons using t tests with pooled SD
data: podaci$Q65 and podaci$Country
Croatia Finland Portugal
Finland 0.68 - -
Portugal 1.00 1.00 -
Spain 1.00 1.00 1.00
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 2.95 0.9833 1.162 0.326
Residuals 163 137.94 0.8462
One-way analysis of means (not assuming equal variances)
data: podaci$Q66 and podaci$Country
F = 1.5993, num df = 3.000, denom df = 73.149, p-value = 0.1969
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 3.2434 0.02355 *
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$Country 0.02093719 0.02093719
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q66 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia -0.12544803 -0.7540225 0.5031264 0.9546678
Portugal-Croatia -0.31418471 -0.8260785 0.1977091 0.3853603
Spain-Croatia -0.34767025 -0.9327442 0.2374037 0.4146495
Portugal-Finland -0.18873668 -0.7265879 0.3491145 0.7990840
Spain-Finland -0.22222222 -0.8301369 0.3856924 0.7784747
Spain-Portugal -0.03348554 -0.5197875 0.4528164 0.9979647
Pairwise comparisons using t tests with pooled SD
data: podaci$Q66 and podaci$Country
Croatia Finland Portugal
Finland 1.00 - -
Portugal 0.68 1.00 -
Spain 0.75 1.00 1.00
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country 3 20.5 6.832 5.486 0.00129 **
Residuals 163 203.0 1.245
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q67 and podaci$Country
F = 5.5245, num df = 3.000, denom df = 68.746, p-value = 0.001857
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 3 2.4152 0.06845 .
163
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$Country 0.09170721 0.09170721
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = podaci$Q67 ~ podaci$Country)
$`podaci$Country`
diff lwr upr p adj
Finland-Croatia 0.106332139 -0.6562137 0.86887801 0.9837196
Portugal-Croatia -0.680070703 -1.3010671 -0.05907428 0.0257303
Spain-Croatia -0.689964158 -1.3997380 0.01980972 0.0600706
Portugal-Finland -0.786402841 -1.4388891 -0.13391655 0.0110941
Spain-Finland -0.796296296 -1.5337790 -0.05881358 0.0287626
Spain-Portugal -0.009893455 -0.5998435 0.58005664 0.9999703
Pairwise comparisons using t tests with pooled SD
data: podaci$Q67 and podaci$Country
Croatia Finland Portugal
Finland 1.000 - -
Portugal 0.030 0.012 -
Spain 0.076 0.034 1.000
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 3.43 0.6865 1.001 0.419
Residuals 161 110.46 0.6861
One-way analysis of means (not assuming equal variances)
data: podaci$Q1 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.1495 0.3366
161
eta.sq eta.sq.part
podaci$`Study field` 0.03013623 0.03013623
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | 0.5153846 | -0.2473500 | 1.2781193 | 0.3764947 |
Other-Arts and Humanities | -0.1000000 | -1.5301475 | 1.3301475 | 0.9999533 |
Science and Mathematics-Arts and Humanities | 0.1068966 | -0.4757870 | 0.6895801 | 0.9949273 |
Social Sciences-Arts and Humanities | 0.2414634 | -0.2894917 | 0.7724185 | 0.7782201 |
Technical Sciences and Engineering-Arts and Humanities | 0.0707317 | -0.4602234 | 0.6016868 | 0.9988966 |
Other-Health Sciences | -0.6153846 | -2.1456435 | 0.9148742 | 0.8550514 |
Science and Mathematics-Health Sciences | -0.4084881 | -1.2059155 | 0.3889394 | 0.6790642 |
Social Sciences-Health Sciences | -0.2739212 | -1.0343709 | 0.4865285 | 0.9040506 |
Technical Sciences and Engineering-Health Sciences | -0.4446529 | -1.2051026 | 0.3157968 | 0.5426712 |
Science and Mathematics-Other | 0.2068966 | -1.2420507 | 1.6558438 | 0.9984581 |
Social Sciences-Other | 0.3414634 | -1.0874667 | 1.7703935 | 0.9829326 |
Technical Sciences and Engineering-Other | 0.1707317 | -1.2581984 | 1.5996618 | 0.9993490 |
Social Sciences-Science and Mathematics | 0.1345669 | -0.4451225 | 0.7142562 | 0.9850158 |
Technical Sciences and Engineering-Science and Mathematics | -0.0361648 | -0.6158542 | 0.5435245 | 0.9999735 |
Technical Sciences and Engineering-Social Sciences | -0.1707317 | -0.6983991 | 0.3569357 | 0.9373430 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q1 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 0.8 - -
Other 1.0 1.0 -
Science and Mathematics 1.0 1.0 1.0
Social Sciences 1.0 1.0 1.0
Technical Sciences and Engineering 1.0 1.0 1.0
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1.0 -
Technical Sciences and Engineering 1.0 1.0
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 5.93 1.1854 1.331 0.254
Residuals 161 143.34 0.8903
One-way analysis of means (not assuming equal variances)
data: podaci$Q2 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.9468 0.08942 .
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$`Study field` 0.03970655 0.03970655
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | 0.6076923 | -0.2611852 | 1.4765698 | 0.3371345 |
Other-Arts and Humanities | 0.3000000 | -1.3291681 | 1.9291681 | 0.9948376 |
Science and Mathematics-Arts and Humanities | 0.0931034 | -0.5706669 | 0.7568738 | 0.9985850 |
Social Sciences-Arts and Humanities | 0.3975610 | -0.2072823 | 1.0024043 | 0.4084624 |
Technical Sciences and Engineering-Arts and Humanities | 0.1292683 | -0.4755750 | 0.7341116 | 0.9897056 |
Other-Health Sciences | -0.3076923 | -2.0509034 | 1.4355188 | 0.9957686 |
Science and Mathematics-Health Sciences | -0.5145889 | -1.4229870 | 0.3938093 | 0.5774041 |
Social Sciences-Health Sciences | -0.2101313 | -1.0764059 | 0.6561432 | 0.9817517 |
Technical Sciences and Engineering-Health Sciences | -0.4784240 | -1.3446986 | 0.3878506 | 0.6043924 |
Science and Mathematics-Other | -0.2068966 | -1.8574806 | 1.4436875 | 0.9991783 |
Social Sciences-Other | 0.0975610 | -1.5302204 | 1.7253423 | 0.9999783 |
Technical Sciences and Engineering-Other | -0.1707317 | -1.7985131 | 1.4570497 | 0.9996554 |
Social Sciences-Science and Mathematics | 0.3044575 | -0.3559019 | 0.9648170 | 0.7680600 |
Technical Sciences and Engineering-Science and Mathematics | 0.0361648 | -0.6241946 | 0.6965243 | 0.9999861 |
Technical Sciences and Engineering-Social Sciences | -0.2682927 | -0.8693908 | 0.3328054 | 0.7915659 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q2 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 0.68 - -
Other 1.00 1.00 -
Science and Mathematics 1.00 1.00 1.00
Social Sciences 0.90 1.00 1.00
Technical Sciences and Engineering 1.00 1.00 1.00
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1.00 -
Technical Sciences and Engineering 1.00 1.00
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 9.68 1.936 1.794 0.117
Residuals 161 173.75 1.079
One-way analysis of means (not assuming equal variances)
data: podaci$Q3 and podaci$`Study field`
F = 1.8865, num df = 5.000, denom df = 20.029, p-value = 0.1418
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.5562 0.1754
161
eta.sq eta.sq.part
podaci$`Study field` 0.05276755 0.05276755
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.2288462 | -1.1854427 | 0.7277504 | 0.9828476 |
Other-Arts and Humanities | 0.2583333 | -1.5353103 | 2.0519769 | 0.9983929 |
Science and Mathematics-Arts and Humanities | 0.1318966 | -0.5988859 | 0.8626790 | 0.9953010 |
Social Sciences-Arts and Humanities | 0.5347561 | -0.1311502 | 1.2006624 | 0.1936032 |
Technical Sciences and Engineering-Arts and Humanities | 0.3640244 | -0.3018819 | 1.0299307 | 0.6150250 |
Other-Health Sciences | 0.4871795 | -1.4320205 | 2.4063795 | 0.9776760 |
Science and Mathematics-Health Sciences | 0.3607427 | -0.6393644 | 1.3608498 | 0.9035404 |
Social Sciences-Health Sciences | 0.7636023 | -0.1901286 | 1.7173331 | 0.1963612 |
Technical Sciences and Engineering-Health Sciences | 0.5928705 | -0.3608603 | 1.5466014 | 0.4731677 |
Science and Mathematics-Other | -0.1264368 | -1.9436585 | 1.6907849 | 0.9999544 |
Social Sciences-Other | 0.2764228 | -1.5156941 | 2.0685396 | 0.9977682 |
Technical Sciences and Engineering-Other | 0.1056911 | -1.6864258 | 1.8978079 | 0.9999799 |
Social Sciences-Science and Mathematics | 0.4028595 | -0.3241676 | 1.1298867 | 0.6009005 |
Technical Sciences and Engineering-Science and Mathematics | 0.2321278 | -0.4948993 | 0.9591550 | 0.9406541 |
Technical Sciences and Engineering-Social Sciences | -0.1707317 | -0.8325147 | 0.4910513 | 0.9760271 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q3 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1.00 - -
Other 1.00 1.00 -
Science and Mathematics 1.00 1.00 1.00
Social Sciences 0.33 0.33 1.00
Technical Sciences and Engineering 1.00 1.00 1.00
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1.00 -
Technical Sciences and Engineering 1.00 1.00
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 10.46 2.0929 3.482 0.00514 **
Residuals 161 96.78 0.6011
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q4 and podaci$`Study field`
F = 3.5331, num df = 5.000, denom df = 19.346, p-value = 0.01955
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.4297 0.2163
161
eta.sq eta.sq.part
podaci$`Study field` 0.09757459 0.09757459
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.0288462 | -0.7427937 | 0.6851014 | 0.9999969 |
Other-Arts and Humanities | -0.2083333 | -1.5470037 | 1.1303370 | 0.9976710 |
Science and Mathematics-Arts and Humanities | 0.5043103 | -0.0411028 | 1.0497235 | 0.0877068 |
Social Sciences-Arts and Humanities | 0.5884146 | 0.0914212 | 1.0854080 | 0.0103045 |
Technical Sciences and Engineering-Arts and Humanities | 0.3445122 | -0.1524812 | 0.8415056 | 0.3472372 |
Other-Health Sciences | -0.1794872 | -1.6118655 | 1.2528911 | 0.9991796 |
Science and Mathematics-Health Sciences | 0.5331565 | -0.2132648 | 1.2795778 | 0.3135470 |
Social Sciences-Health Sciences | 0.6172608 | -0.0945479 | 1.3290695 | 0.1298661 |
Technical Sciences and Engineering-Health Sciences | 0.3733583 | -0.3384504 | 1.0851671 | 0.6565047 |
Science and Mathematics-Other | 0.7126437 | -0.6436240 | 2.0689113 | 0.6547908 |
Social Sciences-Other | 0.7967480 | -0.5407829 | 2.1342789 | 0.5218663 |
Technical Sciences and Engineering-Other | 0.5528455 | -0.7846854 | 1.8903764 | 0.8400685 |
Social Sciences-Science and Mathematics | 0.0841043 | -0.4585061 | 0.6267147 | 0.9977155 |
Technical Sciences and Engineering-Science and Mathematics | -0.1597981 | -0.7024086 | 0.3828123 | 0.9575887 |
Technical Sciences and Engineering-Social Sciences | -0.2439024 | -0.7378185 | 0.2500136 | 0.7122152 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q4 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1.000 - -
Other 1.000 1.000 -
Science and Mathematics 0.127 0.615 1.000
Social Sciences 0.012 0.201 1.000
Technical Sciences and Engineering 0.709 1.000 1.000
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1.000 -
Technical Sciences and Engineering 1.000 1.000
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 5.66 1.133 1.12 0.352
Residuals 161 162.88 1.012
One-way analysis of means (not assuming equal variances)
data: podaci$Q5 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.8654 0.1032
161
eta.sq eta.sq.part
podaci$`Study field` 0.03360383 0.03360383
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.3019231 | -1.2281103 | 0.6242642 | 0.9354123 |
Other-Arts and Humanities | 0.7750000 | -0.9616253 | 2.5116253 | 0.7916748 |
Science and Mathematics-Arts and Humanities | 0.2232759 | -0.4842757 | 0.9308274 | 0.9434416 |
Social Sciences-Arts and Humanities | 0.0189024 | -0.6258353 | 0.6636402 | 0.9999994 |
Technical Sciences and Engineering-Arts and Humanities | 0.2628049 | -0.3819329 | 0.9075427 | 0.8478220 |
Other-Health Sciences | 1.0769231 | -0.7812673 | 2.9351135 | 0.5525056 |
Science and Mathematics-Health Sciences | 0.5251989 | -0.4431157 | 1.4935136 | 0.6230938 |
Social Sciences-Health Sciences | 0.3208255 | -0.6025871 | 1.2442381 | 0.9166648 |
Technical Sciences and Engineering-Health Sciences | 0.5647280 | -0.3586847 | 1.4881406 | 0.4919423 |
Science and Mathematics-Other | -0.5517241 | -2.3111780 | 1.2077298 | 0.9448917 |
Social Sciences-Other | -0.7560976 | -2.4912447 | 0.9790496 | 0.8077866 |
Technical Sciences and Engineering-Other | -0.5121951 | -2.2473423 | 1.2229520 | 0.9571683 |
Social Sciences-Science and Mathematics | -0.2043734 | -0.9082891 | 0.4995422 | 0.9600664 |
Technical Sciences and Engineering-Science and Mathematics | 0.0395290 | -0.6643866 | 0.7434447 | 0.9999843 |
Technical Sciences and Engineering-Social Sciences | 0.2439024 | -0.3968431 | 0.8846480 | 0.8816018 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q5 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1 - -
Other 1 1 -
Science and Mathematics 1 1 1
Social Sciences 1 1 1
Technical Sciences and Engineering 1 1 1
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1 -
Technical Sciences and Engineering 1 1
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 5.14 1.027 1.016 0.41
Residuals 161 162.79 1.011
One-way analysis of means (not assuming equal variances)
data: podaci$Q6 and podaci$`Study field`
F = 1.2814, num df = 5.000, denom df = 19.844, p-value = 0.311
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 0.8355 0.5263
161
eta.sq eta.sq.part
podaci$`Study field` 0.03058679 0.03058679
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | 0.0903846 | -0.8355649 | 1.0163341 | 0.9997577 |
Other-Arts and Humanities | 0.8083333 | -0.9278462 | 2.5445129 | 0.7606053 |
Science and Mathematics-Arts and Humanities | 0.4750000 | -0.2323699 | 1.1823699 | 0.3836957 |
Social Sciences-Arts and Humanities | 0.2554878 | -0.3890845 | 0.9000601 | 0.8624795 |
Technical Sciences and Engineering-Arts and Humanities | 0.2067073 | -0.4378650 | 0.8512796 | 0.9395786 |
Other-Health Sciences | 0.7179487 | -1.1397647 | 2.5756621 | 0.8747126 |
Science and Mathematics-Health Sciences | 0.3846154 | -0.5834507 | 1.3526815 | 0.8612917 |
Social Sciences-Health Sciences | 0.1651032 | -0.7580724 | 1.0882788 | 0.9954988 |
Technical Sciences and Engineering-Health Sciences | 0.1163227 | -0.8068529 | 1.0394983 | 0.9991573 |
Science and Mathematics-Other | -0.3333333 | -2.0923356 | 1.4256689 | 0.9940968 |
Social Sciences-Other | -0.5528455 | -2.2875473 | 1.1818562 | 0.9410987 |
Technical Sciences and Engineering-Other | -0.6016260 | -2.3363278 | 1.1330757 | 0.9172461 |
Social Sciences-Science and Mathematics | -0.2195122 | -0.9232472 | 0.4842228 | 0.9460803 |
Technical Sciences and Engineering-Science and Mathematics | -0.2682927 | -0.9720276 | 0.4354423 | 0.8809165 |
Technical Sciences and Engineering-Social Sciences | -0.0487805 | -0.6893616 | 0.5918006 | 0.9999287 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q6 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1.00 - -
Other 1.00 1.00 -
Science and Mathematics 0.82 1.00 1.00
Social Sciences 1.00 1.00 1.00
Technical Sciences and Engineering 1.00 1.00 1.00
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1.00 -
Technical Sciences and Engineering 1.00 1.00
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 13.68 2.7356 3.224 0.00841 **
Residuals 161 136.60 0.8484
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q7 and podaci$`Study field`
F = 2.7834, num df = 5.000, denom df = 19.629, p-value = 0.04637
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.4274 0.2171
161
eta.sq eta.sq.part
podaci$`Study field` 0.09101905 0.09101905
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | 0.8615385 | 0.0133497 | 1.7097272 | 0.0441741 |
Other-Arts and Humanities | 1.0666667 | -0.5237094 | 2.6570427 | 0.3850738 |
Science and Mathematics-Arts and Humanities | 0.6068966 | -0.0410688 | 1.2548619 | 0.0804943 |
Social Sciences-Arts and Humanities | 0.4731707 | -0.1172707 | 1.0636122 | 0.1955120 |
Technical Sciences and Engineering-Arts and Humanities | 0.6439024 | 0.0534610 | 1.2343439 | 0.0238039 |
Other-Health Sciences | 0.2051282 | -1.4965754 | 1.9068318 | 0.9993204 |
Science and Mathematics-Health Sciences | -0.2546419 | -1.1414103 | 0.6321265 | 0.9618923 |
Social Sciences-Health Sciences | -0.3883677 | -1.2340155 | 0.4572800 | 0.7709826 |
Technical Sciences and Engineering-Health Sciences | -0.2176360 | -1.0632838 | 0.6280117 | 0.9762822 |
Science and Mathematics-Other | -0.4597701 | -2.0710523 | 1.1515120 | 0.9629068 |
Social Sciences-Other | -0.5934959 | -2.1825183 | 0.9955264 | 0.8897754 |
Technical Sciences and Engineering-Other | -0.4227642 | -2.0117866 | 1.1662581 | 0.9725708 |
Social Sciences-Science and Mathematics | -0.1337258 | -0.7783615 | 0.5109098 | 0.9910221 |
Technical Sciences and Engineering-Science and Mathematics | 0.0370059 | -0.6076298 | 0.6816415 | 0.9999824 |
Technical Sciences and Engineering-Social Sciences | 0.1707317 | -0.4160537 | 0.7575171 | 0.9597018 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q7 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 0.058 - -
Other 0.822 1.000 -
Science and Mathematics 0.115 1.000 1.000
Social Sciences 0.331 1.000 1.000
Technical Sciences and Engineering 0.030 1.000 1.000
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1.000 -
Technical Sciences and Engineering 1.000 1.000
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 1.62 0.3248 0.447 0.815
Residuals 161 117.03 0.7269
One-way analysis of means (not assuming equal variances)
data: podaci$Q8 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.9442 0.08983 .
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$`Study field` 0.01368456 0.01368456
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | 0.0884615 | -0.6966453 | 0.8735684 | 0.9995109 |
Other-Arts and Humanities | -0.4500000 | -1.9220959 | 1.0220959 | 0.9504137 |
Science and Mathematics-Arts and Humanities | 0.1017241 | -0.4980504 | 0.7014987 | 0.9964950 |
Social Sciences-Arts and Humanities | -0.1085366 | -0.6550654 | 0.4379923 | 0.9926596 |
Technical Sciences and Engineering-Arts and Humanities | -0.0841463 | -0.6306752 | 0.4623825 | 0.9977874 |
Other-Health Sciences | -0.5384615 | -2.1136053 | 1.0366822 | 0.9218388 |
Science and Mathematics-Health Sciences | 0.0132626 | -0.8075546 | 0.8340798 | 1.0000000 |
Social Sciences-Health Sciences | -0.1969981 | -0.9797530 | 0.5857567 | 0.9785075 |
Technical Sciences and Engineering-Health Sciences | -0.1726079 | -0.9553627 | 0.6101470 | 0.9881255 |
Science and Mathematics-Other | 0.5517241 | -0.9397230 | 2.0431713 | 0.8937284 |
Social Sciences-Other | 0.3414634 | -1.1293795 | 1.8123063 | 0.9850104 |
Technical Sciences and Engineering-Other | 0.3658537 | -1.1049892 | 1.8366965 | 0.9795955 |
Social Sciences-Science and Mathematics | -0.2102607 | -0.8069532 | 0.3864318 | 0.9119136 |
Technical Sciences and Engineering-Science and Mathematics | -0.1858705 | -0.7825630 | 0.4108220 | 0.9463820 |
Technical Sciences and Engineering-Social Sciences | 0.0243902 | -0.5187545 | 0.5675350 | 0.9999948 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q8 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1 - -
Other 1 1 -
Science and Mathematics 1 1 1
Social Sciences 1 1 1
Technical Sciences and Engineering 1 1 1
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1 -
Technical Sciences and Engineering 1 1
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 18.65 3.730 2.809 0.0184 *
Residuals 161 213.82 1.328
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q9 and podaci$`Study field`
F = 6.8259, num df = 5.000, denom df = 20.297, p-value = 0.0006984
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 4.1315 0.001476 **
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$`Study field` 0.08022991 0.08022991
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.5365385 | -1.5977243 | 0.5246474 | 0.6911437 |
Other-Arts and Humanities | 1.5916667 | -0.3980846 | 3.5814179 | 0.1971873 |
Science and Mathematics-Arts and Humanities | -0.5922414 | -1.4029238 | 0.2184410 | 0.2888568 |
Social Sciences-Arts and Humanities | -0.2213415 | -0.9600545 | 0.5173716 | 0.9543911 |
Technical Sciences and Engineering-Arts and Humanities | -0.0018293 | -0.7405423 | 0.7368838 | 1.0000000 |
Other-Health Sciences | 2.1282051 | -0.0008302 | 4.2572405 | 0.0501523 |
Science and Mathematics-Health Sciences | -0.0557029 | -1.1651565 | 1.0537507 | 0.9999910 |
Social Sciences-Health Sciences | 0.3151970 | -0.7428098 | 1.3732038 | 0.9554774 |
Technical Sciences and Engineering-Health Sciences | 0.5347092 | -0.5232976 | 1.5927160 | 0.6915224 |
Science and Mathematics-Other | -2.1839080 | -4.1998153 | -0.1680008 | 0.0253173 |
Social Sciences-Other | -1.8130081 | -3.8010657 | 0.1750495 | 0.0959103 |
Technical Sciences and Engineering-Other | -1.5934959 | -3.5815535 | 0.3945617 | 0.1953403 |
Social Sciences-Science and Mathematics | 0.3708999 | -0.4356166 | 1.1774164 | 0.7699672 |
Technical Sciences and Engineering-Science and Mathematics | 0.5904121 | -0.2161044 | 1.3969286 | 0.2866306 |
Technical Sciences and Engineering-Social Sciences | 0.2195122 | -0.5146267 | 0.9536511 | 0.9547889 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q9 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1.000 - -
Other 0.335 0.067 -
Science and Mathematics 0.550 1.000 0.032
Social Sciences 1.000 1.000 0.140
Technical Sciences and Engineering 1.000 1.000 0.331
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1.000 -
Technical Sciences and Engineering 0.544 1.000
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 3.58 0.717 0.513 0.766
Residuals 161 225.07 1.398
One-way analysis of means (not assuming equal variances)
data: podaci$Q10 and podaci$`Study field`
F = 0.50894, num df = 5.000, denom df = 18.964, p-value = 0.766
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 0.5199 0.761
161
eta.sq eta.sq.part
podaci$`Study field` 0.01567737 0.01567737
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | 0.2115385 | -0.8772253 | 1.3003023 | 0.9933688 |
Other-Arts and Humanities | 0.7500000 | -1.2914606 | 2.7914606 | 0.8964891 |
Science and Mathematics-Arts and Humanities | 0.1982759 | -0.6334744 | 1.0300261 | 0.9831174 |
Social Sciences-Arts and Humanities | 0.3353659 | -0.4225448 | 1.0932765 | 0.7975364 |
Technical Sciences and Engineering-Arts and Humanities | 0.0914634 | -0.6664472 | 0.8493740 | 0.9993167 |
Other-Health Sciences | 0.5384615 | -1.6459029 | 2.7228260 | 0.9803951 |
Science and Mathematics-Health Sciences | -0.0132626 | -1.1515486 | 1.1250234 | 1.0000000 |
Social Sciences-Health Sciences | 0.1238274 | -0.9616747 | 1.2093295 | 0.9994805 |
Technical Sciences and Engineering-Health Sciences | -0.1200750 | -1.2055772 | 0.9654271 | 0.9995529 |
Science and Mathematics-Other | -0.5517241 | -2.6200205 | 1.5165722 | 0.9722552 |
Social Sciences-Other | -0.4146341 | -2.4543571 | 1.6250888 | 0.9918232 |
Technical Sciences and Engineering-Other | -0.6585366 | -2.6982596 | 1.3811864 | 0.9378958 |
Social Sciences-Science and Mathematics | 0.1370900 | -0.6903862 | 0.9645662 | 0.9968636 |
Technical Sciences and Engineering-Science and Mathematics | -0.1068124 | -0.9342886 | 0.7206637 | 0.9990527 |
Technical Sciences and Engineering-Social Sciences | -0.2439024 | -0.9971201 | 0.5093152 | 0.9371420 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q10 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1 - -
Other 1 1 -
Science and Mathematics 1 1 1
Social Sciences 1 1 1
Technical Sciences and Engineering 1 1 1
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1 -
Technical Sciences and Engineering 1 1
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 4.75 0.9491 0.719 0.61
Residuals 161 212.66 1.3208
One-way analysis of means (not assuming equal variances)
data: podaci$Q11 and podaci$`Study field`
F = 0.69173, num df = 5.000, denom df = 18.966, p-value = 0.6359
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 0.9718 0.4368
161
eta.sq eta.sq.part
podaci$`Study field` 0.02182728 0.02182728
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | 0.2826923 | -0.7756102 | 1.3409948 | 0.9720893 |
Other-Arts and Humanities | -0.0250000 | -2.0093449 | 1.9593449 | 1.0000000 |
Science and Mathematics-Arts and Humanities | -0.1629310 | -0.9714107 | 0.6455487 | 0.9921438 |
Social Sciences-Arts and Humanities | -0.3176829 | -1.0543888 | 0.4190230 | 0.8145473 |
Technical Sciences and Engineering-Arts and Humanities | -0.0006098 | -0.7373157 | 0.7360961 | 1.0000000 |
Other-Health Sciences | -0.3076923 | -2.4309429 | 1.8155583 | 0.9983447 |
Science and Mathematics-Health Sciences | -0.4456233 | -1.5520625 | 0.6608158 | 0.8542541 |
Social Sciences-Health Sciences | -0.6003752 | -1.6555073 | 0.4547569 | 0.5725958 |
Technical Sciences and Engineering-Health Sciences | -0.2833021 | -1.3384342 | 0.7718300 | 0.9714566 |
Science and Mathematics-Other | -0.1379310 | -2.1483609 | 1.8724988 | 0.9999575 |
Social Sciences-Other | -0.2926829 | -2.2753388 | 1.6899730 | 0.9981910 |
Technical Sciences and Engineering-Other | 0.0243902 | -1.9582657 | 2.0070461 | 1.0000000 |
Social Sciences-Science and Mathematics | -0.1547519 | -0.9590771 | 0.6495733 | 0.9936640 |
Technical Sciences and Engineering-Science and Mathematics | 0.1623213 | -0.6420039 | 0.9666464 | 0.9920927 |
Technical Sciences and Engineering-Social Sciences | 0.3170732 | -0.4150710 | 1.0492174 | 0.8117964 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q11 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1 - -
Other 1 1 -
Science and Mathematics 1 1 1
Social Sciences 1 1 1
Technical Sciences and Engineering 1 1 1
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1 -
Technical Sciences and Engineering 1 1
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 9.07 1.815 1.22 0.302
Residuals 161 239.42 1.487
One-way analysis of means (not assuming equal variances)
data: podaci$Q12 and podaci$`Study field`
F = 1.1779, num df = 5.000, denom df = 20.492, p-value = 0.3538
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.5085 0.19
161
eta.sq eta.sq.part
podaci$`Study field` 0.03651787 0.03651787
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.3903846 | -1.5133032 | 0.7325340 | 0.9164595 |
Other-Arts and Humanities | -0.1083333 | -2.2138351 | 1.9971684 | 0.9999898 |
Science and Mathematics-Arts and Humanities | -0.4301724 | -1.2880149 | 0.4276701 | 0.6986012 |
Social Sciences-Arts and Humanities | -0.6530488 | -1.4347352 | 0.1286377 | 0.1590696 |
Technical Sciences and Engineering-Arts and Humanities | -0.3847561 | -1.1664426 | 0.3969304 | 0.7150410 |
Other-Health Sciences | 0.2820513 | -1.9708372 | 2.5349397 | 0.9991831 |
Science and Mathematics-Health Sciences | -0.0397878 | -1.2137821 | 1.1342065 | 0.9999987 |
Social Sciences-Health Sciences | -0.2626642 | -1.3822188 | 0.8568904 | 0.9842824 |
Technical Sciences and Engineering-Health Sciences | 0.0056285 | -1.1139261 | 1.1251831 | 1.0000000 |
Science and Mathematics-Other | -0.3218391 | -2.4550184 | 1.8113402 | 0.9979920 |
Social Sciences-Other | -0.5447154 | -2.6484250 | 1.5589941 | 0.9756398 |
Technical Sciences and Engineering-Other | -0.2764228 | -2.3801323 | 1.8272868 | 0.9989675 |
Social Sciences-Science and Mathematics | -0.2228764 | -1.0763107 | 0.6305579 | 0.9747102 |
Technical Sciences and Engineering-Science and Mathematics | 0.0454163 | -0.8080180 | 0.8988506 | 0.9999880 |
Technical Sciences and Engineering-Social Sciences | 0.2682927 | -0.5085536 | 1.0451389 | 0.9186095 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q12 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1.00 - -
Other 1.00 1.00 -
Science and Mathematics 1.00 1.00 1.00
Social Sciences 0.26 1.00 1.00
Technical Sciences and Engineering 1.00 1.00 1.00
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1.00 -
Technical Sciences and Engineering 1.00 1.00
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 11.15 2.231 1.335 0.252
Residuals 161 269.03 1.671
One-way analysis of means (not assuming equal variances)
data: podaci$Q13 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 2.0476 0.07475 .
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$`Study field` 0.03980949 0.03980949
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.7576923 | -1.9480242 | 0.4326396 | 0.4457377 |
Other-Arts and Humanities | 0.5500000 | -1.6819035 | 2.7819035 | 0.9804237 |
Science and Mathematics-Arts and Humanities | -0.1051724 | -1.0145147 | 0.8041698 | 0.9994444 |
Social Sciences-Arts and Humanities | 0.0865854 | -0.7420289 | 0.9151996 | 0.9996616 |
Technical Sciences and Engineering-Arts and Humanities | -0.3524390 | -1.1810533 | 0.4761752 | 0.8231508 |
Other-Health Sciences | 1.3076923 | -1.0804462 | 3.6958308 | 0.6132896 |
Science and Mathematics-Health Sciences | 0.6525199 | -0.5919540 | 1.8969938 | 0.6568507 |
Social Sciences-Health Sciences | 0.8442777 | -0.3424883 | 2.0310437 | 0.3180281 |
Technical Sciences and Engineering-Health Sciences | 0.4052533 | -0.7815127 | 1.5920193 | 0.9221761 |
Science and Mathematics-Other | -0.6551724 | -2.9164151 | 1.6060703 | 0.9604141 |
Social Sciences-Other | -0.4634146 | -2.6934184 | 1.7665891 | 0.9909492 |
Technical Sciences and Engineering-Other | -0.9024390 | -3.1324428 | 1.3275647 | 0.8517231 |
Social Sciences-Science and Mathematics | 0.1917578 | -0.7129116 | 1.0964272 | 0.9900877 |
Technical Sciences and Engineering-Science and Mathematics | -0.2472666 | -1.1519360 | 0.6574028 | 0.9691668 |
Technical Sciences and Engineering-Social Sciences | -0.4390244 | -1.2625079 | 0.3844591 | 0.6404700 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q13 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1.00 - -
Other 1.00 1.00 -
Science and Mathematics 1.00 1.00 1.00
Social Sciences 1.00 0.63 1.00
Technical Sciences and Engineering 1.00 1.00 1.00
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1.00 -
Technical Sciences and Engineering 1.00 1.00
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 8.24 1.649 1.251 0.288
Residuals 161 212.24 1.318
One-way analysis of means (not assuming equal variances)
data: podaci$Q14 and podaci$`Study field`
F = 1.0729, num df = 5.000, denom df = 19.215, p-value = 0.4059
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 2.0843 0.06999 .
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$`Study field` 0.03738687 0.03738687
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | 0.3288462 | -0.7284110 | 1.3861033 | 0.9467116 |
Other-Arts and Humanities | 0.1750000 | -1.8073849 | 2.1573849 | 0.9998522 |
Science and Mathematics-Arts and Humanities | 0.4508621 | -0.3568190 | 1.2585432 | 0.5931183 |
Social Sciences-Arts and Humanities | 0.5652439 | -0.1707343 | 1.3012221 | 0.2365362 |
Technical Sciences and Engineering-Arts and Humanities | 0.5164634 | -0.2195148 | 1.2524416 | 0.3333688 |
Other-Health Sciences | -0.1538462 | -2.2749995 | 1.9673072 | 0.9999440 |
Science and Mathematics-Health Sciences | 0.1220159 | -0.9833303 | 1.2273622 | 0.9995575 |
Social Sciences-Health Sciences | 0.2363977 | -0.8176921 | 1.2904876 | 0.9871789 |
Technical Sciences and Engineering-Health Sciences | 0.1876173 | -0.8664726 | 1.2417071 | 0.9955989 |
Science and Mathematics-Other | 0.2758621 | -1.7325820 | 2.2843061 | 0.9987211 |
Social Sciences-Other | 0.3902439 | -1.5904536 | 2.3709414 | 0.9929246 |
Technical Sciences and Engineering-Other | 0.3414634 | -1.6392341 | 2.3221609 | 0.9962139 |
Social Sciences-Science and Mathematics | 0.1143818 | -0.6891488 | 0.9179125 | 0.9984809 |
Technical Sciences and Engineering-Science and Mathematics | 0.0656013 | -0.7379293 | 0.8691320 | 0.9998995 |
Technical Sciences and Engineering-Social Sciences | -0.0487805 | -0.7802015 | 0.6826405 | 0.9999630 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q14 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1.00 - -
Other 1.00 1.00 -
Science and Mathematics 1.00 1.00 1.00
Social Sciences 0.42 1.00 1.00
Technical Sciences and Engineering 0.67 1.00 1.00
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1.00 -
Technical Sciences and Engineering 1.00 1.00
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 7.45 1.490 1.002 0.419
Residuals 161 239.50 1.488
One-way analysis of means (not assuming equal variances)
data: podaci$Q15 and podaci$`Study field`
F = 1.0034, num df = 5.000, denom df = 20.584, p-value = 0.4405
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 0.8088 0.5449
161
eta.sq eta.sq.part
podaci$`Study field` 0.03017216 0.03017216
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.3769231 | -1.5000259 | 0.7461797 | 0.9273752 |
Other-Arts and Humanities | 0.0333333 | -2.0725138 | 2.1391805 | 1.0000000 |
Science and Mathematics-Arts and Humanities | -0.5413793 | -1.3993625 | 0.3166039 | 0.4558902 |
Social Sciences-Arts and Humanities | -0.1780488 | -0.9598635 | 0.6037659 | 0.9862553 |
Technical Sciences and Engineering-Arts and Humanities | -0.4707317 | -1.2525464 | 0.3110830 | 0.5097393 |
Other-Health Sciences | 0.4102564 | -1.8430016 | 2.6635144 | 0.9951041 |
Science and Mathematics-Health Sciences | -0.1644562 | -1.3386431 | 1.0097306 | 0.9985949 |
Social Sciences-Health Sciences | 0.1988743 | -0.9208640 | 1.3186125 | 0.9956431 |
Technical Sciences and Engineering-Health Sciences | -0.0938086 | -1.2135469 | 1.0259296 | 0.9998858 |
Science and Mathematics-Other | -0.5747126 | -2.7082419 | 1.5588166 | 0.9710515 |
Social Sciences-Other | -0.2113821 | -2.3154368 | 1.8926726 | 0.9997209 |
Technical Sciences and Engineering-Other | -0.5040650 | -2.6081197 | 1.5999896 | 0.9827387 |
Social Sciences-Science and Mathematics | 0.3633305 | -0.4902438 | 1.2169048 | 0.8226848 |
Technical Sciences and Engineering-Science and Mathematics | 0.0706476 | -0.7829267 | 0.9242219 | 0.9998925 |
Technical Sciences and Engineering-Social Sciences | -0.2926829 | -1.0696566 | 0.4842908 | 0.8861642 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q15 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1 - -
Other 1 1 -
Science and Mathematics 1 1 1
Social Sciences 1 1 1
Technical Sciences and Engineering 1 1 1
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1 -
Technical Sciences and Engineering 1 1
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 5.56 1.113 0.968 0.439
Residuals 161 184.99 1.149
One-way analysis of means (not assuming equal variances)
data: podaci$Q16 and podaci$`Study field`
F = 0.88618, num df = 5.000, denom df = 18.531, p-value = 0.5099
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 0.7086 0.6178
161
eta.sq eta.sq.part
podaci$`Study field` 0.02919531 0.02919531
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.3576923 | -1.3447500 | 0.6293653 | 0.9017967 |
Other-Arts and Humanities | -0.3833333 | -2.2340923 | 1.4674256 | 0.9910860 |
Science and Mathematics-Arts and Humanities | 0.1913793 | -0.5626736 | 0.9454322 | 0.9776932 |
Social Sciences-Arts and Humanities | 0.0963415 | -0.5907694 | 0.7834524 | 0.9985875 |
Technical Sciences and Engineering-Arts and Humanities | 0.2914634 | -0.3956475 | 0.9785743 | 0.8248066 |
Other-Health Sciences | -0.0256410 | -2.0059545 | 1.9546725 | 1.0000000 |
Science and Mathematics-Health Sciences | 0.5490716 | -0.4828821 | 1.5810254 | 0.6424531 |
Social Sciences-Health Sciences | 0.4540338 | -0.5300669 | 1.4381345 | 0.7675352 |
Technical Sciences and Engineering-Health Sciences | 0.6491557 | -0.3349450 | 1.6332564 | 0.4043245 |
Science and Mathematics-Other | 0.5747126 | -1.3003752 | 2.4498005 | 0.9498630 |
Social Sciences-Other | 0.4796748 | -1.3695088 | 2.3288584 | 0.9754463 |
Technical Sciences and Engineering-Other | 0.6747967 | -1.1743869 | 2.5239804 | 0.8991289 |
Social Sciences-Science and Mathematics | -0.0950378 | -0.8452159 | 0.6551402 | 0.9991348 |
Technical Sciences and Engineering-Science and Mathematics | 0.1000841 | -0.6500939 | 0.8502621 | 0.9988886 |
Technical Sciences and Engineering-Social Sciences | 0.1951220 | -0.4877344 | 0.8779783 | 0.9626849 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q16 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1.00 - -
Other 1.00 1.00 -
Science and Mathematics 1.00 1.00 1.00
Social Sciences 1.00 1.00 1.00
Technical Sciences and Engineering 1.00 0.88 1.00
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1.00 -
Technical Sciences and Engineering 1.00 1.00
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 20.15 4.030 3.338 0.00677 **
Residuals 161 194.37 1.207
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q17 and podaci$`Study field`
F = 3.4374, num df = 5.000, denom df = 18.481, p-value = 0.02287
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 2.2885 0.04837 *
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$`Study field` 0.0939239 0.0939239
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.9346154 | -1.9463864 | 0.0771556 | 0.0882675 |
Other-Arts and Humanities | -1.2166667 | -3.1137638 | 0.6804305 | 0.4370289 |
Science and Mathematics-Arts and Humanities | -0.7224138 | -1.4953462 | 0.0505186 | 0.0816509 |
Social Sciences-Arts and Humanities | -0.3304878 | -1.0348022 | 0.3738266 | 0.7545324 |
Technical Sciences and Engineering-Arts and Humanities | -0.7939024 | -1.4982168 | -0.0895881 | 0.0172821 |
Other-Health Sciences | -0.2820513 | -2.3119466 | 1.7478441 | 0.9986478 |
Science and Mathematics-Health Sciences | 0.2122016 | -0.8455896 | 1.2699927 | 0.9923082 |
Social Sciences-Health Sciences | 0.6041276 | -0.4046124 | 1.6128676 | 0.5157978 |
Technical Sciences and Engineering-Health Sciences | 0.1407129 | -0.8680270 | 1.1494529 | 0.9986221 |
Science and Mathematics-Other | 0.4942529 | -1.4277823 | 2.4162880 | 0.9763669 |
Social Sciences-Other | 0.8861789 | -1.0093035 | 2.7816612 | 0.7573866 |
Technical Sciences and Engineering-Other | 0.4227642 | -1.4727181 | 2.3182466 | 0.9874948 |
Social Sciences-Science and Mathematics | 0.3919260 | -0.3770346 | 1.1608865 | 0.6837521 |
Technical Sciences and Engineering-Science and Mathematics | -0.0714886 | -0.8404492 | 0.6974719 | 0.9998093 |
Technical Sciences and Engineering-Social Sciences | -0.4634146 | -1.1633679 | 0.2365386 | 0.4000747 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q17 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 0.127 - -
Other 0.993 1.000 -
Science and Mathematics 0.117 1.000 1.000
Social Sciences 1.000 1.000 1.000
Technical Sciences and Engineering 0.021 1.000 1.000
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1.000 -
Technical Sciences and Engineering 1.000 0.869
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 6.24 1.248 1.006 0.416
Residuals 161 199.69 1.240
One-way analysis of means (not assuming equal variances)
data: podaci$Q18 and podaci$`Study field`
F = 0.95773, num df = 5.00, denom df = 18.67, p-value = 0.4681
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.3424 0.2491
161
eta.sq eta.sq.part
podaci$`Study field` 0.03029812 0.03029812
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.0307692 | -1.0562985 | 0.9947600 | 0.9999993 |
Other-Arts and Humanities | -0.1333333 | -2.0562276 | 1.7895609 | 0.9999552 |
Science and Mathematics-Arts and Humanities | -0.2827586 | -1.0662015 | 0.5006843 | 0.9033192 |
Social Sciences-Arts and Humanities | 0.2243902 | -0.4895015 | 0.9382820 | 0.9443518 |
Technical Sciences and Engineering-Arts and Humanities | -0.2390244 | -0.9529162 | 0.4748674 | 0.9280577 |
Other-Health Sciences | -0.1025641 | -2.1600624 | 1.9549342 | 0.9999913 |
Science and Mathematics-Health Sciences | -0.2519894 | -1.3241646 | 0.8201858 | 0.9841581 |
Social Sciences-Health Sciences | 0.2551595 | -0.7672976 | 1.2776165 | 0.9792964 |
Technical Sciences and Engineering-Health Sciences | -0.2082552 | -1.2307122 | 0.8142019 | 0.9917484 |
Science and Mathematics-Other | -0.1494253 | -2.0975967 | 1.7987461 | 0.9999262 |
Social Sciences-Other | 0.3577236 | -1.5635339 | 2.2789811 | 0.9945631 |
Technical Sciences and Engineering-Other | -0.1056911 | -2.0269486 | 1.8155665 | 0.9999858 |
Social Sciences-Science and Mathematics | 0.5071489 | -0.2722682 | 1.2865659 | 0.4202172 |
Technical Sciences and Engineering-Science and Mathematics | 0.0437342 | -0.7356828 | 0.8231513 | 0.9999843 |
Technical Sciences and Engineering-Social Sciences | -0.4634146 | -1.1728860 | 0.2460567 | 0.4157515 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q18 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1.00 - -
Other 1.00 1.00 -
Science and Mathematics 1.00 1.00 1.00
Social Sciences 1.00 1.00 1.00
Technical Sciences and Engineering 1.00 1.00 1.00
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 0.94 -
Technical Sciences and Engineering 1.00 0.92
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 12.35 2.470 1.66 0.147
Residuals 161 239.55 1.488
One-way analysis of means (not assuming equal variances)
data: podaci$Q19 and podaci$`Study field`
F = 1.4909, num df = 5.000, denom df = 18.643, p-value = 0.2402
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 0.3439 0.8856
161
eta.sq eta.sq.part
podaci$`Study field` 0.04902909 0.04902909
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.1576923 | -1.2809319 | 0.9655473 | 0.9985789 |
Other-Arts and Humanities | -0.1833333 | -2.2894370 | 1.9227703 | 0.9998621 |
Science and Mathematics-Arts and Humanities | -0.0913793 | -0.9494670 | 0.7667084 | 0.9996287 |
Social Sciences-Arts and Humanities | 0.2475610 | -0.5343489 | 1.0294709 | 0.9426647 |
Technical Sciences and Engineering-Arts and Humanities | 0.5890244 | -0.1928855 | 1.3709343 | 0.2562877 |
Other-Health Sciences | -0.0256410 | -2.2791735 | 2.2278915 | 1.0000000 |
Science and Mathematics-Health Sciences | 0.0663130 | -1.1080169 | 1.2406429 | 0.9999838 |
Social Sciences-Health Sciences | 0.4052533 | -0.7146214 | 1.5251279 | 0.9023271 |
Technical Sciences and Engineering-Health Sciences | 0.7467167 | -0.3731579 | 1.8665913 | 0.3918437 |
Science and Mathematics-Other | 0.0919540 | -2.0418351 | 2.2257432 | 0.9999958 |
Social Sciences-Other | 0.4308943 | -1.6734167 | 2.5352053 | 0.9915434 |
Technical Sciences and Engineering-Other | 0.7723577 | -1.3319532 | 2.8766687 | 0.8968639 |
Social Sciences-Science and Mathematics | 0.3389403 | -0.5147380 | 1.1926186 | 0.8616324 |
Technical Sciences and Engineering-Science and Mathematics | 0.6804037 | -0.1732746 | 1.5340820 | 0.2005704 |
Technical Sciences and Engineering-Social Sciences | 0.3414634 | -0.4356049 | 1.1185317 | 0.8022285 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q19 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1.00 - -
Other 1.00 1.00 -
Science and Mathematics 1.00 1.00 1.00
Social Sciences 1.00 1.00 1.00
Technical Sciences and Engineering 0.47 0.84 1.00
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1.00 -
Technical Sciences and Engineering 0.34 1.00
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 8.73 1.745 1.429 0.216
Residuals 161 196.54 1.221
One-way analysis of means (not assuming equal variances)
data: podaci$Q20 and podaci$`Study field`
F = 1.2092, num df = 5.000, denom df = 20.264, p-value = 0.3403
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.3036 0.265
161
eta.sq eta.sq.part
podaci$`Study field` 0.04250665 0.04250665
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.1942308 | -1.2116528 | 0.8231913 | 0.9938901 |
Other-Arts and Humanities | -0.0916667 | -1.9993597 | 1.8160263 | 0.9999928 |
Science and Mathematics-Arts and Humanities | -0.4594828 | -1.2367322 | 0.3177667 | 0.5304351 |
Social Sciences-Arts and Humanities | -0.3030488 | -1.0112970 | 0.4051994 | 0.8194481 |
Technical Sciences and Engineering-Arts and Humanities | -0.6201220 | -1.3283701 | 0.0881262 | 0.1228720 |
Other-Health Sciences | 0.1025641 | -1.9386688 | 2.1437970 | 0.9999909 |
Science and Mathematics-Health Sciences | -0.2652520 | -1.3289512 | 0.7984472 | 0.9793653 |
Social Sciences-Health Sciences | -0.1088180 | -1.1231921 | 0.9055561 | 0.9996152 |
Technical Sciences and Engineering-Health Sciences | -0.4258912 | -1.4402653 | 0.5884829 | 0.8309802 |
Science and Mathematics-Other | -0.3678161 | -2.3005864 | 1.5649542 | 0.9939791 |
Social Sciences-Other | -0.2113821 | -2.1174513 | 1.6946871 | 0.9995473 |
Technical Sciences and Engineering-Other | -0.5284553 | -2.4345245 | 1.3776139 | 0.9672104 |
Social Sciences-Science and Mathematics | 0.1564340 | -0.6168214 | 0.9296894 | 0.9920026 |
Technical Sciences and Engineering-Science and Mathematics | -0.1606392 | -0.9338946 | 0.6126162 | 0.9909622 |
Technical Sciences and Engineering-Social Sciences | -0.3170732 | -1.0209359 | 0.3867895 | 0.7850628 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q20 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1.00 - -
Other 1.00 1.00 -
Science and Mathematics 1.00 1.00 1.00
Social Sciences 1.00 1.00 1.00
Technical Sciences and Engineering 0.19 1.00 1.00
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1.00 -
Technical Sciences and Engineering 1.00 1.00
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 10.05 2.009 1.762 0.124
Residuals 161 183.56 1.140
One-way analysis of means (not assuming equal variances)
data: podaci$Q21 and podaci$`Study field`
F = 1.8468, num df = 5.000, denom df = 19.925, p-value = 0.1495
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 3.2045 0.008729 **
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$`Study field` 0.05188415 0.05188415
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.1500000 | -1.1332407 | 0.8332407 | 0.9978825 |
Other-Arts and Humanities | -0.8166667 | -2.6602687 | 1.0269354 | 0.7967870 |
Science and Mathematics-Arts and Humanities | -0.4258621 | -1.1769990 | 0.3252749 | 0.5764956 |
Social Sciences-Arts and Humanities | -0.1012195 | -0.7856733 | 0.5832343 | 0.9981755 |
Technical Sciences and Engineering-Arts and Humanities | -0.5890244 | -1.2734782 | 0.0954294 | 0.1355706 |
Other-Health Sciences | -0.6666667 | -2.6393222 | 1.3059889 | 0.9253247 |
Science and Mathematics-Health Sciences | -0.2758621 | -1.3038252 | 0.7521011 | 0.9715218 |
Social Sciences-Health Sciences | 0.0487805 | -0.9315147 | 1.0290756 | 0.9999914 |
Technical Sciences and Engineering-Health Sciences | -0.4390244 | -1.4193195 | 0.5412708 | 0.7892007 |
Science and Mathematics-Other | 0.3908046 | -1.4770322 | 2.2586414 | 0.9906615 |
Social Sciences-Other | 0.7154472 | -1.1265856 | 2.5574800 | 0.8723750 |
Technical Sciences and Engineering-Other | 0.2276423 | -1.6143905 | 2.0696751 | 0.9992330 |
Social Sciences-Science and Mathematics | 0.3246426 | -0.4226345 | 1.0719196 | 0.8097672 |
Technical Sciences and Engineering-Science and Mathematics | -0.1631623 | -0.9104394 | 0.5841148 | 0.9886488 |
Technical Sciences and Engineering-Social Sciences | -0.4878049 | -1.1680206 | 0.1924108 | 0.3091384 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q21 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1.00 - -
Other 1.00 1.00 -
Science and Mathematics 1.00 1.00 1.00
Social Sciences 1.00 1.00 1.00
Technical Sciences and Engineering 0.21 1.00 1.00
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1.00 -
Technical Sciences and Engineering 1.00 0.60
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 3.55 0.7094 0.651 0.661
Residuals 161 175.41 1.0895
One-way analysis of means (not assuming equal variances)
data: podaci$Q22 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 2.4122 0.03856 *
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$`Study field` 0.01981954 0.01981954
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | 0.2903846 | -0.6707844 | 1.2515536 | 0.9527860 |
Other-Arts and Humanities | 0.6750000 | -1.1272171 | 2.4772171 | 0.8886074 |
Science and Mathematics-Arts and Humanities | 0.2956897 | -0.4385859 | 1.0299652 | 0.8543309 |
Social Sciences-Arts and Humanities | 0.3091463 | -0.3599430 | 0.9782356 | 0.7664365 |
Technical Sciences and Engineering-Arts and Humanities | 0.3335366 | -0.3355527 | 1.0026259 | 0.7039042 |
Other-Health Sciences | 0.3846154 | -1.5437583 | 2.3129890 | 0.9925115 |
Science and Mathematics-Health Sciences | 0.0053050 | -0.9995825 | 1.0101926 | 1.0000000 |
Social Sciences-Health Sciences | 0.0187617 | -0.9395279 | 0.9770513 | 0.9999999 |
Technical Sciences and Engineering-Health Sciences | 0.0431520 | -0.9151376 | 1.0014416 | 0.9999948 |
Science and Mathematics-Other | -0.3793103 | -2.2052182 | 1.4465975 | 0.9909634 |
Social Sciences-Other | -0.3658537 | -2.1665367 | 1.4348294 | 0.9918427 |
Technical Sciences and Engineering-Other | -0.3414634 | -2.1421465 | 1.4592197 | 0.9940781 |
Social Sciences-Science and Mathematics | 0.0134567 | -0.7170456 | 0.7439590 | 0.9999999 |
Technical Sciences and Engineering-Science and Mathematics | 0.0378469 | -0.6926554 | 0.7683492 | 0.9999895 |
Technical Sciences and Engineering-Social Sciences | 0.0243902 | -0.6405561 | 0.6893365 | 0.9999981 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q22 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1 - -
Other 1 1 -
Science and Mathematics 1 1 1
Social Sciences 1 1 1
Technical Sciences and Engineering 1 1 1
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1 -
Technical Sciences and Engineering 1 1
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 7.12 1.424 0.983 0.43
Residuals 161 233.24 1.449
One-way analysis of means (not assuming equal variances)
data: podaci$Q23 and podaci$`Study field`
F = 1.1444, num df = 5.000, denom df = 20.418, p-value = 0.3693
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.0064 0.4158
161
eta.sq eta.sq.part
podaci$`Study field` 0.02962076 0.02962076
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.6115385 | -1.7198766 | 0.4967997 | 0.6053702 |
Other-Arts and Humanities | 0.1833333 | -1.8948297 | 2.2614964 | 0.9998527 |
Science and Mathematics-Arts and Humanities | -0.5293103 | -1.3760143 | 0.3173936 | 0.4666671 |
Social Sciences-Arts and Humanities | -0.3207317 | -1.0922684 | 0.4508050 | 0.8367932 |
Technical Sciences and Engineering-Arts and Humanities | -0.2475610 | -1.0190977 | 0.5239758 | 0.9394413 |
Other-Health Sciences | 0.7948718 | -1.4287643 | 3.0185078 | 0.9068525 |
Science and Mathematics-Health Sciences | 0.0822281 | -1.0765225 | 1.2409788 | 0.9999497 |
Social Sciences-Health Sciences | 0.2908068 | -0.8142111 | 1.3958246 | 0.9738446 |
Technical Sciences and Engineering-Health Sciences | 0.3639775 | -0.7410404 | 1.4689953 | 0.9326409 |
Science and Mathematics-Other | -0.7126437 | -2.8181249 | 1.3928376 | 0.9248680 |
Social Sciences-Other | -0.5040650 | -2.5804592 | 1.5723291 | 0.9816876 |
Technical Sciences and Engineering-Other | -0.4308943 | -2.5072885 | 1.6454999 | 0.9910069 |
Social Sciences-Science and Mathematics | 0.2085786 | -0.6337743 | 1.0509316 | 0.9800010 |
Technical Sciences and Engineering-Science and Mathematics | 0.2817494 | -0.5606036 | 1.1241023 | 0.9283500 |
Technical Sciences and Engineering-Social Sciences | 0.0731707 | -0.6935886 | 0.8399301 | 0.9997832 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q23 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1 - -
Other 1 1 -
Science and Mathematics 1 1 1
Social Sciences 1 1 1
Technical Sciences and Engineering 1 1 1
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1 -
Technical Sciences and Engineering 1 1
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 4.44 0.8877 0.603 0.698
Residuals 161 236.96 1.4718
One-way analysis of means (not assuming equal variances)
data: podaci$Q24 and podaci$`Study field`
F = 0.48607, num df = 5.000, denom df = 19.015, p-value = 0.7824
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.0814 0.3727
161
eta.sq eta.sq.part
podaci$`Study field` 0.01838583 0.01838583
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.3019231 | -1.4190723 | 0.8152262 | 0.9706340 |
Other-Arts and Humanities | -0.2250000 | -2.3196842 | 1.8696842 | 0.9996127 |
Science and Mathematics-Arts and Humanities | -0.3974138 | -1.2508489 | 0.4560213 | 0.7604694 |
Social Sciences-Arts and Humanities | -0.3957317 | -1.1734020 | 0.3819386 | 0.6852317 |
Technical Sciences and Engineering-Arts and Humanities | -0.3713415 | -1.1490118 | 0.4063289 | 0.7405615 |
Other-Health Sciences | 0.0769231 | -2.1643905 | 2.3182367 | 0.9999986 |
Science and Mathematics-Health Sciences | -0.0954907 | -1.2634533 | 1.0724718 | 0.9998988 |
Social Sciences-Health Sciences | -0.0938086 | -1.2076112 | 1.0199939 | 0.9998828 |
Technical Sciences and Engineering-Health Sciences | -0.0694184 | -1.1832210 | 1.0443842 | 0.9999736 |
Science and Mathematics-Other | -0.1724138 | -2.2946333 | 1.9498057 | 0.9999019 |
Social Sciences-Other | -0.1707317 | -2.2636329 | 1.9221695 | 0.9998999 |
Technical Sciences and Engineering-Other | -0.1463415 | -2.2392427 | 1.9465597 | 0.9999533 |
Social Sciences-Science and Mathematics | 0.0016821 | -0.8473675 | 0.8507316 | 1.0000000 |
Technical Sciences and Engineering-Science and Mathematics | 0.0260723 | -0.8229772 | 0.8751219 | 0.9999992 |
Technical Sciences and Engineering-Social Sciences | 0.0243902 | -0.7484647 | 0.7972452 | 0.9999991 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q24 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1 - -
Other 1 1 -
Science and Mathematics 1 1 1
Social Sciences 1 1 1
Technical Sciences and Engineering 1 1 1
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1 -
Technical Sciences and Engineering 1 1
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 3.48 0.6961 0.737 0.596
Residuals 161 151.99 0.9441
One-way analysis of means (not assuming equal variances)
data: podaci$Q26 and podaci$`Study field`
F = 0.67907, num df = 5.000, denom df = 19.719, p-value = 0.6445
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 0.625 0.6809
161
eta.sq eta.sq.part
podaci$`Study field` 0.02238795 0.02238795
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | 0.1076923 | -0.7870169 | 1.0024016 | 0.9993252 |
Other-Arts and Humanities | 0.1333333 | -1.5442699 | 1.8109366 | 0.9999120 |
Science and Mathematics-Arts and Humanities | 0.3862069 | -0.2972973 | 1.0697111 | 0.5801450 |
Social Sciences-Arts and Humanities | 0.1170732 | -0.5057521 | 0.7398985 | 0.9943160 |
Technical Sciences and Engineering-Arts and Humanities | 0.3121951 | -0.3106302 | 0.9350204 | 0.6989637 |
Other-Health Sciences | 0.0256410 | -1.7693957 | 1.8206778 | 1.0000000 |
Science and Mathematics-Health Sciences | 0.2785146 | -0.6568903 | 1.2139195 | 0.9555830 |
Social Sciences-Health Sciences | 0.0093809 | -0.8826481 | 0.9014098 | 1.0000000 |
Technical Sciences and Engineering-Health Sciences | 0.2045028 | -0.6875261 | 1.0965317 | 0.9858364 |
Science and Mathematics-Other | 0.2528736 | -1.4467824 | 1.9525295 | 0.9981220 |
Social Sciences-Other | -0.0162602 | -1.6924355 | 1.6599152 | 1.0000000 |
Technical Sciences and Engineering-Other | 0.1788618 | -1.4973135 | 1.8550371 | 0.9996250 |
Social Sciences-Science and Mathematics | -0.2691337 | -0.9491256 | 0.4108582 | 0.8632116 |
Technical Sciences and Engineering-Science and Mathematics | -0.0740118 | -0.7540037 | 0.6059801 | 0.9995869 |
Technical Sciences and Engineering-Social Sciences | 0.1951220 | -0.4238468 | 0.8140907 | 0.9436801 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q26 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1 - -
Other 1 1 -
Science and Mathematics 1 1 1
Social Sciences 1 1 1
Technical Sciences and Engineering 1 1 1
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1 -
Technical Sciences and Engineering 1 1
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 0.54 0.1073 0.098 0.992
Residuals 161 176.70 1.0975
One-way analysis of means (not assuming equal variances)
data: podaci$Q27 and podaci$`Study field`
F = 0.17381, num df = 5.000, denom df = 19.978, p-value = 0.9693
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 0.388 0.8566
161
eta.sq eta.sq.part
podaci$`Study field` 0.003026348 0.003026348
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.0865385 | -1.0512242 | 0.8781473 | 0.9998401 |
Other-Arts and Humanities | -0.2916667 | -2.1004778 | 1.5171444 | 0.9972420 |
Science and Mathematics-Arts and Humanities | -0.0387931 | -0.7757552 | 0.6981690 | 0.9999886 |
Social Sciences-Arts and Humanities | 0.0579268 | -0.6136106 | 0.7294642 | 0.9998681 |
Technical Sciences and Engineering-Arts and Humanities | 0.0091463 | -0.6623910 | 0.6806837 | 1.0000000 |
Other-Health Sciences | -0.2051282 | -2.1405574 | 1.7303010 | 0.9996373 |
Science and Mathematics-Health Sciences | 0.0477454 | -0.9608189 | 1.0563096 | 0.9999933 |
Social Sciences-Health Sciences | 0.1444653 | -0.8173305 | 1.1062611 | 0.9980342 |
Technical Sciences and Engineering-Health Sciences | 0.0956848 | -0.8661110 | 1.0574806 | 0.9997340 |
Science and Mathematics-Other | 0.2528736 | -1.5797150 | 2.0854621 | 0.9986923 |
Social Sciences-Other | 0.3495935 | -1.4576780 | 2.1568650 | 0.9935034 |
Technical Sciences and Engineering-Other | 0.3008130 | -1.5064585 | 2.1080845 | 0.9967936 |
Social Sciences-Science and Mathematics | 0.0967199 | -0.6364552 | 0.8298950 | 0.9989475 |
Technical Sciences and Engineering-Science and Mathematics | 0.0479394 | -0.6852356 | 0.7811145 | 0.9999665 |
Technical Sciences and Engineering-Social Sciences | -0.0487805 | -0.7161597 | 0.6185987 | 0.9999418 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q27 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1 - -
Other 1 1 -
Science and Mathematics 1 1 1
Social Sciences 1 1 1
Technical Sciences and Engineering 1 1 1
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1 -
Technical Sciences and Engineering 1 1
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 3.96 0.7919 0.851 0.515
Residuals 161 149.74 0.9301
One-way analysis of means (not assuming equal variances)
data: podaci$Q28 and podaci$`Study field`
F = 1.3595, num df = 5.00, denom df = 19.37, p-value = 0.2823
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 2.0704 0.07176 .
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$`Study field` 0.02576196 0.02576196
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.0192308 | -0.9072889 | 0.8688274 | 0.9999999 |
Other-Arts and Humanities | -0.5833333 | -2.2484656 | 1.0817990 | 0.9139084 |
Science and Mathematics-Arts and Humanities | 0.1293103 | -0.5491129 | 0.8077335 | 0.9939348 |
Social Sciences-Arts and Humanities | 0.2865854 | -0.3316100 | 0.9047807 | 0.7639022 |
Technical Sciences and Engineering-Arts and Humanities | 0.2378049 | -0.3803905 | 0.8560002 | 0.8768606 |
Other-Health Sciences | -0.5641026 | -2.3457954 | 1.2175903 | 0.9426648 |
Science and Mathematics-Health Sciences | 0.1485411 | -0.7799102 | 1.0769924 | 0.9973431 |
Social Sciences-Health Sciences | 0.3058161 | -0.5795816 | 1.1912139 | 0.9185738 |
Technical Sciences and Engineering-Health Sciences | 0.2570356 | -0.6283621 | 1.1424334 | 0.9600855 |
Science and Mathematics-Other | 0.7126437 | -0.9743774 | 2.3996647 | 0.8273283 |
Social Sciences-Other | 0.8699187 | -0.7937963 | 2.5336337 | 0.6595481 |
Technical Sciences and Engineering-Other | 0.8211382 | -0.8425768 | 2.4848532 | 0.7126687 |
Social Sciences-Science and Mathematics | 0.1572750 | -0.5176620 | 0.8322120 | 0.9847567 |
Technical Sciences and Engineering-Science and Mathematics | 0.1084945 | -0.5664425 | 0.7834315 | 0.9972825 |
Technical Sciences and Engineering-Social Sciences | -0.0487805 | -0.6631480 | 0.5655870 | 0.9999124 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q28 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1 - -
Other 1 1 -
Science and Mathematics 1 1 1
Social Sciences 1 1 1
Technical Sciences and Engineering 1 1 1
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1 -
Technical Sciences and Engineering 1 1
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 2.62 0.5236 0.276 0.926
Residuals 161 305.12 1.8951
One-way analysis of means (not assuming equal variances)
data: podaci$Q29 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 3.6549 0.003691 **
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$`Study field` 0.008507256 0.008507256
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | 0.2903846 | -0.9772830 | 1.5580522 | 0.9858881 |
Other-Arts and Humanities | 0.6750000 | -1.7019099 | 3.0519099 | 0.9636567 |
Science and Mathematics-Arts and Humanities | 0.2956897 | -0.6727324 | 1.2641117 | 0.9506532 |
Social Sciences-Arts and Humanities | 0.1871951 | -0.6952541 | 1.0696443 | 0.9900519 |
Technical Sciences and Engineering-Arts and Humanities | 0.2115854 | -0.6708638 | 1.0940345 | 0.9826734 |
Other-Health Sciences | 0.3846154 | -2.1586800 | 2.9279108 | 0.9979693 |
Science and Mathematics-Health Sciences | 0.0053050 | -1.3200221 | 1.3306322 | 1.0000000 |
Social Sciences-Health Sciences | -0.1031895 | -1.3670595 | 1.1606805 | 0.9998995 |
Technical Sciences and Engineering-Health Sciences | -0.0787992 | -1.3426692 | 1.1850707 | 0.9999735 |
Science and Mathematics-Other | -0.3793103 | -2.7874656 | 2.0288449 | 0.9975334 |
Social Sciences-Other | -0.4878049 | -2.8626916 | 1.8870818 | 0.9914221 |
Technical Sciences and Engineering-Other | -0.4634146 | -2.8383014 | 1.9114721 | 0.9932347 |
Social Sciences-Science and Mathematics | -0.1084945 | -1.0719402 | 0.8549511 | 0.9995122 |
Technical Sciences and Engineering-Science and Mathematics | -0.0841043 | -1.0475499 | 0.8793413 | 0.9998601 |
Technical Sciences and Engineering-Social Sciences | 0.0243902 | -0.8525948 | 0.9013753 | 0.9999995 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q29 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1 - -
Other 1 1 -
Science and Mathematics 1 1 1
Social Sciences 1 1 1
Technical Sciences and Engineering 1 1 1
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1 -
Technical Sciences and Engineering 1 1
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 4.24 0.8471 0.519 0.762
Residuals 161 262.70 1.6317
One-way analysis of means (not assuming equal variances)
data: podaci$Q30 and podaci$`Study field`
F = 0.50412, num df = 5.000, denom df = 20.881, p-value = 0.7698
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.097 0.3642
161
eta.sq eta.sq.part
podaci$`Study field` 0.01586767 0.01586767
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | 0.2865385 | -0.8897122 | 1.4627891 | 0.9814022 |
Other-Arts and Humanities | 0.1583333 | -2.0471675 | 2.3638342 | 0.9999468 |
Science and Mathematics-Arts and Humanities | 0.2732759 | -0.6253092 | 1.1718609 | 0.9514655 |
Social Sciences-Arts and Humanities | -0.1506098 | -0.9694218 | 0.6682023 | 0.9948646 |
Technical Sciences and Engineering-Arts and Humanities | 0.1420732 | -0.6767389 | 0.9608852 | 0.9960968 |
Other-Health Sciences | -0.1282051 | -2.4880927 | 2.2316824 | 0.9999867 |
Science and Mathematics-Health Sciences | -0.0132626 | -1.2430148 | 1.2164896 | 1.0000000 |
Social Sciences-Health Sciences | -0.4371482 | -1.6098752 | 0.7355787 | 0.8905961 |
Technical Sciences and Engineering-Health Sciences | -0.1444653 | -1.3171922 | 1.0282616 | 0.9992448 |
Science and Mathematics-Other | 0.1149425 | -2.1195504 | 2.3494355 | 0.9999898 |
Social Sciences-Other | -0.3089431 | -2.5125667 | 1.8946805 | 0.9985882 |
Technical Sciences and Engineering-Other | -0.0162602 | -2.2198837 | 2.1873634 | 1.0000000 |
Social Sciences-Science and Mathematics | -0.4238856 | -1.3178531 | 0.4700819 | 0.7462425 |
Technical Sciences and Engineering-Science and Mathematics | -0.1312027 | -1.0251702 | 0.7627648 | 0.9982408 |
Technical Sciences and Engineering-Social Sciences | 0.2926829 | -0.5210590 | 1.1064249 | 0.9045998 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q30 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1 - -
Other 1 1 -
Science and Mathematics 1 1 1
Social Sciences 1 1 1
Technical Sciences and Engineering 1 1 1
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1 -
Technical Sciences and Engineering 1 1
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 6.99 1.398 0.791 0.558
Residuals 161 284.51 1.767
One-way analysis of means (not assuming equal variances)
data: podaci$Q31 and podaci$`Study field`
F = 1.4815, num df = 5.00, denom df = 20.81, p-value = 0.2383
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.9722 0.08549 .
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$`Study field` 0.0239769 0.0239769
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.5442308 | -1.7683344 | 0.6798729 | 0.7942773 |
Other-Arts and Humanities | 0.5583333 | -1.7368930 | 2.8535597 | 0.9815192 |
Science and Mathematics-Arts and Humanities | -0.2577586 | -1.1929004 | 0.6773832 | 0.9680242 |
Social Sciences-Arts and Humanities | -0.4335366 | -1.2856600 | 0.4185868 | 0.6854062 |
Technical Sciences and Engineering-Arts and Humanities | -0.2140244 | -1.0661478 | 0.6380990 | 0.9786983 |
Other-Health Sciences | 1.1025641 | -1.3533298 | 3.5584580 | 0.7874770 |
Science and Mathematics-Health Sciences | 0.2864721 | -0.9933095 | 1.5662538 | 0.9872881 |
Social Sciences-Health Sciences | 0.1106942 | -1.1097423 | 1.3311307 | 0.9998311 |
Technical Sciences and Engineering-Health Sciences | 0.3302064 | -0.8902301 | 1.5506429 | 0.9704914 |
Science and Mathematics-Other | -0.8160920 | -3.1414899 | 1.5093060 | 0.9133048 |
Social Sciences-Other | -0.9918699 | -3.2851426 | 1.3014028 | 0.8126322 |
Technical Sciences and Engineering-Other | -0.7723577 | -3.0656304 | 1.5209150 | 0.9263444 |
Social Sciences-Science and Mathematics | -0.1757780 | -1.1061144 | 0.7545584 | 0.9941779 |
Technical Sciences and Engineering-Science and Mathematics | 0.0437342 | -0.8866022 | 0.9740706 | 0.9999935 |
Technical Sciences and Engineering-Social Sciences | 0.2195122 | -0.6273349 | 1.0663593 | 0.9755239 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q31 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1 - -
Other 1 1 -
Science and Mathematics 1 1 1
Social Sciences 1 1 1
Technical Sciences and Engineering 1 1 1
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1 -
Technical Sciences and Engineering 1 1
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 38.66 7.733 4.641 0.000553 ***
Residuals 161 268.27 1.666
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q32 and podaci$`Study field`
F = 5.1986, num df = 5.000, denom df = 20.728, p-value = 0.003008
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 2.7365 0.02112 *
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$`Study field` 0.1259702 0.1259702
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -1.1134615 | -2.3021192 | 0.0751961 | 0.0804248 |
Other-Arts and Humanities | -0.2416667 | -2.4704310 | 1.9870976 | 0.9995945 |
Science and Mathematics-Arts and Humanities | -1.2646552 | -2.1727184 | -0.3565920 | 0.0012500 |
Social Sciences-Arts and Humanities | -1.0384146 | -1.8658634 | -0.2109659 | 0.0052093 |
Technical Sciences and Engineering-Arts and Humanities | -1.0384146 | -1.8658634 | -0.2109659 | 0.0052093 |
Other-Health Sciences | 0.8717949 | -1.5129846 | 3.2565743 | 0.8984373 |
Science and Mathematics-Health Sciences | -0.1511936 | -1.3939171 | 1.0915298 | 0.9992891 |
Social Sciences-Health Sciences | 0.0750469 | -1.1100499 | 1.2601437 | 0.9999714 |
Technical Sciences and Engineering-Health Sciences | 0.0750469 | -1.1100499 | 1.2601437 | 0.9999714 |
Science and Mathematics-Other | -1.0229885 | -3.2810507 | 1.2350737 | 0.7809925 |
Social Sciences-Other | -0.7967480 | -3.0236152 | 1.4301192 | 0.9065245 |
Technical Sciences and Engineering-Other | -0.7967480 | -3.0236152 | 1.4301192 | 0.9065245 |
Social Sciences-Science and Mathematics | 0.2262405 | -0.6771564 | 1.1296375 | 0.9789719 |
Technical Sciences and Engineering-Science and Mathematics | 0.2262405 | -0.6771564 | 1.1296375 | 0.9789719 |
Technical Sciences and Engineering-Social Sciences | 0.0000000 | -0.8223252 | 0.8223252 | 1.0000000 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q32 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 0.1145 - -
Other 1.0000 1.0000 -
Science and Mathematics 0.0014 1.0000 1.0000
Social Sciences 0.0059 1.0000 1.0000
Technical Sciences and Engineering 0.0059 1.0000 1.0000
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1.0000 -
Technical Sciences and Engineering 1.0000 1.0000
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 20.27 4.054 3.594 0.00415 **
Residuals 161 181.62 1.128
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q33 and podaci$`Study field`
F = 2.5664, num df = 5.000, denom df = 18.905, p-value = 0.06188
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 2.649 0.02487 *
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$`Study field` 0.1004063 0.1004063
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.7596154 | -1.7376497 | 0.2184189 | 0.2253822 |
Other-Arts and Humanities | -0.3750000 | -2.2088399 | 1.4588399 | 0.9915963 |
Science and Mathematics-Arts and Humanities | -0.7543103 | -1.5014699 | -0.0071508 | 0.0463840 |
Social Sciences-Arts and Humanities | -0.8628049 | -1.5436344 | -0.1819753 | 0.0046099 |
Technical Sciences and Engineering-Arts and Humanities | -0.8140244 | -1.4948540 | -0.1331948 | 0.0092345 |
Other-Health Sciences | 0.3846154 | -1.5775947 | 2.3468255 | 0.9930918 |
Science and Mathematics-Health Sciences | 0.0053050 | -1.0172149 | 1.0278250 | 1.0000000 |
Social Sciences-Health Sciences | -0.1031895 | -1.0782939 | 0.8719149 | 0.9996400 |
Technical Sciences and Engineering-Health Sciences | -0.0544090 | -1.0295134 | 0.9206954 | 0.9999848 |
Science and Mathematics-Other | -0.3793103 | -2.2372568 | 1.4786361 | 0.9916593 |
Social Sciences-Other | -0.4878049 | -2.3200839 | 1.3444741 | 0.9724919 |
Technical Sciences and Engineering-Other | -0.4390244 | -2.2713034 | 1.3932546 | 0.9827267 |
Social Sciences-Science and Mathematics | -0.1084945 | -0.8518147 | 0.6348256 | 0.9982866 |
Technical Sciences and Engineering-Science and Mathematics | -0.0597140 | -0.8030342 | 0.6836061 | 0.9999072 |
Technical Sciences and Engineering-Social Sciences | 0.0487805 | -0.6278334 | 0.7253944 | 0.9999456 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q33 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 0.3967 - -
Other 1.0000 1.0000 -
Science and Mathematics 0.0615 1.0000 1.0000
Social Sciences 0.0052 1.0000 1.0000
Technical Sciences and Engineering 0.0108 1.0000 1.0000
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1.0000 -
Technical Sciences and Engineering 1.0000 1.0000
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 2.86 0.5727 0.505 0.773
Residuals 161 182.77 1.1352
One-way analysis of means (not assuming equal variances)
data: podaci$Q35 and podaci$`Study field`
F = 0.52771, num df = 5.000, denom df = 20.008, p-value = 0.7526
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.0375 0.3975
161
eta.sq eta.sq.part
podaci$`Study field` 0.01542718 0.01542718
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.0403846 | -1.0214944 | 0.9407252 | 0.9999966 |
Other-Arts and Humanities | 0.2416667 | -1.5979399 | 2.0812733 | 0.9989686 |
Science and Mathematics-Arts and Humanities | 0.3681034 | -0.3814056 | 1.1176125 | 0.7169543 |
Social Sciences-Arts and Humanities | 0.0871951 | -0.5957754 | 0.7701656 | 0.9991018 |
Technical Sciences and Engineering-Arts and Humanities | 0.0628049 | -0.6201656 | 0.7457754 | 0.9998193 |
Other-Health Sciences | 0.2820513 | -1.6863292 | 2.2504317 | 0.9984319 |
Science and Mathematics-Health Sciences | 0.4084881 | -0.6172473 | 1.4342234 | 0.8600963 |
Social Sciences-Health Sciences | 0.1275797 | -0.8505909 | 1.1057504 | 0.9990039 |
Technical Sciences and Engineering-Health Sciences | 0.1031895 | -0.8749812 | 1.0813602 | 0.9996455 |
Science and Mathematics-Other | 0.1264368 | -1.7373521 | 1.9902257 | 0.9999598 |
Social Sciences-Other | -0.1544715 | -1.9925123 | 1.6835692 | 0.9998840 |
Technical Sciences and Engineering-Other | -0.1788618 | -2.0169026 | 1.6591790 | 0.9997614 |
Social Sciences-Science and Mathematics | -0.2809083 | -1.0265659 | 0.4647493 | 0.8861305 |
Technical Sciences and Engineering-Science and Mathematics | -0.3052986 | -1.0509562 | 0.4403590 | 0.8453756 |
Technical Sciences and Engineering-Social Sciences | -0.0243902 | -0.7031318 | 0.6543513 | 0.9999983 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q35 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1 - -
Other 1 1 -
Science and Mathematics 1 1 1
Social Sciences 1 1 1
Technical Sciences and Engineering 1 1 1
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1 -
Technical Sciences and Engineering 1 1
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 3.19 0.6383 0.531 0.753
Residuals 161 193.53 1.2020
One-way analysis of means (not assuming equal variances)
data: podaci$Q36 and podaci$`Study field`
F = 0.57292, num df = 5.00, denom df = 20.07, p-value = 0.72
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 0.8215 0.536
161
eta.sq eta.sq.part
podaci$`Study field` 0.01622252 0.01622252
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | 0.1884615 | -0.8211219 | 1.1980449 | 0.9944972 |
Other-Arts and Humanities | 0.3166667 | -1.5763286 | 2.2096620 | 0.9967164 |
Science and Mathematics-Arts and Humanities | -0.1086207 | -0.8798819 | 0.6626405 | 0.9985571 |
Social Sciences-Arts and Humanities | 0.1865854 | -0.5162062 | 0.8893769 | 0.9728221 |
Technical Sciences and Engineering-Arts and Humanities | -0.1304878 | -0.8332793 | 0.5723037 | 0.9946340 |
Other-Health Sciences | 0.1282051 | -1.8973013 | 2.1537115 | 0.9999715 |
Science and Mathematics-Health Sciences | -0.2970822 | -1.3525863 | 0.7584218 | 0.9650175 |
Social Sciences-Health Sciences | -0.0018762 | -1.0084351 | 1.0046828 | 1.0000000 |
Technical Sciences and Engineering-Health Sciences | -0.3189493 | -1.3255083 | 0.6876096 | 0.9424708 |
Science and Mathematics-Other | -0.4252874 | -2.3431668 | 1.4925921 | 0.9878198 |
Social Sciences-Other | -0.1300813 | -2.0214653 | 1.7613027 | 0.9999570 |
Technical Sciences and Engineering-Other | -0.4471545 | -2.3385385 | 1.4442296 | 0.9837331 |
Social Sciences-Science and Mathematics | 0.2952061 | -0.4720919 | 1.0625040 | 0.8767907 |
Technical Sciences and Engineering-Science and Mathematics | -0.0218671 | -0.7891650 | 0.7454308 | 0.9999995 |
Technical Sciences and Engineering-Social Sciences | -0.3170732 | -1.0155130 | 0.3813667 | 0.7794987 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q36 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1 - -
Other 1 1 -
Science and Mathematics 1 1 1
Social Sciences 1 1 1
Technical Sciences and Engineering 1 1 1
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1 -
Technical Sciences and Engineering 1 1
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 3.43 0.6869 0.542 0.745
Residuals 161 204.18 1.2682
One-way analysis of means (not assuming equal variances)
data: podaci$Q37 and podaci$`Study field`
F = 0.98952, num df = 5.000, denom df = 20.087, p-value = 0.4487
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.2524 0.2872
161
eta.sq eta.sq.part
podaci$`Study field` 0.01654248 0.01654248
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | 0.0038462 | -1.0331571 | 1.0408494 | 1.0000000 |
Other-Arts and Humanities | 0.5166667 | -1.4277415 | 2.4610749 | 0.9727205 |
Science and Mathematics-Arts and Humanities | -0.3224138 | -1.1146221 | 0.4697945 | 0.8486694 |
Social Sciences-Arts and Humanities | -0.0524390 | -0.7743181 | 0.6694400 | 0.9999436 |
Technical Sciences and Engineering-Arts and Humanities | -0.1743902 | -0.8962693 | 0.5474888 | 0.9820820 |
Other-Health Sciences | 0.5128205 | -1.5676977 | 2.5933387 | 0.9804023 |
Science and Mathematics-Health Sciences | -0.3262599 | -1.4104310 | 0.7579111 | 0.9535566 |
Social Sciences-Health Sciences | -0.0562852 | -1.0901818 | 0.9776114 | 0.9999865 |
Technical Sciences and Engineering-Health Sciences | -0.1782364 | -1.2121330 | 0.8556602 | 0.9962142 |
Science and Mathematics-Other | -0.8390805 | -2.8090486 | 1.1308877 | 0.8222819 |
Social Sciences-Other | -0.5691057 | -2.5118588 | 1.3736475 | 0.9585303 |
Technical Sciences and Engineering-Other | -0.6910569 | -2.6338101 | 1.2516962 | 0.9086176 |
Social Sciences-Science and Mathematics | 0.2699748 | -0.5181626 | 1.0581122 | 0.9212029 |
Technical Sciences and Engineering-Science and Mathematics | 0.1480235 | -0.6401138 | 0.9361609 | 0.9943381 |
Technical Sciences and Engineering-Social Sciences | -0.1219512 | -0.8393604 | 0.5954579 | 0.9964573 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q37 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1 - -
Other 1 1 -
Science and Mathematics 1 1 1
Social Sciences 1 1 1
Technical Sciences and Engineering 1 1 1
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1 -
Technical Sciences and Engineering 1 1
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 11.72 2.3442 3.104 0.0106 *
Residuals 161 121.60 0.7553
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q38 and podaci$`Study field`
F = 3.5125, num df = 5.000, denom df = 19.272, p-value = 0.0201
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 4.392 0.0008932 ***
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$`Study field` 0.08791844 0.08791844
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.0192308 | -0.8194911 | 0.7810296 | 0.9999998 |
Other-Arts and Humanities | 0.4166667 | -1.0838424 | 1.9171757 | 0.9669885 |
Science and Mathematics-Arts and Humanities | 0.7500000 | 0.1386491 | 1.3613509 | 0.0068591 |
Social Sciences-Arts and Humanities | 0.2378049 | -0.3192726 | 0.7948824 | 0.8209131 |
Technical Sciences and Engineering-Arts and Humanities | 0.4329268 | -0.1241507 | 0.9900043 | 0.2247949 |
Other-Health Sciences | 0.4358974 | -1.1696484 | 2.0414433 | 0.9700491 |
Science and Mathematics-Health Sciences | 0.7692308 | -0.0674292 | 1.6058907 | 0.0910178 |
Social Sciences-Health Sciences | 0.2570356 | -0.5408273 | 1.0548986 | 0.9384433 |
Technical Sciences and Engineering-Health Sciences | 0.4521576 | -0.3457053 | 1.2500205 | 0.5769635 |
Science and Mathematics-Other | 0.3333333 | -1.1869005 | 1.8535671 | 0.9884287 |
Social Sciences-Other | -0.1788618 | -1.6780937 | 1.3203701 | 0.9993538 |
Technical Sciences and Engineering-Other | 0.0162602 | -1.4829717 | 1.5154920 | 1.0000000 |
Social Sciences-Science and Mathematics | -0.5121951 | -1.1204045 | 0.0960143 | 0.1525296 |
Technical Sciences and Engineering-Science and Mathematics | -0.3170732 | -0.9252826 | 0.2911362 | 0.6624222 |
Technical Sciences and Engineering-Social Sciences | 0.1951220 | -0.3585061 | 0.7487500 | 0.9118498 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q38 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1.0000 - -
Other 1.0000 1.0000 -
Science and Mathematics 0.0079 0.1321 1.0000
Social Sciences 1.0000 1.0000 1.0000
Technical Sciences and Engineering 0.3954 1.0000 1.0000
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 0.2436 -
Technical Sciences and Engineering 1.0000 1.0000
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 1.70 0.3405 0.617 0.687
Residuals 161 88.78 0.5514
One-way analysis of means (not assuming equal variances)
data: podaci$Q39 and podaci$`Study field`
F = 0.69745, num df = 5.000, denom df = 19.315, p-value = 0.6318
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.012 0.4125
161
eta.sq eta.sq.part
podaci$`Study field` 0.01881377 0.01881377
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.2096154 | -0.8934023 | 0.4741716 | 0.9498278 |
Other-Arts and Humanities | -0.1583333 | -1.4404518 | 1.1237851 | 0.9992357 |
Science and Mathematics-Arts and Humanities | 0.1405172 | -0.3818550 | 0.6628895 | 0.9712254 |
Social Sciences-Arts and Humanities | 0.0042683 | -0.4717297 | 0.4802663 | 1.0000000 |
Technical Sciences and Engineering-Arts and Humanities | -0.1176829 | -0.5936809 | 0.3583151 | 0.9801370 |
Other-Health Sciences | 0.0512821 | -1.3205856 | 1.4231497 | 0.9999979 |
Science and Mathematics-Health Sciences | 0.3501326 | -0.3647562 | 1.0650215 | 0.7193320 |
Social Sciences-Health Sciences | 0.2138837 | -0.4678548 | 0.8956222 | 0.9447787 |
Technical Sciences and Engineering-Health Sciences | 0.0919325 | -0.5898060 | 0.7736710 | 0.9988296 |
Science and Mathematics-Other | 0.2988506 | -1.0001218 | 1.5978229 | 0.9856087 |
Social Sciences-Other | 0.1626016 | -1.1184255 | 1.4436287 | 0.9991268 |
Technical Sciences and Engineering-Other | 0.0406504 | -1.2403767 | 1.3216775 | 0.9999991 |
Social Sciences-Science and Mathematics | -0.1362489 | -0.6559369 | 0.3834390 | 0.9742741 |
Technical Sciences and Engineering-Science and Mathematics | -0.2582002 | -0.7778881 | 0.2614878 | 0.7068543 |
Technical Sciences and Engineering-Social Sciences | -0.1219512 | -0.5950018 | 0.3510994 | 0.9761046 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q39 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1 - -
Other 1 1 -
Science and Mathematics 1 1 1
Social Sciences 1 1 1
Technical Sciences and Engineering 1 1 1
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1 -
Technical Sciences and Engineering 1 1
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 12.49 2.4983 2.646 0.025 *
Residuals 161 152.00 0.9441
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q40 and podaci$`Study field`
F = 2.3049, num df = 5.000, denom df = 18.633, p-value = 0.08596
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 0.0826 0.9949
161
eta.sq eta.sq.part
podaci$`Study field` 0.07594044 0.07594044
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | 0.6596154 | -0.2351150 | 1.5543457 | 0.2790618 |
Other-Arts and Humanities | -0.0583333 | -1.7359762 | 1.6193095 | 0.9999986 |
Science and Mathematics-Arts and Humanities | -0.4491379 | -1.1326583 | 0.2343824 | 0.4088168 |
Social Sciences-Arts and Humanities | -0.2371951 | -0.8600351 | 0.3856449 | 0.8813987 |
Technical Sciences and Engineering-Arts and Humanities | -0.2128049 | -0.8356449 | 0.4100351 | 0.9220025 |
Other-Health Sciences | -0.7179487 | -2.5130278 | 1.0771304 | 0.8578930 |
Science and Mathematics-Health Sciences | -1.1087533 | -2.0441802 | -0.1733264 | 0.0101761 |
Social Sciences-Health Sciences | -0.8968105 | -1.7888605 | -0.0047606 | 0.0479551 |
Technical Sciences and Engineering-Health Sciences | -0.8724203 | -1.7644702 | 0.0196297 | 0.0592346 |
Science and Mathematics-Other | -0.3908046 | -2.0905006 | 1.3088914 | 0.9856484 |
Social Sciences-Other | -0.1788618 | -1.8550766 | 1.4973531 | 0.9996251 |
Technical Sciences and Engineering-Other | -0.1544715 | -1.8306864 | 1.5217433 | 0.9998174 |
Social Sciences-Science and Mathematics | 0.2119428 | -0.4680651 | 0.8919508 | 0.9462569 |
Technical Sciences and Engineering-Science and Mathematics | 0.2363331 | -0.4436749 | 0.9163410 | 0.9165609 |
Technical Sciences and Engineering-Social Sciences | 0.0243902 | -0.5945931 | 0.6433736 | 0.9999973 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q40 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 0.525 - -
Other 1.000 1.000 -
Science and Mathematics 0.898 0.012 1.000
Social Sciences 1.000 0.064 1.000
Technical Sciences and Engineering 1.000 0.081 1.000
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1.000 -
Technical Sciences and Engineering 1.000 1.000
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 10.37 2.074 2.047 0.0749 .
Residuals 161 163.17 1.014
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q41 and podaci$`Study field`
F = 1.7812, num df = 5.00, denom df = 18.72, p-value = 0.1657
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 0.4584 0.8067
161
eta.sq eta.sq.part
podaci$`Study field` 0.05976346 0.05976346
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | 0.0019231 | -0.9251108 | 0.9289569 | 1.0000000 |
Other-Arts and Humanities | 0.9250000 | -0.8132128 | 2.6632128 | 0.6422928 |
Science and Mathematics-Arts and Humanities | 0.6146552 | -0.0935431 | 1.3228535 | 0.1292364 |
Social Sciences-Arts and Humanities | 0.1445122 | -0.5008149 | 0.7898393 | 0.9872645 |
Technical Sciences and Engineering-Arts and Humanities | 0.4371951 | -0.2081320 | 1.0825222 | 0.3734786 |
Other-Health Sciences | 0.9230769 | -0.9368120 | 2.7829659 | 0.7077952 |
Science and Mathematics-Health Sciences | 0.6127321 | -0.3564677 | 1.5819319 | 0.4536634 |
Social Sciences-Health Sciences | 0.1425891 | -0.7816676 | 1.0668458 | 0.9977661 |
Technical Sciences and Engineering-Health Sciences | 0.4352720 | -0.4889846 | 1.3595287 | 0.7516692 |
Science and Mathematics-Other | -0.3103448 | -2.0714070 | 1.4507173 | 0.9958004 |
Social Sciences-Other | -0.7804878 | -2.5172210 | 0.9562454 | 0.7867621 |
Technical Sciences and Engineering-Other | -0.4878049 | -2.2245381 | 1.2489283 | 0.9653281 |
Social Sciences-Science and Mathematics | -0.4701430 | -1.1747021 | 0.2344161 | 0.3909748 |
Technical Sciences and Engineering-Science and Mathematics | -0.1774601 | -0.8820191 | 0.5270990 | 0.9784315 |
Technical Sciences and Engineering-Social Sciences | 0.2926829 | -0.3486483 | 0.9340142 | 0.7756546 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q41 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1.00 - -
Other 1.00 1.00 -
Science and Mathematics 0.20 1.00 1.00
Social Sciences 1.00 1.00 1.00
Technical Sciences and Engineering 0.79 1.00 1.00
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 0.84 -
Technical Sciences and Engineering 1.00 1.00
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 3.02 0.6046 0.78 0.566
Residuals 161 124.81 0.7752
One-way analysis of means (not assuming equal variances)
data: podaci$Q42 and podaci$`Study field`
F = 0.67328, num df = 5.000, denom df = 18.658, p-value = 0.6488
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 0.7946 0.555
161
eta.sq eta.sq.part
podaci$`Study field` 0.02364647 0.02364647
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | 0.0826923 | -0.7280727 | 0.8934573 | 0.9996995 |
Other-Arts and Humanities | 0.1083333 | -1.4118723 | 1.6285390 | 0.9999487 |
Science and Mathematics-Arts and Humanities | -0.2939655 | -0.9133414 | 0.3254104 | 0.7454745 |
Social Sciences-Arts and Humanities | -0.2006098 | -0.7649998 | 0.3637803 | 0.9088822 |
Technical Sciences and Engineering-Arts and Humanities | 0.0189024 | -0.5454876 | 0.5832925 | 0.9999988 |
Other-Health Sciences | 0.0256410 | -1.6009802 | 1.6522622 | 1.0000000 |
Science and Mathematics-Health Sciences | -0.3766578 | -1.2243003 | 0.4709846 | 0.7946433 |
Social Sciences-Health Sciences | -0.2833021 | -1.0916382 | 0.5250341 | 0.9137608 |
Technical Sciences and Engineering-Health Sciences | -0.0637899 | -0.8721260 | 0.7445463 | 0.9999150 |
Science and Mathematics-Other | -0.4022989 | -1.9424881 | 1.1378904 | 0.9746896 |
Social Sciences-Other | -0.3089431 | -1.8278548 | 1.2099686 | 0.9918013 |
Technical Sciences and Engineering-Other | -0.0894309 | -1.6083426 | 1.4294808 | 0.9999801 |
Social Sciences-Science and Mathematics | 0.0933558 | -0.5228373 | 0.7095489 | 0.9979514 |
Technical Sciences and Engineering-Science and Mathematics | 0.3128680 | -0.3033251 | 0.9290611 | 0.6872716 |
Technical Sciences and Engineering-Social Sciences | 0.2195122 | -0.3413831 | 0.7804075 | 0.8687470 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q42 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1 - -
Other 1 1 -
Science and Mathematics 1 1 1
Social Sciences 1 1 1
Technical Sciences and Engineering 1 1 1
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1 -
Technical Sciences and Engineering 1 1
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 4.98 0.9966 1.549 0.177
Residuals 161 103.56 0.6432
One-way analysis of means (not assuming equal variances)
data: podaci$Q43 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 3.0497 0.01171 *
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$`Study field` 0.0459117 0.0459117
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.0807692 | -0.8192822 | 0.6577437 | 0.9995771 |
Other-Arts and Humanities | -0.8500000 | -2.2347312 | 0.5347312 | 0.4876910 |
Science and Mathematics-Arts and Humanities | -0.4017241 | -0.9659038 | 0.1624555 | 0.3170275 |
Social Sciences-Arts and Humanities | -0.0695122 | -0.5836061 | 0.4445817 | 0.9988144 |
Technical Sciences and Engineering-Arts and Humanities | -0.2646341 | -0.7787280 | 0.2494597 | 0.6744931 |
Other-Health Sciences | -0.7692308 | -2.2508942 | 0.7124326 | 0.6663972 |
Science and Mathematics-Health Sciences | -0.3209549 | -1.0930590 | 0.4511491 | 0.8368159 |
Social Sciences-Health Sciences | 0.0112570 | -0.7250435 | 0.7475576 | 1.0000000 |
Technical Sciences and Engineering-Health Sciences | -0.1838649 | -0.9201655 | 0.5524357 | 0.9792378 |
Science and Mathematics-Other | 0.4482759 | -0.9546581 | 1.8512098 | 0.9404684 |
Social Sciences-Other | 0.7804878 | -0.6030647 | 2.1640403 | 0.5818974 |
Technical Sciences and Engineering-Other | 0.5853659 | -0.7981866 | 1.9689184 | 0.8263820 |
Social Sciences-Science and Mathematics | 0.3322119 | -0.2290686 | 0.8934924 | 0.5290746 |
Technical Sciences and Engineering-Science and Mathematics | 0.1370900 | -0.4241905 | 0.6983705 | 0.9811829 |
Technical Sciences and Engineering-Social Sciences | -0.1951220 | -0.7060326 | 0.3157887 | 0.8801325 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q43 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1.00 - -
Other 1.00 1.00 -
Science and Mathematics 0.62 1.00 1.00
Social Sciences 1.00 1.00 1.00
Technical Sciences and Engineering 1.00 1.00 1.00
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1.00 -
Technical Sciences and Engineering 1.00 1.00
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 3.23 0.6457 0.856 0.512
Residuals 161 121.41 0.7541
One-way analysis of means (not assuming equal variances)
data: podaci$Q44 and podaci$`Study field`
F = 0.77547, num df = 5.000, denom df = 18.556, p-value = 0.5796
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 0.1091 0.9902
161
eta.sq eta.sq.part
podaci$`Study field` 0.02590532 0.02590532
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | 0.0500000 | -0.7496339 | 0.8496339 | 0.9999732 |
Other-Arts and Humanities | -0.2833333 | -1.7826679 | 1.2160012 | 0.9941732 |
Science and Mathematics-Arts and Humanities | -0.3637931 | -0.9746655 | 0.2470793 | 0.5221602 |
Social Sciences-Arts and Humanities | -0.1695122 | -0.7261536 | 0.3871292 | 0.9511929 |
Technical Sciences and Engineering-Arts and Humanities | -0.0231707 | -0.5798122 | 0.5334707 | 0.9999965 |
Other-Health Sciences | -0.3333333 | -1.9376224 | 1.2709558 | 0.9909557 |
Science and Mathematics-Health Sciences | -0.4137931 | -1.2497982 | 0.4222120 | 0.7101775 |
Social Sciences-Health Sciences | -0.2195122 | -1.0167506 | 0.5777262 | 0.9681716 |
Technical Sciences and Engineering-Health Sciences | -0.0731707 | -0.8704092 | 0.7240677 | 0.9998210 |
Science and Mathematics-Other | -0.0804598 | -1.5995036 | 1.4385841 | 0.9999882 |
Social Sciences-Other | 0.1138211 | -1.3842372 | 1.6118795 | 0.9999295 |
Technical Sciences and Engineering-Other | 0.2601626 | -1.2378957 | 1.7582210 | 0.9960803 |
Social Sciences-Science and Mathematics | 0.1942809 | -0.4134524 | 0.8020142 | 0.9403511 |
Technical Sciences and Engineering-Science and Mathematics | 0.3406224 | -0.2671109 | 0.9483557 | 0.5888188 |
Technical Sciences and Engineering-Social Sciences | 0.1463415 | -0.4068532 | 0.6995362 | 0.9732450 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q44 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1 - -
Other 1 1 -
Science and Mathematics 1 1 1
Social Sciences 1 1 1
Technical Sciences and Engineering 1 1 1
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1 -
Technical Sciences and Engineering 1 1
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 0.31 0.0626 0.089 0.994
Residuals 161 113.39 0.7043
One-way analysis of means (not assuming equal variances)
data: podaci$Q45 and podaci$`Study field`
F = 0.080052, num df = 5.000, denom df = 18.616, p-value = 0.9946
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 0.5901 0.7075
161
eta.sq eta.sq.part
podaci$`Study field` 0.002754123 0.002754123
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.0923077 | -0.8650836 | 0.6804682 | 0.9993499 |
Other-Arts and Humanities | -0.0666667 | -1.5156418 | 1.3823085 | 0.9999942 |
Science and Mathematics-Arts and Humanities | 0.0137931 | -0.5765614 | 0.6041476 | 0.9999998 |
Social Sciences-Arts and Humanities | -0.0585366 | -0.5964816 | 0.4794085 | 0.9995874 |
Technical Sciences and Engineering-Arts and Humanities | 0.0390244 | -0.4989207 | 0.5769694 | 0.9999439 |
Other-Health Sciences | 0.0256410 | -1.5247634 | 1.5760455 | 1.0000000 |
Science and Mathematics-Health Sciences | 0.1061008 | -0.7018247 | 0.9140263 | 0.9989703 |
Social Sciences-Health Sciences | 0.0337711 | -0.7366898 | 0.8042320 | 0.9999954 |
Technical Sciences and Engineering-Health Sciences | 0.1313321 | -0.6391288 | 0.9017930 | 0.9964107 |
Science and Mathematics-Other | 0.0804598 | -1.3875626 | 1.5484822 | 0.9999861 |
Social Sciences-Other | 0.0081301 | -1.4396117 | 1.4558719 | 1.0000000 |
Technical Sciences and Engineering-Other | 0.1056911 | -1.3420507 | 1.5534328 | 0.9999422 |
Social Sciences-Science and Mathematics | -0.0723297 | -0.6596505 | 0.5149912 | 0.9992459 |
Technical Sciences and Engineering-Science and Mathematics | 0.0252313 | -0.5620896 | 0.6125521 | 0.9999959 |
Technical Sciences and Engineering-Social Sciences | 0.0975610 | -0.4370531 | 0.6321751 | 0.9950514 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q45 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1 - -
Other 1 1 -
Science and Mathematics 1 1 1
Social Sciences 1 1 1
Technical Sciences and Engineering 1 1 1
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1 -
Technical Sciences and Engineering 1 1
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 6.2 1.2392 1.612 0.16
Residuals 161 123.8 0.7688
One-way analysis of means (not assuming equal variances)
data: podaci$Q46 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 3.5278 0.004709 **
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$`Study field` 0.04767133 0.04767133
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.4057692 | -1.2131831 | 0.4016446 | 0.6966346 |
Other-Arts and Humanities | -1.1750000 | -2.6889221 | 0.3389221 | 0.2260749 |
Science and Mathematics-Arts and Humanities | -0.2094828 | -0.8262985 | 0.4073330 | 0.9238462 |
Social Sciences-Arts and Humanities | -0.0286585 | -0.5907157 | 0.5333986 | 0.9999903 |
Technical Sciences and Engineering-Arts and Humanities | -0.2725610 | -0.8346182 | 0.2894962 | 0.7277729 |
Other-Health Sciences | -0.7692308 | -2.3891285 | 0.8506670 | 0.7450541 |
Science and Mathematics-Health Sciences | 0.1962865 | -0.6478524 | 1.0404253 | 0.9849014 |
Social Sciences-Health Sciences | 0.3771107 | -0.4278843 | 1.1821057 | 0.7558179 |
Technical Sciences and Engineering-Health Sciences | 0.1332083 | -0.6717868 | 0.9382033 | 0.9968811 |
Science and Mathematics-Other | 0.9655172 | -0.5683059 | 2.4993404 | 0.4586591 |
Social Sciences-Other | 1.1463415 | -0.3662920 | 2.6589749 | 0.2500937 |
Technical Sciences and Engineering-Other | 0.9024390 | -0.6101944 | 2.4150725 | 0.5201330 |
Social Sciences-Science and Mathematics | 0.1808242 | -0.4328219 | 0.7944704 | 0.9574835 |
Technical Sciences and Engineering-Science and Mathematics | -0.0630782 | -0.6767244 | 0.5505679 | 0.9996878 |
Technical Sciences and Engineering-Social Sciences | -0.2439024 | -0.8024794 | 0.3146745 | 0.8064375 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q46 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1.00 - -
Other 0.40 1.00 -
Science and Mathematics 1.00 1.00 1.00
Social Sciences 1.00 1.00 0.45
Technical Sciences and Engineering 1.00 1.00 1.00
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1.00 -
Technical Sciences and Engineering 1.00 1.00
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 15.99 3.198 6.299 2.29e-05 ***
Residuals 161 81.75 0.508
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q47 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 10.694 6.891e-09 ***
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$`Study field` 0.1636063 0.1636063
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.1307692 | -0.7869219 | 0.5253834 | 0.9925382 |
Other-Arts and Humanities | -0.9000000 | -2.1303035 | 0.3303035 | 0.2874062 |
Science and Mathematics-Arts and Humanities | -0.7620690 | -1.2633303 | -0.2608076 | 0.0002975 |
Social Sciences-Arts and Humanities | -0.3146341 | -0.7713954 | 0.1421271 | 0.3544169 |
Technical Sciences and Engineering-Arts and Humanities | -0.7048780 | -1.1616393 | -0.2481168 | 0.0002275 |
Other-Health Sciences | -0.7692308 | -2.0856564 | 0.5471949 | 0.5434143 |
Science and Mathematics-Health Sciences | -0.6312997 | -1.3172974 | 0.0546979 | 0.0904677 |
Social Sciences-Health Sciences | -0.1838649 | -0.8380519 | 0.4703221 | 0.9652308 |
Technical Sciences and Engineering-Health Sciences | -0.5741088 | -1.2282958 | 0.0800782 | 0.1212345 |
Science and Mathematics-Other | 0.1379310 | -1.1085452 | 1.3844073 | 0.9995522 |
Social Sciences-Other | 0.5853659 | -0.6438904 | 1.8146221 | 0.7427931 |
Technical Sciences and Engineering-Other | 0.1951220 | -1.0341343 | 1.4243782 | 0.9974410 |
Social Sciences-Science and Mathematics | 0.4474348 | -0.0512507 | 0.9461203 | 0.1061877 |
Technical Sciences and Engineering-Science and Mathematics | 0.0571909 | -0.4414946 | 0.5558764 | 0.9994668 |
Technical Sciences and Engineering-Social Sciences | -0.3902439 | -0.8441769 | 0.0636891 | 0.1363465 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q47 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1.00000 - -
Other 0.54609 1.00000 -
Science and Mathematics 0.00031 0.13115 1.00000
Social Sciences 0.72954 1.00000 1.00000
Technical Sciences and Engineering 0.00024 0.18485 1.00000
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 0.15808 -
Technical Sciences and Engineering 1.00000 0.21270
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 7.55 1.5092 2.265 0.0504 .
Residuals 161 107.26 0.6662
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q48 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 5.4979 0.0001061 ***
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$`Study field` 0.06573107 0.06573107
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.1461538 | -0.8977465 | 0.6054388 | 0.9933423 |
Other-Arts and Humanities | -1.3000000 | -2.7092559 | 0.1092559 | 0.0890657 |
Science and Mathematics-Arts and Humanities | -0.0586207 | -0.6327924 | 0.5155510 | 0.9996980 |
Social Sciences-Arts and Humanities | 0.1146341 | -0.4085648 | 0.6378331 | 0.9884676 |
Technical Sciences and Engineering-Arts and Humanities | -0.2512195 | -0.7744184 | 0.2719794 | 0.7360155 |
Other-Health Sciences | -1.1538462 | -2.6617510 | 0.3540587 | 0.2402443 |
Science and Mathematics-Health Sciences | 0.0875332 | -0.6982455 | 0.8733118 | 0.9995373 |
Social Sciences-Health Sciences | 0.2607880 | -0.4885531 | 1.0101290 | 0.9161076 |
Technical Sciences and Engineering-Health Sciences | -0.1050657 | -0.8544067 | 0.6442754 | 0.9985876 |
Science and Mathematics-Other | 1.2413793 | -0.1864017 | 2.6691604 | 0.1279427 |
Social Sciences-Other | 1.4146341 | 0.0065778 | 2.8226905 | 0.0482060 |
Technical Sciences and Engineering-Other | 1.0487805 | -0.3592759 | 2.4568368 | 0.2681288 |
Social Sciences-Science and Mathematics | 0.1732548 | -0.3979664 | 0.7444761 | 0.9520040 |
Technical Sciences and Engineering-Science and Mathematics | -0.1925988 | -0.7638201 | 0.3786224 | 0.9260139 |
Technical Sciences and Engineering-Social Sciences | -0.3658537 | -0.8858129 | 0.1541056 | 0.3303530 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q48 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1.000 - -
Other 0.129 0.431 -
Science and Mathematics 1.000 1.000 0.197
Social Sciences 1.000 1.000 0.064
Technical Sciences and Engineering 1.000 1.000 0.498
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1.000 -
Technical Sciences and Engineering 1.000 0.661
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 2.15 0.4305 0.711 0.616
Residuals 161 97.52 0.6057
One-way analysis of means (not assuming equal variances)
data: podaci$Q49 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 2.5863 0.02795 *
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$`Study field` 0.02159558 0.02159558
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | 0.2942308 | -0.4224521 | 1.0109136 | 0.8438737 |
Other-Arts and Humanities | -0.4750000 | -1.8187991 | 0.8687991 | 0.9108356 |
Science and Mathematics-Arts and Humanities | 0.0077586 | -0.5397441 | 0.5552613 | 1.0000000 |
Social Sciences-Arts and Humanities | 0.0371951 | -0.4617024 | 0.5360926 | 0.9999358 |
Technical Sciences and Engineering-Arts and Humanities | -0.0847561 | -0.5836536 | 0.4141414 | 0.9964673 |
Other-Health Sciences | -0.7692308 | -2.2070968 | 0.6686353 | 0.6370069 |
Science and Mathematics-Health Sciences | -0.2864721 | -1.0357531 | 0.4628088 | 0.8796398 |
Social Sciences-Health Sciences | -0.2570356 | -0.9715715 | 0.4575002 | 0.9045500 |
Technical Sciences and Engineering-Health Sciences | -0.3789869 | -1.0935227 | 0.3355490 | 0.6455785 |
Science and Mathematics-Other | 0.4827586 | -0.8787052 | 1.8442224 | 0.9097356 |
Social Sciences-Other | 0.5121951 | -0.8304601 | 1.8548504 | 0.8806378 |
Technical Sciences and Engineering-Other | 0.3902439 | -0.9524114 | 1.7328992 | 0.9598836 |
Social Sciences-Science and Mathematics | 0.0294365 | -0.5152528 | 0.5741258 | 0.9999870 |
Technical Sciences and Engineering-Science and Mathematics | -0.0925147 | -0.6372040 | 0.4521746 | 0.9964711 |
Technical Sciences and Engineering-Social Sciences | -0.1219512 | -0.6177595 | 0.3738571 | 0.9805863 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q49 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1 - -
Other 1 1 -
Science and Mathematics 1 1 1
Social Sciences 1 1 1
Technical Sciences and Engineering 1 1 1
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1 -
Technical Sciences and Engineering 1 1
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 3.17 0.6344 1.06 0.384
Residuals 161 96.32 0.5983
One-way analysis of means (not assuming equal variances)
data: podaci$Q50 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 4.8584 0.0003634 ***
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$`Study field` 0.03188129 0.03188129
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.3442308 | -1.0564938 | 0.3680323 | 0.7306196 |
Other-Arts and Humanities | -0.5750000 | -1.9105118 | 0.7605118 | 0.8155430 |
Science and Mathematics-Arts and Humanities | 0.0456897 | -0.4984366 | 0.5898159 | 0.9998845 |
Social Sciences-Arts and Humanities | -0.2335366 | -0.7293574 | 0.2622842 | 0.7515562 |
Technical Sciences and Engineering-Arts and Humanities | -0.1115854 | -0.6074061 | 0.3842354 | 0.9869742 |
Other-Health Sciences | -0.2307692 | -1.6597679 | 1.1982294 | 0.9972223 |
Science and Mathematics-Health Sciences | 0.3899204 | -0.3547397 | 1.1345806 | 0.6581696 |
Social Sciences-Health Sciences | 0.1106942 | -0.5994351 | 0.8208234 | 0.9976529 |
Technical Sciences and Engineering-Health Sciences | 0.2326454 | -0.4774839 | 0.9427747 | 0.9340975 |
Science and Mathematics-Other | 0.6206897 | -0.7323780 | 1.9737573 | 0.7718384 |
Social Sciences-Other | 0.3414634 | -0.9929116 | 1.6758385 | 0.9768695 |
Technical Sciences and Engineering-Other | 0.4634146 | -0.8709604 | 1.7977897 | 0.9168017 |
Social Sciences-Science and Mathematics | -0.2792262 | -0.8205564 | 0.2621039 | 0.6725571 |
Technical Sciences and Engineering-Science and Mathematics | -0.1572750 | -0.6986052 | 0.3840551 | 0.9599517 |
Technical Sciences and Engineering-Social Sciences | 0.1219512 | -0.3707994 | 0.6147019 | 0.9800453 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q50 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1 - -
Other 1 1 -
Science and Mathematics 1 1 1
Social Sciences 1 1 1
Technical Sciences and Engineering 1 1 1
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1 -
Technical Sciences and Engineering 1 1
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 3.5 0.7006 1.074 0.377
Residuals 161 105.0 0.6521
One-way analysis of means (not assuming equal variances)
data: podaci$Q51 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 3.2071 0.008686 **
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$`Study field` 0.03228911 0.03228911
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.2365385 | -0.9801409 | 0.5070640 | 0.9415515 |
Other-Arts and Humanities | -0.7750000 | -2.1692740 | 0.6192740 | 0.5976253 |
Science and Mathematics-Arts and Humanities | -0.2232759 | -0.7913435 | 0.3447918 | 0.8666572 |
Social Sciences-Arts and Humanities | -0.1408537 | -0.6584904 | 0.3767831 | 0.9697546 |
Technical Sciences and Engineering-Arts and Humanities | -0.3359756 | -0.8536124 | 0.1816612 | 0.4231147 |
Other-Health Sciences | -0.5384615 | -2.0303358 | 0.9534127 | 0.9033072 |
Science and Mathematics-Health Sciences | 0.0132626 | -0.7641624 | 0.7906876 | 1.0000000 |
Social Sciences-Health Sciences | 0.0956848 | -0.6456900 | 0.8370596 | 0.9990533 |
Technical Sciences and Engineering-Health Sciences | -0.0994371 | -0.8408119 | 0.6419376 | 0.9988597 |
Science and Mathematics-Other | 0.5517241 | -0.8608781 | 1.9643264 | 0.8697179 |
Social Sciences-Other | 0.6341463 | -0.7589409 | 2.0272336 | 0.7775180 |
Technical Sciences and Engineering-Other | 0.4390244 | -0.9540628 | 1.8321116 | 0.9437479 |
Social Sciences-Science and Mathematics | 0.0824222 | -0.4827264 | 0.6475708 | 0.9982933 |
Technical Sciences and Engineering-Science and Mathematics | -0.1126997 | -0.6778483 | 0.4524488 | 0.9925175 |
Technical Sciences and Engineering-Social Sciences | -0.1951220 | -0.7095535 | 0.3193096 | 0.8831787 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q51 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1.00 - -
Other 1.00 1.00 -
Science and Mathematics 1.00 1.00 1.00
Social Sciences 1.00 1.00 1.00
Technical Sciences and Engineering 0.95 1.00 1.00
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1.00 -
Technical Sciences and Engineering 1.00 1.00
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 2.68 0.5351 0.691 0.631
Residuals 161 124.68 0.7744
One-way analysis of means (not assuming equal variances)
data: podaci$Q52 and podaci$`Study field`
F = 0.68498, num df = 5.000, denom df = 18.682, p-value = 0.6406
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.3721 0.2375
161
eta.sq eta.sq.part
podaci$`Study field` 0.02101009 0.02101009
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | 0.0961538 | -0.7141824 | 0.9064901 | 0.9993705 |
Other-Arts and Humanities | 0.2500000 | -1.2694018 | 1.7694018 | 0.9969642 |
Science and Mathematics-Arts and Humanities | -0.2327586 | -0.8518070 | 0.3862897 | 0.8869623 |
Social Sciences-Arts and Humanities | 0.1036585 | -0.4604330 | 0.6677501 | 0.9948874 |
Technical Sciences and Engineering-Arts and Humanities | 0.1036585 | -0.4604330 | 0.6677501 | 0.9948874 |
Other-Health Sciences | 0.1538462 | -1.4719149 | 1.7796072 | 0.9997920 |
Science and Mathematics-Health Sciences | -0.3289125 | -1.1761067 | 0.5182818 | 0.8725738 |
Social Sciences-Health Sciences | 0.0075047 | -0.8004040 | 0.8154134 | 1.0000000 |
Technical Sciences and Engineering-Health Sciences | 0.0075047 | -0.8004040 | 0.8154134 | 1.0000000 |
Science and Mathematics-Other | -0.4827586 | -2.0221335 | 1.0566162 | 0.9448699 |
Social Sciences-Other | -0.1463415 | -1.6644499 | 1.3717670 | 0.9997722 |
Technical Sciences and Engineering-Other | -0.1463415 | -1.6644499 | 1.3717670 | 0.9997722 |
Social Sciences-Science and Mathematics | 0.3364172 | -0.2794501 | 0.9522844 | 0.6158008 |
Technical Sciences and Engineering-Science and Mathematics | 0.3364172 | -0.2794501 | 0.9522844 | 0.6158008 |
Technical Sciences and Engineering-Social Sciences | 0.0000000 | -0.5605987 | 0.5605987 | 1.0000000 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q52 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1 - -
Other 1 1 -
Science and Mathematics 1 1 1
Social Sciences 1 1 1
Technical Sciences and Engineering 1 1 1
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1 -
Technical Sciences and Engineering 1 1
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 4.24 0.8489 1.34 0.25
Residuals 161 102.00 0.6335
One-way analysis of means (not assuming equal variances)
data: podaci$Q53 and podaci$`Study field`
F = 1.1714, num df = 5.000, denom df = 18.622, p-value = 0.36
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 3.2257 0.008383 **
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$`Study field` 0.03995086 0.03995086
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.1692308 | -0.9021580 | 0.5636965 | 0.9853730 |
Other-Arts and Humanities | -0.4000000 | -1.7742578 | 0.9742578 | 0.9596401 |
Science and Mathematics-Arts and Humanities | -0.3655172 | -0.9254297 | 0.1943953 | 0.4164127 |
Social Sciences-Arts and Humanities | -0.0585366 | -0.5687422 | 0.4516690 | 0.9994657 |
Technical Sciences and Engineering-Arts and Humanities | -0.3512195 | -0.8614251 | 0.1589861 | 0.3551612 |
Other-Health Sciences | -0.2307692 | -1.7012261 | 1.2396877 | 0.9975760 |
Science and Mathematics-Health Sciences | -0.1962865 | -0.9625507 | 0.5699778 | 0.9767648 |
Social Sciences-Health Sciences | 0.1106942 | -0.6200374 | 0.8414258 | 0.9979527 |
Technical Sciences and Engineering-Health Sciences | -0.1819887 | -0.9127203 | 0.5487428 | 0.9794815 |
Science and Mathematics-Other | 0.0344828 | -1.3578402 | 1.4268057 | 0.9999997 |
Social Sciences-Other | 0.3414634 | -1.0316246 | 1.7145515 | 0.9796153 |
Technical Sciences and Engineering-Other | 0.0487805 | -1.3243076 | 1.4218685 | 0.9999984 |
Social Sciences-Science and Mathematics | 0.3069807 | -0.2500546 | 0.8640159 | 0.6066289 |
Technical Sciences and Engineering-Science and Mathematics | 0.0142977 | -0.5427375 | 0.5713330 | 0.9999997 |
Technical Sciences and Engineering-Social Sciences | -0.2926829 | -0.7997293 | 0.2143634 | 0.5569295 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q53 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1.00 - -
Other 1.00 1.00 -
Science and Mathematics 0.92 1.00 1.00
Social Sciences 1.00 1.00 1.00
Technical Sciences and Engineering 0.73 1.00 1.00
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1.00 -
Technical Sciences and Engineering 1.00 1.00
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 4.84 0.9683 0.875 0.499
Residuals 161 178.14 1.1065
One-way analysis of means (not assuming equal variances)
data: podaci$Q58 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.7433 0.1276
161
eta.sq eta.sq.part
podaci$`Study field` 0.02645814 0.02645814
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.3365385 | -1.3051567 | 0.6320797 | 0.9166580 |
Other-Arts and Humanities | 0.1250000 | -1.6911845 | 1.9411845 | 0.9999568 |
Science and Mathematics-Arts and Humanities | -0.2543103 | -0.9942766 | 0.4856559 | 0.9201672 |
Social Sciences-Arts and Humanities | -0.2652439 | -0.9395187 | 0.4090309 | 0.8662429 |
Technical Sciences and Engineering-Arts and Humanities | -0.4603659 | -1.1346407 | 0.2139090 | 0.3645609 |
Other-Health Sciences | 0.4615385 | -1.4817803 | 2.4048573 | 0.9833960 |
Science and Mathematics-Health Sciences | 0.0822281 | -0.9304475 | 1.0949037 | 0.9999021 |
Social Sciences-Health Sciences | 0.0712946 | -0.8944219 | 1.0370110 | 0.9999389 |
Technical Sciences and Engineering-Health Sciences | -0.1238274 | -1.0895439 | 0.8418891 | 0.9990828 |
Science and Mathematics-Other | -0.3793103 | -2.2193693 | 1.4607486 | 0.9912789 |
Social Sciences-Other | -0.3902439 | -2.2048825 | 1.4243947 | 0.9894089 |
Technical Sciences and Engineering-Other | -0.5853659 | -2.4000045 | 1.2292728 | 0.9381118 |
Social Sciences-Science and Mathematics | -0.0109336 | -0.7470974 | 0.7252302 | 1.0000000 |
Technical Sciences and Engineering-Science and Mathematics | -0.2060555 | -0.9422193 | 0.5301083 | 0.9658391 |
Technical Sciences and Engineering-Social Sciences | -0.1951220 | -0.8652217 | 0.4749778 | 0.9595712 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q58 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1.00 - -
Other 1.00 1.00 -
Science and Mathematics 1.00 1.00 1.00
Social Sciences 1.00 1.00 1.00
Technical Sciences and Engineering 0.76 1.00 1.00
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1.00 -
Technical Sciences and Engineering 1.00 1.00
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 4.84 0.9686 0.846 0.519
Residuals 161 184.38 1.1452
One-way analysis of means (not assuming equal variances)
data: podaci$Q59 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 5.0034 0.0002748 ***
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$`Study field` 0.02559474 0.02559474
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.5019231 | -1.4873540 | 0.4835079 | 0.6843683 |
Other-Arts and Humanities | 0.5750000 | -1.2727089 | 2.4227089 | 0.9465987 |
Science and Mathematics-Arts and Humanities | 0.0577586 | -0.6950516 | 0.8105688 | 0.9999260 |
Social Sciences-Arts and Humanities | -0.1810976 | -0.8670761 | 0.5048810 | 0.9734825 |
Technical Sciences and Engineering-Arts and Humanities | -0.1079268 | -0.7939054 | 0.5780517 | 0.9975467 |
Other-Health Sciences | 1.0769231 | -0.9001268 | 3.0539730 | 0.6187039 |
Science and Mathematics-Health Sciences | 0.5596817 | -0.4705714 | 1.5899347 | 0.6214684 |
Social Sciences-Health Sciences | 0.3208255 | -0.6616533 | 1.3033044 | 0.9349595 |
Technical Sciences and Engineering-Health Sciences | 0.3939962 | -0.5884826 | 1.3764751 | 0.8565102 |
Science and Mathematics-Other | -0.5172414 | -2.3892390 | 1.3547563 | 0.9676886 |
Social Sciences-Other | -0.7560976 | -2.6022337 | 1.0900386 | 0.8452116 |
Technical Sciences and Engineering-Other | -0.6829268 | -2.5290630 | 1.1632093 | 0.8937318 |
Social Sciences-Science and Mathematics | -0.2388562 | -0.9877979 | 0.5100856 | 0.9409265 |
Technical Sciences and Engineering-Science and Mathematics | -0.1656854 | -0.9146272 | 0.5832563 | 0.9879499 |
Technical Sciences and Engineering-Social Sciences | 0.0731707 | -0.6085602 | 0.7549017 | 0.9996142 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q59 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1 - -
Other 1 1 -
Science and Mathematics 1 1 1
Social Sciences 1 1 1
Technical Sciences and Engineering 1 1 1
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1 -
Technical Sciences and Engineering 1 1
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 12.26 2.452 1.871 0.102
Residuals 161 210.97 1.310
One-way analysis of means (not assuming equal variances)
data: podaci$Q60 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 2.1554 0.06158 .
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$`Study field` 0.05491935 0.05491935
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | 0.3557692 | -0.6983391 | 1.4098775 | 0.9257180 |
Other-Arts and Humanities | 0.1250000 | -1.8514807 | 2.1014807 | 0.9999716 |
Science and Mathematics-Arts and Humanities | -0.2543103 | -1.0595859 | 0.5509652 | 0.9432615 |
Social Sciences-Arts and Humanities | -0.5091463 | -1.2429326 | 0.2246399 | 0.3461405 |
Technical Sciences and Engineering-Arts and Humanities | -0.4603659 | -1.1941521 | 0.2734204 | 0.4625271 |
Other-Health Sciences | -0.2307692 | -2.3456051 | 1.8840666 | 0.9995818 |
Science and Mathematics-Health Sciences | -0.6100796 | -1.7121338 | 0.4919746 | 0.6019153 |
Social Sciences-Health Sciences | -0.8649156 | -1.9158660 | 0.1860349 | 0.1717689 |
Technical Sciences and Engineering-Health Sciences | -0.8161351 | -1.8670856 | 0.2348154 | 0.2255180 |
Science and Mathematics-Other | -0.3793103 | -2.3817726 | 1.6231519 | 0.9941083 |
Social Sciences-Other | -0.6341463 | -2.6089447 | 1.3406520 | 0.9392467 |
Technical Sciences and Engineering-Other | -0.5853659 | -2.5601642 | 1.3894325 | 0.9564115 |
Social Sciences-Science and Mathematics | -0.2548360 | -1.0559735 | 0.5463015 | 0.9415555 |
Technical Sciences and Engineering-Science and Mathematics | -0.2060555 | -1.0071930 | 0.5950820 | 0.9763456 |
Technical Sciences and Engineering-Social Sciences | 0.0487805 | -0.6804621 | 0.7780231 | 0.9999625 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q60 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1.00 - -
Other 1.00 1.00 -
Science and Mathematics 1.00 1.00 1.00
Social Sciences 0.71 0.28 1.00
Technical Sciences and Engineering 1.00 0.40 1.00
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1.00 -
Technical Sciences and Engineering 1.00 1.00
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 2.75 0.5491 0.564 0.728
Residuals 161 156.88 0.9744
One-way analysis of means (not assuming equal variances)
data: podaci$Q61 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.9865 0.08334 .
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$`Study field` 0.01719957 0.01719957
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | 0.2442308 | -0.6647596 | 1.1532212 | 0.9713713 |
Other-Arts and Humanities | 0.4750000 | -1.2293808 | 2.1793808 | 0.9664691 |
Science and Mathematics-Arts and Humanities | 0.1301724 | -0.5642418 | 0.8245866 | 0.9943884 |
Social Sciences-Arts and Humanities | -0.1103659 | -0.7431326 | 0.5224009 | 0.9959997 |
Technical Sciences and Engineering-Arts and Humanities | -0.0859756 | -0.7187423 | 0.5467911 | 0.9987862 |
Other-Health Sciences | 0.2307692 | -1.5929195 | 2.0544580 | 0.9991397 |
Science and Mathematics-Health Sciences | -0.1140584 | -1.0643940 | 0.8362773 | 0.9993346 |
Social Sciences-Health Sciences | -0.3545966 | -1.2608639 | 0.5516707 | 0.8688567 |
Technical Sciences and Engineering-Health Sciences | -0.3302064 | -1.2364737 | 0.5760609 | 0.8997194 |
Science and Mathematics-Other | -0.3448276 | -2.0716131 | 1.3819579 | 0.9924692 |
Social Sciences-Other | -0.5853659 | -2.2882960 | 1.1175642 | 0.9201100 |
Technical Sciences and Engineering-Other | -0.5609756 | -2.2639057 | 1.1419545 | 0.9326146 |
Social Sciences-Science and Mathematics | -0.2405383 | -0.9313841 | 0.4503075 | 0.9159593 |
Technical Sciences and Engineering-Science and Mathematics | -0.2161480 | -0.9069938 | 0.4746978 | 0.9453991 |
Technical Sciences and Engineering-Social Sciences | 0.0243902 | -0.6044584 | 0.6532389 | 0.9999975 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q61 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1 - -
Other 1 1 -
Science and Mathematics 1 1 1
Social Sciences 1 1 1
Technical Sciences and Engineering 1 1 1
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1 -
Technical Sciences and Engineering 1 1
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 5.83 1.166 1.045 0.393
Residuals 161 179.53 1.115
One-way analysis of means (not assuming equal variances)
data: podaci$Q62 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.5311 0.183
161
eta.sq eta.sq.part
podaci$`Study field` 0.03144324 0.03144324
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | 0.4692308 | -0.5031442 | 1.4416058 | 0.7318813 |
Other-Arts and Humanities | -0.3000000 | -2.1232286 | 1.5232286 | 0.9969637 |
Science and Mathematics-Arts and Humanities | -0.0241379 | -0.7669741 | 0.7186983 | 0.9999990 |
Social Sciences-Arts and Humanities | -0.1536585 | -0.8305485 | 0.5232315 | 0.9864538 |
Technical Sciences and Engineering-Arts and Humanities | -0.2512195 | -0.9281095 | 0.4256705 | 0.8923961 |
Other-Health Sciences | -0.7692308 | -2.7200867 | 1.1816252 | 0.8650820 |
Science and Mathematics-Health Sciences | -0.4933687 | -1.5099719 | 0.5232345 | 0.7271193 |
Social Sciences-Health Sciences | -0.6228893 | -1.5923513 | 0.3465727 | 0.4348942 |
Technical Sciences and Engineering-Health Sciences | -0.7204503 | -1.6899123 | 0.2490117 | 0.2705423 |
Science and Mathematics-Other | 0.2758621 | -1.5713335 | 2.1230576 | 0.9980877 |
Social Sciences-Other | 0.1463415 | -1.6753352 | 1.9680181 | 0.9999072 |
Technical Sciences and Engineering-Other | 0.0487805 | -1.7728962 | 1.8704572 | 0.9999996 |
Social Sciences-Science and Mathematics | -0.1295206 | -0.8685396 | 0.6094984 | 0.9959078 |
Technical Sciences and Engineering-Science and Mathematics | -0.2270816 | -0.9661006 | 0.5119374 | 0.9493336 |
Technical Sciences and Engineering-Social Sciences | -0.0975610 | -0.7702597 | 0.5751377 | 0.9983384 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q62 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1.00 - -
Other 1.00 1.00 -
Science and Mathematics 1.00 1.00 1.00
Social Sciences 1.00 0.99 1.00
Technical Sciences and Engineering 1.00 0.50 1.00
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1.00 -
Technical Sciences and Engineering 1.00 1.00
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 15.88 3.176 2.235 0.0533 .
Residuals 160 227.37 1.421
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
1 observation deleted due to missingness
One-way analysis of means (not assuming equal variances)
data: podaci$Q63 and podaci$`Study field`
F = 3.186, num df = 5.000, denom df = 18.816, p-value = 0.02984
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.6219 0.1571
160
eta.sq eta.sq.part
podaci$`Study field` 0.06528698 0.06528698
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.7038462 | -1.8016510 | 0.3939587 | 0.4373085 |
Other-Arts and Humanities | -0.2166667 | -2.2750795 | 1.8417461 | 0.9996491 |
Science and Mathematics-Arts and Humanities | 0.2086207 | -0.6300364 | 1.0472778 | 0.9795801 |
Social Sciences-Arts and Humanities | 0.4012195 | -0.3629847 | 1.1654238 | 0.6555160 |
Technical Sciences and Engineering-Arts and Humanities | 0.4000000 | -0.3689071 | 1.1689071 | 0.6643891 |
Other-Health Sciences | 0.4871795 | -1.7153237 | 2.6896827 | 0.9879525 |
Science and Mathematics-Health Sciences | 0.9124668 | -0.2352714 | 2.0602050 | 0.2029041 |
Social Sciences-Health Sciences | 1.1050657 | 0.0105496 | 2.1995817 | 0.0463598 |
Technical Sciences and Engineering-Health Sciences | 1.1038462 | 0.0060413 | 2.2016510 | 0.0478928 |
Science and Mathematics-Other | 0.4252874 | -1.6601840 | 2.5107587 | 0.9916983 |
Social Sciences-Other | 0.6178862 | -1.4387745 | 2.6745469 | 0.9538601 |
Technical Sciences and Engineering-Other | 0.6166667 | -1.4417461 | 2.6750795 | 0.9544037 |
Social Sciences-Science and Mathematics | 0.1925988 | -0.6417487 | 1.0269463 | 0.9853835 |
Technical Sciences and Engineering-Science and Mathematics | 0.1913793 | -0.6472778 | 1.0300364 | 0.9861233 |
Technical Sciences and Engineering-Social Sciences | -0.0012195 | -0.7654238 | 0.7629847 | 1.0000000 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q63 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 0.994 - -
Other 1.000 1.000 -
Science and Mathematics 1.000 0.347 1.000
Social Sciences 1.000 0.061 1.000
Technical Sciences and Engineering 1.000 0.064 1.000
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1.000 -
Technical Sciences and Engineering 1.000 1.000
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 9.13 1.827 1.366 0.24
Residuals 160 213.98 1.337
1 observation deleted due to missingness
One-way analysis of means (not assuming equal variances)
data: podaci$Q64 and podaci$`Study field`
F = 1.9513, num df = 5.000, denom df = 18.792, p-value = 0.1333
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.1938 0.3146
160
eta.sq eta.sq.part
podaci$`Study field` 0.04093993 0.04093993
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.6538462 | -1.7188315 | 0.4111392 | 0.4874137 |
Other-Arts and Humanities | 0.1666667 | -1.8302088 | 2.1635421 | 0.9998879 |
Science and Mathematics-Arts and Humanities | -0.0517241 | -0.8653091 | 0.7618608 | 0.9999708 |
Social Sciences-Arts and Humanities | 0.2317073 | -0.5096506 | 0.9730653 | 0.9456156 |
Technical Sciences and Engineering-Arts and Humanities | 0.2000000 | -0.5459202 | 0.9459202 | 0.9716172 |
Other-Health Sciences | 0.8205128 | -1.3161454 | 2.9571710 | 0.8776054 |
Science and Mathematics-Health Sciences | 0.6021220 | -0.5113039 | 1.7155480 | 0.6260386 |
Social Sciences-Health Sciences | 0.8855535 | -0.1762415 | 1.9473484 | 0.1604582 |
Technical Sciences and Engineering-Health Sciences | 0.8538462 | -0.2111392 | 1.9188315 | 0.1950674 |
Science and Mathematics-Other | -0.2183908 | -2.2415159 | 1.8047343 | 0.9996031 |
Social Sciences-Other | 0.0650407 | -1.9301351 | 2.0602164 | 0.9999990 |
Technical Sciences and Engineering-Other | 0.0333333 | -1.9635421 | 2.0302088 | 1.0000000 |
Social Sciences-Science and Mathematics | 0.2834315 | -0.5259728 | 1.0928357 | 0.9140224 |
Technical Sciences and Engineering-Science and Mathematics | 0.2517241 | -0.5618608 | 1.0653091 | 0.9478424 |
Technical Sciences and Engineering-Social Sciences | -0.0317073 | -0.7730653 | 0.7096506 | 0.9999959 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q64 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1.00 - -
Other 1.00 1.00 -
Science and Mathematics 1.00 1.00 1.00
Social Sciences 1.00 0.26 1.00
Technical Sciences and Engineering 1.00 0.33 1.00
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1.00 -
Technical Sciences and Engineering 1.00 1.00
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 9.46 1.8927 2.678 0.0236 *
Residuals 161 113.79 0.7068
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q65 and podaci$`Study field`
F = 2.3388, num df = 5.000, denom df = 19.107, p-value = 0.08138
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 2.2137 0.05542 .
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$`Study field` 0.07677739 0.07677739
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.8423077 | -1.6164681 | -0.0681473 | 0.0243231 |
Other-Arts and Humanities | -0.8166667 | -2.2682377 | 0.6349044 | 0.5847702 |
Science and Mathematics-Arts and Humanities | -0.1844828 | -0.7758949 | 0.4069294 | 0.9460721 |
Social Sciences-Arts and Humanities | -0.4426829 | -0.9815917 | 0.0962259 | 0.1733904 |
Technical Sciences and Engineering-Arts and Humanities | -0.3207317 | -0.8596405 | 0.2181771 | 0.5228802 |
Other-Health Sciences | 0.0256410 | -1.5275411 | 1.5788231 | 1.0000000 |
Science and Mathematics-Health Sciences | 0.6578249 | -0.1515480 | 1.4671978 | 0.1827358 |
Social Sciences-Health Sciences | 0.3996248 | -0.3722165 | 1.1714660 | 0.6689951 |
Technical Sciences and Engineering-Health Sciences | 0.5215760 | -0.2502652 | 1.2934172 | 0.3764107 |
Science and Mathematics-Other | 0.6321839 | -0.8384686 | 2.1028364 | 0.8165450 |
Social Sciences-Other | 0.3739837 | -1.0763517 | 1.8243192 | 0.9760790 |
Technical Sciences and Engineering-Other | 0.4959350 | -0.9544005 | 1.9462704 | 0.9217517 |
Social Sciences-Science and Mathematics | -0.2582002 | -0.8465732 | 0.3301729 | 0.8031232 |
Technical Sciences and Engineering-Science and Mathematics | -0.1362489 | -0.7246220 | 0.4521241 | 0.9851801 |
Technical Sciences and Engineering-Social Sciences | 0.1219512 | -0.4136207 | 0.6575231 | 0.9862648 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q65 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 0.03 - -
Other 1.00 1.00 -
Science and Mathematics 1.00 0.30 1.00
Social Sciences 0.29 1.00 1.00
Technical Sciences and Engineering 1.00 0.80 1.00
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1.00 -
Technical Sciences and Engineering 1.00 1.00
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 3.05 0.6098 0.712 0.615
Residuals 161 137.84 0.8561
One-way analysis of means (not assuming equal variances)
data: podaci$Q66 and podaci$`Study field`
F = 0.88951, num df = 5.000, denom df = 19.369, p-value = 0.5071
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 1.3759 0.236
161
eta.sq eta.sq.part
podaci$`Study field` 0.02164165 0.02164165
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.3615385 | -1.2135674 | 0.4904905 | 0.8246057 |
Other-Arts and Humanities | -0.5666667 | -2.1642432 | 1.0309099 | 0.9096204 |
Science and Mathematics-Arts and Humanities | -0.2793103 | -0.9302094 | 0.3715887 | 0.8176489 |
Social Sciences-Arts and Humanities | -0.2902439 | -0.8833586 | 0.3028708 | 0.7200624 |
Technical Sciences and Engineering-Arts and Humanities | -0.2902439 | -0.8833586 | 0.3028708 | 0.7200624 |
Other-Health Sciences | -0.2051282 | -1.9145363 | 1.5042799 | 0.9993352 |
Science and Mathematics-Health Sciences | 0.0822281 | -0.8085551 | 0.9730114 | 0.9998159 |
Social Sciences-Health Sciences | 0.0712946 | -0.7781819 | 0.9207710 | 0.9998848 |
Technical Sciences and Engineering-Health Sciences | 0.0712946 | -0.7781819 | 0.9207710 | 0.9998848 |
Science and Mathematics-Other | 0.2873563 | -1.3312209 | 1.9059336 | 0.9956514 |
Social Sciences-Other | 0.2764228 | -1.3197939 | 1.8726395 | 0.9961325 |
Technical Sciences and Engineering-Other | 0.2764228 | -1.3197939 | 1.8726395 | 0.9961325 |
Social Sciences-Science and Mathematics | -0.0109336 | -0.6584878 | 0.6366207 | 1.0000000 |
Technical Sciences and Engineering-Science and Mathematics | -0.0109336 | -0.6584878 | 0.6366207 | 1.0000000 |
Technical Sciences and Engineering-Social Sciences | 0.0000000 | -0.5894421 | 0.5894421 | 1.0000000 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q66 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 1 - -
Other 1 1 -
Science and Mathematics 1 1 1
Social Sciences 1 1 1
Technical Sciences and Engineering 1 1 1
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1 -
Technical Sciences and Engineering 1 1
P value adjustment method: bonferroni
Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field` 5 17.31 3.462 2.704 0.0225 *
Residuals 161 206.19 1.281
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
One-way analysis of means (not assuming equal variances)
data: podaci$Q67 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA
Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)
group 5 3.118 0.01029 *
161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
eta.sq eta.sq.part
podaci$`Study field` 0.07745677 0.07745677
diff | lwr | upr | p adj | |
---|---|---|---|---|
Health Sciences-Arts and Humanities | -0.9096154 | -1.9516936 | 0.1324628 | 0.1250758 |
Other-Arts and Humanities | 0.4750000 | -1.4789239 | 2.4289239 | 0.9815727 |
Science and Mathematics-Arts and Humanities | -0.2146552 | -1.0107404 | 0.5814301 | 0.9709269 |
Social Sciences-Arts and Humanities | 0.2798780 | -0.4455338 | 1.0052899 | 0.8754931 |
Technical Sciences and Engineering-Arts and Humanities | 0.1823171 | -0.5430947 | 0.9077289 | 0.9786370 |
Other-Health Sciences | 1.3846154 | -0.7060847 | 3.4753154 | 0.3997097 |
Science and Mathematics-Health Sciences | 0.6949602 | -0.3945166 | 1.7844371 | 0.4432864 |
Social Sciences-Health Sciences | 1.1894934 | 0.1505371 | 2.2284498 | 0.0147494 |
Technical Sciences and Engineering-Health Sciences | 1.0919325 | 0.0529761 | 2.1308888 | 0.0332073 |
Science and Mathematics-Other | -0.6896552 | -2.6692641 | 1.2899538 | 0.9157691 |
Social Sciences-Other | -0.1951220 | -2.1473827 | 1.7571388 | 0.9997279 |
Technical Sciences and Engineering-Other | -0.2926829 | -2.2449437 | 1.6595778 | 0.9980520 |
Social Sciences-Science and Mathematics | 0.4945332 | -0.2974612 | 1.2865277 | 0.4680121 |
Technical Sciences and Engineering-Science and Mathematics | 0.3969722 | -0.3950222 | 1.1889667 | 0.6990089 |
Technical Sciences and Engineering-Social Sciences | -0.0975610 | -0.8184810 | 0.6233591 | 0.9988095 |
Pairwise comparisons using t tests with pooled SD
data: podaci$Q67 and podaci$`Study field`
Arts and Humanities Health Sciences Other
Health Sciences 0.192 - -
Other 1.000 0.868 -
Science and Mathematics 1.000 1.000 1.000
Social Sciences 1.000 0.018 1.000
Technical Sciences and Engineering 1.000 0.043 1.000
Science and Mathematics Social Sciences
Health Sciences - -
Other - -
Science and Mathematics - -
Social Sciences 1.000 -
Technical Sciences and Engineering 1.000 1.000
P value adjustment method: bonferroni
---
title: "eDesk - frekvencije odgovora po pitanjima"
output:
flexdashboard::flex_dashboard:
social: menu
orientation: columns
vertical_layout: fill
source_code: embed
---
```{css, echo=FALSE}
.sidebar { overflow: auto; }
.dataTables_scrollBody {
height:95% !important;
max-height:95% !important;
}
.chart-stage-flex {
overflow:auto !important;
}
```
```{r setup, include=FALSE}
library(readxl)
library(tidyverse)
library(car)
library(lsr)
library(kableExtra)
podaci <- read_excel('Podaci.xlsx')
imena <- names(podaci)
podaci <- podaci %>% rename_with(.fn = ~paste0("Q", substring(.,1,regexpr("\\.", .) - 1)), .cols = 9:length(imena))
podaci$Country <- factor(podaci$Country)
podaci9_18 <- podaci %>% select(Country, 9:18) %>%
pivot_longer(!Country, names_to = "Question", values_to = "Answer")
podaci19_28 <- podaci %>% select(Country, 19:28) %>%
pivot_longer(!Country, names_to = "Question", values_to = "Answer")
podaci29_38 <- podaci %>% select(Country, 29:38) %>%
pivot_longer(!Country, names_to = "Question", values_to = "Answer")
podaci39_48 <- podaci %>% select(Country, 39:48) %>%
pivot_longer(!Country, names_to = "Question", values_to = "Answer")
podaci49_58 <- podaci %>% select(Country, 49:58) %>%
pivot_longer(!Country, names_to = "Question", values_to = "Answer")
podaci49_58$Answer = factor(podaci49_58$Answer)
levels(podaci49_58$Answer) <- c(levels(podaci49_58$Answer),4,5)
podaci59_69 <- podaci %>% select(Country, 59:69) %>% drop_na() %>%
pivot_longer(!Country, names_to = "Question", values_to = "Answer")
ppodaci9_18 <- podaci %>% select("Study field", 9:18) %>%
pivot_longer(!`Study field`, names_to = "Question", values_to = "Answer")
ppodaci19_28 <- podaci %>% select("Study field", 19:28) %>%
pivot_longer(!`Study field`, names_to = "Question", values_to = "Answer")
ppodaci29_38 <- podaci %>% select("Study field", 29:38) %>%
pivot_longer(!`Study field`, names_to = "Question", values_to = "Answer")
ppodaci39_48 <- podaci %>% select("Study field", 39:48) %>%
pivot_longer(!`Study field`, names_to = "Question", values_to = "Answer")
ppodaci49_58 <- podaci %>% select("Study field", 49:58) %>%
pivot_longer(!`Study field`, names_to = "Question", values_to = "Answer")
ppodaci49_58$Answer = factor(ppodaci49_58$Answer)
levels(ppodaci49_58$Answer) <- c(levels(ppodaci49_58$Answer),4,5)
ppodaci59_69 <- podaci %>% select("Study field", 59:69) %>% drop_na() %>%
pivot_longer(!`Study field`, names_to = "Question", values_to = "Answer")
swr = function(string, nwrap=10) {
paste(strwrap(string, width=nwrap), collapse="\n")
}
swr = Vectorize(swr)
ppodaci9_18$`Study field` = swr(ppodaci9_18$`Study field`)
ppodaci19_28$`Study field` = swr(ppodaci19_28$`Study field`)
ppodaci29_38$`Study field` = swr(ppodaci29_38$`Study field`)
ppodaci39_48$`Study field` = swr(ppodaci39_48$`Study field`)
ppodaci49_58$`Study field` = swr(ppodaci49_58$`Study field`)
ppodaci59_69$`Study field` = swr(ppodaci59_69$`Study field`)
Q1 <- aov(podaci$Q1 ~ podaci$Country)
Q2 <- aov(podaci$Q2 ~ podaci$Country)
Q3 <- aov(podaci$Q3 ~ podaci$Country)
Q4 <- aov(podaci$Q4 ~ podaci$Country)
Q5 <- aov(podaci$Q5 ~ podaci$Country)
Q6 <- aov(podaci$Q6 ~ podaci$Country)
Q7 <- aov(podaci$Q7 ~ podaci$Country)
Q8 <- aov(podaci$Q8 ~ podaci$Country)
Q9 <- aov(podaci$Q9 ~ podaci$Country)
Q10 <- aov(podaci$Q10 ~ podaci$Country)
Q11 <- aov(podaci$Q11 ~ podaci$Country)
Q12 <- aov(podaci$Q12 ~ podaci$Country)
Q13 <- aov(podaci$Q13 ~ podaci$Country)
Q14 <- aov(podaci$Q14 ~ podaci$Country)
Q15 <- aov(podaci$Q15 ~ podaci$Country)
Q16 <- aov(podaci$Q16 ~ podaci$Country)
Q17 <- aov(podaci$Q17 ~ podaci$Country)
Q18 <- aov(podaci$Q18 ~ podaci$Country)
Q19 <- aov(podaci$Q19 ~ podaci$Country)
Q20 <- aov(podaci$Q20 ~ podaci$Country)
Q21 <- aov(podaci$Q21 ~ podaci$Country)
Q22 <- aov(podaci$Q22 ~ podaci$Country)
Q23 <- aov(podaci$Q23 ~ podaci$Country)
Q24 <- aov(podaci$Q24 ~ podaci$Country)
Q26 <- aov(podaci$Q26 ~ podaci$Country)
Q27 <- aov(podaci$Q27 ~ podaci$Country)
Q28 <- aov(podaci$Q28 ~ podaci$Country)
Q29 <- aov(podaci$Q29 ~ podaci$Country)
Q30 <- aov(podaci$Q30 ~ podaci$Country)
Q31 <- aov(podaci$Q31 ~ podaci$Country)
Q32 <- aov(podaci$Q32 ~ podaci$Country)
Q33 <- aov(podaci$Q33 ~ podaci$Country)
Q35 <- aov(podaci$Q35 ~ podaci$Country)
Q36 <- aov(podaci$Q36 ~ podaci$Country)
Q37 <- aov(podaci$Q37 ~ podaci$Country)
Q38 <- aov(podaci$Q38 ~ podaci$Country)
Q39 <- aov(podaci$Q39 ~ podaci$Country)
Q40 <- aov(podaci$Q40 ~ podaci$Country)
Q41 <- aov(podaci$Q41 ~ podaci$Country)
Q42 <- aov(podaci$Q42 ~ podaci$Country)
Q43 <- aov(podaci$Q43 ~ podaci$Country)
Q44 <- aov(podaci$Q44 ~ podaci$Country)
Q45 <- aov(podaci$Q45 ~ podaci$Country)
Q46 <- aov(podaci$Q46 ~ podaci$Country)
Q47 <- aov(podaci$Q47 ~ podaci$Country)
Q48 <- aov(podaci$Q48 ~ podaci$Country)
Q49 <- aov(podaci$Q49 ~ podaci$Country)
Q50 <- aov(podaci$Q50 ~ podaci$Country)
Q51 <- aov(podaci$Q51 ~ podaci$Country)
Q52 <- aov(podaci$Q52 ~ podaci$Country)
Q53 <- aov(podaci$Q53 ~ podaci$Country)
Q58 <- aov(podaci$Q58 ~ podaci$Country)
Q59 <- aov(podaci$Q59 ~ podaci$Country)
Q60 <- aov(podaci$Q60 ~ podaci$Country)
Q61 <- aov(podaci$Q61 ~ podaci$Country)
Q62 <- aov(podaci$Q62 ~ podaci$Country)
Q63 <- aov(podaci$Q63 ~ podaci$Country)
Q64 <- aov(podaci$Q64 ~ podaci$Country)
Q65 <- aov(podaci$Q65 ~ podaci$Country)
Q66 <- aov(podaci$Q66 ~ podaci$Country)
Q67 <- aov(podaci$Q67 ~ podaci$Country)
PQ1 <- aov(podaci$Q1 ~ podaci$`Study field`)
PQ2 <- aov(podaci$Q2 ~ podaci$`Study field`)
PQ3 <- aov(podaci$Q3 ~ podaci$`Study field`)
PQ4 <- aov(podaci$Q4 ~ podaci$`Study field`)
PQ5 <- aov(podaci$Q5 ~ podaci$`Study field`)
PQ6 <- aov(podaci$Q6 ~ podaci$`Study field`)
PQ7 <- aov(podaci$Q7 ~ podaci$`Study field`)
PQ8 <- aov(podaci$Q8 ~ podaci$`Study field`)
PQ9 <- aov(podaci$Q9 ~ podaci$`Study field`)
PQ10 <- aov(podaci$Q10 ~ podaci$`Study field`)
PQ11 <- aov(podaci$Q11 ~ podaci$`Study field`)
PQ12 <- aov(podaci$Q12 ~ podaci$`Study field`)
PQ13 <- aov(podaci$Q13 ~ podaci$`Study field`)
PQ14 <- aov(podaci$Q14 ~ podaci$`Study field`)
PQ15 <- aov(podaci$Q15 ~ podaci$`Study field`)
PQ16 <- aov(podaci$Q16 ~ podaci$`Study field`)
PQ17 <- aov(podaci$Q17 ~ podaci$`Study field`)
PQ18 <- aov(podaci$Q18 ~ podaci$`Study field`)
PQ19 <- aov(podaci$Q19 ~ podaci$`Study field`)
PQ20 <- aov(podaci$Q20 ~ podaci$`Study field`)
PQ21 <- aov(podaci$Q21 ~ podaci$`Study field`)
PQ22 <- aov(podaci$Q22 ~ podaci$`Study field`)
PQ23 <- aov(podaci$Q23 ~ podaci$`Study field`)
PQ24 <- aov(podaci$Q24 ~ podaci$`Study field`)
PQ26 <- aov(podaci$Q26 ~ podaci$`Study field`)
PQ27 <- aov(podaci$Q27 ~ podaci$`Study field`)
PQ28 <- aov(podaci$Q28 ~ podaci$`Study field`)
PQ29 <- aov(podaci$Q29 ~ podaci$`Study field`)
PQ30 <- aov(podaci$Q30 ~ podaci$`Study field`)
PQ31 <- aov(podaci$Q31 ~ podaci$`Study field`)
PQ32 <- aov(podaci$Q32 ~ podaci$`Study field`)
PQ33 <- aov(podaci$Q33 ~ podaci$`Study field`)
PQ35 <- aov(podaci$Q35 ~ podaci$`Study field`)
PQ36 <- aov(podaci$Q36 ~ podaci$`Study field`)
PQ37 <- aov(podaci$Q37 ~ podaci$`Study field`)
PQ38 <- aov(podaci$Q38 ~ podaci$`Study field`)
PQ39 <- aov(podaci$Q39 ~ podaci$`Study field`)
PQ40 <- aov(podaci$Q40 ~ podaci$`Study field`)
PQ41 <- aov(podaci$Q41 ~ podaci$`Study field`)
PQ42 <- aov(podaci$Q42 ~ podaci$`Study field`)
PQ43 <- aov(podaci$Q43 ~ podaci$`Study field`)
PQ44 <- aov(podaci$Q44 ~ podaci$`Study field`)
PQ45 <- aov(podaci$Q45 ~ podaci$`Study field`)
PQ46 <- aov(podaci$Q46 ~ podaci$`Study field`)
PQ47 <- aov(podaci$Q47 ~ podaci$`Study field`)
PQ48 <- aov(podaci$Q48 ~ podaci$`Study field`)
PQ49 <- aov(podaci$Q49 ~ podaci$`Study field`)
PQ50 <- aov(podaci$Q50 ~ podaci$`Study field`)
PQ51 <- aov(podaci$Q51 ~ podaci$`Study field`)
PQ52 <- aov(podaci$Q52 ~ podaci$`Study field`)
PQ53 <- aov(podaci$Q53 ~ podaci$`Study field`)
PQ58 <- aov(podaci$Q58 ~ podaci$`Study field`)
PQ59 <- aov(podaci$Q59 ~ podaci$`Study field`)
PQ60 <- aov(podaci$Q60 ~ podaci$`Study field`)
PQ61 <- aov(podaci$Q61 ~ podaci$`Study field`)
PQ62 <- aov(podaci$Q62 ~ podaci$`Study field`)
PQ63 <- aov(podaci$Q63 ~ podaci$`Study field`)
PQ64 <- aov(podaci$Q64 ~ podaci$`Study field`)
PQ65 <- aov(podaci$Q65 ~ podaci$`Study field`)
PQ66 <- aov(podaci$Q66 ~ podaci$`Study field`)
PQ67 <- aov(podaci$Q67 ~ podaci$`Study field`)
```
Pitanja: 1 - 10 {data-navmenu="Pitanja vs države"}
=======================================================================
### pitanja (1 - 10)
```{r fig.width=10}
ggplot(podaci9_18, aes(x=factor(Answer), fill=Country, color=Country)) +
geom_bar(alpha=.5) +
facet_grid(Country ~ factor(Question,levels=c("Q1","Q2","Q3","Q4","Q5","Q6","Q7","Q8","Q9","Q10"))) +
theme(legend.position="none") + xlab("Answer") + ylim(0,50)
```
Pitanja: 11 - 20 {data-navmenu="Pitanja vs države"}
=======================================================================
### pitanja (11 - 20)
```{r fig.width=10}
ggplot(podaci19_28, aes(x=factor(Answer), fill=Country, color=Country)) +
geom_bar(alpha=.5) + facet_grid(Country ~ factor(Question)) +
theme(legend.position="none") + xlab("Answer") + ylim(0,50)
```
Pitanja: 21 - 30 {data-navmenu="Pitanja vs države"}
=======================================================================
### pitanja (21 - 30)
```{r fig.width=10}
ggplot(podaci29_38, aes(x=factor(Answer), fill=Country, color=Country)) +
geom_bar(alpha=.5) + facet_grid(Country ~ factor(Question)) +
theme(legend.position="none") + xlab("Answer") + ylim(0,50)
```
Pitanja: 31 - 40 {data-navmenu="Pitanja vs države"}
=======================================================================
### pitanja (31 - 40)
```{r fig.width=10}
ggplot(podaci39_48, aes(x=factor(Answer), fill=Country, color=Country)) +
geom_bar(alpha=.5) + facet_grid(Country ~ factor(Question)) +
theme(legend.position="none") + xlab("Answer") + ylim(0,50)
```
Pitanja: 41 - 50 {data-navmenu="Pitanja vs države"}
=======================================================================
### pitanja (41 - 50)
```{r fig.width=10}
ggplot(podaci49_58, aes(x=Answer, fill=Country, color=Country)) +
geom_bar(alpha=.5) + facet_grid(Country ~ factor(Question)) +
theme(legend.position="none") + xlab("Answer") + ylim(0,50) + scale_x_discrete(drop=FALSE)
```
Pitanja: 51 - 61 {data-navmenu="Pitanja vs države"}
=======================================================================
### pitanja (51 - 61)
```{r fig.width=11}
ggplot(podaci59_69, aes(x=factor(Answer), fill=Country, color=Country)) +
geom_bar(alpha=.5) + facet_grid(Country ~ factor(Question)) +
theme(legend.position="none") + xlab("Answer") + ylim(0,50)
```
Pitanja: 1 - 10 {data-navmenu="Pitanja vs područje"}
=======================================================================
### pitanja (1 - 10)
```{r fig.width=10}
ggplot(ppodaci9_18, aes(x=factor(Answer), fill=`Study field`, color=`Study field`)) +
geom_bar(alpha=.5) +
facet_grid(factor(`Study field`) ~ factor(Question,levels=c("Q1","Q2","Q3","Q4","Q5","Q6","Q7","Q8","Q9","Q10"))) +
theme(legend.position="none", strip.text.y = element_text(size = 7)) + xlab("Answer") + ylim(0,40)
```
Pitanja: 11 - 20 {data-navmenu="Pitanja vs područje"}
=======================================================================
### pitanja (11 - 20)
```{r fig.width=10}
ggplot(ppodaci19_28, aes(x=factor(Answer), fill=`Study field`, color=`Study field`)) +
geom_bar(alpha=.5) +
facet_grid(factor(`Study field`) ~ factor(Question)) +
theme(legend.position="none", strip.text.y = element_text(size = 7)) + xlab("Answer") + ylim(0,40)
```
Pitanja: 21 - 30 {data-navmenu="Pitanja vs područje"}
=======================================================================
### pitanja (21 - 30)
```{r fig.width=10}
ggplot(ppodaci29_38, aes(x=factor(Answer), fill=`Study field`, color=`Study field`)) +
geom_bar(alpha=.5) +
facet_grid(factor(`Study field`) ~ factor(Question)) +
theme(legend.position="none", strip.text.y = element_text(size = 7)) + xlab("Answer") + ylim(0,40)
```
Pitanja: 31 - 40 {data-navmenu="Pitanja vs područje"}
=======================================================================
### pitanja (31 - 40)
```{r fig.width=10}
ggplot(ppodaci39_48, aes(x=factor(Answer), fill=`Study field`, color=`Study field`)) +
geom_bar(alpha=.5) +
facet_grid(factor(`Study field`) ~ factor(Question)) +
theme(legend.position="none", strip.text.y = element_text(size = 7)) + xlab("Answer") + ylim(0,40)
```
Pitanja: 41 - 50 {data-navmenu="Pitanja vs područje"}
=======================================================================
### pitanja (41 - 50)
```{r fig.width=10}
ggplot(ppodaci49_58, aes(x=Answer, fill=`Study field`, color=`Study field`)) +
geom_bar(alpha=.5) +
facet_grid(factor(`Study field`) ~ factor(Question)) +
theme(legend.position="none", strip.text.y = element_text(size = 7)) + xlab("Answer") + ylim(0,40) + scale_x_discrete(drop=FALSE)
```
Pitanja: 51 - 61 {data-navmenu="Pitanja vs područje"}
=======================================================================
### pitanja (51 - 61)
```{r fig.width=10}
ggplot(ppodaci59_69, aes(x=factor(Answer), fill=`Study field`, color=`Study field`)) +
geom_bar(alpha=.5) +
facet_grid(factor(`Study field`) ~ factor(Question)) +
theme(legend.position="none", strip.text.y = element_text(size = 7)) + xlab("Answer") + ylim(0,40)
```
Q1 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q1** {data-height=200}
```{r, echo = F}
summary(Q1)
```
### ONEWAY-test rezultati: **Q1** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q1 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q1, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q1)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q1)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q1, podaci$Country, p.adjust = "bonferroni")
```
Q2 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q2** {data-height=200}
```{r, echo = F}
summary(Q2)
```
### ONEWAY-test rezultati: **Q2** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q2 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q2, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q2)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q2)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q2, podaci$Country, p.adjust = "bonferroni")
```
Q3 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q3** {data-height=200}
```{r, echo = F}
summary(Q3)
```
### ONEWAY-test rezultati: **Q3** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q3 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q3, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q3)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q3)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q3, podaci$Country, p.adjust = "bonferroni")
```
Q4 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q4** {data-height=200}
```{r, echo = F}
summary(Q4)
```
### ONEWAY-test rezultati: **Q4** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q4 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q4, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q4)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q4)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q4, podaci$Country, p.adjust = "bonferroni")
```
Q5 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q5** {data-height=200}
```{r, echo = F}
summary(Q5)
```
### ONEWAY-test rezultati: **Q5** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q5 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q5, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q5)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q5)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q5, podaci$Country, p.adjust = "bonferroni")
```
Q6 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q6** {data-height=200}
```{r, echo = F}
summary(Q6)
```
### ONEWAY-test rezultati: **Q6** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q6 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q6, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q6)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q6)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q6, podaci$Country, p.adjust = "bonferroni")
```
Q7 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q7** {data-height=200}
```{r, echo = F}
summary(Q7)
```
### ONEWAY-test rezultati: **Q7** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q7 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q7, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q7)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q7)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q7, podaci$Country, p.adjust = "bonferroni")
```
Q8 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q8** {data-height=200}
```{r, echo = F}
summary(Q8)
```
### ONEWAY-test rezultati: **Q8** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q8 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q8, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q8)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q8)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q8, podaci$Country, p.adjust = "bonferroni")
```
Q9 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q9** {data-height=200}
```{r, echo = F}
summary(Q9)
```
### ONEWAY-test rezultati: **Q9** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q9 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q9, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q9)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q9)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q9, podaci$Country, p.adjust = "bonferroni")
```
Q10 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q10** {data-height=200}
```{r, echo = F}
summary(Q10)
```
### ONEWAY-test rezultati: **Q10** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q10 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q10, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q10)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q10)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q10, podaci$Country, p.adjust = "bonferroni")
```
Q11 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q11** {data-height=200}
```{r, echo = F}
summary(Q11)
```
### ONEWAY-test rezultati: **Q11** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q11 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q11, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q11)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q11)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q11, podaci$Country, p.adjust = "bonferroni")
```
Q12 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q12** {data-height=200}
```{r, echo = F}
summary(Q12)
```
### ONEWAY-test rezultati: **Q12** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q12 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q12, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q12)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q12)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q12, podaci$Country, p.adjust = "bonferroni")
```
Q13 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q13** {data-height=200}
```{r, echo = F}
summary(Q13)
```
### ONEWAY-test rezultati: **Q13** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q13 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q13, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q13)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q13)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q13, podaci$Country, p.adjust = "bonferroni")
```
Q14 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q14** {data-height=200}
```{r, echo = F}
summary(Q14)
```
### ONEWAY-test rezultati: **Q14** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q14 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q14, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q14)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q14)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q14, podaci$Country, p.adjust = "bonferroni")
```
Q15 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q15** {data-height=200}
```{r, echo = F}
summary(Q15)
```
### ONEWAY-test rezultati: **Q15** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q15 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q15, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q15)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q15)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q15, podaci$Country, p.adjust = "bonferroni")
```
Q16 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q16** {data-height=200}
```{r, echo = F}
summary(Q16)
```
### ONEWAY-test rezultati: **Q16** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q16 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q16, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q16)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q16)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q16, podaci$Country, p.adjust = "bonferroni")
```
Q17 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q17** {data-height=200}
```{r, echo = F}
summary(Q17)
```
### ONEWAY-test rezultati: **Q17** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q17 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q17, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q17)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q17)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q17, podaci$Country, p.adjust = "bonferroni")
```
Q18 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q18** {data-height=200}
```{r, echo = F}
summary(Q18)
```
### ONEWAY-test rezultati: **Q18** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q18 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q18, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q18)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q18)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q18, podaci$Country, p.adjust = "bonferroni")
```
Q19 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q19** {data-height=200}
```{r, echo = F}
summary(Q19)
```
### ONEWAY-test rezultati: **Q19** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q19 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q19, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q19)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q19)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q19, podaci$Country, p.adjust = "bonferroni")
```
Q20 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q20** {data-height=200}
```{r, echo = F}
summary(Q20)
```
### ONEWAY-test rezultati: **Q20** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q20 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q20, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q20)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q20)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q20, podaci$Country, p.adjust = "bonferroni")
```
Q21 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q21** {data-height=200}
```{r, echo = F}
summary(Q21)
```
### ONEWAY-test rezultati: **Q21** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q21 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q21, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q21)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q21)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q21, podaci$Country, p.adjust = "bonferroni")
```
Q22 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q22** {data-height=200}
```{r, echo = F}
summary(Q22)
```
### ONEWAY-test rezultati: **Q22** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q22 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q22, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q22)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q22)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q22, podaci$Country, p.adjust = "bonferroni")
```
Q23 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q23** {data-height=200}
```{r, echo = F}
summary(Q23)
```
### ONEWAY-test rezultati: **Q23** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q23 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q23, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q23)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q23)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q23, podaci$Country, p.adjust = "bonferroni")
```
Q24 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q24** {data-height=200}
```{r, echo = F}
summary(Q24)
```
### ONEWAY-test rezultati: **Q24** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q24 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q24, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q24)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q24)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q24, podaci$Country, p.adjust = "bonferroni")
```
Q26 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q26** {data-height=200}
```{r, echo = F}
summary(Q26)
```
### ONEWAY-test rezultati: **Q26** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q26 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q26, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q26)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q26)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q26, podaci$Country, p.adjust = "bonferroni")
```
Q27 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q27** {data-height=200}
```{r, echo = F}
summary(Q27)
```
### ONEWAY-test rezultati: **Q27** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q27 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q27, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q27)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q27)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q27, podaci$Country, p.adjust = "bonferroni")
```
Q28 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q28** {data-height=200}
```{r, echo = F}
summary(Q28)
```
### ONEWAY-test rezultati: **Q28** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q28 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q28, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q28)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q28)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q28, podaci$Country, p.adjust = "bonferroni")
```
Q29 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q29** {data-height=200}
```{r, echo = F}
summary(Q29)
```
### ONEWAY-test rezultati: **Q29** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q29 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q29, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q29)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q29)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q29, podaci$Country, p.adjust = "bonferroni")
```
Q30 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q30** {data-height=200}
```{r, echo = F}
summary(Q30)
```
### ONEWAY-test rezultati: **Q30** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q30 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q30, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q30)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q30)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q30, podaci$Country, p.adjust = "bonferroni")
```
Q31 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q31** {data-height=200}
```{r, echo = F}
summary(Q31)
```
### ONEWAY-test rezultati: **Q31** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q31 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q31, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q31)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q31)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q31, podaci$Country, p.adjust = "bonferroni")
```
Q32 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q32** {data-height=200}
```{r, echo = F}
summary(Q32)
```
### ONEWAY-test rezultati: **Q32** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q32 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q32, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q32)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q32)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q32, podaci$Country, p.adjust = "bonferroni")
```
Q33 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q33** {data-height=200}
```{r, echo = F}
summary(Q33)
```
### ONEWAY-test rezultati: **Q33** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q33 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q33, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q33)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q33)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q33, podaci$Country, p.adjust = "bonferroni")
```
Q35 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q35** {data-height=200}
```{r, echo = F}
summary(Q35)
```
### ONEWAY-test rezultati: **Q35** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q35 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q35, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q35)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q35)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q35, podaci$Country, p.adjust = "bonferroni")
```
Q36 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q36** {data-height=200}
```{r, echo = F}
summary(Q36)
```
### ONEWAY-test rezultati: **Q36** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q36 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q36, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q36)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q36)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q36, podaci$Country, p.adjust = "bonferroni")
```
Q37 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q37** {data-height=200}
```{r, echo = F}
summary(Q37)
```
### ONEWAY-test rezultati: **Q37** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q37 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q37, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q37)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q37)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q37, podaci$Country, p.adjust = "bonferroni")
```
Q38 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q38** {data-height=200}
```{r, echo = F}
summary(Q38)
```
### ONEWAY-test rezultati: **Q38** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q38 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q38, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q38)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q38)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q38, podaci$Country, p.adjust = "bonferroni")
```
Q39 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q39** {data-height=200}
```{r, echo = F}
summary(Q39)
```
### ONEWAY-test rezultati: **Q39** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q39 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q39, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q39)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q39)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q39, podaci$Country, p.adjust = "bonferroni")
```
Q40 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q40** {data-height=200}
```{r, echo = F}
summary(Q40)
```
### ONEWAY-test rezultati: **Q40** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q40 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q40, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q40)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q40)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q40, podaci$Country, p.adjust = "bonferroni")
```
Q41 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q41** {data-height=200}
```{r, echo = F}
summary(Q41)
```
### ONEWAY-test rezultati: **Q41** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q41 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q41, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q41)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q41)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q41, podaci$Country, p.adjust = "bonferroni")
```
Q42 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q42** {data-height=200}
```{r, echo = F}
summary(Q42)
```
### ONEWAY-test rezultati: **Q42** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q42 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q42, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q42)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q42)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q42, podaci$Country, p.adjust = "bonferroni")
```
Q43 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q43** {data-height=200}
```{r, echo = F}
summary(Q43)
```
### ONEWAY-test rezultati: **Q43** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q43 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q43, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q43)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q43)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q43, podaci$Country, p.adjust = "bonferroni")
```
Q44 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q44** {data-height=200}
```{r, echo = F}
summary(Q44)
```
### ONEWAY-test rezultati: **Q44** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q44 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q44, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q44)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q44)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q44, podaci$Country, p.adjust = "bonferroni")
```
Q45 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q45** {data-height=200}
```{r, echo = F}
summary(Q45)
```
### ONEWAY-test rezultati: **Q45** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q45 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q45, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q45)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q45)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q45, podaci$Country, p.adjust = "bonferroni")
```
Q46 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q46** {data-height=200}
```{r, echo = F}
summary(Q46)
```
### ONEWAY-test rezultati: **Q46** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q46 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q46, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q46)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q46)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q46, podaci$Country, p.adjust = "bonferroni")
```
Q47 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q47** {data-height=200}
```{r, echo = F}
summary(Q47)
```
### ONEWAY-test rezultati: **Q47** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q47 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q47, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q47)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q47)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q47, podaci$Country, p.adjust = "bonferroni")
```
Q48 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q48** {data-height=200}
```{r, echo = F}
summary(Q48)
```
### ONEWAY-test rezultati: **Q48** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q48 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q48, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q48)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q48)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q48, podaci$Country, p.adjust = "bonferroni")
```
Q49 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q49** {data-height=200}
```{r, echo = F}
summary(Q49)
```
### ONEWAY-test rezultati: **Q49** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q49 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q49, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q49)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q49)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q49, podaci$Country, p.adjust = "bonferroni")
```
Q50 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q50** {data-height=200}
```{r, echo = F}
summary(Q50)
```
### ONEWAY-test rezultati: **Q50** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q50 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q50, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q50)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q50)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q50, podaci$Country, p.adjust = "bonferroni")
```
Q51 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q51** {data-height=200}
```{r, echo = F}
summary(Q51)
```
### ONEWAY-test rezultati: **Q51** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q51 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q51, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q51)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q51)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q51, podaci$Country, p.adjust = "bonferroni")
```
Q52 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q52** {data-height=200}
```{r, echo = F}
summary(Q52)
```
### ONEWAY-test rezultati: **Q52** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q52 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q52, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q52)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q52)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q52, podaci$Country, p.adjust = "bonferroni")
```
Q53 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q53** {data-height=200}
```{r, echo = F}
summary(Q53)
```
### ONEWAY-test rezultati: **Q53** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q53 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q53, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q53)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q53)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q53, podaci$Country, p.adjust = "bonferroni")
```
Q58 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q58** {data-height=200}
```{r, echo = F}
summary(Q58)
```
### ONEWAY-test rezultati: **Q58** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q58 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q58, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q58)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q58)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q58, podaci$Country, p.adjust = "bonferroni")
```
Q59 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q59** {data-height=200}
```{r, echo = F}
summary(Q59)
```
### ONEWAY-test rezultati: **Q59** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q59 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q59, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q59)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q59)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q59, podaci$Country, p.adjust = "bonferroni")
```
Q60 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q60** {data-height=200}
```{r, echo = F}
summary(Q60)
```
### ONEWAY-test rezultati: **Q60** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q60 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q60, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q60)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q60)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q60, podaci$Country, p.adjust = "bonferroni")
```
Q61 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q61** {data-height=200}
```{r, echo = F}
summary(Q61)
```
### ONEWAY-test rezultati: **Q61** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q61 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q61, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q61)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q61)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q61, podaci$Country, p.adjust = "bonferroni")
```
Q62 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q62** {data-height=200}
```{r, echo = F}
summary(Q62)
```
### ONEWAY-test rezultati: **Q62** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q62 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q62, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q62)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q62)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q62, podaci$Country, p.adjust = "bonferroni")
```
Q63 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q63** {data-height=200}
```{r, echo = F}
summary(Q63)
```
### ONEWAY-test rezultati: **Q63** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q63 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q63, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q63)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q63)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q63, podaci$Country, p.adjust = "bonferroni")
```
Q64 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q64** {data-height=200}
```{r, echo = F}
summary(Q64)
```
### ONEWAY-test rezultati: **Q64** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q64 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q64, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q64)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q64)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q64, podaci$Country, p.adjust = "bonferroni")
```
Q65 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q65** {data-height=200}
```{r, echo = F}
summary(Q65)
```
### ONEWAY-test rezultati: **Q65** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q65 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q65, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q65)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q65)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q65, podaci$Country, p.adjust = "bonferroni")
```
Q66 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q66** {data-height=200}
```{r, echo = F}
summary(Q66)
```
### ONEWAY-test rezultati: **Q66** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q66 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q66, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q66)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q66)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q66, podaci$Country, p.adjust = "bonferroni")
```
Q67 {data-navmenu="ANOVA - po državama"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q67** {data-height=200}
```{r, echo = F}
summary(Q67)
```
### ONEWAY-test rezultati: **Q67** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q67 ~ podaci$Country)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q67, podaci$Country, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(Q67)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
TukeyHSD(Q67)
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q67, podaci$Country, p.adjust = "bonferroni")
```
Q1 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q1** {data-height=200}
```{r, echo = F}
summary(PQ1)
```
### ONEWAY-test rezultati: **Q1** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q1 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q1, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ1)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ1)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q1, podaci$`Study field`, p.adjust = "bonferroni")
```
Q2 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q2** {data-height=200}
```{r, echo = F}
summary(PQ2)
```
### ONEWAY-test rezultati: **Q2** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q2 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q2, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ2)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ2)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q2, podaci$`Study field`, p.adjust = "bonferroni")
```
Q3 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q3** {data-height=200}
```{r, echo = F}
summary(PQ3)
```
### ONEWAY-test rezultati: **Q3** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q3 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q3, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ3)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ3)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q3, podaci$`Study field`, p.adjust = "bonferroni")
```
Q4 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q4** {data-height=200}
```{r, echo = F}
summary(PQ4)
```
### ONEWAY-test rezultati: **Q4** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q4 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q4, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ4)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ4)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q4, podaci$`Study field`, p.adjust = "bonferroni")
```
Q5 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q5** {data-height=200}
```{r, echo = F}
summary(PQ5)
```
### ONEWAY-test rezultati: **Q5** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q5 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q5, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ5)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ5)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q5, podaci$`Study field`, p.adjust = "bonferroni")
```
Q6 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q6** {data-height=200}
```{r, echo = F}
summary(PQ6)
```
### ONEWAY-test rezultati: **Q6** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q6 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q6, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ6)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ6)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q6, podaci$`Study field`, p.adjust = "bonferroni")
```
Q7 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q7** {data-height=200}
```{r, echo = F}
summary(PQ7)
```
### ONEWAY-test rezultati: **Q7** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q7 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q7, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ7)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ7)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q7, podaci$`Study field`, p.adjust = "bonferroni")
```
Q8 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q8** {data-height=200}
```{r, echo = F}
summary(PQ8)
```
### ONEWAY-test rezultati: **Q8** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q8 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q8, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ8)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ8)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q8, podaci$`Study field`, p.adjust = "bonferroni")
```
Q9 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q9** {data-height=200}
```{r, echo = F}
summary(PQ9)
```
### ONEWAY-test rezultati: **Q9** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q9 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q9, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ9)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ9)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q9, podaci$`Study field`, p.adjust = "bonferroni")
```
Q10 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q10** {data-height=200}
```{r, echo = F}
summary(PQ10)
```
### ONEWAY-test rezultati: **Q10** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q10 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q10, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ10)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ10)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q10, podaci$`Study field`, p.adjust = "bonferroni")
```
Q11 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q11** {data-height=200}
```{r, echo = F}
summary(PQ11)
```
### ONEWAY-test rezultati: **Q11** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q11 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q11, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ11)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ11)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q11, podaci$`Study field`, p.adjust = "bonferroni")
```
Q12 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q12** {data-height=200}
```{r, echo = F}
summary(PQ12)
```
### ONEWAY-test rezultati: **Q12** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q12 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q12, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ12)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ12)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q12, podaci$`Study field`, p.adjust = "bonferroni")
```
Q13 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q13** {data-height=200}
```{r, echo = F}
summary(PQ13)
```
### ONEWAY-test rezultati: **Q13** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q13 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q13, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ13)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ13)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q13, podaci$`Study field`, p.adjust = "bonferroni")
```
Q14 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q14** {data-height=200}
```{r, echo = F}
summary(PQ14)
```
### ONEWAY-test rezultati: **Q14** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q14 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q14, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ14)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ14)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q14, podaci$`Study field`, p.adjust = "bonferroni")
```
Q15 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q15** {data-height=200}
```{r, echo = F}
summary(PQ15)
```
### ONEWAY-test rezultati: **Q15** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q15 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q15, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ15)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ15)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q15, podaci$`Study field`, p.adjust = "bonferroni")
```
Q16 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q16** {data-height=200}
```{r, echo = F}
summary(PQ16)
```
### ONEWAY-test rezultati: **Q16** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q16 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q16, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ16)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ16)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q16, podaci$`Study field`, p.adjust = "bonferroni")
```
Q17 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q17** {data-height=200}
```{r, echo = F}
summary(PQ17)
```
### ONEWAY-test rezultati: **Q17** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q17 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q17, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ17)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ17)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q17, podaci$`Study field`, p.adjust = "bonferroni")
```
Q18 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q18** {data-height=200}
```{r, echo = F}
summary(PQ18)
```
### ONEWAY-test rezultati: **Q18** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q18 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q18, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ18)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ18)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q18, podaci$`Study field`, p.adjust = "bonferroni")
```
Q19 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q19** {data-height=200}
```{r, echo = F}
summary(PQ19)
```
### ONEWAY-test rezultati: **Q19** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q19 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q19, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ19)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ19)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q19, podaci$`Study field`, p.adjust = "bonferroni")
```
Q20 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q20** {data-height=200}
```{r, echo = F}
summary(PQ20)
```
### ONEWAY-test rezultati: **Q20** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q20 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q20, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ20)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ20)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q20, podaci$`Study field`, p.adjust = "bonferroni")
```
Q21 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q21** {data-height=200}
```{r, echo = F}
summary(PQ21)
```
### ONEWAY-test rezultati: **Q21** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q21 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q21, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ21)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ21)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q21, podaci$`Study field`, p.adjust = "bonferroni")
```
Q22 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q22** {data-height=200}
```{r, echo = F}
summary(PQ22)
```
### ONEWAY-test rezultati: **Q22** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q22 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q22, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ22)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ22)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q22, podaci$`Study field`, p.adjust = "bonferroni")
```
Q23 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q23** {data-height=200}
```{r, echo = F}
summary(PQ23)
```
### ONEWAY-test rezultati: **Q23** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q23 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q23, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ23)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ23)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q23, podaci$`Study field`, p.adjust = "bonferroni")
```
Q24 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q24** {data-height=200}
```{r, echo = F}
summary(PQ24)
```
### ONEWAY-test rezultati: **Q24** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q24 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q24, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ24)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ24)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q24, podaci$`Study field`, p.adjust = "bonferroni")
```
Q26 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q26** {data-height=200}
```{r, echo = F}
summary(PQ26)
```
### ONEWAY-test rezultati: **Q26** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q26 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q26, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ26)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ26)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q26, podaci$`Study field`, p.adjust = "bonferroni")
```
Q27 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q27** {data-height=200}
```{r, echo = F}
summary(PQ27)
```
### ONEWAY-test rezultati: **Q27** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q27 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q27, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ27)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ27)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q27, podaci$`Study field`, p.adjust = "bonferroni")
```
Q28 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q28** {data-height=200}
```{r, echo = F}
summary(PQ28)
```
### ONEWAY-test rezultati: **Q28** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q28 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q28, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ28)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ28)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q28, podaci$`Study field`, p.adjust = "bonferroni")
```
Q29 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q29** {data-height=200}
```{r, echo = F}
summary(PQ29)
```
### ONEWAY-test rezultati: **Q29** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q29 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q29, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ29)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ29)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q29, podaci$`Study field`, p.adjust = "bonferroni")
```
Q30 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q30** {data-height=200}
```{r, echo = F}
summary(PQ30)
```
### ONEWAY-test rezultati: **Q30** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q30 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q30, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ30)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ30)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q30, podaci$`Study field`, p.adjust = "bonferroni")
```
Q31 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q31** {data-height=200}
```{r, echo = F}
summary(PQ31)
```
### ONEWAY-test rezultati: **Q31** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q31 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q31, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ31)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ31)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q31, podaci$`Study field`, p.adjust = "bonferroni")
```
Q32 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q32** {data-height=200}
```{r, echo = F}
summary(PQ32)
```
### ONEWAY-test rezultati: **Q32** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q32 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q32, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ32)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ32)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q32, podaci$`Study field`, p.adjust = "bonferroni")
```
Q33 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q33** {data-height=200}
```{r, echo = F}
summary(PQ33)
```
### ONEWAY-test rezultati: **Q33** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q33 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q33, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ33)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ33)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q33, podaci$`Study field`, p.adjust = "bonferroni")
```
Q35 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q35** {data-height=200}
```{r, echo = F}
summary(PQ35)
```
### ONEWAY-test rezultati: **Q35** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q35 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q35, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ35)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ35)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q35, podaci$`Study field`, p.adjust = "bonferroni")
```
Q36 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q36** {data-height=200}
```{r, echo = F}
summary(PQ36)
```
### ONEWAY-test rezultati: **Q36** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q36 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q36, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ36)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ36)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q36, podaci$`Study field`, p.adjust = "bonferroni")
```
Q37 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q37** {data-height=200}
```{r, echo = F}
summary(PQ37)
```
### ONEWAY-test rezultati: **Q37** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q37 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q37, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ37)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ37)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q37, podaci$`Study field`, p.adjust = "bonferroni")
```
Q38 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q38** {data-height=200}
```{r, echo = F}
summary(PQ38)
```
### ONEWAY-test rezultati: **Q38** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q38 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q38, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ38)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ38)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q38, podaci$`Study field`, p.adjust = "bonferroni")
```
Q39 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q39** {data-height=200}
```{r, echo = F}
summary(PQ39)
```
### ONEWAY-test rezultati: **Q39** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q39 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q39, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ39)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ39)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q39, podaci$`Study field`, p.adjust = "bonferroni")
```
Q40 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q40** {data-height=200}
```{r, echo = F}
summary(PQ40)
```
### ONEWAY-test rezultati: **Q40** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q40 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q40, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ40)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ40)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q40, podaci$`Study field`, p.adjust = "bonferroni")
```
Q41 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q41** {data-height=200}
```{r, echo = F}
summary(PQ41)
```
### ONEWAY-test rezultati: **Q41** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q41 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q41, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ41)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ41)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q41, podaci$`Study field`, p.adjust = "bonferroni")
```
Q42 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q42** {data-height=200}
```{r, echo = F}
summary(PQ42)
```
### ONEWAY-test rezultati: **Q42** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q42 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q42, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ42)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ42)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q42, podaci$`Study field`, p.adjust = "bonferroni")
```
Q43 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q43** {data-height=200}
```{r, echo = F}
summary(PQ43)
```
### ONEWAY-test rezultati: **Q43** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q43 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q43, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ43)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ43)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q43, podaci$`Study field`, p.adjust = "bonferroni")
```
Q44 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q44** {data-height=200}
```{r, echo = F}
summary(PQ44)
```
### ONEWAY-test rezultati: **Q44** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q44 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q44, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ44)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ44)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q44, podaci$`Study field`, p.adjust = "bonferroni")
```
Q45 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q45** {data-height=200}
```{r, echo = F}
summary(PQ45)
```
### ONEWAY-test rezultati: **Q45** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q45 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q45, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ45)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ45)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q45, podaci$`Study field`, p.adjust = "bonferroni")
```
Q46 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q46** {data-height=200}
```{r, echo = F}
summary(PQ46)
```
### ONEWAY-test rezultati: **Q46** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q46 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q46, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ46)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ46)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q46, podaci$`Study field`, p.adjust = "bonferroni")
```
Q47 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q47** {data-height=200}
```{r, echo = F}
summary(PQ47)
```
### ONEWAY-test rezultati: **Q47** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q47 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q47, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ47)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ47)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q47, podaci$`Study field`, p.adjust = "bonferroni")
```
Q48 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q48** {data-height=200}
```{r, echo = F}
summary(PQ48)
```
### ONEWAY-test rezultati: **Q48** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q48 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q48, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ48)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ48)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q48, podaci$`Study field`, p.adjust = "bonferroni")
```
Q49 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q49** {data-height=200}
```{r, echo = F}
summary(PQ49)
```
### ONEWAY-test rezultati: **Q49** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q49 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q49, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ49)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ49)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q49, podaci$`Study field`, p.adjust = "bonferroni")
```
Q50 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q50** {data-height=200}
```{r, echo = F}
summary(PQ50)
```
### ONEWAY-test rezultati: **Q50** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q50 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q50, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ50)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ50)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q50, podaci$`Study field`, p.adjust = "bonferroni")
```
Q51 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q51** {data-height=200}
```{r, echo = F}
summary(PQ51)
```
### ONEWAY-test rezultati: **Q51** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q51 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q51, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ51)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ51)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q51, podaci$`Study field`, p.adjust = "bonferroni")
```
Q52 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q52** {data-height=200}
```{r, echo = F}
summary(PQ52)
```
### ONEWAY-test rezultati: **Q52** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q52 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q52, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ52)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ52)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q52, podaci$`Study field`, p.adjust = "bonferroni")
```
Q53 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q53** {data-height=200}
```{r, echo = F}
summary(PQ53)
```
### ONEWAY-test rezultati: **Q53** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q53 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q53, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ53)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ53)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q53, podaci$`Study field`, p.adjust = "bonferroni")
```
Q58 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q58** {data-height=200}
```{r, echo = F}
summary(PQ58)
```
### ONEWAY-test rezultati: **Q58** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q58 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q58, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ58)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ58)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q58, podaci$`Study field`, p.adjust = "bonferroni")
```
Q59 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q59** {data-height=200}
```{r, echo = F}
summary(PQ59)
```
### ONEWAY-test rezultati: **Q59** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q59 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q59, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ59)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ59)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q59, podaci$`Study field`, p.adjust = "bonferroni")
```
Q60 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q60** {data-height=200}
```{r, echo = F}
summary(PQ60)
```
### ONEWAY-test rezultati: **Q60** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q60 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q60, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ60)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ60)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q60, podaci$`Study field`, p.adjust = "bonferroni")
```
Q61 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q61** {data-height=200}
```{r, echo = F}
summary(PQ61)
```
### ONEWAY-test rezultati: **Q61** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q61 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q61, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ61)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ61)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q61, podaci$`Study field`, p.adjust = "bonferroni")
```
Q62 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q62** {data-height=200}
```{r, echo = F}
summary(PQ62)
```
### ONEWAY-test rezultati: **Q62** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q62 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q62, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ62)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ62)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q62, podaci$`Study field`, p.adjust = "bonferroni")
```
Q63 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q63** {data-height=200}
```{r, echo = F}
summary(PQ63)
```
### ONEWAY-test rezultati: **Q63** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q63 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q63, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ63)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ63)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q63, podaci$`Study field`, p.adjust = "bonferroni")
```
Q64 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q64** {data-height=200}
```{r, echo = F}
summary(PQ64)
```
### ONEWAY-test rezultati: **Q64** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q64 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q64, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ64)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ64)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q64, podaci$`Study field`, p.adjust = "bonferroni")
```
Q65 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q65** {data-height=200}
```{r, echo = F}
summary(PQ65)
```
### ONEWAY-test rezultati: **Q65** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q65 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q65, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ65)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ65)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q65, podaci$`Study field`, p.adjust = "bonferroni")
```
Q66 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q66** {data-height=200}
```{r, echo = F}
summary(PQ66)
```
### ONEWAY-test rezultati: **Q66** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q66 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q66, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ66)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ66)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q66, podaci$`Study field`, p.adjust = "bonferroni")
```
Q67 {data-navmenu="ANOVA - po području"}
=======================================================================
Row {data-width=200}
-----------------------------------------------------------------------
### ANOVA rezultati: **Q67** {data-height=200}
```{r, echo = F}
summary(PQ67)
```
### ONEWAY-test rezultati: **Q67** {data-height=300}
```{r, echo = F}
oneway.test(podaci$Q67 ~ podaci$`Study field`)
```
### Levene test {data-height=250}
```{r, echo = F}
leveneTest(podaci$Q67, podaci$`Study field`, center=mean)
```
### Eta squared {data-height=150}
```{r, echo = F}
etaSquared(PQ67)
```
Row {data-width=200}
-----------------------------------------------------------------------
### Tukey
```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ67)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Bonferroni (Pairwise t-test)
```{r, echo = F}
pairwise.t.test(podaci$Q67, podaci$`Study field`, p.adjust = "bonferroni")
```