
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/221995787

The Igraph Software Package for Complex Network Research

Article · November 2005

CITATIONS

9,928
READS

27,962

2 authors, including:

Gabor Csardi

Harvard University

40 PUBLICATIONS 13,026 CITATIONS

SEE PROFILE

All content following this page was uploaded by Gabor Csardi on 28 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/221995787_The_Igraph_Software_Package_for_Complex_Network_Research?enrichId=rgreq-c2139061b768aeea690f62ba40b49b9c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTk5NTc4NztBUzoxMDE2NjI3NDgzMTU2NjBAMTQwMTI0OTY5NjQ3MA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/221995787_The_Igraph_Software_Package_for_Complex_Network_Research?enrichId=rgreq-c2139061b768aeea690f62ba40b49b9c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTk5NTc4NztBUzoxMDE2NjI3NDgzMTU2NjBAMTQwMTI0OTY5NjQ3MA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-c2139061b768aeea690f62ba40b49b9c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTk5NTc4NztBUzoxMDE2NjI3NDgzMTU2NjBAMTQwMTI0OTY5NjQ3MA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gabor-Csardi?enrichId=rgreq-c2139061b768aeea690f62ba40b49b9c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTk5NTc4NztBUzoxMDE2NjI3NDgzMTU2NjBAMTQwMTI0OTY5NjQ3MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gabor-Csardi?enrichId=rgreq-c2139061b768aeea690f62ba40b49b9c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTk5NTc4NztBUzoxMDE2NjI3NDgzMTU2NjBAMTQwMTI0OTY5NjQ3MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Harvard_University?enrichId=rgreq-c2139061b768aeea690f62ba40b49b9c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTk5NTc4NztBUzoxMDE2NjI3NDgzMTU2NjBAMTQwMTI0OTY5NjQ3MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gabor-Csardi?enrichId=rgreq-c2139061b768aeea690f62ba40b49b9c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTk5NTc4NztBUzoxMDE2NjI3NDgzMTU2NjBAMTQwMTI0OTY5NjQ3MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gabor-Csardi?enrichId=rgreq-c2139061b768aeea690f62ba40b49b9c-XXX&enrichSource=Y292ZXJQYWdlOzIyMTk5NTc4NztBUzoxMDE2NjI3NDgzMTU2NjBAMTQwMTI0OTY5NjQ3MA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

The igraph software

package for complex

network research

Gábor Csárdi

Center for Complex Systems Studies, Kalamazoo College,

Kalamazoo, MI, USA

and

Department of Biophysics, KFKI Research Institute for Particle

and Nuclear Physics of the Hungarian Academy of Sciences,

Budapest, Hungary

csardi@kzoo.edu

Tamás Nepusz

Department of Biophysics, KFKI Research Institute for Particle

and Nuclear Physics of the Hungarian Academy of Sciences,

Budapest, Hungary

and

Department of Measurement and Information Systems, Budapest

University of Technology and Economics, Budapest, Hungary

ntamas@rmki.kfki.hu

The igraph software package provides handy tools for researchers in network sci-
ence. It is an open source portable library capable of handling huge graphs with
millions of vertices and edges and it is also suitable to grid computing. It contains
routines for creating, manipulating and visualizing networks, calculating various struc-
tural properties, importing from and exporting to various file formats and many more.
Via its interfaces to high-level languages like GNU R and Python it supports rapid
development and fast prototyping.

2 The igraph software package for complex network research

1.1 Introduction

This paper does not present results of scientific research, but introduces a soft-
ware package which gives handy tools into the hands of researchers doing network
science. The authors strongly believe that the tools scientists use are important
because they can increase productivity by several factors and thereby enhance
scientific progress.

1.1.1 Why another network analysis package?

The igraph library was developed because of the lack of network analysis software
which (1) can handle large graphs efficiently, (2) can be embedded into a higher
level program or programming language (like Python, Perl or GNU R) and (3)
can be used both interactively and non-interactively.

The capability of handling large graphs was important because the authors
were confronted with graphs with millions of vertices and edges.

Embedding igraph into Python or GNU R creates a very productive research
environment, well suited for rapid development. All the expressing power of
GNU R (or other higher level languange) is readily available in a convenient
integrated environment for generating, manipulating and measuring graphs, and
evaluating these measurements.

Interactive means of software usage is nowadays considered as superior to
non-interactive interfaces, which is very true for most cases. Dealing with large
graphs can be different though – if it takes three months to calculate the diameter
of a graph, nobody wants that to be interactive.

1.2 Features

In the addition to the three goal features in the previous section, others showed
up as a side-effect. Let us discuss these features here.

Open source. Igraph is open source, it is free for non-commercial or commer-
cial use and distributed according to the GNU General Public License. Being
open source means that in addition to the binary format of the program, the
user can always get the source code format enabling additions and corrections.
This is a very important feature for the users. With open source software, you
can add new functionality and correct deficiencies or hire somebody to do this
for you. With closed source software this is impossible.

Efficient implementation. Igraph uses space and time efficient data struc-
tures and implements the current state-of-the-art algorithms. All igraph func-
tions are carefully profiled to create the fastest implementation possible.

The igraph software package for complex network research 3

Portability. The library is written in ANSI C, it is thus portable to most
platforms. It is tested on different Linux flavors, Mac OS X, MS Windows and
Sun OS. The R and Python interfaces are also portable to many architectures.

Layered architecture. The igraph library has a layered architecture, the
three layers are connected through well defined interfaces. Each layer can be
replaced with an alternate implementation without changing the other compo-
nents. See the details in §1.4.

Open, embeddable system. The core igraph library is an open system, it
can be embedded into higher level languages or programs. The current distri-
bution contains interfaces to two high level languages: GNU R and Python.

High level operations. The higher level interfaces provide abstract opera-
tions and data types. These support rapid program development, see §1.3.2 for
an example.

Documentation. The C library is very well documented, the documentation
is available in various formats supporting both online browsing and printing.
For each function its time requirements are documented.

Drawbacks. The library lacks functionality in some areas compared to other
network analysis packages. One such area is graph visualization, another one is
various social network analysis methods like block-modeling, p∗ methods, etc.
Note that this piece of software is heavily under development, so expect much
more functionality in the near future. Igraph also does not have a graphical user
interface, but a Python-based GUI is under development and will be available for
download soon and the R interface also provides a facility for visual manipulation
of small graphs.

1.3 Example applications

1.3.1 Grid computing

In this section we give an example for using the igraph library for large scale com-
putation. The task presented here is to calculate the diameter of the US patent
citation network. In this network the nodes are US patents granted between
1963 and 2000 and two patents are connected if one cites the other. The largest
component of the network contains more than 3 million nodes and 15 million
edges. The (undirected) diameter of a network is the largest undirected shortest
path connecting two vertices.

For calculating the diameter of a graph you need to calculate the length of
the shortest path between all possible pairs of nodes, so this is computationally
very expensive. We used the following approach with igraph.

4 The igraph software package for complex network research

PSfrag replacements

worker

worker

worker

worker

Task
web

server

Data
web

server

421

worker

. . .

3

Figure 1.1: The architecture of the system used for calculating the diameter of a large
graph. A worker node (1) downloads the network data from the data web-server, then
(2) it requests a source vertex id from the task web-server, (3) calculates the shortest
paths from that source vertex and (4) stores the result on the task web-server. Then
a new source vertex id is requested, etc.

First we wrote a simple program in C which downloads the data set from a
web server and then starts calculating the shortest paths from a given source
node to all other nodes in the network by using Dijkstra’s algorithm [5] imple-
mented in the igraph library. We will call this program the worker.

The worker downloads the id of the source node from a second web server.
This web server simply gives a different source node id every time one is requested
by the workers. As soon as the worker has finished with the calculation of the
shortest paths to all nodes it stores the result on a third web server and asks the
second web-server for a new source node id, etc. The architecture of the system
can be seen in Fig. 1.1.

This system is very robust in the sense that there is no single point of failure.
The workers can be run in any grid-based environment from which they can
access the WWW. They can be run on different platforms as well.

1.3.2 Fast prototyping, rapid development

Newman’s community finding algorithm The second example we present
is very different from the first. Here we will use the GNU R interface to the
igraph library to implement and apply Newman’s spectral community finding
algorithm [10]. First we load the igraph package into R and download the
Zachary Karate-club network data [17] from the web.

1 library(igraph)

2 g <- read.graph("http://geza.kzoo.edu/~csardi/karate.net", format="pajek")

Now we implement the community finding algorithm.

The igraph software package for complex network research 5

3 community.newman <- function(g) {

4 deg <- degree(g)

5 ec <- ecount(g)

6 B <- get.adjacency(g) - outer(deg, deg, function(x,y) x*y/2/ec)

7 diag(B) <- 0

8 eigen(B)$vectors[,1]

9 }

This algorithm creates a modularity matrix which is the difference of the adja-
cency matrix of the graph and the null-model matrix. The latter contains the
probabilities that two nodes are connected in a random graph if the degrees of
the nodes are given. Then the network is divided into two communities based on
the eigenvector associated with the largest positive eigenvalue of the modularity
matrix: all vertices having the same sign in this eigenvector belong to the same
community.

Now we are ready to apply this algorithm to the Karate-club data and set
the color of the vertices based on their communities.

10 mem <- community.newman(g)

11 V(g)$color <- ifelse(mem < 0, "grey", "green")

We also set the size of the vertices based on the first eigenvector, the farther
this value is from zero the more the given vertex is in the core of the community.
We also set the color of the edges across the two communities to red.

12 scale <- function(v, a, b) {

13 v <- v-min(v) ; v <- v/max(v) ; v <- v * (b-a) ; v+a

14 }

15 V(g)$size <- scale(abs(mem), 15, 25)

16 E(g)$color <- "grey"

17 E(g)[V(g)[color=="grey"] %--% V(g)[color=="green"]]$color <- "red"

18 plot(g, layout=layout.kamada.kawai, vertex.color="a:color",

19 vertex.size="a:size", edge.color="a:color")

See the resulting plot in Fig. 1.2.

PageRank algorithm in 19 lines Using the Python interface of igraph, one
can easily create a prototype of the original PageRank algorithm in only 19 lines
of code (not counting empty lines):

1 from igraph import *

2 from copy import copy

3

4 def pagerank(g, damping=0.85, epsilon=0.001, iters=100):

5 pageranks = [1-damping] * g.vcount()

6 outlinks = g.degree(type=OUT)

7 mindiff = epsilon

8 newprs = [0] * g.vcount()

9

10 while mindiff >= epsilon and iters > 0:

6 The igraph software package for complex network research

PSfrag replacements

0

1

2

345

6

7

8

9

10

11
12

13

14

15

16

17
18

19

20

21

22

23
24

25
26

27

28

29

30

31
32

33

Figure 1.2: The two communities identified correctly in the Zachary karate-club net-
work. The size of the vertices is proportional to the absolute value of their coordinate
in the first eigenvector and expresses how strongly they belong to a community. All
edges across the two communities are painted red.

11 iters = iters - 1

12 for n in range(g.vcount()):

13 neis = g.neighbors(n, IN)

14 pr = 0.0

15 if len(neis) > 0:

16 for n2 in neis: pr = pr + pageranks[n2] / outlinks[n2]

17 pr = pr*damping

18 newprs[n] = pr+1-damping

19

20 mindiff = min([abs(newprs[n]-pageranks[n]) for n in range(g.vcount())])

21 pageranks = copy(newprs)

22

23 return pageranks

1.4 The igraph architecture

The igraph system has a layered architecture consisting three layers. The lowest
layer contains the very basic operations only, and is implemented in C. It is only
this layer which can manipulate the internal igraph data structures directly.
This means that this layer can be easily replaced with and alternate graph
representation if needed.

The igraph software package for complex network research 7

PSfrag replacements

...PythonGNU R

Graph operations (C library)

Basic graph operations (C library)

Figure 1.3: The architecture of the igraph system. See the text for a description.

The second layer contains almost all network analysis functions, this is also
implemented in C.

The third layer contains the higher level interfaces, so far interfaces to GNU
R and Python are implemented.

1.5 Current functionality

Please note that new functionality is added to the library every week, so check the
igraph homepage at http://cneurocvs.rmki.kfki.hu/igraph if you cannot
see here the algorithms or measures you’re looking for.

Graph generation Igraph can generate various regular and random graphs:
• regular structures: star, ring and full graphs, circular and non-circular lattices
with any number of dimensions, regular trees • graphs based on Barabási’s
preferential attachment model [1], also with nonlinear attachment exponent and
various variations • Random (Erdős-Rényi) graphs, both G(n, p) and G(n, m)
types [6], directed and undirected ones • graphs having a given degree sequence,
directed or undirected ones [11] • growing random graphs, also for modeling
citation networks [3] • growing random graphs where the connection probability
depends on some vertex properties • graphs from the Graph Atlas [13] • all
non-isomorphic graphs of a given size.

Centrality measures The following centrality measures [7] can be calculated:
• degree • closeness • vertex and edge betweenness • eigenvector centrality •

page rank [12].

Path length based properties One or all shortest paths between vertices
can be calculated, and also based on this the diameter and the average path
length of the graph.

8 The igraph software package for complex network research

Graph components Weakly and strongly connected components can be cal-
culated, and also the minimum spanning forest of a graph.

Graph motifs Graph motifs of three or four components can be calculated,
both undirected and directed motifs [16].

Random rewiring Existing graphs can be rewired randomly while preserving
their degree distribution, allowing the user to generate an arbitrary set of graphs
with the same degree distribution.

Vertex and edge sets Igraph provides a simple way to manipulate subsets
of vertices and/or edges of a graph, see §1.3.2 for an example.

Vertex and edge attributes Numeric or non-numeric attributes can be as-
signed to the vertices and edges of a graph, and queried and set by using a simple
notation, see §1.3.2.

File formats Igraph can read and write simple edge list files and also Pajek
[4] and GraphML [2] files.

Graph layouts The following layout generators are part of igraph: • simple
circle and sphere layouts, random layouts • Fruchterman-Reingold layout, 2D
and 3D [8] • Kamada-Kawai layout, 2D and 3D [9] • spring embedder layout •

LGL layout generator for large graphs [15] • Grid-based Fruchterman-Reingold
layout for large graphs • Reingold-Tilford layout [14] for trees.

Bibliography

[1] Barabási, Albert-László, and Réka Albert, “Emergence of scaling in
random networks”, Science 286, 5439 (1999), 509–512.

[2] Brandes, U., M. Eiglsperger, I. Herman, M. Himsolt, and M.S.
Marshall, “Graphml progress report: Structural layer proposal”, Proc.
9th Intl. Symp. Graph Drawing (GD ’01), 501–512.

[3] Callaway, D. S., J. E. Hopcroft, M. E. J. Newman J. M. Kleinberg,

and S. H. Strogatz, “Are randomly grown graphs really random?”, Phys.
Rev. E 64 (2001), 041902.

[4] de Nooy, W., A. Mrvar, and V. Batagelj, Exploratory Social Network
Analysis with Pajek, Cambridge University Press (2005).

[5] Dijkstra, E. W., “A note on two problems in connexion with graphs”,
Numerische Mathematik 1 (1959), 269–271.

The igraph software package for complex network research 9

[6] Erdős, P., and A. Rényi, “On random graphs”, Publicationes Mathe-
maticae 6 (195), 290–297.

[7] Freeman, L.C., “Centrality in social networks I: Conceptual clarification”,
Social Networks 1 (1979), 215–239.

[8] Fruchterman, T. M. J., and E. M. Reingold, “Graph drawing by
force-directed placement”, Software – Practice and Experience 21 (1991),
1129–1164.

[9] Kamada, T., and S. Kawai, “An algorithm for drawing general undirected
graphs”, Information Processing Letters 31, 1 (1989), 7–15.

[10] Newman, M. E. J., “Modularity and community structure in networks”,
Proc. Natl. Acad. Sci. USA in press (2006).

[11] Newman, M. E. J., S. H. Strogatz, and D. J. Watts, “Random graphs
with arbitrary degree distributions and their applications”, Phys. Rev. E
64 (2001), 026118.

[12] Page, Lawrence, Sergey Brin, Rajeev Motwani, and Terry Winograd,
“The pagerank citation ranking: Bringing order to the web”, Tech. Rep.
no., Stanford Digital Library Technologies Project, (1998).

[13] Read, Ronald C., and Robin J. Wilson, An Atlas of Graphs, Oxford
University Press (1998).

[14] Reingold, E., and J. Tilford, “Tidier drawing of trees”, IEEE Trans-
actions on Software Engineering 7 (1981), 223–228.

[15] T, Adai A, Date S V, Wieland S, and Marcotte E M, “LGL: creating a map
of protein function with an algorithm for visualizing very large biological
networks”, J Mol Biol 340 (2004), 179–90.

[16] Wernicke, S., and F. Rasche, “FANMOD: a tool for fast network motif
detection”, Bioinformatics 22, 9 (2006), 1152–1153.

[17] Zachary, W. W., “An information flow model for conflict and fission in
small groups”, Journal of Anthropological Research 33 (1977), 452–473.

View publication stats

https://www.researchgate.net/publication/221995787

