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Abstract—Finding an efficient way to discover Markov 
blanket is one of the core issues in data mining. This paper 
first discusses the problems existed in IAMB algorithm 
which is a typical algorithm for discovering the Markov 
blanket of a target variable from the training data, and then 
proposes an improved algorithm λ-IAMB based on the 
improving approach which contains two aspects: code 
optimization and the improving strategy for conditional 
independence testing. Experimental results show that λ-
IAMB algorithm performs better than IAMB by finding 
Markov blanket of variables in typical Bayesian network 
and by testing the performance of them as feature selection 
method on some well-known real world datasets. 
 
Index Terms—data mining, classification, feature selection, 
Markov blanket, IAMB algorithm 
 

I.  INTRODUCTION 

As machine learning aims to address larger and more 
complex tasks, it is the problem of centering on the most 
relevant information in a potentially overwhelming 
quantity of data that has become increasingly important. 
For instance, data mining of corporate or scientific 
records often involves dealing with both many features 
and many examples. Such data present familiar 
“dimensional curves” for classification of the target 
variable, and undermine the classification accuracy due to 
the noise of irrelevant variables. One solution is to pre-
process the dataset by selecting a minimal subset of the 
available variables and feed the selected variables into a 
preferred classifier. It demands the work on 
implementing a variable selection method. A good 
variable selection method selects an appropriate set of 
variables by pruning irrelevant ones from the dataset. 
Much effort can be seen from a large amount of literature 
on various variable selection approaches. See [1-3] for 
more details. Most variable selection methods are 

heuristic in nature. Several researchers [4-6] have 
suggested, intuitively, the Markov blanket of the variable 
to be classified T is a key concept in solving the variable 
selection problem. Markov blanket is defined as the set of 
variables conditioned on which all other variables are 
probabilistically independent of T. Thus, knowing the 
values of the Markov blanket variables renders all other 
variables superfluous in classifying T (provided one uses 
a powerful enough classifier) [7]. 

Incremental Association Markov blanket (IAMB) [8] 
is a basic algorithm to discover the Markov blanket to the 
target variable. It accepts like input a database of training 
and the target variable. This algorithm is classified inside 
of the forward strategic algorithms, because it starts with 
the empty set and adds the nodes one by one. The 
correctness of IAMB is under the assumptions that the 
learning database D is an independent and identically 
distributed sample from a probability distribution p 
faithful to a DAG G and that the tests of conditional 
independence and the measure of conditional dependence 
are correct, see the next section. 

In this paper we propose an improvement algorithm of 
IAMB: λ-IAMB. We compare the new algorithm with 
IAMB for inducting the MB (T). The experimental results 
show that the λ-IAMB algorithm performs better than 
IAMB by testing them on the ALARM dataset. In 
addition, we compare the performance of classification 
using λ-IAMB and IAMB for variable selection with 
excellent results. The experiment is under Weka 
environment. 

II.  RELATED WORK 

The Markov blanket of a attribute T, denoted by MB(T), 
is a minimal set of attributes (or features, variables, we 
use them interchangeably) conditioned on which all other 
attributes are probabilistically independent of the target T 
(Definition 1), thus, knowing the values of the MB(T) is 
enough to determine the probability distribution of T and 
the values of all other attributes become superfluous. 
Obviously, we can only use attributes in the MB(T) 

 

This work was supported by China Postdoctoral Science Foundation
(No.20080430968) 

Corresponding author: Gangyi Qian. 

JOURNAL OF COMPUTERS, VOL. 5, NO. 11, NOVEMBER 2010 1755

© 2010 ACADEMY PUBLISHER
doi:10.4304/jcp.5.11.1755-1761



instead of all the attributes for optimal classification. In 
addition, under certain conditions (faithfulness to a 
Bayesian Network) the MB(T) is the subset where are the 
parents, the children and the parents of the children of the 
target T  in the Bayesian network [8] (Fig.1). 

 

Definition 1 (Markov blanket). The Markov blanket of a 
target attribute T∈V, denoted as MB(T), is a minimal 
subset of attributes for which 

( ( ) | ( ))T V MB T T MB T⊥ − −   and  ( ),T MB T∉      

where V is the set of all attributes in the domain. Symbol 
‘⊥’ denotes independency. 

Pearl’s book Probabilistic Reasoning in Intelligent 
Systems first mentioned the concept of Markov blanket. 
Koller and Sahami [6] proposed KS algorithm for 
attribute selection, it is the first algorithm that uses 
Markov blanket concept to select attributes in the domain. 
KS accepts two parameters v and k; v indicates the 
number of attributes that will be included in the Markov 
blanket subset, k is the number of variables which will 
conditioner to v. KS algorithm uses a backward heuristic 
removing strategy which is claimed unsound and the 
output of which is an approximate Markov blanket of the 
target attribute. Margaritis and Thrun [9] proposed GS 
algorithm and use it to build Bayesian network models. 
GS is claimed to be the first sound algorithm for Markov 
blanket discovery and will output the correct Markov 
blanket of target attribute under certain assumptions. GS 
contains two phases: growing phase and shrinking phase. 
By using a static forward heuristic search strategy in 
growing phase and false positive judgment strategy in 
shrinking phase it get the unique Markov blanket of target 
attribute. However, it is indicated that in many cases 
especially under the small size dataset conditions GS 
algorithm is not faithful and it couldn’t discover the 
correct Markov blanket subset [8]. Tsamardinos and 
Aliferis [8] proposed a dynamic forward heuristic search 
strategic algorithm named IAMB algorithm which is 
similar to GS algorithm and partially solve the problems 
existed in GS. Like GS algorithm, IAMB algorithm also 

uses a two-phase approach for discovering Markov 
blankets. The only difference between them is that IAMB 
reorder the set of attributes each iteration a new attribute 
enters the blanket in the growing phase, which may get 
more accurate blankets under some conditions.  

In addition, Tsamardinos and Aliferis [8] introduced 
some variants of IAMB such as Inter-IAMB, 
InterIAMBnPC, etc. Other state-of-the-art algorithms 
such as IAMBnPC [10], HITON [7] and Fast-IAMB [11] 
are also effective algorithm for searching the Markov 
blanket of the target in the domain under certain 
conditions.  

However, those state-of-the-art algorithms including 
IAMB algorithm and its variants applied to obtain the 
Markov blanket of target attributes may not get the 
unique blanket unless some preconditions are given. Most 
of those algorithms are claimed that they are sound under 
some assumptions, listed below [8, 11]: 

a) the data are generated by processes that can be 
faithfully represented by BNs; 

b) there exist reliable statistical tests of conditional 
independence and measures of associations for the given 
variable distribution, sample size, and sampling of the 
data. 

Note that assumption a) implies there exists a faithful 
Bayesian network structure that can accurately reflect and 
express the relations among the attributes from given 
dataset. It also means that for the given dataset, the value 
distributions of all attributes can exactly reflect a single 
faithful directed graphical model, which real-world 
datasets may not well satisfied. Next we will introduce 
IAMB algorithm by interpreting the process of the 
algorithm and analyzing the existed potential problems. 
After that we will introduce a hybrid two-aspect strategy 
which can partially solve the problems and promote 
performance for the algorithm.  

III.  IAMB ALGORITHM 

The IAMB algorithm (Fig.2) discovers a unique 
Markov blanket of the target variable T once given the 
data instances. It takes an incremental strategy by starting 
an empty set and then gradually adding the Markov 
blanket elements. It consists of two phases: the growing 
phase and the shrinking phase. The growing phase looks 
for the nodes which have more dependence with the 
target variable T known the MB(T) as many as possible. 
The heuristic method used in IAMB to identify potential 
Markov blanket members in the growing phase is related 
to a heuristic function f (X; T|MB(T)), which should 
return a non-zero value for every variable that is a 
member of the Markov blanket for the algorithm to be 
sound, and typically it is a measure of association 
between X and T given MB(T). Generally, this operation 
is done using an information-theoretic heuristic function 
CMI (conditional mutual information) [5, 9]. To decide 
which variable shall be included into the Markov blanket, 
we use a threshold to consider if the one that owns the 
maximum conditional mutual information obtained 

 
 

Figure 1. Markov blanket of T: a Bayesian network case. 
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means dependency or independency. The growing step 
terminates when no more new variables are added into 
the Markov blanket. It implies that the set is complete and 
no more variable could contribute the knowledge to the 
target variable T given the current blanket.  

As the computation of conditional information relies 
on the set of Markov blanket that is formed as far (line 3), 
the false positives occurs in the growing phase. A 
variable that owns the maximum conditional mutual 
information given the known Markov blanket is included 
in the current step; however, it would not be the one 
when the Markov blanket evolves over time. Thus, it is 
necessary to have the shrinking step to remove false 
positives from the current blanket. 

The shrinking step tests the conditional independence. 
We remove one-by-one the features that do not belong to 
the MB(T) by testing whether a variable X from MB(T) is 
independent of T given the remaining MB(T). As 
mentioned above, we consider X ⊥ T | MB(T) iff CMI(X ; 
T | MB(T)) < threshold. Then the algorithm returns MB(T) 
as the Markov blanket of the target variable T. 

 
IAMB(dataset D; target T) 
1:   MB(T) = ∅ 
2:   V = Set of features in D 

 Growing Phase: Add true positives to MB(T)
3:   Repeat Until MB(T) does not change 
4:     Find Xmax in V-MB(T)-{T} that maximizes 
CMI(Xmax ; T | MB(T)) 
5:     If  Xmax ⊥ T | MB(T)  Then   
6:     MB(T) = MB(T) ∪ { Xmax } 
7:     End If 

 Shrinking Phase: Remove false positives 
from MB(T) 
8:   For each X ∈ MB(T) do 
9:     If  X ⊥ T | MB(T) − {X}  Then  
10:    MB(T) = MB(T) − {X} 
11:    End if 
12:  End For 
13: Return MB(T) 

 

Figure 2. IAMB algorithm, where we consider X ⊥T | MB(T)  iff 
CMI(Xmax ; T | MB(T)) > threshold. 

We know that the correctness of the output of IAMB is 
based on the assumption that the training sample is 
enough for performing reliably the statistical tests 
required by the algorithm. But the ‘enough’ counts for the 
training samples are not known figures for us, and if the 
training samples are not enough for the reliability, some 
of the samples may obstruct the way that algorithm used 
to find a correct Markov blanket of the target T, that is, 
once IAMB puts the variable Xmax that maximizes 
CMI(Xmax ; T | MB(T)) but actually is a false positive in 
MB(T) in the current iteration, it may change the order of 
the values of the conditional mutual information in later 
iterations and enhance the opportunity that other false 
positives be added in MB(T) by the algorithm. In addition, 

similar problem also exists in the shrinking phase, so that 
the false positives may not finally be removed from 
MB(T). In that case the IAMB will be of low inefficiency 
and will not output the correct Markov blanket. 

IV. TWO-ASPECT IMPROVING STRATEGIES FOR IAMB 

In this section we propose a two-aspect improving 
strategy consisting of two improving approaches in order 
to partially resolve the problem existed in IAMB. The 
strategy contain two aspects which are: a) using entropy 
instead of conditional mutual information to measure the 
conditional independence between two variables to 
reduce the actual computational complexity. b) Refining 
the dynamic forward heuristic searching strategy to 
partially avoid the phenomenon that many false positives 
are added into the blanket occurs at some time. 

A.  Using entropy instead of CMI 
IAMB algorithm uses mutual information and 

conditional mutual information to determine whether a 
variable is independent of T. The mutual information of T 
and X is defined as: 

( ) ( )
( )

( ) ( ), 

,
; , log ,

x X t T p

p t x
MI T X p t x

p t x∈ ∈
= ∑     (1) 

It can be shown with the entropies: 

( ) ( ) ( ); | .MI T X H T H T X= −              (2) 

And the conditional mutual information of T and X 
given Z is defined as: 

( )

( ) ( )
( )

( ) ( ), 

;

,
, log

|
|

| |
,

|

z Z x X t T p

CMI T X Z

p t x z
p z p t x z

p t z x z∈ ∈ ∈

=

⎡ ⎤
⎢ ⎥
⎣ ⎦

∑ ∑
(3) 

It can be shown with the entropies: 

( ) ( ) ( ); ,| | | .CMI T X Z H T Z H T X Z= −   (4)    

Under the entropy-form (shown in equation (4)) of the 
conditional mutual information, it’s not difficult to find 
that the attribute X which owns the maximum conditional 
mutual information value with target T also owns the 
minimum entropy value with that. Note that in each 
iteration H (T | MB(T)) is calculated repeatedly, so we 
could just calculate H (T | X , MB(T)) in each iteration 
and only calculate H ( T | MB(T)) once at the beginning 
of all the iterations for current attribute and then we could 
find out the attribute Xmin which is the same with Xmax that 
IAMB owns. Here we have a theorem to describe this 
phenomenon. 

 
Theorem 1   1)  X maximizes MI (T ; X) if and only if X 
minimizes H (T | X). 
2) X maximizes CMI (T ; X | Z) if and only if X 

minimizes H(T | X , Z). 
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Proof.  If X maximizes MI (T ; X), then for any Y in the 
domain V , we have 

( ) ( ); ;MI T X MI T Y≥  
that is  

( ) ( ) ( ) ( )| |H T H T X H T H T Y− ≥ −  
then we have 

( ) ( )| | .H T Y H T X≥                    (5) 
Thus, X minimizes H (T | X), which proves 1). 
  

The proof of 2) is similar to that of 1). We do not list 
the proof here because of space limitation. We will use 
these results to reduce the real computational complex in 
practice in our algorithm. 

B. Refining the dynamic forward heuristic searching 
strategy 

IAMB algorithm considers whether X and T are 
independent by calculating the conditional mutual 
information between them. An existing problem is that 
variable that maximizes the conditional mutual 
information may not be the correct one which should be a 
member of the Markov blanket of target T. It means that 
the variable is a false positive. Even more unfortunately, 
once a false positive Xfalse enters the MB(T), it may 
obstruct the next comparison by increasing the 
conditional mutual information of target T and some 
variables which have strong association with Xfalse. Thus 
the true positive may not be the one that maximizes the 
conditional mutual information and other false positive 
may enter the MB(T). This effect will continue or even be 
magnified in latter iterations. What we can do in the 
heuristic is to impair the influence brought about by the 
false positive, especially by Xfalse. We note that, in general, 
the more true positives exist in the MB(T), the smaller the 
conditional mutual information between target T and 
other outside-MB(T) variables are. In particular, if all the 
true positives are in MB(T), then given MB(T), target T 
and other outside-MB(T) variables are conditional 
independent, and the conditional mutual information 
between them should be zero in theory. Thus we consider 
that “group-enter” strategy may be an appropriate way to 
impair the negative impact brought about by those false 
positives, which means that algorithm allows one or more 
variables (more true positives, hopefully) to be added in 
the blanket in each iteration. If we see the false positives 
as noise of the dataset, then although the false positive 
may own the maximum CMI value with target variable, it 
may be more possible (hopefully) that the variable owns 
the second maximum CMI is a true positive. Based on 
our experience and the operational convenience, for each 
iteration we give the first two variables which own the 
maximum CMI with T the opportunity to enter the MB(T). 

V.  Λ-IAMB ALGORITHM 

In this section we present a new algorithm, called λ-
IAMB algorithm, which can partially solve the problem 
existed in IAMB using the two improving approaches. 

The pseudo-code of the λ-IAMB algorithm is shown in 
Fig.3. 
λ-IAMB algorithm use a coefficient λ as a threshold 

which effectively reduce the possibility that the second-
max-CMI variable is a false positive. We know that 
IAMB employs conditional mutual information to test 
independence, the CMI values of the first attribute and 
the second attribute should satisfy a certain inequality. 
Algorithm uses λ to describe this inequality relationship: 

2 1CMI( ; |  MB ( )) * CMI( ; |  MB ( ))max maxX T T X T Tλ>  (6) 

Moreover, it may make the algorithm more robust 
when face to the negative situation made by false 
positives which have entered MB(T), and the first-max-
CMI variable which is a false positive due to the 
unreliable of the dataset is an example in current iteration. 
Notice that if line 8 is false in the pseudo-code, it is 
completely the same situation that compared to the 
iterative process of IAMB. It means that for λ = 1, the 
algorithm degenerates to IAMB algorithm when the 
second-max-CMI variable is not admitted into MB(T). So 
we can see λ-IAMB as an extension of IAMB. 

 
λ-IAMB (dataset D; target T) 
1: MB(T) = ∅ 
2: V = Set of variables in D 
3: Calculates H(T); 

 Growing Phase: Add true positives to MB(T) 
4: Repeat Until MB(T) does not change 
5:   Find 1

minX in V-MB(T)-{T} that minimizes H( T 

| 1
minX , MB(T)) 

6:   Find 2
minX in V-MB(T)-{T}-{ 1

minX } that minimizes 

H( T | 2
minX , MB(T)) 

7:   If 1
minX ⊥ T | MB(T) then 

8:      If H( T | 2
minX , MB(T))- λ* H( T | 1

minX , MB(T)) 

< (1- λ) H(T |MB(T) ) and 2
minX ⊥ T | MB(T) then 

9:         MB(T) = MB(T) ∪ { 1
minX } 

10:        MB(T) = MB(T) ∪ { 2
minX } 

11:     End If 
12:  Else MB(T) = MB(T) ∪ { 1

minX } 
13:  End If 

 Shrinking Phase: Remove false positives from 
MB(T) 
14: For each X ∈ MB(T) do 
15:   If  X ⊥ T | MB(T) − {X}  then  
16:       MB(T) = MB(T) − {X} 
17:   End If 
18: End For 
19: Return MB(T) 

 

Figure 3. λ-IAMB algorithm, note that line 8 is the variant of 
equation (6). 
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From the pseudo-code we know the worst-case 
complexity of the algorithm is O(|V|2). But when 
considering the calculation of the conditional mutual 
information, the complexity is different from O(|V|2). In 
our experiment we statistic the “actual conditions” 
instead of exhausting every combination of variables’ 
values and we calculate the conditional entropy instead of 
conditional mutual information (shown in equation (5)). 
For each instance (consisting of a set of particular values 
of each variable, including t, x and mb(T))1 we statistics 
distribution for the correlative values of variables and 
then get H(t |x, mb(T)), After traversing the dataset within 
O(n2|V|) times we get the value of H(T |X, MB(T)), and if 
we add a comparison operation at the end of each 
traversal, we can get the first two variables that 
minimizes the H(T|X, MB(T)), so the worst-case 
complexity in our experiment is O(n2|V|2), where n 
denotes the total counts of the dataset. 

VI.  EXPERIMENTAL RESULTS 

Experiment Set 1: BNs from real diagnostic systems 
(Table1). We tested the algorithm on the ALARM 
Network [12] which represents the uncertain relationships 
among some relevant proposition in the intensive-care 
unit (ICU) having 37 variables. We randomly sampled 
10,000 training instances from the joint probability that 
each network specifies. The task was to find the Markov 
blanket of certain target variables. For ALARM we report 
the performance of λ-IAMB and IAMB with the same 
threshold for each variable shown in Fig.6.  

Experiment Set 2: A well-known real world dataset 
from Dutch data mining company Sentient Machine 
Research: TICDATA2. The TICDATA contains the 
complete set of possible board configurations at the end 
of tic-tac-toe games. It has 86 variables and 5822 
instances and the target variable is CARAVAN. We use 
IAMB, λ-IAMB and a well known feature selection 
method-InfoGain to select variables for classification and 
comparing the performance. In addition, we show the 
classification accuracy when no any variable is pruned 
from the dataset. We use several general classifiers such 
as Naïve Bayes [14], Id3 [15], C4.5 [16] and K2 [17]. 
The results are shown in TABLE II and Fig.4.  

Experiment Set 3: Real world dataset form the UCI 
repository [13]: ADULT dataset 3. The data set contains 
demographic information about individuals gathered from 
the Census Bureau database. The original data set had 15 
attributes in total, 9 of which were discrete and 6 
continuous. We use the discretization method in Weka to 
discretize numeric variables. Like what we do with 
TICDATA, We also use λ-IAMB, IAMB and InfoGain to 
select variables for classification and comparing the 
performance with ADULT, meanwhile we show the 
classification accuracy when no any variable is pruned 
from the dataset. We use the same classifiers as what we 
used in experiment set 2. The results are shown in 

TABLE III and Fig.5. 
Both TICDATA and ADULT are well-known real 

world datasets. Description of them are listed below. All 
experiment sets in our paper are under Weka 3.5.7 
environment. 

TABLE I.  DESCRIPTION OF THE REAL-WORLD DATASETS: TICDATA 
AND ADULT. 

Dataset Target Type Missing 
Value? 

Var. 
No.

Ins. 
No. 

TICDATA ‘CAVARAN’ nominal no 86 5822

ADULT ‘≤50K’ nominal 
numeric yes 15 32561

TABLE II.  PERFORMANCE OF CLASSIFICATION ON TICDATA WITHOUT 
PRUNING THE VARIABLES OR USING EITHER THE IMAB OR Λ-IAMB AS 

THE VARIABLE SELECTION METHOD ( THRESHOLD = 0.018, Λ = 0.5 ). 

 All (%) InfoGain 
(%) 

IAMB 
(%) 

λ-IAMB 
(%) 

Naïve Bayes 81.35 88.92 92.80 93.13 
Id3 87.50 86.00 86.74 85.90 

C4.5 93.98 94.02 94.02 94.02 
K2 90.85 93.63 92.89 93.01 

TABLE III.  PERFORMANCE OF CLASSIFICATION ON ADULT WITHOUT 
PRUNING THE VARIABLES OR USING EITHER THE IAMB OR Λ-IAMB AS 

THE VARIABLE SELECTION METHOD ( THRESHOLD = 0.025, Λ = 0.5 ). 

 All (%) InfoGain
(%) 

IAMB 
(%) 

λ-IAMB 
(%) 

Naïve Bayes 83.45 81.59 85.14 85.86 
Id3 84.62 85.76 86.87 90.56 

C4.5 87.86 85.41 85.92 86.45 
K2 84.09 81.60 85.36 84.91 

 
Figure 4. Performance of classification on TICDATA without pruning 

the variables or using either the IMAB or λ-IAMB as the variable 
selection method ( threshold = 0.018, λ = 0.5 ). 

 
Figure 5. Performance of classification on ADULT without pruning 

the variables or using either the IMAB or λ-IAMB as the variable 
selection method ( threshold = 0.025, λ = 0.5 ). 

 
1 t denotes a value of target T. Similarly to mb(T) and x. 
2 http://hcs.science.uva.nl/benelearn99/datadescription.html 
3 http://archive.ics.uci.edu/ml/datasets/Adult 
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Figure 6. Performance of λ-IAMB and IAMB with the same threshold on ALARM dataset. The notations in the chart show the most significant 

difference between λ-IAMB and IAMB. 

 
The result of the experiment set 1 (Fig.6) shows that 

although there exists some ‘little-worse’ variables, λ-
IAMB performs obviously better than IAMB with No.5, 
22 and 32 variables (as is shown by the notations in 
Fig.5). It illustrates that λ-IAMB owns a more efficient 
Markov blanket discovery strategy than IAMB.  

TABLE II and Fig.4 show that λ-IAMB owns the best 
performance when using the Naïve Bayes as the classifier, 
and owns nearly the same performance and better one 
than InfoGain and IAMB, separately, when using the 
classifier K2. While the results in TABLE III and Fig.5 
show that the performance of λ-IAMB is the best when 
using Id3 and Naïve Bayes as the classifiers.  

In average, it’s obvious that λ-IAMB algorithm owns 
the best performance among those feature selection 
methods including IAMB. 

VII.  CONCLUSION AND FUTURE RESEARCH 

Our work, including proposing λ-IAMB algorithm 
based on a two-aspect strategy and the empirical study on 
typical Bayesian network and some well-known real-
world datasets, shows that λ-IAMB algorithm is a useful 
and efficient algorithm for Markov blanket discovery to 
select most relevant features to reduce the dimension of 
the domain and promote the accuracy for the output of 
the classifiers. 

Our empirical results show that IAMB algorithm may 
induce amount of false positives into MB(T). However, λ-
IAMB algorithm has obviously reduced these negative 
cases by not only inducing first-max-CMI variable into 
MB(T) but also conditionally inducing the second-max-
CMI variables into MB(T). Meanwhile, λ-IAMB owns the 
potential faster running time than IAMB for that it allows 

one or more variables being added in the MB(T) at each 
iteration. 

In λ-IAMB algorithm how to select the coefficient λ is 
a worth-concerned work. We expect that the algorithm 
which owns the ability to select λ with self-adapting 
method will work better for variable selection task. 
Furthermore, another direction of potential future re-
search is to make the algorithm to deal with missing and 
abnormal values properly. 
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