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A unifying view for performance measures in multi-class prediction
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Abstract

In the last few years, many different performance measures have been introduced to overcome the weakness of the most natural
metric, the Accuracy. Among them, Matthews Correlation Coefficient has recently gained popularity among researchers notonly
in machine learning but also in several application fields such as bioinformatics. Nonetheless, further novel functions are being
proposed in literature. We show that Confusion Entropy, a recently introduced classifier performance measure for multi-class
problems, has a strong (monotone) relation with the multi-class generalization of a classical metric, the Matthews Correlation
Coefficient. Computational evidence in support of the claim is provided, together with an outline of the theoretical explanation.
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1. Introduction

One of the major task in machine learning is the com-
parison of classifiers’ performance. This comparison can be
carried out either by means of statistical tests (Demšar, 2006;
Garcı́a & Herrera, 2008) or using a performance measure as
an indicator to derive similarities and differences. For binary
problems, a number of meaningful metrics are available and
their properties are well understood. On the other hand, the
definition of performance measures in the context of multi-
class classification is still an open research topic, although
several functions have been proposed in the last few years:
see (Sokolova & Lapalme, 2009; Ferri et al., 2009) for two
comparing reviews, (Felkin, 2007) for a discussion of the
differences between the use of the same classifier on a binary
and a multi-class task and (Diri & Albayrak, 2008) for an
alternative graphical comparison approach. As an example,
one of the most important measures for binary classifier,
the Area Under the Curve (AUC) (Hanley & McNeil, 1982;
Bradley, 1997) associated to the Receiver Operating Charac-
teristic curve has no automatic extension to the multi-class
case. Although an agreed reasonably average-based build
extension exists (presented in (Hand & Till, 2001)), several
alternative formulations are being presented, either based on a
multi-class ROC approximation (Everson & Fieldsend, 2006;
Landgrebe & Duin, 2005, 2006, 2008)) or by viewing the
ROC as a surface whose volume (Volume Under the Surface,
VUS) has to be computed (by exact integration or polynomial
approximation) as in (Ferri et al., 2003; Van Calster et al.,
2008; Li, 2009). Other measures are more naturally defined,
starting from the accuracy (ACC,i.e. the fraction of correctly
predicted samples) and the similar Global Performance Index
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(Freitas et al., 2007a,b)), to the Matthews correlation coeffi-
cient (MCC). This latter function was introduced in (Matthews,
1975) and it is also known as theφ-coefficient, corresponding
for a 2× 2 contingency table to the square root of the average
χ2 statistic

√

χ2/n. MCC has recently attracted the attention of
the machine learning community (Baldi et al., 2000) as one of
the best method to summarize into a single value the confusion
matrix of a binary classification task. Its use as one of the pre-
ferred classifier performance measure as increased since then,
and for instance it has been chosen (together with AUC) as the
elective metric in the US FDA-led initiative MAQC-II aimed
at reaching consensus on the best practices for development
and validation of predictive models based on microarray gene
expression and genotyping data for personalized medicine
(The MicroArray Quality Control (MAQC) Consortium,
2010). A generalization to the multi-class case was defined
in (Gorodkin, 2004), later used also for comparing network
topologies (Supper et al., 2007; Stokic et al., 2009). Finally,
another interesting set of measures that have a natural definition
for multi-class confusion matrices consists of the functions
derived from the concept of (information) entropy, first intro-
duced by Shannon in his famous paper (Shannon, 1948). Many
measure have been defined in the classification framework
based on the entropy function, from simpler ones such as the
confusion matrix entropy (van Son, 1994), to more complex
expressions as the transmitter information (Abramson, 1963)
or the relative classifier information (RCI) (Sindhwani et al.,
2001). A novel multi-class measure belonging to this set
has been recently introduced under the name of Confusion
Entropy (CEN) by Wei and colleagues in (Wei et al., 2010a,b):
in this work, the authors compare their measure to RCI and
accuracy, and they prove CEN to be superior in discriminative
power and precision to both alternatives in terms of two
statistical indicator called degree of consistency and degree of
discriminacy, defined in (Huang & Ling, 2005).
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In the present work we investigate the similarity between
Confusion Entropy and Matthews correlation coefficient. In
particular, we experimentally show that the two measures are
strongly correlated, and their relation is globally monotone and
locally almost linear. Moreover, we provide a brief outlineof
the mathematical links between CEN and MCC.

2. Confusion Entropy and Matthews Correlation Coeffi-
cient

Given a classification problem onS samplesS = {si : 1 ≤
i ≤ S } and N classes{1, . . . ,N}, define the two functions
tc, pc: S → {1, . . . ,N} indicating for each samples its true
class tc(s) and its predicted class pc(s), respectively. The cor-
responding confusion matrix is the square matrixC ∈ M(N ×
N,N) whosei j-th entryCi j is the number of elements of true
classi that have been assigned to classj by the classifier:

Ci j = |{s ∈ S : tc(s) = i and pc(s) = j}| .

The most natural performance measure is the accuracy, defined
as the ratio of the correctly classified samples over all the sam-
ples:

ACC =

N
∑

k=1

Ckk

S
=

N
∑

k=1

Ckk

N
∑

i, j=1

Ci j

.

In information theory, the entropyH associated to a random
variableX is the expected value of the self-informationI of X:

H(X) = E(I(X)) =
∑

x∈X
hb(x) = −

∑

x∈X
p(x) logb(p(x)) ,

where p(x) is the probability mass function ofX, with the
position hb(x) = 0 for p(x) = 0, motivated by the limit
lim
x→0

x log(x) = 0.

The Confusion Entropy measure CEN for a confusion matrix
C is defined in (Wei et al., 2010a) as:

CEN=
N

∑

j=1

P j

N
∑

k=1
k, j

h2(N−1)(P
j
jk) + h2(N−1)(P

j
k j) , (1)

where the misclassification probabilitesP are defined as the fol-
lowing ratios:

P j
i j =

Ci j

N
∑

k=1

C jk + Ck j

Pi
ii = 0

Pi
i j =

Ci j

N
∑

k=1

Cik +Cki

P j =

N
∑

k=1

C jk +Ck j

2
N

∑

k,l=1

Ckl

.

This measure ranges between 0 (perfect classification) and 1for
the extreme misclassification caseCi j = (1− δi j)F, for F ∈ N

(this holds forN > 2, while it is not true anymore forN = 2,
see Subsec.2.1).

Let X, Y ∈ M(S × N,F2) be two matrices whereXsn = 1 if
the samples is predicted to of classn (pc(s) = n) andXsn = 0
otherwise, andYsn = 1 if samples belongs to classn (tc(s) = n)
and 0 otherwise. Using Kronecker’s delta function, the defini-
tion becomes:

X =
(

δpc(s),n

)

sn
Y =

(

δtc(s),n
)

sn .

Then the Matthews Correlation Coefficient MCC can be defined
as the ratio:

MCC =
cov(X, Y)

√
cov(X, X) · cov(Y, Y)

,

where cov(·, ·) is the covariance function. In terms of the con-
fusion matrix, the above equation can be written as:

MCC =

N
∑

k,l,m=1

CkkCml − ClkCkm

√
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(2)
MCC lives in the range [−1, 1], where 1 is perfect classification,
−1 is reached in the alternative extreme misclassification case
of a confusion matrix with all zeros but in two symmetric en-
triesCī, j̄, C j̄,ī, and 0 when the confusion matrix is all zeros but
for one single column (all samples have been classified to be of
a classk), or when all entries are equalCi j = K ∈ N. In this
last case, the Confusion Entropy value is

(

1− 1
N

)

log2N−2 2N;
when only a single column is not zero, the Confusion Entropy
can assume many different values, depending on this column’s
entries. Note that both measures are invariant for scalar multi-
plication of the whole confusion matrix.

CEN is indeed more discriminant than MCC in some sit-
uations, for instance when MCC= 0 as mentioned above,
or when the number of samples is relatively small and thus
it more likely to have different confusion matrices with the
same MCC and different CEN. This can be quantitatively as-
sessed by using the degree of discrimination introduced in
(Huang & Ling, 2005): for two measuresf andg on a domain
Ψ, let P = {(a, b) ∈ Ψ × Ψ : f (a) > f (b), g(a) = g(b)} and
Q = {(a, b) ∈ Ψ × Ψ : f (a) = f (b), g(a) > g(b)}; then the
degree of discriminancy forf over g is |P|/|Q|. For instance,
in the 3-classes case with 2, 4, 3 samples respectively, the de-
gree of discriminancy of CEN over MCC is about 6. A similar
behaviour happens for all the 12 small sample size cases on
three classes listed in (Wei et al., 2010a, Tab. 6), ranging from
9 to 19 samples. In the same paper (Huang & Ling, 2005),
another indicator for comparing distances is defined, the de-
gree of consistency: for two measuresf and g on a domain
Ψ, let R = {(a, b) ∈ Ψ × Ψ : f (a) > f (b), g(a) > g(b)} and
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S = {(a, b) ∈ Ψ ×Ψ : f (a) > f (b), g(a) < g(b)}; then the degree
of consistency off andg is |R|/(|R|+ |S |).

A quite different behaviour between the two measures can be
highlighted in the following situation: consider the matrix ZA

with all entries are equal but a non-diagonal one; because ofthe
multiplicative invariance, we can set all entries to one butfor the
one in the leftmost lower corner: (ZA)i j = 1+ δ(i, j),(N,1)(A − 1)
for A ≥ 1 a positive integer. WhenA grows bigger, more and
more samples are misclassified: for instance, the corresponding
accuracy reads ACC(ZA) = N/(N2

+ A − 1), thus decreasing
towards zero for increasingA.

The MCC measure of this confusion matrix is

MCC(ZA) = − A − 1
(N − 1)(N2 − 2A − 2)

,

which is a function monotonically decreasing for increasing
values ofA, with limit −1/(N − 1) for A → ∞. On the other
hand, the Confusion Entropy for the same family of matrices is

CEN(ZA) =
1

N2 + A − 1
[

(N − 2)(N − 1) log2N−2(2N)

+(2N + A − 3) log2N−2(2N + A − 1)− A log2N−2(A)
]

,

which is a decreasing function of increasingA, asymptotically
moving towards zero, i.e., the minimal entropy case. Thus in
this case, the behaviour of the Confusion Entropy is the oppo-
site than the one of more classical measures such as MCC and
accuracy.

Analogously for the case of (perfectly) random classification
on a unbalanced problem: because of the multiplicative invari-
ance of the measures, we can assume that the confusion matrix
for this case has all entries equal to one but for the last row,
whose entries are allA, for A ≥ 1. In this case, the Confusion
Entropy is

CEN=
N − 1

2N(N + A − 1)
[

(2N + A − 3) log2N−2(2N + A − 1)

−2A log2N−2 A + (A + 1) log2N−2(N + NA + A − 1)
]

,

which is a decreasing function for growingA whose limit for
A→ ∞ is N−1

2N log2N−2 N + 1 (as a function ofN, this limit is an
increasing function asymptotically growing towards 1/2).

One of the main features of the MCC measure is the fact
that MCC=0 identifies all those case where random classifica-
tion (i.e., no learning) happens: this is lost in the case of CEN,
due to its greater discriminant power - there is no unique value
associated to the wide spectrum of random classification.

Consider now the confusion matrixB of dimensionN where
B ji = F + (T − F)δi j, i.e. all entries have valueF but in the
diagonal whose values are allT , for T , F two integers. In this
case,

MCC =
T 2
+ (N − 2)T F − (N − 1)F2

[T + (N − 1)F]2

CEN=
(N − 1)F

T + (N − 1)F
log2N−2

2[T + (N − 1)F]
F

,

and thus

CEN= (1−MCC)

(

1+ log2N−2
T + (N − 1)F

(N − 1)F

) (

1− 1
N

)

.

This identity can be relaxed to the following generalization,
which is a slight underestimate of the true CEN value:

CEN≃ 1
k
· (1−MCC)
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(

1− 1
N

)

≃ 1
k
· (1−MCC)

(

1− log2N−2(1− ACC)
)

(

1− 1
N

)

(3)

where both sides are zero when MCC= ACC = 1, andk =

1.012 ·
(

1+ 0.18924
log(N) −

0.06694
log2(N)

)

. For simplicity sake, we call the

right member of Eq. 3 transformed MMC, tMCC for short.
To show that the relation in Eq. 3 is valid in a wide range

of situations, an experiment has been performed, whose result
is graphically reported in Fig. 1, In details, 200.000 confusion
matrices in dimensions ranging from 3 to 30 have been gen-
erated with the following setup: the number correctly classi-
fied elements (i.e., the diagonal elements) for each class has
been (uniformly) randomly chosen between 1 and 1000, while
each non-diagonal entry has been chosen as a random inte-
ger between 1 and⌊1000ρi⌋, where the ratioρi for the i-th
matrix Mi was extracted from the uniform distribution in the
range [0.01, 1]. The correlation between tMCC andk·CEN
is 0.9941477 and the degree of consistency is 1− 10−7 (the
degree of discriminancy is undefined since no ties occurred).
In particular, the average ratio between tMMC andk·CEN
is 1.000508, with 95% bootstrap Student confidence interval
(1.000328, 1.000711).

2.1. The binary case

In the binary case of two classes positive (P) and negative
(N), the confusion matrix becomes

(

TP FN
FP TN

)

, whereT and F
stands for true and false respectively.

In this setup, the Matthews correlation coefficient has the fol-
lowing shape:

MCC =
TP · TN − FP· FN

√
(TP+ FP) (TP+ FN) (TN + FP) (TN + FN)

.

Similarly, the Confusion Entropy can be written as:

CEN=
(FN+ FP) log2((TP+ TN + FP+ FN)2 − (TP− TN)2)

2(TP+ TN + FP+ FN)

−
FN log2 FN+ FP log2 FP

TP+ TN + FP+ FN
.

Note that in the case TP= TN = T and FP= FN = F, the
Confusion Entropy reads

CEN=
F

T + F
log2

2(T + F)
F

,
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Figure 1: Plot of CEN versus MCC (left) andk·CEN versus tMCC (right) for 200.000 random confusion matrices. Each dot represents a confusion matrix, and the
color indicates the matrix dimension.

which is bigger than 1 when the ratioT/F is smaller than 1.
This means that all the confusion matrices

( T F
F T

)

with 0 < T <
F have a confusion entropy larger than 1, attained for the totally
misclassified caseT = 0. Such behaviour makes CEN unusable
as a classifier performance measure in the binary case.

3. Conclusions

Accuracy, Matthews Correlation Coefficient and Confusion
Entropy are three crucial performance measures for evaluating
the outcome of a classification task, both on binary and multi-
class problems (the fourth one is Area Under the Curve, when-
ever a ROC curve can be drawn). Although they show a mutual
consistent behaviour, each of them is better tailored to deal with
different situations.

Accuracy is by far the simplest one, and its role is to con-
vey a first rough estimate of the classifier goodness. Its use is
widespread among the scientific literature, but it suffers from
several caveats, the most relevant being the inability to cope
with unbalanced classes and thus the impossibility of distin-
guish among different kinds of misclassifications.

Confusion Entropy, on the other hand, is probably the finest
measure and it shows an extremely high level of discriminancy
even between very similar confusion matrices. However, this
feature is not always welcomed, because it makes the interpre-
tation of its value quite harder, expecially when considering sit-
uations that are naturally very similar (e.g, all the cases with
MCC=0). Moreover, CEN may show erratic behaviour in the
binary case.

In this spirit, the Matthews Correlation Coefficient is a good
compromise between reaching a reasonable discriminancy de-
gree among different cases, and the need for the practitioner of

a easily interpretable value expressing the type of misclassifi-
cation associated to the chosen classifier on the given task.We
showed here that there is a strong linear relation between CEN
and a logarithmic function of MCC regardless of the dimen-
sion of the considered problem. Furthermore, MCC behaviour
is totally consistent also for the binary case.

This given, we can suggest MCC as the best off-the-shelf
evaluating tool for general purpose tasks, while more subtle
measures such as CEN should be reserved for specific topic
where more refined discrimination is crucial.
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