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Abstract. Dunn’s test is the appropriate nonparametric pairwise multiple-
comparison procedure when a Kruskal–Wallis test is rejected, and it is now im-
plemented for Stata in the dunntest command. dunntest produces multiple com-
parisons following a Kruskal–Wallis k-way test by using Stata’s built-in kwallis

command. It includes options to control the familywise error rate by using Dunn’s
proposed Bonferroni adjustment, the Šidák adjustment, the Holm stepwise adjust-
ment, or the Holm–Šidák stepwise adjustment. There is also an option to control
the false discovery rate using the Benjamini–Hochberg stepwise adjustment.
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1 Introduction

One-way omnibus tests, such as the common one-way analysis of variance (ANOVA),
typically pose null hypotheses that measurements across some number of groups are all
derived from a common distribution. One might think of such tests answering generic
questions like, Does one need to bother looking more closely between groups for differ-
ences? Without evidence to reject the null hypothesis of such tests, one’s work moves
on to new topics. On the other hand, if the null hypothesis of an omnibus test is re-
jected, the question becomes, Which of these groups is different from which? If one
used an ANOVA to test for mean difference, upon rejection of the null hypothesis, one
would make multiple pairwise comparisons using t tests for mean difference in unpaired
data. However, the ANOVA has restrictive assumptions concerning the distributions of
the groups under scrutiny: the groups must have equal variances, and the measures in
each group must be continuous, normally distributed variables.

The nonparametric Kruskal–Wallis test (Kruskal and Wallis 1952) is a nonparamet-
ric analog to the one-way ANOVA that sacrifices the precision of discriminating means
for the discrimination of stochastic dominance (that is, the probability that a randomly
drawn observation from one group will be greater than a randomly drawn observation
from another). However, the test can do so regardless of how the measures are dis-
tributed in each group. If one assumes that the measures are continuous and that the
unspecified distributions in each group differ only in their centrality, then one can under-
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stand the Kruskal–Wallis test as an omnibus test for median difference. Upon rejection
of the null hypothesis of this test, one would conduct multiple pairwise comparisons for
stochastic dominance or median difference.

It is clear that the appropriate test for such comparisons is a nonparametric analog to
the t test—the rank-sum test (Wilcoxon 1945; Mann and Whitney 1947) is an example—
but the application is not as straightforward. One can use ANOVA’s strict assumption
about equal variances with the t tests that follow rejection of the null hypothesis of an
ANOVA by using the pooled estimate of variance when calculating the standard error of
the t test statistics. If one used a Kruskal–Wallis test, one would ignore this assumption,
which is important when interpreting the median difference but more important when
interpreting the rank-sum test as part of a family of inferences in the omnibus hypothesis.
The ranks of the data on which the tests are based change if they are reranked in a
pairwise fashion. Dunn’s (1964) insight was to retain the rank sums from the omnibus
test and to approximate a z-test statistic to the exact rank-sum statistic. Dunn’s test
is the appropriate procedure following a Kruskal–Wallis test.

Making multiple pairwise comparisons following an omnibus test redefines the mean-
ing of α, which usually represents the probability of falsely rejecting the null hypothesis
for one test, within the inferential framework of the hypothesis test. Dunn (1961) de-
scribed how to address this issue with a Bonferroni adjustment, which can modify the
rejection level for any test by dividing α by the total number of tests and requires a
much smaller p-value to reject any test. This adjustment leaves α numerically intact
but multiplies the p-value. This forms the basis of the familywise error rate (FWER)
redefinition of α to signify the probability of falsely rejecting the null hypothesis in
one test out of all tests performed. The Bonferroni adjustment introduced the FWER,
but additional improvements followed: the Šidák (1967) adjustment, which is a slightly
more powerful yet similar approach; Holm’s sequential adjustment; and the Holm–Šidák
(1979) sequential adjustment, sometimes credited to Holland and Copenhaver (1988),
which treats subsequent pairwise hypothesis tests as parts of different families on the
basis of whether previous tests were rejected. Finally, Benjamini and Hochberg (1995)
reasoned that α should be interpreted as a desired false discovery rate (FDR) and should
reflect how the expected rate of false discoveries changes after some pairwise tests are
rejected in sequence.

Dunn’s (1964) test has grown in popularity over the past two decades (figure 1).1

The test is frequently used with multiple-comparison adjustments. During the past two
decades, out of 1,097 cited articles, 778 included the term “Bonferroni”, 11 included the
term “Sidak” and excluded the term “Holm–Sidak”, 111 included the term “Holm” and
excluded the term “Holm–Sidak”, 183 included the term “Holm–Sidak” (none included
“Holland” and “Copenhaver”), and 14 included the terms “Benjamini” and “Hochberg”.
Dunn’s increasingly used test is now implemented for Stata.

1. Data from a search on 6 March 2014 of Google Scholar for citations with the exact phrase “Dunn’s
test” for each of the years 1994–2013.
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Figure 1. Citations indexed by Google Scholar including “Dunn’s test” over two decades

2 The dunntest command

2.1 Syntax

dunntest varname
[
if
] [

in
]
, by(groupvar)

[
ma(method) nokwallis nolabel

wrap level(#)
]

2.2 Description

dunntest reports the results of Dunn’s (1964) test for stochastic dominance among
multiple pairwise comparisons following a Kruskal–Wallis test of stochastic dominance
among k groups Kruskal and Wallis (1952) using kwallis (see [R] kwallis). dunntest
performs m = k(k−1)/2 multiple pairwise comparisons using z-test statistics. The null
hypothesis in each pairwise comparison is that the probability of observing a random
value in the first group that is larger than a random value in the second group equals one
half; this null hypothesis corresponds to that of the Wilcoxon–Mann–Whitney rank-sum
test (see [R] ranksum, and note that the porder option provides an explicit estimate
of this probability). As in the rank-sum test, if the data are assumed to be continuous
and the distributions are assumed to be identical except for a shift in centrality, Dunn’s
(1964) test may be understood as a test for median difference. In the syntax diagram
above, varname refers to the variable recording the outcome, and groupvar refers to the
variable denoting the population. dunntest accounts for tied ranks. by() is required.

2.3 Options

by(groupvar) specifies a variable that identifies the groups. by() is required.
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ma(method) specifies the method of adjustment used for multiple comparisons and takes
one of the following values: none, bonferroni, sidak, holm, hs, or bh. The default
is ma(none). These methods perform as follows:

none specifies that no adjustment for multiple comparisons be made.

bonferroni specifies a Bonferroni adjustment where the FWER is adjusted by mul-
tiplying the p-values in each pairwise test by m (the total number of pairwise
tests). Stata will report a maximum Bonferroni-adjusted p-value of 1.

sidak specifies a Šidák adjustment where the FWER is adjusted by replacing the
p-value of each pairwise test with 1− (1− p)m according to Šidák (1967). Stata
will report a maximum Šidák-adjusted p-value of 1.

holm specifies a Holm adjustment where the FWER is adjusted sequentially by ad-
justing the p-values of each pairwise test, ordered from smallest to largest, with
p(m + 1 − i), where i is the position in the ordering according to Holm (1979).
Stata will report a maximum Holm–adjusted p-value of 1. Because the decision
to reject the null hypothesis in sequential tests depends both on the p-values and
how they are ordered, the comparisons rejected by this method at the alpha level
(two-sided test) are underlined in the output.

hs specifies a Holm–Šidák adjustment where the FWER is adjusted sequentially by
adjusting the p-values of each pairwise test, ordered from smallest to largest,
with 1− (1− p)m+1−i, where i is the position in the ordering according to Holm
(1979). Stata will report a maximum Holm–Šidák-adjusted p-value of 1. Because
the decision to reject the null hypothesis in sequential tests depends both on the
p-values and how they are ordered, the comparisons rejected by this method at
the alpha level (two-sided tests) are underlined in the output.

bh specifies a Benjamini–Hochberg adjustment where the FDR is adjusted sequen-
tially by adjusting the p-values of each pairwise test, ordered from largest to
smallest, with p{m/(m+1− i)}, where i is the position in the ordering according
to Benjamini and Hochberg (1995). Stata will report a maximum Benjamini–
Hochberg-adjusted p-value of 1. Such FDR-adjusted p-values are sometimes called
q-values. Because the decision to reject the null hypothesis in sequential tests
depends on both the p-values and how they are ordered, the comparisons rejected
by this method at the alpha level (two-sided test) are underlined in the output.

nokwallis suppresses the display of the Kruskal–Wallis test table.

nolabel causes the Dunn’s test tables to display the actual data codes rather than the
value labels.

wrap requests that Stata not break up wide tables to make them readable.

level(#) specifies the compliment of α× 100. The default is level(95) (or as set by
set level [see [R] level]) and corresponds to α = 0.05.
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2.4 Stored results

dunntest stores the following in r():

Scalars
r(df) degrees of freedom for the r(chi2 adj) χ2 adjusted for ties for the

Kruskal–Wallis test Kruskal–Wallis test

Matrices
r(Z) vector of Dunn’s z-test r(P) vector of (possibly adjusted)

statistics p-values for Dunn’s z-test
statistics

3 Remarks

Example 1

Stata comes with data from the 1980 U.S. Census, and the documentation for the
kwallis command works through an example to test whether the variable medage

(median age of the population) varies by the variable region (Northeast, North Central,
South, and West). The dunntest command defaults to presenting output from the
omnibus kwallis command and follows it with a table of pairwise comparisons.

. sysuse census
(1980 Census data by state)

. dunntest medage, by(region) ma(none)

Kruskal-Wallis equality-of-populations rank test

region Obs Rank Sum

NE 9 376.50
N Cntrl 12 294.00
South 16 398.00
West 13 206.50

chi-squared = 17.041 with 3 d.f.
probability = 0.0007

chi-squared with ties = 17.062 with 3 d.f.
probability = 0.0007

Comparison of medage by region
(No adjustment)

Row Mean-
Col Mean NE N Cntrl South

N Cntrl 2.698212
0.0035

South 2.793742 -0.067405
0.0026 0.4731

West 4.107611 1.477266 1.652733
0.0000 0.0698 0.0492
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The kwallis output appears as it does in the example in the manual. Below the
output, there is a table that provides all six pairwise comparisons for the four re-
gions. The table’s title indicates the varname and groupname, and the subtitle indi-
cates which method of adjustment is used (in this example, dunntest has defaulted to
No adjustment). The row and column header labels indicate that the test results are
based on the difference in mean ranks for each group, and the table entries give the
pairwise z-test statistics with p-values beneath.

Example 2

Suppose one wants to adjust for multiple comparisons using the Holm–Šidák adjust-
ment.

. sysuse census
(1980 Census data by state)

. dunntest medage, by(region) nokwallis ma(hs)

Comparison of medage by region
(Holm-Sidk)

Row Mean-
Col Mean NE N Cntrl South

N Cntrl 2.698212
0.0139

South 2.793742 -0.067405
0.0130 0.4731

West 4.107611 1.477266 1.652733
0.0001 0.1347 0.1404

Because ma(hs) was included as an option, the p-values of the tests rejected for a
FWER of α = 0.05 are underlined.

Example 3

In her 1964 article, Dunn included frequencies of individuals in seven broad occu-
pational categories (for example, executives and sharecroppers) and the individuals’
eligibility for home care defined by three exclusive categories (eligible for home care,
ineligible for home care because of the lack of a responsible person, ineligible for home
care because of the unavailability of a responsible person). She used these data in an
analysis to illustrate her new test. She applied her test theory both to linear combina-
tions between groups and to pairwise differences of mean ranks. In her worked example,
she presented the results for only one pairwise test concerning whether occupational
class among those with eligible home care is stochastically dominant over the occupa-
tional class of those for whom a responsible person is unavailable. We tested her data
using dunntest, and our figures agree precisely with her results.
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. use homecare
(Occupation and Home Care Eligibility for 383 Patients)

. dunntest occupation, by(eligibility) ma(none) nokwallis

Comparison of occupation by eligibility
(No adjustment)

Row Mean-
Col Mean Eligible No respo

No respo -0.155969
0.4380

Responsi -2.022198 -1.441206
0.0216 0.0748

4 Methods

4.1 Dunn’s test

Dunn’s z-test statistic (1) approximates exact rank-sum test statistics by using the
mean rankings of the outcome in each group from the preceding Kruskal–Wallis test
(W i =Wi/ni, whereWi is the sum of ranks, and ni is the sample size for the ith group)
and basing inference on the differences in mean ranks in each group. To compare group
A with group B, we calculate

zi =
yi
σi

(1)

where i is one of the 1 to m multiple comparisons, yi = WA − WB , and σi is the
standard deviation of yi, given by (2),

σi =

√√√√√√√
⎧⎪⎪⎨⎪⎪⎩
N(N + 1)

12
−

r∑
s=1

τ3s − τs

12(N − 1)

⎫⎪⎪⎬⎪⎪⎭
(

1

nA
+

1

nB

)
(2)

where N is the total number of observations across all groups, r is the number of tied
ranks, and τs is the number of observations tied at the sth specific tied value. When
there are no ties, the term with the summation in the denominator equals zero, and the
calculation of (2) simplifies considerably.

4.2 Multiple-comparison adjustments

Here we describe each of the multiple-comparison adjustment procedures. p∗ indicates
an adjusted p-value. p refers to p-values that have the standard two-sided test interpre-
tation p = P(|Z| ≥ |z|). pi refers to p-values as the order for the sequential procedures
described below.
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The Bonferroni adjustment multiplies each p-value by m, as shown in (3).

p∗ = pm (3)

The Šidák adjustment corrects the Bonferroni adjustment’s error by defining the
FWER and gives a slightly smaller p∗, as shown in (4).

p∗ = 1− (1− p)m (4)

Holm’s stepwise adjustment controls the FWER by ordering all m p-values from
smallest to largest, providing a Bonferroni adjustment based on i and m, and fails to
reject all pairwise tests, starting with the first test for which p∗ > α/2, as shown in (5).

p∗i = p(m+ 1− i) (5)

The Holm–Šidák stepwise adjustment follows Holm’s method but applies the Šidák
adjustment based on i and m, as shown in (6).

p∗i = 1− (1− p)(m+1−i) (6)

The Benjamini–Hochberg stepwise adjustment controls the FDR by ordering all m
p-values from largest to smallest and adjusting p by multiplying by m/(m + 1 − i). It
fails to reject all pairwise tests, starting with the first test for which p∗ > α/2, as shown
in (7). Simes (1986) first described this adjustment procedure, or one very similar to it,
but did not provide the FDR interpretation.

p∗i = p
m

(m+ 1− i)
(7)
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