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Abstract—Permutation based variable importance measure
(VIM) has been widely used in various research fields. For
example, in gene expression studies, it has been regarded as a
screening tool to select a subset of relevant genes for subsequent
analysis or better predictive performance. However, little effort
has been devoted to the stability of variable importance
measures. In this paper, margin based permutation variable
importance measures (VIM-MDs) are proposed, which utilize
the similarity between margin distribution before and after
random permutation to evaluate the importance of variables.
Experiments on six benchmark datasets show that the VIM-
MDs outperform permutation based variable importance mea-
sure in terms of both global stability and predictive accuracy,
which indicates that the proposed method could be used as an
effective and stable variable importance measure for random
forest.

Keywords-random forest; variable importance; stable feature
selection;margin distribution

I. INTRODUCTION

In bioinformatics, genomics, and related fields, thousands

of genes are investigated. In genetic data, the number of vari-

ables tremendously surpasses the number of observations,

while not all of the variables are relevant for prediction.

Further, some irrelevant variables have a negative impact on

the model accuracy, so identifying the relevant variables is

a critical task for prediction. Feature selection, also known

as variable selection, is an effective way to rank all features

and identify a subset of relevant genes, which removes the

redundant features and provides a valid feature subset for

prediction. Random forest, owing to its ability to tackle

high-dimensional data and select relevant features, has been

regarded as a screening tool for gene expression studies.

Lunetta et al. [1] found that genetic-relevant variables can

be identified more efficiently by means of random forests

than other screening methods.

Random forest is an ensemble of classification or regres-

sion trees. The data used to build each tree is sampled with-

out replacement from the original training data, and at each

split the candidate variables are a random subset of all the

variables. In order to get low biased trees, each tree grows

fully. At the same time, bagging and randomly splitting

gives rise to low relationship of the individual trees. Random

forest achieves high prediction accuracy even for high-

dimensional data with correlated and redundant features,

which is common in many fields, e.g. gene expression data.

Its inbuilt variable importance measures has been becoming

one of the most frequently-used feature selection methods

in these fields. For example, in genome-wide association

studies (GWAS) random forests are used to detect gene-gene

interactions [1].

Two variable importance measures are widely used, i.e.

permutation importance and Gini importance. Unfortunately,

some studies showed that both importance measures were

biased. Strobl et al. [2] found that Gini importance was

biased towards the categorical variables which had many

distinct values while permutation importance showed a

bias towards correlated variables. To solve these problems,

several unbiased algorithms have been proposed. Strobl et

al. [2] introduced an alternative implementation of random

forest which provides unbiased selection in the individ-

ual classification trees. Strobl et al. [3] developed a new

conditional permutation scheme for the computation of the

variable importance measure. Sophia S.F. Lee et al. [4]

proposed an EM-random forest and new variable importance

measures based on Haseman-Elston quantitative trait linkage

analysis. Andr Altmann et al. [5] introduced a heuristic

to normalize feature importance measures to correct the

variable importance bias in favor of categorical variables

with a large number of categories. Baptiste Gregorutti et
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al. [6] provided some theoretical insights on the effect of

the corrections on the permutation importance measure and

compare recursive and non-recursive approaches through

an extensive simulation study on several classification and

regression tasks to illustrate the efficiency of the recursive

feature elimination (RFE) algorithm for selecting a small

number of variables together with a good prediction error.

However, little effort has been devoted to the stability

of variable importance measures. The stability of a feature

selection algorithm is the robustness of the feature prefer-

ences to changes in training sets, and stability quantifies

how different training sets affect the feature preferences [7].

Alexandros Kalousis et al. [7] firstly proposed a framework

that measures the stability of feature selection algorithms,

and examined three different stability measures and pro-

posed a resampling technique to empirically estimate them.

Recently, the stability of random forest variable importance

measures has attracted attentions to the bioinformatics com-

munity. There are two VIMs from random forest[8] : Mean

Decrease Gini (MDG), the average across the forest of

the decrease in Gini impurity for a variable, and Mean

Decrease Accuracy (MDA), the average across the forest of

the accuracy for the variable minus the decrease in accuracy

after random permutation of the variable. M. Luz Calle and

Vłctor Urrea [9] emphasized the value of exploring ranking

stability of two VIMs and showed that MDA were unstable

to small perturbations of the dataset while MDG provide

more robust results. However, Kristin [10] examined data-

specific characteristics on ranking stability of VIMs and

showed that rankings based on the MDG measure is sensitive

to within-predictor correlation and differences in category

frequencies while MDA is more robust. Wang et al. [11]

introduced a new concept of intrinsic stability of VIMs to

concern the influence of intrinsic randomness in algorithm

design. The goal of this article is to design a more stable

VIM for random forest, which is based on the concept

of margin distribution. Margin is an important concept to

understand the working mechanism of random forest and

other ensemble methods. Leo Breimain [8] defined the

margin of a training example as the proportion of votes

for the correct class minus maximum proportion of votes

for other classes. In this work, we utilize the similarity

between two margin distributions before and after randomly

permuting each variable to measure the variable importance

for each variable. We examine the stability of the proposed

methods (VIM-MDs) in comparison with VIM as well as the

predictive accuracy. We evaluate the stability of both VIM

and VIM-MDs based on the similarity of the rankings and

the selected feature subsets with respect to disturbance in

training set.

This rest of the paper is organized as follows: in Section II

we introduce the variable importance measures and the con-

cept of stable feature selection. In Section III, the proposed

margin based permutation variable importance is presented.

Experiments and discussion are given in section IV. Section

V concludes the paper.

II. RELATED WORK

A. Variable importance measures

1) Gini importance: The average decreases on the Gini

impurity over all splits yields the Gini variable importance

measure (MDG). However, MDG is prone to bias when

categorical predictors have too many distinct values [2] and

it also leads to undesirable feature ranking when handling

imbalanced data [10]. In this paper we mainly focus on the

following permutation based variable importance.
2) Permutation importance: In this paper, the abbrevi-

ation ’VIM’ denotes the permutation based VIM (MDA)

which evaluates the variable importance with mean de-

crease in the OOB (out-of-bag) accuracy of decision

trees caused by random permutation of the variables. Let

{h1, h2, · · · , htree} be an ensemble of decision trees and

OOBi be the out-of-bag examples of i − th tree, the

importance score of the variable m is then defined as:

V IM(m) =
1

ntree∑ntree

i=1

∑
j∈OOBi

I(yi=hi(xj))−
∑

j∈OOBi
I(yi=hi(x

m
j ))

|OOBi|
(1)

where yj is the true label of the example j, hi (xj) and

hi

(
xm
j

)
are the predicted label before and after random

permutation of variable m respectively, and I is the indicator

function.

The reason that Breiman used the mean decrease in OOB

accuracy of decision trees rather than the decrease in OOB

accuracy of the forest may lie in the fact that the former

is more sensitive than the latter when randomly permuting

a variable. In more details, the OOB estimates of random

forest may not change at all when randomly permuting a

variable, especially on the high-dimensional data since there

are lots of correlated variables. However, even MDA may

be unreliable and unstable as a feature selection method

as Strobl et al. [2] pointed out. Using permutation test,

Andr Altmann et al. [5] introduced a heuristic to normalize

feature importance measures to correct the bias in favor of

categorical variables with many categories. Further, M. Luz

Calle and Vłctor Urrea [9] and Kristin [10] also emphasized

the value of exploring ranking stability of two VIMs and

examined the stability of MDA in different situations.

B. Definition of margin

In our previous work [12], we found that the change in

the mean sample margin in random forest when permuting

a variable is more sensitive than the OOB accuracy of

the decision trees, and proposed margin based variable

importance. In this article, we further use the margin distri-

bution to design new permutation importance measure. Let

h1(X), h2(X), · · · , hk(X) be an ensemble of classifiers,
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and with the training set drawn randomly from the distri-

bution of the random vector (X,Y ), the margin function is

defined as:

mg(X,Y ) = avkI(hk(x) = Y )−max
j �=Y

avkI(hk(x) = j)

(2)

where I(•) denotes the indicator function, and avk(•) de-

notes the mean operation [8]. The margin of an instance

is defined as the proportion of votes for the correct class

minus maximum proportion of votes for the other classes.

Thus, positive margin for an instance indicates correct clas-

sification, and vice versa. The larger the margin is, the more

confidence in the classification. The generalization error is

given by

PE∗ = PX,Y (mg(X,Y ) < 0) (3)

C. Stable feature selection

1) The stability issue of feature selection: The stability

of feature selection algorithm is defined as the sensitivity of

feature ranking to changes in the training set [7]. Exploring

the stability aims at demonstrating that the feature ranking is

robust to random disturbance in training sample, and hence

reliable for some feature selection tasks, e.g. biomarker

discovery.

2) The stability measures: Measuring stability needs sim-

ilarity measure for feature preferences. There are three ways

to measure the similarity. The first one is based on the weight

or score which indicates the importance of each feature,

and the second one is based on the ranking which is the

simplification of the first one. The last one is based on

the selected feature subsets where no score or ranking is

considered. We use the latter two methods in this paper.

Let (f1, f2, · · · , fm)be the feature set, a corresponding

ranking vector can be represented as,

R = (r1, r2, ..., rm), 1 ≤ ri ≤ m, ri ∈ N+ (4)

to measure similarity between two ranking vectors ri and

r∗i , we use Spearman’s Rank Correlation Coefficient(SRCC)
assuming that all the ranks are distinct integers [9],

SRCC(R,R∗) = 1− 6

m∑
i

(ri − r∗i )
m(m2 − 1)

(5)

The range of SRCC is [-1,1], where 1 means two ranking

vectors are identical while -1 means they are fully opposed.

Given (f1, f2, · · · , fm), a feature subset vector can be

defined as,

S = (s1, s2, ..., si), 0 < i ≤ m (6)

and we use the Jaccard index [9] and Kuncheva index [13] to

measure similarity between two feature subset vectors with

the same length,

JI(S, S∗) =
|S ∩ S∗|
|S ∪ S∗| (7)

The range of Jaccard index is [0,1], where 0 means two

feature subset vectors are completely different while 1 means

they are identical. And Kuncheva’s index is defined as,

KI(S, S∗) =
|S ∩ S∗|m− k2

k(m− k)
(8)

where k is the size of feature subset.

III. MARGIN BASED PERMUTATION VARIABLE

IMPORTANCE MEASURE

As shown in above section, theoretically, compared with

OOB accuracy, margin plays a more essential role in the

generalization ability of random forest. In our previous

studies[12] the performance of using average margin of

training examples for feature ranking has been investigated.

However, average margin only gives partial statistical in-

formation. In this section we propose to utilize margin

distribution on the training examples to evaluate the feature

importance (VIM-MDs). Specifically, in order to compare to

distributions, we use the widely used Cosine similarity, Pear-
son Correlation Coefficient (PCC) and Spearman’s Rank
Correlation Coefficient (SRCC) respectively to calculate the

similarity between two margin distribution before and after

random permutation of each variable. Obviously, the more

similar the two distribution is, the less important the variable

is.

Let Z = {(x1, y1), · · · , (xn, yn)} be the training set and

f = {h1, h2, · · · , hm} be an ensemble of decision trees,

and M = {m1,m2, · · · ,mn} be the margin vector for

instances in training set. Randomly permute a variable i,
and the corresponding margin vector can be represented as,

M i = {mi
1,m

i
2, ...,m

i
n} (9)

Cosine similarity. VIM-MDI measures similarity between

two margin vectors M and M i with Cosine similarity [14]:

Cosine(M,M i) =
M ·M i

||M ||2||M i||2 =

n∑
j=1

MjM
i
j√

n∑
j=1

M2
j

√
n∑

j=1

M i
j

(10)

where Mj and M i
j are components of vector M and M i

respectively.

Pearson Correlation Coefficient. VIM-MDII measures

similarity between two margin vectors M and M i with

Pearson Correlation Coefficient [9]:

PCC(M,M i) =

∑
j (mj − μM )(mi

j − μi
M )√∑

j (mj − μM )
2 ∑

j (m
i
j − μi

M )
2

(11)

where the μM and μi
M are the mean margins respectively.

It has a value between -1 and 1, where -1 is total negative

linear correlation, 0 is no linear correlation, and 1 is total

positive linear correlation.
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Similarly, VIM-MDIII is implemented using Spearman’s

Rank Correlation Coefficient(SRCC).

The algorithm is described as follows. Given the original

margin vector M = {m1,m2, · · · ,mn}, for a variable i,
1. Randomly permute variable i and get a new training

set, then put the new data down the trees and get a new

margin vector,

M i = {mi
1,m

i
2, ...,m

i
n} (12)

2. Compute the similarity between two margin vectors

before and after permutation, for VIM-MDI,

Si
1 = Cosine(M,M i) (13)

for VIM-MDII,

Si
2 = PCC(M,M i) (14)

for VIM-MDIII,

Si
3 = SRCC(M,M i) (15)

3. Get the importance scores for each variable using VIM-

MDs.

IV. EXPERIMENTS AND RESULTS

A. Datasets

Experiments were conducted on three high dimensional

datasets and three low dimensional datasets. The datasets

used is shown in TABLE I, where n stands for the size

of the datasets, p denotes the number of features, and m
represents the number of classes.

Table I
DATASETS USED IN EXPERIMENTS.

Date sets n p m
Colon 62 2000 2

Leukemia 72 5147 2
Central Nervous System outcome 60 7129 2

p-gene 106 57 2
SPECT-HEART 80 44 2

hearts 267 44 2

B. Experiment design

In order to compare the proposed method with permuta-

tion importance (VIM) in terms of stability and predictive

accuracy, four experiments were conducted. For computing

the variable importance, we use the RF with 500,1000,and

2000 trees respectively in a 10-fold cross-validation setting.
1) Experiment I: In this experiment, our main purpose is

to observe the margin distribution before and after random

permutation of a variable:

1.Get the margin distribution before permutation using the

original data.

2.Permute a variable two times and in each permutation

get a margin distribution.

3.Enumerate all the variables, and repeat the above steps.

2) Experiment II: In this experiment, we compare the

sensitivity of OOB error of random forest, mean OOB

error of decision trees in random forest, and the margin

distribution to random permutation:

1.Get the OOB error of random forest, mean OOB error

of decision trees and margin distribution with the original

data.

2.Permute a variable ten times, and in each permutation

get a new OOB error of random forest, a new mean OOB

error of decision trees, and new margin vectors for all

instances. Then calculate the rates of change in OOB error,

in mean OOB error of decision trees(RCOEDT), and in mar-

gin(RCM) respectively before and after each permutation.

3.Calculate the mean and standard deviation of the rates.

4.Enumerate all the variables, and repeat the above steps.

3) Experiment III: In this experiment, we calculate the

importance scores to examine the stability of VIM-MD and

VIM with respect to random permutation.

1.Get the OOB error of decision trees and margin distri-

bution before permutation using the original data.

2.Permute a variable ten times, in each permutation get

a new OOB error of decision trees and a new margin

distribution, then calculate the changes in OOB error of

decision trees, and calculate the similarity of two margin dis-

tribution before and after random permutation with Cosine

Similarity, Pearson Correlation Coefficient and Spearman’s

Rank Correlation Coefficient respectively, i.e. the importance

scores of VIM and VIM-MDs.

3.Enumerate all the variables, and repeat the above steps.

4) Experiment IV: The goal of this experiment is to

compare the performance of VIM-MDs with VIM in terms

of both stability and accuracy. Three margin based per-

mutation importance methods, VIM-MDs as well as VIM

were performed and the stability of the results of feature

rankings were evaluated with Spearman’s Rank Correlation

Coefficient, Jaccard index and Kuncheva index respectively.

1. To get different training sets, 10-fold cross-validation

was executed, and results of ranked feature list of the four

algorithms( i.e. VIM and VIM-MDs) were recorded for each

fold.

2. The similarity of each pair of ranked feature list, a total

of 10(10−1)/2 pairs, is calculated using the three evaluation

metrics. For Spearman’s Rank Correlation Coefficient, it was

conducted on the total rankings while for Jaccard index and

Kuncheva index it was performed on different given numbers

of selected features. The stability scores were then averaged

over all pairs.

3. For each fold, execute a random forest model with a

given size of selected feature subsets. The average predictive

accuracies were then recorded for each size.

C. Results and discussion
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Figure 1. Margin distribution before and after permuting a variable( on
p-gene data).

Table II
RESULTS OF MEAN MARGIN AND VARIATION OF MEAN MARGIN.

Mean Margin Variation of Mean Margin
Datasets Features Before

Permutatio
First
Permutatio

Second
Permutation

BP&FP BP&SP

15th 0.2749472 0.1968627 0.2098289 0.07808446 0.0651183
p-gene 6th 0.2768138 0.254727 0.2586456 0.0220868 0.0181682

20th 0.2742814 0.2614707 0.2577981 0.0128107 0.0164833
56th 0.2599312 0.2598325 0.259658 0.0000987 0.0002732
249th 0.3374366 0.3263435 0.3186269 0.0110931 0.0188097

Colon 1423th 0.3382442 0.3299134 0.333181 0.0083308 0.0050632
807th 0.3446062 0.3428854 0.3431606 0.0017208 0.0014456
1832th 0.3470133 0.3470133 0.3470133 0 0

1) Experiment I: For the sake of visualization, several

examples of margin distribution before and after random

permutation of a feature are displayed in Fig.1 ( four

features of p-gene data(p = 56)) and Fig.2 ( four features

of Colon data(p = 2000)) respectively. Fig.1 shows that

the 56th feature is non-informative, because the margin

distribution before and after permutation of that feature

are almost the same. The most informative variable is the

15th feature, since the changes in margin distribution is the

greatest, followed by the 6th feature and the 20th feature.

Generally speaking, the margin distribution get worse after

permutation, the margins of most instances decreased except

a small number of instances.

Compared to Fig.1, the change in margin distribution

before and after feature permutation is much smaller in

Fig.2. The reason may lies in the fact that Colon is a high-

dimensional dataset, and random permutation of a single

variable while its correlated variables remaining the same

Figure 2. Margin distribution before and after permuting a variable ( on
Colon data).

will not has significant impact on the margin distribution.

TABLE II shows the variation of mean margins. Note

that the changes in mean margin is small and may not be

statistically significant. This motivates us to use statistics like

Pearson Correlation Coefficient to compute the similarity of

two margin distributions as the important scores, rather than

change in mean margin proposed in our previous work [12].

Table III
RESULTS OF THE RATES OF CHANGE IN OOB ERROR(RCOE),OOB

ERROR OF DECISION TREES(RCOEDT),MARGIN(RCM) ON P-GENE.

Feature RCOEDT RCM RCOE
mean std mean std mean std

15 0.0831 0.0051 0.1837 0.029 0.2143 2.93E-17
16 0.0736 0.0053 0.1473 0.0266 0.2 2.93E-17
6 0.0422 0.0043 0.1044 0.0318 0.1538 2.93E-17

41 0.0372 0.0069 0.0831 0.0204 0.1176 0
20 0.0203 0.0024 0.0528 0.0193 0.0833 1.46E-17
39 0.0131 0.0058 0.041 0.0262 0.0667 0
30 0.0029 0.0035 0.009 0.0177 0 0
31 0.0088 0.0061 0.0142 0.0136 0 0
56 0.0017 0.0013 0.0053 0.005 0 0
38 0.0067 0.0032 0.0225 0.0146 0 0
11 0.0034 0.005 0.0064 0.0083 0 0
32 0.0026 0.0038 0.0097 0.0103 0 0
45 0.0039 0.0033 0.0106 0.0089 0 0
33 0.0044 0.0033 0.0062 0.0083 0 0
56 0.0064 0.0021 0.0124 0.007 0 0

2) Experiment II: The rates of changes in OOB er-

ror(RCOE), OOB error of decision trees(RCOEDT), and

margin(RCM) on p-gene and Colon are displayed in TABLE
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Table IV
RESULTS OF THE RATES OF CHANGE IN OOB ERROR(RCOE), OOB
ERROR OF DECISION TREES(RCOEDT),MARGIN(RCM) ON COLON.

Feature RCOEDT RCM RCOE
mean std mean std mean std

249 0.0365 0.0026 0.0532 0.0176 0 0
1671 0.0262 0.002 0.0271 0.008 0 0
1772 0.0163 0.0029 0.0168 0.0047 0 0

493 0.0133 0.0044 0.0327 0.0086 0 0
513 0.0102 0.0031 0.0167 0.0051 0 0
765 0.0102 0.0022 0.0151 0.0039 0 0
245 0.0021 0.0024 0.0054 0.004 0 0

1423 0.0081 0.0015 0.0125 0.004 0 0
267 0.0077 0.0022 0.0122 0.0045 0 0

1771 0.0016 6.27E-04 0.0036 0.0014 0 0
1411 0.0026 9.63E-04 0.0027 0.0021 0 0

377 0.0031 0.0011 0.0035 0.0022 0 0
31 0.0053 9.96E-04 0.0076 0.0029 0 0

138 0.0031 9.65E-04 0.0075 0.0038 0 0
1935 0.0024 8.78E-04 0.0048 0.002 0 0

780 0.0055 0.0016 0.0141 0.0041 0 0
1668 0.0027 7.17E-04 0.0033 0.0021 0 0
1058 0.004 0.0021 0.0062 0.0025 0 0
1825 9.83E-04 5.04E-04 0.0018 7.76E-04 0 0

807 6.43E-04 8.79E-04 0.0014 0.0011 0 0
1067 3.20E-04 8.32E-04 8.11E-04 0.0023 0 0

972 3.27E-04 3.30E-04 9.95E-04 9.95E-04 0 0
60 9.18E-04 2.24E-04 0.0023 0.0014 0 0
33 7.30E-04 3.96E-04 0.0016 9.44E-04 0 0
44 1.67E-04 4.59E-04 5.81E-04 8.65E-04 0 0

983 0 0 0 0 0 0
1156 0 0 0 0 0 0

952 0 0 0 0 0 0
960 0 0 0 0 0 0

1015 0 0 0 0 0 0
1038 0 0 0 0 0 0
1832 0 0 0 0 0 0

III and TABLE IV respectively. Similarly, we only show

partial results for some features, i.e. 15 features of p-

gene(with p = 57) and 32 features of Colon(with p = 2000).

From TABLE III, for the low-dimensional data p-gene,

we can find that, when the features are relatively non-

informative, such as the 30th feature, 31th feature, etc.,

the values of RCOE are always zero, that is to say, when

permuting those features, the OOB error does not change

at all. However, in that case, the OOB errors of decision

trees and the margin still change, and the margin changes

are greater than the OOB error of decision trees. When

the features are informative, such as the 15th feature, 16th

feature, etc., RCOE is the largest, followed by RCM and

then RCOEDT.

For the results of high-dimensional data Colon in TABLE

IV, we can see that whether the feature is informative or

non-informative, RCOE is always zero. While, RCM is al-

ways larger than RCOEDT, except the most non-informative

features. In that case, the values of the three measures are

all zero.

From the above observations, we can draw the following

conclusions. First, the OOB error of random forest is ex-

tremely insensitive for high dimensional data. Actually, in

permutation based variable importance, Breiman used the

average OOB error of decision trees rather than the OOB

error of random forest to measure the variable importance.

Second, margin is more sensitive to random permutation

than the mean OOB error of decision trees, which motivates

us to use margin distribution to measure the importance of

variables instead.

Figure 3. The importance scores of VIM and VIM-MDs on p-gene dataset.

3) Experiment III: The importance scores of top nine

features selected by four VIMs are displayed in Fig.3 (on

p-gene) and Fig.4 (on Colon). They are ordered according

to the mean of the important scores of ten permutations, and

are normalized to [0.2, 1].

Both Fig.3 and Fig.4 show that the variance of VIM scores

of the top ranking feature is significantly lower than that

of VIM-MDs, that is to say, the stability with respect to

random permutation of the top ranking feature selected by

VIM is more desirable than VIM-MDsHowever, for other

features, the performances of VIM and VIM-MD are similar.

It indicates that VIM-MDs can be used as an effective and

robust variable importance measure for its low variance in

different trials of random permutation.
4) Experiment IV: First, note that the Spearman’s Coef-

ficient provides an overall evaluation of stability by taking

into account all features while the Jaccard and Kuncheva

index give more details by focusing on a given size of top

ranked features.

TABLE V summarizes the Spearman’s Rank Correlation

Coefficient of the feature rankings of VIM and VIM-MDs
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Figure 4. The importance scores of VIM and VIM-MDs on Colon dataset.

Table V
SPEARMANS RANK CORRELATION COEFFICIENT OF VIM AND

VIM-MDS (NTREE=500, 1000, 2000).

Spearmans Rank Correlation Coefficient
Dataset measure ntree=500 ntree=1000 ntree=2000

mean Standard mean Standard mean Standard
deviation deviation deviation

VIM 0.3509 0.0272 0.2934 0.0244 0.3145 0.0182
colon VIM-MDI 0.5313 0.0193 0.5502 0.0214 0.6163 0.0121

VIM-MDII 0.5302 0.0174 0.5498 0.0214 0.6159 0.0123
VIM-MDIII 0.5647 0.0245 0.5768 0.0264 0.5753 0.0273
VIM 0.5095 0.013 0.3246 0.0153 0.1848 0.0185

central VIM-MDI 0.6237 0.0146 0.5164 0.0115 0.4501 0.0107
VIM-MDII 0.6303 0.0122 0.5164 0.0115 0.4501 0.0107
VIM-MDIII 0.6803 0.0127 0.6156 0.0169 0.6013 0.0215
VIM 0.6004 0.017 0.4473 0.0171 0.3286 0.0183

leukemia VIM-MDI 0.7325 0.011 0.6502 0.0116 0.608 0.0111
VIM-MDII 0.7326 0.0093 0.65 0.0116 0.6078 0.0111
VIM-MDIII 0.7724 0.0115 0.7152 0.0148 0.6983 0.0219
VIM 0.6935 0.0485 0.7488 0.0469 0.7802 0.043

p-gene VIM-MDI 0.8047 0.0433 0.8335 0.0411 0.8146 0.0421
VIM-MDII 0.7929 0.0437 0.8327 0.0417 0.8122 0.0427
VIM-MDIII 0.7566 0.045 0.8033 0.0504 0.7935 0.0393
VIM 0.7389 0.0551 0.7843 0.0577 0.8246 0.0388

spect VIM-MDI 0.8093 0.0444 0.8487 0.0362 0.8625 0.0315
VIM-MDII 0.8193 0.0401 0.8488 0.0373 0.8606 0.0311
VIM-MDIII 0.7922 0.0512 0.8212 0.0426 0.8447 0.0411
VIM 0.7898 0.0446 0.8375 0.0467 0.8717 0.0332

hearts VIM-MDI 0.9062 0.0219 0.906 0.0247 0.9267 0.0225
VIM-MDII 0.9059 0.0224 0.9066 0.0243 0.9268 0.0221
VIM-MDIII 0.9009 0.0216 0.9065 0.022 0.928 0.0195

respectively with ntree = 500, 1000, 2000. TABLE V

shows that the Spearman’s Rank Correlation Coefficient

of the feature rankings from VIM-MDs are larger than

that of VIM on both high-dimensional datasets and low-

dimensional datasets, which indicates that as a feature rank-

ing method, the global stability of VIM-MDs is better than

VIM. Specifically, the stability of VIM-MDI and VIM-MDII

are similar to each other, while on the high-dimensional data

Table VI
RESULTS OF JACCARD INDEX, KUNCHEVA INDEX AND ACCURACY ON

THE GIVEN NUMBER OF TOP RANKED FEATURES. K IS THE SIZE OF

FEATURE SUBSET (NTREE=2000).

Datasets k measure Jaccard Kunchev precision Dataset k measure Jaccard Kunchev precision
VIM 0.4757 0.634 0.8576 VIM 0.7101 0.8051 0.8475

k=50 VIM-MDI 0.4658 0.6248 0.8552 k=5 VIM-MDI 0.6254 0.7369 0.8641
VIM-MDII 0.4622 0.6212 0.8762 VIM-MDII 0.6077 0.7174 0.8541
VIM-MDIII 0.3498 0.5036 0.8648 VIM-MDIII 0.5339 0.6541 0.8524

VIM 0.4225 0.5719 0.8731 VIM 0.6369 0.7251 0.9081
k=100 VIM-MDI 0.4654 0.6147 0.8712 k=10 VIM-MDI 0.6116 0.7009 0.9005

VIM-MDII 0.4662 0.6154 0.8619 VIM-MDII 0.6264 0.7143 0.903
VIM-MDIII 0.3387 0.4786 0.8733 VIM-MDIII 0.6004 0.6901 0.8999

VIM 0.4204 0.5462 0.8681 VIM 0.6925 0.7176 0.8805
k=200 VIM-MDI 0.4688 0.5974 0.8564 k=20 VIM-MDI 0.7564 0.7843 0.9245

Colon VIM-MDII 0.4651 0.5937 0.885 p-gene VIM-MDII 0.7564 0.7843 0.9143
VIM-MDIII 0.3115 0.4159 0.8802 VIM-MDIII 0.7426 0.7706 0.9007

VIM 0.3955 0.49 0.8531 VIM 0.6873 0.6059 0.9094
k=300 VIM-MDI 0.4818 0.588 0.8898 k=30 VIM-MDI 0.6908 0.6106 0.9017

VIM-MDII 0.4803 0.5865 0.86 VIM-MDII 0.6959 0.6184 0.9025
VIM-MDIII 0.3301 0.4069 0.865 VIM-MDIII 0.6576 0.5606 0.8974

VIM 0.3773 0.4346 0.8448 VIM 0.6995 0.4039 0.8588
k=400 VIM-MDI 0.4878 0.5693 0.8295 k=40 VIM-MDI 0.7287 0.4691 0.8949

VIM-MDII 0.4869 0.5682 0.8679 VIM-MDII 0.7329 0.4784 0.8871
VIM-MDIII 0.347 0.3934 0.8555 VIM-MDIII 0.7267 0.4654 0.8697

VIM 0.3382 0.4969 0.9245 VIM 0.6656 0.7593 0.8125
k=50 VIM-MDI 0.3266 0.4834 0.9302 k=5 VIM-MDI 0.655 0.7493 0.7863

VIM-MDII 0.3337 0.492 0.9243 VIM-MDII 0.6312 0.7242 0.795
VIM-MDIII 0.1831 0.2999 0.923 VIM-MDIII 0.5392 0.649 0.7838

VIM 0.3386 0.4917 0.9075 VIM 0.5102 0.5715 0.815
k=100 VIM-MDI 0.3417 0.4962 0.9134 k=10 VIM-MDI 0.6211 0.6923 0.825

VIM-MDII 0.3443 0.4987 0.9248 VIM-MDII 0.6211 0.6923 0.8162
VIM-MDIII 0.1903 0.3047 0.9221 VIM-MDIII 0.6575 0.7268 0.8562

VIM 0.2974 0.4346 0.8989 VIM 0.6934 0.6639 0.8325
k=200 VIM-MDI 0.3485 0.4956 0.9 k=20 VIM-MDI 0.6724 0.6354 0.8075

Leukemia VIM-MDII 0.3464 0.4932 0.912 SPECT VIM-MDII 0.6707 0.6333 0.79
VIM-MDIII 0.1927 0.2944 0.9004 VIM-MDIII 0.678 0.6415 0.8263

VIM 0.2756 0.3957 0.8961 VIM 0.8177 0.6811 0.8175
k=300 VIM-MDI 0.3472 0.4841 0.8964 k=30 VIM-MDI 0.8163 0.6787 0.7775

VIM-MDII 0.348 0.4851 0.8816 VIM-MDII 0.8126 0.6717 0.7925
VIM-MDIII 0.195 0.2837 0.8921 VIM-MDIII 0.8058 0.6601 0.7962

VIM 0.2579 0.3594 0.9084 VIM 0.8709 0.2361 0.805
k=400 VIM-MDI 0.346 0.4721 0.8964 k=40 VIM-MDI 0.9167 0.5172 0.7712

VIM-MDII 0.3443 0.4702 0.8598 VIM-MDII 0.9167 0.5172 0.7838
VIM-MDIII 0.2043 0.283 0.8661 VIM-MDIII 0.9043 0.4439 0.7875

VIM 0.1688 0.2821 0.81 VIM 0.4974 0.6089 0.783
k=50 VIM-MDI 0.1964 0.3228 0.815 k=5 VIM-MDI 0.7323 0.8145 0.7856

VIM-MDII 0.1945 0.3201 0.8217 VIM-MDII 0.7323 0.8145 0.7838
VIM-MDIII 0.1071 0.1872 0.7667 VIM-MDIII 0.6899 0.7844 0.7895

VIM 0.1512 0.2517 0.8083 VIM 0.6788 0.7441 0.8141
k=100 VIM-MDI 0.1901 0.3092 0.83 k=10 VIM-MDI 0.6786 0.7469 0.8211

VIM-MDII 0.1899 0.309 0.7967 VIM-MDII 0.6786 0.7469 0.8229
VIM-MDIII 0.1092 0.185 0.775 VIM-MDIII 0.6773 0.7441 0.8057

VIM 0.1446 0.2306 0.7967 VIM 0.7434 0.725 0.8286
k=200 VIM-MDI 0.2035 0.3185 0.7867 k=20 VIM-MDI 0.7983 0.7922 0.8178

Central VIM-MDII 0.2025 0.3171 0.7567 hearts VIM-MDII 0.7983 0.7922 0.8322
VIM-MDIII 0.1216 0.1939 0.79 VIM-MDIII 0.8161 0.8106 0.8262

VIM 0.145 0.2202 0.785 VIM 0.7731 0.5949 0.821
k=300 VIM-MDI 0.2161 0.3268 0.7583 k=30 VIM-MDI 0.8674 0.7742 0.814

VIM-MDII 0.2166 0.3275 0.7767 VIM-MDII 0.8646 0.7695 0.8212
VIM-MDIII 0.1311 0.1976 0.775 VIM-MDIII 0.8395 0.723 0.8124

VIM 0.1397 0.2001 0.7567 VIM 0.8883 0.3461 0.8113
k=400 VIM-MDI 0.225 0.3295 0.7533 k=40 VIM-MDI 0.9391 0.6517 0.817

VIM-MDII 0.2258 0.3305 0.7883 VIM-MDII 0.9391 0.6517 0.809
VIM-MDIII 0.1411 0.2024 0.7433 VIM-MDIII 0.9504 0.7189 0.807

VIM-MDIII achieves the best performances.

TABLE VI shows the results of Jaccard, Kuncheva in-

dex and predictive accuracy with different sizes of feature

subsets selected by the four methods with the parameter

ntree = 2000. As the size of selected feature subsets

increases, the tendency of Jaccard index is highly consistent

with that of Kuncheva index. More specifically, if Jaccard

index of VIM-MDs is larger or smaller than that of VIM,

then Kuncheva index has the same performances. When k is

relatively small, for example, 5 or 50, both the Jaccard and

Kuncheva index of VIM-MDs are smaller than VIM, which

implies that the stability of the top-ranking features selected

by VIM-MDs is undesirable compared to VIM. However,

with the value of k increase, VIM-MDs gradually outper-

form VIM. In particular, the highest predictive accuracies

on all the datasets are achieved with feature subsets selected

by VIM-MDs which demonstrates their effectiveness.

V. CONCLUSIONS

We propose new variable importance measures for random

forest based on margin distribution and in the experiments

we investigate the stability and predictive accuracy of both

VIM-MDs and VIM. The result shows that the global stabil-

ity of VIM-MDs is superior to VIM, while they outperform

VIM in terms of predictive accuracy. VIM-MDs can be
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an effective screening tool for many applications especially

for high-dimensional data. We will conduct extensive and

comprehensive investigations on our method in the future.
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