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Abstract

The Random Forest model is commonly used as a predictor
function and the model have been proven useful in a variety
of applications. Their popularity stems from the combina-
tion of providing high prediction accuracy, their ability to
model high dimensional complex data, and their applica-
bility under predictor correlations. This report investigates
the random forest variable importance measure (VIM) as a
means to find a ranking of important variables. The robust-
ness of the VIM under imputation of categorical noise, and
the capability to differentiate informative predictors from
non-informative variables is investigated. The selection of
variables may improve robustness of the predictor, improve
the prediction accuracy, reduce computational time, and
may serve as a exploratory data analysis tool. In addition
the partial dependency plot obtained from the random for-
est model is examined as a means to find underlying rela-
tions in a non-linear simulation study.

Random Forest (RF) &ar en populdr prediktormodell som
visat goda resultat vid en stor uppséttning applikation-
sstudier. Modellen ger hég prediktionsprecision, har for-
maga att modellera komplex hégdimensionell data och mod-
ellen har vidare visat goda resultat vid interkorrelerade
prediktorvariabler. Detta projekt undersoker ett matt, vari-
abel importance measure (VIM) erhallna fran RF modellen,
for att berdkna graden av association mellan prediktorvari-
abler och malvariabeln. Projektet undersoker kénsligheten
hos VIM vid kvalitativt prediktorbrus och underséker VIMs
forméaga att differentiera prediktiva variabler fran variabler
som endast, med aveende pa malvariableln, beskriver brus.
Att differentiera prediktiva variabler vid 6vervakad inlarn-
ing kan anvéndas till att 6ka robustheten hos klassificerare,
Oka prediktionsprecisionen, reducera data dimensionalitet
och VIM kan anvindas som ett verktyg for att utforska
relationer mellan prediktorvariabler och malvariablel.
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Chapter 1

Introduction

This thesis presents the random forest model as a means to identify informative
variables in a supervised learning setting. That is we have data D = {X*, Y},
and we believe that there is a mapping f which maps the input-or predictor vari-
ables X? onto the target variable Y? with reasonable overall accuracy, and we want
to identify a subset of variables { X} }}_; which are truly informative to the target
variable Y.

A variable importance measure may be used to find a ranking of predicting vari-
ables indicating operational risk exposure!. Let D be labeled data where Y = 1
denotes a large deviation between the market and settled prices for a trade, and
Y? = 0 denotes that the price difference lies within a predefined threshold. Ex-
amples of predicting variables X* = (X1, .., X,) are counter-party, instrument-type,
changes-to-old-trades, and expert defined indicators which are computed over histor-
ical data. More generally the setting is such that the target variable Y? = 1 denotes
exposure to operational risk and Y? = 0 denotes normal exposure, and where the
predicting variables X* = (X7, ..., X,) are predefined indicators. Assessing an ade-
quate measure of importance over the indicators may facilitate to identify a subset
of indicators that seems likely to relate to risk exposure. This identified subset of
variables is useful since it may reduce the amount of monitored data to only infor-
mative variables, and could be used to direct effort onto specific parts of the overall
business process e.g. increasing the quality, resolution, and the amount of stored
data that is informative with respect to risk exposure, or to improve operation pro-
cedures.

When choosing an adequate predictor model there is a trade off between flexibil-
ity and interpretability. Highly interpretable models such as the logistic regression
model provides clear relations between the learned coefficients and the output of
the model. However for some data the model is not sufficiently flexible and may

!Operational risk is defined as the risk of change in value caused by the fact that actual losses,
incurred for inadequate or failed internal processes in a business.
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not be used to distinguish important from non-important variables.

By increasing the flexibility of the chosen predictor model there is often a sacrifice
in intepretability. The Random forest model is a highly flexible model which often
provides high prediction accuracy, and the model is capable of modeling non-linear
and complex interactions. Most importantly the model provides an importance
measure of variables which may be used to identify informative variables. Further
since the random forest model to a high extent adapts with respect to training data
the corresponding importance measures are less biased with respect to a specified
underlying model y ~ f(z), e.g. compared with the linear-or logistic regression
model which may simply learn a best fit under an occasionally too strict model. In
addition random forests are applicable in both classification and regression settings.

1.1 Problem statement

The objective of this thesis is to find a variable importance measure over the
predictor variables in a supervised learning setting, where the input data con-
sists of both categorical and numerical predictor variables. An application for
the importance measure is to differentiate informative from non-informative pre-
dictor variables in an internal audit setting. The investigated data, data which
is yet not available, will consist of price deviations between settled and associ-
ated market prices, Ysett1ied — Ymarket- Lhe associated predictor variables are e.g.
counter-party, instrument-type, changes-to-old-trades, valuation-method, trader, port-
folio, trade-frequency and currency. The objective is to differentiate the predictor
variables that correspond to noise from those variables that seems informative with
respect to the price differences. The obtained measure will be used to identify
what variable or variables, supposedly caused the price deviations. E.g. are the
deviations caused by an internal error such as fraudulent behavior, or caused by an
interaction of variables such as trade-frequency, trader and occurring in specific port-
folios. Another idea where the variable importance measures can be proven useful
is within anti-money laundering (AML) [54], where the laundering-examples used
to train the model could e.g. be created by domain experts. An approach to tackle
AML is by considering it a subfield of anomaly detection, and where the objective
is to identify patterns which distinguish from normal behavior [63, 42].

The broad idea of the thesis project is to find a method that is capable of iden-
tifying informative predicting variables with respect to an observed outcome, and
where the obtained variable importance measures will function as a screening tool
used to explore relations in the data. Further the data considered for screening may
to a great extent vary with respect to the nature of the variables as well as with
respect to numerical-and categorical ranges. To tackle the lack of business data this
thesis investigates the validity of the random forest variable importance measures
on simulated data where the ground truth is known together with an experiment
on real data.



1.2. CONTRIBUTIONS

1.2

1.3

Contributions

This report investigates the random forest variable importance measure as a
means to identify informative variables. The measures are applied to both
regression-and classification settings. The importance measures are proven
capable identifying informative variables in simulated data and the importance
measures are shown useful in a live data setting.

The project provides a survey of various variable selection techniques.

A thorough background regarding tree based models, random forest tech-
niques, and the random forest variable importance is presented.

A largely automated pipeline of programs which facilitate analyzing parameter
settings for the random forest model and selection of informative variables,
implemented for the R system [46].

Outline

The project work is structured as follows,

Chapter 2 presents a background of feature selection techniques and back-
ground regarding supervised learning models as a means to investigate rela-
tions between the target and predictor variables. Chapter 2 also presents a
background describing tree based models and the random forest as a general
technique to differentiate informative predictors from non-informative predic-
tors with respect to the target variable.

Chapter 3 presents applications of the random forest model and research re-
garding properties of the random forest variable importance measures.

Chapter 4 presents the core of the project, a variable selection procedure
used to differentiate informative variables from non-informative variables with
respect to the target variable.

In Chapter 5 the variable selection procedure is evaluated on data where the
truth underlying the data is known. The robustness with respect to categorical
noise is investigated, together with an application to real cencus data. The
main results are discussed with respect to finding truly informative variables
and with respect to prediction accuracy for the real census data.

Chapter 6 outline ideas for further research, both by performing additional ex-
periments and by a modification proposal to the investigated variable selection
procedure.

Appendix A provides an introduction to terminology and the field of machine-
and supervised learning, together with an example illustrating the idea of
variable selection.
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1.4 Ethical considerations

In every computer based decision system there is a risk that something goes wrong,
when a computer based system is installed questions regarding potential errors and
liabilities should be carefully analyzed. To simply trust variable importance mea-
sures as a means to learn underlying truths regarding data is not reliable. The
investigated variable importance measure must be carefully analyzed by domain
experts before any conclusion can be made. Furthermore measures of associations
does not imply causation, when inferring causal relationships from data a range of
statistical tests must be applied together with a thorough statistical design. How-
ever importance measures may serve useful as a means to explore and search for
informative variables. The variables may in hand be used to build a more robust
predictor, to reduce the computational time, and to serve as a guide for exploratory
data analysis techniques. Exploratory analysis techniques which relates observa-
tions to predictors may in hand be used to learn observational patterns in a variety
of fields such as medicine, physics, psychology, and economy. E.g. learning what
variables and to which strength that related to inflation, learning variables that
relates to a particular disease, or learning what predictors that relates to the likeli-
hood of observing new planets.

1.5 Relation to my education

This report mainly intersects the three fields Statistics, Computer Science and
Mathematics. Course work including Times series analysis, Probability theory, Com-
puter intense methods in mathematical statistics, Algorithms and Complexity, Artificial
intelligence, Advanced Machine Learning, and Image recognition and classification pro-
vides a solid foundation handling Machine Learning techniques such as the Random
Forest model. Further solid programming experience facilitates writing, to a large
extent, automated pipe-line of programs which returns variable importance mea-
sures and graphs as a means to explore algorithmic convergence and data relations.



Chapter 2

Background

This chapter provides a summary of general variable selection techniques such as
wrapper, embedded, and filter methods. Furthermore supervised learning models
as a means to identify informative predictors with respect to the target variables
are outlined. Lastly related concepts and background concerning the random forest
model are presented, such as classification and regression trees, adaptive and non
adaptive averaging procedures e.g. bagging and boosting, together with the random
forest variable importance measures.

2.1 Feature selection

The field of feature selection studies the problem of finding a small set of predictors
in supervised learning problems. Generally there are three main objectives govern-
ing variable selection, to improve prediction accuracy, to reduce the time needed for
training, and to enhance interpretation of the learned predictor model [21]. Feature
selection techniques are divided into three categories called wrapper, embedded, and
filter methods [5].

Wrapper methods utilizes the predictor as a black box to score subsets of variables
according to their predictive power, examples are forward selection and backward
elimination which commonly are used in regression settings [32]. A feature is greed-
ily included or excluded from the model based on the R? or adjusted R? measure.
Forward and backward elimination strategies can be non-robust, meaning that a
small change in the input data can result in very different models, the scapegoat
could be that each predictor is discretely adjoined or excluded from the model.

Embedded methods perform variable selection in the process of training and are
specific to the given classifier. An example facilitating the above non-robustness
in linear regression settings is the least absolute shrinkage and selection operator
(LASSO) [52] which combines continuously shrinking some of the coefficients to-
wards 0 and setting others coefficients to exactly 0. Another example of an em-
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bedded method is the random forest model. During the training process the model
partitions the prediction variables into similar regions with respect to the target
variable, and the number of times each predictor variable is selected as a partition-
ing variable can be used as a measure of variable importance.

Filter methods selects variables as a pre-processing step and are independent of
the specific model. An example of a univariate filter method is to threshold each
predictor variable based on the correlation between the predictor and the target
variable e.g. using a mutual information measure [5]. An example of a multivariate
filter method is the Correlation based feature selector [22] which selects subsets of
features that are highly correlated with the target variable, such that the features
are uncorrelated with each other.

2.2 Choice of model

There are many methods which provide good prediction results. Research in Neu-
ral nets is an ever more active field and the nets provide state-of-the-art prediction
accuracy. Despite the good prediction results, the relation between the target and
the predicting variables is not easily understood. The variables are transformed by
the nets at each layer which hampers interpretation of how the prediction variables
relates to the model output.

Another model commonly used in classification settings is the logistic regression
model specified by (A.2). There are a few caveats applying the logistic regression
model to our problem setting. Firstly the logistic regression model is a paramet-
ric model and could have difficulties providing good prediction results when faced
with non-linear decision boundaries, an example is illustrated in figure A.2. The
non-linearities may be resolved by feature engineering i.e. to adjoin the data by
various transformation of the predictors. Another approach handling more complex
decision boundaries is the non-parametric linear regression model [27]. The model
is specified by

logit(p) = log 7 fp =2 i)

where ¢; are smooth functions of the predictor variables.

Secondly logistic regression has difficulties providing reliable parameter estimates
in settings, called small n large p problems, where n denotes the number of training
cases and p denotes the number of parameters to be estimated. Empirical research
examining this property has indicated that when the number of events per variable
(EPV) that is if the number of training cases over the number of predicting vari-
ables is less than 10, then the estimated coefficients where found to be biased in
both negative and positive direction [43]. More recent studies have found that even
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when the EPV is greater than 10 the logistic regression model may have insufficient
power, which may lead to discarding predicting variable due to lack of significance
[11].

A more viable approach to our setting is the Random Forest model [7]. Forests
requires little parameter tuning and are applicable when the data consists of both
numerical and categorical predicting variables. Forests are also applicable modeling
non-linear decision without need of feature engineering [26], as indicated by the
noisy circle data illustrated in figure A.5. Most importantly Forests have an em-
bedded feature ranking technique called variable importance measure (VIM) which
can be used as a tool guiding the selection of predictors for the final model. The
VI measures computed from the noisy circle data is illustrated in figure A.6, note
that the two variables X; and X5 are the only informative predictors with respect
to the target variable.

There is yet no uniform framework of what constitutes an important variable and
the notion varies with respect to application. When two or more predictor vari-
ables interact work by Kohavi and John [35] have shown that subtle changes to
the definition of what constitutes an informative variable implies surprisingly large
changes concerning which variables are defined as relevant. The authors concludes
that in practice one should look for features with respect to the specific learning
algorithm and training data. Hence the fact that random forests are capable to
model complex non-linear relations, as illustrated in figure A.1, implies that the
associated importance measure can capture a broad set of relations.

Criticism concerning the superiority of Forests techniques used for variable selec-
tion is presented in the survey by Verikas et al. [57]. The paper shows that the
non-parametric model k-Nerest-Neighboors (k-NN) provides-comparable and some-
times better results with respect to prediction accuracy by the reduced model. The
k-NN model can easily model non-linear problems and there is only one tuning pa-
rameter. However the algorithm may have difficulties using categorical predictor
variables since there is no general method of how to assign distances between dif-
ferent categories.

Lastly an interesting approach is the Multivariate adaptive regression splines (MARS)
model. The MARS model handles data consisting of both numerical and categorical
predictor variables in a natural way, the model is computationally scalable, and the
model is also interpretable [26]. MARS models are however not commonly used for
variable selection.

2.3 Ensemble methods and Random Forests

Trees are invariant under strictly monotone transformation of the individual pre-
dictors, they are robust to predictor outliers, and trees often obtain good prediction
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results without the need of extensive parameter tuning. When faced with new data
a reasonable initial step is to explore if there is a partitioning over the predictor
variables such that the values of the associated target variable are as similar as
possible. Decision trees works by searching for precisely such groups, the algorithm
aims to partition the predictor space into high dimensional rectangles with the ob-
jective that the values of the target variable are as similar as possible.

The most common algorithms for creating decision trees are the CART (classifica-
tion and regression trees) and the C4.5 algorithm developed by Breiman et al. [§]
and independently introduced by Quinlan [45]. CART models are freely accessed
from both the Python and the R programming languages. CART are built by the
principle of recursive partitioning, more concretely in a regression setting, the trees
are built by

1. The predictor space Xji,.., X, is divided into J distinct non-overlapping re-
gions Ry,.., Ry

2. For every observations that falls into region R; the associated response is
predicted as the mean response over all training observations contained in
region R;

The regions R; are chosen as high dimensional rectangles for computational simplic-
ity and to facilitate interpretation. The goal is to find rectangles R; that minimizes
the residual sum of squares (RSS)

J
SN i — i) (2.1)
=1icR;

j=

where Jg; is the mean response over all training observations within the jth hyper-
rectangle. Finding an optimal partitioning is however generally computationally
intractable [31] and the splitting selection is instead chosen by a greedy heuristic
called recursive binary splitting. For each variable X; the feature space is binary
partitioned into two regions

Ri(j,s) ={X|X; <s} and Ry(j,s) ={X|X; > s} (2.2)

where the pair (j, s) is chosen such that the RSS error is minimized over the two
regions. This selection process is then recursively repeated over all resulting regions
until a stopping criteria is met, e.g. the resulting terminal-node contains fewer than
n observations. If the tree is grown deep the predictor could easily overfit, and
on the contrary if the tree is grown too shallow the predictor may fail to capture
important relations in the data. A common strategy to tackle this trade off, more
thoroughly explained in [26], works as follows. First a large tree Tj is grown until
a minimum node size is met. This large tree is then pruned using cost complexity
pruning. We define a subtree T' C Tj as any tree that can be obtained by collapsing
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non-terminal nodes of Tp. Let all regions R,, containing terminal nodes be indexed
by m and let |T'| denote the number of terminal nodes in 7. Further we define

Np, = |{$1 S Rm}|)

R 1
Yn = Yis
Nim gm (2.3)
Q) = 3 (i — )’

m T, €ERm
and the cost complexity criterion is defined as

7]
Ca(T) =Y NpnQm(T) + alT). (2.4)
m=1

For each a one searches for the subtree T, C Ty that minimizes the objective bal-
ancing the tree complexity and the accuracy of the predictions, i.e. the subtree T,
that minimizes Cy (7). It can be shown that for every « there exists a unique small-
est subtree T, minimizing C,(T"), and the optimal trees T, are found using weakest
link pruning. The internal nodes that provides the smallest per-node increase in
> N Qm (T') are sequentially collapsed until a single-node tree is obtained. The
papers by Breiman et al. [8] and Ripley [47] show that the latter sequence must
contain T,. The complexity trade-off parameter « is chosen by five- or tenfold
cross-validation and & is chosen to the value that minimizes the cross-validated
sum of squares.

The impurity measure Q,(T) is responsible to guide the partitioning of the pre-
dictor variables such that the associated target outcomes, which are similar, are
grouped into shared hyper rectangles. In regression settings @,,,(7") is chosen as the
RME and must be modified when faced with categorical data. Common measures
Qm(T) of node impurity used in classification settings are

Misclassification error: ﬁ Yoier, L(yi # k(m)) =1 = Pru(m)-
Gini index: S it PrkD g = Sohiet Pk (1 = Prnk)- (2.5)
Cross-entropy or deviance: — Eszl Dk 10g Dy

where P = 3 ..er,, [(yi = k). The Gini index and the cross-entropy are both
small if all of the p,,; are close to 0 or 1, which implies that the two measures prefer
pure nodes. In general any impurity function ® may be used. An impurity func-
tion is defined as a function over any K-tuple of non-negative numbers (p1, ..., px)
satisfying >, p; = 1, with the following properties

1. & achieves maximum only for the uniform distribution.
2. ® achieves minimum only at the points where all p; =1, j=1,.., K. (2.6)
3. ® is symmetric with respect to p1, .., pk-

9
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Furthermore impurity measures i(-) are related to an impurity function ® by the
following relation

i(t) = @(p(1t), .., p(K[t)) (2.7)

where p(j|t) is the estimated probability of class j in node t. Breiman et al. [§]
showed that the Gini index prefers splits that puts the largest class into a pure
node and all others into the other node, whereas the entropy criterion put their
emphasis on balancing the sizes of the two children nodes. However in problems
with a small number of classes both criteria should produce similar results.

Decision trees have a great advantage in interpretability. The logic of how the
predictor space is partitioned and the associated purity of all terminal nodes is eas-
ily assessed and examined. However a major problem with decision trees are their
high variance. A small change to the input data could alter the series of splits in
the building process which in turn changes the interpretation of the overall tree,
and which could decrease the prediction accuracy on unseen data.

A general variance reduction technique called bagging (bootstrap aggregating) in-
troduced by Breiman [6] and independently found by Ho [28], can help mitigate the
high variance for the decision tree predictor. The technique often also substantially
increases the prediction accuracy when the base learners are chosen as high variance
classifiers. The idea is, when a decision tree is chosen as the base classifier, to boot-
strap B training sets from the original training data. For each bootstrap sample
a decision tree is grown without pruning and the B classifiers are then aggregated
into a single classifier,

B A
foglo) = 5 3 ). (28)
=1

The rational for growing the trees without pruning is to learn as much structure of
the data as possible, the increase in variance is then mitigated by averaging. Since
all decision trees are trained on bootstrap samples the means and covariances are
equal for all individual trees, and the total variance for the bagged predictor (2.8)
is given by

var(fbag) :éE {(Z Xi)2] — E? [;ZXZ} = é ZXin — Bp?
0]

:% [3(02 +p4*)+B(B—-1)p— B,uz} (2.9)
:% {02 + (B — 1)p}

where 02 = varX; and p=cov(X;, X j). Thus the variance decreases as the num-

ber of included classifiers B increase. Another treat provided by the bagged model

10
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(2.8) is a test error estimate which is obtained without the need to use either cross-
validation, or to use a validation set. On average the number of observation not
contained in a bootstrap sample is approximately one third, referred to as the out-
of-bag (OOB) samples. For each sample x; there are approximately B/3 trees where
this samples is OOB, and the estimate for the test error is obtained by averaging all
predictions over those trees and over all samples. This estimate is however biased
and can sometimes underestimate the true error by 10% [26]. The average size for
the OOB samples over a n-set is explained by noting that the probability that an
observation is included in a bootstrap sample equals 1 — (1 — 1/n)". The latter
expression quite rapidly converges to 1 — 1/e & 0.632, with n = 100 the probability
approximately equals 0.63.

The resulting bagged model (2.8) is clearly not as interpretable as a single clas-
sification tree due to the averaging effect. However for complex data sets the in-
terpretation of single decision trees should be taken with care due to their inherent
instability [6]. Most importantly the bagged decision tree model (2.8) provides
a variable importance measure (VIM), which also mitigate some of the problems
concerning the VIMs obtained from a single decision tree. For a single tree the im-
portance measures could easily be masked. E.g. suppose that two variables X; and
X5 both provide equal prediction accuracy when either X or X5 is included in the
decision tree. Once one of the variables is included, inclusion of the other variable
does not improve prediction accuracy. Suppose further that the gini impurity cri-
terion favors inclusion of the first variable over the inclusion of the second variable.
Then by only measuring improvements over variables which partition the data, the
equally important variable Xy would obtain a variable importance measure of 0, al-
beit either variable could be used with respect to prediction accuracy. The bagged
model (2.8) smooths out the instability inherent by the individual decision trees,
and the variable importance measure are more reliable compared to the measures
obtained from single trees [26].

The overall variance for the bagged model (2.9), as the number of included trees
B increases, is bounded by the covariance between individual trees. The Random
Forest model proposed by Breiman [7] further decrease the correlation between
individual predictors by an additional randomization procedure. The individual
classifiers are trained using bootstrap samples, and the additional randomization
is imputed by attribute sampling. During training the trees are presented with
only a uniformly drawn subset of features permissible as splitting variables. This
modification further decreases the correlation between individual trees. The idea
to select features at random was independently introduced by Ho [28] and by Amit
and Geman [2].

Another meta-algorithm, which by [16] also been shown outperform the bagging
procedure, is called boosting. The procedure sometimes provide higher prediction

accuracy than random forests, especially in little or no noise data settings. The

11
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idea is to adaptively grow a sequence of weak learners by a weighting procedure.
Examples at the current sequence length that are proven difficult to predict are
attached larger weights, and examples where the predictions are more accurate are
attached smaller weights. Breiman [7] showed that the error rates obtained by ran-
dom forests are comparable with those obtained by boosting, and further reports
that the Random Forest model is more robust with respect to input noise than the
boosting procedure. In classification settings the forests also provides smoother pre-
diction boundaries by aggregating the class predictions provided by the individual
trees into a single probability, which in hand may be used as an uncertainty measure
[14].

2.4 Variable Importance

For a single CART model Breiman et al. [8] proposed a variable importance measure
by using surrogate splits intended to mitigate the risk that the variable importance
of a single variable is masked. For an aggregated model such as bagging or boosting
the variable importance measure is not as limited by the overall size of the tree, and
the number of splitting opportunities is vastly increased which implies that masking
is less of a problem. Despite the averaging effect there is still a possibility that a
single variable X3 is not included in the model due to a slightly higher performance
obtained when the data instead is partitioned by variable X; (say that X5 is highly
correlated with X7). This in hand implies a tiny importance measure for variable
X5. The random forest model further reduces the likelihood of masking caused by
the latter scenario by only allowing a random subset of features available at each
split. Thus for all feature sets not including X; the likelihood that the correlated
variable X3 is used as a partitioning variable is increased. Since the individual trees
in contrary to bagging are grown deep, the contribution in variable importance due
to interaction effects is increased. The boosting procedure may on the other hand
choose to ignore some variables completely.

The permutation importance measure, introduced by Breiman [7], is one of the
two most common variable importance measures. To measure the importance for
variable X; the idea is to permute all values of this variable, and the variable im-
portance measure is defined as the difference in prediction accuracy caused by the
permutation. If the variable consists of purely random noise the prediction accu-
racy will likely not be affected by permuting the values of this variable. Formally
the variable importance is computed as follows. Let B! denote the OOB samples
for a tree t and let L(T}(x;),y;) denote the prediction accuracy at the ith training
example. The importance for variable X; in tree ¢ is defined as

VIOX;) = 3 L(T(xe), 1) — L(To(xim,), 1) (2.10)

ieBt
where x; . = (i1, -, Xre; (i), > Kirj 1+ X;p), and where 7; is a random permutation of
n integers. In classification settings the prediction accuracy L(7T;(x;),y;) is defined

12
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as v
ZieBt I(?Ji = yi)
|1BY|

L(Ty(xi), yi) = (2.11)
where §! = T}(x;) denotes the prediction at point x; by tree ¢, and I(-) denotes the
indicator function. Whereas in regression settings the prediction accuracy L(g,y)
is defined as the RMS error. The variable importance measure for variable X; is
computed as the sum of the importances over all trees in the forest,

_ Suen VIO(X)

ntree

VI(X;) (2.12)
Another commonly used importance measure is the Mean Decrease Impurity (MDI).
The importance measure for variable X; is computed by the sum of all decreases in
node impurities where variable X; is used to partition the data. If we let ¢; and tg
denote the two resulting children nodes when partitioning the data at node ¢, and
we let V; denote the number of examples reaching node ¢, the decrease in impurity
is defined as

Ai(s,t) = i(t) — pri(ts) — pri(tr) (2.13)

where i(-) is some impurity measure defined by (2.7), and pr, = N, /N; and pg =
Ni,/Ng. The resulting children nodes are obtained when the data is partitioned by
the parent node at s = (X,, < ¢). Lastly the MDI measure is defined by averaging
over all trees T" and all nodes t,

1
ntree

VI(Xp) =

Yo D pB)Ai(s,1) (2.14)

T teTw(st)=Xm

where p(t) denotes the proportion N;/N of samples reaching node ¢t and v(s;) de-
notes the variable used to split node t. A common choice of node impurity measure
is the gini-coefficient, a combination which commonly is denoted as the Gini im-
portance. Whereas in regression settings a common impurity measure is the MSE.
The permutation and the gini importances both captures non-linear relationships,
as indicated by the noisy-circle data illustrated in figure A.6 for the permuta-
tion importance. Furthermore the two measures capture importances for vari-
ables which are correlated with informative predictors [51]. Both the permuta-
tion importance and MDI measure with the RME and gini impurity measures are
freely available in the package randomForest by Liaw and Wiener [39] for the
R system for statistical computing. The package provides an R interface of the
Fortran program originally developed by Breiman and Cutler freely available at
http://wuw.stat.berkely.edu/users/breiman/.

In settings with correlated predictors the permutation variable importance mea-
sure have been observed to put an increased importance onto variables which are
correlated, likely due to the fact that correlated variables are preferred as splitting
candidates earlier in the tree Strobl et al. [51]. The authors suggests a modified
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CHAPTER 2. BACKGROUND

variable importance measure following the logic of permutation tests [19]. The idea
is to form a null hypothesis designed to investigate whether predictor variables are
informative. If the null hypothesis Hy is specified as a global null hypothesis, i.e
all predictor variables are independent of the target variable (Y L Xj,.., X},). The
null hypothesis implies that the joint distribution then factorizes as

P(Y,X1,..,X,) = P(Y)- P(X1,..., X,). (2.15)

If the data is truly generated under the null hypothesis, a permutation of the target
variable will not affect the joint distribution (2.15) due to the factorization. On
the contrary if the null is false and the target variable is permuted, an observed
deviation of the joint distribution or some reasonable test statistic computed from
it is to be expected.

Under the global null hypothesis it is expected that the permutation importance
measures are distributed as a zero mean random variable. A deviation from the
null hypothesis is expected to imply a change in prediction accuracy which in
hand implies a deviation to the permutation importances, the deviation in im-
portance measures is chosen as test statistic to indicate deviations to the inde-
pendence assumption. The null hypothesis which corresponds to the original per-
mutation importance assumes that variable X; is independent to both Y and to
Z = X1,..,X;-1,Xj4+1,..,Xp. To mitigate importance deviations arising due to
dependency between variables X and Z Strobl et al. suggests a modified permuta-
tion scheme where variable X is permuted only within groups of observations with
Z = z.

The conditional permutation importance, given by [51], for variable X is computed
by the 4 steps,

1. First the OOB-prediction accuracy is computed as in equation (2.11).

D ieBt I@; = Y;)
|BY|

. (2.16)

2. For each variable Z; used for conditioning. The cut-points which partitions
this variable are bisected into a grid to form a permutation grid.

3. Within the permutation grid the values of X; are permuted and the associated
permutation accuracy is computed

Yiep LG x, = yi)
|BY|

(2.17)

where g;?,ﬂj denotes the predictions of the t:th tree T*(xi 1, .., Xz, (i) j» Xi.j+1- Xip)
and where the values of the input variable X; are permuted with respect to
the permutation grid.
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4. The contribution to the permutation importance measure for variable X; by
tree t is computed as the difference between the non-permuted prediction ac-
curacy (2.16) and the permuted prediction accuracy (2.17). The permutation
importance measure for variable X; is obtained by summing all importance
contributions over all trees, exactly as for the original permutation impor-
tance measure (2.12). The conditional and the unconditional permutation
importance measures simply differs with with respect to permutation scheme.
For the conditional measure the ranges of values which are permuted for each
variable are reduced, the size of the range depends on the number of bisection
values for the conditioning variables Z;.

Strobl et al. suggests a strategy used to guide what variables to use as conditioning
variables for variable X;. The conditioning variables Z; to include are selected as
those with empirical correlation, with variable X;, that exceeds some threshold. A
more general approach suggested by Hothorn et al. [30] is to compute p-values of
conditional inference test as a measure of association. The latter strategy have the
advantage that the same guiding procedure is applied whether the predictors are
either categorically or numerical.
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Chapter 3

Related Work

The main objective for the thesis project is to provide a technique used to identify
informative variables in supervised learning settings. The random forest variable
importance measure have been proven useful identifying informative variables in a
variety of applications due to its high flexibility. This fact is indeed useful, firstly
since the importance measures will be applied to a variety of data and secondly
since the relation between the price differences and the predictor variables, spec-
ified in the problem statement 1.1, should to a large extent be specified by data.
Furthermore the variable importance measure have been proven reliable in settings
where the number of examples is less than the number of variables (small n large
p), a property which may decrease the required amount of labeled data.

This chapter presents applications by the random forest model, where the pre-
sented applications are focused with respect to the nature of the random forest
model and with respect to the random forest variable importance measures, to-
gether with studies where the relation between the target and predictor variables is
known. The latter fact facilitates evaluation of the importance measures.

3.1 Random forest variable importances

The variable importance measure obtained by the Random Forest model is a fre-
quently used measure for feature selection in a variety of fields. Work by Diaz-
Uriarte and De Andres [15] investigated random forests used to select a set of
informative genes. With respect to prediction accuracy the work showed that the
random forest model provide similar performance as the k-NN, SVM and the Di-
agonal Linear Discriminant Analysis (DLDA). More importantly with respect to
finding informative variables the authors showed that the random forest variable
importance measures could be used to identify a small number of genes while pre-
serving predictive accuracy. The parameter settings governing forests where shown,
by both simulation and by real data, to be quite robust with respect to the param-
eters mtry, nodesize and ntree. The parameters controls the number of features
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available at each partitioning, minimum number of examples reaching a node used
as a stopping criteria, and the number of trees used in the forest. The work showed
that a large value of ntree slightly increased the stability of the variable importance
measures. In cases where the ratio, number of informative over total number of vari-
ables, is small an increase in mtry implied a slight increase in prediction accuracy.
Lastly the parameter nodesize controlling the minimal size of the terminal nodes
was observed to have negligible effects with respect to prediction accuracy. The
work further investigates a problem concerning identification of predictors called
the multiplicity problem, namely that there could exists two or more subsets of
predictor variables, and where all subsets provide equal prediction accuracy. Mul-
tiplicity is a commonly observed problem in settings where the number of variables
p is large compared to the number of observed cases n, and the issue is investigated
in the statistical literature [25, 9]. The author states that in small n large p settings
the multiplicity problems may be hard to solve. A proposal to tackle this issue may
be to use a variety of techniques, and examining if there is a subset of variables
which are selected by most of the models.

A simulation study conducted by Archer and Kimes [3] investigates the gini variable
importance measure. The predictors were simulated following a multivariate normal
distribution with covariance matrix consisting of 20 blocks, where the jth block of
variables are correlated with p; = 0.055 — 0.05. Within each block there is only one
informative covariate and the association with the target variable is specified by

o 1 if Wi < Ui j
Yi = 0 else

where u; ; is a uniformly drawn random number and where 7 is given by

eﬁlwi,]’ .
7Ti7j:m ]:1+40k,k2071,,19
with the parameter 8 ranging over 7 levels, 5 € {0.25,0.5,0.75,1,1.25,1.5,1.75}.
The study reports the number of times the truly informative variable obtained the
largest importance measure among all covariates over a total 400 number of sim-
ulation trials. This ratio is presented as a function of the 20 levels of correlation
and the 7 levels of association between the predictors and the target variable. The
random forest model successfully identified the true predictor more than 80% out
of the 400 trails under moderate correlations p < 0.5 and with g > 1.

Strobl et al. [50] showed by a simulation study that the gini variable importance
measure is biased onto categorical variables and observed that the importance mea-
sure increases as the number of factors increases. The mechanics underlying this
bias likely derives from the gini impurity which have been shown to favors variables
with e.g. more categories Kim and Loh [34], White and Liu [58]. Furthermore the
gini index have been shown to prefer variables with a large amount of missing values
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[49]. Due to these observations Strobl et al. propose a new random forest algorithm
that utilizes conditional inference trees as base learners [30] instead of CART trees.
The measures obtained by conditional tree based forest were shown more robust
than the gini importance measure for categorical non-informative predictors [50].

Later Strobl et al. [51] showed that the permutation VIM is biased with respect
to correlated predictor variables. It was shown by a simulation study where the
target variable y is generated by 12 predictor variables as follows,

Yi = 5%i,1 + O + 223 — Sxi5 — Oie — 27 + €

where ¢; is i.i.d. N(0,1/2) distributed noise and where X;1.12 ~ N(0,%). The
correlation matrix X is specified such that all variables have unit variance o;; =1,
the first 4 variables are correlated o;; = 0.9 for ¢ # 7 < 4, and where all other
variable are uncorrelated o; ; = 0.

Notably it was shown that the permutation variable importance measure was larger
for variable X3 than the measures for the two variables X5 and Xg, albeit that their
absolute coefficient values are equal to the coefficient for the two most informative
variables X7 and Xs. Due to these observations a new variable importance measure
called conditional variable importance is proposed. The proposed measure suppress
the importances for the correlated variables into the order v; > vy > vs > vg > v3,
where v; denotes the importance measure for variable X;. Albeit the distinction
between the importance measures vs,v; and vg are quite small and the two im-
portance measures v; and ve are always larger irrespective of the mtry parameter.
The variable importance measure is freely available at the R programming package
named party [29, 50, 51].

Genuer et al. [18] also explore the random forest variables importance measure
when the predictors are correlated. The setting is such that 6 out of 200 variables
are informative, and the data contains 100 cases. The variable importance measure
is studied as the data is adjoined with 1,10 and 20 uninformative variables having
a correlation of 0.9 with the most informative variable X3. The study showed that
the importance measure for variable X3 decreases as more correlated variables are
adjoined to the data. However the importance for variable 3 is never confused with
noise, this also holds for the adjoined correlated predictors.

An exhaustive survey regarding forests in applications is provided in the paper
by Verikas et al. [57]. The work reports summaries over multiple research papers
ranging over a broad field of applications, categorized as, 17 studies in which the
random forest outperformed or performed on the same level as other techniques
e.g. customer churn prediction [60, 61, 13, 12], credit card fraud detection [59], Bac-
terial species identification Slabbinck et al. and automatic e-mail filing into folders
[36]. Eleven small scale studies where the random forests is outperformed by other
techniques such as spam email detection [1], customer loyalty prediction [10] and net-
work intrusion detection [33, 62]. A total of 14 studies in which the random forest
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variable importance measure is exploited e.g. identification of a small number of
risk-associated single nucleotide polymorphisms (SNPs) among a large number of un-
associated SNPs [41], customer retention and profitability [37], and categorizing cancer
cases [53].

Furthermore the work examines the consistency and generality of the random for-
est variable importance measures, and are compared by selecting features using the
k-NN classifier. Both the gini A; and the permutation Dj variable importance mea-
sure are examined. Features are included into the final model by adding features
corresponding to the highest values of the ljj measure, and by recursive feature
elimination one-by-one based on Dj. The variable selection by the k-NN classifier
are based on forward selection (backward selection provided similar results). The
study reports that the features selected by the k-NN model provide a higher pre-
diction accuracy by both the SVM and k-NN classifier.

The paper furthermore reports that the random forest variable importance mea-
sure is capable to accurately identify almost all 21 informative variables in the
40-dimensional artificial Waveform data, albeit the measures over 4 of the informa-
tive variables are very hard to differentiate from noise. Previous work have shown
that correct identification of all noise variables in the Waveform data is a difficult
task [56, 55].
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Variable selection procedure

4.1 Variable selection

When searching for important variables one may assume e.g. an additive model and
iteratively performing various feature transformations until reasonable prediction
accuracy is obtained, or that the initial assumption of additive is deemed unreason-
able. The process is illustrated by the prediction accuracy provided by the logistic
regression model before and after the data is adjoined by the two features X 1 = X?
and X, = X3 shown in figures A.3 and A.4. When a sound result is obtained by
the latter strategy it corresponds to a reasonable fit given the underlying model,
e.g. a linear additive model. Another or an accompanied strategy may be to try
a less biased model that provides a variable importance measure. The idea is that
the variable importance measures obtained by a more flexible model may capture
e.g. both linear and non-linear relations in the data. The random forest model is a
non-parametric and highly flexible model. A reasonable fit and associated variable
importance measures, when the random forest model is trained on the non-linear
noisy circle data, is illustrated in figures A.5 and A.6. Variable selection using the
random forest model can, following the pseudocode presented in Hapfelmeier and
Ulm [24], be schematic summarized as

Assess (a) the OOB-error or (b) a cross-validated error of the forest.
Compute the importance measures of variables.

Reject a fraction of least important variables and refit the forest.
Assess (a) the OOB-error or (b) a cross-validated error of the forest.

Return to (a) step 2 or (b) step 3 until no further variables can be rejected.

SO ol S

Choose the model with (a) the lowest error or (b) the sparsest model with
the error within a specified number of standard deviations to the lowest error
(e.g. according to the 1 s.e. rule).

Often the preceding steps are based on averaged finding to achieve higher stabil-
ity. Therefore, steps 1-5 can optionally be repeated separately, in conjunction and
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within cross-validated runs.

The chosen method used to differentiate relevant from non-relevant variables,
which fits the above general method, follows the strategy presented in the work by
Genuer et al. [18]. The procedure consists of the following steps,

1. Compute the RF variable importance measures, excluding the variables with
the smallest importances.

2. Order the m remaining variables in decreasing order of importance.

3. Construct, on separate data, a sequence of random forests greedily including
the k first variables, for k = 1,..,m. The final model is chosen as the most
sparse model with smallest OOB error.

The variable importance measures, used in the experiments are chosen as the two
most commonly used importance measures. Namely the permutation importance
measure specified in equation (2.12) and the mean decrease impurity measure. The
impurity function governing the MDI is chosen as the gini impurity specified by
(2.5) in classification settings, and chosen as the MSE in regression settings. Both
measures are freely obtained by the randomForest package [39] in the R system
programming language.

To further illustrate the steps governing the variable selection method the procedure
when applied to the noisy circle data (A.4) is now outlined. First the permutation
VIMs are computed, and the ordered variable importance measures are visually
analyzed, illustrated in figure A.6. The 3 variables with the largest importance
measures are selected adjoining the third step. Lastly the final model is chosen
by levering the number of included variables and the associated OOB errors. The
final model is chosen by inclusion of the 3 variables V1,V2 and V18. The greedy
sequence of OOB errors as a function of included variables is shown in figure A.7.
Note that the OOB error sequence is illustrated for k = 1, .., 20 number of included
variables, but there are only 3 variables with non-zero importance measures. The
OOB error minimum is obtained with 2 included variables V1 and V2, which also
are the two truly informative variables.

In general any impurity function (2.6) is valid to specify the MDI measure, and
the procedure also allows modification to the permutation importance measure by
changing permutation schemes e.g. to the conditional permutation scheme (2.16).
There are a few notable strengths supporting the above method. Firstly the work
by Verikas et al. [57] showed good results identifying more or less all important
variables in the 40 dimensional Waveform data simply by inspection of the variable
importance measures, albeit there are at least 4 informative variables which can-
not be differentiated from the noise variables. Identifying all informative variables
in the latter data is considered a difficult task [55, 56]. The results by Verikas
et al. indicates that almost all informative variables will sequentially be included-
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and-ordered by decreasing importance measure by the greedy strategy at step 3.
More importantly it is desired that the OOB error obtained from the random for-
est is proven capable to differentiate the 4 informative variables which were shown
especially hard to separate from noise variables. Furthermore the method is compu-
tationally efficient since the importances measure are only calculated once at step
1, and thereafter the OOB errors are used to differentiate informative from non-
informative variables. The fact that the OOB error rates provide an estimate for
the test error further decreases the computational burden since there is no need to
use separate validation data or use of cross-validation.
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Chapter 5

Experiments

5.1 Investigated data

Friedmanl data

The data is obtained by the R system package ml-bench [38] originating from
Friedman [17] and consists of 1000 number of cases. The underlying model is a 10
dimensional regression model specified by

y = 10sin(rz122) + 20(z3 — 0.5)% + 1024 + 5x5 + € (5.1)

where Xy,.., X179 ~ U(0,1) and € ~ N(0,1). This data is used for two purposes,
first we want to examine if variable selection procedure 4.1 is capable to differentiate
the truly informative variables from the noise variables in a non-linear setting, and
secondly to present the random forest partial dependency plot as a means exploring
relationships between the target and predictor variables.

Waveform data

The data is obtained from the UCI machine learning repository [40] and consists of
a simulated 40 dimensional classification data set with 5000 examples. Each class
is generated from a combination of 2 or 3 base waves. The latter 19 variables are
all noise with mean 0 and variance 1. More or less all informative variables have
previously been identified using the random forest VIM by Verikas et al. [57], by
visual inspection of the importances. However the authors states that there are
4 informative predictors with variable importance measures that are hard to dis-
tinguish from importances obtained from noise variables. The goal is to identify
all truly informative predictors using the variable selection procedure presented in
section 4.1. Furthermore the robustness of the variable importance is investigated
by adjoining the Waveform data with categorical noise variables.

Waveform noise data
This data consists of the original waveform data described above adjoined with 7

categorical noise variables. The 7 variables contains 3,5,8,9,10,12 and 15 number
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of categories, where each category equally likely. This data is used to assess the
robustness of the variable selection procedure 4.1 when the data contains categorical
noise.

Adult data

The data is collected by Barry Becker from the 1994 Census data base and is ob-
tained from the UCI machine learning repository [4]. The data consists of 45222
number of cases and is downloaded as a training and test set. The number of training
cases equals 30162 and the number of test cases is 15060. The predicting variables
consists of (1) age, (2) workclass, (3) fnlwgt, (4) education, (5) education-num, (6)
marital-status, (7) occupation, (8) relationship, (9) race, (10) sex, (11) capital-gain,
(12) capital-loss, (13) hours-per-week, and (14) native-country.

The purpose of the data is to predict whether income exceeds $50K/y based on
census data.

5.2 Selection of variables

All experiments are conducted using the procedure specified in section 4.1. The
first step from the procedure consists of optimizing the two parameters mtry and
ntree over a randomly selected training set D; with respect to the OOB error,
the calculations are averaged over 40 iterations. Using the optimized parameters
together with the associated variable importance measures, the second step consists
of greedily including predictors into the final model where the predictors are or-
dered by decreasing variable importance measure. The final model is chosen as the
least complex model, and where the model also obtains the smallest OOB error over
randomly chosen training data Dy (disjoint from D). Lastly we evaluate the final
model and compare it to a random forest model trained using all predictors. Both
models are trained on D; and Do, and evaluated on separate testing data Diegt.
For all experiments the sizes for the 3 randomly chosen partitions D1, Dy and Diest
are 0.8aN, 0.8(1 — a)N and 0.2N with ¢ = 0.6 and N denoting the number of
observations for each data set.

Freidmanl data

The parameter mtree and ntree are chosen by minimizing the OOB errors over 40
RF models illustrated in figure 5.1. The error rates are quite stable for ntree €
{500, 1500, 2500}, with a slightly smaller error range for ntree > 1500. The pa-
rameter controlling the number of variables available at each data partitioning mtry
provides a reasonable error rate at its default value [/10] = 3, the error decreases
by increasing mtry > 3, and starts to slightly increase for mtry > 6.

By the permutation VIM shown in figure 5.2 it is noted that the VIM over the
important variables V1 up to V5 is clearly distinguished from the VIM over the
non-relevant variables V6 up to V10. The variable importance measures showed
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Figure 5.1: OOB errors computed by 40 RFs for the Freidmanl data. The default
value for mtry is marked by a vertical line.

similar results for all values of mtry, results which are not illustrated in the this
report. The gini importance measure showed similar results with respect to the
relative order for the VIMSs, however the measure did not approach zero for the
non-important variables, but instead stagnated at a value around 240 compared to
a VIM of 490 for variable V'3, which was the smallest importance measure obtained
over the truly relevant predictors.

The important variables are clearly distinguished from the non-important variables
by the variable importance measures. However this feature is not always observed
e.g. the Waveform data examined in the work by Verikas et al. [57]. To further fa-
cilitate the differentiation of informative from non-informative predictors the greedy
OBB error sequence is investigated. The error sequence by inclusion of the & most
important variables for k = 1,2, .., 10 is illustrated in figure 5.3. The smallest OOB
error is obtained by including the 5 most important variables.

The top included predictors V'1 up to V5 suggested by the VIMs in combination by
sequence of OOB errors are precisely those predictors that are related to the target

variable by the generation process (5.1).

The random forest partial dependency plot is useful to further explore relation-
ships between the target and the predictor variables. The partial dependency plot
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Figure 5.2: Permutation VIM computed by 40 RF's for the Friedmanl data.
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Figure 5.3: Sequence of OOB errors for the Friedmanl data computed by 10 RFs
with inclusion of 1 — 10 predicting variables.
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for the selected variables V'1 up to V5 is illustrated in figure 5.4. From the figure the
linearity governing two predictors V4 and V5 is evident, as well as the non-linearity
of variable V'3, with a minimum at 0.5.

Under the assumption that the data is generated by an additive model we can
further explore the relation between the target and predictor variables by illustrat-
ing y — (k:4V4 + k:5V5) against variables V1,V3 and V5. The slopes k4 and ks are
estimated to ks ~ 9.61 and k5 ~ 3.67 by the partial dependency plot 5.4, where the
latter figure shows a clear squared relationship with respect to variable V3.

Figure 5.4: Random forest partial dependency plot over the Friedmanl data.

An illustration of y and of (y — k4V4 — ksV’5) versus the variables V1,V3 and
V4 are shown in figures 5.5 and 5.6.

Waveform data

The parameter mtree and ntree are chosen by minimizing the OOB errors over 40
RF models illustrated in figure 5.7. The error rates are, as in the freidmanl data,
quite stable for ntree € {500, 1500,2500} and with a slightly smaller error range
for ntree > 1500. The parameter controlling the number of variables available at
each data partitioning mtry provides a shared minimum error rate at its default
value | /40| = 6 together with the value mtry = 3.

The associated permutation variable importance measures are shown in figure 5.8.
From the figure it is observed that all truly important variables are included except
variable V'1 and V21 by the first 20 largest importances. The work by Verikas et al.
[57] observed that the VIMs for variables < 1,2,20,21 > had almost equivalent
values as the VIMs over the noise variables.
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Figure 5.5: y as a function over 3 predictors for the Freidmanl data.
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Figure 5.6: y—9.61V4 —3.67V'5 as a function over 3 predictors for the Freidmanl
data. The slopes are estimated by random forest partial dependency plots.
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Figure 5.7: OOB errors computed by 40 RF's for the Waveform data. The default
value for mtry is marked by a vertical line.
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Figure 5.8: Permutation VIM computed by 40 RF's for the Waveform data.
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The zero approaching VIMs is more easily observed illustrated in figure 5.9. It
is observed that the ordered sequence of VIMs are deemed zero for variables or-
dered after the first 26 variables, and that the 27th variable is a truly important
variable, albeit with zero importance measure. Similar VIMs were observed by the
gini importance measure. However the gini measure using mtry = 3 did provide a
greater distinguish for variables < 2,20 >, but the measures are generally harder
to distinguish from noise.

mtry =3

ntree
_ 500
> 00005- ° ¢ . 2 £3 1500
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o o = w v ® 9 ¥
] 3 3 8 8 3 a & 8
2 = 5 = = =2

- va;iabl:
Figure 5.9: Zoomed subset of 14 zero approaching permutation VIM from figure
5.8.

The sequence of OOB errors used for variable selection are shown in figure 5.10.
Recall that the variable importance measures previously shown in figure 5.9 do only
allow inclusion of a sequence with a maximal length of 26. From the figure illustrat-
ing the OOB errors we observe that the minimal OOB error is obtained by k = 27
number of included variables. Notably that is exactly when the truly important
variable V21 is included in the model. A more reliable procedure is to terminate
the OOB error sequence in a mean sense. The minimal OOB error is obtained for
k = 25 number of included variables. The final model obtained by the variable
selection procedure 4.1 includes all informative variables except variable V1 and
V21 and there are 6 included predictors which actually are random noise variables.

Noisy Waveform data

This data investigates how the VIMs alters when the Waveform data is adjoined
with categorical noise variables. The optimal values for the parameter mtry shows
a similar relationship as observed for the Waveform data. The OOB errors are il-
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Figure 5.10: Sequence of OOB errors for the Waveform data computed by 10 RFs
with inclusion of 14 — 31 predicting variables.

lustrated in figure 5.11, with minimal OOB errors for mtry = 3 and for mitry = 6.
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Figure 5.11: OOB errors computed by 40 RFs for the Waveform noise data. The
default value for mtry is marked by a vertical line.

From the permutation VIMs shown in figure 5.12 we note that there are 5 cate-
gorical noise variables with a higher variable importance measure than the VIM
obtained for the truly relevant variable V21.
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Figure 5.12: Permutation VIM computed by 40 RF's for the Waveform noise data.

The zero approaching measure are shown in figure 5.13 and there are a total of
30 non-zero important variables available for inclusion. Notably the top 19 pre-
dictors ordered by decreasing variables importance measure are equal and equally
ordered for both the noise free and the noise Wave form data. However the two
variables V8 and V14 are interchanged with respect to their variable importance
measure.

The greedy sequence of OOB errors is shown in figure 5.14. In a mean sense the
optimal number of predictors to include in the final model are k = 26. The final
model includes all important variables except variable V1 and V21. The model
contains 7 noise variables and where 3 noise variables are due to the adjoined cat-
egorical noise. The gini VIMs, not illustrated in this report, are highly non-robust
with respect to the imputed noise. The random forest variable importance assigned
a higher importance measure to 5 of the categorical noise variables than to the two
truly important variables V20 and V2.

Adult data

This data consists of real census data obtained from the UCI machine learning repos-
itory [40]. The parameter mtree and ntree which minimizes the OOB errors are
illustrated in figure 5.15. The error rates are stable for ntree € {500, 1500, 2500}
and with a smaller error range for ntree > 1500, especially for small values for
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Figure 5.13: Zoomed subset of 14 zero approaching permutation VIM from figure
5.12.
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Figure 5.14: Sequence of OOB errors for the Waveform noise data computed by 10
RFs with inclusion of 14 — 38 predicting variables.
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mtry. The parameter mtry provides a distinct minimum at the default value
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Figure 5.15: OOB errors computed by 40 RFs for the Adult data. The default value
for mtry is marked by a vertical line.

The associated permutation VIMs illustrated in figure 5.16 implies a potential exclu-
sion of the two variables V14 and V'3, which corresponds to variables native-country
and final-weight. Simply put, the two variables are weights used to produce accurate
population estimates for the various items covered in the regular monthly Current
Population Survey.

The sequence of OOB for the Adult data are shown in figure 5.17 with a mini-
mum for £ = 9 number of included variables, and where 10 included variables also
provides a reasonably small OOB error. The 5 least important variables, ordered
by decreasing importance, corresponds to workclass, sex, race, fnlwgy and native-
country. By including variables based on the computed VIMs either 2 or 3 variables
may be excluded from the final model. Thus by only basing exclusion of variables by
the variable importance measure, the minimum obtained by including 9 variables
would thus be missed. The confusion matrix on test data using default parame-
ter settings and trained using all predictor variables is shown in table 5.2 and the
confusion matrix using optimized parameters trained with the 9 most important
variables is shown in table 5.1. The mean miss-classification errors for both models
are shown in table 5.3.
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Figure 5.16: Permutation VIM computed by 40 RFs for the Adult data.
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Figure 5.17: Sequence of OOB errors for the Adult data computed by 10 RFs with
inclusion of 1 — 14 predicting variables.
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target outcome

predictions < 50K > 50K
< 50K 10535 1383
> 50K 825 2317

Table 5.1: RF predicted values with optimized parameter settings and trained using
the 9 most informative variables.
target outcome

predictions < 50K > 50K
< 50K 11330 2707
> 50K 30 993

Table 5.2: RF predicted values with default parameter settings for the Adult test
data.

Default parameters Optimized parameters
prediction error ’ 0.1821 ‘ 0.1456 ‘

Table 5.3: Mean RF classification errors over b iterations on the Adult test data.

5.3 Discussion

This work further strengthens the capacity of the random forest variable impor-
tance measures as a means to identify informative variables in both supervised
classification-and regression settings. The permutation importance measure is shown
capable differentiating informative variables from noise variables in a non-linear
settings and where shown successful identifying all informative variables in the 10
dimensional non-linear Friedmanl data. The greedy sequence of OOB errors fur-
ther provides a distinct minimum exactly when the 5 truly informative variables
are included. The partial dependency plot used in combination with residual plots
are shown useful investigating the underlying structure in the non-linear Friedmanl
data, specifically both linear and squared contributions are identified and estimated
by the partial dependency plot. Further the order of the importance measures ob-
tained from the data are sensible with respect to the generated data.

Notably the importance measures used in combination with greedy inclusion of
the top most important variables are shown capable identifying 19 out of all 21
informative variables in the 40 dimensional Waveform data, a task which has pre-
viously proven difficult [55, 56]. Choosing variables for inclusion merely based on
the variable importance measures did not provide a clear distinction between the
informative-and non-informative variables. The importance measure guided se-
quence of OOB errors provided a minimum, in a mean sense, when the top 25
important predictors are included in the model. However the permutation impor-
tances, shown in figure 5.9, are zero after the 27:th most important variable. Thus
by combining the importance measures and the greedy OOB error sequence two
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more non-informative variables are excluded from the final model. Further the per-
mutation importance measures are shown robust when presented with categorical
noise variables and the importance measure respects the relative order over the in-
formative variables to a large extent, there are however two variables whose order
where interchanged, this property is albeit in need of further validation. The gini
importance measure are however observed to inaccurately order categorical noise
variables as more informative than truly informative predictors, an observation not
presented in this report. The final model includes a total of 25 variables, where 21
variables are truly informative and 4 variables are noise with respect to the target
variable. The number of included variables in the final model are reduced by 62.5%.

The permutation importance measure applied are also shown useful when applied
to the real census data, at least with respect to prediction accuracy. The measures
computed over the census Adult data deems 2 or 3 variables as non-informative.
The OOB error sequence however suggests further exclusion of variables, a distinct
minimum is obtained by excluding the 6 least important variables. The mean miss-
classification error for the optimized random forest model equals 0.1456 and is equal
to 0.1821 for a random forest model using default parameter settings. When inves-
tigating real data it is hard to assess the validity of the importance measure with
respect to identifying truly informative predictors. From the 3 simulation trials the
information obtained by the importance measures and the information obtained
by the greedy sequence of OOB errors are used in a combination for assessing in-
formative variables, the included predictor variables are further validated as truly
informative with respect to the target variable. However with respect to prediction
accuracy the total error when excluding the 6 least important variables is decreased
by 25.01%.

Lastly the greedy OOB sequence of errors computed from the noisy circle data,
illustrated in figure A.7, showed that the errors further decreased when two non-
informative variables where included in the model. Thus it is only when the im-
portance measures are combined with the greedy sequence of errors that only truly
informative variables are selected by the variable selection procedure 4.1. However
the reliability of the variable selection procedure needs to be validated on additional
data.
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Chapter 6

Future Work

The random forest model is not yet fully understood from a theoretical perspective
and further work is needed before the mechanics underlying the variable importance
measures are fully understood. Yet the variable importance measures is proven use-
ful analyzing a variety of data. Previous work presented in the background section
2 investigates and describes certain properties regarding the variable importance
measures, such as correlated settings [18, 3, 15, 51, 20], and data containing missing
values [23]. These simulation studies could be extended by additional simulation
trials designed to analyze certain relations between the target and predictor vari-
ables. E.g. additional non-linear settings could be investigated, data with strong
predictor interactions and examining data with categorical informative variables,
perhaps by changing the overall distributional setting such as in mixture models.
Further it would be interesting to analyze boundary situations which balances cases
when the importance measures are proven reliable from cases where the importance
measure displays undesired properties. This information is useful not only to learn
the nature of the random forest variable importance measure but also for identify-
ing cases when there is a need of additional variable selection techniques used to
differentiate informative from non-informative variables.

It would be useful to form benchmark data designed by properties regarding the
predictor variables such as, correlations, missing-values, and skew ranges of val-
ues, together with various degrees of non-linearity between the target and predictor
variables, and varying importance relations. Onto this benchmark data a variety of
variable selection techniques could be tested. Comparing the performance of each
technique to the different simulations may facilitate understanding of the whens
and whys governing the variable selection techniques. This may further improve
the communication between various variable selection techniques, especially those
techniques where the measures are yet not fully understood from an analytic per-
spective.

When the main concern is maximizing prediction accuracy a suggestion for further
improvements, more formally specified in [18], is by forward selection or backward
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elimination applied after the variable selection procedure. Inclusion or exclusion
of variables are executed when the decrease in OOB error exceed a user defined
threshold, or preferably by visual inspection of how the OOB error relates to inclu-
sion or exclusion of variables. The number of included variables after the variable
selection procedure are approximately reduced by 50,63,55 and 64 percent. The
first variable selection procedure can be seen as a filter technique which reduces the
number of predictor variables before applying a wrapper method such as forward
selection or backward elimination.

Note that the computational effort is greatly reduced compared to applying a wrap-
per method to the full data since the variable importance measures are computed
only once at the filtering step. Another heuristic designed to guide removal of vari-
ables could be formed by computing the variable importance measures repeatedly
after each variable is removed from the model. E.g. the importance measures could
be computed on the model, with k variables included, resulting from the variable
selection procedure 4.1. The variable with smallest variable importance is then re-
peatedly excluded from the model. This modification reduces the computational
burden compared to backward elimination since at e.g. the first iteration there
is only 1 candidate compared to k candidate variables considered for removal. It
would be interesting to apply these variable selection techniques as a pre-processing
step before training another classifier e.g. the SVM or the k-NN classifier on the
reduced data.
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Appendix A

Introduction to terminology and search
of important variables

A.1 Supervised learning

Let D = {(X;,Y;)}; be a data set consisting of input variables X; commonly called
features or predictor variables. For each tuple of predictor variables X; there is an
associated outcome Y; called target variable. The field of Supervised learning works
on the problem of learning a predictor function f that generalizes, that is given a
not previously observed input variable the model should return a reasonable out-
come.

The nature of the predictor function f can grouped into two different settings called
regression and classification which are specified by the nature of the target variable
Y. In a regression framework the associated outcomes spans a range of continuous
values and so should the outcomes of the learned predictor function. Whereas in a
classification setting the target variable ranges over a set of categories and there is
no natural distance between different categories.

Further the model governing the predictor function can generally be grouped as
a parametric, semi-parametric, or a non-parametric model. An example of a para-
metric model, with p predictor variables, is the linear regression model

A

YV = f(X)=Fo+ X1+ . + Bp X, (A1)

Parametric models generally have the advantage that they are easy to interpret.
The relationship between the target variable Y and the predicting variables X is
easily understood from the parameter estimates B and the relation between Y and
X is specified as a closed form expression. However parametric models may be
misspecified meaning that there is a mismatch between the specified model and the
nature of the data. Which in turn may lead to poor prediction performance and
unreliable parameter estimates. The latter error is a so called bias error, the learned
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predictor is forced e.g. to use only linear combinations of the predictor variables,
and in some cases this bias will be a too strict assumption.

Non-parametric models are generally more flexible and can model non-linear re-
lationships more accurately, the models may on the other hand lack a clear inter-
pretation between the predictor variables and the target variable. The latter type
of models where there is no clear interpretation between the predictors X and the
target variable Y are called black box models.

An example of a non-parametric model which provides a measure of importance be-
tween the predicting variables and the target variable is the Random Forest model.
An illustration of the random forest model trained on two dimensional data, where
the first predictor X is continuous and the second Xs is categorical with two cat-

egories, is shown in figure A.1.
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Figure A.1: Random forest predictions trained on data generated from a non-linear
function. The circle and triangles marks the test points and the solid dots marks

the corresponding predictions.

A.2 Relation between the target and predictor variables

In many supervised learning problems the objective is not merely to learn a predictor
with high accuracy but one would also want to know which predictor variables
that relates to the target variable. This information can be used to remove non-
informative variables which in turn may reduce the risk of overfitting i.e. reduce
the risk that the learned model describes random error instead of the underlying
model.

The parametric linear regression model specified in section A.1 provides a clear
relationship between the predictor and target variable and is commonly used as a
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starting model. In settings when the target variable is categorical a commonly used
parametric model is the logistic regression model. If the target variable Y ranges
over two labels {0, 1} the model is defined by

€xXp Zi:o BiX;

P(Y; = 1|X;, 8) =
(’L ‘ Z)/B) 1+expzl:0ﬁle7

The parameters § are learned from the data by minimizing the log-likelihood, that
is finding values for § which minimizes the probability logp(Y1,..,Y,|X, 3). The
parameters that solves the latter equation are those that maximizes the probability
of observing the data at hand {(Y;, X;)}; under the assumption that the data is
generated from the logistic regression model.

Further the logistic regression model have a clear interpretation between the pre-
dictors X and the target variable Y given by the log-odds

P
1—-p

logit(p) = log =Bo+ B X1+ ...+ BpXp (A.3)

when the variable X; increases by one unit the predicted odds increases by e, all
other variables kept fixed.

An example where the logistic regression model is learned on a 20 dimensional data
set, describing a noisy circle in the two variables X; and Xs generated by,

: 2 2 <
Y:{1 if X2+ X3 +e<t A

0 else

Where {X;}1%; ~ N(0,1) and {X;110}12; ~ Mu(i)!. The generated data together
with the predictions from the trained logistic regression model is shown in figure
A.2. The estimated coefficients for the predictors Xg, Xg and X1g are all significant
at levels of 0.001,0.01 and 0.01.

As seen in the figure the predictions are not reasonable and this example illustrates
a model that is miss-specified. The estimated parameter coefficients together with
the distribution of the relevant predictor X; and the non-relevant predictors Xg
and X19 are shown in figure A.3. When performing multiple comparisons it is often
recommended to make some sort of adjustment to the p-values [44], after applying
the Bonferroni adjustment?® all parameter estimates are non-significant.

The logistic regression model specified by (A.2) classifies points X as label 1 if
p > 1/2 and otherwise as label 0. Where p is given by (A.2)

expﬁA‘X

p=p(Y =1|X,8)= ———" .
( | ) l+expf-X

(A.5)

'"Mu(i) denotes the multinomial distribution e.g. p(X=k) = 1/(i+1), k < i.
2The Bonferroni adjustment controls the familywise error rate, that is the probability of rejecting
at least one true null hypothesis.
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label

pred

Figure A.2: Flirst row: 20 dimensional training data generated by (A.4).
Second row: Logistic regression predictions on the above training data.

By equation (A.5) the decision boundary which separates the two categories is spec-
ified by the hyperplane {X : B - X = 0}. Thus the poor performance given by the
logistic regression model fitted on the noisy circle data (A.2) is expected due to the
linear decision boundary. A solution handling this miss-specification problem is to
adjoin the data by the two features Xo; = X? and X2, = X2 which will improve
the separability of the data i.e. the two adjoined predictors facilitates separating
the points with label 1 from those with label 2. In general when accounting for all
squared terms in a n dimensional learning problem the dimensionality is increased
by n. Accounting for all interaction terms X’ = X; Xy, (i # k) the dimensionality
will further increase by () = n(n — 1)/2. In total when accounting for all squared
and all interactions terms in a 20 dimensional learning problem the dimensionality
will increase by 210.

Training a logistic regression model on the noisy circle data generated by (A.4)
adjoined by the two squared features provides two significant parameter estimates
Bo1 and (99 which are the coefficients associated with X 12 and X22, when using the
Bonferroni adjustment. With levels of 0.001 and all other parameter estimates are
non-significant. The predictions and the training data for the logistic regression

46



A.2. RELATION BETWEEN THE TARGET AND PREDICTOR VARIABLES

50 -

40 -

10-

2 0 2
X6

60 -

count
N
S

n
=3
'

coefficient
o o
° o
V |
[
|
I
- [ |
I
|
||
[
I
[
[

01234567829 X X X X X X X X X
X19 vars

Figure A.3: First 3 figures, top left to bottom right, illustrates the distribution of 3
out of 10 features generated by (A.4)

Bottom left figure shows the estimated coefficients by the logistic regression model.
The estimated coefficients B¢, Bs, Bo2 are significant with levels of 0.001,0.01,0.01.
Adjusting for multiple comparisons by the Bonferroni correction all estimates are
non-significant.

model are shown in figure A .4.

Mentioned in section A.l parametric models generally are easier to interpret com-
pared to non-parametric models but may on the other hand be miss-specified as illus-
trated in figure A.2. The non-parametric random forest model previously learned
on the non-linear data illustrated in figure A.1 is also applicable in classification
settings. Predictions by the random forest model learned on the noisy circle data,
not adjoined by squared features, is illustrated in figure A.5. The random forest
model also provides a measure of importance which measures the importance of the
predictors modeling the target variable under the trained model. The measure of
importances are shown in figure A.6.
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Figure A.4: First row: Training data generated by (A.4)
Second row: Associated predictions using a logistic regression model when adjoining
the data by two additional features Xo1 = X12 and Xog = X22.
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Figure A.5: First row: 20 dimensional training data generated by (A.4).
Second row: Random forest predictions on the above training data.
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Figure A.6: Permutation importance measures computed by 10 RFs learned on the
data illustrated in figure A.5. Only the two predictors X1 and Xo are informative
modeling the target variable.
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Figure A.7:  Sequence of OOB errors computed by including k wvariables for
k =1,..,20 ordered by decreasing permutation variable importance measure. This
sequence guides the variable selection procedure specified in chapter 4.
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