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Random numbers in R

o Many statistical applications involve random numbers (RNs)

e Examples: MCMCs in Bayesian methods, bootstrap, simulations
e For reproducibility:

= Set seed of a random number generator (RNG) prior to running the code

set.seed (1234)
rnorm(3)
[1] -1.2070657 0.2774292 1.0844412

rnorm (3)
[1] -2.3456977 0.4291247 0.5060559

set.seed (1234)
rnorm (3)
[1] -1.2070657 0.2774292 1.0844412

rnorm (3)
[1] -2.3456977 0.4291247 0.5060559
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Naive (non)reproducibility in parallel code

library (parallel)
cl <- makeCluster (2)

set.seed (1234)
clusterApply(cl, rep(3, 2), rnorm)

[[1]]
[1] -1.891091 -1.351767 -1.456848

[1] 1.7346577 0.78556041 -2.2319774

set.seed (1234)
clusterApply(cl, rep(3, 2), rnorm)

[1] 0.4432499 -0.7896067 0.2659675

[1] 0.2229560 0.8323269 -0.4092570
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Incorrect way of generating RNs in parallel code

e Using set.seed (), the RNG is initialized only on the master.

e \Workers start with a clean environment, thus no RNG seed set.

e What happens when we set the RNG on each worker?

clusterEvalQ(cl, set.seed(1234))
clusterApply(cl, rep(3, 2), rnorm)

[[1]]
[1] -1.2070657 0.2774292 1.0844412

[[2]]
[1] -1.2070657 0.2774292 1.0844412
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Another incorrect way of generating RNs in parallel code

e Quick and dirty solution:

for (1 in 1:2) {
set.seed (1234)
clusterApply(cl, sample(1:10000000, 2), set.seed)

print (clusterApply(cl, rep(3, 2), rnorm))

[1] 0.078249533 0.003019703 -1.314239709
[1] 1.3955357 -0.9935141 -0.3740712
[1] 0.078249533 0.003019703 -1.314239709

[1] 1.3955357 -0.9935141 -0.3740712

« NOT RECOMMENDED!!!
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Random Number Generators (RNGSs)

e Important parameters of an RNG:
= |ong period (preferably > 2199)
= good structural (distributional) properties in high dimensions

e These parameters should hold when used in distributed environment
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L'Ecuyer Multiple Streams RNG

e A good quality RNG with multiple independent streams proposed by Pierre
L'Ecuyer et al. (2002), RngStreams
= Period 2191
» Streams have seeds 2!?7 steps apart
» Parallel parts of user computation can use independent and reproducible
streams

= Direct interface in R: rlecuyer, rstream

= |n R core: RNGkind ("L'Ecuyer-CMRG")
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Using L'Ecuyer RNG in parallel

o Setting an RNG seed for cluster c1:
clusterSetRNGStream(cl, iseed = 1234)

e I|nitializes a reproducible independent stream on each worker
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Reproducibility in the parallel package

e Inparallel: one stream per worker

e Creates constraints on reproducibility
e Results only reproducible if:

1. process runs on clusters of the same size

2. process does not use load balancing, e.g. clusterApplyLB ()
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doRNG: backend for foreach



Using doRNG via %dorng%

library (doRNG)
library (doParallel)
reglisterDoParallel (cores = 3)

set.seed (1)
resl <- foreach(n = rep(2, 5), .combine = rbind) %dorng% rnorm(n)

set.seed (1)
res?2 <- foreach(n = rep(2, 5), .combine

rbind) %dorng% rnorm(n)

identical (resl, res?2)

[1] TRUE



Using doRNG via %dopar%

library (doRNG)
library (doParallel)
reglisterDoParallel (cores = 3)

registerDoRNG (1)
res3 <- foreach(n = rep(2, 5), .combine = rbind) %dopar% rnorm(n)

set.seed (1)
resd4 <- foreach(n = rep(2, 5), .combine

rbind) %dopar% rnorm(n)

c (identical (resl, res3), identical (res?2, resd))

[1] TRUE TRUE

Note: Cannot be used with the $dosrE0% backend.
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Summary of using doRNG

Two ways of including doRNG into foreach:

1. Using %$dorng%:
e advantage of being explicit about using the L'Ecuyer's RNG

2. Using $dopar% and registering doRNG:

e easy to make code/packages reproducible by only prepending

reglsterDoRNG ()

doRNG can be used with any parallel backend, including doFuture.
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future.apply

e Uses independent streams of the L'Ecuyer's RNG

e As in doRNG, generates one stream per task

e Need only to assign future.seed argument

library (future.apply)
plan (sequential)
resb5 <- future lapply(l:5, FUN = rnorm, future.seed = 1234)

plan (multiprocess)
reso <- future lapply(l:5, FUN = rnorm, future.seed

1234)
identical (resb, reso)

[1] TRUE
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Recommended R packages

e parallel (core package)
= No need for dependencies on other packages
= Important to understand as other packages are built on it
= Often yields best performance

» Reproducible results: only on clusters of the same size with no load balancing
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Recommended R packages (cont.)

o foreach (with doParallel, doFuture)

= Higher level programming

» |ntuitive syntax in form of for loops

= Results reproducible via doRNG
o future.apply (based on future)

» Unifies many parallel backends into one interface

= Intuitive apply () -like syntax

= Results always reproducible
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Getting the best performance

e Minimize amount of communication (sending repeatedly big data is bad!)
e Use scheduling and load balancing appropriate for your application (e.g. group
tasks into chunks evenly distributed across workers)

e Use cluster size appropriate for your hardware (i.e. number of physical cores)
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Probabilistic projection of migration
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Speedup: T_sequential/T_parallel

task size: 100 task size: 1000

|

|

|

|

|

I 1 1 1
4 8 12 16 4

cluster size

|
|
|
|
|
|
3- : |
|
| I
| I
| I
| I
| |
| I
. | method
| I
| | —— parallelLB
S | |
8 : : parallel
8 : : —— doParallel
7]
I | —— future.apply
| I
| | ~—— doFuture
| |
| |
| |
| I
| I
1- | |
| I
| |
|
I
I
I
I
I
I
|
8

12 16



Parallel Programming in R

PARALLEL PROGRAMMING IN R

Final Slide



