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THE IMPORTANCE OF PREDICTOR VARIABLES
FOR INDIVIDUAL CLASSES IN SVM

Abstract. The model obtained from Support Vector Machines suffers from the lack of
interpretation. It is usually very hard to extract the knowledge about the analyzed phenomenon
from the classification model obtained by using SVMs because the classification task is realized in
a high dimensional feature space. Although the method identifies the observations which are
crucial for the form of the decision function, it does not show which variables are relevant and
which are redundant either for the whole classification task or for each class separately.

Once the model is built, it is very valuable to recognize the relative importance of predictor
variables for the shape of every class. The method we propose uses the sampling techniques,
backward elimination and Rand index for evaluating whether the particular variable is redundant
or not. As a result, we obtain the ranking of the predictor variables reflecting the relevant
importance of the inputs for each class separately.
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I. INTRODUCTION

Support Vector Machines (SVMs) are considered as a very powerful tool in
Pattern Recognition. They are highly competitive in terms of accuracy within the
group of classification methods [see Abe (2005)]. A number of researchers are
working to modify and improve the performance of SVMs. One of the fields of
SVM development is associated with the analysis of the importance of input
variables or, more generally, with the knowledge extraction.

The feature selection problem is very important since the presence of redundant
variables has a significant negative influence on the training time, model storage
requirements, interpretability and sometimes even the generalization ability of the
model [see Weston (2001)]. The interpretational issues connected with the
SVMs models, especially when presenting the model and the results of
classification to decision makers, was the main motivation for this paper. We
tried to use simple intuitive techniques to develop a procedure for evaluating
which predictor has a significant impact on the shape of a particular class in the
SVMs classification model. Thus, the main goal of the paper was to develop the
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method for obtaining the profile description of the classes (after finishing
learning SVMs) rather than to propose an additional element of learning.

As presented in Guyon et al. (2006), there are three approaches in feature
selection: filters, wrappers and embedded methods. The first group of methods
evaluates the importance of a variable independently from the classifier using

different dependency measures, such as Pearson correlation, y* or others. The

whole procedure is performed at the pre—processing stage. Wrappers are much
more often used for feature selection than filters since they involve the classifier
to assess feature subsets (the original learning method is applied for the
evaluation of the generated feature subsets). Embedded methods are close to
wrappers but the learning method is modified in the way that the feature
selection is incorporated into the algorithm. Since we are interested in describing
the model built on the whole set of predictors given by the experts, we choose
wrappers as the most appropriate approach. Within the wrappers, we use the
backward elimination procedure. It is an iterative procedure where we start with
all the features and delete one feature at a time. We delete the feature which
deteriorates the previously chosen selection criterion the least. The alternative
method — the forward selection — also generates the nested feature subsets but in
this approach we start with an empty set and add into the model the predictor
that improves the performance measure the most. Both procedures are local
optimization techniques and yield different variable rankings. Backward
elimination is usually slower but more stable than forward selection [see Abe
(2005)].

II. THE OVERVIEW OF THE SVM ALGORITHM

In this section we briefly present the main ideas of Support Vector
Machines. In the case of the two—class classification, first we transform data
points from the training set to a higher dimensional feature space by non—linear
mapping [see Vapnik (1998)]. Then we find the optimal hyperplane (maximizing
the margin) separating the images of the data in the feature space. This
hyperplane (linear boundary) in the feature space corresponds with the nonlinear
classifier in the original data space.

Following Scholkopf and Smola (2002) we present the formalism of the

SVMs algorithm. We are given the training set D = {(xl, yl),...,(xN, it )}, where
x' e R is the vector of predictors' values and y' € {~1,1} defines the class the
ith observation belongs to, i € {I,...,N}. Then the goal of supervised learning is
to find a “good” predictive classification function y= f(x), based on the
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available training set. In order to obtain a model with a good generalization
ability SVMs use the structural risk minimization principle [see Vapnik (1998)]
as a criterion for finding a “good” decision function. To handle a case of linearly
nonseparable classes, the training set is transformed to some higher dimensional

feature space by non-linear mapping ¢:R? —Z. There we construct the
optimal separating hyperplane (i.e. the hyperplane with the largest margin):

B-o(x)+ 4, =0, M

where PeZ, f, €R. This hyperplane separates the classes and defines the
decision function:

£ (x) =sign(B- p(x)+ 5, ) @)

The structural risk minimization principle is applied within SVMs by the
fact that we seek for the optimal separating hyperplane (the one with the largest
margin), not just any separating hyperplane. The problem of finding the optimal

separating hyperplane (i.e. finding the normal vector B and the intercept /)
can be formulated as the following optimization problem:
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and p>0, &>0, iefl,...N},

where the slack variables ¢£,...,&5, =20 are introduced to allow some
observations from the training set to be misclassified (to allow noise in the
training set), p is an additional variable to be optimized and v replaces
regularization parameter C in the the original SVM formulation. Parameter
v e(0,1] is specified beforechand and controls the trade-off between the
generalization ability of the model and the fitting of the training data. We can

solve problem (3) using the Lagrange multipliers method. The dual form of the
Lagrangian is:



188 Michat Trzesiok

_ 14L& o
maximize ——> > aa;y,y,Kx'\x), )
acR” Ny N
i=1 j=1
1 N
subjectto 0<¢, <—, a.y, =0 4
d Sy 21 Vi “)

N
and Zai 2y, ie {1,...,N},
i=1

where K(u,v) =¢@(u)-¢(v) already denotes the kernel function representing the

dot product in the high dimensional feature space Z.. Within SVMs one of the
kernel functions is used to define this dot product. The most popular kernels for
SVMs are:

e Radial Basis Function K(u,v)= exp(—}/”u - V||2 ),

e kth degree polynomial K(u,v)=y(u-v+05)",
where 7,0 >0, k € N are parameters. The use of the kernel function implies that

we construct the optimal separating hyperplane in the high dimensional feature
space Z (and thus the optimal decision function) without explicitly performing
calculations in this space. It can be shown [see Scholkopf and Smola (2002)]
that then the decision function takes the final form:

f(x) =Sign£zaiy’K(Xi,X)+ﬂoJ- (5)

i=l1

Many of the Lagrange multipliers ¢, in the solution of the optimization task

(4) are equal zero [see Vapnik (1998)]. Since the decision function (5) uses the
linear combination of the images of the observations, only the observations
corresponding to nonzero Lagrange multipliers have discriminative power.
These observations are called support vectors.

m(m-1)
2

binary classifiers (one—against—one multi—class SVMs) and use the majorization
scheme to assign the observation to a particular class.

In the case of m classes (m > 3), the common approach is to build
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III. VARIABLE IMPORTANCE EVALUATION
Building the Ranking of Predictors

Performing an exhaustive search through all variable subsets is usually not
feasible due to the computational costs. Therefore, we decide to develop another
basic procedure using the greedy technique — the backward elimination. The
computational costs for this approach are much lower than for the exhaustive search,
although it is still expensive to compute if d — the number of predictors — is large.

We start with the set of all variables and recursively delete one predictor in
every step. The feature which deteriorates the previously chosen selection
criterion the least is deleted. In the literature [Guyon et al. (2006),
Rakotomamonjy (2003)], typically the minimum expected prediction error is
used as the selection criterion, but since it is unknown we need to estimate it e.g.
by cross—validation (CV). This significantly increases the computational cost of
the whole procedure. We propose a simple modification. The classification
resulting from the model built on the set of all predictors can be treated as
a pattern. It should be noticed that at this stage the SVMs hyperparameters are
tuned and then the best kernel and hyperparameter values are used for building
every model with reduced number of predictors. We do so because we only want
to observe the influence of deleting variables in the training set — not the changes
associated with other aspects of the learning process. Then we can compare the
pattern with the classification results obtained from the model with one of the
predictors excluded. We use the maximum classification agreement between the
pattern and the model with a reduced number of predictors as the criterion for
choosing the variable to be deleted. As a classification agreement measure we
use the Rand index, which is more general because it can be used for comparing
clustering results, but is also suitable for this purpose. We summarize the
procedure in the algorithm presented in Table 1.

Table 1. Algorithm for evaluating the ranking of predictor variables using backward elimination
and the Rand index

Step 1. | Tune the SVMs model on training set D using all the predictors (the best model is
used as the pattern). Take the working data set S equal to the training set D.

Step 2. | Generate different modifications of data set S by excluding one of the input
variables from data set S at a time and build SVMs models on these data sets using
the same parameters as in Step 1.

Step 3. | Compare the Rand indexes of the classification results from Step 2 with the pattern
(prediction from Step 1).

Step 4. | Delete from the data set S the input variable associated with the largest Rand index
(deleting this predictor changes the results of the classification the least). Compute
the value of the prediction error estimator using cross—validation for the model
with a reduced number of predictors.

Step 5. | Go to Step 2 and repeat the procedure (on the data set S with the reduced number
of predictors) until only one input variable is left.
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In the first few iterations of the procedure we identify the least important
variables and then we continue until we end up with only one — the most
important variable. Thus, we read the variable labels in the reverse order to find
the ranking of predictors.

Redundant Variables Identification

Once the ranking of predictors is built we can use different criteria to
indicate which input variables are redundant, e.g.:

e specifying the threshold value for the Rand index,

e specifying the threshold value for the prediction error (estimated by CV—
error).

When estimating the prediction error by cross—validation we can also
compute the standard error. We would need to do it for each estimated
prediction error. Then we can use the smallest prediction error increased by its
standard error as the threshold [as proposed in Hastie et al. (2001)], i.e. we
choose the least complex model within one standard error of the best.

The whole procedure of evaluating the importance of predictors is
performed for each class separately in order to obtain the profile description of
the classes. In other words we use the one—against—all strategy, treating all the
observations not belonging to a given class as the second class and evaluating
the influence of input variables on the decision function obtained from two—class
SVMs. The procedure is repeated for every class in dataset.

IV. AN EXAMPLE ILLUSTRATING THE PROCEDURE

We used the benchmark real-world data set Glass taken from the
“mlbench” package from the statistical language R in which all the
computations were performed. As the benchmark dataset donors state, the study
of the classification of types of glass was motivated by criminological
investigation. At the scene of the crime, the glass left can be used as evidence if
it is correctly identified. The set Glass consists of 214 observations, described by
9 numerical predictors: V.1 — refractive index and variables: V.2,..,.V.9 —
representing a weight percentage of a particular element in corresponding oxide
in the glass type. The elements are: Na, Mg, Al, Si, K, Ca, Ba and Fe,
respectively. One nominal variable defines the class. There are six classes of
objects in this data set representing six types of glass: building windows float
processed, building windows non float processed, vehicle windows float
processed, containers, tableware and headlamps.
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The results of the procedure presented in Table 1 realized for Class 1 (for
illustration) are shown in Table 2. Since it was only the mechanism of the
procedure that we wanted to present in Table 1 we do not present details for
other classes.

Table 2. The results of the procedure for the variable importance evaluation for Class 1
in dataset Glass

No. of Deleted Rand CV prediction

iteration predictor Index error Standard error
1 V.5 0,936 0,229 0,020
2 V.8 0,919 0,210 0,024
3 V.3 0,910 0,205 0,029
4 V.2 0,869 0,248 0,048
5 V.1 0,853 0,266 0,037
6 V.9 0,837 0.234 0,014
7 V.6 0,744 0,252 0,012
8 V.7 0,568 0,355 0,030
9 V4

Source: own results.

We can easily see that the best model (the one with the minimum prediction
error — in boldface) is not the model built on the complete set of predictors but
the one, where variables: V.5, V.8 and V.3 were deleted (these inputs are
irrelevant for the Class 1 boundary). As proposed by Hastie et al. (2001) we
choose the model with the fewest input variables with the prediction error not
greater than the minimum prediction error (0,205) increased by its standard error
(0,028). In the given example, this allowed to extend the set of redundant
predictors to {V.5,V.8,V.3,V.2, V.1, V.9}. Reading the list of deleted
predictors (the second column of Table 2) in reverse we obtain the ranking of
input variables (from the most to the least important). Thus variable V.4 is the
one with the largest discriminative power for the problem of distinguishing
objects of Class 1 from any other observations.

The rankings of predictors for every class in dataset Glass are presented in
Table 3.
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Table 3. Rankings of predictors for every individual class in dataset Glass obtained as the result of

the proposed procedure involving backward elimination and Rand index

Class 1 Class 2 Class 3
Position Bglldmg B}nldmg v.ehlcle Class 4 Class 5 Class 6
in ranking windows windows windows containers tableware | headlamps
float non float float
processed processed processed
1 V4 V4 V.9 V.6 V.8 V.8
2 V.7 V.3 V.7 V.9 v.7 V.5
3 V.6 V.1 V.6 V.7 V.6 V.7
4 V.9 V.8 V.5 V.5 V.3 V.4
5 V.1 V.9 V.4 V.4 V.9 V.9
6 V.2 V.5 V.8 V.3 V.5 V.6
7 V.3 V.7 V.3 V.8 V.2 V.3
8 V.8 V.2 V.2 V.2 V.4 V.2
9 V.5 V.6 V.1 V.1 V.1 V.1

Source: own results.

These rankings are very easy for interpretation. For example we see that Class 3
— vehicle windows — is very well separable using only one predictor V.9 (weight
percentage of the iron oxide). For separating Class 4 objects it is enough to use
predictors: V.6, V.9, V.7 and V.5. We can also conclude that with only one
exception, predictor V.1 — refractive index — is identified as a redundant variable. It
is very easy to obtain the profile description of every class from Table 3.

V. CONCLUSION

We proposed an intuitive procedure for evaluating the importance of
variables for every individual class in SVMs models. The procedure is a simple
modification of the recursive backward elimination technique. Instead of using
the minimum CV-prediction error as the criterion for deleting input variables
when creating the ranking we use the maximum classification agreement (Rand
index) measuring the differences in the prediction between the model built with
the whole set of variables and the reduced set of predictors. This modification is
justified by the observation that deleting the redundant variable does not change
the results of classification significantly. The advantage of using the Rand index
instead of the CV—classification error is the reduction of computational costs of
the algorithm. The algorithm is not optimal since it uses the greedy searching
technique. If the number of observations is too large to perform the procedure
effectively it is suggested to call it on the random subset or on the subset
consisting of all support vectors identified by the model used as the pattern.
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Moreover, the ranking resulting from the procedure is very easy for
interpretation. We obtain the profile description of every class and it gives
additional important information about the analyzed phenomenon. The example
on the benchmark real-world data set demonstrates the usefulness of the
presented procedure.
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WPLYW ZMIENNYCH OBJASNIAJACYCH NA KSZTALT POSZCZEGOLNYCH
KLAS W METODZIE WEKTOROW NOSNYCH

W metodzie wektorow nosnych (SVM) funkcja dyskryminujaca wyznaczana jest poprzez
transformacj¢ danych w przestrzen o znacznie wigkszym wymiarze, gdzie poszukuje sig¢
optymalnej hiperplaszczyzny rozdzielajacej klasy parami. Na skutek tej transformacji dziatanie
metody SVM  przypomina dziatanie ,.czarnej skrzynki”, co oznacza, iz bardzo trudno
interpretowa¢ wyniki tak otrzymanej klasyfikacji. Po zbudowaniu modelu czgsto waznym
problemem jest znalezienie stosownego opisu klas oraz rozpoznanie, ktére zmienne objasniajace
miaty najwigkszy wplyw na ksztalt poszczegélnych klas (zidentyfikowanie zmiennych
charakterystycznych).

Gléwnym celem przeprowadzonej analizy jest przedstawienie procedury wykorzystujacej
techniki probkowania, selekcj¢ oraz miarg zgodnosci klasyfikacji, do oceny wplywu
poszczegdlnych zmiennych diagnostycznych na ksztatt kazdej z klas.



