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Chapter 1

Preface

Statistical methods for networked systems are present in most disciplines. Nonetheless, despite
the language differences between disciplines, many methods developed to study specific types
of problems can be helpful outside of their original context.

This project began as a part of a workshop that took place at USC’s Center for Applied

Network Analysis. Now, it is a personal project that I use to gather and study statistical
methods to analyze networks, emphasizing social and biological systems. Moreover, the book
will use statistical computing methods as a core component when developing these topics.

In general, we will, besides R itself, we will be using RStudio. For data management, we will
use dplyr and data.table. The network data management and visualization packages we will
use are igraph, netdiffuseR, the statnet suite, and netplot. Some of you may be wondering
“what about ggplot2 and friends? What about tidyverse”, well, my short answer is I jumped
into R before all of that was that popular.

You can access the book’s source code at https://github.com/gvegayon/appliedsnar.
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Chapter 2

About the Author

I am a Research Assistant Professor at the University of Utah’s Division of Epidemiology,
where I work on studying Complex Systems using Statistical Computing. I was born and raised
in Chile. I have over ten years of experience developing scientific software focusing on high-
performance computing, data visualization, and social network analysis. My training is in Public
Policy (M.A. UAI, 2011), Economics (M.Sc. Caltech, 2015), and Biostatistics (Ph.D. USC, 2020).

I obtained my Ph.D. in Biostatistics under the supervision of Prof. Paul Marjoram

andProf. Kayla de la Haye, with my dissertation titled “Essays on Bioinformatics and Social

Network Analysis: Statistical and Computational Methods for Complex Systems.”

If you’d like to learn more about me, please visit my website at https://ggvy.cl.
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Part I

Applications
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Chapter 3

Introduction

Social Network Analysis and Network Science, have a long scholarly tradition. From social
diffusion models to protein-interaction networks, these complex systems disciplines cover a
wide range of problems across scientific fields. Yet, although these could be seen as wildly
different, the object under the microscope is the same, networks.

With a long history (and insufficient levels of inter-discipline collaboration, if you allow me to say)
of scientific advances happing in a somewhat isolated fashion, the potential for cross-pollination
between disciplines within network science is immense.

This book is an attempt to compile the many methods available in the realm of complexity
sciences, provide an in-depth mathematical examination–when possible–, and provide a few
examples illustrating their usage.
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Chapter 4

R Basics

4.1 What is R

A good reference book for both novice and advanced users is “The Art of R programming”
(Matloff 2011)1

4.2 How to install packages

Nowadays there are two ways of installing R packages (that I’m aware of), either using
install.packages, which is a function shipped with R, or using the devtools R package to
install a package from some remote repository other than CRAN, here are a few examples:

# This will install the igraph package from CRAN

> install.packages("netdiffuseR")

# This will install the bleeding-edge version from the project's GitHub repo!

> devtools::install_github("USCCANA/netdiffuseR")

The first one, using install.packages, installs the CRAN version of netdiffuseR, whereas
the line of code installs whatever version is plublished on https://github.com/USCCANA/

netdiffuseR, which is usually called the development version.

In some cases, users may want/need to install packages from the command line as some
packages need extra configuration to be installed. But we won’t need to look at it now.

4.3 Prerequisites

To install R just follow the instructions available at http://cran.r-project.org.

1Here a free pdf version distributed by the author.
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RStudio is the most popular Integrated Development Environment (IDE) for R that is developed
by posit.co. While having RStudio is not a requirement for using netdiffuseR, it is highly
recommended.

To get RStudio just visit https://www.rstudio.com/products/rstudio/download/.

4.4 A gentle Quick n’ Dirty Introduction to R

Some common tasks in R

0. Getting help (and reading the manual) is THE MOST IMPORTANT thing you should know
about. For example, if you want to read the manual (help file) of the read.csv function,
you can type either of these: r ?read.csv ?"read.csv" help(read.csv)

help("read.csv") If you are not fully aware of what is the name of the function, you can al-
ways use the fuzzy search r help.search("linear regression") ??"linear

regression"

1. In R you can create new objects by either using the assign operator (<-) or the equal sign
=, for example, the following 2 are equivalent: r a <- 1 a = 1 Historically the
assign operator is the most commonly used.

2. R has several type of objects, the most basic structures in R are vectors, matrix, list,
data.frame. Here is an example creating several of these (each line is enclosed with
parenthesis so that R prints the resulting element):

(a_vector <- 1:9)

## [1] 1 2 3 4 5 6 7 8 9

(another_vect <- c(1, 2, 3, 4, 5, 6, 7, 8, 9))

## [1] 1 2 3 4 5 6 7 8 9

(a_string_vec <- c("I", "like", "netdiffuseR"))

## [1] "I" "like" "netdiffuseR"

(a_matrix <- matrix(a_vector, ncol = 3))

## [,1] [,2] [,3]

## [1,] 1 4 7

## [2,] 2 5 8

## [3,] 3 6 9

(a_string_mat <- matrix(letters[1:9], ncol=3)) # Matrices can be of strings too

## [,1] [,2] [,3]

## [1,] "a" "d" "g"

## [2,] "b" "e" "h"

## [3,] "c" "f" "i"

https://posit.co
https://www.rstudio.com/products/rstudio/download/


4.4. A GENTLE QUICK N’ DIRTY INTRODUCTION TO R 17

(another_mat <- cbind(1:4, 11:14)) # The `cbind` operator does "column bind"

## [,1] [,2]

## [1,] 1 11

## [2,] 2 12

## [3,] 3 13

## [4,] 4 14

(another_mat2 <- rbind(1:4, 11:14)) # The `rbind` operator does "row bind"

## [,1] [,2] [,3] [,4]

## [1,] 1 2 3 4

## [2,] 11 12 13 14

(a_string_mat <- matrix(letters[1:9], ncol = 3))

## [,1] [,2] [,3]

## [1,] "a" "d" "g"

## [2,] "b" "e" "h"

## [3,] "c" "f" "i"

(a_list <- list(a_vector, a_matrix))

## [[1]]

## [1] 1 2 3 4 5 6 7 8 9

##

## [[2]]

## [,1] [,2] [,3]

## [1,] 1 4 7

## [2,] 2 5 8

## [3,] 3 6 9

(another_list <- list(my_vec = a_vector, my_mat = a_matrix)) # same but with names!

## $my_vec

## [1] 1 2 3 4 5 6 7 8 9

##

## $my_mat

## [,1] [,2] [,3]

## [1,] 1 4 7

## [2,] 2 5 8

## [3,] 3 6 9

# Data frames can have multiple types of elements, it is a collection of lists

(a_data_frame <- data.frame(x = 1:10, y = letters[1:10]))

## x y

## 1 1 a
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## 2 2 b

## 3 3 c

## 4 4 d

## 5 5 e

## 6 6 f

## 7 7 g

## 8 8 h

## 9 9 i

## 10 10 j

3. Depending on the type of object, we can access to its components using indexing:

a_vector[1:3] # First 3 elements

## [1] 1 2 3

a_string_vec[3] # Third element

## [1] "netdiffuseR"

a_matrix[1:2, 1:2] # A sub matrix

## [,1] [,2]

## [1,] 1 4

## [2,] 2 5

a_matrix[,3] # Third column

## [1] 7 8 9

a_matrix[3,] # Third row

## [1] 3 6 9

a_string_mat[1:6] # First 6 elements of the matrix. R stores matrices by column.

## [1] "a" "b" "c" "d" "e" "f"

# These three are equivalent

another_list[[1]]

## [1] 1 2 3 4 5 6 7 8 9

another_list$my_vec

## [1] 1 2 3 4 5 6 7 8 9

another_list[["my_vec"]]

## [1] 1 2 3 4 5 6 7 8 9

# Data frames are just like lists

a_data_frame[[1]]
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## [1] 1 2 3 4 5 6 7 8 9 10

a_data_frame[,1]

## [1] 1 2 3 4 5 6 7 8 9 10

a_data_frame[["x"]]

## [1] 1 2 3 4 5 6 7 8 9 10

a_data_frame$x

## [1] 1 2 3 4 5 6 7 8 9 10

4. Control-flow statements

# The oldfashion forloop

for (i in 1:10) {

print(paste("I'm step", i, "/", 10))

}

## [1] "I'm step 1 / 10"

## [1] "I'm step 2 / 10"

## [1] "I'm step 3 / 10"

## [1] "I'm step 4 / 10"

## [1] "I'm step 5 / 10"

## [1] "I'm step 6 / 10"

## [1] "I'm step 7 / 10"

## [1] "I'm step 8 / 10"

## [1] "I'm step 9 / 10"

## [1] "I'm step 10 / 10"

# A nice ifelse

for (i in 1:10) {

if (i %% 2) # Modulus operand

print(paste("I'm step", i, "/", 10, "(and I'm odd)"))

else

print(paste("I'm step", i, "/", 10, "(and I'm even)"))

}

## [1] "I'm step 1 / 10 (and I'm odd)"

## [1] "I'm step 2 / 10 (and I'm even)"

## [1] "I'm step 3 / 10 (and I'm odd)"

## [1] "I'm step 4 / 10 (and I'm even)"

## [1] "I'm step 5 / 10 (and I'm odd)"

## [1] "I'm step 6 / 10 (and I'm even)"
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## [1] "I'm step 7 / 10 (and I'm odd)"

## [1] "I'm step 8 / 10 (and I'm even)"

## [1] "I'm step 9 / 10 (and I'm odd)"

## [1] "I'm step 10 / 10 (and I'm even)"

# A while

i <- 10

while (i > 0) {

print(paste("I'm step", i, "/", 10))

i <- i - 1

}

## [1] "I'm step 10 / 10"

## [1] "I'm step 9 / 10"

## [1] "I'm step 8 / 10"

## [1] "I'm step 7 / 10"

## [1] "I'm step 6 / 10"

## [1] "I'm step 5 / 10"

## [1] "I'm step 4 / 10"

## [1] "I'm step 3 / 10"

## [1] "I'm step 2 / 10"

## [1] "I'm step 1 / 10"

5. R has a very nice set of pseudo-random number generation functions. In general, distribu-
tion functions have the following name structure:

a. Random Number Generation: r[name-of-the-distribution], e.g. rnorm for normal,
runif for uniform.

b. Density function: d[name-of-the-distribution], e.g. dnorm for normal, dunif for
uniform.

c. Cumulative Distribution Function (CDF): p[name-of-the-distribution], e.g. pnorm
for normal, punif for uniform.

d. Inverse (quantile) function: q[name-of-the-distribution], e.g. qnorm for the nor-
mal, qunif for the uniform.

Here are some examples:

# To ensure reproducibility

set.seed(1231)

# 100,000 Unif(0,1) numbers

x <- runif(1e5)

hist(x)
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# 100,000 N(10,25) numbers

x <- rnorm(1e5, mean = 10, sd = 5)

hist(x)
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# 100,000 Poisson(5) numbers

x <- rpois(1e5, lambda = 5)

hist(x)
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Histogram of x
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# 100,000 rexp(5) numbers

x <- rexp(1e5, 5)

hist(x)
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More distributions are available at ??Distributions.
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For a nice intro to R, take a look at “The Art of R Programming” by Norman Matloff. For more
advanced users, take a look at “Advanced R” by Hadley Wickham.

For this book, we need the following

R Core Team (2017b)

1. Install R from CRAN: https://www.r-project.org/

2. (optional) Install Rstudio: https://rstudio.org

While I find RStudio extremely useful, it is not necessary to use it with R.

https://nostarch.com/artofr.htm
http://adv-r.had.co.nz/
https://www.r-project.org/
https://rstudio.org


Chapter 5

Network Nomination Data

You can download the data for this chapter here.

The codebook for the data provided here is in the appendix.

The goals for this chapter are:

1. Read the data into R,

2. Create a network with it,

3. Compute descriptive statistics

4. Visualize the network

5.1 Data preprocessing

5.1.1 Reading the data into R

R has several ways of reading data. Your data can be Raw plain files like CSV, tab-delimited, or
specified by column width. To read plain-text data, you can use the readr package (Wickham,
Hester, and Francois 2017). In the case of binary files, like Stata, Octave, or SPSS files, you
can use the R package foreign (R Core Team 2017a). If your data is formatted as Microsoft
spreadsheets, the readxl R package (Wickham and Bryan 2017) is the alternative to use. In
our case, the data for this session is in Stata format:

library(foreign)

# Reading the data

dat <- foreign::read.dta("03-sns.dta")

# Taking a look at the data's first 5 columns and 5 rows

dat[1:5, 1:10]

25
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https://cran.r-project.org/package=readr
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## photoid school hispanic female1 female2 female3 female4 grades1 grades2

## 1 1 111 1 NA NA 0 0 NA NA

## 2 2 111 1 0 NA NA 0 3.0 NA

## 3 7 111 0 1 1 1 1 5.0 4.5

## 4 13 111 1 1 1 1 1 2.5 2.5

## 5 14 111 1 1 1 1 NA 3.0 3.5

## grades3

## 1 3.5

## 2 NA

## 3 4.0

## 4 2.5

## 5 3.5

5.1.2 Creating a unique id for each participant

Now suppose that we want to create a unique id using the school and photo id. In this case,
since both variables are numeric, a good way of doing it is to encode the id. For example, the
last three numbers are the photoid and the first ones are the school id. To do this, we need to
take into account the range of the variables:

(photo_id_ran <- range(dat$photoid))

## [1] 1 2074

As the variable spans up to 2074, we need to set the last 4 units of the variable to store the
photoid. We will use dplyr (Wickham et al. 2017) and magrittr (Bache and Wickham 2014)]
(the pipe operator, %>%) to create this variable, and we will call it. . . id (mind blowing, right?):

library(dplyr)

##

## Attaching package: 'dplyr'

## The following objects are masked from 'package:stats':

##

## filter, lag

## The following objects are masked from 'package:base':

##

## intersect, setdiff, setequal, union

library(magrittr)

(dat %<>% mutate(id = school*10000 + photoid)) %>%

head %>%

select(school, photoid, id)

## school photoid id
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## 1 111 1 1110001

## 2 111 2 1110002

## 3 111 7 1110007

## 4 111 13 1110013

## 5 111 14 1110014

## 6 111 15 1110015

Wow, what happened in the last three lines of code! What is that %>%? Well, that’s the pipe
operator, and it is an appealing way of writing nested function calls. In this case, instead of
writing something like:

dat_filtered$id <- dat_filtered$school*10000 + dat_filtered$photoid

subset(head(dat_filtered), select = c(school, photoid, id))

5.2 Creating a network

• We want to build a social network. For that, we either use an adjacency matrix or an
edgelist.

• Each individual of the SNS data nominated 19 friends from school. We will use those
nominations to create the social network.

• In this case, we will create the network by coercing the dataset into an edgelist.

5.2.1 From survey to edgelist

Let’s start by loading a couple of handy R packages. We will load tidyr (Wickham and Henry
2017) and stringr (Wickham 2017). We will use the first, tidyr, to reshape the data. The
second, stringr, will help us processing strings using regular expressions1.

library(tidyr)

library(stringr)

Optionally, we can use the tibble type of object, which is an alternative to the actual
data.frame. This object is said to provide more efficient methods for matrices and data

frames.

dat <- as_tibble(dat)

What I like from tibbles is that when you print them on the console, these actually look nice:

dat

## # A tibble: 2,164 x 100

## photoid school hispanic female1 female2 female3 female4 grades1 grades2

1Please refer to the help file ?'regular expression' in R. The R package rex (Ushey, Hester, and Krzyzanowski
2017) is a very nice companion for writing regular expressions. There’s also a neat (but experimental) RStudio add-in
that can be very helpful for understanding how regular expressions work, the regexplain add-in.

http://r4ds.had.co.nz/pipes.html
http://r4ds.had.co.nz/pipes.html
https://github.com/gadenbuie/regexplain
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## <int> <int> <dbl> <int> <int> <int> <int> <dbl> <dbl>

## 1 1 111 1 NA NA 0 0 NA NA

## 2 2 111 1 0 NA NA 0 3 NA

## 3 7 111 0 1 1 1 1 5 4.5

## 4 13 111 1 1 1 1 1 2.5 2.5

## 5 14 111 1 1 1 1 NA 3 3.5

## 6 15 111 1 0 0 0 0 2.5 2.5

## 7 20 111 1 1 1 1 1 2.5 2.5

## 8 22 111 1 NA NA 0 0 NA NA

## 9 25 111 0 1 1 NA 1 4.5 3.5

## 10 27 111 1 0 NA 0 0 3.5 NA

## # ... with 2,154 more rows, and 91 more variables: grades3 <dbl>,

## # grades4 <dbl>, eversmk1 <int>, eversmk2 <int>, eversmk3 <int>,

## # eversmk4 <int>, everdrk1 <int>, everdrk2 <int>, everdrk3 <int>,

## # everdrk4 <int>, home1 <int>, home2 <int>, home3 <int>, home4 <int>,

## # sch_friend11 <int>, sch_friend12 <int>, sch_friend13 <int>,

## # sch_friend14 <int>, sch_friend15 <int>, sch_friend16 <int>,

## # sch_friend17 <int>, sch_friend18 <int>, sch_friend19 <int>, ...

# Maybe too much piping... but its cool!

net <- dat %>%

select(id, school, starts_with("sch_friend")) %>%

gather(key = "varname", value = "content", -id, -school) %>%

filter(!is.na(content)) %>%

mutate(

friendid = school*10000 + content,

year = as.integer(str_extract(varname, "(?<=[a-z])[0-9]")),

nnom = as.integer(str_extract(varname, "(?<=[a-z][0-9])[0-9]+"))

)

Let’s take a look at this step by step:

1. First, we subset the data: We want to keep id, school, sch_friend*. For the later, we
use the function starts_with (from the tidyselect package). The latter allows us to se-
lect all variables that start with the word “sch_friend”, which means that sch_friend11,
sch_friend12, ... will be selected.

dat %>%

select(id, school, starts_with("sch_friend"))

## # A tibble: 2,164 x 78

## id school sch_friend11 sch_friend12 sch_friend13 sch_friend14

## <dbl> <int> <int> <int> <int> <int>

## 1 1110001 111 NA NA NA NA

## 2 1110002 111 424 423 426 289

## 3 1110007 111 629 505 NA NA
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## 4 1110013 111 232 569 NA NA

## 5 1110014 111 582 134 41 592

## 6 1110015 111 26 488 81 138

## 7 1110020 111 528 NA 492 395

## 8 1110022 111 NA NA NA NA

## 9 1110025 111 135 185 553 84

## 10 1110027 111 346 168 559 5

## # ... with 2,154 more rows, and 72 more variables: sch_friend15 <int>,

## # sch_friend16 <int>, sch_friend17 <int>, sch_friend18 <int>,

## # sch_friend19 <int>, sch_friend110 <int>, sch_friend111 <int>,

## # sch_friend112 <int>, sch_friend113 <int>, sch_friend114 <int>,

## # sch_friend115 <int>, sch_friend116 <int>, sch_friend117 <int>,

## # sch_friend118 <int>, sch_friend119 <int>, sch_friend21 <int>,

## # sch_friend22 <int>, sch_friend23 <int>, sch_friend24 <int>, ...

2. Then, we reshape it to long format: By transposing all the sch_friend* to long format. We
do this using the function gather (from the tidyr package); an alternative to the reshape

function, which I find easier to use. Let’s see how it works:

dat %>%

select(id, school, starts_with("sch_friend")) %>%

gather(key = "varname", value = "content", -id, -school)

## # A tibble: 164,464 x 4

## id school varname content

## <dbl> <int> <chr> <int>

## 1 1110001 111 sch_friend11 NA

## 2 1110002 111 sch_friend11 424

## 3 1110007 111 sch_friend11 629

## 4 1110013 111 sch_friend11 232

## 5 1110014 111 sch_friend11 582

## 6 1110015 111 sch_friend11 26

## 7 1110020 111 sch_friend11 528

## 8 1110022 111 sch_friend11 NA

## 9 1110025 111 sch_friend11 135

## 10 1110027 111 sch_friend11 346

## # ... with 164,454 more rows

In this case, the key parameter sets the name of the variable that will contain the name of
the variable that was reshaped, while value is the name of the variable that will hold the
content of the data (that’s why I named those like that). The -id, -school bit tells the
function to “drop” those variables before reshaping. In other words, “reshape everything
but id and school.”

Also, notice that we passed from 2164 rows to 19 (nominations) * 2164 (subjects) * 4
(waves) = 164464 rows, as expected.
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3. As the nomination data can be empty for some cells, we need to take care of those cases,
the NAs, so we filter the data:

dat %>%

select(id, school, starts_with("sch_friend")) %>%

gather(key = "varname", value = "content", -id, -school) %>%

filter(!is.na(content))

## # A tibble: 39,561 x 4

## id school varname content

## <dbl> <int> <chr> <int>

## 1 1110002 111 sch_friend11 424

## 2 1110007 111 sch_friend11 629

## 3 1110013 111 sch_friend11 232

## 4 1110014 111 sch_friend11 582

## 5 1110015 111 sch_friend11 26

## 6 1110020 111 sch_friend11 528

## 7 1110025 111 sch_friend11 135

## 8 1110027 111 sch_friend11 346

## 9 1110029 111 sch_friend11 369

## 10 1110030 111 sch_friend11 462

## # ... with 39,551 more rows

4. And finally, we create three new variables from this dataset: friendid,, year, and
nom_num (nomination number). All using regular expressions:

dat %>%

select(id, school, starts_with("sch_friend")) %>%

gather(key = "varname", value = "content", -id, -school) %>%

filter(!is.na(content)) %>%

mutate(

friendid = school*10000 + content,

year = as.integer(str_extract(varname, "(?<=[a-z])[0-9]")),

nnom = as.integer(str_extract(varname, "(?<=[a-z][0-9])[0-9]+"))

)

## # A tibble: 39,561 x 7

## id school varname content friendid year nnom

## <dbl> <int> <chr> <int> <dbl> <int> <int>

## 1 1110002 111 sch_friend11 424 1110424 1 1

## 2 1110007 111 sch_friend11 629 1110629 1 1

## 3 1110013 111 sch_friend11 232 1110232 1 1

## 4 1110014 111 sch_friend11 582 1110582 1 1

## 5 1110015 111 sch_friend11 26 1110026 1 1

## 6 1110020 111 sch_friend11 528 1110528 1 1

## 7 1110025 111 sch_friend11 135 1110135 1 1
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## 8 1110027 111 sch_friend11 346 1110346 1 1

## 9 1110029 111 sch_friend11 369 1110369 1 1

## 10 1110030 111 sch_friend11 462 1110462 1 1

## # ... with 39,551 more rows

The regular expression (?<=[a-z]) matches a string preceded by any letter from a to
z. In contrast, the expression [0-9] matches a single number. Hence, from the string
"sch_friend12", the regular expression will only match the 1, as it is the only number
followed by a letter. The expression (?<=[a-z][0-9]) matches a string preceded by a
lower case letter and a one-digit number. Finally, the expression [0-9]+ matches a string
of numbers–so it could be more than one. Hence, from the string "sch_friend12", we
will get 2:

str_extract("sch_friend12", "(?<=[a-z])[0-9]")

## [1] "1"

str_extract("sch_friend12", "(?<=[a-z][0-9])[0-9]+")

## [1] "2"

And finally, the as.integer function coerces the returning value from the str_extract

function from character to integer. Now that we have this edgelist, we can create an
igraph object

5.2.2 igraph network

For coercing the edgelist into an igraph object, we will be using the graph_from_data_frame

function in igraph (Csardi and Nepusz 2006). This function receives the following arguments: a
data frame where the two first columns are “source” (ego) and “target” (alter), an indicator of
whether the network is directed or not, and an optional data frame with vertices, in which’s
first column should contain the vertex ids.

Using the optional vertices argument is a good practice since, by doing so, you are telling the
function what ids that you are expecting to find. Using the original dataset, we will create a
data frame name vertices:

vertex_attrs <- dat %>%

select(id, school, hispanic, female1, starts_with("eversmk"))

Now, let’s now use the function graph_from_data_frame to create an igraph object:

library(igraph)

ig_year1 <- net %>%

filter(year == "1") %>%

select(id, friendid, nnom) %>%

graph_from_data_frame(
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vertices = vertex_attrs

)

## Error in graph_from_data_frame(., vertices = vertex_attrs): Some vertex names in edge list are not listed in vertex data frame

Ups! It seems that individuals are making nominations to other students not included in the
survey. How to solve that? Well, it all depends on what you need to do! In this case, we will go
for the quietly-remove-em’-and-don’t-tell strategy:

ig_year1 <- net %>%

filter(year == "1") %>%

# Extra line, all nominations must be in ego too.

filter(friendid %in% id) %>%

select(id, friendid, nnom) %>%

graph_from_data_frame(

vertices = vertex_attrs

)

ig_year1

## IGRAPH aa7fef5 DN-- 2164 9514 --

## + attr: name (v/c), school (v/n), hispanic (v/n), female1 (v/n),

## | eversmk1 (v/n), eversmk2 (v/n), eversmk3 (v/n), eversmk4 (v/n), nnom

## | (e/n)

## + edges from aa7fef5 (vertex names):

## [1] 1110007->1110629 1110013->1110232 1110014->1110582 1110015->1110026

## [5] 1110025->1110135 1110027->1110346 1110029->1110369 1110035->1110034

## [9] 1110040->1110390 1110041->1110557 1110044->1110027 1110046->1110030

## [13] 1110050->1110086 1110057->1110263 1110069->1110544 1110071->1110167

## [17] 1110072->1110289 1110073->1110014 1110075->1110352 1110084->1110305

## [21] 1110086->1110206 1110093->1110040 1110094->1110483 1110095->1110043

## + ... omitted several edges

So there we have our network with 2164 nodes and 9514 edges. The following steps: get some
descriptive stats and visualize our network.

5.3 Network descriptive stats

While we could do all networks at once, in this part, we will focus on computing some network
statistics for one of the schools only. We start by school 111. The first question that you should
be asking yourself now is, “how can I get that information from the igraph object?.” Vertex and
edges attributes can be accessed via the V and E functions, respectively; moreover, we can list
what vertex/edge attributes are available:
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list.vertex.attributes(ig_year1)

## [1] "name" "school" "hispanic" "female1" "eversmk1" "eversmk2" "eversmk3"

## [8] "eversmk4"

list.edge.attributes(ig_year1)

## [1] "nnom"

Just like we would do with data frames, accessing vertex attributes is done via the dollar sign
operator $. Together with the V function; for example, accessing the first ten elements of the
variable hispanic can be done as follows:

V(ig_year1)$hispanic[1:10]

## [1] 1 1 0 1 1 1 1 1 0 1

Now that you know how to access vertex attributes, we can get the network corresponding
to school 111 by identifying which vertices are part of it and pass that information to the
induced_subgraph function:

# Which ids are from school 111?

school111ids <- which(V(ig_year1)$school == 111)

# Creating a subgraph

ig_year1_111 <- induced_subgraph(

graph = ig_year1,

vids = school111ids

)

The which function in R returns a vector of indices indicating which elements pass the test,
returning true and false, otherwise. In our case, it will result in a vector of indices of the vertices
which have the attribute school equal to 111. With the subgraph, we can compute different
centrality measures2 for each vertex and store them in the igraph object itself:

# Computing centrality measures for each vertex

V(ig_year1_111)$indegree <- degree(ig_year1_111, mode = "in")

V(ig_year1_111)$outdegree <- degree(ig_year1_111, mode = "out")

V(ig_year1_111)$closeness <- closeness(ig_year1_111, mode = "total")

V(ig_year1_111)$betweeness <- betweenness(ig_year1_111, normalized = TRUE)

From here, we can go back to our old habits and get the set of vertex attributes as a data frame
so we can compute some summary statistics on the centrality measurements that we just got

# Extracting each vectex features as a data.frame

stats <- as_data_frame(ig_year1_111, what = "vertices")

2For more information about the different centrality measurements, please take a look at the “Centrality” article on
Wikipedia.

https://en.wikipedia.org/wiki/Centrality
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# Computing quantiles for each variable

stats_degree <- with(stats, {

cbind(

indegree = quantile(indegree, c(.025, .5, .975), na.rm = TRUE),

outdegree = quantile(outdegree, c(.025, .5, .975), na.rm = TRUE),

closeness = quantile(closeness, c(.025, .5, .975), na.rm = TRUE),

betweeness = quantile(betweeness, c(.025, .5, .975), na.rm = TRUE)

)

})

stats_degree

## indegree outdegree closeness betweeness

## 2.5% 0 0 0.0005915148 0.000000000

## 50% 4 4 0.0007487833 0.001879006

## 97.5% 16 16 0.0008838413 0.016591048

The with function is somewhat similar to what dplyr allows us to do when we want to work
with the dataset but without mentioning its name everytime that we ask for a variable. Without
using the with function, the previous could have been done as follows:

stats_degree <-

cbind(

indegree = quantile(stats$indegree, c(.025, .5, .975), na.rm = TRUE),

outdegree = quantile(stats$outdegree, c(.025, .5, .975), na.rm = TRUE),

closeness = quantile(stats$closeness, c(.025, .5, .975), na.rm = TRUE),

betweeness = quantile(stats$betweeness, c(.025, .5, .975), na.rm = TRUE)

)

Now we will compute some statistics at the graph level:

cbind(

size = vcount(ig_year1_111),

nedges = ecount(ig_year1_111),

density = edge_density(ig_year1_111),

recip = reciprocity(ig_year1_111),

centr = centr_betw(ig_year1_111)$centralization,

pathLen = mean_distance(ig_year1_111)

)

## size nedges density recip centr pathLen

## [1,] 533 2638 0.009303277 0.3731513 0.02179154 4.23678

Triadic census

triadic <- triad_census(ig_year1_111)

triadic
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## [1] 24059676 724389 290849 3619 3383 4401 3219 2997

## [9] 407 33 836 235 163 137 277 85

To get a nicer view of this, we can use a table that I retrieved from ?triad_census. Moreover,
we can normalize the triadic object by its sum instead of looking at raw counts. That way, we
get proportions instead3

knitr::kable(cbind(

Pcent = triadic/sum(triadic)*100,

read.csv("triadic_census.csv")

), digits = 2)

Pcent code description

95.88 003 A,B,C, the empty graph.

2.89 012 A->B, C, the graph with a single directed edge.

1.16 102 A<->B, C, the graph with a mutual connection between two vertices.

0.01 021D A<-B->C, the out-star.

0.01 021U A->B<-C, the in-star.

0.02 021C A->B->C, directed line.

0.01 111D A<->B<-C.

0.01 111U A<->B->C.

0.00 030T A->B<-C, A->C.

0.00 030C A<-B<-C, A->C.

0.00 201 A<->B<->C.

0.00 120D A<-B->C, A<->C.

0.00 120U A->B<-C, A<->C.

0.00 120C A->B->C, A<->C.

0.00 210 A->B<->C, A<->C.

0.00 300 A<->B<->C, A<->C, the complete graph.

5.4 Plotting the network in igraph

5.4.1 Single plot

Let’s take a look at how does our network looks like when we use the default parameters in the
plot method of the igraph object:

plot(ig_year1)

Not very nice, right? A couple of things with this plot:

1. We are looking at all schools simultaneously, which does not make sense. So, instead of
plotting ig_year1, we will focus on ig_year1_111.

3During our workshop, Prof. De la Haye suggested using
�n
3

�

as a normalizing constant. It turns out that sum(triadic)
= choose(n, 3)! So either approach is correct.
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Figure 5.1: A not very nice network plot. This is what we get with the default parameters in
igraph.

2. All the vertices have the same size and are overlapping. Instead of using the default size,
we will size the vertices by indegree using the degree function and passing the vector of
degrees to vertex.size.4

3. Given the number of vertices in these networks, the labels are not useful here. So we
will remove them by setting vertex.label = NA. Moreover, we will reduce the size of the
arrows’ tip by setting edge.arrow.size = 0.25.

4. And finally, we will set the color of each vertex to be a function of whether the individual
is Hispanic or not. For this last bit we need to go a bit more of programming:

col_hispanic <- V(ig_year1_111)$hispanic + 1

col_hispanic <- coalesce(col_hispanic, 3)

col_hispanic <- c("steelblue", "tomato", "white")[col_hispanic]

Line by line, we did the following:

1. The first line added one to all no NA values so that the 0s (non-Hispanic) turned to 1s and
the 1s (Hispanic) turned to 2s.

2. The second line replaced all NAs with the number three so that our vector col_hispanic
now ranges from one to three with no NAs in it.

3. In the last line, we created a vector of colors. Essentially, what we are doing here is telling
R to create a vector of length length(col_hispanic) by selecting elements by index
from the vector c("steelblue", "tomato", "white"). This way, if, for example, the
first element of the vector col_hispanic was a 3, our new vector of colors would have a
"white" in it.

4Figuring out what is the optimal vertex size is a bit tricky. Without getting too technical, there’s no other
way of getting nice vertex size other than just playing with different values of it. A nice solution to this is us-
ing netdiffuseR::igraph_vertex_rescale which rescales the vertices so that these keep their aspect ratio to a
predefined proportion of the screen.

https://www.rdocumentation.org/packages/netdiffuseR/versions/1.17.0/topics/rescale_vertex_igraph
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To make sure we know we are right, let’s print the first 10 elements of our new vector of colors
together with the original hispanic column:

cbind(

original = V(ig_year1_111)$hispanic[1:10],

colors = col_hispanic[1:10]

)

## original colors

## [1,] "1" "tomato"

## [2,] "1" "tomato"

## [3,] "0" "steelblue"

## [4,] "1" "tomato"

## [5,] "1" "tomato"

## [6,] "1" "tomato"

## [7,] "1" "tomato"

## [8,] "1" "tomato"

## [9,] "0" "steelblue"

## [10,] "1" "tomato"

With our nice vector of colors, now we can pass it to plot.igraph (which we call implicitly by
just calling plot), via the vertex.color argument:

# Fancy graph

set.seed(1)

plot(

ig_year1_111,

vertex.size = degree(ig_year1_111)/10 +1,

vertex.label = NA,

edge.arrow.size = .25,

vertex.color = col_hispanic

)

Nice! So it does look better. The only problem is that we have a lot of isolates. Let’s try again
by drawing the same plot without isolates. To do so, we need to filter the graph, for which we
will use the function induced_subgraph

# Which vertices are not isolates?

which_ids <- which(degree(ig_year1_111, mode = "total") > 0)

# Getting the subgraph

ig_year1_111_sub <- induced_subgraph(ig_year1_111, which_ids)

# We need to get the same subset in col_hispanic

col_hispanic <- col_hispanic[which_ids]
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Figure 5.2: Friends network in time 1 for school 111.

# Fancy graph

set.seed(1)

plot(

ig_year1_111_sub,

vertex.size = degree(ig_year1_111_sub)/5 +1,

vertex.label = NA,

edge.arrow.size = .25,

vertex.color = col_hispanic

)

Figure 5.3: Friends network in time 1 for school 111. The graph excludes isolates.

Now that’s better! An interesting pattern that shows up is that individuals seem to cluster by
whether they are Hispanic or not.

We can write this as a function to avoid copying and pasting the code n times (supposing that
we want to create a plot similar to this n times). We do the latter in the following subsection.
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5.4.2 Multiple plots

When you are repeating yourself repeatedly, it is a good idea to write down a sequence of
commands as a function. In this case, since we will be running the same type of plot for all
schools/waves, we write a function in which the only things that change are: (a) the school id,
and (b) the color of the nodes.

myplot <- function(

net,

schoolid,

mindgr = 1,

vcol = "tomato",

...) {

# Creating a subgraph

subnet <- induced_subgraph(

net,

which(degree(net, mode = "all") >= mindgr & V(net)$school == schoolid)

)

# Fancy graph

set.seed(1)

plot(

subnet,

vertex.size = degree(subnet)/5,

vertex.label = NA,

edge.arrow.size = .25,

vertex.color = vcol,

...

)

}

The function definition:

1. The myplot <- function([arguments]) {[body of the function]} tells R that we
are going to create a function called myplot.

2. We declare four specific arguments: net, schoolid, mindgr, and vcol. These are an
igraph object, the school id, the minimum degree that vertices must have to be included
in the figure, and the color of the vertices. Observe that, compared to other programming
languages, R does not require declaring the data types.

3. The ellipsis object, ..., is an especial object in R that allows us to pass other arguments
without specifying which. If you take a look at the plot bit in the function body, you will
see that we also added .... We use the ellipsis to pass extra arguments (different from
the ones that we explicitly defined) directly to plot. In practice, this implies that we can,
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for example, set the argument edge.arrow.size when calling myplot, even though we
did not include it in the function definition! (See ?dotsMethods in R for more details).

In the following lines of code, using our new function, we will plot each schools’ network in
the same plotting device (window) with the help of the par function, and add legend with the
legend:

# Plotting all together

oldpar <- par(no.readonly = TRUE)

par(mfrow = c(2, 3), mai = rep(0, 4), oma= c(1, 0, 0, 0))

myplot(ig_year1, 111, vcol = "tomato")

myplot(ig_year1, 112, vcol = "steelblue")

myplot(ig_year1, 113, vcol = "black")

myplot(ig_year1, 114, vcol = "gold")

myplot(ig_year1, 115, vcol = "white")

par(oldpar)

# A fancy legend

legend(

"bottomright",

legend = c(111, 112, 113, 114, 115),

pt.bg = c("tomato", "steelblue", "black", "gold", "white"),

pch = 21,

cex = 1,

bty = "n",

title = "School"

)

So what happened here?

• oldpar <- par(no.readonly = TRUE) This line stores the current parameters for plot-
ting. Since we are going to be changing them, we better make sure we are able to go
back!.

• par(mfrow = c(2, 3), mai = rep(0, 4), oma=rep(0, 4)) Here we are setting vari-
ous things at the same time. mfrow specifies how many figures will be drawn, and in what
order. In particular, we are asking the plotting device to make room for 2*3 = 6 figures
organized in two rows and three columns drawn by row.

mai specifies the size of the margins in inches, setting all margins equal to zero (which
is what we are doing now) gives more space to the graph. The same is true for oma. See
?par for more info.

• myplot(ig_year1, ...) This is simply calling our plotting function. The neat part of this
is that, since we set mfrow = c(2, 3), R takes care of distributing the plots in the device.

• par(oldpar) This line allows us to restore the plotting parameters.
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School

111
112
113
114
115

Figure 5.4: All 5 schools in time 1. Again, the graphs exclude isolates.

5.5 Statistical tests

5.5.1 Is nomination number correlated with indegree?

Hypothesis: Individuals that, on average, are among the first nominations of their peers are
more popular

# Getting all the data in long format

edgelist <- as_long_data_frame(ig_year1) %>%

as_tibble

# Computing indegree (again) and average nomination number

# Include "On a scale from one to five how close do you feel"

# Also for egocentric friends (A. Friends)

indeg_nom_cor <- group_by(edgelist, to, to_name, to_school) %>%

summarise(

indeg = length(nnom),

nom_avg = 1/mean(nnom)

) %>%

rename(

school = to_school
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)

## `summarise()` has grouped output by 'to', 'to_name'. You can override using the

## `.groups` argument.

indeg_nom_cor

## # A tibble: 1,561 x 5

## # Groups: to, to_name [1,561]

## to to_name school indeg nom_avg

## <dbl> <chr> <int> <int> <dbl>

## 1 2 1110002 111 22 0.222

## 2 3 1110007 111 7 0.175

## 3 4 1110013 111 6 0.171

## 4 5 1110014 111 19 0.134

## 5 6 1110015 111 3 0.15

## 6 7 1110020 111 6 0.154

## 7 9 1110025 111 6 0.214

## 8 10 1110027 111 13 0.220

## 9 11 1110029 111 14 0.131

## 10 12 1110030 111 6 0.222

## # ... with 1,551 more rows

# Using pearson's correlation

with(indeg_nom_cor, cor.test(indeg, nom_avg))

##

## Pearson's product-moment correlation

##

## data: indeg and nom_avg

## t = -12.254, df = 1559, p-value < 2.2e-16

## alternative hypothesis: true correlation is not equal to 0

## 95 percent confidence interval:

## -0.3409964 -0.2504653

## sample estimates:

## cor

## -0.2963965

save.image("03.rda")



Chapter 6

Exponential Random Graph

Models

I strongly suggest reading the vignette included in the ergm R package

vignette("ergm", package="ergm")

The purpose of ERGMs, in a nutshell, is to describe parsimoniously the local selection
forces that shape the global structure of a network. To this end, a network dataset,
like those depicted in Figure 1, may be considered as the response in a regression
model, where the predictors are things like “propensity for individuals of the same sex
to form partnerships” or “propensity for individuals to form triangles of partnerships”.
In Figure 1(b), for example, it is evident that the individual nodes appear to cluster
in groups of the same numerical labels (which turn out to be students’ grades, 7
through 12); thus, an ERGM can help us quantify the strength of this intra-group
effect.

— (David R. Hunter et al. 2008)

In a nutshell, we use ERGMs as a parametric interpretation of the distribution of Y, which takes
the canonical form:

Pr (Y = y|θ,Y) =
exp
¦

θTg(y)
©

κ (θ,Y)
, y ∈ Y

Where θ ∈ Ω ⊂ Rq is the vector of model coefficients and g(y) is a q-vector of statistics based
on the adjacency matrix y.

Model (6) may be expanded by replacing g(y) with g(y,X) to allow for additional covariate
information X about the network. The denominator,

43
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Figure 6.1: Source: Hunter et al. (2008)

κ (θ,Y) =
∑

y∈Y
exp
¦

θTg(y)
©

,is the normalizing factor that ensures that equation (6) is a legitimate probability distribution.
Even after fixing Y to be all the networks that have size n, the size of Y makes this type of
statistical model hard to estimate as there are N = 2n(n−1) possible networks! (David R. Hunter
et al. 2008)

Recent developments include new forms of dependency structures to take into account more
general neighborhood effects. These models relax the one-step Markovian dependence as-
sumptions, allowing investigation of longer-range configurations, such as longer paths in the
network or larger cycles (Pattison and Robins 2002). Models for bipartite (Faust and Skvoretz
1999) and tripartite (Mische and Robins 2000) network structures have been developed. (David
R. Hunter et al. 2008, 9)

6.1 A naïve example

In the simplest case, ERGMs equate a logistic regression. By simple, I mean cases in which
there are no Markovian terms–motifs involving more than one edge–for example, the Bernoulli
graph. In the Bernoulli graph, ties are independent of each other, so the presence/absence of a
tie between nodes  and j won’t affect the presence/absence of a tie between nodes k and .

Let’s fit an ERGM using the sampson dataset included in the ergm package.
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library(ergm)

data("sampson")

samplike

## Network attributes:

## vertices = 18

## directed = TRUE

## hyper = FALSE

## loops = FALSE

## multiple = FALSE

## total edges= 88

## missing edges= 0

## non-missing edges= 88

##

## Vertex attribute names:

## cloisterville group vertex.names

##

## Edge attribute names:

## nominations

Using ergm to fit a Bernoulli graph requires using the edges term, which counts how many ties
are in the graph:

ergm_fit <- ergm(samplike ~ edges)

## Starting maximum pseudolikelihood estimation (MPLE):

## Evaluating the predictor and response matrix.

## Maximizing the pseudolikelihood.

## Finished MPLE.

## Stopping at the initial estimate.

## Evaluating log-likelihood at the estimate.

Since this is equivalent to a logistic regression, we can use the glm function to fit the same
model. First, we need to prepare the data so we can pass it to glm:

y <- sort(as.vector(as.matrix(samplike)))

y <- y[-c(1:18)] # We remove the diagonal from the model, which is all 0.

y

## [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

## [38] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

## [75] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

## [112] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

## [149] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

## [186] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

## [223] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

## [260] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

## [297] 1 1 1 1 1 1 1 1 1 1
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We can now fit the GLM model:

glm_fit <- glm(y~1, family=binomial("logit"))

The coefficients of both ERGM and GLM should match:

glm_fit

##

## Call: glm(formula = y ~ 1, family = binomial("logit"))

##

## Coefficients:

## (Intercept)

## -0.9072

##

## Degrees of Freedom: 305 Total (i.e. Null); 305 Residual

## Null Deviance: 367.2

## Residual Deviance: 367.2 AIC: 369.2

ergm_fit

##

## Call:

## ergm(formula = samplike ~ edges)

##

## Maximum Likelihood Coefficients:

## edges

## -0.9072

Furthermore, in the case of the Bernoulli graph, we can get the estimate using the Logit
function:

pr <- mean(y)

# Logit function:

# Alternatively we could have used log(pr) - log(1-pr)

qlogis(pr)

## [1] -0.9071582

Again, the same result. The Bernoulli graph is not the only ERGM model that can be fitted
using a Logistic regression. Moreover, if all the terms of the model are non-Markov terms, ergm
automatically defaults to a Logistic regression.

6.2 Estimation of ERGMs

The ultimate goal is to perform statistical inference on the proposed model. In a standard

setting, we would be able to use Maximum-Likelihood-Estimation (MLE), which consists of
finding the model parameters θ that, given the observed data, maximize the likelihood of the
model. For the latter, we generally use Newton’s method. Newton’s method requires been able
to compute the log-likelihood of the model, which in ERGMs can be challenging.

https://en.wikipedia.org/wiki/Newton%27s_method_in_optimization
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For ERGMs, since part of the likelihood involves a normalizing constant that is a function of all
possible networks, this is not as straightforward as in the regular setting. Because of it, most
estimation methods rely on simulations.

In statnet, the default estimation method is based on a method proposed by (Geyer and
Thompson 1992), Markov-Chain MLE, which uses Markov-Chain Monte Carlo for simulating
networks and a modified version of the Newton-Raphson algorithm to estimate the parameters.

The idea of MC-MLE for this family of statistical models is that we can approximate the
expectation of normalizing constant ratios using the law of large numbers. In particular,
the following:

κ (θ,Y)
κ (θ0,Y)

=

∑

y∈Y exp
¦

θTg(y)
©

∑

y∈Y exp
¦

θT
0g(y)
©

=
∑

y∈Y
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θT0 g(y)
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θT
0g(y)
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∑
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(θ − θ0)Tg(y)
©







=
∑

y∈Y

�

Pr (Y = y|Y, θ0) × exp
¦

(θ − θ0)Tg(y)
©�

= Eθ0
�

exp
¦

(θ − θ0)Tg(y)
©�

In particular, the MC-MLE algorithm uses this fact to maximize the ratio of log-likelihoods. The
objective function itself can be approximated by simulating m networks from the distribution
with parameter θ0:

(θ) − (θ0) ≈ (θ − θ0)Tg(yobs) − log

�

1

m

m
∑

=1

exp
¦

(θ − θ0)T
©

g(Y)

�

For more details, see (David R. Hunter et al. 2008). A sketch of the algorithm follows:

1. Initialize the algorithm with an initial guess of θ, call it θ(t) (must be a rather OK guess)

2. While (no convergence) do:

a. Using θ(t), simulate M networks by means of small changes in the Yobs (the observed
network). This part is done by using an importance-sampling method which weights
each proposed network by its likelihood conditional on θ(t)

b. With the networks simulated, we can do the Newton step to update the parameter
θ(t) (this is the iteration part in the ergm package): θ(t) → θ(t+1).
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c. If convergence has been reached (which usually means that θ(t) and θ(t+1) are not
very different), then stop; otherwise, go to step a.

For more details see (Lusher, Koskinen, and Robins 2012; Admiraal and Handcock 2006; T. A.
Snijders 2002; Wang et al. 2009) provides details on the algorithm used by PNet (which is
the same as the one used in RSiena). (Lusher, Koskinen, and Robins 2012) provides a short
discussion on the differences between ergm and PNet.

6.3 The ergm package

The ergm R package (Handcock et al. 2017)

From the previous section:1

library(igraph)

library(magrittr)

library(dplyr)

load("03.rda")

In this section, we will use the ergm package (from the statnet suit of packages (Handcock et
al. 2016),) and the intergraph (Bojanowski 2015) package. The latter provides functions to go
back and forth between igraph and network objects from the igraph and network packages
respectively2

library(ergm)

library(intergraph)

As a rather important side note, the order in which R packages are loaded matters. Why is
this important to mention now? Well, it turns out that at least a couple of functions in the
network package have the same name as some functions in the igraph package. When the
ergm package is loaded, since it depends on network, it will load the network package first,
which will mask some functions in igraph. This becomes evident once you load ergm after
loading igraph:

The following objects are masked from ‘package:igraph’:

add.edges, add.vertices, %c%, delete.edges, delete.vertices, get.edge.attribute, get.edges,

get.vertex.attribute, is.bipartite, is.directed, list.edge.attributes, list.vertex.attributes, %s%,

set.edge.attribute, set.vertex.attribute

What are the implications of this? If you call the function list.edge.attributes for an object
of class igraph R will return an error as the first function that matches that name comes from
the network package! To avoid this you can use the double colon notation:

1You can download the 03.rda file from this link.
2Yes, the classes have the same name as the packages.

https://github.com/gvegayon/appliedsnar
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igraph::list.edge.attributes(my_igraph_object)

network::list.edge.attributes(my_network_object)

Anyway. . . Using the asNetwork function, we can coerce the igraph object into a network
object so we can use it with the ergm function:

# Creating the new network

network_111 <- intergraph::asNetwork(ig_year1_111)

# Running a simple ergm (only fitting edge count)

ergm(network_111 ~ edges)

## [1] "Warning: This network contains loops"

## Starting maximum pseudolikelihood estimation (MPLE):

## Evaluating the predictor and response matrix.

## Maximizing the pseudolikelihood.

## Finished MPLE.

## Stopping at the initial estimate.

## Evaluating log-likelihood at the estimate.

##

## Call:

## ergm(formula = network_111 ~ edges)

##

## Maximum Likelihood Coefficients:

## edges

## -4.734

So what happened here? We got a warning. It turns out that our network has loops (didn’t think
about it before!). Let’s take a look at that with the which_loop function

E(ig_year1_111)[which_loop(ig_year1_111)]

## + 1/2638 edge from 56d2ba9 (vertex names):

## [1] 1110111->1110111

We can get rid of these using the igraph::-.igraph. Let’s remove the isolates using the same
operator

# Creating the new network

network_111 <- ig_year1_111

# Removing loops

network_111 <- network_111 - E(network_111)[which(which_loop(network_111))]

# Removing isolates

network_111 <- network_111 - which(degree(network_111, mode = "all") == 0)

# Converting the network
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network_111 <- intergraph::asNetwork(network_111)

asNetwork(simplify(ig_year1_111)) ig_year1_111 %>% simplify %>% asNetwork

A problem that we have with this data is the fact that some vertices have missing values in
the variables hispanic, female1, and eversmk1. For now, we will proceed by imputing values
based on the averages:

for (v in c("hispanic", "female1", "eversmk1")) {

tmpv <- network_111 %v% v

tmpv[is.na(tmpv)] <- mean(tmpv, na.rm = TRUE) > .5

network_111 %v% v <- tmpv

}

6.4 Running ERGMs

Proposed workflow:

1. Estimate the simplest model, adding one variable at a time.

2. After each estimation, run the mcmc.diagnostics function to see how good (or bad)
behaved the chains are.

3. Run the gof function and verify how good the model matches the network’s structural
statistics.

What to use:

1. control.ergms: Maximum number of iterations, seed for Pseudo-RNG, how many cores

2. ergm.constraints: Where to sample the network from. Gives stability and (in some
cases) faster convergence as by constraining the model you are reducing the sample size.

Here is an example of a couple of models that we could compare3

ans0 <- ergm(

network_111 ~

edges +

nodematch("hispanic") +

nodematch("female1") +

nodematch("eversmk1") +

mutual

,

constraints = ~bd(maxout = 19),

control = control.ergm(

seed = 1,

3Notice that this document may not include the usual messages that the ergm command generates during the
estimation procedure. This is just to make it more printable-friendly.
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MCMLE.maxit = 10,

parallel = 4,

CD.maxit = 10

)

)

So what are we doing here:

1. The model is controlling for:

a. edges Number of edges in the network (as opposed to its density)

b. nodematch("some-variable-name-here") Includes a term that controls for ho-
mophily/heterophily

c. mutual Number of mutual connections between (, j), (j, ). This can be related to, for
example, triadic closure.

For more on control parameters, see (Morris, Handcock, and Hunter 2008).

ans1 <- ergm(

network_111 ~

edges +

nodematch("hispanic") +

nodematch("female1") +

nodematch("eversmk1")

,

constraints = ~bd(maxout = 19),

control = control.ergm(

seed = 1,

MCMLE.maxit = 10,

parallel = 4,

CD.maxit = 10

)

)

This example takes longer to compute

ans2 <- ergm(

network_111 ~

edges +

nodematch("hispanic") +

nodematch("female1") +

nodematch("eversmk1") +

mutual +

balance

,

constraints = ~bd(maxout = 19),
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control = control.ergm(

seed = 1,

MCMLE.maxit = 10,

parallel = 4,

CD.maxit = 10

)

)

Now, a nice trick to see all regressions in the same table, we can use the texreg package
(Leifeld 2013) which supports ergm ouputs!

library(texreg)

## Version: 1.38.6

## Date: 2022-04-06

## Author: Philip Leifeld (University of Essex)

##

## Consider submitting praise using the praise or praise_interactive functions.

## Please cite the JSS article in your publications -- see citation("texreg").

##

## Attaching package: 'texreg'

## The following object is masked from 'package:magrittr':

##

## extract

screenreg(list(ans0, ans1, ans2))

## Warning: This object was fit with 'ergm' version 4.1.2 or earlier. Summarizing

## it with version 4.2 or later may return incorrect results or fail.

## Warning in nobs.ergm(object): The number of observed dyads in this network is

## ill-defined due to complex constraints on the sample space. Disable this warning

## with 'options(ergm.loglik.warn_dyads=FALSE)'.

## Warning: This object was fit with 'ergm' version 4.1.2 or earlier. Summarizing

## it with version 4.2 or later may return incorrect results or fail.

## Warning in nobs.ergm(object): The number of observed dyads in this network is

## ill-defined due to complex constraints on the sample space. Disable this warning

## with 'options(ergm.loglik.warn_dyads=FALSE)'.

## Warning: This object was fit with 'ergm' version 4.1.2 or earlier. Summarizing

## it with version 4.2 or later may return incorrect results or fail.

## Warning in nobs.ergm(object): The number of observed dyads in this network is

## ill-defined due to complex constraints on the sample space. Disable this warning

## with 'options(ergm.loglik.warn_dyads=FALSE)'.

##

## ===============================================================

## Model 1 Model 2 Model 3

## ---------------------------------------------------------------

## edges -5.63 *** -5.49 *** -5.60 ***
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## (0.05) (0.06) (0.06)

## nodematch.hispanic 0.22 *** 0.30 *** 0.22 ***
## (0.04) (0.05) (0.04)

## nodematch.female1 0.87 *** 1.17 *** 0.87 ***
## (0.04) (0.05) (0.04)

## nodematch.eversmk1 0.33 *** 0.45 *** 0.34 ***
## (0.04) (0.04) (0.04)

## mutual 4.10 *** 1.75 ***
## (0.07) (0.14)

## balance 0.01 ***
## (0.00)

## ---------------------------------------------------------------

## AIC -40017.80 -37511.87 -39989.59

## BIC -39967.46 -37471.60 -39929.18

## Log Likelihood 20013.90 18759.94 20000.79

## ===============================================================

## *** p < 0.001; ** p < 0.01; * p < 0.05

Or, if you are using rmarkdown, you can export the results using LaTeX or html, let’s try the
latter to see how it looks like here:

library(texreg)

texreg(list(ans0, ans1, ans2))

## Warning: This object was fit with 'ergm' version 4.1.2 or earlier. Summarizing

## it with version 4.2 or later may return incorrect results or fail.

## Warning in nobs.ergm(object): The number of observed dyads in this network is

## ill-defined due to complex constraints on the sample space. Disable this warning

## with 'options(ergm.loglik.warn_dyads=FALSE)'.

## Warning: This object was fit with 'ergm' version 4.1.2 or earlier. Summarizing

## it with version 4.2 or later may return incorrect results or fail.

## Warning in nobs.ergm(object): The number of observed dyads in this network is

## ill-defined due to complex constraints on the sample space. Disable this warning

## with 'options(ergm.loglik.warn_dyads=FALSE)'.

## Warning: This object was fit with 'ergm' version 4.1.2 or earlier. Summarizing

## it with version 4.2 or later may return incorrect results or fail.

## Warning in nobs.ergm(object): The number of observed dyads in this network is

## ill-defined due to complex constraints on the sample space. Disable this warning

## with 'options(ergm.loglik.warn_dyads=FALSE)'.

6.5 Model Goodness-of-Fit

In raw terms, once each chain has reach stationary distribution, we can say that there are no
problems with autocorrelation and that each sample point is iid. This implies that, since we
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Model 1 Model 2 Model 3
edges −5.63∗∗∗ −5.49∗∗∗ −5.60∗∗∗

(0.05) (0.06) (0.06)
nodematch.hispanic 0.22∗∗∗ 0.30∗∗∗ 0.22∗∗∗

(0.04) (0.05) (0.04)
nodematch.female1 0.87∗∗∗ 1.17∗∗∗ 0.87∗∗∗

(0.04) (0.05) (0.04)
nodematch.eversmk1 0.33∗∗∗ 0.45∗∗∗ 0.34∗∗∗

(0.04) (0.04) (0.04)
mutual 4.10∗∗∗ 1.75∗∗∗

(0.07) (0.14)
balance 0.01∗∗∗

(0.00)
AIC −40017.80 −37511.87 −39989.59
BIC −39967.46 −37471.60 −39929.18
Log Likelihood 20013.90 18759.94 20000.79
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table 6.1: Statistical models

are running the model with more than 1 chain, we can use all the samples (chains) as a single
dataset.

Recent changes in the ergm estimation algorithm mean that these plots can no
longer be used to ensure that the mean statistics from the model match the observed
network statistics. For that functionality, please use the GOF command: gof(object,
GOF=~model).

—?ergm::mcmc.diagnostics

Since ans0 is the one model which did best, let’s take a look at it’s GOF statistics. First, lets
see how the MCMC did. For this we can use the mcmc.diagnostics function including in the
package. This function is actually a wrapper of a couple of functions from the coda package
(Plummer et al. 2006) which is called upon the $sample object which holds the centered

statistics from the sampled networks. This last point is important to consider since at first
look it can be confusing to look at the $sample object since it neither matches the observed
statistics, nor the coefficients.

When calling the function mcmc.diagnostics(ans0, centered = FALSE), you will see a lot of
output including a couple of plots showing the trace and posterior distribution of the uncentered

statistics (centered = FALSE). In the next code chunks we will reproduce the output from the
mcmc.diagnostics function step by step using the coda package. First we need to uncenter

the sample object:

# Getting the centered sample

sample_centered <- ans0$sample

# Getting the observed statistics and turning it into a matrix so we can add it

# to the samples

observed <- summary(ans0$formula)
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observed <- matrix(

observed,

nrow = nrow(sample_centered[[1]]),

ncol = length(observed),

byrow = TRUE

)

# Now we uncenter the sample

sample_uncentered <- lapply(sample_centered, function(x) {

x + observed

})

# We have to make it an mcmc.list object

sample_uncentered <- coda::mcmc.list(sample_uncentered)

Under the hood:

1. Empirical means and sd, and quantiles:

summary(sample_uncentered)

##

## Iterations = 1769472:10944512

## Thinning interval = 65536

## Number of chains = 4

## Sample size per chain = 141

##

## 1. Empirical mean and standard deviation for each variable,

## plus standard error of the mean:

##

## Mean SD Naive SE Time-series SE

## edges 2485 60.26 2.5372 3.753

## nodematch.hispanic 1838 51.25 2.1578 3.662

## nodematch.female1 1888 52.78 2.2224 3.779

## nodematch.eversmk1 1759 50.82 2.1400 3.072

## mutual 493 23.40 0.9855 1.967

##

## 2. Quantiles for each variable:

##

## 2.5% 25% 50% 75% 97.5%

## edges 2373 2444 2482 2530 2612

## nodematch.hispanic 1736 1803 1839 1872 1947

## nodematch.female1 1791 1851 1885 1923 1993

## nodematch.eversmk1 1662 1725 1758 1794 1858

## mutual 449 476 493 509 537
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2. Cross correlation:

coda::crosscorr(sample_uncentered)

## edges nodematch.hispanic nodematch.female1

## edges 1.0000000 0.8657369 0.8851587

## nodematch.hispanic 0.8657369 1.0000000 0.7713632

## nodematch.female1 0.8851587 0.7713632 1.0000000

## nodematch.eversmk1 0.8445651 0.7122693 0.7572735

## mutual 0.7726517 0.6801783 0.7482026

## nodematch.eversmk1 mutual

## edges 0.8445651 0.7726517

## nodematch.hispanic 0.7122693 0.6801783

## nodematch.female1 0.7572735 0.7482026

## nodematch.eversmk1 1.0000000 0.6873242

## mutual 0.6873242 1.0000000

3. Autocorrelation: For now, we will only look at autocorrelation for chain one. Autocorrelation
should be small (in a general MCMC setting). If autocorrelation is high, then it means
that your sample is not idd (no Markov property). A way out to solve this is thinning the
sample.

coda::autocorr(sample_uncentered)[[1]]

## , , edges

##

## edges nodematch.hispanic nodematch.female1 nodematch.eversmk1

## Lag 0 1.000000000 0.861920590 0.90235072 0.86215333

## Lag 65536 0.415060923 0.326775063 0.43751588 0.38274418

## Lag 327680 0.063993999 0.002238453 0.09094189 0.05143792

## Lag 655360 0.002497326 -0.105210070 -0.02414091 0.00143358

## Lag 3276800 0.026845190 0.068616366 0.03686125 0.03652383

## mutual

## Lag 0 0.785264416

## Lag 65536 0.428519050

## Lag 327680 0.074020671

## Lag 655360 0.009422505

## Lag 3276800 0.018126669

##

## , , nodematch.hispanic

##

## edges nodematch.hispanic nodematch.female1 nodematch.eversmk1

## Lag 0 0.86192059 1.000000000 0.76137201 0.74623272

## Lag 65536 0.32680263 0.336764054 0.30353156 0.32690588

## Lag 327680 0.05778076 0.004465856 0.07267341 0.03757479

## Lag 655360 0.07704457 0.024226503 0.03252125 0.08420548

## Lag 3276800 -0.02970399 0.021278122 -0.02753467 -0.03018601
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## mutual

## Lag 0 0.70578514

## Lag 65536 0.35558587

## Lag 327680 0.05282736

## Lag 655360 0.08176601

## Lag 3276800 -0.07743174

##

## , , nodematch.female1

##

## edges nodematch.hispanic nodematch.female1 nodematch.eversmk1

## Lag 0 0.902350724 0.76137201 1.00000000 0.77769826

## Lag 65536 0.453418914 0.37756721 0.51290498 0.41954866

## Lag 327680 0.055464012 -0.01058737 0.09841770 0.04272154

## Lag 655360 0.009910833 -0.06123858 -0.03186870 0.04679847

## Lag 3276800 0.004163166 0.04057544 0.01548719 -0.01288236

## mutual

## Lag 0 0.76981085

## Lag 65536 0.46327442

## Lag 327680 0.03629824

## Lag 655360 0.01987496

## Lag 3276800 -0.00949882

##

## , , nodematch.eversmk1

##

## edges nodematch.hispanic nodematch.female1 nodematch.eversmk1

## Lag 0 0.86215333 0.746232721 0.77769826 1.000000000

## Lag 65536 0.37539678 0.297591397 0.41717478 0.448697559

## Lag 327680 0.02105523 -0.040132752 0.03760486 0.019124328

## Lag 655360 0.04566425 0.003387581 0.04761067 -0.006388743

## Lag 3276800 0.05048735 0.084790008 0.07108989 0.045582057

## mutual

## Lag 0 0.7053009595

## Lag 65536 0.4020746950

## Lag 327680 0.0183308894

## Lag 655360 0.0840948296

## Lag 3276800 0.0009713556

##

## , , mutual

##

## edges nodematch.hispanic nodematch.female1 nodematch.eversmk1

## Lag 0 0.78526442 0.70578514 0.769810849 0.70530096

## Lag 65536 0.50645801 0.44741607 0.532817503 0.47751208

## Lag 327680 0.12979152 0.06061696 0.147380566 0.10930214
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## Lag 655360 -0.06393205 -0.13217821 -0.008121728 -0.03814393

## Lag 3276800 -0.01707605 0.03244214 -0.023750630 0.02781638

## mutual

## Lag 0 1.000000000

## Lag 65536 0.580271013

## Lag 327680 0.091309576

## Lag 655360 -0.003521212

## Lag 3276800 -0.025558756

4. Geweke Diagnostic: From the function’s help file:

“If the samples are drawn from the stationary distribution of the chain, the two
means are equal and Geweke’s statistic has an asymptotically standard normal
distribution. [. . . ] The Z-score is calculated under the assumption that the two
parts of the chain are asymptotically independent, which requires that the sum
of frac1 and frac2 be strictly less than 1.””

—?coda::geweke.diag

Let’s take a look at a single chain:

coda::geweke.diag(sample_uncentered)[[1]]

##

## Fraction in 1st window = 0.1

## Fraction in 2nd window = 0.5

##

## edges nodematch.hispanic nodematch.female1 nodematch.eversmk1

## -0.7115 -1.7204 -0.1841 0.6952

## mutual

## -1.2891

5. (not included) Gelman Diagnostic: From the function’s help file:

Gelman and Rubin (1992) propose a general approach to monitoring convergence
of MCMC output in which m > 1 parallel chains are run with starting values that
are overdispersed relative to the posterior distribution. Convergence is diagnosed
when the chains have ‘forgotten’ their initial values, and the output from all chains
is indistinguishable. The gelman.diag diagnostic is applied to a single variable
from the chain. It is based a comparison of within-chain and between-chain
variances, and is similar to a classical analysis of variance. —?coda::gelman.diag

As a difference from the previous diagnostic statistic, this uses all chains simulatenously:

coda::gelman.diag(sample_uncentered)

## Potential scale reduction factors:

##

## Point est. Upper C.I.

## edges 1.03 1.10
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## nodematch.hispanic 1.03 1.10

## nodematch.female1 1.05 1.14

## nodematch.eversmk1 1.04 1.12

## mutual 1.05 1.14

##

## Multivariate psrf

##

## 1.05

As a rule of thumb, values that are in the [ .9,1.1] are good.

One nice feature of the mcmc.diagnostics function is the nice trace and posterior distribution
plots that it generates. If you have the R package latticeExtra (Sarkar and Andrews 2016),
the function will override the default plots used by coda::plot.mcmc and use lattice instead,
creating a nicer looking plots. The next code chunk calls the mcmc.diagnostic function, but
we suppress the rest of the output (see figure ??).

# [2022-03-13] This line is failing for what it could be an ergm bug

# mcmc.diagnostics(ans0, center = FALSE) # Suppressing all the output

If we called the function mcmc.diagnostics, this message appears at the end:

MCMC diagnostics shown here are from the last round of simulation, prior to compu-
tation of final parameter estimates. Because the final estimates are refinements of
those used for this simulation run, these diagnostics may understate model perfor-
mance. To directly assess the performance of the final model on in-model statistics,
please use the GOF command: gof(ergmFitObject, GOF=~model).

—mcmc.diagnostics(ans0)

Not that bad (although the mutual term could do better)!4 First, observe that in the figure we
see four different lines; why is that? Since we were running in parallel using four cores, the
algorithm ran four chains of the MCMC algorithm. An eyeball test is to see if all the chains
moved at about the same place; in such a case, we can start thinking about model convergence
from the MCMC perspective.

Once we are sure to have reach convergence on the MCMC algorithm, we can start thinking
about how well does our model predicts the observed network’s proterties. Besides the statistics
that define our ERGM, the gof function’s default behavior show GOF for:

a. In degree distribution,
b. Out degree distribution,
c. Edge-wise shared partners, and
d. Geodesics

Let’s take a look at it

4The statnet wiki website as a very nice example of (very) bad and good MCMC diagnostics plots here.

https://statnet.org/trac/raw-attachment/wiki/Resources/ergm.fit.diagnostics.pdf
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# Computing and printing GOF estatistics

ans_gof <- gof(ans0)

ans_gof

##

## Goodness-of-fit for in-degree

##

## obs min mean max MC p-value

## idegree0 13 0 1.38 5 0.00

## idegree1 34 2 7.84 15 0.00

## idegree2 37 13 22.13 36 0.00

## idegree3 48 26 40.12 60 0.12

## idegree4 37 44 59.60 74 0.00

## idegree5 47 52 67.86 89 0.00

## idegree6 42 48 65.06 82 0.00

## idegree7 39 38 53.40 69 0.04

## idegree8 35 26 40.30 57 0.46

## idegree9 21 17 26.48 43 0.36

## idegree10 12 9 16.36 24 0.34

## idegree11 19 2 8.73 15 0.00

## idegree12 4 0 4.80 13 1.00

## idegree13 7 0 2.23 6 0.00

## idegree14 6 0 0.99 4 0.00

## idegree15 3 0 0.32 2 0.00

## idegree16 4 0 0.20 2 0.00

## idegree17 3 0 0.09 1 0.00

## idegree18 3 0 0.09 1 0.00

## idegree19 2 0 0.00 0 0.00

## idegree20 1 0 0.02 1 0.04

## idegree22 1 0 0.00 0 0.00

##

## Goodness-of-fit for out-degree

##

## obs min mean max MC p-value

## odegree0 4 0 1.33 6 0.14

## odegree1 28 2 7.67 15 0.00

## odegree2 45 13 22.07 33 0.00

## odegree3 50 27 40.96 55 0.16

## odegree4 54 44 59.37 75 0.50

## odegree5 62 40 67.12 92 0.62

## odegree6 40 46 64.49 81 0.00

## odegree7 28 39 54.33 78 0.00

## odegree8 13 28 39.73 53 0.00

## odegree9 16 17 27.48 45 0.00



6.5. MODEL GOODNESS-OF-FIT 61

## odegree10 20 7 15.74 26 0.22

## odegree11 8 2 9.25 16 0.86

## odegree12 11 1 4.98 12 0.04

## odegree13 13 0 2.12 7 0.00

## odegree14 6 0 0.72 3 0.00

## odegree15 6 0 0.41 3 0.00

## odegree16 7 0 0.17 2 0.00

## odegree17 4 0 0.03 1 0.00

## odegree18 3 0 0.01 1 0.00

## odegree19 0 0 0.02 1 1.00

##

## Goodness-of-fit for edgewise shared partner

##

## obs min mean max MC p-value

## esp0 1032 1991 2195.84 2289 0

## esp1 755 170 235.05 441 0

## esp2 352 1 14.86 86 0

## esp3 202 0 0.84 14 0

## esp4 79 0 0.08 2 0

## esp5 36 0 0.00 0 0

## esp6 14 0 0.00 0 0

## esp7 4 0 0.00 0 0

## esp8 1 0 0.00 0 0

##

## Goodness-of-fit for minimum geodesic distance

##

## obs min mean max MC p-value

## 1 2475 2319 2446.67 2571 0.6

## 2 10672 12048 13548.63 14726 0.0

## 3 31134 48016 54997.05 60096 0.0

## 4 50673 78122 80230.34 82613 0.0

## 5 42563 15553 20682.28 27611 0.0

## 6 18719 383 1227.29 2611 0.0

## 7 4808 0 40.46 214 0.0

## 8 822 0 0.87 16 0.0

## 9 100 0 0.00 0 0.0

## 10 7 0 0.00 0 0.0

## Inf 12333 0 1132.41 3324 0.0

##

## Goodness-of-fit for model statistics

##

## obs min mean max MC p-value

## edges 2475 2319 2446.67 2571 0.60
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## nodematch.hispanic 1832 1710 1807.58 1903 0.56

## nodematch.female1 1879 1760 1852.63 1970 0.60

## nodematch.eversmk1 1755 1614 1724.70 1824 0.56

## mutual 486 441 475.38 514 0.66

# Plotting GOF statistics

plot(ans_gof)

edges nodematch.hispanic nodematch.eversmk1 mutual
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Goodness−of−fit diagnostics

Try the following configuration instead

ans0_bis <- ergm(

network_111 ~

edges +

nodematch("hispanic") +

nodematch("female1") +

mutual +

esp(0:3) +

idegree(0:10)

,

constraints = ~bd(maxout = 19),

control = control.ergm(

seed = 1,

MCMLE.maxit = 15,

parallel = 4,

CD.maxit = 15,

MCMC.samplesize = 2048*4,

MCMC.burnin = 30000,

MCMC.interval = 2048*4

)

)
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Increase the sample size, so the curves are smoother, longer intervals (thinning), which reduces
autocorrelation, and a larger burin. All this together to improve the Gelman test statistic. We
also added idegree from 0 to 10, and esp from 0 to 3 to explicitly match those statistics in our
model.

knitr::include_graphics("awful-chains.png")

Figure 6.2: An example of a terrible ERGM (no convergence at all). Also, a good example of why
running multiple chains can be useful

6.6 More on MCMC convergence

For more on this issue, I recommend reviewing chapter 1 and chapter 6 from the Handbook of
MCMC (Brooks et al. 2011). Both chapters are free to download from the book’s website.

http://www.mcmchandbook.net/HandbookChapter1.pdf
http://www.mcmchandbook.net/HandbookChapter6.pdf
http://www.mcmchandbook.net/HandbookSampleChapters.html
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For GOF take a look at section 6 of ERGM 2016 Sunbelt tutorial, and for a more technical review,
you can take a look at (David R. Hunter, Goodreau, and Handcock 2008).

6.7 Mathematical Interpretation

One of the most critical parts of statistical modeling is interpreting the results, if not the most
important. In the case of ERGMs, a key aspect is based on change statistics. Suppose that we
would like to know how likely the tie yj is to happen, given the rest of the network. We can
compute such probabilities using what literature sometimes describes as the Gibbs-sampler.

In particular, the log-odds of the j tie ocurring conditional on the rest of the network can be
written as:

logit
�

P
�

yj = 1|y−j
��

= θtΔδ
�

yj : 0→ 1
�

, (6.1)

with δ
�

yj : 0→ 1
�

≡ s (y)+ij − s (y)−ij as the vector of change statistics, in other words, the

difference between the sufficient statistics when yj = 1 and its value when yj = 0. To show this,
we write the following:
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Applying the logit function to the previous equation, we obtain:
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Henceforth, the conditional probability of node n gaining function k can be written as:

P
�

yj = 1|y−j
�

=
1

1 + exp
�

−θtΔδ
�

yj : 0→ 1
�	 (6.2)

i.e., a logistic probability.

https://statnet.csde.washington.edu/trac/raw-attachment/wiki/Sunbelt2016/ergm_tutorial.html
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6.8 Markov independence

The challenge of analyzing networks is their interdependent nature. Nonetheless, in the
absence of such interdependence, ERGMs are equivalent to logistic regression. Conceptually,
if all the statistics included in the model do not involve two or more dyads, then the model is
non-Markovian in the sense of Markov graphs.

Mathematically, to see this, it suffices to show that the ERGM probability can be written as the
product of each dyads’ probabilities.

P (y|θ) =
exp
�

θts (y)
	

∑

y exp
�

θts (y)
	 =

∏

j exp
�

θts (y)j
	

∑

y exp
�

θts (y)
	

Where s ()j is a function such that s (y) =
∑

j s (y)j. We now need to deal with the normalizing
constant. To see how that can be saparated, let’s start from the result:

=
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Where the last equality follows from s (y) =
∑

j s (y)j. This way, we can now write:

∏

j exp
�

θts (y)j
	

∑

y exp
�

θts (y)
	 =
∏

j

exp
�

θts (y)j
	

1 + exp
�

θts (y)j
	 (6.3)

Related to this, block-diagonal ERGMs can be estimated as independent models, one per block.
To see more about this, read (SNIJDERS 2010). Likewise, since independence depends–pun
intended–on partitioning the objective function, as pointed by Snijders, non-linear functions
make the model dependent, e.g., s (y) =

q
∑

j yj, the square root of the edgecount is no longer
a bernoulli graph.
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Chapter 7

Using constraints in ERGMs

Exponential Random Graph Models [ERGMs] can represent a variety of network classes. We
often look at “regular” social networks like students in schools, colleagues in the workplace,
or families. Nonetheless, some social networks we study have features that restrict how
connections can occur. Typical examples are bi-partite graphs and multilevel networks. There
are two classes of vertices in bi-partite networks, and ties can only occur between classes. On
the other hand, Multilevel networks may feature multiple classes with inter-class ties somewhat
restricted. In both cases, structural constraints exist, meaning that some configurations may
not be plausible.

Mathematically, what we are trying to do is, instead of assuming that all network configurations
are possible:

�

y ∈ Y : yj = 0,∀ = j
	

we want to go a bit further avoiding loops, namely:

�

y ∈ Y : yj = 0,∀ = j;y ∈ C
	

,

where C is a constraint, for example, only networks with no triangles. The ergm R package has
built-in capabilities to deal with some of these cases. Nonetheless, we can specify models with
arbitrary structural constraints built into the model. The key is in using offset terms.

7.1 Example 1: Interlocking egos and disconnected alters

Imagine that we have two sets of vertices. The first, group E, are egos part of an egocentric
study. The second group, called A, is composed of people mentioned by egos in E but were
not surveyed. Assume that individuals in A can only connect to individuals in E; moreover,

69

https://en.wikipedia.org/wiki/Bipartite_graph
https://cran.r-project.org/web/packages/mlergm/vignettes/mlergm_tutorial.html
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individuals in E have no restrictions on connecting. In other words, only two types of ties exist:
E-E and A-E. The question is now, how can we enforce such a constraint in an ERGM?

Using offsets, and in particular, setting coefficients to -Inf provides an easy way to restrict the
support set of ERGMs. For example, if we wanted to constrain the support to include networks
with no triangles, we would add the term offset(triangle) and use the option offset.coef

= -Inf to indicate that realizations including triangles are not possible. Using R:

ergm(net ~ edges + offset(triangle), offset.coef = -Inf)

In this model, a Bernoulli graph, we reduce the sample space to networks with no triangles. In
our example, such a statistic should only take non-zero values whenever ties within the A class
happen. We can use the nodematch() term to do that. Formally

NodeMatch() =
∑

,j

yj1( = j)

This statistic will sum over all ties in which source () and target (j)’s X attribute is equal. One
way to make this happen is by creating an auxiliary variable that equals, e.g., 0 for all vertices
in A, and a unique value different from zero otherwise. For example, if we had 2 As and three
Es, the data would look something like this: {0,0,1,2,3}. The following code block creates an
empty graph with 50 nodes, 10 of which are in group E (ego).

library(ergm, quietly = TRUE)

library(sna, quietly = TRUE)

n <- 50

n_egos <- 10

net <- as.network(matrix(0, ncol = n, nrow = n), directed = TRUE)

# Let's assing the groups

net %v% "is.ego" <- c(rep(TRUE, n_egos), rep(FALSE, n - n_egos))

net %v% "is.ego"

## [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE

## [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

## [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

## [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

## [49] FALSE FALSE

gplot(net, vertex.col = net %v% "is.ego")
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To create the auxiliary variable, we will use the following function:

# Function that creates an aux variable for the ergm model

make_aux_var <- function(my_net, is_ego_dummy) {

n_vertex <- length(my_net %v% is_ego_dummy)

n_ego_ <- sum(my_net %v% is_ego_dummy)

# Creating an auxiliary variable to identify the non-informant non-informant ties

my_net %v% "aux_var" <- ifelse(

!my_net %v% is_ego_dummy, 0, 1:(n_vertex - n_ego_)

)

my_net

}

Calling the function in our data results in the following:

net <- make_aux_var(net, "is.ego")

# Taking a look over the first 15 rows of data

cbind(

Is_Ego = net %v% "is.ego",

Aux = net %v% "aux_var"

) |> head(n = 15)

## Is_Ego Aux

## [1,] 1 1

## [2,] 1 2

## [3,] 1 3

## [4,] 1 4

## [5,] 1 5
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## [6,] 1 6

## [7,] 1 7

## [8,] 1 8

## [9,] 1 9

## [10,] 1 10

## [11,] 0 0

## [12,] 0 0

## [13,] 0 0

## [14,] 0 0

## [15,] 0 0

We can now use this data to simulate a network in which ties between A-class vertices are not
possible:

set.seed(2828)

net_sim <- simulate(net ~ edges + nodematch("aux_var"), coef = c(-3.0, -Inf))

gplot(net_sim, vertex.col = net_sim %v% "is.ego")

As you can see, this network has only ties of the type E-E and A-E. We can double-check by (i)
looking at the counts and (ii) visualizing each induced-subgraph separately:

summary(net_sim ~ edges + nodematch("aux_var"))

## edges nodematch.aux_var

## 49 0

net_of_alters <- get.inducedSubgraph(

net_sim, which((net_sim %v% "aux_var") == 0)

)

net_of_egos <- get.inducedSubgraph(

net_sim, which((net_sim %v% "aux_var") != 0)

)
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# Counts

summary(net_of_alters ~ edges + nodematch("aux_var"))

## edges nodematch.aux_var

## 0 0

summary(net_of_egos ~ edges + nodematch("aux_var"))

## edges nodematch.aux_var

## 1 0

# Figures

op <- par(mfcol = c(1, 2))

gplot(net_of_alters, vertex.col = net_of_alters %v% "is.ego", main = "A")

gplot(net_of_egos, vertex.col = net_of_egos %v% "is.ego", main = "E")

A E

par(op)

Now, to fit an ERGM with this constraint, we simply need to make use of the offset terms. Here
is an example:

ans <- ergm(

net_sim ~ edges + offset(nodematch("aux_var")), # The model (notice the offset)

offset.coef = -Inf # The offset coefficient

)

## Starting maximum pseudolikelihood estimation (MPLE):

## Evaluating the predictor and response matrix.

## Maximizing the pseudolikelihood.

## Finished MPLE.

## Stopping at the initial estimate.

## Evaluating log-likelihood at the estimate.

summary(ans)
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## Call:

## ergm(formula = net_sim ~ edges + offset(nodematch("aux_var")),

## offset.coef = -Inf)

##

## Maximum Likelihood Results:

##

## Estimate Std. Error MCMC % z value Pr(>|z|)

## edges -2.843 0.147 0 -19.34 <1e-04 ***
## offset(nodematch.aux_var) -Inf 0.000 0 -Inf <1e-04 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Null Deviance: 1233.8 on 890 degrees of freedom

## Residual Deviance: 379.4 on 888 degrees of freedom

##

## AIC: 381.4 BIC: 386.2 (Smaller is better. MC Std. Err. = 0)

##

## The following terms are fixed by offset and are not estimated:

## offset(nodematch.aux_var)

This ERGM model–which by the way only featured dyadic-independent terms, and thus can be
reduced to a logistic regression–restricts the support by excluding all networks in which ties
within the class A exists. To finalize, let’s look at a few simulations based on this model:

set.seed(1323)

op <- par(mfcol = c(2,2), mar = rep(1, 4))

for (i in 1:4) {

gplot(simulate(ans), vertex.col = net %v% "is.ego", vertex.cex = 2)

box()

}
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par(op)

All networks with no ties between A nodes.

7.2 Example 2: Bi-partite networks

In the case of bipartite networks (sometimes called affiliation networks,) we can use ergm’s
terms for bipartite graphs to corroborate what we discussed here. For example, the two-star
term. Let’s start simulating a bipartite network using the edges and two-star parameters.
Since the k-star term is usually complex to fit (tends to generate degenerate models,) we will
take advantage of the Log() transformation function in the ergm package to smooth the term.1

The bipartite network that we will be simulating will have 100 actors and 50 entities. Actors,
which we will map to the first level of the ergm terms, this is, b1star b1nodematch, etc. will
send ties to the entities, the second level of the bipartite ERGM. To create a bipartite network,
we will create an empty matrix of size nactors x nentitites; thus, actors are represented by
rows and entities by columns.

1After writing this example, it became apparent the use of the Log() transformation function may not be ideal. Since
many terms used in ERGMs can be zero, e.g., triangles, the term Log(~ ostar(2)) is undefined when ostar(2) = 0.
In practice, the ERGM package sets a lower limit for the log of 0, so, instead of having Log(0) ~ -Inf, they set it to be
a really large negative number. This causes all sorts of issues to the estimates; in our example, an overestimation of
the population parameter and a positive log-likelihood. Therefore, I wouldn’t recommend using this transformation too
often.
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# Parameters for the simulation

nactors <- 100

nentities <- floor(nactors/2)

n <- nactors + nentities

# Creating an empty bipartite network (baseline)

net_b <- network(

matrix(0, nrow = nactors, ncol = nentities), bipartite = TRUE

)

# Simulating the bipartite ERGM,

net_b <- simulate(net_b ~ edges + Log(~b1star(2)), coef = c(-3, 1.5), seed = 55)

Let’s see what we got here:

summary(net_b ~ edges + Log(~b1star(2)))

## edges Log~b1star2

## 245.000000 5.746203

netplot::nplot(net_b, vertex.col = (1:n <= nactors) + 1)

Notice that the first nactors vertices in the network are the actors, and the remaining are the
entities. Now, although the ergm package features bipartite network terms, we can still fit a
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bipartite ERGM without explicitly declaring the graph as such. In such case, the b1star(2) term
of a bipartite network is equivalent to an ostar(2) in a directed graph. Likewise, b2star(2)
in a bipartite graph matches the istar(2) term in a directed graph. This information will be
relevant when fitting the ERGM. Let’s transform the bipartite network into a directed graph.
The following code block does so:

# Identifying the edges

net_not_b <- which(as.matrix(net_b) != 0, arr.ind = TRUE)

# We need to offset the endpoint of the ties by nactors

# so that the ids go from 1 through (nactors + nentitites)

net_not_b[,2] <- net_not_b[,2] + nactors

# The resulting graph is a directed network

net_not_b <- network(net_not_b, directed = TRUE)

Now we are almost done. As before, we need to use node-level covariates to put the constraints
in our model. For this ERGM to reflect an ERGM on a bipartite network, we need two constraints:

1. Only ties from actors to entities are allowed, and
2. entities can only receive ties.

The corresponding offset terms for this model are: nodematch("is.actor") ~ -Inf, and
nodeocov("isnot.actor") ~ -Inf. Mathematically:

NodeMatch(x = "is.actor") =
∑

<j

yj1
�

 = j
�

NodeOCov(x = "isnot.actor") =
∑



 ×
∑

j<

yj

In other words, we are setting that ties between nodes of the same class are forbidden, and
outgoing ties are forbidden for entities. Let’s create the vertex attributes needed to use the
aforementioned terms:

net_not_b %v% "is.actor" <- as.integer(1:n <= nactors)

net_not_b %v% "isnot.actor" <- as.integer(1:n > nactors)

Finally, to make sure we have done all well, let’s look how both networks–bipartite and unimodal–
look side by side:

# First, let's get the layout

fig <- netplot::nplot(net_b, vertex.col = (1:n <= nactors) + 1)

gridExtra::grid.arrange(

fig,

netplot::nplot(

net_not_b, vertex.col = (1:n <= nactors) + 1,
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layout = fig$.layout

),

ncol = 2, nrow = 1

)

# Looking at the counts

summary(net_b ~ edges + b1star(2) + b2star(2))

## edges b1star2 b2star2

## 245 313 645

summary(net_not_b ~ edges + ostar(2) + istar(2))

## edges ostar2 istar2

## 245 313 645

With the two networks matching, we can now fit the ERGMs with and without offset terms and
compare the results between the two models:

# ERGM with a bipartite graph

res_b <- ergm(

# Main formula

net_b ~ edges + Log(~b1star(2)),

# Control parameters

control = control.ergm(seed = 1)

)

## Warning: 'glpk' selected as the solver, but package 'Rglpk' is not available;

## falling back to 'lpSolveAPI'. This should be fine unless the sample size and/or

## the number of parameters is very big.

# ERGM with a digraph with constraints

res_not_b <- ergm(

# Main formula

net_not_b ~ edges + Log(~ostar(2)) +
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# Offset terms

offset(nodematch("is.actor")) + offset(nodeocov("isnot.actor")),

offset.coef = c(-Inf, -Inf),

# Control parameters

control = control.ergm(seed = 1)

)

Here are the estimates (using the texreg R package for a prettier output):

texreg::screenreg(list(Bipartite = res_b, Directed = res_not_b))

##

## ======================================================================

## Bipartite Directed

## ----------------------------------------------------------------------

## edges -3.14 *** -3.11 ***
## (0.15) (0.14)

## Log~b1star2 21.89

## (17.13)

## Log~ostar2 19.66

## (16.75)

## offset(nodematch.is.actor) -Inf

##

## offset(nodeocov.isnot.actor) -Inf

##

## ----------------------------------------------------------------------

## AIC 1958.00 -2134192392498170112.00

## BIC 1971.03 -2134192392498170112.00

## Log Likelihood -977.00 1067096196249085056.00

## ======================================================================

## *** p < 0.001; ** p < 0.01; * p < 0.05

As expected, both models yield the “same” estimate. The minor differences observed between
the models are how the ergm package performs the sampling. In particular, in the bipartite case,
ergm has special routines for making the sampling more efficient, having a higher acceptance
rate than that of the model in which the bipartite graph was not explicitly declared. We can tell
this by inspecting rejection rates:

data.frame(

Bipartite = coda::rejectionRate(res_b$sample[[1]]) * 100,

Directed = coda::rejectionRate(res_not_b$sample[[1]][, -c(3,4)]) * 100

) |> knitr::kable(digits = 2, caption = "Rejection rate (percent)")

The ERGM fitted with the offset terms has a much higher rejection rate than that of the ERGM
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Table 7.1: Rejection rate (percent)

Bipartite Directed
edges 2.48 3.67
Log~b1star2 1.24 2.04

fitted with the bipartite ERGM.

Finally, the fact that we can fit ERGMs using offset does not mean that we need to use it
ALL the time. Unless there is a very good reason to go around ergm’s capabilities, I wouldn’t
recommend fitting bipartite ERGMs as we just did, as the authors of the package have included
(MANY) features to make our job easier.



Chapter 8

(Separable) Temporal Exponential

Family Random Graph Models

This tutorial is great! https://statnet.org/trac/raw-attachment/wiki/Sunbelt2016/

tergm_tutorial.pdf
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Chapter 9

Simulating and visualizing

networks

In this chapter, we will build and visualize artificial networks using Exponential Random Graph
Models [ERGMs.] Together with chapter 3, this will be an extended example of how to read
network data and visualize it using some of the available R packages out there.

For this chapter, we will be using the following R packages:

• ergm: To simulate and estimate ERGMs.
• sna: To visualize networks.
• igraph: Also to visualize networks.
• intergraph: To convert between igraph and network objects.
• netplot: Again, for visualization.
• netdiffuseR: For a single function we use for adjusting vertex size in igraph.
• rgexf: For building interactive (html) figures.

You can use the following codeblock to install any missing package:

# Creating the list to install

pkgs <- c(

"ergm", "sna", "igraph", "intergraph", "netplot", "netdiffuseR", "rgexf"

)

# Checking if we can load them and install them if not available

for (pkg in pkgs) {

if (!require(pkg, character.only = TRUE)) {

# If not present, will install it

install.packages(pkg, character.only = TRUE)

# And load it!

83
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library(pkg, character.only = TRUE)

}

}

A recorded version is available here.

9.1 Random Graph Models

While there are tons of social network data, we will use an artificial one for this chapter. We
do this as it is always helpful to have more examples simulating Random networks. For this
chapter, we will classify random graph models for sampling and generating networks into three
categories:

1. Exogenous: Graphs where the structure is determined by a macro rule, e.g., expected
density, degree distribution, or degree-sequence. In these cases, ties are assigned to
comply with a macro-property.

2. Endogenous: This category includes all Random Graphs generated based on endogenous
information, e.g., small-world, scale-free, etc. Here, a tie creation rule gives origin to a
macro property, for example, preferential attachment in scale-free networks.

3. Exponential Random Graph Models: Overall, since ERGMs compose a family of statis-
tical models, we can always (or almost always) find a model specification that matches
the previous categories. Whereas we are thinking about degree sequence, preferential
attachment, or a mix of both, ERGMs can be the baseline for any of those models.

The latter, ERGMs, are a generalization that covers all classes. Because of that, we will use
ERGMs to generate our artificial network.

9.2 Social Networks in Schools

A common type of network we analyze is friendship networks. In this case, we will use ERGMs
to simulate friendship networks within a school. In our simulated world, these networks will be
dominated by the following phenomena

• Low density,
• Race homophily,
• Structural balance,
• And age homophily.

If you have been paying attention to the previous chapters, you will notice that, out of these
five properties, only one constitutes Markov graphs. Within a tie, homophily and density only
depend on ego and alter. In race homophily, only ego and alter’s race matter for the tie
formation, but, in the case of Structural balance, ego is more likely to befriend alter if a fried of
ego is friends with alter, i.e., “the friend of my friend is my friend.”

https://youtu.be/VasQf--gT-E


9.2. SOCIAL NETWORKS IN SCHOOLS 85

The simulation steps are as follows:

1. Draw a population of n students and randomly distribute race and age across them.

2. Create a network object.

3. Simulate the ties in the empty network.

Here is the code

set.seed(712)

n <- 200

# Step 1: Students

race <- sample(c("white", "non-white"), n, replace = TRUE)

age <- sample(c(10, 14, 17), n, replace = TRUE)

# Step 2: Create an empty network

library(ergm)

library(network)

net <- network.initialize(n)

net %v% "race" <- race

net %v% "age" <- age

# Step 3: Simulate a graph

net_sim <- simulate(

net ~ edges +

nodematch("race") +

ttriad +

absdiff("age"),

coef = c(-4, .5, .25, -.5)

)

What just happened? Here is a line-by-line breakout:

1. set.seed(712) Since this is a random simulation, we need to fix a seed so it is reproducible.
Otherwise, results would change with every iteration.

2. n <- 200 We are assigning the value 200 to the object n. This will make things easier as,
if needed, changing the size of the networks can be done at the top of the code.

3. race <- sample(c("white", "non-white"), n, replace = TRUE) We are sampling
200, or actually, n values from the vector c("white", "non-white") with replacement.

4. age <- sample(c(10, 14, 17), n, replace = TRUE) Same as before, but with ages!

5. library(ergm) Loading the ergm R package, which we need to simulate the networks!

6. library(network) Loading the network R package, which we need to create the empty
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graph.

7. net <- network.initialize(n) Creating an empty graph of size n.

8. net %v% "race" <- race Using the %v% operator, we can access vertices features in the
network object. Since race does not exist in the network yet, the operator just creates it.
Notice that the number of vertices matches the length of the race vector.

9. net %v% "age" <- age Same as with race!

10. net_sim <- simulate( Simulating an ERGM! A couple of observations here:

a. The LHS (left-hand-side) of the equation has the network, net

b. The RHS (you guessed it) has the terms that govern the process.

c. For low density, we used the edges term with a corresponding -4.0 for the parameter.

d. For race homophily, we used the nodematch("race") with a corresponding 0.5 pa-
rameter value.

e. For structural balance, we use the ttriad term with parameter 0.25.

f. For age homophily, we use the absdiff("age") term with parameter -0.5. This is,
in rigor, a term capturing heterophily. Nonetheless, heterophily is the opposite of
homophily.

Let’s take a quick look at the resulting graph

library(sna)

gplot(net_sim)

We can now start to see whether we got what we wanted! Before that, let’s save the network
as a plain-text file so we can practice reading networks back in R!

write.csv(

x = as.edgelist(net_sim),

file = "06-edgelist.csv",

row.names = FALSE
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)

write.csv(

x = as.data.frame(net_sim, unit = "vertices"),

file = "06-nodes.csv",

row.names = FALSE

)

9.3 Reading a network

The first step to analyzing network data is to read it in. Many times you’ll find data in the
form of an adjacency matrix. Other times, data will come in the form of an edgelist. Another
common format is the adjacency list, which is a compressed version of an edgelist. Let’s see
how the formats look like for the following network:

example_graph <- matrix(0L, 4, 4, dimnames = list(letters[1:4], letters[1:4]))

example_graph[c(2, 7)] <- 1L

example_graph["c", "d"] <- 1L

example_graph["d", "c"] <- 1L

example_graph <- as.network(example_graph)

set.seed(1231)

gplot(example_graph, label = letters[1:4])

a

b
c

d

• Adjacency matrix a matrix of size n by n where the j-th entry represents the tie between
 and j. In a directed network, we say  connects to j, so the -th row shows the ties  sends
to the rest of the network. Likewise, in a directed graph, the j-th column shows the ties
sent to j. For undirected graphs, the adjacency matrix is usually upper or lower diagonal.
The adjacency matrix of an undirected graph is symmetric, so we don’t need to report the
same information twice. For example:

as.matrix(example_graph)

## a b c d

## a 0 0 0 0

## b 1 0 0 0

## c 0 1 0 1
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## d 0 0 1 0

• Edge list a matrix of size |E| by 2, where |E| is the number of edges. Each entry represents
a tie in the graph.

as.edgelist(example_graph)

## [,1] [,2]

## [1,] 2 1

## [2,] 3 2

## [3,] 3 4

## [4,] 4 3

## attr(,"n")

## [1] 4

## attr(,"vnames")

## [1] "a" "b" "c" "d"

## attr(,"directed")

## [1] TRUE

## attr(,"bipartite")

## [1] FALSE

## attr(,"loops")

## [1] FALSE

## attr(,"class")

## [1] "matrix_edgelist" "edgelist" "matrix" "array"

The command turns the network object into a matrix with a set of attributes (which are also
printed.)

• Adjacency list This data format uses less space than edgelists as ties are grouped by
ego (source.)

igraph::as_adj_list(intergraph::asIgraph(example_graph))

## [[1]]

## + 1/4 vertex, from 474eb42:

## [1] 2

##

## [[2]]

## + 2/4 vertices, from 474eb42:

## [1] 1 3

##

## [[3]]

## + 3/4 vertices, from 474eb42:

## [1] 2 4 4

##

## [[4]]

## + 2/4 vertices, from 474eb42:
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## [1] 3 3

The function igraph::as_adj_list turns the igraph object into a list of type adjacency list. In
plain text it would look something like this:

2

1 3

2 4 4

3 3

Here we will deal with an edgelist that includes node information. In my opinion, this is one of
the best ways to share network data. Let’s read the data into R using the function read.csv:

edges <- read.csv("06-edgelist.csv")

nodes <- read.csv("06-nodes.csv")

We now have two objects of class data.frame, edges and nodes. Let’s inspect them using the
head function:

head(edges)

## V1 V2

## 1 2 7

## 2 2 41

## 3 3 5

## 4 3 16

## 5 4 138

## 6 5 9

head(nodes)

## vertex.names race age

## 1 1 non-white 10

## 2 2 white 10

## 3 3 white 17

## 4 4 non-white 14

## 5 5 non-white 17

## 6 6 non-white 14

It is always important to look at the data before creating the network. Most common errors
happen before reading the data in and could go undetected in many cases. A few examples:

• Headers in the file could be treated as data, or the files may not have headers.

• Ego/alter columns may show in the wrong order. Both the igraph and network packages
take the first and second columns of edgelists as ego and alter.

• Isolates, which wouldn’t show in the edgelist, may be missing from the node information
set. This is one of the most common errors.

• Nodes showing in the edgelist may be missing from the nodelist.
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Both igraph and network have functions to read edgelist with a corresponding nodelist; the
functions graph_from_data_frame and as.nework, respectively. Although , for both cases,
you can avoid using a nodelist, it is highly recommended as then you will (a) make sure that
isolates are included and (b) become aware of possible problems in the data. A frequent error
in graph_from_data_frame is nodes present in the edgelist but not in the set of nodes.

net_ig <- igraph::graph_from_data_frame(

d = edges,

directed = TRUE,

vertices = nodes

)

Using as.network from the network package:

net_net <- network::as.network(

x = edges,

directed = TRUE,

vertices = nodes

)

As you can see, both syntaxes are very similar. The main point here is that the more explicit we
are, the better. Nevertheless, R can be brilliant; being shy, i.e., not throwing warnings or errors,
is not uncommon. In the next section, we will finally start visualizing the data.

9.4 Visualizing the network

We will focus on three different attributes that we can use for this visualization: Node size, node
shape, and node color. While there are no particular rules, some ideas you can follow are:

• Node size Use it to describe a continuous measurement. This feature is often used to
highlight important nodes, e.g., using one of the many available degree measurements.

• Node shape Shapes can be used to represent categorical values. A good figure will not
feature too many of them; less than four would make sense.

• Node color Like shapes, colors can be used to represent categorical values, so the same
idea applies. Furthermore, it is not crazy to use both shape and color to represent the
same feature.

Notice that we have not talked about layout algorithms. The R packages to build graphs usually
have internal rules to decide what algorithm to use. We will discuss that later on. Let’s start by
size.

9.4.1 Vertex size

Finding the right scale can be somewhat difficult. We will draw the graph four times to see what
size would be the best:
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# Sized by indegree

net_sim %v% "indeg" <- sna::degree(net_sim, cmode = "indegree")

# Changing device config

op <- par(mfrow = c(2, 2), mai = c(.1, .1, .1, .1))

# Plotting

glayout <- gplot(net_sim, vertex.cex = (net_sim %v% "indeg") * 2)

gplot(net_sim, vertex.cex = net_sim %v% "indeg", coord = glayout)

gplot(net_sim, vertex.cex = (net_sim %v% "indeg")/2, coord = glayout)

gplot(net_sim, vertex.cex = (net_sim %v% "indeg")/10, coord = glayout)

# Restoring device config

par(op)

Line-by-line we did the following:

1. net_sim %v% "indeg" <- degree(net_sim, cmode = "indegree") Created a new ver-
tex attribute called indegree and assigned it to the network object. The indegree is calcu-
lated using the degree function from the sna package. Since igraph also has a degree

function, we are making sure that R uses sna’s and not igraph’s. The package::function

notation is useful for these cases.

2. op <- par(mfrow = c(2, 2), mai = c(.1, .1, .1, .1)) This changes the graphical
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device information to (a) mfrow = c(2,2) have a 2x2 grid by row, meaning that new
figures will be added left to right and then top to bottom, and (b) set the margins in the
figure to be 0.1 inches in all four sizes.

3. glayout <- gplot(net_sim, vertex.cex = (net_sim %v% "indeg") * 2) generat-
ing the plot and recording the layout. The gplot function returns a matrix of size #

vertices by 2 with the positions of the vertices. We are also passing the vertex.cex

argument, which we use to specify the size of each vertex. In our case, we decided to size
the vertices proportional to their indegree times two.

4. gplot(net_sim, vertex.cex = net_sim %v% "indeg", coord = glayout), again, we
are drawing the graph using the coordinates of the previous draw, but now the vertices
are half the size of the original figure.

The other two calls are similar to four. If we used igraph, setting the size can be more accessible
thanks to the netdiffuseR R package. Let’s start by converting our network to an igraph object
with the R package intergraph.

library(intergraph)

library(igraph)

# Converting the network object to an igraph object

net_sim_i <- asIgraph(net_sim)

# Plotting with igraph

plot(

net_sim_i,

vertex.size = netdiffuseR::rescale_vertex_igraph(

vertex.size = V(net_sim_i)$indeg,

minmax.relative.size = c(.01, .1)

),

layout = glayout,

vertex.label = NA

)
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We could also have tried netplot, which should make things easier and make a better use of the
space:

library(netplot)

nplot(

net_sim, layout = glayout,

vertex.color = "tomato",

vertex.frame.color = "darkred"

)

With a good idea for size, we can now start looking into vertex color.
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9.4.2 Vertex color

For the color, we will use vertex age. Although age is, by definition, continuous, we only
have three values for age. Because of this, we can treat age as categorical. Instead of using
nplot we will go ahead with nplot_base. As of this version of the book, the netplot package
does not have an easy way to add legends with the core function, nplot; therefore, we use
nplot_base which is compatible with the R function legend, as we will now see:

# Specifying colors for each vertex

vcolors_palette <- c("10" = "gray", "14" = "tomato", "17" = "steelblue")

vcolors <- vcolors_palette[as.character(net_sim %v% "age")]

net_sim %v% "color" <- vcolors

# Plotting

nplot_base(

net_ig,

layout = glayout,

vertex.color = net_sim %v% "color",

)

# Color legend

legend(

"bottomright",

legend = names(vcolors_palette),

fill = vcolors_palette,

bty = "n",

title = "Age"

)
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Age

10

14

17

Line by line, this is what we just did:

1. vcolors <- c("10" = "gray", "14" = "tomato", "17" = "steelblue") we created
a character vector with three elements, "gray", "tomato", and "blue". Furthermore, the
vector has names assigned to it, "10", "14", and "17"– the ages we have in the network–
so that we can access its elements by indexing by name, e.g., if we type vcolors["10"]

R returns the value "gray".

2. vcolors <- vcolors[as.character(net_sim %v% "age")] there are several things go-
ing on in this line. First, we extract the attribute “age” from the network using the %v%

operator. We then transform the resulting vector from integer type to a character type
with the function as.character. Finally, using the resulting character vector with values
"10", "14", "17", ..., we retrieve values from vcolors name-indexing. The resulting
vector is of length equal to the vertex count in the network.

3. net_sim %v% "color" <- vcolors creates a new vertex attribute, color. The assigned
value is the result from subsetting vcolors by the ages of each vertex.

4. nplot_base(... finally draws the network. We pass the previously computed vertex
coordinates and vertex colors with the new attribute color.

5. legend(...) Let’s see one parameter at a time:

a. "bottomright" tells the overall position of the legend

b. legend = names(vcolors) passes the actual legend (text); in our case the ages of
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individuals.

c. fill = vcolors passes the colors associated with the text.

d. bty = "n" suppresses wrapping the legend within a box.

e. title = "Age" sets the title to be “Age”.

9.4.3 Vertex shape

For the color, we will use vertex age. Although age is, by definition, continuous, we only have
three values for age. Because of this, we can treat age as categorical.

# Specifying the shapes for each vertex

vshape_list <- c("white" = 15, "non-white" = 3)

vshape <- vshape_list[as.character(net_sim %v% "race")]

net_sim %v% "shape" <- vshape

# Plotting

nplot_base(

net_ig,

layout = glayout,

vertex.color = net_sim %v% "color",

vertex.nsides = net_sim %v% "shape"

)

# Color legend

legend(

"bottomright",

legend = names(vcolors_palette),

fill = vcolors_palette,

bty = "n",

title = "Age"

)

# Shape legend

legend(

"bottomleft",

legend = names(vshape_list),

pch = c(1, 2),

bty = "n",

title = "Race"

)
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Let’s now compare the figure to our original ERGM:

1. Low density (edges) Without low density, the figure would be a hairball.

2. Race homophily (nodematch("race")) Although not surprisingly evident, nodes tend to
form small clusters by shape, which, in our model, represents race.

3. Structural balance (ttriad) A force, in this case, opposite to low density, higher
prevalence of transitive triads makes individuals cluster.

4. Age homophily (absdiff("age")) This is the most prominent feature of the graph. In it,
nodes are clustered by age.

Of the four features, age homophily is the one that stands out. Why is this tha case? If we
look again at the parameters used in the ERGM and how these interact with vertices’ attributes,
we will find the answer:

• The log-odds of a new race-homophilic tie are 1 × θrace-homophily = 0.5.

• But, the log-odd of an age heterophilic tie between, say, 14 and 17 year olds is |17 −
14|θage-homophily = 3 × −0.5 = −1.5.

• Therefore, the effect of heterophily (which is just the opposite of homophily) is significantly
larger, actually three times in this case, than the race-homophily effect.

This observation becomes clear if we run another simulation with the same seed, but adjusting
for the maximum size the effect of age-homophily can take. A quick-n-dirty way to achieve this
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is to re-run the simulation with the nodematch term instead of the absdiff term. This way, we
(a) explicitly operationalize the term as homophily (before it was heterophily,) and (b) have
both homophily effects have the same influence in the model:

net_sim2 <- simulate(

net ~ edges +

nodematch("race") +

ttriad +

nodematch("age"),

coef = c(-5, .5, .25, .5) # This line changed

)

Re-doing the plot. From the previous graph-drawing, only the graph structure changed. The
vertex attributes are the same so we can go ahead and re-use them. Like I mentioned earlier, the
nplot_base function currently supports igraph objects, so we will use intergraph::asIgraph

to make it work:

# Plotting

nplot_base(

asIgraph(net_sim2),

# We comment this out to allow for a new layout

# layout = glayout,

vertex.color = net_sim %v% "color",

vertex.nsides = net_sim %v% "shape"

)

# Color legend

legend(

"bottomright",

legend = names(vcolors_palette),

fill = vcolors_palette,

bty = "n",

title = "Age"

)

# Shape legend

legend(

"bottomleft",

legend = names(vshape_list),

pch = c(1, 2),

bty = "n",

title = "Race"

)
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As expected, there is no longer a dominant effect in homophily. One important thing we can
learn from this final example is that phenomena will not always show themselves in graph
visualization. Careful analysis in complex networks is a must.
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Chapter 10

Egocentric networks

In egocentric social network analysis (ESNA, for our book,) instead of dealing with a single
network, we have as many networks as participants in the study. Egos–the main study subjects–
are analyzed from the perspective of their local social network. For a more extended view of
ESNA, look at Raffaele Vacca’s “Egocentric network analysis with R”.

In this chapter, I show how to work with one particular type of ESNA data: information generated
by the tool Network Canvas. You can download an “artificial” ZIP file containing the outputs
from a Network Canvas project here1. During the entire chapter, we assume that the ZIP
file was extracted to the path data-raw/egonets. You can go ahead and extract the ZIP by
point-and-click, or use the following R code to automate the process:

## [1] FALSE

unzip(

zipfile = "data-raw/networkCanvasExport-fake.zip",

exdir = "data-raw/egonets"

)

This will extract all the files in networkCanvasExport-fake.zip to the subfolder egonets. Let’s
take a look at the first few files:

head(list.files(path = "data-raw/egonets"))

## [1] "I_-59190_BRB9111_attributeList_Person.csv"

## [2] "I_-59190_BRB9111_edgeList_Knows.csv"

## [3] "I_-59190_BRB9111_ego.csv"

## [4] "I_-59190_BRB9111.graphml"

## [5] "I-100BB_00B95-90_attributeList_Person.csv"

## [6] "I-100BB_00B95-90_edgeList_Knows.csv"

As you can see, for each ego in the dataset there are four files:

1I thank Jaqueline Kent-Marvick who provided me with what I used as a baseline to generate the artificial Network
Canvas export.
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• ...attributeList_Person.csv: Attributes of the alters.

• ...edgeList_Knows.csv: Edgelist indicating the ties between the alters.

• ...ego.csv: Information about the egos.

• ...graphml: And a graphml file that contains the egonets.

The next sections will illustrate, file by file, how to read the information into R, apply any
required processing, and store the information for later use. We start with the graphml files.

10.1 Network files (graphml)

The graphml files can be read directly with igraph’s read_graph function. The key is to take
advantage of R’s lists to avoid writing over and over the same block of code, and instead,
manage the data through lists.

Just like any data-reading function, read_graph function requires a file path to the network file.
The function we will use to list the required files is list.files():

# We start by loading igraph

library(igraph)

# Listing all the graphml files

graph_files <- list.files(

path = "data-raw/egonets", # Where are these files

pattern = "*.graphml", # Specify a pattern for only listing graphml

full.names = TRUE # And we make sure we use the full name

# (path.) Otherwise, we would only get names.

)

# Taking a look at the first three files we got

graph_files[1:3]

## [1] "data-raw/egonets/I_-59190_BRB9111.graphml"

## [2] "data-raw/egonets/I-100BB_00B95-90.graphml"

## [3] "data-raw/egonets/I-1BB79950-0-7.graphml"

# Applying igraph's read_graph

graphs <- lapply(

X = graph_files, # List of files to read

FUN = read_graph, # The function to apply

format = "graphml" # Argument passed to read_graph

)

If the operation succeeded, then the previous code block should generate a list of igraph
objects named graphs. Let’s take a peek at the first two:
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graphs[[1]]

## IGRAPH c660b76 U--- 12 25 --

## + attr: age (v/n), healthy_diet (v/n), gender_1 (v/l), eat_with_2

## | (v/l), id (v/c)

## + edges from c660b76:

## [1] 1-- 3 1-- 2 1-- 6 1-- 5 1-- 4 1-- 8 1--11 1--10 2-- 3 3-- 7 3-- 4 3-- 5

## [13] 3-- 6 2-- 7 2-- 4 2-- 5 2-- 6 5-- 6 6--10 7-- 9 4-- 5 5-- 7 4--11 6-- 7

## [25] 4-- 7

graphs[[2]]

## IGRAPH 6726e83 U--- 16 47 --

## + attr: age (v/n), healthy_diet (v/n), gender_1 (v/l), eat_with_2

## | (v/l), id (v/c)

## + edges from 6726e83:

## [1] 7--13 1-- 5 1-- 6 1-- 4 1-- 2 7--15 1-- 3 11--13 1--10 1--16

## [11] 4-- 6 2-- 6 6-- 7 1--11 11--15 6-- 9 6-- 8 3-- 9 5--15 4-- 5

## [21] 2-- 5 5-- 8 5-- 7 5--10 3-- 5 6--14 12--13 6--13 3--13 2-- 3

## [31] 3-- 4 3--16 3--11 10--14 7--14 2-- 4 2--10 2--15 10--12 4-- 7

## [41] 6--10 5--11 9--10 1-- 9 1--12 3--12 4--14

As always, one of the first things we do with networks is visualize them. We will use the netplot

R package (by yours truly) to draw the figures:

library(netplot)

library(gridExtra)

# Graph layout is random

set.seed(1231)

# The grid.arrange allows putting multiple netplot graphs into the same page

grid.arrange(

nplot(graphs[[1]]),

nplot(graphs[[2]]),

nplot(graphs[[3]]),

nplot(graphs[[4]]),

ncol = 2, nrow = 2

)
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Great! Since nodes in our network have features, we can add a little bit of color. We will use
the eat_with_2 variable, which is coded as TRUE or FALSE. Vertex colors can be specified using
the vertex.color argument of the nplot function. In our case, we will specify colors passing
a vector of length equal to the number of nodes in the graph. Furthermore, since we will be
doing this multiple times, it is worthwhile writing a function:

# A function to color by the eat with variable

color_it <- function(net) {

# Coding eat_with_2 to be 1 (FALSE) or 2 (TRUE)

eatswith <- V(net)$eat_with_2

# Subsetting the color

ifelse(eatswith, "purple", "darkgreen")

}

This function takes two arguments: a network and a vector of two colors. Vertex attributes in
igraph can be accessed through the V(...)$... function. For this example, to access the
attribute eat_with_2 in the network net, we type V(net)$eat_with_2. Finally, individuals who
have eat_with_2 equal to true will be colored purple, otherwise, if equal to FALSE, will be
colored darkgreen. Before plotting the networks, let’s see what we get when we access the
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eat_with_2 attribute in the first graph:

V(graphs[[1]])$eat_with_2

## [1] TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE

A logical vector. Now let’s redraw the figures:

grid.arrange(

nplot(graphs[[1]], vertex.color = color_it(graphs[[1]])),

nplot(graphs[[2]], vertex.color = color_it(graphs[[2]])),

nplot(graphs[[3]], vertex.color = color_it(graphs[[3]])),

nplot(graphs[[4]], vertex.color = color_it(graphs[[4]])),

ncol = 2, nrow = 2

)

Since most of the time, we will be dealing with a large number of egonets, you may want
to draw each network independently; the following code-block does exactly that. First, if
needed, will create a folder to store the networks. Then, using the lapply function, it
will use netplot::nplot() to draw the networks, add a legend, and save the graph as
.../graphml_[number].png, where [number] will go from 01 to the total number of networks
in graphs.

if (!dir.exists("egonets/figs/egonets"))

dir.create("egonets/figs/egonets", recursive = TRUE)
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lapply(seq_along(graphs), function(i) {

# Creating the device

png(sprintf("egonets/figs/egonets/graphml_%02i.png", i))

# Drawing the plot

p <- nplot(

graphs[[i]],

vertex.color = color_it(graphs[[i]])

)

# Adding a legend

p <- nplot_legend(

p,

labels = c("eats with: FALSE", "eats with: TRUE"),

pch = 21,

packgrob.args = list(side = "bottom"),

gp = gpar(

fill = c("darkgreen", "purple")

),

ncol = 2

)

print(p)

# Closing the device

dev.off()

})

10.2 Person files

Like before, we list the files ending in Person.csv (with the full path,) and read them into
R. While R has the function read.csv, here I use the function fread from the data.table

R package. Alongside dplyr, data.table is one of the most popular data-wrangling tools
in R. Besides syntax, the biggest difference between the two is performance; data.table is
significantly faster than any other data management package in R, and is a great alternative
for handling large datasets. The following code block loads the package, lists the files, and
reads them into R.

# Loading data.table

library(data.table)
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# Listing the files

person_files <- list.files(

path = "data-raw/egonets",

pattern = "*Person.csv",

full.names = TRUE

)

# Loading all into a single list

persons <- lapply(person_files, fread)

# Looking into the first element

persons[[1]]

## nodeID age

## 1: 1 45

## 2: 2 32

## 3: 3 31

## 4: 4 45

## 5: 5 43

## 6: 6 47

## 7: 7 45

## 8: 8 62

## 9: 9 28

## 10: 10 41

## 11: 11 41

## 12: 12 46

## 13: 13 46

## 14: 14 46

## 15: 15 62

## 16: 16 41

A common task is adding an identifier to each dataset in persons so we know from to which
ego they belong. Again, the lapply function is our friend:

persons <- lapply(seq_along(persons), function(i) {

persons[[i]][, dataset_num := i]

})

In data.table, variables are created using the := symbol. The previous code chunk is equiva-
lent to this:

for (i in 1:length(persons)) {

persons[[i]]$dataset_num <- i

}

If needed, we can transform the list persons into a data.table object (i.e., a single
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data.frame) using the rbindlist function2. The next code block uses that function to
combine the data.tables into a single dataset.

# Combining the datasets

persons <- rbindlist(persons)

persons

## nodeID age dataset_num

## 1: 1 45 1

## 2: 2 32 1

## 3: 3 31 1

## 4: 4 45 1

## 5: 5 43 1

## ---

## 271: 7 43 19

## 272: 8 48 19

## 273: 9 70 19

## 274: 10 46 19

## 275: 11 50 19

Now that we have a single dataset, we can do some data exploration. For example, we can use
the package ggplot2 to draw a histogram of alters’ ages.

# Loading the ggplot2 package

library(ggplot2)

# Histogram of age

ggplot(persons, aes(x = age)) + # Starting off the plot

geom_histogram(fill = "purple") + # Adding a histogram

labs(x = "Age", y = "Frequency") + # Changing the x/y axis labels

labs(title = "Alter's Age Distribution") # Adding a title

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

2Although not the same, rbindlist (almost always) yields the same result as calling the function do.call. In
particular, instead of executing the call rbindlist(persons), we could have used do.call(rbind, persons).
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10.3 Ego files

The ego files contain information about egos (duh!.) Again, we will read them all at once using
list.files + lapply:

# Listing files ending with *ego.csv

ego_files <- list.files(

path = "data-raw/egonets",

pattern = "*ego.csv",

full.names = TRUE

)

# Reading the files with fread

egos <- lapply(ego_files, fread)

# Combining them

egos <- rbindlist(egos)

head(egos)

## networkCanvasEgoUUID networkCanvasCaseID

## 1: I-11ca3a78c-62f131f37169-c139217a1f6 I_-59190_BRB9111

## 2: I-fef-ab-4-5a--7-35c4f23-96eb32-34ea I-100BB_00B95-90
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## 3: I2f1bd0b6d-f71f4664cf-d-26-97408f22d I-1BB79950-0-7

## 4: Id36bb-3b2bcbd2a6239b1103134c6b3d1d6 I000091I_RB010B5

## 5: I436d32fc67fb5c6-23-244f353849b120cd I019051R0_RRR0-0

## 6: Ibf1f-2-34162bb5f2c36b8241--316a-fff I01B11-I1101_44R

## networkCanvasSessionID

## 1: I612b7a1af---0880b-70698204-b-8dbf09

## 2: If5e0-f-26cbec070760f-e6b6d26ebfb06f

## 3: I825c293a1304-e5-cbea8a80aae05b305fa

## 4: I1b8a7d0f6b4-8298c9-848-9186d68a7f3c

## 5: Ie620be37b75983c49ac63-38-425227c959

## 6: Ie3-134323ed40-0e-d954b3d-febbcb9363

## networkCanvasProtocolName sessionStart

## 1: Postpartum social networks with sociogram_V5 2023-02-22 23:41:59

## 2: Postpartum social networks with sociogram_V5 2023-02-10 21:46:02

## 3: Postpartum social networks with sociogram_V5 2023-03-01 16:52:09

## 4: Postpartum social networks with sociogram_V5 2023-01-26 20:38:07

## 5: Postpartum social networks with sociogram_V5 2023-02-06 14:55:57

## 6: Postpartum social networks with sociogram_V5 2023-03-16 18:20:02

## sessionFinish sessionExported

## 1: 2023-02-23 01:47:00 2023-02-23 01:47:08

## 2: 2023-02-11 01:29:32 2023-02-11 01:34:12

## 3: 2023-03-02 16:51:20 2023-03-02 17:04:42

## 4: 2023-01-26 22:03:20 2023-01-26 22:03:34

## 5: 2023-02-06 15:49:38 2023-02-06 15:56:42

## 6: 2023-03-17 21:11:09 2023-03-17 21:16:15

A cool thing about data.table is that, within square brackets, we can manipulate the data
referring to the variables directly. For example, if we wanted to calculate the difference between
sessionFinish and sessionStart, using base R we would do the following:

egos$total_time <- egos$sessionFinish - egos$sessionStart

Whereas with data.table, variable creation is much more straightforward (notice that instead
of using <- or = to assign a variable, we use the := operator):

# How much time?

egos[, total_time := sessionFinish - sessionStart]

We can also visualize this using ggplot2:

ggplot(egos, aes(x = total_time)) +

geom_histogram() +

labs(x = "Time in minutes", y = "Count") +

labs(title = "Total time spent by egos")

## Don't know how to automatically pick scale for object of type difftime. Defaulting to continuous.

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
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10.4 Edgelist files

As I mentioned earlier, since we are reading the graphml files, using the edgelist may not be
needed. Nevertheless, the process to import the edgelist file to R is the same we have been
applying: list the files and read them all at once using lapply:

# Listing all files ending in Knows.csv

edgelist_files <- list.files(

path = "data-raw/egonets",

pattern = "*Knows.csv",

full.names = TRUE

)

# Reading all files at once

edgelists <- lapply(edgelist_files, fread)

To avoid confusion, we can also add ids corresponding to the file number. Once we do that, we
can combine all files into a single data.table object using rbindlist:

edgelists <- lapply(seq_along(edgelists), function(i) {

edgelists[[i]][, dataset_num := i]

})
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edgelists <- rbindlist(edgelists)

head(edgelists)

## edgeID from to networkCanvasEgoUUID

## 1: 1 1 5 I839f-8fa8f8aeb8-eaf---ba8-cf3908f3a

## 2: 2 1 10 If81a9c0f-9f4f28ccf-c4c923a-8-0f5fce

## 3: 3 1 9 I899ffe-27-3-a3-ca2fb7f7-ca8e7715ce9

## 4: 4 1 10 I814efaba88cbb02caa8c89790-83beeaf9-

## 5: 5 7 6 Ifd-0eec2e08974eaf2b79f-9efb7e3-8998

## 6: 6 2 6 I-28fe89cc-fc5db3825b92-ae87c-c18e3d

## networkCanvasUUID networkCanvasSourceUUID

## 1: I720400eb19bccce-77cee773289b02-fe7e I4d5--16a08f8ba463c6458f8979e-65fa9d

## 2: I-b469c0-60f8bbb543-32-628-216f9-038 I-6cf8-f3da-4-96-87efaf5daaa48ba5e5c

## 3: Ifa4933-9baaf5fc-f-e4f5c5e5-ff34-f-f I5-f69a6eaa-5956e8897ca999-ffb6ed-e1

## 4: I4cb-904496b1-6194bcb51b58444b40-ef8 I3e5-6c8d5e0f086--e-5ab45-4-5aaa5-0e

## 5: I0ab7--b7a0ee71e54c1e93cdb-4ca5ab1-b I5-b-9-7eca5ab5-91915ba9b6565a6e42cc

## 6: Ic80142fc4c431009e84b3-ab3f-9b0eab03 Ie0a24eea4e01a4340343a0-66723-a-9970

## networkCanvasTargetUUID dataset_num

## 1: Id1c8befd46bdd195c-ce91a8-bc0---4f0e 1

## 2: I757b4a-3ea4d95--b9ebb9db3d55dcbaf-c 1

## 3: I92a62925ff9-e2f27-6ef97d-29fb729624 1

## 4: I7f--da48-46a64-b972c-ef6bbec--64cb4 1

## 5: I-eaa7e95659-9cf01a4f5fd69af54e6-d60 1

## 6: I69060e8a-454609-faa04cd3eeb-5-9550- 1

10.5 Putting all together

In this last part of the chapter, we will use the igraph and ergm packages to generate features
(covariates, controls, independent variables, or whatever you call them) at the ego-network
level. Once again, the lapply function is our friend

10.5.1 Generating statistics using igraph

The igraph R package has multiple high-performing routines to compute graph-level statistics.
For now, we will focus on the following statistics: vertex count, edge count, number of isolates,
transitivity, and modularity based on betweenness centrality:

net_stats <- lapply(graphs, function(g) {

# Calculating modularity

groups <- cluster_edge_betweenness(g)
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# Computing the stats

data.table(

size = vcount(g),

edges = ecount(g),

nisolates = sum(degree(g) == 0),

transit = transitivity(g, type = "global"),

modular = modularity(groups)

)

})

Observe we count isolates using the degree() function. We can combine the statistics into a
single data.table using the rbindlist function:

net_stats <- rbindlist(net_stats)

head(net_stats)

## size edges nisolates transit modular

## 1: 12 25 1 0.6750000 0.012000000

## 2: 16 47 0 0.4332130 0.003395201

## 3: 16 58 0 0.5612009 0.002675386

## 4: 15 75 0 0.8515112 0.000000000

## 5: 15 52 0 0.5780488 0.000000000

## 6: 17 68 0 0.6291161 0.025735294

10.5.2 Generating statistics based on ergm

The ergm R package has a much larger set of graph-level statistics we can add to our models.3

The key to generating statistics based on the ergm package is the summary_formula function.
Before we start using that function, we first need to convert the igraph networks to network

objects, which are the native object class for the ergm package. We use the intergraph R
package for that, and in particular, the asNetwork function:

# Loading the required packages

library(intergraph)

library(ergm)

## Loading required package: network

##

## 'network' 1.18.1 (2023-01-24), part of the Statnet Project

## * 'news(package="network")' for changes since last version

## * 'citation("network")' for citation information

## * 'https://statnet.org' for help, support, and other information

##

## Attaching package: 'network'

3There’s an obvious reason, ERGMs are all about graph-level statistics!
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## The following objects are masked from 'package:igraph':

##

## %c%, %s%, add.edges, add.vertices, delete.edges, delete.vertices,

## get.edge.attribute, get.edges, get.vertex.attribute, is.bipartite,

## is.directed, list.edge.attributes, list.vertex.attributes,

## set.edge.attribute, set.vertex.attribute

##

## 'ergm' 4.4.0 (2023-01-26), part of the Statnet Project

## * 'news(package="ergm")' for changes since last version

## * 'citation("ergm")' for citation information

## * 'https://statnet.org' for help, support, and other information

## 'ergm' 4 is a major update that introduces some backwards-incompatible

## changes. Please type 'news(package="ergm")' for a list of major

## changes.

# Converting all "igraph" objects in graphs to network "objects"

graphs_network <- lapply(graphs, asNetwork)

With the network objects ready, we can proceed to compute graph-level statistics using the
summary_formula function. Here we will only look into: the number of triangles, gender
homophily, and healthy-diet homophily:

net_stats_ergm <- lapply(graphs_network, function(n) {

# Computing the statistics

s <- summary_formula(

n ~ triangles +

nodematch("gender_1") +

nodematch("healthy_diet")

)

# Saving them as a data.table object

data.table(

triangles = s[1],

gender_homoph = s[2],

healthyd_homoph = s[3]

)

})

Once again, we use rbindlist to combine all the network statistics into a single data.table

object:

net_stats_ergm <- rbindlist(net_stats_ergm)

head(net_stats_ergm)

## triangles gender_homoph healthyd_homoph
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## 1: 27 11 3

## 2: 40 30 20

## 3: 81 40 29

## 4: 216 33 38

## 5: 79 44 19

## 6: 121 38 16

10.6 Saving the data

We end the chapter saving all our work into four datasets:

• Network statistics (as a csv file)

• Igraph objects (as a rda file, which we can read back using read.rds)

• Network objects (idem)

• Person files (alter’s information, as a csv file.)

CSV files can be saved either using write.csv or, as we do here, fwrite from the data.table

package:

# Network attributes

master <- cbind(egos, net_stats, net_stats_ergm)

fwrite(master, file = "data/network_stats.csv")

# Networks

saveRDS(graphs, file = "data/networks_igraph.rds")

saveRDS(graphs_network, file = "data/networks_network.rds")

# Attributes

fwrite(persons, file = "data/persons.csv")
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Chapter 11

Hypothesis testing in networks

Overall, there are many ways in which we can see hypothesis testing within the networks
context:

1. Comparing two or more networks, e.g., we want to see if the density of two networks
are equal.

2. Prevalence of a motif/pattern, e.g., check whether the observed number of transitive
triads is different from that expected as of by chance.

3. Multivariate using ERGMs, e.g., jointly test whether homophily and two stars are the
motifs that drive network structure.

The latter we already review in the ERGM chapter. In this part, we will look at types one and
two; both using non-parametric methods.

11.1 Comparing networks

Imagine that we have two graphs, (G1, G2) ∈ G, and we would like to assess whether a given
statistic s(·), e.g., density, is equal in both of them. Formally, we would like to asses whether
H0 : s(G1) − s(G2) = k vs H : s(G1) − s(G2) ̸= k.

As usual, the true distribution of s(·) is unknown, thus, one approach that we could use is a
non-parametric bootstrap test.

11.1.1 Network bootstrap

The non parametric bootstrap and jackknife methods for social networks were introduced by
(T. A. B. Snijders and Borgatti 1999). The method itself is used to generate standard errors for
network level statistics. Both methods are implemented in the R package netdiffuseR.
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11.1.2 When the statistic is normal

When the we deal with things that are normally distributed, e.g., sample means like density1,
we can make use of the Student’s distribution for making inference. In particular, we can use
Bootstrap/Jackknife to approximate the standard errors of the statistic for each network:

1. Since s(G) ∼ N(μ, σ2 /m) for  ∈ {1,2}, in the case of the density, m = n ∗ (n − 1). The
statistic is then:

s(G1) − s(G0) ∼ N(μ1 − μ0, σ21 /m1 + σ21 /m2)

Thus

s(G1) − s(G0) − μ1 + μ2
Ç

σ21 /m1 + σ21 /m2

∼ tm1+m2−2

But, if we are testing H0 : μ1 − μ2 = k, then, under the null

s(G1) − s(G0) − k
Ç

σ21 /m1 + σ21 /m2

∼ tm1+m2−2

Where We now proceede to approximate the variances.

2. Using the plugin principle (Efron and Tibshirani 1994), we can approximate the variances
using Bootstrap/Jackknife, i.e., compute σ̂21 ≈ σ

2
1 /m1 and σ̂22 ≈ σ

2
2 /m2. Using netdiffuseR

library(netdiffuseR)

# Obtain a 100 replicates

sg1 <- bootnet(g1, function(i, ...) sum(i)/(nnodes(i) * (nnodes(i) - 1)), R = 100)

sg2 <- bootnet(g2, function(i, ...) sum(i)/(nnodes(i) * (nnodes(i) - 1)), R = 100)

# Retrieving the variances

hat_sigma1 <- sg1$var_t

hat_sigma2 <- sg2$var_t

# And the actual values

sg1 <- sg1$t0

sg2 <- sg2$t0

3. With the approximates in hand, we can then use the the “t-test table” to retrieve the
corresponding value, in R:

1Density is indeed a sample mean as we are, in principle computing the average of a sequence of Bernoulli variables.
Formally: density(G) = 1

n(n−1)
∑

j Aj.
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# Building the statistic

k <- 0 # For equal variances

tstat <- (sg1 - sg2 - k)/(sqrt(hat_sigma1 + hat_sigma2))

# Computing the pvalue

m1 <- nnodes(g1)*(nnodes(g1) - 1)

m2 <- nnodes(g2)*(nnodes(g2) - 1)

pt(tstat, df = m1 + m2 - 2)

11.1.3 When the statistic is NOT normal

In the case that the statistic is not normally distributed, we cannot use the t-statistic any longer.
Nevertheless, the Bootstrap can come to help. While in general it is better to use distributions of
pivot statistics (see (Efron and Tibshirani 1994)), we can still leverage the power of this method
to make inferences. For this example, s(·) will be the range of the threshold in a diffusion graph.

As before, imagine that we are dealing with an statistic s(·) for two different networks, and we
would like to asses whether we can reject H0 or fail to reject it. The procedure is very similar:

1. One approach that we can test is whether k ∈ ConfInt(s(G1)− s(G2)). Building confidence
intervals with bootstrap could be more intuitive.

2. Like before, we use bootstrap to generate a distribution of s(G1) and s(G2), in R:

# Obtain a 1000 replicates

sg1 <- bootnet(g1, function(i, ...) range(threshold(i)), R = 1000)

sg2 <- bootnet(g2, function(i, ...) range(threshold(i)), R = 1000)

# Retrieving the distributions

sg1 <- sg1$boot$t

sg2 <- sg2$boot$t

# Define the statistic

sdiff <- sg1 - sg2

3. Once we have sdiff, we can proceed and compute the, for example, 95% confidence
interval, and evaluate whether k falls within. In R:

diff_ci <- quantile(sdiff, probs = c(0.025, .975))

This corresponds to what Efron and Tibshirani call “percentile interval.” This is easy to compute,
but a better approach is using the “BCa” method, “Bias Corrected and Accelerated.” (TBD)

https://www.thoughtco.com/fail-to-reject-in-a-hypothesis-test-3126424
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11.2 Examples

11.2.1 Average of node-level stats

Supposed that we would like to compare something like average indegree. In particular, for
both networks, G1 and G2, we compute the average indegree per node:

s(G1) = AvgIndeg(G1) =
1

n

∑



∑

j ̸=
A1
j

where A1
j

equals one if vertex j sends a tie to . In this case, since we are looking at an average,

we have that AvgIndeg(G1) ∼ N(μ1, σ21 /n). Thus, taking advantage of the normality of the
statistic, we can build a test statistic as follows:

s(G1) − s(G2) − k
Ç

σ̂21 + σ̂22

∼ tn1+n2−2

Where σ̂ is the bootstrap standard error, and k = 0 when we are testing equality. This distributes
t with n1 + n2 − 2 degrees of freedom. As a difference from the previous example using density,
the degrees of freedom for this test are less as, instead of having an average across all entries
of the adjacency matrix, we have an average across all vertices.



Chapter 12

Network diffussion with

netdiffuseR

This chapter mainly was based on the 2018 and 2019 tutorials of netdiffuseR at the Sunbelt
conference. The source code of the tutorials, taught by Thomas W. Valente and George G. Vega
Yon (author of this book), is available here.

12.1 Network diffusion of innovation

12.1.1 Diffusion networks

• Explains how new ideas and practices (innovations) spread within and between communi-
ties.

• While a lot of factors have been shown to influence diffusion (Spatial, Economic, Cultural,
Biological, etc.), Social Networks is a prominent one.

• There are many components in the diffusion network model including network expo-
sures, thresholds, infectiousness, susceptibility, hazard rates, diffusion rates (bass model),
clustering (Moran’s I), and so on.

12.1.2 Thresholds

• One of the canonical concepts is the network threshold. Network thresholds (Valente,
1995; 1996), τ, are defined as the required proportion or number of neighbors that lead
you to adopt a particular behavior (innovation),  = 1. In (very) general terms

 =

¨

1 if τ ≤ E
0 Otherwise

E ≡

∑

j ̸=Xjj
∑

j ̸=Xj

Where E is i’s exposure to the innovation and X is the adjacency matrix (the network).
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• This can be generalized and extended to include covariates and other network weighting
schemes (that’s what netdiffuseR is all about).

12.2 The netdiffuseR R package

12.2.1 Overview

netdiffuseR is an R package that:

• Is designed for Visualizing, Analyzing, and Simulating network diffusion data (in general).

• Depends on some pretty popular packages:

– RcppArmadillo: So it’s fast,
– Matrix: So it’s big,
– statnet and igraph: So it’s not from scratch

• Can handle big graphs, e.g., an adjacency matrix with more than 4 billion elements (PR for
RcppArmadillo)

• Already on CRAN with ~6,000 downloads since its first version, Feb 2016,

• A lot of features to make it easy to read network (dynamic) data, making it a companion
of other net packages.

12.2.2 Datasets

• netdiffuseR has the three classic Diffusion Network Datasets:

– medInnovationsDiffNet Doctors and the innovation of Tetracycline (1955).
– brfarmersDiffNet Brazilian farmers and the innovation of Hybrid Corn Seed (1966).
– kfamilyDiffNet Korean women and Family Planning methods (1973).

brfarmersDiffNet

## Dynamic network of class -diffnet-

## Name : Brazilian Farmers

## Behavior : Adoption of Hybrid Corn Seeds

## # of nodes : 692 (1001, 1002, 1004, 1005, 1007, 1009, 1010, 1020, ...)

## # of time periods : 21 (1946 - 1966)

## Type : directed

## Final prevalence : 1.00

## Static attributes : village, idold, age, liveout, visits, contact, coo... (146)

## Dynamic attributes : -

medInnovationsDiffNet

## Dynamic network of class -diffnet-

## Name : Medical Innovation
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## Behavior : Adoption of Tetracycline

## # of nodes : 125 (1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, ...)

## # of time periods : 18 (1 - 18)

## Type : directed

## Final prevalence : 1.00

## Static attributes : city, detail, meet, coll, attend, proage, length, ... (58)

## Dynamic attributes : -

kfamilyDiffNet

## Dynamic network of class -diffnet-

## Name : Korean Family Planning

## Behavior : Family Planning Methods

## # of nodes : 1047 (10002, 10003, 10005, 10007, 10010, 10011, 10012, 10014, ...)

## # of time periods : 11 (1 - 11)

## Type : directed

## Final prevalence : 1.00

## Static attributes : village, recno1, studno1, area1, id1, nmage1, nmag... (430)

## Dynamic attributes : -

12.2.3 Visualization methodsset.seed(12315)

x <- rdiffnet(

400, t = 6, rgraph.args = list(k=6, p=.3),

seed.graph = "small-world",

seed.nodes = "central", rewire = FALSE, threshold.dist = 1/4

)

plot(x)
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Diffusion network in time 1

plot_diffnet(x)

Network in period 1 Network in period 2

Network in period 4 Network in period 6

Diffusion Network

Non adopters New adopters Adopters

plot_diffnet2(x)
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Diffusion dynamics
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plot_adopters(x)

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Adopters and Cumulative Adopters

Time

P
ro

po
rt

io
n

Cumulative adopters
Adopters

plot_threshold(x)
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plot_infectsuscep(x, K=2)

## Warning in plot_infectsuscep.list(graph$graph, graph$toa, t0, normalize, : When

## applying logscale some observations are missing.
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12.2.4 Problems

1. Using the diffnet object in intro.rda, use the function plot_threshold specifying shapes
and colors according to the variables ItrustMyFriends and Age. Do you see any pattern?

12.3 Simulation of diffusion processes

Before we start, a review of the concepts we will be using here

1. Exposure: Proportion/number of neighbors that have adopted an innovation at each point
in time.

2. Threshold: The proportion/number of your neighbors who had adopted at or one time
period before ego (the focal individual) adopted.

3. Infectiousness: How much ’s adoption affects her alters.
4. Susceptibility: How much ’s alters’ adoption affects her.
5. Structural equivalence: How similar is  to j in terms of position in the network.

12.3.1 Simulating diffusion networks

We will simulate a diffusion network with the following parameters:

1. Will have 1,000 vertices,
2. Will span 20 time periods,
3. The initial adopters (seeds) will be selected at random,
4. Seeds will be a 10% of the network,
5. The graph (network) will be small-world,
6. Will use the WS algorithm with p = .2 (probability of rewiring).
7. Threshold levels will be uniformly distributed between [0.3, 0.7]

To generate this diffusion network, we can use the rdiffnet function included in the package:

# Setting the seed for the RNG

set.seed(1213)

# Generating a random diffusion network

net <- rdiffnet(

n = 1e3, # 1.

t = 20, # 2.

seed.nodes = "random", # 3.

seed.p.adopt = .1, # 4.

seed.graph = "small-world", # 5.

rgraph.args = list(p=.2), # 6.

threshold.dist = function(x) runif(1, .3, .7) # 7.

)

## Warning in (function (graph, p, algorithm = "endpoints", both.ends = FALSE, :

intro.rda
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## The option -copy.first- is set to TRUE. In this case, the first graph will be

## treated as a baseline, and thus, networks after T=1 will be replaced with T-1.

• The function rdiffnet generates random diffusion networks. Main features:

1. Simulating random graph or using your own,

2. Setting threshold levels per node,

3. Network rewiring throughout the simulation, and

4. Setting the seed nodes.

• The simulation algorithm is as follows:

1. If required, a baseline graph is created,

2. Set of initial adopters and threshold distribution are established,

3. The set of t networks is created (if required), and

4. Simulation starts at t=2, assigning adopters based on exposures and thresholds:

a. For each  ∈ N, if its exposure at t − 1 is greater than its threshold, then adopts,
otherwise, continue without change.

b. next 

12.3.2 Rumor spreading

library(netdiffuseR)

set.seed(09)

diffnet_rumor <- rdiffnet(

n = 5e2,

t = 5,

seed.graph = "small-world",

rgraph.args = list(k = 4, p = .3),

seed.nodes = "random",

seed.p.adopt = .05,

rewire = TRUE,

threshold.dist = function(i) 1L,

exposure.args = list(normalized = FALSE)

)

## Warning in (function (graph, p, algorithm = "endpoints", both.ends = FALSE, :

## The option -copy.first- is set to TRUE. In this case, the first graph will be

## treated as a baseline, and thus, networks after T=1 will be replaced with T-1.

summary(diffnet_rumor)
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## Diffusion network summary statistics

## Name : A diffusion network

## Behavior : Random contagion

## -----------------------------------------------------------------------------

## Period Adopters Cum Adopt. (%) Hazard Rate Density Moran's I (sd)

## -------- ---------- ---------------- ------------- --------- ----------------

## 1 25 25 (0.05) - 0.01 -0.00 (0.00)

## 2 78 103 (0.21) 0.16 0.01 0.01 (0.00) ***
## 3 187 290 (0.58) 0.47 0.01 0.01 (0.00) ***
## 4 183 473 (0.95) 0.87 0.01 0.01 (0.00) ***
## 5 27 500 (1.00) 1.00 0.01 -

## -----------------------------------------------------------------------------

## Left censoring : 0.05 (25)

## Right centoring : 0.00 (0)

## # of nodes : 500

##

## Moran's I was computed on contemporaneous autocorrelation using 1/geodesic

## values. Significane levels *** <= .01, ** <= .05, * <= .1.

plot_diffnet(diffnet_rumor, slices = c(1, 3, 5))

Network in period 1 Network in period 3 Network in period 5
Diffusion Network

Non adopters New adopters Adopters
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# We want to use igraph to compute layout

igdf <- diffnet_to_igraph(diffnet_rumor, slices=c(1,2))[[1]]

pos <- igraph::layout_with_drl(igdf)

plot_diffnet2(diffnet_rumor, vertex.size = dgr(diffnet_rumor)[,1], layout=pos)

Diffusion dynamics

1

2

3

4

5

Non−adopters

Time of Adoption

12.3.3 Difussion
set.seed(09)

diffnet_complex <- rdiffnet(

seed.graph = diffnet_rumor$graph,

seed.nodes = which(diffnet_rumor$toa == 1),

rewire = FALSE,

threshold.dist = function(i) rbeta(1, 3, 10),

name = "Diffusion",

behavior = "Some social behavior"

)

plot_adopters(diffnet_rumor, what = "cumadopt", include.legend = FALSE)

plot_adopters(diffnet_complex, bg="tomato", add=TRUE, what = "cumadopt")

legend("topleft", legend = c("Disease", "Complex"), col = c("lightblue", "tomato"),

bty = "n", pch=19)
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12.3.4 Mentor Matching

# Finding mentors

mentors <- mentor_matching(diffnet_rumor, 25, lead.ties.method = "random")

# Simulating diffusion with these mentors

set.seed(09)

diffnet_mentored <- rdiffnet(

seed.graph = diffnet_complex,

seed.nodes = which(mentors$`1`$isleader),

rewire = FALSE,

threshold.dist = diffnet_complex[["real_threshold"]],

name = "Diffusion using Mentors"

)

summary(diffnet_mentored)

## Diffusion network summary statistics

## Name : Diffusion using Mentors

## Behavior : Random contagion

## -----------------------------------------------------------------------------

## Period Adopters Cum Adopt. (%) Hazard Rate Density Moran's I (sd)

## -------- ---------- ---------------- ------------- --------- ----------------
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## 1 25 25 (0.05) - 0.01 -0.00 (0.00)

## 2 92 117 (0.23) 0.19 0.01 0.01 (0.00) ***
## 3 152 269 (0.54) 0.40 0.01 0.01 (0.00) ***
## 4 150 419 (0.84) 0.65 0.01 0.01 (0.00) ***
## 5 73 492 (0.98) 0.90 0.01 -0.00 (0.00) **
## -----------------------------------------------------------------------------

## Left censoring : 0.05 (25)

## Right centoring : 0.02 (8)

## # of nodes : 500

##

## Moran's I was computed on contemporaneous autocorrelation using 1/geodesic

## values. Significane levels *** <= .01, ** <= .05, * <= .1.

cumulative_adopt_count(diffnet_complex)

## 1 2 3 4 5

## num 25.00 80.00 183.0000 338.0000000 470.0000000

## prop 0.05 0.16 0.3660 0.6760000 0.9400000

## rate 0.00 2.20 1.2875 0.8469945 0.3905325

cumulative_adopt_count(diffnet_mentored)

## 1 2 3 4 5

## num 25.00 117.000 269.000000 419.0000000 492.0000000

## prop 0.05 0.234 0.538000 0.8380000 0.9840000

## rate 0.00 3.680 1.299145 0.5576208 0.1742243

12.3.5 Example by changing threshold

# Simulating a scale-free homophilic network

set.seed(1231)

X <- rep(c(1,1,1,1,1,0,0,0,0,0), 50)

net <- rgraph_ba(t = 499, m=4, eta = X)

# Taking a look in igraph

ig <- igraph::graph_from_adjacency_matrix(net)

plot(ig, vertex.color = c("azure", "tomato")[X+1], vertex.label = NA,

vertex.size = sqrt(dgr(net)))
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# Now, simulating a bunch of diffusion processes

nsim <- 500L

ans_1and2 <- vector("list", nsim)

set.seed(223)

for (i in 1:nsim) {

# We just want the cum adopt count

ans_1and2[[i]] <-

cumulative_adopt_count(

rdiffnet(

seed.graph = net,

t = 10,

threshold.dist = sample(1:2, 500L, TRUE),

seed.nodes = "random",

seed.p.adopt = .10,

exposure.args = list(outgoing = FALSE, normalized = FALSE),

rewire = FALSE

)

)

# Are we there yet?

if (!(i %% 50))

message("Simulation ", i," of ", nsim, " done.")

}

## Simulation 50 of 500 done.

## Simulation 100 of 500 done.

## Simulation 150 of 500 done.

## Simulation 200 of 500 done.

## Simulation 250 of 500 done.

## Simulation 300 of 500 done.

## Simulation 350 of 500 done.
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## Simulation 400 of 500 done.

## Simulation 450 of 500 done.

## Simulation 500 of 500 done.

# Extracting prop

ans_1and2 <- do.call(rbind, lapply(ans_1and2, "[", i="prop", j=))

ans_2and3 <- vector("list", nsim)

set.seed(223)

for (i in 1:nsim) {

# We just want the cum adopt count

ans_2and3[[i]] <-

cumulative_adopt_count(

rdiffnet(

seed.graph = net,

t = 10,

threshold.dist = sample(2:3, 500L, TRUE),

seed.nodes = "random",

seed.p.adopt = .10,

exposure.args = list(outgoing = FALSE, normalized = FALSE),

rewire = FALSE

)

)

# Are we there yet?

if (!(i %% 50))

message("Simulation ", i," of ", nsim, " done.")

}

## Simulation 50 of 500 done.

## Simulation 100 of 500 done.

## Simulation 150 of 500 done.

## Simulation 200 of 500 done.

## Simulation 250 of 500 done.

## Simulation 300 of 500 done.

## Simulation 350 of 500 done.

## Simulation 400 of 500 done.

## Simulation 450 of 500 done.

## Simulation 500 of 500 done.

ans_2and3 <- do.call(rbind, lapply(ans_2and3, "[", i="prop", j=))

We can simplify by using the function rdiffnet_multiple. The following lines of code ac-
complish the same as the previous code avoiding the for-loop (from the user’s perspective).



136 CHAPTER 12. NETWORK DIFFUSSION WITH NETDIFFUSER

Besides of the usual parameters passed to rdiffnet, the rdiffnet_multiple function requires
R (number of repetitions/simulations), and statistic (a function that returns the statistic of
interest). Optionally, the user may choose to specify the number of clusters to run it in parallel
(multiple CPUs):

ans_1and3 <- rdiffnet_multiple(

# Num of sim

R = nsim,

# Statistic

statistic = function(d) cumulative_adopt_count(d)["prop",],

seed.graph = net,

t = 10,

threshold.dist = sample(1:3, 500, TRUE),

seed.nodes = "random",

seed.p.adopt = .1,

rewire = FALSE,

exposure.args = list(outgoing=FALSE, normalized=FALSE),

# Running on 4 cores

ncpus = 4L

)

boxplot(ans_1and2, col="ivory", xlab = "Time", ylab = "Threshold")

boxplot(ans_2and3, col="tomato", add=TRUE)

boxplot(t(ans_1and3), col = "steelblue", add=TRUE)

legend(

"topleft",

fill = c("ivory", "tomato", "steelblue"),

legend = c("1/2", "2/3", "1/3"),

title = "Threshold range",

bty ="n"

)
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12.3.6 Problems

1. Given the following types of networks: Small-world, Scale-free, Bernoulli, what set of n
initiators maximizes diffusion?

12.4 Statistical inference

12.4.1 Moran’s I

• Moran’s I tests for spatial autocorrelation.

• netdiffuseR implements the test in moran, which is suited for sparse matrices.

• We can use Moran’s I as a first look to whether there is something happening: let that be
influence or homophily.

12.4.2 Using geodesics

• One approach is to use the geodesic (shortest path length) matrix to account for indirect
influence.

• In the case of sparse matrices, and furthermore, in the presence of structural holes it is
more convenient to calculate the distance matrix taking this into account.

• netdiffuseR has a function to do so, the approx_geodesic function, which, using graph
powers, computes the shortest path up to n steps. This could be faster (if you only care
up to n steps) than igraph or sns:
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# Extracting the large adjacency matrix (stacked)

dgc <- diag_expand(medInnovationsDiffNet$graph)

ig <- igraph::graph_from_adjacency_matrix(dgc)

mat <- network::as.network(as.matrix(dgc))

# Measuring times

times <- microbenchmark::microbenchmark(

netdiffuseR = netdiffuseR::approx_geodesic(dgc),

igraph = igraph::distances(ig),

sna = sna::geodist(mat),

times = 50, unit="ms"

)

netdiffuseR igraph sna
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• The summary.diffnet method already runs Moran’s for you. What happens under the
hood is:

# For each time point we compute the geodesic distances matrix

W <- approx_geodesic(medInnovationsDiffNet$graph[[1]])

# We get the element-wise inverse

W@x <- 1/W@x

# And then compute moran

moran(medInnovationsDiffNet$cumadopt[,1], W)

## $observed

## [1] 0.06624028
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##

## $expected

## [1] -0.008064516

##

## $sd

## [1] 0.03265066

##

## $p.value

## [1] 0.02286087

##

## attr(,"class")

## [1] "diffnet_moran"

12.4.3 Structural dependence and permutation tests

• A novel statistical method (work-in-progress) that allows conducting inference.
• Included in the package, tests whether a particular network statistic depends on network

structure
• Suitable to be applied to network thresholds (you can’t use thresholds in regression-like

models!)

12.4.4 Idea

• Let G = (V, E) be a graph, γ a vertex attribute, and β = ƒ (γ,G), then

γ ⊥ G =⇒ E [β(γ,G)|G] = E [β(γ,G)]

• This is, if for example time of adoption is independent on the structure of the network,
then the average threshold level will be independent from the network structure as well.

• Another way of looking at this is that the test will allow us to see how probable is to have
this combination of network structure and network threshold (if it is uncommon then we
say that the diffusion model is highly likely)

12.4.4.1 Example Not random TOA

• To use this test, __netdiffuseR__ has the `struct_test` function.

• It simulates networks with the same density, and computes a particular statistic every time, generating an EDF (Empirical Distribution Function) under the Null hypothesis (p-values).

# Simulating network

set.seed(1123)

net <- rdiffnet(n=500, t=10, seed.graph = "small-world")

## Warning in (function (graph, p, algorithm = "endpoints", both.ends = FALSE, :

## The option -copy.first- is set to TRUE. In this case, the first graph will be
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## treated as a baseline, and thus, networks after T=1 will be replaced with T-1.

# Running the test

test <- struct_test(

graph = net,

statistic = function(x) mean(threshold(x), na.rm = TRUE),

R = 1e3,

ncpus=4, parallel="multicore"

)

## Warning in (function (graph, p, algorithm = "endpoints", both.ends = FALSE, :

## The option -copy.first- is set to TRUE. In this case, the first graph will be

## treated as a baseline, and thus, networks after T=1 will be replaced with T-1.

# See the output

test

##

## Structure dependence test

## # Simulations : 1,000

## # nodes : 500

## # of time periods : 10

## --------------------------------------------------------------------------------

## H0: E[beta(Y,G)|G] - E[beta(Y,G)] = 0 (no structure dependency)

## observed expected p.val

## 0.5513 0.2504 0.0000
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• Now we shuffle times of adoption, so that is random

# Resetting TOAs (now will be completely random)

diffnet.toa(net) <- sample(diffnet.toa(net), nnodes(net), TRUE)

# Running the test

test <- struct_test(

graph = net,

statistic = function(x) mean(threshold(x), na.rm = TRUE),

R = 1e3,

ncpus=4, parallel="multicore"

)

## Warning in (function (graph, p, algorithm = "endpoints", both.ends = FALSE, :

## The option -copy.first- is set to TRUE. In this case, the first graph will be

## treated as a baseline, and thus, networks after T=1 will be replaced with T-1.

# See the output

test

##

## Structure dependence test

## # Simulations : 1,000

## # nodes : 500

## # of time periods : 10

## --------------------------------------------------------------------------------

## H0: E[beta(Y,G)|G] - E[beta(Y,G)] = 0 (no structure dependency)

## observed expected p.val

## 0.2714 0.2590 0.4420
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12.4.5 Regression analysis

• In regression analysis, we want to see if exposure, once we control for other covariates
had any effect on the adoption of a behavior.

• In general, the big problem here is when we have a latent variable that co-determines
both network and behavior.

• Unless we can control for such variable, regression analysis will be generically biased.

• On the other hand, if you can claim that either such variable doesn’t exist or you actually
can control for it, then we have two options: lagged exposure models or contemporaneous
exposure models. We will focus on the former.

12.4.5.1 Lagged exposure models

• In this type of model, we usually have the following

yt = ƒ (Wt−1, yt−1, X) + ϵ

Furthermore, in the case of adoption, we have

yt =

(

1 if ρ
∑

j ̸=
Wjt−1yt−1
∑

j ̸=Wjt−1
+ Xtβ > 0

0 otherwise
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• In netdiffuseR is as easy as doing the following:

# fakedata

set.seed(121)

W <- rgraph_ws(1e3, 8, .2)

X <- cbind(var1 = rnorm(1e3))

toa <- sample(c(NA,1:5), 1e3, TRUE)

dn <- new_diffnet(W, toa=toa, vertex.static.attrs = X)

## Warning in new_diffnet(W, toa = toa, vertex.static.attrs = X): -graph- is static

## and will be recycled (see ?new_diffnet).

# Computing exposure and adoption for regression

dn[["cohesive_expo"]] <- cbind(NA, exposure(dn)[,-nslices(dn)])

dn[["adopt"]] <- dn$cumadopt

# Generating the data and running the model

dat <- as.data.frame(dn)

ans <- glm(adopt ~ cohesive_expo + var1 + factor(per),

data = dat,

family = binomial(link="probit"),

subset = is.na(toa) | (per <= toa))

summary(ans)

##

## Call:

## glm(formula = adopt ~ cohesive_expo + var1 + factor(per), family = binomial(link = "probit"),

## data = dat, subset = is.na(toa) | (per <= toa))

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -1.1754 -0.8462 -0.6645 1.2878 1.9523

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -0.92777 0.05840 -15.888 < 2e-16 ***
## cohesive_expo 0.23839 0.17514 1.361 0.173452

## var1 -0.04623 0.02704 -1.710 0.087334 .

## factor(per)3 0.29313 0.07715 3.799 0.000145 ***
## factor(per)4 0.33902 0.09897 3.425 0.000614 ***
## factor(per)5 0.59851 0.12193 4.909 9.18e-07 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 2745.1 on 2317 degrees of freedom

## Residual deviance: 2663.5 on 2312 degrees of freedom

## (1000 observations deleted due to missingness)

## AIC: 2675.5

##

## Number of Fisher Scoring iterations: 4

Alternatively, we could have used the new function diffreg

ans <- diffreg(dn ~ exposure + var1 + factor(per), type = "probit")

summary(ans)

##

## Call:

## glm(formula = Adopt ~ exposure + var1 + factor(per), family = binomial(link = "probit"),

## data = dat, subset = ifelse(is.na(toa), TRUE, toa >= per))

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -1.1754 -0.8462 -0.6645 1.2878 1.9523

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -0.92777 0.05840 -15.888 < 2e-16 ***
## exposure 0.23839 0.17514 1.361 0.173452

## var1 -0.04623 0.02704 -1.710 0.087334 .

## factor(per)3 0.29313 0.07715 3.799 0.000145 ***
## factor(per)4 0.33902 0.09897 3.425 0.000614 ***
## factor(per)5 0.59851 0.12193 4.909 9.18e-07 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 2745.1 on 2317 degrees of freedom

## Residual deviance: 2663.5 on 2312 degrees of freedom

## (1000 observations deleted due to missingness)

## AIC: 2675.5

##

## Number of Fisher Scoring iterations: 4
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12.4.5.2 Contemporaneous exposure models

• Similar to the lagged exposure models, we usually have the following

yt = ƒ (Wt , yt , Xt) + ϵ

Furthermore, in the case of adoption, we have

yt =

(

1 if ρ
∑

j ̸=
Wjtyt
∑

j ̸=Wjt
+ Xtβ > 0

0 otherwise

• Unfortunately, since yt is in both sides of the equation, this models cannot be fitted using
a standard probit or logit regression.

• Two alternatives to solve this:

a. Using Instrumental Variables Probit (ivprobit in both R and Stata)

b. Use a Spatial Autoregressive (SAR) Probit (SpatialProbit and ProbitSpatial in R).

• We won’t cover these here.

12.4.6 Problems

Using the dataset stats.rda:

1. Compute Moran’s I as the function summary.diffnet does. For this you’ll need to
use the function toa_mat (which calculates the cumulative adoption matrix), and
approx_geodesic (which computes the geodesic matrix). (see ?summary.diffnet for
more details).

2. Read the data as diffnet object, and fit the following logit model dopt = Eposre∗ γ +
Mesre∗ β + ϵ. What happens if you exclude the time-fixed effects?

stats.rda
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Chapter 13

Stochastic Actor Oriented Models

Stochastic Actor Oriented Models (SOAM), also known as Siena models were introduced by
CITATION NEEDED.

As a difference from ERGMs, Siena models look at the data generating process from the
individuals’ point of view. Based on McFadden’s ideas of probabilistic choice, the model is
founded in the following equation

U() − U(′) ∼ Extreame Value Distribution

In other words, individuals choose between states  and ′ in a probabilistic way (with some
noise),

exp
¦

ƒZ

(βz, , z)
©

∑

Z′∈C exp
�

ƒZ (β, , z
′)
	

snijders_(sociological methodology 2001)

Ripley et al. (2011)
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Chapter 14

Power calculation in network

studies

In survey and study design, calculating the required sample size is critical. Nowadays, tools and
methods for calculating the required sample size abound; nonetheless, sample size calculation
for studies involving social networks is still underdeveloped. This chapter will illustrate how
we can use computer simulations to estimate the required sample size. Chapter 17 provides a
general overview of power analysis.

14.1 Example 1: Spillover effects in egocentric studies1

Suppose we want to run an intervention over a particular population, and we are interested in
the effects of such intervention on the egos’ alters. In economics, this problem, which they call
the “spillover effect,” is actively studied.

We assume that alters only get exposed if egos acquire the behavior for the power calculation.
Furthermore, for this first run, we will assume that there is no social reinforcement or influence
between alters. We will later relax this assumption. To calculate power, we will do the following:

1. Simulate egos’ behavior following a logit distribution.

2. Randomly drop some egos as a result of attrition.

3. Simulate alters’ behavior using their egos as the treatment.

4. Fit a logistic regression based on the previous model.

5. Accept/reject the null and store the result.

The previous steps will be repeated 500 for each value of n we analyze. We will finalize by
plotting power against sample sizes. Let’s first start by writing down the simulation parameters:

1The original problem was posed by Dr. Shinduk Lee from the School of Nursing at the University of Utah.
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# Design

n_sims <- 500 # Number of simulations

n_a <- 4 # Number of alters

sizes <- # Sizes to try

seq(from = 100, to = 200, by = 25)

# Assumptions

odds_h_1 <- 2.0 # Odds of Increase/

attrition <- .3

baseline <- .2 # Low prevalence in 1s

# Parameters

alpha <- .05

beta_pow <- 0.2

As we discuss in 17, it is always a good idea to encapsulate the simulation into a function:

# The odds turned to a prob

theta_h_1 <- plogis(log(odds_h_1))

# Simulation function

sim_data <- function(n) {

# Treatment assignment

tr <- c(rep(1, n/2), rep(0, n/2))

# Step 1: Sampling population of egos

y_ego <- runif(n) < c(

rep(theta_h_1, n/2),

rep(0.5, n/2)

)

# Step 2: Simulating attrition

todrop <- order(runif(n))[1:(n * attrition)]

y_ego <- y_ego[-todrop]

tr <- tr[-todrop]

n <- n - length(todrop)

# Step 3: Simulating alter's effect. We assume the same as in

# ego

tr_alter <- rep(y_ego * tr, n_a)

y_alter <- runif(n * n_a) < ifelse(tr_alter, theta_h_1, 0.5)

# Step 4: Computing test statistic
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res_ego <- tryCatch(glm(y_ego ~ tr, family = binomial("logit")), error = function(e) e)

res_alter <- tryCatch(glm(y_alter ~ tr_alter, family = binomial("logit")), error = function(e) e)

if (inherits(res_ego, "error") | inherits(res_alter, "error"))

return(c(ego = NA, alter = NA))

# Step 5: Reject?

c(

ego = summary(res_ego)$coefficients["tr", "Pr(>|z|)"] < alpha,

alter = summary(res_alter)$coefficients["tr_alter", "Pr(>|z|)"] < alpha

)

}

Now that we have the data generating function, we can run the simulations to approximate
statistical power given the sample size. The results will be stored in the matrix spower. Since
we are simulating data, it is crucial to set the seed so we can reproduce the results.

# We always set the seed

set.seed(88)

# Making space, and running!

spower <- NULL

for (s in sizes) {

# Run the simulation for size s

simres <- rowMeans(replicate(n_sims, sim_data(s)), na.rm = TRUE)

# And store the results

spower <- rbind(spower, simres)

}

The following figure shows the approximate power for finding effects at both levels, ego and
alter:

library(ggplot2)

spower <- rbind(

data.frame(size = sizes, power = spower[,"ego"], type = "ego"),

data.frame(size = sizes, power = spower[,"alter"], type = "alter")

)

spower |>
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ggplot(aes(x = size, y = power, colour = type)) +

geom_point() +

geom_smooth(method = "loess", formula = y ~ x) +

labs(x = "Number of Egos", y = "Approx. Power", colour = "Node type") +

geom_hline(yintercept = 1 - beta_pow)

0.4

0.6

0.8

1.0

100 125 150 175 200
Number of Egos

A
pp

ro
x.

 P
ow

er

Node type

alter

ego

As shown in Chapter 17, we can use a linear regression model to predict sample size as a
function of statistical power:

# Fitting the model

power_model <- glm(

size ~ power + I(powerˆ2),

data = spower, family = gaussian(), subset = type == "alter"

)

summary(power_model)

##

## Call:

## glm(formula = size ~ power + I(power^2), family = gaussian(),

## data = spower, subset = type == "alter")

##



14.2. EXAMPLE 2: SPILLOVER EFFECTS PRE-POST EFFECT 153

## Deviance Residuals:

## 6 7 8 9 10

## 0.2658 -11.2195 10.5568 -13.8852 14.2821

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 1460 1342 1.088 0.390

## power -3532 3124 -1.131 0.376

## I(power^2) 2293 1805 1.270 0.332

##

## (Dispersion parameter for gaussian family taken to be 317.0856)

##

## Null deviance: 6250.00 on 4 degrees of freedom

## Residual deviance: 634.17 on 2 degrees of freedom

## AIC: 46.404

##

## Number of Fisher Scoring iterations: 2

# Predict

predict(power_model, newdata = data.frame(power = .8), type = "response") |>

ceiling()

## 1

## 102

From the figure, it becomes apparent that, although there is not enough power to identify
effects at the ego level, because each ego brings in five alters, the alter sample size is high
enough that we can reach above 0.8 statistical power with relatively small sample size.

14.2 Example 2: Spillover effects pre-post effect

Now the dynamics are different. Instead of having a treated and control group, we have a
single group over which we will measure behavioral change. We will simulate individuals in
their initial state, still 0/1, and then simulate that the intervention will make them more likely
to have y = 1. We will also assume that subjects generally don’t change their behavior and that
the baseline prevalence of zeros is higher. The simulation steps are as follows:

1. For each individual in the population, draw the underlying probability that y = 1. With that
probability, assign the value of y. This applies to both ego and alter.

2. Randomly drop some egos, and their corresponding alters due to attrition.

3. Simulate alters’ behavior using their egos as the treatment. Both ego and alter’s underlying
probability are increased by the chosen odds.

4. To control for the underlying probability that an individual has y = 1, we use conditional
logistic regression (also known as matched case-control logit,) to estimate the treatment
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effects.

5. Accept/reject the null and store the result.

beta_pars <- c(4, 6)

odds_h_1 <- 2.0

# Simulation function

library(survival)

sim_data_prepost <- function(n) {

# Step 1: Sampling population of egos

y_ego_star <- rbeta(n, beta_pars[1], beta_pars[2])

y_ego_0 <- runif(n) < y_ego_star

# Step 2: Simulating attrition

todrop <- order(runif(n))[1:(n * attrition)]

y_ego_0 <- y_ego_0[-todrop]

n <- n - length(todrop)

y_ego_star <- y_ego_star[-todrop]

# Step 3: Simulating alter's effect. We assume the same as in

# ego

y_alter_star <- rbeta(n * n_a, beta_pars[1], beta_pars[2])

y_alter_0 <- runif(n * n_a) < y_alter_star

# Simulating post

y_ego_1 <- runif(n) < plogis(qlogis(y_ego_star) + log(odds_h_1))

tr_alter <- as.integer(rep(y_ego_1, n_a))

y_alter_1 <- runif(n * n_a) < plogis(qlogis(y_alter_star) + log(odds_h_1) * tr_alter) # So only if ego did something

# Step 4: Computing test statistic

y_ego_0 <- as.integer(y_ego_0)

y_ego_1 <- as.integer(y_ego_1)

y_alter_0 <- as.integer(y_alter_0)

y_alter_1 <- as.integer(y_alter_1)

d <- data.frame(

y = c(y_ego_0, y_ego_1),

tr = c(rep(0, n), rep(1, n)),

g = c(1:n, 1:n)

)

res_ego <- tryCatch(
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clogit(y ~ tr + strata(g), data = d, method = "exact"),

error = function(e) e

)

d <- data.frame(

y = c(y_alter_0, y_alter_1),

tr = c(rep(0, n * n_a), tr_alter),

g = c(1:(n * n_a), 1:(n * n_a))

)

res_alter <- tryCatch(

clogit(y ~ tr + strata(g), data = d, method = "exact"),

error = function(e) e

)

if (inherits(res_ego, "error") | inherits(res_alter, "error"))

return(c(ego = NA, alter = NA))

# Step 5: Reject?

c(

# ego = res_ego$p.value < alpha,

ego = summary(res_ego)$coefficients["tr", "Pr(>|z|)"] < alpha,

alter = summary(res_alter)$coefficients["tr", "Pr(>|z|)"] < alpha,

ego_test = coef(res_ego),

alter_glm = coef(res_alter)

)

}

# We always set the seed

set.seed(88)

# Making space and running!

spower <- NULL

for (s in sizes) {

# Run the simulation for size s

simres <- rowMeans(

replicate(n_sims, sim_data_prepost(s)),

na.rm = TRUE

)
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# And store the results

spower <- rbind(spower, simres)

}

library(ggplot2)

spowerd <- rbind(

data.frame(size = sizes, power = spower[,"ego"], type = "ego"),

data.frame(size = sizes, power = spower[,"alter"], type = "alter")

)

spowerd |>

ggplot(aes(x = size, y = power, colour = type)) +

geom_point() +

geom_smooth(method = "loess", formula = y ~ x) +

labs(x = "Number of Egos", y = "Approx. Power", colour = "Node type") +

geom_hline(yintercept = 1 - beta_pow)
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As shown in Chapter 17, we can use a linear regression model to predict sample size as a
function of statistical power:
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# Fitting the model

power_model <- glm(

size ~ power + I(powerˆ2),

data = spowerd, family = gaussian(), subset = type == "alter"

)

summary(power_model)

##

## Call:

## glm(formula = size ~ power + I(power^2), family = gaussian(),

## data = spowerd, subset = type == "alter")

##

## Deviance Residuals:

## 6 7 8 9 10

## -0.8182 1.7278 0.9180 -7.9188 6.0912

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 611.4 666.3 0.918 0.456

## power -1553.8 1504.7 -1.033 0.410

## I(power^2) 1147.9 844.8 1.359 0.307

##

## (Dispersion parameter for gaussian family taken to be 52.1536)

##

## Null deviance: 6250.00 on 4 degrees of freedom

## Residual deviance: 104.31 on 2 degrees of freedom

## AIC: 37.379

##

## Number of Fisher Scoring iterations: 2

# Predict

predict(power_model, newdata = data.frame(power = .8), type = "response") |>

ceiling()

## 1

## 104

14.3 Example 3: First difference

Now, instead of looking at a dichotomous outcome, let’s evaluate what happens if the variable
is continuous. The effects we are interested to identify are the ego and alter effect, γego and
γter , respectively. Furthermore, the data generating process is
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ytg = α + κg + Xβ + ϵtg

ytg = α + κg + Xβ + D
ego
 γego + Dter


γter + ϵtg

Where D
ego/ter
 is an indicator variable. Here, ego and alter behavior are correlated through a

fixed effect. In other words, within each group, we are assuming that there’s a shared baseline
prevalence of the outcome. The main difference is that ego and alter may have different
results regarding the effect size of the treatment. Another way of approaching the group-level
correlation could be through an autocorrelation process, like in a spatial Autocorrelated model;
nonetheless, estimating such models is computationally expensive, so we opted to use the
former.

For simplicity, we assume that there is no time effect. Two essential components here, α and
κg are individual and group-level unobserved fixed effects. The most straightforward approach
here is to use a first difference estimator:

(yt+1g − ytg) = D
ego
 γego + Dter


γter + ϵ′


, ϵ′


= ϵt+1g − ϵtg

By taking the first difference, the fixed effects are removed from the equation, and we can
proceed with a regular linear model.

effect_size_ego <- 0.5

effect_size_alter <- 0.25

sizes <- seq(10, 100, by = 10)

# Simulation function

sim_data_prepost <- function(n) {

# Applying attrition

n <- floor(n * (1 - attrition))

# Step 1: Sampling fixed effects

alpha_i <- rnorm(n * (n_a + 1))

kappa_g <- rep(rnorm(n_a + 1), n)

# Step 2: Generating the outcome at t = 1

is_ego <- rep(c(1, rep(0, n_a)), n)

is_alter <- 1 - is_ego

y_0 <- alpha_i + kappa_g + rnorm(n * (n_a + 1))

y_1 <- alpha_i + kappa_g +

is_ego * effect_size_ego +

is_alter * effect_size_alter +

rnorm(n * (n_a + 1))
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# Step 4: Computing test statistic

res <- tryCatch(

glm(I(y_1 - y_0) ~ -1 + is_ego + is_alter, family = gaussian("identity")),

error = function(e) e

)

if (inherits(res, "error"))

return(c(ego = NA, alter = NA))

# Step 5: Reject?

c(

# ego = res_ego$p.value < alpha,

ego = summary(res)$coefficients["is_ego", "Pr(>|t|)"] < alpha,

alter = summary(res)$coefficients["is_alter", "Pr(>|t|)"] < alpha,

coef(res)[1],

coef(res)[2]

)

}

# We always set the seed

set.seed(88)

# Making space and running!

spower <- NULL

for (s in sizes) {

# Run the simulation for size s

simres <- rowMeans(

replicate(n_sims, sim_data_prepost(s)),

na.rm = TRUE

)

# And store the results

spower <- rbind(spower, simres)

}

library(ggplot2)

spowerd <- rbind(

data.frame(size = sizes, power = spower[,"ego"], type = "ego"),
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data.frame(size = sizes, power = spower[,"alter"], type = "alter")

)

spowerd |>

ggplot(aes(x = size, y = power, colour = type)) +

geom_point() +

geom_smooth(method = "loess", formula = y ~ x) +

labs(x = "Number of Egos", y = "Approx. Power", colour = "Node type") +

geom_hline(yintercept = 1 - beta_pow) +

labs(

caption = sprintf(

"Ego effect: %.2f; Alter effect: %.2f", effect_size_ego, effect_size_alter)

)
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Ego effect: 0.50; Alter effect: 0.25

From the inferential point of view, we could still use a demean operator to estimate individual-
level effects. In particular, we would require to use the demean operator at the group level and
then fit a fixed effect model to estimate individual-level parameters.
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Statistical Foundations
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Chapter 15

Bayes’ Rule

Bayes’ Rule is a fundamental equation in Bayesian statistics. With it, we can reformulate
inferential problems by writing probabilities in terms of known quantities. Bayes’ rule can be
stated as follows:

P(X = |Y = y) =
P(Y = y|X = y)P(X = )

P(Y = y)
(15.1)

Here we say that the conditional probability of X given Y can be expressed in terms of the
conditional probability of Y given X. For example, let X be an unknown vector of parameters
θ ∈ Θ and Y a dataset D ∼ ƒ (θ) whose data generating process depends on the unobserved θ.
As the posterior distribution of model parameters is in general elusive, instead, we use Bayes’
rule to rephrase the problem:

P(θ|D) =
P(θ|D)P(θ)

P(D)

Since the denominator of the equation does not depend on θ, we can, instead, write

P(θ|D) ∝ P(θ|D)P(θ)

In the Bayesian world, the unconditional distribution of the model parameters is assumed
to come from a particular distribution, whereas in the frequentist world, no distributional
assumptions are made about the model parameters. The latter is then equivalent to saying
that θ ∼ Uniform(−∞,+∞); therefore, even frequentists assume something about the model
parameters!1

Bayes’ rule can be derived using conditional probabilities. In particular, P( = |Y = y) is defined
as P( = , Y = y)/Pr(Y = y). Likewise, P(y = y|X = ) is defined as P(y = y, X = )/Pr(X = ),

1The discussion about differences and similarities between frequentists and Bayesians has a long tradition. Bottom
line, no one can say 100% that they are either-or. In rigor, frequentists say model parameters are not random but
deterministic.
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which can be re-written as P( = , Y = y) = P(y = y|X = )Pr(X = ). Replacing the last equality
in the first equation we get

P( = |Y = y) =
P( = , Y = y)

Pr(Y = y)
P(y = y|X = )Pr(X = )

Pr(Y = y)



Chapter 16

Markov Chain

A Markov Chain is a sequence of random variables in which the conditional distribution of the
n-th element only depends on n − 1.

16.1 Metropolis Algorithm

In the Metropolis Algorithm, or Metropolis MCMC, builds a Markov Chain that under certain
conditions converges to the target distribution. The key of the Algorithm is in accepting a
proposed move from θ to θ′ with probability equal to:

r =min
�

1,
P(θ′|D)

P(θ|D)

�

(16.1)

The resulting sequence converges to the target distribution. We can prove convergence by
showing that (a) the sequence is ergodic, and (b) the posterior distribution matches the target
distribution. Ergodicity describes three propoerties of a chain:

• Irreducibility: There is no zero probability of transitioning between any pair of states.

• Aperiodicity: As the term suggests, the chain has no repetitive periods/sequences.

• Non-transient: Transient refers to a chain having non-zero probability of never returning to
a starting state.

The three properties are reached by any random walk based on a well-defined probability
distribution, so we will focus on showing that the posterior matches the target distribution.

16.2 Metropolis-Hastings

min
�

1,
P(d|θ′)P(θ′)P(θ′|θ)

P(d|θ)P(θ)P(θ|θ′)

�
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If the transittion probability is symmetric, then the previous equation reduces to the Metropolis
probability.

16.3 Likelihood-free MCMC

1. Initialize the algorithm with θ0, θ∗ = θ0–the current accepted state,–and observed sum-
mary statistic s0 = S(Dobsered):

2. For t = 1 to T do:

a. Draw θt from the proposal distribution J(θt |θ∗)

b. Draw a simulated data Dt from model M(θt)

c. Calculate the summary statistics st = S(Dt)

d. Accept the proposed state with probability

If accepted, set θ∗ = θt.

e. Next t



Chapter 17

Power and sample size

Computing power and sample size are common tasks in study design. This chapter will walk
you through power analysis for network studies. First, we will start with some preliminaries
regarding error types and statistical power.

17.1 Error types

One of the most important tables we’ll see around is the contingency table of accept/reject the
null hypothesis conditional on the true state:

Accept H0 Reject H0

H0 is true True positive False negative

H1 is true False positive True negative

A better way, more statistically accurate version of this table would be

Accept H0 Reject H0

H0 is true Correct inference Type I error

H1 is true Type II error Correct Inference

With P(Type I error) = α and P(Type II error) = β. This way, power can be defined as the
probability of rejecting the null given the alternative is true, P(Reject H0|H1 is true) = 1 − β.

17.2 Example 1: Sample size for a proportion

Let’s imagine we are preparing a study in which we would like to estimate the proportion of
individuals with a given status. Formally, we then say that the variable Y ∼ Bernoulli(p). To
do so, we will need to survey n individuals and estimate such a number by taking the sample
average. Furthermore, we hypothesize that under the null the proportion is H0 : p = p0.

The key here is to think about a simple rejection rule. Again, power is the probability of
rejecting the null given that the alternative is true. So, to write down the equation, we
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need to think about acceptance and rejection regions. Let p̂ be our estimate for the population
parameter, furthermore, p̂ = n−1

∑

 y. Our test statistic can be–and will be, most of the
cases–standardized to leverage the law of large numbers; under the null, we write the following:

E(p̂) = p0

Vr(p̂) =
Æ

p0(1 − p0)/n

Therefore, the statistic:

p̂ − p0
p

p0(1 − p0)/n
=

p
n(p̂ − p0)
p

p0(1 − p0)
∼ N(0,1)

Since the statistic is normally distributed, we can then say when we will reject the null. For this
case, that depends on the critical value, which most of the time is defined in terms of the type I
error rate. Formally, we reject the null if

p
n(p̂ − p0)
p

p0(1 − p0)
> Z1−α/2

This is equivalent to saying that the test statistic fell into the rejection region. With this in
hand, we can now write out the equation that we will be using for calculating the sample size.
Going back to the definition of power:

P(Reject H0|H1 is true) = 1 − β

P

� p
n(p̂ − p0)
p

p0(1 − p0)
> Z1−α/2

�

�

�

�

p = p1

�

= 1 − β

Observe that we cannot compute the power for all p ̸= p0; instead, we look at a given parameter
value. A good idea is to start from one previously known or identified in other studies. The key
idea here is to be able to manipulate the argument of the probability to turn it into a known
distribution, for example, the normal distribution:

For a given Type I of 0.05 and power of 0.8, the required sample size can be computed as
follows:

1 − β = P
� p

n(p̂ − p0)
p

p0(1 − p0)
> Z1−α/2

�

�

�

�

p = p1

�

= P

� p
n(p̂ − p0)
p

p0(1 − p0)
< Zα/2

�

�

�

�

p = p1

�
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= P

� p
n(p̂ − p0)
p

p1(1 − p1)
<

Zα/2
p

p0(1 − p0)
p

p1(1 − p1)

�

�

�

�

p = p1

�

= P

�p
n(p̂ − p0 + p0 − p1)
p

p1(1 − p1)
<

Zα/2
p

p0(1 − p0) +
p
n(p0 − p1)

p

p1(1 − p1)

�

�

�

�

p = p1

�

= P

� p
n(p̂ − p1)
p

p1(1 − p1)
<

Zα/2
p

p0(1 − p0) +
p
n(p0 − p1)

p

p1(1 − p1)

�

�

�

�

p = p1

�

= 

�

Zα/2
p

p0(1 − p0) +
p
n(p0 − p1)

p

p1(1 − p1)

�

�

�

�

p = p1

�

The last equality follows from the quantity
p
n(p̂−p1)p
p1(1−p1)

distributing standard normal. We can now

take the inverse of the cumulative distribution function (cdf) to isolate the sample size n:

−1(1 − β) =
Zα/2
p

p0(1 − p0) +
p
n(p0 − p1)

p

p1(1 − p1)

Z1−β
Æ

p1(1 − p1) = Zα/2
Æ

p0(1 − p0) +
p
n(p0 − p1)

�

Z1−β
p

p1(1 − p1) − Zα/2
p

p0(1 − p0)
�2

(p0 − p1)2
= n

Therefore, for the parameters (1 − β,α, p0, p1) = (0.8,0.05,0.5,0.6), the required sample size
is 193.8473 ∼ 194.

17.3 Example 2: Sample size for a proportion (vis)

Now, what happens if the model we are planning to estimate does not have a close form? If
analytical solutions are not available, simulations can be an excellent alternative to save the
day. Let’s re-do the sample size calculation using simulations.

The procedure to compute sample size based on simulations is computationally intensive. The
concept is straightforward, pick a set of best guesses for sample size, and for each one of them,
simulate the system to estimate power. Now, for a given value of n, we:

1. Simulate a sample of size n under the alternative.

2. Compute the test statistic corresponding to the null.

3. Accept or reject accordingly to the selected α, and store the result.

4. Repeat steps 1-3 many times. The obtained average is the corresponding power.

When running simulations, it is convenient to write a function for the data generating process.
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In our case, the function will be called sim_fun. The following lines of code achieve our goal:
approximate power by simulating 10,000 experiments for each sample size candidate:

# Model parameters

p0 <- .5

p1 <- .6

betapower <- 1 - 0.8

alpha <- 0.05

nsims <- 10000

# Step 1: Simulate the data under H1

z_one_minus_alpha_half <- qnorm(1 - alpha / 2)

sim_fun <- function(n) {

# Generating the data

y <- as.integer(runif(n) < p1)

phat <- mean(y)

# Accept or reject?

sqrt(n) * (phat - p0) / sqrt(p0 * (1 - p0)) >

z_one_minus_alpha_half

}

# Step 2: For an array of n, simulate multiple experiments

n_seq <- seq(from = 150, to = 250, by = 10)

simulations <- NULL

set.seed(12312)

for (n in n_seq) {

# Run the nsims experiments

res <- replicate(nsims, sim_fun(n))

# Compute power and store the value

simulations <- rbind(

simulations,

data.frame(size = n, power = mean(res))

)

}

# Finding out what is the closets value

best <- which.min(

abs((1 - betapower) - simulations$power)
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)

simulations[best,,drop=FALSE]

## size power

## 5 190 0.7952

Let’s visualize the power curve we generate from this simulation:

library(ggplot2)

ggplot(simulations, aes(x = size, y = power)) +

geom_point() +

geom_smooth() +

geom_hline(yintercept = 1 - betapower)

## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
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Alternatively, we can fit a linear regression model where we predict power as a function of
sample size using linear and quadratic effects:

n = θ0 + θ1(1 − β) + θ2(1 − β)2
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# Fitting the model

power_model <- glm(

size ~ power + I(powerˆ2),

data = simulations, family = gaussian()

)

# Printing the results

summary(power_model)

##

## Call:

## glm(formula = size ~ power + I(power^2), family = gaussian(),

## data = simulations)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -7.7850 -3.7716 -0.5132 3.3510 8.0064

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 632.5 232.9 2.715 0.02644 *
## power -1590.3 598.1 -2.659 0.02885 *
## I(power^2) 1301.0 381.6 3.410 0.00923 **
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for gaussian family taken to be 34.83159)

##

## Null deviance: 11000.00 on 10 degrees of freedom

## Residual deviance: 278.65 on 8 degrees of freedom

## AIC: 74.769

##

## Number of Fisher Scoring iterations: 2

# Predict

predict(power_model, newdata = data.frame(power = .8), type = "response") |>

ceiling()

## 1

## 193

According to our simulation study, the closest to our 80% power is using a sample size equal to
193, which is very close to the analytical solution of 194.

As a final comment for this example, remember that the more simulations the better.



Appendix A

Datasets

A.1 SNS data

A.1.1 About the data

• This data is part of the NIH Challenge grant # RC 1RC1AA019239 “Social Networks and
Networking That Puts Adolescents at High Risk”.

• In general terms, the SNS’s goal was(is) “Understand the network effects on risk behaviors
such as smoking initiation and substance use”.

A.1.2 Variables

The data has a wide structure, which means that there is one row per individual, and that
dynamic attributes are represented as one column per time.

• photoid Photo id at the school level (can be repeated across schools).

• school School id.

• hispanic Indicator variable that equals 1 if the indivual ever reported himself as hispanic.

• female1, . . . , female4 Indicator variable that equals 1 if the individual reported to be
female at the particular wave.

• grades1,. . . , grades4 Academic grades by wave. Values from 1 to 5, with 5 been the best.

• eversmk1, . . . , eversmk4 Indicator variable of ever smoking by wave. A one indicated that
the individual had smoked at the time of the survey.

• everdrk1, . . . , everdrk4 Indicator variable of ever drinking by wave. A one indicated that
the individual had drink at the time of the survey.

• home1, . . . , home4 Factor variable for home status by wave. A one indicates home owner-
ship, a 2 rent, and a 3 a “I don’t know”.
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During the survey, participants were asked to name up to 19 of their school friends:

• sch_friend11, . . . , sch_friend119 School friends nominations (19 in total) for wave 1.
The codes are mapped to the variable photoid.

• sch_friend21, . . . , sch_friend219 School friends nominations (19 in total) for wave 2.
The codes are mapped to the variable photoid.

• sch_friend31, . . . , sch_friend319 School friends nominations (19 in total) for wave 3.
The codes are mapped to the variable photoid.

• sch_friend41, . . . , sch_friend419 School friends nominations (19 in total) for wave 4.
The codes are mapped to the variable photoid.
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