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ABSTRACT
Motivation: In life sciences, interpretability of machine learning
models is as important as their prediction accuracy. Linear models
are probably the most frequently used methods for assessing feature
relevance, despite their relative inflexibility. However, in the past
years effective estimators of feature relevance have been derived
for highly complex or non-parametric models like Support Vector
Machines and RandomForest models. Recently, it has been observed
that RandomForest models are biased in such a way that categorical
variables with a large number of categories are preferred.
Results: In this work we introduce a heuristic for normalising feature
importance measures that can correct the feature importance bias.
The method is based on repeated permutations of the outcome
vector for estimating the distribution of measured importance for each
variable in a non-informative setting. The p-value of the observed
importance provides a corrected measure of feature importance.
We apply our method to simulated data and demonstrate that I)
non-informative predictors do not receive significant p-values, II)
informative variables can successfully be recovered among non-
informative variables and III) p-values computed with permutation
importance are very helpful for deciding the significance of
variables and therefore improve model interpretability. Furthermore,
permutation importance was used to correct RandomForest based
importance measures for two real-world case studies. We propose
an improved RandomForest model that uses the significant variables
with respect to the permutation importance measure and show that
its prediction accuracy is superior to that of other existing models.
Availability: R code for the method presented in this article is
available at:
http://www.mpi-inf.mpg.de/~altmann/download/PIMP.R

Contact: laura.tolosi@mpi-inf.mpg.de, altmann@mpi-inf.mpg.de

1 INTRODUCTION
In recent years statistical learning has gained increased attention
in a large number of research fields. There exist two main goals
for the application of statistical learning: either the generation of
a (possibly black box) model that predicts a variable of interest
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given a number of putatively predictive features, or the generation
of insight into how the predictive features impact on the variable
of interest (given that the prediction model performs reasonably
well). This latter task of feature discovery or feature ranking
is the essence of biomarker discovery in bioinformatics and life
sciences, for instance. Unfortunately, not all statistical learning
methods can be used for identifying interesting features because
their underlying methods are too complex to analyze contributions
of single covariates to the overall results. This problem applies, for
instance, to artificial neural networks and support vector machines
(SVMs) with non-trivial kernels. However, in the case of SVMs
recently approaches to interpreting models that apply sequence
kernels were presented (Sonnenburg et al., 2008).

In life sciences, the most frequently applied methods for
quantifying feature importance are linear models and decision
trees. Linear SVM and linear logistic regression are well studied
theoretical models that can provide interpretable classification rules
via model parameters. Moreover, in difficult situations when the
number of predictors exceeds greatly the number of available
samples, regularizers such as the Lasso penalty can be used
for obtaining sparse models. However, linear classifiers fail to
discover complex dependencies in the training data. This is clearly
a drawback when biological data are analyzed, since biological
processes usually involve intricate interactions.

Decision trees are suitable for finding nonlinear prediction rules
that are also interpretable, although their instability and lack of
smoothness have been a cause of concern (Hastie et al., 2001). The
RandomForest (Breiman, 2001) classifier was designed to overcome
these problems and recently became very popular because it
combines the interpretability of decision trees with the performance
of modern learning algorithms like artificial neural networks and
SVMs. The author of RandomForest proposes two measures for
feature ranking, the variable importance and Gini importance.
A recent study showed that, if predictors are categorical, both
measures are biased in favor of variables taking more categories
(Strobl et al., 2007). The authors of the article ascribe the bias to
the use of bootstrap sampling and Gini split criterion for training
CART trees (Breiman et al., 1984). In the literature, the bias induced
by the Gini coefficient has been reported for years (Bourguignon,
1979; Pyatt et al., 1980), and it affects not only categorical variables
but also grouped variables (i.e. values of the variable cluster into
well separated groups – e.g. multimodal Gaussian distributions), in
general. In biology, predictors often have categorical or grouped
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values (e.g. microarrays, sequence mutations). Strobl et al. (2007)
propose a new algorithm (cforest) for building RandomForest
models based on conditional inference trees (Hothorn et al., 2006)
and computing variable importance values that correct for the bias.

Learning on biological data is often characterized by a large
number of features and few available samples. A common practice is
filtering out unimportant features prior to model fitting, for example,
by rejecting the ones that least associate with the outcome. Mutual
Information is one measure of association frequently used in this
context (Guyon and Elisseeff, 2003). It is closely related to the Gini
index and it has been proven also to be biased in favor of variables
with more categories (Achard et al., 2005).

In this article, we introduce a heuristic for correcting biased
measures of feature importance, called permutation importance
(PIMP). The method normalizes the biased measure based on
a permutation test and returns significance p-values for each
feature. In order to preserve the relations between features, we
use permutations of the outcome. We show that this method can
be used to correct for the bias of feature importance computed
with RandomForest and Mutual Information. Moreover, our
method can be used together with any learning method that
assesses feature relevance, providing significance p-values for
each predictor variable. Permutation tests have been previously
proposed for assesing significance of feature relevance given by
Mutual Information (François et al., 2006), but the authors did not
demonstrate that the bias towards features with many categories is
alleviated by the procedure.

The paper is organized as follows: in the Methods section we
introduce background on RandomForest models and the Mutual
Information measure and then present our method for correcting
feature importance. The Data section contains a detailed description
of the simulated and real data that were used for validating
our method. In the Results section we show that our method
corrects successfully for the bias of feature ranking pertaining
to RandomForest and Mutual Information. We also introduce an
improved RandomForest model termed PIMP-RandomForest whose
computation is based on the significant features and which incurs
clear improvement in prediction accuracy. Finally, we demonstrate
the effectiveness of our method on two real world datasets. In
the Discussion section we argue that our method can be used
in combination with any learning method that provides feature
ranking, because it assigns significance p-values to each variable,
which improves model interpretability.

2 METHODS

2.1 RandomForest classifier
RandomForest models (Breiman, 2001) use bagging (bootstrap aggregating)
of decision trees in order to reduce variance of single trees and thus improve
prediction accuracy. They have become a very popular learning method,
probably because of their interpretability, in spite of their nonlinearity.
Typically, a collection of T decision trees using CART methodology
Breiman et al. (1984) are trained on T bootstrap samples of the data,
respectively. At each node of each tree, a random subset of a fixed size is
selected from the features and the one yielding the maximum decrease in
Gini index is chosen for the split. The trees are fully grown and left unpruned.
The class of a new sample is determined by the majority of the votes of
all trees in the RandomForest. The test error of RandomForest models is
estimated on the out-of-bag (OOB) data, as follows: after each tree has been

grown, the inputs that did not participate in the training bootstrap sample are
used as test set, then averaging over all trees gives the test error estimate.
Thus, it is possible to avoid the time-consuming cross-validation.

The author of RandomForest proposes two measures for feature
importance, the Variable Importance (VI) and the Gini Importance (GI).
The VI of a feature is computed as the average decrease in model accuracy
on the OOB samples when the values of the respective feature are randomly
permuted. The GI uses the decrease of Gini index (impurity) after a node
split as a measure of feature relevance. In general, the larger the decrease
of impurity after a certain split, the more informative the corresponding
input variable. The average decrease in Gini index over all trees in the
RandomForest defines the GI. It should be observed that the Gini index
is closely related to the entropy, both being measures of impurity. In this
study, we will analyze only the GI measure. The VI was shown to be highly
correlated with the GI and shares the same bias (Strobl et al., 2007).

In our simulations, the R package randomForest has been used for
training and evaluating RandomForest models. A few parameters influence
the performance of RandomForest models, such as the number of trees in
the forest (ntree) and the number of variables considered at each split (mtry).
In our experiments, we use ntree = 100 and the recommended value for
mtry =

√
number of features. Diáz-Uriarte and Alvarez de Andrés (2006)

evaluate the performance of RandomForest models depending on mtry in ten
real-world learning instances. Their results suggest that the default value of
mtry yields always optimal or close to optimal performance.

2.2 Mutual Information
Mutual information (MI) originates from information theory and measures
how much a random variable X is informative about another random
variable Y . It is closely related to the concept of entropy. The entropy of
a random variable X , denoted traditionally by H(X), measures the level of
uncertainty in variable X . It is computed as:

H(X) = −
X

x

PX(x) log PX(x) (1)

where PX(x) is the probability distribution of X . The conditional entropy
H(X|Y ) measures the average of the uncertainty in X given the observed
variable Y . Then the mutual information MI(X, Y ) is defined as the
decrease in uncertainty about X after observing Y :

MI(X, Y ) = H(X)−H(X|Y ) (2)

Low, close to zero, MI means that the variables are close to independent. The
larger the MI, the larger the reduction of uncertainty in X when Y is known.
Mutual information is often used for a quick search of relevant features,
when training statistical learning models requires too much computational
effort due to the large number of features, e.g. in the case of artificial neural
networks (Battiti, 1994). Typically, the MI between each feature and the
outcome is computed and a ranking of the inputs results.

For estimating the MI of two vectors, we use the following formula, which
is an immediate equivalent transformation of Equation 2:

MI(X, Y ) = H(X) + H(Y )−H(X, Y ) (3)

Since the probability distributions of X and Y are unknown, in general, we
compute frequency-based estimators (Guyon and Elisseeff, 2003).

2.3 Permutation importance (PIMP)
The permutation importance (PIMP) is a heuristic for correcting for the bias
of the GI of RandomForest models. The PIMP algorithm can also be used to
correct for the bias of the Mutual Information criterion for variable selection.

In a general setting, assume given an algorithm that assesses the relevance
of a set of features with respect to a response vector. The PIMP algorithm
permutes the response vector s times. For each permutation of the response
vector the variable importance for all predictor variables is assessed. This
leads to a vector of s importance measures for every variable, which we
call the null importances. The PIMP algorithm fits a probabilty distribution
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to the population of null importances, which the user can choose from the
following: Gaussian, lognormal, or gamma. Maximum likelihood estimators
of the parameters of the selected distribution are computed. Given the
fitted distribution, the probability of observing a variable importance of
v or higher using the true response vector, can be computed (PIMP p-
value). If the user does not know which distribution is most suitable for
his or her problem, the PIMP algorithm uses Kolmogorov-Smirnov (KS)
tests in order to automatically identify the most appropriate distribution.
However, if the tests show little resemblence to any of the three proposed
distributions, a non-parametric estimation of the PIMP p-values is used,
simply by determining the fraction of null importances that are more extreme
than the true importance v (see Algorithm 1 in Supplementary material for
an illustration of the PIMP method with Gaussian distribution).

In practical applications the variance of the null importances may be
very small and therefore small deviations from the mean lead to artificially
boosted variable importances. In order to prevent this artifact, we apply a
simple heuristic: variances that are smaller than the mean variance of all
variable importances are set to the mean variance.

Permuting the response vector has several advantages. First, the
dependence between predictor variables remains unchanged. Second, the
number of permutations (s) can be much smaller than the number of
predictor variables (p). Third, the approach is general, it can be used together
with any method that generates measures for variable importance (biased or
unbiased). In this study we demonstrate that PIMP is effective if used with
the two mentioned approaches of determining variable importance: GI of
RandomForest and MI of predictor variables and the response variable.

2.4 Corrected RandomForest models
The CART methodology uses the Gini index as a criterion for choosing
best splits during tree construction and thus the resulting model incorporates
the bias of this measure. As a consequence, both the CART and the
RandomForest models are both biased themselves, not only their derived
feature importance measures. Here, we propose a method for improving
the RandomForest models that uses the PIMP algorithm. The method has
the following steps: 1) training a classical RandomForest model on the
training data; 2) computing the PIMP scores of the covariates; 3) training
a new model with the classical RandomForest but now using only the
significant variables (w.r.t. PIMP scores), by applying for example the
classical 0.05 significance threshold. We will call the improved model
PIMP-RandomForest. The idea of using the most predictive features for
re-training RandomForest model in order to reduce variance and improve
accuracy has been proposed previously. For instance, Diáz-Uriarte and
Alvarez de Andrés (2006) investigate its benefits on several real-world
datasets. The authors show that in some of the instances, the procedure gives
good results. However, it may also occur that the RandomForest models
built on the reduced set of features exhibit a slightly decreased performance
compared to full RandomForest model.

In order to assess the improvement in prediction accuracy of the PIMP-
RandomForest model, we use an independent test set and we compute
the corresponding error rates. Since the PIMP-RandomForest model uses
fewer features than the initial RandomForest, an increase in accuracy can
be solely due to decrease of model variance. Thus, we also compare PIMP-
RandomForest with classical RandomForest models trained using only the
top ranking features of the initial method (biased) as well as with the
(corrected) cforest model proposed by Strobl et al. (2007) on all features.

3 DATA

3.1 Simulations
Simulation A: For demonstrating the degree of bias in the established
measures of importance a dataset comprising 1000 instances was simulated.
The predictor variables consist of 31 categorical variables with 2 to
32 categories. The response is a binary variable. Predictor variables

and response were independently sampled from a uniform distribution.
Since input and output were randomly generated, no predictor variable is
informative. Given an unbiased measure of variable importance all variables
should receive equally low values. For verification, the GI and MI were
computed for each variable. Then, the PIMP of all measures was computed
using s = 100. The simulation was repeated 100 times.

Simulation B: The second simulation was targeted at the question of how
efficiently predictive variables can be recovered among a large set of non-
predictive variables. We generated an artificial dataset with a large number
of predictors (p) and a small number of samples (n), with p = 500 and
n = 100. In analogy to analyzing aligned amino acid sequence data the
variables had 1 to 21 categories (i.e. 20 amino acids and a gap symbol).
In the following, variables are referred to as positions (in an alignment)
and amino acids denote categories. The number of amino acids for every
position was randomly determined, and positions with few different amino
acids were more likely than positions with many amino acids. Precisely,
a position with m different amino acids had likelihood 1/m · C−1, with
C =

P21
i=1 1/i. Moreover, for every position the amino acids were not

equally likely, but were sampled from a randomly generated distribution as
follows: For each amino acid j ∈ {1, ..., m} at an individual position an
integer xj between 1 and 100 was uniformly sampled. Then the probability
of amino acid j at that position was set to xj/

Pm
k=1 xk . The output

vector comprises two classes that are randomly sampled with probability
0.5. In order to challenge the ability of the feature importance methods to
discover the relevant covariates, a number of relevant positions with a small
number of categories were intermixed among the non-informative positions
as follows: the first 12 positions comprised the same two amino acids and
were conditionally dependent (to different degrees) on the binary response
variable. Precisely, if the outcome was positive (negative) the amino acid
”a” was sampled with probability 0.5 + r (0.5− r) and amino acid ”b” was
sampled with probability of 0.5 − r (0.5 + r), where r varied from 0.24

to 0.02 in steps of 0.02. Apart from the first 12 positions all positions were
ordered increasingly with respect to the number of amino acids occurring
at that position. MI and GI as well as the PIMP scores of these measures
with values of s ∈ {10, 50, 100, 500, 1000} were applied for generating
feature rankings. An optimal feature ranking method would rediscover all 12

positions that were associated with the outcome. However, since the relation
of some positions with the outcome was very weak, these positions were
likely to be ranked too low. The simulation was repeated 100 times.

Simulation C: The third simulation aims at showing that p-values greatly
improve model interpretation, by adding a statistical significance measure to
feature importance. In RandomForest models, importance of variables from
a group of highly correlated relevant variables is divided among variables
in the group and therefore decreases with the group size. This effect is
due to the sampling of features and inputs for the estimation of each tree
in the model. We show that the PIMP p-values of correlated variables are
significant even when the group size is relatively large. The setting is similar
to the simulation B, with n = 100, p = 500 and the variables having
1 to 21 categories. Again, the binary output vector was randomly sampled
from an uniform distribution. The first variable was copied from the output
vector only that a random 15% of the binary components were negated.
This way, we ensure that the first variable has a high correlation with the
outcome and consequently a high relevance. Then, for different values of
k ∈ {1, 5, 10, 25, 50}, the following k binary variables were constructed
such as to be conditionally dependent of the outcome and in addition being
mutually correlated. In order to ensure the predictive value of the group,
the correlated variables were generated based on a ”seed” variable that was
obtained by negating 25% of the outcome components, selected at random.
The seed variable is expected to have a correlation coefficient of 0.5 with
the outcome. Then, each variable of the correlated group was generated
by negating 5% of the components of the seed variable, also randomly
selected. Ideally, a learning model would rank the first variable highest,
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followed by all the k variables in the correlated group, with equal importance
independent of the group size (k).

3.2 Real Data
The permutation importance was also evaluated on two real world datasets.
The first dataset is concerned with the prediction of sites in the mitochondrial
RNA of plants that are edited from cytidine (C) to uridine (U) before
translation (C-to-U). The second dataset was collected for answering the
question which human chemokine receptor the human immunodeficiency
virus (HIV) uses for invading the host cell.

For comparison with previously published methods we reanalyzed the
C-to-U dataset published by Cummings and Myers (2004). The dataset
comprises 2694 sequences from three different species (Arabidopsis
thaliana, Brassica napus, and Oryza sativa). The output vector of the dataset
was balanced, i.e. one half of the sequences in the data (1347) were modified
at the potential edit site and the other half constitutes a constructed null-set
of non-edited sites. Predictive variables were the 20 nucleotides upstream
and downstream of the potential edit site, respectively. Additionally, the
codon position of the potential edit site (cp), the estimated free folding
energy of the 41 nucleotide sequence (fe) – i.e. the C at the potential
edit site and the 20 nucleotides up- and downstream, and the difference
in estimated free folding energy between the edited and non-edited version
of the 41 nucleotide sequence (dfe) were used as predictive variables. The
sequence positions comprised up to 5 categories (4 nucleotides; one symbol
for ambiguities), cp comprised 4 categories (3 positions and none), and fe
and dfe were continuous variables. Using these covariates the aim was to
infer whether the cytidine in the center of the sequence was edited or not. In
order to compute standard deviations, variable importance was assessed in a
10-fold cross-validation setting by GI and PIMP. For GI RandomForest with
100 and 1000 trees were explored. PIMP was executed with s = 50 and a
RandomForest size of 100 trees.

The HIV dataset comprised 355 sequences of the Envelope (Env) protein
of HIV and the human coreceptors that the virus can use for entering a
human host cell. Briefly, during the entry process the glycoprotein gp120,
a subunit of Env, attaches to a CD4 receptor and induces a conformational
change in the viral protein. Subsequently, the virus needs to bind to a cellular
chemokine receptor (coreceptor) for a successful cell entry. The data for this
case study were collected from the Los Alamos HIV Sequence Database
(http://www.hiv.lanl.gov/). In this analysis only one sequence per patient
was used and selected viruses were required to use the CCR5 or CXCR4
coreceptors, i.e. the only coreceptors that are relevant in vivo. The predictor
variables were the 1030 positions of the multiple amino acid alignment of
all 355 sequences, where each position could theoretically take up to 22

different entries (i.e. 20 amino acids, one symbol for ambiguities, and a
gap symbol). The binary response variable was defined by the coreceptor
usage of the virus. Precisely, negative response was defined as the capability
of using the CXCR4 coreceptor, which is associated with advanced stages
of the disease. The aim of this analysis was the discovery of amino acid
positions that are determinants for the coreceptor usage of the virus. In
general, the HIV Env protein contains five loops that are highly variable in
sequence, therefore these loop regions are also referred to as variable regions
V1 to V5. The V3 loop reached particular interest in the past since it was
found to be the major determinant of the virus’ coreceptor usage (Lengauer
et al., 2007). However, other parts of the Env protein might be associated
with the coreceptor usage as well. Moreover, generating a stable alignment
in the variable regions is difficult and often leads to alignment positions
that take many different amino acids and therefore might artificially boost
variable importance. For computing the GI and its standard deviation we use
the RandomForest with 500 trees in a 10-fold cross-validation setting and
the PIMP algorithm was executed with 50 permutations and 500 trees for
every cross-validation model.

4 RESULTS
4.1 Simulations
Simulation A demonstrated clearly that MI and RandomForest GI
are biased such that variables with a large number of categories
receive a higher variable importance (Figure 1 a)-b), left column).
In contrast, the PIMP scores (p-values) computed using a gamma
distribution (see Figure S1 in Supplementary material for results of
the KS tests) for both importance measures are no longer afftected
by the bias (Figure 1a)-b), right column). Moreover, none of
the candidate variables is significantly dependent on the response
variable at a 5% threshold (dashed red line).

Figure 2 a) shows box plots of the RF variable importance
computed in the simulation scenario B. The features were ranked
with respect to their mean importance in all simulations. For the
sake of visualization only the top 25 of the 500 features were
displayed. In the first setting, the first 12 variables were selected
to be predictive. Using GI (top left), only the first five positions
(r = 0.24 to r = 0.16) were recovered perfectly. By comparison,
using the PIMP (gamma distribution; Figure S2 in Supplementary
material) of GI with s = 10, the first six positions (r = 0.24 to
r = 0.14) were recovered perfectly and positions seven to nine were
ranked eighth to tenth. Larger values of s led to perfect recovery
of the first eight positions (r = 0.24 to r = 0.10) and the ninth
position (r = 0.08) is always among the top 13. MI recovered
only the position with the strongest relation (r = 0.24) to the
response (Figure 2, b)), however wrongly ranked second. This weak
performance could already be improved by computing the PIMP
of the MI with s = 10: the first eight positions were recovered
(r = 0.24 to r = 0.10), and the ninth position (r = 0.08) was
ranked at position 10. Larger values of s led to perfect recovery of
the first nine positions.

Simulation scenario C shows that PIMP p-values can be very
useful in learning datasets whose instances entail groups of highly
correlated features. As the size of the correlated group increases, the
GI of each variable in the group decreases to the point of apparent
non-significance. The relative importance of the first feature and
correlated group increases with the group size while, in fact, it
should remain constant (Figure S4, left column, Supplementary
material). When the size of the group is very large (k = 50), the
common GI is close to zero, which would probably lead to the
exclusion of the corresponding variables from the relevance list. In
contrast, PIMP (gamma distribution; Figure S3 in Supplementary
material) can help determine the relevance of the group. In our
simulations, the variables in the correlated group are significant even
for a group size as large as 50, which is 10% of the total number of
features (Figure S4, right column, Supplementary material).

4.2 Real Data
The RandomForest prediction model achieved a mean area under
the ROC curve (AUC) of 0.93 (±0.014) in 10-fold cross-validation.
The cforest method yielded only an AUC of 0.89 (±0.023). The
box plots in Figure 3 show the variable importance computed from
10 cross-validation runs on the C-to-U dataset. GI was computed
from 100 trees and rated the position upstream of the site of interest
(−1) as the most informative predictor. This was followed by fe, the
position after the site of interest, and dfe. The importance remained
unchanged when a forest of 1000 trees was used to compute the
GI (data not shown). However, the PIMP (with s = 50; normal
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(a)

(b)

Fig. 1. Simulation A: variable importance in dependence of number of categories: a) GI, b) MI.

distribution; Supplementary material Figure S5) of the GI computed
from 100 trees showed a somewhat different picture. Here, the
positions adjacent to the site of interest (−1 and 1) were the most
informative ones. fe, second most important predictor under GI,
yielded only moderate importance using PIMP. Moreover, several
sequence positions upstream of the site of interest (i.e. −2, −4, and
−5) showed higher importance than fe using PIMP. Interestingly,
all three positions achieved a GI lower than dfe, which was rated as
completely uninformative by PIMP.

The RandomForest model for predicting HIV coreceptor usage
achieved a mean AUC of 0.94 (±0.029) in 10-fold cross-validation.
For comparison, the cforest method yielded an AUC of 0.80
(±0.014). The box plots in Figure 4 depict the variable importance
of all alignment positions in the HIV Env protein in terms of
coreceptor usage. Importance was measured with GI (500 trees)
and PIMP (s = 50 and 500 trees; lognormal distribution;
Supplementary material Figure S6). At first glace the GI confirms
the importance of the V3 loop for determining coreceptor usage and
also suggests that positions in other variable loops (V1, V2, V4,
and V5) are associated with coreceptor usage (although at lower
levels). Application of PIMP also confirms the important role of
V3. In contrast to the GI measure, which suggested that V1 and
V2 are equally important, only positions in the variable loop V2 are

related to coreceptor usage after the correction with PIMP. Recently,
it was shown that incorporation of the V2 sequence information
improves the performance of prediction tools for HIV coreceptor
usage (Thielen et al., 2008).

4.3 Model improvement
We used simulation B and both real-world case studies to validate
our improved PIMP-RandomForest model. For simulation B we
ran 100 simulations and compared the accuracy of RandomForest,
PIMP-RandomForest, RandomForest re-trained only using the
top ranking features and the cforest model. The error rates
were computed on an independent test set. Table 1 shows
the improvements of accuracy of different methods over the
classical RandomForest. The PIMP-RandomForest model performs
significantly better than the RandomForest, with an average
decrease of OOB error rate of 10%. The RandomForest trained on
the top-ranking 1%, 5% and 10% of the features also yields better
models, due to the decrease in variance. Choosing the top 5% results
in a model with accuracy comparable (although still inferior) to the
PIMP-RandomForest. However, it is not clear a priori how many
top ranking features should be selected for a refined model. With the
p-values provided by the PIMP algorithm, one can simply use the
classical 0.05 significance threshold for selecting the most relevant
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(a)

(b)

Fig. 2. Discovery of relevant features in simulation scenario B: a) GI, b) MI

Table 1. Comparison of different RandomForest models on data from simulation B and both real-world case studies.

RF baseline PIMP-RF RF Top 1% RF Top 5% RF Top 10% cforest
error rate error rate ∆ error rate error rate ∆ error rate error rate ∆ error rate error rate ∆ error rate error rate ∆ error rate

Sim B 0.35± 0.06 0.25± 0.05 0.10± 0.05 0.27± 0.08 0.08± 0.07 0.26± 0.06 0.09± 0.06 0.28± 0.06 0.07± 0.06 0.32± 0.09 0.03± 0.07

C-to-U 0.18± 0.02 0.22± 0.03 −0.04± 0.03 0.30± 0.03 −0.12± 0.03 0.28± 0.02 −0.10± 0.02 0.24± 0.03 −0.06± 0.03 0.20± 0.03 −0.02± 0.03

HIV 0.13± 0.04 0.10± 0.04 0.03± 0.04 0.12± 0.04 0.01± 0.04 0.11± 0.04 0.02± 0.04 0.10± 0.06 0.03± 0.04 0.21± 0.09 −0.08± 0.08

Performance of different RandomForest models on different datasets. The name of the dataset is given in the first column. The baseline is the classical RandomForest (RF). For
comparison, the average error rates and average improvement (∆ error rate) w.r.t. baseline are shown for PIMP-RandomForest(PIMP-RF), for RandomForest models trained on the
top ranking 1%, 5% and 10% features and for the cforest algorithm.
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Fig. 3. Variable importance on the C-to-U dataset. GI (left) was computed using 10-fold cross-validation and a RandomForest with 100 trees. PIMP using a
normal distribution with s = 50 permutations (right) was executed for each cross-validation model.

Fig. 4. Variable importance on the HIV dataset. GI (top) was computed using 10-fold cross-validation and a RandomForest with 500 trees. PIMP using a
lognormal distribution with s = 50 permutations (bottom) was executed for each cross-validation model. Alignment positions are annotated with respect to
the HBX2 reference strain (genbank accession number: K03455), i.e. 393b reads as ”second amino acid insertion after amino acid 393 in HXB2”.

variables. Notably, the cforest algorithm is superior to the classical
RandomForest, but the average decrease of error rate is significantly
smaller than the one achieved by PIMP-RandomForest.

Error rate for the two real-world case studies was determined
using 10-fold cross-validation, and feature selection was carried out
for each cross-validation model separately. Results are summarized
in Table 1. On the HIV dataset, the cforest method exhibits an
increased error rate compared to the RF model with all features,
while the PIMP-RF shows the best performance together with the
RF trained on the top 10% ranked features. In contrast, on the C-
to-U dataset, all RF-based models shows an increased error rate
compared to the RF model using all features. However, among the

RF-based models, PIMP-RF shows the smallest increase in error
rate. On this dataset, the cforest method shows the overall slightest
increase in error rate. Decrease in performance of RF models with a
restricted feature set is not uncommon: for instance, on seven of the
10 microarray datasets in the work of Diáz-Uriarte and Alvarez de
Andrés (2006) the restricted RF models perform worse than the full
RF model.

5 DISCUSSION
In this work, we proposed an algorithm for correcting for two biased
measures of variable importance. The method permutes the response
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vector for estimating the random importance of a feature. Under
the assumption that the random importance of a feature follows
some distribution (Gaussian, lognormal or gamma), the likelihood
of the measured importance on the unpermuted outcome vector
can be assessed. The resulting p-value can serve as a corrected
measure of variable relevance. We showed how this method can
successfully adjust the feature importance computed with the
classical RandomForest algorithm, or with the Mutual Information
measure. We also introduced an improved RandomForest model that
is computed based on the most significant features determined with
the PIMP algorithm.

Simulation A demonstrated that the Gini importance of the
RandomForest and Mutual Information favor features with large
number of categories and showed how our algorithm alleviates the
bias. Simulation B demonstrated the usefulness of the algorithm
for generating a correct feature ranking. For all methods, the
feature ranking based on the unprocessed importance measures
could be improved. When variable importances of RandomForest
are distributed among correlated features, our method assigns
significant scores to all the covariates in the correlated group, even
for very large group size. This improves model interpretability in
applications like microarray data classification, where groups of
functionally related genes are highly correlated.

Permutation importance was used to correct for RandomForest
based Gini Importance measures for two real world datasets. Both
cases studies use features based on nucleotide or amino acid
sequences. As already discussed by Strobl et al. (2007) categorical
features (e.g. nucleotide sequences) are often used together with
derived continuous features (e.g. free fold energy) for improving
the prediction model. In this case it may happen that the continuous
variables are preferred by tree-based classifiers as they provide more
meaningful cut points for decisions. Permutation importance on
the C-to-U dataset demonstrated successful post-processing of the
original importance measure (GI). The HIV case study exclusively
employed categorical features in the form of amino acids in an
alignment. The sequences, however, contained highly variable
regions in which many different amino acids were observed in one
alignment position. The original RandomForest-based importance
measure was successfully corrected for with the proposed method.

We proposed a corrected RandomForest model based on the
PIMP scores of the features and we demonstrated that in most
of the cases it is superior in accuracy to the cforest model.
The major drawback of the PIMP method is the requirement
of time-consuming permutations of the response vector and
subsequent computation of variable importance. However, our
simulations showed that already a small number of permutations
(e.g. 10) provided improvements over a biased base method. For
stability of the results any number from 50 to 100 permutations
is recommended. The algorithm can easily be parallelized,
since computations of the random variable importance for every
permutation are independent, and therefore allow for an even better
scalability with respect to available computational resources. With

parallelization, the running time of our algorithm is only a few times
longer than the running time of a classical RandomForest, which is
very fast even for large instances.

We argue that the PIMP algorithm can also be used as a post-
processing step with other learning methods that provide (unbiased)
measures of feature relevance, such as linear models, logistic
regression, SVM, etc. The raw scores given by these models
provide with a feature ranking, but usually it is difficult to choose
a significance threshold. The PIMP p-values are easier to interpret
and provide a common measure that can be used to compare feature
relevance among different models.
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