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Abstract

This master thesis deals with the problem of determining variable importance for different kinds of
regression and classification methods. The first chapter introduces relative importance metrics for
multiple linear regression, which are based on a decomposition of the coefficient of determination.
Chapter 2 serves as an introduction to a general variable importance measure motivated from
causal inference, that can in principle be applied to a very large class of models. In Chapter 3
we discuss in detail different importance measures for random forests. In the course of that, we
also review the main principles behind random forests by discussing the famous CART algorithm.
At the end of chapter 3 we extend the unconditional permutation importance, introduced in the
context of random forests, to linear and logistic regression. Chapter 4 deals with a heuristic
approach to measure relative importance in a logistic regression setting, that is motivated by the
relative weights method from linear regression. Here, the presented importance measure is as in
the first chapter based on the amount of explained variance in the response variable i.e. dispersion
importance. Chapter 5 deals with the application of the permutation importance measure on a
credit scoring dataset in order to determine the most important predictor variables for an event of
default. Simulation studies, which highlight the advantages and disadvantages of each method are
presented at the end of each chapter.
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Research Question

When building models for e.g. a binary response variable using different kinds of learners like a
logit/probit model (possibly with regularization) or random forests, it is often of interest not only
to compare these models w.r.t their performance on a test set, but also to compare the models
from a structural point of view e.g. the “importance” of single predictors.

We are interested to know if there is a conceptual framework that unifies all or at least some meth-
ods for quantifying variable importance in a given regression or classification setting. A literature
review on different techniques for measuring variable importance is conducted . Furthermore we
want to outline and discuss the difference and similarities of various techniques as far as possible
and investigate the already implemented packages in R. For this purpose we will analyze the R
function varImp(), which already implemented a variable importance measure for different classes
of regression and classification techniques. After that we additionally want to conduct an empirical
study, where we investigate the importance of predictors in a credit scoring data w.r.t. a default
indicator.
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Chapter 1

Relative importance for linear
regression

We will present in this chapter a short summary of metrics for measuring relative importance of

single regressors in a multidimensional linear setting. All these methods are implemented in the

R package relaimpo, which is documented in Grömping (2006). This chapter is mainly along the

lines of Grömping (2006).

As stated in Grömping (2006) relative importance refers to the quantification of an individual re-

gressor’s contribution to a multiple regression model. Furthermore one often distinguishes between

the following three types of importance Achen (1982):

• dispersion importance: importance relating to the amount of explained variance.

• level importance: importance with respect to the mean of the response.

• theoretical importance: change of the response variable for a given change in the explana-

tory variable.

The focus in this section will be entirely on dispersion importance. Another definition of relative

importance, in the context of dispersion importance, was given from Johnson and Lebreton in

Johnson and LeBreton (2004) as follows: relative importance is the contribution each predictor

makes to the coefficient of determination, considering both its direct effect (i.e. correlation with

the response variable) and its indirect or total effect when combined with other explanatory

variables.

In the sequel we will list all importance metrics that are available in the package relaimpo.

1.1 The linear model and relative importance metrics

A simple linear multiple regression model can be formulated as

Y = Xβ + ε, Y ∈ Rn, β ∈ Rp, X ∈ Rn×p, (1.1)

which reads component wise for i ∈ {1, . . . , n} as

yi = β1 + β2xi2 + . . .+ βpxip + εi,

3



4 CHAPTER 1. RELATIVE IMPORTANCE FOR LINEAR REGRESSION

where yi is the i-th observation of the response variable Y , βi denotes the i-th regression coefficient,

xik is the i-th observation of the k-th explanatory variable/regressor Xk := (X)·,k and εi is defined

as the i-th residual or unexplained part. Note that throughout this section, the first column of

the design matrix is assumed to be constant. The key feature for a linear model is, as the name

already suggests, that we assume a linear relationship between the response and the explanatory

variables i.e. Y = f(X) + ε, where f : Rn×p → Rn is a linear mapping. The coefficients β are

usually estimated by minimizing the sum of squared residuals (RSS) which is defined as

n∑
i=1

(yi − ŷi)2 for ŷi := β̂1 + β̂2xi2 + . . .+ β̂pxip,

where we denoted the estimated coefficients and the fitted values by (β̂i)i∈{1,...,p} respectively

(ŷi)i∈{1,...,n}. Under the usual full rank assumption for the matrix X one has the following famous

formula for the estimated coefficients:

β̂ = (X ′X)−1XY.

Some of the subsequent metrics for individual relative importance are based on the coefficient of

determination.

Definition 1.1 (Coefficient of determination) The coefficient of determination for the linear

model defined in (1.1) is defined as

R2 := 1−
∑n
i=1(yi − ŷi)2∑n
i=1(yi − y)2

=

∑n
i=1(ŷi − y)2∑n
i=1(yi − y)2

∈ [0, 1], (1.2)

where we will use the following abbreviations: TSS :=
∑n
i=1(yi − y)2, ESS :=

∑n
i=1(ŷi − y)2. 1

The second equality in definition 1.1 follows from the fact that

n∑
i=1

(yi − ŷi)2

︸ ︷︷ ︸
RSS

+

n∑
i=1

(ŷi − y)2

︸ ︷︷ ︸
ESS

=

n∑
i=1

(yi − yi)2

︸ ︷︷ ︸
TSS

.

From (1.2) one can see that the coefficient of determination measures the proportion of variance in

the response variable Y , that is explained by the estimated model. It provides a measure of how

well observed outcomes are captured by the model, based on the proportion of total variation of Y

explained with the model. A value of 1 for R2 indicates that we can perfectly explain the observed

data with our model.

It can be shown, that in the case of a linear model the R2 is equal to the square of the coefficient

of multiple correlation.

Definition 1.2 (Coefficient of multiple correlation) The coefficient of multiple correlation

with respect to the model defined in (1.1) is defined as

R := (c′ ·R−1
XX · c)

1/2, c :=
(
rX1,Y , . . . , rXp,Y

)
, (1.3)

where rXi,Y is the empirical pearson correlation coefficient between the i-th explanatory variable

1TSS stands for Total Sum of Squares whereas ESS stands for Explained or Model Sum of Squares.
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and the response variable Y and

RXX :=


rX1,X1

. . . rX1,Xp

...
. . .

...

rX1,Xp . . . rXp,Xp


is the correlation matrix of the explanatory variables X.

One can now show that the coefficient of determination equals the square of the coefficient of mul-

tiple correlation i.e. R2 = R2 (see Appendix B.3). Thus in the setting of uncorrelated explanatory

variables i.e. RXX = Ip, one can conclude that the coefficient of determination is just the sum of

the squared marginal correlation coefficients i.e. R2 =
∑p
i=1 r

2
Xi,Y

. Since in the univariate linear

setting (including an intercept) the squared pearson correlation coefficient equals the coefficient of

determination, we see that each regressor’s contribution to the total R2 in an orthogonal setting

is just the R2 from the univariate regression, and all univariate R2-values add up to the total

R2. Thus one can perfectly measure the relative importance of a single regressor by means of its

univariate coefficient of determination. Of course this breaks down if the regressors are correlated,

which is often the case. Nevertheless one could consider the following metrics for measuring relative

importance in a non orthogonal setting:

1.1.1 Simple relative importance metrics

(i) The metric first :

In this case one compares the univariate R2-values of each regressor i.e. one measures how

well can this individual regressor explain the model. This is motivated by the above discussed

fact, that if we consider orthogonal regressors one can decompose the total R2 into the sum

of the individual R2-values. In a general situation multicollinearity is present and one does

not obtain a decomposition of the models R2 by using this technique. Also this approach

does not comply with the definition from Johnson and LeBreton (2004), which was stated at

the beginning of Chapter 1, since it only captures direct effects.

(ii) The metric last :

A similar way is to compare what each regressor is able to explain in presence of all the

other regressors. The metric last measures the increase in the total R2 when including this

regressor as the last one. If multicollinearity is present then this contributions again do not

add up the the total R2 of the model. Since one does not consider direct effects this metric

does again not comply with the definition of relative dispersion importance given in Johnson

and LeBreton (2004).

(iii) The metric betasq :

This approach measures relative importance by comparing the squared standardized esti-

mated regression coefficients. They are calculated as follows:

β̂2
k,standardized :=

(
β̂k ·

sXk
sY

)2

,

where sXk and sY denotes the empirical standard deviation of the variables Xk and Y . When

comparing coefficients within models for the same response variable Y the denominator in

the scaling factor is irrelevant. Again this metric does not provide a natural decomposition
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of the total R2 (except the squared values in the case of orthogonal explanatory variables)

and considers only indirect effects.

(iv) The metric pratt :

The pratt measure for relative importance is defined as the product of the previously defined

standardized estimated coefficients and the marginal correlation coefficient i.e.

pk := β̂k,standardized · rXk,Y .

It can be shown that this definition yields an additive decomposition of the total R2 i.e.

R2 =
∑p
i=1 pi (see Appendix B.3). Furthermore, it connects both direct (marginal) and

indirect (conditional) effects of each regressor. Nevertheless a major disadvantage is, that

this metric can yield negative values in which case it is not interpretable and one should not

draw any conclusion from it.

1.1.2 Computer intensive relative importance metrics

The following two metrics require more computational effort compared to the simple metrics dis-

cussed above. Both of them yield a nonnegative decomposition of the total R2. When decomposing

the R2 for regression models sequentially in the presence of correlated regressors, it turns out that

each order of regressors yields a different decomposition of the model sum of squares (ESS). Divi-

sion of the sequential ESS by TSS yields sequential R2 contributions. The approach of the following

two variable importance measures is based on sequential R2 contributions, but takes care of the

dependence with respect to the ordering by taking an unweighted and weighted average over all

possible orders.

First we define the following notions:

The R2 corresponding to a model using only S ⊂ {X1, . . . , Xp} regressors is defined by R2(S).

The additional R2 by adding regressors of the set M ⊂ {X1, . . . , Xn} to an existing model with

regressors S ⊂ {X1, . . . , Xp} is for S ∩M = ∅ defined as:

R2(M |S) := R2(M ∪ S)−R2(S).

Furthermore we define by Sk(r) the set of regressors entered into the model before the regressor

Xk corresponding to the order r := (r1, . . . , rp).

(i) The metric lmg :

This metric simply corresponds to the empirical mean of all the sequential R2-values. The

relative importance measure of the k-th explanatory variable is therefore given as:

Lmg(Xk) :=
1

p!

∑
r∈P

R2({Xk}|Sk(r)) =
1

p!

∑
S⊂{X1,...,Xp}\{Xk}

|S|! · (p− 1− |S|)! ·R2({Xk}|S),

where P denotes the set of all permutations of {r1, . . . , rp}. From the definition one can see

that this variable importance concept uses both direct effects (orders where Xk enters first

in the model) and effects adjusted to other regressors (Xk enters last). A disadvantage of

this concept is that a contribution of a regressor with estimated coefficient β̂k equal to zero
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can be positive if this regressor is correlated with others (see Feldman (2005)). However,

it was argued in Grömping (2007) that a zero coefficient does by no means indicate an

unimportant variable in the case of correlated regressors from a causal/theoretical point of

view. Nevertheless this “disadvantage” leads to the definition of the following metric.

(ii) The metric pmvd :

Per construction this metric guarantees that a regressor with estimated coefficient equal to

zero does yield zero contribution in this relative importance measure. The formula is given

as

Pmvd(Xk) :=
∑
r∈P

w(r)R2({Xk}|Sk(r)),

where w(r) :=

∏p−1
i=1

(
R2({Xri+1

, . . . , Xrp}|{Xr1 , . . . , Xri})
)−1∑

r∈P
∏p−1
i=1

(
R2({Xri+1

, . . . , Xrp}|{Xr1 , . . . , Xri})
)−1 are weights derived

from a set of axioms.

It was shown in Feldman (2005) that the weights are only positive for orders with all 0 coefficients

regressors last, which leads to a share of 0 for these regressors.

We will discuss two more variable importance measures in the case of a linear regression setting.

The permutation importance will be discussed in detail in chapter 3. In section 3.2 we will test this

method on linear as well as logistic models. The relative weights method is introduced in 4.2.1.

1.1.3 Simulation study: relative importance measures

All of the six presented relative importance measures for linear regression are implemented in the R

package relaimpo. Using this package they can be calculated for an object of class lm as follows:

calc.relimp(lm,type=c("lmg","pmvd","first","last","betasq","pratt")).

We will test now the different metrics on a simulated data set. The data set was generated according

to the following linear model:

(X1, . . . , X12)′ ∼ N (µ,Σ) (Σ)i,j :=



1 , j = i

0.9 , i 6= j ≤ 4

−0.9 , i 6= j ≥ 9

0 , else

µ := (0, 0, 5, 10, 0, 0, 5, 10, 0, 0, 0, 50)′

(β1, . . . , β12)′ = (5, 5, 2, 0,−5,−5,−2, 0, 0, 0, 10, 0)′

1. Linear model:

yi = β1x1,i + . . .+ β12x12,i + εi εi ∼ N (0, 100), i ≤ N

Of the twelve features seven were influential. We constructed one (4 × 4) - block of positively

correlated predictors, one (4 × 4) - block of independent predictors, which both have regression
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coefficients with the same absolute value and a (2× 2) - block of negatively correlated predictors,

where the variable X11 has in absolute value the largest coefficient. We chose the number of sim-

ulated data points to be N = 1000. For fitting a linear model we used the lm() function, which is

contained in the R package stats.

Results of the raw values and ranks are presented in table 1.1 and table 1.2.

first last betasq pratt lmg pmvd
X 1 0.31677 0.00743 0.05419 0.13102 0.08978 0.16073
X 2 0.31596 0.00706 0.04995 0.12563 0.08854 0.14157
X 3 0.30625 0.00139 0.01007 0.05554 0.08110 0.03249
X 4 0.31331 0.00042 0.00311 0.03123 0.08156 0.01055
X 5 0.06439 0.06529 0.06561 0.06499 0.06483 0.06549
X 6 0.05450 0.05950 0.05994 0.05715 0.05802 0.05954
X 7 0.02846 0.01591 0.01609 0.02139 0.01941 0.01732
X 8 0.00087 0.00005 0.00006 0.00022 0.00024 0.00006
X 9 0.00002 0.00002 0.00002 -0.00002 0.00008 0.00002

X 10 0.00017 0.00003 0.00003 0.00007 0.00007 0.00003
X 11 0.24720 0.04142 0.22092 0.23369 0.14829 0.25296
X 12 0.23013 0.00043 0.00230 0.02303 0.11204 0.00319

Table 1.1: Relative importance metrics in a linear setting.

first last betasq pratt lmg pmvd
X 1 1 5 4 2 3 2
X 2 2 6 5 3 4 3
X 3 4 7 7 6 6 6
X 4 3 9 8 7 5 8
X 5 7 1 2 4 7 4
X 6 8 2 3 5 8 5
X 7 9 4 6 9 9 7
X 8 10 10 10 10 10 10
X 9 12 12 12 12 11 12

X 10 11 11 11 11 12 11
X 11 5 3 1 1 1 1
X 12 6 8 9 8 2 9

Table 1.2: Ranks of relative importance metrics in a linear setting.

We comment now on the obtained results for the different metrics.

1. first: This simple metric fails to identify some of the most influential predictors like X5, X6

and X11. It also shows a strong preference for correlated predictors with small or even zero

influence like X3, X4, X12. This is due to the fact that is only displays the direct effect as

discussed above.

2. last: This metric shows only the effect of a variable on the response when combined with all

the other variables and thus no direct effects. This is the reason why the correlated influential

predictors X1 and X2 are not ranked appropriately. Nevertheless it was able to figure out

the relevance of the variable X11.

3. betasq: The squared standardized coefficient is able to detect the most influential variables

even though multicollinearity is present.
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4. pratt: This natural decomposition of the R2 yields basically the same result as the betasq

metric. Only the rank of the correlated influential predictors X1 and X2 and the uncorrelated

ones X5 and X6 are interchanged.

5. lmg: Shows a rather strong preference for correlated predictors with little or no influence like

X3, X4 andX12. It is also not ensured that variables with zero coefficientsX4, X8, X9, X10, X12

do have an importance score of zero.

6. pmvd: This metric ensures that non influential variables i.e. variables with zero coefficients

have an importance score of (theoretically) zero. Furthermore it was simultaneously able to

detect the most important variables and to yield a positive decomposition of the R2.



Chapter 2

Variable importance in a general

regression setting

This chapter gives a short introduction to the concepts developed in Van der Laan (2006) and

summarizes the main results of the first part of said work.

In many current practical problems the number of explanatory variables can be very large. Assum-

ing a fully parametrized model, such as a multiple linear regression, and minimizing the empirical

mean of a loss function (e.g. RSS) is likely to yield poor estimators (overfitting) and therefore

many applications demand a nonparametric regression model. The approach in prediction is often

that one learns the optimal predictor from data and derives, for each of the input variables, a

variable importance by considering the obtained fit. In Van der Laan (2006) the authors propose

estimators of variable importance which are directly targeted at this parameters. Therefore this

approach results in a separate estimation procedure for each variable of interest. We first will

formulate the problem of estimating variable importance.

We are given a probability space (Ω,A,P) and n i.i.d observations of a random vector O =

(W ∗, Y ) ∼ P0, where P0 denotes the true underlying data generating distribution, Y : Ω → R
is the outcome and W ∗ : Ω→ Rn denotes the random vector of input variables which can be used

to predict the outcome. Furthermore we define by A := A(W ∗) a function of the input variables

for which we want to estimate the variable effect of A = a relative to A = 0 e.g. A could be a

simple projection on the k-th coordinate of W ∗ i.e. A(W ∗(ω)) = W ∗k (ω). Furthermore we define

W such that (W,A)
(d)
= W ∗.

2.1 Variable importance measures

We will list now three related concepts of variable importance as presented in Van der Laan

(2006). In order to obtain a well defined parameter of variable importance we will assume that

P [A = a|W ] > 0 and P [A = 0|W ] > 0, PW a.s. .

(i) The first proposed real valued parameter of variable importance of the predictor EP0
[Y |A,W ]

10
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on a model for P0 is defined as the image of the following function

P → Ψ(P )(a) := EP [ (EP [Y |A = a,W ]− EP [Y |A = 0,W ]) ].

The parameter Ψ(P )(a) and the whole curve Ψ(P ) := {Ψ(P )(a) : a} are called the a-specific

marginal variable importance and the marginal variable importance of the variable A, respec-

tively.

(ii) The a-specific W adjusted variable importance is defined as the image of

P → Ψ(P )(a,w) := EP [Y |A = a,W = w]− EP [Y |A = 0,W = w],

where w ∈ {w : P (A = a|W = w) · P (A = 0|W = w) > 0}. From this definition one can see

that Ψ(P )(a) = EP [Ψ(P )(a,W )].

(iii) Both the above presented measures are special cases of the a-specific V adjusted variable

importance, which is defined as

P → Ψ(P )(a, v) := EP [ (EP [Y |A = a,W ]− EP [Y |A = 0,W ]) |V = v ].

This parameter is only well defined if for all w in the support of the conditional distribution

PW |V=v it holds that P (A = a|W = w) · P (A = 0|W = w) > 0. Moreover if V = W then

the a-specific V adjusted variable importance is equal to the a-specific W adjusted variable

importance. Furthermore if W is independent of V then the a-specific V adjusted variable

importance equals the a-specific marginal variable importance.

In the context of a linear regression this model free variable importance parameters can be illus-

trated as follows:

• If EP [Y |A,W ] = β0 + β1A+ β2W then

Ψ(P )(a) = Ψ(P )(a,W ) = β1a

• If EP [Y |A,W ] = β0 + β1A+ β2AW + β3W then

Ψ(P )(a,W ) = β1a+ β2aW

Ψ(P )(a) = EP [Ψ(P )(a,W )] = (β1 + β2EP [W ])a

• If EP [Y |A,W ] = β0 + β1A1 + β2A2 + β3A1A2 + β4W then

Ψ(P )(a1, a2) = Ψ(P )(a1, a2,W ) = β1a1 + β2a2 + β3a1a2

This means if EP [Y |A,W ] is a linear combination of multi-way interactions, then the a-specific W

adjusted variable importance is the linear combination of all interactions including a, obtained by

deleting all interactions which do not depend on a.
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In the case of a logit or probit model for the conditional mean e.g

EP [Y |A,W ] = f(β0 + β1A+ β2W ),

with f denoting the corresponding response function i.e.

• Logit: f(x) :=
1

1 + exp(−x)

• Probit: f(x) := Φ(x),

one is not able anymore to delete all terms which are independent of a as in the linear case.

Nevertheless the variable importance measures can be calculated as

• Logit:

Ψ(P )(a) = e−β0
(
1− e−aβ1

)
EP

[
e−β2W(

1 + e−(β0+β1a+β2W )
) (

1 + e−(β0+β2W )
)]

Ψ(P )(a,W ) =
e−β0

(
1− e−aβ1

)
e−β2W(

1 + e−(β0+β1a+β2W )
) (

1 + e−(β0+β2W )
)

• Probit:

Ψ(P )(a) = EP [Φ(β0 + β1a+ β2W )− Φ(β0 + β2W )]

Ψ(P )(a,W ) = Φ(β0 + β1a+ β2W )− Φ(β0 + β2W )

2.1.1 Interpretation of variable importance parameters

These measures of variable importance are motivated from their analogues in causal inference. For

a binary treatment variable A, where we define the target group by A = 0 the parameter of interest

is given as:

Ψ(P0) = EP0
[ (EP0

[Y |A = 0,W ]− EP0
[Y |W ]) ] = EP0

[EP0
[Y |A = 0,W ] ]− EP0

[Y ],

and thus compares the overall mean of the outcome to the mean of the target group, averaged over

W . If we assume that the hypothetical full data is given by X = (Y0, Y,W ) ∼ PX , where Y0 is the

counterfactual outcome for A = 0, i.e. the outcome as it would have happened under universal

application of treatment A=0. Then the causal analogue to Ψ(P0) is:

Ψ(PX) = EPX [ (EPX [Y0|W ]− EPX [Y |W ]) ] = EPX [Y0 − Y ].

Under the following assumptions (see Ritter et al. (2014)) it holds that Ψ(P0) = Ψ(PX) :

(i) The observed data structure (W,A, Y ) is chronologically ordered i.e. W precedes A and A

precedes Y .

(ii) The observed data structure equals a missing data structure (W,A, Y ) = (W,A, Y0).

(iii) A is conditionally independent of Y0 given W .
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This can also be extended to a non binary treatment variable A and the event of interest given by

A = a. Under this assumptions one can express the presented variable importance measures from

section 2.1 in the following way:

Ψ(P )(a) = EP [Ya − Y0],

Ψ(P )(a,W ) = EP [Ya − Y0|W ],

Ψ(P )(a, V ) = EP [Ya − Y0|V ].

Thus the presented measures of variable importance can be interpreted as marginal causal effects.

In the final section we will present the methodology for estimation of the a-specific W adjusted

marginal variable importance for a discrete random variable A in a nonparametric model, which is

presented in (Van der Laan, 2006, Section 2.1).

2.2 Discrete treatment variable, nonparametric model, a-

specific variable importance

The first theorem establishes path-wise differentiability and a closed form expression of the efficient

influence curve/canonical gradient of the marginal variable importance parameter.

Theorem 2.1 (Theorem 1, Ritter et al. (2014)) Suppose that O = (A,W, Y ) ∼ P0, where A

is a discrete random variable with finite support. Assume that P [A = a|W ] > 0 and P [A = 0|W ] >

0, P0−a.s.. Consider a nonparametric model for P0, and let Ψ(P )(a) be the parameter of interest.

Let ψ0 := Ψ(P0). The efficient influence curve at P0 of this parameter is given by:

IC∗(O|P0) =(θ0(a,W )− θ0(0,W ))− ψ0(a)

+

[
1{A=a}

Π0(a|W )
(Y − θ0(a,W ))−

1{A=0}

Π0(0|W )
(Y − θ0(0,W ))

]
,

where θ0(a,W ) := EP0
[Y |A = a,W ] and Π0(a|W ) := P0(A = a|W ) are the unknown nuisance

parameters being the regression and the conditional distribution.

For notational convenience we will define ψ0 := ψ0(a). The estimating function for ψ0 based on

IC∗(O|P0) is given by:

(O,ψ, θ,Π)→ D(O|ψ, θ,Π) :=(θ(a,W )− θ(0,W ))− ψ(a)

+

[
1{A=a}

Π(a|W )
(Y − θ(a,W ))−

1{A=0}

Π(0|W )
(Y − θ(0,W ))

]
,

where θ(a,W ) := EP [Y |A = a,W ] and Π(a|W ) := P (A = a|W ).

The following lemma yields an estimating equation for ψ0.

Lemma 2.2 (Result 1, Van der Laan (2006)) Assume P (A = a|W )P (A = a|W ) > 0 P0 −
a.s.. Then it holds that

EP0
[D(O|ψ0, θ,Π)] = 0, if either θ = θ0, or Π = Π0.
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Proof.

EP0
[D(O|ψ0, θ,Π)] =EP0

[(θ(a,W )− θ(0,W ))]− EP0
[ψ0(a)]

+

∫
Ω

[
Π0(a|W )

Π(a|W )
(θ0(a,W )− θ(a,W ))− Π0(0|W )

Π(0|W )
(θ0(0,W )− θ(0,W ))

]
dP0.

Consider now the case where θ = θ0 then the integral vanishes and also the first term by definition

of ψ0(a). In the case of Π = Π0 the integral is the negative of the first 2 terms. �

A double robust (i.e. consistent if either θ0 or Π0 is estimated consistently) locally efficient esti-

mator can be constructed by solving the above defined estimating equation i.e. given estimators

Πn and θn of Π0 and θ0, one can estimate ψ0 with:

ψn := PnD(O|θn,Πn),

where we use the notation Pf :=
∫
fdP for the expectation operator and

D(O, θn,Πn) :=(θn(a,W )− θn(0,W ))

+

[
1{A=a}

Πn(a|W )
(Y − θn(a,W ))−

1{A=0}

Πn(0|W )
(Y − θn(0,W ))

]
.

Thus given n observations the estimator ψn can be written as:

ψn =
1

n

n∑
i=1

Yi

(
1{Ai=a}

Πn(a|Wi)
−

1{Ai=0}

Πn(0|Wi)

)
−

n∑
i=1

θn(a,Wi)

(
1{Ai=a}

Πn(a|Wi)
−

1{Ai=0}

Πn(0|Wi)

)
(2.1)

+
1

n

n∑
i=1

θn(a,Wi)− θn(0,Wi).

If one assumes a correctly specified model for Π0, then we can set θn = 0, which results in:

ψn =
1

n

[
n∑
i=1

Yi

(
1{Ai=a}

Πn(a|Wi)
−

1{Ai=0}

Πn(0|Wi)

)]
. (2.2)

In the case of a binary treatment or exposure variable A ∈ {0, 1} the estimators from formula

(2.1) and formula (2.2) are implemented in the R package multiPIM (Ritter et al., 2014, Section

2.2). Nevertheless, in the remaining part of this theses we will no longer focus on these variable

importance measures in a general regression context and rather move to importance measures in

the context of random forests, which can deal with high dimensionality and are easily applicable.



Chapter 3

Variable importance in the

context of random forests

In this chapter we introduce several ways to assess variable importance, when dealing with random

forests. In applications random forests are a widely used tool for non-parametric regression or

classification problems. They can be applied to “large-p small-N” problems, can deal with highly

correlated explanatory variables as well as complex interactions between them. Furthermore they

provide different variable importance measures that can be used to identify the most important

features in a given setting. After a short overview on random forests, we will present the most

commonly used variable importance measures. Finally we will compare them on a simulated data

set. The first part of this chapter is based on Breiman (2001) as well as (Friedman et al., 2001,

section 9.2 and chapter 15).

We will use the following notation throughout this chapter:

Let X := (X1, ..., XK) ∈ RN×K denote the input matrix , where N and K are the number of

observations and features (explanatory variables, regressors, independent variables or predictors)

respectively. Furthermore we will denote by Xk for k ≤ K the k-th column of X which represents

a single feature and by xn for n ≤ N the n-th row of X representing a single observation. The

target or response variable will be denoted by Y ∈ RN whereas yn for n ≤ N denotes a single

observation. We will identify by T := (X,Y ) ∈ RN×(K+1) the training sample, upon we will build

the model. For the sake of readability we will hereby use the notation of capital letters both for

real valued column vectors representing realizations of a feature as well as for real valued random

variables and refer to the meaning of it from the context.

A random forest is an ensemble of multiple decision trees. There are various methods available

which randomly select first the training sets Tb, by selecting a subset of the rows of T , for the b-th

individual decision tree and secondly at each node the used features {Xi1 , . . . , Xim} with m ≤ K

and im ∈ {1, . . . ,K} upon the split is made. This method is called feature bagging. In order to

choose the feature X∗ ∈ {Xi1 , . . . , Xim} that “best” binary splits at a certain node one solves an

optimization problem with respect to a certain metric, which often measures the homogeneity of

the target variable Y in the resulting subset. We will focus in this introduction on the famous

CART algorithm introduced by Breiman et al. (1984) which outlines the main idea in recursive

15
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binary partitioning. The most popular metrics used for measuring the “best” split are:

• Regression trees:

– Minimum sum of squared errors:

At each node in a single tree the feature X∗ and splitting point s∗ is selected based

on the Nnode observations in this node as the solution to the following minimization

problem:

min
j,s

 ∑
yi∈R1(j,s)

(yi − y1)2 +
∑

yi∈R2(j,s)

(yi − y2)2

 ,

where R1(j, s) := {(X,Y )|Xj ≤ s} ⊂ Nnode and R2(j, s) := {(X,Y )|Xj > s} ⊂ Nnode

are the two half spaces (i.e. rows of (X,Y ) ) representing a binary split with respect

to the j-th feature and y1,2 := 1
|R1,2(j,s)|

∑
yi∈R1,2(j,s) yi denotes the mean within those

subsamples.

• Classification trees:

If the target variable Y is a factor with L levels then we define for l ≤ L

p1l :=
1

|R1(j, s)|
∑

yi∈R1(j,s)

1{yi=l}

as the proportion of level l in R1(j, s) resulting due to the resulting binary split. Analogously

one can define p2l. In each resulting node the observations are classified according to the

majority vote i.e. in the left child node all the observations are classified according to the

level l∗ := arg maxl p1l. Instead of minimizing the mean squared error as above one seeks to

minimize one of the following homogeneity measures:

– Gini impurity: measures how often a randomly chosen element would be incorrectly

labeled if it was randomly labeled according to the frequency of the levels in the subset.

Formally defined as

GI1(j, s) :=

L∑
l=1

p1l · (1− p1l).

– Cross-Entropy:

E1(j, s) := −
L∑
l=1

p1l · log(p1l)

– Misclassification Error:

MCE1(j, s) :=
1

|R1(j, s)|
∑

yi∈R1(j,s)

1{yi 6=l∗} = 1− p1l∗

In the special case of a binary target variable the measures result in

GI1(j, s) = 2p · (1− p)

E1(j, s) = −(p log(p) + (1− p)l log(1− p))

MCE1(j, s) = 1−max(p, 1− p),
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Figure 3.1: Node impurity measures for a binary target variable as a function of the proportion of
the second class p. E1(p) was scaled to go through the point (0.5, 0.5).

where p denotes the proportion of the second class. They are presented in figure 3.1. To

decide upon a splitting feature and point the minimization is done by weighting the resulting

measures in the two child nodes and adding them up.

e.g. for the Gini impurity at node k:

Gk := min
j,s

{
GI1(j, s) · |R1(j, s)|

|R1(j, s)|+ |R2(j, s)|
+GI2(j, s) · |R2(j, s)|

|R1(j, s)|+ |R2(j, s)|

}
, (3.1)

where the right hand side depends on k trough the observations considered.

One example for selecting training sets is bagging (bootstrap aggregation), where an individual

training set Tk for the k-th decision tree is generated by a random selection of rows with replace-

ment from the original training set T . By taking the majority vote, in the case of classification, or

the mean of each terminal leaf one obtains predictions for each individual grown tree. The final

prediction of the random forest is then again obtained by majority vote or averaging over all grown

trees. By reaching a certain criterion such as the minimum number of observations in one node

the growth of a tree is stopped.

The common element of all these procedures is that for the b-th tree a random vector Θb is

generated. In the case of (feature) bagging with replacement Θb would be a vector of N i.i.d

uniformly distributed random variables U ∼ {1, . . . , N}. Furthermore the sequence of random

vectors (Θ1,Θ2, . . . ,ΘB) is assumed to independent and identically distributed. An individual

tree is grown using the training set T,Θb and the input X and will be denoted by h(T,X,Θb).

This yields to a more formal definition of a random forest.

Definition 3.1 (Random Forest) A random forest is a collection of regression or classification

trees {h(T,X,Θb), b ∈ B ⊆ N}, where {Θb}b∈B⊆N is a sequence of independent and identically

distributed random vectors. For an input X the output is obtained

• Classification: each tree casts a unit vote or for the most popular class for the input X. Upon
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this votes the classification is determined by the majority.

• Regression: each tree outputs the mean of the terminal leaf, where the considered input X is

assigned to. Taking again the mean over all trees yields the final output.

In the remaining part of the thesis we will for the sake of readability define a single tree by

h(Tb) := h(T,X,Θb). Below a pseudo code for the implementation of a random forest is presented.

Algorithm 1: Pseudo code for implementing a random forest

1. for b = 1 to B do

(a) Draw a bootstrap sample Θb from the total number of rows N of the training sample

T and construct Tb .

(b) Fit a single decision tree h(Tb) by recursively repeating the following steps for each

node until a stopping criterion (e.g. minimum number of observations) is met:

i. Select randomly m ≤ p features: {Xi1 , . . . , Xim}.
ii. Determine the feature X∗ ∈ {Xi1 , . . . , Xim} and a splitting point s∗ that best

splits the data according to some impurity measure.

iii. Conduct a binary split into two child nodes.

(c) Output the random forest {h(Tb) : b ≤ B}.

end

2. For an input xj , j ≤ N predict the response as following:

(a) Regression: f̂Brf (xj) := 1
B

∑B
b=1 h(Tb)(xj) where h(Tb)(xj) is the prediction of a single

tree based upon the mean in the terminal leaf where xj falls into.

(b) Classification: f̂Brf (xj) := majority vote of {h(Tb)(xj) : b ≤ B} where h(Tb)(xj) is the

prediction of the single tree based on a majority vote in the terminal leaf where xj

falls into.

3.1 Variable importance measures

We will now discuss several popular methods for measuring variable importance in the context of

random forests. The random forests will be based on the original CART implementation as outlined

above and on a newer approach, where splits are conducted based on a conditional inference

framework instead of the e.g. Gini impurity used in the CART algorithm. Finally we will compare

the different methods using simulated data.

3.1.1 Gini importance

The basic idea is to assess variable importance for a feature Xj by accumulating over each tree

the improvement in the splitting criterion metric in each split, that is conducted by Xj . In the

case for a regression tree the splitting criterion metric would be simply the squared error. For

classification we could theoretically use any of the above discussed impurity measures, while the
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most common approach is to use the Gini impurity measure which leads us to the definition of the

Gini importance.

Let Mb be the number of nodes in the b-th tree of the random forest {h(Tb)}b∈B⊆N (not including

terminal nodes i.e. leafs). Then the Gini importance for the feature Xj is defined as

Igini(j) :=

B∑
b=1

{
Mb∑
m=1

(GIparentm −Gm)1{split is made uponXj}

}
, (3.2)

where GIparentm is defined as the Gini impurity in the node m i.e. parent node w.r.t to the split

and Gm is defined in equation (3.1) as the weighted Gini impurity resulting from the split.

However it was shown in Strobl et al. (2007) that the Gini importance measure used in combina-

tion with the CART algorithm does not yield reliable results. The authors of Strobl et al. (2007)

conducted several simulation studies where they showed that the Gini importance has a strong pref-

erence for continuous variables and variables with many categories. It sometimes completely fails

to identify the relevant predictors. The reason for the bias induced by the Gini importance measure

is due to preference of continuous variables or variables with many categories in a CART-like tree

building process. Since the Gini importance measure is directly calculated as the improvement

in the Gini impurity resulting from a split, it is strongly affected by this selection bias and does

not yield reliable results, especially in a setting where the predictors vary in their scale or have a

different number of categories. Thus we won’t focus on this particular variable importance measure

in the remaining part of this chapter. However it is accessible in the following R package:

The Gini importance measure is implemented by the R function importance(. . .,type=2) which

is part of the package randomForest Liaw et al. (2015).

3.1.2 Permutation importance

Following Breiman (2001), we now focus on the “feature bagging” algorithm for growing a tree.

This means that first a new training set Tb is drawn from the original training set T with replace-

ment. Then a single tree is grown on the new training set using random feature selection at each

node.

In the following we will need the definition of an out of bag (OOB) sample for a single tree. This

is defined for the b-th tree as T \ Tb i.e. the observations which were not used in the fitting of this

single tree. After the whole forest has been trained the permutation importance of variable Xj is

measured by comparing OOB prediction accuracy of a single tree i.e. classification rate (classifi-

cation trees) or mean squared error (regression trees) before and after permuting the feature Xj .

The idea behind that is if this feature was relevant for the prediction or had an influence on the

target the accuracy should decrease. Finally averaging each decrease over all trees yields the per-

mutation importance. This can be formalized in the case of a classification random forest as follows:

Let Ob := T \ Tb be the out of bag sample for the b-th tree with b ∈ {1, . . . , B}. Then the

permutation importance of the j-th feature Ipermute(j) is defined as:
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Ipermute(j) :=
1

B

B∑
b=1

{∑
i∈Ob 1{yi=ŷbi }

|Ob|
−

∑
i∈Ob 1{yi=ŷbi,πj }

|Ob|

}
︸ ︷︷ ︸

:=Ibpermute(j)

, (3.3)

where ŷbi := h(Tb)(xi) and ŷbi,πj := h(Tb)(xi,πj ) is the predicted class of the b-th tree for the input

xi respectively for the permuted input xi,πj := (xi,1, . . . , xi,j−1, xπj(i),j , xi,j+1, . . . , xi,K).

This approach can be naturally extended to regression forests by substituting the classification

rate
∑
i∈Ob 1{yi=ŷbi } in equation (3.3) by the mean squared error

∑
i∈Ob(yi − ŷ

b
i )

2 and considering

the increase in the MSE. A pseudo code for measuring the permutation importance is presented

below.

Algorithm 2: Pseudo code for calculating permutation importance for a single feature Xj

1. Fit a random forest {h(Tb) : b ≤ B} on the training set T using algorithm 1 presented

above.

2. for b = 1 to B do

(a) Compute the OOB prediction accuracy of the b-th tree h(Tb).

(b) Permute randomly the observations of the feature Xj in the OOB sample Ob once.1

(c) Recompute the OOB prediction accuracy of the b-th tree h(Tb) using the permuted

input.

(d) Compute Ibpermute(j).

end

3. Compute the average decrease of prediction accuracy over all trees i.e. Ipermute(j).

In the following we will use the term unconditional permutation importance for the above discussed

permutation importance. Again it was shown in Strobl et al. (2007) that the unconditional permu-

tation importance, when using it in combination with the CART algorithm, does not yield good

results. As presented in Strobl et al. (2007), using the CART algorithm in combination with the

Gini impurity split criteria induces a bias towards continuous predictor variables or variables with

many categories. This bias of course affects the permutation procedure. Variables that appear

more often in trees and are situated closer to the root of each tree can affect the prediction accu-

racy of a larger set of observations when permuted.

It was also outlined in Strobl et al. (2007) that the sampling scheme for the training set Tk of the

k-th tree does have a not negligible effect on the so far discussed variable importance measures.

A training set Tk obtained via bootstrapping i.e. sampling N observations from T with replace-

ment also induces a bias for continuous variables or variables with many categories. This bias is

independent of the used algorithm and is also present when building an unbiased random forest

1Let Sn be the symmetric group of all permutations of {1, . . . , n}. A random permutation of Sn is a uniformly
distributed random variable Π : Ω 7→ Sn i.e. P[Π = π] = 1

n!
, ∀π ∈ Sn.
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as in Hothorn et al. (2006), where the splitting criteria is based on a permutation test framework.

Applying the method of Hothorn et al. (2006), predictors which attain statistical significance are

candidates for the node split. Among those the split is made upon the predictor with the smallest

p-value. This approach guarantees unbiased variable selection in the sense that continuous predic-

tor variables or features with many levels are no longer favored when conducting a split.

All in all sampling for the training set Tk should be carried out independently of the algorithm

used without replacement.

There are two different versions of the unconditional permutation importance in R available:

1. CART algorithm: biased

• package: randomForest Liaw et al. (2015)

• function: importance(. . .,type=1)

2. Conditional inference forests Hothorn et al. (2006): unbiased

• packages: party Hothorn et al. (2017-12-12) and partykit Hothorn et al. (2017-12-13).

• function: varimp()

In the next two sections we will discuss two more extension of the unconditional permutation

importance, which can deal better with correlated predictor variables and missing data.

Thus up to now the most promising method is fitting random forests using the function cforest()

of the packages party or partykit in combination with sampling with replacement (which is the

default setting) and measure the importance via the function varimp().

3.1.3 Conditional permutation importance

In a setting with highly correlated features the distinction between the marginal effect and the

conditional effect of a single predictor variable on the target is crucial. Consider for example a

group of several pupils between the age of 7 and 18 doing a basic knowledge test. The two predictor

variables age A and the size of shoes S are used to predict the performance on the test Y . Since it

is likely that the correlation of A and S is large, we will outline in the following why both variables

will have a rather large importance when using the unconditional permutation importance discussed

above. Nevertheless, when conditioning on the age A i.e. comparing only students with the same

age it is then clear that the size of the shoes S is no longer associated with the performance Y .

This is an example where a predictor may appear to be marginally influential but might actually

be independent of the response variable when conditioned on another.

We will therefore discuss in this section a conditional variable importance measure based on the

same idea of the unconditional permutation importance, which reflects the true impact of a predic-

tor variable more reliable. It will be based on the partition of the feature space obtained by the

fitted random forest. This section will be mainly along the lines of Strobl et al. (2008).

First we will outline why the unconditional permutation importance from section 3.1.2 favors cor-

related predictor variables. This is caused by the following two reasons:

1. Preference of correlated predictor variables in (early) splits when fitting the random forest.

We will illustrate this effect by a simulation study similar as in (Strobl et al., 2008, section
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2.1) by fitting a regression and a classification forests using the R function cforest() from

the partykit package Hothorn et al. (2017-12-13).

Data sets were generated according to a linear and a binary response model as following:

(X1, . . . , X12)′ ∼ N (0,Σ) (Σ)i,j :=



1 , j = i

0.9 , i 6= j ≤ 4

−0.9 , i 6= j ≥ 9

0 , else

(β1, . . . , β12)′ = (5, 5, 2, 0,−5,−5,−2, 0, 0, 0, 10, 0)′

(a) Linear model:

yi = β1x1,i + . . .+ β12x12,i + εi εi ∼ N (0, 0.25), i ≤ N

(b) Binary response model:

yi = 1{
exp(β′·xi+εi)

1+exp(β′·xi+εi)
≥0.8

} εi ∼ N (0, 1), i ≤ N

Of the twelve features seven were influential. We constructed in every case one (4×4) - block

of positively correlated predictors, one (4× 4) - block of independent predictors, which both

have regression coefficients with the same absolute value and a (2× 2) - block of negatively

correlated predictors, where the variable X11 has in absolute value the largest overall coef-

ficient. We want to compare the selection rate between those features w.r.t to the primary

split and all splits in each tree.

For the simulation study we considered different values of the input parameter mtry for the

cforest() function. This parameter determines the amount of randomly selected features

at each node in each tree upon the split is made. Default values were used for the other

parameters i.e. number of trees fitted were set to be 500. Figure 3.2 and 3.3 present the

results for the linear model.

In figure 3.2 one can approximately see a uniform distribution of all features for mtry = 1,

which is of course due to the random selection of the features i.e. there are no competitor fea-

tures. Increasing the parameter mtry yields a different picture. For mtry = 3 the predictors

X3, X4, X12 are clearly more often selected than X5, X6 even though they have coefficients

equal to zero or in absolute value smaller than those of X5, X6 and therefore no or little

impact on the response. If mtry ∈ {8, 12} it seems that the “best” first split is made using

X1, nevertheless if mtry = 8 the features X2, X3, X4 are, due to their high correlation, also

selected quite often in the tree building process. Interestingly the variable with the strongest

influence on the response X11 is never selected in this case and thus even less often than the

variables X3 and X4, which have little or no influence.
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Figure 3.2: Selection rates in the linear model in the first split.
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Figure 3.3: Selection rates in the linear model in all splits.

In figure 3.3 one can observe the same effect for mtry = 1 as in the case where only the first
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split was considered. For increasing mtry we get different results. Because variable selection

is now conditionally on the previously selected variables i.e. the parent nodes, the correlated

predictors which have little or no influence X3, X4, X12 are less often selected. However X4

and X12 are still sometimes selected and thus more often than the other features without

any influence X8, X9, X10.

Similar results are obtained for the classification model. They are presented in figure 3.4 and

3.5.
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Figure 3.4: Selection rates in the binary response model in the first split.

2. The inherent null hypothesis for the unconditional permutation importance.

In the context of permutation tests one usually considers a null hypothesis which implies the

independence of a certain predictor variable to the response and the remaining predictors.

Under this global null hypothesis a permutation does not affect the joint distribution of

them. Therefore a change in the joint distribution or a test statistic computed from it

implies that the null hypotheses does not hold. The unconditional permutation importance,

where one feature Xj is permuted against the target Y and the remaining features Z :=

(X1, . . . , Xj−1, Xj+1, . . . , XK), corresponds to a null hypothesis that Xj is independent of

both Y and Z:

H0 : Xj ⊥ Y andXj ⊥ Z

The “test statistic” used in this setting is the decrease in the prediction accuracy. A pos-

itive value of the unconditional permutation importance corresponds to a violation of this

null hypothesis. This can be caused either if Xj and Y are not independent or the rather

uninteresting case if Xj and Z are not independent. This implies naturally an advantage of
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Figure 3.5: Selection rates in the binary response model in all splits.

correlated features. We remark here that the selection frequency can be also used as a naive

variable importance measure.

We will now focus on a more reliable importance measure which can deal better with correlated

predictor variables. In order to measure only the impact of Xj to the response Y the conditional

permutation importance measure is discussed. The null hypothesis can be formulated as follows:

H0 : (Xj ⊥ Y )|Z

If we are in a orthogonal setting i.e. P [(X1, . . . , XK) ∈ A] =
∏K
j=1 P [Xj ∈ A] both measures will

theoretically yield the the same results. However if correlation is present the unconditional permu-

tation importance will tend to overestimate the importance of non influential correlated predictors

as outlined above. If Z consist only of categorical variables the grid to be conditioned on can

be simply defined by the number of categories. However permuting the observed values of Xj

conditioned on Z = z is problematic if Z contains continuous variables. Even in the case where Z

is categorical and having many levels this approach can sometimes be computationally infeasible.

Thus the authors of Strobl et al. (2008) propose the grid, within the values of Xj are permuted,

as the resulting partition on the space of the predictors, which is induced by the fitted tree. This

can be also applied to continuous features. However for ease of computation they suggest to use

all splitting criteria as cut points of the predictor space. The difference of both approaches is best

explained using a simple example:

Consider three explanatory variables X := (X1, X2, X3) ∈ R2 × {1, 2, 3}. We want to measure the
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conditional importance of X1 on the target Y conditioned on X2, X3. Suppose the following tree

has been fitted

X2 ≤ 0.2

X3 ∈ {1}

R1 R2

X3 ∈ {1, 3}

R3 R4

Y

Y N

N

Y N

which leads to a partition of the feature space into:

R1 = {X|X2 ≤ 0.2, X3 = 1}, R2 = {X|X2 ≤ 0.2, X3 ∈ {2, 3}}

R3 = {X|X2 > 0.2, X3 ∈ {1, 3}}, R4 = {X|X2 > 0.2, X3 = 2}.

Following the second approach, where each split is used as a bisection of the entire feature space

and not only of the current node, one would obtain the following grid:

R̃1 = {X|X2 ≤ 0.2, X3 = 1}, R̃2 = {X|X2 ≤ 0.2, X3 = 2}, R̃3 = {X|X2 ≤ 0.2, X3 = 3}

R̃4 = {X|X2 > 0.2, X3 = 1}, R̃5 = {X|X2 > 0.2, X3 = 2}, R̃6 = {X|X2 > 0.2, X3 = 3},

which is more fine graded.

Nevertheless conditioning too strictly does not have a negative effect from a theoretical point of

view as opposed to the other way around. Several ways were proposed to select the variables Z

to be conditioned on. The most conservative is to select all remaining variables. One can also

define for (continuous) predictors a threshold for some dependency measure such as the Pearson

Correlation Coefficient, Kendall’s Tau or Spearman’s Rho and select only those variables for Z that

attain a value greater than this threshold. The framework of Hothorn et al. (2006) provides also

p-values, which measure the association between the predictor and the target variable. These can

also be used for constructing Z. Furthermore this method can be applied to all types of variables

on different scales including categorical.

A pseudo code for the conditional permutation importance is given below in algorithm 3.

The conditional permutation variable importance is accessible in the R packages partykit Hothorn

et al. (2017-12-13) and party Hothorn et al. (2017-12-12) via the function varimp(. . ., condi-

tional=TRUE, threshold =.2). The variables to be conditioned on Z are determined as:

[. . .] If conditional = TRUE, the importance of each variable is computed by permut-

ing within a grid defined by the covariates that are associated (with (1 − p) - value

greater than threshold) to the variable of interest.
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Using the partykit package the risk evaluated for the mean decrease in accuracy in the case of a

regression forest is given by the log-likelihood instead of the mean squared error, which is used in

the packages party and randomForest.

Algorithm 3: Pseudo code for calculating conditional permutation importance for a single

feature Xj

1. Fit a random forest {h(Tb) : b ≤ B} on the training set T using algorithm 1 (where the

splitting rule can be also made using a permutation test framework as presented in Hothorn

et al. (2006))

2. for b = 1 to B do

(a) Compute the OOB prediction accuracy of the b-th tree h(Tb) (see section (3.1.2)).

(b) Determine the variables Z to be conditioned on, extract all cutpoints for each variable

in the current tree and construct the grid by bisecting the feature space in each

cutpoint.

(c) Within this grid permute the observations of the feature Xj in the OOB sample Ob.

(d) Recompute the OOB prediction accuracy of the b-th tree h(Tb) using the permuted

input i.e. (for classification) compute∑
i∈Ob 1{yi=ŷbi,πj |Z}

|Ob|
,

where ŷbi,πj |Z = h(Tb)(xi,πj |Z) is the prediction of the b-th tree after permuting the

observations of Xj within the grid defined by Z.

(e) Compute Ibpermute,conditional(j) using (a) and (d) analogously as for Ibpermute(j).

end

3. Compute the average decrease of prediction accuracy over all trees which we will denote by

Ipermute,conditional(j) analogously using Ibpermute,conditional(j) as for Ipermute(j).

3.1.4 Importance measure with missing data

In this section we will discuss a permutation importance measure similar to the unconditional per-

mutation importance which can be applied in the case of missing data. This section is along the

lines of Hapfelmeier et al. (2014).

There are several methods for handling missing values in a tree building process. One possibility

is to stop the throughput of an observation xj at the node where the splitting variable is missing

in this observation and to use the mean or the majority vote of the response at this node for

prediction. Another approach is to set the missing values as the majority of the observed values

of all observations. Nevertheless the most popular method is to use surrogate splits that are based

on additional predictors. Surrogate splits are constructed such that the resulting binary partition

“mimics” the primary split that could not be made because of missing values of the splitting vari-
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able. Usually several surrogate splits are calculated at each node and ranked according to their

ability of resembling the original split. If an observation contains further missing values in the

surrogate splits they are selected according to their rank.

If surrogate splits are used the unconditional permutation importance discussed in section 3.1.2 is

no longer applicable. This is due to the fact that surrogate splits are not directly affected by the

permutation of the variable of interest. The authors of Hapfelmeier et al. (2014) therefore proposed

a modification of the unconditional permutation importance in the case of missing values which we

will discuss below.

The substantial difference to the previously discussed permutation measures is the following. In-

stead of permuting a predictor variable Xj , which could theoretically contain missing values, one

randomly allocates observations at each node, where the split is conducted via Xj , to the two child

nodes. The random assignment is done using the relative frequency in each of the two child nodes

as a distribution. This can be formalized as follows:

Let the random variable Dk ∼ Ber(pk) represent the decision if an observation at node k is as-

signed to the left child node P [xm to left] = P [Dk = 1] or respectively to the right child node

P [xm to right] = P [Dk = 0]. Furthermore let pk :=
nleft

Nnode(k)
where Nnode(k) is defined to be the

number of observations at the k-th node and nleft represents the number of observations which

were assigned to the left child node of node k.

The null hypothesis i.e. independence of Xj from Y and Z := (X1, . . . , Xj−1, Xj+1, . . . , XK) is

given as:

H0 : L(Dk|Xj) = L(Dk),

i.e. that the random assignment of an observation does not depend on the particular predictor

variable Xj . All in all the procedure can be summarized as follows.
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Algorithm 4: Pseudo code of the permutation importance with missing data for a single

feature Xj

1. Fit a random forest {h(Tb) : b ≤ B} on the training set T using algorithm 1 (where the

splitting rule can be also made using the permutation test framework as presented in

Hothorn et al. (2006)).

2. for b = 1 to B do

(a) Compute the OOB prediction accuracy of the b-th tree h(Tb).

(b) Randomly assign at each node k, where the splitting rule is defined via Xj all

observations to the two child nodes using the random variable Dk.

(c) Recompute the OOB prediction accuracy of the b-th tree h(Tb).

(d) Compute Ibpermute,missing(j) as the difference between the original and the recomputed

OOB accuracy.

end

3. Compute the average decrease of prediction accuracy over all trees Ipermute,missing(j).

This algorithm is accessible via the function varimp(. . .,pre1.0 0 = FALSE) in the R package

party Hothorn et al. (2017-12-12) or as standard implementation of the function varimp() in the

partykit package if missing values are present in the input X.

3.1.5 Simulation study: permutation importance measures for random

forests

In this section we will compare the three different permutation variable importance measures pre-

sented in the previous sections. We will concentrate on unbiased random forests from the R package

party since importance measures based on them are more reliable as shown in Strobl et al. (2007).

The simulation will be based again on the linear model from section 3.1.3.

We fitted a random forest using the R function cforest() from the party package to N = 1000

simulated data points according to the linear model presented above:

predictor X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

βi 5 5 2 0 -5 -5 -2 0 0 0 10 0

where the green and the blue variables were selected to be positively correlated with r = 0.9

respectively negatively correlated with r = −0.9.

As hyper parameters we used the default settings for different mtry parameters i.e.

cforest(. . . ,control=cforest unbiased(ntree=500, mtry)).

The permutation importance measures were calculated using the varimp() function as following:

• unconditional: varimp(. . ., nperm= 50, pre1.0 0 = TRUE)

• conditional: varimp(. . ., conditional=TRUE, threshold= 10−16, nperm= 50)
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• unconditional (missing data): varimp(. . ., nperm= 50, pre1.0 0 = FALSE)

The results of the mean importance scores w.r.t. the number of permutations are presented in

figure 3.6 and 3.7.

One can clearly observe in figure 3.6 that the conditional variable importance measure yields much

smaller importance scores as the unconditional ones. Furthermore the unconditional permutation

importance measure and the permutation importance measure with missing data do basically co-

incide. This is not a surprising fact since we did not artificially create missing values in our data

and thus they should coincide as has been shown by Hapfelmeier et al. (2014). The results also do

show that the permutation importance scores are naturally strongly influenced by the parameter

mtry. For mtry ∈ {1, 3} the scores do not reflect the true underlying model, since variables with

no or little influence X3, X4, X12 does have a large importance score. These are the correlated

variables, but since the unconditional importance measures do not correct for multicollinearity,

large importance scores are assigned to them. Nevertheless with increasing mtry ∈ {8, 12} the

correlated predictors with little or less influence are replaced by their correlated competitors which

do have more influence X1, X2. Even though variable X12 does also show for mtry = 8 a higher

importance than X6. Finally when using all variables i.e. mtry = 12 (bagging) the true model

is reflected the best. However using all variables in every split is rather unrealistic if the set of

predictors gets too large and is also likely to induce correlated trees within a random forest.
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Figure 3.6: Comparison of permutation importance measures of random forests under multi-
collinearity.

Having a closer look at the conditional variable importance measure in figure 3.7 one can see that

the true model is better reflected in all cases. Nevertheless correlated predictors with influence
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such as X1, X2 are now kind of downgraded for large values of the mtry parameter.
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Figure 3.7: Conditional permutation importance measure for random forests under multicollinear-
ity.

The ranks of the calculated importance scores are presented in table 3.1.

mtry X 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 X 9 X 10 X 11 X 12
missing data method 4 3 5 6 7 8 9 10 12 11 1 2

1 conditional 7 5 8 9 2 3 6 11 10 12 1 4
unconditional 4 3 5 6 7 8 9 10 12 11 1 2

missing data method 2 3 5 7 6 8 9 12 10 11 1 4
3 conditional 5 4 7 9 2 3 8 11 10 12 1 6

unconditional 2 3 5 7 6 8 9 12 10 11 1 4

missing data method 3 2 7 8 4 6 9 11 12 10 1 5
8 conditional 5 4 6 9 2 3 8 11 10 12 1 7

unconditional 3 2 7 8 4 6 9 11 12 10 1 5

missing data method 2 3 6 7 4 5 9 11 12 10 1 8
12 conditional 5 4 6 8 2 3 7 10 12 11 1 9

unconditional 2 3 6 7 4 5 9 11 12 10 1 8

Table 3.1: Ranks of permutation importance measures for random forest under multicollinearity.

All in all it is maybe good to use both an unconditional and a conditional permutation importance

measure for correct inference about variable importance.
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3.2 Permutation importance for linear and logistic models

This section is dedicated to the application of the unconditional permutation importance, which

has been presented in section 3.1.2, to other models than random forests. Specifically we will test

this method for a linear and a logistic regression setting.

The unconditional permutation importance is based on a very simple idea, which does not require

the special structure of a random forest model. Thus it can in principle be applied to all kinds

of classification or regression models. We will briefly review the main steps when calculating the

unconditional permutation importance for a unspecified model. It is worth noting that for a random

forest model the following algorithm is applied to each tree in the forest and finally averaged, where

the test set is the OOB sample.

1. Divide the given data D in a training set T ⊂ D and a test set T c ⊂ D.

2. Fit a model M to the training set T .

3. Use the fitted model M to make predictions on the test set T c.

4. Calculate the accuracy of the predictions using e.g. MSE, classification rate2, the Lift measure

or the Gini index.

5. Randomly permute the predictor of interest ceteris paribus in the test set T c and recalculate

the accuracy using the permuted data.

6. Calculate the decrease in accuracy.

In the following we test the unconditional permutation importance for a linear as well as a logistic

regression model.

3.2.1 Permutation importance - linear regression setting

We will apply the unconditional permutation importance on two simulated data sets in the case of

a linear regression setting. These were generated as:

yi = β1x1,i + . . .+ β12x12,i + εi εi ∼ N (0, 25), i ≤ N := 1000

where

(X1, . . . , X12)′ ∼ N (µ,Σ) (Σ)i,j :=



1 , j = i

0.9 , i 6= j ≤ 4

−0.9 , i 6= j ≥ 9

0 , else

µ := (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)′

(β1, . . . , β12)′ =

(5, 5, 2, 0,−5,−5,−2, 0, 0, 0, 10, 0)′, Dataset 1

(10, 5, 2, 0,−10,−5,−2, 0, 0, 0, 10, 0)′, Dataset 2

2By classification rate we mean the percentage of correctly classified labels i.e. Ŷi = Yi
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The training set and the test set were constructed according to a 70 : 30 rule. For measuring the

accuracy we used the MSE. The linear model was fitted using the R function lm from the stats

package. The results are presented in figure 3.8 and 3.9. Figure 3.8 displays the distribution of

500 repetitions. Ranks of the permutation importance method as well as of the absolute value of

the estimated regression coefficients3 are presented at the top of each bar in figure 3.9.
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Figure 3.8: Permutation importance linear regression: Dataset 1, distribution.
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Figure 3.9: Permutation importance linear regression: Dataset 1.

From figure 3.9 we can see that this method ranks almost equally according to the absolute value of

the estimated coefficients as well as the true coefficients, which is intuitively, due the definition of

the unconditional permutation importance, not a surprising fact. One can also observe from figure

3.8 that the larger the estimated coefficient the larger the variance of the calculated permutation

importance.

Results for the second dataset are presented in figure 3.10 and 3.11, where we can observe a similar

pattern. All in all analyzing variable importance using the unconditional permutation importance

yields similar results as one would obtain via the absolute value of the estimated coefficients. Fur-

thermore one cannot observe a preference for correlated predictors when applying this method.

3Since the data X was chosen to be standardized, these are equal to the standardized regression coefficients,
betasq, from section 1.1.1 when neglecting the division by sY .
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Figure 3.10: Permutation importance linear regression: Dataset 2, distribution.
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Figure 3.11: Permutation importance linear regression: Dataset 2.

3.2.2 Permutation importance - logistic regression setting

The same analysis as in the previous section is conducted in the case of a logistic regression model

defined by4:

(X1, . . . , X12)′ ∼ N (0,Σ) (Σ)i,j :=



1 , j = i

0.9 , i 6= j ≤ 4

−0.9 , i 6= j ≥ 9

0 , else

(β1, . . . , β12)′ =

(5, 5, 2, 0,−5,−5,−2, 0, 0, 0, 10, 0)′, Dataset 1

(10, 10, 2, 0,−5,−5,−2, 0, 0, 0, 10, 0)′, Dataset 2

yi drawn from Yi ∼ Ber

({
exp (β′ · xi)

1 + exp (β′ · xi)

})
, i ≤ N := 1000.

4Ber(p) is defined to represent the Bernoulli distribution on {0, 1} with success probability p ∈ [0, 1].
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For measuring the accuracy i.e. the classification rate, we used the empirical mean of the loss

function l that is defined as: l(ŷi, yi) := |1{ŷi≥0.5}−yi|, where ŷi denotes the estimated probability

that yi = 1 and yi ∈ {0, 1} is the observed data. Results are presented in figure 3.12 and 3.13.

A similar pattern as in the linear case can also be observed in the logistic regression setting i.e.

ranks of the unconditional permutation importance are almost equal to the absolute coefficient of

the estimated regression coefficients, no preference of correlated predictors and larger variance for

regressors that have in absolute value a large estimated regression coefficient.
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Figure 3.12: Permutation importance logistic regression: Dataset 1, distribution.
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Figure 3.13: Permutation importance logistic regression: Dataset 1.

Additionally we compared the obtain ranks through the unconditional permutation importance

with the varImp() function of the R caret package (Kuhn et al. (2018-03-29)), which computes

the absolute value of the z-statistic of the MLE coefficients.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

varImp() function 6 5 7 10 2 3 4 12 9 11 1 8
Permutation Importance 5 2 7 10 3 4 6 12 11 9 1 8

Table 3.2: Ranks comparison varImp() function vs. permutation importance in a logistic setting.

Again these two measures almost coincide by being able to identify the most influential predictors

{X11, X1, X2, X5, X6}, whereas the varImp() function seems to down weight correlated variables
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e.g. {X1, X2} in comparison to their uncorrelated counterparts {X5, X6} and ranks X7 above

{X5, X6}. This effect can even be more dramatically observed for the second dataset in figure 3.15,

where {X5, X6, X7} does almost have the same importance as {X1, X2}, although we increased

the true coefficients in the data generating process from 5 to 10 for {X1, X2}
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Figure 3.14: Permutation importance logistic regression: Dataset 2.
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Figure 3.15: varImp results: Dataset 2.

The reason why the estimated coefficients from figure 3.14 and 3.15 differ is that in figure 3.14

they result from fitting a model on the training set T ⊂ D, while in figure 3.15 they are obtained

by fitting a model on the whole dataset D.



Chapter 4

Variable importance in logistic

regression

In this chapter we present one possible method to measure relative variable importance of regressors

in a logistic regression setting.

4.1 Setting

This section briefly reviews the principles of logistic regression.

We are given a matrix of explanatory variables denoted by X = (X1, . . . , Xp) ∈ Rn×p where

Xi ∈ Rn denotes the i-th regressor variable. In the following we will not distinguish between

the random Variable Xi : Ω 7→ R and the corresponding column of X i.e. the n observed values

of (Xi(ω1), . . . , Xi(ωn)) and denote both objects for the sake of readability by Xi. Thus X will

also denote a p-dimensional random vector. From the context it should be clear what Xi or X

represents. The i-th row of the matrix X will be denoted by xi.

The response Y = (Y1(ω1), . . . , Yn(ωn)) ∈ Rn is given as n realizations of i.i.d binary random

variables Yi : Ω 7→ {0, 1}. We furthermore define πi := P[Yi = 1|X] as the conditional probability

that the dependent variable equals 1. In a logistic regression one tries to model πi using X.

Nevertheless the difference of logistic regression in contrast to multiple linear regression is that

the response and the explanatory variables are linked in a nonlinear way. The link function f (log

odds) and the response function f−1 are given as:

f(πi) := log

(
πi

1− πi

)
∈ R

f−1(x′iβ) :=
ex
′
iβ

1 + ex
′
iβ

∈ [0, 1].

As in the standard linear regression setting one tries to model the conditional expectation of Yi

37
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given X in the following way:

πi = P[Yi = 1|X] = E[Yi|X]
!
= f−1(Xβ) =

eX
′β

1 + eX′β

which can be equivalently written in terms of the response function f as:

log

(
πi

1− πi

)
= f(πi) = Xβ.

The goal is to estimate the vector of coefficients β. This is done by maximum likelihood estimation.

Given the observed values Y = (y1, . . . , yn) ∈ {0, 1}n and (x1, . . . , xn)′ ∈ Rn×p the likelihood

function L as well as the log likelihood function ` := log(L) can be written as:

L(β) =

n∏
i=1

P[Yi = yi|xi](β) =

n∏
i=1

πi(β, xi)
yi · (1− πi(β, xi))1−yi

`(β) =

n∑
i=1

yi log(πi(β, xi)) + (1− yi) log(πi(β, xi)),

where πi(β, xi) := ex
′
iβ

1+ex
′
i
β

. The estimator of β denoted by β̂ is now given by the MLE:

β̂ := argmax
β

`(β). (4.1)

It is worth noting that there is no closed form solution of problem (4.1) and it must be computed

numerically, which is usually done by using the Fisher scoring algorithm that results in an iterative

weighted least squares (IWLS) algorithm.

4.2 Extension of relative weights to logistic regression - a

heuristic approach

In this section we will discuss one possible way to assess relative variable importance in the context

of logistic regression. At the end we conduct an empirical study on a simulated data set to test the

method in greater detail. This section is based on Tonidandel and LeBreton (2010) and Johnson

(2001).

The method of relative weights has been originally proposed for multiple linear regression in order

to evaluate more accurately the importance of predictors under multicollinearity. The concept

of relative importance of a predictor is in this section defined as the contribution each regressor

makes to the variance of the predicted response, when considered by itself and in combination with

other predictors. Thus similar as in chapter 1 (decomposition of the coefficient of determination),

the importance of a predictor is solely measured as the proportionate contribution each predictor

makes to the coefficient of determination.

We will first outline the concept of relative weights in a multiple linear regression setting. After

that we will present an extension of this method to logistic regression.
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4.2.1 Relative weights in multiple linear regression

Let Y ∈ Rn be the response and X ∈ Rn×p the explanatory variables in the multiple linear

regression setting, where we assume that X and Y are in standard score form i.e. exemplary for

X:

||Xk||22 =

n∑
i=1

x2
ik = 1 ∀k ∈ {1, . . . , p} (4.2)

n∑
i=1

xik = 0 ∀k ∈ {1, . . . , p} (4.3)

From that it follows immediately that the standard deviation of each column of X and Y is given

by sY = sXk = (n− 1)−
1
2 . The basic idea is to find orthogonal regressors Z which “best” approx-

imate the original explanatory variables X.

Let the singular value decomposition (SVD) of X be given as:

X = P∆Q′,

where P ∈ Rn×n, ∆ ∈ Rn×p and Q ∈ Rp×p. Under the assumption that X has full rank p the

diagonal elements of ∆, the squared singular values, are not equal to zero. The SVD decomposition

can be equivalently written in reduced form as:

X = P̃ ∆̃Q′,

where P̃ ∈ Rn×p and ∆̃ ∈ Rp×p.

It was shown in Johnson (1966) that the desired minimal (in the least square sense) orthogonal

linear transformation of X, denoted by Z is given by:

Z = P̃Q′.

Formally Z = P̃Q′ and T = Q∆̃−1Q′ is the solution to the following optimization problem:

XT = Z

ZZ ′ = I

min
Z
tr {(X − Z)′(X − Z)} .

Since X was assumed to be in standard score form we get that1:

X ′1n = Q∆̃P̃ ′1n = 0n ⇐⇒ P̃ ′1n = ∆−1Q′0n = 0n =⇒ Z ′1n = 0n.

Thus we can conclude that Z is also column wise centered. Exploiting the orthogonality of Z

i.e. ZZ ′ = In we can infer that the column wise standard deviations are all equal and given by

sZj = (n− 1)−
1
2 ∀j ∈ {1, . . . , p}.

1We denote by 1n the n-dimensional vector where each component equals 1. Similarly 0n is the n-dimensional
null vector.
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The relative weights ε ∈ Rp, as a measure of variable importance, can be calculated as follows:

1. Regress Y on Z and calculate the standardized regression coefficients β̂ (beta weights) which

are the same as the unstandardized coefficients b̂ after transforming X and Y in standard

score form:

β̂i = b̂i ·
sZi
sY

= b̂i · 1 where

b̂ = (Z ′Z)−1Z ′Y = Z ′Y = QP̃ ′Y

Since Z is orthogonal it holds that (β̂i)
2 = (rZi,Y )2 and therefore we can decompose the

coefficient of determination in the following way 2 :

R2
Y |Z = R2

Y |Z =

p∑
i=1

r2
Zi,Y =

p∑
i=1

(β̂i)
2.

Thus the squared beta coefficients represents the relative proportion of explained variance in

Y for each regressor and does coincide with our original definition of variable importance in

this section. Nevertheless since the orthogonal regressors Z are only approximations of the

original predictors X, they have to be “linked” back to X.

2. Relate the orthogonal variables Z back to the original predictors X:

This can be done by regressing each column of X, i.e. each predictor Xj , on Z. The resulting

standardized regression coefficients Λ̂∗ = (Λ̂∗1, . . . , Λ̂
∗
p) ∈ Rp×p are given for k, j ∈ {1, . . . , p}

by:

Λ̂∗kj = Λ̂kj ·
sZk
sXj

= Λ̂kj · 1 where

Λ̂ = (Z ′Z)−1Z ′X = IZ ′X = Q∆̃Q′

Since Z is orthogonal (Λ̂∗kj)
2 = (rZk,Xj )

2 represents the proportion in variance of Xj ac-

counted for by Zk. By the symmetry of Λ̂∗ it follows that (Λ̂∗kj)
2 equivalently represents

the proportion in variance of Xj accounted for by Zk. Furthermore since Z is a linear

transformation of X we get that R2
Xj |Z =

∑p
k=1(rZk,Xj )

2 =
∑p
k=1(Λ̂∗kj)

2 = 1.

3. In order to estimate the variable importance of Xj with respect to Y one can now mul-

tiply the proportion in variance of Xj accounted fo by each Zk : ((Λ̂∗1j)
2, . . . , (Λ̂∗pj)

2) =

((Λ̂∗j1)2, . . . , (Λ̂∗jp)
2) with the proportion in variance of Y accounted for by each Zk i.e. for

j ∈ {1, . . . , p}:

V arimp(Xj , Y ) ≈ εj :=

p∑
k=1

(Λ̂∗jk)2 · (β̂k)2

Finally the relative weights with respect to X and Y are given by ε ∈ Rp.

It is worth mentioning that ε sums up to the coefficient of determination of the initially

2By R2
Y |Z we denote the coefficient of determination resulting when regressing Y on Z
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defined regression problem i.e. R2
Y |X . This holds since

R2
Y |X = R2 = R′XY (RXX)−1RXY = Y ′X(Q∆̃∆̃Q′)−1X ′Y =

= Y ′X(Q∆̃Q′Q∆̃Q′)−1X ′Y = (Y ′XQ∆̃−1Q′) (Q∆̃−1Q′X ′Y )︸ ︷︷ ︸
:=w

= w′w =

p∑
i=1

w2
i

and the fact that w equals the standardized regression coefficients β̂

w = Q∆̃−1Q′X ′Y = Q∆̃−1Q′Q∆̃P̃ ′Y = QP̃ ′Y = β̂,

by using the fact that the column sums of Λ̂∗ are equal to 1:

p∑
j=1

εj =

p∑
k=1

(β̂k)2

p∑
j=1

(Λ̂∗jk)2

︸ ︷︷ ︸
=1

= R2
Y |X .

Thus we can express each relative weight εj as percentage of predictable variance accounted

for by each Xj when dividing by their sum.

4.2.2 Relative weights in logistic regression - a heuristic approach

Applying the above described relative weights method in logistic regression requires modifications

of the β̂ coefficients. Instead of using standardized linear regression coefficients β̂, one requires

standardized logistic regression coefficients denoted by β̂log.

Let Y ∈ {0, 1}n denote the binary response variable of interest and b̂log ∈ Rp denote the MLE when

modeling E[Y |Z] as f−1(Z · blog) where f denotes the in section 4.1 defined (logit) link function.

The model can be equivalently written for i ∈ {1, . . . , n} as

logit(Yi) := f(E[Yi|zi]) = z′iblog (4.4)

In order to standardize b̂log one basically follows the same approach as in the linear regression

when considering equation (4.4). Nevertheless since the empirical standard deviation of logit(Yi)

cannot be computed from data, because logit(Yi) ∈ {−∞,+∞}, we have to estimate slogit(Y ) dif-

ferently. To obtain a standardized logistic regression coefficient the following suggestion was made

by Menard (2004):

Let R2
Y,Ŷ

be the coefficient of determination obtained when performing standard linear regression

of Y onto the predicted values Ŷ . Then one can estimate slogit(Y ) by
slogit(Ŷ )

RY,Ŷ
. This is motivated

by the fact that in linear regression it holds that RY,Ŷ =
sŶ
sY

.

Finally Menard (2004) proposed the following expression for standardized logistic regression coef-

ficients:

β̂log(i) =
b̂log(i) · sZi ·RY,Ŷ

slogit(Ŷ )

i ∈ {1, . . . , p} (4.5)
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Thus one can calculate relative weights, similar to those in the linear regression setting, by per-

forming the following algorithm:

1. Calculate the orthogonal predictor matrix Z, regress X on Z and obtain Λ̂∗ (see section

4.2.1).

2. Perform a logistic regression of Y on Z and obtain standardized logistic regression coefficients

β̂log(i) from equation (4.5).

3. Calculate εj :=
∑p
k=1(Λ̂∗jk)2 · (β̂log(k))2 j ∈ {1, . . . , p}.

The resulting ε represents the contribution of each of the original Xj predictors in terms of pre-

dicting the categorical criterion Y.

4.3 Simulation study

In this section we will test the relative weights method for logistic regression on a simulated data

set and compare it to the varImp() function of the R caret package (Kuhn et al. (2018-03-29)),

which computes the absolute value of the z-statistic of the MLE coefficients. Sample code for

calculating the relative weights in R is provided at the end of this section.

We used two simulated data sets each consisting of N = 1000 data points:

1. The first data set was generated in the following way:

(X1, . . . , X12)′ ∼ N (0,Σ) (Σ)i,j :=



1 , j = i

0.9 , i 6= j ≤ 4

−0.9 , i 6= j ≥ 9

0 , else

(β1, . . . , β12)′ = (5, 5, 2, 0,−5,−5,−2, 0, 0, 0, 10, 0)′

yi drawn from Yi ∼ Ber

({
exp (β′ · xi)

1 + exp (β′ · xi)

})
, i ≤ N.

In summary we constructed

predictor X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

βi 5 5 2 0 -5 -5 -2 0 0 0 10 0

where the green and the blue variables were selected to be positively correlated with r = 0.9

respectively negatively correlated with r = −0.9.

2. The second data set was generated similar as the one above, except that we introduced a

pair of correlated regression without influence on the response variable i.e.

predictor X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

βi 5 5 2 0 -5 -5 -2 0 0 0 10 0
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where the green and the blue variables were selected to be positively correlated with r = 0.9

respectively negatively correlated with r = −0.9 and the red variables were selected to be

positively correlated with r = 0.99 .

4.3.1 Results - simulated data 1

The results of our empirical study for the first simulated data set are presented in figure 4.1.

Ranks are shown at the top of each bar. We can see that the relative weights method strongly
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Figure 4.1: Comparison of relative weights to varImp function. Simulated data 1.

favors correlated variables that have zero or less influence on the target variable: {X3, X4, X12}.
Especially X12 is ranked second of all the variables. This is due to the high correlation with

the most influential variable X11 and the definition of variable importance, as the proportion in

explained variance, in this section. Since by the Cauchy Schwarz inequality and the fact that X is

standardized we can conclude that

|Cov(X11, Y )− Cov(X12, Y )| = |Cov(X12, Y )| = |E[(X11 −X12)Y ]| ≤
√
E[(X11 −X12)2]E[Y 2] =

=
√

2(1− Cor(X11, X12)) ·
√

E[Y 2]

If Cor(X11, X12)) ≈ 1 it follows that Cov(X11, Y ) ≈ Cov(X12, Y ) and subsequently Cor(X11, Y ) ≈
Cor(X12, Y ). The definition of variable importance and the fact that ε11 is large implies that it is

also very likely to obtain a large ε12, although it has zero influence in the true underlying model.

Two variables which are highly correlated with each other and with the response variable may have

very different regression coefficients or z-statistics. Nevertheless as we defined relative weights here,

variables such as these should have very similar relative weights, because they are very similar to

each other and predict the dependent variable about equally.

The correlation structure of the simulated data set 1 is shown in figure 4.2. The first row represents

what is often called the “direct effect” of the explanatory variables with the response i.e. the (zero

order) correlation rXj ,Y ∀j ∈ {1, . . . , 12}.

The left plot of figure 4.1 shows the obtained values of the varImp function. Here we can see

that the absolute value of the z-statistic does better reflect the true model w.r.t to each individual
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Figure 4.2: Correlation structure of simulated data set 1.

influence on Y .

4.3.2 Results - simulated data 2

The results of our empirical study for the second simulated data set are shown in figure 4.3. Ranks

are presented at the top of each bar. From 4.3 we can confirm that correlation between regressors,
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Figure 4.3: Comparison of relative weights to varImp function. Simulated data 2.

where none of them has an influence on the response variable, does not lead to large relative weights

e.g. {X9, X10}. The results obtained from the varImp function are similar for both data sets.
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4.3.3 Source code

This section provides a possible implementation of the above discussed relative weights method in

R.

1 #relativeWeights () function

2 #-----------------------------------------------------------------

3 #D ... Data frame , where the target variable column must be named ’Y’ and

of type factor.

4

5 relativeWeights <- function(D){

6 #response must be named Y

7 Y <- D[,grepl(’Y’,names(D),fixed=TRUE)]

8 X <- D[,!grepl(’Y’,names(D),fixed=TRUE)]

9 X <- scale(X) #standardize data

10 #REDUCED singular value decomposition

11 X.svd <- svd(X)

12 Q <- X.svd$v

13 P <- X.svd$u

14 #orthogonal regressors with minimal squared distance to X

15 Z <- tcrossprod(P,Q)

16 #regress X on Z

17 Lambda <- crossprod(Z,X)

18 sdZ <- apply(Z,2,sd) #standard deviation of columns of Z

19 Lambda_stand <- Lambda*rep(sdZ ,each=nrow(Lambda)) #standardized

regression coefficients

20 #logistic regression of Y on Z

21 logrfit <- glm(Y~0+Z,family=binomial(link=’logit ’))

22 b <- coef(logrfit)

23 #standardize logistic regression coefficient (Mennard 2004)

24 Yhat <- predict(logrfit ,newdata=D,type="response")

25 logit_Yhat <- log(Yhat/(1-Yhat))

26 sqR <- cor(Yhat ,as.numeric(Y) -1) #square root of R-squared

27 beta <- b*sdZ*(sqR/sd(logit_Yhat))

28 #calculate relative weights

29 epsilon <- (Lambda_stand^2)%*%(beta^2)

30 PropWeights <- (epsilon/sum(epsilon))

31 rank <- rank(-epsilon)

32 return(data.frame(’variables ’=names(D)[1:( ncol(D) -1)],’epsilon ’=epsilon ,

’prop_epsilon ’=round(PropWeights*100 ,2),’rank’=rank))

33 }
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Application - credit scoring data

In this section we will discuss one possible application of variable importance measures on a real

world data set. We will focus on the permutation variable importance measure for missing data (see

section 3.1.4). This is due to the fact that it is the most efficient when comparing computational

costs as well as that it can handle missing data points without the need of some imputation

methods. The goal of this empirical study will be to determine the “most important” covariates

that drive the default event.

5.1 Data description

We used a credit scoring data set, where the response variable Y ∈ {0, 1} is given as a default

indicator. As explanatory variables financial and market information on firm level are used to-

gether. Accounting statements, which are updated quarterly, are obtained from the S&P Capital

IQ’s Compustat North America database. Given the accounting statements 39 ratios, which mea-

sure interest coverage, liquidity, capital structure, profitability and the efficiency of the firm, were

computed. For computing market variables, monthly and daily stock and index prices from the

Center of Research in Security Prices (CPRS) were used. A detailed description of the variables

used can be found in A.1.

Issuer credit ratings from the big three credit rating agencies S&P, Moody’s and Fitch are used for

the analysis. S&P ratings are collected from the S&P Capital IQ’s Compustat North America Rat-

ings file. The ratings from Moody’s and Fitch are provided by the credit rating agencies themselves.

For the default and failure information a binary default indicator was constructed1.

1A default is defined as any filing for bankruptcy under Chapter 7 (Liquidation) or Chapter 11 (Reorganization)
of the United States Bankruptcy Code that occurred in the one year window following the rating observation. The
default indicator was set to one if either from Moody’s Default & Recovery Database or from the UCLA-
LoPucki Bankruptcy Research Database a default was recored according to the above definition

46
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Issuer credit ratings were augmented in the following way.

SPR& Fitch Moodys

AAA AAA Aaa Aaa
AA+ Aa1
AA AA Aa2 Aa
AA- Aa3
A+ A1
A A A2 A
A- A3

BBB+ Baa1
BBB BBB Baa2 Baa
BBB- Baa3
BB+ Ba1
BB BB Ba2 Ba
BB- Ba3
B+ B1
B B B2 B
B- B3

CCC+ Caa1
CCC Caa2 Caa
CCC- CCC/C Caa3
CC
C Ca Ca

Table 5.1: Aggregation scheme of ratings in the credit scoring data set.

5.2 Results

After data cleaning and preprocessing the final dimension of the data set has been reduced to

21 397 observations of 58 variables including the response default indicator (see A.1 for a full list

of the variables used). Additionally we added three missing indicators for the different ratings in

order to investigate if a missing rating does have a effect w.r.t predictability of a default event.

Block correlation structures of the data are presented in figures 5.1, 5.2 and 5.3, where the Spear-

man’s Rho rank correlation coefficient was used for the ordered factors of the rating variables.

The ratings of the different CRAs are naturally highly correlated. Nevertheless due to many

missing values of the variables Fitch and Moodys in comparison to the variable SPR we expect

them to have a lower permutation importance, as was outlined by Hapfelmeier et al. (2014).

Moodys Fitch SPR
% of NA’s 36.8 78.4 4.7

Table 5.2: Percentage of missing values in the rating variables.

The pair (RSIZE,MKTEQ) exhibits the largest correlation of the market variables. This is
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due to the fact that RSIZE is just a monotone transformation of MKTEQ (see A.1). We

can also identify some groups of variables of the accounting ratios that are highly correlated e.g.

(R2,R3), (R17M,R11M), (R11,R12,R17,R18) or (IAT,ISALE).

In the following we will fit four different regression random forests using the R party package

(Hothorn et al. (2017-12-12)) each consisting of ntree = 100 conditional inference trees. The

random selection parameter mtry was chosen to be an element of {3, 7, 12, 20}. For all other

parameters default settings were used.
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Figure 5.1: Block correlation structure of rating variables.

In figure 5.4 the OOB performance of the fitted forests is measured with the Gini index ∈ [0, 1]

and the Lift measure. Details of those performance measures can be found in Appendix B. These

measures were calculated using the R package ROCR (Sing et al. (2005)). The straight red line

corresponds to a random model and the green curve denotes the maximal possible value of the lift.

The x-axis shows the percentage of positive predictions i.e. we sort the predicted probabilities of

a default in decreasing order and predict for the top x-percent a default event. One can see from

figure 5.4 that there is hardly any difference with respect to the parameter mtry when measuring

the OOB performance.

In a next step we calculated the permutation variable importance with missing data, that has been

discussed in detail in section 3.1.4. For that we used the varimp() function with the following

parameters:

varimp(. . ., nperm=10, pre1.0 0 = FALSE).

To cater for possible dependence on random variation the permutation importance scores were

calculated ten times and then averaged (nperm=10 ). In table 5.3 and figure 5.5 results of the

calculated variable importance are shown (on the y-axis the increase in MSE is measured).

First of all one can observe that the absolute value of the scores (average increase in the MSE)

obtained from the permutation importance are rather small. This is clear since default events are
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Figure 5.3: Block correlation structure of accounting ratios.

rare in the observed data and a regression random forest predicts the mean of a terminal leaf,

which is then also rather small. Additionally we used the MSE as error function which results

in small permutation importance values. Nevertheless we don’t care what the values are per se

rather than the relative predictive strengths of the features. Instead of interpreting the raw score

one should better stick to the obtained ranks of the scores.
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Figure 5.4: Performance measures of fitted random forests.

The scores for the rating variables are as expected. The more missing values they have the less

important they are. Here we see that SPR is the most important variable for the models with mtry

∈ {7, 12, 20}. This is plausible since the rating naturally is a strong predictor of a default event (i.e.

it is rather unlikely that a company with a top rating defaults one year after the rating assignment ).

Furthermore one can see from table 3.1 that EXRET is ranked always under the top three vari-

ables. This variable denotes the average excess return of the company over the S&P 500 in the past

three months. One possible interpretation is that companies close to financial distress do have a

rather small return on equity. Also SIGMA, the standard deviation of the stock returns over the

past three month plays an important role and is ranked under the top 5 variables in all models.

From the group of accounting ratios it turns out that with increasing mtry parameter the variable

R1 seems to be the most important. This variable denotes the interest paid on assets. Usually

the higher the average cost of refinancing for a firm is the more risk is assessed to the company.

This could be an explanation for the importance score of this variable.

Finally one can also see that the missing indicator of the rating from Moody’s is three times ranked

under the top 10 variables suggesting that a missing rating observation from the data does influence

a default event.
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mtry= 3 mtry= 7 mtry= 12 mtry= 20
EXRET 1 2 2 3
Missing Moodys - 7 6 7
Moodys - 4 8 5
R1 8 - 3 2
R11 6 - 10 9
R11M - 6 5 6
R12 - 5 7 -
R14 10 8 - -
R17 3 - - -
R17M - - 9 10
R18 4 - - -
R21 9 - - -
R22 7 9 - 8
R22M - 10 - -
SIGMA 5 3 4 4
SPR 2 1 1 1

Table 5.3: Ten most important covariates per model.
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Appendix A

Credit scoring dataset

A.1 Data description

The data source as well as the following table has been provided by Laura Vana and Rainer Hirk,

two PhD. students of Professor Kurt Hornik at the Vienna University of Economics and Business.

Table A.1: Collection of accounting ratios. The table contains information for the accounting
ratios used in the context of credit risk. Ratios with codes in bold were found relevant for explaining
credit risk in at least one of the studies listed under the Source column. Entry other in the Source
column refers to expert opinions or usage in industry.

Category Code Ratio Formula Source

interest cov-

erage

R1 Interest rate paid on as-

sets

XINT/AT other

R2 Interest coverage ratio

(I)

EBITDA/XINT Altman and Sabato (2007); Baghai

et al (2014); Puccia et al (2013)

R3 Interest coverage ratio

(II)

(EBIT+XINT)/XINT Alp (2013); Altman and Sabato

(2007); Puccia et al (2013)

R4 Free operating cash-flow

coverage ratio

(OANCF − CAPX +

XINT)/ XINT

Hunter et al (2014); Puccia et al

(2013)

liquidity R5 Current ratio ACT/LCT Beaver (1966); Ohlson (1980); Zmi-

jewski (1984)

R6 Cash to current liabili-

ties

CH/LCT Tian et al (2015)

R7 Cash&equivalents to as-

sets

CHE/AT Tian et al (2015)

R7M Cash&equivalents to

market assets

CHE/(MKTVAL + LT

+ MIB)

Tian et al (2015)

R8 Working capital ratio WCAP/AT Altman (1968); Altman and Sabato

(2007); Beaver (1966); Ohlson (1980)

R9 Net property plant and

equipment to assets

PPENT/AT Alp (2013); Baghai et al (2014)

R10 Intangibles to assets INTAN/AT Altman and Sabato (2007)

capital

structure/

leverage

R11 Liabilities to assets (I) LT/AT Altman and Sabato (2007); Camp-

bell et al (2008); Ohlson (1980)

R11M Liabilities to market as-

sets

LT/(MKTVAL + LT +

MIB)

Tian et al (2015)

R12 Debt ratio (I) (DLC + DLTT)/AT Baghai et al (2014); Beaver (1966);

Zmijewski (1984)
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R13 Debt to EBITDA (DLC +

DLTT)/EBITDA×(EBITDA>

0)

Puccia et al (2013)

R14 Equity ratio SEQ/AT Min and Lee (2005)

R15 Equity to net fixed as-

sets

SEQ/PPENT Min and Lee (2005)

R16 Equity to liabilities SEQ/LT Altman and Sabato (2007)

R17 Debt to capital (I) (DLC + DLTT)/(SEQ

+ DLC + DLTT)

Hunter et al (2014); Puccia et al

(2013); Tennant et al (2007)

R17M Debt to capital market (DLC +

DLTT)/(MKTEQ

+ DLC + DLTT)

Hunter et al (2014); Puccia et al

(2013); Tennant et al (2007)

R18 Long-term debt to long-

term capital

DLTT/(DLTT + SEQ) Puccia et al (2013)

R19 Short term debt to com-

mon equity

DLC / (SEQ - PSTK) Altman and Sabato (2007)

profitability R20 Retained earnings to as-

sets

RE/AT Alp (2013); Altman (1968); Altman

and Sabato (2007)

R21 EBITDA to assets EBITDA/AT Altman and Sabato (2007)

R22 Return on assets NI/AT Altman and Sabato (2007); Camp-

bell et al (2008); Zmijewski (1984)

R22M Return on market assets NI/(MKTEQ + LT +

MIB)

Campbell et al (2008); Tian et al

(2015)

R23 Return on capital EBIT/(SEQ + DLC +

DLTT)

Puccia et al (2013), variant in Ohlson

(1980)

R24 EBIT margin EBITDA/SALE Altman and Sabato (2007); Baghai

et al (2014); Puccia et al (2013)

R25 Net profit margin NI/SALE Altman and Sabato (2007)

cash-flow R26 Operating cash-flow to

debt

OANCF/(DLC +

DLTT)

Beaver (1966); Hunter et al (2014);

Puccia et al (2013); Tennant et al

(2007)

R27 Capital expenditure ra-

tio

OANCF/CAPX Puccia et al (2013); Tennant et al

(2007)

efficiency R28 Asset turnover SALE/AT Altman (1968); Altman and Sabato

(2007); Beaver (1966)

R29 Accounts payable

turnover

SALE/AP Altman and Sabato (2007)

R30 Current liabilities to

sales

LCT/SALE Tian et al (2015)

R31 Employee productivity SALE/EMP other

growth
R32 Inventories growth (INVTt−

INVTt−1)/INVTt

Tian et al (2015)

R33 Sales growth (SALEt−
SALEt−1)/SALEt

other

R34 R&D XRD/AT ALP

R35 CAPEX to assets CAPX/AT Alp

lSALE log sales log(SALE) Campbell et al (2008); Tian et al

(2015)

lAT log assets log(AT) Campbell et al (2008); Tian et al

(2015)

DIV PAYER dividend payer or not (DVT > 0) Alp (2013)

market MKTEQ Market equity PRC * SHROUT Campbell et al (2008); Tian et al

(2015)



MB Market to book ratio MKTEQ/(SEQ +

0.1(MKTEQ-SEQ))

Campbell et al (2008); Tian et al

(2015)

SIGMA volatility systematic risk regression sd Campbell et al (2008); Tian et al

(2015)

BETA idiosyncratic risk regression beta1 Campbell et al (2008); Tian et al

(2015)

RSIZE size relative to total cap

of an index

log(MKTEQ/TOTAL

CAPITALIZATION)

Campbell et al (2008); Tian et al

(2015)

PRICE average stock price dur-

ing the year

log(min(PRC, 15)) Campbell et al (2008); Tian et al

(2015)

EXRET average excess return

over index

Campbell et al (2008); Tian et al

(2015)

other SIC Standard Industrial Classification

GSECTOR Global Industry Classification Standard

MOODYS augmented rating

SPR augmented rating

FITCH augmented rating

A.1.1 Details to ratio computation

• First compute the ratio as numerator/denominator.

• If the denominator is ≤ 0.001 (i.e., 1000$) set the ratio equal to zero.
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Appendix B

Performance and goodness of fit

measures

B.1 Gini index

The Gini index G(M,H) ∈ [−1, 1] is a measure to quantify the performance of a classification

model M, which is usually calculated on a hold out sample H. We will restrict ourselves to a

binary response variable Y ∈ {0, 1}. One possible way to define the Gini index is given as:

G(M,H) := 2AUC(M,H)− 1,

where AUC(M,H) ∈ [0, 1] is the area under the ROC (receiver operating characteristics) curve.

Thus the Gini index is just a re parametrization of the AUC measure, that ensures values in the

interval [−1, 1]. The ROC curve is a graphical plot that illustrates the diagnostic ability of a

classification model M(θ) as its discrimination threshold θ ∈ [0, 1] is varied. Formally one can

define the ROC curve as follows:

Definition B.1 (ROC curve) Let θ ∈ [0, 1] be the cutoff for a positive prediction (i.e. prediction

of class 1) and M(θ) the corresponding binary classifier. Furthermore we denote by TPR(θ) and

FPR(θ) the true respectively false positive rate when using the model M(θ). Then the ROC curve

is defined as

ROC := {(FPR(θ), TPR(θ)) : θ ∈ [0, 1]}.

AUC G
Best possible Model 1 1
Random Model 0.5 0
Worse than Random < 0.5 < 0

Table B.1: AUC and Gini index.
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Figure B.1: ROC curve.

B.2 Lift

Another popular performance measure for classification models is the Lift. We again assume a

binary response variable Y ∈ {0, 1}. Furthermore letM(θ) be the model predicting the probability

pi of Yi being of class 1. The Lift L(θ) measures the performance of M(θ) by

1. sorting the true labels (Yp(1) , . . . , Yp(n)
) by the corresponding predictions (p(1), . . . , p(n)) in

decreasing order.

2. For a given cutoff θ ∈ [0, 1] calculate the mean response of the predictions that are larger

than θ i.e. calculate

m(θ) :=
1

|{i ≤ n, θ ≤ p(i)}|
∑

i≤n,θ≤p(i)

Yi.

3. Finally the Lift is defined as the ratio of the mean response in the set of top predictions to

the mean response in the whole dataset i.e.

L(θ) :=
m(θ)

1
n

∑n
i=1 Yi

.

Instead of a cutoff θ one could analogously calculate the Lift given a desired rate of positive

predictions (rpp) i.e. how many predictions should be classified as the positive class in total. The

definition of the Lift can then be also made based on the rpp, since there is a one to one relation

of θ and rpp.



59 APPENDIX B. PERFORMANCE AND GOODNESS OF FIT MEASURES

B.3 Coefficient of determination

In a multiple linear regression setting, the coefficient of determination, denoted by R2
Y |X

1, is the

proportion in the variance of the dependent variable Y that is predictable from the independent

variables X. It was introduced in Definition 1.1. We will first show that the coefficient of deter-

mination equals the squared multiple coefficient of correlation R2, that was defined in Definition

1.2.

We will denote by X̃ and Ỹ the variables which were transformed from X and Y to the standard

score form i.e. centered and column length equals 1 (see (4.2)).

Since R2
Y |X is invariant under centering and rescaling of variables we get

R2
Y |X = R2

Ỹ |X̃ = 1− ||Ỹ −
ˆ̃Y ||22

||Ỹ − Ỹ ||22
= ||Ỹ − ˆ̃Y ||22

∗
=

using furthermore the fact that

Ỹ − ˆ̃Y = (I − X̃(X̃ ′X̃))−1X̃ ′)︸ ︷︷ ︸
:=QX̃

Ỹ = QX̃ Ỹ ,

we get that

∗
= 1− Ỹ ′Q′

X̃
QX̃ Ỹ = 1− Y ′QX̃QX̃ Ỹ = 1− Ỹ ′QX̃ Ỹ = Ỹ ′(I −QX̃)Ỹ = Ỹ ′(X̃(X̃ ′X̃)−1X̃ ′)Ỹ

∗∗
=

where we used that QX̃ is the orthogonal projection on the orthogonal complement of the column

space of X̃ and therefore symmetric and idempotent. Finally using that the correlation coefficients

can be calculated, when transforming to standard score form, as RX̃X̃ = X̃ ′X̃ and RỸ X̃ = Ỹ ′X̃

we can conclude that

∗∗
= R′

Ỹ X̃
(RX̃X̃)−1RỸ X̃ = R′Y X(RXX)−1RY X = R2.

Finally we will give a proof why the Pratt measure defined in 1.1.1 yields a additive decomposition

of the coefficient of determination. For that we will use the fact that the standardized regression

coefficient of the original regression of Y on X denoted by β̂standardized and the non standardized

coefficient of the regression of Ỹ on X̃ are equal when transforming the data to standard score

form. Thus we can conclude that

R2
Y |X = R2

Ỹ |X̃ = (Ỹ ′X̃(X̃ ′X̃)−1)︸ ︷︷ ︸
β̂standardized

(X̃ ′Ỹ ) = β̂′standardizedRX̃Ỹ =

= β̂′standardizedRXY =

p∑
i=1

β̂i,standardized · rXi,Y

1We will denote by R2
Y |X the coefficient of determination resulting from regressing Y on X.
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