Pitanja: 1 - 10

pitanja (1 - 10)

Pitanja: 11 - 20

pitanja (11 - 20)

Pitanja: 21 - 30

pitanja (21 - 30)

Pitanja: 31 - 40

pitanja (31 - 40)

Pitanja: 41 - 50

pitanja (41 - 50)

Pitanja: 51 - 61

pitanja (51 - 61)

Pitanja: 1 - 10

pitanja (1 - 10)

Pitanja: 11 - 20

pitanja (11 - 20)

Pitanja: 21 - 30

pitanja (21 - 30)

Pitanja: 31 - 40

pitanja (31 - 40)

Pitanja: 41 - 50

pitanja (41 - 50)

Pitanja: 51 - 61

pitanja (51 - 61)

Q1

Row

ANOVA rezultati: Q1

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3   4.01  1.3352   1.981  0.119
Residuals      163 109.89  0.6742               

ONEWAY-test rezultati: Q1


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q1 and podaci$Country
F = 1.6372, num df = 3.000, denom df = 73.393, p-value = 0.1881

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)  
group   3  2.3458 0.0748 .
      163                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                   eta.sq eta.sq.part
podaci$Country 0.03516957  0.03516957

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q1 ~ podaci$Country)

$`podaci$Country`
                        diff        lwr       upr     p adj
Finland-Croatia   0.02031063 -0.5407240 0.5813453 0.9997016
Portugal-Croatia -0.15422006 -0.6111113 0.3026712 0.8171950
Spain-Croatia    -0.41487455 -0.9370828 0.1073337 0.1700022
Portugal-Finland -0.17453070 -0.6545903 0.3055289 0.7813180
Spain-Finland    -0.43518519 -0.9777799 0.1074096 0.1633754
Spain-Portugal   -0.26065449 -0.6947037 0.1733948 0.4051254

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q1 and podaci$Country 

         Croatia Finland Portugal
Finland  1.00    -       -       
Portugal 1.00    1.00    -       
Spain    0.24    0.23    0.73    

P value adjustment method: bonferroni 

Q2

Row

ANOVA rezultati: Q2

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3   5.55  1.8484   2.096  0.103
Residuals      163 143.72  0.8817               

ONEWAY-test rezultati: Q2


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q2 and podaci$Country
F = 2.0269, num df = 3.000, denom df = 74.101, p-value = 0.1174

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value   Pr(>F)   
group   3  5.4662 0.001323 **
      163                    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                   eta.sq eta.sq.part
podaci$Country 0.03714839  0.03714839

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q2 ~ podaci$Country)

$`podaci$Country`
                        diff        lwr        upr     p adj
Finland-Croatia   0.08363202 -0.5579946 0.72525860 0.9866201
Portugal-Croatia -0.18780380 -0.7103269 0.33471927 0.7871998
Spain-Croatia    -0.45340502 -1.0506278 0.14381779 0.2033935
Portugal-Finland -0.27143582 -0.8204553 0.27758368 0.5748462
Spain-Finland    -0.53703704 -1.1575748 0.08350074 0.1152558
Spain-Portugal   -0.26560122 -0.7620011 0.23079864 0.5081320

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q2 and podaci$Country 

         Croatia Finland Portugal
Finland  1.00    -       -       
Portugal 1.00    1.00    -       
Spain    0.30    0.16    1.00    

P value adjustment method: bonferroni 

Q3

Row

ANOVA rezultati: Q3

                Df Sum Sq Mean Sq F value   Pr(>F)    
podaci$Country   3  30.62  10.207   10.89 1.48e-06 ***
Residuals      163 152.81   0.937                     
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q3


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q3 and podaci$Country
F = 10.536, num df = 3.000, denom df = 70.176, p-value = 8.354e-06

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  0.2324 0.8737
      163               

Eta squared

                  eta.sq eta.sq.part
podaci$Country 0.1669321   0.1669321

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q3 ~ podaci$Country)

$`podaci$Country`
                        diff        lwr        upr     p adj
Finland-Croatia  -0.03823178 -0.6998186  0.6233550 0.9987926
Portugal-Croatia -0.92001768 -1.4587958 -0.3812396 0.0000998
Spain-Croatia    -0.13082437 -0.7466260  0.4849773 0.9460426
Portugal-Finland -0.88178590 -1.4478847 -0.3156871 0.0004676
Spain-Finland    -0.09259259 -0.7324345  0.5472493 0.9818729
Spain-Portugal    0.78919330  0.2773511  1.3010355 0.0005466

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q3 and podaci$Country 

         Croatia Finland Portugal
Finland  1.00000 -       -       
Portugal 0.00010 0.00049 -       
Spain    1.00000 1.00000 0.00057 

P value adjustment method: bonferroni 

Q4

Row

ANOVA rezultati: Q4

                Df Sum Sq Mean Sq F value   Pr(>F)    
podaci$Country   3  15.28   5.095   9.031 1.44e-05 ***
Residuals      163  91.96   0.564                     
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q4


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q4 and podaci$Country
F = 11.733, num df = 3.000, denom df = 75.531, p-value = 2.156e-06

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  1.9666 0.1211
      163               

Eta squared

                  eta.sq eta.sq.part
podaci$Country 0.1425207   0.1425207

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q4 ~ podaci$Country)

$`podaci$Country`
                       diff        lwr           upr     p adj
Finland-Croatia  -0.1636798 -0.6769175  0.3495579039 0.8412052
Portugal-Croatia -0.7547503 -1.1727170 -0.3367836281 0.0000343
Spain-Croatia    -0.4784946 -0.9562137 -0.0007755328 0.0494612
Portugal-Finland -0.5910705 -1.0302317 -0.1519093046 0.0034056
Spain-Finland    -0.3148148 -0.8111836  0.1815539393 0.3557380
Spain-Portugal    0.2762557 -0.1208150  0.6733264262 0.2742641

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q4 and podaci$Country 

         Croatia Finland Portugal
Finland  1.0000  -       -       
Portugal 3.5e-05 0.0037  -       
Spain    0.0611  0.6098  0.4366  

P value adjustment method: bonferroni 

Q5

Row

ANOVA rezultati: Q5

                Df Sum Sq Mean Sq F value   Pr(>F)    
podaci$Country   3  20.75   6.917   7.629 8.36e-05 ***
Residuals      163 147.79   0.907                     
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q5


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q5 and podaci$Country
F = 8.599, num df = 3.000, denom df = 75.762, p-value = 5.532e-05

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   3  3.8852 0.01025 *
      163                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                  eta.sq eta.sq.part
podaci$Country 0.1231295   0.1231295

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q5 ~ podaci$Country)

$`podaci$Country`
                        diff        lwr        upr     p adj
Finland-Croatia  -0.03345281 -0.6840842  0.6171786 0.9991480
Portugal-Croatia -0.81528944 -1.3451458 -0.2854331 0.0005639
Spain-Croatia    -0.41308244 -1.0186869  0.1925220 0.2912840
Portugal-Finland -0.78183663 -1.3385613 -0.2251120 0.0020167
Spain-Finland    -0.37962963 -1.0088763  0.2496170 0.4009279
Spain-Portugal    0.40220700 -0.1011595  0.9055735 0.1659834

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q5 and podaci$Country 

         Croatia Finland Portugal
Finland  1.00000 -       -       
Portugal 0.00059 0.00215 -       
Spain    0.47103 0.71569 0.23787 

P value adjustment method: bonferroni 

Q6

Row

ANOVA rezultati: Q6

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3   3.29   1.097   1.086  0.357
Residuals      163 164.64   1.010               

ONEWAY-test rezultati: Q6


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q6 and podaci$Country
F = 1.2518, num df = 3.000, denom df = 67.073, p-value = 0.298

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   3  3.7922 0.01156 *
      163                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                   eta.sq eta.sq.part
podaci$Country 0.01960258  0.01960258

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q6 ~ podaci$Country)

$`podaci$Country`
                         diff        lwr       upr     p adj
Finland-Croatia   0.248506571 -0.4382139 0.9352271 0.7837189
Portugal-Croatia -0.060980999 -0.6202273 0.4982653 0.9920639
Spain-Croatia     0.239247312 -0.3999487 0.8784433 0.7658072
Portugal-Finland -0.309487570 -0.8970925 0.2781174 0.5217570
Spain-Finland    -0.009259259 -0.6734088 0.6548903 0.9999829
Spain-Portugal    0.300228311 -0.2310588 0.8315155 0.4599137

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q6 and podaci$Country 

         Croatia Finland Portugal
Finland  1.00    -       -       
Portugal 1.00    1.00    -       
Spain    1.00    1.00    0.87    

P value adjustment method: bonferroni 

Q7

Row

ANOVA rezultati: Q7

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3    5.5  1.8345   2.065  0.107
Residuals      163  144.8  0.8882               

ONEWAY-test rezultati: Q7


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q7 and podaci$Country
F = 3.2754, num df = 3.000, denom df = 74.774, p-value = 0.02564

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  0.7556 0.5206
      163               

Eta squared

                   eta.sq eta.sq.part
podaci$Country 0.03662186  0.03662186

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q7 ~ podaci$Country)

$`podaci$Country`
                        diff        lwr       upr     p adj
Finland-Croatia   0.34767025 -0.2962908 0.9916313 0.5002827
Portugal-Croatia -0.17896597 -0.7033902 0.3454582 0.8122260
Spain-Croatia    -0.04121864 -0.6406143 0.5581771 0.9979726
Portugal-Finland -0.52663623 -1.0776532 0.0243808 0.0667178
Spain-Finland    -0.38888889 -1.0116844 0.2339066 0.3697953
Spain-Portugal    0.13774734 -0.3604586 0.6359533 0.8899505

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q7 and podaci$Country 

         Croatia Finland Portugal
Finland  0.978   -       -       
Portugal 1.000   0.085   -       
Spain    1.000   0.642   1.000   

P value adjustment method: bonferroni 

Q8

Row

ANOVA rezultati: Q8

                Df Sum Sq Mean Sq F value  Pr(>F)    
podaci$Country   3  26.80   8.934   15.85 4.3e-09 ***
Residuals      163  91.86   0.564                    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q8


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q8 and podaci$Country
F = 20.892, num df = 3.000, denom df = 67.656, p-value = 1.089e-09

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value    Pr(>F)    
group   3  5.9798 0.0006834 ***
      163                      
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                  eta.sq eta.sq.part
podaci$Country 0.2258736   0.2258736

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q8 ~ podaci$Country)

$`podaci$Country`
                       diff         lwr         upr     p adj
Finland-Croatia  -0.5961768 -1.10912430 -0.08322935 0.0155456
Portugal-Croatia  0.3495360 -0.06819433  0.76726635 0.1354587
Spain-Croatia     0.6353047  0.15785572  1.11275360 0.0038934
Portugal-Finland  0.9457128  0.50679997  1.38462571 0.0000006
Spain-Finland     1.2314815  0.73539343  1.72756954 0.0000000
Spain-Portugal    0.2857686 -0.11107753  0.68261482 0.2454115

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q8 and podaci$Country 

         Croatia Finland Portugal
Finland  0.0178  -       -       
Portugal 0.1878  5.5e-07 -       
Spain    0.0042  7.6e-09 0.3803  

P value adjustment method: bonferroni 

Q9

Row

ANOVA rezultati: Q9

                Df Sum Sq Mean Sq F value   Pr(>F)    
podaci$Country   3  42.04  14.013   11.99 3.89e-07 ***
Residuals      163 190.43   1.168                     
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q9


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q9 and podaci$Country
F = 13.87, num df = 3.000, denom df = 72.137, p-value = 3.113e-07

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   3  3.0891 0.02875 *
      163                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                  eta.sq eta.sq.part
podaci$Country 0.1808407   0.1808407

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q9 ~ podaci$Country)

$`podaci$Country`
                       diff        lwr        upr     p adj
Finland-Croatia   1.1290323  0.3904786  1.8675860 0.0006220
Portugal-Croatia -0.1312417 -0.7326996  0.4702161 0.9418953
Spain-Croatia    -0.4265233 -1.1139654  0.2609188 0.3755662
Portugal-Finland -1.2602740 -1.8922309 -0.6283170 0.0000039
Spain-Finland    -1.5555556 -2.2698347 -0.8412764 0.0000004
Spain-Portugal   -0.2952816 -0.8666699  0.2761068 0.5379932

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q9 and podaci$Country 

         Croatia Finland Portugal
Finland  0.00065 -       -       
Portugal 1.00000 3.9e-06 -       
Spain    0.65531 4.1e-07 1.00000 

P value adjustment method: bonferroni 

Q10

Row

ANOVA rezultati: Q10

                Df Sum Sq Mean Sq F value   Pr(>F)    
podaci$Country   3  28.32   9.439   7.679 7.85e-05 ***
Residuals      163 200.34   1.229                     
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q10


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q10 and podaci$Country
F = 8.0568, num df = 3.000, denom df = 72.628, p-value = 0.0001051

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   3  2.5784 0.05553 .
      163                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                  eta.sq eta.sq.part
podaci$Country 0.1238334   0.1238334

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q10 ~ podaci$Country)

$`podaci$Country`
                        diff        lwr        upr     p adj
Finland-Croatia  -0.03703704 -0.7945750  0.7205009 0.9992670
Portugal-Croatia -0.86301370 -1.4799318 -0.2460956 0.0021192
Spain-Croatia    -0.91666667 -1.6217792 -0.2115542 0.0050695
Portugal-Finland -0.82597666 -1.4741778 -0.1777755 0.0063053
Spain-Finland    -0.87962963 -1.6122690 -0.1469903 0.0115090
Spain-Portugal   -0.05365297 -0.6397286  0.5324227 0.9952614

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q10 and podaci$Country 

         Croatia Finland Portugal
Finland  1.0000  -       -       
Portugal 0.0023  0.0069  -       
Spain    0.0055  0.0130  1.0000  

P value adjustment method: bonferroni 

Q11

Row

ANOVA rezultati: Q11

                Df Sum Sq Mean Sq F value Pr(>F)  
podaci$Country   3  13.17   4.389   3.503 0.0168 *
Residuals      163 204.23   1.253                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q11


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q11 and podaci$Country
F = 4.6484, num df = 3.000, denom df = 69.133, p-value = 0.005106

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value   Pr(>F)   
group   3  5.4553 0.001342 **
      163                    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                   eta.sq eta.sq.part
podaci$Country 0.06056499  0.06056499

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q11 ~ podaci$Country)

$`podaci$Country`
                        diff        lwr         upr     p adj
Finland-Croatia   0.03345281 -0.7314064  0.79831205 0.9994746
Portugal-Croatia -0.29429960 -0.9171800  0.32858077 0.6109927
Spain-Croatia    -0.75358423 -1.4655114 -0.04165708 0.0334617
Portugal-Finland -0.32775241 -0.9822182  0.32671337 0.5643006
Spain-Finland    -0.78703704 -1.5267571 -0.04731698 0.0321954
Spain-Portugal   -0.45928463 -1.0510245  0.13245523 0.1867969

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q11 and podaci$Country 

         Croatia Finland Portugal
Finland  1.000   -       -       
Portugal 1.000   1.000   -       
Spain    0.040   0.038   0.273   

P value adjustment method: bonferroni 

Q12

Row

ANOVA rezultati: Q12

                Df Sum Sq Mean Sq F value  Pr(>F)    
podaci$Country   3  63.88  21.293    18.8 1.6e-10 ***
Residuals      163 184.61   1.133                    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q12


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q12 and podaci$Country
F = 20.858, num df = 3.000, denom df = 69.251, p-value = 9.8e-10

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value    Pr(>F)    
group   3  6.2025 0.0005137 ***
      163                      
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                  eta.sq eta.sq.part
podaci$Country 0.2570634   0.2570634

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q12 ~ podaci$Country)

$`podaci$Country`
                      diff        lwr       upr     p adj
Finland-Croatia  0.0167264 -0.7104645 0.7439173 0.9999233
Portugal-Croatia 1.0309324  0.4387281 1.6231367 0.0000698
Spain-Croatia    1.6093190  0.9324534 2.2861846 0.0000000
Portugal-Finland 1.0142060  0.3919718 1.6364401 0.0002251
Spain-Finland    1.5925926  0.8893028 2.2958824 0.0000001
Spain-Portugal   0.5783866  0.0157892 1.1409840 0.0413563

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q12 and podaci$Country 

         Croatia Finland Portugal
Finland  1.00000 -       -       
Portugal 7.1e-05 0.00023 -       
Spain    3.1e-08 1.4e-07 0.05032 

P value adjustment method: bonferroni 

Q13

Row

ANOVA rezultati: Q13

                Df Sum Sq Mean Sq F value   Pr(>F)    
podaci$Country   3  57.51  19.169   14.03 3.51e-08 ***
Residuals      163 222.67   1.366                     
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q13


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q13 and podaci$Country
F = 14.511, num df = 3.000, denom df = 73.118, p-value = 1.649e-07

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)  
group   3  3.0283 0.0311 *
      163                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                  eta.sq eta.sq.part
podaci$Country 0.2052518   0.2052518

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q13 ~ podaci$Country)

$`podaci$Country`
                       diff        lwr         upr     p adj
Finland-Croatia  -0.1338112 -0.9324497  0.66482727 0.9723695
Portugal-Croatia -0.9323906 -1.5827799 -0.28200136 0.0015408
Spain-Croatia    -1.6245520 -2.3679207 -0.88118326 0.0000004
Portugal-Finland -0.7985794 -1.4819490 -0.11520979 0.0148023
Spain-Finland    -1.4907407 -2.2631298 -0.71835167 0.0000083
Spain-Portugal   -0.6921613 -1.3100348 -0.07428788 0.0213823

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q13 and podaci$Country 

         Croatia Finland Portugal
Finland  1.0000  -       -       
Portugal 0.0016  0.0169  -       
Spain    3.8e-07 8.4e-06 0.0249  

P value adjustment method: bonferroni 

Q14

Row

ANOVA rezultati: Q14

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3   7.23   2.409   1.841  0.142
Residuals      163 213.25   1.308               

ONEWAY-test rezultati: Q14


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q14 and podaci$Country
F = 1.8657, num df = 3.000, denom df = 68.659, p-value = 0.1435

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  0.6341  0.594
      163               

Eta squared

                   eta.sq eta.sq.part
podaci$Country 0.03277204  0.03277204

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q14 ~ podaci$Country)

$`podaci$Country`
                         diff        lwr       upr     p adj
Finland-Croatia  -0.649940263 -1.4315056 0.1316250 0.1393652
Portugal-Croatia -0.475916924 -1.1124022 0.1605684 0.2151662
Spain-Croatia    -0.474014337 -1.2014914 0.2534627 0.3315576
Portugal-Finland  0.174023338 -0.4947373 0.8427839 0.9062609
Spain-Finland     0.175925926 -0.5799511 0.9318029 0.9306351
Spain-Portugal    0.001902588 -0.6027620 0.6065672 0.9999998

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q14 and podaci$Country 

         Croatia Finland Portugal
Finland  0.19    -       -       
Portugal 0.32    1.00    -       
Spain    0.56    1.00    1.00    

P value adjustment method: bonferroni 

Q15

Row

ANOVA rezultati: Q15

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3   3.94   1.314   0.882  0.452
Residuals      163 243.00   1.491               

ONEWAY-test rezultati: Q15


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q15 and podaci$Country
F = 0.89209, num df = 3.000, denom df = 70.267, p-value = 0.4496

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  0.3317 0.8024
      163               

Eta squared

                   eta.sq eta.sq.part
podaci$Country 0.01596725  0.01596725

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q15 ~ podaci$Country)

$`podaci$Country`
                       diff        lwr       upr     p adj
Finland-Croatia  -0.1254480 -0.9597496 0.7088535 0.9797512
Portugal-Croatia  0.1378701 -0.5415622 0.8173024 0.9525115
Spain-Croatia     0.3467742 -0.4297895 1.1233379 0.6534275
Portugal-Finland  0.2633181 -0.4505672 0.9772035 0.7737195
Spain-Finland     0.4722222 -0.3346577 1.2791022 0.4284256
Spain-Portugal    0.2089041 -0.4365604 0.8543686 0.8352456

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q15 and podaci$Country 

         Croatia Finland Portugal
Finland  1.00    -       -       
Portugal 1.00    1.00    -       
Spain    1.00    0.78    1.00    

P value adjustment method: bonferroni 

Q16

Row

ANOVA rezultati: Q16

                Df Sum Sq Mean Sq F value  Pr(>F)   
podaci$Country   3  16.13   5.377   5.025 0.00234 **
Residuals      163 174.42   1.070                   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q16


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q16 and podaci$Country
F = 5.6279, num df = 3.000, denom df = 72.325, p-value = 0.001595

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   3   2.612 0.05319 .
      163                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                   eta.sq eta.sq.part
podaci$Country 0.08465568  0.08465568

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q16 ~ podaci$Country)

$`podaci$Country`
                       diff         lwr         upr     p adj
Finland-Croatia  -0.6224612 -1.32929110  0.08436876 0.1055495
Portugal-Croatia -0.6716748 -1.24729766 -0.09605188 0.0150015
Spain-Croatia    -0.0483871 -0.70630085  0.60952666 0.9975242
Portugal-Finland -0.0492136 -0.65402553  0.55559833 0.9966574
Spain-Finland     0.5740741 -0.10952396  1.25767211 0.1332030
Spain-Portugal    0.6232877  0.07644269  1.17013265 0.0184597

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q16 and podaci$Country 

         Croatia Finland Portugal
Finland  0.141   -       -       
Portugal 0.017   1.000   -       
Spain    1.000   0.184   0.021   

P value adjustment method: bonferroni 

Q17

Row

ANOVA rezultati: Q17

                Df Sum Sq Mean Sq F value Pr(>F)  
podaci$Country   3  13.26   4.421   3.581 0.0152 *
Residuals      163 201.25   1.235                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q17


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q17 and podaci$Country
F = 3.5341, num df = 3.000, denom df = 71.464, p-value = 0.01896

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   3  3.4127 0.01891 *
      163                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                   eta.sq eta.sq.part
podaci$Country 0.06182716  0.06182716

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q17 ~ podaci$Country)

$`podaci$Country`
                       diff         lwr       upr     p adj
Finland-Croatia  -0.4169654 -1.17621992 0.3422892 0.4853032
Portugal-Croatia  0.1878038 -0.43051228 0.8061199 0.8596370
Spain-Croatia     0.4811828 -0.22552755 1.1878931 0.2928400
Portugal-Finland  0.6047692 -0.04490088 1.2544392 0.0779985
Spain-Finland     0.8981481  0.16384855 1.6324477 0.0096085
Spain-Portugal    0.2933790 -0.29402476 0.8807827 0.5665161

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q17 and podaci$Country 

         Croatia Finland Portugal
Finland  0.936   -       -       
Portugal 1.000   0.101   -       
Spain    0.474   0.011   1.000   

P value adjustment method: bonferroni 

Q18

Row

ANOVA rezultati: Q18

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3   0.74  0.2482   0.197  0.898
Residuals      163 205.18  1.2588               

ONEWAY-test rezultati: Q18


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q18 and podaci$Country
F = 0.19524, num df = 3.000, denom df = 70.514, p-value = 0.8993

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   3  2.8774 0.03779 *
      163                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                    eta.sq eta.sq.part
podaci$Country 0.003615403 0.003615403

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q18 ~ podaci$Country)

$`podaci$Country`
                         diff        lwr       upr     p adj
Finland-Croatia   0.211469534 -0.5551653 0.9781044 0.8906236
Portugal-Croatia  0.048608042 -0.5757183 0.6729344 0.9970677
Spain-Croatia     0.044802867 -0.6687770 0.7583827 0.9984538
Portugal-Finland -0.162861492 -0.8188466 0.4931236 0.9173553
Spain-Finland    -0.166666667 -0.9081039 0.5747706 0.9369378
Spain-Portugal   -0.003805175 -0.5969187 0.5893084 0.9999983

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q18 and podaci$Country 

         Croatia Finland Portugal
Finland  1       -       -       
Portugal 1       1       -       
Spain    1       1       1       

P value adjustment method: bonferroni 

Q19

Row

ANOVA rezultati: Q19

                Df Sum Sq Mean Sq F value Pr(>F)  
podaci$Country   3  11.42   3.806    2.58 0.0554 .
Residuals      163 240.49   1.475                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q19


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q19 and podaci$Country
F = 2.9236, num df = 3.00, denom df = 72.14, p-value = 0.0396

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  2.0168 0.1136
      163               

Eta squared

                   eta.sq eta.sq.part
podaci$Country 0.04532785  0.04532785

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q19 ~ podaci$Country)

$`podaci$Country`
                        diff        lwr       upr     p adj
Finland-Croatia   0.05256870 -0.7774006 0.8825380 0.9984129
Portugal-Croatia -0.54661953 -1.2225237 0.1292847 0.1576974
Spain-Croatia    -0.46594982 -1.2384811 0.3065814 0.4011700
Portugal-Finland -0.59918823 -1.3093666 0.1109901 0.1303212
Spain-Finland    -0.51851852 -1.3212086 0.2841715 0.3392789
Spain-Portugal    0.08066971 -0.5614431 0.7227825 0.9879824

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q19 and podaci$Country 

         Croatia Finland Portugal
Finland  1.00    -       -       
Portugal 0.22    0.18    -       
Spain    0.72    0.57    1.00    

P value adjustment method: bonferroni 

Q20

Row

ANOVA rezultati: Q20

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3   7.63   2.544   2.098  0.103
Residuals      163 197.64   1.212               

ONEWAY-test rezultati: Q20


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q20 and podaci$Country
F = 2.0219, num df = 3.000, denom df = 72.833, p-value = 0.1183

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  0.9133 0.4359
      163               

Eta squared

                   eta.sq eta.sq.part
podaci$Country 0.03718062  0.03718062

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q20 ~ podaci$Country)

$`podaci$Country`
                        diff        lwr        upr     p adj
Finland-Croatia   0.02867384 -0.7237313 0.78107900 0.9996520
Portugal-Croatia  0.02562970 -0.5871084 0.63836781 0.9995402
Spain-Croatia    -0.49910394 -1.1994389 0.20123101 0.2540007
Portugal-Finland -0.00304414 -0.6468534 0.64076507 0.9999993
Spain-Finland    -0.52777778 -1.2554531 0.19989754 0.2395241
Spain-Portugal   -0.52473364 -1.1068383 0.05737101 0.0933261

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q20 and podaci$Country 

         Croatia Finland Portugal
Finland  1.00    -       -       
Portugal 1.00    1.00    -       
Spain    0.40    0.37    0.12    

P value adjustment method: bonferroni 

Q21

Row

ANOVA rezultati: Q21

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3   6.24   2.080   1.809  0.148
Residuals      163 187.37   1.149               

ONEWAY-test rezultati: Q21


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q21 and podaci$Country
F = 2.185, num df = 3.000, denom df = 71.136, p-value = 0.0973

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  1.5493 0.2038
      163               

Eta squared

                   eta.sq eta.sq.part
podaci$Country 0.03222472  0.03222472

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q21 ~ podaci$Country)

$`podaci$Country`
                        diff        lwr       upr     p adj
Finland-Croatia  -0.14814815 -0.8807407 0.5844444 0.9529645
Portugal-Croatia  0.01369863 -0.5829046 0.6103019 0.9999237
Spain-Croatia    -0.47222222 -1.1541157 0.2096713 0.2782254
Portugal-Finland  0.16184678 -0.4650094 0.7887030 0.9081988
Spain-Finland    -0.32407407 -1.0325880 0.3844398 0.6357439
Spain-Portugal   -0.48592085 -1.0526973 0.0808556 0.1207040

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q21 and podaci$Country 

         Croatia Finland Portugal
Finland  1.00    -       -       
Portugal 1.00    1.00    -       
Spain    0.44    1.00    0.16    

P value adjustment method: bonferroni 

Q22

Row

ANOVA rezultati: Q22

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3   1.21  0.4043   0.371  0.774
Residuals      163 177.75  1.0905               

ONEWAY-test rezultati: Q22


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q22 and podaci$Country
F = 0.43596, num df = 3.00, denom df = 74.98, p-value = 0.7279

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  1.9809 0.1189
      163               

Eta squared

                   eta.sq eta.sq.part
podaci$Country 0.00677706  0.00677706

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q22 ~ podaci$Country)

$`podaci$Country`
                        diff        lwr       upr     p adj
Finland-Croatia  -0.01075269 -0.7242892 0.7027838 0.9999784
Portugal-Croatia -0.12947415 -0.7105587 0.4516104 0.9384489
Spain-Croatia    -0.23297491 -0.8971311 0.4311813 0.7992571
Portugal-Finland -0.11872146 -0.7292720 0.4918291 0.9578581
Spain-Finland    -0.22222222 -0.9123064 0.4678620 0.8373058
Spain-Portugal   -0.10350076 -0.6555344 0.4485328 0.9619695

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q22 and podaci$Country 

         Croatia Finland Portugal
Finland  1       -       -       
Portugal 1       1       -       
Spain    1       1       1       

P value adjustment method: bonferroni 

Q23

Row

ANOVA rezultati: Q23

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3   3.01   1.004   0.689   0.56
Residuals      163 237.35   1.456               

ONEWAY-test rezultati: Q23


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q23 and podaci$Country
F = 0.72743, num df = 3.00, denom df = 73.08, p-value = 0.5389

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  1.8503 0.1401
      163               

Eta squared

                   eta.sq eta.sq.part
podaci$Country 0.01252785  0.01252785

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q23 ~ podaci$Country)

$`podaci$Country`
                       diff        lwr       upr     p adj
Finland-Croatia   0.2676225 -0.5569144 1.0921593 0.8340709
Portugal-Croatia  0.1250552 -0.5464249 0.7965354 0.9626822
Spain-Croatia    -0.1397849 -0.9072597 0.6276898 0.9649608
Portugal-Finland -0.1425672 -0.8480972 0.5629628 0.9530642
Spain-Finland    -0.4074074 -1.2048436 0.3900288 0.5476597
Spain-Portugal   -0.2648402 -0.9027501 0.3730697 0.7036376

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q23 and podaci$Country 

         Croatia Finland Portugal
Finland  1       -       -       
Portugal 1       1       -       
Spain    1       1       1       

P value adjustment method: bonferroni 

Q24

Row

ANOVA rezultati: Q24

                Df Sum Sq Mean Sq F value Pr(>F)  
podaci$Country   3  11.97   3.989   2.834   0.04 *
Residuals      163 229.43   1.408                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q24


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q24 and podaci$Country
F = 3.4255, num df = 3.000, denom df = 72.077, p-value = 0.02157

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)   
group   3  5.6167 0.00109 **
      163                   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                   eta.sq eta.sq.part
podaci$Country 0.04957748  0.04957748

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q24 ~ podaci$Country)

$`podaci$Country`
                        diff        lwr        upr     p adj
Finland-Croatia   0.05615293 -0.7545192 0.86682508 0.9979284
Portugal-Croatia -0.11533363 -0.7755228 0.54485552 0.9688729
Spain-Croatia    -0.68458781 -1.4391574 0.06998176 0.0901213
Portugal-Finland -0.17148656 -0.8651530 0.52217987 0.9182963
Spain-Finland    -0.74074074 -1.5247679 0.04328646 0.0715126
Spain-Portugal   -0.56925419 -1.1964376 0.05792921 0.0899151

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q24 and podaci$Country 

         Croatia Finland Portugal
Finland  1.000   -       -       
Portugal 1.000   1.000   -       
Spain    0.118   0.091   0.118   

P value adjustment method: bonferroni 

Q26

Row

ANOVA rezultati: Q26

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3   3.46  1.1546   1.238  0.298
Residuals      163 152.01  0.9326               

ONEWAY-test rezultati: Q26


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q26 and podaci$Country
F = 1.2152, num df = 3.000, denom df = 71.009, p-value = 0.3105

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  0.2194 0.8828
      163               

Eta squared

                  eta.sq eta.sq.part
podaci$Country 0.0222783   0.0222783

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q26 ~ podaci$Country)

$`podaci$Country`
                       diff        lwr       upr     p adj
Finland-Croatia  0.17204301 -0.4878179 0.8319039 0.9057720
Portugal-Croatia 0.22227132 -0.3151013 0.7596439 0.7060594
Spain-Croatia    0.44982079 -0.1643744 1.0640160 0.2316470
Portugal-Finland 0.05022831 -0.5143937 0.6148503 0.9956466
Spain-Finland    0.27777778 -0.3603950 0.9159505 0.6716578
Spain-Portugal   0.22754947 -0.2829575 0.7380564 0.6547541

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q26 and podaci$Country 

         Croatia Finland Portugal
Finland  1.00    -       -       
Portugal 1.00    1.00    -       
Spain    0.35    1.00    1.00    

P value adjustment method: bonferroni 

Q27

Row

ANOVA rezultati: Q27

                Df Sum Sq Mean Sq F value Pr(>F)  
podaci$Country   3  10.33   3.442   3.362 0.0202 *
Residuals      163 166.91   1.024                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q27


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q27 and podaci$Country
F = 3.6904, num df = 3.000, denom df = 70.127, p-value = 0.0158

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   3  2.7288 0.04577 *
      163                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                   eta.sq eta.sq.part
podaci$Country 0.05826878  0.05826878

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q27 ~ podaci$Country)

$`podaci$Country`
                        diff        lwr          upr     p adj
Finland-Croatia  -0.73596177 -1.4274004 -0.044523175 0.0320983
Portugal-Croatia -0.34732656 -0.9104152  0.215762051 0.3808673
Spain-Croatia    -0.64336918 -1.2869568  0.000218402 0.0501133
Portugal-Finland  0.38863521 -0.2030068  0.980277265 0.3243667
Spain-Finland     0.09259259 -0.5761200  0.761305169 0.9840493
Spain-Portugal   -0.29604262 -0.8309800  0.238894726 0.4785047

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q27 and podaci$Country 

         Croatia Finland Portugal
Finland  0.038   -       -       
Portugal 0.668   0.541   -       
Spain    0.062   1.000   0.917   

P value adjustment method: bonferroni 

Q28

Row

ANOVA rezultati: Q28

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3   0.07  0.0226   0.024  0.995
Residuals      163 153.63  0.9425               

ONEWAY-test rezultati: Q28


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q28 and podaci$Country
F = 0.022009, num df = 3.000, denom df = 69.364, p-value = 0.9955

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  0.3409 0.7958
      163               

Eta squared

                     eta.sq  eta.sq.part
podaci$Country 0.0004415315 0.0004415315

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q28 ~ podaci$Country)

$`podaci$Country`
                        diff        lwr       upr     p adj
Finland-Croatia  -0.01194743 -0.6753224 0.6514275 0.9999632
Portugal-Croatia -0.03579319 -0.5760275 0.5044411 0.9981852
Spain-Croatia    -0.05824373 -0.6757098 0.5592223 0.9948232
Portugal-Finland -0.02384576 -0.5914746 0.5437831 0.9995343
Spain-Finland    -0.04629630 -0.6878676 0.5952750 0.9976603
Spain-Portugal   -0.02245053 -0.5356762 0.4907751 0.9994744

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q28 and podaci$Country 

         Croatia Finland Portugal
Finland  1       -       -       
Portugal 1       1       -       
Spain    1       1       1       

P value adjustment method: bonferroni 

Q29

Row

ANOVA rezultati: Q29

                Df Sum Sq Mean Sq F value   Pr(>F)    
podaci$Country   3  52.64  17.546   11.21 9.97e-07 ***
Residuals      163 255.10   1.565                     
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q29


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q29 and podaci$Country
F = 10.832, num df = 3.000, denom df = 68.453, p-value = 6.55e-06

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  0.5949 0.6192
      163               

Eta squared

                  eta.sq eta.sq.part
podaci$Country 0.1710506   0.1710506

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q29 ~ podaci$Country)

$`podaci$Country`
                        diff        lwr        upr     p adj
Finland-Croatia  -1.34408602 -2.1988982 -0.4892738 0.0004038
Portugal-Croatia -1.49933716 -2.1954728 -0.8032016 0.0000006
Spain-Croatia    -1.37186380 -2.1675187 -0.5762089 0.0000836
Portugal-Finland -0.15525114 -0.8866868  0.5761845 0.9461766
Spain-Finland    -0.02777778 -0.8544943  0.7989387 0.9997613
Spain-Portugal    0.12747336 -0.5338594  0.7888061 0.9588843

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q29 and podaci$Country 

         Croatia Finland Portugal
Finland  0.00042 -       -       
Portugal 5.6e-07 1.00000 -       
Spain    8.6e-05 1.00000 1.00000 

P value adjustment method: bonferroni 

Q30

Row

ANOVA rezultati: Q30

                Df Sum Sq Mean Sq F value  Pr(>F)   
podaci$Country   3  21.84   7.279   4.841 0.00297 **
Residuals      163 245.10   1.504                   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q30


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q30 and podaci$Country
F = 6.9813, num df = 3.000, denom df = 72.449, p-value = 0.0003434

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   3  3.1469 0.02668 *
      163                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                   eta.sq eta.sq.part
podaci$Country 0.08180295  0.08180295

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q30 ~ podaci$Country)

$`podaci$Country`
                       diff        lwr         upr     p adj
Finland-Croatia  -1.0047790 -1.8426693 -0.16688863 0.0116428
Portugal-Croatia -0.9403447 -1.6226996 -0.25798978 0.0025581
Spain-Croatia    -0.6899642 -1.4698683  0.08993998 0.1030813
Portugal-Finland  0.0644343 -0.6525219  0.78139047 0.9955131
Spain-Finland     0.3148148 -0.4955360  1.12516561 0.7447278
Spain-Portugal    0.2503805 -0.3978605  0.89862150 0.7481024

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q30 and podaci$Country 

         Croatia Finland Portugal
Finland  0.0131  -       -       
Portugal 0.0027  1.0000  -       
Spain    0.1376  1.0000  1.0000  

P value adjustment method: bonferroni 

Q31

Row

ANOVA rezultati: Q31

                Df Sum Sq Mean Sq F value   Pr(>F)    
podaci$Country   3  52.53  17.510   11.94 4.13e-07 ***
Residuals      163 238.97   1.466                     
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q31


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q31 and podaci$Country
F = 14.812, num df = 3.000, denom df = 73.809, p-value = 1.212e-07

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)   
group   3  3.9404 0.00954 **
      163                   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                  eta.sq eta.sq.part
podaci$Country 0.1802045   0.1802045

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q31 ~ podaci$Country)

$`podaci$Country`
                        diff        lwr         upr     p adj
Finland-Croatia  -0.04062127 -0.8679669  0.78672440 0.9992577
Portugal-Croatia -0.80114892 -1.4749165 -0.12738132 0.0126133
Spain-Croatia    -1.53136201 -2.3014512 -0.76127280 0.0000042
Portugal-Finland -0.76052765 -1.4684611 -0.05259422 0.0299114
Spain-Finland    -1.49074074 -2.2908934 -0.69058804 0.0000180
Spain-Portugal   -0.73021309 -1.3702961 -0.09013008 0.0183173

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q31 and podaci$Country 

         Croatia Finland Portugal
Finland  1.000   -       -       
Portugal 0.014   0.036   -       
Spain    4.2e-06 1.8e-05 0.021   

P value adjustment method: bonferroni 

Q32

Row

ANOVA rezultati: Q32

                Df Sum Sq Mean Sq F value   Pr(>F)    
podaci$Country   3  34.61  11.538   6.906 0.000209 ***
Residuals      163 272.32   1.671                     
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q32


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q32 and podaci$Country
F = 7.0989, num df = 3.000, denom df = 72.313, p-value = 0.0003019

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  1.6199 0.1868
      163               

Eta squared

                  eta.sq eta.sq.part
podaci$Country 0.1127727   0.1127727

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q32 ~ podaci$Country)

$`podaci$Country`
                         diff        lwr        upr     p adj
Finland-Croatia   0.106332139 -0.7768642  0.9895284 0.9893887
Portugal-Croatia  0.004860804 -0.7143900  0.7241116 0.9999981
Spain-Croatia    -1.078853047 -1.9009277 -0.2567784 0.0045610
Portugal-Finland -0.101471334 -0.8571944  0.6542517 0.9854126
Spain-Finland    -1.185185185 -2.0393528 -0.3310176 0.0023495
Spain-Portugal   -1.083713851 -1.7670062 -0.4004215 0.0003521

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q32 and podaci$Country 

         Croatia Finland Portugal
Finland  1.00000 -       -       
Portugal 1.00000 1.00000 -       
Spain    0.00497 0.00252 0.00037 

P value adjustment method: bonferroni 

Q33

Row

ANOVA rezultati: Q33

                Df Sum Sq Mean Sq F value Pr(>F)  
podaci$Country   3  12.36   4.119   3.542  0.016 *
Residuals      163 189.54   1.163                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q33


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q33 and podaci$Country
F = 5.6967, num df = 3.00, denom df = 72.04, p-value = 0.001477

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value    Pr(>F)    
group   3  14.031 3.508e-08 ***
      163                      
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                   eta.sq eta.sq.part
podaci$Country 0.06120588  0.06120588

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q33 ~ podaci$Country)

$`podaci$Country`
                        diff        lwr           upr     p adj
Finland-Croatia  -0.08363202 -0.8204533  0.6531892459 0.9910718
Portugal-Croatia -0.01767565 -0.6177227  0.5823713585 0.9998391
Spain-Croatia    -0.68548387 -1.3713134  0.0003456698 0.0501683
Portugal-Finland  0.06595637 -0.5645182  0.6964309334 0.9929749
Spain-Finland    -0.60185185 -1.3144555  0.1107517707 0.1296927
Spain-Portugal   -0.66780822 -1.2378563 -0.0977601854 0.0144722

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q33 and podaci$Country 

         Croatia Finland Portugal
Finland  1.000   -       -       
Portugal 1.000   1.000   -       
Spain    0.062   0.179   0.016   

P value adjustment method: bonferroni 

Q35

Row

ANOVA rezultati: Q35

                Df Sum Sq Mean Sq F value  Pr(>F)   
podaci$Country   3  14.72   4.907    4.68 0.00366 **
Residuals      163 170.91   1.049                   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q35


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q35 and podaci$Country
F = 5.4324, num df = 3.000, denom df = 72.287, p-value = 0.002

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  2.1106 0.1009
      163               

Eta squared

                   eta.sq eta.sq.part
podaci$Country 0.07929659  0.07929659

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q35 ~ podaci$Country)

$`podaci$Country`
                       diff         lwr        upr     p adj
Finland-Croatia  -0.5507766 -1.25045692  0.1489038 0.1765453
Portugal-Croatia -0.7856827 -1.35548318 -0.2158823 0.0025401
Spain-Croatia    -0.3378136 -0.98907257  0.3134453 0.5348274
Portugal-Finland -0.2349061 -0.83360039  0.3637881 0.7388766
Spain-Finland     0.2129630 -0.46372047  0.8896464 0.8464104
Spain-Portugal    0.4478691 -0.09344454  0.9891827 0.1426164

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q35 and podaci$Country 

         Croatia Finland Portugal
Finland  0.2558  -       -       
Portugal 0.0027  1.0000  -       
Spain    1.0000  1.0000  0.1993  

P value adjustment method: bonferroni 

Q36

Row

ANOVA rezultati: Q36

                Df Sum Sq Mean Sq F value Pr(>F)  
podaci$Country   3    9.0   3.002   2.606 0.0536 .
Residuals      163  187.7   1.152                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q36


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q36 and podaci$Country
F = 3.42, num df = 3.000, denom df = 70.229, p-value = 0.02185

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   3   2.545 0.05796 .
      163                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                   eta.sq eta.sq.part
podaci$Country 0.04577334  0.04577334

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q36 ~ podaci$Country)

$`podaci$Country`
                        diff        lwr        upr     p adj
Finland-Croatia  -0.50537634 -1.2386492 0.22789654 0.2823355
Portugal-Croatia -0.56473707 -1.1618944 0.03242023 0.0710999
Spain-Croatia    -0.67204301 -1.3545697 0.01048372 0.0553493
Portugal-Finland -0.05936073 -0.6867991 0.56807760 0.9947774
Spain-Finland    -0.16666667 -0.8758385 0.54250521 0.9287728
Spain-Portugal   -0.10730594 -0.6746087 0.45999687 0.9610112

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q36 and podaci$Country 

         Croatia Finland Portugal
Finland  0.453   -       -       
Portugal 0.091   1.000   -       
Spain    0.069   1.000   1.000   

P value adjustment method: bonferroni 

Q37

Row

ANOVA rezultati: Q37

                Df Sum Sq Mean Sq F value Pr(>F)   
podaci$Country   3  17.61   5.872   5.037 0.0023 **
Residuals      163 190.00   1.166                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q37


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q37 and podaci$Country
F = 5.3107, num df = 3.000, denom df = 68.844, p-value = 0.002371

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  1.3549 0.2585
      163               

Eta squared

                   eta.sq eta.sq.part
podaci$Country 0.08484147  0.08484147

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q37 ~ podaci$Country)

$`podaci$Country`
                       diff        lwr           upr     p adj
Finland-Croatia  -0.2520908 -0.9898193  0.4856376994 0.8116207
Portugal-Croatia -0.5757844 -1.1765702  0.0250014803 0.0656072
Spain-Croatia    -0.9650538 -1.6517278 -0.2783797730 0.0019975
Portugal-Finland -0.3236936 -0.9549444  0.3075573015 0.5445606
Spain-Finland    -0.7129630 -1.4264440  0.0005180757 0.0502426
Spain-Portugal   -0.3892694 -0.9600193  0.1814805174 0.2913704

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q37 and podaci$Country 

         Croatia Finland Portugal
Finland  1.0000  -       -       
Portugal 0.0832  1.0000  -       
Spain    0.0021  0.0621  0.4712  

P value adjustment method: bonferroni 

Q38

Row

ANOVA rezultati: Q38

                Df Sum Sq Mean Sq F value  Pr(>F)   
podaci$Country   3  12.38   4.126   5.561 0.00117 **
Residuals      163 120.94   0.742                   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q38


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q38 and podaci$Country
F = 7.6193, num df = 3.000, denom df = 73.608, p-value = 0.0001667

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value   Pr(>F)   
group   3  4.2917 0.006048 **
      163                    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                   eta.sq eta.sq.part
podaci$Country 0.09284543  0.09284543

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q38 ~ podaci$Country)

$`podaci$Country`
                       diff        lwr         upr     p adj
Finland-Croatia  -0.3285544 -0.9171285  0.26001980 0.4708295
Portugal-Croatia -0.7308882 -1.2102068 -0.25156956 0.0006459
Spain-Croatia    -0.5044803 -1.0523222  0.04336159 0.0829738
Portugal-Finland -0.4023338 -0.9059581  0.10129038 0.1661202
Spain-Finland    -0.1759259 -0.7451550  0.39330314 0.8532924
Spain-Portugal    0.2264079 -0.2289475  0.68176332 0.5702092

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q38 and podaci$Country 

         Croatia Finland Portugal
Finland  0.89557 -       -       
Portugal 0.00068 0.23810 -       
Spain    0.10786 1.00000 1.00000 

P value adjustment method: bonferroni 

Q39

Row

ANOVA rezultati: Q39

                Df Sum Sq Mean Sq F value Pr(>F)  
podaci$Country   3   3.47  1.1560   2.166 0.0941 .
Residuals      163  87.01  0.5338                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q39


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q39 and podaci$Country
F = 2.8464, num df = 3.000, denom df = 70.243, p-value = 0.04369

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)  
group   3  3.0409 0.0306 *
      163                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                  eta.sq eta.sq.part
podaci$Country 0.0383298   0.0383298

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q39 ~ podaci$Country)

$`podaci$Country`
                        diff        lwr       upr     p adj
Finland-Croatia  -0.28673835 -0.7859725 0.2124958 0.4453435
Portugal-Croatia -0.26999558 -0.6765581 0.1365670 0.3146929
Spain-Croatia    -0.45340502 -0.9180896 0.0112796 0.0586691
Portugal-Finland  0.01674277 -0.4104360 0.4439216 0.9996215
Spain-Finland    -0.16666667 -0.6494921 0.3161588 0.8069180
Spain-Portugal   -0.18340944 -0.5696462 0.2028273 0.6070726

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q39 and podaci$Country 

         Croatia Finland Portugal
Finland  0.828   -       -       
Portugal 0.520   1.000   -       
Spain    0.074   1.000   1.000   

P value adjustment method: bonferroni 

Q40

Row

ANOVA rezultati: Q40

                Df Sum Sq Mean Sq F value  Pr(>F)    
podaci$Country   3  20.36   6.786   7.674 7.9e-05 ***
Residuals      163 144.13   0.884                    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q40


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q40 and podaci$Country
F = 7.9495, num df = 3.000, denom df = 68.933, p-value = 0.000126

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  1.5618 0.2007
      163               

Eta squared

                 eta.sq eta.sq.part
podaci$Country 0.123755    0.123755

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q40 ~ podaci$Country)

$`podaci$Country`
                       diff         lwr       upr     p adj
Finland-Croatia  0.72162485  0.07908355 1.3641662 0.0209327
Portugal-Croatia 0.90985418  0.38658618 1.4331222 0.0000714
Spain-Croatia    0.93458781  0.33651359 1.5326620 0.0004449
Portugal-Finland 0.18822933 -0.36157287 0.7380315 0.8107508
Spain-Finland    0.21296296 -0.40845947 0.8343854 0.8102867
Spain-Portugal   0.02473364 -0.47237390 0.5218412 0.9992276

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q40 and podaci$Country 

         Croatia Finland Portugal
Finland  0.02433 -       -       
Portugal 7.3e-05 1.00000 -       
Spain    0.00046 1.00000 1.00000 

P value adjustment method: bonferroni 

Q41

Row

ANOVA rezultati: Q41

                Df Sum Sq Mean Sq F value Pr(>F)  
podaci$Country   3   9.04   3.014   2.986 0.0329 *
Residuals      163 164.50   1.009                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q41


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q41 and podaci$Country
F = 2.9508, num df = 3.00, denom df = 72.55, p-value = 0.03827

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  0.4943 0.6867
      163               

Eta squared

                  eta.sq eta.sq.part
podaci$Country 0.0520938   0.0520938

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q41 ~ podaci$Country)

$`podaci$Country`
                       diff        lwr         upr     p adj
Finland-Croatia  -0.1541219 -0.8405670  0.53232323 0.9371433
Portugal-Croatia -0.4631021 -1.0221241  0.09591996 0.1418085
Spain-Croatia    -0.6541219 -1.2930615 -0.01518221 0.0425920
Portugal-Finland -0.3089802 -0.8963495  0.27838906 0.5228230
Spain-Finland    -0.5000000 -1.1638832  0.16388320 0.2095449
Spain-Portugal   -0.1910198 -0.7220939  0.34005430 0.7868205

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q41 and podaci$Country 

         Croatia Finland Portugal
Finland  1.000   -       -       
Portugal 0.198   1.000   -       
Spain    0.052   0.314   1.000   

P value adjustment method: bonferroni 

Q42

Row

ANOVA rezultati: Q42

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3    3.6  1.1995   1.574  0.198
Residuals      163  124.2  0.7622               

ONEWAY-test rezultati: Q42


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q42 and podaci$Country
F = 1.4911, num df = 3.00, denom df = 67.74, p-value = 0.2248

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   3   3.261 0.02302 *
      163                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                   eta.sq eta.sq.part
podaci$Country 0.02815087  0.02815087

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q42 ~ podaci$Country)

$`podaci$Country`
                        diff         lwr       upr     p adj
Finland-Croatia  0.277180406 -0.31935602 0.8737168 0.6238661
Portugal-Croatia 0.279717190 -0.20608570 0.7655201 0.4431130
Spain-Croatia    0.462365591 -0.09288753 1.0176187 0.1385079
Portugal-Finland 0.002536783 -0.50790050 0.5129741 0.9999992
Spain-Finland    0.185185185 -0.39174445 0.7621148 0.8386137
Spain-Portugal   0.182648402 -0.27886708 0.6441639 0.7337144

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q42 and podaci$Country 

         Croatia Finland Portugal
Finland  1.00    -       -       
Portugal 0.82    1.00    -       
Spain    0.19    1.00    1.00    

P value adjustment method: bonferroni 

Q43

Row

ANOVA rezultati: Q43

                Df Sum Sq Mean Sq F value Pr(>F)  
podaci$Country   3   5.32  1.7747   2.803 0.0416 *
Residuals      163 103.21  0.6332                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q43


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q43 and podaci$Country
F = 3.2645, num df = 3.000, denom df = 72.085, p-value = 0.0262

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)  
group   3  2.5498 0.0576 .
      163                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                   eta.sq eta.sq.part
podaci$Country 0.04905348  0.04905348

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q43 ~ podaci$Country)

$`podaci$Country`
                       diff          lwr       upr     p adj
Finland-Croatia  -0.2150538 -0.758789632 0.3286821 0.7340903
Portugal-Croatia  0.2598321 -0.182971483 0.7026356 0.4260467
Spain-Croatia     0.2293907 -0.276715940 0.7354973 0.6425287
Portugal-Finland  0.4748858  0.009628323 0.9401434 0.0434920
Spain-Finland     0.4444444 -0.081420060 0.9703089 0.1292678
Spain-Portugal   -0.0304414 -0.451107276 0.3902245 0.9976405

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q43 and podaci$Country 

         Croatia Finland Portugal
Finland  1.000   -       -       
Portugal 0.778   0.053   -       
Spain    1.000   0.178   1.000   

P value adjustment method: bonferroni 

Q44

Row

ANOVA rezultati: Q44

                Df Sum Sq Mean Sq F value Pr(>F)  
podaci$Country   3   5.76  1.9205   2.633 0.0517 .
Residuals      163 118.87  0.7293                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q44


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q44 and podaci$Country
F = 2.579, num df = 3.000, denom df = 69.885, p-value = 0.06046

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  0.4064 0.7486
      163               

Eta squared

                  eta.sq eta.sq.part
podaci$Country 0.0462279   0.0462279

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q44 ~ podaci$Country)

$`podaci$Country`
                        diff        lwr        upr     p adj
Finland-Croatia   0.10035842 -0.4831660 0.68388284 0.9702291
Portugal-Croatia  0.36367654 -0.1115297 0.83888280 0.1973005
Spain-Croatia    -0.06630824 -0.6094498 0.47683335 0.9889476
Portugal-Finland  0.26331811 -0.2359852 0.76262143 0.5206500
Spain-Finland    -0.16666667 -0.7310120 0.39767862 0.8693785
Spain-Portugal   -0.42998478 -0.8814334 0.02146384 0.0681310

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q44 and podaci$Country 

         Croatia Finland Portugal
Finland  1.000   -       -       
Portugal 0.292   1.000   -       
Spain    1.000   1.000   0.087   

P value adjustment method: bonferroni 

Q45

Row

ANOVA rezultati: Q45

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3   1.73  0.5778   0.841  0.473
Residuals      163 111.97  0.6869               

ONEWAY-test rezultati: Q45


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q45 and podaci$Country
F = 0.74515, num df = 3.000, denom df = 68.166, p-value = 0.5289

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   3  2.2543 0.08406 .
      163                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                   eta.sq eta.sq.part
podaci$Country 0.01524531  0.01524531

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q45 ~ podaci$Country)

$`podaci$Country`
                        diff        lwr       upr     p adj
Finland-Croatia   0.28793309 -0.2783878 0.8542540 0.5517228
Portugal-Croatia  0.25850641 -0.2026898 0.7197026 0.4671817
Spain-Croatia     0.16756272 -0.3595659 0.6946914 0.8424988
Portugal-Finland -0.02942669 -0.5140095 0.4551561 0.9986002
Spain-Finland    -0.12037037 -0.6680776 0.4273368 0.9407375
Spain-Portugal   -0.09094368 -0.5290827 0.3471953 0.9494153

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q45 and podaci$Country 

         Croatia Finland Portugal
Finland  1.00    -       -       
Portugal 0.89    1.00    -       
Spain    1.00    1.00    1.00    

P value adjustment method: bonferroni 

Q46

Row

ANOVA rezultati: Q46

                Df Sum Sq Mean Sq F value Pr(>F)  
podaci$Country   3    5.3  1.7659   2.309 0.0784 .
Residuals      163  124.7  0.7649                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q46


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q46 and podaci$Country
F = 2.2716, num df = 3.000, denom df = 68.765, p-value = 0.08792

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  1.2901 0.2797
      163               

Eta squared

                   eta.sq eta.sq.part
podaci$Country 0.04075876  0.04075876

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q46 ~ podaci$Country)

$`podaci$Country`
                         diff         lwr       upr     p adj
Finland-Croatia   0.156511350 -0.44109165 0.7541143 0.9046396
Portugal-Croatia  0.152452497 -0.33421898 0.6391240 0.8482013
Spain-Croatia     0.526881720 -0.02936416 1.0831276 0.0704303
Portugal-Finland -0.004058853 -0.51540877 0.5072911 0.9999968
Spain-Finland     0.370370370 -0.20759077 0.9483315 0.3464544
Spain-Portugal    0.374429224 -0.08791142 0.8367699 0.1567493

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q46 and podaci$Country 

         Croatia Finland Portugal
Finland  1.00    -       -       
Portugal 1.00    1.00    -       
Spain    0.09    0.59    0.22    

P value adjustment method: bonferroni 

Q47

Row

ANOVA rezultati: Q47

                Df Sum Sq Mean Sq F value   Pr(>F)    
podaci$Country   3  13.71   4.571   8.867 1.77e-05 ***
Residuals      163  84.02   0.515                     
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q47


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q47 and podaci$Country
F = 9.4921, num df = 3.00, denom df = 73.44, p-value = 2.244e-05

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value    Pr(>F)    
group   3      11 1.288e-06 ***
      163                      
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                  eta.sq eta.sq.part
podaci$Country 0.1402964   0.1402964

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q47 ~ podaci$Country)

$`podaci$Country`
                        diff         lwr        upr     p adj
Finland-Croatia  -0.02628435 -0.51687585  0.4643071 0.9990366
Portugal-Croatia  0.48563853  0.08611429  0.8851628 0.0102153
Spain-Croatia    -0.18369176 -0.64033186  0.2729484 0.7237277
Portugal-Finland  0.51192288  0.09213931  0.9317065 0.0098954
Spain-Finland    -0.15740741 -0.63187428  0.3170595 0.8248113
Spain-Portugal   -0.66933029 -1.04888057 -0.2897800 0.0000546

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q47 and podaci$Country 

         Croatia Finland Portugal
Finland  1.000   -       -       
Portugal 0.011   0.011   -       
Spain    1.000   1.000   5.6e-05 

P value adjustment method: bonferroni 

Q48

Row

ANOVA rezultati: Q48

                Df Sum Sq Mean Sq F value  Pr(>F)   
podaci$Country   3   9.02   3.006   4.631 0.00389 **
Residuals      163 105.79   0.649                   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q48


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q48 and podaci$Country
F = 3.9758, num df = 3.000, denom df = 66.938, p-value = 0.01142

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   3  2.7779 0.04296 *
      163                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                   eta.sq eta.sq.part
podaci$Country 0.07854076  0.07854076

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q48 ~ podaci$Country)

$`podaci$Country`
                       diff          lwr       upr     p adj
Finland-Croatia  -0.1158901 -0.666356367 0.4345762 0.9473818
Portugal-Croatia  0.3747238 -0.073560812 0.8230084 0.1360919
Spain-Croatia     0.5044803 -0.007890971 1.0168515 0.0553641
Portugal-Finland  0.4906139  0.019597377 0.9616304 0.0376665
Spain-Finland     0.6203704  0.087996664 1.1527441 0.0151854
Spain-Portugal    0.1297565 -0.296116450 0.5556294 0.8585159

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q48 and podaci$Country 

         Croatia Finland Portugal
Finland  1.000   -       -       
Portugal 0.189   0.046   -       
Spain    0.069   0.017   1.000   

P value adjustment method: bonferroni 

Q49

Row

ANOVA rezultati: Q49

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3   2.04  0.6803   1.136  0.336
Residuals      163  97.64  0.5990               

ONEWAY-test rezultati: Q49


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q49 and podaci$Country
F = 1.203, num df = 3.000, denom df = 71.302, p-value = 0.315

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   3  2.5722 0.05597 .
      163                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                   eta.sq eta.sq.part
podaci$Country 0.02047582  0.02047582

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q49 ~ podaci$Country)

$`podaci$Country`
                        diff        lwr       upr     p adj
Finland-Croatia   0.01075269 -0.5180839 0.5395893 0.9999470
Portugal-Croatia  0.23906319 -0.1916068 0.6697332 0.4758164
Spain-Croatia     0.23297491 -0.2592635 0.7252133 0.6096510
Portugal-Finland  0.22831050 -0.2241982 0.6808192 0.5581189
Spain-Finland     0.22222222 -0.2892327 0.7336771 0.6729120
Spain-Portugal   -0.00608828 -0.4152272 0.4030506 0.9999792

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q49 and podaci$Country 

         Croatia Finland Portugal
Finland  1.00    -       -       
Portugal 0.91    1.00    -       
Spain    1.00    1.00    1.00    

P value adjustment method: bonferroni 

Q50

Row

ANOVA rezultati: Q50

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3   2.79  0.9286   1.565    0.2
Residuals      163  96.71  0.5933               

ONEWAY-test rezultati: Q50


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q50 and podaci$Country
F = 1.7733, num df = 3.000, denom df = 69.177, p-value = 0.1603

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value    Pr(>F)    
group   3  6.3487 0.0004259 ***
      163                      
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                   eta.sq eta.sq.part
podaci$Country 0.02799976  0.02799976

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q50 ~ podaci$Country)

$`podaci$Country`
                         diff        lwr        upr     p adj
Finland-Croatia   0.182795699 -0.3435310 0.70912237 0.8040361
Portugal-Croatia -0.004418913 -0.4330449 0.42420708 0.9999931
Spain-Croatia    -0.233870968 -0.7237732 0.25603126 0.6029206
Portugal-Finland -0.187214612 -0.6375756 0.26314641 0.7028038
Spain-Finland    -0.416666667 -0.9256942 0.09236084 0.1496071
Spain-Portugal   -0.229452055 -0.6366492 0.17774505 0.4624544

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q50 and podaci$Country 

         Croatia Finland Portugal
Finland  1.00    -       -       
Portugal 1.00    1.00    -       
Spain    1.00    0.21    0.87    

P value adjustment method: bonferroni 

Q51

Row

ANOVA rezultati: Q51

                Df Sum Sq Mean Sq F value   Pr(>F)    
podaci$Country   3  12.55   4.184   7.108 0.000162 ***
Residuals      163  95.94   0.589                     
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q51


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q51 and podaci$Country
F = 7.1803, num df = 3.000, denom df = 72.056, p-value = 0.0002768

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   3  3.2881 0.02222 *
      163                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                  eta.sq eta.sq.part
podaci$Country 0.1156854   0.1156854

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q51 ~ podaci$Country)

$`podaci$Country`
                        diff         lwr        upr     p adj
Finland-Croatia  -0.01194743 -0.53617213  0.5122773 0.9999254
Portugal-Croatia  0.47105612  0.04414192  0.8979703 0.0242189
Spain-Croatia    -0.16935484 -0.65730056  0.3185909 0.8043470
Portugal-Finland  0.48300355  0.03444112  0.9315660 0.0293826
Spain-Finland    -0.15740741 -0.66440203  0.3495872 0.8515885
Spain-Portugal   -0.64041096 -1.04598185 -0.2348401 0.0003777

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q51 and podaci$Country 

         Croatia Finland Portugal
Finland  1.00000 -       -       
Portugal 0.02839 0.03488 -       
Spain    1.00000 1.00000 0.00039 

P value adjustment method: bonferroni 

Q52

Row

ANOVA rezultati: Q52

                Df Sum Sq Mean Sq F value Pr(>F)  
podaci$Country   3   5.05  1.6819   2.242 0.0854 .
Residuals      163 122.31  0.7504                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q52


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q52 and podaci$Country
F = 2.5943, num df = 3.000, denom df = 70.474, p-value = 0.05928

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)  
group   3  2.4938 0.0619 .
      163                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                   eta.sq eta.sq.part
podaci$Country 0.03962029  0.03962029

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q52 ~ podaci$Country)

$`podaci$Country`
                       diff         lwr       upr     p adj
Finland-Croatia  0.35842294 -0.23347082 0.9503167 0.3975645
Portugal-Croatia 0.42996023 -0.05206180 0.9119823 0.0987294
Spain-Croatia    0.49731183 -0.05361992 1.0482436 0.0926395
Portugal-Finland 0.07153729 -0.43492741 0.5780020 0.9831010
Spain-Finland    0.13888889 -0.43355067 0.7113284 0.9223320
Spain-Portugal   0.06735160 -0.39057204 0.5252752 0.9810015

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q52 and podaci$Country 

         Croatia Finland Portugal
Finland  0.71    -       -       
Portugal 0.13    1.00    -       
Spain    0.12    1.00    1.00    

P value adjustment method: bonferroni 

Q53

Row

ANOVA rezultati: Q53

                Df Sum Sq Mean Sq F value   Pr(>F)    
podaci$Country   3  16.18   5.392   9.759 5.87e-06 ***
Residuals      163  90.06   0.553                     
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q53


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q53 and podaci$Country
F = 7.4924, num df = 3.000, denom df = 69.248, p-value = 0.0002052

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value   Pr(>F)   
group   3  4.0369 0.008417 **
      163                    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                  eta.sq eta.sq.part
podaci$Country 0.1522664   0.1522664

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q53 ~ podaci$Country)

$`podaci$Country`
                        diff        lwr        upr     p adj
Finland-Croatia   0.21863799 -0.2892757  0.7265517 0.6793713
Portugal-Croatia  0.18515245 -0.2284785  0.5987834 0.6516771
Spain-Croatia    -0.58691756 -1.0596811 -0.1141540 0.0082766
Portugal-Finland -0.03348554 -0.4680912  0.4011201 0.9971573
Spain-Finland    -0.80555556 -1.2967753 -0.3143358 0.0002031
Spain-Portugal   -0.77207002 -1.1650218 -0.3791183 0.0000055

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q53 and podaci$Country 

         Croatia Finland Portugal
Finland  1.00000 -       -       
Portugal 1.00000 1.00000 -       
Spain    0.00921 0.00021 5.6e-06 

P value adjustment method: bonferroni 

Q58

Row

ANOVA rezultati: Q58

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3   1.91  0.6358   0.572  0.634
Residuals      163 181.07  1.1109               

ONEWAY-test rezultati: Q58


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q58 and podaci$Country
F = 0.70333, num df = 3.000, denom df = 73.881, p-value = 0.553

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  1.8757 0.1357
      163               

Eta squared

                 eta.sq eta.sq.part
podaci$Country 0.010424    0.010424

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q58 ~ podaci$Country)

$`podaci$Country`
                        diff        lwr       upr     p adj
Finland-Croatia  -0.36200717 -1.0821953 0.3581810 0.5612298
Portugal-Croatia -0.17631463 -0.7628161 0.4101869 0.8632841
Spain-Croatia    -0.19534050 -0.8656880 0.4750070 0.8738102
Portugal-Finland  0.18569254 -0.4305496 0.8019347 0.8624570
Spain-Finland     0.16666667 -0.5298506 0.8631839 0.9251974
Spain-Portugal   -0.01902588 -0.5762056 0.5381538 0.9997495

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q58 and podaci$Country 

         Croatia Finland Portugal
Finland  1       -       -       
Portugal 1       1       -       
Spain    1       1       1       

P value adjustment method: bonferroni 

Q59

Row

ANOVA rezultati: Q59

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3   6.67   2.225   1.987  0.118
Residuals      163 182.55   1.120               

ONEWAY-test rezultati: Q59


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q59 and podaci$Country
F = 1.7624, num df = 3.00, denom df = 71.55, p-value = 0.1621

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  2.0951 0.1029
      163               

Eta squared

                   eta.sq eta.sq.part
podaci$Country 0.03527422  0.03527422

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q59 ~ podaci$Country)

$`podaci$Country`
                        diff        lwr        upr     p adj
Finland-Croatia  -0.26523297 -0.9883431 0.45787713 0.7766851
Portugal-Croatia -0.49049934 -1.0793804 0.09838168 0.1383381
Spain-Croatia    -0.54301075 -1.2160780 0.13005651 0.1593424
Portugal-Finland -0.22526636 -0.8440087 0.39347600 0.7805887
Spain-Finland    -0.27777778 -0.9771209 0.42156534 0.7315145
Spain-Portugal   -0.05251142 -0.6119517 0.50692886 0.9948978

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q59 and podaci$Country 

         Croatia Finland Portugal
Finland  1.00    -       -       
Portugal 0.19    1.00    -       
Spain    0.23    1.00    1.00    

P value adjustment method: bonferroni 

Q60

Row

ANOVA rezultati: Q60

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3   7.88   2.626   1.988  0.118
Residuals      163 215.35   1.321               

ONEWAY-test rezultati: Q60


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q60 and podaci$Country
F = 2.2069, num df = 3.000, denom df = 71.753, p-value = 0.09467

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  0.4267 0.7341
      163               

Eta squared

                   eta.sq eta.sq.part
podaci$Country 0.03529556  0.03529556

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q60 ~ podaci$Country)

$`podaci$Country`
                        diff        lwr        upr     p adj
Finland-Croatia  -0.69056153 -1.4759672 0.09484415 0.1064131
Portugal-Croatia -0.15377817 -0.7933910 0.48583466 0.9242279
Spain-Croatia    -0.17204301 -0.9030947 0.55900866 0.9285079
Portugal-Finland  0.53678336 -0.1352634 1.20883007 0.1662491
Spain-Finland     0.51851852 -0.2410727 1.27810970 0.2906122
Spain-Portugal   -0.01826484 -0.6259006 0.58937094 0.9998290

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q60 and podaci$Country 

         Croatia Finland Portugal
Finland  0.14    -       -       
Portugal 1.00    0.24    -       
Spain    1.00    0.47    1.00    

P value adjustment method: bonferroni 

Q61

Row

ANOVA rezultati: Q61

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3   3.86  1.2857   1.345  0.262
Residuals      163 155.77  0.9557               

ONEWAY-test rezultati: Q61


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q61 and podaci$Country
F = 1.2819, num df = 3.000, denom df = 71.025, p-value = 0.2873

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  0.5148 0.6726
      163               

Eta squared

                   eta.sq eta.sq.part
podaci$Country 0.02416329  0.02416329

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q61 ~ podaci$Country)

$`podaci$Country`
                       diff        lwr       upr     p adj
Finland-Croatia  -0.4778973 -1.1458739 0.1900794 0.2507721
Portugal-Croatia -0.2125497 -0.7565316 0.3314322 0.7413519
Spain-Croatia    -0.3575269 -0.9792762 0.2642225 0.4442842
Portugal-Finland  0.2653475 -0.3062189 0.8369140 0.6245281
Spain-Finland     0.1203704 -0.5256514 0.7663922 0.9626327
Spain-Portugal   -0.1449772 -0.6617630 0.3718087 0.8856790

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q61 and podaci$Country 

         Croatia Finland Portugal
Finland  0.39    -       -       
Portugal 1.00    1.00    -       
Spain    0.82    1.00    1.00    

P value adjustment method: bonferroni 

Q62

Row

ANOVA rezultati: Q62

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3   1.94  0.6483   0.576  0.631
Residuals      163 183.41  1.1252               

ONEWAY-test rezultati: Q62


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q62 and podaci$Country
F = 0.54221, num df = 3.000, denom df = 71.145, p-value = 0.655

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  0.3111 0.8174
      163               

Eta squared

                  eta.sq eta.sq.part
podaci$Country 0.0104928   0.0104928

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q62 ~ podaci$Country)

$`podaci$Country`
                         diff        lwr       upr     p adj
Finland-Croatia  -0.354838710 -1.0796531 0.3699757 0.5828384
Portugal-Croatia -0.108263367 -0.6985323 0.4820056 0.9642605
Spain-Croatia    -0.104838710 -0.7794923 0.5698149 0.9777360
Portugal-Finland  0.246575342 -0.3736253 0.8667760 0.7309402
Spain-Finland     0.250000000 -0.4509914 0.9509914 0.7911113
Spain-Portugal    0.003424658 -0.5573342 0.5641835 0.9999986

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q62 and podaci$Country 

         Croatia Finland Portugal
Finland  1       -       -       
Portugal 1       1       -       
Spain    1       1       1       

P value adjustment method: bonferroni 

Q63

Row

ANOVA rezultati: Q63

                Df Sum Sq Mean Sq F value   Pr(>F)    
podaci$Country   3  45.58   15.19   12.45 2.28e-07 ***
Residuals      162 197.67    1.22                     
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
1 observation deleted due to missingness

ONEWAY-test rezultati: Q63


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q63 and podaci$Country
F = 10.745, num df = 3.00, denom df = 64.54, p-value = 8.096e-06

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  2.1154 0.1003
      162               

Eta squared

                  eta.sq eta.sq.part
podaci$Country 0.1873776   0.1873776

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q63 ~ podaci$Country)

$`podaci$Country`
                       diff        lwr        upr     p adj
Finland-Croatia   0.6339950 -0.1285639  1.3965540 0.1394917
Portugal-Croatia -0.8091030 -1.4238238 -0.1943822 0.0044142
Spain-Croatia    -0.5412186 -1.2438197  0.1613824 0.1923872
Portugal-Finland -1.4430980 -2.0979950 -0.7882010 0.0000003
Spain-Finland    -1.1752137 -1.9132223 -0.4372051 0.0003306
Spain-Portugal    0.2678843 -0.3161039  0.8518725 0.6335491

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q63 and podaci$Country 

         Croatia Finland Portugal
Finland  0.19429 -       -       
Portugal 0.00481 3e-07   -       
Spain    0.28327 0.00034 1.00000 

P value adjustment method: bonferroni 

Q64

Row

ANOVA rezultati: Q64

                Df Sum Sq Mean Sq F value   Pr(>F)    
podaci$Country   3  34.09  11.363   9.739 6.05e-06 ***
Residuals      162 189.02   1.167                     
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
1 observation deleted due to missingness

ONEWAY-test rezultati: Q64


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q64 and podaci$Country
F = 8.8177, num df = 3.000, denom df = 65.501, p-value = 5.428e-05

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   3  3.0551 0.03006 *
      162                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                  eta.sq eta.sq.part
podaci$Country 0.1527907   0.1527907

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q64 ~ podaci$Country)

$`podaci$Country`
                        diff        lwr         upr     p adj
Finland-Croatia   0.34615385 -0.3995375  1.09184522 0.6245522
Portugal-Croatia -0.79452055 -1.3956439 -0.19339719 0.0042087
Spain-Croatia    -0.72222222 -1.4092820 -0.03516246 0.0352350
Portugal-Finland -1.14067439 -1.7810853 -0.50026351 0.0000451
Spain-Finland    -1.06837607 -1.7900602 -0.34669197 0.0009930
Spain-Portugal    0.07229833 -0.4987722  0.64336890 0.9877071

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q64 and podaci$Country 

         Croatia Finland Portugal
Finland  1.0000  -       -       
Portugal 0.0046  4.6e-05 -       
Spain    0.0424  0.0010  1.0000  

P value adjustment method: bonferroni 

Q65

Row

ANOVA rezultati: Q65

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3   2.14  0.7121   0.958  0.414
Residuals      163 121.12  0.7431               

ONEWAY-test rezultati: Q65


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q65 and podaci$Country
F = 1.3899, num df = 3.000, denom df = 72.758, p-value = 0.2527

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   3  1.8533 0.1396
      163               

Eta squared

                   eta.sq eta.sq.part
podaci$Country 0.01733172  0.01733172

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q65 ~ podaci$Country)

$`podaci$Country`
                        diff        lwr       upr     p adj
Finland-Croatia  -0.36081243 -0.9498287 0.2282039 0.3871342
Portugal-Croatia -0.25629695 -0.7359756 0.2233817 0.5093435
Spain-Croatia    -0.20340502 -0.7516584 0.3448484 0.7706003
Portugal-Finland  0.10451547 -0.3994871 0.6085180 0.9495489
Spain-Finland     0.15740741 -0.4122493 0.7270641 0.8901248
Spain-Portugal    0.05289193 -0.4028055 0.5085894 0.9904673

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q65 and podaci$Country 

         Croatia Finland Portugal
Finland  0.68    -       -       
Portugal 1.00    1.00    -       
Spain    1.00    1.00    1.00    

P value adjustment method: bonferroni 

Q66

Row

ANOVA rezultati: Q66

                Df Sum Sq Mean Sq F value Pr(>F)
podaci$Country   3   2.95  0.9833   1.162  0.326
Residuals      163 137.94  0.8462               

ONEWAY-test rezultati: Q66


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q66 and podaci$Country
F = 1.5993, num df = 3.000, denom df = 73.149, p-value = 0.1969

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   3  3.2434 0.02355 *
      163                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                   eta.sq eta.sq.part
podaci$Country 0.02093719  0.02093719

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q66 ~ podaci$Country)

$`podaci$Country`
                        diff        lwr       upr     p adj
Finland-Croatia  -0.12544803 -0.7540225 0.5031264 0.9546678
Portugal-Croatia -0.31418471 -0.8260785 0.1977091 0.3853603
Spain-Croatia    -0.34767025 -0.9327442 0.2374037 0.4146495
Portugal-Finland -0.18873668 -0.7265879 0.3491145 0.7990840
Spain-Finland    -0.22222222 -0.8301369 0.3856924 0.7784747
Spain-Portugal   -0.03348554 -0.5197875 0.4528164 0.9979647

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q66 and podaci$Country 

         Croatia Finland Portugal
Finland  1.00    -       -       
Portugal 0.68    1.00    -       
Spain    0.75    1.00    1.00    

P value adjustment method: bonferroni 

Q67

Row

ANOVA rezultati: Q67

                Df Sum Sq Mean Sq F value  Pr(>F)   
podaci$Country   3   20.5   6.832   5.486 0.00129 **
Residuals      163  203.0   1.245                   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q67


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q67 and podaci$Country
F = 5.5245, num df = 3.000, denom df = 68.746, p-value = 0.001857

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   3  2.4152 0.06845 .
      163                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                   eta.sq eta.sq.part
podaci$Country 0.09170721  0.09170721

Row

Tukey

  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = podaci$Q67 ~ podaci$Country)

$`podaci$Country`
                         diff        lwr         upr     p adj
Finland-Croatia   0.106332139 -0.6562137  0.86887801 0.9837196
Portugal-Croatia -0.680070703 -1.3010671 -0.05907428 0.0257303
Spain-Croatia    -0.689964158 -1.3997380  0.01980972 0.0600706
Portugal-Finland -0.786402841 -1.4388891 -0.13391655 0.0110941
Spain-Finland    -0.796296296 -1.5337790 -0.05881358 0.0287626
Spain-Portugal   -0.009893455 -0.5998435  0.58005664 0.9999703

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q67 and podaci$Country 

         Croatia Finland Portugal
Finland  1.000   -       -       
Portugal 0.030   0.012   -       
Spain    0.076   0.034   1.000   

P value adjustment method: bonferroni 

Q1

Row

ANOVA rezultati: Q1

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   3.43  0.6865   1.001  0.419
Residuals            161 110.46  0.6861               

ONEWAY-test rezultati: Q1


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q1 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  1.1495 0.3366
      161               

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.03013623  0.03013623

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities 0.5153846 -0.2473500 1.2781193 0.3764947
Other-Arts and Humanities -0.1000000 -1.5301475 1.3301475 0.9999533
Science and Mathematics-Arts and Humanities 0.1068966 -0.4757870 0.6895801 0.9949273
Social Sciences-Arts and Humanities 0.2414634 -0.2894917 0.7724185 0.7782201
Technical Sciences and Engineering-Arts and Humanities 0.0707317 -0.4602234 0.6016868 0.9988966
Other-Health Sciences -0.6153846 -2.1456435 0.9148742 0.8550514
Science and Mathematics-Health Sciences -0.4084881 -1.2059155 0.3889394 0.6790642
Social Sciences-Health Sciences -0.2739212 -1.0343709 0.4865285 0.9040506
Technical Sciences and Engineering-Health Sciences -0.4446529 -1.2051026 0.3157968 0.5426712
Science and Mathematics-Other 0.2068966 -1.2420507 1.6558438 0.9984581
Social Sciences-Other 0.3414634 -1.0874667 1.7703935 0.9829326
Technical Sciences and Engineering-Other 0.1707317 -1.2581984 1.5996618 0.9993490
Social Sciences-Science and Mathematics 0.1345669 -0.4451225 0.7142562 0.9850158
Technical Sciences and Engineering-Science and Mathematics -0.0361648 -0.6158542 0.5435245 0.9999735
Technical Sciences and Engineering-Social Sciences -0.1707317 -0.6983991 0.3569357 0.9373430

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q1 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    0.8                 -               -    
Other                              1.0                 1.0             -    
Science and Mathematics            1.0                 1.0             1.0  
Social Sciences                    1.0                 1.0             1.0  
Technical Sciences and Engineering 1.0                 1.0             1.0  
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1.0                     -              
Technical Sciences and Engineering 1.0                     1.0            

P value adjustment method: bonferroni 

Q2

Row

ANOVA rezultati: Q2

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   5.93  1.1854   1.331  0.254
Residuals            161 143.34  0.8903               

ONEWAY-test rezultati: Q2


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q2 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   5  1.9468 0.08942 .
      161                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.03970655  0.03970655

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities 0.6076923 -0.2611852 1.4765698 0.3371345
Other-Arts and Humanities 0.3000000 -1.3291681 1.9291681 0.9948376
Science and Mathematics-Arts and Humanities 0.0931034 -0.5706669 0.7568738 0.9985850
Social Sciences-Arts and Humanities 0.3975610 -0.2072823 1.0024043 0.4084624
Technical Sciences and Engineering-Arts and Humanities 0.1292683 -0.4755750 0.7341116 0.9897056
Other-Health Sciences -0.3076923 -2.0509034 1.4355188 0.9957686
Science and Mathematics-Health Sciences -0.5145889 -1.4229870 0.3938093 0.5774041
Social Sciences-Health Sciences -0.2101313 -1.0764059 0.6561432 0.9817517
Technical Sciences and Engineering-Health Sciences -0.4784240 -1.3446986 0.3878506 0.6043924
Science and Mathematics-Other -0.2068966 -1.8574806 1.4436875 0.9991783
Social Sciences-Other 0.0975610 -1.5302204 1.7253423 0.9999783
Technical Sciences and Engineering-Other -0.1707317 -1.7985131 1.4570497 0.9996554
Social Sciences-Science and Mathematics 0.3044575 -0.3559019 0.9648170 0.7680600
Technical Sciences and Engineering-Science and Mathematics 0.0361648 -0.6241946 0.6965243 0.9999861
Technical Sciences and Engineering-Social Sciences -0.2682927 -0.8693908 0.3328054 0.7915659

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q2 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    0.68                -               -    
Other                              1.00                1.00            -    
Science and Mathematics            1.00                1.00            1.00 
Social Sciences                    0.90                1.00            1.00 
Technical Sciences and Engineering 1.00                1.00            1.00 
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1.00                    -              
Technical Sciences and Engineering 1.00                    1.00           

P value adjustment method: bonferroni 

Q3

Row

ANOVA rezultati: Q3

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   9.68   1.936   1.794  0.117
Residuals            161 173.75   1.079               

ONEWAY-test rezultati: Q3


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q3 and podaci$`Study field`
F = 1.8865, num df = 5.000, denom df = 20.029, p-value = 0.1418

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  1.5562 0.1754
      161               

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.05276755  0.05276755

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.2288462 -1.1854427 0.7277504 0.9828476
Other-Arts and Humanities 0.2583333 -1.5353103 2.0519769 0.9983929
Science and Mathematics-Arts and Humanities 0.1318966 -0.5988859 0.8626790 0.9953010
Social Sciences-Arts and Humanities 0.5347561 -0.1311502 1.2006624 0.1936032
Technical Sciences and Engineering-Arts and Humanities 0.3640244 -0.3018819 1.0299307 0.6150250
Other-Health Sciences 0.4871795 -1.4320205 2.4063795 0.9776760
Science and Mathematics-Health Sciences 0.3607427 -0.6393644 1.3608498 0.9035404
Social Sciences-Health Sciences 0.7636023 -0.1901286 1.7173331 0.1963612
Technical Sciences and Engineering-Health Sciences 0.5928705 -0.3608603 1.5466014 0.4731677
Science and Mathematics-Other -0.1264368 -1.9436585 1.6907849 0.9999544
Social Sciences-Other 0.2764228 -1.5156941 2.0685396 0.9977682
Technical Sciences and Engineering-Other 0.1056911 -1.6864258 1.8978079 0.9999799
Social Sciences-Science and Mathematics 0.4028595 -0.3241676 1.1298867 0.6009005
Technical Sciences and Engineering-Science and Mathematics 0.2321278 -0.4948993 0.9591550 0.9406541
Technical Sciences and Engineering-Social Sciences -0.1707317 -0.8325147 0.4910513 0.9760271

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q3 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1.00                -               -    
Other                              1.00                1.00            -    
Science and Mathematics            1.00                1.00            1.00 
Social Sciences                    0.33                0.33            1.00 
Technical Sciences and Engineering 1.00                1.00            1.00 
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1.00                    -              
Technical Sciences and Engineering 1.00                    1.00           

P value adjustment method: bonferroni 

Q4

Row

ANOVA rezultati: Q4

                      Df Sum Sq Mean Sq F value  Pr(>F)   
podaci$`Study field`   5  10.46  2.0929   3.482 0.00514 **
Residuals            161  96.78  0.6011                   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q4


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q4 and podaci$`Study field`
F = 3.5331, num df = 5.000, denom df = 19.346, p-value = 0.01955

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  1.4297 0.2163
      161               

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.09757459  0.09757459

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.0288462 -0.7427937 0.6851014 0.9999969
Other-Arts and Humanities -0.2083333 -1.5470037 1.1303370 0.9976710
Science and Mathematics-Arts and Humanities 0.5043103 -0.0411028 1.0497235 0.0877068
Social Sciences-Arts and Humanities 0.5884146 0.0914212 1.0854080 0.0103045
Technical Sciences and Engineering-Arts and Humanities 0.3445122 -0.1524812 0.8415056 0.3472372
Other-Health Sciences -0.1794872 -1.6118655 1.2528911 0.9991796
Science and Mathematics-Health Sciences 0.5331565 -0.2132648 1.2795778 0.3135470
Social Sciences-Health Sciences 0.6172608 -0.0945479 1.3290695 0.1298661
Technical Sciences and Engineering-Health Sciences 0.3733583 -0.3384504 1.0851671 0.6565047
Science and Mathematics-Other 0.7126437 -0.6436240 2.0689113 0.6547908
Social Sciences-Other 0.7967480 -0.5407829 2.1342789 0.5218663
Technical Sciences and Engineering-Other 0.5528455 -0.7846854 1.8903764 0.8400685
Social Sciences-Science and Mathematics 0.0841043 -0.4585061 0.6267147 0.9977155
Technical Sciences and Engineering-Science and Mathematics -0.1597981 -0.7024086 0.3828123 0.9575887
Technical Sciences and Engineering-Social Sciences -0.2439024 -0.7378185 0.2500136 0.7122152

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q4 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1.000               -               -    
Other                              1.000               1.000           -    
Science and Mathematics            0.127               0.615           1.000
Social Sciences                    0.012               0.201           1.000
Technical Sciences and Engineering 0.709               1.000           1.000
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1.000                   -              
Technical Sciences and Engineering 1.000                   1.000          

P value adjustment method: bonferroni 

Q5

Row

ANOVA rezultati: Q5

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   5.66   1.133    1.12  0.352
Residuals            161 162.88   1.012               

ONEWAY-test rezultati: Q5


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q5 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  1.8654 0.1032
      161               

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.03360383  0.03360383

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.3019231 -1.2281103 0.6242642 0.9354123
Other-Arts and Humanities 0.7750000 -0.9616253 2.5116253 0.7916748
Science and Mathematics-Arts and Humanities 0.2232759 -0.4842757 0.9308274 0.9434416
Social Sciences-Arts and Humanities 0.0189024 -0.6258353 0.6636402 0.9999994
Technical Sciences and Engineering-Arts and Humanities 0.2628049 -0.3819329 0.9075427 0.8478220
Other-Health Sciences 1.0769231 -0.7812673 2.9351135 0.5525056
Science and Mathematics-Health Sciences 0.5251989 -0.4431157 1.4935136 0.6230938
Social Sciences-Health Sciences 0.3208255 -0.6025871 1.2442381 0.9166648
Technical Sciences and Engineering-Health Sciences 0.5647280 -0.3586847 1.4881406 0.4919423
Science and Mathematics-Other -0.5517241 -2.3111780 1.2077298 0.9448917
Social Sciences-Other -0.7560976 -2.4912447 0.9790496 0.8077866
Technical Sciences and Engineering-Other -0.5121951 -2.2473423 1.2229520 0.9571683
Social Sciences-Science and Mathematics -0.2043734 -0.9082891 0.4995422 0.9600664
Technical Sciences and Engineering-Science and Mathematics 0.0395290 -0.6643866 0.7434447 0.9999843
Technical Sciences and Engineering-Social Sciences 0.2439024 -0.3968431 0.8846480 0.8816018

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q5 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1                   -               -    
Other                              1                   1               -    
Science and Mathematics            1                   1               1    
Social Sciences                    1                   1               1    
Technical Sciences and Engineering 1                   1               1    
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1                       -              
Technical Sciences and Engineering 1                       1              

P value adjustment method: bonferroni 

Q6

Row

ANOVA rezultati: Q6

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   5.14   1.027   1.016   0.41
Residuals            161 162.79   1.011               

ONEWAY-test rezultati: Q6


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q6 and podaci$`Study field`
F = 1.2814, num df = 5.000, denom df = 19.844, p-value = 0.311

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  0.8355 0.5263
      161               

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.03058679  0.03058679

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities 0.0903846 -0.8355649 1.0163341 0.9997577
Other-Arts and Humanities 0.8083333 -0.9278462 2.5445129 0.7606053
Science and Mathematics-Arts and Humanities 0.4750000 -0.2323699 1.1823699 0.3836957
Social Sciences-Arts and Humanities 0.2554878 -0.3890845 0.9000601 0.8624795
Technical Sciences and Engineering-Arts and Humanities 0.2067073 -0.4378650 0.8512796 0.9395786
Other-Health Sciences 0.7179487 -1.1397647 2.5756621 0.8747126
Science and Mathematics-Health Sciences 0.3846154 -0.5834507 1.3526815 0.8612917
Social Sciences-Health Sciences 0.1651032 -0.7580724 1.0882788 0.9954988
Technical Sciences and Engineering-Health Sciences 0.1163227 -0.8068529 1.0394983 0.9991573
Science and Mathematics-Other -0.3333333 -2.0923356 1.4256689 0.9940968
Social Sciences-Other -0.5528455 -2.2875473 1.1818562 0.9410987
Technical Sciences and Engineering-Other -0.6016260 -2.3363278 1.1330757 0.9172461
Social Sciences-Science and Mathematics -0.2195122 -0.9232472 0.4842228 0.9460803
Technical Sciences and Engineering-Science and Mathematics -0.2682927 -0.9720276 0.4354423 0.8809165
Technical Sciences and Engineering-Social Sciences -0.0487805 -0.6893616 0.5918006 0.9999287

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q6 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1.00                -               -    
Other                              1.00                1.00            -    
Science and Mathematics            0.82                1.00            1.00 
Social Sciences                    1.00                1.00            1.00 
Technical Sciences and Engineering 1.00                1.00            1.00 
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1.00                    -              
Technical Sciences and Engineering 1.00                    1.00           

P value adjustment method: bonferroni 

Q7

Row

ANOVA rezultati: Q7

                      Df Sum Sq Mean Sq F value  Pr(>F)   
podaci$`Study field`   5  13.68  2.7356   3.224 0.00841 **
Residuals            161 136.60  0.8484                   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q7


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q7 and podaci$`Study field`
F = 2.7834, num df = 5.000, denom df = 19.629, p-value = 0.04637

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  1.4274 0.2171
      161               

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.09101905  0.09101905

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities 0.8615385 0.0133497 1.7097272 0.0441741
Other-Arts and Humanities 1.0666667 -0.5237094 2.6570427 0.3850738
Science and Mathematics-Arts and Humanities 0.6068966 -0.0410688 1.2548619 0.0804943
Social Sciences-Arts and Humanities 0.4731707 -0.1172707 1.0636122 0.1955120
Technical Sciences and Engineering-Arts and Humanities 0.6439024 0.0534610 1.2343439 0.0238039
Other-Health Sciences 0.2051282 -1.4965754 1.9068318 0.9993204
Science and Mathematics-Health Sciences -0.2546419 -1.1414103 0.6321265 0.9618923
Social Sciences-Health Sciences -0.3883677 -1.2340155 0.4572800 0.7709826
Technical Sciences and Engineering-Health Sciences -0.2176360 -1.0632838 0.6280117 0.9762822
Science and Mathematics-Other -0.4597701 -2.0710523 1.1515120 0.9629068
Social Sciences-Other -0.5934959 -2.1825183 0.9955264 0.8897754
Technical Sciences and Engineering-Other -0.4227642 -2.0117866 1.1662581 0.9725708
Social Sciences-Science and Mathematics -0.1337258 -0.7783615 0.5109098 0.9910221
Technical Sciences and Engineering-Science and Mathematics 0.0370059 -0.6076298 0.6816415 0.9999824
Technical Sciences and Engineering-Social Sciences 0.1707317 -0.4160537 0.7575171 0.9597018

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q7 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    0.058               -               -    
Other                              0.822               1.000           -    
Science and Mathematics            0.115               1.000           1.000
Social Sciences                    0.331               1.000           1.000
Technical Sciences and Engineering 0.030               1.000           1.000
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1.000                   -              
Technical Sciences and Engineering 1.000                   1.000          

P value adjustment method: bonferroni 

Q8

Row

ANOVA rezultati: Q8

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   1.62  0.3248   0.447  0.815
Residuals            161 117.03  0.7269               

ONEWAY-test rezultati: Q8


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q8 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   5  1.9442 0.08983 .
      161                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.01368456  0.01368456

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities 0.0884615 -0.6966453 0.8735684 0.9995109
Other-Arts and Humanities -0.4500000 -1.9220959 1.0220959 0.9504137
Science and Mathematics-Arts and Humanities 0.1017241 -0.4980504 0.7014987 0.9964950
Social Sciences-Arts and Humanities -0.1085366 -0.6550654 0.4379923 0.9926596
Technical Sciences and Engineering-Arts and Humanities -0.0841463 -0.6306752 0.4623825 0.9977874
Other-Health Sciences -0.5384615 -2.1136053 1.0366822 0.9218388
Science and Mathematics-Health Sciences 0.0132626 -0.8075546 0.8340798 1.0000000
Social Sciences-Health Sciences -0.1969981 -0.9797530 0.5857567 0.9785075
Technical Sciences and Engineering-Health Sciences -0.1726079 -0.9553627 0.6101470 0.9881255
Science and Mathematics-Other 0.5517241 -0.9397230 2.0431713 0.8937284
Social Sciences-Other 0.3414634 -1.1293795 1.8123063 0.9850104
Technical Sciences and Engineering-Other 0.3658537 -1.1049892 1.8366965 0.9795955
Social Sciences-Science and Mathematics -0.2102607 -0.8069532 0.3864318 0.9119136
Technical Sciences and Engineering-Science and Mathematics -0.1858705 -0.7825630 0.4108220 0.9463820
Technical Sciences and Engineering-Social Sciences 0.0243902 -0.5187545 0.5675350 0.9999948

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q8 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1                   -               -    
Other                              1                   1               -    
Science and Mathematics            1                   1               1    
Social Sciences                    1                   1               1    
Technical Sciences and Engineering 1                   1               1    
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1                       -              
Technical Sciences and Engineering 1                       1              

P value adjustment method: bonferroni 

Q9

Row

ANOVA rezultati: Q9

                      Df Sum Sq Mean Sq F value Pr(>F)  
podaci$`Study field`   5  18.65   3.730   2.809 0.0184 *
Residuals            161 213.82   1.328                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q9


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q9 and podaci$`Study field`
F = 6.8259, num df = 5.000, denom df = 20.297, p-value = 0.0006984

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value   Pr(>F)   
group   5  4.1315 0.001476 **
      161                    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.08022991  0.08022991

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.5365385 -1.5977243 0.5246474 0.6911437
Other-Arts and Humanities 1.5916667 -0.3980846 3.5814179 0.1971873
Science and Mathematics-Arts and Humanities -0.5922414 -1.4029238 0.2184410 0.2888568
Social Sciences-Arts and Humanities -0.2213415 -0.9600545 0.5173716 0.9543911
Technical Sciences and Engineering-Arts and Humanities -0.0018293 -0.7405423 0.7368838 1.0000000
Other-Health Sciences 2.1282051 -0.0008302 4.2572405 0.0501523
Science and Mathematics-Health Sciences -0.0557029 -1.1651565 1.0537507 0.9999910
Social Sciences-Health Sciences 0.3151970 -0.7428098 1.3732038 0.9554774
Technical Sciences and Engineering-Health Sciences 0.5347092 -0.5232976 1.5927160 0.6915224
Science and Mathematics-Other -2.1839080 -4.1998153 -0.1680008 0.0253173
Social Sciences-Other -1.8130081 -3.8010657 0.1750495 0.0959103
Technical Sciences and Engineering-Other -1.5934959 -3.5815535 0.3945617 0.1953403
Social Sciences-Science and Mathematics 0.3708999 -0.4356166 1.1774164 0.7699672
Technical Sciences and Engineering-Science and Mathematics 0.5904121 -0.2161044 1.3969286 0.2866306
Technical Sciences and Engineering-Social Sciences 0.2195122 -0.5146267 0.9536511 0.9547889

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q9 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1.000               -               -    
Other                              0.335               0.067           -    
Science and Mathematics            0.550               1.000           0.032
Social Sciences                    1.000               1.000           0.140
Technical Sciences and Engineering 1.000               1.000           0.331
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1.000                   -              
Technical Sciences and Engineering 0.544                   1.000          

P value adjustment method: bonferroni 

Q10

Row

ANOVA rezultati: Q10

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   3.58   0.717   0.513  0.766
Residuals            161 225.07   1.398               

ONEWAY-test rezultati: Q10


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q10 and podaci$`Study field`
F = 0.50894, num df = 5.000, denom df = 18.964, p-value = 0.766

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  0.5199  0.761
      161               

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.01567737  0.01567737

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities 0.2115385 -0.8772253 1.3003023 0.9933688
Other-Arts and Humanities 0.7500000 -1.2914606 2.7914606 0.8964891
Science and Mathematics-Arts and Humanities 0.1982759 -0.6334744 1.0300261 0.9831174
Social Sciences-Arts and Humanities 0.3353659 -0.4225448 1.0932765 0.7975364
Technical Sciences and Engineering-Arts and Humanities 0.0914634 -0.6664472 0.8493740 0.9993167
Other-Health Sciences 0.5384615 -1.6459029 2.7228260 0.9803951
Science and Mathematics-Health Sciences -0.0132626 -1.1515486 1.1250234 1.0000000
Social Sciences-Health Sciences 0.1238274 -0.9616747 1.2093295 0.9994805
Technical Sciences and Engineering-Health Sciences -0.1200750 -1.2055772 0.9654271 0.9995529
Science and Mathematics-Other -0.5517241 -2.6200205 1.5165722 0.9722552
Social Sciences-Other -0.4146341 -2.4543571 1.6250888 0.9918232
Technical Sciences and Engineering-Other -0.6585366 -2.6982596 1.3811864 0.9378958
Social Sciences-Science and Mathematics 0.1370900 -0.6903862 0.9645662 0.9968636
Technical Sciences and Engineering-Science and Mathematics -0.1068124 -0.9342886 0.7206637 0.9990527
Technical Sciences and Engineering-Social Sciences -0.2439024 -0.9971201 0.5093152 0.9371420

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q10 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1                   -               -    
Other                              1                   1               -    
Science and Mathematics            1                   1               1    
Social Sciences                    1                   1               1    
Technical Sciences and Engineering 1                   1               1    
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1                       -              
Technical Sciences and Engineering 1                       1              

P value adjustment method: bonferroni 

Q11

Row

ANOVA rezultati: Q11

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   4.75  0.9491   0.719   0.61
Residuals            161 212.66  1.3208               

ONEWAY-test rezultati: Q11


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q11 and podaci$`Study field`
F = 0.69173, num df = 5.000, denom df = 18.966, p-value = 0.6359

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  0.9718 0.4368
      161               

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.02182728  0.02182728

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities 0.2826923 -0.7756102 1.3409948 0.9720893
Other-Arts and Humanities -0.0250000 -2.0093449 1.9593449 1.0000000
Science and Mathematics-Arts and Humanities -0.1629310 -0.9714107 0.6455487 0.9921438
Social Sciences-Arts and Humanities -0.3176829 -1.0543888 0.4190230 0.8145473
Technical Sciences and Engineering-Arts and Humanities -0.0006098 -0.7373157 0.7360961 1.0000000
Other-Health Sciences -0.3076923 -2.4309429 1.8155583 0.9983447
Science and Mathematics-Health Sciences -0.4456233 -1.5520625 0.6608158 0.8542541
Social Sciences-Health Sciences -0.6003752 -1.6555073 0.4547569 0.5725958
Technical Sciences and Engineering-Health Sciences -0.2833021 -1.3384342 0.7718300 0.9714566
Science and Mathematics-Other -0.1379310 -2.1483609 1.8724988 0.9999575
Social Sciences-Other -0.2926829 -2.2753388 1.6899730 0.9981910
Technical Sciences and Engineering-Other 0.0243902 -1.9582657 2.0070461 1.0000000
Social Sciences-Science and Mathematics -0.1547519 -0.9590771 0.6495733 0.9936640
Technical Sciences and Engineering-Science and Mathematics 0.1623213 -0.6420039 0.9666464 0.9920927
Technical Sciences and Engineering-Social Sciences 0.3170732 -0.4150710 1.0492174 0.8117964

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q11 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1                   -               -    
Other                              1                   1               -    
Science and Mathematics            1                   1               1    
Social Sciences                    1                   1               1    
Technical Sciences and Engineering 1                   1               1    
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1                       -              
Technical Sciences and Engineering 1                       1              

P value adjustment method: bonferroni 

Q12

Row

ANOVA rezultati: Q12

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   9.07   1.815    1.22  0.302
Residuals            161 239.42   1.487               

ONEWAY-test rezultati: Q12


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q12 and podaci$`Study field`
F = 1.1779, num df = 5.000, denom df = 20.492, p-value = 0.3538

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  1.5085   0.19
      161               

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.03651787  0.03651787

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.3903846 -1.5133032 0.7325340 0.9164595
Other-Arts and Humanities -0.1083333 -2.2138351 1.9971684 0.9999898
Science and Mathematics-Arts and Humanities -0.4301724 -1.2880149 0.4276701 0.6986012
Social Sciences-Arts and Humanities -0.6530488 -1.4347352 0.1286377 0.1590696
Technical Sciences and Engineering-Arts and Humanities -0.3847561 -1.1664426 0.3969304 0.7150410
Other-Health Sciences 0.2820513 -1.9708372 2.5349397 0.9991831
Science and Mathematics-Health Sciences -0.0397878 -1.2137821 1.1342065 0.9999987
Social Sciences-Health Sciences -0.2626642 -1.3822188 0.8568904 0.9842824
Technical Sciences and Engineering-Health Sciences 0.0056285 -1.1139261 1.1251831 1.0000000
Science and Mathematics-Other -0.3218391 -2.4550184 1.8113402 0.9979920
Social Sciences-Other -0.5447154 -2.6484250 1.5589941 0.9756398
Technical Sciences and Engineering-Other -0.2764228 -2.3801323 1.8272868 0.9989675
Social Sciences-Science and Mathematics -0.2228764 -1.0763107 0.6305579 0.9747102
Technical Sciences and Engineering-Science and Mathematics 0.0454163 -0.8080180 0.8988506 0.9999880
Technical Sciences and Engineering-Social Sciences 0.2682927 -0.5085536 1.0451389 0.9186095

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q12 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1.00                -               -    
Other                              1.00                1.00            -    
Science and Mathematics            1.00                1.00            1.00 
Social Sciences                    0.26                1.00            1.00 
Technical Sciences and Engineering 1.00                1.00            1.00 
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1.00                    -              
Technical Sciences and Engineering 1.00                    1.00           

P value adjustment method: bonferroni 

Q13

Row

ANOVA rezultati: Q13

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5  11.15   2.231   1.335  0.252
Residuals            161 269.03   1.671               

ONEWAY-test rezultati: Q13


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q13 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   5  2.0476 0.07475 .
      161                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.03980949  0.03980949

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.7576923 -1.9480242 0.4326396 0.4457377
Other-Arts and Humanities 0.5500000 -1.6819035 2.7819035 0.9804237
Science and Mathematics-Arts and Humanities -0.1051724 -1.0145147 0.8041698 0.9994444
Social Sciences-Arts and Humanities 0.0865854 -0.7420289 0.9151996 0.9996616
Technical Sciences and Engineering-Arts and Humanities -0.3524390 -1.1810533 0.4761752 0.8231508
Other-Health Sciences 1.3076923 -1.0804462 3.6958308 0.6132896
Science and Mathematics-Health Sciences 0.6525199 -0.5919540 1.8969938 0.6568507
Social Sciences-Health Sciences 0.8442777 -0.3424883 2.0310437 0.3180281
Technical Sciences and Engineering-Health Sciences 0.4052533 -0.7815127 1.5920193 0.9221761
Science and Mathematics-Other -0.6551724 -2.9164151 1.6060703 0.9604141
Social Sciences-Other -0.4634146 -2.6934184 1.7665891 0.9909492
Technical Sciences and Engineering-Other -0.9024390 -3.1324428 1.3275647 0.8517231
Social Sciences-Science and Mathematics 0.1917578 -0.7129116 1.0964272 0.9900877
Technical Sciences and Engineering-Science and Mathematics -0.2472666 -1.1519360 0.6574028 0.9691668
Technical Sciences and Engineering-Social Sciences -0.4390244 -1.2625079 0.3844591 0.6404700

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q13 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1.00                -               -    
Other                              1.00                1.00            -    
Science and Mathematics            1.00                1.00            1.00 
Social Sciences                    1.00                0.63            1.00 
Technical Sciences and Engineering 1.00                1.00            1.00 
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1.00                    -              
Technical Sciences and Engineering 1.00                    1.00           

P value adjustment method: bonferroni 

Q14

Row

ANOVA rezultati: Q14

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   8.24   1.649   1.251  0.288
Residuals            161 212.24   1.318               

ONEWAY-test rezultati: Q14


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q14 and podaci$`Study field`
F = 1.0729, num df = 5.000, denom df = 19.215, p-value = 0.4059

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   5  2.0843 0.06999 .
      161                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.03738687  0.03738687

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities 0.3288462 -0.7284110 1.3861033 0.9467116
Other-Arts and Humanities 0.1750000 -1.8073849 2.1573849 0.9998522
Science and Mathematics-Arts and Humanities 0.4508621 -0.3568190 1.2585432 0.5931183
Social Sciences-Arts and Humanities 0.5652439 -0.1707343 1.3012221 0.2365362
Technical Sciences and Engineering-Arts and Humanities 0.5164634 -0.2195148 1.2524416 0.3333688
Other-Health Sciences -0.1538462 -2.2749995 1.9673072 0.9999440
Science and Mathematics-Health Sciences 0.1220159 -0.9833303 1.2273622 0.9995575
Social Sciences-Health Sciences 0.2363977 -0.8176921 1.2904876 0.9871789
Technical Sciences and Engineering-Health Sciences 0.1876173 -0.8664726 1.2417071 0.9955989
Science and Mathematics-Other 0.2758621 -1.7325820 2.2843061 0.9987211
Social Sciences-Other 0.3902439 -1.5904536 2.3709414 0.9929246
Technical Sciences and Engineering-Other 0.3414634 -1.6392341 2.3221609 0.9962139
Social Sciences-Science and Mathematics 0.1143818 -0.6891488 0.9179125 0.9984809
Technical Sciences and Engineering-Science and Mathematics 0.0656013 -0.7379293 0.8691320 0.9998995
Technical Sciences and Engineering-Social Sciences -0.0487805 -0.7802015 0.6826405 0.9999630

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q14 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1.00                -               -    
Other                              1.00                1.00            -    
Science and Mathematics            1.00                1.00            1.00 
Social Sciences                    0.42                1.00            1.00 
Technical Sciences and Engineering 0.67                1.00            1.00 
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1.00                    -              
Technical Sciences and Engineering 1.00                    1.00           

P value adjustment method: bonferroni 

Q15

Row

ANOVA rezultati: Q15

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   7.45   1.490   1.002  0.419
Residuals            161 239.50   1.488               

ONEWAY-test rezultati: Q15


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q15 and podaci$`Study field`
F = 1.0034, num df = 5.000, denom df = 20.584, p-value = 0.4405

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  0.8088 0.5449
      161               

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.03017216  0.03017216

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.3769231 -1.5000259 0.7461797 0.9273752
Other-Arts and Humanities 0.0333333 -2.0725138 2.1391805 1.0000000
Science and Mathematics-Arts and Humanities -0.5413793 -1.3993625 0.3166039 0.4558902
Social Sciences-Arts and Humanities -0.1780488 -0.9598635 0.6037659 0.9862553
Technical Sciences and Engineering-Arts and Humanities -0.4707317 -1.2525464 0.3110830 0.5097393
Other-Health Sciences 0.4102564 -1.8430016 2.6635144 0.9951041
Science and Mathematics-Health Sciences -0.1644562 -1.3386431 1.0097306 0.9985949
Social Sciences-Health Sciences 0.1988743 -0.9208640 1.3186125 0.9956431
Technical Sciences and Engineering-Health Sciences -0.0938086 -1.2135469 1.0259296 0.9998858
Science and Mathematics-Other -0.5747126 -2.7082419 1.5588166 0.9710515
Social Sciences-Other -0.2113821 -2.3154368 1.8926726 0.9997209
Technical Sciences and Engineering-Other -0.5040650 -2.6081197 1.5999896 0.9827387
Social Sciences-Science and Mathematics 0.3633305 -0.4902438 1.2169048 0.8226848
Technical Sciences and Engineering-Science and Mathematics 0.0706476 -0.7829267 0.9242219 0.9998925
Technical Sciences and Engineering-Social Sciences -0.2926829 -1.0696566 0.4842908 0.8861642

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q15 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1                   -               -    
Other                              1                   1               -    
Science and Mathematics            1                   1               1    
Social Sciences                    1                   1               1    
Technical Sciences and Engineering 1                   1               1    
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1                       -              
Technical Sciences and Engineering 1                       1              

P value adjustment method: bonferroni 

Q16

Row

ANOVA rezultati: Q16

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   5.56   1.113   0.968  0.439
Residuals            161 184.99   1.149               

ONEWAY-test rezultati: Q16


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q16 and podaci$`Study field`
F = 0.88618, num df = 5.000, denom df = 18.531, p-value = 0.5099

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  0.7086 0.6178
      161               

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.02919531  0.02919531

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.3576923 -1.3447500 0.6293653 0.9017967
Other-Arts and Humanities -0.3833333 -2.2340923 1.4674256 0.9910860
Science and Mathematics-Arts and Humanities 0.1913793 -0.5626736 0.9454322 0.9776932
Social Sciences-Arts and Humanities 0.0963415 -0.5907694 0.7834524 0.9985875
Technical Sciences and Engineering-Arts and Humanities 0.2914634 -0.3956475 0.9785743 0.8248066
Other-Health Sciences -0.0256410 -2.0059545 1.9546725 1.0000000
Science and Mathematics-Health Sciences 0.5490716 -0.4828821 1.5810254 0.6424531
Social Sciences-Health Sciences 0.4540338 -0.5300669 1.4381345 0.7675352
Technical Sciences and Engineering-Health Sciences 0.6491557 -0.3349450 1.6332564 0.4043245
Science and Mathematics-Other 0.5747126 -1.3003752 2.4498005 0.9498630
Social Sciences-Other 0.4796748 -1.3695088 2.3288584 0.9754463
Technical Sciences and Engineering-Other 0.6747967 -1.1743869 2.5239804 0.8991289
Social Sciences-Science and Mathematics -0.0950378 -0.8452159 0.6551402 0.9991348
Technical Sciences and Engineering-Science and Mathematics 0.1000841 -0.6500939 0.8502621 0.9988886
Technical Sciences and Engineering-Social Sciences 0.1951220 -0.4877344 0.8779783 0.9626849

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q16 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1.00                -               -    
Other                              1.00                1.00            -    
Science and Mathematics            1.00                1.00            1.00 
Social Sciences                    1.00                1.00            1.00 
Technical Sciences and Engineering 1.00                0.88            1.00 
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1.00                    -              
Technical Sciences and Engineering 1.00                    1.00           

P value adjustment method: bonferroni 

Q17

Row

ANOVA rezultati: Q17

                      Df Sum Sq Mean Sq F value  Pr(>F)   
podaci$`Study field`   5  20.15   4.030   3.338 0.00677 **
Residuals            161 194.37   1.207                   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q17


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q17 and podaci$`Study field`
F = 3.4374, num df = 5.000, denom df = 18.481, p-value = 0.02287

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   5  2.2885 0.04837 *
      161                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                        eta.sq eta.sq.part
podaci$`Study field` 0.0939239   0.0939239

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.9346154 -1.9463864 0.0771556 0.0882675
Other-Arts and Humanities -1.2166667 -3.1137638 0.6804305 0.4370289
Science and Mathematics-Arts and Humanities -0.7224138 -1.4953462 0.0505186 0.0816509
Social Sciences-Arts and Humanities -0.3304878 -1.0348022 0.3738266 0.7545324
Technical Sciences and Engineering-Arts and Humanities -0.7939024 -1.4982168 -0.0895881 0.0172821
Other-Health Sciences -0.2820513 -2.3119466 1.7478441 0.9986478
Science and Mathematics-Health Sciences 0.2122016 -0.8455896 1.2699927 0.9923082
Social Sciences-Health Sciences 0.6041276 -0.4046124 1.6128676 0.5157978
Technical Sciences and Engineering-Health Sciences 0.1407129 -0.8680270 1.1494529 0.9986221
Science and Mathematics-Other 0.4942529 -1.4277823 2.4162880 0.9763669
Social Sciences-Other 0.8861789 -1.0093035 2.7816612 0.7573866
Technical Sciences and Engineering-Other 0.4227642 -1.4727181 2.3182466 0.9874948
Social Sciences-Science and Mathematics 0.3919260 -0.3770346 1.1608865 0.6837521
Technical Sciences and Engineering-Science and Mathematics -0.0714886 -0.8404492 0.6974719 0.9998093
Technical Sciences and Engineering-Social Sciences -0.4634146 -1.1633679 0.2365386 0.4000747

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q17 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    0.127               -               -    
Other                              0.993               1.000           -    
Science and Mathematics            0.117               1.000           1.000
Social Sciences                    1.000               1.000           1.000
Technical Sciences and Engineering 0.021               1.000           1.000
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1.000                   -              
Technical Sciences and Engineering 1.000                   0.869          

P value adjustment method: bonferroni 

Q18

Row

ANOVA rezultati: Q18

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   6.24   1.248   1.006  0.416
Residuals            161 199.69   1.240               

ONEWAY-test rezultati: Q18


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q18 and podaci$`Study field`
F = 0.95773, num df = 5.00, denom df = 18.67, p-value = 0.4681

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  1.3424 0.2491
      161               

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.03029812  0.03029812

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.0307692 -1.0562985 0.9947600 0.9999993
Other-Arts and Humanities -0.1333333 -2.0562276 1.7895609 0.9999552
Science and Mathematics-Arts and Humanities -0.2827586 -1.0662015 0.5006843 0.9033192
Social Sciences-Arts and Humanities 0.2243902 -0.4895015 0.9382820 0.9443518
Technical Sciences and Engineering-Arts and Humanities -0.2390244 -0.9529162 0.4748674 0.9280577
Other-Health Sciences -0.1025641 -2.1600624 1.9549342 0.9999913
Science and Mathematics-Health Sciences -0.2519894 -1.3241646 0.8201858 0.9841581
Social Sciences-Health Sciences 0.2551595 -0.7672976 1.2776165 0.9792964
Technical Sciences and Engineering-Health Sciences -0.2082552 -1.2307122 0.8142019 0.9917484
Science and Mathematics-Other -0.1494253 -2.0975967 1.7987461 0.9999262
Social Sciences-Other 0.3577236 -1.5635339 2.2789811 0.9945631
Technical Sciences and Engineering-Other -0.1056911 -2.0269486 1.8155665 0.9999858
Social Sciences-Science and Mathematics 0.5071489 -0.2722682 1.2865659 0.4202172
Technical Sciences and Engineering-Science and Mathematics 0.0437342 -0.7356828 0.8231513 0.9999843
Technical Sciences and Engineering-Social Sciences -0.4634146 -1.1728860 0.2460567 0.4157515

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q18 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1.00                -               -    
Other                              1.00                1.00            -    
Science and Mathematics            1.00                1.00            1.00 
Social Sciences                    1.00                1.00            1.00 
Technical Sciences and Engineering 1.00                1.00            1.00 
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    0.94                    -              
Technical Sciences and Engineering 1.00                    0.92           

P value adjustment method: bonferroni 

Q19

Row

ANOVA rezultati: Q19

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5  12.35   2.470    1.66  0.147
Residuals            161 239.55   1.488               

ONEWAY-test rezultati: Q19


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q19 and podaci$`Study field`
F = 1.4909, num df = 5.000, denom df = 18.643, p-value = 0.2402

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  0.3439 0.8856
      161               

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.04902909  0.04902909

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.1576923 -1.2809319 0.9655473 0.9985789
Other-Arts and Humanities -0.1833333 -2.2894370 1.9227703 0.9998621
Science and Mathematics-Arts and Humanities -0.0913793 -0.9494670 0.7667084 0.9996287
Social Sciences-Arts and Humanities 0.2475610 -0.5343489 1.0294709 0.9426647
Technical Sciences and Engineering-Arts and Humanities 0.5890244 -0.1928855 1.3709343 0.2562877
Other-Health Sciences -0.0256410 -2.2791735 2.2278915 1.0000000
Science and Mathematics-Health Sciences 0.0663130 -1.1080169 1.2406429 0.9999838
Social Sciences-Health Sciences 0.4052533 -0.7146214 1.5251279 0.9023271
Technical Sciences and Engineering-Health Sciences 0.7467167 -0.3731579 1.8665913 0.3918437
Science and Mathematics-Other 0.0919540 -2.0418351 2.2257432 0.9999958
Social Sciences-Other 0.4308943 -1.6734167 2.5352053 0.9915434
Technical Sciences and Engineering-Other 0.7723577 -1.3319532 2.8766687 0.8968639
Social Sciences-Science and Mathematics 0.3389403 -0.5147380 1.1926186 0.8616324
Technical Sciences and Engineering-Science and Mathematics 0.6804037 -0.1732746 1.5340820 0.2005704
Technical Sciences and Engineering-Social Sciences 0.3414634 -0.4356049 1.1185317 0.8022285

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q19 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1.00                -               -    
Other                              1.00                1.00            -    
Science and Mathematics            1.00                1.00            1.00 
Social Sciences                    1.00                1.00            1.00 
Technical Sciences and Engineering 0.47                0.84            1.00 
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1.00                    -              
Technical Sciences and Engineering 0.34                    1.00           

P value adjustment method: bonferroni 

Q20

Row

ANOVA rezultati: Q20

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   8.73   1.745   1.429  0.216
Residuals            161 196.54   1.221               

ONEWAY-test rezultati: Q20


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q20 and podaci$`Study field`
F = 1.2092, num df = 5.000, denom df = 20.264, p-value = 0.3403

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  1.3036  0.265
      161               

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.04250665  0.04250665

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.1942308 -1.2116528 0.8231913 0.9938901
Other-Arts and Humanities -0.0916667 -1.9993597 1.8160263 0.9999928
Science and Mathematics-Arts and Humanities -0.4594828 -1.2367322 0.3177667 0.5304351
Social Sciences-Arts and Humanities -0.3030488 -1.0112970 0.4051994 0.8194481
Technical Sciences and Engineering-Arts and Humanities -0.6201220 -1.3283701 0.0881262 0.1228720
Other-Health Sciences 0.1025641 -1.9386688 2.1437970 0.9999909
Science and Mathematics-Health Sciences -0.2652520 -1.3289512 0.7984472 0.9793653
Social Sciences-Health Sciences -0.1088180 -1.1231921 0.9055561 0.9996152
Technical Sciences and Engineering-Health Sciences -0.4258912 -1.4402653 0.5884829 0.8309802
Science and Mathematics-Other -0.3678161 -2.3005864 1.5649542 0.9939791
Social Sciences-Other -0.2113821 -2.1174513 1.6946871 0.9995473
Technical Sciences and Engineering-Other -0.5284553 -2.4345245 1.3776139 0.9672104
Social Sciences-Science and Mathematics 0.1564340 -0.6168214 0.9296894 0.9920026
Technical Sciences and Engineering-Science and Mathematics -0.1606392 -0.9338946 0.6126162 0.9909622
Technical Sciences and Engineering-Social Sciences -0.3170732 -1.0209359 0.3867895 0.7850628

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q20 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1.00                -               -    
Other                              1.00                1.00            -    
Science and Mathematics            1.00                1.00            1.00 
Social Sciences                    1.00                1.00            1.00 
Technical Sciences and Engineering 0.19                1.00            1.00 
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1.00                    -              
Technical Sciences and Engineering 1.00                    1.00           

P value adjustment method: bonferroni 

Q21

Row

ANOVA rezultati: Q21

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5  10.05   2.009   1.762  0.124
Residuals            161 183.56   1.140               

ONEWAY-test rezultati: Q21


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q21 and podaci$`Study field`
F = 1.8468, num df = 5.000, denom df = 19.925, p-value = 0.1495

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value   Pr(>F)   
group   5  3.2045 0.008729 **
      161                    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.05188415  0.05188415

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.1500000 -1.1332407 0.8332407 0.9978825
Other-Arts and Humanities -0.8166667 -2.6602687 1.0269354 0.7967870
Science and Mathematics-Arts and Humanities -0.4258621 -1.1769990 0.3252749 0.5764956
Social Sciences-Arts and Humanities -0.1012195 -0.7856733 0.5832343 0.9981755
Technical Sciences and Engineering-Arts and Humanities -0.5890244 -1.2734782 0.0954294 0.1355706
Other-Health Sciences -0.6666667 -2.6393222 1.3059889 0.9253247
Science and Mathematics-Health Sciences -0.2758621 -1.3038252 0.7521011 0.9715218
Social Sciences-Health Sciences 0.0487805 -0.9315147 1.0290756 0.9999914
Technical Sciences and Engineering-Health Sciences -0.4390244 -1.4193195 0.5412708 0.7892007
Science and Mathematics-Other 0.3908046 -1.4770322 2.2586414 0.9906615
Social Sciences-Other 0.7154472 -1.1265856 2.5574800 0.8723750
Technical Sciences and Engineering-Other 0.2276423 -1.6143905 2.0696751 0.9992330
Social Sciences-Science and Mathematics 0.3246426 -0.4226345 1.0719196 0.8097672
Technical Sciences and Engineering-Science and Mathematics -0.1631623 -0.9104394 0.5841148 0.9886488
Technical Sciences and Engineering-Social Sciences -0.4878049 -1.1680206 0.1924108 0.3091384

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q21 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1.00                -               -    
Other                              1.00                1.00            -    
Science and Mathematics            1.00                1.00            1.00 
Social Sciences                    1.00                1.00            1.00 
Technical Sciences and Engineering 0.21                1.00            1.00 
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1.00                    -              
Technical Sciences and Engineering 1.00                    0.60           

P value adjustment method: bonferroni 

Q22

Row

ANOVA rezultati: Q22

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   3.55  0.7094   0.651  0.661
Residuals            161 175.41  1.0895               

ONEWAY-test rezultati: Q22


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q22 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   5  2.4122 0.03856 *
      161                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.01981954  0.01981954

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities 0.2903846 -0.6707844 1.2515536 0.9527860
Other-Arts and Humanities 0.6750000 -1.1272171 2.4772171 0.8886074
Science and Mathematics-Arts and Humanities 0.2956897 -0.4385859 1.0299652 0.8543309
Social Sciences-Arts and Humanities 0.3091463 -0.3599430 0.9782356 0.7664365
Technical Sciences and Engineering-Arts and Humanities 0.3335366 -0.3355527 1.0026259 0.7039042
Other-Health Sciences 0.3846154 -1.5437583 2.3129890 0.9925115
Science and Mathematics-Health Sciences 0.0053050 -0.9995825 1.0101926 1.0000000
Social Sciences-Health Sciences 0.0187617 -0.9395279 0.9770513 0.9999999
Technical Sciences and Engineering-Health Sciences 0.0431520 -0.9151376 1.0014416 0.9999948
Science and Mathematics-Other -0.3793103 -2.2052182 1.4465975 0.9909634
Social Sciences-Other -0.3658537 -2.1665367 1.4348294 0.9918427
Technical Sciences and Engineering-Other -0.3414634 -2.1421465 1.4592197 0.9940781
Social Sciences-Science and Mathematics 0.0134567 -0.7170456 0.7439590 0.9999999
Technical Sciences and Engineering-Science and Mathematics 0.0378469 -0.6926554 0.7683492 0.9999895
Technical Sciences and Engineering-Social Sciences 0.0243902 -0.6405561 0.6893365 0.9999981

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q22 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1                   -               -    
Other                              1                   1               -    
Science and Mathematics            1                   1               1    
Social Sciences                    1                   1               1    
Technical Sciences and Engineering 1                   1               1    
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1                       -              
Technical Sciences and Engineering 1                       1              

P value adjustment method: bonferroni 

Q23

Row

ANOVA rezultati: Q23

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   7.12   1.424   0.983   0.43
Residuals            161 233.24   1.449               

ONEWAY-test rezultati: Q23


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q23 and podaci$`Study field`
F = 1.1444, num df = 5.000, denom df = 20.418, p-value = 0.3693

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  1.0064 0.4158
      161               

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.02962076  0.02962076

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.6115385 -1.7198766 0.4967997 0.6053702
Other-Arts and Humanities 0.1833333 -1.8948297 2.2614964 0.9998527
Science and Mathematics-Arts and Humanities -0.5293103 -1.3760143 0.3173936 0.4666671
Social Sciences-Arts and Humanities -0.3207317 -1.0922684 0.4508050 0.8367932
Technical Sciences and Engineering-Arts and Humanities -0.2475610 -1.0190977 0.5239758 0.9394413
Other-Health Sciences 0.7948718 -1.4287643 3.0185078 0.9068525
Science and Mathematics-Health Sciences 0.0822281 -1.0765225 1.2409788 0.9999497
Social Sciences-Health Sciences 0.2908068 -0.8142111 1.3958246 0.9738446
Technical Sciences and Engineering-Health Sciences 0.3639775 -0.7410404 1.4689953 0.9326409
Science and Mathematics-Other -0.7126437 -2.8181249 1.3928376 0.9248680
Social Sciences-Other -0.5040650 -2.5804592 1.5723291 0.9816876
Technical Sciences and Engineering-Other -0.4308943 -2.5072885 1.6454999 0.9910069
Social Sciences-Science and Mathematics 0.2085786 -0.6337743 1.0509316 0.9800010
Technical Sciences and Engineering-Science and Mathematics 0.2817494 -0.5606036 1.1241023 0.9283500
Technical Sciences and Engineering-Social Sciences 0.0731707 -0.6935886 0.8399301 0.9997832

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q23 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1                   -               -    
Other                              1                   1               -    
Science and Mathematics            1                   1               1    
Social Sciences                    1                   1               1    
Technical Sciences and Engineering 1                   1               1    
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1                       -              
Technical Sciences and Engineering 1                       1              

P value adjustment method: bonferroni 

Q24

Row

ANOVA rezultati: Q24

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   4.44  0.8877   0.603  0.698
Residuals            161 236.96  1.4718               

ONEWAY-test rezultati: Q24


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q24 and podaci$`Study field`
F = 0.48607, num df = 5.000, denom df = 19.015, p-value = 0.7824

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  1.0814 0.3727
      161               

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.01838583  0.01838583

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.3019231 -1.4190723 0.8152262 0.9706340
Other-Arts and Humanities -0.2250000 -2.3196842 1.8696842 0.9996127
Science and Mathematics-Arts and Humanities -0.3974138 -1.2508489 0.4560213 0.7604694
Social Sciences-Arts and Humanities -0.3957317 -1.1734020 0.3819386 0.6852317
Technical Sciences and Engineering-Arts and Humanities -0.3713415 -1.1490118 0.4063289 0.7405615
Other-Health Sciences 0.0769231 -2.1643905 2.3182367 0.9999986
Science and Mathematics-Health Sciences -0.0954907 -1.2634533 1.0724718 0.9998988
Social Sciences-Health Sciences -0.0938086 -1.2076112 1.0199939 0.9998828
Technical Sciences and Engineering-Health Sciences -0.0694184 -1.1832210 1.0443842 0.9999736
Science and Mathematics-Other -0.1724138 -2.2946333 1.9498057 0.9999019
Social Sciences-Other -0.1707317 -2.2636329 1.9221695 0.9998999
Technical Sciences and Engineering-Other -0.1463415 -2.2392427 1.9465597 0.9999533
Social Sciences-Science and Mathematics 0.0016821 -0.8473675 0.8507316 1.0000000
Technical Sciences and Engineering-Science and Mathematics 0.0260723 -0.8229772 0.8751219 0.9999992
Technical Sciences and Engineering-Social Sciences 0.0243902 -0.7484647 0.7972452 0.9999991

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q24 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1                   -               -    
Other                              1                   1               -    
Science and Mathematics            1                   1               1    
Social Sciences                    1                   1               1    
Technical Sciences and Engineering 1                   1               1    
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1                       -              
Technical Sciences and Engineering 1                       1              

P value adjustment method: bonferroni 

Q26

Row

ANOVA rezultati: Q26

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   3.48  0.6961   0.737  0.596
Residuals            161 151.99  0.9441               

ONEWAY-test rezultati: Q26


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q26 and podaci$`Study field`
F = 0.67907, num df = 5.000, denom df = 19.719, p-value = 0.6445

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5   0.625 0.6809
      161               

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.02238795  0.02238795

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities 0.1076923 -0.7870169 1.0024016 0.9993252
Other-Arts and Humanities 0.1333333 -1.5442699 1.8109366 0.9999120
Science and Mathematics-Arts and Humanities 0.3862069 -0.2972973 1.0697111 0.5801450
Social Sciences-Arts and Humanities 0.1170732 -0.5057521 0.7398985 0.9943160
Technical Sciences and Engineering-Arts and Humanities 0.3121951 -0.3106302 0.9350204 0.6989637
Other-Health Sciences 0.0256410 -1.7693957 1.8206778 1.0000000
Science and Mathematics-Health Sciences 0.2785146 -0.6568903 1.2139195 0.9555830
Social Sciences-Health Sciences 0.0093809 -0.8826481 0.9014098 1.0000000
Technical Sciences and Engineering-Health Sciences 0.2045028 -0.6875261 1.0965317 0.9858364
Science and Mathematics-Other 0.2528736 -1.4467824 1.9525295 0.9981220
Social Sciences-Other -0.0162602 -1.6924355 1.6599152 1.0000000
Technical Sciences and Engineering-Other 0.1788618 -1.4973135 1.8550371 0.9996250
Social Sciences-Science and Mathematics -0.2691337 -0.9491256 0.4108582 0.8632116
Technical Sciences and Engineering-Science and Mathematics -0.0740118 -0.7540037 0.6059801 0.9995869
Technical Sciences and Engineering-Social Sciences 0.1951220 -0.4238468 0.8140907 0.9436801

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q26 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1                   -               -    
Other                              1                   1               -    
Science and Mathematics            1                   1               1    
Social Sciences                    1                   1               1    
Technical Sciences and Engineering 1                   1               1    
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1                       -              
Technical Sciences and Engineering 1                       1              

P value adjustment method: bonferroni 

Q27

Row

ANOVA rezultati: Q27

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   0.54  0.1073   0.098  0.992
Residuals            161 176.70  1.0975               

ONEWAY-test rezultati: Q27


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q27 and podaci$`Study field`
F = 0.17381, num df = 5.000, denom df = 19.978, p-value = 0.9693

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5   0.388 0.8566
      161               

Eta squared

                          eta.sq eta.sq.part
podaci$`Study field` 0.003026348 0.003026348

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.0865385 -1.0512242 0.8781473 0.9998401
Other-Arts and Humanities -0.2916667 -2.1004778 1.5171444 0.9972420
Science and Mathematics-Arts and Humanities -0.0387931 -0.7757552 0.6981690 0.9999886
Social Sciences-Arts and Humanities 0.0579268 -0.6136106 0.7294642 0.9998681
Technical Sciences and Engineering-Arts and Humanities 0.0091463 -0.6623910 0.6806837 1.0000000
Other-Health Sciences -0.2051282 -2.1405574 1.7303010 0.9996373
Science and Mathematics-Health Sciences 0.0477454 -0.9608189 1.0563096 0.9999933
Social Sciences-Health Sciences 0.1444653 -0.8173305 1.1062611 0.9980342
Technical Sciences and Engineering-Health Sciences 0.0956848 -0.8661110 1.0574806 0.9997340
Science and Mathematics-Other 0.2528736 -1.5797150 2.0854621 0.9986923
Social Sciences-Other 0.3495935 -1.4576780 2.1568650 0.9935034
Technical Sciences and Engineering-Other 0.3008130 -1.5064585 2.1080845 0.9967936
Social Sciences-Science and Mathematics 0.0967199 -0.6364552 0.8298950 0.9989475
Technical Sciences and Engineering-Science and Mathematics 0.0479394 -0.6852356 0.7811145 0.9999665
Technical Sciences and Engineering-Social Sciences -0.0487805 -0.7161597 0.6185987 0.9999418

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q27 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1                   -               -    
Other                              1                   1               -    
Science and Mathematics            1                   1               1    
Social Sciences                    1                   1               1    
Technical Sciences and Engineering 1                   1               1    
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1                       -              
Technical Sciences and Engineering 1                       1              

P value adjustment method: bonferroni 

Q28

Row

ANOVA rezultati: Q28

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   3.96  0.7919   0.851  0.515
Residuals            161 149.74  0.9301               

ONEWAY-test rezultati: Q28


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q28 and podaci$`Study field`
F = 1.3595, num df = 5.00, denom df = 19.37, p-value = 0.2823

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   5  2.0704 0.07176 .
      161                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.02576196  0.02576196

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.0192308 -0.9072889 0.8688274 0.9999999
Other-Arts and Humanities -0.5833333 -2.2484656 1.0817990 0.9139084
Science and Mathematics-Arts and Humanities 0.1293103 -0.5491129 0.8077335 0.9939348
Social Sciences-Arts and Humanities 0.2865854 -0.3316100 0.9047807 0.7639022
Technical Sciences and Engineering-Arts and Humanities 0.2378049 -0.3803905 0.8560002 0.8768606
Other-Health Sciences -0.5641026 -2.3457954 1.2175903 0.9426648
Science and Mathematics-Health Sciences 0.1485411 -0.7799102 1.0769924 0.9973431
Social Sciences-Health Sciences 0.3058161 -0.5795816 1.1912139 0.9185738
Technical Sciences and Engineering-Health Sciences 0.2570356 -0.6283621 1.1424334 0.9600855
Science and Mathematics-Other 0.7126437 -0.9743774 2.3996647 0.8273283
Social Sciences-Other 0.8699187 -0.7937963 2.5336337 0.6595481
Technical Sciences and Engineering-Other 0.8211382 -0.8425768 2.4848532 0.7126687
Social Sciences-Science and Mathematics 0.1572750 -0.5176620 0.8322120 0.9847567
Technical Sciences and Engineering-Science and Mathematics 0.1084945 -0.5664425 0.7834315 0.9972825
Technical Sciences and Engineering-Social Sciences -0.0487805 -0.6631480 0.5655870 0.9999124

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q28 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1                   -               -    
Other                              1                   1               -    
Science and Mathematics            1                   1               1    
Social Sciences                    1                   1               1    
Technical Sciences and Engineering 1                   1               1    
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1                       -              
Technical Sciences and Engineering 1                       1              

P value adjustment method: bonferroni 

Q29

Row

ANOVA rezultati: Q29

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   2.62  0.5236   0.276  0.926
Residuals            161 305.12  1.8951               

ONEWAY-test rezultati: Q29


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q29 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value   Pr(>F)   
group   5  3.6549 0.003691 **
      161                    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                          eta.sq eta.sq.part
podaci$`Study field` 0.008507256 0.008507256

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities 0.2903846 -0.9772830 1.5580522 0.9858881
Other-Arts and Humanities 0.6750000 -1.7019099 3.0519099 0.9636567
Science and Mathematics-Arts and Humanities 0.2956897 -0.6727324 1.2641117 0.9506532
Social Sciences-Arts and Humanities 0.1871951 -0.6952541 1.0696443 0.9900519
Technical Sciences and Engineering-Arts and Humanities 0.2115854 -0.6708638 1.0940345 0.9826734
Other-Health Sciences 0.3846154 -2.1586800 2.9279108 0.9979693
Science and Mathematics-Health Sciences 0.0053050 -1.3200221 1.3306322 1.0000000
Social Sciences-Health Sciences -0.1031895 -1.3670595 1.1606805 0.9998995
Technical Sciences and Engineering-Health Sciences -0.0787992 -1.3426692 1.1850707 0.9999735
Science and Mathematics-Other -0.3793103 -2.7874656 2.0288449 0.9975334
Social Sciences-Other -0.4878049 -2.8626916 1.8870818 0.9914221
Technical Sciences and Engineering-Other -0.4634146 -2.8383014 1.9114721 0.9932347
Social Sciences-Science and Mathematics -0.1084945 -1.0719402 0.8549511 0.9995122
Technical Sciences and Engineering-Science and Mathematics -0.0841043 -1.0475499 0.8793413 0.9998601
Technical Sciences and Engineering-Social Sciences 0.0243902 -0.8525948 0.9013753 0.9999995

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q29 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1                   -               -    
Other                              1                   1               -    
Science and Mathematics            1                   1               1    
Social Sciences                    1                   1               1    
Technical Sciences and Engineering 1                   1               1    
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1                       -              
Technical Sciences and Engineering 1                       1              

P value adjustment method: bonferroni 

Q30

Row

ANOVA rezultati: Q30

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   4.24  0.8471   0.519  0.762
Residuals            161 262.70  1.6317               

ONEWAY-test rezultati: Q30


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q30 and podaci$`Study field`
F = 0.50412, num df = 5.000, denom df = 20.881, p-value = 0.7698

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5   1.097 0.3642
      161               

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.01586767  0.01586767

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities 0.2865385 -0.8897122 1.4627891 0.9814022
Other-Arts and Humanities 0.1583333 -2.0471675 2.3638342 0.9999468
Science and Mathematics-Arts and Humanities 0.2732759 -0.6253092 1.1718609 0.9514655
Social Sciences-Arts and Humanities -0.1506098 -0.9694218 0.6682023 0.9948646
Technical Sciences and Engineering-Arts and Humanities 0.1420732 -0.6767389 0.9608852 0.9960968
Other-Health Sciences -0.1282051 -2.4880927 2.2316824 0.9999867
Science and Mathematics-Health Sciences -0.0132626 -1.2430148 1.2164896 1.0000000
Social Sciences-Health Sciences -0.4371482 -1.6098752 0.7355787 0.8905961
Technical Sciences and Engineering-Health Sciences -0.1444653 -1.3171922 1.0282616 0.9992448
Science and Mathematics-Other 0.1149425 -2.1195504 2.3494355 0.9999898
Social Sciences-Other -0.3089431 -2.5125667 1.8946805 0.9985882
Technical Sciences and Engineering-Other -0.0162602 -2.2198837 2.1873634 1.0000000
Social Sciences-Science and Mathematics -0.4238856 -1.3178531 0.4700819 0.7462425
Technical Sciences and Engineering-Science and Mathematics -0.1312027 -1.0251702 0.7627648 0.9982408
Technical Sciences and Engineering-Social Sciences 0.2926829 -0.5210590 1.1064249 0.9045998

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q30 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1                   -               -    
Other                              1                   1               -    
Science and Mathematics            1                   1               1    
Social Sciences                    1                   1               1    
Technical Sciences and Engineering 1                   1               1    
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1                       -              
Technical Sciences and Engineering 1                       1              

P value adjustment method: bonferroni 

Q31

Row

ANOVA rezultati: Q31

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   6.99   1.398   0.791  0.558
Residuals            161 284.51   1.767               

ONEWAY-test rezultati: Q31


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q31 and podaci$`Study field`
F = 1.4815, num df = 5.00, denom df = 20.81, p-value = 0.2383

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   5  1.9722 0.08549 .
      161                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                        eta.sq eta.sq.part
podaci$`Study field` 0.0239769   0.0239769

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.5442308 -1.7683344 0.6798729 0.7942773
Other-Arts and Humanities 0.5583333 -1.7368930 2.8535597 0.9815192
Science and Mathematics-Arts and Humanities -0.2577586 -1.1929004 0.6773832 0.9680242
Social Sciences-Arts and Humanities -0.4335366 -1.2856600 0.4185868 0.6854062
Technical Sciences and Engineering-Arts and Humanities -0.2140244 -1.0661478 0.6380990 0.9786983
Other-Health Sciences 1.1025641 -1.3533298 3.5584580 0.7874770
Science and Mathematics-Health Sciences 0.2864721 -0.9933095 1.5662538 0.9872881
Social Sciences-Health Sciences 0.1106942 -1.1097423 1.3311307 0.9998311
Technical Sciences and Engineering-Health Sciences 0.3302064 -0.8902301 1.5506429 0.9704914
Science and Mathematics-Other -0.8160920 -3.1414899 1.5093060 0.9133048
Social Sciences-Other -0.9918699 -3.2851426 1.3014028 0.8126322
Technical Sciences and Engineering-Other -0.7723577 -3.0656304 1.5209150 0.9263444
Social Sciences-Science and Mathematics -0.1757780 -1.1061144 0.7545584 0.9941779
Technical Sciences and Engineering-Science and Mathematics 0.0437342 -0.8866022 0.9740706 0.9999935
Technical Sciences and Engineering-Social Sciences 0.2195122 -0.6273349 1.0663593 0.9755239

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q31 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1                   -               -    
Other                              1                   1               -    
Science and Mathematics            1                   1               1    
Social Sciences                    1                   1               1    
Technical Sciences and Engineering 1                   1               1    
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1                       -              
Technical Sciences and Engineering 1                       1              

P value adjustment method: bonferroni 

Q32

Row

ANOVA rezultati: Q32

                      Df Sum Sq Mean Sq F value   Pr(>F)    
podaci$`Study field`   5  38.66   7.733   4.641 0.000553 ***
Residuals            161 268.27   1.666                     
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q32


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q32 and podaci$`Study field`
F = 5.1986, num df = 5.000, denom df = 20.728, p-value = 0.003008

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   5  2.7365 0.02112 *
      161                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                        eta.sq eta.sq.part
podaci$`Study field` 0.1259702   0.1259702

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities -1.1134615 -2.3021192 0.0751961 0.0804248
Other-Arts and Humanities -0.2416667 -2.4704310 1.9870976 0.9995945
Science and Mathematics-Arts and Humanities -1.2646552 -2.1727184 -0.3565920 0.0012500
Social Sciences-Arts and Humanities -1.0384146 -1.8658634 -0.2109659 0.0052093
Technical Sciences and Engineering-Arts and Humanities -1.0384146 -1.8658634 -0.2109659 0.0052093
Other-Health Sciences 0.8717949 -1.5129846 3.2565743 0.8984373
Science and Mathematics-Health Sciences -0.1511936 -1.3939171 1.0915298 0.9992891
Social Sciences-Health Sciences 0.0750469 -1.1100499 1.2601437 0.9999714
Technical Sciences and Engineering-Health Sciences 0.0750469 -1.1100499 1.2601437 0.9999714
Science and Mathematics-Other -1.0229885 -3.2810507 1.2350737 0.7809925
Social Sciences-Other -0.7967480 -3.0236152 1.4301192 0.9065245
Technical Sciences and Engineering-Other -0.7967480 -3.0236152 1.4301192 0.9065245
Social Sciences-Science and Mathematics 0.2262405 -0.6771564 1.1296375 0.9789719
Technical Sciences and Engineering-Science and Mathematics 0.2262405 -0.6771564 1.1296375 0.9789719
Technical Sciences and Engineering-Social Sciences 0.0000000 -0.8223252 0.8223252 1.0000000

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q32 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other 
Health Sciences                    0.1145              -               -     
Other                              1.0000              1.0000          -     
Science and Mathematics            0.0014              1.0000          1.0000
Social Sciences                    0.0059              1.0000          1.0000
Technical Sciences and Engineering 0.0059              1.0000          1.0000
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1.0000                  -              
Technical Sciences and Engineering 1.0000                  1.0000         

P value adjustment method: bonferroni 

Q33

Row

ANOVA rezultati: Q33

                      Df Sum Sq Mean Sq F value  Pr(>F)   
podaci$`Study field`   5  20.27   4.054   3.594 0.00415 **
Residuals            161 181.62   1.128                   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q33


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q33 and podaci$`Study field`
F = 2.5664, num df = 5.000, denom df = 18.905, p-value = 0.06188

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   5   2.649 0.02487 *
      161                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                        eta.sq eta.sq.part
podaci$`Study field` 0.1004063   0.1004063

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.7596154 -1.7376497 0.2184189 0.2253822
Other-Arts and Humanities -0.3750000 -2.2088399 1.4588399 0.9915963
Science and Mathematics-Arts and Humanities -0.7543103 -1.5014699 -0.0071508 0.0463840
Social Sciences-Arts and Humanities -0.8628049 -1.5436344 -0.1819753 0.0046099
Technical Sciences and Engineering-Arts and Humanities -0.8140244 -1.4948540 -0.1331948 0.0092345
Other-Health Sciences 0.3846154 -1.5775947 2.3468255 0.9930918
Science and Mathematics-Health Sciences 0.0053050 -1.0172149 1.0278250 1.0000000
Social Sciences-Health Sciences -0.1031895 -1.0782939 0.8719149 0.9996400
Technical Sciences and Engineering-Health Sciences -0.0544090 -1.0295134 0.9206954 0.9999848
Science and Mathematics-Other -0.3793103 -2.2372568 1.4786361 0.9916593
Social Sciences-Other -0.4878049 -2.3200839 1.3444741 0.9724919
Technical Sciences and Engineering-Other -0.4390244 -2.2713034 1.3932546 0.9827267
Social Sciences-Science and Mathematics -0.1084945 -0.8518147 0.6348256 0.9982866
Technical Sciences and Engineering-Science and Mathematics -0.0597140 -0.8030342 0.6836061 0.9999072
Technical Sciences and Engineering-Social Sciences 0.0487805 -0.6278334 0.7253944 0.9999456

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q33 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other 
Health Sciences                    0.3967              -               -     
Other                              1.0000              1.0000          -     
Science and Mathematics            0.0615              1.0000          1.0000
Social Sciences                    0.0052              1.0000          1.0000
Technical Sciences and Engineering 0.0108              1.0000          1.0000
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1.0000                  -              
Technical Sciences and Engineering 1.0000                  1.0000         

P value adjustment method: bonferroni 

Q35

Row

ANOVA rezultati: Q35

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   2.86  0.5727   0.505  0.773
Residuals            161 182.77  1.1352               

ONEWAY-test rezultati: Q35


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q35 and podaci$`Study field`
F = 0.52771, num df = 5.000, denom df = 20.008, p-value = 0.7526

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  1.0375 0.3975
      161               

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.01542718  0.01542718

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.0403846 -1.0214944 0.9407252 0.9999966
Other-Arts and Humanities 0.2416667 -1.5979399 2.0812733 0.9989686
Science and Mathematics-Arts and Humanities 0.3681034 -0.3814056 1.1176125 0.7169543
Social Sciences-Arts and Humanities 0.0871951 -0.5957754 0.7701656 0.9991018
Technical Sciences and Engineering-Arts and Humanities 0.0628049 -0.6201656 0.7457754 0.9998193
Other-Health Sciences 0.2820513 -1.6863292 2.2504317 0.9984319
Science and Mathematics-Health Sciences 0.4084881 -0.6172473 1.4342234 0.8600963
Social Sciences-Health Sciences 0.1275797 -0.8505909 1.1057504 0.9990039
Technical Sciences and Engineering-Health Sciences 0.1031895 -0.8749812 1.0813602 0.9996455
Science and Mathematics-Other 0.1264368 -1.7373521 1.9902257 0.9999598
Social Sciences-Other -0.1544715 -1.9925123 1.6835692 0.9998840
Technical Sciences and Engineering-Other -0.1788618 -2.0169026 1.6591790 0.9997614
Social Sciences-Science and Mathematics -0.2809083 -1.0265659 0.4647493 0.8861305
Technical Sciences and Engineering-Science and Mathematics -0.3052986 -1.0509562 0.4403590 0.8453756
Technical Sciences and Engineering-Social Sciences -0.0243902 -0.7031318 0.6543513 0.9999983

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q35 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1                   -               -    
Other                              1                   1               -    
Science and Mathematics            1                   1               1    
Social Sciences                    1                   1               1    
Technical Sciences and Engineering 1                   1               1    
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1                       -              
Technical Sciences and Engineering 1                       1              

P value adjustment method: bonferroni 

Q36

Row

ANOVA rezultati: Q36

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   3.19  0.6383   0.531  0.753
Residuals            161 193.53  1.2020               

ONEWAY-test rezultati: Q36


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q36 and podaci$`Study field`
F = 0.57292, num df = 5.00, denom df = 20.07, p-value = 0.72

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  0.8215  0.536
      161               

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.01622252  0.01622252

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities 0.1884615 -0.8211219 1.1980449 0.9944972
Other-Arts and Humanities 0.3166667 -1.5763286 2.2096620 0.9967164
Science and Mathematics-Arts and Humanities -0.1086207 -0.8798819 0.6626405 0.9985571
Social Sciences-Arts and Humanities 0.1865854 -0.5162062 0.8893769 0.9728221
Technical Sciences and Engineering-Arts and Humanities -0.1304878 -0.8332793 0.5723037 0.9946340
Other-Health Sciences 0.1282051 -1.8973013 2.1537115 0.9999715
Science and Mathematics-Health Sciences -0.2970822 -1.3525863 0.7584218 0.9650175
Social Sciences-Health Sciences -0.0018762 -1.0084351 1.0046828 1.0000000
Technical Sciences and Engineering-Health Sciences -0.3189493 -1.3255083 0.6876096 0.9424708
Science and Mathematics-Other -0.4252874 -2.3431668 1.4925921 0.9878198
Social Sciences-Other -0.1300813 -2.0214653 1.7613027 0.9999570
Technical Sciences and Engineering-Other -0.4471545 -2.3385385 1.4442296 0.9837331
Social Sciences-Science and Mathematics 0.2952061 -0.4720919 1.0625040 0.8767907
Technical Sciences and Engineering-Science and Mathematics -0.0218671 -0.7891650 0.7454308 0.9999995
Technical Sciences and Engineering-Social Sciences -0.3170732 -1.0155130 0.3813667 0.7794987

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q36 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1                   -               -    
Other                              1                   1               -    
Science and Mathematics            1                   1               1    
Social Sciences                    1                   1               1    
Technical Sciences and Engineering 1                   1               1    
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1                       -              
Technical Sciences and Engineering 1                       1              

P value adjustment method: bonferroni 

Q37

Row

ANOVA rezultati: Q37

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   3.43  0.6869   0.542  0.745
Residuals            161 204.18  1.2682               

ONEWAY-test rezultati: Q37


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q37 and podaci$`Study field`
F = 0.98952, num df = 5.000, denom df = 20.087, p-value = 0.4487

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  1.2524 0.2872
      161               

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.01654248  0.01654248

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities 0.0038462 -1.0331571 1.0408494 1.0000000
Other-Arts and Humanities 0.5166667 -1.4277415 2.4610749 0.9727205
Science and Mathematics-Arts and Humanities -0.3224138 -1.1146221 0.4697945 0.8486694
Social Sciences-Arts and Humanities -0.0524390 -0.7743181 0.6694400 0.9999436
Technical Sciences and Engineering-Arts and Humanities -0.1743902 -0.8962693 0.5474888 0.9820820
Other-Health Sciences 0.5128205 -1.5676977 2.5933387 0.9804023
Science and Mathematics-Health Sciences -0.3262599 -1.4104310 0.7579111 0.9535566
Social Sciences-Health Sciences -0.0562852 -1.0901818 0.9776114 0.9999865
Technical Sciences and Engineering-Health Sciences -0.1782364 -1.2121330 0.8556602 0.9962142
Science and Mathematics-Other -0.8390805 -2.8090486 1.1308877 0.8222819
Social Sciences-Other -0.5691057 -2.5118588 1.3736475 0.9585303
Technical Sciences and Engineering-Other -0.6910569 -2.6338101 1.2516962 0.9086176
Social Sciences-Science and Mathematics 0.2699748 -0.5181626 1.0581122 0.9212029
Technical Sciences and Engineering-Science and Mathematics 0.1480235 -0.6401138 0.9361609 0.9943381
Technical Sciences and Engineering-Social Sciences -0.1219512 -0.8393604 0.5954579 0.9964573

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q37 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1                   -               -    
Other                              1                   1               -    
Science and Mathematics            1                   1               1    
Social Sciences                    1                   1               1    
Technical Sciences and Engineering 1                   1               1    
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1                       -              
Technical Sciences and Engineering 1                       1              

P value adjustment method: bonferroni 

Q38

Row

ANOVA rezultati: Q38

                      Df Sum Sq Mean Sq F value Pr(>F)  
podaci$`Study field`   5  11.72  2.3442   3.104 0.0106 *
Residuals            161 121.60  0.7553                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q38


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q38 and podaci$`Study field`
F = 3.5125, num df = 5.000, denom df = 19.272, p-value = 0.0201

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value    Pr(>F)    
group   5   4.392 0.0008932 ***
      161                      
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.08791844  0.08791844

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.0192308 -0.8194911 0.7810296 0.9999998
Other-Arts and Humanities 0.4166667 -1.0838424 1.9171757 0.9669885
Science and Mathematics-Arts and Humanities 0.7500000 0.1386491 1.3613509 0.0068591
Social Sciences-Arts and Humanities 0.2378049 -0.3192726 0.7948824 0.8209131
Technical Sciences and Engineering-Arts and Humanities 0.4329268 -0.1241507 0.9900043 0.2247949
Other-Health Sciences 0.4358974 -1.1696484 2.0414433 0.9700491
Science and Mathematics-Health Sciences 0.7692308 -0.0674292 1.6058907 0.0910178
Social Sciences-Health Sciences 0.2570356 -0.5408273 1.0548986 0.9384433
Technical Sciences and Engineering-Health Sciences 0.4521576 -0.3457053 1.2500205 0.5769635
Science and Mathematics-Other 0.3333333 -1.1869005 1.8535671 0.9884287
Social Sciences-Other -0.1788618 -1.6780937 1.3203701 0.9993538
Technical Sciences and Engineering-Other 0.0162602 -1.4829717 1.5154920 1.0000000
Social Sciences-Science and Mathematics -0.5121951 -1.1204045 0.0960143 0.1525296
Technical Sciences and Engineering-Science and Mathematics -0.3170732 -0.9252826 0.2911362 0.6624222
Technical Sciences and Engineering-Social Sciences 0.1951220 -0.3585061 0.7487500 0.9118498

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q38 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other 
Health Sciences                    1.0000              -               -     
Other                              1.0000              1.0000          -     
Science and Mathematics            0.0079              0.1321          1.0000
Social Sciences                    1.0000              1.0000          1.0000
Technical Sciences and Engineering 0.3954              1.0000          1.0000
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    0.2436                  -              
Technical Sciences and Engineering 1.0000                  1.0000         

P value adjustment method: bonferroni 

Q39

Row

ANOVA rezultati: Q39

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   1.70  0.3405   0.617  0.687
Residuals            161  88.78  0.5514               

ONEWAY-test rezultati: Q39


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q39 and podaci$`Study field`
F = 0.69745, num df = 5.000, denom df = 19.315, p-value = 0.6318

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5   1.012 0.4125
      161               

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.01881377  0.01881377

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.2096154 -0.8934023 0.4741716 0.9498278
Other-Arts and Humanities -0.1583333 -1.4404518 1.1237851 0.9992357
Science and Mathematics-Arts and Humanities 0.1405172 -0.3818550 0.6628895 0.9712254
Social Sciences-Arts and Humanities 0.0042683 -0.4717297 0.4802663 1.0000000
Technical Sciences and Engineering-Arts and Humanities -0.1176829 -0.5936809 0.3583151 0.9801370
Other-Health Sciences 0.0512821 -1.3205856 1.4231497 0.9999979
Science and Mathematics-Health Sciences 0.3501326 -0.3647562 1.0650215 0.7193320
Social Sciences-Health Sciences 0.2138837 -0.4678548 0.8956222 0.9447787
Technical Sciences and Engineering-Health Sciences 0.0919325 -0.5898060 0.7736710 0.9988296
Science and Mathematics-Other 0.2988506 -1.0001218 1.5978229 0.9856087
Social Sciences-Other 0.1626016 -1.1184255 1.4436287 0.9991268
Technical Sciences and Engineering-Other 0.0406504 -1.2403767 1.3216775 0.9999991
Social Sciences-Science and Mathematics -0.1362489 -0.6559369 0.3834390 0.9742741
Technical Sciences and Engineering-Science and Mathematics -0.2582002 -0.7778881 0.2614878 0.7068543
Technical Sciences and Engineering-Social Sciences -0.1219512 -0.5950018 0.3510994 0.9761046

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q39 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1                   -               -    
Other                              1                   1               -    
Science and Mathematics            1                   1               1    
Social Sciences                    1                   1               1    
Technical Sciences and Engineering 1                   1               1    
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1                       -              
Technical Sciences and Engineering 1                       1              

P value adjustment method: bonferroni 

Q40

Row

ANOVA rezultati: Q40

                      Df Sum Sq Mean Sq F value Pr(>F)  
podaci$`Study field`   5  12.49  2.4983   2.646  0.025 *
Residuals            161 152.00  0.9441                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q40


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q40 and podaci$`Study field`
F = 2.3049, num df = 5.000, denom df = 18.633, p-value = 0.08596

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  0.0826 0.9949
      161               

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.07594044  0.07594044

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities 0.6596154 -0.2351150 1.5543457 0.2790618
Other-Arts and Humanities -0.0583333 -1.7359762 1.6193095 0.9999986
Science and Mathematics-Arts and Humanities -0.4491379 -1.1326583 0.2343824 0.4088168
Social Sciences-Arts and Humanities -0.2371951 -0.8600351 0.3856449 0.8813987
Technical Sciences and Engineering-Arts and Humanities -0.2128049 -0.8356449 0.4100351 0.9220025
Other-Health Sciences -0.7179487 -2.5130278 1.0771304 0.8578930
Science and Mathematics-Health Sciences -1.1087533 -2.0441802 -0.1733264 0.0101761
Social Sciences-Health Sciences -0.8968105 -1.7888605 -0.0047606 0.0479551
Technical Sciences and Engineering-Health Sciences -0.8724203 -1.7644702 0.0196297 0.0592346
Science and Mathematics-Other -0.3908046 -2.0905006 1.3088914 0.9856484
Social Sciences-Other -0.1788618 -1.8550766 1.4973531 0.9996251
Technical Sciences and Engineering-Other -0.1544715 -1.8306864 1.5217433 0.9998174
Social Sciences-Science and Mathematics 0.2119428 -0.4680651 0.8919508 0.9462569
Technical Sciences and Engineering-Science and Mathematics 0.2363331 -0.4436749 0.9163410 0.9165609
Technical Sciences and Engineering-Social Sciences 0.0243902 -0.5945931 0.6433736 0.9999973

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q40 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    0.525               -               -    
Other                              1.000               1.000           -    
Science and Mathematics            0.898               0.012           1.000
Social Sciences                    1.000               0.064           1.000
Technical Sciences and Engineering 1.000               0.081           1.000
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1.000                   -              
Technical Sciences and Engineering 1.000                   1.000          

P value adjustment method: bonferroni 

Q41

Row

ANOVA rezultati: Q41

                      Df Sum Sq Mean Sq F value Pr(>F)  
podaci$`Study field`   5  10.37   2.074   2.047 0.0749 .
Residuals            161 163.17   1.014                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q41


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q41 and podaci$`Study field`
F = 1.7812, num df = 5.00, denom df = 18.72, p-value = 0.1657

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  0.4584 0.8067
      161               

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.05976346  0.05976346

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities 0.0019231 -0.9251108 0.9289569 1.0000000
Other-Arts and Humanities 0.9250000 -0.8132128 2.6632128 0.6422928
Science and Mathematics-Arts and Humanities 0.6146552 -0.0935431 1.3228535 0.1292364
Social Sciences-Arts and Humanities 0.1445122 -0.5008149 0.7898393 0.9872645
Technical Sciences and Engineering-Arts and Humanities 0.4371951 -0.2081320 1.0825222 0.3734786
Other-Health Sciences 0.9230769 -0.9368120 2.7829659 0.7077952
Science and Mathematics-Health Sciences 0.6127321 -0.3564677 1.5819319 0.4536634
Social Sciences-Health Sciences 0.1425891 -0.7816676 1.0668458 0.9977661
Technical Sciences and Engineering-Health Sciences 0.4352720 -0.4889846 1.3595287 0.7516692
Science and Mathematics-Other -0.3103448 -2.0714070 1.4507173 0.9958004
Social Sciences-Other -0.7804878 -2.5172210 0.9562454 0.7867621
Technical Sciences and Engineering-Other -0.4878049 -2.2245381 1.2489283 0.9653281
Social Sciences-Science and Mathematics -0.4701430 -1.1747021 0.2344161 0.3909748
Technical Sciences and Engineering-Science and Mathematics -0.1774601 -0.8820191 0.5270990 0.9784315
Technical Sciences and Engineering-Social Sciences 0.2926829 -0.3486483 0.9340142 0.7756546

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q41 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1.00                -               -    
Other                              1.00                1.00            -    
Science and Mathematics            0.20                1.00            1.00 
Social Sciences                    1.00                1.00            1.00 
Technical Sciences and Engineering 0.79                1.00            1.00 
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    0.84                    -              
Technical Sciences and Engineering 1.00                    1.00           

P value adjustment method: bonferroni 

Q42

Row

ANOVA rezultati: Q42

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   3.02  0.6046    0.78  0.566
Residuals            161 124.81  0.7752               

ONEWAY-test rezultati: Q42


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q42 and podaci$`Study field`
F = 0.67328, num df = 5.000, denom df = 18.658, p-value = 0.6488

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  0.7946  0.555
      161               

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.02364647  0.02364647

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities 0.0826923 -0.7280727 0.8934573 0.9996995
Other-Arts and Humanities 0.1083333 -1.4118723 1.6285390 0.9999487
Science and Mathematics-Arts and Humanities -0.2939655 -0.9133414 0.3254104 0.7454745
Social Sciences-Arts and Humanities -0.2006098 -0.7649998 0.3637803 0.9088822
Technical Sciences and Engineering-Arts and Humanities 0.0189024 -0.5454876 0.5832925 0.9999988
Other-Health Sciences 0.0256410 -1.6009802 1.6522622 1.0000000
Science and Mathematics-Health Sciences -0.3766578 -1.2243003 0.4709846 0.7946433
Social Sciences-Health Sciences -0.2833021 -1.0916382 0.5250341 0.9137608
Technical Sciences and Engineering-Health Sciences -0.0637899 -0.8721260 0.7445463 0.9999150
Science and Mathematics-Other -0.4022989 -1.9424881 1.1378904 0.9746896
Social Sciences-Other -0.3089431 -1.8278548 1.2099686 0.9918013
Technical Sciences and Engineering-Other -0.0894309 -1.6083426 1.4294808 0.9999801
Social Sciences-Science and Mathematics 0.0933558 -0.5228373 0.7095489 0.9979514
Technical Sciences and Engineering-Science and Mathematics 0.3128680 -0.3033251 0.9290611 0.6872716
Technical Sciences and Engineering-Social Sciences 0.2195122 -0.3413831 0.7804075 0.8687470

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q42 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1                   -               -    
Other                              1                   1               -    
Science and Mathematics            1                   1               1    
Social Sciences                    1                   1               1    
Technical Sciences and Engineering 1                   1               1    
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1                       -              
Technical Sciences and Engineering 1                       1              

P value adjustment method: bonferroni 

Q43

Row

ANOVA rezultati: Q43

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   4.98  0.9966   1.549  0.177
Residuals            161 103.56  0.6432               

ONEWAY-test rezultati: Q43


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q43 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   5  3.0497 0.01171 *
      161                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                        eta.sq eta.sq.part
podaci$`Study field` 0.0459117   0.0459117

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.0807692 -0.8192822 0.6577437 0.9995771
Other-Arts and Humanities -0.8500000 -2.2347312 0.5347312 0.4876910
Science and Mathematics-Arts and Humanities -0.4017241 -0.9659038 0.1624555 0.3170275
Social Sciences-Arts and Humanities -0.0695122 -0.5836061 0.4445817 0.9988144
Technical Sciences and Engineering-Arts and Humanities -0.2646341 -0.7787280 0.2494597 0.6744931
Other-Health Sciences -0.7692308 -2.2508942 0.7124326 0.6663972
Science and Mathematics-Health Sciences -0.3209549 -1.0930590 0.4511491 0.8368159
Social Sciences-Health Sciences 0.0112570 -0.7250435 0.7475576 1.0000000
Technical Sciences and Engineering-Health Sciences -0.1838649 -0.9201655 0.5524357 0.9792378
Science and Mathematics-Other 0.4482759 -0.9546581 1.8512098 0.9404684
Social Sciences-Other 0.7804878 -0.6030647 2.1640403 0.5818974
Technical Sciences and Engineering-Other 0.5853659 -0.7981866 1.9689184 0.8263820
Social Sciences-Science and Mathematics 0.3322119 -0.2290686 0.8934924 0.5290746
Technical Sciences and Engineering-Science and Mathematics 0.1370900 -0.4241905 0.6983705 0.9811829
Technical Sciences and Engineering-Social Sciences -0.1951220 -0.7060326 0.3157887 0.8801325

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q43 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1.00                -               -    
Other                              1.00                1.00            -    
Science and Mathematics            0.62                1.00            1.00 
Social Sciences                    1.00                1.00            1.00 
Technical Sciences and Engineering 1.00                1.00            1.00 
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1.00                    -              
Technical Sciences and Engineering 1.00                    1.00           

P value adjustment method: bonferroni 

Q44

Row

ANOVA rezultati: Q44

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   3.23  0.6457   0.856  0.512
Residuals            161 121.41  0.7541               

ONEWAY-test rezultati: Q44


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q44 and podaci$`Study field`
F = 0.77547, num df = 5.000, denom df = 18.556, p-value = 0.5796

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  0.1091 0.9902
      161               

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.02590532  0.02590532

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities 0.0500000 -0.7496339 0.8496339 0.9999732
Other-Arts and Humanities -0.2833333 -1.7826679 1.2160012 0.9941732
Science and Mathematics-Arts and Humanities -0.3637931 -0.9746655 0.2470793 0.5221602
Social Sciences-Arts and Humanities -0.1695122 -0.7261536 0.3871292 0.9511929
Technical Sciences and Engineering-Arts and Humanities -0.0231707 -0.5798122 0.5334707 0.9999965
Other-Health Sciences -0.3333333 -1.9376224 1.2709558 0.9909557
Science and Mathematics-Health Sciences -0.4137931 -1.2497982 0.4222120 0.7101775
Social Sciences-Health Sciences -0.2195122 -1.0167506 0.5777262 0.9681716
Technical Sciences and Engineering-Health Sciences -0.0731707 -0.8704092 0.7240677 0.9998210
Science and Mathematics-Other -0.0804598 -1.5995036 1.4385841 0.9999882
Social Sciences-Other 0.1138211 -1.3842372 1.6118795 0.9999295
Technical Sciences and Engineering-Other 0.2601626 -1.2378957 1.7582210 0.9960803
Social Sciences-Science and Mathematics 0.1942809 -0.4134524 0.8020142 0.9403511
Technical Sciences and Engineering-Science and Mathematics 0.3406224 -0.2671109 0.9483557 0.5888188
Technical Sciences and Engineering-Social Sciences 0.1463415 -0.4068532 0.6995362 0.9732450

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q44 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1                   -               -    
Other                              1                   1               -    
Science and Mathematics            1                   1               1    
Social Sciences                    1                   1               1    
Technical Sciences and Engineering 1                   1               1    
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1                       -              
Technical Sciences and Engineering 1                       1              

P value adjustment method: bonferroni 

Q45

Row

ANOVA rezultati: Q45

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   0.31  0.0626   0.089  0.994
Residuals            161 113.39  0.7043               

ONEWAY-test rezultati: Q45


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q45 and podaci$`Study field`
F = 0.080052, num df = 5.000, denom df = 18.616, p-value = 0.9946

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  0.5901 0.7075
      161               

Eta squared

                          eta.sq eta.sq.part
podaci$`Study field` 0.002754123 0.002754123

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.0923077 -0.8650836 0.6804682 0.9993499
Other-Arts and Humanities -0.0666667 -1.5156418 1.3823085 0.9999942
Science and Mathematics-Arts and Humanities 0.0137931 -0.5765614 0.6041476 0.9999998
Social Sciences-Arts and Humanities -0.0585366 -0.5964816 0.4794085 0.9995874
Technical Sciences and Engineering-Arts and Humanities 0.0390244 -0.4989207 0.5769694 0.9999439
Other-Health Sciences 0.0256410 -1.5247634 1.5760455 1.0000000
Science and Mathematics-Health Sciences 0.1061008 -0.7018247 0.9140263 0.9989703
Social Sciences-Health Sciences 0.0337711 -0.7366898 0.8042320 0.9999954
Technical Sciences and Engineering-Health Sciences 0.1313321 -0.6391288 0.9017930 0.9964107
Science and Mathematics-Other 0.0804598 -1.3875626 1.5484822 0.9999861
Social Sciences-Other 0.0081301 -1.4396117 1.4558719 1.0000000
Technical Sciences and Engineering-Other 0.1056911 -1.3420507 1.5534328 0.9999422
Social Sciences-Science and Mathematics -0.0723297 -0.6596505 0.5149912 0.9992459
Technical Sciences and Engineering-Science and Mathematics 0.0252313 -0.5620896 0.6125521 0.9999959
Technical Sciences and Engineering-Social Sciences 0.0975610 -0.4370531 0.6321751 0.9950514

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q45 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1                   -               -    
Other                              1                   1               -    
Science and Mathematics            1                   1               1    
Social Sciences                    1                   1               1    
Technical Sciences and Engineering 1                   1               1    
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1                       -              
Technical Sciences and Engineering 1                       1              

P value adjustment method: bonferroni 

Q46

Row

ANOVA rezultati: Q46

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5    6.2  1.2392   1.612   0.16
Residuals            161  123.8  0.7688               

ONEWAY-test rezultati: Q46


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q46 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value   Pr(>F)   
group   5  3.5278 0.004709 **
      161                    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.04767133  0.04767133

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.4057692 -1.2131831 0.4016446 0.6966346
Other-Arts and Humanities -1.1750000 -2.6889221 0.3389221 0.2260749
Science and Mathematics-Arts and Humanities -0.2094828 -0.8262985 0.4073330 0.9238462
Social Sciences-Arts and Humanities -0.0286585 -0.5907157 0.5333986 0.9999903
Technical Sciences and Engineering-Arts and Humanities -0.2725610 -0.8346182 0.2894962 0.7277729
Other-Health Sciences -0.7692308 -2.3891285 0.8506670 0.7450541
Science and Mathematics-Health Sciences 0.1962865 -0.6478524 1.0404253 0.9849014
Social Sciences-Health Sciences 0.3771107 -0.4278843 1.1821057 0.7558179
Technical Sciences and Engineering-Health Sciences 0.1332083 -0.6717868 0.9382033 0.9968811
Science and Mathematics-Other 0.9655172 -0.5683059 2.4993404 0.4586591
Social Sciences-Other 1.1463415 -0.3662920 2.6589749 0.2500937
Technical Sciences and Engineering-Other 0.9024390 -0.6101944 2.4150725 0.5201330
Social Sciences-Science and Mathematics 0.1808242 -0.4328219 0.7944704 0.9574835
Technical Sciences and Engineering-Science and Mathematics -0.0630782 -0.6767244 0.5505679 0.9996878
Technical Sciences and Engineering-Social Sciences -0.2439024 -0.8024794 0.3146745 0.8064375

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q46 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1.00                -               -    
Other                              0.40                1.00            -    
Science and Mathematics            1.00                1.00            1.00 
Social Sciences                    1.00                1.00            0.45 
Technical Sciences and Engineering 1.00                1.00            1.00 
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1.00                    -              
Technical Sciences and Engineering 1.00                    1.00           

P value adjustment method: bonferroni 

Q47

Row

ANOVA rezultati: Q47

                      Df Sum Sq Mean Sq F value   Pr(>F)    
podaci$`Study field`   5  15.99   3.198   6.299 2.29e-05 ***
Residuals            161  81.75   0.508                     
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q47


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q47 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value    Pr(>F)    
group   5  10.694 6.891e-09 ***
      161                      
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                        eta.sq eta.sq.part
podaci$`Study field` 0.1636063   0.1636063

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.1307692 -0.7869219 0.5253834 0.9925382
Other-Arts and Humanities -0.9000000 -2.1303035 0.3303035 0.2874062
Science and Mathematics-Arts and Humanities -0.7620690 -1.2633303 -0.2608076 0.0002975
Social Sciences-Arts and Humanities -0.3146341 -0.7713954 0.1421271 0.3544169
Technical Sciences and Engineering-Arts and Humanities -0.7048780 -1.1616393 -0.2481168 0.0002275
Other-Health Sciences -0.7692308 -2.0856564 0.5471949 0.5434143
Science and Mathematics-Health Sciences -0.6312997 -1.3172974 0.0546979 0.0904677
Social Sciences-Health Sciences -0.1838649 -0.8380519 0.4703221 0.9652308
Technical Sciences and Engineering-Health Sciences -0.5741088 -1.2282958 0.0800782 0.1212345
Science and Mathematics-Other 0.1379310 -1.1085452 1.3844073 0.9995522
Social Sciences-Other 0.5853659 -0.6438904 1.8146221 0.7427931
Technical Sciences and Engineering-Other 0.1951220 -1.0341343 1.4243782 0.9974410
Social Sciences-Science and Mathematics 0.4474348 -0.0512507 0.9461203 0.1061877
Technical Sciences and Engineering-Science and Mathematics 0.0571909 -0.4414946 0.5558764 0.9994668
Technical Sciences and Engineering-Social Sciences -0.3902439 -0.8441769 0.0636891 0.1363465

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q47 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other  
Health Sciences                    1.00000             -               -      
Other                              0.54609             1.00000         -      
Science and Mathematics            0.00031             0.13115         1.00000
Social Sciences                    0.72954             1.00000         1.00000
Technical Sciences and Engineering 0.00024             0.18485         1.00000
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    0.15808                 -              
Technical Sciences and Engineering 1.00000                 0.21270        

P value adjustment method: bonferroni 

Q48

Row

ANOVA rezultati: Q48

                      Df Sum Sq Mean Sq F value Pr(>F)  
podaci$`Study field`   5   7.55  1.5092   2.265 0.0504 .
Residuals            161 107.26  0.6662                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q48


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q48 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value    Pr(>F)    
group   5  5.4979 0.0001061 ***
      161                      
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.06573107  0.06573107

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.1461538 -0.8977465 0.6054388 0.9933423
Other-Arts and Humanities -1.3000000 -2.7092559 0.1092559 0.0890657
Science and Mathematics-Arts and Humanities -0.0586207 -0.6327924 0.5155510 0.9996980
Social Sciences-Arts and Humanities 0.1146341 -0.4085648 0.6378331 0.9884676
Technical Sciences and Engineering-Arts and Humanities -0.2512195 -0.7744184 0.2719794 0.7360155
Other-Health Sciences -1.1538462 -2.6617510 0.3540587 0.2402443
Science and Mathematics-Health Sciences 0.0875332 -0.6982455 0.8733118 0.9995373
Social Sciences-Health Sciences 0.2607880 -0.4885531 1.0101290 0.9161076
Technical Sciences and Engineering-Health Sciences -0.1050657 -0.8544067 0.6442754 0.9985876
Science and Mathematics-Other 1.2413793 -0.1864017 2.6691604 0.1279427
Social Sciences-Other 1.4146341 0.0065778 2.8226905 0.0482060
Technical Sciences and Engineering-Other 1.0487805 -0.3592759 2.4568368 0.2681288
Social Sciences-Science and Mathematics 0.1732548 -0.3979664 0.7444761 0.9520040
Technical Sciences and Engineering-Science and Mathematics -0.1925988 -0.7638201 0.3786224 0.9260139
Technical Sciences and Engineering-Social Sciences -0.3658537 -0.8858129 0.1541056 0.3303530

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q48 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1.000               -               -    
Other                              0.129               0.431           -    
Science and Mathematics            1.000               1.000           0.197
Social Sciences                    1.000               1.000           0.064
Technical Sciences and Engineering 1.000               1.000           0.498
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1.000                   -              
Technical Sciences and Engineering 1.000                   0.661          

P value adjustment method: bonferroni 

Q49

Row

ANOVA rezultati: Q49

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   2.15  0.4305   0.711  0.616
Residuals            161  97.52  0.6057               

ONEWAY-test rezultati: Q49


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q49 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   5  2.5863 0.02795 *
      161                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.02159558  0.02159558

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities 0.2942308 -0.4224521 1.0109136 0.8438737
Other-Arts and Humanities -0.4750000 -1.8187991 0.8687991 0.9108356
Science and Mathematics-Arts and Humanities 0.0077586 -0.5397441 0.5552613 1.0000000
Social Sciences-Arts and Humanities 0.0371951 -0.4617024 0.5360926 0.9999358
Technical Sciences and Engineering-Arts and Humanities -0.0847561 -0.5836536 0.4141414 0.9964673
Other-Health Sciences -0.7692308 -2.2070968 0.6686353 0.6370069
Science and Mathematics-Health Sciences -0.2864721 -1.0357531 0.4628088 0.8796398
Social Sciences-Health Sciences -0.2570356 -0.9715715 0.4575002 0.9045500
Technical Sciences and Engineering-Health Sciences -0.3789869 -1.0935227 0.3355490 0.6455785
Science and Mathematics-Other 0.4827586 -0.8787052 1.8442224 0.9097356
Social Sciences-Other 0.5121951 -0.8304601 1.8548504 0.8806378
Technical Sciences and Engineering-Other 0.3902439 -0.9524114 1.7328992 0.9598836
Social Sciences-Science and Mathematics 0.0294365 -0.5152528 0.5741258 0.9999870
Technical Sciences and Engineering-Science and Mathematics -0.0925147 -0.6372040 0.4521746 0.9964711
Technical Sciences and Engineering-Social Sciences -0.1219512 -0.6177595 0.3738571 0.9805863

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q49 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1                   -               -    
Other                              1                   1               -    
Science and Mathematics            1                   1               1    
Social Sciences                    1                   1               1    
Technical Sciences and Engineering 1                   1               1    
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1                       -              
Technical Sciences and Engineering 1                       1              

P value adjustment method: bonferroni 

Q50

Row

ANOVA rezultati: Q50

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   3.17  0.6344    1.06  0.384
Residuals            161  96.32  0.5983               

ONEWAY-test rezultati: Q50


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q50 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value    Pr(>F)    
group   5  4.8584 0.0003634 ***
      161                      
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.03188129  0.03188129

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.3442308 -1.0564938 0.3680323 0.7306196
Other-Arts and Humanities -0.5750000 -1.9105118 0.7605118 0.8155430
Science and Mathematics-Arts and Humanities 0.0456897 -0.4984366 0.5898159 0.9998845
Social Sciences-Arts and Humanities -0.2335366 -0.7293574 0.2622842 0.7515562
Technical Sciences and Engineering-Arts and Humanities -0.1115854 -0.6074061 0.3842354 0.9869742
Other-Health Sciences -0.2307692 -1.6597679 1.1982294 0.9972223
Science and Mathematics-Health Sciences 0.3899204 -0.3547397 1.1345806 0.6581696
Social Sciences-Health Sciences 0.1106942 -0.5994351 0.8208234 0.9976529
Technical Sciences and Engineering-Health Sciences 0.2326454 -0.4774839 0.9427747 0.9340975
Science and Mathematics-Other 0.6206897 -0.7323780 1.9737573 0.7718384
Social Sciences-Other 0.3414634 -0.9929116 1.6758385 0.9768695
Technical Sciences and Engineering-Other 0.4634146 -0.8709604 1.7977897 0.9168017
Social Sciences-Science and Mathematics -0.2792262 -0.8205564 0.2621039 0.6725571
Technical Sciences and Engineering-Science and Mathematics -0.1572750 -0.6986052 0.3840551 0.9599517
Technical Sciences and Engineering-Social Sciences 0.1219512 -0.3707994 0.6147019 0.9800453

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q50 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1                   -               -    
Other                              1                   1               -    
Science and Mathematics            1                   1               1    
Social Sciences                    1                   1               1    
Technical Sciences and Engineering 1                   1               1    
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1                       -              
Technical Sciences and Engineering 1                       1              

P value adjustment method: bonferroni 

Q51

Row

ANOVA rezultati: Q51

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5    3.5  0.7006   1.074  0.377
Residuals            161  105.0  0.6521               

ONEWAY-test rezultati: Q51


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q51 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value   Pr(>F)   
group   5  3.2071 0.008686 **
      161                    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.03228911  0.03228911

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.2365385 -0.9801409 0.5070640 0.9415515
Other-Arts and Humanities -0.7750000 -2.1692740 0.6192740 0.5976253
Science and Mathematics-Arts and Humanities -0.2232759 -0.7913435 0.3447918 0.8666572
Social Sciences-Arts and Humanities -0.1408537 -0.6584904 0.3767831 0.9697546
Technical Sciences and Engineering-Arts and Humanities -0.3359756 -0.8536124 0.1816612 0.4231147
Other-Health Sciences -0.5384615 -2.0303358 0.9534127 0.9033072
Science and Mathematics-Health Sciences 0.0132626 -0.7641624 0.7906876 1.0000000
Social Sciences-Health Sciences 0.0956848 -0.6456900 0.8370596 0.9990533
Technical Sciences and Engineering-Health Sciences -0.0994371 -0.8408119 0.6419376 0.9988597
Science and Mathematics-Other 0.5517241 -0.8608781 1.9643264 0.8697179
Social Sciences-Other 0.6341463 -0.7589409 2.0272336 0.7775180
Technical Sciences and Engineering-Other 0.4390244 -0.9540628 1.8321116 0.9437479
Social Sciences-Science and Mathematics 0.0824222 -0.4827264 0.6475708 0.9982933
Technical Sciences and Engineering-Science and Mathematics -0.1126997 -0.6778483 0.4524488 0.9925175
Technical Sciences and Engineering-Social Sciences -0.1951220 -0.7095535 0.3193096 0.8831787

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q51 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1.00                -               -    
Other                              1.00                1.00            -    
Science and Mathematics            1.00                1.00            1.00 
Social Sciences                    1.00                1.00            1.00 
Technical Sciences and Engineering 0.95                1.00            1.00 
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1.00                    -              
Technical Sciences and Engineering 1.00                    1.00           

P value adjustment method: bonferroni 

Q52

Row

ANOVA rezultati: Q52

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   2.68  0.5351   0.691  0.631
Residuals            161 124.68  0.7744               

ONEWAY-test rezultati: Q52


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q52 and podaci$`Study field`
F = 0.68498, num df = 5.000, denom df = 18.682, p-value = 0.6406

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  1.3721 0.2375
      161               

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.02101009  0.02101009

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities 0.0961538 -0.7141824 0.9064901 0.9993705
Other-Arts and Humanities 0.2500000 -1.2694018 1.7694018 0.9969642
Science and Mathematics-Arts and Humanities -0.2327586 -0.8518070 0.3862897 0.8869623
Social Sciences-Arts and Humanities 0.1036585 -0.4604330 0.6677501 0.9948874
Technical Sciences and Engineering-Arts and Humanities 0.1036585 -0.4604330 0.6677501 0.9948874
Other-Health Sciences 0.1538462 -1.4719149 1.7796072 0.9997920
Science and Mathematics-Health Sciences -0.3289125 -1.1761067 0.5182818 0.8725738
Social Sciences-Health Sciences 0.0075047 -0.8004040 0.8154134 1.0000000
Technical Sciences and Engineering-Health Sciences 0.0075047 -0.8004040 0.8154134 1.0000000
Science and Mathematics-Other -0.4827586 -2.0221335 1.0566162 0.9448699
Social Sciences-Other -0.1463415 -1.6644499 1.3717670 0.9997722
Technical Sciences and Engineering-Other -0.1463415 -1.6644499 1.3717670 0.9997722
Social Sciences-Science and Mathematics 0.3364172 -0.2794501 0.9522844 0.6158008
Technical Sciences and Engineering-Science and Mathematics 0.3364172 -0.2794501 0.9522844 0.6158008
Technical Sciences and Engineering-Social Sciences 0.0000000 -0.5605987 0.5605987 1.0000000

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q52 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1                   -               -    
Other                              1                   1               -    
Science and Mathematics            1                   1               1    
Social Sciences                    1                   1               1    
Technical Sciences and Engineering 1                   1               1    
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1                       -              
Technical Sciences and Engineering 1                       1              

P value adjustment method: bonferroni 

Q53

Row

ANOVA rezultati: Q53

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   4.24  0.8489    1.34   0.25
Residuals            161 102.00  0.6335               

ONEWAY-test rezultati: Q53


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q53 and podaci$`Study field`
F = 1.1714, num df = 5.000, denom df = 18.622, p-value = 0.36

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value   Pr(>F)   
group   5  3.2257 0.008383 **
      161                    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.03995086  0.03995086

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.1692308 -0.9021580 0.5636965 0.9853730
Other-Arts and Humanities -0.4000000 -1.7742578 0.9742578 0.9596401
Science and Mathematics-Arts and Humanities -0.3655172 -0.9254297 0.1943953 0.4164127
Social Sciences-Arts and Humanities -0.0585366 -0.5687422 0.4516690 0.9994657
Technical Sciences and Engineering-Arts and Humanities -0.3512195 -0.8614251 0.1589861 0.3551612
Other-Health Sciences -0.2307692 -1.7012261 1.2396877 0.9975760
Science and Mathematics-Health Sciences -0.1962865 -0.9625507 0.5699778 0.9767648
Social Sciences-Health Sciences 0.1106942 -0.6200374 0.8414258 0.9979527
Technical Sciences and Engineering-Health Sciences -0.1819887 -0.9127203 0.5487428 0.9794815
Science and Mathematics-Other 0.0344828 -1.3578402 1.4268057 0.9999997
Social Sciences-Other 0.3414634 -1.0316246 1.7145515 0.9796153
Technical Sciences and Engineering-Other 0.0487805 -1.3243076 1.4218685 0.9999984
Social Sciences-Science and Mathematics 0.3069807 -0.2500546 0.8640159 0.6066289
Technical Sciences and Engineering-Science and Mathematics 0.0142977 -0.5427375 0.5713330 0.9999997
Technical Sciences and Engineering-Social Sciences -0.2926829 -0.7997293 0.2143634 0.5569295

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q53 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1.00                -               -    
Other                              1.00                1.00            -    
Science and Mathematics            0.92                1.00            1.00 
Social Sciences                    1.00                1.00            1.00 
Technical Sciences and Engineering 0.73                1.00            1.00 
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1.00                    -              
Technical Sciences and Engineering 1.00                    1.00           

P value adjustment method: bonferroni 

Q58

Row

ANOVA rezultati: Q58

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   4.84  0.9683   0.875  0.499
Residuals            161 178.14  1.1065               

ONEWAY-test rezultati: Q58


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q58 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  1.7433 0.1276
      161               

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.02645814  0.02645814

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.3365385 -1.3051567 0.6320797 0.9166580
Other-Arts and Humanities 0.1250000 -1.6911845 1.9411845 0.9999568
Science and Mathematics-Arts and Humanities -0.2543103 -0.9942766 0.4856559 0.9201672
Social Sciences-Arts and Humanities -0.2652439 -0.9395187 0.4090309 0.8662429
Technical Sciences and Engineering-Arts and Humanities -0.4603659 -1.1346407 0.2139090 0.3645609
Other-Health Sciences 0.4615385 -1.4817803 2.4048573 0.9833960
Science and Mathematics-Health Sciences 0.0822281 -0.9304475 1.0949037 0.9999021
Social Sciences-Health Sciences 0.0712946 -0.8944219 1.0370110 0.9999389
Technical Sciences and Engineering-Health Sciences -0.1238274 -1.0895439 0.8418891 0.9990828
Science and Mathematics-Other -0.3793103 -2.2193693 1.4607486 0.9912789
Social Sciences-Other -0.3902439 -2.2048825 1.4243947 0.9894089
Technical Sciences and Engineering-Other -0.5853659 -2.4000045 1.2292728 0.9381118
Social Sciences-Science and Mathematics -0.0109336 -0.7470974 0.7252302 1.0000000
Technical Sciences and Engineering-Science and Mathematics -0.2060555 -0.9422193 0.5301083 0.9658391
Technical Sciences and Engineering-Social Sciences -0.1951220 -0.8652217 0.4749778 0.9595712

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q58 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1.00                -               -    
Other                              1.00                1.00            -    
Science and Mathematics            1.00                1.00            1.00 
Social Sciences                    1.00                1.00            1.00 
Technical Sciences and Engineering 0.76                1.00            1.00 
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1.00                    -              
Technical Sciences and Engineering 1.00                    1.00           

P value adjustment method: bonferroni 

Q59

Row

ANOVA rezultati: Q59

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   4.84  0.9686   0.846  0.519
Residuals            161 184.38  1.1452               

ONEWAY-test rezultati: Q59


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q59 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value    Pr(>F)    
group   5  5.0034 0.0002748 ***
      161                      
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.02559474  0.02559474

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.5019231 -1.4873540 0.4835079 0.6843683
Other-Arts and Humanities 0.5750000 -1.2727089 2.4227089 0.9465987
Science and Mathematics-Arts and Humanities 0.0577586 -0.6950516 0.8105688 0.9999260
Social Sciences-Arts and Humanities -0.1810976 -0.8670761 0.5048810 0.9734825
Technical Sciences and Engineering-Arts and Humanities -0.1079268 -0.7939054 0.5780517 0.9975467
Other-Health Sciences 1.0769231 -0.9001268 3.0539730 0.6187039
Science and Mathematics-Health Sciences 0.5596817 -0.4705714 1.5899347 0.6214684
Social Sciences-Health Sciences 0.3208255 -0.6616533 1.3033044 0.9349595
Technical Sciences and Engineering-Health Sciences 0.3939962 -0.5884826 1.3764751 0.8565102
Science and Mathematics-Other -0.5172414 -2.3892390 1.3547563 0.9676886
Social Sciences-Other -0.7560976 -2.6022337 1.0900386 0.8452116
Technical Sciences and Engineering-Other -0.6829268 -2.5290630 1.1632093 0.8937318
Social Sciences-Science and Mathematics -0.2388562 -0.9877979 0.5100856 0.9409265
Technical Sciences and Engineering-Science and Mathematics -0.1656854 -0.9146272 0.5832563 0.9879499
Technical Sciences and Engineering-Social Sciences 0.0731707 -0.6085602 0.7549017 0.9996142

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q59 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1                   -               -    
Other                              1                   1               -    
Science and Mathematics            1                   1               1    
Social Sciences                    1                   1               1    
Technical Sciences and Engineering 1                   1               1    
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1                       -              
Technical Sciences and Engineering 1                       1              

P value adjustment method: bonferroni 

Q60

Row

ANOVA rezultati: Q60

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5  12.26   2.452   1.871  0.102
Residuals            161 210.97   1.310               

ONEWAY-test rezultati: Q60


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q60 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   5  2.1554 0.06158 .
      161                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.05491935  0.05491935

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities 0.3557692 -0.6983391 1.4098775 0.9257180
Other-Arts and Humanities 0.1250000 -1.8514807 2.1014807 0.9999716
Science and Mathematics-Arts and Humanities -0.2543103 -1.0595859 0.5509652 0.9432615
Social Sciences-Arts and Humanities -0.5091463 -1.2429326 0.2246399 0.3461405
Technical Sciences and Engineering-Arts and Humanities -0.4603659 -1.1941521 0.2734204 0.4625271
Other-Health Sciences -0.2307692 -2.3456051 1.8840666 0.9995818
Science and Mathematics-Health Sciences -0.6100796 -1.7121338 0.4919746 0.6019153
Social Sciences-Health Sciences -0.8649156 -1.9158660 0.1860349 0.1717689
Technical Sciences and Engineering-Health Sciences -0.8161351 -1.8670856 0.2348154 0.2255180
Science and Mathematics-Other -0.3793103 -2.3817726 1.6231519 0.9941083
Social Sciences-Other -0.6341463 -2.6089447 1.3406520 0.9392467
Technical Sciences and Engineering-Other -0.5853659 -2.5601642 1.3894325 0.9564115
Social Sciences-Science and Mathematics -0.2548360 -1.0559735 0.5463015 0.9415555
Technical Sciences and Engineering-Science and Mathematics -0.2060555 -1.0071930 0.5950820 0.9763456
Technical Sciences and Engineering-Social Sciences 0.0487805 -0.6804621 0.7780231 0.9999625

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q60 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1.00                -               -    
Other                              1.00                1.00            -    
Science and Mathematics            1.00                1.00            1.00 
Social Sciences                    0.71                0.28            1.00 
Technical Sciences and Engineering 1.00                0.40            1.00 
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1.00                    -              
Technical Sciences and Engineering 1.00                    1.00           

P value adjustment method: bonferroni 

Q61

Row

ANOVA rezultati: Q61

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   2.75  0.5491   0.564  0.728
Residuals            161 156.88  0.9744               

ONEWAY-test rezultati: Q61


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q61 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   5  1.9865 0.08334 .
      161                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.01719957  0.01719957

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities 0.2442308 -0.6647596 1.1532212 0.9713713
Other-Arts and Humanities 0.4750000 -1.2293808 2.1793808 0.9664691
Science and Mathematics-Arts and Humanities 0.1301724 -0.5642418 0.8245866 0.9943884
Social Sciences-Arts and Humanities -0.1103659 -0.7431326 0.5224009 0.9959997
Technical Sciences and Engineering-Arts and Humanities -0.0859756 -0.7187423 0.5467911 0.9987862
Other-Health Sciences 0.2307692 -1.5929195 2.0544580 0.9991397
Science and Mathematics-Health Sciences -0.1140584 -1.0643940 0.8362773 0.9993346
Social Sciences-Health Sciences -0.3545966 -1.2608639 0.5516707 0.8688567
Technical Sciences and Engineering-Health Sciences -0.3302064 -1.2364737 0.5760609 0.8997194
Science and Mathematics-Other -0.3448276 -2.0716131 1.3819579 0.9924692
Social Sciences-Other -0.5853659 -2.2882960 1.1175642 0.9201100
Technical Sciences and Engineering-Other -0.5609756 -2.2639057 1.1419545 0.9326146
Social Sciences-Science and Mathematics -0.2405383 -0.9313841 0.4503075 0.9159593
Technical Sciences and Engineering-Science and Mathematics -0.2161480 -0.9069938 0.4746978 0.9453991
Technical Sciences and Engineering-Social Sciences 0.0243902 -0.6044584 0.6532389 0.9999975

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q61 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1                   -               -    
Other                              1                   1               -    
Science and Mathematics            1                   1               1    
Social Sciences                    1                   1               1    
Technical Sciences and Engineering 1                   1               1    
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1                       -              
Technical Sciences and Engineering 1                       1              

P value adjustment method: bonferroni 

Q62

Row

ANOVA rezultati: Q62

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   5.83   1.166   1.045  0.393
Residuals            161 179.53   1.115               

ONEWAY-test rezultati: Q62


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q62 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  1.5311  0.183
      161               

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.03144324  0.03144324

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities 0.4692308 -0.5031442 1.4416058 0.7318813
Other-Arts and Humanities -0.3000000 -2.1232286 1.5232286 0.9969637
Science and Mathematics-Arts and Humanities -0.0241379 -0.7669741 0.7186983 0.9999990
Social Sciences-Arts and Humanities -0.1536585 -0.8305485 0.5232315 0.9864538
Technical Sciences and Engineering-Arts and Humanities -0.2512195 -0.9281095 0.4256705 0.8923961
Other-Health Sciences -0.7692308 -2.7200867 1.1816252 0.8650820
Science and Mathematics-Health Sciences -0.4933687 -1.5099719 0.5232345 0.7271193
Social Sciences-Health Sciences -0.6228893 -1.5923513 0.3465727 0.4348942
Technical Sciences and Engineering-Health Sciences -0.7204503 -1.6899123 0.2490117 0.2705423
Science and Mathematics-Other 0.2758621 -1.5713335 2.1230576 0.9980877
Social Sciences-Other 0.1463415 -1.6753352 1.9680181 0.9999072
Technical Sciences and Engineering-Other 0.0487805 -1.7728962 1.8704572 0.9999996
Social Sciences-Science and Mathematics -0.1295206 -0.8685396 0.6094984 0.9959078
Technical Sciences and Engineering-Science and Mathematics -0.2270816 -0.9661006 0.5119374 0.9493336
Technical Sciences and Engineering-Social Sciences -0.0975610 -0.7702597 0.5751377 0.9983384

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q62 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1.00                -               -    
Other                              1.00                1.00            -    
Science and Mathematics            1.00                1.00            1.00 
Social Sciences                    1.00                0.99            1.00 
Technical Sciences and Engineering 1.00                0.50            1.00 
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1.00                    -              
Technical Sciences and Engineering 1.00                    1.00           

P value adjustment method: bonferroni 

Q63

Row

ANOVA rezultati: Q63

                      Df Sum Sq Mean Sq F value Pr(>F)  
podaci$`Study field`   5  15.88   3.176   2.235 0.0533 .
Residuals            160 227.37   1.421                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
1 observation deleted due to missingness

ONEWAY-test rezultati: Q63


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q63 and podaci$`Study field`
F = 3.186, num df = 5.000, denom df = 18.816, p-value = 0.02984

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  1.6219 0.1571
      160               

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.06528698  0.06528698

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.7038462 -1.8016510 0.3939587 0.4373085
Other-Arts and Humanities -0.2166667 -2.2750795 1.8417461 0.9996491
Science and Mathematics-Arts and Humanities 0.2086207 -0.6300364 1.0472778 0.9795801
Social Sciences-Arts and Humanities 0.4012195 -0.3629847 1.1654238 0.6555160
Technical Sciences and Engineering-Arts and Humanities 0.4000000 -0.3689071 1.1689071 0.6643891
Other-Health Sciences 0.4871795 -1.7153237 2.6896827 0.9879525
Science and Mathematics-Health Sciences 0.9124668 -0.2352714 2.0602050 0.2029041
Social Sciences-Health Sciences 1.1050657 0.0105496 2.1995817 0.0463598
Technical Sciences and Engineering-Health Sciences 1.1038462 0.0060413 2.2016510 0.0478928
Science and Mathematics-Other 0.4252874 -1.6601840 2.5107587 0.9916983
Social Sciences-Other 0.6178862 -1.4387745 2.6745469 0.9538601
Technical Sciences and Engineering-Other 0.6166667 -1.4417461 2.6750795 0.9544037
Social Sciences-Science and Mathematics 0.1925988 -0.6417487 1.0269463 0.9853835
Technical Sciences and Engineering-Science and Mathematics 0.1913793 -0.6472778 1.0300364 0.9861233
Technical Sciences and Engineering-Social Sciences -0.0012195 -0.7654238 0.7629847 1.0000000

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q63 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    0.994               -               -    
Other                              1.000               1.000           -    
Science and Mathematics            1.000               0.347           1.000
Social Sciences                    1.000               0.061           1.000
Technical Sciences and Engineering 1.000               0.064           1.000
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1.000                   -              
Technical Sciences and Engineering 1.000                   1.000          

P value adjustment method: bonferroni 

Q64

Row

ANOVA rezultati: Q64

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   9.13   1.827   1.366   0.24
Residuals            160 213.98   1.337               
1 observation deleted due to missingness

ONEWAY-test rezultati: Q64


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q64 and podaci$`Study field`
F = 1.9513, num df = 5.000, denom df = 18.792, p-value = 0.1333

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  1.1938 0.3146
      160               

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.04093993  0.04093993

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.6538462 -1.7188315 0.4111392 0.4874137
Other-Arts and Humanities 0.1666667 -1.8302088 2.1635421 0.9998879
Science and Mathematics-Arts and Humanities -0.0517241 -0.8653091 0.7618608 0.9999708
Social Sciences-Arts and Humanities 0.2317073 -0.5096506 0.9730653 0.9456156
Technical Sciences and Engineering-Arts and Humanities 0.2000000 -0.5459202 0.9459202 0.9716172
Other-Health Sciences 0.8205128 -1.3161454 2.9571710 0.8776054
Science and Mathematics-Health Sciences 0.6021220 -0.5113039 1.7155480 0.6260386
Social Sciences-Health Sciences 0.8855535 -0.1762415 1.9473484 0.1604582
Technical Sciences and Engineering-Health Sciences 0.8538462 -0.2111392 1.9188315 0.1950674
Science and Mathematics-Other -0.2183908 -2.2415159 1.8047343 0.9996031
Social Sciences-Other 0.0650407 -1.9301351 2.0602164 0.9999990
Technical Sciences and Engineering-Other 0.0333333 -1.9635421 2.0302088 1.0000000
Social Sciences-Science and Mathematics 0.2834315 -0.5259728 1.0928357 0.9140224
Technical Sciences and Engineering-Science and Mathematics 0.2517241 -0.5618608 1.0653091 0.9478424
Technical Sciences and Engineering-Social Sciences -0.0317073 -0.7730653 0.7096506 0.9999959

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q64 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1.00                -               -    
Other                              1.00                1.00            -    
Science and Mathematics            1.00                1.00            1.00 
Social Sciences                    1.00                0.26            1.00 
Technical Sciences and Engineering 1.00                0.33            1.00 
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1.00                    -              
Technical Sciences and Engineering 1.00                    1.00           

P value adjustment method: bonferroni 

Q65

Row

ANOVA rezultati: Q65

                      Df Sum Sq Mean Sq F value Pr(>F)  
podaci$`Study field`   5   9.46  1.8927   2.678 0.0236 *
Residuals            161 113.79  0.7068                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q65


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q65 and podaci$`Study field`
F = 2.3388, num df = 5.000, denom df = 19.107, p-value = 0.08138

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   5  2.2137 0.05542 .
      161                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.07677739  0.07677739

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.8423077 -1.6164681 -0.0681473 0.0243231
Other-Arts and Humanities -0.8166667 -2.2682377 0.6349044 0.5847702
Science and Mathematics-Arts and Humanities -0.1844828 -0.7758949 0.4069294 0.9460721
Social Sciences-Arts and Humanities -0.4426829 -0.9815917 0.0962259 0.1733904
Technical Sciences and Engineering-Arts and Humanities -0.3207317 -0.8596405 0.2181771 0.5228802
Other-Health Sciences 0.0256410 -1.5275411 1.5788231 1.0000000
Science and Mathematics-Health Sciences 0.6578249 -0.1515480 1.4671978 0.1827358
Social Sciences-Health Sciences 0.3996248 -0.3722165 1.1714660 0.6689951
Technical Sciences and Engineering-Health Sciences 0.5215760 -0.2502652 1.2934172 0.3764107
Science and Mathematics-Other 0.6321839 -0.8384686 2.1028364 0.8165450
Social Sciences-Other 0.3739837 -1.0763517 1.8243192 0.9760790
Technical Sciences and Engineering-Other 0.4959350 -0.9544005 1.9462704 0.9217517
Social Sciences-Science and Mathematics -0.2582002 -0.8465732 0.3301729 0.8031232
Technical Sciences and Engineering-Science and Mathematics -0.1362489 -0.7246220 0.4521241 0.9851801
Technical Sciences and Engineering-Social Sciences 0.1219512 -0.4136207 0.6575231 0.9862648

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q65 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    0.03                -               -    
Other                              1.00                1.00            -    
Science and Mathematics            1.00                0.30            1.00 
Social Sciences                    0.29                1.00            1.00 
Technical Sciences and Engineering 1.00                0.80            1.00 
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1.00                    -              
Technical Sciences and Engineering 1.00                    1.00           

P value adjustment method: bonferroni 

Q66

Row

ANOVA rezultati: Q66

                      Df Sum Sq Mean Sq F value Pr(>F)
podaci$`Study field`   5   3.05  0.6098   0.712  0.615
Residuals            161 137.84  0.8561               

ONEWAY-test rezultati: Q66


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q66 and podaci$`Study field`
F = 0.88951, num df = 5.000, denom df = 19.369, p-value = 0.5071

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value Pr(>F)
group   5  1.3759  0.236
      161               

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.02164165  0.02164165

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.3615385 -1.2135674 0.4904905 0.8246057
Other-Arts and Humanities -0.5666667 -2.1642432 1.0309099 0.9096204
Science and Mathematics-Arts and Humanities -0.2793103 -0.9302094 0.3715887 0.8176489
Social Sciences-Arts and Humanities -0.2902439 -0.8833586 0.3028708 0.7200624
Technical Sciences and Engineering-Arts and Humanities -0.2902439 -0.8833586 0.3028708 0.7200624
Other-Health Sciences -0.2051282 -1.9145363 1.5042799 0.9993352
Science and Mathematics-Health Sciences 0.0822281 -0.8085551 0.9730114 0.9998159
Social Sciences-Health Sciences 0.0712946 -0.7781819 0.9207710 0.9998848
Technical Sciences and Engineering-Health Sciences 0.0712946 -0.7781819 0.9207710 0.9998848
Science and Mathematics-Other 0.2873563 -1.3312209 1.9059336 0.9956514
Social Sciences-Other 0.2764228 -1.3197939 1.8726395 0.9961325
Technical Sciences and Engineering-Other 0.2764228 -1.3197939 1.8726395 0.9961325
Social Sciences-Science and Mathematics -0.0109336 -0.6584878 0.6366207 1.0000000
Technical Sciences and Engineering-Science and Mathematics -0.0109336 -0.6584878 0.6366207 1.0000000
Technical Sciences and Engineering-Social Sciences 0.0000000 -0.5894421 0.5894421 1.0000000

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q66 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    1                   -               -    
Other                              1                   1               -    
Science and Mathematics            1                   1               1    
Social Sciences                    1                   1               1    
Technical Sciences and Engineering 1                   1               1    
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1                       -              
Technical Sciences and Engineering 1                       1              

P value adjustment method: bonferroni 

Q67

Row

ANOVA rezultati: Q67

                      Df Sum Sq Mean Sq F value Pr(>F)  
podaci$`Study field`   5  17.31   3.462   2.704 0.0225 *
Residuals            161 206.19   1.281                 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

ONEWAY-test rezultati: Q67


    One-way analysis of means (not assuming equal variances)

data:  podaci$Q67 and podaci$`Study field`
F = NaN, num df = 5, denom df = NaN, p-value = NA

Levene test

Levene's Test for Homogeneity of Variance (center = mean)
       Df F value  Pr(>F)  
group   5   3.118 0.01029 *
      161                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Eta squared

                         eta.sq eta.sq.part
podaci$`Study field` 0.07745677  0.07745677

Row

Tukey

diff lwr upr p adj
Health Sciences-Arts and Humanities -0.9096154 -1.9516936 0.1324628 0.1250758
Other-Arts and Humanities 0.4750000 -1.4789239 2.4289239 0.9815727
Science and Mathematics-Arts and Humanities -0.2146552 -1.0107404 0.5814301 0.9709269
Social Sciences-Arts and Humanities 0.2798780 -0.4455338 1.0052899 0.8754931
Technical Sciences and Engineering-Arts and Humanities 0.1823171 -0.5430947 0.9077289 0.9786370
Other-Health Sciences 1.3846154 -0.7060847 3.4753154 0.3997097
Science and Mathematics-Health Sciences 0.6949602 -0.3945166 1.7844371 0.4432864
Social Sciences-Health Sciences 1.1894934 0.1505371 2.2284498 0.0147494
Technical Sciences and Engineering-Health Sciences 1.0919325 0.0529761 2.1308888 0.0332073
Science and Mathematics-Other -0.6896552 -2.6692641 1.2899538 0.9157691
Social Sciences-Other -0.1951220 -2.1473827 1.7571388 0.9997279
Technical Sciences and Engineering-Other -0.2926829 -2.2449437 1.6595778 0.9980520
Social Sciences-Science and Mathematics 0.4945332 -0.2974612 1.2865277 0.4680121
Technical Sciences and Engineering-Science and Mathematics 0.3969722 -0.3950222 1.1889667 0.6990089
Technical Sciences and Engineering-Social Sciences -0.0975610 -0.8184810 0.6233591 0.9988095

Bonferroni (Pairwise t-test)


    Pairwise comparisons using t tests with pooled SD 

data:  podaci$Q67 and podaci$`Study field` 

                                   Arts and Humanities Health Sciences Other
Health Sciences                    0.192               -               -    
Other                              1.000               0.868           -    
Science and Mathematics            1.000               1.000           1.000
Social Sciences                    1.000               0.018           1.000
Technical Sciences and Engineering 1.000               0.043           1.000
                                   Science and Mathematics Social Sciences
Health Sciences                    -                       -              
Other                              -                       -              
Science and Mathematics            -                       -              
Social Sciences                    1.000                   -              
Technical Sciences and Engineering 1.000                   1.000          

P value adjustment method: bonferroni 
---
title: "eDesk - frekvencije odgovora po pitanjima"
output: 
  flexdashboard::flex_dashboard:
    social: menu
    orientation: columns
    vertical_layout: fill
    source_code: embed
---

```{css, echo=FALSE}
.sidebar { overflow: auto; }
.dataTables_scrollBody {
    height:95% !important;
    max-height:95% !important;
}
.chart-stage-flex {
    overflow:auto !important;
}
```

```{r setup, include=FALSE}
library(readxl)
library(tidyverse)
library(car)
library(lsr)
library(kableExtra)

podaci <- read_excel('Podaci.xlsx')
imena <- names(podaci)
podaci <- podaci %>% rename_with(.fn = ~paste0("Q", substring(.,1,regexpr("\\.", .) - 1)), .cols = 9:length(imena))
podaci$Country <- factor(podaci$Country)

podaci9_18 <- podaci %>% select(Country, 9:18) %>%
  pivot_longer(!Country, names_to = "Question", values_to = "Answer")
podaci19_28 <- podaci %>% select(Country, 19:28) %>%
  pivot_longer(!Country, names_to = "Question", values_to = "Answer")
podaci29_38 <- podaci %>% select(Country, 29:38) %>%
  pivot_longer(!Country, names_to = "Question", values_to = "Answer")
podaci39_48 <- podaci %>% select(Country, 39:48) %>%
  pivot_longer(!Country, names_to = "Question", values_to = "Answer")
podaci49_58 <- podaci %>% select(Country, 49:58) %>%
  pivot_longer(!Country, names_to = "Question", values_to = "Answer")
podaci49_58$Answer = factor(podaci49_58$Answer)
levels(podaci49_58$Answer) <- c(levels(podaci49_58$Answer),4,5)
podaci59_69 <- podaci %>% select(Country, 59:69) %>% drop_na() %>%
  pivot_longer(!Country, names_to = "Question", values_to = "Answer")

ppodaci9_18 <- podaci %>% select("Study field", 9:18) %>%
  pivot_longer(!`Study field`, names_to = "Question", values_to = "Answer")

ppodaci19_28 <- podaci %>% select("Study field", 19:28) %>%
  pivot_longer(!`Study field`, names_to = "Question", values_to = "Answer")

ppodaci29_38 <- podaci %>% select("Study field", 29:38) %>%
  pivot_longer(!`Study field`, names_to = "Question", values_to = "Answer")

ppodaci39_48 <- podaci %>% select("Study field", 39:48) %>%
  pivot_longer(!`Study field`, names_to = "Question", values_to = "Answer")

ppodaci49_58 <- podaci %>% select("Study field", 49:58) %>%
  pivot_longer(!`Study field`, names_to = "Question", values_to = "Answer")
ppodaci49_58$Answer = factor(ppodaci49_58$Answer)
levels(ppodaci49_58$Answer) <- c(levels(ppodaci49_58$Answer),4,5)

ppodaci59_69 <- podaci %>% select("Study field", 59:69) %>% drop_na() %>%
  pivot_longer(!`Study field`, names_to = "Question", values_to = "Answer")

swr = function(string, nwrap=10) {
  paste(strwrap(string, width=nwrap), collapse="\n")
}
swr = Vectorize(swr)

ppodaci9_18$`Study field` = swr(ppodaci9_18$`Study field`)
ppodaci19_28$`Study field` = swr(ppodaci19_28$`Study field`)
ppodaci29_38$`Study field` = swr(ppodaci29_38$`Study field`)
ppodaci39_48$`Study field` = swr(ppodaci39_48$`Study field`)
ppodaci49_58$`Study field` = swr(ppodaci49_58$`Study field`)
ppodaci59_69$`Study field` = swr(ppodaci59_69$`Study field`)

Q1 <- aov(podaci$Q1 ~ podaci$Country)
Q2 <- aov(podaci$Q2 ~ podaci$Country)
Q3 <- aov(podaci$Q3 ~ podaci$Country)
Q4 <- aov(podaci$Q4 ~ podaci$Country)
Q5 <- aov(podaci$Q5 ~ podaci$Country)
Q6 <- aov(podaci$Q6 ~ podaci$Country)
Q7 <- aov(podaci$Q7 ~ podaci$Country)
Q8 <- aov(podaci$Q8 ~ podaci$Country)
Q9 <- aov(podaci$Q9 ~ podaci$Country)
Q10 <- aov(podaci$Q10 ~ podaci$Country)
Q11 <- aov(podaci$Q11 ~ podaci$Country)
Q12 <- aov(podaci$Q12 ~ podaci$Country)
Q13 <- aov(podaci$Q13 ~ podaci$Country)
Q14 <- aov(podaci$Q14 ~ podaci$Country)
Q15 <- aov(podaci$Q15 ~ podaci$Country)
Q16 <- aov(podaci$Q16 ~ podaci$Country)
Q17 <- aov(podaci$Q17 ~ podaci$Country)
Q18 <- aov(podaci$Q18 ~ podaci$Country)
Q19 <- aov(podaci$Q19 ~ podaci$Country)
Q20 <- aov(podaci$Q20 ~ podaci$Country)
Q21 <- aov(podaci$Q21 ~ podaci$Country)
Q22 <- aov(podaci$Q22 ~ podaci$Country)
Q23 <- aov(podaci$Q23 ~ podaci$Country)
Q24 <- aov(podaci$Q24 ~ podaci$Country)
Q26 <- aov(podaci$Q26 ~ podaci$Country)
Q27 <- aov(podaci$Q27 ~ podaci$Country)
Q28 <- aov(podaci$Q28 ~ podaci$Country)
Q29 <- aov(podaci$Q29 ~ podaci$Country)
Q30 <- aov(podaci$Q30 ~ podaci$Country)
Q31 <- aov(podaci$Q31 ~ podaci$Country)
Q32 <- aov(podaci$Q32 ~ podaci$Country)
Q33 <- aov(podaci$Q33 ~ podaci$Country)
Q35 <- aov(podaci$Q35 ~ podaci$Country)
Q36 <- aov(podaci$Q36 ~ podaci$Country)
Q37 <- aov(podaci$Q37 ~ podaci$Country)
Q38 <- aov(podaci$Q38 ~ podaci$Country)
Q39 <- aov(podaci$Q39 ~ podaci$Country)
Q40 <- aov(podaci$Q40 ~ podaci$Country)
Q41 <- aov(podaci$Q41 ~ podaci$Country)
Q42 <- aov(podaci$Q42 ~ podaci$Country)
Q43 <- aov(podaci$Q43 ~ podaci$Country)
Q44 <- aov(podaci$Q44 ~ podaci$Country)
Q45 <- aov(podaci$Q45 ~ podaci$Country)
Q46 <- aov(podaci$Q46 ~ podaci$Country)
Q47 <- aov(podaci$Q47 ~ podaci$Country)
Q48 <- aov(podaci$Q48 ~ podaci$Country)
Q49 <- aov(podaci$Q49 ~ podaci$Country)
Q50 <- aov(podaci$Q50 ~ podaci$Country)
Q51 <- aov(podaci$Q51 ~ podaci$Country)
Q52 <- aov(podaci$Q52 ~ podaci$Country)
Q53 <- aov(podaci$Q53 ~ podaci$Country)
Q58 <- aov(podaci$Q58 ~ podaci$Country)
Q59 <- aov(podaci$Q59 ~ podaci$Country)
Q60 <- aov(podaci$Q60 ~ podaci$Country)
Q61 <- aov(podaci$Q61 ~ podaci$Country)
Q62 <- aov(podaci$Q62 ~ podaci$Country)
Q63 <- aov(podaci$Q63 ~ podaci$Country)
Q64 <- aov(podaci$Q64 ~ podaci$Country)
Q65 <- aov(podaci$Q65 ~ podaci$Country)
Q66 <- aov(podaci$Q66 ~ podaci$Country)
Q67 <- aov(podaci$Q67 ~ podaci$Country)

PQ1 <- aov(podaci$Q1 ~ podaci$`Study field`)
PQ2 <- aov(podaci$Q2 ~ podaci$`Study field`)
PQ3 <- aov(podaci$Q3 ~ podaci$`Study field`)
PQ4 <- aov(podaci$Q4 ~ podaci$`Study field`)
PQ5 <- aov(podaci$Q5 ~ podaci$`Study field`)
PQ6 <- aov(podaci$Q6 ~ podaci$`Study field`)
PQ7 <- aov(podaci$Q7 ~ podaci$`Study field`)
PQ8 <- aov(podaci$Q8 ~ podaci$`Study field`)
PQ9 <- aov(podaci$Q9 ~ podaci$`Study field`)
PQ10 <- aov(podaci$Q10 ~ podaci$`Study field`)
PQ11 <- aov(podaci$Q11 ~ podaci$`Study field`)
PQ12 <- aov(podaci$Q12 ~ podaci$`Study field`)
PQ13 <- aov(podaci$Q13 ~ podaci$`Study field`)
PQ14 <- aov(podaci$Q14 ~ podaci$`Study field`)
PQ15 <- aov(podaci$Q15 ~ podaci$`Study field`)
PQ16 <- aov(podaci$Q16 ~ podaci$`Study field`)
PQ17 <- aov(podaci$Q17 ~ podaci$`Study field`)
PQ18 <- aov(podaci$Q18 ~ podaci$`Study field`)
PQ19 <- aov(podaci$Q19 ~ podaci$`Study field`)
PQ20 <- aov(podaci$Q20 ~ podaci$`Study field`)
PQ21 <- aov(podaci$Q21 ~ podaci$`Study field`)
PQ22 <- aov(podaci$Q22 ~ podaci$`Study field`)
PQ23 <- aov(podaci$Q23 ~ podaci$`Study field`)
PQ24 <- aov(podaci$Q24 ~ podaci$`Study field`)
PQ26 <- aov(podaci$Q26 ~ podaci$`Study field`)
PQ27 <- aov(podaci$Q27 ~ podaci$`Study field`)
PQ28 <- aov(podaci$Q28 ~ podaci$`Study field`)
PQ29 <- aov(podaci$Q29 ~ podaci$`Study field`)
PQ30 <- aov(podaci$Q30 ~ podaci$`Study field`)
PQ31 <- aov(podaci$Q31 ~ podaci$`Study field`)
PQ32 <- aov(podaci$Q32 ~ podaci$`Study field`)
PQ33 <- aov(podaci$Q33 ~ podaci$`Study field`)
PQ35 <- aov(podaci$Q35 ~ podaci$`Study field`)
PQ36 <- aov(podaci$Q36 ~ podaci$`Study field`)
PQ37 <- aov(podaci$Q37 ~ podaci$`Study field`)
PQ38 <- aov(podaci$Q38 ~ podaci$`Study field`)
PQ39 <- aov(podaci$Q39 ~ podaci$`Study field`)
PQ40 <- aov(podaci$Q40 ~ podaci$`Study field`)
PQ41 <- aov(podaci$Q41 ~ podaci$`Study field`)
PQ42 <- aov(podaci$Q42 ~ podaci$`Study field`)
PQ43 <- aov(podaci$Q43 ~ podaci$`Study field`)
PQ44 <- aov(podaci$Q44 ~ podaci$`Study field`)
PQ45 <- aov(podaci$Q45 ~ podaci$`Study field`)
PQ46 <- aov(podaci$Q46 ~ podaci$`Study field`)
PQ47 <- aov(podaci$Q47 ~ podaci$`Study field`)
PQ48 <- aov(podaci$Q48 ~ podaci$`Study field`)
PQ49 <- aov(podaci$Q49 ~ podaci$`Study field`)
PQ50 <- aov(podaci$Q50 ~ podaci$`Study field`)
PQ51 <- aov(podaci$Q51 ~ podaci$`Study field`)
PQ52 <- aov(podaci$Q52 ~ podaci$`Study field`)
PQ53 <- aov(podaci$Q53 ~ podaci$`Study field`)
PQ58 <- aov(podaci$Q58 ~ podaci$`Study field`)
PQ59 <- aov(podaci$Q59 ~ podaci$`Study field`)
PQ60 <- aov(podaci$Q60 ~ podaci$`Study field`)
PQ61 <- aov(podaci$Q61 ~ podaci$`Study field`)
PQ62 <- aov(podaci$Q62 ~ podaci$`Study field`)
PQ63 <- aov(podaci$Q63 ~ podaci$`Study field`)
PQ64 <- aov(podaci$Q64 ~ podaci$`Study field`)
PQ65 <- aov(podaci$Q65 ~ podaci$`Study field`)
PQ66 <- aov(podaci$Q66 ~ podaci$`Study field`)
PQ67 <- aov(podaci$Q67 ~ podaci$`Study field`)
```


Pitanja: 1 - 10 {data-navmenu="Pitanja vs države"}
=======================================================================

### pitanja (1 - 10)

```{r fig.width=10}
ggplot(podaci9_18, aes(x=factor(Answer), fill=Country, color=Country)) + 
  geom_bar(alpha=.5) + 
  facet_grid(Country ~ factor(Question,levels=c("Q1","Q2","Q3","Q4","Q5","Q6","Q7","Q8","Q9","Q10"))) + 
  theme(legend.position="none") + xlab("Answer") + ylim(0,50)
```

Pitanja: 11 - 20 {data-navmenu="Pitanja vs države"}
=======================================================================

### pitanja (11 - 20)

```{r fig.width=10}
ggplot(podaci19_28, aes(x=factor(Answer), fill=Country, color=Country)) + 
  geom_bar(alpha=.5) + facet_grid(Country ~ factor(Question)) + 
  theme(legend.position="none") + xlab("Answer") + ylim(0,50)
```

Pitanja: 21 - 30 {data-navmenu="Pitanja vs države"}
=======================================================================

### pitanja (21 - 30)

```{r fig.width=10}
ggplot(podaci29_38, aes(x=factor(Answer), fill=Country, color=Country)) + 
  geom_bar(alpha=.5) + facet_grid(Country ~ factor(Question)) + 
  theme(legend.position="none") + xlab("Answer") + ylim(0,50)
```

Pitanja: 31 - 40 {data-navmenu="Pitanja vs države"}
=======================================================================

### pitanja (31 - 40)

```{r fig.width=10}
ggplot(podaci39_48, aes(x=factor(Answer), fill=Country, color=Country)) + 
  geom_bar(alpha=.5) + facet_grid(Country ~ factor(Question)) + 
  theme(legend.position="none") + xlab("Answer") + ylim(0,50)
```

Pitanja: 41 - 50 {data-navmenu="Pitanja vs države"}
=======================================================================

### pitanja (41 - 50)

```{r fig.width=10}
ggplot(podaci49_58, aes(x=Answer, fill=Country, color=Country)) + 
  geom_bar(alpha=.5) + facet_grid(Country ~ factor(Question)) + 
  theme(legend.position="none") + xlab("Answer") + ylim(0,50) + scale_x_discrete(drop=FALSE)
```

Pitanja: 51 - 61 {data-navmenu="Pitanja vs države"}
=======================================================================

### pitanja (51 - 61)

```{r fig.width=11}
ggplot(podaci59_69, aes(x=factor(Answer), fill=Country, color=Country)) + 
  geom_bar(alpha=.5) + facet_grid(Country ~ factor(Question)) + 
  theme(legend.position="none") + xlab("Answer") + ylim(0,50)
```

Pitanja: 1 - 10 {data-navmenu="Pitanja vs područje"}
=======================================================================

### pitanja (1 - 10)

```{r fig.width=10}
ggplot(ppodaci9_18, aes(x=factor(Answer), fill=`Study field`, color=`Study field`)) + 
  geom_bar(alpha=.5) + 
  facet_grid(factor(`Study field`) ~ factor(Question,levels=c("Q1","Q2","Q3","Q4","Q5","Q6","Q7","Q8","Q9","Q10"))) + 
  theme(legend.position="none", strip.text.y = element_text(size = 7)) + xlab("Answer") + ylim(0,40)
```

Pitanja: 11 - 20 {data-navmenu="Pitanja vs područje"}
=======================================================================

### pitanja (11 - 20)

```{r fig.width=10}
ggplot(ppodaci19_28, aes(x=factor(Answer), fill=`Study field`, color=`Study field`)) + 
  geom_bar(alpha=.5) + 
  facet_grid(factor(`Study field`) ~ factor(Question)) + 
  theme(legend.position="none", strip.text.y = element_text(size = 7)) + xlab("Answer") + ylim(0,40)
```

Pitanja: 21 - 30 {data-navmenu="Pitanja vs područje"}
=======================================================================

### pitanja (21 - 30)

```{r fig.width=10}
ggplot(ppodaci29_38, aes(x=factor(Answer), fill=`Study field`, color=`Study field`)) + 
  geom_bar(alpha=.5) + 
  facet_grid(factor(`Study field`) ~ factor(Question)) + 
  theme(legend.position="none", strip.text.y = element_text(size = 7)) + xlab("Answer") + ylim(0,40)
```

Pitanja: 31 - 40 {data-navmenu="Pitanja vs područje"}
=======================================================================

### pitanja (31 - 40)

```{r fig.width=10}
ggplot(ppodaci39_48, aes(x=factor(Answer), fill=`Study field`, color=`Study field`)) + 
  geom_bar(alpha=.5) + 
  facet_grid(factor(`Study field`) ~ factor(Question)) + 
  theme(legend.position="none", strip.text.y = element_text(size = 7)) + xlab("Answer") + ylim(0,40)
```

Pitanja: 41 - 50 {data-navmenu="Pitanja vs područje"}
=======================================================================

### pitanja (41 - 50)

```{r fig.width=10}
ggplot(ppodaci49_58, aes(x=Answer, fill=`Study field`, color=`Study field`)) + 
  geom_bar(alpha=.5) + 
  facet_grid(factor(`Study field`) ~ factor(Question)) + 
  theme(legend.position="none", strip.text.y = element_text(size = 7)) + xlab("Answer") + ylim(0,40) + scale_x_discrete(drop=FALSE)
```

Pitanja: 51 - 61 {data-navmenu="Pitanja vs područje"}
=======================================================================

### pitanja (51 - 61)

```{r fig.width=10}
ggplot(ppodaci59_69, aes(x=factor(Answer), fill=`Study field`, color=`Study field`)) + 
  geom_bar(alpha=.5) + 
  facet_grid(factor(`Study field`) ~ factor(Question)) + 
  theme(legend.position="none", strip.text.y = element_text(size = 7)) + xlab("Answer") + ylim(0,40)
```

Q1 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q1** {data-height=200}

```{r, echo = F}
summary(Q1)
```

### ONEWAY-test rezultati: **Q1** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q1 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q1, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q1)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q1)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q1, podaci$Country, p.adjust = "bonferroni")
```

Q2 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q2** {data-height=200}

```{r, echo = F}
summary(Q2)
```

### ONEWAY-test rezultati: **Q2** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q2 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q2, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q2)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q2)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q2, podaci$Country, p.adjust = "bonferroni")
```

Q3 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q3** {data-height=200}

```{r, echo = F}
summary(Q3)
```

### ONEWAY-test rezultati: **Q3** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q3 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q3, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q3)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q3)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q3, podaci$Country, p.adjust = "bonferroni")
```

Q4 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q4** {data-height=200}

```{r, echo = F}
summary(Q4)
```

### ONEWAY-test rezultati: **Q4** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q4 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q4, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q4)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q4)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q4, podaci$Country, p.adjust = "bonferroni")
```

Q5 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q5** {data-height=200}

```{r, echo = F}
summary(Q5)
```

### ONEWAY-test rezultati: **Q5** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q5 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q5, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q5)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q5)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q5, podaci$Country, p.adjust = "bonferroni")
```

Q6 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q6** {data-height=200}

```{r, echo = F}
summary(Q6)
```

### ONEWAY-test rezultati: **Q6** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q6 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q6, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q6)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q6)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q6, podaci$Country, p.adjust = "bonferroni")
```

Q7 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q7** {data-height=200}

```{r, echo = F}
summary(Q7)
```

### ONEWAY-test rezultati: **Q7** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q7 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q7, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q7)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q7)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q7, podaci$Country, p.adjust = "bonferroni")
```

Q8 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q8** {data-height=200}

```{r, echo = F}
summary(Q8)
```

### ONEWAY-test rezultati: **Q8** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q8 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q8, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q8)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q8)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q8, podaci$Country, p.adjust = "bonferroni")
```

Q9 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q9** {data-height=200}

```{r, echo = F}
summary(Q9)
```

### ONEWAY-test rezultati: **Q9** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q9 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q9, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q9)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q9)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q9, podaci$Country, p.adjust = "bonferroni")
```

Q10 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q10** {data-height=200}

```{r, echo = F}
summary(Q10)
```

### ONEWAY-test rezultati: **Q10** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q10 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q10, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q10)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q10)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q10, podaci$Country, p.adjust = "bonferroni")
```

Q11 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q11** {data-height=200}

```{r, echo = F}
summary(Q11)
```

### ONEWAY-test rezultati: **Q11** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q11 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q11, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q11)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q11)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q11, podaci$Country, p.adjust = "bonferroni")
```

Q12 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q12** {data-height=200}

```{r, echo = F}
summary(Q12)
```

### ONEWAY-test rezultati: **Q12** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q12 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q12, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q12)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q12)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q12, podaci$Country, p.adjust = "bonferroni")
```

Q13 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q13** {data-height=200}

```{r, echo = F}
summary(Q13)
```

### ONEWAY-test rezultati: **Q13** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q13 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q13, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q13)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q13)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q13, podaci$Country, p.adjust = "bonferroni")
```

Q14 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q14** {data-height=200}

```{r, echo = F}
summary(Q14)
```

### ONEWAY-test rezultati: **Q14** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q14 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q14, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q14)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q14)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q14, podaci$Country, p.adjust = "bonferroni")
```

Q15 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q15** {data-height=200}

```{r, echo = F}
summary(Q15)
```

### ONEWAY-test rezultati: **Q15** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q15 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q15, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q15)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q15)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q15, podaci$Country, p.adjust = "bonferroni")
```

Q16 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q16** {data-height=200}

```{r, echo = F}
summary(Q16)
```

### ONEWAY-test rezultati: **Q16** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q16 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q16, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q16)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q16)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q16, podaci$Country, p.adjust = "bonferroni")
```

Q17 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q17** {data-height=200}

```{r, echo = F}
summary(Q17)
```

### ONEWAY-test rezultati: **Q17** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q17 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q17, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q17)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q17)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q17, podaci$Country, p.adjust = "bonferroni")
```

Q18 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q18** {data-height=200}

```{r, echo = F}
summary(Q18)
```

### ONEWAY-test rezultati: **Q18** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q18 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q18, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q18)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q18)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q18, podaci$Country, p.adjust = "bonferroni")
```

Q19 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q19** {data-height=200}

```{r, echo = F}
summary(Q19)
```

### ONEWAY-test rezultati: **Q19** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q19 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q19, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q19)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q19)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q19, podaci$Country, p.adjust = "bonferroni")
```

Q20 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q20** {data-height=200}

```{r, echo = F}
summary(Q20)
```

### ONEWAY-test rezultati: **Q20** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q20 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q20, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q20)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q20)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q20, podaci$Country, p.adjust = "bonferroni")
```

Q21 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q21** {data-height=200}

```{r, echo = F}
summary(Q21)
```

### ONEWAY-test rezultati: **Q21** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q21 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q21, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q21)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q21)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q21, podaci$Country, p.adjust = "bonferroni")
```

Q22 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q22** {data-height=200}

```{r, echo = F}
summary(Q22)
```

### ONEWAY-test rezultati: **Q22** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q22 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q22, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q22)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q22)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q22, podaci$Country, p.adjust = "bonferroni")
```

Q23 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q23** {data-height=200}

```{r, echo = F}
summary(Q23)
```

### ONEWAY-test rezultati: **Q23** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q23 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q23, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q23)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q23)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q23, podaci$Country, p.adjust = "bonferroni")
```

Q24 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q24** {data-height=200}

```{r, echo = F}
summary(Q24)
```

### ONEWAY-test rezultati: **Q24** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q24 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q24, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q24)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q24)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q24, podaci$Country, p.adjust = "bonferroni")
```

Q26 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q26** {data-height=200}

```{r, echo = F}
summary(Q26)
```

### ONEWAY-test rezultati: **Q26** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q26 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q26, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q26)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q26)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q26, podaci$Country, p.adjust = "bonferroni")
```

Q27 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q27** {data-height=200}

```{r, echo = F}
summary(Q27)
```

### ONEWAY-test rezultati: **Q27** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q27 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q27, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q27)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q27)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q27, podaci$Country, p.adjust = "bonferroni")
```

Q28 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q28** {data-height=200}

```{r, echo = F}
summary(Q28)
```

### ONEWAY-test rezultati: **Q28** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q28 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q28, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q28)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q28)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q28, podaci$Country, p.adjust = "bonferroni")
```

Q29 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q29** {data-height=200}

```{r, echo = F}
summary(Q29)
```

### ONEWAY-test rezultati: **Q29** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q29 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q29, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q29)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q29)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q29, podaci$Country, p.adjust = "bonferroni")
```

Q30 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q30** {data-height=200}

```{r, echo = F}
summary(Q30)
```

### ONEWAY-test rezultati: **Q30** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q30 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q30, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q30)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q30)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q30, podaci$Country, p.adjust = "bonferroni")
```

Q31 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q31** {data-height=200}

```{r, echo = F}
summary(Q31)
```

### ONEWAY-test rezultati: **Q31** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q31 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q31, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q31)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q31)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q31, podaci$Country, p.adjust = "bonferroni")
```

Q32 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q32** {data-height=200}

```{r, echo = F}
summary(Q32)
```

### ONEWAY-test rezultati: **Q32** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q32 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q32, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q32)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q32)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q32, podaci$Country, p.adjust = "bonferroni")
```

Q33 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q33** {data-height=200}

```{r, echo = F}
summary(Q33)
```

### ONEWAY-test rezultati: **Q33** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q33 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q33, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q33)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q33)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q33, podaci$Country, p.adjust = "bonferroni")
```

Q35 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q35** {data-height=200}

```{r, echo = F}
summary(Q35)
```

### ONEWAY-test rezultati: **Q35** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q35 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q35, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q35)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q35)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q35, podaci$Country, p.adjust = "bonferroni")
```

Q36 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q36** {data-height=200}

```{r, echo = F}
summary(Q36)
```

### ONEWAY-test rezultati: **Q36** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q36 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q36, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q36)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q36)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q36, podaci$Country, p.adjust = "bonferroni")
```

Q37 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q37** {data-height=200}

```{r, echo = F}
summary(Q37)
```

### ONEWAY-test rezultati: **Q37** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q37 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q37, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q37)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q37)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q37, podaci$Country, p.adjust = "bonferroni")
```

Q38 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q38** {data-height=200}

```{r, echo = F}
summary(Q38)
```

### ONEWAY-test rezultati: **Q38** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q38 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q38, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q38)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q38)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q38, podaci$Country, p.adjust = "bonferroni")
```

Q39 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q39** {data-height=200}

```{r, echo = F}
summary(Q39)
```

### ONEWAY-test rezultati: **Q39** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q39 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q39, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q39)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q39)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q39, podaci$Country, p.adjust = "bonferroni")
```

Q40 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q40** {data-height=200}

```{r, echo = F}
summary(Q40)
```

### ONEWAY-test rezultati: **Q40** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q40 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q40, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q40)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q40)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q40, podaci$Country, p.adjust = "bonferroni")
```

Q41 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q41** {data-height=200}

```{r, echo = F}
summary(Q41)
```

### ONEWAY-test rezultati: **Q41** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q41 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q41, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q41)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q41)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q41, podaci$Country, p.adjust = "bonferroni")
```

Q42 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q42** {data-height=200}

```{r, echo = F}
summary(Q42)
```

### ONEWAY-test rezultati: **Q42** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q42 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q42, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q42)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q42)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q42, podaci$Country, p.adjust = "bonferroni")
```

Q43 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q43** {data-height=200}

```{r, echo = F}
summary(Q43)
```

### ONEWAY-test rezultati: **Q43** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q43 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q43, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q43)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q43)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q43, podaci$Country, p.adjust = "bonferroni")
```

Q44 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q44** {data-height=200}

```{r, echo = F}
summary(Q44)
```

### ONEWAY-test rezultati: **Q44** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q44 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q44, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q44)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q44)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q44, podaci$Country, p.adjust = "bonferroni")
```

Q45 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q45** {data-height=200}

```{r, echo = F}
summary(Q45)
```

### ONEWAY-test rezultati: **Q45** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q45 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q45, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q45)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q45)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q45, podaci$Country, p.adjust = "bonferroni")
```

Q46 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q46** {data-height=200}

```{r, echo = F}
summary(Q46)
```

### ONEWAY-test rezultati: **Q46** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q46 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q46, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q46)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q46)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q46, podaci$Country, p.adjust = "bonferroni")
```

Q47 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q47** {data-height=200}

```{r, echo = F}
summary(Q47)
```

### ONEWAY-test rezultati: **Q47** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q47 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q47, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q47)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q47)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q47, podaci$Country, p.adjust = "bonferroni")
```

Q48 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q48** {data-height=200}

```{r, echo = F}
summary(Q48)
```

### ONEWAY-test rezultati: **Q48** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q48 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q48, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q48)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q48)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q48, podaci$Country, p.adjust = "bonferroni")
```

Q49 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q49** {data-height=200}

```{r, echo = F}
summary(Q49)
```

### ONEWAY-test rezultati: **Q49** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q49 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q49, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q49)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q49)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q49, podaci$Country, p.adjust = "bonferroni")
```

Q50 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q50** {data-height=200}

```{r, echo = F}
summary(Q50)
```

### ONEWAY-test rezultati: **Q50** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q50 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q50, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q50)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q50)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q50, podaci$Country, p.adjust = "bonferroni")
```

Q51 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q51** {data-height=200}

```{r, echo = F}
summary(Q51)
```

### ONEWAY-test rezultati: **Q51** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q51 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q51, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q51)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q51)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q51, podaci$Country, p.adjust = "bonferroni")
```

Q52 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q52** {data-height=200}

```{r, echo = F}
summary(Q52)
```

### ONEWAY-test rezultati: **Q52** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q52 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q52, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q52)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q52)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q52, podaci$Country, p.adjust = "bonferroni")
```

Q53 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q53** {data-height=200}

```{r, echo = F}
summary(Q53)
```

### ONEWAY-test rezultati: **Q53** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q53 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q53, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q53)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q53)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q53, podaci$Country, p.adjust = "bonferroni")
```

Q58 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q58** {data-height=200}

```{r, echo = F}
summary(Q58)
```

### ONEWAY-test rezultati: **Q58** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q58 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q58, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q58)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q58)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q58, podaci$Country, p.adjust = "bonferroni")
```

Q59 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q59** {data-height=200}

```{r, echo = F}
summary(Q59)
```

### ONEWAY-test rezultati: **Q59** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q59 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q59, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q59)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q59)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q59, podaci$Country, p.adjust = "bonferroni")
```

Q60 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q60** {data-height=200}

```{r, echo = F}
summary(Q60)
```

### ONEWAY-test rezultati: **Q60** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q60 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q60, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q60)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q60)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q60, podaci$Country, p.adjust = "bonferroni")
```

Q61 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q61** {data-height=200}

```{r, echo = F}
summary(Q61)
```

### ONEWAY-test rezultati: **Q61** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q61 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q61, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q61)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q61)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q61, podaci$Country, p.adjust = "bonferroni")
```

Q62 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q62** {data-height=200}

```{r, echo = F}
summary(Q62)
```

### ONEWAY-test rezultati: **Q62** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q62 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q62, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q62)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q62)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q62, podaci$Country, p.adjust = "bonferroni")
```

Q63 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q63** {data-height=200}

```{r, echo = F}
summary(Q63)
```

### ONEWAY-test rezultati: **Q63** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q63 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q63, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q63)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q63)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q63, podaci$Country, p.adjust = "bonferroni")
```

Q64 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q64** {data-height=200}

```{r, echo = F}
summary(Q64)
```

### ONEWAY-test rezultati: **Q64** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q64 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q64, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q64)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q64)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q64, podaci$Country, p.adjust = "bonferroni")
```

Q65 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q65** {data-height=200}

```{r, echo = F}
summary(Q65)
```

### ONEWAY-test rezultati: **Q65** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q65 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q65, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q65)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q65)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q65, podaci$Country, p.adjust = "bonferroni")
```

Q66 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q66** {data-height=200}

```{r, echo = F}
summary(Q66)
```

### ONEWAY-test rezultati: **Q66** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q66 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q66, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q66)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q66)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q66, podaci$Country, p.adjust = "bonferroni")
```

Q67 {data-navmenu="ANOVA - po državama"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q67** {data-height=200}

```{r, echo = F}
summary(Q67)
```

### ONEWAY-test rezultati: **Q67** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q67 ~ podaci$Country)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q67, podaci$Country, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(Q67)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
TukeyHSD(Q67)
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q67, podaci$Country, p.adjust = "bonferroni")
```

Q1 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q1** {data-height=200}

```{r, echo = F}
summary(PQ1)
```

### ONEWAY-test rezultati: **Q1** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q1 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q1, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ1)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ1)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q1, podaci$`Study field`, p.adjust = "bonferroni")
```

Q2 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q2** {data-height=200}

```{r, echo = F}
summary(PQ2)
```

### ONEWAY-test rezultati: **Q2** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q2 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q2, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ2)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ2)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q2, podaci$`Study field`, p.adjust = "bonferroni")
```

Q3 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q3** {data-height=200}

```{r, echo = F}
summary(PQ3)
```

### ONEWAY-test rezultati: **Q3** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q3 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q3, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ3)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ3)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q3, podaci$`Study field`, p.adjust = "bonferroni")
```

Q4 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q4** {data-height=200}

```{r, echo = F}
summary(PQ4)
```

### ONEWAY-test rezultati: **Q4** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q4 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q4, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ4)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ4)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q4, podaci$`Study field`, p.adjust = "bonferroni")
```

Q5 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q5** {data-height=200}

```{r, echo = F}
summary(PQ5)
```

### ONEWAY-test rezultati: **Q5** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q5 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q5, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ5)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ5)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q5, podaci$`Study field`, p.adjust = "bonferroni")
```

Q6 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q6** {data-height=200}

```{r, echo = F}
summary(PQ6)
```

### ONEWAY-test rezultati: **Q6** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q6 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q6, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ6)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ6)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q6, podaci$`Study field`, p.adjust = "bonferroni")
```

Q7 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q7** {data-height=200}

```{r, echo = F}
summary(PQ7)
```

### ONEWAY-test rezultati: **Q7** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q7 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q7, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ7)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ7)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q7, podaci$`Study field`, p.adjust = "bonferroni")
```

Q8 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q8** {data-height=200}

```{r, echo = F}
summary(PQ8)
```

### ONEWAY-test rezultati: **Q8** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q8 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q8, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ8)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ8)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q8, podaci$`Study field`, p.adjust = "bonferroni")
```

Q9 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q9** {data-height=200}

```{r, echo = F}
summary(PQ9)
```

### ONEWAY-test rezultati: **Q9** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q9 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q9, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ9)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ9)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q9, podaci$`Study field`, p.adjust = "bonferroni")
```

Q10 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q10** {data-height=200}

```{r, echo = F}
summary(PQ10)
```

### ONEWAY-test rezultati: **Q10** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q10 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q10, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ10)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ10)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q10, podaci$`Study field`, p.adjust = "bonferroni")
```

Q11 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q11** {data-height=200}

```{r, echo = F}
summary(PQ11)
```

### ONEWAY-test rezultati: **Q11** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q11 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q11, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ11)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ11)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q11, podaci$`Study field`, p.adjust = "bonferroni")
```

Q12 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q12** {data-height=200}

```{r, echo = F}
summary(PQ12)
```

### ONEWAY-test rezultati: **Q12** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q12 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q12, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ12)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ12)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q12, podaci$`Study field`, p.adjust = "bonferroni")
```

Q13 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q13** {data-height=200}

```{r, echo = F}
summary(PQ13)
```

### ONEWAY-test rezultati: **Q13** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q13 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q13, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ13)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ13)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q13, podaci$`Study field`, p.adjust = "bonferroni")
```

Q14 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q14** {data-height=200}

```{r, echo = F}
summary(PQ14)
```

### ONEWAY-test rezultati: **Q14** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q14 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q14, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ14)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ14)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q14, podaci$`Study field`, p.adjust = "bonferroni")
```

Q15 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q15** {data-height=200}

```{r, echo = F}
summary(PQ15)
```

### ONEWAY-test rezultati: **Q15** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q15 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q15, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ15)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ15)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q15, podaci$`Study field`, p.adjust = "bonferroni")
```

Q16 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q16** {data-height=200}

```{r, echo = F}
summary(PQ16)
```

### ONEWAY-test rezultati: **Q16** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q16 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q16, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ16)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ16)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q16, podaci$`Study field`, p.adjust = "bonferroni")
```

Q17 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q17** {data-height=200}

```{r, echo = F}
summary(PQ17)
```

### ONEWAY-test rezultati: **Q17** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q17 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q17, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ17)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ17)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q17, podaci$`Study field`, p.adjust = "bonferroni")
```

Q18 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q18** {data-height=200}

```{r, echo = F}
summary(PQ18)
```

### ONEWAY-test rezultati: **Q18** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q18 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q18, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ18)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ18)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q18, podaci$`Study field`, p.adjust = "bonferroni")
```

Q19 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q19** {data-height=200}

```{r, echo = F}
summary(PQ19)
```

### ONEWAY-test rezultati: **Q19** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q19 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q19, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ19)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ19)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q19, podaci$`Study field`, p.adjust = "bonferroni")
```

Q20 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q20** {data-height=200}

```{r, echo = F}
summary(PQ20)
```

### ONEWAY-test rezultati: **Q20** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q20 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q20, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ20)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ20)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q20, podaci$`Study field`, p.adjust = "bonferroni")
```

Q21 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q21** {data-height=200}

```{r, echo = F}
summary(PQ21)
```

### ONEWAY-test rezultati: **Q21** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q21 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q21, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ21)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ21)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q21, podaci$`Study field`, p.adjust = "bonferroni")
```

Q22 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q22** {data-height=200}

```{r, echo = F}
summary(PQ22)
```

### ONEWAY-test rezultati: **Q22** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q22 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q22, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ22)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ22)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q22, podaci$`Study field`, p.adjust = "bonferroni")
```

Q23 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q23** {data-height=200}

```{r, echo = F}
summary(PQ23)
```

### ONEWAY-test rezultati: **Q23** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q23 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q23, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ23)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ23)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q23, podaci$`Study field`, p.adjust = "bonferroni")
```

Q24 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q24** {data-height=200}

```{r, echo = F}
summary(PQ24)
```

### ONEWAY-test rezultati: **Q24** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q24 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q24, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ24)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ24)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q24, podaci$`Study field`, p.adjust = "bonferroni")
```

Q26 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q26** {data-height=200}

```{r, echo = F}
summary(PQ26)
```

### ONEWAY-test rezultati: **Q26** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q26 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q26, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ26)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ26)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q26, podaci$`Study field`, p.adjust = "bonferroni")
```

Q27 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q27** {data-height=200}

```{r, echo = F}
summary(PQ27)
```

### ONEWAY-test rezultati: **Q27** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q27 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q27, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ27)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ27)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q27, podaci$`Study field`, p.adjust = "bonferroni")
```

Q28 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q28** {data-height=200}

```{r, echo = F}
summary(PQ28)
```

### ONEWAY-test rezultati: **Q28** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q28 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q28, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ28)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ28)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q28, podaci$`Study field`, p.adjust = "bonferroni")
```

Q29 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q29** {data-height=200}

```{r, echo = F}
summary(PQ29)
```

### ONEWAY-test rezultati: **Q29** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q29 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q29, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ29)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ29)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q29, podaci$`Study field`, p.adjust = "bonferroni")
```

Q30 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q30** {data-height=200}

```{r, echo = F}
summary(PQ30)
```

### ONEWAY-test rezultati: **Q30** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q30 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q30, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ30)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ30)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q30, podaci$`Study field`, p.adjust = "bonferroni")
```

Q31 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q31** {data-height=200}

```{r, echo = F}
summary(PQ31)
```

### ONEWAY-test rezultati: **Q31** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q31 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q31, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ31)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ31)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q31, podaci$`Study field`, p.adjust = "bonferroni")
```

Q32 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q32** {data-height=200}

```{r, echo = F}
summary(PQ32)
```

### ONEWAY-test rezultati: **Q32** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q32 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q32, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ32)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ32)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q32, podaci$`Study field`, p.adjust = "bonferroni")
```

Q33 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q33** {data-height=200}

```{r, echo = F}
summary(PQ33)
```

### ONEWAY-test rezultati: **Q33** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q33 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q33, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ33)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ33)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q33, podaci$`Study field`, p.adjust = "bonferroni")
```

Q35 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q35** {data-height=200}

```{r, echo = F}
summary(PQ35)
```

### ONEWAY-test rezultati: **Q35** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q35 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q35, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ35)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ35)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q35, podaci$`Study field`, p.adjust = "bonferroni")
```

Q36 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q36** {data-height=200}

```{r, echo = F}
summary(PQ36)
```

### ONEWAY-test rezultati: **Q36** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q36 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q36, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ36)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ36)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q36, podaci$`Study field`, p.adjust = "bonferroni")
```

Q37 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q37** {data-height=200}

```{r, echo = F}
summary(PQ37)
```

### ONEWAY-test rezultati: **Q37** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q37 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q37, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ37)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ37)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q37, podaci$`Study field`, p.adjust = "bonferroni")
```

Q38 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q38** {data-height=200}

```{r, echo = F}
summary(PQ38)
```

### ONEWAY-test rezultati: **Q38** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q38 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q38, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ38)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ38)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q38, podaci$`Study field`, p.adjust = "bonferroni")
```

Q39 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q39** {data-height=200}

```{r, echo = F}
summary(PQ39)
```

### ONEWAY-test rezultati: **Q39** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q39 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q39, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ39)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ39)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q39, podaci$`Study field`, p.adjust = "bonferroni")
```

Q40 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q40** {data-height=200}

```{r, echo = F}
summary(PQ40)
```

### ONEWAY-test rezultati: **Q40** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q40 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q40, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ40)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ40)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q40, podaci$`Study field`, p.adjust = "bonferroni")
```

Q41 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q41** {data-height=200}

```{r, echo = F}
summary(PQ41)
```

### ONEWAY-test rezultati: **Q41** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q41 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q41, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ41)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ41)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q41, podaci$`Study field`, p.adjust = "bonferroni")
```

Q42 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q42** {data-height=200}

```{r, echo = F}
summary(PQ42)
```

### ONEWAY-test rezultati: **Q42** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q42 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q42, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ42)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ42)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q42, podaci$`Study field`, p.adjust = "bonferroni")
```

Q43 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q43** {data-height=200}

```{r, echo = F}
summary(PQ43)
```

### ONEWAY-test rezultati: **Q43** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q43 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q43, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ43)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ43)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q43, podaci$`Study field`, p.adjust = "bonferroni")
```

Q44 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q44** {data-height=200}

```{r, echo = F}
summary(PQ44)
```

### ONEWAY-test rezultati: **Q44** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q44 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q44, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ44)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ44)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q44, podaci$`Study field`, p.adjust = "bonferroni")
```

Q45 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q45** {data-height=200}

```{r, echo = F}
summary(PQ45)
```

### ONEWAY-test rezultati: **Q45** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q45 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q45, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ45)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ45)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q45, podaci$`Study field`, p.adjust = "bonferroni")
```

Q46 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q46** {data-height=200}

```{r, echo = F}
summary(PQ46)
```

### ONEWAY-test rezultati: **Q46** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q46 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q46, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ46)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ46)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q46, podaci$`Study field`, p.adjust = "bonferroni")
```

Q47 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q47** {data-height=200}

```{r, echo = F}
summary(PQ47)
```

### ONEWAY-test rezultati: **Q47** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q47 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q47, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ47)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ47)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q47, podaci$`Study field`, p.adjust = "bonferroni")
```

Q48 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q48** {data-height=200}

```{r, echo = F}
summary(PQ48)
```

### ONEWAY-test rezultati: **Q48** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q48 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q48, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ48)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ48)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q48, podaci$`Study field`, p.adjust = "bonferroni")
```

Q49 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q49** {data-height=200}

```{r, echo = F}
summary(PQ49)
```

### ONEWAY-test rezultati: **Q49** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q49 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q49, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ49)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ49)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q49, podaci$`Study field`, p.adjust = "bonferroni")
```

Q50 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q50** {data-height=200}

```{r, echo = F}
summary(PQ50)
```

### ONEWAY-test rezultati: **Q50** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q50 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q50, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ50)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ50)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q50, podaci$`Study field`, p.adjust = "bonferroni")
```

Q51 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q51** {data-height=200}

```{r, echo = F}
summary(PQ51)
```

### ONEWAY-test rezultati: **Q51** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q51 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q51, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ51)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ51)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q51, podaci$`Study field`, p.adjust = "bonferroni")
```

Q52 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q52** {data-height=200}

```{r, echo = F}
summary(PQ52)
```

### ONEWAY-test rezultati: **Q52** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q52 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q52, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ52)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ52)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q52, podaci$`Study field`, p.adjust = "bonferroni")
```

Q53 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q53** {data-height=200}

```{r, echo = F}
summary(PQ53)
```

### ONEWAY-test rezultati: **Q53** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q53 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q53, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ53)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ53)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q53, podaci$`Study field`, p.adjust = "bonferroni")
```

Q58 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q58** {data-height=200}

```{r, echo = F}
summary(PQ58)
```

### ONEWAY-test rezultati: **Q58** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q58 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q58, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ58)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ58)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q58, podaci$`Study field`, p.adjust = "bonferroni")
```

Q59 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q59** {data-height=200}

```{r, echo = F}
summary(PQ59)
```

### ONEWAY-test rezultati: **Q59** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q59 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q59, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ59)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ59)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q59, podaci$`Study field`, p.adjust = "bonferroni")
```

Q60 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q60** {data-height=200}

```{r, echo = F}
summary(PQ60)
```

### ONEWAY-test rezultati: **Q60** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q60 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q60, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ60)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ60)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q60, podaci$`Study field`, p.adjust = "bonferroni")
```

Q61 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q61** {data-height=200}

```{r, echo = F}
summary(PQ61)
```

### ONEWAY-test rezultati: **Q61** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q61 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q61, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ61)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ61)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q61, podaci$`Study field`, p.adjust = "bonferroni")
```

Q62 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q62** {data-height=200}

```{r, echo = F}
summary(PQ62)
```

### ONEWAY-test rezultati: **Q62** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q62 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q62, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ62)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ62)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q62, podaci$`Study field`, p.adjust = "bonferroni")
```

Q63 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q63** {data-height=200}

```{r, echo = F}
summary(PQ63)
```

### ONEWAY-test rezultati: **Q63** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q63 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q63, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ63)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ63)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q63, podaci$`Study field`, p.adjust = "bonferroni")
```

Q64 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q64** {data-height=200}

```{r, echo = F}
summary(PQ64)
```

### ONEWAY-test rezultati: **Q64** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q64 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q64, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ64)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ64)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q64, podaci$`Study field`, p.adjust = "bonferroni")
```

Q65 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q65** {data-height=200}

```{r, echo = F}
summary(PQ65)
```

### ONEWAY-test rezultati: **Q65** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q65 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q65, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ65)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ65)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q65, podaci$`Study field`, p.adjust = "bonferroni")
```

Q66 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q66** {data-height=200}

```{r, echo = F}
summary(PQ66)
```

### ONEWAY-test rezultati: **Q66** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q66 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q66, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ66)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ66)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q66, podaci$`Study field`, p.adjust = "bonferroni")
```

Q67 {data-navmenu="ANOVA - po području"}
=======================================================================

Row {data-width=200}
-----------------------------------------------------------------------

### ANOVA rezultati: **Q67** {data-height=200}

```{r, echo = F}
summary(PQ67)
```

### ONEWAY-test rezultati: **Q67** {data-height=300}

```{r, echo = F}
oneway.test(podaci$Q67 ~ podaci$`Study field`)
```

### Levene test {data-height=250}

```{r, echo = F}
leveneTest(podaci$Q67, podaci$`Study field`, center=mean)
```

### Eta squared {data-height=150}

```{r, echo = F}
etaSquared(PQ67)
```

Row {data-width=200}
-----------------------------------------------------------------------

### Tukey

```{r, echo = F}
tablica <- as.data.frame(unclass(TukeyHSD(PQ67)))
colnames(tablica) <- c("diff", "lwr", "upr", "p adj")
knitr::kable(tablica) %>% kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Bonferroni (Pairwise t-test)

```{r, echo = F}
pairwise.t.test(podaci$Q67, podaci$`Study field`, p.adjust = "bonferroni")
```