Reliability analysis
Call: psych::alpha(x = podaci_EFA)
raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
0.94 0.94 0.97 0.3 16 0.0055 3.6 0.65 0.28
95% confidence boundaries
lower alpha upper
Feldt 0.93 0.94 0.95
Duhachek 0.93 0.94 0.95
Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r S/N alpha se
TIMELINE 0.94 0.94 0.97 0.30 16 0.0056
RISK 0.94 0.94 0.97 0.30 16 0.0056
AVERAGE 0.94 0.94 0.97 0.30 16 0.0056
SCHEDULE 0.94 0.94 0.97 0.30 16 0.0056
CALENDAR 0.94 0.94 0.97 0.30 16 0.0056
COURSES 0.94 0.94 0.97 0.30 16 0.0056
NOTIFICATIONS_COURSE 0.94 0.94 0.97 0.30 16 0.0056
NOTIFICATIONS_DEADLINES 0.94 0.94 0.97 0.30 16 0.0056
MESSAGES_TEACHER 0.94 0.94 0.97 0.30 16 0.0056
MESSAGES_ADMIN 0.94 0.94 0.97 0.30 16 0.0055
COMPARISON_EXAMS 0.94 0.94 0.97 0.30 16 0.0057
COMPARISON_ECTS 0.94 0.94 0.97 0.30 16 0.0057
COMPARISON_GRADES 0.94 0.94 0.97 0.30 16 0.0057
COMPARISON_OBLIGATIONS 0.94 0.94 0.97 0.30 16 0.0057
STATUS_STUDENTS 0.94 0.94 0.97 0.30 16 0.0056
PREDICTION_COURSE 0.94 0.94 0.97 0.30 16 0.0057
PREDICTION_YEAR 0.94 0.94 0.97 0.30 16 0.0057
PREDICTION_ECTS 0.94 0.94 0.97 0.30 16 0.0058
PREDICTION_PROGRAM 0.94 0.94 0.97 0.30 16 0.0057
ECTSAVG_STUDY 0.94 0.94 0.97 0.30 16 0.0057
ECTSAVG_COURSE 0.94 0.94 0.97 0.30 16 0.0057
AVGGRADE_COURSE 0.94 0.94 0.97 0.30 16 0.0057
PASSRATE_COURSE 0.94 0.94 0.97 0.30 16 0.0056
PPLAN_COURSE 0.94 0.94 0.97 0.30 16 0.0057
PPLAN_STUDY 0.94 0.94 0.97 0.30 16 0.0057
PPLAN_MONITORING 0.94 0.94 0.97 0.30 16 0.0057
ECTS_MONITORING 0.94 0.94 0.97 0.30 16 0.0057
PPLAN_EXTRACURRICULAR 0.94 0.94 0.97 0.30 16 0.0056
TEACHER_EVALUATION 0.94 0.94 0.97 0.30 16 0.0055
TEACHER_PROFILE 0.94 0.94 0.97 0.30 16 0.0056
TEACHERS_CONTEVAL 0.94 0.94 0.97 0.31 16 0.0055
TEACHERS_FEEDBACK 0.94 0.94 0.97 0.31 16 0.0055
BADGES_COMPARISON 0.94 0.94 0.97 0.30 16 0.0057
BADGES_COLLECTING 0.94 0.94 0.97 0.30 16 0.0057
AWARDS 0.94 0.94 0.97 0.30 16 0.0057
COMPETITIONS 0.94 0.94 0.97 0.30 16 0.0057
ASSESSMENT_CONT 0.94 0.94 0.97 0.30 16 0.0056
COMPARISON_OTHERS 0.94 0.94 0.97 0.30 16 0.0057
var.r med.r
TIMELINE 0.021 0.28
RISK 0.021 0.28
AVERAGE 0.021 0.28
SCHEDULE 0.021 0.28
CALENDAR 0.021 0.28
COURSES 0.021 0.28
NOTIFICATIONS_COURSE 0.021 0.28
NOTIFICATIONS_DEADLINES 0.021 0.28
MESSAGES_TEACHER 0.021 0.28
MESSAGES_ADMIN 0.021 0.28
COMPARISON_EXAMS 0.020 0.28
COMPARISON_ECTS 0.020 0.28
COMPARISON_GRADES 0.020 0.28
COMPARISON_OBLIGATIONS 0.021 0.28
STATUS_STUDENTS 0.020 0.28
PREDICTION_COURSE 0.021 0.27
PREDICTION_YEAR 0.021 0.28
PREDICTION_ECTS 0.021 0.27
PREDICTION_PROGRAM 0.021 0.28
ECTSAVG_STUDY 0.020 0.28
ECTSAVG_COURSE 0.020 0.28
AVGGRADE_COURSE 0.021 0.28
PASSRATE_COURSE 0.021 0.28
PPLAN_COURSE 0.021 0.28
PPLAN_STUDY 0.020 0.28
PPLAN_MONITORING 0.021 0.28
ECTS_MONITORING 0.021 0.27
PPLAN_EXTRACURRICULAR 0.021 0.28
TEACHER_EVALUATION 0.021 0.28
TEACHER_PROFILE 0.021 0.29
TEACHERS_CONTEVAL 0.021 0.29
TEACHERS_FEEDBACK 0.021 0.29
BADGES_COMPARISON 0.021 0.28
BADGES_COLLECTING 0.021 0.28
AWARDS 0.021 0.28
COMPETITIONS 0.021 0.28
ASSESSMENT_CONT 0.022 0.28
COMPARISON_OTHERS 0.021 0.28
Item statistics
n raw.r std.r r.cor r.drop mean sd
TIMELINE 222 0.48 0.49 0.47 0.45 3.9 1.06
RISK 222 0.54 0.55 0.54 0.51 4.0 1.07
AVERAGE 222 0.48 0.47 0.46 0.43 3.4 1.25
SCHEDULE 222 0.43 0.46 0.44 0.40 4.3 0.92
CALENDAR 222 0.41 0.45 0.43 0.39 4.5 0.75
COURSES 222 0.53 0.55 0.54 0.50 4.0 1.04
NOTIFICATIONS_COURSE 222 0.49 0.51 0.50 0.46 4.4 0.86
NOTIFICATIONS_DEADLINES 222 0.52 0.54 0.53 0.49 4.2 0.91
MESSAGES_TEACHER 222 0.46 0.49 0.47 0.43 4.1 0.86
MESSAGES_ADMIN 222 0.42 0.44 0.42 0.38 3.5 1.07
COMPARISON_EXAMS 222 0.64 0.62 0.62 0.61 3.1 1.24
COMPARISON_ECTS 222 0.66 0.63 0.63 0.62 2.9 1.31
COMPARISON_GRADES 222 0.63 0.60 0.60 0.59 3.0 1.28
COMPARISON_OBLIGATIONS 222 0.67 0.65 0.64 0.64 3.0 1.25
STATUS_STUDENTS 222 0.55 0.53 0.52 0.51 3.0 1.30
PREDICTION_COURSE 222 0.67 0.68 0.68 0.65 3.9 1.17
PREDICTION_YEAR 222 0.63 0.63 0.63 0.60 3.9 1.18
PREDICTION_ECTS 222 0.69 0.70 0.70 0.67 3.9 1.25
PREDICTION_PROGRAM 222 0.61 0.62 0.61 0.58 4.0 1.17
ECTSAVG_STUDY 222 0.63 0.61 0.61 0.60 3.1 1.21
ECTSAVG_COURSE 222 0.64 0.63 0.62 0.61 3.2 1.14
AVGGRADE_COURSE 222 0.63 0.62 0.61 0.60 3.5 1.14
PASSRATE_COURSE 222 0.56 0.56 0.55 0.53 3.8 1.13
PPLAN_COURSE 222 0.62 0.64 0.64 0.59 4.0 1.12
PPLAN_STUDY 222 0.60 0.62 0.63 0.57 4.1 1.08
PPLAN_MONITORING 222 0.66 0.67 0.67 0.63 4.1 1.04
ECTS_MONITORING 222 0.68 0.69 0.68 0.66 3.7 1.17
PPLAN_EXTRACURRICULAR 222 0.53 0.53 0.51 0.49 3.4 1.21
TEACHER_EVALUATION 222 0.45 0.44 0.42 0.41 3.5 1.22
TEACHER_PROFILE 222 0.46 0.46 0.44 0.42 3.3 1.17
TEACHERS_CONTEVAL 222 0.40 0.40 0.38 0.35 3.5 1.23
TEACHERS_FEEDBACK 222 0.41 0.41 0.40 0.37 3.8 1.16
BADGES_COMPARISON 222 0.62 0.60 0.60 0.58 2.7 1.28
BADGES_COLLECTING 222 0.64 0.62 0.62 0.61 3.0 1.35
AWARDS 222 0.61 0.59 0.59 0.58 2.8 1.28
COMPETITIONS 222 0.60 0.58 0.58 0.56 2.8 1.24
ASSESSMENT_CONT 222 0.51 0.54 0.52 0.49 4.5 0.83
COMPARISON_OTHERS 222 0.67 0.64 0.64 0.64 3.0 1.28
Non missing response frequency for each item
1 2 3 4 5 miss
TIMELINE 0.05 0.07 0.13 0.47 0.28 0
RISK 0.03 0.09 0.13 0.38 0.37 0
AVERAGE 0.09 0.21 0.15 0.36 0.19 0
SCHEDULE 0.01 0.05 0.09 0.30 0.55 0
CALENDAR 0.01 0.02 0.05 0.28 0.64 0
COURSES 0.04 0.06 0.14 0.41 0.35 0
NOTIFICATIONS_COURSE 0.02 0.02 0.06 0.36 0.54 0
NOTIFICATIONS_DEADLINES 0.03 0.02 0.09 0.39 0.46 0
MESSAGES_TEACHER 0.01 0.02 0.17 0.43 0.36 0
MESSAGES_ADMIN 0.04 0.15 0.29 0.34 0.17 0
COMPARISON_EXAMS 0.12 0.21 0.22 0.32 0.14 0
COMPARISON_ECTS 0.17 0.25 0.18 0.28 0.13 0
COMPARISON_GRADES 0.14 0.24 0.23 0.24 0.15 0
COMPARISON_OBLIGATIONS 0.14 0.24 0.20 0.30 0.11 0
STATUS_STUDENTS 0.15 0.24 0.23 0.23 0.15 0
PREDICTION_COURSE 0.07 0.08 0.13 0.39 0.34 0
PREDICTION_YEAR 0.07 0.07 0.11 0.37 0.38 0
PREDICTION_ECTS 0.07 0.10 0.10 0.32 0.41 0
PREDICTION_PROGRAM 0.07 0.05 0.11 0.35 0.42 0
ECTSAVG_STUDY 0.11 0.22 0.28 0.26 0.14 0
ECTSAVG_COURSE 0.08 0.23 0.27 0.30 0.12 0
AVGGRADE_COURSE 0.06 0.18 0.19 0.40 0.17 0
PASSRATE_COURSE 0.05 0.10 0.15 0.41 0.28 0
PPLAN_COURSE 0.05 0.07 0.15 0.33 0.41 0
PPLAN_STUDY 0.05 0.05 0.12 0.34 0.44 0
PPLAN_MONITORING 0.05 0.04 0.10 0.40 0.41 0
ECTS_MONITORING 0.06 0.09 0.24 0.30 0.32 0
PPLAN_EXTRACURRICULAR 0.07 0.17 0.27 0.26 0.23 0
TEACHER_EVALUATION 0.09 0.13 0.18 0.38 0.21 0
TEACHER_PROFILE 0.08 0.15 0.28 0.31 0.18 0
TEACHERS_CONTEVAL 0.07 0.16 0.23 0.27 0.27 0
TEACHERS_FEEDBACK 0.05 0.10 0.20 0.33 0.32 0
BADGES_COMPARISON 0.23 0.23 0.24 0.21 0.09 0
BADGES_COLLECTING 0.20 0.18 0.18 0.31 0.13 0
AWARDS 0.20 0.21 0.23 0.27 0.09 0
COMPETITIONS 0.18 0.24 0.23 0.27 0.09 0
ASSESSMENT_CONT 0.02 0.02 0.05 0.24 0.67 0
COMPARISON_OTHERS 0.14 0.23 0.23 0.25 0.15 0
Split half reliabilities
Call: splitHalf(r = podaci_EFA)
Maximum split half reliability (lambda 4) = 0.98
Guttman lambda 6 = 0.97
Average split half reliability = 0.94
Guttman lambda 3 (alpha) = 0.94
Guttman lambda 2 = 0.95
Minimum split half reliability (beta) = 0.82
Average interitem r = 0.3 with median = 0.28
Kaiser-Meyer-Olkin factor adequacy
Call: KMO(r = podaci_EFA)
Overall MSA = 0.9
MSA for each item =
TIMELINE RISK AVERAGE
0.91 0.93 0.82
SCHEDULE CALENDAR COURSES
0.88 0.85 0.92
NOTIFICATIONS_COURSE NOTIFICATIONS_DEADLINES MESSAGES_TEACHER
0.89 0.90 0.87
MESSAGES_ADMIN COMPARISON_EXAMS COMPARISON_ECTS
0.87 0.88 0.88
COMPARISON_GRADES COMPARISON_OBLIGATIONS STATUS_STUDENTS
0.94 0.94 0.92
PREDICTION_COURSE PREDICTION_YEAR PREDICTION_ECTS
0.91 0.88 0.93
PREDICTION_PROGRAM ECTSAVG_STUDY ECTSAVG_COURSE
0.93 0.91 0.90
AVGGRADE_COURSE PASSRATE_COURSE PPLAN_COURSE
0.93 0.88 0.87
PPLAN_STUDY PPLAN_MONITORING ECTS_MONITORING
0.88 0.93 0.96
PPLAN_EXTRACURRICULAR TEACHER_EVALUATION TEACHER_PROFILE
0.85 0.85 0.85
TEACHERS_CONTEVAL TEACHERS_FEEDBACK BADGES_COMPARISON
0.78 0.81 0.89
BADGES_COLLECTING AWARDS COMPETITIONS
0.88 0.90 0.89
ASSESSMENT_CONT COMPARISON_OTHERS
0.94 0.94
[1] 12.42373903 4.06091892 2.21268595 2.13544055 1.74727571 1.48503112
[7] 1.15525942 1.06474573 0.93647312 0.88758821 0.82955348 0.74827467
[13] 0.65657864 0.61871765 0.56225809 0.50760458 0.50172114 0.47908901
[19] 0.43492714 0.42567976 0.40149080 0.39209593 0.35541637 0.33846030
[25] 0.29807297 0.29539232 0.26437269 0.24493040 0.20883164 0.20824388
[31] 0.19379031 0.17044193 0.15967540 0.14611364 0.13796640 0.12201814
[37] 0.10074791 0.08837706
Factor Analysis using method = minres
Call: fa(r = podaci_EFA, nfactors = 5)
Standardized loadings (pattern matrix) based upon correlation matrix
MR2 MR1 MR5 MR3 MR4 h2 u2 com
TIMELINE 0.02 0.25 0.35 0.08 -0.08 0.29 0.71 2.1
RISK 0.03 0.28 0.47 0.02 -0.09 0.42 0.58 1.8
AVERAGE 0.33 0.11 0.23 -0.11 0.04 0.24 0.76 2.4
SCHEDULE 0.03 0.44 0.17 -0.20 0.16 0.33 0.67 2.1
CALENDAR 0.06 0.47 0.19 -0.27 0.12 0.36 0.64 2.2
COURSES 0.16 0.44 0.18 -0.12 0.05 0.36 0.64 1.8
NOTIFICATIONS_COURSE 0.06 0.58 -0.01 -0.02 0.10 0.38 0.62 1.1
NOTIFICATIONS_DEADLINES 0.02 0.64 0.09 -0.08 0.06 0.47 0.53 1.1
MESSAGES_TEACHER 0.02 0.50 0.04 -0.04 0.15 0.33 0.67 1.2
MESSAGES_ADMIN -0.07 0.53 -0.02 0.09 0.06 0.31 0.69 1.1
COMPARISON_EXAMS 0.81 0.00 0.01 0.03 -0.05 0.67 0.33 1.0
COMPARISON_ECTS 0.78 0.08 0.01 0.04 -0.09 0.65 0.35 1.1
COMPARISON_GRADES 0.89 0.02 -0.12 0.01 0.00 0.73 0.27 1.0
COMPARISON_OBLIGATIONS 0.63 0.08 0.09 0.09 -0.05 0.55 0.45 1.1
STATUS_STUDENTS 0.69 -0.12 -0.07 0.15 0.07 0.55 0.45 1.2
PREDICTION_COURSE 0.03 0.03 0.78 0.09 0.00 0.71 0.29 1.0
PREDICTION_YEAR -0.01 -0.09 0.96 0.00 0.01 0.85 0.15 1.0
PREDICTION_ECTS 0.02 0.15 0.71 0.10 -0.03 0.71 0.29 1.1
PREDICTION_PROGRAM -0.01 0.07 0.70 0.07 0.02 0.58 0.42 1.0
ECTSAVG_STUDY 0.79 0.07 0.00 0.02 -0.09 0.64 0.36 1.0
ECTSAVG_COURSE 0.77 -0.01 0.03 -0.02 0.07 0.63 0.37 1.0
AVGGRADE_COURSE 0.69 -0.02 0.10 -0.07 0.17 0.57 0.43 1.2
PASSRATE_COURSE 0.58 0.03 0.08 -0.07 0.15 0.42 0.58 1.2
PPLAN_COURSE 0.09 0.81 -0.04 0.07 -0.05 0.69 0.31 1.1
PPLAN_STUDY 0.00 0.84 -0.01 0.04 0.00 0.72 0.28 1.0
PPLAN_MONITORING -0.04 0.66 0.13 0.18 0.04 0.64 0.36 1.2
ECTS_MONITORING 0.15 0.41 0.34 0.02 0.02 0.54 0.46 2.2
PPLAN_EXTRACURRICULAR 0.01 0.44 -0.06 0.39 -0.03 0.40 0.60 2.0
TEACHER_EVALUATION 0.22 -0.15 0.15 -0.06 0.59 0.46 0.54 1.6
TEACHER_PROFILE 0.12 -0.02 0.05 0.07 0.58 0.43 0.57 1.1
TEACHERS_CONTEVAL -0.02 0.04 -0.04 0.04 0.75 0.58 0.42 1.0
TEACHERS_FEEDBACK -0.11 0.16 -0.10 0.14 0.72 0.59 0.41 1.3
BADGES_COMPARISON 0.08 0.07 -0.03 0.77 0.07 0.70 0.30 1.1
BADGES_COLLECTING 0.03 0.01 0.14 0.79 0.02 0.75 0.25 1.1
AWARDS 0.06 -0.01 0.05 0.84 0.00 0.77 0.23 1.0
COMPETITIONS 0.04 0.03 0.07 0.67 0.11 0.58 0.42 1.1
ASSESSMENT_CONT 0.04 0.29 0.31 -0.10 0.20 0.35 0.65 3.0
COMPARISON_OTHERS 0.50 -0.10 0.18 0.24 0.10 0.56 0.44 1.9
MR2 MR1 MR5 MR3 MR4
SS loadings 5.94 5.04 4.09 3.18 2.26
Proportion Var 0.16 0.13 0.11 0.08 0.06
Cumulative Var 0.16 0.29 0.40 0.48 0.54
Proportion Explained 0.29 0.25 0.20 0.16 0.11
Cumulative Proportion 0.29 0.54 0.73 0.89 1.00
With factor correlations of
MR2 MR1 MR5 MR3 MR4
MR2 1.00 0.27 0.40 0.45 0.27
MR1 0.27 1.00 0.47 0.29 0.26
MR5 0.40 0.47 1.00 0.34 0.22
MR3 0.45 0.29 0.34 1.00 0.23
MR4 0.27 0.26 0.22 0.23 1.00
Mean item complexity = 1.4
Test of the hypothesis that 5 factors are sufficient.
The degrees of freedom for the null model are 703 and the objective function was 27.54 with Chi Square of 5713.94
The degrees of freedom for the model are 523 and the objective function was 6.47
The root mean square of the residuals (RMSR) is 0.05
The df corrected root mean square of the residuals is 0.05
The harmonic number of observations is 222 with the empirical chi square 680.3 with prob < 4e-06
The total number of observations was 222 with Likelihood Chi Square = 1321.02 with prob < 1.4e-70
Tucker Lewis Index of factoring reliability = 0.782
RMSEA index = 0.083 and the 90 % confidence intervals are 0.078 0.089
BIC = -1504.58
Fit based upon off diagonal values = 0.98
Measures of factor score adequacy
MR2 MR1 MR5 MR3 MR4
Correlation of (regression) scores with factors 0.97 0.95 0.96 0.95 0.90
Multiple R square of scores with factors 0.94 0.91 0.93 0.91 0.82
Minimum correlation of possible factor scores 0.88 0.82 0.86 0.82 0.63
Loadings:
MR2 MR1 MR5 MR3 MR4
COMPARISON_EXAMS 0.808
COMPARISON_ECTS 0.777
COMPARISON_GRADES 0.886
COMPARISON_OBLIGATIONS 0.635
STATUS_STUDENTS 0.689
ECTSAVG_STUDY 0.791
ECTSAVG_COURSE 0.772
AVGGRADE_COURSE 0.687
PASSRATE_COURSE
COMPARISON_OTHERS
NOTIFICATIONS_COURSE
NOTIFICATIONS_DEADLINES 0.638
MESSAGES_ADMIN
PPLAN_COURSE 0.810
PPLAN_STUDY 0.840
PPLAN_MONITORING 0.655
PREDICTION_COURSE 0.778
PREDICTION_YEAR 0.960
PREDICTION_ECTS 0.713
PREDICTION_PROGRAM 0.702
BADGES_COMPARISON 0.770
BADGES_COLLECTING 0.787
AWARDS 0.836
COMPETITIONS 0.671
TEACHER_EVALUATION
TEACHER_PROFILE
TEACHERS_CONTEVAL 0.750
TEACHERS_FEEDBACK 0.719
TIMELINE
RISK
AVERAGE
SCHEDULE
CALENDAR
COURSES
MESSAGES_TEACHER
ECTS_MONITORING
PPLAN_EXTRACURRICULAR
ASSESSMENT_CONT
MR2 MR1 MR5 MR3 MR4
SS loadings 5.465 4.415 3.402 2.877 2.012
Proportion Var 0.144 0.116 0.090 0.076 0.053
Cumulative Var 0.144 0.260 0.350 0.425 0.478
MR2 MR1 MR5 MR3 MR4
[1,] 1.276942115 -0.652156420 0.15947762 1.293587488 1.1714944756
[2,] 0.541675806 0.292622433 -1.03300778 -0.059374377 0.2924238482
[3,] 0.818316695 0.462787217 0.37923482 0.169163264 0.2563434922
[4,] -0.035639914 -0.151339899 0.38209528 -1.187463552 -0.5372153641
[5,] 0.920457258 0.955558891 0.33897911 1.515903370 1.3726656487
[6,] -1.084974188 0.621897014 0.23103600 0.901036981 0.1423741804
[7,] 0.775903235 0.131267302 1.09342977 -0.045664666 0.5669743109
[8,] 1.736977607 0.981885016 1.03630149 1.549089142 0.0001734065
[9,] -0.734461423 -3.232468974 -1.71206107 0.788761289 -0.9617110028
[10,] -2.286971365 -0.669076503 -3.00421271 -1.143497147 -0.1592081637
[11,] -0.885066136 0.970924252 -0.02186641 -1.106095694 0.6871750336
[12,] 0.324019589 -0.174085071 1.04249511 -0.160555809 -0.1265282411
[13,] 1.801938837 -0.010908550 0.87661412 0.291988375 0.8769503703
[14,] 0.241546828 -1.242406470 -0.66681114 -0.808155897 1.7292142065
[15,] -0.264759068 1.217569911 0.81758469 1.162210051 0.8310247432
[16,] -0.405443507 -0.827938047 -0.52999747 -0.008609076 -0.9193804030
[17,] 0.174332244 0.685088733 1.08272854 1.184975510 -0.0871423130
[18,] 1.036759242 -0.363436803 -0.87828161 0.038301095 -0.0855650059
[19,] 0.854101432 0.736155172 0.81083367 1.246190073 0.3927529906
[20,] 1.131002711 0.349986285 0.97429595 -0.266727326 0.2859555217
[21,] -1.488022161 0.027268130 -0.29217129 -0.222011037 0.6867430318
[22,] 0.105573226 -0.194743280 0.02602096 -1.512421282 -0.1284113026
[23,] 0.132499204 0.082080289 0.90378607 0.191486826 -0.3224647335
[24,] 1.014681270 0.563300482 0.64055421 -0.636073231 0.2618281444
[25,] 0.669424730 1.024860430 0.97748821 0.923861842 0.3003796867
[26,] -1.240285146 0.876558782 0.38451177 0.007582975 -0.3962606794
[27,] 0.063346548 0.989157301 0.81647112 -0.203124716 -0.9350240391
[28,] -0.771678907 -0.341696603 0.68629334 0.726501243 -1.3759380593
[29,] -0.403693562 1.154766031 0.42223782 0.917513618 1.3333694725
[30,] -0.484220948 0.756550081 0.92668247 0.312296122 1.3611032878
[31,] 0.164706195 0.937950832 -0.27271932 1.648003850 -0.5596817022
[32,] -0.599837117 0.061796701 0.37865761 -1.354250344 -1.3024637276
[33,] -0.506970443 -0.066387339 0.89170953 -1.573366785 0.3080860983
[34,] -0.150211243 -0.062480865 0.11591030 -0.569452597 0.3991520224
[35,] 1.681797788 1.088884141 1.05711635 1.720121993 1.4203707296
[36,] -0.670447083 0.533749167 -1.54091455 0.412935739 0.2990893096
[37,] 0.245563620 0.406445356 0.72628453 1.024932087 -0.5739253836
[38,] -1.545085773 0.410151332 0.61015522 1.428131219 -0.3645223400
[39,] -1.111323309 0.515142184 -0.03828415 -0.326042877 -0.5419293543
[40,] 0.822902738 0.503482832 0.74334834 -1.459347421 1.3293621190
[41,] 1.320828139 0.742917504 -0.28004909 -0.583384224 0.9077796433
[42,] -0.330160883 0.172600851 -1.72023078 -1.212415264 -0.5607794159
[43,] 1.068025105 -0.571624589 0.67595255 0.825872128 -0.6467452647
[44,] -0.323132239 -0.023250266 1.07336325 -0.484132096 1.6434180659
[45,] -0.761297407 -0.465084634 -0.21024681 -0.733911090 0.0202974505
[46,] -0.388887615 0.874415924 0.10863535 -0.276629945 0.5013340355
[47,] 0.091431066 0.186784589 0.83100703 -0.082563055 -0.2432547342
[48,] -1.064837427 0.970808177 0.88238334 -0.517892072 0.0309000999
[49,] 0.895564353 1.125501311 -0.95755536 0.961456951 0.9954093837
[50,] -1.643787551 -0.053992677 -0.87489713 -1.128943340 -0.9262173867
[51,] -0.800808212 0.927218076 0.85986934 -1.194381234 0.9712870006
[52,] 0.027114139 -0.006168557 0.16964093 0.421867103 0.8951312313
[53,] 0.798498166 -0.034990079 -0.43488701 0.863581749 0.1196515018
[54,] 1.716557870 0.195076900 0.77595241 1.189170264 0.4157316390
[55,] -0.092257806 0.654461794 0.19047776 1.114639880 1.4037557211
[56,] 0.078584329 0.961246930 0.11684504 -0.266439664 -0.2190010002
[57,] 0.286972613 0.749201383 -1.92774409 0.634656431 -0.0738314426
[58,] -0.900667104 -0.198447181 -0.24441485 1.005690350 -0.1133818969
[59,] 1.376245599 -0.053279363 0.52909849 1.095649945 -0.2777306213
[60,] 0.059658200 0.655291474 1.02041815 0.740542728 0.1342132847
[61,] 0.472477676 -0.573913103 -0.33418005 0.769395638 -0.1734837525
[62,] -0.637505486 1.206195271 -0.34884201 -0.198521709 -2.3016218346
[63,] 1.561304374 0.156325744 0.51559142 0.395579639 0.4951071286
[64,] 1.604088871 -0.003499767 0.94267951 -0.518346527 -1.4500150291
[65,] -0.495208393 0.103232844 0.03812812 0.520944103 -0.1645238998
[66,] 0.121974568 -0.696924098 0.16705507 -0.247301835 -0.2437313394
[67,] 1.653142028 0.019594873 -0.32405249 -1.485142407 -1.5963535330
[68,] 1.038722868 1.155826398 0.43202066 0.888027920 0.7730027600
[69,] -0.784721134 0.818016941 -0.59260502 -0.275747993 0.9859118077
[70,] -0.838152624 -0.202916949 -0.24032278 -0.234525323 -0.1955172369
[71,] 0.224210509 0.370955349 0.10511116 0.662596418 -0.0119003463
[72,] 0.575685673 0.474419880 0.88682840 1.546599580 -0.5705606099
[73,] 0.068579662 0.299884858 0.22430992 0.190179670 -0.0726178346
[74,] 0.049888223 0.418683389 0.56031507 -0.312785000 -1.0957125512
[75,] -0.510458896 0.238849131 0.19903876 0.006696932 -0.2673003579
[76,] 0.183482623 -1.215082781 -0.18552716 1.225421340 -0.6325927708
[77,] 0.876873802 0.442265823 -0.16659407 -0.867562474 0.6497650135
[78,] 1.905000710 0.904998654 1.15184788 1.477017056 -0.0520549665
[79,] 0.341441709 0.561450389 0.75245607 1.266730436 0.8014901594
[80,] 0.660866676 0.648556654 0.37869287 1.237366225 0.5445470081
[81,] -1.305327802 0.638732360 0.97147907 0.147710967 -0.2471279891
[82,] 0.092455228 -0.345889282 -0.23345438 -1.023300084 0.6651390449
[83,] 0.544616149 -0.945577701 -0.23650280 0.726225973 -0.5968314322
[84,] 0.287419238 0.834267072 0.06931054 -1.153208939 0.9260762482
[85,] -1.347971571 -0.199492535 -0.19463553 -1.593341376 -0.9467182284
[86,] -1.236572801 0.749980498 -0.20754116 0.221569973 -0.9701169530
[87,] -0.028243421 -0.789559292 -1.01693068 -1.275288376 1.1762404195
[88,] -0.632485528 -0.210367014 0.16406644 -1.140244914 -0.0113681065
[89,] 0.752486268 1.199870679 0.05770567 -0.429570707 0.7651234337
[90,] -1.598912061 -0.005634223 -0.04065024 -0.362740750 -0.3364529576
[91,] -1.634477201 -0.207455093 -0.16022136 -0.300164974 0.6376948614
[92,] 0.089428479 0.321672597 0.20479681 -1.268996024 -1.2475722939
[93,] -0.933305212 0.158250331 0.50760060 -0.596082074 1.0991015188
[94,] -0.149168639 -0.443456818 -1.40503783 0.001789760 -0.5130170841
[95,] 0.704491377 -1.309884990 -0.46650596 -1.334677287 0.9393152698
[96,] 0.581374438 0.556364983 0.30322452 0.814440861 -0.2331310329
[97,] 1.820100270 0.425996261 0.52756411 1.316636109 0.7461818509
[98,] 0.522460619 0.280407111 0.86655490 -0.381106362 -0.5242089383
[99,] 1.416388401 0.353903668 0.82077789 1.803551214 0.9067757471
[100,] -0.449467134 0.855346813 0.89523823 -1.164035497 -1.8931594142
[101,] -0.331069053 -0.797885383 0.73673036 -0.204152862 -0.3854731350
[102,] 1.674355966 0.682202741 0.44698243 -1.200793827 0.0173374238
[103,] 0.365368360 0.044718659 0.73452195 0.536249952 -0.4296284841
[104,] -1.927506489 -2.506169140 -2.58921765 -1.720319113 -2.1933104732
[105,] -1.997565515 -3.833656089 -2.99355874 -1.050191486 -2.7792118196
[106,] -2.119470683 -3.785575364 -2.99924498 -1.175746430 -2.7664254235
[107,] 1.129840761 -0.544331207 0.12010440 0.886634704 -0.4372594197
[108,] 0.553001455 0.614539884 0.84506116 0.282237619 1.0359631132
[109,] 1.266595680 -0.356188545 -0.05973479 -0.842541016 -0.2554255983
[110,] 1.733303577 0.668774607 0.13910323 0.885018001 1.2307738067
[111,] 0.473023407 -1.184589850 -0.03994689 0.475817258 -0.6143664157
[112,] -0.140845486 -1.391823045 -0.17380105 0.580318487 -0.5254689805
[113,] -2.025986777 -1.648704760 -2.51016497 -1.912216250 -2.1112576657
[114,] -1.592544596 -1.406821352 -2.31409351 -1.630712192 -0.3129058019
[115,] 0.003193568 -0.765696335 -0.37049692 -0.027970104 -0.5115187508
[116,] -0.229455868 -0.930040848 0.78061695 0.884254742 0.4653730271
[117,] 0.617418926 -0.568143197 -0.11031236 0.576956254 0.3354514602
[118,] -0.930851501 -0.490646730 -0.68393890 0.310470616 -0.7854064542
[119,] -0.542886875 0.760881430 0.83715802 1.015334983 -0.1938002504
[120,] -0.816987976 -0.246209486 -1.98020860 -1.784038039 -1.8766214494
[121,] 1.590275210 0.276644215 0.92053316 1.776860082 1.4953838529
[122,] -0.092785171 -1.396955847 -1.17455349 0.164763369 -0.7316540231
[123,] 1.219804354 0.563450615 0.97122773 0.831219344 -0.3338106137
[124,] -0.498161126 0.267816729 -0.71438523 -0.261073585 -0.4919806373
[125,] -0.673824243 -1.900976149 -2.35186130 -1.160298165 0.7883622830
[126,] -0.168562386 -2.903294853 0.12939537 -1.694116785 1.0414985310
[127,] 0.341599481 -0.124541825 -0.14761910 0.246038208 -0.1811090125
[128,] -1.065289109 0.175447260 -0.63655644 -0.944632610 0.8394007678
[129,] -0.341029856 0.991649954 1.14832847 0.325049335 0.0912061356
[130,] 0.715522620 0.164627703 0.12951452 0.509394243 0.5343520602
[131,] 1.212372129 0.772085989 -0.03830480 -0.212368012 -1.4292660822
[132,] 0.840303967 0.580875917 0.22010429 1.366869078 0.3403380413
[133,] -1.347514408 -1.202325063 -1.79688270 -1.371397041 -1.0703330312
[134,] 1.021130464 0.673065398 0.31006830 0.982701920 0.8390450250
[135,] -0.882167681 -0.254054808 0.23821842 0.676781519 -0.2956679534
[136,] 0.800132964 0.206306013 0.32236280 0.345927709 -0.6667241110
[137,] 1.087183929 -0.058776078 -0.69148039 -0.614295372 0.7013245996
[138,] 0.631654035 -0.800925751 0.70833876 0.666119570 -0.3216881686
[139,] 0.755944721 0.790374784 -0.93404779 1.690718934 0.5585641607
[140,] 0.150533369 1.171390988 1.03765777 0.260250521 0.5329160731
[141,] -0.971325053 0.870691558 0.98207384 -1.355883954 -1.9295302619
[142,] -1.228590358 -1.017533656 -0.65884849 -1.424584039 0.2013622362
[143,] 0.762667373 -0.019599167 0.74261999 -0.031925174 -1.0331891517
[144,] 1.231293535 0.469893528 -0.54627455 0.399191106 1.1336928106
[145,] 0.743646775 0.295633759 0.19764324 0.827225216 0.8290414734
[146,] 0.140541975 0.447547490 0.87740945 0.902556704 1.0934876205
[147,] 1.179382369 -1.017181264 0.55016099 -0.568778740 0.2683887390
[148,] -1.432827384 1.118799934 1.11869800 -0.488058788 0.2311496442
[149,] -0.792531949 -1.840133317 -1.31607093 -0.966287166 -0.3977146353
[150,] 0.335194823 0.534295598 0.30158187 -0.039316720 1.2784436399
[151,] -1.444360011 0.664393781 0.26925303 -1.460129513 -1.1999627188
[152,] -0.250809657 0.647430076 0.97961097 -0.101543280 0.1600715077
[153,] 0.433988126 1.012639746 1.01900214 -0.652286487 0.3857771622
[154,] 1.779929931 0.081823587 0.88816060 1.079005182 1.0731270775
[155,] -0.097476270 -0.598906706 0.03769724 -0.023857672 0.1756589459
[156,] -0.286770429 0.988817401 0.84990486 0.673190904 -1.2196796971
[157,] -0.607432371 1.027001394 0.35623871 0.367262219 -0.7678848383
[158,] -0.988022531 -0.156144316 -1.53881111 -1.314043050 1.0796951712
[159,] 0.928268165 1.025160978 1.05570557 1.620555863 0.4214784267
[160,] 0.570297845 1.127545476 0.27773104 -0.239229595 1.2525240082
[161,] 0.483315513 -0.035976340 0.81103077 0.649518771 -1.1000343522
[162,] 0.142646492 1.167693448 0.64918688 -0.039260784 -0.5970621616
[163,] -0.134174481 -0.401216474 0.07153130 -0.715579686 0.2497625446
[164,] -1.135316996 -2.095708784 0.48222592 -1.065524351 0.2763491351
[165,] -0.858189649 1.015122149 -0.01868526 -0.786235583 0.8034530379
[166,] -1.079892404 -0.733862086 -1.64605371 -0.466690712 -0.1087055294
[167,] 0.925951326 0.781993352 0.17899796 -0.042334615 -0.5137469367
[168,] -0.696322918 -1.098143842 0.72905059 -1.624939549 -0.7334007704
[169,] 0.134582259 -0.669981326 -1.48282571 -1.284676414 -1.0856116188
[170,] -0.787115850 1.085645300 1.00061716 -1.506165356 0.1912093789
[171,] -1.720922722 -0.503649281 0.28733170 -1.269012083 0.3030488449
[172,] -0.856599553 1.216904840 0.36693778 1.478594962 1.1339136227
[173,] -0.711357619 -0.545721123 -0.20601329 0.506525630 -0.4347541982
[174,] -0.242311340 -0.104710832 0.75513819 0.033464696 -0.0076459537
[175,] 0.039804576 -2.600053882 -2.40849665 1.532191583 1.5072742837
[176,] -0.517377801 -1.000665503 -0.69877433 -1.619280669 -1.4983240095
[177,] 1.081094520 0.669003126 0.59566121 0.943523552 -0.0202816593
[178,] 0.204219653 0.389763235 -0.06435586 0.953358640 0.3363948671
[179,] 0.214765364 0.757589343 -1.49567630 -1.156357474 0.2249201887
[180,] 0.284669132 -0.608005663 -0.34332452 0.392236567 -0.3577144897
[181,] 0.520984619 -0.201915888 0.93396051 0.352609956 -1.7749497505
[182,] -0.400162302 -1.077589926 0.67334722 -0.003960515 1.2397448829
[183,] 0.789261008 0.887149509 0.49159313 0.867508459 -0.2938527665
[184,] 1.839425302 0.823455753 0.99496315 1.527335606 1.3606584945
[185,] 0.659839089 -1.202018838 -0.75104652 -0.383889186 -1.7257254535
[186,] -0.746793277 -3.180518433 0.07131390 -1.507574144 -0.3859390006
[187,] -1.812773962 -0.798363604 -0.41802189 -0.910766662 0.3408099531
[188,] 1.843572775 1.119432513 1.05186297 1.719614172 1.3585562977
[189,] 0.198096114 -0.940938024 -0.35883381 0.592816783 -0.1246709533
[190,] -0.581936581 -0.418525871 -2.05832772 -1.435079844 -0.8908555136
[191,] 1.008011631 -0.390421364 1.05393285 0.282986131 0.8139929250
[192,] -0.291929742 0.715449463 0.95763382 -0.920218372 -0.0677139899
[193,] -1.264935701 0.771370438 -1.04167524 1.686623298 -0.3752991535
[194,] 1.126474429 0.653079810 0.26277521 0.769514045 0.8821341845
[195,] 1.597274700 0.438184957 0.84225696 1.234504807 1.1596359651
[196,] -1.221084372 -1.147563548 -1.27045980 -1.539073945 -1.1846527870
[197,] 0.526093460 0.396755161 0.08888298 0.111270900 1.1701031945
[198,] 0.300701213 0.813262324 -2.43077706 -0.876822340 1.4328226593
[199,] -0.108199312 0.119677854 0.07857256 -0.677262756 -1.3840404902
[200,] 1.064162443 -1.190930856 -0.72872840 0.355079882 -0.9789079249
[201,] 1.186511261 1.090457087 0.87470671 0.536268791 1.0685160268
[202,] -0.887981491 -1.497492136 -1.09446462 0.195949533 -1.5716260274
[203,] -2.157749239 0.771640265 -2.33385566 -1.255838971 -0.8448733129
[204,] 0.480279127 1.225742953 0.16971699 0.878082952 0.5386646404
[205,] -0.290643381 -0.157648476 0.47252869 0.481163243 -0.0526994083
[206,] -1.025234990 0.858653606 0.76680509 -0.122273809 0.8403411155
[207,] -1.351605194 0.245012591 0.09167721 -0.513721570 -0.4770502797
[208,] 0.866620951 -1.026565441 -1.50194025 0.476557348 -0.0747216196
[209,] 0.543623374 -0.723197859 0.81486873 0.208233574 -0.1350297056
[210,] -0.048407158 -0.628678863 1.22270655 0.405356865 1.9663647838
[211,] -1.507867664 -0.963553683 -0.74828844 -0.997498780 0.0057472685
[212,] -1.019397904 0.133980739 0.13089963 -0.899594414 0.7276846025
[213,] -0.951809190 0.557802701 0.26998232 0.510435456 0.3416382607
[214,] 0.127915904 0.579420712 0.95736257 -0.684213097 0.3855744158
[215,] -0.128399813 0.205654667 -0.08178721 0.488392117 -0.2442296319
[216,] -0.273147936 0.569201579 0.61785396 1.205512942 0.9870222498
[217,] -0.748927783 0.103725937 0.52125178 -0.764760167 -0.9906402909
[218,] 0.826860800 -0.058518191 0.05122342 1.080689148 0.3355392679
[219,] 0.314861765 -0.409053687 0.76372952 1.387888654 -2.0801592538
[220,] -2.036746266 -2.913531338 -2.72908474 -1.504300607 0.1826420533
[221,] 0.428251010 -0.648081302 0.02932462 -0.784613045 -0.5120523202
[222,] -1.473677765 0.639436030 -2.89546470 -0.399041183 0.6101550122
# Latent variables
MR2 =~ COMPARISON_EXAMS + COMPARISON_ECTS + COMPARISON_GRADES + COMPARISON_OBLIGATIONS + STATUS_STUDENTS + ECTSAVG_STUDY + ECTSAVG_COURSE + AVGGRADE_COURSE
MR1 =~ NOTIFICATIONS_DEADLINES + PPLAN_COURSE + PPLAN_STUDY + PPLAN_MONITORING
MR5 =~ PREDICTION_COURSE + PREDICTION_YEAR + PREDICTION_ECTS + PREDICTION_PROGRAM
MR3 =~ BADGES_COMPARISON + BADGES_COLLECTING + AWARDS + COMPETITIONS
MR4 =~ TEACHERS_CONTEVAL + TEACHERS_FEEDBACK
lavaan 0.6-11 ended normally after 57 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 54
Number of observations 196
Model Test User Model:
Test statistic 412.245
Degrees of freedom 199
P-value (Chi-square) 0.000
Model Test Baseline Model:
Test statistic 3433.352
Degrees of freedom 231
P-value 0.000
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.933
Tucker-Lewis Index (TLI) 0.923
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -5308.295
Loglikelihood unrestricted model (H1) -5102.172
Akaike (AIC) 10724.590
Bayesian (BIC) 10901.608
Sample-size adjusted Bayesian (BIC) 10730.542
Root Mean Square Error of Approximation:
RMSEA 0.074
90 Percent confidence interval - lower 0.064
90 Percent confidence interval - upper 0.084
P-value RMSEA <= 0.05 0.000
Standardized Root Mean Square Residual:
SRMR 0.057
Parameter Estimates:
Standard errors Standard
Information Expected
Information saturated (h1) model Structured
Latent Variables:
Estimate Std.Err z-value P(>|z|)
MR2 =~
COMPARISON_EXA 1.000
COMPARISON_ECT 0.989 0.053 18.619 0.000
COMPARISON_GRA 1.040 0.052 19.975 0.000
COMPARISON_OBL 0.911 0.057 15.949 0.000
STATUS_STUDENT 0.879 0.065 13.556 0.000
ECTSAVG_STUDY 0.848 0.054 15.630 0.000
ECTSAVG_COURSE 0.920 0.052 17.818 0.000
AVGGRADE_COURS 0.613 0.056 10.915 0.000
MR1 =~
NOTIFICATIONS_ 1.000
PPLAN_COURSE 2.443 0.437 5.592 0.000
PPLAN_STUDY 2.283 0.413 5.522 0.000
PPLAN_MONITORI 2.447 0.434 5.639 0.000
MR5 =~
PREDICTION_COU 1.000
PREDICTION_YEA 1.096 0.056 19.481 0.000
PREDICTION_ECT 0.900 0.055 16.245 0.000
PREDICTION_PRO 0.527 0.066 8.032 0.000
MR3 =~
BADGES_COMPARI 1.000
BADGES_COLLECT 1.085 0.074 14.712 0.000
AWARDS 0.936 0.073 12.779 0.000
COMPETITIONS 0.806 0.079 10.160 0.000
MR4 =~
TEACHERS_CONTE 1.000
TEACHERS_FEEDB 0.880 0.158 5.560 0.000
Covariances:
Estimate Std.Err z-value P(>|z|)
MR2 ~~
MR1 0.096 0.037 2.585 0.010
MR5 0.543 0.106 5.118 0.000
MR3 0.745 0.120 6.222 0.000
MR4 0.304 0.097 3.123 0.002
MR1 ~~
MR5 0.205 0.048 4.227 0.000
MR3 0.158 0.043 3.697 0.000
MR4 0.097 0.034 2.849 0.004
MR5 ~~
MR3 0.461 0.098 4.701 0.000
MR4 0.216 0.086 2.518 0.012
MR3 ~~
MR4 0.360 0.094 3.812 0.000
Variances:
Estimate Std.Err z-value P(>|z|)
.COMPARISON_EXA 0.394 0.047 8.349 0.000
.COMPARISON_ECT 0.352 0.043 8.202 0.000
.COMPARISON_GRA 0.279 0.037 7.522 0.000
.COMPARISON_OBL 0.532 0.059 8.951 0.000
.STATUS_STUDENT 0.806 0.087 9.320 0.000
.ECTSAVG_STUDY 0.492 0.055 9.012 0.000
.ECTSAVG_COURSE 0.365 0.043 8.485 0.000
.AVGGRADE_COURS 0.687 0.072 9.570 0.000
.NOTIFICATIONS_ 0.676 0.069 9.724 0.000
.PPLAN_COURSE 0.249 0.037 6.674 0.000
.PPLAN_STUDY 0.321 0.041 7.821 0.000
.PPLAN_MONITORI 0.157 0.031 5.020 0.000
.PREDICTION_COU 0.327 0.045 7.294 0.000
.PREDICTION_YEA 0.153 0.038 4.016 0.000
.PREDICTION_ECT 0.342 0.043 7.981 0.000
.PREDICTION_PRO 0.785 0.081 9.647 0.000
.BADGES_COMPARI 0.457 0.066 6.923 0.000
.BADGES_COLLECT 0.407 0.068 6.016 0.000
.AWARDS 0.618 0.077 8.019 0.000
.COMPETITIONS 0.939 0.104 9.007 0.000
.TEACHERS_CONTE 0.296 0.162 1.827 0.068
.TEACHERS_FEEDB 0.420 0.130 3.225 0.001
MR2 1.418 0.180 7.858 0.000
MR1 0.126 0.046 2.774 0.006
MR5 1.112 0.145 7.681 0.000
MR3 1.162 0.164 7.095 0.000
MR4 0.939 0.200 4.696 0.000
npar fmin chisq df
54.000 1.052 412.245 199.000
pvalue baseline.chisq baseline.df baseline.pvalue
0.000 3433.352 231.000 0.000
cfi tli nnfi rfi
0.933 0.923 0.923 0.861
nfi pnfi ifi rni
0.880 0.758 0.934 0.933
logl unrestricted.logl aic bic
-5308.295 -5102.172 10724.590 10901.608
ntotal bic2 rmsea rmsea.ci.lower
196.000 10730.542 0.074 0.064
rmsea.ci.upper rmsea.pvalue rmr rmr_nomean
0.084 0.000 0.079 0.079
srmr srmr_bentler srmr_bentler_nomean crmr
0.057 0.057 0.057 0.060
crmr_nomean srmr_mplus srmr_mplus_nomean cn_05
0.060 0.057 0.057 111.737
cn_01 gfi agfi pgfi
119.067 0.837 0.792 0.658
mfi ecvi
0.580 2.654
lhs | op | rhs | est | se | z | pvalue | ci.lower | ci.upper |
---|---|---|---|---|---|---|---|---|
MR2 | =~ | COMPARISON_EXAMS | 1.0000000 | 0.0000000 | NA | NA | 1.0000000 | 1.0000000 |
MR2 | =~ | COMPARISON_ECTS | 0.9892749 | 0.0531321 | 18.619140 | 0.0000000 | 0.8851378 | 1.0934120 |
MR2 | =~ | COMPARISON_GRADES | 1.0402045 | 0.0520741 | 19.975478 | 0.0000000 | 0.9381412 | 1.1422678 |
MR2 | =~ | COMPARISON_OBLIGATIONS | 0.9114090 | 0.0571437 | 15.949414 | 0.0000000 | 0.7994093 | 1.0234086 |
MR2 | =~ | STATUS_STUDENTS | 0.8790583 | 0.0648468 | 13.555930 | 0.0000000 | 0.7519609 | 1.0061556 |
MR2 | =~ | ECTSAVG_STUDY | 0.8483134 | 0.0542744 | 15.630082 | 0.0000000 | 0.7419375 | 0.9546892 |
MR2 | =~ | ECTSAVG_COURSE | 0.9199076 | 0.0516271 | 17.818324 | 0.0000000 | 0.8187204 | 1.0210948 |
MR2 | =~ | AVGGRADE_COURSE | 0.6125013 | 0.0561173 | 10.914654 | 0.0000000 | 0.5025134 | 0.7224893 |
MR1 | =~ | NOTIFICATIONS_DEADLINES | 1.0000000 | 0.0000000 | NA | NA | 1.0000000 | 1.0000000 |
MR1 | =~ | PPLAN_COURSE | 2.4428552 | 0.4368260 | 5.592284 | 0.0000000 | 1.5866920 | 3.2990184 |
MR1 | =~ | PPLAN_STUDY | 2.2828155 | 0.4134059 | 5.521972 | 0.0000000 | 1.4725549 | 3.0930761 |
MR1 | =~ | PPLAN_MONITORING | 2.4469093 | 0.4339316 | 5.638929 | 0.0000000 | 1.5964191 | 3.2973995 |
MR5 | =~ | PREDICTION_COURSE | 1.0000000 | 0.0000000 | NA | NA | 1.0000000 | 1.0000000 |
MR5 | =~ | PREDICTION_YEAR | 1.0960954 | 0.0562636 | 19.481444 | 0.0000000 | 0.9858208 | 1.2063699 |
MR5 | =~ | PREDICTION_ECTS | 0.9004173 | 0.0554275 | 16.244954 | 0.0000000 | 0.7917814 | 1.0090532 |
MR5 | =~ | PREDICTION_PROGRAM | 0.5268523 | 0.0655963 | 8.031733 | 0.0000000 | 0.3982858 | 0.6554188 |
MR3 | =~ | BADGES_COMPARISON | 1.0000000 | 0.0000000 | NA | NA | 1.0000000 | 1.0000000 |
MR3 | =~ | BADGES_COLLECTING | 1.0854225 | 0.0737758 | 14.712454 | 0.0000000 | 0.9408246 | 1.2300203 |
MR3 | =~ | AWARDS | 0.9362455 | 0.0732657 | 12.778771 | 0.0000000 | 0.7926474 | 1.0798437 |
MR3 | =~ | COMPETITIONS | 0.8057023 | 0.0793033 | 10.159752 | 0.0000000 | 0.6502706 | 0.9611340 |
MR4 | =~ | TEACHERS_CONTEVAL | 1.0000000 | 0.0000000 | NA | NA | 1.0000000 | 1.0000000 |
MR4 | =~ | TEACHERS_FEEDBACK | 0.8795207 | 0.1581887 | 5.559946 | 0.0000000 | 0.5694765 | 1.1895648 |
COMPARISON_EXAMS | ~~ | COMPARISON_EXAMS | 0.3938320 | 0.0471709 | 8.349045 | 0.0000000 | 0.3013787 | 0.4862852 |
COMPARISON_ECTS | ~~ | COMPARISON_ECTS | 0.3523383 | 0.0429601 | 8.201534 | 0.0000000 | 0.2681382 | 0.4365385 |
COMPARISON_GRADES | ~~ | COMPARISON_GRADES | 0.2785856 | 0.0370373 | 7.521766 | 0.0000000 | 0.2059939 | 0.3511773 |
COMPARISON_OBLIGATIONS | ~~ | COMPARISON_OBLIGATIONS | 0.5318568 | 0.0594175 | 8.951188 | 0.0000000 | 0.4154007 | 0.6483128 |
STATUS_STUDENTS | ~~ | STATUS_STUDENTS | 0.8062633 | 0.0865112 | 9.319757 | 0.0000000 | 0.6367045 | 0.9758221 |
ECTSAVG_STUDY | ~~ | ECTSAVG_STUDY | 0.4919518 | 0.0545894 | 9.011851 | 0.0000000 | 0.3849585 | 0.5989452 |
ECTSAVG_COURSE | ~~ | ECTSAVG_COURSE | 0.3649304 | 0.0430080 | 8.485183 | 0.0000000 | 0.2806363 | 0.4492244 |
AVGGRADE_COURSE | ~~ | AVGGRADE_COURSE | 0.6866915 | 0.0717555 | 9.569874 | 0.0000000 | 0.5460532 | 0.8273297 |
NOTIFICATIONS_DEADLINES | ~~ | NOTIFICATIONS_DEADLINES | 0.6758187 | 0.0694994 | 9.724089 | 0.0000000 | 0.5396023 | 0.8120351 |
PPLAN_COURSE | ~~ | PPLAN_COURSE | 0.2489639 | 0.0373063 | 6.673516 | 0.0000000 | 0.1758449 | 0.3220828 |
PPLAN_STUDY | ~~ | PPLAN_STUDY | 0.3205517 | 0.0409873 | 7.820760 | 0.0000000 | 0.2402181 | 0.4008853 |
PPLAN_MONITORING | ~~ | PPLAN_MONITORING | 0.1571198 | 0.0312980 | 5.020118 | 0.0000005 | 0.0957768 | 0.2184628 |
PREDICTION_COURSE | ~~ | PREDICTION_COURSE | 0.3271403 | 0.0448525 | 7.293687 | 0.0000000 | 0.2392309 | 0.4150496 |
PREDICTION_YEAR | ~~ | PREDICTION_YEAR | 0.1529889 | 0.0380940 | 4.016087 | 0.0000592 | 0.0783260 | 0.2276519 |
PREDICTION_ECTS | ~~ | PREDICTION_ECTS | 0.3423137 | 0.0428917 | 7.980887 | 0.0000000 | 0.2582475 | 0.4263799 |
PREDICTION_PROGRAM | ~~ | PREDICTION_PROGRAM | 0.7846173 | 0.0813292 | 9.647426 | 0.0000000 | 0.6252150 | 0.9440196 |
BADGES_COMPARISON | ~~ | BADGES_COMPARISON | 0.4565987 | 0.0659499 | 6.923418 | 0.0000000 | 0.3273393 | 0.5858582 |
BADGES_COLLECTING | ~~ | BADGES_COLLECTING | 0.4066095 | 0.0675935 | 6.015511 | 0.0000000 | 0.2741287 | 0.5390904 |
AWARDS | ~~ | AWARDS | 0.6175570 | 0.0770095 | 8.019231 | 0.0000000 | 0.4666212 | 0.7684929 |
COMPETITIONS | ~~ | COMPETITIONS | 0.9394415 | 0.1043053 | 9.006651 | 0.0000000 | 0.7350069 | 1.1438762 |
TEACHERS_CONTEVAL | ~~ | TEACHERS_CONTEVAL | 0.2958784 | 0.1619745 | 1.826697 | 0.0677453 | -0.0215858 | 0.6133427 |
TEACHERS_FEEDBACK | ~~ | TEACHERS_FEEDBACK | 0.4200531 | 0.1302502 | 3.224971 | 0.0012599 | 0.1647674 | 0.6753388 |
MR2 | ~~ | MR2 | 1.4177052 | 0.1804054 | 7.858441 | 0.0000000 | 1.0641171 | 1.7712933 |
MR1 | ~~ | MR1 | 0.1264248 | 0.0455678 | 2.774433 | 0.0055298 | 0.0371136 | 0.2157361 |
MR5 | ~~ | MR5 | 1.1123376 | 0.1448154 | 7.681074 | 0.0000000 | 0.8285047 | 1.3961706 |
MR3 | ~~ | MR3 | 1.1621801 | 0.1638105 | 7.094662 | 0.0000000 | 0.8411174 | 1.4832428 |
MR4 | ~~ | MR4 | 0.9393371 | 0.2000452 | 4.695624 | 0.0000027 | 0.5472557 | 1.3314185 |
MR2 | ~~ | MR1 | 0.0959888 | 0.0371390 | 2.584586 | 0.0097496 | 0.0231978 | 0.1687799 |
MR2 | ~~ | MR5 | 0.5425868 | 0.1060256 | 5.117508 | 0.0000003 | 0.3347804 | 0.7503931 |
MR2 | ~~ | MR3 | 0.7452284 | 0.1197645 | 6.222448 | 0.0000000 | 0.5104943 | 0.9799625 |
MR2 | ~~ | MR4 | 0.3044009 | 0.0974797 | 3.122711 | 0.0017919 | 0.1133442 | 0.4954575 |
MR1 | ~~ | MR5 | 0.2049862 | 0.0484917 | 4.227238 | 0.0000237 | 0.1099441 | 0.3000283 |
MR1 | ~~ | MR3 | 0.1581963 | 0.0427946 | 3.696641 | 0.0002185 | 0.0743204 | 0.2420721 |
MR1 | ~~ | MR4 | 0.0973387 | 0.0341648 | 2.849090 | 0.0043844 | 0.0303769 | 0.1643006 |
MR5 | ~~ | MR3 | 0.4613384 | 0.0981404 | 4.700799 | 0.0000026 | 0.2689867 | 0.6536901 |
MR5 | ~~ | MR4 | 0.2155749 | 0.0856177 | 2.517878 | 0.0118064 | 0.0477673 | 0.3833826 |
MR3 | ~~ | MR4 | 0.3600077 | 0.0944395 | 3.812046 | 0.0001378 | 0.1749096 | 0.5451057 |
lhs | op | rhs | est.std | se | z | pvalue | ci.lower | ci.upper |
---|---|---|---|---|---|---|---|---|
MR2 | =~ | COMPARISON_EXAMS | 0.8846456 | 0.0174263 | 50.765056 | 0.0000000 | 0.8504908 | 0.9188005 |
MR2 | =~ | COMPARISON_ECTS | 0.8930191 | 0.0164072 | 54.428501 | 0.0000000 | 0.8608615 | 0.9251766 |
MR2 | =~ | COMPARISON_GRADES | 0.9199480 | 0.0131398 | 70.012112 | 0.0000000 | 0.8941944 | 0.9457016 |
MR2 | =~ | COMPARISON_OBLIGATIONS | 0.8299886 | 0.0239546 | 34.648373 | 0.0000000 | 0.7830384 | 0.8769388 |
MR2 | =~ | STATUS_STUDENTS | 0.7589791 | 0.0319236 | 23.774871 | 0.0000000 | 0.6964101 | 0.8215482 |
MR2 | =~ | ECTSAVG_STUDY | 0.8213856 | 0.0249539 | 32.916064 | 0.0000000 | 0.7724768 | 0.8702945 |
MR2 | =~ | ECTSAVG_COURSE | 0.8756502 | 0.0185178 | 47.286886 | 0.0000000 | 0.8393559 | 0.9119445 |
MR2 | =~ | AVGGRADE_COURSE | 0.6606592 | 0.0418365 | 15.791456 | 0.0000000 | 0.5786612 | 0.7426572 |
MR1 | =~ | NOTIFICATIONS_DEADLINES | 0.3969749 | 0.0635521 | 6.246446 | 0.0000000 | 0.2724151 | 0.5215348 |
MR1 | =~ | PPLAN_COURSE | 0.8671113 | 0.0237664 | 36.484796 | 0.0000000 | 0.8205301 | 0.9136926 |
MR1 | =~ | PPLAN_STUDY | 0.8201830 | 0.0281285 | 29.158442 | 0.0000000 | 0.7650522 | 0.8753139 |
MR1 | =~ | PPLAN_MONITORING | 0.9100055 | 0.0203387 | 44.742451 | 0.0000000 | 0.8701422 | 0.9498687 |
MR5 | =~ | PREDICTION_COURSE | 0.8790545 | 0.0201770 | 43.567242 | 0.0000000 | 0.8395084 | 0.9186006 |
MR5 | =~ | PREDICTION_YEAR | 0.9472487 | 0.0143564 | 65.981063 | 0.0000000 | 0.9191107 | 0.9753867 |
MR5 | =~ | PREDICTION_ECTS | 0.8513870 | 0.0230158 | 36.991392 | 0.0000000 | 0.8062768 | 0.8964972 |
MR5 | =~ | PREDICTION_PROGRAM | 0.5314019 | 0.0536065 | 9.913009 | 0.0000000 | 0.4263350 | 0.6364687 |
MR3 | =~ | BADGES_COMPARISON | 0.8473112 | 0.0264800 | 31.998099 | 0.0000000 | 0.7954113 | 0.8992112 |
MR3 | =~ | BADGES_COLLECTING | 0.8780833 | 0.0237442 | 36.980889 | 0.0000000 | 0.8315455 | 0.9246212 |
MR3 | =~ | AWARDS | 0.7890393 | 0.0321332 | 24.555294 | 0.0000000 | 0.7260595 | 0.8520192 |
MR3 | =~ | COMPETITIONS | 0.6673755 | 0.0439995 | 15.167803 | 0.0000000 | 0.5811381 | 0.7536129 |
MR4 | =~ | TEACHERS_CONTEVAL | 0.8720459 | 0.0758495 | 11.497063 | 0.0000000 | 0.7233837 | 1.0207081 |
MR4 | =~ | TEACHERS_FEEDBACK | 0.7960402 | 0.0723511 | 11.002455 | 0.0000000 | 0.6542346 | 0.9378458 |
COMPARISON_EXAMS | ~~ | COMPARISON_EXAMS | 0.2174021 | 0.0308322 | 7.051149 | 0.0000000 | 0.1569722 | 0.2778320 |
COMPARISON_ECTS | ~~ | COMPARISON_ECTS | 0.2025170 | 0.0293039 | 6.910928 | 0.0000000 | 0.1450824 | 0.2599515 |
COMPARISON_GRADES | ~~ | COMPARISON_GRADES | 0.1536957 | 0.0241759 | 6.357384 | 0.0000000 | 0.1063118 | 0.2010797 |
COMPARISON_OBLIGATIONS | ~~ | COMPARISON_OBLIGATIONS | 0.3111189 | 0.0397641 | 7.824111 | 0.0000000 | 0.2331827 | 0.3890552 |
STATUS_STUDENTS | ~~ | STATUS_STUDENTS | 0.4239507 | 0.0484587 | 8.748706 | 0.0000000 | 0.3289734 | 0.5189279 |
ECTSAVG_STUDY | ~~ | ECTSAVG_STUDY | 0.3253256 | 0.0409936 | 7.936005 | 0.0000000 | 0.2449796 | 0.4056716 |
ECTSAVG_COURSE | ~~ | ECTSAVG_COURSE | 0.2332367 | 0.0324303 | 7.191945 | 0.0000000 | 0.1696746 | 0.2967989 |
AVGGRADE_COURSE | ~~ | AVGGRADE_COURSE | 0.5635294 | 0.0552793 | 10.194215 | 0.0000000 | 0.4551839 | 0.6718749 |
NOTIFICATIONS_DEADLINES | ~~ | NOTIFICATIONS_DEADLINES | 0.8424109 | 0.0504572 | 16.695554 | 0.0000000 | 0.7435166 | 0.9413052 |
PPLAN_COURSE | ~~ | PPLAN_COURSE | 0.2481180 | 0.0412162 | 6.019916 | 0.0000000 | 0.1673357 | 0.3289002 |
PPLAN_STUDY | ~~ | PPLAN_STUDY | 0.3272998 | 0.0461410 | 7.093465 | 0.0000000 | 0.2368650 | 0.4177345 |
PPLAN_MONITORING | ~~ | PPLAN_MONITORING | 0.1718901 | 0.0370167 | 4.643576 | 0.0000034 | 0.0993386 | 0.2444416 |
PREDICTION_COURSE | ~~ | PREDICTION_COURSE | 0.2272631 | 0.0354733 | 6.406598 | 0.0000000 | 0.1577368 | 0.2967895 |
PREDICTION_YEAR | ~~ | PREDICTION_YEAR | 0.1027199 | 0.0271981 | 3.776731 | 0.0001589 | 0.0494126 | 0.1560272 |
PREDICTION_ECTS | ~~ | PREDICTION_ECTS | 0.2751402 | 0.0391907 | 7.020543 | 0.0000000 | 0.1983278 | 0.3519526 |
PREDICTION_PROGRAM | ~~ | PREDICTION_PROGRAM | 0.7176120 | 0.0569732 | 12.595604 | 0.0000000 | 0.6059466 | 0.8292775 |
BADGES_COMPARISON | ~~ | BADGES_COMPARISON | 0.2820637 | 0.0448737 | 6.285726 | 0.0000000 | 0.1941129 | 0.3700145 |
BADGES_COLLECTING | ~~ | BADGES_COLLECTING | 0.2289697 | 0.0416989 | 5.491030 | 0.0000000 | 0.1472414 | 0.3106979 |
AWARDS | ~~ | AWARDS | 0.3774169 | 0.0507087 | 7.442849 | 0.0000000 | 0.2780298 | 0.4768041 |
COMPETITIONS | ~~ | COMPETITIONS | 0.5546099 | 0.0587284 | 9.443648 | 0.0000000 | 0.4395045 | 0.6697154 |
TEACHERS_CONTEVAL | ~~ | TEACHERS_CONTEVAL | 0.2395359 | 0.1322884 | 1.810709 | 0.0701858 | -0.0197447 | 0.4988164 |
TEACHERS_FEEDBACK | ~~ | TEACHERS_FEEDBACK | 0.3663200 | 0.1151888 | 3.180169 | 0.0014719 | 0.1405541 | 0.5920860 |
MR2 | ~~ | MR2 | 1.0000000 | 0.0000000 | NA | NA | 1.0000000 | 1.0000000 |
MR1 | ~~ | MR1 | 1.0000000 | 0.0000000 | NA | NA | 1.0000000 | 1.0000000 |
MR5 | ~~ | MR5 | 1.0000000 | 0.0000000 | NA | NA | 1.0000000 | 1.0000000 |
MR3 | ~~ | MR3 | 1.0000000 | 0.0000000 | NA | NA | 1.0000000 | 1.0000000 |
MR4 | ~~ | MR4 | 1.0000000 | 0.0000000 | NA | NA | 1.0000000 | 1.0000000 |
MR2 | ~~ | MR1 | 0.2267314 | 0.0728570 | 3.112004 | 0.0018582 | 0.0839342 | 0.3695285 |
MR2 | ~~ | MR5 | 0.4320738 | 0.0620679 | 6.961304 | 0.0000000 | 0.3104229 | 0.5537247 |
MR2 | ~~ | MR3 | 0.5805768 | 0.0533162 | 10.889306 | 0.0000000 | 0.4760789 | 0.6850747 |
MR2 | ~~ | MR4 | 0.2637802 | 0.0754818 | 3.494619 | 0.0004747 | 0.1158386 | 0.4117218 |
MR1 | ~~ | MR5 | 0.5466257 | 0.0561677 | 9.732030 | 0.0000000 | 0.4365391 | 0.6567124 |
MR1 | ~~ | MR3 | 0.4127084 | 0.0671940 | 6.142042 | 0.0000000 | 0.2810106 | 0.5444062 |
MR1 | ~~ | MR4 | 0.2824612 | 0.0769172 | 3.672275 | 0.0002404 | 0.1317062 | 0.4332162 |
MR5 | ~~ | MR3 | 0.4057557 | 0.0663716 | 6.113388 | 0.0000000 | 0.2756696 | 0.5358417 |
MR5 | ~~ | MR4 | 0.2108964 | 0.0779799 | 2.704496 | 0.0068408 | 0.0580585 | 0.3637343 |
MR3 | ~~ | MR4 | 0.3445595 | 0.0751454 | 4.585236 | 0.0000045 | 0.1972772 | 0.4918419 |
# A tibble: 2 × 2
GODINA `var(TIMELINE)`
<fct> <dbl>
1 2017 1.12
2 2022 0.773
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 1 1.623 0.2034
416
Two Sample t-test
data: TIMELINE by GODINA
t = -2.1694, df = 416, p-value = 0.03062
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.39600855 -0.01950901
sample estimates:
mean in group 2017 mean in group 2022
3.873874 4.081633
Welch Two Sample t-test
data: TIMELINE by GODINA
t = -2.1941, df = 414.6, p-value = 0.02878
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.39389339 -0.02162417
sample estimates:
mean in group 2017 mean in group 2022
3.873874 4.081633
Wilcoxon rank sum test with continuity correction
data: TIMELINE by GODINA
W = 19710, p-value = 0.07373
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
-2.348265e-05 2.841556e-05
sample estimates:
difference in location
-6.79442e-05
# A tibble: 2 × 2
GODINA `var(RISK)`
<fct> <dbl>
1 2017 1.14
2 2022 0.845
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 1 0.8091 0.3689
416
Two Sample t-test
data: RISK by GODINA
t = -2.8671, df = 416, p-value = 0.004353
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.47454778 -0.08851528
sample estimates:
mean in group 2017 mean in group 2022
3.968468 4.250000
Welch Two Sample t-test
data: RISK by GODINA
t = -2.8941, df = 415.71, p-value = 0.004002
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.47274763 -0.09031543
sample estimates:
mean in group 2017 mean in group 2022
3.968468 4.250000
Wilcoxon rank sum test with continuity correction
data: RISK by GODINA
W = 18544, p-value = 0.005211
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
-2.679233e-05 -1.140304e-06
sample estimates:
difference in location
-7.738274e-05
# A tibble: 2 × 2
GODINA `var(AVERAGE)`
<fct> <dbl>
1 2017 1.56
2 2022 1.32
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 1 4.0114 0.04584 *
416
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Two Sample t-test
data: AVERAGE by GODINA
t = -3.2157, df = 416, p-value = 0.001403
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.6113743 -0.1474968
sample estimates:
mean in group 2017 mean in group 2022
3.360360 3.739796
Welch Two Sample t-test
data: AVERAGE by GODINA
t = -3.2325, df = 415.29, p-value = 0.001325
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.6101741 -0.1486970
sample estimates:
mean in group 2017 mean in group 2022
3.360360 3.739796
Wilcoxon rank sum test with continuity correction
data: AVERAGE by GODINA
W = 18018, p-value = 0.001638
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
-0.99991255 -0.00005849
sample estimates:
difference in location
-3.55019e-05
# A tibble: 2 × 2
GODINA `var(SCHEDULE)`
<fct> <dbl>
1 2017 0.855
2 2022 0.348
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 1 18.863 1.767e-05 ***
416
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Two Sample t-test
data: SCHEDULE by GODINA
t = -4.3431, df = 416, p-value = 1.767e-05
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.4858008 -0.1830722
sample estimates:
mean in group 2017 mean in group 2022
4.328829 4.663265
Welch Two Sample t-test
data: SCHEDULE by GODINA
t = -4.459, df = 380.03, p-value = 1.086e-05
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.4819097 -0.1869633
sample estimates:
mean in group 2017 mean in group 2022
4.328829 4.663265
Wilcoxon rank sum test with continuity correction
data: SCHEDULE by GODINA
W = 17716, p-value = 0.0001257
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
-8.616909e-05 -6.128210e-05
sample estimates:
difference in location
-3.956132e-06
# A tibble: 2 × 2
GODINA `var(CALENDAR)`
<fct> <dbl>
1 2017 0.567
2 2022 0.491
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 1 0.5842 0.4451
416
Two Sample t-test
data: CALENDAR by GODINA
t = -0.76432, df = 416, p-value = 0.4451
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.19504139 0.08583013
sample estimates:
mean in group 2017 mean in group 2022
4.527027 4.581633
Welch Two Sample t-test
data: CALENDAR by GODINA
t = -0.76777, df = 414.85, p-value = 0.4431
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.19441155 0.08520029
sample estimates:
mean in group 2017 mean in group 2022
4.527027 4.581633
Wilcoxon rank sum test with continuity correction
data: CALENDAR by GODINA
W = 20954, p-value = 0.4358
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
-1.273726e-05 4.960957e-05
sample estimates:
difference in location
-1.265484e-05
# A tibble: 2 × 2
GODINA `var(COURSES)`
<fct> <dbl>
1 2017 1.09
2 2022 0.800
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 1 1.1352 0.2873
416
Two Sample t-test
data: COURSES by GODINA
t = -1.3955, df = 416, p-value = 0.1636
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.32172163 0.05457693
sample estimates:
mean in group 2017 mean in group 2022
3.968468 4.102041
Welch Two Sample t-test
data: COURSES by GODINA
t = -1.4089, df = 415.64, p-value = 0.1596
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.31993177 0.05278708
sample estimates:
mean in group 2017 mean in group 2022
3.968468 4.102041
Wilcoxon rank sum test with continuity correction
data: COURSES by GODINA
W = 20612, p-value = 0.3221
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
-3.219377e-05 5.698662e-05
sample estimates:
difference in location
-4.635467e-05
# A tibble: 2 × 2
GODINA `var(NOTIFICATIONS_COURSE)`
<fct> <dbl>
1 2017 0.741
2 2022 0.497
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 1 2.6173 0.1065
416
Two Sample t-test
data: NOTIFICATIONS_COURSE by GODINA
t = -1.6178, df = 416, p-value = 0.1065
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.27804846 0.02699128
sample estimates:
mean in group 2017 mean in group 2022
4.369369 4.494898
Welch Two Sample t-test
data: NOTIFICATIONS_COURSE by GODINA
t = -1.6378, df = 413.76, p-value = 0.1022
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.27619307 0.02513589
sample estimates:
mean in group 2017 mean in group 2022
4.369369 4.494898
Wilcoxon rank sum test with continuity correction
data: NOTIFICATIONS_COURSE by GODINA
W = 20325, p-value = 0.1887
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
-5.206516e-05 6.122543e-05
sample estimates:
difference in location
-5.846141e-05
# A tibble: 2 × 2
GODINA `var(NOTIFICATIONS_DEADLINES)`
<fct> <dbl>
1 2017 0.836
2 2022 0.806
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 1 0.0352 0.8512
416
Two Sample t-test
data: NOTIFICATIONS_DEADLINES by GODINA
t = -0.65004, df = 416, p-value = 0.516
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.2324921 0.1169377
sample estimates:
mean in group 2017 mean in group 2022
4.243243 4.301020
Welch Two Sample t-test
data: NOTIFICATIONS_DEADLINES by GODINA
t = -0.65078, df = 411.32, p-value = 0.5155
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.2322981 0.1167438
sample estimates:
mean in group 2017 mean in group 2022
4.243243 4.301020
Wilcoxon rank sum test with continuity correction
data: NOTIFICATIONS_DEADLINES by GODINA
W = 20798, p-value = 0.3947
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
-1.221078e-05 6.490225e-06
sample estimates:
difference in location
-3.442804e-05
# A tibble: 2 × 2
GODINA `var(MESSAGES_TEACHER)`
<fct> <dbl>
1 2017 0.739
2 2022 0.725
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 1 0.1345 0.714
416
Two Sample t-test
data: MESSAGES_TEACHER by GODINA
t = -0.5358, df = 416, p-value = 0.5924
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.2098709 0.1199647
sample estimates:
mean in group 2017 mean in group 2022
4.108108 4.153061
Welch Two Sample t-test
data: MESSAGES_TEACHER by GODINA
t = -0.53613, df = 410.55, p-value = 0.5922
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.2097775 0.1198713
sample estimates:
mean in group 2017 mean in group 2022
4.108108 4.153061
Wilcoxon rank sum test with continuity correction
data: MESSAGES_TEACHER by GODINA
W = 21064, p-value = 0.547
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
-6.627689e-06 1.989761e-05
sample estimates:
difference in location
-1.398957e-05
# A tibble: 2 × 2
GODINA `var(MESSAGES_ADMIN)`
<fct> <dbl>
1 2017 1.14
2 2022 1.05
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 1 3.0274 0.08261 .
416
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Two Sample t-test
data: MESSAGES_ADMIN by GODINA
t = -1.4742, df = 416, p-value = 0.1412
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.35372579 0.05054506
sample estimates:
mean in group 2017 mean in group 2022
3.450450 3.602041
Welch Two Sample t-test
data: MESSAGES_ADMIN by GODINA
t = -1.4781, df = 413.2, p-value = 0.1401
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.35319369 0.05001295
sample estimates:
mean in group 2017 mean in group 2022
3.450450 3.602041
Wilcoxon rank sum test with continuity correction
data: MESSAGES_ADMIN by GODINA
W = 19902, p-value = 0.1161
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
-2.693430e-05 2.806308e-06
sample estimates:
difference in location
-4.097029e-05
# A tibble: 2 × 2
GODINA `var(COMPARISON_EXAMS)`
<fct> <dbl>
1 2017 1.54
2 2022 1.82
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 1 3.5316 0.06091 .
416
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Two Sample t-test
data: COMPARISON_EXAMS by GODINA
t = 0.10014, df = 416, p-value = 0.9203
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.2363401 0.2617124
sample estimates:
mean in group 2017 mean in group 2022
3.135135 3.122449
Welch Two Sample t-test
data: COMPARISON_EXAMS by GODINA
t = 0.099614, df = 398.67, p-value = 0.9207
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.2376816 0.2630539
sample estimates:
mean in group 2017 mean in group 2022
3.135135 3.122449
Wilcoxon rank sum test with continuity correction
data: COMPARISON_EXAMS by GODINA
W = 21814, p-value = 0.9618
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
-5.478454e-05 5.561643e-05
sample estimates:
difference in location
4.688267e-05
# A tibble: 2 × 2
GODINA `var(COMPARISON_ECTS)`
<fct> <dbl>
1 2017 1.72
2 2022 1.75
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 1 0.0189 0.8907
416
Two Sample t-test
data: COMPARISON_ECTS by GODINA
t = -1.0072, df = 416, p-value = 0.3144
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.3836693 0.1236950
sample estimates:
mean in group 2017 mean in group 2022
2.941441 3.071429
Welch Two Sample t-test
data: COMPARISON_ECTS by GODINA
t = -1.0067, df = 408.76, p-value = 0.3147
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.3838109 0.1238367
sample estimates:
mean in group 2017 mean in group 2022
2.941441 3.071429
Wilcoxon rank sum test with continuity correction
data: COMPARISON_ECTS by GODINA
W = 20577, p-value = 0.3276
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
-6.757785e-05 3.413274e-05
sample estimates:
difference in location
-2.310569e-05
# A tibble: 2 × 2
GODINA `var(COMPARISON_GRADES)`
<fct> <dbl>
1 2017 1.63
2 2022 1.82
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 1 1.6006 0.2065
416
Two Sample t-test
data: COMPARISON_GRADES by GODINA
t = -0.26612, df = 416, p-value = 0.7903
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.2867983 0.2184034
sample estimates:
mean in group 2017 mean in group 2022
3.027027 3.061224
Welch Two Sample t-test
data: COMPARISON_GRADES by GODINA
t = -0.26519, df = 402.84, p-value = 0.791
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.2877080 0.2193131
sample estimates:
mean in group 2017 mean in group 2022
3.027027 3.061224
Wilcoxon rank sum test with continuity correction
data: COMPARISON_GRADES by GODINA
W = 21429, p-value = 0.7864
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
-2.920479e-05 4.033694e-05
sample estimates:
difference in location
-7.982535e-06
# A tibble: 2 × 2
GODINA `var(COMPARISON_OBLIGATIONS)`
<fct> <dbl>
1 2017 1.56
2 2022 1.72
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 1 1.5992 0.2067
416
Two Sample t-test
data: COMPARISON_OBLIGATIONS by GODINA
t = -1.085, df = 416, p-value = 0.2786
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.3822892 0.1103642
sample estimates:
mean in group 2017 mean in group 2022
2.986486 3.122449
Welch Two Sample t-test
data: COMPARISON_OBLIGATIONS by GODINA
t = -1.0817, df = 403.95, p-value = 0.28
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.3830488 0.1111238
sample estimates:
mean in group 2017 mean in group 2022
2.986486 3.122449
Wilcoxon rank sum test with continuity correction
data: COMPARISON_OBLIGATIONS by GODINA
W = 20392, p-value = 0.2552
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
-3.424237e-05 3.419917e-05
sample estimates:
difference in location
-4.986745e-05
# A tibble: 2 × 2
GODINA `var(STATUS_STUDENTS)`
<fct> <dbl>
1 2017 1.68
2 2022 1.91
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 1 3.3516 0.06785 .
416
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Two Sample t-test
data: STATUS_STUDENTS by GODINA
t = -0.34103, df = 416, p-value = 0.7333
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.3025040 0.2130574
sample estimates:
mean in group 2017 mean in group 2022
2.990991 3.035714
Welch Two Sample t-test
data: STATUS_STUDENTS by GODINA
t = -0.33969, df = 401.78, p-value = 0.7343
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.3035538 0.2141072
sample estimates:
mean in group 2017 mean in group 2022
2.990991 3.035714
Wilcoxon rank sum test with continuity correction
data: STATUS_STUDENTS by GODINA
W = 21380, p-value = 0.7557
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
-2.600967e-05 4.274425e-05
sample estimates:
difference in location
-5.555976e-06
# A tibble: 2 × 2
GODINA `var(PREDICTION_COURSE)`
<fct> <dbl>
1 2017 1.37
2 2022 1.45
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 1 0.2122 0.6453
416
Two Sample t-test
data: PREDICTION_COURSE by GODINA
t = -0.63087, df = 416, p-value = 0.5285
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.3017454 0.1551191
sample estimates:
mean in group 2017 mean in group 2022
3.860360 3.933673
Welch Two Sample t-test
data: PREDICTION_COURSE by GODINA
t = -0.62979, df = 406.57, p-value = 0.5292
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.3021521 0.1555259
sample estimates:
mean in group 2017 mean in group 2022
3.860360 3.933673
Wilcoxon rank sum test with continuity correction
data: PREDICTION_COURSE by GODINA
W = 20646, p-value = 0.342
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
-2.809962e-05 4.931042e-05
sample estimates:
difference in location
-4.099114e-06
# A tibble: 2 × 2
GODINA `var(PREDICTION_YEAR)`
<fct> <dbl>
1 2017 1.38
2 2022 1.50
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 1 0.8563 0.3553
416
Two Sample t-test
data: PREDICTION_YEAR by GODINA
t = -0.47813, df = 416, p-value = 0.6328
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.2870885 0.1747517
sample estimates:
mean in group 2017 mean in group 2022
3.923423 3.979592
Welch Two Sample t-test
data: PREDICTION_YEAR by GODINA
t = -0.47695, df = 405.07, p-value = 0.6337
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.2876761 0.1753393
sample estimates:
mean in group 2017 mean in group 2022
3.923423 3.979592
Wilcoxon rank sum test with continuity correction
data: PREDICTION_YEAR by GODINA
W = 20698, p-value = 0.363
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
-1.721420e-05 2.633612e-05
sample estimates:
difference in location
-7.957205e-05
# A tibble: 2 × 2
GODINA `var(PREDICTION_ECTS)`
<fct> <dbl>
1 2017 1.55
2 2022 1.25
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 1 2.3598 0.1253
416
Two Sample t-test
data: PREDICTION_ECTS by GODINA
t = -1.5479, df = 416, p-value = 0.1224
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.40889048 0.04862205
sample estimates:
mean in group 2017 mean in group 2022
3.896396 4.076531
Welch Two Sample t-test
data: PREDICTION_ECTS by GODINA
t = -1.5582, df = 415.87, p-value = 0.1199
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.40736915 0.04710072
sample estimates:
mean in group 2017 mean in group 2022
3.896396 4.076531
Wilcoxon rank sum test with continuity correction
data: PREDICTION_ECTS by GODINA
W = 20288, p-value = 0.205
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
-6.690491e-07 3.865104e-05
sample estimates:
difference in location
-5.663361e-06
# A tibble: 2 × 2
GODINA `var(PREDICTION_PROGRAM)`
<fct> <dbl>
1 2017 1.36
2 2022 1.10
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 1 1.1818 0.2776
416
Two Sample t-test
data: PREDICTION_PROGRAM by GODINA
t = -1.117, df = 416, p-value = 0.2646
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.33627822 0.09257533
sample estimates:
mean in group 2017 mean in group 2022
3.995495 4.117347
Welch Two Sample t-test
data: PREDICTION_PROGRAM by GODINA
t = -1.1245, df = 415.87, p-value = 0.2615
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.33485441 0.09115152
sample estimates:
mean in group 2017 mean in group 2022
3.995495 4.117347
Wilcoxon rank sum test with continuity correction
data: PREDICTION_PROGRAM by GODINA
W = 20820, p-value = 0.4168
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
-6.589806e-06 5.129451e-05
sample estimates:
difference in location
-3.18195e-05
# A tibble: 2 × 2
GODINA `var(ECTSAVG_STUDY)`
<fct> <dbl>
1 2017 1.46
2 2022 1.52
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 1 0.7446 0.3887
416
Two Sample t-test
data: ECTSAVG_STUDY by GODINA
t = -1.9287, df = 416, p-value = 0.05444
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.465900568 0.004418678
sample estimates:
mean in group 2017 mean in group 2022
3.085586 3.316327
Welch Two Sample t-test
data: ECTSAVG_STUDY by GODINA
t = -1.9265, df = 407.56, p-value = 0.05474
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.466193675 0.004711785
sample estimates:
mean in group 2017 mean in group 2022
3.085586 3.316327
Wilcoxon rank sum test with continuity correction
data: ECTSAVG_STUDY by GODINA
W = 19415, p-value = 0.0512
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
-1.649149e-05 4.045726e-05
sample estimates:
difference in location
-6.715768e-06
# A tibble: 2 × 2
GODINA `var(ECTSAVG_COURSE)`
<fct> <dbl>
1 2017 1.31
2 2022 1.57
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 1 3.9584 0.04729 *
416
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Two Sample t-test
data: ECTSAVG_COURSE by GODINA
t = -0.61308, df = 416, p-value = 0.5402
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.3025708 0.1587025
sample estimates:
mean in group 2017 mean in group 2022
3.157658 3.229592
Welch Two Sample t-test
data: ECTSAVG_COURSE by GODINA
t = -0.60961, df = 397.55, p-value = 0.5425
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.3039170 0.1600486
sample estimates:
mean in group 2017 mean in group 2022
3.157658 3.229592
Wilcoxon rank sum test with continuity correction
data: ECTSAVG_COURSE by GODINA
W = 20880, p-value = 0.4647
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
-1.821468e-05 1.796003e-05
sample estimates:
difference in location
-6.425534e-05
# A tibble: 2 × 2
GODINA `var(AVGGRADE_COURSE)`
<fct> <dbl>
1 2017 1.30
2 2022 1.22
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 1 1.8589 0.1735
416
Two Sample t-test
data: AVGGRADE_COURSE by GODINA
t = -2.3018, df = 416, p-value = 0.02184
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.47023059 -0.03703177
sample estimates:
mean in group 2017 mean in group 2022
3.450450 3.704082
Welch Two Sample t-test
data: AVGGRADE_COURSE by GODINA
t = -2.3059, df = 412.22, p-value = 0.02161
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.46984262 -0.03741974
sample estimates:
mean in group 2017 mean in group 2022
3.450450 3.704082
Wilcoxon rank sum test with continuity correction
data: AVGGRADE_COURSE by GODINA
W = 18906, p-value = 0.01526
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
-6.988467e-05 -5.155438e-05
sample estimates:
difference in location
-3.513701e-05
# A tibble: 2 × 2
GODINA `var(PASSRATE_COURSE)`
<fct> <dbl>
1 2017 1.29
2 2022 0.832
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 1 5.7539 0.01689 *
416
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Two Sample t-test
data: PASSRATE_COURSE by GODINA
t = -3.5062, df = 416, p-value = 0.000504
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.5557190 -0.1564524
sample estimates:
mean in group 2017 mean in group 2022
3.761261 4.117347
Welch Two Sample t-test
data: PASSRATE_COURSE by GODINA
t = -3.5534, df = 412.51, p-value = 0.0004243
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.5530727 -0.1590986
sample estimates:
mean in group 2017 mean in group 2022
3.761261 4.117347
Wilcoxon rank sum test with continuity correction
data: PASSRATE_COURSE by GODINA
W = 18070, p-value = 0.001463
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
-1.691586e-05 -3.816379e-05
sample estimates:
difference in location
-4.031717e-05
# A tibble: 2 × 2
GODINA `var(PPLAN_COURSE)`
<fct> <dbl>
1 2017 1.25
2 2022 1.01
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 1 2.4616 0.1174
416
Two Sample t-test
data: PPLAN_COURSE by GODINA
t = 1.9801, df = 416, p-value = 0.04835
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
0.001510562 0.412628066
sample estimates:
mean in group 2017 mean in group 2022
3.977477 3.770408
Welch Two Sample t-test
data: PPLAN_COURSE by GODINA
t = 1.9935, df = 415.89, p-value = 0.04686
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
0.002890476 0.411248153
sample estimates:
mean in group 2017 mean in group 2022
3.977477 3.770408
Wilcoxon rank sum test with continuity correction
data: PPLAN_COURSE by GODINA
W = 24956, p-value = 0.006389
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
5.301290e-05 6.462976e-06
sample estimates:
difference in location
1.771137e-05
# A tibble: 2 × 2
GODINA `var(PPLAN_STUDY)`
<fct> <dbl>
1 2017 1.16
2 2022 0.984
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 1 2.1294 0.1453
416
Two Sample t-test
data: PPLAN_STUDY by GODINA
t = 1.8419, df = 416, p-value = 0.0662
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.01260611 0.38785892
sample estimates:
mean in group 2017 mean in group 2022
4.085586 3.897959
Welch Two Sample t-test
data: PPLAN_STUDY by GODINA
t = 1.8516, df = 415.31, p-value = 0.0648
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.01156305 0.38681585
sample estimates:
mean in group 2017 mean in group 2022
4.085586 3.897959
Wilcoxon rank sum test with continuity correction
data: PPLAN_STUDY by GODINA
W = 24780, p-value = 0.009218
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
3.287967e-05 5.191436e-05
sample estimates:
difference in location
6.987603e-06
# A tibble: 2 × 2
GODINA `var(PPLAN_MONITORING)`
<fct> <dbl>
1 2017 1.08
2 2022 0.919
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 1 1.0179 0.3136
416
Two Sample t-test
data: PPLAN_MONITORING by GODINA
t = 1.9051, df = 416, p-value = 0.05746
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.005947415 0.380005146
sample estimates:
mean in group 2017 mean in group 2022
4.090090 3.903061
Welch Two Sample t-test
data: PPLAN_MONITORING by GODINA
t = 1.9146, df = 415.16, p-value = 0.05623
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.004992374 0.379050105
sample estimates:
mean in group 2017 mean in group 2022
4.090090 3.903061
Wilcoxon rank sum test with continuity correction
data: PPLAN_MONITORING by GODINA
W = 24812, p-value = 0.008089
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
5.320344e-06 1.366807e-05
sample estimates:
difference in location
1.618971e-05
# A tibble: 2 × 2
GODINA `var(ECTS_MONITORING)`
<fct> <dbl>
1 2017 1.37
2 2022 0.730
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 1 22.948 2.319e-06 ***
416
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Two Sample t-test
data: ECTS_MONITORING by GODINA
t = -3.6608, df = 416, p-value = 0.0002838
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.5703878 -0.1718442
sample estimates:
mean in group 2017 mean in group 2022
3.720721 4.091837
Welch Two Sample t-test
data: ECTS_MONITORING by GODINA
t = -3.731, df = 402.24, p-value = 0.0002181
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.5666577 -0.1755743
sample estimates:
mean in group 2017 mean in group 2022
3.720721 4.091837
Wilcoxon rank sum test with continuity correction
data: ECTS_MONITORING by GODINA
W = 18202, p-value = 0.002377
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
-4.613658e-05 -4.993252e-05
sample estimates:
difference in location
-8.121092e-05
# A tibble: 2 × 2
GODINA `var(PPLAN_EXTRACURRICULAR)`
<fct> <dbl>
1 2017 1.47
2 2022 1.19
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 1 2.1951 0.1392
416
Two Sample t-test
data: PPLAN_EXTRACURRICULAR by GODINA
t = 0.060395, df = 416, p-value = 0.9519
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.2160574 0.2297548
sample estimates:
mean in group 2017 mean in group 2022
3.409910 3.403061
Welch Two Sample t-test
data: PPLAN_EXTRACURRICULAR by GODINA
t = 0.060804, df = 415.89, p-value = 0.9515
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.2145558 0.2282531
sample estimates:
mean in group 2017 mean in group 2022
3.409910 3.403061
Wilcoxon rank sum test with continuity correction
data: PPLAN_EXTRACURRICULAR by GODINA
W = 22032, p-value = 0.8181
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
-3.154344e-05 4.551866e-05
sample estimates:
difference in location
5.796829e-05
# A tibble: 2 × 2
GODINA `var(TEACHER_EVALUATION)`
<fct> <dbl>
1 2017 1.50
2 2022 1.30
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 1 0.5792 0.4471
416
Two Sample t-test
data: TEACHER_EVALUATION by GODINA
t = -2.694, df = 416, p-value = 0.007346
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.5419667 -0.0847110
sample estimates:
mean in group 2017 mean in group 2022
3.477477 3.790816
Welch Two Sample t-test
data: TEACHER_EVALUATION by GODINA
t = -2.7057, df = 414.73, p-value = 0.007097
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.54098085 -0.08569685
sample estimates:
mean in group 2017 mean in group 2022
3.477477 3.790816
Wilcoxon rank sum test with continuity correction
data: TEACHER_EVALUATION by GODINA
W = 18622, p-value = 0.008326
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
-9.999860e-01 -1.349347e-05
sample estimates:
difference in location
-8.052474e-06
# A tibble: 2 × 2
GODINA `var(TEACHER_PROFILE)`
<fct> <dbl>
1 2017 1.38
2 2022 1.38
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 1 0.0223 0.8814
416
Two Sample t-test
data: TEACHER_PROFILE by GODINA
t = -0.61628, df = 416, p-value = 0.538
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.2971372 0.1552913
sample estimates:
mean in group 2017 mean in group 2022
3.342342 3.413265
Welch Two Sample t-test
data: TEACHER_PROFILE by GODINA
t = -0.61619, df = 409.36, p-value = 0.5381
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.2971822 0.1553363
sample estimates:
mean in group 2017 mean in group 2022
3.342342 3.413265
Wilcoxon rank sum test with continuity correction
data: TEACHER_PROFILE by GODINA
W = 21030, p-value = 0.5435
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
-2.66143e-05 2.89425e-05
sample estimates:
difference in location
-1.186989e-05
# A tibble: 2 × 2
GODINA `var(TEACHERS_CONTEVAL)`
<fct> <dbl>
1 2017 1.52
2 2022 1.24
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 1 5.6264 0.01815 *
416
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Two Sample t-test
data: TEACHERS_CONTEVAL by GODINA
t = -2.6715, df = 416, p-value = 0.007849
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.53551877 -0.08150642
sample estimates:
mean in group 2017 mean in group 2022
3.518018 3.826531
Welch Two Sample t-test
data: TEACHERS_CONTEVAL by GODINA
t = -2.6882, df = 415.75, p-value = 0.007473
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.5341067 -0.0829185
sample estimates:
mean in group 2017 mean in group 2022
3.518018 3.826531
Wilcoxon rank sum test with continuity correction
data: TEACHERS_CONTEVAL by GODINA
W = 18705, p-value = 0.01041
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
-9.999600e-01 -4.850579e-05
sample estimates:
difference in location
-4.338908e-05
# A tibble: 2 × 2
GODINA `var(TEACHERS_FEEDBACK)`
<fct> <dbl>
1 2017 1.35
2 2022 1.15
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 1 0.8079 0.3693
416
Two Sample t-test
data: TEACHERS_FEEDBACK by GODINA
t = -0.54744, df = 416, p-value = 0.5844
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.2762109 0.1558763
sample estimates:
mean in group 2017 mean in group 2022
3.761261 3.821429
Welch Two Sample t-test
data: TEACHERS_FEEDBACK by GODINA
t = -0.55013, df = 415.13, p-value = 0.5825
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.2751522 0.1548176
sample estimates:
mean in group 2017 mean in group 2022
3.761261 3.821429
Wilcoxon rank sum test with continuity correction
data: TEACHERS_FEEDBACK by GODINA
W = 21400, p-value = 0.764
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
-6.108471e-05 3.492944e-05
sample estimates:
difference in location
-4.489519e-05
# A tibble: 2 × 2
GODINA `var(BADGES_COMPARISON)`
<fct> <dbl>
1 2017 1.65
2 2022 1.63
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 1 1.1845 0.2771
416
Two Sample t-test
data: BADGES_COMPARISON by GODINA
t = 2.8565, df = 416, p-value = 0.004497
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
0.1117972 0.6051545
sample estimates:
mean in group 2017 mean in group 2022
2.720721 2.362245
Welch Two Sample t-test
data: BADGES_COMPARISON by GODINA
t = 2.8578, df = 410.3, p-value = 0.004483
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
0.1118955 0.6050562
sample estimates:
mean in group 2017 mean in group 2022
2.720721 2.362245
Wilcoxon rank sum test with continuity correction
data: BADGES_COMPARISON by GODINA
W = 25301, p-value = 0.003139
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
6.832901e-05 9.999536e-01
sample estimates:
difference in location
6.979644e-06
# A tibble: 2 × 2
GODINA `var(BADGES_COLLECTING)`
<fct> <dbl>
1 2017 1.83
2 2022 1.78
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 1 0.0166 0.8976
416
Two Sample t-test
data: BADGES_COLLECTING by GODINA
t = 2.7283, df = 416, p-value = 0.006635
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
0.1004993 0.6185667
sample estimates:
mean in group 2017 mean in group 2022
2.981982 2.622449
Welch Two Sample t-test
data: BADGES_COLLECTING by GODINA
t = 2.7303, df = 410.74, p-value = 0.006599
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
0.1006809 0.6183851
sample estimates:
mean in group 2017 mean in group 2022
2.981982 2.622449
Wilcoxon rank sum test with continuity correction
data: BADGES_COLLECTING by GODINA
W = 25029, p-value = 0.006563
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
3.026748e-05 9.999745e-01
sample estimates:
difference in location
5.225705e-05
# A tibble: 2 × 2
GODINA `var(AWARDS)`
<fct> <dbl>
1 2017 1.63
2 2022 1.64
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 1 0.1674 0.6826
416
Two Sample t-test
data: AWARDS by GODINA
t = 1.4776, df = 416, p-value = 0.1403
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.06122802 0.43197632
sample estimates:
mean in group 2017 mean in group 2022
2.833333 2.647959
Welch Two Sample t-test
data: AWARDS by GODINA
t = 1.4773, df = 409.23, p-value = 0.1404
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.0612959 0.4320442
sample estimates:
mean in group 2017 mean in group 2022
2.833333 2.647959
Wilcoxon rank sum test with continuity correction
data: AWARDS by GODINA
W = 23570, p-value = 0.1316
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
-4.442025e-05 5.211709e-06
sample estimates:
difference in location
4.385556e-05
# A tibble: 2 × 2
GODINA `var(COMPETITIONS)`
<fct> <dbl>
1 2017 1.55
2 2022 1.70
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 1 1.2374 0.2666
416
Two Sample t-test
data: COMPETITIONS by GODINA
t = -0.15472, df = 416, p-value = 0.8771
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.2645683 0.2259583
sample estimates:
mean in group 2017 mean in group 2022
2.837838 2.857143
Welch Two Sample t-test
data: COMPETITIONS by GODINA
t = -0.15426, df = 404.02, p-value = 0.8775
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.2653166 0.2267066
sample estimates:
mean in group 2017 mean in group 2022
2.837838 2.857143
Wilcoxon rank sum test with continuity correction
data: COMPETITIONS by GODINA
W = 21627, p-value = 0.9149
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
-6.823494e-05 9.041870e-06
sample estimates:
difference in location
-1.979868e-05
# A tibble: 2 × 2
GODINA `var(ASSESSMENT_CONT)`
<fct> <dbl>
1 2017 0.685
2 2022 0.371
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 1 5.0255 0.0255 *
416
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Two Sample t-test
data: ASSESSMENT_CONT by GODINA
t = -2.2418, df = 416, p-value = 0.0255
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.30245556 -0.01984634
sample estimates:
mean in group 2017 mean in group 2022
4.522523 4.683673
Welch Two Sample t-test
data: ASSESSMENT_CONT by GODINA
t = -2.2837, df = 403.34, p-value = 0.02291
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.29987472 -0.02242717
sample estimates:
mean in group 2017 mean in group 2022
4.522523 4.683673
Wilcoxon rank sum test with continuity correction
data: ASSESSMENT_CONT by GODINA
W = 19875, p-value = 0.05656
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
-9.717446e-06 6.594312e-05
sample estimates:
difference in location
-6.562629e-05
# A tibble: 2 × 2
GODINA `var(COMPARISON_OTHERS)`
<fct> <dbl>
1 2017 1.64
2 2022 1.85
Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 1 2.6677 0.1032
416
Two Sample t-test
data: COMPARISON_OTHERS by GODINA
t = -1.3543, df = 416, p-value = 0.1764
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.42885773 0.07897723
sample estimates:
mean in group 2017 mean in group 2022
3.04955 3.22449
Welch Two Sample t-test
data: COMPARISON_OTHERS by GODINA
t = -1.3493, df = 402.39, p-value = 0.178
alternative hypothesis: true difference in means between group 2017 and group 2022 is not equal to 0
95 percent confidence interval:
-0.42982320 0.07994271
sample estimates:
mean in group 2017 mean in group 2022
3.04955 3.22449
Wilcoxon rank sum test with continuity correction
data: COMPARISON_OTHERS by GODINA
W = 20052, p-value = 0.1575
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
-2.743212e-07 8.353270e-06
sample estimates:
difference in location
-5.744507e-06
---
title: "Faktorska analiza"
output:
flexdashboard::flex_dashboard:
social: menu
orientation: columns
vertical_layout: fill
source_code: embed
---
```{css, echo=FALSE}
.sidebar { overflow: auto; }
.dataTables_scrollBody {
height:95% !important;
max-height:95% !important;
}
.chart-stage-flex {
overflow:auto !important;
}
```
```{r setup, include=FALSE}
library(DT)
library(knitr)
library(kableExtra)
library(psych)
library(car)
library(readxl)
library(tidyverse)
library(corrplot)
library(svgPanZoom)
library(lavaan)
library(parameters)
cols <- c("osoba", "DYNAMICS", "AVERAGE_COMPARISON", "REQUESTS", "MESSAGES_SU",
"EXTRACURRICULAR", "STATUS_COMPARISON", "PREDICTION_GROUP", "TEACHERS", "BADGES",
"PREDICTION_OBLIGATIONS", "ABSENCE", "STATUS_CURRENT", "ASSESSMENT_EXAMS")
podaci_EFA <- read_excel('potrebe_studenata_2017.xlsx', sheet=1) %>% select(-one_of(cols))
new_cols <- c("osoba")
podaci_CFA <- read_excel('potrebe_studenata_2022.xlsx', sheet=1) %>% select(-one_of(new_cols))
EFA_model <- fa(podaci_EFA, nfactors = 5)
file.name <- './graf4.svg'
in.svg <- readChar(file.name, nchars = file.info(file.name)$size)
podaci_sve <- bind_rows("2017" = podaci_EFA, "2022" = podaci_CFA, .id = "GODINA") %>%
select_if(~ !any(is.na(.)))
podaci_sve$GODINA <- factor(podaci_sve$GODINA)
model1 <- efa_to_cfa(EFA_model, threshold = 0.6)
rez1 <- cfa(model1, podaci_CFA)
```
Deskriptiva {data-navmenu="Podaci"}
=======================================================================
Column {.tabset .tabset-fade}
-----------------------------------------------------------------------
### Godina 2017.
```{r}
datatable(round(describe(podaci_EFA),2), filter = 'top',
extensions = c('FixedColumns','Select', 'Buttons'),
options = list(
dom = 'Blfrtip',
select = list(style = 'os', items = 'row'),
buttons = c('selectAll', 'selectNone', 'selectRows', 'selectColumns', 'selectCells'),
pageLength = 15,
scrollX = TRUE,
scrollY= TRUE,
fixedColumns = TRUE
)
)
```
### Godina 2022.
```{r}
datatable(round(describe(podaci_CFA),2), filter = 'top',
extensions = c('FixedColumns','Select', 'Buttons'),
options = list(
dom = 'Blfrtip',
select = list(style = 'os', items = 'row'),
buttons = c('selectAll', 'selectNone', 'selectRows', 'selectColumns', 'selectCells'),
pageLength = 15,
scrollX = TRUE,
scrollY= TRUE,
fixedColumns = TRUE
)
)
```
Deskriptiva - slike {data-navmenu="Podaci"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Godina 2017.
```{r,fig.width = 12,fig.height=11}
error.dots(podaci_EFA, tail=30, head=30, sort=FALSE)
```
Column {data-width=400}
-----------------------------------------------------------------------
### Godina 2022.
```{r,fig.width = 12,fig.height=11}
error.dots(podaci_CFA, tail=30, head=30, sort=FALSE)
```
Korelacije {data-navmenu="Podaci"}
=======================================================================
Column {.tabset .tabset-fade}
-----------------------------------------------------------------------
### Godina 2017.
```{r}
datatable(round(corr.test(podaci_EFA, use = "pairwise.complete.obs", minlength=50)$ci, 2), filter = 'top',
extensions = c('FixedColumns','Select', 'Buttons'),
options = list(
dom = 'Blfrtip',
select = list(style = 'os', items = 'row'),
buttons = c('selectAll', 'selectNone', 'selectRows', 'selectColumns', 'selectCells'),
pageLength = 15,
scrollX = TRUE,
fixedColumns = TRUE
)
)
```
### Godina 2022.
```{r}
datatable(round(corr.test(podaci_CFA, use = "pairwise.complete.obs", minlength=50)$ci, 2), filter = 'top',
extensions = c('FixedColumns','Select', 'Buttons'),
options = list(
dom = 'Blfrtip',
select = list(style = 'os', items = 'row'),
buttons = c('selectAll', 'selectNone', 'selectRows', 'selectColumns', 'selectCells'),
pageLength = 15,
scrollX = TRUE,
fixedColumns = TRUE
)
)
```
Korelacije - slike {data-navmenu="Podaci"}
=======================================================================
## Column1 {.tabset .tabset-fade}
### korelacije 2017.
```{r}
corrplot(round(cor(podaci_EFA, use = "pairwise.complete.obs"), 2), type = "upper", tl.col = "black", tl.srt = 90,
diag=FALSE, mar=c(0,0,0.1,0), tl.cex=0.4)
```
### p-vrijednosti 2017.
```{r}
corrplot(round(corr.test(podaci_EFA, use = "pairwise.complete.obs")$p, 2), type = "upper", tl.col = "black", tl.srt = 90,
diag=FALSE, mar=c(0,0,0.1,0), tl.cex=0.4)
```
### korelacije 2022.
```{r}
corrplot(round(cor(podaci_CFA, use = "pairwise.complete.obs"), 2), type = "upper", tl.col = "black", tl.srt = 90,
diag=FALSE, mar=c(0,0,0.1,0), tl.cex=0.4)
```
### p-vrijednosti 2022.
```{r}
corrplot(round(corr.test(podaci_CFA, use = "pairwise.complete.obs")$p, 2), type = "upper", tl.col = "black", tl.srt = 90,
diag=FALSE, mar=c(0,0,0.1,0), tl.cex=0.4)
```
## Column1 {.tabset .tabset-fade}
### korelacije 2022.
```{r}
corrplot(round(cor(podaci_CFA, use = "pairwise.complete.obs"), 2), type = "upper", tl.col = "black", tl.srt = 90,
diag=FALSE, mar=c(0,0,0.1,0), tl.cex=0.4)
```
### p-vrijednosti 2022.
```{r}
corrplot(round(corr.test(podaci_CFA, use = "pairwise.complete.obs")$p, 2), type = "upper", tl.col = "black", tl.srt = 90,
diag=FALSE, mar=c(0,0,0.1,0), tl.cex=0.4)
```
### korelacije 2017.
```{r}
corrplot(round(cor(podaci_EFA, use = "pairwise.complete.obs"), 2), type = "upper", tl.col = "black", tl.srt = 90,
diag=FALSE, mar=c(0,0,0.1,0), tl.cex=0.4)
```
### p-vrijednosti 2017.
```{r}
corrplot(round(corr.test(podaci_EFA, use = "pairwise.complete.obs")$p, 2), type = "upper", tl.col = "black", tl.srt = 90,
diag=FALSE, mar=c(0,0,0.1,0), tl.cex=0.4)
```
Unutarnja pouzdanost {data-navmenu="EFA 2017"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Cronbach alpha
```{r, attr.output='style="max-height: 100%;"'}
psych::alpha(podaci_EFA)
```
Column {data-width=400}
-----------------------------------------------------------------------
### split-half
```{r, attr.output='style="max-height: 100%;"'}
splitHalf(podaci_EFA)
```
### Kaiser-Meyer-Olkin
```{r, attr.output='style="max-height: 100%;"'}
KMO(podaci_EFA)
```
EFA - broj faktora {data-navmenu="EFA 2017"}
=======================================================================
Column {data-width=300}
-----------------------------------------------------------------------
### Svojstvene vrijednosti matrice korelacija
```{r warning=FALSE}
EFA_cor <- cor(podaci_EFA, use = "pairwise.complete.obs")
sv <- eigen(EFA_cor)
sv$values
```
Column {data-width=500}
-----------------------------------------------------------------------
### SCREE plot
```{r warning=FALSE,fig.width=8, fig.height=7}
scree(podaci_EFA)
```
EFA model {data-navmenu="EFA 2017"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### EFA - 5 faktora
```{r, attr.output='style="max-height: 100%;"'}
EFA_model
```
Column {data-width=400}
-----------------------------------------------------------------------
### Loadings (cutoff = 0.6)
```{r, attr.output='style="max-height: 100%;"'}
print(EFA_model$loadings, sort=TRUE, cutoff=0.6)
```
Loadings {data-navmenu="EFA 2017"}
=======================================================================
Column {.tabset .tabset-fade}
-----------------------------------------------------------------------
### Interaktivna tablica
```{r}
datatable(round(unclass(EFA_model$loadings),2), filter = 'top',
extensions = c('FixedColumns','Select', 'Buttons'),
options = list(
dom = 'Blfrtip',
select = list(style = 'os', items = 'row'),
buttons = c('selectAll', 'selectNone', 'selectRows', 'selectColumns', 'selectCells'),
pageLength = 15,
scrollX = TRUE,
fixedColumns = TRUE
)
)
```
### graf
```{r}
svgPanZoom(in.svg, controlIconsEnabled = TRUE)
```
Scores {data-navmenu="EFA 2017"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Funkcija gustoće
```{r warning=FALSE}
plot(density(EFA_model$scores, na.rm = TRUE),
main = "Factor Scores")
```
Column {data-width=400}
-----------------------------------------------------------------------
### tablica
```{r,attr.output='style="max-height: 100%;"'}
EFA_model$scores
```
Summary {data-navmenu="CFA 2022"}
=======================================================================
Column {.tabset .tabset-fade}
-----------------------------------------------------------------------
### Model (cutoff=0.6)
```{r}
model1
```
### Summary (cutoff=0.6)
```{r}
summary(rez1, fit.measures=TRUE)
```
### Sve mjere testa (cutoff=0.6)
```{r}
fitMeasures(rez1)
```
Parametri {data-navmenu="CFA 2022"}
=======================================================================
### Parametri (cutoff=0.6)
```{r}
parameterEstimates(rez1) %>%
kbl(caption = "Parametri (cutoff=0.4)") %>%
kable_classic("hover",full_width = F, html_font = "Cambria")
```
Normalizirani parametri {data-navmenu="CFA 2022"}
=======================================================================
### Normalizirani parametri (cutoff=0.6)
```{r}
standardizedSolution(rez1) %>%
kbl(caption = "Normalizirani parametri (cutoff=0.4)") %>%
kable_classic("hover",full_width = F, html_font = "Cambria")
```
TIMELINE {data-navmenu="TESTOVI"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Varijance po grupama i Levene test
```{r}
podaci_sve %>% group_by(GODINA) %>% summarize(var(TIMELINE))
leveneTest(TIMELINE ~ GODINA, podaci_sve)
```
### Stupčasti dijagram po godinama
```{r}
ggplot(podaci_sve, aes(TIMELINE, fill=GODINA)) + geom_bar(position = position_dodge2(preserve = "single"))
```
Column {data-width=400}
-----------------------------------------------------------------------
### t-test (uz pretpostavku da su varijance po grupama iste)
```{r}
t.test(TIMELINE ~ GODINA, data = podaci_sve, var.equal = TRUE)
```
### t-test (uz pretpostavku da varijance po grupama nisu iste)
```{r}
t.test(TIMELINE ~ GODINA, data = podaci_sve)
```
### Wilcox test
```{r}
wilcox.test(TIMELINE ~ GODINA, data = podaci_sve, conf.int = TRUE)
```
RISK {data-navmenu="TESTOVI"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Varijance po grupama i Levene test
```{r}
podaci_sve %>% group_by(GODINA) %>% summarize(var(RISK))
leveneTest(RISK ~ GODINA, podaci_sve)
```
### Stupčasti dijagram po godinama
```{r}
ggplot(podaci_sve, aes(RISK, fill=GODINA)) + geom_bar(position = position_dodge2(preserve = "single"))
```
Column {data-width=400}
-----------------------------------------------------------------------
### t-test (uz pretpostavku da su varijance po grupama iste)
```{r}
t.test(RISK ~ GODINA, data = podaci_sve, var.equal = TRUE)
```
### t-test (uz pretpostavku da varijance po grupama nisu iste)
```{r}
t.test(RISK ~ GODINA, data = podaci_sve)
```
### Wilcox test
```{r}
wilcox.test(RISK ~ GODINA, data = podaci_sve, conf.int = TRUE)
```
AVERAGE {data-navmenu="TESTOVI"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Varijance po grupama i Levene test
```{r}
podaci_sve %>% group_by(GODINA) %>% summarize(var(AVERAGE))
leveneTest(AVERAGE ~ GODINA, podaci_sve)
```
### Stupčasti dijagram po godinama
```{r}
ggplot(podaci_sve, aes(AVERAGE, fill=GODINA)) + geom_bar(position = position_dodge2(preserve = "single"))
```
Column {data-width=400}
-----------------------------------------------------------------------
### t-test (uz pretpostavku da su varijance po grupama iste)
```{r}
t.test(AVERAGE ~ GODINA, data = podaci_sve, var.equal = TRUE)
```
### t-test (uz pretpostavku da varijance po grupama nisu iste)
```{r}
t.test(AVERAGE ~ GODINA, data = podaci_sve)
```
### Wilcox test
```{r}
wilcox.test(AVERAGE ~ GODINA, data = podaci_sve, conf.int = TRUE)
```
SCHEDULE {data-navmenu="TESTOVI"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Varijance po grupama i Levene test
```{r}
podaci_sve %>% group_by(GODINA) %>% summarize(var(SCHEDULE))
leveneTest(SCHEDULE ~ GODINA, podaci_sve)
```
### Stupčasti dijagram po godinama
```{r}
ggplot(podaci_sve, aes(SCHEDULE, fill=GODINA)) + geom_bar(position = position_dodge2(preserve = "single"))
```
Column {data-width=400}
-----------------------------------------------------------------------
### t-test (uz pretpostavku da su varijance po grupama iste)
```{r}
t.test(SCHEDULE ~ GODINA, data = podaci_sve, var.equal = TRUE)
```
### t-test (uz pretpostavku da varijance po grupama nisu iste)
```{r}
t.test(SCHEDULE ~ GODINA, data = podaci_sve)
```
### Wilcox test
```{r}
wilcox.test(SCHEDULE ~ GODINA, data = podaci_sve, conf.int = TRUE)
```
CALENDAR {data-navmenu="TESTOVI"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Varijance po grupama i Levene test
```{r}
podaci_sve %>% group_by(GODINA) %>% summarize(var(CALENDAR))
leveneTest(CALENDAR ~ GODINA, podaci_sve)
```
### Stupčasti dijagram po godinama
```{r}
ggplot(podaci_sve, aes(CALENDAR, fill=GODINA)) + geom_bar(position = position_dodge2(preserve = "single"))
```
Column {data-width=400}
-----------------------------------------------------------------------
### t-test (uz pretpostavku da su varijance po grupama iste)
```{r}
t.test(CALENDAR ~ GODINA, data = podaci_sve, var.equal = TRUE)
```
### t-test (uz pretpostavku da varijance po grupama nisu iste)
```{r}
t.test(CALENDAR ~ GODINA, data = podaci_sve)
```
### Wilcox test
```{r}
wilcox.test(CALENDAR ~ GODINA, data = podaci_sve, conf.int = TRUE)
```
COURSES {data-navmenu="TESTOVI"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Varijance po grupama i Levene test
```{r}
podaci_sve %>% group_by(GODINA) %>% summarize(var(COURSES))
leveneTest(COURSES ~ GODINA, podaci_sve)
```
### Stupčasti dijagram po godinama
```{r}
ggplot(podaci_sve, aes(COURSES, fill=GODINA)) + geom_bar(position = position_dodge2(preserve = "single"))
```
Column {data-width=400}
-----------------------------------------------------------------------
### t-test (uz pretpostavku da su varijance po grupama iste)
```{r}
t.test(COURSES ~ GODINA, data = podaci_sve, var.equal = TRUE)
```
### t-test (uz pretpostavku da varijance po grupama nisu iste)
```{r}
t.test(COURSES ~ GODINA, data = podaci_sve)
```
### Wilcox test
```{r}
wilcox.test(COURSES ~ GODINA, data = podaci_sve, conf.int = TRUE)
```
NOTIFICATIONS_COURSE {data-navmenu="TESTOVI"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Varijance po grupama i Levene test
```{r}
podaci_sve %>% group_by(GODINA) %>% summarize(var(NOTIFICATIONS_COURSE))
leveneTest(NOTIFICATIONS_COURSE ~ GODINA, podaci_sve)
```
### Stupčasti dijagram po godinama
```{r}
ggplot(podaci_sve, aes(NOTIFICATIONS_COURSE, fill=GODINA)) + geom_bar(position = position_dodge2(preserve = "single"))
```
Column {data-width=400}
-----------------------------------------------------------------------
### t-test (uz pretpostavku da su varijance po grupama iste)
```{r}
t.test(NOTIFICATIONS_COURSE ~ GODINA, data = podaci_sve, var.equal = TRUE)
```
### t-test (uz pretpostavku da varijance po grupama nisu iste)
```{r}
t.test(NOTIFICATIONS_COURSE ~ GODINA, data = podaci_sve)
```
### Wilcox test
```{r}
wilcox.test(NOTIFICATIONS_COURSE ~ GODINA, data = podaci_sve, conf.int = TRUE)
```
NOTIFICATIONS_DEADLINES {data-navmenu="TESTOVI"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Varijance po grupama i Levene test
```{r}
podaci_sve %>% group_by(GODINA) %>% summarize(var(NOTIFICATIONS_DEADLINES))
leveneTest(NOTIFICATIONS_DEADLINES ~ GODINA, podaci_sve)
```
### Stupčasti dijagram po godinama
```{r}
ggplot(podaci_sve, aes(NOTIFICATIONS_DEADLINES, fill=GODINA)) + geom_bar(position = position_dodge2(preserve = "single"))
```
Column {data-width=400}
-----------------------------------------------------------------------
### t-test (uz pretpostavku da su varijance po grupama iste)
```{r}
t.test(NOTIFICATIONS_DEADLINES ~ GODINA, data = podaci_sve, var.equal = TRUE)
```
### t-test (uz pretpostavku da varijance po grupama nisu iste)
```{r}
t.test(NOTIFICATIONS_DEADLINES ~ GODINA, data = podaci_sve)
```
### Wilcox test
```{r}
wilcox.test(NOTIFICATIONS_DEADLINES ~ GODINA, data = podaci_sve, conf.int = TRUE)
```
MESSAGES_TEACHER {data-navmenu="TESTOVI"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Varijance po grupama i Levene test
```{r}
podaci_sve %>% group_by(GODINA) %>% summarize(var(MESSAGES_TEACHER))
leveneTest(MESSAGES_TEACHER ~ GODINA, podaci_sve)
```
### Stupčasti dijagram po godinama
```{r}
ggplot(podaci_sve, aes(MESSAGES_TEACHER, fill=GODINA)) + geom_bar(position = position_dodge2(preserve = "single"))
```
Column {data-width=400}
-----------------------------------------------------------------------
### t-test (uz pretpostavku da su varijance po grupama iste)
```{r}
t.test(MESSAGES_TEACHER ~ GODINA, data = podaci_sve, var.equal = TRUE)
```
### t-test (uz pretpostavku da varijance po grupama nisu iste)
```{r}
t.test(MESSAGES_TEACHER ~ GODINA, data = podaci_sve)
```
### Wilcox test
```{r}
wilcox.test(MESSAGES_TEACHER ~ GODINA, data = podaci_sve, conf.int = TRUE)
```
MESSAGES_ADMIN {data-navmenu="TESTOVI"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Varijance po grupama i Levene test
```{r}
podaci_sve %>% group_by(GODINA) %>% summarize(var(MESSAGES_ADMIN))
leveneTest(MESSAGES_ADMIN ~ GODINA, podaci_sve)
```
### Stupčasti dijagram po godinama
```{r}
ggplot(podaci_sve, aes(MESSAGES_ADMIN, fill=GODINA)) + geom_bar(position = position_dodge2(preserve = "single"))
```
Column {data-width=400}
-----------------------------------------------------------------------
### t-test (uz pretpostavku da su varijance po grupama iste)
```{r}
t.test(MESSAGES_ADMIN ~ GODINA, data = podaci_sve, var.equal = TRUE)
```
### t-test (uz pretpostavku da varijance po grupama nisu iste)
```{r}
t.test(MESSAGES_ADMIN ~ GODINA, data = podaci_sve)
```
### Wilcox test
```{r}
wilcox.test(MESSAGES_ADMIN ~ GODINA, data = podaci_sve, conf.int = TRUE)
```
COMPARISON_EXAMS {data-navmenu="TESTOVI"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Varijance po grupama i Levene test
```{r}
podaci_sve %>% group_by(GODINA) %>% summarize(var(COMPARISON_EXAMS))
leveneTest(COMPARISON_EXAMS ~ GODINA, podaci_sve)
```
### Stupčasti dijagram po godinama
```{r}
ggplot(podaci_sve, aes(COMPARISON_EXAMS, fill=GODINA)) + geom_bar(position = position_dodge2(preserve = "single"))
```
Column {data-width=400}
-----------------------------------------------------------------------
### t-test (uz pretpostavku da su varijance po grupama iste)
```{r}
t.test(COMPARISON_EXAMS ~ GODINA, data = podaci_sve, var.equal = TRUE)
```
### t-test (uz pretpostavku da varijance po grupama nisu iste)
```{r}
t.test(COMPARISON_EXAMS ~ GODINA, data = podaci_sve)
```
### Wilcox test
```{r}
wilcox.test(COMPARISON_EXAMS ~ GODINA, data = podaci_sve, conf.int = TRUE)
```
COMPARISON_ECTS {data-navmenu="TESTOVI"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Varijance po grupama i Levene test
```{r}
podaci_sve %>% group_by(GODINA) %>% summarize(var(COMPARISON_ECTS))
leveneTest(COMPARISON_ECTS ~ GODINA, podaci_sve)
```
### Stupčasti dijagram po godinama
```{r}
ggplot(podaci_sve, aes(COMPARISON_ECTS, fill=GODINA)) + geom_bar(position = position_dodge2(preserve = "single"))
```
Column {data-width=400}
-----------------------------------------------------------------------
### t-test (uz pretpostavku da su varijance po grupama iste)
```{r}
t.test(COMPARISON_ECTS ~ GODINA, data = podaci_sve, var.equal = TRUE)
```
### t-test (uz pretpostavku da varijance po grupama nisu iste)
```{r}
t.test(COMPARISON_ECTS ~ GODINA, data = podaci_sve)
```
### Wilcox test
```{r}
wilcox.test(COMPARISON_ECTS ~ GODINA, data = podaci_sve, conf.int = TRUE)
```
COMPARISON_GRADES {data-navmenu="TESTOVI"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Varijance po grupama i Levene test
```{r}
podaci_sve %>% group_by(GODINA) %>% summarize(var(COMPARISON_GRADES))
leveneTest(COMPARISON_GRADES ~ GODINA, podaci_sve)
```
### Stupčasti dijagram po godinama
```{r}
ggplot(podaci_sve, aes(COMPARISON_GRADES, fill=GODINA)) + geom_bar(position = position_dodge2(preserve = "single"))
```
Column {data-width=400}
-----------------------------------------------------------------------
### t-test (uz pretpostavku da su varijance po grupama iste)
```{r}
t.test(COMPARISON_GRADES ~ GODINA, data = podaci_sve, var.equal = TRUE)
```
### t-test (uz pretpostavku da varijance po grupama nisu iste)
```{r}
t.test(COMPARISON_GRADES ~ GODINA, data = podaci_sve)
```
### Wilcox test
```{r}
wilcox.test(COMPARISON_GRADES ~ GODINA, data = podaci_sve, conf.int = TRUE)
```
COMPARISON_OBLIGATIONS {data-navmenu="TESTOVI"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Varijance po grupama i Levene test
```{r}
podaci_sve %>% group_by(GODINA) %>% summarize(var(COMPARISON_OBLIGATIONS))
leveneTest(COMPARISON_OBLIGATIONS ~ GODINA, podaci_sve)
```
### Stupčasti dijagram po godinama
```{r}
ggplot(podaci_sve, aes(COMPARISON_OBLIGATIONS, fill=GODINA)) + geom_bar(position = position_dodge2(preserve = "single"))
```
Column {data-width=400}
-----------------------------------------------------------------------
### t-test (uz pretpostavku da su varijance po grupama iste)
```{r}
t.test(COMPARISON_OBLIGATIONS ~ GODINA, data = podaci_sve, var.equal = TRUE)
```
### t-test (uz pretpostavku da varijance po grupama nisu iste)
```{r}
t.test(COMPARISON_OBLIGATIONS ~ GODINA, data = podaci_sve)
```
### Wilcox test
```{r}
wilcox.test(COMPARISON_OBLIGATIONS ~ GODINA, data = podaci_sve, conf.int = TRUE)
```
STATUS_STUDENTS {data-navmenu="TESTOVI"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Varijance po grupama i Levene test
```{r}
podaci_sve %>% group_by(GODINA) %>% summarize(var(STATUS_STUDENTS))
leveneTest(STATUS_STUDENTS ~ GODINA, podaci_sve)
```
### Stupčasti dijagram po godinama
```{r}
ggplot(podaci_sve, aes(STATUS_STUDENTS, fill=GODINA)) + geom_bar(position = position_dodge2(preserve = "single"))
```
Column {data-width=400}
-----------------------------------------------------------------------
### t-test (uz pretpostavku da su varijance po grupama iste)
```{r}
t.test(STATUS_STUDENTS ~ GODINA, data = podaci_sve, var.equal = TRUE)
```
### t-test (uz pretpostavku da varijance po grupama nisu iste)
```{r}
t.test(STATUS_STUDENTS ~ GODINA, data = podaci_sve)
```
### Wilcox test
```{r}
wilcox.test(STATUS_STUDENTS ~ GODINA, data = podaci_sve, conf.int = TRUE)
```
PREDICTION_COURSE {data-navmenu="TESTOVI"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Varijance po grupama i Levene test
```{r}
podaci_sve %>% group_by(GODINA) %>% summarize(var(PREDICTION_COURSE))
leveneTest(PREDICTION_COURSE ~ GODINA, podaci_sve)
```
### Stupčasti dijagram po godinama
```{r}
ggplot(podaci_sve, aes(PREDICTION_COURSE, fill=GODINA)) + geom_bar(position = position_dodge2(preserve = "single"))
```
Column {data-width=400}
-----------------------------------------------------------------------
### t-test (uz pretpostavku da su varijance po grupama iste)
```{r}
t.test(PREDICTION_COURSE ~ GODINA, data = podaci_sve, var.equal = TRUE)
```
### t-test (uz pretpostavku da varijance po grupama nisu iste)
```{r}
t.test(PREDICTION_COURSE ~ GODINA, data = podaci_sve)
```
### Wilcox test
```{r}
wilcox.test(PREDICTION_COURSE ~ GODINA, data = podaci_sve, conf.int = TRUE)
```
PREDICTION_YEAR {data-navmenu="TESTOVI"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Varijance po grupama i Levene test
```{r}
podaci_sve %>% group_by(GODINA) %>% summarize(var(PREDICTION_YEAR))
leveneTest(PREDICTION_YEAR ~ GODINA, podaci_sve)
```
### Stupčasti dijagram po godinama
```{r}
ggplot(podaci_sve, aes(PREDICTION_YEAR, fill=GODINA)) + geom_bar(position = position_dodge2(preserve = "single"))
```
Column {data-width=400}
-----------------------------------------------------------------------
### t-test (uz pretpostavku da su varijance po grupama iste)
```{r}
t.test(PREDICTION_YEAR ~ GODINA, data = podaci_sve, var.equal = TRUE)
```
### t-test (uz pretpostavku da varijance po grupama nisu iste)
```{r}
t.test(PREDICTION_YEAR ~ GODINA, data = podaci_sve)
```
### Wilcox test
```{r}
wilcox.test(PREDICTION_YEAR ~ GODINA, data = podaci_sve, conf.int = TRUE)
```
PREDICTION_ECTS {data-navmenu="TESTOVI"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Varijance po grupama i Levene test
```{r}
podaci_sve %>% group_by(GODINA) %>% summarize(var(PREDICTION_ECTS))
leveneTest(PREDICTION_ECTS ~ GODINA, podaci_sve)
```
### Stupčasti dijagram po godinama
```{r}
ggplot(podaci_sve, aes(PREDICTION_ECTS, fill=GODINA)) + geom_bar(position = position_dodge2(preserve = "single"))
```
Column {data-width=400}
-----------------------------------------------------------------------
### t-test (uz pretpostavku da su varijance po grupama iste)
```{r}
t.test(PREDICTION_ECTS ~ GODINA, data = podaci_sve, var.equal = TRUE)
```
### t-test (uz pretpostavku da varijance po grupama nisu iste)
```{r}
t.test(PREDICTION_ECTS ~ GODINA, data = podaci_sve)
```
### Wilcox test
```{r}
wilcox.test(PREDICTION_ECTS ~ GODINA, data = podaci_sve, conf.int = TRUE)
```
PREDICTION_PROGRAM {data-navmenu="TESTOVI"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Varijance po grupama i Levene test
```{r}
podaci_sve %>% group_by(GODINA) %>% summarize(var(PREDICTION_PROGRAM))
leveneTest(PREDICTION_PROGRAM ~ GODINA, podaci_sve)
```
### Stupčasti dijagram po godinama
```{r}
ggplot(podaci_sve, aes(PREDICTION_PROGRAM, fill=GODINA)) + geom_bar(position = position_dodge2(preserve = "single"))
```
Column {data-width=400}
-----------------------------------------------------------------------
### t-test (uz pretpostavku da su varijance po grupama iste)
```{r}
t.test(PREDICTION_PROGRAM ~ GODINA, data = podaci_sve, var.equal = TRUE)
```
### t-test (uz pretpostavku da varijance po grupama nisu iste)
```{r}
t.test(PREDICTION_PROGRAM ~ GODINA, data = podaci_sve)
```
### Wilcox test
```{r}
wilcox.test(PREDICTION_PROGRAM ~ GODINA, data = podaci_sve, conf.int = TRUE)
```
ECTSAVG_STUDY {data-navmenu="TESTOVI"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Varijance po grupama i Levene test
```{r}
podaci_sve %>% group_by(GODINA) %>% summarize(var(ECTSAVG_STUDY))
leveneTest(ECTSAVG_STUDY ~ GODINA, podaci_sve)
```
### Stupčasti dijagram po godinama
```{r}
ggplot(podaci_sve, aes(ECTSAVG_STUDY, fill=GODINA)) + geom_bar(position = position_dodge2(preserve = "single"))
```
Column {data-width=400}
-----------------------------------------------------------------------
### t-test (uz pretpostavku da su varijance po grupama iste)
```{r}
t.test(ECTSAVG_STUDY ~ GODINA, data = podaci_sve, var.equal = TRUE)
```
### t-test (uz pretpostavku da varijance po grupama nisu iste)
```{r}
t.test(ECTSAVG_STUDY ~ GODINA, data = podaci_sve)
```
### Wilcox test
```{r}
wilcox.test(ECTSAVG_STUDY ~ GODINA, data = podaci_sve, conf.int = TRUE)
```
ECTSAVG_COURSE {data-navmenu="TESTOVI"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Varijance po grupama i Levene test
```{r}
podaci_sve %>% group_by(GODINA) %>% summarize(var(ECTSAVG_COURSE))
leveneTest(ECTSAVG_COURSE ~ GODINA, podaci_sve)
```
### Stupčasti dijagram po godinama
```{r}
ggplot(podaci_sve, aes(ECTSAVG_COURSE, fill=GODINA)) + geom_bar(position = position_dodge2(preserve = "single"))
```
Column {data-width=400}
-----------------------------------------------------------------------
### t-test (uz pretpostavku da su varijance po grupama iste)
```{r}
t.test(ECTSAVG_COURSE ~ GODINA, data = podaci_sve, var.equal = TRUE)
```
### t-test (uz pretpostavku da varijance po grupama nisu iste)
```{r}
t.test(ECTSAVG_COURSE ~ GODINA, data = podaci_sve)
```
### Wilcox test
```{r}
wilcox.test(ECTSAVG_COURSE ~ GODINA, data = podaci_sve, conf.int = TRUE)
```
AVGGRADE_COURSE {data-navmenu="TESTOVI"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Varijance po grupama i Levene test
```{r}
podaci_sve %>% group_by(GODINA) %>% summarize(var(AVGGRADE_COURSE))
leveneTest(AVGGRADE_COURSE ~ GODINA, podaci_sve)
```
### Stupčasti dijagram po godinama
```{r}
ggplot(podaci_sve, aes(AVGGRADE_COURSE, fill=GODINA)) + geom_bar(position = position_dodge2(preserve = "single"))
```
Column {data-width=400}
-----------------------------------------------------------------------
### t-test (uz pretpostavku da su varijance po grupama iste)
```{r}
t.test(AVGGRADE_COURSE ~ GODINA, data = podaci_sve, var.equal = TRUE)
```
### t-test (uz pretpostavku da varijance po grupama nisu iste)
```{r}
t.test(AVGGRADE_COURSE ~ GODINA, data = podaci_sve)
```
### Wilcox test
```{r}
wilcox.test(AVGGRADE_COURSE ~ GODINA, data = podaci_sve, conf.int = TRUE)
```
PASSRATE_COURSE {data-navmenu="TESTOVI"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Varijance po grupama i Levene test
```{r}
podaci_sve %>% group_by(GODINA) %>% summarize(var(PASSRATE_COURSE))
leveneTest(PASSRATE_COURSE ~ GODINA, podaci_sve)
```
### Stupčasti dijagram po godinama
```{r}
ggplot(podaci_sve, aes(PASSRATE_COURSE, fill=GODINA)) + geom_bar(position = position_dodge2(preserve = "single"))
```
Column {data-width=400}
-----------------------------------------------------------------------
### t-test (uz pretpostavku da su varijance po grupama iste)
```{r}
t.test(PASSRATE_COURSE ~ GODINA, data = podaci_sve, var.equal = TRUE)
```
### t-test (uz pretpostavku da varijance po grupama nisu iste)
```{r}
t.test(PASSRATE_COURSE ~ GODINA, data = podaci_sve)
```
### Wilcox test
```{r}
wilcox.test(PASSRATE_COURSE ~ GODINA, data = podaci_sve, conf.int = TRUE)
```
PPLAN_COURSE {data-navmenu="TESTOVI"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Varijance po grupama i Levene test
```{r}
podaci_sve %>% group_by(GODINA) %>% summarize(var(PPLAN_COURSE))
leveneTest(PPLAN_COURSE ~ GODINA, podaci_sve)
```
### Stupčasti dijagram po godinama
```{r}
ggplot(podaci_sve, aes(PPLAN_COURSE, fill=GODINA)) + geom_bar(position = position_dodge2(preserve = "single"))
```
Column {data-width=400}
-----------------------------------------------------------------------
### t-test (uz pretpostavku da su varijance po grupama iste)
```{r}
t.test(PPLAN_COURSE ~ GODINA, data = podaci_sve, var.equal = TRUE)
```
### t-test (uz pretpostavku da varijance po grupama nisu iste)
```{r}
t.test(PPLAN_COURSE ~ GODINA, data = podaci_sve)
```
### Wilcox test
```{r}
wilcox.test(PPLAN_COURSE ~ GODINA, data = podaci_sve, conf.int = TRUE)
```
PPLAN_STUDY {data-navmenu="TESTOVI"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Varijance po grupama i Levene test
```{r}
podaci_sve %>% group_by(GODINA) %>% summarize(var(PPLAN_STUDY))
leveneTest(PPLAN_STUDY ~ GODINA, podaci_sve)
```
### Stupčasti dijagram po godinama
```{r}
ggplot(podaci_sve, aes(PPLAN_STUDY, fill=GODINA)) + geom_bar(position = position_dodge2(preserve = "single"))
```
Column {data-width=400}
-----------------------------------------------------------------------
### t-test (uz pretpostavku da su varijance po grupama iste)
```{r}
t.test(PPLAN_STUDY ~ GODINA, data = podaci_sve, var.equal = TRUE)
```
### t-test (uz pretpostavku da varijance po grupama nisu iste)
```{r}
t.test(PPLAN_STUDY ~ GODINA, data = podaci_sve)
```
### Wilcox test
```{r}
wilcox.test(PPLAN_STUDY ~ GODINA, data = podaci_sve, conf.int = TRUE)
```
PPLAN_MONITORING {data-navmenu="TESTOVI"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Varijance po grupama i Levene test
```{r}
podaci_sve %>% group_by(GODINA) %>% summarize(var(PPLAN_MONITORING))
leveneTest(PPLAN_MONITORING ~ GODINA, podaci_sve)
```
### Stupčasti dijagram po godinama
```{r}
ggplot(podaci_sve, aes(PPLAN_MONITORING, fill=GODINA)) + geom_bar(position = position_dodge2(preserve = "single"))
```
Column {data-width=400}
-----------------------------------------------------------------------
### t-test (uz pretpostavku da su varijance po grupama iste)
```{r}
t.test(PPLAN_MONITORING ~ GODINA, data = podaci_sve, var.equal = TRUE)
```
### t-test (uz pretpostavku da varijance po grupama nisu iste)
```{r}
t.test(PPLAN_MONITORING ~ GODINA, data = podaci_sve)
```
### Wilcox test
```{r}
wilcox.test(PPLAN_MONITORING ~ GODINA, data = podaci_sve, conf.int = TRUE)
```
ECTS_MONITORING {data-navmenu="TESTOVI"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Varijance po grupama i Levene test
```{r}
podaci_sve %>% group_by(GODINA) %>% summarize(var(ECTS_MONITORING))
leveneTest(ECTS_MONITORING ~ GODINA, podaci_sve)
```
### Stupčasti dijagram po godinama
```{r}
ggplot(podaci_sve, aes(ECTS_MONITORING, fill=GODINA)) + geom_bar(position = position_dodge2(preserve = "single"))
```
Column {data-width=400}
-----------------------------------------------------------------------
### t-test (uz pretpostavku da su varijance po grupama iste)
```{r}
t.test(ECTS_MONITORING ~ GODINA, data = podaci_sve, var.equal = TRUE)
```
### t-test (uz pretpostavku da varijance po grupama nisu iste)
```{r}
t.test(ECTS_MONITORING ~ GODINA, data = podaci_sve)
```
### Wilcox test
```{r}
wilcox.test(ECTS_MONITORING ~ GODINA, data = podaci_sve, conf.int = TRUE)
```
PPLAN_EXTRACURRICULAR {data-navmenu="TESTOVI"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Varijance po grupama i Levene test
```{r}
podaci_sve %>% group_by(GODINA) %>% summarize(var(PPLAN_EXTRACURRICULAR))
leveneTest(PPLAN_EXTRACURRICULAR ~ GODINA, podaci_sve)
```
### Stupčasti dijagram po godinama
```{r}
ggplot(podaci_sve, aes(PPLAN_EXTRACURRICULAR, fill=GODINA)) + geom_bar(position = position_dodge2(preserve = "single"))
```
Column {data-width=400}
-----------------------------------------------------------------------
### t-test (uz pretpostavku da su varijance po grupama iste)
```{r}
t.test(PPLAN_EXTRACURRICULAR ~ GODINA, data = podaci_sve, var.equal = TRUE)
```
### t-test (uz pretpostavku da varijance po grupama nisu iste)
```{r}
t.test(PPLAN_EXTRACURRICULAR ~ GODINA, data = podaci_sve)
```
### Wilcox test
```{r}
wilcox.test(PPLAN_EXTRACURRICULAR ~ GODINA, data = podaci_sve, conf.int = TRUE)
```
TEACHER_EVALUATION {data-navmenu="TESTOVI"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Varijance po grupama i Levene test
```{r}
podaci_sve %>% group_by(GODINA) %>% summarize(var(TEACHER_EVALUATION))
leveneTest(TEACHER_EVALUATION ~ GODINA, podaci_sve)
```
### Stupčasti dijagram po godinama
```{r}
ggplot(podaci_sve, aes(TEACHER_EVALUATION, fill=GODINA)) + geom_bar(position = position_dodge2(preserve = "single"))
```
Column {data-width=400}
-----------------------------------------------------------------------
### t-test (uz pretpostavku da su varijance po grupama iste)
```{r}
t.test(TEACHER_EVALUATION ~ GODINA, data = podaci_sve, var.equal = TRUE)
```
### t-test (uz pretpostavku da varijance po grupama nisu iste)
```{r}
t.test(TEACHER_EVALUATION ~ GODINA, data = podaci_sve)
```
### Wilcox test
```{r}
wilcox.test(TEACHER_EVALUATION ~ GODINA, data = podaci_sve, conf.int = TRUE)
```
TEACHER_PROFILE {data-navmenu="TESTOVI"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Varijance po grupama i Levene test
```{r}
podaci_sve %>% group_by(GODINA) %>% summarize(var(TEACHER_PROFILE))
leveneTest(TEACHER_PROFILE ~ GODINA, podaci_sve)
```
### Stupčasti dijagram po godinama
```{r}
ggplot(podaci_sve, aes(TEACHER_PROFILE, fill=GODINA)) + geom_bar(position = position_dodge2(preserve = "single"))
```
Column {data-width=400}
-----------------------------------------------------------------------
### t-test (uz pretpostavku da su varijance po grupama iste)
```{r}
t.test(TEACHER_PROFILE ~ GODINA, data = podaci_sve, var.equal = TRUE)
```
### t-test (uz pretpostavku da varijance po grupama nisu iste)
```{r}
t.test(TEACHER_PROFILE ~ GODINA, data = podaci_sve)
```
### Wilcox test
```{r}
wilcox.test(TEACHER_PROFILE ~ GODINA, data = podaci_sve, conf.int = TRUE)
```
TEACHERS_CONTEVAL {data-navmenu="TESTOVI"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Varijance po grupama i Levene test
```{r}
podaci_sve %>% group_by(GODINA) %>% summarize(var(TEACHERS_CONTEVAL))
leveneTest(TEACHERS_CONTEVAL ~ GODINA, podaci_sve)
```
### Stupčasti dijagram po godinama
```{r}
ggplot(podaci_sve, aes(TEACHERS_CONTEVAL, fill=GODINA)) + geom_bar(position = position_dodge2(preserve = "single"))
```
Column {data-width=400}
-----------------------------------------------------------------------
### t-test (uz pretpostavku da su varijance po grupama iste)
```{r}
t.test(TEACHERS_CONTEVAL ~ GODINA, data = podaci_sve, var.equal = TRUE)
```
### t-test (uz pretpostavku da varijance po grupama nisu iste)
```{r}
t.test(TEACHERS_CONTEVAL ~ GODINA, data = podaci_sve)
```
### Wilcox test
```{r}
wilcox.test(TEACHERS_CONTEVAL ~ GODINA, data = podaci_sve, conf.int = TRUE)
```
TEACHERS_FEEDBACK {data-navmenu="TESTOVI"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Varijance po grupama i Levene test
```{r}
podaci_sve %>% group_by(GODINA) %>% summarize(var(TEACHERS_FEEDBACK))
leveneTest(TEACHERS_FEEDBACK ~ GODINA, podaci_sve)
```
### Stupčasti dijagram po godinama
```{r}
ggplot(podaci_sve, aes(TEACHERS_FEEDBACK, fill=GODINA)) + geom_bar(position = position_dodge2(preserve = "single"))
```
Column {data-width=400}
-----------------------------------------------------------------------
### t-test (uz pretpostavku da su varijance po grupama iste)
```{r}
t.test(TEACHERS_FEEDBACK ~ GODINA, data = podaci_sve, var.equal = TRUE)
```
### t-test (uz pretpostavku da varijance po grupama nisu iste)
```{r}
t.test(TEACHERS_FEEDBACK ~ GODINA, data = podaci_sve)
```
### Wilcox test
```{r}
wilcox.test(TEACHERS_FEEDBACK ~ GODINA, data = podaci_sve, conf.int = TRUE)
```
BADGES_COMPARISON {data-navmenu="TESTOVI"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Varijance po grupama i Levene test
```{r}
podaci_sve %>% group_by(GODINA) %>% summarize(var(BADGES_COMPARISON))
leveneTest(BADGES_COMPARISON ~ GODINA, podaci_sve)
```
### Stupčasti dijagram po godinama
```{r}
ggplot(podaci_sve, aes(BADGES_COMPARISON, fill=GODINA)) + geom_bar(position = position_dodge2(preserve = "single"))
```
Column {data-width=400}
-----------------------------------------------------------------------
### t-test (uz pretpostavku da su varijance po grupama iste)
```{r}
t.test(BADGES_COMPARISON ~ GODINA, data = podaci_sve, var.equal = TRUE)
```
### t-test (uz pretpostavku da varijance po grupama nisu iste)
```{r}
t.test(BADGES_COMPARISON ~ GODINA, data = podaci_sve)
```
### Wilcox test
```{r}
wilcox.test(BADGES_COMPARISON ~ GODINA, data = podaci_sve, conf.int = TRUE)
```
BADGES_COLLECTING {data-navmenu="TESTOVI"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Varijance po grupama i Levene test
```{r}
podaci_sve %>% group_by(GODINA) %>% summarize(var(BADGES_COLLECTING))
leveneTest(BADGES_COLLECTING ~ GODINA, podaci_sve)
```
### Stupčasti dijagram po godinama
```{r}
ggplot(podaci_sve, aes(BADGES_COLLECTING, fill=GODINA)) + geom_bar(position = position_dodge2(preserve = "single"))
```
Column {data-width=400}
-----------------------------------------------------------------------
### t-test (uz pretpostavku da su varijance po grupama iste)
```{r}
t.test(BADGES_COLLECTING ~ GODINA, data = podaci_sve, var.equal = TRUE)
```
### t-test (uz pretpostavku da varijance po grupama nisu iste)
```{r}
t.test(BADGES_COLLECTING ~ GODINA, data = podaci_sve)
```
### Wilcox test
```{r}
wilcox.test(BADGES_COLLECTING ~ GODINA, data = podaci_sve, conf.int = TRUE)
```
AWARDS {data-navmenu="TESTOVI"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Varijance po grupama i Levene test
```{r}
podaci_sve %>% group_by(GODINA) %>% summarize(var(AWARDS))
leveneTest(AWARDS ~ GODINA, podaci_sve)
```
### Stupčasti dijagram po godinama
```{r}
ggplot(podaci_sve, aes(AWARDS, fill=GODINA)) + geom_bar(position = position_dodge2(preserve = "single"))
```
Column {data-width=400}
-----------------------------------------------------------------------
### t-test (uz pretpostavku da su varijance po grupama iste)
```{r}
t.test(AWARDS ~ GODINA, data = podaci_sve, var.equal = TRUE)
```
### t-test (uz pretpostavku da varijance po grupama nisu iste)
```{r}
t.test(AWARDS ~ GODINA, data = podaci_sve)
```
### Wilcox test
```{r}
wilcox.test(AWARDS ~ GODINA, data = podaci_sve, conf.int = TRUE)
```
COMPETITIONS {data-navmenu="TESTOVI"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Varijance po grupama i Levene test
```{r}
podaci_sve %>% group_by(GODINA) %>% summarize(var(COMPETITIONS))
leveneTest(COMPETITIONS ~ GODINA, podaci_sve)
```
### Stupčasti dijagram po godinama
```{r}
ggplot(podaci_sve, aes(COMPETITIONS, fill=GODINA)) + geom_bar(position = position_dodge2(preserve = "single"))
```
Column {data-width=400}
-----------------------------------------------------------------------
### t-test (uz pretpostavku da su varijance po grupama iste)
```{r}
t.test(COMPETITIONS ~ GODINA, data = podaci_sve, var.equal = TRUE)
```
### t-test (uz pretpostavku da varijance po grupama nisu iste)
```{r}
t.test(COMPETITIONS ~ GODINA, data = podaci_sve)
```
### Wilcox test
```{r}
wilcox.test(COMPETITIONS ~ GODINA, data = podaci_sve, conf.int = TRUE)
```
ASSESSMENT_CONT {data-navmenu="TESTOVI"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Varijance po grupama i Levene test
```{r}
podaci_sve %>% group_by(GODINA) %>% summarize(var(ASSESSMENT_CONT))
leveneTest(ASSESSMENT_CONT ~ GODINA, podaci_sve)
```
### Stupčasti dijagram po godinama
```{r}
ggplot(podaci_sve, aes(ASSESSMENT_CONT, fill=GODINA)) + geom_bar(position = position_dodge2(preserve = "single"))
```
Column {data-width=400}
-----------------------------------------------------------------------
### t-test (uz pretpostavku da su varijance po grupama iste)
```{r}
t.test(ASSESSMENT_CONT ~ GODINA, data = podaci_sve, var.equal = TRUE)
```
### t-test (uz pretpostavku da varijance po grupama nisu iste)
```{r}
t.test(ASSESSMENT_CONT ~ GODINA, data = podaci_sve)
```
### Wilcox test
```{r}
wilcox.test(ASSESSMENT_CONT ~ GODINA, data = podaci_sve, conf.int = TRUE)
```
COMPARISON_OTHERS {data-navmenu="TESTOVI"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Varijance po grupama i Levene test
```{r}
podaci_sve %>% group_by(GODINA) %>% summarize(var(COMPARISON_OTHERS))
leveneTest(COMPARISON_OTHERS ~ GODINA, podaci_sve)
```
### Stupčasti dijagram po godinama
```{r}
ggplot(podaci_sve, aes(COMPARISON_OTHERS, fill=GODINA)) + geom_bar(position = position_dodge2(preserve = "single"))
```
Column {data-width=400}
-----------------------------------------------------------------------
### t-test (uz pretpostavku da su varijance po grupama iste)
```{r}
t.test(COMPARISON_OTHERS ~ GODINA, data = podaci_sve, var.equal = TRUE)
```
### t-test (uz pretpostavku da varijance po grupama nisu iste)
```{r}
t.test(COMPARISON_OTHERS ~ GODINA, data = podaci_sve)
```
### Wilcox test
```{r}
wilcox.test(COMPARISON_OTHERS ~ GODINA, data = podaci_sve, conf.int = TRUE)
```