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Abstract 
This paper presents a number of new algorithms for discov-
ering the Markov Blanket of a target variable T from train-
ing data. The Markov Blanket can be used for variable se-
lection for classification, for causal discovery, and for 
Bayesian Network learning. We introduce a low-order 
polynomial algorithm and several variants that soundly in-
duce the Markov Blanket under certain broad conditions in 
datasets with thousands of variables and compare them to 
other state-of-the-art local and global methods with excel-
lent results. 

Introduction   
The Markov Blanket of a variable of interest T, denoted as 
MB(T), is a minimal set of variables conditioned on which 
all other variables are probabilistically independent of the 
target T. Given this property, knowledge of only the values 
of the MB(T) is enough to determine the probability distri-
bution of T and the values of all other variables become 
superfluous. Therefore, the variables in the MB(T) are ade-
quate for optimal classification. The strong connection 
between MB(T) and optimal, principled variable selection 
has been explored in (Tsamardinos and Aliferis 2003).  
 In addition, under certain conditions (faithfulness to a 
Bayesian Network; see next section) the MB(T) is identical 
to the direct causes, direct effects, and direct effects of 
direct causes of T and thus it can be used for causal dis-
covery, e.g., to reduce the number of variables an experi-
mentalist has to consider in order to discover the direct 
causes of T.  
 Finally, Markov Blanket discovery algorithms can be 
used to guide Bayesian Network learning algorithms: the 
MB(T) for all T are identified as a first step, and then used 
to guide the construction of the Bayesian Network of the 
domain; this is the approach taken in (Margaritis and 
Thrun 1999). Indeed, given the potential uses and signifi-
cance of the concept of the Markov Blanket “It is surpris-
ing … how little attention it has attracted in the context of 
Bayesian net structure learning for all its being a funda-
mental property of a Bayesian net” (Margaritis and Thrun 
1999).  
 In this paper we present novel algorithms that soundly 
induce the MB(T) from data and scale-up to thousands of 
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variables. We compare the new algorithms with other 
state-of-the-art methods for inducting the MB(T) with ex-
cellent results. The novel algorithms are particularly suited 
for the cases where the available sample size is enough to 
perform conditional independence tests condition on the 
full MB(T).  

Background 
Bayesian Networks (BN) (Neapolitan 1990) are mathe-
matical objects that compactly represent a joint probability 
distribution J using a graph G annotated with conditional 
probabilities; J and G are connected by the Markov Condi-
tion property: a node is conditionally independent of its 
non-descendants, given its parents. The MB(T) probabilis-
tically shields T from the rest of the variables and graphi-
cally it corresponds to a neighborhood of T in the BN 
graph. We will denote the conditional independence of X, 
and T given Z, as I(X ; T | Z) ≡ P(T | X, Z) = P(T | Z). 
Definitions: The Markov Blanket of a variable T, MB(T), 
is a minimal set for which I(X ; T | MB(T)), for all X ∈  V – 
{T} – MB(T) (Margaritis and Thrun 1999). A BN C is 
faithful to a joint probability distribution J over the vari-
able set V if and only if every dependence entailed by the 
graph of C is also present in J (Spirtes et al. 2000). A BN 
C faithful if it is faithful to its corresponding distribution J.  
The Markov Condition ensures that every conditional in-
dependence entailed by the graph G is also present in prob-
ability distribution J. Thus, together Faithfulness and the 
Markov Condition establish a close relationship between 
the graph G and some empirical or theoretical probability 
distribution J. In practical terms, what faithfulness implies 
is that we can associate statistical properties of the prob-
ability distribution J with properties of the graph G of the 
corresponding BN. It turns out that in faithful BNs, the set 
of parents, children, and spouses (i.e., parents of children 
of T) is the unique MB(T). An example of the Markov 
Blanket concept is displayed in Figure 1: the MB(T) is the 
set of gray-filled nodes. 

The IAMB Algorithm and Variants 
In this section several novel algorithms for discovering the 
MB(T) are presented that are sound under the following 
assumptions: (i) the data are generated by processes that 
can be faithfully represented by BNs, and (ii) there exist 
reliable statistical tests of conditional independence and 



measures of associations for the given variable distribu-
tion, sample size, and sampling of the data. We discuss the 
rationale and justification of the assumptions in the Dis-
cussion section. 
IAMB Description: Incremental Association Markov 
Blanket (IAMB) (Figure 2) consists of two phases, a for-
ward and a backward one. An estimate of the MB(T) is 
kept in the set CMB. In the forward phase all variables that 
belong in MB(T) and possibly more (false positives) enter 
CMB while in the backward phase the false positives are 
identified and removed so that CMB = MB(T) in the end. 
The heuristic used in IAMB to identify potential Markov 
Blanket members in phase I is the following: start with an 
empty candidate set for the CMB and admit into it (in the 
next iteration) the variable that maximizes a heuristic func-
tion f(X ; T | CMB). Function f should return a non-zero 
value for every variable that is a member of the Markov 
Blanket for the algorithm to be sound, and typically it is a 
measure of association between X and T given CMB. In 
our experiments we used as f the Mutual Information simi-
lar to what suggested in (Margaritis and Thrun 1999, 
Cheng et al. 1998): f(X ; T | CMB) is the Mutual Informa-
tion between S and T given CMB. It is important that f is an 
informative and effective heuristic so that the set of candi-
date variables after phase I is as small as possible for two 
reasons: one is time efficiency (i.e., do not spend time con-
sidering irrelevant variables) and another is sample effi-
ciency (do not require sample larger than what is abso-
lutely necessary to perform conditional tests of independ-
ence). In backward conditioning (Phase II) we remove 
one-by-one the features that do not belong to the MB(T) by 
testing whether a feature X from CMB is independent of  T 
given the remaining CMB.  
IAMB Proof of Correctness (sketch): If a feature be-
longs to MB(T), then it will be admitted in the first step 
because it will be dependent on T given any subset of the 
feature set because of faithfulness and because the MB(T) 
is the minimal set with that property. If a feature is not a 
member of MB(T), then conditioned on MB(T), or any su-
perset of MB(T), it will be independent of T and thus will 
be removed from CMB in the second phase. Using this 
argument inductively we see that we will end up with the 
unique MB(T). 
InterIAMBnPC Description: The smaller the condition-
ing test given a finite sample of fixed size, the more accu-
rate the statistical tests of independence and the measure of 
associations. The InterIAMBnPC algorithm uses two 
methods to reduce the size of the conditioning sets: (a) it 
interleaves the admission phase of IAMB (phase I) with 
the backward conditioning (phase II) attempting to keep 
the size of MB(T) as small as possible during all steps of 
the algorithm’s execution. (b) it substitutes the backward 
conditioning phase as implemented in IAMB with the PC 
algorithm instead (Spirtes et al. 2000), a Bayesian Network 
learning algorithm that determines direct edges between 
variables in a more sample–efficient manner, and that is 
sound given the stated assumptions (see next section); 
thus, interIAMBnPC is expected to be more sample-
efficient than IAMB. In addition, interIAMBnPC is still 

practical because PC is running only on small sets of vari-
ables, not the full set of variables. 
InterIAMBnPC Proof of Correctness (sketch): All par-
ents and children of T will enter CMB by the property of f 
mentioned above. Since PC is sound, it will never remove 
these variables. Since all effects enter CMB, conditioned 
on them, all the spouses (parents of children) of T will be 
dependent with T given CMB and enter CMB at some 
point. Again, because PC is sound, it will not permanently 
remove them (they may be removed temporarily but will 
enter CMB at a subsequent iteration; we do not elaborate 
due to space limitations), and they will be included in the 
final output. 

Two other IAMB variants we experimented with are in-
terIAMB and IAMBnPC which are similar to interI-
AMBnPC but they employ only either interleaving the 
first two phases or using PC for the backward phase, re-
spectively. Even though IAMB provides theoretical guar-
antees only in the sample limit, the quality of the output 
and the approximation of the true MB(T) degrades grace-
fully in practical settings with finite sample (see experi-
mental section). IAMB and its variants are expected to 
perform best in problems where the MB(T) is small rela-
tively to the available data samples, but the domain may 
contain hundreds of thousands of variables. 
Time Complexity: Typically, the performance of BN-
induction algorithms based on tests of conditional inde-
pendence is measured in the number of association calcula-
tions and conditional independence tests executed (both 
operations take similar computation effort and we will not 
distinguish between the two) (Spirtes et al. 2000, Cheng et 
al. 1998, Margaritis and Thrun 1999). Phase II performs 
O(|CMB|) conditional independence tests. Phase I performs 
N association computations for each variable that enters 
CMB, where N is the number of variables, and so the algo-
rithm performs O(|CMB|×N) tests. In the worst case 
|CMB|=N giving an order of O(N2). In all experiments of 
IAMB we observed |CMB|=O(MB(T)) giving an average 
case order of O(MB(T) ×N) tests. For Mutual Information 
there exists an algorithm linear to the size of the data 
(Margaritis and Thrun 1999). The other IAMB variants 
have higher worst-case time complexity (since for example 
the PC is exponential to the number of variables) trading-
off computation for higher performance. Nevertheless, 
since in our experiments we observed that the size of the 
CMB is relative small to the total number of variables, the 
additional time overhead of the variants versus the vanilla 
IAMB was minimal. 

Other Markov Blanket algorithms 
To our knowledge, the only other algorithm developed 
explicitly for discovering the MB(T) and that scales-up is 
the Grow-Shrink (GS) algorithm (Margaritis and Thrun 
1999). It is theoretically sound but uses a static and poten-
tially inefficient heuristic in the first phase. IAMB en-
hances GS by employing a dynamic heuristic. The Koller-
Sahami algorithm (KS) (Koller and Sahami 1996) is the 
first algorithm for feature selection to employ the concept 



of the Markov Blanket. KS is a heuristic algorithm and 
provides no theoretical guarantees.  
 The GS algorithm is structurally similar to IAMB and 
follows the same two-phase structure. However, there is 
one important difference: GS statically orders the variables 
when they are considered for inclusion in phase I, accord-
ing to their strength of association with T given the empty 
set. It then admits into CMB the next variable in that order-
ing that is not conditionally independent from T given 
CMB. One problem with this heuristic is that when the 
MB(T) contains spouses of T. In that case, the spouses are 
typically associated with T very weakly given the empty 
set and are considered for inclusion in the MB(T) late in 
the first phase (associations between spouses and T are 
only through confounding /common ancestors variables, 
thus they are weaker than those ancestors’ associations 
with T). In turn, this implies that more false positives will 
enter CMB at phase I and the conditional tests of inde-
pendence will become unreliable much sooner than when 
using IAMB’s heuristic. In contrast, conditioned on the 
common children, spouses may have strong association 
with T and, when using IAMB’s heuristic, enter the CMB 
early. An analogous situation is in constraint satisfaction 
where dynamic heuristics typically outperform static ones. 
We provide evidence to support this hypothesis in the ex-
periment section. We would also like to note that the proof 
of correctness of GS is indeed correct only if one assumes 
faithfulness, and not just the existence of a unique MB(T) 
as is stated in the paper: a non-faithful counter example is 
when T is the exclusive or of X and Y on which the GS will 
fail to discover the MB(T), even though it is unique. 
 The KS algorithm (Koller, Sahami 1996) is the first one 
that employed the concept of the Markov Blanket for fea-
ture selection. The algorithm accepts two parameters: (i) 
the number v of variables to retain and (ii) a parameter k 
which is the maximum number of variables the algorithm 
is allowed to condition on. For k=0 KS is equivalent to 
univariately ordering the variables and selecting the first v. 
The Koller-Sahami paper does not explicitly claim to iden-
tify the MB(T); however, if one could guess the size of the 
MB(T) and set the parameter v to this number then ideally 
the algorithm should output MB(T). Viewed this way we 
treated the KS algorithm as an algorithm for approximating 
the MB(T) using only v variables. Unlike IAMB, the 
IAMB variants, and GS, the KS algorithm does not pro-
vide any theoretical guarantees of discovering the MB(T).  
 PC (Spirtes et al. 2000) is a prototypical BN learning 
algorithm that is sound given the stated set of assumptions. 
PC learns the whole network (and so it does not scale-up 
well) from which the MB(T) can be easily extracted as the 
set of parents, children, and spouses of T. The PC algo-
rithm starts with a fully connected unoriented Bayesian 
Network graph and has three phases. In phase I the algo-
rithm finds undirected edges by using the criterion that 
variable A has an edge to variable B iff for all subsets of 
features there is no subset S, s.t. I(A ; B | S). In phases II 
and III the algorithm orients the edges by performing 
global constraint propagation. IAMBnPC could be 

thought of as improving GS by employing a more effi-
cient, but still sound, way (i.e., PC) for the backward 
phase and a dynamic heuristic for the forward phase, or as 
improving PC by providing an admissible first phase heu-
ristic that focuses PC on a local neighborhood. 
 We now provide a hypothetical trace of IAMB on the 
BN of Figure 1. We assume the reader’s familiarity with 
the d-separation criterion (Spirtest et al. 2000) which is a 
graph-theory criterion that implies probabilistic conditional 
independence. In the beginning CMB is empty and the 
variable mostly associated with T given the empty set will 
enter CMB, e.g. W. In general, we expect the variables 
closer to T to exhibit the highest univariate association. 
Conditioned on W, the associations of all variables with T 
are calculated. It is possible that O will be the next variable 
to enter, since conditioned on W, O and T are dependent. 
After both W and O are in CMB, Q is independent of T and 
cannot enter CMB. Let us suppose that R enters next (a 
false positive). It is guaranteed that both U and V will also 
enter the CMB because they are dependent with T given 
any subset of the variables. In the backwards phase, R will 
be removed since it is independent of T given both U and 
V. Notice that in GS, O and Q are the last variables to be 
considered for inclusion, since they have no association 
with T given the empty set. This increases the probability 
that a number of false positives will have already entered 
CMB before O is considered, making the conditional inde-
pendence tests unreliable. 

Experimental Results 
In order to measure the performance of each algorithm, we 
need to know the real MB(T) to use it as a gold standard, 
which in practice is possible only in simulated data. 
Experiment Set 1: BNs from real diagnostic systems (Ta-
ble 1). We tested the algorithm on the ALARM Network 
(Beinlich et al. 1989), which captures the structure of a 
medical domain having 37 variables, and on Hailfinder, a 
BN used for modeling and predicting the weather, pub-
lished in (Abramson et al. 1996), with 56 variables. We 
randomly sampled 10000 training instances from the joint 
probability that each network specifies. The task was to 
find the Markov Blanket of certain target variables. For 
ALARM the target variables were all variables, on which 
we report the average performance, while for Hailfinder 
there were four natural target nodes corresponding to 
weather forecasting, on which we report the performance 
individually. The performance measure used is the area 
under the ROC curve (Metz 1978). The ROCs were cre-
ated by examining various different thresholds for the sta-
tistical tests of independence. For the PC algorithm 
thresholds correspond to the significance levels of the G2 
statistical test employed by the algorithm, whereas for the 
GS and the IAMB variants we consider I(X ; T | CMB) iff 
Mutual-Info(X ; T | CMB) < threshold. For the KS we tried 
all the possible values of the parameter v of the variables to 
retain to create a very detailed ROC curve, and all values k 
that have been suggested in the original paper.  



Experiment Set 2: Random BNs (Table 2). We generated 
three random BNs with 50, 200, and 1000 nodes each, 
such that the number of the parents of each node was ran-
domly and uniformly chosen between 0 and 10 and the 
free parameters in the conditional probability tables were 
drawn uniformly from (0, 1). The Markov Blanket of an 
arbitrarily chosen target variable T contained 6 variables 
(three parents, two children, and one spouse) and was held 
fixed across the networks so that consistent comparisons 
could be achieved among different-sized networks. Each 
network adds more variables to the previous one without 
altering the MB(T). We ran the algorithms for sample sizes 
in the set {1000, 10000, 20000} and report the average 
areas under the ROCs curve in Table 2. We remind the 
reader that the released version of the PC algorithm does 
not accept more than 100 variables, hence the missing cells 
in the figure. We see that the IAMB variants scale very 
well to large number of variables both in performance, and 
in computation time (IAMB variants took less than 20 
minutes on the largest datasets, except interIAMBnPC 
which took 12 hours; the other methods took between one 
and five hours; all experiments on an Intel Xeon 1.8 and 

2.4 GHz Pentium). We also generated another three BNs 
using the same approach as before, but this time the MB(T) 
contained four spouse nodes (instead of one), one parent, 
and two children nodes (for a total of seven nodes). 
Interpretation: The results are shown in Tables 1 and 2. 
The best performance in its column is shown in bold (PC is 
excluded since it does not scale-up). We did not test 
whether the faithfulness assumption holds for any of the 
above networks, thus the results are indicative of the per-
formance of the algorithms on arbitrary BNs. Whenever 
applicable, we see that PC is one of the best algorithms. 
Experiment Set 1 (Figure 3(a)): IAMBnPC and interI-
AMBnPC were the best algorithms on average. All IAMB 
variants are better than GS, implying that a dynamic heu-
ristic for selecting variables is important. KS for k=0 is 
equivalent to ordering the variables according to univariate 
association with the target, a standard and common tech-
nique used in statistical analysis. This algorithm performs 
well in this set; however, the behavior of KS is quite un-
stable and non-monotonic for different values of k which is 
consistent with the results in the original paper (Koller, 
Sahami 1996). Experiment Set 2 (Figure 3(b)): We expect 

 ALARM HAILFINDER  
  Target 

1 
Target 
2 

Target 
3 

Target 
4 

Aver-
age 

IAMB 86.70 96.30 96.23 97.12 78.04 90.88 
interIAMB 86.70 96.30 96.23 97.12 78.04 90.88 
interIAMBnPC 90.50 100.00 100.00 97.12 78.04 93.13 
IAMBnPC 89.30 100.00 100.00 97.12 78.04 92.89 
GS 80.59 96.30 77.67 72.12 68.04 78.94 
KS, k=0 82.82 100.00 92.31 88.73 97.60 92.29 
KS, k=1 80.56 70.28 47.76 82.84 67.40 69.77 
KS, k=2 82.14 99.53 42.95 45.59 75.00 69.04 

U

R

XV

T

ZW

S

O

Q

M  
 PC 95.20 99.07 98.11 81.73 96.08 94.04 

Figure 1: A example of a graph of a 
Bayesian Network. The gray-filled 

nodes are the MB(T). 

Table 1: Experiments on Bayesian Networks used in real Decision Support 
Systems. 

 
 MB with one spouse, three  

parents,and two children 
MB with four spouses, 

one parent, and two children 
 50 

Vars 
200 
Vars 

1000 
Vars 

Average 50 
Vars 

200 
Vars 

1000 
Vars 

Aver-
age 

IAMB 94.53 91.00 91.43 92.32 85.05 87.11 87.90 86.68 
interIAMB 91.93 91.00 91.43 91.46 85.05 87.11 87.90 86.68 

interIAMBnPC 93.67 94.43 88.77 92.29 87.71 88.01 73.69 83.14 
IAMBnPC 94.43 91.60 91.67 92.57 90.48 85.63 85.70 87.27 

GS 86.36 90.46 83.07 86.63 74.58 74.57 73.51 74.22 
KS, k=0 95.93 96.17 96.15 96.08 74.72 73.39 73.06 73.72 
KS, k=1 79.91 71.13 73.37 74.80 85.94 79.92 79.08 81.65 
KS, k=2 86.11 87.35 86.94 86.80 85.88 82.24 81.40 83.17 

Phase I (forward) 
CMB = ∅ ,  
While CMB has changed 

Find the feature X in V-
CMB-{T} that maxi-
mizes f(X ; T | CMB)) 

If not I(X ; T | CMB ) 
Add X to CMB 

End If 
End While 
Phase II (backwards) 
Remove from CMB all vari-

ables X, for which I(X ; T 
| CMB-{X}) 

Return CMB 
PC 95.60 - - - 96.43 - - - 

Figure 2: The IAMB 
algorithm. 

Table 2: Experiments on randomly generated Bayesian Networks 



the simple static heuristic of GS, and KS for k=0, to per-
form well in cases were most members of MB(T) have 
strong univariate association with T, which is typically the 
case when there are no spouses of T in MB(T). Indeed, in 
the first random BN, where there is only one spouse, both 
of these algorithms perform well (Figure 3(b)). However, 
in the second random BN there are four spouses of T, 
which seriously degrades the performance of KS for k=0 
and GS (Figure 3(b)). KS for k=1,2 has unpredictable be-
havior, but it always performs worse than the IAMB vari-
ants. The IAMB variants and the PC algorithm still per-
form well even in this trickier case. 
Other Results: Due to space limitations it is impossible to 
report all of our experiments. Other experiments we ran 
provide evidence to support another important hypothesis: 
IAMB’s dynamic heuristic is expensive in the data sample, 
therefore it is possible that for small sample sizes the sim-
plest heuristics of KS for k=0 and GS will perform better, 
especially when there are not that many spouses in the 
MB(T). Other experiments, suggest that the performance of 
the PC significantly degrades for small (less than 100 in-
stances) data samples. This is explained by the fact that PC 
has a bias towards sensitivity: it removes an edge only if it 
can prove it should be removed, and retains it otherwise. 
Below a certain sample size the PC is not able to remove 
most edges and thus reports unnecessarily large Markov 
Blankets.  
 Given the above empirical results, we would suggest to 
the practitioners to apply the algorithms mostly appropriate 
for the available sample and variable size, i.e., the PC al-
gorithm for sizes above 300 training instances and for 
variable size less than 100, GS and KS for k=0 (i.e., uni-
variate association ordering) for sizes less than 300, and 
the IAMB variants for everything else.  

Discussion and Conclusion 
Discussion: The MB(T) discovery algorithms can also be 
used for causal discovery. If there exists at least one faith-
ful BN that captures the data generating process then the 
MB(T) of any such BN has to contain the direct causes of 
T. It thus significantly prunes the search space for an ex-
perimentalist who wants to identify such direct causes. In 
fact, other algorithms can post-process the MB(T) to direct 
the edges and identify the direct causes of T without any 
experiments, e.g. the PC of the FCI algorithm; the first 
assumes causal sufficiency while the second does not 
(Spirtes et al. 2000). In (Spirtes et al. 2000) specific condi-
tions are discussed under which faithfulness gets violated. 
These situations are relatively rare in the sample limit as 
supported by the work of (Meek 1995). Most BN learning 
or MB(T) identification algorithms explicitly or implicitly 
assume faithfulness, e.g., PC and GS, but also (implicitly) 
BN score-and-search for most scoring metrics (see (Heck-
erman et al. 1997)). 
Conclusions: In this paper we took a first step towards 
developing and comparing Markov Blanket identification 
algorithms. The concept of the Markov Blanket has strong 
connections with principled and optimal variable selection 

(Tsamardinos and Aliferis 2003), has been used as part of 
Bayesian Network learning (Margaritis and Thrun 1999), 
and can be used for causal discovery. We presented novel 
algorithms that are sound under broad conditions, scale-up 
to thousands of variables, and compare favorably with all 
the rest state-of-the-art algorithms that we have tried. We 
followed a principled approach that allowed us to interpret 
the empirical results and identify appropriate cases of us-
age of each algorithm. There is much room for improve-
ment to the algorithms and hopefully the present work will 
inspire other researchers to address this important class of 
algorithms. 
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