
DataCamp Parallel Programming in R

Are my results
reproducible?

PARALLEL PROGRAMMING IN R

Hana Sevcikova
University of Washington

DataCamp Parallel Programming in R

Random numbers in R

Many statistical applications involve random numbers (RNs)

Examples: MCMCs in Bayesian methods, bootstrap, simulations

For reproducibility:

Set seed of a random number generator (RNG) prior to running the code
set.seed(1234)

rnorm(3)

[1] -1.2070657 0.2774292 1.0844412

rnorm(3)

[1] -2.3456977 0.4291247 0.5060559

set.seed(1234)

rnorm(3)

[1] -1.2070657 0.2774292 1.0844412

rnorm(3)

[1] -2.3456977 0.4291247 0.5060559

DataCamp Parallel Programming in R

Naive (non)reproducibility in parallel code
library(parallel)

cl <- makeCluster(2)

set.seed(1234)

clusterApply(cl, rep(3, 2), rnorm)

[[1]]

[1] -1.891091 -1.351767 -1.456848

[[2]]

[1] 1.7346577 0.7855641 -2.2319774

set.seed(1234)

clusterApply(cl, rep(3, 2), rnorm)

[[1]]

[1] 0.4432499 -0.7896067 0.2659675

[[2]]

[1] 0.2229560 0.8323269 -0.4092570

DataCamp Parallel Programming in R

Incorrect way of generating RNs in parallel code

Using set.seed(), the RNG is initialized only on the master.

Workers start with a clean environment, thus no RNG seed set.

What happens when we set the RNG on each worker?

 clusterEvalQ(cl, set.seed(1234))

 clusterApply(cl, rep(3, 2), rnorm)

 [[1]]

 [1] -1.2070657 0.2774292 1.0844412

 [[2]]

 [1] -1.2070657 0.2774292 1.0844412

DataCamp Parallel Programming in R

Another incorrect way of generating RNs in parallel code

Quick and dirty solution:

NOT RECOMMENDED!!!

for (i in 1:2) {

 set.seed(1234)

 clusterApply(cl, sample(1:10000000, 2), set.seed)

 print(clusterApply(cl, rep(3, 2), rnorm))

}

[[1]]

[1] 0.078249533 0.003019703 -1.314239709

[[2]]

[1] 1.3955357 -0.9935141 -0.3740712

[[1]]

[1] 0.078249533 0.003019703 -1.314239709

[[2]]

[1] 1.3955357 -0.9935141 -0.3740712

DataCamp Parallel Programming in R

Let's practice!

PARALLEL PROGRAMMING IN R

DataCamp Parallel Programming in R

Parallel random number
generators

PARALLEL PROGRAMMING IN R

Hana Sevcikova
University of Washington

DataCamp Parallel Programming in R

Random Number Generators (RNGs)

Important parameters of an RNG:

long period (preferably > 2)

good structural (distributional) properties in high dimensions

These parameters should hold when used in distributed environment

100

DataCamp Parallel Programming in R

L'Ecuyer Multiple Streams RNG

A good quality RNG with multiple independent streams proposed by Pierre

L'Ecuyer et al. (2002), RngStreams

Period 2

Streams have seeds 2 steps apart

Parallel parts of user computation can use independent and reproducible

streams

Direct interface in R: rlecuyer, rstream

In R core: RNGkind("L'Ecuyer-CMRG")

191

127

DataCamp Parallel Programming in R

Using L'Ecuyer RNG in parallel

Setting an RNG seed for cluster cl:

Initializes a reproducible independent stream on each worker

clusterSetRNGStream(cl, iseed = 1234)

DataCamp Parallel Programming in R

Reproducibility in the parallel package

In parallel: one stream per worker

Creates constraints on reproducibility

Results only reproducible if:

1. process runs on clusters of the same size

2. process does not use load balancing, e.g. clusterApplyLB()

DataCamp Parallel Programming in R

Let's practice!

PARALLEL PROGRAMMING IN R

DataCamp Parallel Programming in R

Reproducibility in foreach
and future.apply

PARALLEL PROGRAMMING IN R

Hana Sevcikova
University of Washington

DataCamp Parallel Programming in R

doRNG: backend for foreach

DataCamp Parallel Programming in R

Using doRNG via %dorng%
library(doRNG)

library(doParallel)

registerDoParallel(cores = 3)

set.seed(1)

res1 <- foreach(n = rep(2, 5), .combine = rbind) %dorng% rnorm(n)

set.seed(1)

res2 <- foreach(n = rep(2, 5), .combine = rbind) %dorng% rnorm(n)

identical(res1, res2)

[1] TRUE

DataCamp Parallel Programming in R

Using doRNG via %dopar%

Note: Cannot be used with the %doSEQ% backend.

library(doRNG)

library(doParallel)

registerDoParallel(cores = 3)

registerDoRNG(1)

res3 <- foreach(n = rep(2, 5), .combine = rbind) %dopar% rnorm(n)

set.seed(1)

res4 <- foreach(n = rep(2, 5), .combine = rbind) %dopar% rnorm(n)

c(identical(res1, res3), identical(res2, res4))

[1] TRUE TRUE

DataCamp Parallel Programming in R

Summary of using doRNG

Two ways of including doRNG into foreach:

1. Using %dorng%:

advantage of being explicit about using the L’Ecuyer’s RNG

2. Using %dopar% and registering doRNG:

easy to make code/packages reproducible by only prepending

registerDoRNG()

doRNG can be used with any parallel backend, including doFuture.

DataCamp Parallel Programming in R

future.apply

Uses independent streams of the L’Ecuyer’s RNG

As in doRNG, generates one stream per task

Need only to assign future.seed argument
library(future.apply)

plan(sequential)

res5 <- future_lapply(1:5, FUN = rnorm, future.seed = 1234)

plan(multiprocess)

res6 <- future_lapply(1:5, FUN = rnorm, future.seed = 1234)

identical(res5, res6)

[1] TRUE

DataCamp Parallel Programming in R

Let's practice!

PARALLEL PROGRAMMING IN R

DataCamp Parallel Programming in R

Finishing Touch

PARALLEL PROGRAMMING IN R

Hana Sevcikova
Senior Research Scientist, University of Washington

DataCamp Parallel Programming in R

Recommended R packages

parallel (core package)

No need for dependencies on other packages

Important to understand as other packages are built on it

Often yields best performance

Reproducible results: only on clusters of the same size with no load balancing

DataCamp Parallel Programming in R

Recommended R packages (cont.)

foreach (with doParallel, doFuture)

Higher level programming

Intuitive syntax in form of for loops

Results reproducible via doRNG

future.apply (based on future)

Unifies many parallel backends into one interface

Intuitive apply()-like syntax

Results always reproducible

DataCamp Parallel Programming in R

Getting the best performance

Minimize amount of communication (sending repeatedly big data is bad!)

Use scheduling and load balancing appropriate for your application (e.g. group

tasks into chunks evenly distributed across workers)

Use cluster size appropriate for your hardware (i.e. number of physical cores)

DataCamp Parallel Programming in R

DataCamp Parallel Programming in R

DataCamp Parallel Programming in R

Final Slide

PARALLEL PROGRAMMING IN R

