Bayesian networks with R
Bojan Mihaljevic
November 22-23, 2018

Contents

Introduction
OVEIVIEW . . . o o e
Bayesian networks in R oL oo

Get code and data
bnlearn Bayesian network models
The earthquake network

Representation
Compact representation L e e e
Independence L
Conditional independence (d-separation) L Lo
Markov blanket oL
Equivalence classes L e e e e

Reasoning
Probability queries with no evidence e
Reasoning patterns: Causal, evidential and intercausal
Maximum a posteriori (MAP) queries e

Inference
The Asia network L e
Conditional probability queries
Junction tree message passingo e
Logic sampling L e e
Likelihood weighting
The marks data set e
Gaussian networks L. e e e

Learning from data
Breast cancer data L e
Score + search algorithms e
Constraint-based structure learning oL
Mixed data e
Latent variables e e e
Parameter estimation L e

Classification
The car data set e
Naive Bayes o e e e
Irrelevant features L e e
Correlated features L
One-dependence augmented naive Bayes oo oL
Comparing classifiers L e

11

12
12
12
12
12
13

14
15
16
19

20
21
22
22
24
26
27
27

30
30
31
35
37
38
40

Wrapper structure learning 51

Markov blanket 55
The ALARM network 56
Inspect the network L L 57
Recover network structureo 57
Improve learning L 57
Inference L e e e e e 58
Final notes 58
Some useful functions 58
Books . ..o 59
Other Bayesian networks software 59
Introduction
Overview

o Representation, reasoning, inference, learning, classifiers
o Datasets/networks: earthquake, asia, marks, breast cancer, car, alarm
e Mainly discrete variables, also Gaussian

Bayesian networks in R

e bnlearn:
— constraint-based and score + search learning, approximate inference
— utilities: moralize, make random dag
— efficient
o gRain:
— exact inference
— not very efficient
e gRbase
— graph utilities: moralize, make random dag
— largely replaced by bnlearn
e bnclassify: classifiers
e others: pcalg, ggm
o graphical models task view: https://cran.r-project.org/web/views/gR.html

Get code and data

#install.packages ("usethis")
usethis: :use_course("https://goo.gl/x9rdpD")
usethts: :use_course("https://github.com/bmihal jevic/intro-bns/raw/master/intro-bns.zip")

bnlearn Bayesian network models

We start a clean R session and load the bnlearn package

https://cran.r-project.org/web/views/gR.html

library(bnlearn)

##
Attaching package: 'bnlearn'

The following object is masked from 'package:stats':

#i#t
sigma
?bnlearn

bnlearn provides two S3 classes for Bayesian networks:

e "bn": the underlying DAG
e "bn.fit": a fully specified network with parameters

A compact way to specify a "bn" is the model string:

bl.alarm <- model2network('[Burglar] [Earthquake] [Alarm|Burglar:Earthquake] [News|Earthquake] [Watson|Alar
plot(bl.alarm)

We can add, remove or reverse arcs, with the acyclic constraint enforced:

modified.alarm <- drop.arc(bl.alarm, "Earthquake", "News")
modified.alarm <- reverse.arc(modified.alarm , "Alarm", "Burglar")
modified.alarm <- set.arc(modified.alarm, "Earthquake", "Burglar")

plot(modified.alarm)

modified.alarm <- set.arc(modified.alarm, "Watson", "Earthquake")

Error in arc.operations(x = x, from = from, to = to, op = "set", check.cycles = check.cycles, : the :

Printing the object to console provides basics information:

bl.alarm

#i#

Random/Generated Bayesian network
##

model:

#Hit [Burglar] [Earthquake] [Alarm|Burglar:Earthquake] [News|Earthquake]
#Hit [Watson|Alarm]

nodes: 5

arcs: 4

undirected arcs: 0

#i#t directed arcs: 4

average markov blanket size: 2.00
average neighbourhood size: 1.60
average branching factor: 0.80
##

generation algorithm: Empty

When the network is too large for plotting, the model string can be useful. We can also ask about the nodes
close to a particular node:

nbr(bl.alarm, node = 'Alarm')

[1] "Burglar" "Earthquake" "Watson"
parents(bl.alarm, node = 'Alarm')

[1] "Burglar" "Earthquake"
children(bl.alarm, node = 'Alarm')

[1] "Watson"

mb(bl.alarm, node = 'Alarm')

[1] "Burglar" "Earthquake" "Watson"

We can somewhat customize the network plot directly

plot(bl.alarm, highlight = list(nodes='Alarm'))

Or use Rgraphviz for more advanced options:

hlight <- list(nodes = c("Earthquake"), arcs = c("Earthquake", "News"), col = "blue", textCol = "grey")
pp <- graphviz.plot(bl.alarm, highlight = hlight)
Rgraphviz: :renderGraph (pp)

Burglar

“

We can list all arcs or ask for a path between a pair of nodes:
arcs(bl.alarm)
from to

[1,] "Burglar" "Alarm"
[2,] "Earthquake" "Alarm"

[3,]
[4,]

"Earthquake" "News"
"Alarm" "Watson"

path(bl.alarm, from "Burglar", to = "Watson")

[1] TRUE

path(bl.alarm, from = "Watson", to = "Burglar")

[1] FALSE
We can check for d-separation or obtain the CPDAG:
'News"')

dsep(bl.alarm, 'Watson',

[1] FALSE

dsep(bl.alarm, 'Watson', 'News', 'Alarm')

[1] TRUE
plot(cpdag(bl.alarm))

Passing a list of local distributions to custom.fit() produces a "bn.fit". With discrete variables, we can

specify a CPT for each node:

yn <- c("yes","no"

B <- array(dimnames = list(Burglar = yn), dim

E <- array(dimnames = list(Earthquake = yn), d

A <- array(dimnames = list(Alarm = yn, Earthqu
c(0.95,0.05,0.90,0.10,0.60,0.40,0.0

W <- array(dimnames = list(Watson = yn, Alarm

N <- array(dimnames = list(News = yn, Earthqua

cpts <- list(Burglar = B, Earthquake = E, Alarm

bl.alarm.fit = custom.fit(bl.alarm, cpts)

bl.alarm.fit$Earthquake

##

Parameters of node Earthquake (multinomial

##

Conditional probability table:

Earthquake

yes no

2, ¢(0.30,0.70))

im = 2, ¢(0.35,0.65))

ake = yn, Burglar = yn), dim = c(2, 2, 2),
1,0.99))

= yn), dim = c(2, 2), <(0.80,0.20,0.40,0.60))

ke = yn), dim = c(2, 2), c(0.60,0.40,0.01,0.99))
A, Watson = W, News = N)

distribution)

0.35 0.65
bn.fit.barchart(bl.alarm.fit$Earthquake)

Loading required namespace: lattice

Conditional Probabilities

no

Levels

yes

I
0.2 0.4 0.6

0.0
Probabilities

bn.fit.barchart(bl.alarm.fit$News)

Conditional Probabilities

00 02 04 06 08 1.0
]]]]]]]]]]]]
yes no

no

Levels

yes

I I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

Probabilities
One can load a Bayesian network model from bnlearn’s repository:

http://www.bnlearn.com/bnrepository/
load(url("http://www.bnlearn.com/bnrepository/sachs/sachs.rda"))

sachs.fit <- bn; rm(bn)
plot(sachs.fit)

Error in xy.coords(x, y, xlabel, ylabel, log): 'x' is a list, but does not have components 'x' and '

plot(bn.net(sachs.fit))

http://www.bnlearn.com/bnrepository/

bn.net(sachs.fit)

#it

Random/Generated Bayesian network
#i#

model:

[PKC] [Plcg] [PIP3|P1lcg] [PKA|PKC] [Jnk|PKA:PKC] [P38|PKA:PKC]
[PIP2|PIP3:Plcg] [Raf |PKA:PKC] [Mek|PKA:PKC:Raf] [Erk|Mek:PKA] [Akt |Erk:PKA]

nodes: 11

arcs: 17

#it undirected arcs: 0

directed arcs: 17

average markov blanket size: 3.09
average neighbourhood size: 3.09
average branching factor: 1.55
##

generation algorithm: Empty

A Gaussian variable is given by a linear regression. The mean is a function of the parents. Consider the
marks network:

marks.dag = model2network(" [ALG] [ANL|ALG] [MECH|ALG:VECT] [STAT|ALG:ANL] [VECT|ALG]")
plot(marks.dag)

ALG STAT

Specify the regression coefficients and the standard deviation of the residuals:

ALG.dist = list(coef = c("(Intercept)" = 50.60), sd = 10.62)

ANL.dist = list(coef = c("(Intercept)" = -3.57, ALG = 0.99), sd = 10.5)

MECH.dist = list(coef c("(Intercept)" = -12.36, ALG = 0.54, VECT = 0.46), sd = 13.97)
STAT.dist list(coef c("(Intercept)" -11.19, ALG = 0.76, ANL = 0.31), sd = 12.61)
VECT.dist = list(coef = c("(Intercept)" = 12.41, ALG = 0.75), sd = 10.48)

ldist = 1list(ALG = ALG.dist, ANL = ANL.dist, MECH = MECH.dist,

STAT = STAT.dist, VECT = VECT.dist)

marks.fit = custom.fit(marks.dag, ldist)

marks.fit[c("MECH", "STAT")]

$MECH

##

Parameters of node MECH (Gaussian distribution)
##

Conditional density: MECH | ALG + VECT
Coefficients:

(Intercept) ALG VECT

-12.36 0.54 0.46

Standard deviation of the residuals: 13.97

##

$STAT

##

Parameters of node STAT (Gaussian distribution)
##

Conditional density: STAT | ALG + ANL

Coefficients:

(Intercept) ALG ANL

-11.19 0.76 0.31

Standard deviation of the residuals: 12.61

For conditional linear Gaussian models, consider the rats network, with a discrete variable DRUG and SEX and
real-valued WL1 and WL2 (weight loss in week one and week two):

rats.dag = model2network(" [SEX] [DRUG|SEX] [WL1|DRUG] [WL2|WL1:DRUG]")
plot(rats.dag)

DRUG WL1

For real-valued variables, we have a conditional regression for each combination of discrete parents. For the
discrete, we have CPTs.

SEX.1lv = c("M", "F")

DRUG.1lv = c("D1", "D2", "D3")

SEX.prob = array(c(0.5, 0.5), dim = 2, dimnames = list(SEX = SEX.1lv))
DRUG.prob = array(c(0.3333, 0.3333, 0.3333, 0.3333, 0.3333, 0.3333),

dim = ¢(3, 2), dimnames = 1list(DRUG = DRUG.lv, SEX = SEX.1lv))

WL1.coef = matrix(c(7, 7.50, 14.75), nrow = 1, ncol = 3,

dimnames = 1list("(Intercept)", NULL))

WL1.dist = list(coef = WL1.coef, sd = c(1.58, 0.447, 3.31))

WL2.coef = matrix(c(1.02, 0.89, -1.68, 1.35, -1.83, 0.82), nrow = 2, ncol = 3,
dimnames = list(c("(Intercept)", "WL1")))

WL2.dist list(coef = WL2.coef, sd = c(1.78, 2, 1.37))

ldist = 1ist(SEX = SEX.prob, DRUG = DRUG.prob, WL1 = WL1.dist, WL2 = WL2.dist)
rats.fit = custom.fit(rats.dag, ldist)

10

A column corresponds to a configuration of the discrete parents and a row to one of the continuous parents.
rats.fit$WL2

##

Parameters of node WL2 (conditional Gaussian distribution)
#i#

Conditional density: WL2 | DRUG + WL1

Coefficients:

0 1 2

(Intercept) 1.02 -1.68 -1.83

WL1 0.89 1.35 0.82

Standard deviation of the residuals:
0 1 2

1.78 2.00 1.37
Discrete parents' configurations:

DRUG
0 D1
1 D2
2 D3

The earthquake network

Mr. Holmes is working in his office when he receives a phone call (W) from his neighbor, who tells
him that Holmes’ burglar alarm (A) has gone off. Convinced that a burglar has broken into his
house (B), Holmes rushes to his car and heads for home. On his way, he listens to t he radio, and
in the news it is reported (N) that there has been a small earthquake (E) in the area. Knowing
that earthquakes have a tendency to turn on burglar alarms, he returns to work.

Burglar Earthquake

Load some utility functions that we will use.

11

source('functions.R')

Representation

Compact representation

e Which node has most free parameters associated? How many?
o How many parameters in total (do by hand)?
o How many parameters in a full joint?

¢ Where does the reduction come from?

Independence

What are the v-structures in the network?

vstructs(bl.alarm)

X YA Y
[1,] "Burglar" "Alarm" "Earthquake"

« State two independencies that hold in absence of evidence.
e Which probability queries would let us verify them?

Conditional independence (d-separation)

e Looking at the network, do you think these hold:
— I(B;W | A)?
— I(B;N | A)?
o Why/why not?
Check the above by querying d-separation. For this, we will use the bnlearn package.
Check the above using the dsep() function:

« I(B;W | A)?
« I(B;N|A)?

dsep(bn=bl.alarm, x='Burglar', y=, z=)

[1] TRUE

o Is Watson independent of News given Earthquake I(N; W | E)?
o And the other way around I(W; N | E)?
o Why/why not?

Markov blanket

e Can you identify the Markov blanket of Earthquake? Try verifying it by checking d-separation.

12

mb (x=bl.alarm, node='Earthquake')
mbe <- subgraph(bl.alarm, nodes = mb(x=bl.alarm, node='Earthquake'))
plot (mbe)

All the Markov blankets:

par (mfrow=c(2, 3))
print_mblankets(bl.alarm)

[[1]1]

A graphNEL graph with directed edges
Number of Nodes = 3

Number of Edges = 0O

##

[[2]]

A graphNEL graph with directed edges
Number of Nodes = 2

Number of Edges = 1

##

[[3]]

A graphNEL graph with directed edges
Number of Nodes = 3

Number of Edges = 1

#i#

[[4]]

A graphNEL graph with directed edges
Number of Nodes = 1

Number of Edges = 0O

##

[[5]]

A graphNEL graph with directed edges
Number of Nodes = 1

Number of Edges = 0

par (mfrow=c(1, 1))

e So, given Burglar, News, and Alarm, is Earthquake independent of Watson?

Equivalence classes

Different networks can encode same conditional independencies.
e How could we obtain an equivalent DAG?
e Obtain and plot the equivalent DAG.
o Is News independent of Watson given Earthquake (I(N; W | E)) in this equivalent DAG?
e How many DAGs in this equivalence class?

We can obtain a representative model of the equivalence class, a complete partially directed acyclic graph,
with cpdag()

Equivalence class.
cpdag.alarm <- cpdag(bl.alarm)
plot(cpdag.alarm)

13

Burglar Earthquake

7
% <5________
=
=
09

We will use the gRain package for exact inference. We can convert the bnlearn objects to gRain ones. Do
we need bl.alarm or bl.alarm.fit to do inference?

library(gRain)

Loading required package: gRbase

Eid

#
Attaching package: 'gRbase'

The following objects are masked from 'package:bnlearn':
#i#
ancestors, children, parents

7gRain

No documentation for 'gRain' in specified packages and libraries:
you could try '?7gRain'

gr.alarm <- as.grain(bl.alarm.fit)

Similarly to bnlearn, we can construct the Earthquake network (specify its DAG and conditional probability
tables (CPTs)) with the grain package.

yn <- c("yes","no"

<- cptable(~Burglar, values=c(30,70),levels=yn)

E <- cptable(~Earthquake, values=c(35,65),levels=yn)

A <- cptable(~Alarm+Earthquake+Burglar, values=c(95,5,90,10,60,40,1,99),levels=yn)

w

14

W <- cptable(~Watson+Alarm, values=c(80,20,40,60),levels=yn)
N <- cptable(~News+Earthquake, values=c(60,40,1,99), levels=yn)

cptlist <- compileCPT(list(B, E, A, W, N))
gr.alarm.orig <- grain(cptlist)

Plot the network.
plot(gr.alarm.orig)

Probability queries with no evidence

Let us see the marginal distribution over Earthquake (P(E))?
gr.alarm.orig$cptlist$Earthquake

Earthquake

yes no

0.35 0.65

attr(,"class")

[1] "parray" "array"

e How does this relate to the CPT specification above?
o What is P(B)?

o What is the probability that nothing occurs P(B = b, E = €%, A = a°, W = w°®, N = n°)? Compute it
using the CPTs.

bn <- gr.alarm.orig$cptlist$Burglar['no']
en <- gr.alarm.orig$cptlist$Earthquake['no']

an <- gr.alarm.orig$cptlist$Alarm['no', 'no', 'no']
nn <- gr.alarm.orig$cptlist$News['no', 'no']
wn <- gr.alarm.orig$cptlist$Watson['no', 'no']

bn * en ¥ an * nn * wn

Instead of summing and multiplying the probabilities in the CPTs, the grain object can do inference for us.

First, we need to compile the grain network.

gr.alarm <- compile(gr.alarm.orig) # Compile first
gr.alarm

Independence network: Compiled: TRUE Propagated: FALSE
Nodes: chr [1:5] "Burglar" "Earthquake" "Alarm" "Watson" "News"

Now we can query the network:

querygrain(object=gr.alarm, nodes="Earthquake")

$Earthquake
Earthquake
yes no
0.35 0.65

querygrain(object=gr.alarm, nodes="Burglar")

$Burglar
Burglar
yes no

15

0.3 0.7

e Use setEvidence() and pEvidence() to get the probability that nothing occurs
arguments. What is the probability?
no <- rep("no", 5)
nodes <- c('Burglar', 'Earthquake', 'Alarm', 'Watson', 'News')
gr.alarm <- setEvidence(object=gr.alarm, nodes=, states=)
pEvidence(gr.alarm)

Finally, we will retract the evidence to return the network to initial state:

gr.alarm

Independence network: Compiled: TRUE Propagated: TRUE
Nodes: chr [1:5] "Burglar" "Earthquake" "Alarm" "Watson" "News"
Evidence:

nodes is.hard.evidence hard.state
1 Burglar TRUE no
2 Earthquake TRUE no
3 Alarm TRUE no
4 Watson TRUE no
5 News TRUE no

pEvidence: 0.267567

gr.alarm <- retractEvidence(gr.alarm, nodes)
gr.alarm

Independence network: Compiled: TRUE Propagated: TRUE
Nodes: chr [1:5] "Burglar" "Earthquake" "Alarm" "Watson" "News"

Reasoning patterns: Causal, evidential and intercausal

o Watson called. Set that as evidence.

16

. Complete the missing

Burglar Earthquake

Q- -

o Is earthquake more likely now (P(e! | w!) > P(e!))?
o Is burglary more likely (P(b' | w!) > P(b'))?
e Which reasoning pattern was this?

Before continuing, retract the evidence on Watson.

e Now, let us consider that an earthquake has occurred. Set it as evidence.

Burglar

Earthquake

Oin Ol

17

gr.alarm <- setEvidence(object=gr.alarm, nodes="Earthquake", states="yes")

o Is Watson more likely to call (P(w?! | e') > P(w?))?
e Which reasoning pattern did we apply?
o Is burglary more likely now (P(b! | e!) > P(b'))? Why/why not?

e Now consider only the alarm went off.

Burglar Earthquake

o Is burglary more likely now (P(b! | a') > P(b'))?

e Now, also an earthquake occurs.

18

Burglar

Earthquake

D@

o What about burglary now (P(b! | a') < P(b* | at,et))?

e Which reasoning pattern was this?

Maximum a posteriori (M AP) queries

e An earthquake has occurred and alarm went off.

Burglar

Earthquake

D@

19

e What is the most likely event in the full space? In other words, what is the most likely state for W, B
and N (arg max P(W,B,Nlet,a'))?

w,b,n

Get the joint posterior over the corresponding nodes:

q.wnb <- querygrain(gr.alarm, type = "joint", nodes =)
q.wnb

, , News = yes

##

Watson

Burglar yes no
#i#t yes 0.1940426 0.04851064
#it no 0.2859574 0.07148936
#i#

, , News = no

#i#

#it Watson

Burglar yes no
yes 0.1293617 0.03234043
no 0.1906383 0.04765957
##

attr(,"class")

[1] "parray" "array"

e What is the most likely state? What is its probabillity?
map (q.wnb)

$state

Burglar Watson News
"no" "yes" "yes
##

$prob

[1] 0.2859574

q.wnb[”yes" s "yes" s llnon]

[1] 0.1293617

No specialized algorithm in gRain to get the MAP assignment; we need to build a joint over the nodes of
interest.

o What was the most likely joint state before observing any evidence (argma.y b n,e,a P(W, B, N, E, A))?
Call the map utility function on the result of querygrain().

Inference

The gRain package allows conditional probability queries for discrete Bayesian networks. We can also ask
for the probability of the evidence. bnlearn provides approximate inference based on sampling for discrete,
Gaussian and conditional linear Gaussian networks.

20

The Asia network

/Q@

All variables are Boolean (yes/no).

Load the network.

asia.fit <- load_asia_fit()

Let us have a quick look at the network. Look at, for example, the CPT of either:

asia.fit$either

Parameters of node either (multinomial distribution)

Conditional probability table:

##

, , tub = yes
##

#i# lung

either yes no
yes 1 1
#it no 0 0

##

, , tub = no
##

lung

either yes no
#it yes 1 0
#i# no 0 1

Conditional probability queries

We will look at queries of the type P(Qle), where W = X \ E\ Q may be non-empty.

What if all variables are observed, i.e., E = X; how complex is it to compute the probability of evidence?

Consider that have observed all variables except for B and D, and we want the marginal for D. If we were to
do inference from the full joint, how many summations do we need to do for each value of D7 And what if
we observed no evidence?

In the full joint, the number of summations is exponential in number of unobserved variables. However, the
summations have many common factors and we can reduce complexity by caching them.

We multiply variables to take them into account. Sum in order to marginalize them out. Computational
complexity depends on the largest factor created. The algorithm works on undirected graphs so that is what
we will do.

Junction tree message passing

gRain steps when performing inference:

e compile: moralize, triangulate, find RIP ordering, form initial clique potentials

e optional: absorb evidence
e propagate: transform clique potentials to clique marginals

querygrain performs those steps internally, no need to do them oneself.

Consider the moralized, triangulated graph of asia.

asia.gr <- as.grain(asia.fit)
m <- moralize(asia.gr$dag)
t <- triangulate(m)

o Which edges were added by moralization?
e And by triangulation?

e What cliques is A part of?

e What about B?

e What is the largest clique?

library(gRbase)
getCliques ()

o Does the (A, T) clique potential correspond to P(T | A)?

asia.gr <- compile(asia.gr)
origpot contains the clique potentials, t.e., initial cliques
asia.gr$origpot[[1]]

asia

tub yes no
yes 0.0005 0.0099
no 0.0095 0.9801

asia.fittubprob

asia

22

tub yes no
yes 0.05 0.01
mno 0.95 0.99

asia.fit$asia$prob

yes no
0.01 0.99

o What do the entries of clique (B, D, E) correspond to?
o Can we get P(B) from clique ¥(B, D, E) alone? Why / why not?

We need a RIP ordering in order to obtain a junction tree.

e What is the 3rd clique?

o Is E on every path between ¢ (F, X) and ¢(E,L,T)?

o If we query for P(S) will there be a factor with a domain including both A and S? What is the largest
clique?

asia.gr$rip

Now, propagate the tree to calibrate the clique potentials.
asia.gr <- propagate(asia.gr)
o Did (A, T) change? Why / why not?
asia.gr$equipot[[1]] == asia.gr$origpot[[1]]
- Can we get P(B) from clique ¢(B, D, E) alone? Why / why not? - Can we get P(B) from clique (B, S, L)

alone? Why / why not? - How costly could have the above computation of P(B) been? - What if we query
for P(A,S). Will the largest clique have to grow?

23

equipot contains the clique marginals
asia.gr$equipot [[5]]
apply(asia.gr$equipot [[5]], 2, sum)
apply(asia.gr$equipot[[4]], ,)

querygrain(asia.gr, nodes = 'bronc')

o Let us introduce evidence. How have the clique marginals changed? Which have changed? (hint
at RIP)
o Does ¢(X, E) (the 6th clique) correspond to P(X | E)?

summary (asia.gr)

Independence network: Compiled: TRUE Propagated: TRUE
Nodes : chr [1:8] "asia" "tub" "smoke" "lung" "bronc" "either" "xray" "dysp"

Number of cliques: 6
Maximal clique size: 3
Maximal state space in cliques: 8
asia.gr <- setEvidence(asia.gr, nodes = 'tub', states = 'yes', propagate = FALSE)

asia.gr <- propagate(asia.gr)
summary (asia.gr)

Independence network: Compiled: TRUE Propagated: TRUE
Nodes : chr [1:8] "asia" "tub" "smoke" "lung" "bronc" "either" "xray" "dysp"

Number of cliques: 6
Maximal clique size: 3
Maximal state space in cliques: 8
nodes is.hard.evidence hard.state
1 tub TRUE yes
either

lung yes no
yes 0.055 O
no 0.945 O

lung

either yes no
#it yes 0.055 0.945
no 0.000 0.000

querygrain(asia.gr, nodes = c('lung', 'either'), type = 'joint')
apply(asia.gr$equipot[[1], c(2, 3),)

Logic sampling

bnlearn provides two functions for sampling-based inference:
o cpdist : create a sample D of n [weighted] instances

e cpquery: compute the probability of an event in D

e Sample smoke, lung, and bronc with the base function sample(). Begin with smoke

yn <- c("yes", "no"
set.seed(0)
s <- sample(yn, 1, prob = asia.fit$smoke$prob)

24

: look

e How do we sample lung?

e What values do you get for lung and bronc? Repeat.

<- sample(yn, 1, prob = asia.fit$asia$prob)
<- sample(yn, 1, prob = asia.fittubprobl, al)
<- sample(yn, 1, prob = asia.fit$either$prob[, 1, t])
n no n

<- sample(yn, 1, prob = asia.fit$xray$probl[, e])

<- sample(yn, 1, prob = asia.fit$dysp$probl[, b, el)
instance <- c(a, s, t, 1, e, x, b, d)

QM O O P
A
|

It is easier to sample with cpdist () from bnlearn. Let us draw 15 samples.

set.seed(0)
evidence = TRUE means that we are not conditioning on any evidence
samples.asia <- cpdist(asia.fit, nodes = nodes(asia.fit),
evidence = TRUE, n = 15)
summary (samples.asia)

asia tub smoke lung bronc either xray dysp
yes: 1 yes: 0 yes:8 yes: 0 yes:10 yes: O yes: 1 yes:9
no :14 no :15 mno :7 mno :15 mno : 5 =no :15 mno :14 no :6

« What is Pp(D)?
e What is Pp(S = s, D =d')?

t <- table(samples.asial, c('smoke', 'dysp')])
prop.table(t)

#it dysp

smoke yes no
yes 0.3333333 0.2000000
no 0.2666667 0.2000000

e What is the most likely assignment to A and S7

We can also use cpquery to get the probability of an event directly (avoid the prop.table(table()) step).

set.seed(0)

ep <- cpquery(asia.fit, event = (smoke == "no" & dysp == "yes"),
evidence = TRUE, n = 15)

ep

[1] 0.1333333

Since we can perform exact inference, we can measure the absolute error (|P(S = s, D = d') — Pp(S =
s%, D = d')|). We need grain for exact inference.

gr.asia <- as.grain(asia.fit)
q <- querygrain(gr.asia, nodes = c("smoke", "dysp"), type = "joint")
q

o What is the absolute error?

e Reduce absolute error below 0.001.

set.seed(0)
ep <- cpquery(asia.fit,)

25

 Consider we know that A = a'. If we draw 5000 samples to estimate P(S = s°, D = d'|A = a'), how
many non-rejected samples do you expect? Why?

set.seed(0)

samples.asia <- cpdist(asia.fit, nodes = c("smoke", "dysp"),
evidence=(asia == "yes"),
n=5000)

o What is the absolute error?

ep <- prop.table(table(samples.asia))

ep <- ep['no', 'yes']

gray <- setEvidence(gr.asia, nodes = "asia", states = c("yes"))
q <- querygrain(gray, nodes = c("smoke", "dysp"), type = "joint")
tp <- ql'no', 'yes']

abs(ep - tp)

¢ Reduce the absolute error below 0.001.

e How could we estimate the probability of the evidence?

e Why not just fix the value of the evidence in the network and then sample from other nodes?

Likelihood weighting

1

Say that we know A = a'. With likelihood weighting we can fix A = a' and sample from the rest of the

network.

o How many samples will be generated?

e If we had sampled from the prior distribution, without fixing A, how many samples could we have
expected?
set.seed(0)
samples.asia <- cpdist(asia.fit, nodes = nodes(asia.fit),
evidence=list(asia = "yes"),
n=5000, method = "lw")

e What are the weights of the samples?

w <- attr(samples.asia, 'weights')
summary (w)

Consider instead that the sole evidence is L = ['. Draw 5000 samples in S and D.

set.seed(0)

samples.asia <- cpdist(, nodes = ,
evidence=list(lung = 'yes'),
n=5000, method = "1lw")

w <- attr(samples.asia, 'weights')

e What are weights of the first five samples? Do they depend on D7
o Does the distribution of S correspond to that in the prior distribution? Yet, does P(A) change if we
know L = ['?

prop.table(table(samples.asia$smoke))
asia.fit$

26

e Why are there weights below 1?7 Hint: What is %%}22;;7
So, what is Pp(S =", D =d' | L =1')?

prop.table(xtabs(w ~ smoke + dysp, data = cbind(samples.asia, w = w)))

We can compute it with cpquery. What if we removed set.seed()?
set.seed(0)
epl <- cpquery(, event = (smoke == "no" & dysp ==),
evidence = 1list(lung = 'yes'), n = 5000, method = 'lw')
epl
o What is the absolute error?
[1] 0.003619475

[1] 0.9502207

gr.asia <- setEvidence(gr.asia, nodes = 'lung', states = 'yes')

q <- querygrain(gr.asia, nodes = c("smoke", "dysp"), type = "joint")
tpl <- q['no', 'yes']

abs (tpl =)

Summing up the weights, an effective sample size would be:

sum(w)

[1] 2691.5

The marks data set

Consider the marks dataset (students’ scores in mechanics, vectors, algebra, analysis and statistics):

summary (marks)

MECH VECT ALG ANL

Min. : 0.00 Min. : 9.00 Min. :15.00 Min. : 9.00
1st Qu.:30.00 1st Qu.:42.00 1st Qu.:45.00 1st Qu.:35.75
Median :41.50 Median :51.00 Median :50.00 Median :49.00
Mean :38.95 Mean :50.59 Mean :50.60 Mean :46.68
3rd Qu.:49.25 3rd Qu.:60.00 3rd Qu.:57.25 3rd Qu.:57.00

Max. :77.00 Max. :82.00 Max. :80.00 Max. :70.00
STAT
Min. : 9.00

1st Qu.:31.00
Median :40.00
Mean :42.31
3rd Qu.:51.50
Max. :81.00

Gaussian networks

Only particle-based (sampling) inference (bnlearn) is available for Gaussian networks.

Let us learn a network with hc and plot it.

27

bn.marks <- hc(marks)
plot (bn.marks)

MECH

AN

ALG

7

bn.marks

Bayesian network learned via Score-based methods

model:

#i# [MECH] [VECT |MECH] [ALG|MECH:VECT] [ANL|ALG] [STAT|ALG:ANL]
nodes: 5

arcs: 6

#i# undirected arcs: 0

#it directed arcs: 6

average markov blanket size: 2.40

average neighbourhood size: 2.40

average branching factor: 1.20

#i#

learning algorithm: Hill-Climbing
score: BIC (Gauss.)
penalization coefficient: 2.238668

tests used in the learning procedure: 34

optimized: TRUE

o What is the prob of ALG < 607
o What is the probability of both STAT and MECH above 607

28

bn.marks.fit <- bn.fit(bn.marks, marks)
cpquery(bn.marks.fit, event = , evidence =)

bn.marks.fit <- bn.fit(bn.marks, marks)
cpquery(bn.marks.fit, event = ((ALG < 60) & (MECH >= 60)), evidence = TRUE)

[1] 0.05275

cpquery(bn.marks.fit, event ((STAT >= 60) & (MECH >= 60)), evidence = TRUE)

[1] 0.035375

cpquery(bn.marks.fit, event = ((STAT >= 60) & (MECH >= 60)), evidence = (ALG >= 60))

[1] 0.1472149

e Is STAT independent of MECH? Let use cpdist and check this visually.

library(ggplot2)
samples.marks <- cpdist(bn.marks.fit, nodes = c('STAT', 'MECH'), evidence = (ALG < 60))
ggplot (samples.marks, aes(x = STAT, y = MECH)) + geom_bin2d()

80 -
count
T 60
O
% 40 - 40
20
O -

=25 0 25 50 75

STAT
cor (samples.marks$STAT, samples.marks$MECH)

[1] 0.2364236
cor (marks$STAT, marks$MECH)

[1] 0.3890993
o« What about conditional on ALG? How could we check it?

29

e What is the probability of STAT > 60 conditional on MECH > 607 And what about MECH > 60 and
ALG > 607. Use cpquery. Does this confirm they are independent?

cpquery(bn.marks.fit, event = ((STAT >= 60)), evidence = ((MECH >= 60) & ALG >= 60))

[1] 0.490566
cpquery(bn.marks.fit, event = ((STAT >= 60)), evidence = (ALG >= 60))

[1] 0.4413932

e What is the probability of the evidence? How many samples were kept with logic sampling?

samples.marks <- cpdist(bn.marks.fit, nodes = c('STAT', 'MECH'), evidence = (ALG < 60))
samples.marks.noevidence <- cpdist(bn.marks.fit, nodes = c('STAT', 'MECH'), evidence = TRUE)
nrow(samples.marks)

[1] 6472

nrow(samples.marks.noevidence)

[1]1 8000

library(bnlearn)

Learning from data

Different objectives:

e Learn P(Y | X)
¢ Discover associations
e Learn the joint

Breast cancer data

Data on recurrence of breast cancer within five years of surgery.

o 286 patients; 85 recurring whereas 201 not (we have removed 9 patients with incomplete information)
e 9 measured variables

— Patient age (age)

— Menopause (non, pre, post) (menopause)

— Tumour malignancy degree (deg_malig)

— Tumour location quadrant (breast-quad)

— Perforated lymph node capsule (node_caps)

— Involved lymph nodes (inv-nodes)

— Max. tumour diameter (size)

— Patient irradiated (irradiated)

— Left or right breast (breast)

— Recurring or not (Class)

We have discretized size} into groups 0--19, 20--39, and 40--54; andinv-nodes} into groups 0-8,
9-17, and 8-26.

This is basically a classification problem where we are interested in recurrence. Yet, here we will consider
learning the entire distribution.

Load the data and have a look at it:

30

breast <- foreign::read.arff('data/dbreast-cancer.arff')

summary (breast)

age menopause tumor_size inv_nodes node_caps deg_malig
20-29: 1 ged0 :123 0-19 : 69 0-8 :260 no :221 1: 66
30-39:36 1t40 : 5 20-39:175 18-26: 1 yes: 56 2:129
40-49:89 premeno:149 40-54: 33 9-17 : 16 3: 82
50-59:91

60-69:55

T70-79: 5

breast breast_quad irradiat Class

left :145 central : 21 no :215 no-recurrence-events:196
right:132 left_low :106 yes: 62 recurrence-events : 81
left_up : 94

right_low: 23

right_up : 33

##

No missing values (i.e., we can apply bnlearn).

anyNA (breast)

[1] FALSE

Score + search algorithms

Let us use the hill-climbing (HC) algorithm with the BIC score to learn network structure

hc.breast <- hc(breast, score = "bic")
plot(hc.breast)

31

s

menopause node_caps breast_quad

D®
RO

deg_malig

ORORO

o Do the (in)dependencies make sense?
e Read three conditional independencies off the structure. If in doubt, verify with dsep().
o Which nodes suffice to know P(C)? Which function can tell that?

e What are the parameters of the network? Could we compute the likelihood of the network?

Scores

Two types of scores:

o Information theoretic
e Bayesian

Compute the log-likelihood on the full data set. (Note that the parameters are learned from the second
argument)

score(hc.breast, breast, type="loglik")

[1] -2044.865
o Compute two other scores. Use help("bnlearn-package") to see which scores are available.

e Think how you could get an equivalent DAG to hc.breast. Once you obtain such a DAG, compute its
BIC, BDe and K2. Compare to those of hc.breast.
eq_dag <-
score(eq_dag, breast, type="bic")
score(eq_dag, breast, type="bde")
score(eq_dag, breast, type="k2")

32

o What is the complete partially directed acyclic graph? Are there any v-structures in this network? (see
vstruct)

pcdag <- skeleton()
plot(pcdag)

menopause node_caps breast_quad

AN
O-C
D-©

deg_malig

N/

e Now use the log-likelihood score with hill-climbing. How many free parameters in the network?

loglik.hc.breast <- hc(breast, score='loglik')
nparams (loglik.hc.breast, breast)

e What is the penalization with the BIC score? Print out the learned network.

o If AIC penalization is 1, which score yields sparser networks?

hc.breast

##

Bayesian network learned via Score-based methods

##

model:

#Hit [age] [inv_nodes] [breast] [menopause|age] [node_caps|inv_nodes]
[breast_quad|breast] [deg_malig|node_caps] [irradiat|node_caps]
#i# [Class|deg_malig] [tumor_size|Class]

nodes: 10

arcs: 7

#it undirected arcs: 0

directed arcs: 7

average markov blanket size: 1.40

average neighbourhood size: 1.40

average branching factor: 0.70

#i#

learning algorithm: Hill-Climbing
score: BIC (disc.)
penalization coefficient: 2.812009

tests used in the learning procedure: 108

optimized: TRUE

e Use the BDe score and plot the network.

menopause A breast_quad

deg_malig

D

e Did BIC or BDe yield a more complex model?

e Use compare to find common arcs for the BDe and BIC structures.

compare (hc.breast, bde.hc.breast, arcs = TRUE)

Search

o Identify the first three steps of HC (hint: use plot () the max.iter argument to hc()).
e How did the BIC evolve?
[1] -2226.295 -2211.158 -2199.784
o Which search operators does HC use? Why did it stop? (hint: run hc() with debug = TRUE)

We can also see that, in this case, random restarts do not seem to improve the BIC. Thus, gives us some
confidence that we are not being trapped in a local optimum.

34

set.seed(100)
hc.breast.restart <- hc(breast, restart = 1000, perturb = 10)
BIC(hc.breast.restart, breast)

[1] -2168.594
all.equal(cpdag(hc.breast.restart), cpdag(hc.breast))

[1] TRUE

Which other search + score algorithms are available in bnlearn?

Constraint-based structure learning

e Learn a network with the Grow-shrink algorithm

gs.breast <- gs(x = breast)

Plot it. Is it a DAG?
plot(gs.breast)

@ ‘ @ W

deg_malig

e Try to compute the log-likelihood. What is the problem?
score(gs.breast, breast, type = "loglik")

Get a consistent extension first.

gs.breast <- cextend(gs.breast)
score(gs.breast, breast)

[1] -2190.743

35

e Find how many arcs match those obtained with HC.

(Structural) Hamming distance indicates how similar the (DAGs) equivalence classes are:

shd(gs.breast, hc.breast)

[1]1 2

hamming(gs.breast, hc.breast)

[1] 2
compare (skeleton(hc.breast), skeleton(gs.breast), arcs = TRUE)

$tp

from to

[1,]1 "age" "menopause"
[2,] "menopause" "age"

[3,] "tumor_size" "Class"

[4,] "inv_nodes" "node_caps"
[5,] "node_caps" "inv_nodes"
[6,] "node_caps" "deg_malig"
[7,] "deg_malig" "node_caps"
[8,] "breast" "breast_quad"
[9,] "breast_quad" "breast"

[10,] "Class" "tumor_size"
##

$Tp

from to

##

$fn

from to

[1,] "node_caps" "irradiat"
[2,] "deg_malig" "Class"

[3,] "irradiat" '"node_caps"
[4,] "Class" "deg_malig"

e Which one has higher BIC? Which one has more parameters? Which one would you prefer?

By printing the object we can find how many conditional independence (CI) tests were performed to obtain
the structure.

gs.breast

##

Bayesian network learned via Constraint-based methods

##

model:

#t [menopause] [deg_malig] [breast_quad] [irradiat] [Class] [age |menopause]
#it [tumor_size|Class] [node_caps|deg_malig] [breast|breast_quad]
#it [inv_nodes|node_caps]

nodes: 10

arcs: 5

undirected arcs: 0

directed arcs: 5

average markov blanket size: 1.00

average neighbourhood size: 1.00

average branching factor: 0.50

36

##

learning algorithm: Grow-Shrink

conditional independence test: Mutual Information (disc.)
alpha threshold: 0.05

tests used in the learning procedure: 174

optimized: FALSE

e Change the alpha argument so that we only get 5 arcs

gs.breast.string <- gs(breast, alpha=)
narcs(gs.breast.string)

o Use a different test of conditional independence. Use help("bnlearn-package") to see the available
tests. Plot the network.

gs.breast.2 <- gs(breast, test =)
gs.breast.2 <- cextend(gs.breast.2)
plot(gs.breast.2)

e What are the steps of GS? Run with the debug option. Unlike the PC algorithm, contraint-based
algorithms in bnlearn learn local Markov blankets and then complete the full network.

gr.breast <- gs(breast, debug = TRUE)

o Consider another constraint-based algorithm from bnlearn. See 7gs Does loglik improve with respect
to GS?

Search + score is a more global approach to network learning, whereas constraint-based provides a more
local approach.

Do hill-climbing or iamb generalize better with respect to log-likelihood?

bn.cv(breast, 'iamb', loss = "logl")
bn.cv(breast, 'hc', loss = "logl")

Mixed data

Consider a mixed discrete and real-valued data set:

data("clgaussian.test")
head(clgaussian.test)

A BC D EF G H
1 a b d 6.460721 11.98657 b 34.84246 2.334846
2 b a a 12.758389 30.43674 b 106.63596 2.359112
3 b c ¢ 12.175140 17.21532 a 68.92951 2.319435
4 b c d 12.006609 14.41646 b 86.17521 2.417494
5 b a a 12.328071 30.39631 b 103.58541 2.268150
6 b c c 12.613419 15.19344 b 90.84664 2.308369

Let us learn a conditional linear Gaussian network. Real-valued variables cannot be parents of discrete ones.

plot(hc(clgaussian.test))

37

Latent variables

It may be useful to consider the presence of latent variables. Edwards (“Introduction to Graphical Modelling”)
assigned the students in the marks data set into two groups using an EM algortihm. The networks for the
two groups are completely different, and both differ from the overall network.

data("marks")
latent <- factor(c(rep("A", 44), "B", rep("A", 7), rep("B", 36)))
plot (hc(marks[latent == "A", 1))

7

v

)

plot (hc(marks[latent == "B", 1))

38

plot (hc(marks))

MECH

A\

ALG

5

If we include the latent variable in will necessarily be a root of the network.

dmarks = discretize(marks, breaks = 2, method = "interval")
plot(hc(data.frame(dmarks, LAT = latent)))

=

If we discretize the network we get yet a different model.

lmarks <- data.frame(marks, LAT = latent)
plot (hc(lmarks))

bnlearn uses interval, quantile and Hartemink’s discretization. The latter tries to maximize mutual informa-
tion between variables.

Parameter estimation

We use bn.fit to learn parameters with bnlearn

breast.bn.fit <- bn.fit(hc.breast, breast)
bn.fit.barchart(breast.bn.fit$tumor_size)

40

Conditional Probabilities

0.0 0.2 0.4 0.6 0.8
| | | | | | | | | |
no—-recurrence—events recurrence—events
40-54
o
9 20-39
(]
|
0-19
| [[[[|
0.0 0.2 0.4 0.6 0.8
Probabilities

graph.breast <- as.graphNEL(hc.breast)
gr.breast <- grain(graph.breast, data = breast, smooth = 0)
gr.breast$cptlist$menopause

age

menopause 20-29 30-39 40-49 50-59 60-69 70-79
gedl 0 0.00000000 0.1011236 0.61538462 0.96363636 1
1t40 0 0.02777778 0.0000000 0.02197802 0.03636364 0
premeno 1 0.97222222 0.8988764 0.36263736 0.00000000 0

attr(,"class")
[1] "parray" "array"

0 probabilities can produce undesirable results. In the Pathfinder study, 10% percent of cases were incorrectly
diagnosed due to 0 probabilities —the correct disease was ruled out by a finding that had been given 0
probability (Koller and Friedman, 2006, pp. 67)

Avoid 0 probabilities by using Bayesian parameter estimation:

gr.breast.bpe <- grain(graph.breast, data = breast, smooth = 1)
gr.breast.bpe$cptlist$menopause

age

menopause 20-29 30-39 40-49 50-59 60-69 70-79
ged0 0.25 0.02564103 0.10869565 0.60638298 0.93103448 0.750
1t40 0.25 0.05128205 0.01086957 0.03191489 0.05172414 0.125

premeno 0.50 0.92307692 0.88043478 0.36170213 0.01724138 0.125
attr(,"class")

[1] "parray" "array"

e Which of the two models has a higher likelihood score?

41

logLik(as.bn.fit(gr.breast.bpe), breast)
logLik(as.bn.fit(gr.breast), breast)

e How could we make all local probability distributions uniform (just as an exercise; otherwise it does
not make sense)?

e Does higher deg_malign mean more likely recurrence?

Continuous variables

For continuous variables, bnlearn implements Gaussian networks. Each variable is normally distributed with
its mean a linear function of its parents and a standard deviation o.

Learn a structure with hc and then learn the parameters.

data(marks)
bn.marks <- hc(marks)
bn.marks <- bn.fit(bn.marks, marks)

What are the coefficients?
coefficients (bn.marks)
$MECH

(Intercept)
38.95455

##

$VECT

(Intercept) MECH

34.3828788 0.4160755

##

$ALG

(Intercept) MECH VECT
25.3619809 0.1833755 0.3577122
##

$ANL

(Intercept) ALG

-3.574130 0.993156

##

#i# $STAT

(Intercept) ALG ANL

-11.1920114 0.7653499 0.3164056
sigma (bn.marks$MECH)

[1] 17.48622
sigma (bn.marks$VECT)

[1] 11.01373
bn.fit.qqplot(bn.marks)

42

Normal Q—-Q Plot

-2 -1 0 1 2

Sample Quantiles

Theoretical Quantiles

There is no Bayesian parameter estimation for Gaussian networks. One can, however, fit the coefficients with
ridge or elastic net regression instead of ordinary least squares, and then replace it in the network.

m <- as.matrix(marks)

You will need the glmnet package for this
library(glmnet)

Loading required package: Matrix

Loading required package: foreach

Loaded glmnet 2.0-16

gnet <- glmnet(m[, c('VECT', 'MECH')], m[, 'ALG'], alpha =0, family = "gaussian")
coefs <- coef(gnet, s = 0.1)[, 1]
bn.marks$ALG = list(coef = coefs, sd = sigma(bn.marks$ALG))

Classification

While bnlearn implements discrete naive Bayes and TAN, we will use the bnclassify package for discrete
classifiers.

The car data set

Car evaluation data set

« PRICE

43

— buying: buying price
— maint: price of the maintenance
« TECH
— COMFORT
* doors: number of doors
* persons: capacity in terms of persons to carry
x lug_boot: the size of luggage boot
— safety: estimated safety of the car
e class: car acceptability

We are interested in car acceptability. It is a function of price and tech, which in turn are functions of the
observed variables.

e Load the data. All variables discrete.
load('data/car.rda')

summary (car)

buying maint doors persons lug_boot safety
low :432 high :432 2 1432 2 :576 big :576 high:576
med :432 low :432 3 1432 4 :576 med :576 low :576
high :432 med :432 4 1432 more:576 small:576 med :576
vhigh:432 vhigh:432 bmore:432

#it class

wunacc:1210
acc : 384
good : 69
vgood: 65

Naive Bayes

library(bnclassify)
##
Attaching package: 'bnclassify'

The following objects are masked from 'package:bnlearn':
#i#
modelstring, narcs, nparams

e Learn a naive Bayes structure from car data. The target variable is ‘class’. Plot it.

nb.car <- nb(class = 'class', dataset =)

44

/ / \ / \
(buying } | maint } | doors | [persons; (lug_boot; | safety |
\ / \ /

e Learn network parameters. What is the class prior probability?

nb.car <- lp(nb.car, car, smooth = 0)
params (nb.car) [['class']]

class
unacc acc good vgood
0.70023148 0.22222222 0.03993056 0.03761574

Predicting

When only one variable is unobserved, inference amounts to multiplying the entries for the observed ones.

e How could we compute class posterior for first instance using just the CPTs? The features values for
the first instance are:

car[1, -7]

buying maint doors persons lug_boot safety
1 vhigh vhigh 2 2 small low

We need to multiply CPT entries. Complete the code below to get the class-conditional probabilities for
lug_boot and safety.

<- params(nb.car) [['buying']]['vhigh',]
<- params(nb.car) [['maint']] ['vhigh',]

<- params (nb.car) [['doors']]['2',]

<- params(nb.car) [['persons']J]['2",]

<- params(nb.car) [['lug_boot']J]1['"',]

<- params(nb.car) [['safety']1]["'"',]
cp <- params(nb.car) [['class']]

cpost <- cp * b * m * * p * *

n HY o B O

e Now, multiply the CPT entries accordingly. You should get the following:
class

45

unacc acc good vgood
0.001407374 0.000000000 0.000000000 0.000000000

e Is this the class posterior distribution? How do we get the class posterior.
e Why are there 0’s?

o Avoid zero’s by using Bayesian parameter estimation (use a Dirichlet prior with hyperparameter alpha
1= 0)
nb.car <-

Get the class posterior for the last five instances:

e What would the predicted class labels be?
p <- predict(mb.car, car, prob = TRUE)

tail(p)

unacc acc good vgood
[1723,] 0.94459821 0.004153620 0.02865175 0.022596424
[1724,] 0.23381820 0.299936481 0.45723037 0.009014958
[1725,] 0.12346412 0.230996424 0.24095583 0.404583624
[1726,] 0.92809628 0.004634127 0.02998218 0.037287418
[1727,] 0.21719983 0.316377610 0.45235815 0.014064411
[1728,] 0.09339996 0.198429598 0.19413755 0.514032894

Get them by dropping the prob the argument (or setting it to FALSE).

p <- predict(mb.car, car)

tail(p)

How well does naive Bayes learn the training data? Compute accuracy from a confusion matrix.

cm <- table(predicted=p, true=car$class)

cm
true

predicted unacc acc good vgood
#it unacc 1162 87 0 0
#i# acc 46 287 46 30
good 2 10 21 0
vgood 0 0 2 35

sum(cm * diag(l, nrow(cm), ncol(cm))) / sum(cm)

[1] 0.8709491

or use accuracy from bnclassify.

bnclassify: ::accuracy(p, car$class)

[1] 0.8709491

Irrelevant features

Is the doors feature independent of the class? Use bnlearn: :ci.test to test.

ci.test(...)

If we remove it, do you expect naive Bayes to perform better or worse on the training data?

46

car_wo_doors <- car[, -3]

nb.car.wod <- bnc('nb', 'class', dataset = car, smooth = 1)
p <- predict(ub.car.wod, car)

p <- predict(nb.car, car)

bnclassify: :accuracy(p, car$class)

Correlated features

Is any of the class-conditional independece assumptions violated? E.g., check for buying and maint given
class (use bnlearn):

ci.test('maint', 'buying', 'class', car)

How does this violation affect classification performance? Let us look at an extreme example: perfect
correlation among variables; let us add a copy of the safety feature to the data set.

o Should accuracy stay the same/degrade/improve? Run the code below.

car2 <- cbind(car, safety2=car$safety)

nb.car2 <- bnc('nb', 'class', car2, smooth = 1)
p <- predict(nb.car2, car2)

bnclassify: ::accuracy(p, car2$class)

Such assumptions are often violated and degrade the probability estimates, yet that does not necessarily lead
to poor classification, as long as the true class has the highest probability.

e What happens if we add 10 copies of safety to the data set?

sft <- car[, rep(6,10)]

colnames(sft) <- pasteO('safety', 1:10)

car2 <- cbind(car, sft)

nb.car2 <- bnc('nb', 'class', car2, smooth = 1)
p <- predict(mb.car2, car2)

bnclassify: ::accuracy(p, car2$class)

What are the possible approaches for handling feature correlation?

One-dependence augmented naive Bayes

The tan_cl function produces a tree augmented naive Bayes (TAN). It uses the Chow-Liu algorithm to
maximize (penalized) likelihood in time quadratic in the number of features.

Let us call tan_cl without a score argument. The yields the maximum likelihood TAN.

tn <- tan_cl('class', car)
tn <- 1lp(tn, car, smooth = 1)
plot(tn)

47

~ 7~

7 N\
/N
{ buying !
\\ //

7 N
/ \
I maint /‘
\ /

N P

// \\

/ \
[persons|
\ /I

N Pg

-~

e doors is independent of lug_boot given the class. Why is there an arc between these nodes? How many
arcs added?

e Which feature is the root of the predictors tree?

Changing the root produces an equivalent DAG.

tns <- tan_cl('class', car, root = 'safety')
plot(tns)

48

- ~

7 N\
/ \
i .
| buying !
\ 7

Vd AN
/ \
| i |
\|ﬂamt/
\ /

~ -

// \\

/ \

{persons)

\ /
N Pg

-~

tns <- lp(tns, car, smooth = 1)

p <- predict(tn, car, prob = TRUE)
ps <- predict(tns, car, prob = TRUE)
identical(p, ps)

[1] TRUE

e What is the accuracy on the training data?

p <- predict(tn, car)
bnclassify::accuracy(p, car$class)

Does this model have more free parameters than the naive Bayes? It its likelihood score higher?
nparams(...)
nparams(...)
logLik(, car)
logLik(, car)
—>
Bayesian information criterion (BIC) and Akaike information criterion (AIC) scores penalize log-likelihood
by a factor of model size
AIC = LL(D) — |6
BIC = LL(D) — &N ||
e Which is more restrictive?
An arc between X; and X, contributes NI(X;; X, | C) — (r; — 1)(r; — 1)r. to AIC and NI(X;; X, |

C) — EE%;Y)(Tiggrl)(rj — 1)r. to BIC.

49

e Can BIC and AIC omit spurious arcs from structure?

Let us call tan_cl with the aic score.

tn.aic <- tan_cl('class', car, score = 'aic')
tn.aic <- lp(tn.aic, car, smooth = 1)
plot(tn.aic)

// N
/ . \ \
[buying |)
\ / /
\ /
_//\]
-

/

/ -

[maint

7 ~N
/ N\
/ \
(lug_boot;
\ /
\\ //

e Is the predictor subgraph a tree?
e Which arcs are added?
e Is the AIC score of this network higher than that of the maximum likelihood TAN?

AIC(object = tn, car)

[1] -13461.59
AIC(object = tn.aic, car)

[1] -13438.59
e« What quantity does the arc between lug_boot and safety contribute to AIC? Compute it using
conditional mutual information and the number of added parameters.

sl.cmi <- bnclassify:::cmi(, , car, 'class')
The number of parameters added is:

ap <- (83 -1) *x (3-1) x4

N <-

N * sl.cmi - ap

o Would BIC include this arc (between lug_boot and safety)?

50

We can get the score contribution of each arc with local_ode_score:

bnclassify:::local_ode_score_contrib('safety', 'lug_boot', 'class', car)

On the car data set, BIC adds no arcs.

tn.bic <- tan_cl('class', car, score = 'bic')
plot(tn.bic)

Comparing classifiers
Which of the above models would you chose? If TAN is more accurate on the training data, is it the better
model?

e We can perform cross-validation with cv. Before we can use tn.bic we need to...?7

tn.bic <- ...
bnclassify::cv(list(nb.car, tn, tn.aic, tn.bic), car, k = 10)

Passing multiple models to cv uses the same CV partitions to learn and test the classifiers. This allows for

paired tests when comparing performance.

Wrapper structure learning

We can learn one-dependence estimators by maximizing structure accuracy. tan_hc greedily adds arcs starting
from the naive Bayes until no arc improves accuracy by more than epsilon = 0.

set.seed(0)
tn.hc <- tan_hc('class', car, k = 10, epsilon = 0, smooth = 1)

¢ Plot the structure. Similar to Chow-Liu ODE structures?

o1

~
7

N /
(buwng)
\ /
N 7

-~ -~

This is how structure score evolved.

tn.hc$.greedy_scores_log

[1] 0.8582183 0.9050902 0.9357734 0.9398197 0.9450322

o What if we increased epsilon?

set.seed(0)
tn.hc2 <- tan_hc('class', car, k = 10, epsilon = smooth = 1)

H

52

/

t

\\
@ug_boo

|
/

\
[

tn.hc2$.greedy_scores_log

[1] 0.8582183 0.9050902 0.9357734
e What is the k argument for?

Wrappes are slower than Chow-Liu.

system.time(tan_hc('class', car, k = 10, epsilon = 0, smooth = 1))

user system elapsed
0.326 0.008 0.333

system.time(tan_cl('class', car))

user system elapsed
0.023 0.000 0.022

e How could get lower runtimes?

The semi-naive Bayes bsej starts from a naive Bayes and at each step it tries removing features or conditioning
them on other features.

set.seed(0)
bs.car <- bsej('class', car, k = 10, epsilon = 0, smooth = 1)

e Plot the structure. How many arcs?

53

/ \
!\persons

\ /
N

|
/

— T~
1

/ \
'\Iug_boot,l

e What are the supernodes? Do they correspond to the hidden PRICE and TECH variables?

bnclassify:::is_supernode(c('maint', 'buying'), bs.car)

fssj to learns a semi-naive Bayes starting from an empty feature set.

o Call £ssj (analogously to bsej).

set.seed(0)
fs.car <- fssj(Q)

o Plot the structure.

54

~ T~
7

/ \
lug_boot
\ //

i

/ \
|

e Were any variables omitted?

Markov blanket

Call iamb to get the equivalence class of the entire network.

o What is the Markov blanket of the class?

ia.car <- iamb(car)
plot(ia.car)

55

We can predict using gRain’s exact inference. First, get the class plus its Markov blanket subgraph.

mb.class <- mb(ia.car, 'class')

mb.car <- bnlearn::subgraph(ia.car, c(mb.class, 'class'))
mb.car <- bn.fit(mb.car, car[, nodes(mb.car)])

mb.grain <- as.grain(mb.car)

o Is it more accurate on the training data than naive Bayes?

p <- gRain::predict.grain(mb.grain, 'class', newdata = car)
fp <- factor(p$pred$class, levels = levels(car$class))
bnclassify:::accuracy(fp, car$class)

[1] 0.8923611

The ALARM network

Consider the alarm network

load('data/alarm.rda')

alarm.fit <- bn

bn <- as.bn(as.grain(alarm.fit))
plot(as.grain(alarm.fit))

56

Inspect the network

e How many nodes?

How many arcs?

What is the average neighborhood size?

What are the v-structures in the graph? See vstruct in bnlearn.
What are the parents of HISTORY?

What is the Markov blanket of LVED VOLUME?

What is the neighborhood of STROKEVOLUME?

Are the local distributions discrete or Gaussian?

Recover network structure

U o o=

Sample from the original network

Run a structure learning algorithm of your choice

Compare its structural distance to the original network

is it an I-map of the original distribution (i.e., network?)?

Is its likelihood score higher than that of the original network?

Improve learning

1.
2.
3.
4.

Try different options of the algorithm you just used (e.g,. independence tests)
Try other algorithms (score + search, constraint-based, hybrid)

Which algorithms’ models score similarly to the original network?

Which has the best cross-validated CV score?

57

Inference

Go back to the original network

e What is the marginal probability of HYPOVOLEMIA?

e What is the map assignment to INSUFF ANESTH and CATECHOL?

e What is the joint probability of SHUNT and CATECHOL?

o Which is the largest clique in the junction tree?

o Find the marginal probability of HYPOVOLEMIA with sampling-based inference. Is it close to the
exact probability?

e Find the MAP assignment to INSUFF ANESTH and CATECHOL with sampling-based inference

Final notes

Some useful functions

For analysing network structures

bnlearn: :mb

bnlearn: :ancestors
bnlearn: :descendants
bnlearn::children
bnlearn: :nparams
bnlearn: :model2network
bnlearn: :skeleton
bnlearn: :compare
bnlearn: :cpdag
bnlearn: :node.ordering
bnlearn: :nodes
bnlearn: :dsep

For manipulating network structures

gRbase: :random_dag
bnlearn: :random.graph
bnlearn: :empty.graph

bnlearn: :set.arc
bnlearn: :cextend

gRbase: :moralize

gRbase: :triangulate
gRbase: :getCliques

58

Books

“The R Series

Advanced R

Hadley Wickham

Radhakrishnan Nagarajan Seren Hgjsgaard
Marco Scutari David Edwards
Sophie Lebre Steffen Lauritzen

with Applications in Systems Biology

@ Springer @ Springer

Other Bayesian networks software

e Free: Banjo, Genie, Elvira, Open Markov, ...

e Commercial: BayesialLab, Hugin Expert, Netica, ...

A list (last updated 2014): http://www.cs.ubc.ca/~murphyk/Software/bnsoft.html
A survey (2004): http://www.csse.monash.edu.au/bai/bookle/appendix_ b.pdf

99

http://www.cs.ubc.ca/~murphyk/Software/bnsoft.html
http://www.csse.monash.edu.au/bai/book1e/appendix_b.pdf

	Introduction
	Overview
	Bayesian networks in R

	Get code and data
	bnlearn Bayesian network models
	The earthquake network
	Representation
	Compact representation
	Independence
	Conditional independence (d-separation)
	Markov blanket
	Equivalence classes

	Reasoning
	Probability queries with no evidence
	Reasoning patterns: Causal, evidential and intercausal
	Maximum a posteriori (MAP) queries

	Inference
	The Asia network
	Conditional probability queries
	Junction tree message passing
	Logic sampling
	Likelihood weighting
	The marks data set
	Gaussian networks

	Learning from data
	Breast cancer data
	Score + search algorithms
	Constraint-based structure learning
	Mixed data
	Latent variables
	Parameter estimation

	Classification
	The car data set
	Naive Bayes
	Irrelevant features
	Correlated features
	One-dependence augmented naive Bayes
	Comparing classifiers
	Wrapper structure learning
	Markov blanket

	The ALARM network
	Inspect the network
	Recover network structure
	Improve learning
	Inference

	Final notes
	Some useful functions
	Books
	Other Bayesian networks software

