
Applied Network Science with R

George G. Vega Yon, Ph.D.

2023-03-31

2

Contents

1 Preface 7

2 About the Author 9

I Applications 11

3 Introduction 13

4 R Basics 15

4.1 What is R . 15
4.2 How to install packages . 15
4.3 Prerequisites . 15
4.4 A gentle Quick n’ Dirty Introduction to R . 16

5 Network Nomination Data 25

5.1 Data preprocessing . 25
5.2 Creating a network . 27
5.3 Network descriptive stats . 32
5.4 Plotting the network in igraph . 35
5.5 Statistical tests . 41

6 Exponential Random Graph Models 43

6.1 A naïve example . 44
6.2 Estimation of ERGMs . 46
6.3 The ergm package . 48
6.4 Running ERGMs . 50
6.5 Model Goodness-of-Fit . 53
6.6 More on MCMC convergence . 65
6.7 Mathematical Interpretation . 66
6.8 Markov independence . 67

7 Using constraints in ERGMs 69

7.1 Example 1: Interlocking egos and disconnected alters 69
7.2 Example 2: Bi-partite networks . 75

3

4 CONTENTS

8 (Separable) Temporal Exponential Family Random Graph Models 81

9 Simulating and visualizing networks 83

9.1 Random Graph Models . 84
9.2 Social Networks in Schools . 84
9.3 Reading a network . 87
9.4 Visualizing the network . 90

10Egocentric networks 101

10.1Network files (graphml) . 102
10.2Person files . 106
10.3Ego files . 109
10.4Edgelist files . 111
10.5Putting all together . 112
10.6Saving the data . 115

11Hypothesis testing in networks 117

11.1Comparing networks . 117
11.2Examples . 120

12Network diffussion with netdiffuseR 121

12.1Network diffusion of innovation . 121
12.2The netdiffuseR R package . 122
12.3Simulation of diffusion processes . 128
12.4Statistical inference . 137

13Stochastic Actor Oriented Models 147

14Power calculation in network studies 149

14.1Example 1: Spillover effects in egocentric studies . 149
14.2Example 2: Spillover effects pre-post effect . 153
14.3Example 3: First difference . 157

II Statistical Foundations 161

15Bayes’ Rule 163

16Markov Chain 165

16.1Metropolis Algorithm . 165
16.2Metropolis-Hastings . 165
16.3Likelihood-free MCMC . 166

17Power and sample size 167

17.1Error types . 167
17.2Example 1: Sample size for a proportion . 167
17.3Example 2: Sample size for a proportion (vis) . 169

CONTENTS 5

A Datasets 173

A.1 SNS data . 173

References 175

6 CONTENTS

Chapter 1

Preface

Statistical methods for networked systems are present in most disciplines. Nonetheless, despite
the language differences between disciplines, many methods developed to study specific types
of problems can be helpful outside of their original context.

This project began as a part of a workshop that took place at USC’s Center for Applied

Network Analysis. Now, it is a personal project that I use to gather and study statistical
methods to analyze networks, emphasizing social and biological systems. Moreover, the book
will use statistical computing methods as a core component when developing these topics.

In general, we will, besides R itself, we will be using RStudio. For data management, we will
use dplyr and data.table. The network data management and visualization packages we will
use are igraph, netdiffuseR, the statnet suite, and netplot. Some of you may be wondering
“what about ggplot2 and friends? What about tidyverse”, well, my short answer is I jumped
into R before all of that was that popular.

You can access the book’s source code at https://github.com/gvegayon/appliedsnar.

7

8 CHAPTER 1. PREFACE

Chapter 2

About the Author

I am a Research Assistant Professor at the University of Utah’s Division of Epidemiology,
where I work on studying Complex Systems using Statistical Computing. I was born and raised
in Chile. I have over ten years of experience developing scientific software focusing on high-
performance computing, data visualization, and social network analysis. My training is in Public
Policy (M.A. UAI, 2011), Economics (M.Sc. Caltech, 2015), and Biostatistics (Ph.D. USC, 2020).

I obtained my Ph.D. in Biostatistics under the supervision of Prof. Paul Marjoram

andProf. Kayla de la Haye, with my dissertation titled “Essays on Bioinformatics and Social

Network Analysis: Statistical and Computational Methods for Complex Systems.”

If you’d like to learn more about me, please visit my website at https://ggvy.cl.

9

10 CHAPTER 2. ABOUT THE AUTHOR

Part I

Applications

11

Chapter 3

Introduction

Social Network Analysis and Network Science, have a long scholarly tradition. From social
diffusion models to protein-interaction networks, these complex systems disciplines cover a
wide range of problems across scientific fields. Yet, although these could be seen as wildly
different, the object under the microscope is the same, networks.

With a long history (and insufficient levels of inter-discipline collaboration, if you allow me to say)
of scientific advances happing in a somewhat isolated fashion, the potential for cross-pollination
between disciplines within network science is immense.

This book is an attempt to compile the many methods available in the realm of complexity
sciences, provide an in-depth mathematical examination–when possible–, and provide a few
examples illustrating their usage.

13

14 CHAPTER 3. INTRODUCTION

Chapter 4

R Basics

4.1 What is R

A good reference book for both novice and advanced users is “The Art of R programming”
(Matloff 2011)1

4.2 How to install packages

Nowadays there are two ways of installing R packages (that I’m aware of), either using
install.packages, which is a function shipped with R, or using the devtools R package to
install a package from some remote repository other than CRAN, here are a few examples:

This will install the igraph package from CRAN

> install.packages("netdiffuseR")

This will install the bleeding-edge version from the project's GitHub repo!

> devtools::install_github("USCCANA/netdiffuseR")

The first one, using install.packages, installs the CRAN version of netdiffuseR, whereas
the line of code installs whatever version is plublished on https://github.com/USCCANA/

netdiffuseR, which is usually called the development version.

In some cases, users may want/need to install packages from the command line as some
packages need extra configuration to be installed. But we won’t need to look at it now.

4.3 Prerequisites

To install R just follow the instructions available at http://cran.r-project.org.

1Here a free pdf version distributed by the author.

15

https://nostarch.com/artofr.htm
https://cran.r-project.org/package=devtools
https://r-project.org/package=netdiffuseR
https://github.com/USCCANA/netdiffuseR
https://github.com/USCCANA/netdiffuseR
http://cran.r-project.org
http://heather.cs.ucdavis.edu/~matloff/145/PLN/RMaterials/NSPpart.pdf

16 CHAPTER 4. R BASICS

RStudio is the most popular Integrated Development Environment (IDE) for R that is developed
by posit.co. While having RStudio is not a requirement for using netdiffuseR, it is highly
recommended.

To get RStudio just visit https://www.rstudio.com/products/rstudio/download/.

4.4 A gentle Quick n’ Dirty Introduction to R

Some common tasks in R

0. Getting help (and reading the manual) is THE MOST IMPORTANT thing you should know
about. For example, if you want to read the manual (help file) of the read.csv function,
you can type either of these: r ?read.csv ?"read.csv" help(read.csv)

help("read.csv") If you are not fully aware of what is the name of the function, you can al-
ways use the fuzzy search r help.search("linear regression") ??"linear

regression"

1. In R you can create new objects by either using the assign operator (<-) or the equal sign
=, for example, the following 2 are equivalent: r a <- 1 a = 1 Historically the
assign operator is the most commonly used.

2. R has several type of objects, the most basic structures in R are vectors, matrix, list,
data.frame. Here is an example creating several of these (each line is enclosed with
parenthesis so that R prints the resulting element):

(a_vector <- 1:9)

[1] 1 2 3 4 5 6 7 8 9

(another_vect <- c(1, 2, 3, 4, 5, 6, 7, 8, 9))

[1] 1 2 3 4 5 6 7 8 9

(a_string_vec <- c("I", "like", "netdiffuseR"))

[1] "I" "like" "netdiffuseR"

(a_matrix <- matrix(a_vector, ncol = 3))

[,1] [,2] [,3]

[1,] 1 4 7

[2,] 2 5 8

[3,] 3 6 9

(a_string_mat <- matrix(letters[1:9], ncol=3)) # Matrices can be of strings too

[,1] [,2] [,3]

[1,] "a" "d" "g"

[2,] "b" "e" "h"

[3,] "c" "f" "i"

https://posit.co
https://www.rstudio.com/products/rstudio/download/

4.4. A GENTLE QUICK N’ DIRTY INTRODUCTION TO R 17

(another_mat <- cbind(1:4, 11:14)) # The `cbind` operator does "column bind"

[,1] [,2]

[1,] 1 11

[2,] 2 12

[3,] 3 13

[4,] 4 14

(another_mat2 <- rbind(1:4, 11:14)) # The `rbind` operator does "row bind"

[,1] [,2] [,3] [,4]

[1,] 1 2 3 4

[2,] 11 12 13 14

(a_string_mat <- matrix(letters[1:9], ncol = 3))

[,1] [,2] [,3]

[1,] "a" "d" "g"

[2,] "b" "e" "h"

[3,] "c" "f" "i"

(a_list <- list(a_vector, a_matrix))

[[1]]

[1] 1 2 3 4 5 6 7 8 9

##

[[2]]

[,1] [,2] [,3]

[1,] 1 4 7

[2,] 2 5 8

[3,] 3 6 9

(another_list <- list(my_vec = a_vector, my_mat = a_matrix)) # same but with names!

$my_vec

[1] 1 2 3 4 5 6 7 8 9

##

$my_mat

[,1] [,2] [,3]

[1,] 1 4 7

[2,] 2 5 8

[3,] 3 6 9

Data frames can have multiple types of elements, it is a collection of lists

(a_data_frame <- data.frame(x = 1:10, y = letters[1:10]))

x y

1 1 a

18 CHAPTER 4. R BASICS

2 2 b

3 3 c

4 4 d

5 5 e

6 6 f

7 7 g

8 8 h

9 9 i

10 10 j

3. Depending on the type of object, we can access to its components using indexing:

a_vector[1:3] # First 3 elements

[1] 1 2 3

a_string_vec[3] # Third element

[1] "netdiffuseR"

a_matrix[1:2, 1:2] # A sub matrix

[,1] [,2]

[1,] 1 4

[2,] 2 5

a_matrix[,3] # Third column

[1] 7 8 9

a_matrix[3,] # Third row

[1] 3 6 9

a_string_mat[1:6] # First 6 elements of the matrix. R stores matrices by column.

[1] "a" "b" "c" "d" "e" "f"

These three are equivalent

another_list[[1]]

[1] 1 2 3 4 5 6 7 8 9

another_list$my_vec

[1] 1 2 3 4 5 6 7 8 9

another_list[["my_vec"]]

[1] 1 2 3 4 5 6 7 8 9

Data frames are just like lists

a_data_frame[[1]]

4.4. A GENTLE QUICK N’ DIRTY INTRODUCTION TO R 19

[1] 1 2 3 4 5 6 7 8 9 10

a_data_frame[,1]

[1] 1 2 3 4 5 6 7 8 9 10

a_data_frame[["x"]]

[1] 1 2 3 4 5 6 7 8 9 10

a_data_frame$x

[1] 1 2 3 4 5 6 7 8 9 10

4. Control-flow statements

The oldfashion forloop

for (i in 1:10) {

print(paste("I'm step", i, "/", 10))

}

[1] "I'm step 1 / 10"

[1] "I'm step 2 / 10"

[1] "I'm step 3 / 10"

[1] "I'm step 4 / 10"

[1] "I'm step 5 / 10"

[1] "I'm step 6 / 10"

[1] "I'm step 7 / 10"

[1] "I'm step 8 / 10"

[1] "I'm step 9 / 10"

[1] "I'm step 10 / 10"

A nice ifelse

for (i in 1:10) {

if (i %% 2) # Modulus operand

print(paste("I'm step", i, "/", 10, "(and I'm odd)"))

else

print(paste("I'm step", i, "/", 10, "(and I'm even)"))

}

[1] "I'm step 1 / 10 (and I'm odd)"

[1] "I'm step 2 / 10 (and I'm even)"

[1] "I'm step 3 / 10 (and I'm odd)"

[1] "I'm step 4 / 10 (and I'm even)"

[1] "I'm step 5 / 10 (and I'm odd)"

[1] "I'm step 6 / 10 (and I'm even)"

20 CHAPTER 4. R BASICS

[1] "I'm step 7 / 10 (and I'm odd)"

[1] "I'm step 8 / 10 (and I'm even)"

[1] "I'm step 9 / 10 (and I'm odd)"

[1] "I'm step 10 / 10 (and I'm even)"

A while

i <- 10

while (i > 0) {

print(paste("I'm step", i, "/", 10))

i <- i - 1

}

[1] "I'm step 10 / 10"

[1] "I'm step 9 / 10"

[1] "I'm step 8 / 10"

[1] "I'm step 7 / 10"

[1] "I'm step 6 / 10"

[1] "I'm step 5 / 10"

[1] "I'm step 4 / 10"

[1] "I'm step 3 / 10"

[1] "I'm step 2 / 10"

[1] "I'm step 1 / 10"

5. R has a very nice set of pseudo-random number generation functions. In general, distribu-
tion functions have the following name structure:

a. Random Number Generation: r[name-of-the-distribution], e.g. rnorm for normal,
runif for uniform.

b. Density function: d[name-of-the-distribution], e.g. dnorm for normal, dunif for
uniform.

c. Cumulative Distribution Function (CDF): p[name-of-the-distribution], e.g. pnorm
for normal, punif for uniform.

d. Inverse (quantile) function: q[name-of-the-distribution], e.g. qnorm for the nor-
mal, qunif for the uniform.

Here are some examples:

To ensure reproducibility

set.seed(1231)

100,000 Unif(0,1) numbers

x <- runif(1e5)

hist(x)

4.4. A GENTLE QUICK N’ DIRTY INTRODUCTION TO R 21

Histogram of x

x

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

00
30

00
50

00

100,000 N(0,1) numbers

x <- rnorm(1e5)

hist(x)

Histogram of x

x

F
re

qu
en

cy

−4 −2 0 2 4

0
50

00
10

00
0

15
00

0

22 CHAPTER 4. R BASICS

100,000 N(10,25) numbers

x <- rnorm(1e5, mean = 10, sd = 5)

hist(x)

Histogram of x

x

F
re

qu
en

cy

−10 0 10 20 30

0
50

00
10

00
0

15
00

0

100,000 Poisson(5) numbers

x <- rpois(1e5, lambda = 5)

hist(x)

4.4. A GENTLE QUICK N’ DIRTY INTRODUCTION TO R 23

Histogram of x

x

F
re

qu
en

cy

0 5 10 15

0
50

00
10

00
0

15
00

0

100,000 rexp(5) numbers

x <- rexp(1e5, 5)

hist(x)

Histogram of x

x

F
re

qu
en

cy

0.0 0.5 1.0 1.5 2.0 2.5

0
20

00
0

40
00

0
60

00
0

More distributions are available at ??Distributions.

24 CHAPTER 4. R BASICS

For a nice intro to R, take a look at “The Art of R Programming” by Norman Matloff. For more
advanced users, take a look at “Advanced R” by Hadley Wickham.

For this book, we need the following

R Core Team (2017b)

1. Install R from CRAN: https://www.r-project.org/

2. (optional) Install Rstudio: https://rstudio.org

While I find RStudio extremely useful, it is not necessary to use it with R.

https://nostarch.com/artofr.htm
http://adv-r.had.co.nz/
https://www.r-project.org/
https://rstudio.org

Chapter 5

Network Nomination Data

You can download the data for this chapter here.

The codebook for the data provided here is in the appendix.

The goals for this chapter are:

1. Read the data into R,

2. Create a network with it,

3. Compute descriptive statistics

4. Visualize the network

5.1 Data preprocessing

5.1.1 Reading the data into R

R has several ways of reading data. Your data can be Raw plain files like CSV, tab-delimited, or
specified by column width. To read plain-text data, you can use the readr package (Wickham,
Hester, and Francois 2017). In the case of binary files, like Stata, Octave, or SPSS files, you
can use the R package foreign (R Core Team 2017a). If your data is formatted as Microsoft
spreadsheets, the readxl R package (Wickham and Bryan 2017) is the alternative to use. In
our case, the data for this session is in Stata format:

library(foreign)

Reading the data

dat <- foreign::read.dta("03-sns.dta")

Taking a look at the data's first 5 columns and 5 rows

dat[1:5, 1:10]

25

https://cdn.rawgit.com/gvegayon/appliedsnar/fdc0d26f/03-sns.dta
https://cran.r-project.org/package=readr
https://cran.r-project.org/package=readr
https://cran.r-project.org/package=readxl

26 CHAPTER 5. NETWORK NOMINATION DATA

photoid school hispanic female1 female2 female3 female4 grades1 grades2

1 1 111 1 NA NA 0 0 NA NA

2 2 111 1 0 NA NA 0 3.0 NA

3 7 111 0 1 1 1 1 5.0 4.5

4 13 111 1 1 1 1 1 2.5 2.5

5 14 111 1 1 1 1 NA 3.0 3.5

grades3

1 3.5

2 NA

3 4.0

4 2.5

5 3.5

5.1.2 Creating a unique id for each participant

Now suppose that we want to create a unique id using the school and photo id. In this case,
since both variables are numeric, a good way of doing it is to encode the id. For example, the
last three numbers are the photoid and the first ones are the school id. To do this, we need to
take into account the range of the variables:

(photo_id_ran <- range(dat$photoid))

[1] 1 2074

As the variable spans up to 2074, we need to set the last 4 units of the variable to store the
photoid. We will use dplyr (Wickham et al. 2017) and magrittr (Bache and Wickham 2014)]
(the pipe operator, %>%) to create this variable, and we will call it. . . id (mind blowing, right?):

library(dplyr)

##

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

##

filter, lag

The following objects are masked from 'package:base':

##

intersect, setdiff, setequal, union

library(magrittr)

(dat %<>% mutate(id = school*10000 + photoid)) %>%

head %>%

select(school, photoid, id)

school photoid id

5.2. CREATING A NETWORK 27

1 111 1 1110001

2 111 2 1110002

3 111 7 1110007

4 111 13 1110013

5 111 14 1110014

6 111 15 1110015

Wow, what happened in the last three lines of code! What is that %>%? Well, that’s the pipe
operator, and it is an appealing way of writing nested function calls. In this case, instead of
writing something like:

dat_filtered$id <- dat_filtered$school*10000 + dat_filtered$photoid

subset(head(dat_filtered), select = c(school, photoid, id))

5.2 Creating a network

• We want to build a social network. For that, we either use an adjacency matrix or an
edgelist.

• Each individual of the SNS data nominated 19 friends from school. We will use those
nominations to create the social network.

• In this case, we will create the network by coercing the dataset into an edgelist.

5.2.1 From survey to edgelist

Let’s start by loading a couple of handy R packages. We will load tidyr (Wickham and Henry
2017) and stringr (Wickham 2017). We will use the first, tidyr, to reshape the data. The
second, stringr, will help us processing strings using regular expressions1.

library(tidyr)

library(stringr)

Optionally, we can use the tibble type of object, which is an alternative to the actual
data.frame. This object is said to provide more efficient methods for matrices and data

frames.

dat <- as_tibble(dat)

What I like from tibbles is that when you print them on the console, these actually look nice:

dat

A tibble: 2,164 x 100

photoid school hispanic female1 female2 female3 female4 grades1 grades2

1Please refer to the help file ?'regular expression' in R. The R package rex (Ushey, Hester, and Krzyzanowski
2017) is a very nice companion for writing regular expressions. There’s also a neat (but experimental) RStudio add-in
that can be very helpful for understanding how regular expressions work, the regexplain add-in.

http://r4ds.had.co.nz/pipes.html
http://r4ds.had.co.nz/pipes.html
https://github.com/gadenbuie/regexplain

28 CHAPTER 5. NETWORK NOMINATION DATA

<int> <int> <dbl> <int> <int> <int> <int> <dbl> <dbl>

1 1 111 1 NA NA 0 0 NA NA

2 2 111 1 0 NA NA 0 3 NA

3 7 111 0 1 1 1 1 5 4.5

4 13 111 1 1 1 1 1 2.5 2.5

5 14 111 1 1 1 1 NA 3 3.5

6 15 111 1 0 0 0 0 2.5 2.5

7 20 111 1 1 1 1 1 2.5 2.5

8 22 111 1 NA NA 0 0 NA NA

9 25 111 0 1 1 NA 1 4.5 3.5

10 27 111 1 0 NA 0 0 3.5 NA

... with 2,154 more rows, and 91 more variables: grades3 <dbl>,

grades4 <dbl>, eversmk1 <int>, eversmk2 <int>, eversmk3 <int>,

eversmk4 <int>, everdrk1 <int>, everdrk2 <int>, everdrk3 <int>,

everdrk4 <int>, home1 <int>, home2 <int>, home3 <int>, home4 <int>,

sch_friend11 <int>, sch_friend12 <int>, sch_friend13 <int>,

sch_friend14 <int>, sch_friend15 <int>, sch_friend16 <int>,

sch_friend17 <int>, sch_friend18 <int>, sch_friend19 <int>, ...

Maybe too much piping... but its cool!

net <- dat %>%

select(id, school, starts_with("sch_friend")) %>%

gather(key = "varname", value = "content", -id, -school) %>%

filter(!is.na(content)) %>%

mutate(

friendid = school*10000 + content,

year = as.integer(str_extract(varname, "(?<=[a-z])[0-9]")),

nnom = as.integer(str_extract(varname, "(?<=[a-z][0-9])[0-9]+"))

)

Let’s take a look at this step by step:

1. First, we subset the data: We want to keep id, school, sch_friend*. For the later, we
use the function starts_with (from the tidyselect package). The latter allows us to se-
lect all variables that start with the word “sch_friend”, which means that sch_friend11,
sch_friend12, ... will be selected.

dat %>%

select(id, school, starts_with("sch_friend"))

A tibble: 2,164 x 78

id school sch_friend11 sch_friend12 sch_friend13 sch_friend14

<dbl> <int> <int> <int> <int> <int>

1 1110001 111 NA NA NA NA

2 1110002 111 424 423 426 289

3 1110007 111 629 505 NA NA

5.2. CREATING A NETWORK 29

4 1110013 111 232 569 NA NA

5 1110014 111 582 134 41 592

6 1110015 111 26 488 81 138

7 1110020 111 528 NA 492 395

8 1110022 111 NA NA NA NA

9 1110025 111 135 185 553 84

10 1110027 111 346 168 559 5

... with 2,154 more rows, and 72 more variables: sch_friend15 <int>,

sch_friend16 <int>, sch_friend17 <int>, sch_friend18 <int>,

sch_friend19 <int>, sch_friend110 <int>, sch_friend111 <int>,

sch_friend112 <int>, sch_friend113 <int>, sch_friend114 <int>,

sch_friend115 <int>, sch_friend116 <int>, sch_friend117 <int>,

sch_friend118 <int>, sch_friend119 <int>, sch_friend21 <int>,

sch_friend22 <int>, sch_friend23 <int>, sch_friend24 <int>, ...

2. Then, we reshape it to long format: By transposing all the sch_friend* to long format. We
do this using the function gather (from the tidyr package); an alternative to the reshape

function, which I find easier to use. Let’s see how it works:

dat %>%

select(id, school, starts_with("sch_friend")) %>%

gather(key = "varname", value = "content", -id, -school)

A tibble: 164,464 x 4

id school varname content

<dbl> <int> <chr> <int>

1 1110001 111 sch_friend11 NA

2 1110002 111 sch_friend11 424

3 1110007 111 sch_friend11 629

4 1110013 111 sch_friend11 232

5 1110014 111 sch_friend11 582

6 1110015 111 sch_friend11 26

7 1110020 111 sch_friend11 528

8 1110022 111 sch_friend11 NA

9 1110025 111 sch_friend11 135

10 1110027 111 sch_friend11 346

... with 164,454 more rows

In this case, the key parameter sets the name of the variable that will contain the name of
the variable that was reshaped, while value is the name of the variable that will hold the
content of the data (that’s why I named those like that). The -id, -school bit tells the
function to “drop” those variables before reshaping. In other words, “reshape everything
but id and school.”

Also, notice that we passed from 2164 rows to 19 (nominations) * 2164 (subjects) * 4
(waves) = 164464 rows, as expected.

30 CHAPTER 5. NETWORK NOMINATION DATA

3. As the nomination data can be empty for some cells, we need to take care of those cases,
the NAs, so we filter the data:

dat %>%

select(id, school, starts_with("sch_friend")) %>%

gather(key = "varname", value = "content", -id, -school) %>%

filter(!is.na(content))

A tibble: 39,561 x 4

id school varname content

<dbl> <int> <chr> <int>

1 1110002 111 sch_friend11 424

2 1110007 111 sch_friend11 629

3 1110013 111 sch_friend11 232

4 1110014 111 sch_friend11 582

5 1110015 111 sch_friend11 26

6 1110020 111 sch_friend11 528

7 1110025 111 sch_friend11 135

8 1110027 111 sch_friend11 346

9 1110029 111 sch_friend11 369

10 1110030 111 sch_friend11 462

... with 39,551 more rows

4. And finally, we create three new variables from this dataset: friendid,, year, and
nom_num (nomination number). All using regular expressions:

dat %>%

select(id, school, starts_with("sch_friend")) %>%

gather(key = "varname", value = "content", -id, -school) %>%

filter(!is.na(content)) %>%

mutate(

friendid = school*10000 + content,

year = as.integer(str_extract(varname, "(?<=[a-z])[0-9]")),

nnom = as.integer(str_extract(varname, "(?<=[a-z][0-9])[0-9]+"))

)

A tibble: 39,561 x 7

id school varname content friendid year nnom

<dbl> <int> <chr> <int> <dbl> <int> <int>

1 1110002 111 sch_friend11 424 1110424 1 1

2 1110007 111 sch_friend11 629 1110629 1 1

3 1110013 111 sch_friend11 232 1110232 1 1

4 1110014 111 sch_friend11 582 1110582 1 1

5 1110015 111 sch_friend11 26 1110026 1 1

6 1110020 111 sch_friend11 528 1110528 1 1

7 1110025 111 sch_friend11 135 1110135 1 1

5.2. CREATING A NETWORK 31

8 1110027 111 sch_friend11 346 1110346 1 1

9 1110029 111 sch_friend11 369 1110369 1 1

10 1110030 111 sch_friend11 462 1110462 1 1

... with 39,551 more rows

The regular expression (?<=[a-z]) matches a string preceded by any letter from a to
z. In contrast, the expression [0-9] matches a single number. Hence, from the string
"sch_friend12", the regular expression will only match the 1, as it is the only number
followed by a letter. The expression (?<=[a-z][0-9]) matches a string preceded by a
lower case letter and a one-digit number. Finally, the expression [0-9]+ matches a string
of numbers–so it could be more than one. Hence, from the string "sch_friend12", we
will get 2:

str_extract("sch_friend12", "(?<=[a-z])[0-9]")

[1] "1"

str_extract("sch_friend12", "(?<=[a-z][0-9])[0-9]+")

[1] "2"

And finally, the as.integer function coerces the returning value from the str_extract

function from character to integer. Now that we have this edgelist, we can create an
igraph object

5.2.2 igraph network

For coercing the edgelist into an igraph object, we will be using the graph_from_data_frame

function in igraph (Csardi and Nepusz 2006). This function receives the following arguments: a
data frame where the two first columns are “source” (ego) and “target” (alter), an indicator of
whether the network is directed or not, and an optional data frame with vertices, in which’s
first column should contain the vertex ids.

Using the optional vertices argument is a good practice since, by doing so, you are telling the
function what ids that you are expecting to find. Using the original dataset, we will create a
data frame name vertices:

vertex_attrs <- dat %>%

select(id, school, hispanic, female1, starts_with("eversmk"))

Now, let’s now use the function graph_from_data_frame to create an igraph object:

library(igraph)

ig_year1 <- net %>%

filter(year == "1") %>%

select(id, friendid, nnom) %>%

graph_from_data_frame(

32 CHAPTER 5. NETWORK NOMINATION DATA

vertices = vertex_attrs

)

Error in graph_from_data_frame(., vertices = vertex_attrs): Some vertex names in edge list are not listed in vertex data frame

Ups! It seems that individuals are making nominations to other students not included in the
survey. How to solve that? Well, it all depends on what you need to do! In this case, we will go
for the quietly-remove-em’-and-don’t-tell strategy:

ig_year1 <- net %>%

filter(year == "1") %>%

Extra line, all nominations must be in ego too.

filter(friendid %in% id) %>%

select(id, friendid, nnom) %>%

graph_from_data_frame(

vertices = vertex_attrs

)

ig_year1

IGRAPH aa7fef5 DN-- 2164 9514 --

+ attr: name (v/c), school (v/n), hispanic (v/n), female1 (v/n),

| eversmk1 (v/n), eversmk2 (v/n), eversmk3 (v/n), eversmk4 (v/n), nnom

| (e/n)

+ edges from aa7fef5 (vertex names):

[1] 1110007->1110629 1110013->1110232 1110014->1110582 1110015->1110026

[5] 1110025->1110135 1110027->1110346 1110029->1110369 1110035->1110034

[9] 1110040->1110390 1110041->1110557 1110044->1110027 1110046->1110030

[13] 1110050->1110086 1110057->1110263 1110069->1110544 1110071->1110167

[17] 1110072->1110289 1110073->1110014 1110075->1110352 1110084->1110305

[21] 1110086->1110206 1110093->1110040 1110094->1110483 1110095->1110043

+ ... omitted several edges

So there we have our network with 2164 nodes and 9514 edges. The following steps: get some
descriptive stats and visualize our network.

5.3 Network descriptive stats

While we could do all networks at once, in this part, we will focus on computing some network
statistics for one of the schools only. We start by school 111. The first question that you should
be asking yourself now is, “how can I get that information from the igraph object?.” Vertex and
edges attributes can be accessed via the V and E functions, respectively; moreover, we can list
what vertex/edge attributes are available:

5.3. NETWORK DESCRIPTIVE STATS 33

list.vertex.attributes(ig_year1)

[1] "name" "school" "hispanic" "female1" "eversmk1" "eversmk2" "eversmk3"

[8] "eversmk4"

list.edge.attributes(ig_year1)

[1] "nnom"

Just like we would do with data frames, accessing vertex attributes is done via the dollar sign
operator $. Together with the V function; for example, accessing the first ten elements of the
variable hispanic can be done as follows:

V(ig_year1)$hispanic[1:10]

[1] 1 1 0 1 1 1 1 1 0 1

Now that you know how to access vertex attributes, we can get the network corresponding
to school 111 by identifying which vertices are part of it and pass that information to the
induced_subgraph function:

Which ids are from school 111?

school111ids <- which(V(ig_year1)$school == 111)

Creating a subgraph

ig_year1_111 <- induced_subgraph(

graph = ig_year1,

vids = school111ids

)

The which function in R returns a vector of indices indicating which elements pass the test,
returning true and false, otherwise. In our case, it will result in a vector of indices of the vertices
which have the attribute school equal to 111. With the subgraph, we can compute different
centrality measures2 for each vertex and store them in the igraph object itself:

Computing centrality measures for each vertex

V(ig_year1_111)$indegree <- degree(ig_year1_111, mode = "in")

V(ig_year1_111)$outdegree <- degree(ig_year1_111, mode = "out")

V(ig_year1_111)$closeness <- closeness(ig_year1_111, mode = "total")

V(ig_year1_111)$betweeness <- betweenness(ig_year1_111, normalized = TRUE)

From here, we can go back to our old habits and get the set of vertex attributes as a data frame
so we can compute some summary statistics on the centrality measurements that we just got

Extracting each vectex features as a data.frame

stats <- as_data_frame(ig_year1_111, what = "vertices")

2For more information about the different centrality measurements, please take a look at the “Centrality” article on
Wikipedia.

https://en.wikipedia.org/wiki/Centrality

34 CHAPTER 5. NETWORK NOMINATION DATA

Computing quantiles for each variable

stats_degree <- with(stats, {

cbind(

indegree = quantile(indegree, c(.025, .5, .975), na.rm = TRUE),

outdegree = quantile(outdegree, c(.025, .5, .975), na.rm = TRUE),

closeness = quantile(closeness, c(.025, .5, .975), na.rm = TRUE),

betweeness = quantile(betweeness, c(.025, .5, .975), na.rm = TRUE)

)

})

stats_degree

indegree outdegree closeness betweeness

2.5% 0 0 0.0005915148 0.000000000

50% 4 4 0.0007487833 0.001879006

97.5% 16 16 0.0008838413 0.016591048

The with function is somewhat similar to what dplyr allows us to do when we want to work
with the dataset but without mentioning its name everytime that we ask for a variable. Without
using the with function, the previous could have been done as follows:

stats_degree <-

cbind(

indegree = quantile(stats$indegree, c(.025, .5, .975), na.rm = TRUE),

outdegree = quantile(stats$outdegree, c(.025, .5, .975), na.rm = TRUE),

closeness = quantile(stats$closeness, c(.025, .5, .975), na.rm = TRUE),

betweeness = quantile(stats$betweeness, c(.025, .5, .975), na.rm = TRUE)

)

Now we will compute some statistics at the graph level:

cbind(

size = vcount(ig_year1_111),

nedges = ecount(ig_year1_111),

density = edge_density(ig_year1_111),

recip = reciprocity(ig_year1_111),

centr = centr_betw(ig_year1_111)$centralization,

pathLen = mean_distance(ig_year1_111)

)

size nedges density recip centr pathLen

[1,] 533 2638 0.009303277 0.3731513 0.02179154 4.23678

Triadic census

triadic <- triad_census(ig_year1_111)

triadic

5.4. PLOTTING THE NETWORK IN IGRAPH 35

[1] 24059676 724389 290849 3619 3383 4401 3219 2997

[9] 407 33 836 235 163 137 277 85

To get a nicer view of this, we can use a table that I retrieved from ?triad_census. Moreover,
we can normalize the triadic object by its sum instead of looking at raw counts. That way, we
get proportions instead3

knitr::kable(cbind(

Pcent = triadic/sum(triadic)*100,

read.csv("triadic_census.csv")

), digits = 2)

Pcent code description

95.88 003 A,B,C, the empty graph.

2.89 012 A->B, C, the graph with a single directed edge.

1.16 102 A<->B, C, the graph with a mutual connection between two vertices.

0.01 021D A<-B->C, the out-star.

0.01 021U A->B<-C, the in-star.

0.02 021C A->B->C, directed line.

0.01 111D A<->B<-C.

0.01 111U A<->B->C.

0.00 030T A->B<-C, A->C.

0.00 030C A<-B<-C, A->C.

0.00 201 A<->B<->C.

0.00 120D A<-B->C, A<->C.

0.00 120U A->B<-C, A<->C.

0.00 120C A->B->C, A<->C.

0.00 210 A->B<->C, A<->C.

0.00 300 A<->B<->C, A<->C, the complete graph.

5.4 Plotting the network in igraph

5.4.1 Single plot

Let’s take a look at how does our network looks like when we use the default parameters in the
plot method of the igraph object:

plot(ig_year1)

Not very nice, right? A couple of things with this plot:

1. We are looking at all schools simultaneously, which does not make sense. So, instead of
plotting ig_year1, we will focus on ig_year1_111.

3During our workshop, Prof. De la Haye suggested using
�n
3

�

as a normalizing constant. It turns out that sum(triadic)
= choose(n, 3)! So either approach is correct.

36 CHAPTER 5. NETWORK NOMINATION DATA

1110001 111000211100071110013111001411100151110020

1110022

1110025111002711100291110030

1110032

111003511100361110040111004111100441110046
1110047

11100501110053

1110056

1110057

1110060
1110069

1110070

111007111100721110073111007511100821110084

1110085

111008611100931110094111009511100961110097

1110101

1110102

1110104

1110106

1110107

111010911101141110115111011611101171110120111012211101231110124111012711101281110130111013111101341110138111014011101441110146111014811101491110150111015111101521110153

1110154

11101551110157

1110166

111016811101691110170111017211101731110179

1110180

111018411101871110188 1110190
1110192

11101941110195111019611102011110202

1110203

11102061110207

1110211

1110213

1110214

1110216111021911102211110226111022911102301110233

1110234

1110236

1110237

1110241
11102441110245

1110248
1110250

1110252
11102541110257

1110258

11102651110266111026711102701110271
1110272

11102751110276 1110289111029011102911110292

1110297

11102991110301 11103041110306111031211103131110314111031611103171110320

1110324

1110325

1110326

11103281110329111033011103341110338

1110342

111034611103471110348
111035011103521110353111035711103591110362111036311103651110369

1110370

111037211103741110375

1110377

1110381111038211103861110387

1110388

1110391

1110392

11103961110397

1110398

1110401111040211104031110405111040611104071110409111041011104131110415111041611104171110418111042011104251110426111042711104291110431111043311104361110440

1110441

11104421110444

1110445

111044611104471110448111045111104521110455
1110456 1110460

1110464
111046511104661110467111046811104691110470111047211104751110480

1110481
1110483111048411104851110490 1110493111049411104961110500111050411105051110506111051111105121110514111051511105181110520111052211105251110527111052911105311110535

1110536

1110538

11105391110540111054411105471110549

1110552

11105601110562

1110565

11105661110568

1110569

1110571111057311105741110577

1110579

1110582
1110584 1110586111059811105991110600111060111106021110604 1110605

1110607

111060811106101110611

1110620

1110623

11106251110627

1111000

1111001

1111002

1111003

1111004

1111005
111100611110071111008

11110091111010

1111011

1111012

111101311110141111015

11200041120005112000911200111120012
1120013

11200161120017

1120019

1120021
1120023112002411200251120027

1120028

112003611200381120041112004411200451120048
1120051

112005411200551120057

1120059
1120060

112006611200671120072112007511200771120079112008211200831120087112008811200931120094
1120096

11200971120099

1120100

11201021120107112010811201131120114
112011511201161120119112012011201231120126

1120128

11201301120132
1120133

1120138

1120140
1120142

1120146

1120147112014811201491120150112015211201551120158112015911201601120162

1120164

112016611201691120171
1120172

1120173

11201741120175112017711201781120184112018511201871120188 11201921120194

1120195

1120197
1120199

11202031120204

1120205
1120207

1120208

1120211

112021311202151120216112021911202201120222

1120225

1120226
1120232112023311202341120235112023711202391120242112024411202471120248 11202531120255

1120256

112025811202591120260
1120261112026211202631120266

1120268
1120269

1120270

1120272112027511202791120281

1120282

11202831120286
1120292

1120295

11203001120302112030811203101120311
1120313112031411203161120317

1120318

11203211120323
1120327

1120330

1120332

1120337

1120338112034011203411120343112034411203461120347

1120353

112035611203571120359112036011203631120364112036611203671120371

1120373

1120374112037511203761120378112038211203831120386

1120387

1120388112038911203901120391

1120392

11203931120394

1120395
1120397

1120398

1120399

112040011204011120403

1120406

11204121120413
1120418

1120419112042011204241120427

1120430

1120432

1120434

1120435112043711204381120439112044611204511120452
1120457

112045811204591120466112046711204691120474112047511204791120480112048111204821120483112048411204851120489112049111204941120496112049811204991120500
11205031120504

1120507

1120509

1120510

112051111205121120513

11205161121016

1121017

1121018

1121019

1121020

11210211121022

1121023
1121024

1121025

1121026

1121027 1121028

1121029

1121030
1121031

1121032
1121033

1121034
1121035

1121036

11210371121038

1121039

1130001113000511300071130008113000911300111130013113001611300171130018113001911300211130023

1130025

11300281130030

1130032

11300331130034
1130035

113003711300411130046

1130050

1130060
1130063113006411300651130067

11300681130069

11300751130076

1130078

113007911300801130081113008211300831130084

1130085

113008711300911130092

1130095

1130097

1130098
11301001130101

1130102

1130103113010411301071130109

1130114

11301161130117
1130118

1130119

11301211130122113012311301241130126
1130131

1130135

1130136

11301381130141113014411301461130151113015211301541130156

1130160

1130161

1130170

1130175113017611301791130180113018111301841130185113018611301891130192113019311301941130196

1130197

11301991130202

1130204

1130208
1130210

1130211

1130213

11302141130216113021711302191130220

1130223
1130224

1130225

1130227

11302281130229113023211302331130237113024411302481130251

1130252

11302581130259

1130261

11302631130264

1130265

1130269

1130271

11302741130277

1130279

11302821130286113028811302931130294

1130297

1130298

1130299

1130300

1130301

1130303

1130304

1130308
1130309
1130310113031111303121130314113031611303171130320113032111303221130324

1130329

113033011303331130335

1130337

113033811303391130342
1130343

11303451130346

1130347

11303511130353

1130354

1130355

113035611303571130358113036411303651130366

1130367

1130368
1130373

113037511303761130379113038011303831130384113038511303861130389

1130395

11303961130403

1130404

11304071130415

1130416

113041911304241130428113043011304311130432113043311304341130435

1130437

1130438
1130439

11304421130443
1130447

1130448

1130449

1130450

113045311304541130457
1130461

1131040

11310411131042

11310431131044

1131045
1131046

1131047

1131048
1131049

1131050

1131051
1131052

1131053

1131054
1131055
1140003

1140004114000511400081140010114001211400131140014114001511400161140019

1140020

11400211140025
1140027

1140030

1140031

1140032

1140033

1140034

114003611400371140038
1140039

114004211400431140044114004511400461140048114004911400501140052

11400541140055

11400561140059114006111400621140065

1140068

114007211400751140078114008011400831140086114008911400901140091114009211400931140095114009611400991140101114010211401031140105114010711401081140109

1140111

11401121140113114011411401151140116

1140117

114012111401241140125114012611401281140130

1140132

11401331140134 11401351140136

1140138

1140139114014011401411140142114014311401461140147114014811401491140150114015311401541140159114016211401631140166
1140167114016811401691140170114017211401731140174114017611401771140178114017911401841140191114019611401971140199114020211402031140204

1140205

114020611402091140210114021111402121140213114021411402161140218

1140219

11402211140223114022411402251140226114022711402291140230

1140231

1140232

11402341140237114023811402411140242
1140243114024611402491140250114025311402541140255

1140257

1140260

1140262

11402631140266114026711402681140269

1140270

1140272114027311402741140276114028011402821140286114028711402891140292114029311402941140295114030011403031140304114030511403071140310

1140311

1140314

11403161140317

114031811403201140323

1140325

1140326114032711403291140330

1140332

11403351140337

1140338

11403411140342

1140345

114034611403471140349114035011403521140354

1140355

1140356

1140357

1140360

1140361

1140365

1140369

1140371

1140374

1140379114038011403861140387

1140391

11403921140396114039711403981140399
1140403

114040511404061140410114041111404121140413

1140414

1140417

1140418

114042011404211140423114042411404261140427114042911404301140433

1140434

1140435114043611404371140438114044111404421140443114044411404461140448114044911404501140451114045311404541140455114045811404591140460114046111404621140463114046411404661140467

1140468

114046911404701140472

1140473

114047411404781140480

1140482

1141056

1141057

1141058

1141059

1141060

1141061
11410621141063

1141064

11410651141066

1141067

1141068

1141069

1141070
1141071

1141072

1141073
1141074

1141075

1141076

114107711410781141079

1141080
11500021150003

1150004

11500061150009

1150012

1150015115001711500181150019

1150020

1150022

1150024

115003411500351150041
1150051

1150054

1150057

1150058
11500591150060115006211500631150065115006711500681150069115007111500721150078115007911500801150081115008411500851150086115008711500901150091 1150095

11501041150113115011511501181150124115012611501281150129115013211501331150137

1150138

115014011501411150142115014311501461150148115015011501531150156

1150158

11501601150162

1150164

1150166115016711501711150175115017711501781150180

1150182

1150184115018511501891150190115019411501961150202115020311502041150208115021011502141150216

1150217

115021811502191150221115022311502241150225

1150230

11502341150235
1150236

1150239

1150242

11502431150244

1150247

1150249115025211502531150255
1150257

11502601150261

1150262

115026311502661150267115026811502711150272115027311502781150279115028311502891150293115029611502971150298115029911503011150302

1150303

11503101150313

1150314

115031511503171150318115032011503221150327

1150328

1150329115033211503331150335

1150338

11503391150341

1150343

1150347115035111503521150355
1150366

11503721150373

1150379

1150381

1150387

1150388

115039011503911150396

1150398

1150403115040411504071150408115040911504101150411115041411504211150429

1151081

11510821151083

1151084

1151085

1151086

1151087
1151088

1151089

1151090

1151091

1151092

1151093

1151094
1110003111000811100111110016111001811100211110024111002611100281110031 111003311100341110037111003811100391110043111004511100481110049

1110051
111005211100551110061111006211100641110065111006611100681110074111007611100781110081111008311100871110088111008911100911110092111010011101101110111

1110112

11101181110126111012911101321110135

1110136
1110137

11101411110143111014511101471110156

1110161

1110163111016511101671110174111017511101761110178111018211101851110186111018911101911110193111019911102051110208111020911102101110212111021511102181110220

1110224

11102251110227111022811102321110238111024611102491110251111025311102551110256111026011102611110263111026811102691110274111027811102801110281

1110282

1110284

11102861110288111029311102961110298111030011103031110305111031011103111110315111031811103191110327111033111103321110333111033611103371110339111034511103491110351111035511103561110360111036111103641110366111037111103731110378111038011103831110384111038511103891110390

1110393

1110399

1110400

111040411104111110414111042311104281110432111043411104351110443111044911104501110459
1110463

111047111104731110474111047611104771110478

1110479

1110486

1110487

1110489
1110491111049211104951110497 1110498111049911105011110502111050811105091110513

1110516

111051711105191110521

1110526

111053711105411110542111054611105481110550111055411105571110558
1110567111057011105721110576

1110578

111058011105811110583111058511105871110588111058911105901110592111059311105951110597

1110606

111061211106141110615111061611106171110619

1110621

1110622

1110624

111062811106291110630
1110631

11120001112001

1112002

11120031112004

1112005
1112006

1112007
1112008

1112009

1112010

1112011

1112012
1112013

1112014

1112015111201611120171120002112000611200081120014112001811200261120030

1120031

11200341120035
1120037

112004011200461120047112004911200501120052
1120053112005611200581120061

1120062

1120063112006411200681120069

1120070

1120071

1120073112007411200761120080

1120081

11200851120090112009111200951120101112010411201051120106112010911201101120111112011211201171120118
1120121

1120125

11201271120129112013111201341120135

1120137

11201391120141

1120144

11201451120151

1120154

1120161

1120165

1120168
112017011201761120180 1120181112019311202061120209

1120212

1120217112021811202281120229112023111202401120241
1120243

1120245

112024911202501120252

1120254

112025711202641120265112027311202741120276

1120278

1120280

112028411202851120287

1120289

1120293112029411202961120297

1120298

1120299112030111203031120304

1120305

11203091120312

1120320

112032911203361120339112034911203501120351112035211203541120355112036111203621120365
1120369

112037711203791120384112038511203961120402112040411204051120407
1120408

1120410

1120411

1120415

1120421

1120428112042911204311120433112043611204401120441
1120442

1120445

11204491120450112045311204551120456
1120460

112046111204621120464
1120468

1120471 11204721120477112047811204881120495112049711205011120502112050811205171122018

1122019

11220201122021

1130002

1130004

11300101130015
1130020

11300241130026113002911300381130039113004011300431130045

1130048
113004911300511130052

1130055

11300571130066113007111300721130089113009011300961130099113010511301081130110

1130112

11301131130115113012011301281130130

1130137

11301431130145113014711301491130153
1130155

1130158

11301591130164

1130165

11301671130169113017411301781130182

1130198

113020011302061130207
11302091130215

1130221
11302261130240113024111302431130250113025611302571130262

1130266

1130276

1130280

1130281113028311302871130290113029511303021130306
1130313

11303151130318113032311303261130328113033611303441130349113035911303611130362

1130363

11303691130371113037211303771130382

1130388

1130392

11303931130397

1130398

1130401

1130405

1130409
11304141130418

1130422

1130426113043611304411130444113044611304511130455113045611304581130459113046011320221132023

1132024

1132025
1132026

1132027
1132028

1132029

1132030

1132031

1132032

1132033

1132034
1132035 11320361132037

1132038

1132039

11400011140002

1140007

1140009114001111400171140022114002311400281140029
1140035

1140047

1140051

1140053114005711400601140064

1140066

1140070

1140071

11400731140074114007611400791140081

1140082

1140084

114008711400881140094

1140097

1140098114010411401061140110

1140118

1140120

1140122

114012311401271140129114013711401451140151114015511401561140157114015811401611140164114016511401711140180114018211401831140185114018611401871140190

1140192

1140194114019511402071140217114022011402221140228114023311402351140236

1140239

1140240

1140244

11402451140247114025111402521140256
1140258
114026411402651140275114027711402831140288

1140291

11402981140299

1140302

11403081140309114031511403221140324114032811403311140336

1140339

114034011403431140353
1140368

11403701140373
1140375

1140377114037811403831140384114038511403881140394

1140400

1140401
114040711404081140409114041511404161140422114043111404321140445

1140447

11404521140457

1140465

114047111404761140477114047911404811140483

11420401142041

1142042

1142043

1142044

1142045

1142046

1142047
1142048

1142049
1142050

1142051

1142052

1142053

11420541142055

1142056

115000111500051150007

1150008 1150011

115001411500211150025115002611500271150028115002911500311150032115003311500361150037
1150038

1150039115004011500421150043115004411500451150046115004711500531150055

1150056

11500661150074

1150075

115007711500831150088115008911500941150096115009911501011150102
1150103

1150105

1150106

1150107115010811501101150111115011411501191150120115012211501231150125115012711501311150134

1150136

115013911501441150145

1150147

11501491150152115015711501591150161115016311501681150169115017011501731150174115017611501791150186115018711501881150191115019511501981150200115020511502061150207115020911502131150220115022211502261150228115023111502331150238115024011502451150246115024811502541150256115025811502591150264115027011502741150275

1150276

115028011502811150282115028511502871150290

1150291

1150292115029411502951150305115030611503071150308

1150309

11503111150321
1150323

1150325115032611503311150334

1150337

11503401150342115034411503451150346115034811503491150353115035611503581150359

1150360

11503611150362115036411503671150368

1150370

11503711150374115037511503761150377115037811503801150382

1150384

1150386

1150393

1150397

1150399115040011504021150406115041211504131150415115041611504181150419

11504221150423

11504271150428
1152057

1152058

1152059
11520601152061

1152062

1152063 1152064
1152065

1152066
1152067

1152068
1152069

1152070

1152071

1152072

1152073

1152074

Figure 5.1: A not very nice network plot. This is what we get with the default parameters in
igraph.

2. All the vertices have the same size and are overlapping. Instead of using the default size,
we will size the vertices by indegree using the degree function and passing the vector of
degrees to vertex.size.4

3. Given the number of vertices in these networks, the labels are not useful here. So we
will remove them by setting vertex.label = NA. Moreover, we will reduce the size of the
arrows’ tip by setting edge.arrow.size = 0.25.

4. And finally, we will set the color of each vertex to be a function of whether the individual
is Hispanic or not. For this last bit we need to go a bit more of programming:

col_hispanic <- V(ig_year1_111)$hispanic + 1

col_hispanic <- coalesce(col_hispanic, 3)

col_hispanic <- c("steelblue", "tomato", "white")[col_hispanic]

Line by line, we did the following:

1. The first line added one to all no NA values so that the 0s (non-Hispanic) turned to 1s and
the 1s (Hispanic) turned to 2s.

2. The second line replaced all NAs with the number three so that our vector col_hispanic
now ranges from one to three with no NAs in it.

3. In the last line, we created a vector of colors. Essentially, what we are doing here is telling
R to create a vector of length length(col_hispanic) by selecting elements by index
from the vector c("steelblue", "tomato", "white"). This way, if, for example, the
first element of the vector col_hispanic was a 3, our new vector of colors would have a
"white" in it.

4Figuring out what is the optimal vertex size is a bit tricky. Without getting too technical, there’s no other
way of getting nice vertex size other than just playing with different values of it. A nice solution to this is us-
ing netdiffuseR::igraph_vertex_rescale which rescales the vertices so that these keep their aspect ratio to a
predefined proportion of the screen.

https://www.rdocumentation.org/packages/netdiffuseR/versions/1.17.0/topics/rescale_vertex_igraph

5.4. PLOTTING THE NETWORK IN IGRAPH 37

To make sure we know we are right, let’s print the first 10 elements of our new vector of colors
together with the original hispanic column:

cbind(

original = V(ig_year1_111)$hispanic[1:10],

colors = col_hispanic[1:10]

)

original colors

[1,] "1" "tomato"

[2,] "1" "tomato"

[3,] "0" "steelblue"

[4,] "1" "tomato"

[5,] "1" "tomato"

[6,] "1" "tomato"

[7,] "1" "tomato"

[8,] "1" "tomato"

[9,] "0" "steelblue"

[10,] "1" "tomato"

With our nice vector of colors, now we can pass it to plot.igraph (which we call implicitly by
just calling plot), via the vertex.color argument:

Fancy graph

set.seed(1)

plot(

ig_year1_111,

vertex.size = degree(ig_year1_111)/10 +1,

vertex.label = NA,

edge.arrow.size = .25,

vertex.color = col_hispanic

)

Nice! So it does look better. The only problem is that we have a lot of isolates. Let’s try again
by drawing the same plot without isolates. To do so, we need to filter the graph, for which we
will use the function induced_subgraph

Which vertices are not isolates?

which_ids <- which(degree(ig_year1_111, mode = "total") > 0)

Getting the subgraph

ig_year1_111_sub <- induced_subgraph(ig_year1_111, which_ids)

We need to get the same subset in col_hispanic

col_hispanic <- col_hispanic[which_ids]

38 CHAPTER 5. NETWORK NOMINATION DATA

Figure 5.2: Friends network in time 1 for school 111.

Fancy graph

set.seed(1)

plot(

ig_year1_111_sub,

vertex.size = degree(ig_year1_111_sub)/5 +1,

vertex.label = NA,

edge.arrow.size = .25,

vertex.color = col_hispanic

)

Figure 5.3: Friends network in time 1 for school 111. The graph excludes isolates.

Now that’s better! An interesting pattern that shows up is that individuals seem to cluster by
whether they are Hispanic or not.

We can write this as a function to avoid copying and pasting the code n times (supposing that
we want to create a plot similar to this n times). We do the latter in the following subsection.

5.4. PLOTTING THE NETWORK IN IGRAPH 39

5.4.2 Multiple plots

When you are repeating yourself repeatedly, it is a good idea to write down a sequence of
commands as a function. In this case, since we will be running the same type of plot for all
schools/waves, we write a function in which the only things that change are: (a) the school id,
and (b) the color of the nodes.

myplot <- function(

net,

schoolid,

mindgr = 1,

vcol = "tomato",

...) {

Creating a subgraph

subnet <- induced_subgraph(

net,

which(degree(net, mode = "all") >= mindgr & V(net)$school == schoolid)

)

Fancy graph

set.seed(1)

plot(

subnet,

vertex.size = degree(subnet)/5,

vertex.label = NA,

edge.arrow.size = .25,

vertex.color = vcol,

...

)

}

The function definition:

1. The myplot <- function([arguments]) {[body of the function]} tells R that we
are going to create a function called myplot.

2. We declare four specific arguments: net, schoolid, mindgr, and vcol. These are an
igraph object, the school id, the minimum degree that vertices must have to be included
in the figure, and the color of the vertices. Observe that, compared to other programming
languages, R does not require declaring the data types.

3. The ellipsis object, ..., is an especial object in R that allows us to pass other arguments
without specifying which. If you take a look at the plot bit in the function body, you will
see that we also added We use the ellipsis to pass extra arguments (different from
the ones that we explicitly defined) directly to plot. In practice, this implies that we can,

40 CHAPTER 5. NETWORK NOMINATION DATA

for example, set the argument edge.arrow.size when calling myplot, even though we
did not include it in the function definition! (See ?dotsMethods in R for more details).

In the following lines of code, using our new function, we will plot each schools’ network in
the same plotting device (window) with the help of the par function, and add legend with the
legend:

Plotting all together

oldpar <- par(no.readonly = TRUE)

par(mfrow = c(2, 3), mai = rep(0, 4), oma= c(1, 0, 0, 0))

myplot(ig_year1, 111, vcol = "tomato")

myplot(ig_year1, 112, vcol = "steelblue")

myplot(ig_year1, 113, vcol = "black")

myplot(ig_year1, 114, vcol = "gold")

myplot(ig_year1, 115, vcol = "white")

par(oldpar)

A fancy legend

legend(

"bottomright",

legend = c(111, 112, 113, 114, 115),

pt.bg = c("tomato", "steelblue", "black", "gold", "white"),

pch = 21,

cex = 1,

bty = "n",

title = "School"

)

So what happened here?

• oldpar <- par(no.readonly = TRUE) This line stores the current parameters for plot-
ting. Since we are going to be changing them, we better make sure we are able to go
back!.

• par(mfrow = c(2, 3), mai = rep(0, 4), oma=rep(0, 4)) Here we are setting vari-
ous things at the same time. mfrow specifies how many figures will be drawn, and in what
order. In particular, we are asking the plotting device to make room for 2*3 = 6 figures
organized in two rows and three columns drawn by row.

mai specifies the size of the margins in inches, setting all margins equal to zero (which
is what we are doing now) gives more space to the graph. The same is true for oma. See
?par for more info.

• myplot(ig_year1, ...) This is simply calling our plotting function. The neat part of this
is that, since we set mfrow = c(2, 3), R takes care of distributing the plots in the device.

• par(oldpar) This line allows us to restore the plotting parameters.

5.5. STATISTICAL TESTS 41

School

111
112
113
114
115

Figure 5.4: All 5 schools in time 1. Again, the graphs exclude isolates.

5.5 Statistical tests

5.5.1 Is nomination number correlated with indegree?

Hypothesis: Individuals that, on average, are among the first nominations of their peers are
more popular

Getting all the data in long format

edgelist <- as_long_data_frame(ig_year1) %>%

as_tibble

Computing indegree (again) and average nomination number

Include "On a scale from one to five how close do you feel"

Also for egocentric friends (A. Friends)

indeg_nom_cor <- group_by(edgelist, to, to_name, to_school) %>%

summarise(

indeg = length(nnom),

nom_avg = 1/mean(nnom)

) %>%

rename(

school = to_school

42 CHAPTER 5. NETWORK NOMINATION DATA

)

`summarise()` has grouped output by 'to', 'to_name'. You can override using the

`.groups` argument.

indeg_nom_cor

A tibble: 1,561 x 5

Groups: to, to_name [1,561]

to to_name school indeg nom_avg

<dbl> <chr> <int> <int> <dbl>

1 2 1110002 111 22 0.222

2 3 1110007 111 7 0.175

3 4 1110013 111 6 0.171

4 5 1110014 111 19 0.134

5 6 1110015 111 3 0.15

6 7 1110020 111 6 0.154

7 9 1110025 111 6 0.214

8 10 1110027 111 13 0.220

9 11 1110029 111 14 0.131

10 12 1110030 111 6 0.222

... with 1,551 more rows

Using pearson's correlation

with(indeg_nom_cor, cor.test(indeg, nom_avg))

##

Pearson's product-moment correlation

##

data: indeg and nom_avg

t = -12.254, df = 1559, p-value < 2.2e-16

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

-0.3409964 -0.2504653

sample estimates:

cor

-0.2963965

save.image("03.rda")

Chapter 6

Exponential Random Graph

Models

I strongly suggest reading the vignette included in the ergm R package

vignette("ergm", package="ergm")

The purpose of ERGMs, in a nutshell, is to describe parsimoniously the local selection
forces that shape the global structure of a network. To this end, a network dataset,
like those depicted in Figure 1, may be considered as the response in a regression
model, where the predictors are things like “propensity for individuals of the same sex
to form partnerships” or “propensity for individuals to form triangles of partnerships”.
In Figure 1(b), for example, it is evident that the individual nodes appear to cluster
in groups of the same numerical labels (which turn out to be students’ grades, 7
through 12); thus, an ERGM can help us quantify the strength of this intra-group
effect.

— (David R. Hunter et al. 2008)

In a nutshell, we use ERGMs as a parametric interpretation of the distribution of Y, which takes
the canonical form:

Pr (Y = y|θ,Y) =
exp
¦

θTg(y)
©

κ (θ,Y)
, y ∈ Y

Where θ ∈ Ω ⊂ Rq is the vector of model coefficients and g(y) is a q-vector of statistics based
on the adjacency matrix y.

Model (6) may be expanded by replacing g(y) with g(y,X) to allow for additional covariate
information X about the network. The denominator,

43

44 CHAPTER 6. EXPONENTIAL RANDOM GRAPH MODELS

Figure 6.1: Source: Hunter et al. (2008)

κ (θ,Y) =
∑

y∈Y
exp
¦

θTg(y)
©

,is the normalizing factor that ensures that equation (6) is a legitimate probability distribution.
Even after fixing Y to be all the networks that have size n, the size of Y makes this type of
statistical model hard to estimate as there are N = 2n(n−1) possible networks! (David R. Hunter
et al. 2008)

Recent developments include new forms of dependency structures to take into account more
general neighborhood effects. These models relax the one-step Markovian dependence as-
sumptions, allowing investigation of longer-range configurations, such as longer paths in the
network or larger cycles (Pattison and Robins 2002). Models for bipartite (Faust and Skvoretz
1999) and tripartite (Mische and Robins 2000) network structures have been developed. (David
R. Hunter et al. 2008, 9)

6.1 A naïve example

In the simplest case, ERGMs equate a logistic regression. By simple, I mean cases in which
there are no Markovian terms–motifs involving more than one edge–for example, the Bernoulli
graph. In the Bernoulli graph, ties are independent of each other, so the presence/absence of a
tie between nodes and j won’t affect the presence/absence of a tie between nodes k and .

Let’s fit an ERGM using the sampson dataset included in the ergm package.

6.1. A NAÏVE EXAMPLE 45

library(ergm)

data("sampson")

samplike

Network attributes:

vertices = 18

directed = TRUE

hyper = FALSE

loops = FALSE

multiple = FALSE

total edges= 88

missing edges= 0

non-missing edges= 88

##

Vertex attribute names:

cloisterville group vertex.names

##

Edge attribute names:

nominations

Using ergm to fit a Bernoulli graph requires using the edges term, which counts how many ties
are in the graph:

ergm_fit <- ergm(samplike ~ edges)

Starting maximum pseudolikelihood estimation (MPLE):

Evaluating the predictor and response matrix.

Maximizing the pseudolikelihood.

Finished MPLE.

Stopping at the initial estimate.

Evaluating log-likelihood at the estimate.

Since this is equivalent to a logistic regression, we can use the glm function to fit the same
model. First, we need to prepare the data so we can pass it to glm:

y <- sort(as.vector(as.matrix(samplike)))

y <- y[-c(1:18)] # We remove the diagonal from the model, which is all 0.

y

[1] 0

[38] 0

[75] 0

[112] 0

[149] 0

[186] 0 1 1 1 1

[223] 1

[260] 1

[297] 1 1 1 1 1 1 1 1 1 1

46 CHAPTER 6. EXPONENTIAL RANDOM GRAPH MODELS

We can now fit the GLM model:

glm_fit <- glm(y~1, family=binomial("logit"))

The coefficients of both ERGM and GLM should match:

glm_fit

##

Call: glm(formula = y ~ 1, family = binomial("logit"))

##

Coefficients:

(Intercept)

-0.9072

##

Degrees of Freedom: 305 Total (i.e. Null); 305 Residual

Null Deviance: 367.2

Residual Deviance: 367.2 AIC: 369.2

ergm_fit

##

Call:

ergm(formula = samplike ~ edges)

##

Maximum Likelihood Coefficients:

edges

-0.9072

Furthermore, in the case of the Bernoulli graph, we can get the estimate using the Logit
function:

pr <- mean(y)

Logit function:

Alternatively we could have used log(pr) - log(1-pr)

qlogis(pr)

[1] -0.9071582

Again, the same result. The Bernoulli graph is not the only ERGM model that can be fitted
using a Logistic regression. Moreover, if all the terms of the model are non-Markov terms, ergm
automatically defaults to a Logistic regression.

6.2 Estimation of ERGMs

The ultimate goal is to perform statistical inference on the proposed model. In a standard

setting, we would be able to use Maximum-Likelihood-Estimation (MLE), which consists of
finding the model parameters θ that, given the observed data, maximize the likelihood of the
model. For the latter, we generally use Newton’s method. Newton’s method requires been able
to compute the log-likelihood of the model, which in ERGMs can be challenging.

https://en.wikipedia.org/wiki/Newton%27s_method_in_optimization

6.2. ESTIMATION OF ERGMS 47

For ERGMs, since part of the likelihood involves a normalizing constant that is a function of all
possible networks, this is not as straightforward as in the regular setting. Because of it, most
estimation methods rely on simulations.

In statnet, the default estimation method is based on a method proposed by (Geyer and
Thompson 1992), Markov-Chain MLE, which uses Markov-Chain Monte Carlo for simulating
networks and a modified version of the Newton-Raphson algorithm to estimate the parameters.

The idea of MC-MLE for this family of statistical models is that we can approximate the
expectation of normalizing constant ratios using the law of large numbers. In particular,
the following:

κ (θ,Y)
κ (θ0,Y)

=

∑

y∈Y exp
¦

θTg(y)
©

∑

y∈Y exp
¦

θT
0g(y)
©

=
∑

y∈Y

1
∑

y∈Yexp
§

θT0 g(y)
ª

× exp
¦

θTg(y)
©

=
∑

y∈Y

exp
¦

θT
0g(y)
©

∑

y∈Yexp
§

θT0 g(y)
ª

× exp
¦

(θ − θ0)Tg(y)
©

=
∑

y∈Y

�

Pr (Y = y|Y, θ0) × exp
¦

(θ − θ0)Tg(y)
©�

= Eθ0
�

exp
¦

(θ − θ0)Tg(y)
©�

In particular, the MC-MLE algorithm uses this fact to maximize the ratio of log-likelihoods. The
objective function itself can be approximated by simulating m networks from the distribution
with parameter θ0:

(θ) − (θ0) ≈ (θ − θ0)Tg(yobs) − log

�

1

m

m
∑

=1

exp
¦

(θ − θ0)T
©

g(Y)

�

For more details, see (David R. Hunter et al. 2008). A sketch of the algorithm follows:

1. Initialize the algorithm with an initial guess of θ, call it θ(t) (must be a rather OK guess)

2. While (no convergence) do:

a. Using θ(t), simulate M networks by means of small changes in the Yobs (the observed
network). This part is done by using an importance-sampling method which weights
each proposed network by its likelihood conditional on θ(t)

b. With the networks simulated, we can do the Newton step to update the parameter
θ(t) (this is the iteration part in the ergm package): θ(t) → θ(t+1).

48 CHAPTER 6. EXPONENTIAL RANDOM GRAPH MODELS

c. If convergence has been reached (which usually means that θ(t) and θ(t+1) are not
very different), then stop; otherwise, go to step a.

For more details see (Lusher, Koskinen, and Robins 2012; Admiraal and Handcock 2006; T. A.
Snijders 2002; Wang et al. 2009) provides details on the algorithm used by PNet (which is
the same as the one used in RSiena). (Lusher, Koskinen, and Robins 2012) provides a short
discussion on the differences between ergm and PNet.

6.3 The ergm package

The ergm R package (Handcock et al. 2017)

From the previous section:1

library(igraph)

library(magrittr)

library(dplyr)

load("03.rda")

In this section, we will use the ergm package (from the statnet suit of packages (Handcock et
al. 2016),) and the intergraph (Bojanowski 2015) package. The latter provides functions to go
back and forth between igraph and network objects from the igraph and network packages
respectively2

library(ergm)

library(intergraph)

As a rather important side note, the order in which R packages are loaded matters. Why is
this important to mention now? Well, it turns out that at least a couple of functions in the
network package have the same name as some functions in the igraph package. When the
ergm package is loaded, since it depends on network, it will load the network package first,
which will mask some functions in igraph. This becomes evident once you load ergm after
loading igraph:

The following objects are masked from ‘package:igraph’:

add.edges, add.vertices, %c%, delete.edges, delete.vertices, get.edge.attribute, get.edges,

get.vertex.attribute, is.bipartite, is.directed, list.edge.attributes, list.vertex.attributes, %s%,

set.edge.attribute, set.vertex.attribute

What are the implications of this? If you call the function list.edge.attributes for an object
of class igraph R will return an error as the first function that matches that name comes from
the network package! To avoid this you can use the double colon notation:

1You can download the 03.rda file from this link.
2Yes, the classes have the same name as the packages.

https://github.com/gvegayon/appliedsnar

6.3. THE ERGM PACKAGE 49

igraph::list.edge.attributes(my_igraph_object)

network::list.edge.attributes(my_network_object)

Anyway. . . Using the asNetwork function, we can coerce the igraph object into a network
object so we can use it with the ergm function:

Creating the new network

network_111 <- intergraph::asNetwork(ig_year1_111)

Running a simple ergm (only fitting edge count)

ergm(network_111 ~ edges)

[1] "Warning: This network contains loops"

Starting maximum pseudolikelihood estimation (MPLE):

Evaluating the predictor and response matrix.

Maximizing the pseudolikelihood.

Finished MPLE.

Stopping at the initial estimate.

Evaluating log-likelihood at the estimate.

##

Call:

ergm(formula = network_111 ~ edges)

##

Maximum Likelihood Coefficients:

edges

-4.734

So what happened here? We got a warning. It turns out that our network has loops (didn’t think
about it before!). Let’s take a look at that with the which_loop function

E(ig_year1_111)[which_loop(ig_year1_111)]

+ 1/2638 edge from 56d2ba9 (vertex names):

[1] 1110111->1110111

We can get rid of these using the igraph::-.igraph. Let’s remove the isolates using the same
operator

Creating the new network

network_111 <- ig_year1_111

Removing loops

network_111 <- network_111 - E(network_111)[which(which_loop(network_111))]

Removing isolates

network_111 <- network_111 - which(degree(network_111, mode = "all") == 0)

Converting the network

50 CHAPTER 6. EXPONENTIAL RANDOM GRAPH MODELS

network_111 <- intergraph::asNetwork(network_111)

asNetwork(simplify(ig_year1_111)) ig_year1_111 %>% simplify %>% asNetwork

A problem that we have with this data is the fact that some vertices have missing values in
the variables hispanic, female1, and eversmk1. For now, we will proceed by imputing values
based on the averages:

for (v in c("hispanic", "female1", "eversmk1")) {

tmpv <- network_111 %v% v

tmpv[is.na(tmpv)] <- mean(tmpv, na.rm = TRUE) > .5

network_111 %v% v <- tmpv

}

6.4 Running ERGMs

Proposed workflow:

1. Estimate the simplest model, adding one variable at a time.

2. After each estimation, run the mcmc.diagnostics function to see how good (or bad)
behaved the chains are.

3. Run the gof function and verify how good the model matches the network’s structural
statistics.

What to use:

1. control.ergms: Maximum number of iterations, seed for Pseudo-RNG, how many cores

2. ergm.constraints: Where to sample the network from. Gives stability and (in some
cases) faster convergence as by constraining the model you are reducing the sample size.

Here is an example of a couple of models that we could compare3

ans0 <- ergm(

network_111 ~

edges +

nodematch("hispanic") +

nodematch("female1") +

nodematch("eversmk1") +

mutual

,

constraints = ~bd(maxout = 19),

control = control.ergm(

seed = 1,

3Notice that this document may not include the usual messages that the ergm command generates during the
estimation procedure. This is just to make it more printable-friendly.

6.4. RUNNING ERGMS 51

MCMLE.maxit = 10,

parallel = 4,

CD.maxit = 10

)

)

So what are we doing here:

1. The model is controlling for:

a. edges Number of edges in the network (as opposed to its density)

b. nodematch("some-variable-name-here") Includes a term that controls for ho-
mophily/heterophily

c. mutual Number of mutual connections between (, j), (j,). This can be related to, for
example, triadic closure.

For more on control parameters, see (Morris, Handcock, and Hunter 2008).

ans1 <- ergm(

network_111 ~

edges +

nodematch("hispanic") +

nodematch("female1") +

nodematch("eversmk1")

,

constraints = ~bd(maxout = 19),

control = control.ergm(

seed = 1,

MCMLE.maxit = 10,

parallel = 4,

CD.maxit = 10

)

)

This example takes longer to compute

ans2 <- ergm(

network_111 ~

edges +

nodematch("hispanic") +

nodematch("female1") +

nodematch("eversmk1") +

mutual +

balance

,

constraints = ~bd(maxout = 19),

52 CHAPTER 6. EXPONENTIAL RANDOM GRAPH MODELS

control = control.ergm(

seed = 1,

MCMLE.maxit = 10,

parallel = 4,

CD.maxit = 10

)

)

Now, a nice trick to see all regressions in the same table, we can use the texreg package
(Leifeld 2013) which supports ergm ouputs!

library(texreg)

Version: 1.38.6

Date: 2022-04-06

Author: Philip Leifeld (University of Essex)

##

Consider submitting praise using the praise or praise_interactive functions.

Please cite the JSS article in your publications -- see citation("texreg").

##

Attaching package: 'texreg'

The following object is masked from 'package:magrittr':

##

extract

screenreg(list(ans0, ans1, ans2))

Warning: This object was fit with 'ergm' version 4.1.2 or earlier. Summarizing

it with version 4.2 or later may return incorrect results or fail.

Warning in nobs.ergm(object): The number of observed dyads in this network is

ill-defined due to complex constraints on the sample space. Disable this warning

with 'options(ergm.loglik.warn_dyads=FALSE)'.

Warning: This object was fit with 'ergm' version 4.1.2 or earlier. Summarizing

it with version 4.2 or later may return incorrect results or fail.

Warning in nobs.ergm(object): The number of observed dyads in this network is

ill-defined due to complex constraints on the sample space. Disable this warning

with 'options(ergm.loglik.warn_dyads=FALSE)'.

Warning: This object was fit with 'ergm' version 4.1.2 or earlier. Summarizing

it with version 4.2 or later may return incorrect results or fail.

Warning in nobs.ergm(object): The number of observed dyads in this network is

ill-defined due to complex constraints on the sample space. Disable this warning

with 'options(ergm.loglik.warn_dyads=FALSE)'.

##

===

Model 1 Model 2 Model 3

edges -5.63 *** -5.49 *** -5.60 ***

6.5. MODEL GOODNESS-OF-FIT 53

(0.05) (0.06) (0.06)

nodematch.hispanic 0.22 *** 0.30 *** 0.22 ***
(0.04) (0.05) (0.04)

nodematch.female1 0.87 *** 1.17 *** 0.87 ***
(0.04) (0.05) (0.04)

nodematch.eversmk1 0.33 *** 0.45 *** 0.34 ***
(0.04) (0.04) (0.04)

mutual 4.10 *** 1.75 ***
(0.07) (0.14)

balance 0.01 ***
(0.00)

AIC -40017.80 -37511.87 -39989.59

BIC -39967.46 -37471.60 -39929.18

Log Likelihood 20013.90 18759.94 20000.79

===

*** p < 0.001; ** p < 0.01; * p < 0.05

Or, if you are using rmarkdown, you can export the results using LaTeX or html, let’s try the
latter to see how it looks like here:

library(texreg)

texreg(list(ans0, ans1, ans2))

Warning: This object was fit with 'ergm' version 4.1.2 or earlier. Summarizing

it with version 4.2 or later may return incorrect results or fail.

Warning in nobs.ergm(object): The number of observed dyads in this network is

ill-defined due to complex constraints on the sample space. Disable this warning

with 'options(ergm.loglik.warn_dyads=FALSE)'.

Warning: This object was fit with 'ergm' version 4.1.2 or earlier. Summarizing

it with version 4.2 or later may return incorrect results or fail.

Warning in nobs.ergm(object): The number of observed dyads in this network is

ill-defined due to complex constraints on the sample space. Disable this warning

with 'options(ergm.loglik.warn_dyads=FALSE)'.

Warning: This object was fit with 'ergm' version 4.1.2 or earlier. Summarizing

it with version 4.2 or later may return incorrect results or fail.

Warning in nobs.ergm(object): The number of observed dyads in this network is

ill-defined due to complex constraints on the sample space. Disable this warning

with 'options(ergm.loglik.warn_dyads=FALSE)'.

6.5 Model Goodness-of-Fit

In raw terms, once each chain has reach stationary distribution, we can say that there are no
problems with autocorrelation and that each sample point is iid. This implies that, since we

54 CHAPTER 6. EXPONENTIAL RANDOM GRAPH MODELS

Model 1 Model 2 Model 3
edges −5.63∗∗∗ −5.49∗∗∗ −5.60∗∗∗

(0.05) (0.06) (0.06)
nodematch.hispanic 0.22∗∗∗ 0.30∗∗∗ 0.22∗∗∗

(0.04) (0.05) (0.04)
nodematch.female1 0.87∗∗∗ 1.17∗∗∗ 0.87∗∗∗

(0.04) (0.05) (0.04)
nodematch.eversmk1 0.33∗∗∗ 0.45∗∗∗ 0.34∗∗∗

(0.04) (0.04) (0.04)
mutual 4.10∗∗∗ 1.75∗∗∗

(0.07) (0.14)
balance 0.01∗∗∗

(0.00)
AIC −40017.80 −37511.87 −39989.59
BIC −39967.46 −37471.60 −39929.18
Log Likelihood 20013.90 18759.94 20000.79
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table 6.1: Statistical models

are running the model with more than 1 chain, we can use all the samples (chains) as a single
dataset.

Recent changes in the ergm estimation algorithm mean that these plots can no
longer be used to ensure that the mean statistics from the model match the observed
network statistics. For that functionality, please use the GOF command: gof(object,
GOF=~model).

—?ergm::mcmc.diagnostics

Since ans0 is the one model which did best, let’s take a look at it’s GOF statistics. First, lets
see how the MCMC did. For this we can use the mcmc.diagnostics function including in the
package. This function is actually a wrapper of a couple of functions from the coda package
(Plummer et al. 2006) which is called upon the $sample object which holds the centered

statistics from the sampled networks. This last point is important to consider since at first
look it can be confusing to look at the $sample object since it neither matches the observed
statistics, nor the coefficients.

When calling the function mcmc.diagnostics(ans0, centered = FALSE), you will see a lot of
output including a couple of plots showing the trace and posterior distribution of the uncentered

statistics (centered = FALSE). In the next code chunks we will reproduce the output from the
mcmc.diagnostics function step by step using the coda package. First we need to uncenter

the sample object:

Getting the centered sample

sample_centered <- ans0$sample

Getting the observed statistics and turning it into a matrix so we can add it

to the samples

observed <- summary(ans0$formula)

6.5. MODEL GOODNESS-OF-FIT 55

observed <- matrix(

observed,

nrow = nrow(sample_centered[[1]]),

ncol = length(observed),

byrow = TRUE

)

Now we uncenter the sample

sample_uncentered <- lapply(sample_centered, function(x) {

x + observed

})

We have to make it an mcmc.list object

sample_uncentered <- coda::mcmc.list(sample_uncentered)

Under the hood:

1. Empirical means and sd, and quantiles:

summary(sample_uncentered)

##

Iterations = 1769472:10944512

Thinning interval = 65536

Number of chains = 4

Sample size per chain = 141

##

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

##

Mean SD Naive SE Time-series SE

edges 2485 60.26 2.5372 3.753

nodematch.hispanic 1838 51.25 2.1578 3.662

nodematch.female1 1888 52.78 2.2224 3.779

nodematch.eversmk1 1759 50.82 2.1400 3.072

mutual 493 23.40 0.9855 1.967

##

2. Quantiles for each variable:

##

2.5% 25% 50% 75% 97.5%

edges 2373 2444 2482 2530 2612

nodematch.hispanic 1736 1803 1839 1872 1947

nodematch.female1 1791 1851 1885 1923 1993

nodematch.eversmk1 1662 1725 1758 1794 1858

mutual 449 476 493 509 537

56 CHAPTER 6. EXPONENTIAL RANDOM GRAPH MODELS

2. Cross correlation:

coda::crosscorr(sample_uncentered)

edges nodematch.hispanic nodematch.female1

edges 1.0000000 0.8657369 0.8851587

nodematch.hispanic 0.8657369 1.0000000 0.7713632

nodematch.female1 0.8851587 0.7713632 1.0000000

nodematch.eversmk1 0.8445651 0.7122693 0.7572735

mutual 0.7726517 0.6801783 0.7482026

nodematch.eversmk1 mutual

edges 0.8445651 0.7726517

nodematch.hispanic 0.7122693 0.6801783

nodematch.female1 0.7572735 0.7482026

nodematch.eversmk1 1.0000000 0.6873242

mutual 0.6873242 1.0000000

3. Autocorrelation: For now, we will only look at autocorrelation for chain one. Autocorrelation
should be small (in a general MCMC setting). If autocorrelation is high, then it means
that your sample is not idd (no Markov property). A way out to solve this is thinning the
sample.

coda::autocorr(sample_uncentered)[[1]]

, , edges

##

edges nodematch.hispanic nodematch.female1 nodematch.eversmk1

Lag 0 1.000000000 0.861920590 0.90235072 0.86215333

Lag 65536 0.415060923 0.326775063 0.43751588 0.38274418

Lag 327680 0.063993999 0.002238453 0.09094189 0.05143792

Lag 655360 0.002497326 -0.105210070 -0.02414091 0.00143358

Lag 3276800 0.026845190 0.068616366 0.03686125 0.03652383

mutual

Lag 0 0.785264416

Lag 65536 0.428519050

Lag 327680 0.074020671

Lag 655360 0.009422505

Lag 3276800 0.018126669

##

, , nodematch.hispanic

##

edges nodematch.hispanic nodematch.female1 nodematch.eversmk1

Lag 0 0.86192059 1.000000000 0.76137201 0.74623272

Lag 65536 0.32680263 0.336764054 0.30353156 0.32690588

Lag 327680 0.05778076 0.004465856 0.07267341 0.03757479

Lag 655360 0.07704457 0.024226503 0.03252125 0.08420548

Lag 3276800 -0.02970399 0.021278122 -0.02753467 -0.03018601

6.5. MODEL GOODNESS-OF-FIT 57

mutual

Lag 0 0.70578514

Lag 65536 0.35558587

Lag 327680 0.05282736

Lag 655360 0.08176601

Lag 3276800 -0.07743174

##

, , nodematch.female1

##

edges nodematch.hispanic nodematch.female1 nodematch.eversmk1

Lag 0 0.902350724 0.76137201 1.00000000 0.77769826

Lag 65536 0.453418914 0.37756721 0.51290498 0.41954866

Lag 327680 0.055464012 -0.01058737 0.09841770 0.04272154

Lag 655360 0.009910833 -0.06123858 -0.03186870 0.04679847

Lag 3276800 0.004163166 0.04057544 0.01548719 -0.01288236

mutual

Lag 0 0.76981085

Lag 65536 0.46327442

Lag 327680 0.03629824

Lag 655360 0.01987496

Lag 3276800 -0.00949882

##

, , nodematch.eversmk1

##

edges nodematch.hispanic nodematch.female1 nodematch.eversmk1

Lag 0 0.86215333 0.746232721 0.77769826 1.000000000

Lag 65536 0.37539678 0.297591397 0.41717478 0.448697559

Lag 327680 0.02105523 -0.040132752 0.03760486 0.019124328

Lag 655360 0.04566425 0.003387581 0.04761067 -0.006388743

Lag 3276800 0.05048735 0.084790008 0.07108989 0.045582057

mutual

Lag 0 0.7053009595

Lag 65536 0.4020746950

Lag 327680 0.0183308894

Lag 655360 0.0840948296

Lag 3276800 0.0009713556

##

, , mutual

##

edges nodematch.hispanic nodematch.female1 nodematch.eversmk1

Lag 0 0.78526442 0.70578514 0.769810849 0.70530096

Lag 65536 0.50645801 0.44741607 0.532817503 0.47751208

Lag 327680 0.12979152 0.06061696 0.147380566 0.10930214

58 CHAPTER 6. EXPONENTIAL RANDOM GRAPH MODELS

Lag 655360 -0.06393205 -0.13217821 -0.008121728 -0.03814393

Lag 3276800 -0.01707605 0.03244214 -0.023750630 0.02781638

mutual

Lag 0 1.000000000

Lag 65536 0.580271013

Lag 327680 0.091309576

Lag 655360 -0.003521212

Lag 3276800 -0.025558756

4. Geweke Diagnostic: From the function’s help file:

“If the samples are drawn from the stationary distribution of the chain, the two
means are equal and Geweke’s statistic has an asymptotically standard normal
distribution. [. . .] The Z-score is calculated under the assumption that the two
parts of the chain are asymptotically independent, which requires that the sum
of frac1 and frac2 be strictly less than 1.””

—?coda::geweke.diag

Let’s take a look at a single chain:

coda::geweke.diag(sample_uncentered)[[1]]

##

Fraction in 1st window = 0.1

Fraction in 2nd window = 0.5

##

edges nodematch.hispanic nodematch.female1 nodematch.eversmk1

-0.7115 -1.7204 -0.1841 0.6952

mutual

-1.2891

5. (not included) Gelman Diagnostic: From the function’s help file:

Gelman and Rubin (1992) propose a general approach to monitoring convergence
of MCMC output in which m > 1 parallel chains are run with starting values that
are overdispersed relative to the posterior distribution. Convergence is diagnosed
when the chains have ‘forgotten’ their initial values, and the output from all chains
is indistinguishable. The gelman.diag diagnostic is applied to a single variable
from the chain. It is based a comparison of within-chain and between-chain
variances, and is similar to a classical analysis of variance. —?coda::gelman.diag

As a difference from the previous diagnostic statistic, this uses all chains simulatenously:

coda::gelman.diag(sample_uncentered)

Potential scale reduction factors:

##

Point est. Upper C.I.

edges 1.03 1.10

6.5. MODEL GOODNESS-OF-FIT 59

nodematch.hispanic 1.03 1.10

nodematch.female1 1.05 1.14

nodematch.eversmk1 1.04 1.12

mutual 1.05 1.14

##

Multivariate psrf

##

1.05

As a rule of thumb, values that are in the [.9,1.1] are good.

One nice feature of the mcmc.diagnostics function is the nice trace and posterior distribution
plots that it generates. If you have the R package latticeExtra (Sarkar and Andrews 2016),
the function will override the default plots used by coda::plot.mcmc and use lattice instead,
creating a nicer looking plots. The next code chunk calls the mcmc.diagnostic function, but
we suppress the rest of the output (see figure ??).

[2022-03-13] This line is failing for what it could be an ergm bug

mcmc.diagnostics(ans0, center = FALSE) # Suppressing all the output

If we called the function mcmc.diagnostics, this message appears at the end:

MCMC diagnostics shown here are from the last round of simulation, prior to compu-
tation of final parameter estimates. Because the final estimates are refinements of
those used for this simulation run, these diagnostics may understate model perfor-
mance. To directly assess the performance of the final model on in-model statistics,
please use the GOF command: gof(ergmFitObject, GOF=~model).

—mcmc.diagnostics(ans0)

Not that bad (although the mutual term could do better)!4 First, observe that in the figure we
see four different lines; why is that? Since we were running in parallel using four cores, the
algorithm ran four chains of the MCMC algorithm. An eyeball test is to see if all the chains
moved at about the same place; in such a case, we can start thinking about model convergence
from the MCMC perspective.

Once we are sure to have reach convergence on the MCMC algorithm, we can start thinking
about how well does our model predicts the observed network’s proterties. Besides the statistics
that define our ERGM, the gof function’s default behavior show GOF for:

a. In degree distribution,
b. Out degree distribution,
c. Edge-wise shared partners, and
d. Geodesics

Let’s take a look at it

4The statnet wiki website as a very nice example of (very) bad and good MCMC diagnostics plots here.

https://statnet.org/trac/raw-attachment/wiki/Resources/ergm.fit.diagnostics.pdf

60 CHAPTER 6. EXPONENTIAL RANDOM GRAPH MODELS

Computing and printing GOF estatistics

ans_gof <- gof(ans0)

ans_gof

##

Goodness-of-fit for in-degree

##

obs min mean max MC p-value

idegree0 13 0 1.38 5 0.00

idegree1 34 2 7.84 15 0.00

idegree2 37 13 22.13 36 0.00

idegree3 48 26 40.12 60 0.12

idegree4 37 44 59.60 74 0.00

idegree5 47 52 67.86 89 0.00

idegree6 42 48 65.06 82 0.00

idegree7 39 38 53.40 69 0.04

idegree8 35 26 40.30 57 0.46

idegree9 21 17 26.48 43 0.36

idegree10 12 9 16.36 24 0.34

idegree11 19 2 8.73 15 0.00

idegree12 4 0 4.80 13 1.00

idegree13 7 0 2.23 6 0.00

idegree14 6 0 0.99 4 0.00

idegree15 3 0 0.32 2 0.00

idegree16 4 0 0.20 2 0.00

idegree17 3 0 0.09 1 0.00

idegree18 3 0 0.09 1 0.00

idegree19 2 0 0.00 0 0.00

idegree20 1 0 0.02 1 0.04

idegree22 1 0 0.00 0 0.00

##

Goodness-of-fit for out-degree

##

obs min mean max MC p-value

odegree0 4 0 1.33 6 0.14

odegree1 28 2 7.67 15 0.00

odegree2 45 13 22.07 33 0.00

odegree3 50 27 40.96 55 0.16

odegree4 54 44 59.37 75 0.50

odegree5 62 40 67.12 92 0.62

odegree6 40 46 64.49 81 0.00

odegree7 28 39 54.33 78 0.00

odegree8 13 28 39.73 53 0.00

odegree9 16 17 27.48 45 0.00

6.5. MODEL GOODNESS-OF-FIT 61

odegree10 20 7 15.74 26 0.22

odegree11 8 2 9.25 16 0.86

odegree12 11 1 4.98 12 0.04

odegree13 13 0 2.12 7 0.00

odegree14 6 0 0.72 3 0.00

odegree15 6 0 0.41 3 0.00

odegree16 7 0 0.17 2 0.00

odegree17 4 0 0.03 1 0.00

odegree18 3 0 0.01 1 0.00

odegree19 0 0 0.02 1 1.00

##

Goodness-of-fit for edgewise shared partner

##

obs min mean max MC p-value

esp0 1032 1991 2195.84 2289 0

esp1 755 170 235.05 441 0

esp2 352 1 14.86 86 0

esp3 202 0 0.84 14 0

esp4 79 0 0.08 2 0

esp5 36 0 0.00 0 0

esp6 14 0 0.00 0 0

esp7 4 0 0.00 0 0

esp8 1 0 0.00 0 0

##

Goodness-of-fit for minimum geodesic distance

##

obs min mean max MC p-value

1 2475 2319 2446.67 2571 0.6

2 10672 12048 13548.63 14726 0.0

3 31134 48016 54997.05 60096 0.0

4 50673 78122 80230.34 82613 0.0

5 42563 15553 20682.28 27611 0.0

6 18719 383 1227.29 2611 0.0

7 4808 0 40.46 214 0.0

8 822 0 0.87 16 0.0

9 100 0 0.00 0 0.0

10 7 0 0.00 0 0.0

Inf 12333 0 1132.41 3324 0.0

##

Goodness-of-fit for model statistics

##

obs min mean max MC p-value

edges 2475 2319 2446.67 2571 0.60

62 CHAPTER 6. EXPONENTIAL RANDOM GRAPH MODELS

nodematch.hispanic 1832 1710 1807.58 1903 0.56

nodematch.female1 1879 1760 1852.63 1970 0.60

nodematch.eversmk1 1755 1614 1724.70 1824 0.56

mutual 486 441 475.38 514 0.66

Plotting GOF statistics

plot(ans_gof)

edges nodematch.hispanic nodematch.eversmk1 mutual

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

model statistics

pr
op

or
tio

n
of

 s
ta

tis
tic

s

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0.
00

0.
05

0.
10

0.
15

0.
20

odegree

pr
op

or
tio

n
of

 n
od

es

6.5. MODEL GOODNESS-OF-FIT 63

0 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24

0.
00

0.
05

0.
10

0.
15

0.
20

idegree

pr
op

or
tio

n
of

 n
od

es

0 1 2 3 4 5 6 7 8 9 10 11

0.
0

0.
2

0.
4

0.
6

0.
8

edge−wise shared partners

pr
op

or
tio

n
of

 e
dg

es

64 CHAPTER 6. EXPONENTIAL RANDOM GRAPH MODELS

1 2 3 4 5 6 7 8 9 10 11 12 13 NR

0.
0

0.
1

0.
2

0.
3

0.
4

minimum geodesic distance

pr
op

or
tio

n
of

 d
ya

ds
Goodness−of−fit diagnostics

Try the following configuration instead

ans0_bis <- ergm(

network_111 ~

edges +

nodematch("hispanic") +

nodematch("female1") +

mutual +

esp(0:3) +

idegree(0:10)

,

constraints = ~bd(maxout = 19),

control = control.ergm(

seed = 1,

MCMLE.maxit = 15,

parallel = 4,

CD.maxit = 15,

MCMC.samplesize = 2048*4,

MCMC.burnin = 30000,

MCMC.interval = 2048*4

)

)

6.6. MORE ON MCMC CONVERGENCE 65

Increase the sample size, so the curves are smoother, longer intervals (thinning), which reduces
autocorrelation, and a larger burin. All this together to improve the Gelman test statistic. We
also added idegree from 0 to 10, and esp from 0 to 3 to explicitly match those statistics in our
model.

knitr::include_graphics("awful-chains.png")

Figure 6.2: An example of a terrible ERGM (no convergence at all). Also, a good example of why
running multiple chains can be useful

6.6 More on MCMC convergence

For more on this issue, I recommend reviewing chapter 1 and chapter 6 from the Handbook of
MCMC (Brooks et al. 2011). Both chapters are free to download from the book’s website.

http://www.mcmchandbook.net/HandbookChapter1.pdf
http://www.mcmchandbook.net/HandbookChapter6.pdf
http://www.mcmchandbook.net/HandbookSampleChapters.html

66 CHAPTER 6. EXPONENTIAL RANDOM GRAPH MODELS

For GOF take a look at section 6 of ERGM 2016 Sunbelt tutorial, and for a more technical review,
you can take a look at (David R. Hunter, Goodreau, and Handcock 2008).

6.7 Mathematical Interpretation

One of the most critical parts of statistical modeling is interpreting the results, if not the most
important. In the case of ERGMs, a key aspect is based on change statistics. Suppose that we
would like to know how likely the tie yj is to happen, given the rest of the network. We can
compute such probabilities using what literature sometimes describes as the Gibbs-sampler.

In particular, the log-odds of the j tie ocurring conditional on the rest of the network can be
written as:

logit
�

P
�

yj = 1|y−j
��

= θtΔδ
�

yj : 0→ 1
�

, (6.1)

with δ
�

yj : 0→ 1
�

≡ s (y)+ij − s (y)−ij as the vector of change statistics, in other words, the

difference between the sufficient statistics when yj = 1 and its value when yj = 0. To show this,
we write the following:

P
�

yj = 1|y−j
�

=
P
�

yj = 1, −j
�

P
�

yj = 1, y−j
�

+ P
�

yj = 0, y−j
�

=
exp
¦

θts (y)+
j

©

exp
¦

θts (y)+
j

©

+ exp
¦

θts (y)−
j

©

Applying the logit function to the previous equation, we obtain:

= log

exp
¦

θts (y)+
j

©

exp
¦

θts (y)+
j

©

+ exp
¦

θts (y)−
j

©

− log

exp
¦

θts (y)−
j

©

exp
¦

θts (y)+
j

©

+ exp
¦

θts (y)−
j

©

= log
¦

exp
¦

θts (y)+
j

©©

− log
¦

exp
¦

θts (y)−
j

©©

= θt
�

s (y)+
j
− s (y)−

j

�

= θtΔδ
�

yj : 0→ 1
�

Henceforth, the conditional probability of node n gaining function k can be written as:

P
�

yj = 1|y−j
�

=
1

1 + exp
�

−θtΔδ
�

yj : 0→ 1
�	 (6.2)

i.e., a logistic probability.

https://statnet.csde.washington.edu/trac/raw-attachment/wiki/Sunbelt2016/ergm_tutorial.html

6.8. MARKOV INDEPENDENCE 67

6.8 Markov independence

The challenge of analyzing networks is their interdependent nature. Nonetheless, in the
absence of such interdependence, ERGMs are equivalent to logistic regression. Conceptually,
if all the statistics included in the model do not involve two or more dyads, then the model is
non-Markovian in the sense of Markov graphs.

Mathematically, to see this, it suffices to show that the ERGM probability can be written as the
product of each dyads’ probabilities.

P (y|θ) =
exp
�

θts (y)
	

∑

y exp
�

θts (y)
	 =

∏

j exp
�

θts (y)j
	

∑

y exp
�

θts (y)
	

Where s ()j is a function such that s (y) =
∑

j s (y)j. We now need to deal with the normalizing
constant. To see how that can be saparated, let’s start from the result:

=
∏

j

�

1 + exp
�

θts (y)j
	�

=
�

1 + exp
�

θts (y)11
	� �

1 + exp
�

θts (y)12
	�

. . .
�

1 + exp
�

θts (y)nn
	�

= 1 + exp
�

θts (y)11
	

+ exp
�

θts (y)11
	

exp
�

θts (y)12
	

+ · · · +
∏

j

exp
�

θts (y)j
	

= 1 + exp
�

θts (y)11
	

+ exp
�

θt
�

s (y)11 + s (y)12
�	

+ · · · +
∏

j

exp
�

θts (y)j
	

=
∑

y∈Y
exp
�

θts (y)
	

Where the last equality follows from s (y) =
∑

j s (y)j. This way, we can now write:

∏

j exp
�

θts (y)j
	

∑

y exp
�

θts (y)
	 =
∏

j

exp
�

θts (y)j
	

1 + exp
�

θts (y)j
	 (6.3)

Related to this, block-diagonal ERGMs can be estimated as independent models, one per block.
To see more about this, read (SNIJDERS 2010). Likewise, since independence depends–pun
intended–on partitioning the objective function, as pointed by Snijders, non-linear functions
make the model dependent, e.g., s (y) =

q
∑

j yj, the square root of the edgecount is no longer
a bernoulli graph.

68 CHAPTER 6. EXPONENTIAL RANDOM GRAPH MODELS

Chapter 7

Using constraints in ERGMs

Exponential Random Graph Models [ERGMs] can represent a variety of network classes. We
often look at “regular” social networks like students in schools, colleagues in the workplace,
or families. Nonetheless, some social networks we study have features that restrict how
connections can occur. Typical examples are bi-partite graphs and multilevel networks. There
are two classes of vertices in bi-partite networks, and ties can only occur between classes. On
the other hand, Multilevel networks may feature multiple classes with inter-class ties somewhat
restricted. In both cases, structural constraints exist, meaning that some configurations may
not be plausible.

Mathematically, what we are trying to do is, instead of assuming that all network configurations
are possible:

�

y ∈ Y : yj = 0,∀ = j
	

we want to go a bit further avoiding loops, namely:

�

y ∈ Y : yj = 0,∀ = j;y ∈ C
	

,

where C is a constraint, for example, only networks with no triangles. The ergm R package has
built-in capabilities to deal with some of these cases. Nonetheless, we can specify models with
arbitrary structural constraints built into the model. The key is in using offset terms.

7.1 Example 1: Interlocking egos and disconnected alters

Imagine that we have two sets of vertices. The first, group E, are egos part of an egocentric
study. The second group, called A, is composed of people mentioned by egos in E but were
not surveyed. Assume that individuals in A can only connect to individuals in E; moreover,

69

https://en.wikipedia.org/wiki/Bipartite_graph
https://cran.r-project.org/web/packages/mlergm/vignettes/mlergm_tutorial.html

70 CHAPTER 7. USING CONSTRAINTS IN ERGMS

individuals in E have no restrictions on connecting. In other words, only two types of ties exist:
E-E and A-E. The question is now, how can we enforce such a constraint in an ERGM?

Using offsets, and in particular, setting coefficients to -Inf provides an easy way to restrict the
support set of ERGMs. For example, if we wanted to constrain the support to include networks
with no triangles, we would add the term offset(triangle) and use the option offset.coef

= -Inf to indicate that realizations including triangles are not possible. Using R:

ergm(net ~ edges + offset(triangle), offset.coef = -Inf)

In this model, a Bernoulli graph, we reduce the sample space to networks with no triangles. In
our example, such a statistic should only take non-zero values whenever ties within the A class
happen. We can use the nodematch() term to do that. Formally

NodeMatch() =
∑

,j

yj1(= j)

This statistic will sum over all ties in which source () and target (j)’s X attribute is equal. One
way to make this happen is by creating an auxiliary variable that equals, e.g., 0 for all vertices
in A, and a unique value different from zero otherwise. For example, if we had 2 As and three
Es, the data would look something like this: {0,0,1,2,3}. The following code block creates an
empty graph with 50 nodes, 10 of which are in group E (ego).

library(ergm, quietly = TRUE)

library(sna, quietly = TRUE)

n <- 50

n_egos <- 10

net <- as.network(matrix(0, ncol = n, nrow = n), directed = TRUE)

Let's assing the groups

net %v% "is.ego" <- c(rep(TRUE, n_egos), rep(FALSE, n - n_egos))

net %v% "is.ego"

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE

[13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[49] FALSE FALSE

gplot(net, vertex.col = net %v% "is.ego")

7.1. EXAMPLE 1: INTERLOCKING EGOS AND DISCONNECTED ALTERS 71

To create the auxiliary variable, we will use the following function:

Function that creates an aux variable for the ergm model

make_aux_var <- function(my_net, is_ego_dummy) {

n_vertex <- length(my_net %v% is_ego_dummy)

n_ego_ <- sum(my_net %v% is_ego_dummy)

Creating an auxiliary variable to identify the non-informant non-informant ties

my_net %v% "aux_var" <- ifelse(

!my_net %v% is_ego_dummy, 0, 1:(n_vertex - n_ego_)

)

my_net

}

Calling the function in our data results in the following:

net <- make_aux_var(net, "is.ego")

Taking a look over the first 15 rows of data

cbind(

Is_Ego = net %v% "is.ego",

Aux = net %v% "aux_var"

) |> head(n = 15)

Is_Ego Aux

[1,] 1 1

[2,] 1 2

[3,] 1 3

[4,] 1 4

[5,] 1 5

72 CHAPTER 7. USING CONSTRAINTS IN ERGMS

[6,] 1 6

[7,] 1 7

[8,] 1 8

[9,] 1 9

[10,] 1 10

[11,] 0 0

[12,] 0 0

[13,] 0 0

[14,] 0 0

[15,] 0 0

We can now use this data to simulate a network in which ties between A-class vertices are not
possible:

set.seed(2828)

net_sim <- simulate(net ~ edges + nodematch("aux_var"), coef = c(-3.0, -Inf))

gplot(net_sim, vertex.col = net_sim %v% "is.ego")

As you can see, this network has only ties of the type E-E and A-E. We can double-check by (i)
looking at the counts and (ii) visualizing each induced-subgraph separately:

summary(net_sim ~ edges + nodematch("aux_var"))

edges nodematch.aux_var

49 0

net_of_alters <- get.inducedSubgraph(

net_sim, which((net_sim %v% "aux_var") == 0)

)

net_of_egos <- get.inducedSubgraph(

net_sim, which((net_sim %v% "aux_var") != 0)

)

7.1. EXAMPLE 1: INTERLOCKING EGOS AND DISCONNECTED ALTERS 73

Counts

summary(net_of_alters ~ edges + nodematch("aux_var"))

edges nodematch.aux_var

0 0

summary(net_of_egos ~ edges + nodematch("aux_var"))

edges nodematch.aux_var

1 0

Figures

op <- par(mfcol = c(1, 2))

gplot(net_of_alters, vertex.col = net_of_alters %v% "is.ego", main = "A")

gplot(net_of_egos, vertex.col = net_of_egos %v% "is.ego", main = "E")

A E

par(op)

Now, to fit an ERGM with this constraint, we simply need to make use of the offset terms. Here
is an example:

ans <- ergm(

net_sim ~ edges + offset(nodematch("aux_var")), # The model (notice the offset)

offset.coef = -Inf # The offset coefficient

)

Starting maximum pseudolikelihood estimation (MPLE):

Evaluating the predictor and response matrix.

Maximizing the pseudolikelihood.

Finished MPLE.

Stopping at the initial estimate.

Evaluating log-likelihood at the estimate.

summary(ans)

74 CHAPTER 7. USING CONSTRAINTS IN ERGMS

Call:

ergm(formula = net_sim ~ edges + offset(nodematch("aux_var")),

offset.coef = -Inf)

##

Maximum Likelihood Results:

##

Estimate Std. Error MCMC % z value Pr(>|z|)

edges -2.843 0.147 0 -19.34 <1e-04 ***
offset(nodematch.aux_var) -Inf 0.000 0 -Inf <1e-04 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Null Deviance: 1233.8 on 890 degrees of freedom

Residual Deviance: 379.4 on 888 degrees of freedom

##

AIC: 381.4 BIC: 386.2 (Smaller is better. MC Std. Err. = 0)

##

The following terms are fixed by offset and are not estimated:

offset(nodematch.aux_var)

This ERGM model–which by the way only featured dyadic-independent terms, and thus can be
reduced to a logistic regression–restricts the support by excluding all networks in which ties
within the class A exists. To finalize, let’s look at a few simulations based on this model:

set.seed(1323)

op <- par(mfcol = c(2,2), mar = rep(1, 4))

for (i in 1:4) {

gplot(simulate(ans), vertex.col = net %v% "is.ego", vertex.cex = 2)

box()

}

7.2. EXAMPLE 2: BI-PARTITE NETWORKS 75

par(op)

All networks with no ties between A nodes.

7.2 Example 2: Bi-partite networks

In the case of bipartite networks (sometimes called affiliation networks,) we can use ergm’s
terms for bipartite graphs to corroborate what we discussed here. For example, the two-star
term. Let’s start simulating a bipartite network using the edges and two-star parameters.
Since the k-star term is usually complex to fit (tends to generate degenerate models,) we will
take advantage of the Log() transformation function in the ergm package to smooth the term.1

The bipartite network that we will be simulating will have 100 actors and 50 entities. Actors,
which we will map to the first level of the ergm terms, this is, b1star b1nodematch, etc. will
send ties to the entities, the second level of the bipartite ERGM. To create a bipartite network,
we will create an empty matrix of size nactors x nentitites; thus, actors are represented by
rows and entities by columns.

1After writing this example, it became apparent the use of the Log() transformation function may not be ideal. Since
many terms used in ERGMs can be zero, e.g., triangles, the term Log(~ ostar(2)) is undefined when ostar(2) = 0.
In practice, the ERGM package sets a lower limit for the log of 0, so, instead of having Log(0) ~ -Inf, they set it to be
a really large negative number. This causes all sorts of issues to the estimates; in our example, an overestimation of
the population parameter and a positive log-likelihood. Therefore, I wouldn’t recommend using this transformation too
often.

76 CHAPTER 7. USING CONSTRAINTS IN ERGMS

Parameters for the simulation

nactors <- 100

nentities <- floor(nactors/2)

n <- nactors + nentities

Creating an empty bipartite network (baseline)

net_b <- network(

matrix(0, nrow = nactors, ncol = nentities), bipartite = TRUE

)

Simulating the bipartite ERGM,

net_b <- simulate(net_b ~ edges + Log(~b1star(2)), coef = c(-3, 1.5), seed = 55)

Let’s see what we got here:

summary(net_b ~ edges + Log(~b1star(2)))

edges Log~b1star2

245.000000 5.746203

netplot::nplot(net_b, vertex.col = (1:n <= nactors) + 1)

Notice that the first nactors vertices in the network are the actors, and the remaining are the
entities. Now, although the ergm package features bipartite network terms, we can still fit a

7.2. EXAMPLE 2: BI-PARTITE NETWORKS 77

bipartite ERGM without explicitly declaring the graph as such. In such case, the b1star(2) term
of a bipartite network is equivalent to an ostar(2) in a directed graph. Likewise, b2star(2)
in a bipartite graph matches the istar(2) term in a directed graph. This information will be
relevant when fitting the ERGM. Let’s transform the bipartite network into a directed graph.
The following code block does so:

Identifying the edges

net_not_b <- which(as.matrix(net_b) != 0, arr.ind = TRUE)

We need to offset the endpoint of the ties by nactors

so that the ids go from 1 through (nactors + nentitites)

net_not_b[,2] <- net_not_b[,2] + nactors

The resulting graph is a directed network

net_not_b <- network(net_not_b, directed = TRUE)

Now we are almost done. As before, we need to use node-level covariates to put the constraints
in our model. For this ERGM to reflect an ERGM on a bipartite network, we need two constraints:

1. Only ties from actors to entities are allowed, and
2. entities can only receive ties.

The corresponding offset terms for this model are: nodematch("is.actor") ~ -Inf, and
nodeocov("isnot.actor") ~ -Inf. Mathematically:

NodeMatch(x = "is.actor") =
∑

<j

yj1
�

 = j
�

NodeOCov(x = "isnot.actor") =
∑

 ×
∑

j<

yj

In other words, we are setting that ties between nodes of the same class are forbidden, and
outgoing ties are forbidden for entities. Let’s create the vertex attributes needed to use the
aforementioned terms:

net_not_b %v% "is.actor" <- as.integer(1:n <= nactors)

net_not_b %v% "isnot.actor" <- as.integer(1:n > nactors)

Finally, to make sure we have done all well, let’s look how both networks–bipartite and unimodal–
look side by side:

First, let's get the layout

fig <- netplot::nplot(net_b, vertex.col = (1:n <= nactors) + 1)

gridExtra::grid.arrange(

fig,

netplot::nplot(

net_not_b, vertex.col = (1:n <= nactors) + 1,

78 CHAPTER 7. USING CONSTRAINTS IN ERGMS

layout = fig$.layout

),

ncol = 2, nrow = 1

)

Looking at the counts

summary(net_b ~ edges + b1star(2) + b2star(2))

edges b1star2 b2star2

245 313 645

summary(net_not_b ~ edges + ostar(2) + istar(2))

edges ostar2 istar2

245 313 645

With the two networks matching, we can now fit the ERGMs with and without offset terms and
compare the results between the two models:

ERGM with a bipartite graph

res_b <- ergm(

Main formula

net_b ~ edges + Log(~b1star(2)),

Control parameters

control = control.ergm(seed = 1)

)

Warning: 'glpk' selected as the solver, but package 'Rglpk' is not available;

falling back to 'lpSolveAPI'. This should be fine unless the sample size and/or

the number of parameters is very big.

ERGM with a digraph with constraints

res_not_b <- ergm(

Main formula

net_not_b ~ edges + Log(~ostar(2)) +

7.2. EXAMPLE 2: BI-PARTITE NETWORKS 79

Offset terms

offset(nodematch("is.actor")) + offset(nodeocov("isnot.actor")),

offset.coef = c(-Inf, -Inf),

Control parameters

control = control.ergm(seed = 1)

)

Here are the estimates (using the texreg R package for a prettier output):

texreg::screenreg(list(Bipartite = res_b, Directed = res_not_b))

##

==

Bipartite Directed

--

edges -3.14 *** -3.11 ***
(0.15) (0.14)

Log~b1star2 21.89

(17.13)

Log~ostar2 19.66

(16.75)

offset(nodematch.is.actor) -Inf

##

offset(nodeocov.isnot.actor) -Inf

##

--

AIC 1958.00 -2134192392498170112.00

BIC 1971.03 -2134192392498170112.00

Log Likelihood -977.00 1067096196249085056.00

==

*** p < 0.001; ** p < 0.01; * p < 0.05

As expected, both models yield the “same” estimate. The minor differences observed between
the models are how the ergm package performs the sampling. In particular, in the bipartite case,
ergm has special routines for making the sampling more efficient, having a higher acceptance
rate than that of the model in which the bipartite graph was not explicitly declared. We can tell
this by inspecting rejection rates:

data.frame(

Bipartite = coda::rejectionRate(res_b$sample[[1]]) * 100,

Directed = coda::rejectionRate(res_not_b$sample[[1]][, -c(3,4)]) * 100

) |> knitr::kable(digits = 2, caption = "Rejection rate (percent)")

The ERGM fitted with the offset terms has a much higher rejection rate than that of the ERGM

80 CHAPTER 7. USING CONSTRAINTS IN ERGMS

Table 7.1: Rejection rate (percent)

Bipartite Directed
edges 2.48 3.67
Log~b1star2 1.24 2.04

fitted with the bipartite ERGM.

Finally, the fact that we can fit ERGMs using offset does not mean that we need to use it
ALL the time. Unless there is a very good reason to go around ergm’s capabilities, I wouldn’t
recommend fitting bipartite ERGMs as we just did, as the authors of the package have included
(MANY) features to make our job easier.

Chapter 8

(Separable) Temporal Exponential

Family Random Graph Models

This tutorial is great! https://statnet.org/trac/raw-attachment/wiki/Sunbelt2016/

tergm_tutorial.pdf

81

https://statnet.org/trac/raw-attachment/wiki/Sunbelt2016/tergm_tutorial.pdf
https://statnet.org/trac/raw-attachment/wiki/Sunbelt2016/tergm_tutorial.pdf

82 CHAPTER 8. (SEPARABLE) TEMPORAL EXPONENTIAL FAMILY RANDOM GRAPH MODELS

Chapter 9

Simulating and visualizing

networks

In this chapter, we will build and visualize artificial networks using Exponential Random Graph
Models [ERGMs.] Together with chapter 3, this will be an extended example of how to read
network data and visualize it using some of the available R packages out there.

For this chapter, we will be using the following R packages:

• ergm: To simulate and estimate ERGMs.
• sna: To visualize networks.
• igraph: Also to visualize networks.
• intergraph: To convert between igraph and network objects.
• netplot: Again, for visualization.
• netdiffuseR: For a single function we use for adjusting vertex size in igraph.
• rgexf: For building interactive (html) figures.

You can use the following codeblock to install any missing package:

Creating the list to install

pkgs <- c(

"ergm", "sna", "igraph", "intergraph", "netplot", "netdiffuseR", "rgexf"

)

Checking if we can load them and install them if not available

for (pkg in pkgs) {

if (!require(pkg, character.only = TRUE)) {

If not present, will install it

install.packages(pkg, character.only = TRUE)

And load it!

83

84 CHAPTER 9. SIMULATING AND VISUALIZING NETWORKS

library(pkg, character.only = TRUE)

}

}

A recorded version is available here.

9.1 Random Graph Models

While there are tons of social network data, we will use an artificial one for this chapter. We
do this as it is always helpful to have more examples simulating Random networks. For this
chapter, we will classify random graph models for sampling and generating networks into three
categories:

1. Exogenous: Graphs where the structure is determined by a macro rule, e.g., expected
density, degree distribution, or degree-sequence. In these cases, ties are assigned to
comply with a macro-property.

2. Endogenous: This category includes all Random Graphs generated based on endogenous
information, e.g., small-world, scale-free, etc. Here, a tie creation rule gives origin to a
macro property, for example, preferential attachment in scale-free networks.

3. Exponential Random Graph Models: Overall, since ERGMs compose a family of statis-
tical models, we can always (or almost always) find a model specification that matches
the previous categories. Whereas we are thinking about degree sequence, preferential
attachment, or a mix of both, ERGMs can be the baseline for any of those models.

The latter, ERGMs, are a generalization that covers all classes. Because of that, we will use
ERGMs to generate our artificial network.

9.2 Social Networks in Schools

A common type of network we analyze is friendship networks. In this case, we will use ERGMs
to simulate friendship networks within a school. In our simulated world, these networks will be
dominated by the following phenomena

• Low density,
• Race homophily,
• Structural balance,
• And age homophily.

If you have been paying attention to the previous chapters, you will notice that, out of these
five properties, only one constitutes Markov graphs. Within a tie, homophily and density only
depend on ego and alter. In race homophily, only ego and alter’s race matter for the tie
formation, but, in the case of Structural balance, ego is more likely to befriend alter if a fried of
ego is friends with alter, i.e., “the friend of my friend is my friend.”

https://youtu.be/VasQf--gT-E

9.2. SOCIAL NETWORKS IN SCHOOLS 85

The simulation steps are as follows:

1. Draw a population of n students and randomly distribute race and age across them.

2. Create a network object.

3. Simulate the ties in the empty network.

Here is the code

set.seed(712)

n <- 200

Step 1: Students

race <- sample(c("white", "non-white"), n, replace = TRUE)

age <- sample(c(10, 14, 17), n, replace = TRUE)

Step 2: Create an empty network

library(ergm)

library(network)

net <- network.initialize(n)

net %v% "race" <- race

net %v% "age" <- age

Step 3: Simulate a graph

net_sim <- simulate(

net ~ edges +

nodematch("race") +

ttriad +

absdiff("age"),

coef = c(-4, .5, .25, -.5)

)

What just happened? Here is a line-by-line breakout:

1. set.seed(712) Since this is a random simulation, we need to fix a seed so it is reproducible.
Otherwise, results would change with every iteration.

2. n <- 200 We are assigning the value 200 to the object n. This will make things easier as,
if needed, changing the size of the networks can be done at the top of the code.

3. race <- sample(c("white", "non-white"), n, replace = TRUE) We are sampling
200, or actually, n values from the vector c("white", "non-white") with replacement.

4. age <- sample(c(10, 14, 17), n, replace = TRUE) Same as before, but with ages!

5. library(ergm) Loading the ergm R package, which we need to simulate the networks!

6. library(network) Loading the network R package, which we need to create the empty

86 CHAPTER 9. SIMULATING AND VISUALIZING NETWORKS

graph.

7. net <- network.initialize(n) Creating an empty graph of size n.

8. net %v% "race" <- race Using the %v% operator, we can access vertices features in the
network object. Since race does not exist in the network yet, the operator just creates it.
Notice that the number of vertices matches the length of the race vector.

9. net %v% "age" <- age Same as with race!

10. net_sim <- simulate(Simulating an ERGM! A couple of observations here:

a. The LHS (left-hand-side) of the equation has the network, net

b. The RHS (you guessed it) has the terms that govern the process.

c. For low density, we used the edges term with a corresponding -4.0 for the parameter.

d. For race homophily, we used the nodematch("race") with a corresponding 0.5 pa-
rameter value.

e. For structural balance, we use the ttriad term with parameter 0.25.

f. For age homophily, we use the absdiff("age") term with parameter -0.5. This is,
in rigor, a term capturing heterophily. Nonetheless, heterophily is the opposite of
homophily.

Let’s take a quick look at the resulting graph

library(sna)

gplot(net_sim)

We can now start to see whether we got what we wanted! Before that, let’s save the network
as a plain-text file so we can practice reading networks back in R!

write.csv(

x = as.edgelist(net_sim),

file = "06-edgelist.csv",

row.names = FALSE

9.3. READING A NETWORK 87

)

write.csv(

x = as.data.frame(net_sim, unit = "vertices"),

file = "06-nodes.csv",

row.names = FALSE

)

9.3 Reading a network

The first step to analyzing network data is to read it in. Many times you’ll find data in the
form of an adjacency matrix. Other times, data will come in the form of an edgelist. Another
common format is the adjacency list, which is a compressed version of an edgelist. Let’s see
how the formats look like for the following network:

example_graph <- matrix(0L, 4, 4, dimnames = list(letters[1:4], letters[1:4]))

example_graph[c(2, 7)] <- 1L

example_graph["c", "d"] <- 1L

example_graph["d", "c"] <- 1L

example_graph <- as.network(example_graph)

set.seed(1231)

gplot(example_graph, label = letters[1:4])

a

b
c

d

• Adjacency matrix a matrix of size n by n where the j-th entry represents the tie between
 and j. In a directed network, we say connects to j, so the -th row shows the ties sends
to the rest of the network. Likewise, in a directed graph, the j-th column shows the ties
sent to j. For undirected graphs, the adjacency matrix is usually upper or lower diagonal.
The adjacency matrix of an undirected graph is symmetric, so we don’t need to report the
same information twice. For example:

as.matrix(example_graph)

a b c d

a 0 0 0 0

b 1 0 0 0

c 0 1 0 1

88 CHAPTER 9. SIMULATING AND VISUALIZING NETWORKS

d 0 0 1 0

• Edge list a matrix of size |E| by 2, where |E| is the number of edges. Each entry represents
a tie in the graph.

as.edgelist(example_graph)

[,1] [,2]

[1,] 2 1

[2,] 3 2

[3,] 3 4

[4,] 4 3

attr(,"n")

[1] 4

attr(,"vnames")

[1] "a" "b" "c" "d"

attr(,"directed")

[1] TRUE

attr(,"bipartite")

[1] FALSE

attr(,"loops")

[1] FALSE

attr(,"class")

[1] "matrix_edgelist" "edgelist" "matrix" "array"

The command turns the network object into a matrix with a set of attributes (which are also
printed.)

• Adjacency list This data format uses less space than edgelists as ties are grouped by
ego (source.)

igraph::as_adj_list(intergraph::asIgraph(example_graph))

[[1]]

+ 1/4 vertex, from 474eb42:

[1] 2

##

[[2]]

+ 2/4 vertices, from 474eb42:

[1] 1 3

##

[[3]]

+ 3/4 vertices, from 474eb42:

[1] 2 4 4

##

[[4]]

+ 2/4 vertices, from 474eb42:

9.3. READING A NETWORK 89

[1] 3 3

The function igraph::as_adj_list turns the igraph object into a list of type adjacency list. In
plain text it would look something like this:

2

1 3

2 4 4

3 3

Here we will deal with an edgelist that includes node information. In my opinion, this is one of
the best ways to share network data. Let’s read the data into R using the function read.csv:

edges <- read.csv("06-edgelist.csv")

nodes <- read.csv("06-nodes.csv")

We now have two objects of class data.frame, edges and nodes. Let’s inspect them using the
head function:

head(edges)

V1 V2

1 2 7

2 2 41

3 3 5

4 3 16

5 4 138

6 5 9

head(nodes)

vertex.names race age

1 1 non-white 10

2 2 white 10

3 3 white 17

4 4 non-white 14

5 5 non-white 17

6 6 non-white 14

It is always important to look at the data before creating the network. Most common errors
happen before reading the data in and could go undetected in many cases. A few examples:

• Headers in the file could be treated as data, or the files may not have headers.

• Ego/alter columns may show in the wrong order. Both the igraph and network packages
take the first and second columns of edgelists as ego and alter.

• Isolates, which wouldn’t show in the edgelist, may be missing from the node information
set. This is one of the most common errors.

• Nodes showing in the edgelist may be missing from the nodelist.

90 CHAPTER 9. SIMULATING AND VISUALIZING NETWORKS

Both igraph and network have functions to read edgelist with a corresponding nodelist; the
functions graph_from_data_frame and as.nework, respectively. Although , for both cases,
you can avoid using a nodelist, it is highly recommended as then you will (a) make sure that
isolates are included and (b) become aware of possible problems in the data. A frequent error
in graph_from_data_frame is nodes present in the edgelist but not in the set of nodes.

net_ig <- igraph::graph_from_data_frame(

d = edges,

directed = TRUE,

vertices = nodes

)

Using as.network from the network package:

net_net <- network::as.network(

x = edges,

directed = TRUE,

vertices = nodes

)

As you can see, both syntaxes are very similar. The main point here is that the more explicit we
are, the better. Nevertheless, R can be brilliant; being shy, i.e., not throwing warnings or errors,
is not uncommon. In the next section, we will finally start visualizing the data.

9.4 Visualizing the network

We will focus on three different attributes that we can use for this visualization: Node size, node
shape, and node color. While there are no particular rules, some ideas you can follow are:

• Node size Use it to describe a continuous measurement. This feature is often used to
highlight important nodes, e.g., using one of the many available degree measurements.

• Node shape Shapes can be used to represent categorical values. A good figure will not
feature too many of them; less than four would make sense.

• Node color Like shapes, colors can be used to represent categorical values, so the same
idea applies. Furthermore, it is not crazy to use both shape and color to represent the
same feature.

Notice that we have not talked about layout algorithms. The R packages to build graphs usually
have internal rules to decide what algorithm to use. We will discuss that later on. Let’s start by
size.

9.4.1 Vertex size

Finding the right scale can be somewhat difficult. We will draw the graph four times to see what
size would be the best:

9.4. VISUALIZING THE NETWORK 91

Sized by indegree

net_sim %v% "indeg" <- sna::degree(net_sim, cmode = "indegree")

Changing device config

op <- par(mfrow = c(2, 2), mai = c(.1, .1, .1, .1))

Plotting

glayout <- gplot(net_sim, vertex.cex = (net_sim %v% "indeg") * 2)

gplot(net_sim, vertex.cex = net_sim %v% "indeg", coord = glayout)

gplot(net_sim, vertex.cex = (net_sim %v% "indeg")/2, coord = glayout)

gplot(net_sim, vertex.cex = (net_sim %v% "indeg")/10, coord = glayout)

Restoring device config

par(op)

Line-by-line we did the following:

1. net_sim %v% "indeg" <- degree(net_sim, cmode = "indegree") Created a new ver-
tex attribute called indegree and assigned it to the network object. The indegree is calcu-
lated using the degree function from the sna package. Since igraph also has a degree

function, we are making sure that R uses sna’s and not igraph’s. The package::function

notation is useful for these cases.

2. op <- par(mfrow = c(2, 2), mai = c(.1, .1, .1, .1)) This changes the graphical

92 CHAPTER 9. SIMULATING AND VISUALIZING NETWORKS

device information to (a) mfrow = c(2,2) have a 2x2 grid by row, meaning that new
figures will be added left to right and then top to bottom, and (b) set the margins in the
figure to be 0.1 inches in all four sizes.

3. glayout <- gplot(net_sim, vertex.cex = (net_sim %v% "indeg") * 2) generat-
ing the plot and recording the layout. The gplot function returns a matrix of size #

vertices by 2 with the positions of the vertices. We are also passing the vertex.cex

argument, which we use to specify the size of each vertex. In our case, we decided to size
the vertices proportional to their indegree times two.

4. gplot(net_sim, vertex.cex = net_sim %v% "indeg", coord = glayout), again, we
are drawing the graph using the coordinates of the previous draw, but now the vertices
are half the size of the original figure.

The other two calls are similar to four. If we used igraph, setting the size can be more accessible
thanks to the netdiffuseR R package. Let’s start by converting our network to an igraph object
with the R package intergraph.

library(intergraph)

library(igraph)

Converting the network object to an igraph object

net_sim_i <- asIgraph(net_sim)

Plotting with igraph

plot(

net_sim_i,

vertex.size = netdiffuseR::rescale_vertex_igraph(

vertex.size = V(net_sim_i)$indeg,

minmax.relative.size = c(.01, .1)

),

layout = glayout,

vertex.label = NA

)

9.4. VISUALIZING THE NETWORK 93

We could also have tried netplot, which should make things easier and make a better use of the
space:

library(netplot)

nplot(

net_sim, layout = glayout,

vertex.color = "tomato",

vertex.frame.color = "darkred"

)

With a good idea for size, we can now start looking into vertex color.

94 CHAPTER 9. SIMULATING AND VISUALIZING NETWORKS

9.4.2 Vertex color

For the color, we will use vertex age. Although age is, by definition, continuous, we only
have three values for age. Because of this, we can treat age as categorical. Instead of using
nplot we will go ahead with nplot_base. As of this version of the book, the netplot package
does not have an easy way to add legends with the core function, nplot; therefore, we use
nplot_base which is compatible with the R function legend, as we will now see:

Specifying colors for each vertex

vcolors_palette <- c("10" = "gray", "14" = "tomato", "17" = "steelblue")

vcolors <- vcolors_palette[as.character(net_sim %v% "age")]

net_sim %v% "color" <- vcolors

Plotting

nplot_base(

net_ig,

layout = glayout,

vertex.color = net_sim %v% "color",

)

Color legend

legend(

"bottomright",

legend = names(vcolors_palette),

fill = vcolors_palette,

bty = "n",

title = "Age"

)

9.4. VISUALIZING THE NETWORK 95

Age

10

14

17

Line by line, this is what we just did:

1. vcolors <- c("10" = "gray", "14" = "tomato", "17" = "steelblue") we created
a character vector with three elements, "gray", "tomato", and "blue". Furthermore, the
vector has names assigned to it, "10", "14", and "17"– the ages we have in the network–
so that we can access its elements by indexing by name, e.g., if we type vcolors["10"]

R returns the value "gray".

2. vcolors <- vcolors[as.character(net_sim %v% "age")] there are several things go-
ing on in this line. First, we extract the attribute “age” from the network using the %v%

operator. We then transform the resulting vector from integer type to a character type
with the function as.character. Finally, using the resulting character vector with values
"10", "14", "17", ..., we retrieve values from vcolors name-indexing. The resulting
vector is of length equal to the vertex count in the network.

3. net_sim %v% "color" <- vcolors creates a new vertex attribute, color. The assigned
value is the result from subsetting vcolors by the ages of each vertex.

4. nplot_base(... finally draws the network. We pass the previously computed vertex
coordinates and vertex colors with the new attribute color.

5. legend(...) Let’s see one parameter at a time:

a. "bottomright" tells the overall position of the legend

b. legend = names(vcolors) passes the actual legend (text); in our case the ages of

96 CHAPTER 9. SIMULATING AND VISUALIZING NETWORKS

individuals.

c. fill = vcolors passes the colors associated with the text.

d. bty = "n" suppresses wrapping the legend within a box.

e. title = "Age" sets the title to be “Age”.

9.4.3 Vertex shape

For the color, we will use vertex age. Although age is, by definition, continuous, we only have
three values for age. Because of this, we can treat age as categorical.

Specifying the shapes for each vertex

vshape_list <- c("white" = 15, "non-white" = 3)

vshape <- vshape_list[as.character(net_sim %v% "race")]

net_sim %v% "shape" <- vshape

Plotting

nplot_base(

net_ig,

layout = glayout,

vertex.color = net_sim %v% "color",

vertex.nsides = net_sim %v% "shape"

)

Color legend

legend(

"bottomright",

legend = names(vcolors_palette),

fill = vcolors_palette,

bty = "n",

title = "Age"

)

Shape legend

legend(

"bottomleft",

legend = names(vshape_list),

pch = c(1, 2),

bty = "n",

title = "Race"

)

9.4. VISUALIZING THE NETWORK 97

Age

10

14

17

Race

white

non−white

Let’s now compare the figure to our original ERGM:

1. Low density (edges) Without low density, the figure would be a hairball.

2. Race homophily (nodematch("race")) Although not surprisingly evident, nodes tend to
form small clusters by shape, which, in our model, represents race.

3. Structural balance (ttriad) A force, in this case, opposite to low density, higher
prevalence of transitive triads makes individuals cluster.

4. Age homophily (absdiff("age")) This is the most prominent feature of the graph. In it,
nodes are clustered by age.

Of the four features, age homophily is the one that stands out. Why is this tha case? If we
look again at the parameters used in the ERGM and how these interact with vertices’ attributes,
we will find the answer:

• The log-odds of a new race-homophilic tie are 1 × θrace-homophily = 0.5.

• But, the log-odd of an age heterophilic tie between, say, 14 and 17 year olds is |17 −
14|θage-homophily = 3 × −0.5 = −1.5.

• Therefore, the effect of heterophily (which is just the opposite of homophily) is significantly
larger, actually three times in this case, than the race-homophily effect.

This observation becomes clear if we run another simulation with the same seed, but adjusting
for the maximum size the effect of age-homophily can take. A quick-n-dirty way to achieve this

98 CHAPTER 9. SIMULATING AND VISUALIZING NETWORKS

is to re-run the simulation with the nodematch term instead of the absdiff term. This way, we
(a) explicitly operationalize the term as homophily (before it was heterophily,) and (b) have
both homophily effects have the same influence in the model:

net_sim2 <- simulate(

net ~ edges +

nodematch("race") +

ttriad +

nodematch("age"),

coef = c(-5, .5, .25, .5) # This line changed

)

Re-doing the plot. From the previous graph-drawing, only the graph structure changed. The
vertex attributes are the same so we can go ahead and re-use them. Like I mentioned earlier, the
nplot_base function currently supports igraph objects, so we will use intergraph::asIgraph

to make it work:

Plotting

nplot_base(

asIgraph(net_sim2),

We comment this out to allow for a new layout

layout = glayout,

vertex.color = net_sim %v% "color",

vertex.nsides = net_sim %v% "shape"

)

Color legend

legend(

"bottomright",

legend = names(vcolors_palette),

fill = vcolors_palette,

bty = "n",

title = "Age"

)

Shape legend

legend(

"bottomleft",

legend = names(vshape_list),

pch = c(1, 2),

bty = "n",

title = "Race"

)

9.4. VISUALIZING THE NETWORK 99

Age

10

14

17

Race

white

non−white

As expected, there is no longer a dominant effect in homophily. One important thing we can
learn from this final example is that phenomena will not always show themselves in graph
visualization. Careful analysis in complex networks is a must.

100 CHAPTER 9. SIMULATING AND VISUALIZING NETWORKS

Chapter 10

Egocentric networks

In egocentric social network analysis (ESNA, for our book,) instead of dealing with a single
network, we have as many networks as participants in the study. Egos–the main study subjects–
are analyzed from the perspective of their local social network. For a more extended view of
ESNA, look at Raffaele Vacca’s “Egocentric network analysis with R”.

In this chapter, I show how to work with one particular type of ESNA data: information generated
by the tool Network Canvas. You can download an “artificial” ZIP file containing the outputs
from a Network Canvas project here1. During the entire chapter, we assume that the ZIP
file was extracted to the path data-raw/egonets. You can go ahead and extract the ZIP by
point-and-click, or use the following R code to automate the process:

[1] FALSE

unzip(

zipfile = "data-raw/networkCanvasExport-fake.zip",

exdir = "data-raw/egonets"

)

This will extract all the files in networkCanvasExport-fake.zip to the subfolder egonets. Let’s
take a look at the first few files:

head(list.files(path = "data-raw/egonets"))

[1] "I_-59190_BRB9111_attributeList_Person.csv"

[2] "I_-59190_BRB9111_edgeList_Knows.csv"

[3] "I_-59190_BRB9111_ego.csv"

[4] "I_-59190_BRB9111.graphml"

[5] "I-100BB_00B95-90_attributeList_Person.csv"

[6] "I-100BB_00B95-90_edgeList_Knows.csv"

As you can see, for each ego in the dataset there are four files:

1I thank Jaqueline Kent-Marvick who provided me with what I used as a baseline to generate the artificial Network
Canvas export.

101

data-raw/networkCanvasExport-fake.zip

102 CHAPTER 10. EGOCENTRIC NETWORKS

• ...attributeList_Person.csv: Attributes of the alters.

• ...edgeList_Knows.csv: Edgelist indicating the ties between the alters.

• ...ego.csv: Information about the egos.

• ...graphml: And a graphml file that contains the egonets.

The next sections will illustrate, file by file, how to read the information into R, apply any
required processing, and store the information for later use. We start with the graphml files.

10.1 Network files (graphml)

The graphml files can be read directly with igraph’s read_graph function. The key is to take
advantage of R’s lists to avoid writing over and over the same block of code, and instead,
manage the data through lists.

Just like any data-reading function, read_graph function requires a file path to the network file.
The function we will use to list the required files is list.files():

We start by loading igraph

library(igraph)

Listing all the graphml files

graph_files <- list.files(

path = "data-raw/egonets", # Where are these files

pattern = "*.graphml", # Specify a pattern for only listing graphml

full.names = TRUE # And we make sure we use the full name

(path.) Otherwise, we would only get names.

)

Taking a look at the first three files we got

graph_files[1:3]

[1] "data-raw/egonets/I_-59190_BRB9111.graphml"

[2] "data-raw/egonets/I-100BB_00B95-90.graphml"

[3] "data-raw/egonets/I-1BB79950-0-7.graphml"

Applying igraph's read_graph

graphs <- lapply(

X = graph_files, # List of files to read

FUN = read_graph, # The function to apply

format = "graphml" # Argument passed to read_graph

)

If the operation succeeded, then the previous code block should generate a list of igraph
objects named graphs. Let’s take a peek at the first two:

10.1. NETWORK FILES (GRAPHML) 103

graphs[[1]]

IGRAPH c660b76 U--- 12 25 --

+ attr: age (v/n), healthy_diet (v/n), gender_1 (v/l), eat_with_2

| (v/l), id (v/c)

+ edges from c660b76:

[1] 1-- 3 1-- 2 1-- 6 1-- 5 1-- 4 1-- 8 1--11 1--10 2-- 3 3-- 7 3-- 4 3-- 5

[13] 3-- 6 2-- 7 2-- 4 2-- 5 2-- 6 5-- 6 6--10 7-- 9 4-- 5 5-- 7 4--11 6-- 7

[25] 4-- 7

graphs[[2]]

IGRAPH 6726e83 U--- 16 47 --

+ attr: age (v/n), healthy_diet (v/n), gender_1 (v/l), eat_with_2

| (v/l), id (v/c)

+ edges from 6726e83:

[1] 7--13 1-- 5 1-- 6 1-- 4 1-- 2 7--15 1-- 3 11--13 1--10 1--16

[11] 4-- 6 2-- 6 6-- 7 1--11 11--15 6-- 9 6-- 8 3-- 9 5--15 4-- 5

[21] 2-- 5 5-- 8 5-- 7 5--10 3-- 5 6--14 12--13 6--13 3--13 2-- 3

[31] 3-- 4 3--16 3--11 10--14 7--14 2-- 4 2--10 2--15 10--12 4-- 7

[41] 6--10 5--11 9--10 1-- 9 1--12 3--12 4--14

As always, one of the first things we do with networks is visualize them. We will use the netplot

R package (by yours truly) to draw the figures:

library(netplot)

library(gridExtra)

Graph layout is random

set.seed(1231)

The grid.arrange allows putting multiple netplot graphs into the same page

grid.arrange(

nplot(graphs[[1]]),

nplot(graphs[[2]]),

nplot(graphs[[3]]),

nplot(graphs[[4]]),

ncol = 2, nrow = 2

)

104 CHAPTER 10. EGOCENTRIC NETWORKS

Great! Since nodes in our network have features, we can add a little bit of color. We will use
the eat_with_2 variable, which is coded as TRUE or FALSE. Vertex colors can be specified using
the vertex.color argument of the nplot function. In our case, we will specify colors passing
a vector of length equal to the number of nodes in the graph. Furthermore, since we will be
doing this multiple times, it is worthwhile writing a function:

A function to color by the eat with variable

color_it <- function(net) {

Coding eat_with_2 to be 1 (FALSE) or 2 (TRUE)

eatswith <- V(net)$eat_with_2

Subsetting the color

ifelse(eatswith, "purple", "darkgreen")

}

This function takes two arguments: a network and a vector of two colors. Vertex attributes in
igraph can be accessed through the V(...)$... function. For this example, to access the
attribute eat_with_2 in the network net, we type V(net)$eat_with_2. Finally, individuals who
have eat_with_2 equal to true will be colored purple, otherwise, if equal to FALSE, will be
colored darkgreen. Before plotting the networks, let’s see what we get when we access the

10.1. NETWORK FILES (GRAPHML) 105

eat_with_2 attribute in the first graph:

V(graphs[[1]])$eat_with_2

[1] TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE

A logical vector. Now let’s redraw the figures:

grid.arrange(

nplot(graphs[[1]], vertex.color = color_it(graphs[[1]])),

nplot(graphs[[2]], vertex.color = color_it(graphs[[2]])),

nplot(graphs[[3]], vertex.color = color_it(graphs[[3]])),

nplot(graphs[[4]], vertex.color = color_it(graphs[[4]])),

ncol = 2, nrow = 2

)

Since most of the time, we will be dealing with a large number of egonets, you may want
to draw each network independently; the following code-block does exactly that. First, if
needed, will create a folder to store the networks. Then, using the lapply function, it
will use netplot::nplot() to draw the networks, add a legend, and save the graph as
.../graphml_[number].png, where [number] will go from 01 to the total number of networks
in graphs.

if (!dir.exists("egonets/figs/egonets"))

dir.create("egonets/figs/egonets", recursive = TRUE)

106 CHAPTER 10. EGOCENTRIC NETWORKS

lapply(seq_along(graphs), function(i) {

Creating the device

png(sprintf("egonets/figs/egonets/graphml_%02i.png", i))

Drawing the plot

p <- nplot(

graphs[[i]],

vertex.color = color_it(graphs[[i]])

)

Adding a legend

p <- nplot_legend(

p,

labels = c("eats with: FALSE", "eats with: TRUE"),

pch = 21,

packgrob.args = list(side = "bottom"),

gp = gpar(

fill = c("darkgreen", "purple")

),

ncol = 2

)

print(p)

Closing the device

dev.off()

})

10.2 Person files

Like before, we list the files ending in Person.csv (with the full path,) and read them into
R. While R has the function read.csv, here I use the function fread from the data.table

R package. Alongside dplyr, data.table is one of the most popular data-wrangling tools
in R. Besides syntax, the biggest difference between the two is performance; data.table is
significantly faster than any other data management package in R, and is a great alternative
for handling large datasets. The following code block loads the package, lists the files, and
reads them into R.

Loading data.table

library(data.table)

10.2. PERSON FILES 107

Listing the files

person_files <- list.files(

path = "data-raw/egonets",

pattern = "*Person.csv",

full.names = TRUE

)

Loading all into a single list

persons <- lapply(person_files, fread)

Looking into the first element

persons[[1]]

nodeID age

1: 1 45

2: 2 32

3: 3 31

4: 4 45

5: 5 43

6: 6 47

7: 7 45

8: 8 62

9: 9 28

10: 10 41

11: 11 41

12: 12 46

13: 13 46

14: 14 46

15: 15 62

16: 16 41

A common task is adding an identifier to each dataset in persons so we know from to which
ego they belong. Again, the lapply function is our friend:

persons <- lapply(seq_along(persons), function(i) {

persons[[i]][, dataset_num := i]

})

In data.table, variables are created using the := symbol. The previous code chunk is equiva-
lent to this:

for (i in 1:length(persons)) {

persons[[i]]$dataset_num <- i

}

If needed, we can transform the list persons into a data.table object (i.e., a single

108 CHAPTER 10. EGOCENTRIC NETWORKS

data.frame) using the rbindlist function2. The next code block uses that function to
combine the data.tables into a single dataset.

Combining the datasets

persons <- rbindlist(persons)

persons

nodeID age dataset_num

1: 1 45 1

2: 2 32 1

3: 3 31 1

4: 4 45 1

5: 5 43 1

271: 7 43 19

272: 8 48 19

273: 9 70 19

274: 10 46 19

275: 11 50 19

Now that we have a single dataset, we can do some data exploration. For example, we can use
the package ggplot2 to draw a histogram of alters’ ages.

Loading the ggplot2 package

library(ggplot2)

Histogram of age

ggplot(persons, aes(x = age)) + # Starting off the plot

geom_histogram(fill = "purple") + # Adding a histogram

labs(x = "Age", y = "Frequency") + # Changing the x/y axis labels

labs(title = "Alter's Age Distribution") # Adding a title

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

2Although not the same, rbindlist (almost always) yields the same result as calling the function do.call. In
particular, instead of executing the call rbindlist(persons), we could have used do.call(rbind, persons).

10.3. EGO FILES 109

0

10

20

30

40

50

20 30 40 50 60 70
Age

F
re

qu
en

cy
Alter's Age Distribution

10.3 Ego files

The ego files contain information about egos (duh!.) Again, we will read them all at once using
list.files + lapply:

Listing files ending with *ego.csv

ego_files <- list.files(

path = "data-raw/egonets",

pattern = "*ego.csv",

full.names = TRUE

)

Reading the files with fread

egos <- lapply(ego_files, fread)

Combining them

egos <- rbindlist(egos)

head(egos)

networkCanvasEgoUUID networkCanvasCaseID

1: I-11ca3a78c-62f131f37169-c139217a1f6 I_-59190_BRB9111

2: I-fef-ab-4-5a--7-35c4f23-96eb32-34ea I-100BB_00B95-90

110 CHAPTER 10. EGOCENTRIC NETWORKS

3: I2f1bd0b6d-f71f4664cf-d-26-97408f22d I-1BB79950-0-7

4: Id36bb-3b2bcbd2a6239b1103134c6b3d1d6 I000091I_RB010B5

5: I436d32fc67fb5c6-23-244f353849b120cd I019051R0_RRR0-0

6: Ibf1f-2-34162bb5f2c36b8241--316a-fff I01B11-I1101_44R

networkCanvasSessionID

1: I612b7a1af---0880b-70698204-b-8dbf09

2: If5e0-f-26cbec070760f-e6b6d26ebfb06f

3: I825c293a1304-e5-cbea8a80aae05b305fa

4: I1b8a7d0f6b4-8298c9-848-9186d68a7f3c

5: Ie620be37b75983c49ac63-38-425227c959

6: Ie3-134323ed40-0e-d954b3d-febbcb9363

networkCanvasProtocolName sessionStart

1: Postpartum social networks with sociogram_V5 2023-02-22 23:41:59

2: Postpartum social networks with sociogram_V5 2023-02-10 21:46:02

3: Postpartum social networks with sociogram_V5 2023-03-01 16:52:09

4: Postpartum social networks with sociogram_V5 2023-01-26 20:38:07

5: Postpartum social networks with sociogram_V5 2023-02-06 14:55:57

6: Postpartum social networks with sociogram_V5 2023-03-16 18:20:02

sessionFinish sessionExported

1: 2023-02-23 01:47:00 2023-02-23 01:47:08

2: 2023-02-11 01:29:32 2023-02-11 01:34:12

3: 2023-03-02 16:51:20 2023-03-02 17:04:42

4: 2023-01-26 22:03:20 2023-01-26 22:03:34

5: 2023-02-06 15:49:38 2023-02-06 15:56:42

6: 2023-03-17 21:11:09 2023-03-17 21:16:15

A cool thing about data.table is that, within square brackets, we can manipulate the data
referring to the variables directly. For example, if we wanted to calculate the difference between
sessionFinish and sessionStart, using base R we would do the following:

egos$total_time <- egos$sessionFinish - egos$sessionStart

Whereas with data.table, variable creation is much more straightforward (notice that instead
of using <- or = to assign a variable, we use the := operator):

How much time?

egos[, total_time := sessionFinish - sessionStart]

We can also visualize this using ggplot2:

ggplot(egos, aes(x = total_time)) +

geom_histogram() +

labs(x = "Time in minutes", y = "Count") +

labs(title = "Total time spent by egos")

Don't know how to automatically pick scale for object of type difftime. Defaulting to continuous.

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

10.4. EDGELIST FILES 111

0.0

2.5

5.0

7.5

0 500 1000 1500
Time in minutes

C
ou

nt
Total time spent by egos

10.4 Edgelist files

As I mentioned earlier, since we are reading the graphml files, using the edgelist may not be
needed. Nevertheless, the process to import the edgelist file to R is the same we have been
applying: list the files and read them all at once using lapply:

Listing all files ending in Knows.csv

edgelist_files <- list.files(

path = "data-raw/egonets",

pattern = "*Knows.csv",

full.names = TRUE

)

Reading all files at once

edgelists <- lapply(edgelist_files, fread)

To avoid confusion, we can also add ids corresponding to the file number. Once we do that, we
can combine all files into a single data.table object using rbindlist:

edgelists <- lapply(seq_along(edgelists), function(i) {

edgelists[[i]][, dataset_num := i]

})

112 CHAPTER 10. EGOCENTRIC NETWORKS

edgelists <- rbindlist(edgelists)

head(edgelists)

edgeID from to networkCanvasEgoUUID

1: 1 1 5 I839f-8fa8f8aeb8-eaf---ba8-cf3908f3a

2: 2 1 10 If81a9c0f-9f4f28ccf-c4c923a-8-0f5fce

3: 3 1 9 I899ffe-27-3-a3-ca2fb7f7-ca8e7715ce9

4: 4 1 10 I814efaba88cbb02caa8c89790-83beeaf9-

5: 5 7 6 Ifd-0eec2e08974eaf2b79f-9efb7e3-8998

6: 6 2 6 I-28fe89cc-fc5db3825b92-ae87c-c18e3d

networkCanvasUUID networkCanvasSourceUUID

1: I720400eb19bccce-77cee773289b02-fe7e I4d5--16a08f8ba463c6458f8979e-65fa9d

2: I-b469c0-60f8bbb543-32-628-216f9-038 I-6cf8-f3da-4-96-87efaf5daaa48ba5e5c

3: Ifa4933-9baaf5fc-f-e4f5c5e5-ff34-f-f I5-f69a6eaa-5956e8897ca999-ffb6ed-e1

4: I4cb-904496b1-6194bcb51b58444b40-ef8 I3e5-6c8d5e0f086--e-5ab45-4-5aaa5-0e

5: I0ab7--b7a0ee71e54c1e93cdb-4ca5ab1-b I5-b-9-7eca5ab5-91915ba9b6565a6e42cc

6: Ic80142fc4c431009e84b3-ab3f-9b0eab03 Ie0a24eea4e01a4340343a0-66723-a-9970

networkCanvasTargetUUID dataset_num

1: Id1c8befd46bdd195c-ce91a8-bc0---4f0e 1

2: I757b4a-3ea4d95--b9ebb9db3d55dcbaf-c 1

3: I92a62925ff9-e2f27-6ef97d-29fb729624 1

4: I7f--da48-46a64-b972c-ef6bbec--64cb4 1

5: I-eaa7e95659-9cf01a4f5fd69af54e6-d60 1

6: I69060e8a-454609-faa04cd3eeb-5-9550- 1

10.5 Putting all together

In this last part of the chapter, we will use the igraph and ergm packages to generate features
(covariates, controls, independent variables, or whatever you call them) at the ego-network
level. Once again, the lapply function is our friend

10.5.1 Generating statistics using igraph

The igraph R package has multiple high-performing routines to compute graph-level statistics.
For now, we will focus on the following statistics: vertex count, edge count, number of isolates,
transitivity, and modularity based on betweenness centrality:

net_stats <- lapply(graphs, function(g) {

Calculating modularity

groups <- cluster_edge_betweenness(g)

10.5. PUTTING ALL TOGETHER 113

Computing the stats

data.table(

size = vcount(g),

edges = ecount(g),

nisolates = sum(degree(g) == 0),

transit = transitivity(g, type = "global"),

modular = modularity(groups)

)

})

Observe we count isolates using the degree() function. We can combine the statistics into a
single data.table using the rbindlist function:

net_stats <- rbindlist(net_stats)

head(net_stats)

size edges nisolates transit modular

1: 12 25 1 0.6750000 0.012000000

2: 16 47 0 0.4332130 0.003395201

3: 16 58 0 0.5612009 0.002675386

4: 15 75 0 0.8515112 0.000000000

5: 15 52 0 0.5780488 0.000000000

6: 17 68 0 0.6291161 0.025735294

10.5.2 Generating statistics based on ergm

The ergm R package has a much larger set of graph-level statistics we can add to our models.3

The key to generating statistics based on the ergm package is the summary_formula function.
Before we start using that function, we first need to convert the igraph networks to network

objects, which are the native object class for the ergm package. We use the intergraph R
package for that, and in particular, the asNetwork function:

Loading the required packages

library(intergraph)

library(ergm)

Loading required package: network

##

'network' 1.18.1 (2023-01-24), part of the Statnet Project

* 'news(package="network")' for changes since last version

* 'citation("network")' for citation information

* 'https://statnet.org' for help, support, and other information

##

Attaching package: 'network'

3There’s an obvious reason, ERGMs are all about graph-level statistics!

114 CHAPTER 10. EGOCENTRIC NETWORKS

The following objects are masked from 'package:igraph':

##

%c%, %s%, add.edges, add.vertices, delete.edges, delete.vertices,

get.edge.attribute, get.edges, get.vertex.attribute, is.bipartite,

is.directed, list.edge.attributes, list.vertex.attributes,

set.edge.attribute, set.vertex.attribute

##

'ergm' 4.4.0 (2023-01-26), part of the Statnet Project

* 'news(package="ergm")' for changes since last version

* 'citation("ergm")' for citation information

* 'https://statnet.org' for help, support, and other information

'ergm' 4 is a major update that introduces some backwards-incompatible

changes. Please type 'news(package="ergm")' for a list of major

changes.

Converting all "igraph" objects in graphs to network "objects"

graphs_network <- lapply(graphs, asNetwork)

With the network objects ready, we can proceed to compute graph-level statistics using the
summary_formula function. Here we will only look into: the number of triangles, gender
homophily, and healthy-diet homophily:

net_stats_ergm <- lapply(graphs_network, function(n) {

Computing the statistics

s <- summary_formula(

n ~ triangles +

nodematch("gender_1") +

nodematch("healthy_diet")

)

Saving them as a data.table object

data.table(

triangles = s[1],

gender_homoph = s[2],

healthyd_homoph = s[3]

)

})

Once again, we use rbindlist to combine all the network statistics into a single data.table

object:

net_stats_ergm <- rbindlist(net_stats_ergm)

head(net_stats_ergm)

triangles gender_homoph healthyd_homoph

10.6. SAVING THE DATA 115

1: 27 11 3

2: 40 30 20

3: 81 40 29

4: 216 33 38

5: 79 44 19

6: 121 38 16

10.6 Saving the data

We end the chapter saving all our work into four datasets:

• Network statistics (as a csv file)

• Igraph objects (as a rda file, which we can read back using read.rds)

• Network objects (idem)

• Person files (alter’s information, as a csv file.)

CSV files can be saved either using write.csv or, as we do here, fwrite from the data.table

package:

Network attributes

master <- cbind(egos, net_stats, net_stats_ergm)

fwrite(master, file = "data/network_stats.csv")

Networks

saveRDS(graphs, file = "data/networks_igraph.rds")

saveRDS(graphs_network, file = "data/networks_network.rds")

Attributes

fwrite(persons, file = "data/persons.csv")

116 CHAPTER 10. EGOCENTRIC NETWORKS

Chapter 11

Hypothesis testing in networks

Overall, there are many ways in which we can see hypothesis testing within the networks
context:

1. Comparing two or more networks, e.g., we want to see if the density of two networks
are equal.

2. Prevalence of a motif/pattern, e.g., check whether the observed number of transitive
triads is different from that expected as of by chance.

3. Multivariate using ERGMs, e.g., jointly test whether homophily and two stars are the
motifs that drive network structure.

The latter we already review in the ERGM chapter. In this part, we will look at types one and
two; both using non-parametric methods.

11.1 Comparing networks

Imagine that we have two graphs, (G1, G2) ∈ G, and we would like to assess whether a given
statistic s(·), e.g., density, is equal in both of them. Formally, we would like to asses whether
H0 : s(G1) − s(G2) = k vs H : s(G1) − s(G2) ̸= k.

As usual, the true distribution of s(·) is unknown, thus, one approach that we could use is a
non-parametric bootstrap test.

11.1.1 Network bootstrap

The non parametric bootstrap and jackknife methods for social networks were introduced by
(T. A. B. Snijders and Borgatti 1999). The method itself is used to generate standard errors for
network level statistics. Both methods are implemented in the R package netdiffuseR.

117

https://cran.r-project.org/package=netdiffuseR

118 CHAPTER 11. HYPOTHESIS TESTING IN NETWORKS

11.1.2 When the statistic is normal

When the we deal with things that are normally distributed, e.g., sample means like density1,
we can make use of the Student’s distribution for making inference. In particular, we can use
Bootstrap/Jackknife to approximate the standard errors of the statistic for each network:

1. Since s(G) ∼ N(μ, σ2 /m) for ∈ {1,2}, in the case of the density, m = n ∗ (n − 1). The
statistic is then:

s(G1) − s(G0) ∼ N(μ1 − μ0, σ21 /m1 + σ21 /m2)

Thus

s(G1) − s(G0) − μ1 + μ2
Ç

σ21 /m1 + σ21 /m2

∼ tm1+m2−2

But, if we are testing H0 : μ1 − μ2 = k, then, under the null

s(G1) − s(G0) − k
Ç

σ21 /m1 + σ21 /m2

∼ tm1+m2−2

Where We now proceede to approximate the variances.

2. Using the plugin principle (Efron and Tibshirani 1994), we can approximate the variances
using Bootstrap/Jackknife, i.e., compute σ̂21 ≈ σ

2
1 /m1 and σ̂22 ≈ σ

2
2 /m2. Using netdiffuseR

library(netdiffuseR)

Obtain a 100 replicates

sg1 <- bootnet(g1, function(i, ...) sum(i)/(nnodes(i) * (nnodes(i) - 1)), R = 100)

sg2 <- bootnet(g2, function(i, ...) sum(i)/(nnodes(i) * (nnodes(i) - 1)), R = 100)

Retrieving the variances

hat_sigma1 <- sg1$var_t

hat_sigma2 <- sg2$var_t

And the actual values

sg1 <- sg1$t0

sg2 <- sg2$t0

3. With the approximates in hand, we can then use the the “t-test table” to retrieve the
corresponding value, in R:

1Density is indeed a sample mean as we are, in principle computing the average of a sequence of Bernoulli variables.
Formally: density(G) = 1

n(n−1)
∑

j Aj.

11.1. COMPARING NETWORKS 119

Building the statistic

k <- 0 # For equal variances

tstat <- (sg1 - sg2 - k)/(sqrt(hat_sigma1 + hat_sigma2))

Computing the pvalue

m1 <- nnodes(g1)*(nnodes(g1) - 1)

m2 <- nnodes(g2)*(nnodes(g2) - 1)

pt(tstat, df = m1 + m2 - 2)

11.1.3 When the statistic is NOT normal

In the case that the statistic is not normally distributed, we cannot use the t-statistic any longer.
Nevertheless, the Bootstrap can come to help. While in general it is better to use distributions of
pivot statistics (see (Efron and Tibshirani 1994)), we can still leverage the power of this method
to make inferences. For this example, s(·) will be the range of the threshold in a diffusion graph.

As before, imagine that we are dealing with an statistic s(·) for two different networks, and we
would like to asses whether we can reject H0 or fail to reject it. The procedure is very similar:

1. One approach that we can test is whether k ∈ ConfInt(s(G1)− s(G2)). Building confidence
intervals with bootstrap could be more intuitive.

2. Like before, we use bootstrap to generate a distribution of s(G1) and s(G2), in R:

Obtain a 1000 replicates

sg1 <- bootnet(g1, function(i, ...) range(threshold(i)), R = 1000)

sg2 <- bootnet(g2, function(i, ...) range(threshold(i)), R = 1000)

Retrieving the distributions

sg1 <- sg1$boot$t

sg2 <- sg2$boot$t

Define the statistic

sdiff <- sg1 - sg2

3. Once we have sdiff, we can proceed and compute the, for example, 95% confidence
interval, and evaluate whether k falls within. In R:

diff_ci <- quantile(sdiff, probs = c(0.025, .975))

This corresponds to what Efron and Tibshirani call “percentile interval.” This is easy to compute,
but a better approach is using the “BCa” method, “Bias Corrected and Accelerated.” (TBD)

https://www.thoughtco.com/fail-to-reject-in-a-hypothesis-test-3126424

120 CHAPTER 11. HYPOTHESIS TESTING IN NETWORKS

11.2 Examples

11.2.1 Average of node-level stats

Supposed that we would like to compare something like average indegree. In particular, for
both networks, G1 and G2, we compute the average indegree per node:

s(G1) = AvgIndeg(G1) =
1

n

∑

∑

j ̸=
A1
j

where A1
j

equals one if vertex j sends a tie to . In this case, since we are looking at an average,

we have that AvgIndeg(G1) ∼ N(μ1, σ21 /n). Thus, taking advantage of the normality of the
statistic, we can build a test statistic as follows:

s(G1) − s(G2) − k
Ç

σ̂21 + σ̂22

∼ tn1+n2−2

Where σ̂ is the bootstrap standard error, and k = 0 when we are testing equality. This distributes
t with n1 + n2 − 2 degrees of freedom. As a difference from the previous example using density,
the degrees of freedom for this test are less as, instead of having an average across all entries
of the adjacency matrix, we have an average across all vertices.

Chapter 12

Network diffussion with

netdiffuseR

This chapter mainly was based on the 2018 and 2019 tutorials of netdiffuseR at the Sunbelt
conference. The source code of the tutorials, taught by Thomas W. Valente and George G. Vega
Yon (author of this book), is available here.

12.1 Network diffusion of innovation

12.1.1 Diffusion networks

• Explains how new ideas and practices (innovations) spread within and between communi-
ties.

• While a lot of factors have been shown to influence diffusion (Spatial, Economic, Cultural,
Biological, etc.), Social Networks is a prominent one.

• There are many components in the diffusion network model including network expo-
sures, thresholds, infectiousness, susceptibility, hazard rates, diffusion rates (bass model),
clustering (Moran’s I), and so on.

12.1.2 Thresholds

• One of the canonical concepts is the network threshold. Network thresholds (Valente,
1995; 1996), τ, are defined as the required proportion or number of neighbors that lead
you to adopt a particular behavior (innovation), = 1. In (very) general terms

 =

¨

1 if τ ≤ E
0 Otherwise

E ≡

∑

j ̸=Xjj
∑

j ̸=Xj

Where E is i’s exposure to the innovation and X is the adjacency matrix (the network).

121

https://keck.usc.edu/faculty-search/thomas-william-valente/
https://ggvy.cl
https://ggvy.cl
https://github.com/USCCANA/netdiffuser-sunbelt2018/tree/sunbelt2019

122 CHAPTER 12. NETWORK DIFFUSSION WITH NETDIFFUSER

• This can be generalized and extended to include covariates and other network weighting
schemes (that’s what netdiffuseR is all about).

12.2 The netdiffuseR R package

12.2.1 Overview

netdiffuseR is an R package that:

• Is designed for Visualizing, Analyzing, and Simulating network diffusion data (in general).

• Depends on some pretty popular packages:

– RcppArmadillo: So it’s fast,
– Matrix: So it’s big,
– statnet and igraph: So it’s not from scratch

• Can handle big graphs, e.g., an adjacency matrix with more than 4 billion elements (PR for
RcppArmadillo)

• Already on CRAN with ~6,000 downloads since its first version, Feb 2016,

• A lot of features to make it easy to read network (dynamic) data, making it a companion
of other net packages.

12.2.2 Datasets

• netdiffuseR has the three classic Diffusion Network Datasets:

– medInnovationsDiffNet Doctors and the innovation of Tetracycline (1955).
– brfarmersDiffNet Brazilian farmers and the innovation of Hybrid Corn Seed (1966).
– kfamilyDiffNet Korean women and Family Planning methods (1973).

brfarmersDiffNet

Dynamic network of class -diffnet-

Name : Brazilian Farmers

Behavior : Adoption of Hybrid Corn Seeds

of nodes : 692 (1001, 1002, 1004, 1005, 1007, 1009, 1010, 1020, ...)

of time periods : 21 (1946 - 1966)

Type : directed

Final prevalence : 1.00

Static attributes : village, idold, age, liveout, visits, contact, coo... (146)

Dynamic attributes : -

medInnovationsDiffNet

Dynamic network of class -diffnet-

Name : Medical Innovation

12.2. THE NETDIFFUSER R PACKAGE 123

Behavior : Adoption of Tetracycline

of nodes : 125 (1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, ...)

of time periods : 18 (1 - 18)

Type : directed

Final prevalence : 1.00

Static attributes : city, detail, meet, coll, attend, proage, length, ... (58)

Dynamic attributes : -

kfamilyDiffNet

Dynamic network of class -diffnet-

Name : Korean Family Planning

Behavior : Family Planning Methods

of nodes : 1047 (10002, 10003, 10005, 10007, 10010, 10011, 10012, 10014, ...)

of time periods : 11 (1 - 11)

Type : directed

Final prevalence : 1.00

Static attributes : village, recno1, studno1, area1, id1, nmage1, nmag... (430)

Dynamic attributes : -

12.2.3 Visualization methodsset.seed(12315)

x <- rdiffnet(

400, t = 6, rgraph.args = list(k=6, p=.3),

seed.graph = "small-world",

seed.nodes = "central", rewire = FALSE, threshold.dist = 1/4

)

plot(x)

124 CHAPTER 12. NETWORK DIFFUSSION WITH NETDIFFUSER

Diffusion network in time 1

plot_diffnet(x)

Network in period 1 Network in period 2

Network in period 4 Network in period 6

Diffusion Network

Non adopters New adopters Adopters

plot_diffnet2(x)

12.2. THE NETDIFFUSER R PACKAGE 125

Diffusion dynamics

1

2

3

4

6

Non−adopters

Time of Adoption

plot_adopters(x)

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Adopters and Cumulative Adopters

Time

P
ro

po
rt

io
n

Cumulative adopters
Adopters

plot_threshold(x)

126 CHAPTER 12. NETWORK DIFFUSSION WITH NETDIFFUSER

0 1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time of Adoption by
Network Threshold

Time

T
hr

es
ho

ld

plot_infectsuscep(x, K=2)

Warning in plot_infectsuscep.list(graph$graph, graph$toa, t0, normalize, : When

applying logscale some observations are missing.

12.2. THE NETDIFFUSER R PACKAGE 127

0.000

0.005

0.010

0.015

0.020

0.00 0.00 0.00 0.01 0.01

0.00

0.00

0.01

0.01

0.02

0.03

0.05

Distribution of Infectiousness and
Susceptibility

(in log−scale)
Infectiousness of ego

S
us

ce
pt

ib
ili

ty
 o

f e
go

249 out of 400 obs.
included

plot_hazard(x)

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Hazard Rate

Time

H
az

ar
d

R
at

e

128 CHAPTER 12. NETWORK DIFFUSSION WITH NETDIFFUSER

12.2.4 Problems

1. Using the diffnet object in intro.rda, use the function plot_threshold specifying shapes
and colors according to the variables ItrustMyFriends and Age. Do you see any pattern?

12.3 Simulation of diffusion processes

Before we start, a review of the concepts we will be using here

1. Exposure: Proportion/number of neighbors that have adopted an innovation at each point
in time.

2. Threshold: The proportion/number of your neighbors who had adopted at or one time
period before ego (the focal individual) adopted.

3. Infectiousness: How much ’s adoption affects her alters.
4. Susceptibility: How much ’s alters’ adoption affects her.
5. Structural equivalence: How similar is to j in terms of position in the network.

12.3.1 Simulating diffusion networks

We will simulate a diffusion network with the following parameters:

1. Will have 1,000 vertices,
2. Will span 20 time periods,
3. The initial adopters (seeds) will be selected at random,
4. Seeds will be a 10% of the network,
5. The graph (network) will be small-world,
6. Will use the WS algorithm with p = .2 (probability of rewiring).
7. Threshold levels will be uniformly distributed between [0.3, 0.7]

To generate this diffusion network, we can use the rdiffnet function included in the package:

Setting the seed for the RNG

set.seed(1213)

Generating a random diffusion network

net <- rdiffnet(

n = 1e3, # 1.

t = 20, # 2.

seed.nodes = "random", # 3.

seed.p.adopt = .1, # 4.

seed.graph = "small-world", # 5.

rgraph.args = list(p=.2), # 6.

threshold.dist = function(x) runif(1, .3, .7) # 7.

)

Warning in (function (graph, p, algorithm = "endpoints", both.ends = FALSE, :

intro.rda

12.3. SIMULATION OF DIFFUSION PROCESSES 129

The option -copy.first- is set to TRUE. In this case, the first graph will be

treated as a baseline, and thus, networks after T=1 will be replaced with T-1.

• The function rdiffnet generates random diffusion networks. Main features:

1. Simulating random graph or using your own,

2. Setting threshold levels per node,

3. Network rewiring throughout the simulation, and

4. Setting the seed nodes.

• The simulation algorithm is as follows:

1. If required, a baseline graph is created,

2. Set of initial adopters and threshold distribution are established,

3. The set of t networks is created (if required), and

4. Simulation starts at t=2, assigning adopters based on exposures and thresholds:

a. For each ∈ N, if its exposure at t − 1 is greater than its threshold, then adopts,
otherwise, continue without change.

b. next

12.3.2 Rumor spreading

library(netdiffuseR)

set.seed(09)

diffnet_rumor <- rdiffnet(

n = 5e2,

t = 5,

seed.graph = "small-world",

rgraph.args = list(k = 4, p = .3),

seed.nodes = "random",

seed.p.adopt = .05,

rewire = TRUE,

threshold.dist = function(i) 1L,

exposure.args = list(normalized = FALSE)

)

Warning in (function (graph, p, algorithm = "endpoints", both.ends = FALSE, :

The option -copy.first- is set to TRUE. In this case, the first graph will be

treated as a baseline, and thus, networks after T=1 will be replaced with T-1.

summary(diffnet_rumor)

130 CHAPTER 12. NETWORK DIFFUSSION WITH NETDIFFUSER

Diffusion network summary statistics

Name : A diffusion network

Behavior : Random contagion

Period Adopters Cum Adopt. (%) Hazard Rate Density Moran's I (sd)

-------- ---------- ---------------- ------------- --------- ----------------

1 25 25 (0.05) - 0.01 -0.00 (0.00)

2 78 103 (0.21) 0.16 0.01 0.01 (0.00) ***
3 187 290 (0.58) 0.47 0.01 0.01 (0.00) ***
4 183 473 (0.95) 0.87 0.01 0.01 (0.00) ***
5 27 500 (1.00) 1.00 0.01 -

Left censoring : 0.05 (25)

Right centoring : 0.00 (0)

of nodes : 500

##

Moran's I was computed on contemporaneous autocorrelation using 1/geodesic

values. Significane levels *** <= .01, ** <= .05, * <= .1.

plot_diffnet(diffnet_rumor, slices = c(1, 3, 5))

Network in period 1 Network in period 3 Network in period 5
Diffusion Network

Non adopters New adopters Adopters

12.3. SIMULATION OF DIFFUSION PROCESSES 131

We want to use igraph to compute layout

igdf <- diffnet_to_igraph(diffnet_rumor, slices=c(1,2))[[1]]

pos <- igraph::layout_with_drl(igdf)

plot_diffnet2(diffnet_rumor, vertex.size = dgr(diffnet_rumor)[,1], layout=pos)

Diffusion dynamics

1

2

3

4

5

Non−adopters

Time of Adoption

12.3.3 Difussion
set.seed(09)

diffnet_complex <- rdiffnet(

seed.graph = diffnet_rumor$graph,

seed.nodes = which(diffnet_rumor$toa == 1),

rewire = FALSE,

threshold.dist = function(i) rbeta(1, 3, 10),

name = "Diffusion",

behavior = "Some social behavior"

)

plot_adopters(diffnet_rumor, what = "cumadopt", include.legend = FALSE)

plot_adopters(diffnet_complex, bg="tomato", add=TRUE, what = "cumadopt")

legend("topleft", legend = c("Disease", "Complex"), col = c("lightblue", "tomato"),

bty = "n", pch=19)

132 CHAPTER 12. NETWORK DIFFUSSION WITH NETDIFFUSER

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Adopters and Cumulative Adopters

Time

P
ro

po
rt

io
n

Disease
Complex

12.3.4 Mentor Matching

Finding mentors

mentors <- mentor_matching(diffnet_rumor, 25, lead.ties.method = "random")

Simulating diffusion with these mentors

set.seed(09)

diffnet_mentored <- rdiffnet(

seed.graph = diffnet_complex,

seed.nodes = which(mentors$`1`$isleader),

rewire = FALSE,

threshold.dist = diffnet_complex[["real_threshold"]],

name = "Diffusion using Mentors"

)

summary(diffnet_mentored)

Diffusion network summary statistics

Name : Diffusion using Mentors

Behavior : Random contagion

Period Adopters Cum Adopt. (%) Hazard Rate Density Moran's I (sd)

-------- ---------- ---------------- ------------- --------- ----------------

12.3. SIMULATION OF DIFFUSION PROCESSES 133

1 25 25 (0.05) - 0.01 -0.00 (0.00)

2 92 117 (0.23) 0.19 0.01 0.01 (0.00) ***
3 152 269 (0.54) 0.40 0.01 0.01 (0.00) ***
4 150 419 (0.84) 0.65 0.01 0.01 (0.00) ***
5 73 492 (0.98) 0.90 0.01 -0.00 (0.00) **

Left censoring : 0.05 (25)

Right centoring : 0.02 (8)

of nodes : 500

##

Moran's I was computed on contemporaneous autocorrelation using 1/geodesic

values. Significane levels *** <= .01, ** <= .05, * <= .1.

cumulative_adopt_count(diffnet_complex)

1 2 3 4 5

num 25.00 80.00 183.0000 338.0000000 470.0000000

prop 0.05 0.16 0.3660 0.6760000 0.9400000

rate 0.00 2.20 1.2875 0.8469945 0.3905325

cumulative_adopt_count(diffnet_mentored)

1 2 3 4 5

num 25.00 117.000 269.000000 419.0000000 492.0000000

prop 0.05 0.234 0.538000 0.8380000 0.9840000

rate 0.00 3.680 1.299145 0.5576208 0.1742243

12.3.5 Example by changing threshold

Simulating a scale-free homophilic network

set.seed(1231)

X <- rep(c(1,1,1,1,1,0,0,0,0,0), 50)

net <- rgraph_ba(t = 499, m=4, eta = X)

Taking a look in igraph

ig <- igraph::graph_from_adjacency_matrix(net)

plot(ig, vertex.color = c("azure", "tomato")[X+1], vertex.label = NA,

vertex.size = sqrt(dgr(net)))

134 CHAPTER 12. NETWORK DIFFUSSION WITH NETDIFFUSER

Now, simulating a bunch of diffusion processes

nsim <- 500L

ans_1and2 <- vector("list", nsim)

set.seed(223)

for (i in 1:nsim) {

We just want the cum adopt count

ans_1and2[[i]] <-

cumulative_adopt_count(

rdiffnet(

seed.graph = net,

t = 10,

threshold.dist = sample(1:2, 500L, TRUE),

seed.nodes = "random",

seed.p.adopt = .10,

exposure.args = list(outgoing = FALSE, normalized = FALSE),

rewire = FALSE

)

)

Are we there yet?

if (!(i %% 50))

message("Simulation ", i," of ", nsim, " done.")

}

Simulation 50 of 500 done.

Simulation 100 of 500 done.

Simulation 150 of 500 done.

Simulation 200 of 500 done.

Simulation 250 of 500 done.

Simulation 300 of 500 done.

Simulation 350 of 500 done.

12.3. SIMULATION OF DIFFUSION PROCESSES 135

Simulation 400 of 500 done.

Simulation 450 of 500 done.

Simulation 500 of 500 done.

Extracting prop

ans_1and2 <- do.call(rbind, lapply(ans_1and2, "[", i="prop", j=))

ans_2and3 <- vector("list", nsim)

set.seed(223)

for (i in 1:nsim) {

We just want the cum adopt count

ans_2and3[[i]] <-

cumulative_adopt_count(

rdiffnet(

seed.graph = net,

t = 10,

threshold.dist = sample(2:3, 500L, TRUE),

seed.nodes = "random",

seed.p.adopt = .10,

exposure.args = list(outgoing = FALSE, normalized = FALSE),

rewire = FALSE

)

)

Are we there yet?

if (!(i %% 50))

message("Simulation ", i," of ", nsim, " done.")

}

Simulation 50 of 500 done.

Simulation 100 of 500 done.

Simulation 150 of 500 done.

Simulation 200 of 500 done.

Simulation 250 of 500 done.

Simulation 300 of 500 done.

Simulation 350 of 500 done.

Simulation 400 of 500 done.

Simulation 450 of 500 done.

Simulation 500 of 500 done.

ans_2and3 <- do.call(rbind, lapply(ans_2and3, "[", i="prop", j=))

We can simplify by using the function rdiffnet_multiple. The following lines of code ac-
complish the same as the previous code avoiding the for-loop (from the user’s perspective).

136 CHAPTER 12. NETWORK DIFFUSSION WITH NETDIFFUSER

Besides of the usual parameters passed to rdiffnet, the rdiffnet_multiple function requires
R (number of repetitions/simulations), and statistic (a function that returns the statistic of
interest). Optionally, the user may choose to specify the number of clusters to run it in parallel
(multiple CPUs):

ans_1and3 <- rdiffnet_multiple(

Num of sim

R = nsim,

Statistic

statistic = function(d) cumulative_adopt_count(d)["prop",],

seed.graph = net,

t = 10,

threshold.dist = sample(1:3, 500, TRUE),

seed.nodes = "random",

seed.p.adopt = .1,

rewire = FALSE,

exposure.args = list(outgoing=FALSE, normalized=FALSE),

Running on 4 cores

ncpus = 4L

)

boxplot(ans_1and2, col="ivory", xlab = "Time", ylab = "Threshold")

boxplot(ans_2and3, col="tomato", add=TRUE)

boxplot(t(ans_1and3), col = "steelblue", add=TRUE)

legend(

"topleft",

fill = c("ivory", "tomato", "steelblue"),

legend = c("1/2", "2/3", "1/3"),

title = "Threshold range",

bty ="n"

)

12.4. STATISTICAL INFERENCE 137

1 2 3 4 5 6 7 8 9 10

0.
10

0.
20

0.
30

0.
40

Time

T
hr

es
ho

ld

1 2 3 4 5 6 7 8 9 10

0.
10

0.
20

0.
30

0.
40

1 2 3 4 5 6 7 8 9 10

0.
10

0.
20

0.
30

0.
40

Threshold range

1/2
2/3
1/3

12.3.6 Problems

1. Given the following types of networks: Small-world, Scale-free, Bernoulli, what set of n
initiators maximizes diffusion?

12.4 Statistical inference

12.4.1 Moran’s I

• Moran’s I tests for spatial autocorrelation.

• netdiffuseR implements the test in moran, which is suited for sparse matrices.

• We can use Moran’s I as a first look to whether there is something happening: let that be
influence or homophily.

12.4.2 Using geodesics

• One approach is to use the geodesic (shortest path length) matrix to account for indirect
influence.

• In the case of sparse matrices, and furthermore, in the presence of structural holes it is
more convenient to calculate the distance matrix taking this into account.

• netdiffuseR has a function to do so, the approx_geodesic function, which, using graph
powers, computes the shortest path up to n steps. This could be faster (if you only care
up to n steps) than igraph or sns:

138 CHAPTER 12. NETWORK DIFFUSSION WITH NETDIFFUSER

Extracting the large adjacency matrix (stacked)

dgc <- diag_expand(medInnovationsDiffNet$graph)

ig <- igraph::graph_from_adjacency_matrix(dgc)

mat <- network::as.network(as.matrix(dgc))

Measuring times

times <- microbenchmark::microbenchmark(

netdiffuseR = netdiffuseR::approx_geodesic(dgc),

igraph = igraph::distances(ig),

sna = sna::geodist(mat),

times = 50, unit="ms"

)

netdiffuseR igraph sna

10
20

50
10

0
20

0

Expression

lo
g(

tim
e)

 [t
]

• The summary.diffnet method already runs Moran’s for you. What happens under the
hood is:

For each time point we compute the geodesic distances matrix

W <- approx_geodesic(medInnovationsDiffNet$graph[[1]])

We get the element-wise inverse

W@x <- 1/W@x

And then compute moran

moran(medInnovationsDiffNet$cumadopt[,1], W)

$observed

[1] 0.06624028

12.4. STATISTICAL INFERENCE 139

##

$expected

[1] -0.008064516

##

$sd

[1] 0.03265066

##

$p.value

[1] 0.02286087

##

attr(,"class")

[1] "diffnet_moran"

12.4.3 Structural dependence and permutation tests

• A novel statistical method (work-in-progress) that allows conducting inference.
• Included in the package, tests whether a particular network statistic depends on network

structure
• Suitable to be applied to network thresholds (you can’t use thresholds in regression-like

models!)

12.4.4 Idea

• Let G = (V, E) be a graph, γ a vertex attribute, and β = ƒ (γ,G), then

γ ⊥ G =⇒ E [β(γ,G)|G] = E [β(γ,G)]

• This is, if for example time of adoption is independent on the structure of the network,
then the average threshold level will be independent from the network structure as well.

• Another way of looking at this is that the test will allow us to see how probable is to have
this combination of network structure and network threshold (if it is uncommon then we
say that the diffusion model is highly likely)

12.4.4.1 Example Not random TOA

• To use this test, __netdiffuseR__ has the `struct_test` function.

• It simulates networks with the same density, and computes a particular statistic every time, generating an EDF (Empirical Distribution Function) under the Null hypothesis (p-values).

Simulating network

set.seed(1123)

net <- rdiffnet(n=500, t=10, seed.graph = "small-world")

Warning in (function (graph, p, algorithm = "endpoints", both.ends = FALSE, :

The option -copy.first- is set to TRUE. In this case, the first graph will be

140 CHAPTER 12. NETWORK DIFFUSSION WITH NETDIFFUSER

treated as a baseline, and thus, networks after T=1 will be replaced with T-1.

Running the test

test <- struct_test(

graph = net,

statistic = function(x) mean(threshold(x), na.rm = TRUE),

R = 1e3,

ncpus=4, parallel="multicore"

)

Warning in (function (graph, p, algorithm = "endpoints", both.ends = FALSE, :

The option -copy.first- is set to TRUE. In this case, the first graph will be

treated as a baseline, and thus, networks after T=1 will be replaced with T-1.

See the output

test

##

Structure dependence test

Simulations : 1,000

nodes : 500

of time periods : 10

--

H0: E[beta(Y,G)|G] - E[beta(Y,G)] = 0 (no structure dependency)

observed expected p.val

0.5513 0.2504 0.0000

Empirical Distribution of Statistic

Values of t

F
re

qu
en

cy

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55

0
20

40
60

80
12

0

↑
t0

↑
t

12.4. STATISTICAL INFERENCE 141

• Now we shuffle times of adoption, so that is random

Resetting TOAs (now will be completely random)

diffnet.toa(net) <- sample(diffnet.toa(net), nnodes(net), TRUE)

Running the test

test <- struct_test(

graph = net,

statistic = function(x) mean(threshold(x), na.rm = TRUE),

R = 1e3,

ncpus=4, parallel="multicore"

)

Warning in (function (graph, p, algorithm = "endpoints", both.ends = FALSE, :

The option -copy.first- is set to TRUE. In this case, the first graph will be

treated as a baseline, and thus, networks after T=1 will be replaced with T-1.

See the output

test

##

Structure dependence test

Simulations : 1,000

nodes : 500

of time periods : 10

--

H0: E[beta(Y,G)|G] - E[beta(Y,G)] = 0 (no structure dependency)

observed expected p.val

0.2714 0.2590 0.4420

142 CHAPTER 12. NETWORK DIFFUSSION WITH NETDIFFUSER

Empirical Distribution of Statistic

Values of t

F
re

qu
en

cy

0.20 0.22 0.24 0.26 0.28 0.30

0
50

10
0

15
0

↑
t0

↑
t

12.4.5 Regression analysis

• In regression analysis, we want to see if exposure, once we control for other covariates
had any effect on the adoption of a behavior.

• In general, the big problem here is when we have a latent variable that co-determines
both network and behavior.

• Unless we can control for such variable, regression analysis will be generically biased.

• On the other hand, if you can claim that either such variable doesn’t exist or you actually
can control for it, then we have two options: lagged exposure models or contemporaneous
exposure models. We will focus on the former.

12.4.5.1 Lagged exposure models

• In this type of model, we usually have the following

yt = ƒ (Wt−1, yt−1, X) + ϵ

Furthermore, in the case of adoption, we have

yt =

(

1 if ρ
∑

j ̸=
Wjt−1yt−1
∑

j ̸=Wjt−1
+ Xtβ > 0

0 otherwise

12.4. STATISTICAL INFERENCE 143

• In netdiffuseR is as easy as doing the following:

fakedata

set.seed(121)

W <- rgraph_ws(1e3, 8, .2)

X <- cbind(var1 = rnorm(1e3))

toa <- sample(c(NA,1:5), 1e3, TRUE)

dn <- new_diffnet(W, toa=toa, vertex.static.attrs = X)

Warning in new_diffnet(W, toa = toa, vertex.static.attrs = X): -graph- is static

and will be recycled (see ?new_diffnet).

Computing exposure and adoption for regression

dn[["cohesive_expo"]] <- cbind(NA, exposure(dn)[,-nslices(dn)])

dn[["adopt"]] <- dn$cumadopt

Generating the data and running the model

dat <- as.data.frame(dn)

ans <- glm(adopt ~ cohesive_expo + var1 + factor(per),

data = dat,

family = binomial(link="probit"),

subset = is.na(toa) | (per <= toa))

summary(ans)

##

Call:

glm(formula = adopt ~ cohesive_expo + var1 + factor(per), family = binomial(link = "probit"),

data = dat, subset = is.na(toa) | (per <= toa))

##

Deviance Residuals:

Min 1Q Median 3Q Max

-1.1754 -0.8462 -0.6645 1.2878 1.9523

##

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.92777 0.05840 -15.888 < 2e-16 ***
cohesive_expo 0.23839 0.17514 1.361 0.173452

var1 -0.04623 0.02704 -1.710 0.087334 .

factor(per)3 0.29313 0.07715 3.799 0.000145 ***
factor(per)4 0.33902 0.09897 3.425 0.000614 ***
factor(per)5 0.59851 0.12193 4.909 9.18e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

144 CHAPTER 12. NETWORK DIFFUSSION WITH NETDIFFUSER

##

(Dispersion parameter for binomial family taken to be 1)

##

Null deviance: 2745.1 on 2317 degrees of freedom

Residual deviance: 2663.5 on 2312 degrees of freedom

(1000 observations deleted due to missingness)

AIC: 2675.5

##

Number of Fisher Scoring iterations: 4

Alternatively, we could have used the new function diffreg

ans <- diffreg(dn ~ exposure + var1 + factor(per), type = "probit")

summary(ans)

##

Call:

glm(formula = Adopt ~ exposure + var1 + factor(per), family = binomial(link = "probit"),

data = dat, subset = ifelse(is.na(toa), TRUE, toa >= per))

##

Deviance Residuals:

Min 1Q Median 3Q Max

-1.1754 -0.8462 -0.6645 1.2878 1.9523

##

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.92777 0.05840 -15.888 < 2e-16 ***
exposure 0.23839 0.17514 1.361 0.173452

var1 -0.04623 0.02704 -1.710 0.087334 .

factor(per)3 0.29313 0.07715 3.799 0.000145 ***
factor(per)4 0.33902 0.09897 3.425 0.000614 ***
factor(per)5 0.59851 0.12193 4.909 9.18e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

(Dispersion parameter for binomial family taken to be 1)

##

Null deviance: 2745.1 on 2317 degrees of freedom

Residual deviance: 2663.5 on 2312 degrees of freedom

(1000 observations deleted due to missingness)

AIC: 2675.5

##

Number of Fisher Scoring iterations: 4

12.4. STATISTICAL INFERENCE 145

12.4.5.2 Contemporaneous exposure models

• Similar to the lagged exposure models, we usually have the following

yt = ƒ (Wt , yt , Xt) + ϵ

Furthermore, in the case of adoption, we have

yt =

(

1 if ρ
∑

j ̸=
Wjtyt
∑

j ̸=Wjt
+ Xtβ > 0

0 otherwise

• Unfortunately, since yt is in both sides of the equation, this models cannot be fitted using
a standard probit or logit regression.

• Two alternatives to solve this:

a. Using Instrumental Variables Probit (ivprobit in both R and Stata)

b. Use a Spatial Autoregressive (SAR) Probit (SpatialProbit and ProbitSpatial in R).

• We won’t cover these here.

12.4.6 Problems

Using the dataset stats.rda:

1. Compute Moran’s I as the function summary.diffnet does. For this you’ll need to
use the function toa_mat (which calculates the cumulative adoption matrix), and
approx_geodesic (which computes the geodesic matrix). (see ?summary.diffnet for
more details).

2. Read the data as diffnet object, and fit the following logit model dopt = Eposre∗ γ +
Mesre∗ β + ϵ. What happens if you exclude the time-fixed effects?

stats.rda

146 CHAPTER 12. NETWORK DIFFUSSION WITH NETDIFFUSER

Chapter 13

Stochastic Actor Oriented Models

Stochastic Actor Oriented Models (SOAM), also known as Siena models were introduced by
CITATION NEEDED.

As a difference from ERGMs, Siena models look at the data generating process from the
individuals’ point of view. Based on McFadden’s ideas of probabilistic choice, the model is
founded in the following equation

U() − U(′) ∼ Extreame Value Distribution

In other words, individuals choose between states and ′ in a probabilistic way (with some
noise),

exp
¦

ƒZ

(βz, , z)
©

∑

Z′∈C exp
�

ƒZ (β, , z
′)
	

snijders_(sociological methodology 2001)

Ripley et al. (2011)

147

148 CHAPTER 13. STOCHASTIC ACTOR ORIENTED MODELS

Chapter 14

Power calculation in network

studies

In survey and study design, calculating the required sample size is critical. Nowadays, tools and
methods for calculating the required sample size abound; nonetheless, sample size calculation
for studies involving social networks is still underdeveloped. This chapter will illustrate how
we can use computer simulations to estimate the required sample size. Chapter 17 provides a
general overview of power analysis.

14.1 Example 1: Spillover effects in egocentric studies1

Suppose we want to run an intervention over a particular population, and we are interested in
the effects of such intervention on the egos’ alters. In economics, this problem, which they call
the “spillover effect,” is actively studied.

We assume that alters only get exposed if egos acquire the behavior for the power calculation.
Furthermore, for this first run, we will assume that there is no social reinforcement or influence
between alters. We will later relax this assumption. To calculate power, we will do the following:

1. Simulate egos’ behavior following a logit distribution.

2. Randomly drop some egos as a result of attrition.

3. Simulate alters’ behavior using their egos as the treatment.

4. Fit a logistic regression based on the previous model.

5. Accept/reject the null and store the result.

The previous steps will be repeated 500 for each value of n we analyze. We will finalize by
plotting power against sample sizes. Let’s first start by writing down the simulation parameters:

1The original problem was posed by Dr. Shinduk Lee from the School of Nursing at the University of Utah.

149

https://faculty.utah.edu/u6037777-SHINDUK_LEE/hm/index.hml

150 CHAPTER 14. POWER CALCULATION IN NETWORK STUDIES

Design

n_sims <- 500 # Number of simulations

n_a <- 4 # Number of alters

sizes <- # Sizes to try

seq(from = 100, to = 200, by = 25)

Assumptions

odds_h_1 <- 2.0 # Odds of Increase/

attrition <- .3

baseline <- .2 # Low prevalence in 1s

Parameters

alpha <- .05

beta_pow <- 0.2

As we discuss in 17, it is always a good idea to encapsulate the simulation into a function:

The odds turned to a prob

theta_h_1 <- plogis(log(odds_h_1))

Simulation function

sim_data <- function(n) {

Treatment assignment

tr <- c(rep(1, n/2), rep(0, n/2))

Step 1: Sampling population of egos

y_ego <- runif(n) < c(

rep(theta_h_1, n/2),

rep(0.5, n/2)

)

Step 2: Simulating attrition

todrop <- order(runif(n))[1:(n * attrition)]

y_ego <- y_ego[-todrop]

tr <- tr[-todrop]

n <- n - length(todrop)

Step 3: Simulating alter's effect. We assume the same as in

ego

tr_alter <- rep(y_ego * tr, n_a)

y_alter <- runif(n * n_a) < ifelse(tr_alter, theta_h_1, 0.5)

Step 4: Computing test statistic

14.1. EXAMPLE 1: SPILLOVER EFFECTS IN EGOCENTRIC STUDIES 151

res_ego <- tryCatch(glm(y_ego ~ tr, family = binomial("logit")), error = function(e) e)

res_alter <- tryCatch(glm(y_alter ~ tr_alter, family = binomial("logit")), error = function(e) e)

if (inherits(res_ego, "error") | inherits(res_alter, "error"))

return(c(ego = NA, alter = NA))

Step 5: Reject?

c(

ego = summary(res_ego)$coefficients["tr", "Pr(>|z|)"] < alpha,

alter = summary(res_alter)$coefficients["tr_alter", "Pr(>|z|)"] < alpha

)

}

Now that we have the data generating function, we can run the simulations to approximate
statistical power given the sample size. The results will be stored in the matrix spower. Since
we are simulating data, it is crucial to set the seed so we can reproduce the results.

We always set the seed

set.seed(88)

Making space, and running!

spower <- NULL

for (s in sizes) {

Run the simulation for size s

simres <- rowMeans(replicate(n_sims, sim_data(s)), na.rm = TRUE)

And store the results

spower <- rbind(spower, simres)

}

The following figure shows the approximate power for finding effects at both levels, ego and
alter:

library(ggplot2)

spower <- rbind(

data.frame(size = sizes, power = spower[,"ego"], type = "ego"),

data.frame(size = sizes, power = spower[,"alter"], type = "alter")

)

spower |>

152 CHAPTER 14. POWER CALCULATION IN NETWORK STUDIES

ggplot(aes(x = size, y = power, colour = type)) +

geom_point() +

geom_smooth(method = "loess", formula = y ~ x) +

labs(x = "Number of Egos", y = "Approx. Power", colour = "Node type") +

geom_hline(yintercept = 1 - beta_pow)

0.4

0.6

0.8

1.0

100 125 150 175 200
Number of Egos

A
pp

ro
x.

 P
ow

er

Node type

alter

ego

As shown in Chapter 17, we can use a linear regression model to predict sample size as a
function of statistical power:

Fitting the model

power_model <- glm(

size ~ power + I(powerˆ2),

data = spower, family = gaussian(), subset = type == "alter"

)

summary(power_model)

##

Call:

glm(formula = size ~ power + I(power^2), family = gaussian(),

data = spower, subset = type == "alter")

##

14.2. EXAMPLE 2: SPILLOVER EFFECTS PRE-POST EFFECT 153

Deviance Residuals:

6 7 8 9 10

0.2658 -11.2195 10.5568 -13.8852 14.2821

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1460 1342 1.088 0.390

power -3532 3124 -1.131 0.376

I(power^2) 2293 1805 1.270 0.332

##

(Dispersion parameter for gaussian family taken to be 317.0856)

##

Null deviance: 6250.00 on 4 degrees of freedom

Residual deviance: 634.17 on 2 degrees of freedom

AIC: 46.404

##

Number of Fisher Scoring iterations: 2

Predict

predict(power_model, newdata = data.frame(power = .8), type = "response") |>

ceiling()

1

102

From the figure, it becomes apparent that, although there is not enough power to identify
effects at the ego level, because each ego brings in five alters, the alter sample size is high
enough that we can reach above 0.8 statistical power with relatively small sample size.

14.2 Example 2: Spillover effects pre-post effect

Now the dynamics are different. Instead of having a treated and control group, we have a
single group over which we will measure behavioral change. We will simulate individuals in
their initial state, still 0/1, and then simulate that the intervention will make them more likely
to have y = 1. We will also assume that subjects generally don’t change their behavior and that
the baseline prevalence of zeros is higher. The simulation steps are as follows:

1. For each individual in the population, draw the underlying probability that y = 1. With that
probability, assign the value of y. This applies to both ego and alter.

2. Randomly drop some egos, and their corresponding alters due to attrition.

3. Simulate alters’ behavior using their egos as the treatment. Both ego and alter’s underlying
probability are increased by the chosen odds.

4. To control for the underlying probability that an individual has y = 1, we use conditional
logistic regression (also known as matched case-control logit,) to estimate the treatment

154 CHAPTER 14. POWER CALCULATION IN NETWORK STUDIES

effects.

5. Accept/reject the null and store the result.

beta_pars <- c(4, 6)

odds_h_1 <- 2.0

Simulation function

library(survival)

sim_data_prepost <- function(n) {

Step 1: Sampling population of egos

y_ego_star <- rbeta(n, beta_pars[1], beta_pars[2])

y_ego_0 <- runif(n) < y_ego_star

Step 2: Simulating attrition

todrop <- order(runif(n))[1:(n * attrition)]

y_ego_0 <- y_ego_0[-todrop]

n <- n - length(todrop)

y_ego_star <- y_ego_star[-todrop]

Step 3: Simulating alter's effect. We assume the same as in

ego

y_alter_star <- rbeta(n * n_a, beta_pars[1], beta_pars[2])

y_alter_0 <- runif(n * n_a) < y_alter_star

Simulating post

y_ego_1 <- runif(n) < plogis(qlogis(y_ego_star) + log(odds_h_1))

tr_alter <- as.integer(rep(y_ego_1, n_a))

y_alter_1 <- runif(n * n_a) < plogis(qlogis(y_alter_star) + log(odds_h_1) * tr_alter) # So only if ego did something

Step 4: Computing test statistic

y_ego_0 <- as.integer(y_ego_0)

y_ego_1 <- as.integer(y_ego_1)

y_alter_0 <- as.integer(y_alter_0)

y_alter_1 <- as.integer(y_alter_1)

d <- data.frame(

y = c(y_ego_0, y_ego_1),

tr = c(rep(0, n), rep(1, n)),

g = c(1:n, 1:n)

)

res_ego <- tryCatch(

14.2. EXAMPLE 2: SPILLOVER EFFECTS PRE-POST EFFECT 155

clogit(y ~ tr + strata(g), data = d, method = "exact"),

error = function(e) e

)

d <- data.frame(

y = c(y_alter_0, y_alter_1),

tr = c(rep(0, n * n_a), tr_alter),

g = c(1:(n * n_a), 1:(n * n_a))

)

res_alter <- tryCatch(

clogit(y ~ tr + strata(g), data = d, method = "exact"),

error = function(e) e

)

if (inherits(res_ego, "error") | inherits(res_alter, "error"))

return(c(ego = NA, alter = NA))

Step 5: Reject?

c(

ego = res_ego$p.value < alpha,

ego = summary(res_ego)$coefficients["tr", "Pr(>|z|)"] < alpha,

alter = summary(res_alter)$coefficients["tr", "Pr(>|z|)"] < alpha,

ego_test = coef(res_ego),

alter_glm = coef(res_alter)

)

}

We always set the seed

set.seed(88)

Making space and running!

spower <- NULL

for (s in sizes) {

Run the simulation for size s

simres <- rowMeans(

replicate(n_sims, sim_data_prepost(s)),

na.rm = TRUE

)

156 CHAPTER 14. POWER CALCULATION IN NETWORK STUDIES

And store the results

spower <- rbind(spower, simres)

}

library(ggplot2)

spowerd <- rbind(

data.frame(size = sizes, power = spower[,"ego"], type = "ego"),

data.frame(size = sizes, power = spower[,"alter"], type = "alter")

)

spowerd |>

ggplot(aes(x = size, y = power, colour = type)) +

geom_point() +

geom_smooth(method = "loess", formula = y ~ x) +

labs(x = "Number of Egos", y = "Approx. Power", colour = "Node type") +

geom_hline(yintercept = 1 - beta_pow)

0.6

0.8

1.0

100 125 150 175 200
Number of Egos

A
pp

ro
x.

 P
ow

er

Node type

alter

ego

As shown in Chapter 17, we can use a linear regression model to predict sample size as a
function of statistical power:

14.3. EXAMPLE 3: FIRST DIFFERENCE 157

Fitting the model

power_model <- glm(

size ~ power + I(powerˆ2),

data = spowerd, family = gaussian(), subset = type == "alter"

)

summary(power_model)

##

Call:

glm(formula = size ~ power + I(power^2), family = gaussian(),

data = spowerd, subset = type == "alter")

##

Deviance Residuals:

6 7 8 9 10

-0.8182 1.7278 0.9180 -7.9188 6.0912

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 611.4 666.3 0.918 0.456

power -1553.8 1504.7 -1.033 0.410

I(power^2) 1147.9 844.8 1.359 0.307

##

(Dispersion parameter for gaussian family taken to be 52.1536)

##

Null deviance: 6250.00 on 4 degrees of freedom

Residual deviance: 104.31 on 2 degrees of freedom

AIC: 37.379

##

Number of Fisher Scoring iterations: 2

Predict

predict(power_model, newdata = data.frame(power = .8), type = "response") |>

ceiling()

1

104

14.3 Example 3: First difference

Now, instead of looking at a dichotomous outcome, let’s evaluate what happens if the variable
is continuous. The effects we are interested to identify are the ego and alter effect, γego and
γter , respectively. Furthermore, the data generating process is

158 CHAPTER 14. POWER CALCULATION IN NETWORK STUDIES

ytg = α + κg + Xβ + ϵtg

ytg = α + κg + Xβ + D
ego
 γego + Dter

γter + ϵtg

Where D
ego/ter
 is an indicator variable. Here, ego and alter behavior are correlated through a

fixed effect. In other words, within each group, we are assuming that there’s a shared baseline
prevalence of the outcome. The main difference is that ego and alter may have different
results regarding the effect size of the treatment. Another way of approaching the group-level
correlation could be through an autocorrelation process, like in a spatial Autocorrelated model;
nonetheless, estimating such models is computationally expensive, so we opted to use the
former.

For simplicity, we assume that there is no time effect. Two essential components here, α and
κg are individual and group-level unobserved fixed effects. The most straightforward approach
here is to use a first difference estimator:

(yt+1g − ytg) = D
ego
 γego + Dter

γter + ϵ′

, ϵ′

= ϵt+1g − ϵtg

By taking the first difference, the fixed effects are removed from the equation, and we can
proceed with a regular linear model.

effect_size_ego <- 0.5

effect_size_alter <- 0.25

sizes <- seq(10, 100, by = 10)

Simulation function

sim_data_prepost <- function(n) {

Applying attrition

n <- floor(n * (1 - attrition))

Step 1: Sampling fixed effects

alpha_i <- rnorm(n * (n_a + 1))

kappa_g <- rep(rnorm(n_a + 1), n)

Step 2: Generating the outcome at t = 1

is_ego <- rep(c(1, rep(0, n_a)), n)

is_alter <- 1 - is_ego

y_0 <- alpha_i + kappa_g + rnorm(n * (n_a + 1))

y_1 <- alpha_i + kappa_g +

is_ego * effect_size_ego +

is_alter * effect_size_alter +

rnorm(n * (n_a + 1))

14.3. EXAMPLE 3: FIRST DIFFERENCE 159

Step 4: Computing test statistic

res <- tryCatch(

glm(I(y_1 - y_0) ~ -1 + is_ego + is_alter, family = gaussian("identity")),

error = function(e) e

)

if (inherits(res, "error"))

return(c(ego = NA, alter = NA))

Step 5: Reject?

c(

ego = res_ego$p.value < alpha,

ego = summary(res)$coefficients["is_ego", "Pr(>|t|)"] < alpha,

alter = summary(res)$coefficients["is_alter", "Pr(>|t|)"] < alpha,

coef(res)[1],

coef(res)[2]

)

}

We always set the seed

set.seed(88)

Making space and running!

spower <- NULL

for (s in sizes) {

Run the simulation for size s

simres <- rowMeans(

replicate(n_sims, sim_data_prepost(s)),

na.rm = TRUE

)

And store the results

spower <- rbind(spower, simres)

}

library(ggplot2)

spowerd <- rbind(

data.frame(size = sizes, power = spower[,"ego"], type = "ego"),

160 CHAPTER 14. POWER CALCULATION IN NETWORK STUDIES

data.frame(size = sizes, power = spower[,"alter"], type = "alter")

)

spowerd |>

ggplot(aes(x = size, y = power, colour = type)) +

geom_point() +

geom_smooth(method = "loess", formula = y ~ x) +

labs(x = "Number of Egos", y = "Approx. Power", colour = "Node type") +

geom_hline(yintercept = 1 - beta_pow) +

labs(

caption = sprintf(

"Ego effect: %.2f; Alter effect: %.2f", effect_size_ego, effect_size_alter)

)

0.25

0.50

0.75

25 50 75 100
Number of Egos

A
pp

ro
x.

 P
ow

er

Node type

alter

ego

Ego effect: 0.50; Alter effect: 0.25

From the inferential point of view, we could still use a demean operator to estimate individual-
level effects. In particular, we would require to use the demean operator at the group level and
then fit a fixed effect model to estimate individual-level parameters.

Part II

Statistical Foundations

161

Chapter 15

Bayes’ Rule

Bayes’ Rule is a fundamental equation in Bayesian statistics. With it, we can reformulate
inferential problems by writing probabilities in terms of known quantities. Bayes’ rule can be
stated as follows:

P(X = |Y = y) =
P(Y = y|X = y)P(X =)

P(Y = y)
(15.1)

Here we say that the conditional probability of X given Y can be expressed in terms of the
conditional probability of Y given X. For example, let X be an unknown vector of parameters
θ ∈ Θ and Y a dataset D ∼ ƒ (θ) whose data generating process depends on the unobserved θ.
As the posterior distribution of model parameters is in general elusive, instead, we use Bayes’
rule to rephrase the problem:

P(θ|D) =
P(θ|D)P(θ)

P(D)

Since the denominator of the equation does not depend on θ, we can, instead, write

P(θ|D) ∝ P(θ|D)P(θ)

In the Bayesian world, the unconditional distribution of the model parameters is assumed
to come from a particular distribution, whereas in the frequentist world, no distributional
assumptions are made about the model parameters. The latter is then equivalent to saying
that θ ∼ Uniform(−∞,+∞); therefore, even frequentists assume something about the model
parameters!1

Bayes’ rule can be derived using conditional probabilities. In particular, P(= |Y = y) is defined
as P(= , Y = y)/Pr(Y = y). Likewise, P(y = y|X =) is defined as P(y = y, X =)/Pr(X =),

1The discussion about differences and similarities between frequentists and Bayesians has a long tradition. Bottom
line, no one can say 100% that they are either-or. In rigor, frequentists say model parameters are not random but
deterministic.

163

164 CHAPTER 15. BAYES’ RULE

which can be re-written as P(= , Y = y) = P(y = y|X =)Pr(X =). Replacing the last equality
in the first equation we get

P(= |Y = y) =
P(= , Y = y)

Pr(Y = y)
P(y = y|X =)Pr(X =)

Pr(Y = y)

Chapter 16

Markov Chain

A Markov Chain is a sequence of random variables in which the conditional distribution of the
n-th element only depends on n − 1.

16.1 Metropolis Algorithm

In the Metropolis Algorithm, or Metropolis MCMC, builds a Markov Chain that under certain
conditions converges to the target distribution. The key of the Algorithm is in accepting a
proposed move from θ to θ′ with probability equal to:

r =min
�

1,
P(θ′|D)

P(θ|D)

�

(16.1)

The resulting sequence converges to the target distribution. We can prove convergence by
showing that (a) the sequence is ergodic, and (b) the posterior distribution matches the target
distribution. Ergodicity describes three propoerties of a chain:

• Irreducibility: There is no zero probability of transitioning between any pair of states.

• Aperiodicity: As the term suggests, the chain has no repetitive periods/sequences.

• Non-transient: Transient refers to a chain having non-zero probability of never returning to
a starting state.

The three properties are reached by any random walk based on a well-defined probability
distribution, so we will focus on showing that the posterior matches the target distribution.

16.2 Metropolis-Hastings

min
�

1,
P(d|θ′)P(θ′)P(θ′|θ)

P(d|θ)P(θ)P(θ|θ′)

�

165

166 CHAPTER 16. MARKOV CHAIN

If the transittion probability is symmetric, then the previous equation reduces to the Metropolis
probability.

16.3 Likelihood-free MCMC

1. Initialize the algorithm with θ0, θ∗ = θ0–the current accepted state,–and observed sum-
mary statistic s0 = S(Dobsered):

2. For t = 1 to T do:

a. Draw θt from the proposal distribution J(θt |θ∗)

b. Draw a simulated data Dt from model M(θt)

c. Calculate the summary statistics st = S(Dt)

d. Accept the proposed state with probability

If accepted, set θ∗ = θt.

e. Next t

Chapter 17

Power and sample size

Computing power and sample size are common tasks in study design. This chapter will walk
you through power analysis for network studies. First, we will start with some preliminaries
regarding error types and statistical power.

17.1 Error types

One of the most important tables we’ll see around is the contingency table of accept/reject the
null hypothesis conditional on the true state:

Accept H0 Reject H0

H0 is true True positive False negative

H1 is true False positive True negative

A better way, more statistically accurate version of this table would be

Accept H0 Reject H0

H0 is true Correct inference Type I error

H1 is true Type II error Correct Inference

With P(Type I error) = α and P(Type II error) = β. This way, power can be defined as the
probability of rejecting the null given the alternative is true, P(Reject H0|H1 is true) = 1 − β.

17.2 Example 1: Sample size for a proportion

Let’s imagine we are preparing a study in which we would like to estimate the proportion of
individuals with a given status. Formally, we then say that the variable Y ∼ Bernoulli(p). To
do so, we will need to survey n individuals and estimate such a number by taking the sample
average. Furthermore, we hypothesize that under the null the proportion is H0 : p = p0.

The key here is to think about a simple rejection rule. Again, power is the probability of
rejecting the null given that the alternative is true. So, to write down the equation, we

167

168 CHAPTER 17. POWER AND SAMPLE SIZE

need to think about acceptance and rejection regions. Let p̂ be our estimate for the population
parameter, furthermore, p̂ = n−1

∑

 y. Our test statistic can be–and will be, most of the
cases–standardized to leverage the law of large numbers; under the null, we write the following:

E(p̂) = p0

Vr(p̂) =
Æ

p0(1 − p0)/n

Therefore, the statistic:

p̂ − p0
p

p0(1 − p0)/n
=

p
n(p̂ − p0)
p

p0(1 − p0)
∼ N(0,1)

Since the statistic is normally distributed, we can then say when we will reject the null. For this
case, that depends on the critical value, which most of the time is defined in terms of the type I
error rate. Formally, we reject the null if

p
n(p̂ − p0)
p

p0(1 − p0)
> Z1−α/2

This is equivalent to saying that the test statistic fell into the rejection region. With this in
hand, we can now write out the equation that we will be using for calculating the sample size.
Going back to the definition of power:

P(Reject H0|H1 is true) = 1 − β

P

� p
n(p̂ − p0)
p

p0(1 − p0)
> Z1−α/2

�

�

�

�

p = p1

�

= 1 − β

Observe that we cannot compute the power for all p ̸= p0; instead, we look at a given parameter
value. A good idea is to start from one previously known or identified in other studies. The key
idea here is to be able to manipulate the argument of the probability to turn it into a known
distribution, for example, the normal distribution:

For a given Type I of 0.05 and power of 0.8, the required sample size can be computed as
follows:

1 − β = P
� p

n(p̂ − p0)
p

p0(1 − p0)
> Z1−α/2

�

�

�

�

p = p1

�

= P

� p
n(p̂ − p0)
p

p0(1 − p0)
< Zα/2

�

�

�

�

p = p1

�

17.3. EXAMPLE 2: SAMPLE SIZE FOR A PROPORTION (VIS) 169

= P

� p
n(p̂ − p0)
p

p1(1 − p1)
<

Zα/2
p

p0(1 − p0)
p

p1(1 − p1)

�

�

�

�

p = p1

�

= P

�p
n(p̂ − p0 + p0 − p1)
p

p1(1 − p1)
<

Zα/2
p

p0(1 − p0) +
p
n(p0 − p1)

p

p1(1 − p1)

�

�

�

�

p = p1

�

= P

� p
n(p̂ − p1)
p

p1(1 − p1)
<

Zα/2
p

p0(1 − p0) +
p
n(p0 − p1)

p

p1(1 − p1)

�

�

�

�

p = p1

�

=

�

Zα/2
p

p0(1 − p0) +
p
n(p0 − p1)

p

p1(1 − p1)

�

�

�

�

p = p1

�

The last equality follows from the quantity
p
n(p̂−p1)p
p1(1−p1)

distributing standard normal. We can now

take the inverse of the cumulative distribution function (cdf) to isolate the sample size n:

−1(1 − β) =
Zα/2
p

p0(1 − p0) +
p
n(p0 − p1)

p

p1(1 − p1)

Z1−β
Æ

p1(1 − p1) = Zα/2
Æ

p0(1 − p0) +
p
n(p0 − p1)

�

Z1−β
p

p1(1 − p1) − Zα/2
p

p0(1 − p0)
�2

(p0 − p1)2
= n

Therefore, for the parameters (1 − β,α, p0, p1) = (0.8,0.05,0.5,0.6), the required sample size
is 193.8473 ∼ 194.

17.3 Example 2: Sample size for a proportion (vis)

Now, what happens if the model we are planning to estimate does not have a close form? If
analytical solutions are not available, simulations can be an excellent alternative to save the
day. Let’s re-do the sample size calculation using simulations.

The procedure to compute sample size based on simulations is computationally intensive. The
concept is straightforward, pick a set of best guesses for sample size, and for each one of them,
simulate the system to estimate power. Now, for a given value of n, we:

1. Simulate a sample of size n under the alternative.

2. Compute the test statistic corresponding to the null.

3. Accept or reject accordingly to the selected α, and store the result.

4. Repeat steps 1-3 many times. The obtained average is the corresponding power.

When running simulations, it is convenient to write a function for the data generating process.

170 CHAPTER 17. POWER AND SAMPLE SIZE

In our case, the function will be called sim_fun. The following lines of code achieve our goal:
approximate power by simulating 10,000 experiments for each sample size candidate:

Model parameters

p0 <- .5

p1 <- .6

betapower <- 1 - 0.8

alpha <- 0.05

nsims <- 10000

Step 1: Simulate the data under H1

z_one_minus_alpha_half <- qnorm(1 - alpha / 2)

sim_fun <- function(n) {

Generating the data

y <- as.integer(runif(n) < p1)

phat <- mean(y)

Accept or reject?

sqrt(n) * (phat - p0) / sqrt(p0 * (1 - p0)) >

z_one_minus_alpha_half

}

Step 2: For an array of n, simulate multiple experiments

n_seq <- seq(from = 150, to = 250, by = 10)

simulations <- NULL

set.seed(12312)

for (n in n_seq) {

Run the nsims experiments

res <- replicate(nsims, sim_fun(n))

Compute power and store the value

simulations <- rbind(

simulations,

data.frame(size = n, power = mean(res))

)

}

Finding out what is the closets value

best <- which.min(

abs((1 - betapower) - simulations$power)

17.3. EXAMPLE 2: SAMPLE SIZE FOR A PROPORTION (VIS) 171

)

simulations[best,,drop=FALSE]

size power

5 190 0.7952

Let’s visualize the power curve we generate from this simulation:

library(ggplot2)

ggplot(simulations, aes(x = size, y = power)) +

geom_point() +

geom_smooth() +

geom_hline(yintercept = 1 - betapower)

`geom_smooth()` using method = 'loess' and formula 'y ~ x'

0.7

0.8

0.9

150 175 200 225 250
size

po
w

er

Alternatively, we can fit a linear regression model where we predict power as a function of
sample size using linear and quadratic effects:

n = θ0 + θ1(1 − β) + θ2(1 − β)2

172 CHAPTER 17. POWER AND SAMPLE SIZE

Fitting the model

power_model <- glm(

size ~ power + I(powerˆ2),

data = simulations, family = gaussian()

)

Printing the results

summary(power_model)

##

Call:

glm(formula = size ~ power + I(power^2), family = gaussian(),

data = simulations)

##

Deviance Residuals:

Min 1Q Median 3Q Max

-7.7850 -3.7716 -0.5132 3.3510 8.0064

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 632.5 232.9 2.715 0.02644 *
power -1590.3 598.1 -2.659 0.02885 *
I(power^2) 1301.0 381.6 3.410 0.00923 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

(Dispersion parameter for gaussian family taken to be 34.83159)

##

Null deviance: 11000.00 on 10 degrees of freedom

Residual deviance: 278.65 on 8 degrees of freedom

AIC: 74.769

##

Number of Fisher Scoring iterations: 2

Predict

predict(power_model, newdata = data.frame(power = .8), type = "response") |>

ceiling()

1

193

According to our simulation study, the closest to our 80% power is using a sample size equal to
193, which is very close to the analytical solution of 194.

As a final comment for this example, remember that the more simulations the better.

Appendix A

Datasets

A.1 SNS data

A.1.1 About the data

• This data is part of the NIH Challenge grant # RC 1RC1AA019239 “Social Networks and
Networking That Puts Adolescents at High Risk”.

• In general terms, the SNS’s goal was(is) “Understand the network effects on risk behaviors
such as smoking initiation and substance use”.

A.1.2 Variables

The data has a wide structure, which means that there is one row per individual, and that
dynamic attributes are represented as one column per time.

• photoid Photo id at the school level (can be repeated across schools).

• school School id.

• hispanic Indicator variable that equals 1 if the indivual ever reported himself as hispanic.

• female1, . . . , female4 Indicator variable that equals 1 if the individual reported to be
female at the particular wave.

• grades1,. . . , grades4 Academic grades by wave. Values from 1 to 5, with 5 been the best.

• eversmk1, . . . , eversmk4 Indicator variable of ever smoking by wave. A one indicated that
the individual had smoked at the time of the survey.

• everdrk1, . . . , everdrk4 Indicator variable of ever drinking by wave. A one indicated that
the individual had drink at the time of the survey.

• home1, . . . , home4 Factor variable for home status by wave. A one indicates home owner-
ship, a 2 rent, and a 3 a “I don’t know”.

173

174 APPENDIX A. DATASETS

During the survey, participants were asked to name up to 19 of their school friends:

• sch_friend11, . . . , sch_friend119 School friends nominations (19 in total) for wave 1.
The codes are mapped to the variable photoid.

• sch_friend21, . . . , sch_friend219 School friends nominations (19 in total) for wave 2.
The codes are mapped to the variable photoid.

• sch_friend31, . . . , sch_friend319 School friends nominations (19 in total) for wave 3.
The codes are mapped to the variable photoid.

• sch_friend41, . . . , sch_friend419 School friends nominations (19 in total) for wave 4.
The codes are mapped to the variable photoid.

References

Admiraal, Ryan, and Mark S Handcock. 2006. “Sequential Importance Sampling for Bipartite
Graphs with Applications to Likelihood-Based Inference.” Department of Statistics, University
of Washington.

Bache, Stefan Milton, and Hadley Wickham. 2014. Magrittr: A Forward-Pipe Operator for r.
https://CRAN.R-project.org/package=magrittr.

Bojanowski, Michal. 2015. Intergraph: Coercion Routines for Network Data Objects. http://
mbojan.github.io/intergraph.

Brooks, Steve, Andrew Gelman, Galin Jones, and Xiao-Li Meng. 2011. Handbook of Markov

Chain Monte Carlo. CRC press.
Csardi, Gabor, and Tamas Nepusz. 2006. “The Igraph Software Package for Complex Network

Research.” InterJournal Complex Systems: 1695. http://igraph.org.
Efron, Bradley, and Robert J Tibshirani. 1994. An Introduction to the Bootstrap. CRC press.
Geyer, Charles J., and Elizabeth A. Thompson. 1992. “Constrained Monte Carlo Maximum Likeli-

hood for Dependent Data.” Journal of the Royal Statistical Society. Series B (Methodological)

54 (3): 657–99. http://www.jstor.org/stable/2345852.
Handcock, Mark S., David R. Hunter, Carter T. Butts, Steven M. Goodreau, Pavel N. Krivitsky,

Skye Bender-deMoll, and Martina Morris. 2016. Statnet: Software Tools for the Statisti-

cal Analysis of Network Data. The Statnet Project (http://www.statnet.org). CRAN.R-
project.org/package=statnet.

Handcock, Mark S., David R. Hunter, Carter T. Butts, Steven M. Goodreau, Pavel N. Krivitsky,
and Martina Morris. 2017. Ergm: Fit, Simulate and Diagnose Exponential-Family Models

for Networks. The Statnet Project (http://www.statnet.org). https://CRAN.R-project
.org/package=ergm.

Hunter, David R, Steven M Goodreau, and Mark S Handcock. 2008. “Goodness of Fit of
Social Network Models.” Journal of the American Statistical Association 103 (481): 248–58.
https://doi.org/10.1198/016214507000000446.

Hunter, David R., Mark S. Handcock, Carter T. Butts, Steven M. Goodreau, and Martina Morris.
2008. “ergm : A Package to Fit, Simulate and Diagnose Exponential-Family Models for
Networks.” Journal of Statistical Software 24 (3). https://doi.org/10.18637/jss.v024
.i03.

Lazega, Emmanuel, and Tom AB Snijders. 2015. Multilevel Network Analysis for the Social

Sciences: Theory, Methods and Applications. Vol. 12. Springer.
Leifeld, Philip. 2013. “texreg: Conversion of Statistical Model Output in R to LaTeX and HTML

175

https://CRAN.R-project.org/package=magrittr
http://mbojan.github.io/intergraph
http://mbojan.github.io/intergraph
http://igraph.org
http://www.jstor.org/stable/2345852
http://www.statnet.org
https://CRAN.R-project.org/package=statnet
https://CRAN.R-project.org/package=statnet
http://www.statnet.org
https://CRAN.R-project.org/package=ergm
https://CRAN.R-project.org/package=ergm
https://doi.org/10.1198/016214507000000446
https://doi.org/10.18637/jss.v024.i03
https://doi.org/10.18637/jss.v024.i03

176 APPENDIX A. DATASETS

Tables.” Journal of Statistical Software 55 (8): 1–24. http://www.jstatsoft.org/v55/i08/.
Lusher, Dean, Johan Koskinen, and Garry Robins. 2012. Exponential Random Graph Models for

Social Networks: Theory, Methods, and Applications. Cambridge University Press.
Matloff, Norman. 2011. The Art of r Programming: A Tour of Statistical Software Design. No

Starch Press.
Morris, Martina, Mark Handcock, and David Hunter. 2008. “Specification of Exponential-Family

Random Graph Models: Terms and Computational Aspects.” Journal of Statistical Software,

Articles 24 (4): 1–24. https://doi.org/10.18637/jss.v024.i04.
Plummer, Martyn, Nicky Best, Kate Cowles, and Karen Vines. 2006. “CODA: Convergence

Diagnosis and Output Analysis for MCMC.” R News 6 (1): 7–11. https://journal.r

-project.org/archive/.
R Core Team. 2017a. Foreign: Read Data Stored by ’Minitab’, ’s’, ’SAS’, ’SPSS’, ’Stata’, ’Systat’,

’Weka’, ’dBase’, ... https://CRAN.R-project.org/package=foreign.
———. 2017b. R: A Language and Environment for Statistical Computing. Vienna, Austria: R

Foundation for Statistical Computing. https://www.R-project.org/.
Ripley, Ruth M., Tom AB Snijders, Paulina Preciado, and Others. 2011. “Manual for RSIENA.”

University of Oxford: Department of Statistics, Nuffield College, no. 2007. https://

www.uni-due.de/hummell/sna/R/RSiena%7B/_%7DManual.pdf.
Sarkar, Deepayan, and Felix Andrews. 2016. latticeExtra: Extra Graphical Utilities Based on

Lattice. https://CRAN.R-project.org/package=latticeExtra.
Snijders, Tom A B, and Stephen P Borgatti. 1999. “Non-Parametric Standard Errors and Tests

for Network Statistics.” Connections 22 (2): 1–10. https://insna.org/PDF/Connections/
v22/1999_I-2_61-70.pdf.

Snijders, Tom A B, Gerhard G. van de Bunt, and Christian E G Steglich. 2010. “Introduction
to stochastic actor-based models for network dynamics.” Social Networks 32 (1): 44–60.
https://doi.org/10.1016/j.socnet.2009.02.004.

SNIJDERS, TOM A. B. 2010. “Conditional Marginalization for Exponential Random Graph Mod-
els.” The Journal of Mathematical Sociology 34 (4): 239–52. https://doi.org/10.1080/
0022250X.2010.485707.

Snijders, Tom AB. 2002. “Markov Chain Monte Carlo Estimation of Exponential Random Graph
Models.” Journal of Social Structure 3.

Ushey, Kevin, Jim Hester, and Robert Krzyzanowski. 2017. Rex: Friendly Regular Expressions.
https://CRAN.R-project.org/package=rex.

Wang, Peng, Ken Sharpe, Garry L. Robins, and Philippa E. Pattison. 2009. “Exponential
Random Graph (p*) Models for Affiliation Networks.” Social Networks 31 (1): 12–25.
https://doi.org/https://doi.org/10.1016/j.socnet.2008.08.002.

Wickham, Hadley. 2017. Stringr: Simple, Consistent Wrappers for Common String Operations.
https://CRAN.R-project.org/package=stringr.

Wickham, Hadley, and Jennifer Bryan. 2017. Readxl: Read Excel Files. https://CRAN.R

-project.org/package=readxl.
Wickham, Hadley, Romain Francois, Lionel Henry, and Kirill Müller. 2017. Dplyr: A Grammar of

Data Manipulation. https://CRAN.R-project.org/package=dplyr.
Wickham, Hadley, and Lionel Henry. 2017. Tidyr: Easily Tidy Data with ’Spread()’ and ’Gather()’

http://www.jstatsoft.org/v55/i08/
https://doi.org/10.18637/jss.v024.i04
https://journal.r-project.org/archive/
https://journal.r-project.org/archive/
https://CRAN.R-project.org/package=foreign
https://www.R-project.org/
https://www.uni-due.de/hummell/sna/R/RSiena%7B/_%7DManual.pdf
https://www.uni-due.de/hummell/sna/R/RSiena%7B/_%7DManual.pdf
https://CRAN.R-project.org/package=latticeExtra
https://insna.org/PDF/Connections/v22/1999_I-2_61-70.pdf
https://insna.org/PDF/Connections/v22/1999_I-2_61-70.pdf
https://doi.org/10.1016/j.socnet.2009.02.004
https://doi.org/10.1080/0022250X.2010.485707
https://doi.org/10.1080/0022250X.2010.485707
https://CRAN.R-project.org/package=rex
https://doi.org/10.1016/j.socnet.2008.08.002
https://CRAN.R-project.org/package=stringr
https://CRAN.R-project.org/package=readxl
https://CRAN.R-project.org/package=readxl
https://CRAN.R-project.org/package=dplyr

A.1. SNS DATA 177

Functions. https://CRAN.R-project.org/package=tidyr.
Wickham, Hadley, Jim Hester, and Romain Francois. 2017. Readr: Read Rectangular Text Data.

https://CRAN.R-project.org/package=readr.

https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=readr

	Preface
	About the Author
	I Applications
	Introduction
	R Basics
	What is R
	How to install packages
	Prerequisites
	A gentle Quick n' Dirty Introduction to R

	Network Nomination Data
	Data preprocessing
	Creating a network
	Network descriptive stats
	Plotting the network in igraph
	Statistical tests

	Exponential Random Graph Models
	A naïve example
	Estimation of ERGMs
	The ergm package
	Running ERGMs
	Model Goodness-of-Fit
	More on MCMC convergence
	Mathematical Interpretation
	Markov independence

	Using constraints in ERGMs
	Example 1: Interlocking egos and disconnected alters
	Example 2: Bi-partite networks

	(Separable) Temporal Exponential Family Random Graph Models
	Simulating and visualizing networks
	Random Graph Models
	Social Networks in Schools
	Reading a network
	Visualizing the network

	Egocentric networks
	Network files (graphml)
	Person files
	Ego files
	Edgelist files
	Putting all together
	Saving the data

	Hypothesis testing in networks
	Comparing networks
	Examples

	Network diffussion with netdiffuseR
	Network diffusion of innovation
	The netdiffuseR R package
	Simulation of diffusion processes
	Statistical inference

	Stochastic Actor Oriented Models
	Power calculation in network studies
	Example 1: Spillover effects in egocentric studies
	Example 2: Spillover effects pre-post effect
	Example 3: First difference

	II Statistical Foundations
	Bayes' Rule
	Markov Chain
	Metropolis Algorithm
	Metropolis-Hastings
	Likelihood-free MCMC

	Power and sample size
	Error types
	Example 1: Sample size for a proportion
	Example 2: Sample size for a proportion (vis)

	Datasets
	SNS data

	References

