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ABSTRACT: Bayesian Networks (BNs) have become increasingly popular over the last few decades as a tool 

for reasoning under uncertainty in fields as diverse as medicine, biology, epidemiology, economics and the social 

sciences. This is especially true in real-world areas where we seek to answer complex questions based on 

hypothetical evidence to determine actions for intervention. However, determining the graphical structure of a 

BN remains a major challenge, especially when modelling a problem under causal assumptions. Solutions to this 
problem include the automated discovery of BN graphs from data, constructing them based on expert knowledge, 

or a combination of the two. This paper provides a comprehensive review of combinatoric algorithms proposed 

for learning BN structure from data, describing 74 algorithms including prototypical, well-established and state-

of-the-art approaches. The basic approach of each algorithm is described in consistent terms, and the similarities 

and differences between them highlighted. Methods of evaluating algorithms and their comparative performance 

are discussed including the consistency of claims made in the literature. Approaches for dealing with data noise 

in real-world datasets and incorporating expert knowledge into the learning process are also covered. 
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1. INTRODUCTION 

The achievements of black-box machine learning, such as neural networks, are undeniable and 

have contributed to a renewed interest in machine learning and artificial intelligence in general. 

Nevertheless, it is now well understood that black-box solutions that are restricted to predictive 

optimisation are unsuitable to inform decision making in domains that require transparency 

and tractability, such as in government policy and healthcare. The recent book by Pearl and 

Mackenzie (2018) highlights the need for models to be capable of reasoning under causal 

representation, in order to offer solutions that go beyond prediction. They illustrate this by 

presenting a ladder of causation that consists of three levels: 

• Level 1: Models restricted to associational relationships, or are capable of generating 

predictions only; e.g., “What symptoms should we expect to observe given disease 

𝐴?”. 

• Level 2: Models that involve some form of causal representation and can answer 

questions about interventions; e.g., “What effect would taking drug 𝐴 have on 

symptoms 𝐵 given that they are caused by disease 𝐶?”. 

• Level 3: Models that offer a complete form of causal representation and can answer 

questions about causation that extend to counterfactual reasoning; e.g., “If I had taken 

drug 𝐵 instead of drug 𝐴, would my symptoms caused by disease 𝐶 be less severe?” 

Pearl and Mackenzie also refer to the three above levels as seeing, doing and imagining, 

respectively. The Bayesian network (BN) framework that Pearl described a few decades back 

(Pearl, 1985, 1988) enables us to answer questions up to and including Level 3, although this 

requires that the BN model is employed under causal assumptions; also referred to as a ‘causal 

BN’. 

A BN is a probabilistic graphical model which provides a powerful general approach 

especially suited to modelling complex non-deterministic systems. A BN offers a compact 

probabilistic representation of the system and provides a means of applying probability theory 

to large collections, sometimes thousands or more, of variables. They have been used in many 

different domains, for example, in protein (Sachs et. al., 2005) and gene (Imoto et. al., 2004) 

networks in biology, pyschosis (Moffa et. al, 2017) and cancer care (Sesen et. al., 2013) in 

healthcare, engineering fault diagnosis (Cai et. al., 2017), and air pollution modelling (Vitolo 

et. al., 2018). Koller and Friedman (2009) and Darwiche (2009) provide two excellent 

introductions to the theory behind, and use of, BNs. 

A BN consists of graph which shows the direct dependence relationships between 

variables, or in a causal BN, direct cause and effect relationships. The BN also defines 

parameters which specify the form and the strengths of these relationships. Determining these 

parameters is generally much easier than recovering the graph accurately and so we focus here 

on the latter. The graph may be specified by human experts in a domain of interest, but here, 

we describe structure learning algorithms which aim to learn the graph from data. We focus on 

combinatoric algorithms where the approach is to search or constrain the finite discrete space 

of possible graphs in some way. This paper aims to provide intuitive descriptions of a 

comprehensive range of these algorithms from the earliest, but often still competitive, 

algorithms, to some of the most recent advances. 

Inevitably, in a field as broad and rapidly developing as this, we have had to omit, or 

only briefly refer to, some aspects of structure learning. Fortunately, there are other recent 

survey papers that cover some of these aspects more completely. For example, the paper by 
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Glymour et al. (2019) provides more coverage of functional causal models where assumptions 

about the functional form of the effect, causes and noise relationships can be used to deduce 

causal relationships. Vowels et al. (2021) concentrate on approaches which treat structure 

learning as a continuous optimisation problem, optimising an objective function and handling 

the acyclicity constraint as a continuous function, and Zanga et. al. (2022) cover algorithms 

which learn from mixed observational and experimental data, and those which learn cyclic 

graphs. Moraffah et al. (2021) and Noguiera et al. (2022) deal with structure learning from 

time-series data which we do not cover in this paper.   

The paper is structured as follows: the next section covers some preliminaries about 

BNs, Section 3 covers constraint-based learning, Section 4 score-based learning, and Section 

5 hybrid learning and some non-combinatorial approaches. Figure 6 provides an overview of 

the evolution of structure learning algorithms that are covered in this paper, and will be 

referenced in subsequent sections. Section 6 covers various practical considerations when 

applying these algorithms to synthetic and real data, including how to evaluate their output, as 

well as a discussion of comparative reviews of algorithm performance. Section 6 also discusses 

some of the main approaches these algorithms may incorporate to handle noise in the data,  

methods for incorporating expert knowledge into the structure learning process, some open-

source software packages, and some guidelines on choosing algorithms. Lastly, we provide our 

concluding remarks in Section 7. 

2. PRELIMINARIES 

A Bayesian Network, ℬ , is defined by a tuple consisting of a Directed Acyclic Graph (DAG) 

𝐺, and a set of parameters 𝚯, defining the strength and the shape of the relationships between 

variables (we shall denote sets in boldface throughout): 

 

ℬ = (𝐺, 𝚯) 

 

The DAG, 𝐺, consists of a set of nodes (also known as vertices) 𝑿, each of which corresponds 

to one of the 𝑛 variables under consideration, 𝑿 = {𝑋1, … , 𝑋𝑛}, and a set of directed edges (or 

arcs) 𝑬, so that: 

𝐺 = (𝑿, 𝑬) 

 

We will use plain capital letters to represent individual variables or nodes, e.g. 𝐴, 𝑌, 𝑋𝑖 . A 

directed edge, for example 𝐴 ⟶ 𝐵, represents a direct conditional relationship between 𝐴 and 

𝐵, or under a causal assumption, means that 𝐴 is a direct cause of 𝐵. The BN may simply be 

considered as a compact representation of the conditional independence relations in 

observational data, and in this non-casual interpretation, it may be used to infer conditional and 

marginal distributions in the observational data to provide predictive analysis. However, if we 

interpret the BN to be a causal BN, then the BN is a unique DAG that enables us to reason 

about intervention and understand the system being modelled at a deeper level. Where we have 

a directed edge 𝐴 ⟶ 𝐵 in a graph, we say that 𝐴 is a parent of 𝐵, or equivalently, 𝐵 is a child 

of 𝐴. 
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Figure 1 shows a DAG representing a simple model of two causes of 

(lung) cancer and two effects of cancer. It encapsulates the 

relationships between the variables, in particular the conditional 

dependence and independence relations between the variables. 

Conditional probability tells us, for example, the probability that the 

person will have a cloudy X-ray given that we know they have 

Cancer, written as 𝑃(𝑋𝑅𝑎𝑦 | 𝐶𝑎𝑛𝑐𝑒𝑟)1  where “|” means “given”. 

Conditional independence tells us which variables are irrelevant to 

that probability. For example,  

𝑃(𝑋𝑅𝑎𝑦 | 𝐶𝑎𝑛𝑐𝑒𝑟, 𝑆𝑚𝑜𝑘𝑒𝑟) = 𝑃(𝑋𝑅𝑎𝑦 |𝐶𝑎𝑛𝑐𝑒𝑟)  

 

tells us that the probability of a cloudy X-Ray is independent of whether Smoker is true given 

that we know the person has Cancer. The symbol “⟘” means “is independent of” and so this is 

written as: 

𝑋𝑅𝑎𝑦 ⊥ 𝑆𝑚𝑜𝑘𝑒𝑟 | 𝐶𝑎𝑛𝑐𝑒𝑟. 

 

Figure 2 shows the three causal classes possible with three variables, together with all the 

conditional independence or dependence relations between 𝐴 and 𝐶 given 𝐵 that they entail. 

The DAGs in Figure 2(a) and (b) entail the same conditional independence relationship which 

means they cannot be distinguished by their conditional independence relations solely from 

observational data. When this is the case, we say that they belong to the same Markov 

Equivalence Class (MEC, but simply referred to as equivalence class from now on). However, 

in Figure 2(c), 𝐴 and 𝐶  are independent but become dependent given 𝐵  (indicated by the 

symbol “⊥/ ”). This kind of relationship is known as explaining away and cannot be represented 

in undirected probabilistic graphs. A node which has multiple parents is known as a collider. 

The configuration shown in Figure 2(c), where 𝐵 is a collider, and there is no edge between 𝐴 

and 𝐶, will be referred to here as a v-structure, although other authors use the term unshielded 

collider. 

 

Probabilistic graphical models represent conditional independence through the notion 

of graphical separation. For example, Cancer “separates” Smoker from XRay in the graph in 

Figure 1. DAGs use a special form of graphical separation known as d-separation to represent 

conditional independence relationships. D-separation is defined as follows (Pearl, 1988): If 𝑋 

and 𝑌 are nodes in DAG 𝐺 , a subset of the remaining nodes, 𝑺, d-separates 𝑋 from 𝑌 if 𝑺 

blocks all paths between 𝑋 and 𝑌. Each path between 𝑋 and 𝑌 is blocked by 𝑺 if at least one 

of the nodes between 𝑋 and 𝑌 on that path meets one of the following conditions, either:  

 

 
1 We use 𝑃(𝑋𝑅𝑎𝑦 | 𝐶𝑎𝑛𝑐𝑒𝑟) as a shorthand for the conditional probability distribution over all values of 𝑋𝑅𝑎𝑦 

and 𝐶𝑎𝑛𝑐𝑒𝑟, that is, 𝑃(𝑋𝑅𝑎𝑦 = 𝑐𝑙𝑜𝑢𝑑𝑦 | 𝐶𝑎𝑛𝑐𝑒𝑟 = 𝑡𝑟𝑢𝑒), 𝑃(𝑋𝑅𝑎𝑦 = 𝑐𝑙𝑒𝑎𝑟| 𝐶𝑎𝑛𝑐𝑒𝑟 = 𝑡𝑟𝑢𝑒) etc. 

Figure 1 – Hypothetical DAG 

on Cancer 

Figure 2 – Causal classes containing three variables, and their corresponding conditional independence 

relationships. 
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• it is a collider and neither it, nor any of its descendants, are in 𝑺; 

• or, it is not a collider and it is in 𝑺 

If 𝑺 does d-separate 𝑋 and 𝑌, we say that 𝑺 is a Sepset (also referred to as cut-set or separating 

set) for 𝑋 and 𝑌. Figure 3 presents four examples of applying the d-separation rules to examine 

whether 𝑋 and 𝑌 are d-separated, where the different conditioning sets are indicated by shaded 

nodes. Paths which are not blocked are known as active paths and are shown by green arrows, 

and conditioning sets which are minimal Sepsets are shaded in pink; otherwise, they are shaded 

in grey. 

 

 

 

The BN represents the set of conditional independence relationships (and implicitly 

therefore, the dependence relationships too) in the joint probability distribution over all the 

variables, 𝑃(𝑿). Two assumptions about the DAG in a BN are made: 

 

• Markov Condition – every variable 𝑋 in 𝐺 is conditionally independent of its non-

descendants given its parents. This is equivalent to saying that every conditional 

independence implied by d-separation in the DAG is present in the joint probability 

distribution 𝑃(𝑿) . Importantly, this condition means that the joint probability 

distribution 𝑃(𝑿) can be decomposed as follows (where 𝑷𝒂(𝑋𝑖) are the parents of 𝑋𝑖): 

𝑃(𝑿) = ∏ 𝑃(𝑋𝑖  | 𝐏𝐚

𝑛

𝑖=1

( 𝑋𝑖 ))  

• Minimality Condition – we cannot remove any of the edges in the DAG without the 

graph implying a conditional independence relationship that is not present in 𝑃(𝑿). 

Pearl (1988) expresses these two conditions by saying that 𝐺 is a minimal Independence-Map 

(I-map) of 𝑃(𝑿). If the DAG represents the causal structure of the variables, the Markov 

Condition is referred to as the Causal Markov Condition since it links the probabilistic and 

causal interpretations of the DAG. 

We wish to learn the BN from a set of data 𝑫, which consists of 𝑁 data instances 𝑫 =
{𝒅𝟏 , … , 𝒅𝑵}, each of which defines the value of each of the variables 𝑋1. . 𝑋𝑛 , that is 𝒅 =
{𝑥1, … , 𝑥𝑛} (lower case letters denote values or states of a variable). Discrete BNs allow 

variables which take discrete values each having a defined probability of occurring dependent 

upon the value of the parents. For example, in Figure 1, the probability of Dyspnoea occurring 

might be 0.9 if Cancer were true, but only 0.05 if Cancer were false. This set of conditional 

probabilities for a discrete variable is known as the Conditional Probability Table (CPT).  

Figure 3 - Examples illustrating the application of d-separation. 
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Linear Gaussian BNs are based on continuous variables which are assumed to follow 

Gaussian distributions. Each value of a child variable is a linear combination of its parents’ 

values plus a local noise component. These networks are parameterised with Conditional 

Probability Distributions (CPDs), as opposed to CPTs. Unless stated otherwise, we will assume 

linear relationships when we use the term Gaussian BN. Hybrid BNs support both discrete and 

continuous distributions. The most common form of hybrid BN is a Conditional Linear 

Gaussian BN (CLGBN) which allows discrete variables to be parents of a continuous variable, 

with a separate Gaussian Linear Model with different weighting coefficients for each set of 

discrete parent values (Geiger and Heckerman, 1994). While CLGBNs do not generally allow 

continuous variables to be parents of discrete ones, works such as those by Andrews et al. 

(2018) describe hybrid BNs which remove this restriction. 

Constructing a BN involves two main phases: a) determining the graphical structure 

and b) determining the parameters 𝚯. The graph and the parameters of a BN model can be 

determined by expert knowledge, learnt from data, or a combination of both. This paper focuses 

on the problem of learning the structure of BNs from data, or from both data and expert 

knowledge.  

Learning the structure of a BN represents an NP-hard problem partly because the 

solution space of graphs grows super-exponentially with the number of variables. Robinson 

(1973) showed that the recurrence relation: 

 

|𝐺𝑛| = ∑(−1)𝑖−1 (
𝑛

𝑖
) 2𝑖(𝑛−𝑖)|𝐺𝑛−𝑖|

𝑛

𝑖=1

 

 

computes the number of possible DAGs for 𝑛 variables, |𝐺𝑛|, with |𝐺0| defined as 1. Using 

this recurrence formula, Table 1 illustrates how the number of possible DAGs grows super-

exponentially as 𝑛 increases. Clearly, a naïve exhaustive search is not a solution for any 

problem with a reasonable number of variables.  

 

 
Table 1 - Number of directed graphs, directed acyclic graphs, and the percentage of directed graphs which are 

acyclic for different number of variables. 

Number of 

variables, 𝑛 

Number of directed graphs  

( 3𝑛(𝑛−1)/2) 

Number of 

DAGs, |𝐺𝑛| 
Percentage of directed 

graphs which are acyclic2 

2 3 3 100.0% 
3 27 25 92.59% 
4 729 543 74.49% 
5 59,049 29,281 49.59% 
6 1.4349 x 107 3.7815 x 106 26.35% 
7 1.0460 x 1010 1.1388 x 109 10.89% 
8 2.2877 x 1013 7.8730 x 1011 3.42% 

 

In general, structure learning algorithms fall into two main classes. The first class is 

constraint-based methods that eliminate and orientate edges based on a series of conditional 

independence (CI) tests. The second class, score-based methods, represent a traditional 

machine learning approach where the aim is to search over different graphs maximising an 

objective function. The graph that maximises the objective function is returned as the preferred 

graph. Additionally, hybrid algorithms that combine score-based and constraint-based 

approaches are often viewed as a third class of structure learning. Chickering et. al. (1994) 

 

 
2 This calculation assumes that the directed graph has at most one arc between each pair of nodes. 
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demonstrate that score-based learning is NP-hard, and Chickering et al. (2004) show that 

constraint-based learning is as well. This is true even under favourable conditions such as 

limiting the number of parents to 3 and having a constant time method of computing scores 

from the data. 

 

3. CONSTRAINT-BASED LEARNING 

Constraint-based learning uses CI tests on the data to determine the conditional independence 

relationships between the variables under investigation, and hence construct a graph consistent 

with the data. Constraint-based learning is often assumed to discover causal relationships under 

the assumptions of causal faithfulness and causal sufficiency which we cover later in this 

section. As the simple examples in Figure 2 have already shown, a set of independence 

relationships may be consistent with multiple DAGs. Hence, rather than producing a single 

DAG, constraint-based algorithms return the set of DAGs consistent with the independence 

relationships in the data. That is, the equivalence class referred to in Section 1. 

Verma and Pearl (1990) show that two DAGs belong to the same equivalence class if 

they have the same adjacencies (same skeleton) and the same set of v-structures. The 

adjacencies and v-structures are represented by a Partially Directed Acyclic Graph (PDAG) 

which has a mixture of directed and undirected edges, with the directed edges indicating the v-

structures. Figure 4(a) shows three DAGs which entail the same set of independence 

relationships even though the arrow orientations vary between 𝐴, 𝐵 and 𝐶. Figure 4(b) shows 

the corresponding PDAG, with directed edges indicating the v-structure 𝐵 ⟶ 𝐷 ⟵ 𝐶 . 

Implicit in that PDAG is that 𝐵 − 𝐷 − 𝐸 and 𝐶 − 𝐷 − 𝐸 are not v-structures, so we can deduce 

that there must be a directed edge 𝐷 ⟶ 𝐸, and filling in all the additional implicit directed 

arrows such as this one creates a Complete PDAG (CPDAG), as shown in Figure 4(c)3. The 

CPDAG represents the equivalence class. A directed edge in the CPDAG means that all the 

equivalent DAGs must have that same directed edge, but undirected edges in the CPDAG 

indicate that the equivalent DAGs can have a directed edge in either direction. 

 

 

 
3 PDAGs are also referred to as rudimentary patterns (Verma and Pearl, 1990), and CPDAGs are referred to as 
completed patterns (Verma and Pearl, 1990), sometimes simply patterns (Spirtes and Glymour, 1991), or even 

essential graphs (Andersson et al., 1997) or maximally orientated graphs (Meek, 1995). 

Figure 4 - Illustration of the equivalence classes, PDAGs and CPDAGs, based on an example in Verma and 

Pearl (1990). 
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We noted in the Preliminaries that two assumptions are made when formally defining a 

Bayesian Network: the Markov and Minimality Conditions. To recap, this means that all 

conditional independence relationships implied from the DAG by d-separation are present in 

the probability distribution. In general, however the converse is not necessarily true, in that 

there may be conditional independence relationships present in the probability distribution that 

are not reflected by the DAG. If this is the case, we say that the DAG and the probability 

distribution are unfaithful to one another. 

Figure 5 shows an example in which the network is unfaithful. Applying d-separation 

rules to the DAG would indicate that 𝐴 and 𝐶 are not independent. However, the particular 

values chosen for the CPTs shown give rise to a probability distribution where 𝐴 and 𝐶 are 

independent. Thus, there is an independence in the probability distribution which is not 

reflected by the DAG, and so it is unfaithful. In other words, this example shows that it is 

possible to have causation without association. Note that constraint-based algorithms do often 

make the additional assumption that all independence relationships present in the distribution 

are reflected in the DAG. In this case, we say that the DAG and distribution are faithful to each 

other, or that the DAG is a perfect map (P-map) of the 

distribution. 

The next subsection of this section describes 

the CI tests used to determine the set of independence 

relationships, and the remaining three subsections 

each discuss a group of constraint-based algorithms. 

Subsection 3.2 describes the prototypical constraint-

based algorithms that learn the graph structure 

globally and make the assumption of causal 

sufficiency which is also explained there. Subsection 

3.3 describes local learning algorithms which learn the 

graph structure local to each variable which can then 

be merged to produce the overall graph. Finally, 

subsection 3.4 describes algorithms which assume the 

existence of latent variables (i.e., causal insufficiency) 

and which are represented by a new kind of graph 

covered in that subsection. The main constraint-based 

algorithms covered in these subsections are shown in 

red hues in Figure 6, which also illustrates the evolution of structure learning algorithms 

covered in this review. Lastly, Table 2 summarises the constraint-based algorithms covered in 

terms of whether they are global or local, the type of output4 they produce, and the key 

assumptions the algorithms make. Note that faithfulness assumptions that are stronger than the 

normal are marked in red text, and those that are weaker marked in blue text.  

 

 
4 Table 2 reports the type of output produced by the algorithm in the original paper cited as the reference in the 

table. For most of the local learning algorithms, this output was a set of local structures such as Markov 

Blankets, rather than a whole integrated graph. However, when these algorithms have subsequently been 

incorporated into software packages, for example, Inter-IAMB in the bnlearn software package (Scutari, 2021) 
these local structures may be merged, and the output would then be a whole graph, typically a CPDAG. 

 

Figure 5 - Example unfaithful network. 
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Figure 6 - The evolution of BN structure learning algorithms across all classes of learning. 
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Table 2 - Characteristics of the constraint-based algorithms reviewed, ordered chronologically. Red text represents stronger faithfulness assumptions, and blue text, weaker 

than usual faithfulness assumptions 

Abbreviation Algorithm Name / Description Reference 

Global or 

Local Type of output 

Faithfulness 

assumptions 

Causal sufficiency 

assumed 

SGS Spirtes-Glymour-Scheines Spirtes et al., 1990 Global CPDAG complete yes 

PC Peter and Clark Spirtes and Glymour, 1991 Global CPDAG complete yes 

FCI Fast Causal Inference Sprites et al., 1999 Global PAG complete no 

GS Grow-Shrink Margaritis and Thrun, 2000 Local CPDAG complete yes 

TPDA 
Three Phase Dependency 

Algorithm 
Cheng et al., 2002 Global CPDAG monotonic yes 

HITON Hiton (Greek for blanket or cover) Aliferis et al., 2003 Local Parents and children complete yes 

IAMB 
Incremental Association Markov 

Blanket 
Tsamardinos et al., 2003 Local Markov Blankets complete yes 

Inter-IAMB Interleaved-IAMB Tsamardinos et al., 2003 Local Markov Blankets complete yes 

MMPC Max-Min Parents Children Tsamardinos et al., 2003 Local Parents and children complete yes 

MMMB Max-Min Markov Blanket Tsamardinos et al., 2003 Local Markov Blankets complete yes 

Fast-IAMB Fast IAMB Yaramakala and Margaritis, 2005 Local Markov Blankets complete yes 

CPC Conservative PC Ramsey et al., 2006 Global CPDAG with unfaithful triples marked adjacency yes 

RAI 
Recursive Autonomy 

Identification 
Yehezkel and Lerner, 2009 Global CPDAG complete yes 

SI-HITON-PC 
Semi-interleaved Hiton 

Parents&Children 
Aliferis et al., 2010 Local Parents and children complete yes 

RFCI Really Fast Causal Inference Colombo et al., 2012 Global PAG complete no 

CFCI 
Conservative Fast Causal 

Inference 
Colombo et al., 2012 Global PAG adjacency no 

FCI+ Fast Causal Inference+ Claassen et al., 2013 Global PAG complete no 

PC-Stable Peter and Clark - Stable Colombo and Maathuis, 2014 Global 
CPDAG with conflicting v-structures 

marked 
complete yes 

FCI-Stable Fast Causal Inference Stable Colombo and Maathuis, 2014 Global PAG complete no 

VCSGS Very Conservative SGS Spirtes and Zhang, 2014 Global Not implemented triangle yes 

PC-Max Peter and Clark - MAX Ramsey, 2016 Global CPDAG complete yes 

MGM-FCI-
MAX 

Mixed Graphical Model - FCI - 
MAX 

Raghu et al., 2018 Global PAG complete no 

PC-CS PC – Complex Surveys Marella and Vicard, 2022 Global CPDAG complete no 
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3.1. Determining Conditional Independence 

CI tests check whether nodes 𝐴 and 𝐵 are conditionally independent given a conditioning set 

of nodes 𝑺 = {𝑆1, … , 𝑆𝑞} where 𝑞 ranges over the number of nodes in the conditioning set. In 

other words, it decides whether 𝑺 will be a Sepset for 𝐴 and 𝐵 in the learnt graph. Although 

we generically describe these as tests of conditional independence, the same tests are also used 

when 𝑺 = ∅; that is, testing whether 𝐴 and 𝐵 are unconditionally independent. These tests rely 

on setting an arbitrary threshold used to determine conditional independence, and can only 

identify conditional independence relationships present in the dataset which may not 

necessarily reflect those present in the true distribution. Therefore, we must recognise that these 

CI tests can make “mistakes”, and that these errors are more likely to occur with smaller sample 

sizes. Minimising the effects of these errors is an important consideration when designing 

constraint-based algorithms because if an edge is mistakenly removed from the graph at an 

early stage in the discovery process, this is likely to cause the discovery of incorrect edges at a 

later stage. 

The most commonly used CI tests for discrete BNs are the 𝐺2 and 𝜒2 statistical tests 

and mutual information (MI), whereas for Gaussian BNs, Fisher’s z-test is frequently used. CI 

tests such as 𝐺2 and 𝜒2 assume a null hypothesis that 𝐴 and 𝐵 are conditionally independent 

given 𝑺. The tests produce a test statistic which can then be used to estimate how likely, defined 

by a p-value, that the observed data is, given the null hypothesis. If the p-value is below a 

predefined significance level, 𝛼, typically chosen as 0.05, the null hypothesis is rejected and it 

is assumed 𝐴 and 𝐵 are conditionally dependent given 𝑺. Conversely, if the p-value is above 

𝛼, the null hypothesis cannot be rejected and we assume 𝐴 and 𝐵 are conditionally independent 

given 𝑺. The general form of the 𝐺2 test statistic is: 

 

𝐺2 = 2 ⋅ ∑ 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 ∙ ln [
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑
] 

 

which when applied to test the conditional independence of discrete variables 𝐴 and 𝐵 given 

conditioning set 𝑺 = {𝑆1, … , 𝑆𝑞} becomes (Spirtes et al., 2000): 

 

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 =  𝑁𝑎𝑏𝑠 , and 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 =  
𝑁𝑏𝑠⋅𝑁𝑎𝑠

𝑁𝑠
, so 𝐺2 =  2 ∑ 𝑁𝑎𝑏𝑠 ln [

𝑁𝑎𝑏𝑠 𝑁𝑠

𝑁𝑏𝑠  𝑁𝑎𝑠
] 

𝑎,𝑏,𝑠  

 

where 𝑎, 𝑏 range over the values of 𝐴, 𝐵 respectively, and 𝑠 ranges over all the combinations 

of values of the conditioning set 𝑺. 𝑁𝑎𝑏𝑠 is the number of data cases with specific values 𝐴 =
𝑎, 𝐵 = 𝑏, 𝑺 = {𝑠1, … , 𝑠𝑞}. 𝑁𝑏𝑠 is the marginal count over all values of 𝑎 for data cases with 

𝐵 = 𝑏, 𝑺 = {𝑠1, … , 𝑠𝑞} , with 𝑁𝑎𝑠  and 𝑁𝑠  being analogous marginal counts over 𝑏  and 𝑎, 𝑏 

respectively. The degrees of freedom, 𝑑𝑓, which is required to determine the p-value from the 

test statistic is dependent upon the cardinality of the variables and is given by: 

 

𝑑𝑓 = (|𝐴| − 1)(|𝐵| − 1) ∏ |𝑆𝑖

𝑞

𝑖=1

| 

 

where |𝐴|, |𝐵|, |𝑆𝑖| are the number of distinct values that nodes 𝐴, 𝐵, 𝑆𝑖 can take respectively. 

𝑑𝑓 is defined here under the assumption that none of the values of 𝑁𝑎𝑏𝑠 is zero, that is, every 

possible combination of values is present in the data. However, it is likely that some 
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combinations of values will be absent with limited sample sizes, and so Sprites et al. (2000) 

suggest a heuristic of reducing 𝑑𝑓 by 1 for every combination of values where 𝑁𝑎𝑏𝑠 is zero. 

The 𝜒2 CI test is similar, but with the test statistic defined as: 

 

𝜒2 = 2 ⋅ ∑
(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑)2

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑
 

 

Another CI test for discrete BNs is mutual information (MI) which measures the 

amount of information shared between two variables (Cheng et al., 1997). The mutual 

information between two variables 𝐴 and 𝐵 is: 

 

𝑀𝐼(𝐴, 𝐵) = ∑ 𝑃(𝑎, 𝑏) ∙ 𝑙𝑛 [
𝑃(𝑎, 𝑏)

𝑃(𝑎)𝑃(𝑏)
]

𝑎,𝑏

 

 

where 𝑃(𝑎, 𝑏)  is shorthand for 𝑃(𝐴 = 𝑎, 𝐵 = 𝑏) , and similarly for 𝑃(𝑎) , and 𝑃(𝑏) . 

Conditional mutual information is defined as: 

 

𝑀𝐼(𝐴, 𝐵 | 𝑺) =  ∑ 𝑃(𝑎, 𝑏 | 𝒔) ⋅ 𝑙𝑛

𝑎,𝑏,𝑠

[
𝑃(𝑎, 𝑏 | 𝒔)

𝑃(𝑎 | 𝒔) ⋅ 𝑃(𝑏 | 𝒔)
] 

 

where 𝑃(𝑎, 𝑏 | 𝒔) is shorthand for 𝑃(𝐴 = 𝑎, 𝐵 = 𝑏 | {𝑆1 = 𝑠1, … , 𝑆𝑞 = 𝑠𝑞}), and similarly for 

𝑃(𝑎 | 𝒔) and 𝑃(𝑏 | 𝒔). A value of 0 for 𝑀𝐼(𝐴, 𝐵 | 𝑺) indicates that there is no information flow 

between 𝐴  and 𝐵  when conditioned on 𝑺 , that is, they are conditionally independent. In 

practice a threshold value 𝜖 is chosen so that if 𝑀𝐼(𝐴, 𝐵 | 𝑺) <  𝜖 , conditional independence 

is assumed. Variable 𝜖 may be given an arbitrary small value such as 0.01 (Cheng at al., 1997) 

or it may be estimated by comparing the predictive accuracy using different values (Cheng and 

Greiner, 1999). If we rewrite the frequencies used in the definition of the 𝐺2 test statistic as 

probabilities, we see that it only differs from mutual information by a scaling factor: 

 

𝐺2 = 2 ⋅ ∑ 𝑁𝑎𝑏𝑠 ⋅ 𝑙𝑛 [
𝑁𝑎𝑏𝑠 ⋅ 𝑁𝑠

𝑁𝑎𝑠 ⋅ 𝑁𝑏𝑠
]

𝑎,𝑏,𝑠

 

𝐺2 = 2 ⋅ ∑ 𝑁 ⋅ 𝑃(𝑎, 𝑏, 𝒔) ⋅ 𝑙𝑛 [

𝑁𝑎𝑏𝑠
𝑁𝑠

⁄

𝑁𝑎𝑠
𝑁𝑠

⁄ ⋅
𝑁𝑏𝑠

𝑁𝑠
⁄

]

𝑎,𝑏,𝑠

 

𝐺2 = 2 ⋅ 𝑁 ⋅ ∑ 𝑃(𝑎, 𝑏, 𝒔) ⋅ 𝑙𝑛 [
𝑃(𝑎, 𝑏|𝒔)

𝑃(𝑎 | 𝒔) ⋅ 𝑃(𝑏 | 𝒔)
]

𝑎,𝑏,𝑠

=  2 ⋅ 𝑁 ⋅ 𝑀𝐼(𝐴, 𝐵 | 𝑺) 

 

In the case of Gaussian BNs, Fisher’s Z-test is commonly used to test the null hypothesis that 

the partial correlation coefficient is zero. Fisher’s Z-test uses Fisher’s Z-transformation which 

is defined as: 

 

𝑍̂ =
1

2
ln

1 + 𝜌̂𝑎𝑏|𝒔

1 − 𝜌̂𝑎𝑏∣𝐬
, 

 

where 𝜌̂𝑎𝑏|𝒔 is the partial correlation coefficient between values 𝑎 of node 𝐴 and values 𝑏 of 

node 𝐵, given values 𝒔 of the conditioning set S. The value 𝜌̂𝑎𝑏|𝒔 can be computed recursively 
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with conditioning sets of increasing size (Anderson, 1962; de la Fuente, 2004). This 

transformed version of the partial correlation 𝑍̂, follows a normal distribution with: 

 

a mean of 
1

2
ln

1+𝜌̂ab∣𝐬

1−𝜌̂ab|𝐬
 and standard deviation 𝜎, of 

1

√𝑁−q−3
, 

 

where q is the number of variables in the conditioning set. We can, therefore, use a normal 

distribution Z-score to compute the p-value of obtaining the computed partial correlation 

coefficient given the null hypothesis of zero partial correlation (𝑍0 = 0): 

 

𝑍 =
𝑍̂𝑡𝑟𝑎𝑛 − 𝑍0

𝜎
=

1

2
√𝑁 − 𝑞 − 3 ln

1 + 𝜌̂𝑎𝑏|𝒔

1 − 𝜌̂𝑎𝑏|𝒔
 

 

The test statistics and associated p-values described in this section are usually used in 

a binary decision to decide whether variables are conditionally independent or not. However, 

some algorithms also use them as a measure of the degree of association, or dependence or 

independence between variables. For example, a high mutual information value indicates that 

two variables are strongly associated with each other. 

3.2. Global Discovery Algorithms 

This group of constraint-based algorithms are known as global discovery algorithms since they 

attempt to learn the graph structure as a whole rather than first learning the local structure 

relating to each variable separately as the local constraint-based algorithms do (see subsection 

3.3). Both these global and the local constraint-based algorithms make one further assumption 

known as causal sufficiency, which is of importance if we wish to interpret the BNs causally. 

This assumption means there are no latent (unmeasured) variables that would affect the causal 

relationships. For example, variables that are a common cause of two or more of the measured 

variables 𝑿, which are widely known as latent confounders. 

3.2.1. SGS Algorithm 

The SGS algorithm (Spirtes et. al., 1990) is rather inefficient but is of interest since many 

constraint-based algorithms build upon its approach. SGS relies on two key theorems derived 

from the definition of Bayesian Networks (Verma and Pearl, 1990) that apply to faithful and 

causally sufficient BNs: 

 

1. if 𝐴 ⊥/ 𝐵 | 𝑺 for every subset 𝑺 ⊆ 𝑿 ∖ {𝐴, 𝐵} then 𝐴 and 𝐵 are adjacent in the graph 

(“𝑿 \ {𝐴, 𝐵}” means set 𝑿 with elements 𝐴 and 𝐵 removed); 

2. if 𝐴 and 𝐵, and 𝐵 and 𝐶 are adjacent in the graph, but 𝐴 and 𝐶 are not adjacent, and if 

𝐴 ⊥/ 𝐶 | 𝑺 ∪ 𝐵 for any subset 𝑺 ⊆ 𝑿 ∖ {𝐴, 𝐵, 𝐶} in the DAG, then 𝐴, 𝐵, 𝐶 form a v-

structure 𝐴 ⟶ 𝐵 ⟵ 𝐶  

SGS starts from a complete (i.e., there is an edge between every pair of nodes) undirected graph 

on the node set 𝑿 and learns the Markov equivalence class in three phases: 

 

1. Adjacency phase: making use of rule 1 above, for each pair of nodes 𝐴, 𝐵 this phase 

performs a CI test on 𝐴 and 𝐵 conditional on every possible subset 𝑺 of the remaining 

nodes. If conditional independence occurs for any set 𝑺, the edge between 𝐴 and 𝐵 is 

removed. This phase produces the graph skeleton. 
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2. V-structure phase: using rule 2 above, for every triple 𝐴, 𝐵, 𝐶 in the skeleton where 𝐴, 𝐵 

and 𝐵, 𝐶 are adjacent pairs, and 𝐴 and 𝐶 are not adjacent, perform CI tests on 𝐴 and 𝐶 

conditional on every possible subset 𝑺, of the remaining nodes where 𝑺 contains 𝐵. If 

𝐴 and 𝐶 are conditionally dependent given for every subset 𝑺, then mark 𝐴 − 𝐵 − 𝐶 as 

a v-structure 𝐴 ⟶ 𝐵 ⟵ 𝐶. This phase produces the PDAG. 

3. Orientation propagation phase: for every undirected edge in the PDAG, check if one 

of the orientations would: 

a. introduce a cycle into the graph, or 

b. create a new v-structure. 

If so, then that orientation is forbidden and so the opposite orientation can be assumed. 

These rules are applied repeatedly until no more edges can be orientated, producing the 

CPDAG. 

 

The first phase in the SGS algorithm is particularly expensive. In the worst case, it requires 

𝑛(𝑛 − 1) ⋅ 2𝑛−3  CI tests, which makes it exponential in 𝑛  and therefore infeasible for a 

reasonable number of variables. However, SGS is relatively stable (Spirtes et al., 2000), in that 

errors made in CI tests tend not to be highly amplified by subsequent steps. A CI mistake in 

phase 1 may result in an extraneous or missing edge, but this would not affect other decisions 

made in that phase. However, these adjacency errors and further errors in identifying v-

structures may propagate out to cause further orientation errors.  

3.2.2. The PC algorithm 

The adjacency phase in SGS exhaustively tests every possible conditioning set for each pair of 

nodes. This is computationally expensive and also means that many high order CI tests (CI 

tests applied to large parent-sets) are performed which are unreliable because the individual 

elements of the CI test are based on relatively few data instances. To counter these issues, the 

PC algorithm by Spirtes and Glymour (1991) performs the adjacency phase with conditioning 

sets of increasing size – checking all pairs of nodes 𝐴, 𝐵 at a particular conditioning set size 

and removing edges 𝐴 − 𝐵 if a Sepset is found before moving to higher conditioning sets. 

Moreover, the PC adjacency phase makes use of the result that the minimum conditioning set 

that d-separates two nodes must be a subset of the union of the parents of those nodes under 

the assumptions of faithfulness and causal sufficiency (Verma and Pearl, 1990). Thus, the 

algorithm need only consider conditioning sets of nodes which are adjacent to 𝐴 and 𝐵. This 

condition has no benefit initially since PC starts from a complete graph, but it reduces the 

number and order of the CI tests that are performed as the adjacency phase progresses and 

edges are removed.  

To improve computational efficiency, the v-structure phase makes use of the Sepsets 

identified in the adjacency phase; if the Sepset for 𝐴 and 𝐶 identified in the adjacency phase 

for an unshielded triple 𝐴 − 𝐵 − 𝐶 does not contain 𝐵, then this identifies it as the v-structure 

𝐴 ⟶ 𝐵 ⟵ 𝐶 . The PC algorithm then performs orientation propagation using the “Meek 

Rules” (Meek, 1995). The complexity of the PC algorithm is bounded by (Spirtes et al., 2000): 

 

𝑛2(𝑛 − 1)𝑠𝑚𝑎𝑥−1

(𝑠𝑚𝑎𝑥 − 1)!
 

 

where 𝑠𝑚𝑎𝑥 is the maximum size of any Sepset. This complexity bound is hard to quantify, but 

PC is polynomial given a limit on node degree (Claassen et. al., 2013). Although far more 

efficient, the PC algorithm is less stable than SGS. For example, edges mistakenly removed in 
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the adjacency phase can result in other edges being mistakenly retained later on in the 

adjacency phase. 

3.2.3. The Conservative PC (CPC) algorithm 

The PC and SGS algorithms assume complete faithfulness, and one direction in which 

constraint-based algorithms have developed is to weaken this assumption. The Conservative 

PC (CPC) algorithm (Ramsey et al., 2006) does this by considering how faithfulness is assumed 

in the adjacency and orientation phases of the PC algorithm separately, using the terms 

adjacency-faithfulness and orientation-faithfulness respectively. It is shown that if only 

adjacency-faithfulness is assumed, the v-structure phase can detect and mark unfaithful v-

structures. To do this, CPC considers all Sepsets of 𝐴 and 𝐶 to determine if 𝐴 − 𝐵 − 𝐶 is a v-

structure – marking it as such only if none of the Sepsets contain 𝐵. Moreover, unless the 

“vote” is unanimous, the triple is marked as unfaithful. Thus, CPC is more cautious about 

orientating edges than PC, hence the name “conservative”. Simulations on a dataset of sample 

size 1,000 showed CPC to be only slightly slower than PC, but generating fewer erroneous 

edge orientations. 

3.2.4. The Very Conservative SGS (VCSGS) algorithm 

Zhang and Spirtes (2008) showed that a restricted assumption of faithfulness could be applied 

to the adjacency phase too. This weakened faithfulness condition is a combination of the 

minimality condition described in the Introduction, and triangle faithfulness which only 

assumes faithfulness on fully connected triples. With this weakened faithfulness assumption 

alone, it is possible to identify all other faithfulness violations. Spirtes et al. (2014) describe a 

version of SGS, the Very Conservative SGS, which would implement this weaker faithfulness 

assumption, though it was left as an open question whether it could be made efficient enough 

to be viable. It does not seem as though this algorithm has been implemented. 

3.2.5. The PC-Stable Algorithm 

Colombo and Maatthuis (2014) considered the effect of mistaken CI test decisions arising from 

limited sample sizes and, in particular, their interaction with the order in which the CI tests are 

performed. They showed that the output from all three phases of the original PC algorithm 

(including related algorithms such as FCI and RFCI which we discuss below) is sensitive to 

the order in which CI tests are performed. The order in which CI tests are performed is 

generally an artefact of the way the algorithm is implemented; e.g., it may be related to the 

lexicographic ordering of the node names, or in the order the variables appear in the data. They 

proposed modifications to each phase of the original PC algorithm (subsection 3.2.2) to remove 

this order dependence. Figure 8 presents the pseudo-code for the PC-Stable algorithm which 

has the following three phases: 

 

• Adjacency: in the original PC algorithm, mistaken deletions of edges propagate by 

erroneously reducing the conditioning sets available in subsequent CI tests at a given 

conditioning set size. This was remedied by only recomputing adjacencies before 

processing all the CI tests at each conditioning set size, in contrast to the original PC 

algorithm where edges are removed and adjacencies adjusted as soon as an 

independence relationship is detected. This is accomplished by taking a copy of the 

adjacencies at lines 5 and 6 of the pseudo-code and using this stable copy to determine 

possible conditioning sets ignoring the fact that edges might have been deleted in lines 

8 to 10. 

• V-structure: the original PC algorithm re-uses the Sepset used to determine that the 

triple is unshielded, to also decide whether that triple is a v-structure. Given that the 
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original algorithm can use invalid Sepsets in the adjacency phase, this also means its 

sensitivity to node ordering can adversely affect v-structure 

orientation. PC-Stable follows the approach adopted by CPC 

(subsection 3.2.3) by considering all the Sepsets of 𝐴 and 𝐶 in triple 

𝐴 − 𝐵 − 𝐶 to decide where it is a v-structure. However, PC-Stable 

takes a less conservative approach than CPC, which they term 

majority rule, whereby the triple is marked as a v-structure if a 

majority of the Sepsets do not contain the middle node 𝐵 . 

Orientation conflicts are identified during this phase and marked by 

bi-directional edges, as shown in line 13 to 19 in the pseudo-code. 

• Orientation propagation: mistaken CI tests mean that situations like 

that shown in Figure 7 can occur; i.e., the two v-structures imply 

conflicting orientations for edge 𝐵 − 𝐸. The original PC algorithm would arbitrarily 

choose one orientation based on node processing order. PC-Stable instead marks this 

conflicted edge with a bidirectional arrow. 

 

Figure 7 - 

Orientation 

conflict. 

  algorithm PC-STABLE is 

      input: dataset D 

      output: mixed-graph G  

 

      // order-independent adjacency phase 

 

 1    G := complete undirected graph  // skeleton, initially complete 

 2    sepset_size := -1               // size of CI conditioning sets 

 3    repeat 

 4        sepset_size := sepset_size + 1 

 

 5        for each node in G do 

 6            adj[node] := neighbours(node, G) 

 

 7        for each edge (X, Y) in G where |adj[X]| > sepset_size do 

 

 8            for each possible sepset of X, Y of size sepset_size 

 9                if X and Y conditionally independent given sepset 

10                    delete edge from G 

 

11    until all nodes have less than sepset_size number of neighbours 

 

      // order-independent v-structure orientation phase (majority rule) 

 

12    for each unshielded_triple (X, Z, Y) in G do 

13        if majority of sepsets of X and Y do not contain Z 

14            if P → X  Z in G for any P 

15                orientate unshielded_triple as X → Z  Y in G 

16            else if Z → Y  Q in G for any Q 

17                orientate unshielded_triple as X → Z → Y in G 

18            else 

19                orientate unshielded_triple as X → Z  Y in G 

 

      // orientation propagation phase (without conflict identification) 

 

20    repeat 

21        for each triple X → Z – Y in G and X, Y not adjacent 

22            orientate as X → Z → Y 

23        for each pair X – Y in G with a parallel chain X → P → Y 

24            orientate as X → Y 

25        for each pair X – Y in G with parallel paths X – P → Y and 

                   X – Q → Y and P, Q not adjacent 

26            orientate as X → Y 

27    until no more orientations possible 

 

28    return G 

 

Figure 8 - Pseudo-code for PC-Stable algorithm. Program code keywords are coloured blue, comments in grey, 

key variables in red, and application-specific complex operations or conditions in black. Note, that for clarity, 

this variant does not identify orientation conflicts in the orientation propagation phase. 



Revision 1, October, 2022. 

 
 

17 
 

The authors compared PC-Stable to PC in a low-dimensional simulation with 50 

variables, an average neighbourhood size of 2 or 4 and 1000 rows, and in a high-dimensional 

simulation with 1000 variables, an average neighbourhood size of 2 and 50 rows. 250 random 

graphs were generated in each setting. Synthetic Gaussian variable datasets were produced for 

each graph, and twenty random orderings of variables used with each dataset. The CI test 

threshold was also varied.  

The behaviour of PC and PC-Stable was very similar in the low-dimensional 

simulation. However, in the high-dimensional one, PC-Stable learnt graphs with lower SHD 

from the true graph, and with a much smaller variance in SHD across the different dataset 

orderings. This demonstrated the improved accuracy and stability of PC-Stable over PC. PC-

Stable was between three and 13 percent slower than PC due to performing more CI tests. Most 

recent implementations of algorithms in the PC (and FCI) family employ the order-

independence strategies used by PC-Stable. 

Marella and Vicard (2022) provide a variant of PC, PC-CS, which addresses selection 

biases introduced by complex survey designs by using modified independence tests based on 

resampling techniques. The algorithm was evaluated using synthetic discrete variable datasets 

generated from random graphs. However, rows with particular values for some variables were 

preferentially included in the dataset in order to simulate the complex selection biases often 

found in survey data. The simulation then compared PC-Stable’s and PC-CS’s ability to learn 

the random graph. PC-CS produced better SHD scores than PC-Stable, but it should be noted 

that the simulations had at most 10 variables and so were somewhat limited.  

 

3.2.6. PC-MAX algorithm 

Whereas PC uses the Sepset identified in the adjacency phase, and CPC and PC-Stable use a 

voting scheme, to determine whether an unshielded triple is a v-structure, PC-MAX (Ramsey, 

2016) uses the Sepset with the highest p-value to determine this. The intuition here is that the 

Sepset with the highest p-value is the one which most strongly separates the end nodes of the 

triple, and so should be used to decide whether it is a v-structure or not. Similarly, when two 

overlapping v-structures would give rise to a bidirectional edge as shown in Figure 7, PC-MAX 

avoids that conflict by only retaining the v-structure with the highest p-value. PC-MAX also 

parallelises the adjacency and v-structure phases and adopts the strategies used in PC-Stable to 

avoid sensitivity to the order of node processing. The authors evaluated performance on 

Gaussian BNs with PC-MAX obtaining better arc orientation than both PC and PC-Stable on 

a BN with 1,000 variables. They demonstrated scalability by learning graphs with 20,000 

variables and sample size 1,000 on a powerful laptop with four dual-core processors in less 

than five minutes (Ramsey, 2016), though observed that the score-based Fast Greedy 

Equivalence Search described in subsection 4.2.2 was faster still and more accurate. 

3.2.7. Three-Phase Dependency Algorithm (TPDA) 

The Three-Phase Dependency Algorithm (TPDA) by Cheng at al. (2002) focuses on reducing 

the number of statistical tests required, performing at most 𝑂(𝑛4) of them. TPDA adopts an 

information flow perspective to learn the graph adjacencies and differs from most constraint-
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based algorithms in that it uses MI tests quantitatively as a measure of information flow along 

paths, as well as a basis for conditional independence decisions. 

Figure 9, based on an example from Cheng et al. 

(2002), illustrates a subgraph of a true network to demonstrate 

the basic principles behind TPDA. In particular, it shows how 

TPDA determines if a new edge is required between 𝑋 and 𝑌 

during its adjacency phase. We consider a point in time in the 

adjacency phase where TPDA has discovered that {𝐴, 𝐵, 𝐶, 𝐷} 

are the only shared neighbours of 𝑋 and 𝑌. Note at this point, 

TPDA has not determined the edge orientations. It checks 

whether 𝑋 and 𝑌 are conditionally independent by testing if 

𝑀𝐼(𝑋, 𝑌 | 𝑺 } < 𝜖, where 𝜖 represents a threshold negligible 

information flow. It starts by setting 𝑺 = {𝐴, 𝐵, 𝐶, 𝐷}  and 

progressively removes one node at a time from 𝑺 so that each 

time 𝑀𝐼(𝑋, 𝑌 | 𝑺 }  is reduced by the greatest amount. It 

repeats this until either a Sepset is found (in this example, it would find Sepset {𝐴, 𝐵}), or no 

Sepset is found. The latter situation means that the current graph is not sufficient to explain the 

information flow between 𝑋 and 𝑌, and hence a direct edge is required between 𝑋 and 𝑌.  

In this way, the skeleton of the graph is built up, but with a reduced bound on the 

number of CI tests. In order for this approach to be sound, a stronger form of faithfulness called 

monotone-faithfulness must be assumed which corresponds to saying that blocking a path 

between two nodes never increases the information flow between them. In more detail, TPDA 

builds the skeleton in three phases: 

 

1. Drafting: starts with an empty graph and progressively adds undirected edges between 

pairs of nodes with the highest MI scores, if there is not currently an undirected path 

between the pair. This creates a maximum spanning tree. That is, where there is one, 

and only one, path between every pair of variables and the sum of edge scores is a 

maximum. This tree is used as a good starting point for the next phase. 

2. Thickening: adds edges between non-adjacent nodes if there is no Sepset in the set of 

shared neighbours between the two nodes, as described above. 

3. Thinning: the thickening phase adds edges greedily, and so it can happen that an edge 

addition can render a previous edge addition superfluous by providing an alternative 

information flow route. The thinning phase identifies these superfluous edges by 

looking for direct edges which have parallel indirect routes that can carry the required 

information flow, and then removes the superfluous direct edge. 

TPDA then orientates edges using the v-structure and orientation phases described in the SGS 

algorithm. Notwithstanding the reduced bound on the number of CI tests required, Cheng at al. 

(2002) reported similar accuracy and efficiency results to the PC algorithm. 

 

Figure 9 – A graphical illustration of 

the process TPDA follows to 

determine whether to assign an edge 

between X and Y. 
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3.2.8. Recursive Autonomy Identification (RAI) algorithm 

Yehezkel and Lerner (2009) also concentrated on reducing the number of CI tests, although 

they focussed on the costly and unreliable high-order tests. Their Recursive Autonomy 

Identification (RAI) algorithm assumes discrete variables and faithfulness, and starts with a 

complete undirected graph. Like the PC algorithm, RAI uses CI tests of increasing order. 

However, edge orientation is undertaken after edge removal at each conditioning set size, and 

this can allow RAI to identify autonomous 

subgraphs. These can be learnt independently of 

each other through recursive calls of the algorithm. 

Figure 10, based on the example given in 

their paper, illustrates these concepts. It shows the 

state of the graph whilst learning the DAG shown in 

the inset. In particular, it shows the state after CI 

tests of order 0 have removed some edges and an 

orientation step has been performed. At this point, 

RAI is able to decompose this particular graph into 

two autonomous ancestor subgraphs marked in 

green, and a descendant autonomous subgraph 

marked in orange, which can all then be further 

refined independently by recursive calls to RAI. 

The black arrows show the edges which have been 

orientated after CI tests of order 0, and the red edges 

are undirected edges within the subgraphs which 

may be orientated after higher-order CI tests remove more edges. This decomposition allows 

the overall structure of the graph to appear early on in the learning process, and tends to avoid 

the higher cost and less reliable high-order CI tests. Whether this decomposition is possible 

depends upon the independence relationships in the data. If it is not possible, then RAI behaves 

like the PC algorithm. Nonetheless, the authors reported that RAI demonstrated higher 

structural and predictive accuracy than contemporaneous algorithms including PC, over a range 

of commonly evaluated BNs (Yehezkel and Lerner, 2009). They also reported that RAI 

conducts fewer CI tests and therefore has shorter runtimes. 

3.3. Local Discovery Algorithms 

In contrast to the global algorithms described in the previous subsection, the algorithms 

covered in this subsection learn the local skeleton relating to each variable separately. The local 

structure learnt can either be the parent and children (i.e., neighbours) of each node, 𝑇 say, 

denoted 𝑷𝑪(𝑇), or the Markov Blanket of 𝑇, denoted 𝑴𝑩(𝑇). The Markov Blanket of node 𝑇 

is defined as the minimal conditioning set for which 𝑇 is independent of all other nodes besides 

those in 𝑴𝑩(𝑇). Thus, 𝑴𝑩(𝑇) shields 𝑇 from the influence of all other variables. Assuming 

faithfulness, it can be shown that 𝑴𝑩(𝑇) consists of the parents, children, and parents of 

children (also known as spouses) of 𝑇. 

In some contexts, the individual local structure of a particular variable can be useful in 

its own right. In particular, determining the Markov Blanket of a variable provides a principled 

causal approach to feature selection, and much of the motivation for, and evaluation of, these 

local discovery algorithms has been around this use in classification problems (Aliferis et al., 

2010). However, within BN structure learning, the local skeletons are learnt for every node and 

then merged to form the whole skeleton. As we discuss here, this may be done as part of overall 

constraint-based learning algorithm, with subsequent v-structure and orientation phases 

producing a CPDAG. Local discovery algorithms may also be part of hybrid approaches which 

are discussed in section 5. 

Figure 10 - Illustration of autonomous 

subgraphs within the RAI algorithm (based on 

figure in Yehezkel and Lerner, 2009). 
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These local structures should be symmetric. That is, for example, 𝐴 ∈ 𝑷𝑪(𝐵) ⇔  𝐵 ∈
𝑷𝑪(𝐴) where 𝑷𝑪(𝐵) denotes the parents and children of node 𝐵. However, errors made by CI 

tests can mean that local structures may not be symmetric in practice. Algorithms usually 

resolve these conflicts by applying the “AND-rule”, where an edge will only be included in the 

global skeleton if the two nodes are in each other’s parent-and-child sets. More sophisticated 

symmetry correction approaches can be used however – see, for example, subsection 5.1.5. 

3.3.1. Markov Blanket algorithms 

The Grow-Shrink (GS) algorithm (Margaritis and Thrun, 2000) was the first to exploit the 

concept of a Markov Blanket to reduce the number of CI tests in the adjacency phase. It consists 

of two steps: 

 

1. Grow: for each node 𝑋  in 𝑿\{𝑇} , GS tests whether 𝑋 ⊥ 𝑇 | 𝑴𝑩(𝑇) . If not, 𝑋  is 

immediately added to 𝑴𝑩(𝑇) which grows dynamically throughout this step. Nodes 

are tested for inclusion in 𝑴𝑩(𝑇) in decreasing order of the strength of the association 

between the node 𝑋 and 𝑇, which is calculated in a pre-processing step. 

2. Shrink: the grow step may add unnecessary nodes in the Markov blankets, which this 

step removes. It checks if  𝑋 ⊥ 𝑇 | 𝑴𝑩(𝑇)\{𝑋}  for all 𝑋 ∈ 𝑴𝑩(𝑇) . If yes, 𝑋  is 

removed from 𝑴𝑩(𝑇). 

Having constructed the Markov Blanket of all nodes in 𝐺, GS performs the following steps: 

 

1. Completes the adjacency determination by removing parents of children of 𝑇 in each 

Markov Blanket 𝑴𝑩(𝑇). These are identified by having the condition 𝑋 ⊥ 𝑇 | 𝑺 for 

some 𝑺 ⊆ 𝑴𝑩(𝑇)\{𝑋}. 

2. v-structure and orientation phases similar to SGS and PC. 

Margaritis (2003) reported an overall complexity for GS of 𝑂(𝑛2 + 𝑛𝑏22𝑏) CI tests, where 

𝑏 = 𝑚𝑎𝑥𝑿(|𝑴𝑩(𝑋)|) is the size of the largest Markov Blanket. For dense networks where 

𝑏 ≈ 𝑛, this means the GS algorithm has exponential complexity, although for the more usual 

sparse networks 𝑏  can be considered a small constant and in those cases the complexity 

decreases to 𝑂(𝑛2). Margaritis (2003) reported similar adjacency performance to PC, although 

GS is said to produce better edge orientation. 

The Incremental Association Markov Blanket (IAMB) algorithm optimises Markov 

Blanket discovery so that it can handle thousands of nodes (Tsamardinos et al., 2003). The 

authors argue that GS’s Markov Blanket grow phase is suboptimal because it is slow to 

discover spouses in the Markov Blanket 𝑴𝑩(𝑇) since these often have weak association with 

𝑇. This in turn leads to more CI tests in the grow and shrink phases. Instead, they propose using 

conditional mutual information MI(X, T | MB(T) ) to determine the order in which a node 𝑋 is 

considered for inclusion into 𝑴𝑩(𝑇) during the grow phase. They also propose a variant on 

IAMB, called Inter-IAMB, which interleaves the grow and shrink phases. IAMB and Inter-

IAMB were able to handle synthetic networks with up to 1,000 nodes, offering better accuracy 

in Markov Blanket discovery than GS. 

Yaramakala and Margaritis (2005) suggested a further variant, Fast-IAMB. They 

proposed using the 𝜒2 test statistic as the metric for deciding which nodes to add to 𝑴𝑩(𝑇) 

during the grow phase. Furthermore, they argued that recomputing the statistic each time a 

node is added to 𝑴𝑩(𝑇) is expensive and so proposed adding groups of nodes to 𝑴𝑩(𝑇) 

before the test statistics are recomputed. They demonstrated similar accuracy in Markov 

Blanket identification to IAMB and Inter-IAMB, but with savings in execution time of 18-32% 

over the former, and 28-48% over the latter, together with a reduction in high-order CI tests. 
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3.3.2. Parents-and-children algorithms 

The parents and children of node 𝑇, 𝑷𝑪(𝑇) is more directly useful for skeleton learning than 

𝑴𝑩(𝑇), and can be obtained by removing the spouses from 𝑴𝑩(𝑇). However, Max-Min 

Parents Children (MMPC), HITON-PC and SI-HITON-PC algorithms learn 𝑷𝑪(𝑇) directly 

(Tsamardinos et al., 2003: Aliferis et. al, 2003; and, Aliferis et. al., 2010, respectively). Aliferis 

et al. (2010) defined a sound generic framework for learning 𝑷𝑪(𝑇) into which these three 

specific algorithms fit, and which consists of: 

 

• a strategy for inclusion of a node 𝑋 in 𝑷𝑪(𝑇), heuristically prioritised, for instance, 

based on the strength of association between 𝑋 and 𝑇; 

• an elimination strategy for removal from 𝑷𝑪(𝑇), for example, removing 𝑋 from 𝑷𝑪(𝑇) 

if 𝑋 ⊥ 𝑇 | 𝑺 for some 𝑺 ⊆ 𝑷𝑪(𝑇)\{𝑋}; 

• an approach for interleaving inclusion and elimination. For example, all candidate 

variables can first be included in 𝑷𝑪(𝑇) , and then extraneous variables can be 

eliminated, or variables can be added one at a time to in 𝑷𝑪(𝑇), with the elimination 

step performed each time a new variable is added. 

3.4. Algorithms assuming the existence of latent variables 

The algorithms considered so far have assumed causal 

sufficiency, which is unreasonable in many real-world 

situations. We now consider algorithms where this assumption 

is not made. Explicitly including latent confounders into the 

DAG might be one approach to avoiding this assumption, but 

since these confounders are unmeasured and often unknown, this 

is formidably difficult. It also risks increasing the number of 

variables so that learning becomes intractable.  

Instead, the most common approach is to learn a graph 

consisting of only the observed variables, while at the same time 

taking into account the potential existence of latent variables or 

confounders that might explain part of the effects or 

relationships between the observed variables. However, the 

semantics of DAGs are not detailed enough to represent this 

information. Figure 11(a) illustrates this issue using a causal graph of four observed variables 

{𝐴, 𝐵, 𝐶, 𝐷}, and a latent confounder 𝐿 which would entail the dependence relationships 𝐴 ⊥

𝐷 | 𝐵, 𝐴 ⊥ 𝐷 | 𝐶, and 𝐴 ⊥/ 𝐷 | 𝐵, 𝐶. If we attempt to represent this with a DAG of just the four 

observable variables, then there is no orientation of a directed edge between 𝐵 and 𝐶 that could 

entail these dependence relationships. Fig 10(b) presents an ancestral graph which, unlike 

DAGs, captures relationships due to latent confounders, and which we describe in the 

subsection that follows below. 

3.4.1. Ancestral Graphs 

Richardson and Spirtes (2002) introduced a new class of graph called an ancestral graph5 

capable of capturing the relationships between observed variables in the presence of both latent 

confounders and selection bias. The latter is the situation where the probability of inclusion of 

 

 
5 Earlier work by Spirtes et al. 1995 and 2000 represented the effect of latent and selection variables through a 
similar kind of mixed graph called an inducing path graph (IPG). Ancestral graphs are a sub-class of IPGs which 

reveal more causal information and are easier to parameterise (Zhang, 2008a). 

Figure 11 - Latent confounder. 
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a data instance in the dataset depends upon one or more latent selection variables. An example 

might be where patients in a clinical trial do not complete the trial if they become seriously ill, 

and so are not present in the dataset. Crucially, DAGs are a special case of an ancestral graph, 

and ancestral graphs are closed under conditioning and marginalisation. This means that an 

ancestral graph can be used to represent the probability distribution of a partially observed 

DAG. Ancestral graphs have three types of edge (Zhang, 2008b): 

 

• directed, e.g. 𝐴 ⟶ 𝐵: The mapping between edge types in the ancestral graph and 

relationships in the underlying DAG is given in Richardson and Spirtes (2002) but is 

somewhat complicated. We first define “𝐴 is an ancestor of 𝐵” to mean that there is a 

directed path from 𝐴 to 𝐵 with at least two directed edges. Directed edge 𝐴 ⟶ 𝐵 in the 

ancestral graph means that 𝐴 is an ancestor or parent of 𝐵 and/or a selection variable, 

and that 𝐵 is not an ancestor or parent of 𝐴 nor of a selection variable in the underlying 

DAG. Note, for example, that this edge type does not preclude a latent variable being 

the cause of both 𝐴 and 𝐵 as well (i.e., a latent confounder). 

• bidirected, e.g. 𝐴 ⟷ 𝐵: indicates that 𝐴 is not an ancestor or parent of 𝐵, 𝐵 is not an 

ancestor or parent of 𝐴, and neither are ancestors or parents of a selection variable. 

This edge type arises in the presence of latent confounders. 

• undirected, e.g. 𝐴 − 𝐵: 𝐴 is an ancestor or parent of 𝐵 or a selection variable and 𝐵 is 

an ancestor or parent of 𝐴 or a selection variable. 

As the above shows, ancestral graphs primarily provide information about the ancestral and 

parental relationships in the underlying DAG, hence their name. Figure 11(b) shows the 

ancestral graph which represents the relationships between the observed variables in Figure 

11(a). Richardson and Spirtes (2002) state two key conditions in the definition of an ancestral 

graph: 

 

• there are no partially directed cycles. A partially directed cycle consists of an anterior 

path from 𝐴 to 𝐵 together with an edge 𝐵 → 𝐴 or 𝐵 ↔ 𝐴. An anterior path from 𝐴 to 

𝐵 consists of edges with no arrows pointing towards 𝐴; 

• for any undirected edge 𝐴 − 𝐵, 𝐴 and 𝐵 should have no incoming arrows. 

Many properties of ancestral graphs flow from these two conditions. 

In particular, that there can be at most one edge between each pair of 

variables, and that marginalisation and conditioning are closed. It also 

follows that ancestral graphs encode conditional independence 

relationships through a graphical criterion called m-separation which 

is analogous to d-separation for DAGs. In an ancestral graph, 𝑺 m-

separates 𝐴 from 𝐵 if all paths between 𝐴 and 𝐵 are blocked by 𝑺. A 

path is blocked if at least one node on the path is either:  

• a collider, defined in an ancestral graph as having two 

arrowheads incident to it, and neither it, nor any of its 

descendants, are in 𝑺; 

• or, is not a collider and is in in 𝑺. 

If two nodes are not adjacent in a DAG, this implies that there is a set 

of nodes which d-separates them. However, this does not follow for 

ancestral graphs. Figure 12(a) based on Zhang (2008b) illustrates this, 

since 𝐺 and 𝐻 are not adjacent, but there is no subset of the other nodes that m-separates them. 

Figure 12 - Maximal 

Ancestral Graphs (Zhang, 

2008b). 
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Therefore, a sub-class of ancestral graphs known as Maximal Ancestral Graphs (MAG) is 

defined which does have the property that non-adjacent nodes can be m-separated. 

Equivalently, this means that every absent edge in a MAG corresponds to a conditional 

independence relationship. A MAG can always be constructed from an ancestral graph by 

adding bi-directional edges such as 𝐺 ⟷ 𝐻 in Figure 12(b).  

 In the same way that an equivalence class of DAGs may be consistent with a given set 

of independence relationships, the independence relationships with latent and selection 

variables present may be consistent with multiple MAGs. Analogously to a CPDAG, the 

equivalence class of MAGs is represented by a Partial Ancestral Graph (PAG). Constraint-

based algorithms which take account of latent confounders and selection variables generally 

produce a PAG. There are three types of endpoint possible at each end of an edge in a PAG: 

 

• an invariant arrowhead, marked as “>”, indicating that all MAGs in the equivalence 

class have an arrowhead at that endpoint; 

• an invariant tail, marked as “-”, indicating that all MAGs in the equivalence class 

have a tail at that endpoint; 

• a variant endpoint, marked as “o”, indicating that some MAGs in the equivalence 

class have an arrowhead, and others a tail, at that endpoint. 

So, for example, an edge ∘⟶ in a PAG indicates that MAGs in the equivalence class may have 

⟶ or ⟷ at that location, and similarly an edge ∘ − ∘ in the PAG indicates that MAGs in the 

equivalence class can have a ⟶, ⟵, ⟷ or − edge at that location. Note that the semantics of 

CPDAGs and PAGs are somewhat different. In particular, whereas a − edge in a CPDAG 

indicates that the edge in equivalent DAGs can be either ⟶ or ⟵, a − edge in a PAG indicates 

that the edge is − in all equivalent MAGs. 

3.4.2. Fast Causal Inference (FCI) algorithm 

Spirtes et al. (1993; 2000) described the Fast Causal Inference (FCI) algorithm for structure 

learning without assuming causal sufficiency, though the causal Markov and causal 

faithfulness conditions are still assumed. FCI produces a Partially Orientated Inducing Path 

Graph (POIPG) – an earlier representation which is slightly less informative than a PAG. In 

broad overview, FCI is similar to PC in that it first determines the adjacencies in the POIPG, 

and then orientates edges. We recall that the PC adjacency phase is optimised by using 

conditioning sets of increasing size. The PC adjacency phase also makes use of the fact that, 

for a DAG, a Sepset must be a subset of the parents of 𝐴 or 𝐵, and so it need only consider 

conditioning sets which are subsets of the neighbours of A and B. The FCI adjacency phase 

also uses conditioning sets of increasing size. However, Sepsets in a MAG are a subset of 𝑫-

𝑺𝒆𝒑(𝐴, 𝐵) (Spirtes et al., 2000, page 134) which in general contains nodes which are not 

adjacent to 𝐴 or 𝐵, as well as those that are. This necessitates a more complex strategy for 

determining adjacencies: 

 

1. Firstly, an initial skeleton is estimated considering conditioning sets that are subsets of 

the neighbours of 𝐴  or 𝐵 . In general, this skeleton will have some extraneous 

adjacencies. 

2. Secondly, a v-structure phase is performed to orientate some edges. The resulting graph 

allows us to identify nodes that are definitely not in 𝑫-𝑺𝒆𝒑(𝐴, 𝐵) and so conversely 

define a superset of 𝑫-𝑺𝒆𝒑(𝐴, 𝐵), denoted 𝑷𝒐𝒔𝒔𝒊𝒃𝒍𝒆-𝑫-𝑺𝒆𝒑(𝐴, 𝐵).  

3. Further edges may then be removed using subsets of 𝑷𝒐𝒔𝒔𝒊𝒃𝒍𝒆-𝑫 -𝑺𝒆𝒑(𝐴, 𝐵)  as 

conditioning sets. 
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V-structure identification is then repeated on this new skeleton, followed by an orientation 

phase which is much more complex in POIPGs (and PAGs) than in PDAGs. Zhang (2008b) 

augmented the process of Spirtes et. al (2000) by defining eleven orientation rules that are said 

to produce a sound and complete PAG as the sample size 𝑁 → ∞; i.e., all arrowheads and edge 

tails are said to be correct and the maximum possible number of them are determined. Colombo 

and Maatthuis (2014) applied the same techniques used in PC-Stable to amend FCI to produce 

the FCI-Stable algorithm, which removes the dependence of the result on node lexicographical 

ordering. FCI-Stable is often used as the benchmark when assessing learning in the presence 

of latent and selection variables. 

3.4.3. Really Fast Causal Inference (RFCI) algorithm 

Despite the presence of “Fast” in FCI’s name, its adjacency determination is typically far more 

resource intensive than in the PC algorithm. Really Fast Causal Inference (Colombo et al., 

2012) seeks to address this by reverting back to considering only conditioning sets that are the 

parents of nodes in the adjacency phase as PC does, and having just one adjacency phase 

instead of two as in FCI. The v-structure phase and one of the eleven orientation rules are also 

modified to avoid orientation errors that might occur due to the fact that the PC adjacency step 

is used rather than the more accurate FCI one. The authors showed that for a large class of 

graphs being learnt, this produced the same PAG that FCI would have. Moreover, when FCI 

and RFCI do produce different results, RFCI produces PAGs with extra edges, thus slightly 

weakening the meaning of an edge. On the other hand, the consequent reduction in CI tests, 

particularly high-order ones, meant that RFCI was around 250 times faster for some synthetic, 

sparse, high-dimensional graphs (n=500) with latent variables. It should be noted that all 

structural accuracy evaluations given in Colombo et al. (2012) were done against PAGs 

produced by FCI rather than against ‘ground-truth’ graphs. 

3.4.4. Conservative Fast Causal Inference (CFCI) algorithm 

As well as developing the RFCI algorithm, Colombo et al. (2012) also investigated modifying 

FCI by weakening the faithfulness assumption used to identify v-structures as Ramsey et al. 

(2006) had done in the Conservative PC algorithm. They identified v-structures as either 

ambiguous or unambiguous, and only used the latter in subsequent stages. This resulted in 

fewer arrowheads, smaller possible conditioning sets, and hence extra edges in the resultant 

PAG compared to FCI. The overall effect was to produce similar numbers of additional edges 

compared to FCI as RFCI had produced, though with edge orientation closer to FCI. 

3.4.5. Fast Causal Inference Plus (FCI+) algorithm 

Fast Causal Inference Plus (FCI+) centers around another approach to speeding up the 

adjacency phase of FCI (Claassen et al., 2013). It retains FCI’s approach of using conditioning 

sets for 𝐴, 𝐵  that incorporate ancestors as well as just parents of 𝐴 and 𝐵 , but focuses on 

efficiently identifying those cases where ancestors rather than just direct parents are in the 

Sepset. In doing so, they demonstrate that learning sparse causal graphs can be performed in 

polynomial time if a limit is placed on the node degree. In particular, in the worst case, FCI+ 

requires 𝑂(𝑛2(𝑑+2))  CI tests, where 𝑛  is the number of observed variables, and 𝑑  the 

maximum node degree. This complexity is 𝑂(𝑃𝐶2), that is the square of what the PC algorithm 

requires. Although detailed performance results are not given, the authors suggested that cases 

where Sepsets do include non-parents are relatively rare, and so performance may in practice 

be relatively close to PC. 
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3.4.6. Mixed variable types – MGM-FCI-MAX algorithm 

Raghu et al. (2018) extended FCI to support a mixture of continuous and discrete variable types 

in their MGM-FCI-MAX variant of FCI. They introduced regression-based tests to detect 

conditional independence across different variable types. Orientation accuracy is also 

improved using the Sepsets with the highest p-value to identify v-structures as described in the 

PC-MAX algorithm (see subsection 3.2.6). This produces higher numbers of CI tests compared 

to FCI, and so the adjacency and v-structure phases are parallelised to counteract this efficiency 

drawback. The code parallelisation resulted in modest time savings of the order of 30% using 

six processor cores instead of one core. The algorithm achieves more substantial savings by 

another innovation of using a Mixed Graphical Model (MGM) undirected graph as input to the 

adjacency phases rather than a complete undirected graph as is customary. An MGM is an 

undirected graph which can represent conditional independence relationships between mixed 

variable types and was generated by the algorithm described by Lee and Hastie (2015). 

Combining all these innovations, MGM-FCI-MAX was said to achieve a better balance 

between precision and recall than CFCI and FCI, as well as significantly reduced runtimes 

when applied to networks consisting of 500 variables. 

4. SCORE-BASED LEARNING 

Score-based learning represents the other main class of BN structure learning and consists of 

two elements: a) a search strategy that determines which path to follow in the search space of 

possible graphs, and b) an objective function that can be used to evaluate each graph explored 

in the search space of graphs. The overriding challenge for score-based learning is to find high, 

or ideally the highest, scoring graphs amongst the vast number of possible graphs. As we have 

seen in the Introduction, a naïve exhaustive search where every possible graph is considered 

and scored is only feasible in problems with a handful of variables.  

We first describe the objective function, which is pertinent to all score-based 

algorithms, in subsection 4.1, followed by the algorithms themselves. Score-based algorithms 

are the most diverse type of structure learning algorithms, and there are different ways one 

might choose to categorise them. Here, we opt to primarily organise them according to those 

which do not guarantee to return the highest scoring graph, known as approximate algorithms 

and described in subsection 4.2, and those which do offer that guarantee, known as exact 

algorithms and described in subsection 4.3. These different groups of score-based algorithms, 

and their evolution, are shown in different shades of blue in Figure 6. 

The other defining characteristic of score-based algorithms is the search strategy. This 

is a combination of what search space is used, how the algorithm traverses that search space, 

and how that search space might be pruned (reduced). Perhaps the simplest score-based 

algorithm one might imagine is one that starts with an empty graph and greedily adds the arc 

which most increases the score subject to the restriction that it does not create a cycle in the 

graph. This process continues until it is no longer possible to find an arc addition that increases 

the score. The search space in this simple case would be DAG space (sometimes referred to as 

structure or graph space), and the traversal method is add arc. Since the algorithm greedily 

adds arcs, there is no guarantee it will find the highest scoring graph, and so it is an approximate 

algorithm. 

Approximate algorithms which search DAG space are described in subsection 4.2.1. 

However, other kinds of search space have also been adopted. For example, subsection 4.2.2 

describes approximate algorithms which explore equivalence class space, and subsection 4.2.3 

covers those which explore node  space. Node ordering is a topological ordering of the nodes 

in the DAG such that a node can only have parents which are higher up the ordering than it. 
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Note that a node ordering exists for a directed graph if and only if it is acyclic, and that in 

general a DAG may be consistent with multiple orderings as well as an ordering may be 

consistent with multiple DAGs. 
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Table 3 - Characteristics of score-based algorithms reviewed, ordered chronologically (note that K2 is a type of Bayesian Dirichlet score). “Optimal DAG” in the final 

column refers to the DAG with the highest score over all possible DAGs with the dataset used to learn the DAG. 

Algorithm Algorithm Name or Description Reference Exact Search space Search space traversal Scores used Type of output 

K2 K2 Cooper & Herskovits, 1992 No DAG Add arc K2 DAG  

HC-Bouckaert Hill Climbing by adding arcs Bouckaert, 1994 No DAG Add arc K2 & MDL DAG 

TABU Hill Climbing with Tabu list Bouckaert, 1995 No DAG Add/remove/reverse arc K2 & BIC DAG 

HC Hill Climbing Heckerman et al., 1995 No DAG Add/remove/reverse arc BDe DAG 

MC3 Structure Monte Carlo Markov Chain Madigan et al., 1995 No DAG Add/remove arc Posterior probability DAG distribution 

GA Genetic algorithm Larranaga et al., 1996 No Node ordering Crossover and mutation operators K2 DAG 

K2SN K2 for Sorting Nodes de Campos & Puerta, 2001 No Node ordering Randomly generate ordering K2 DAG 

VNS Variable Neighbourhood Search de Campos & Puerta, 2001 No DAG Add/remove/reverse up to n arcs K2 DAG 

GES Greedy Equivalence Search Chickering , 2002 No Equivalence class Insert/Delete operations (see subsection  4.2.2) BDeu CPDAG 

Order-MCMC Order Monte-Carlo Markov Chain Friedman & Koller, 2003 No Node ordering Swap adjacent nodes Posterior probability Feature probability 

OptOrd Dynamic Programming Singh and Moore, 2005 Yes Node ordering Add/remove first node in order BDeu  Optimal DAG 

OBS Ordering Based Search Teyssier and Koller, 2005 No Node ordering Swap adjacent nodes BDeu DAG 

Hybrid MCMC Hybrid Monte Carlo Markov Chain Eaton & Murphy, 2007 No DAG Add/remove/reverse arc  BDeu Feature probability 

B&B Branch and Bound De Campos et al., 2009 Yes Directed Graph Split graph at cycles AIC or BIC Optimal DAG 

GOBNILP Globally Optimal BN using ILP Cussens, 2011 Yes Directed Graph Integer Linear Programming BDe  Optimal DAG 

GIES Greedy Interventional Equivalence Search Hauser and Bühlmann, 2012 No Equivalence class Insert/Delete operations (see subsection 4.2.2) BIC CPDAG 

BCO Bee Colony Optimisation Ji et al., 2013 No DAG Add/remove/reverse arc or swap parents K2 DAG 

A* A* Search Yuan and Malone, 2013 Yes Node ordering Add/remove first node in order BIC Optimal DAG 

CPBayes Constraint Programming Van Beek and Hoffman, 2015 Yes Node ordering Swap adjacent nodes BDeu & BIC Optimal DAG 

ASOBS Acyclic Selection OBS Scanagatta et al, 2015 No Node ordering Swap adjacent nodes BIC* DAG 

GSMAG Greedy Search for MAGs Triantafillou & Tsarmadinos, 2016 No MAG Add/remove/reverse/convert bi/directed edges BIC for MAG MAG 

Partition MCMC Partition Monte Carlo Markov Chain Scanagatta et al., 2017 No Order partitions Split/merge partition BGe DAG 

INOBS Insert Neighbourhood OBS Lee and van Beek, 2017 No Node ordering Insert/swap adjacent nodes BDeu & BIC DAG 

MINOBS Memetic Insert Neighbourhood OBS Lee and van Beek, 2017 No Node ordering Insert/swap adjacent nodes + mutation/crossover BDeu & BIC DAG 

FGES Fast Greedy Equivalence Search Ramsey et al., 2017 No Equivalence class Insert/Delete operations (see subsection 4.2.2) BDeu & BIC CPDAG  

WINASOBS Window Acyclic Selection OBS Scanagatta et al., 2017 No Node ordering Move blocks of nodes BIC DAG 

GOBNILP-DEV Globally Optimal BN using ILP Liao et al., 2019 Yes Directed Graph Integer Linear Programming BDeu & BIC Highest scoring DAGs 

K2-Improved K2 with improved ordering Behjati and Beigy, 2020 No DAG Node order, then add arc BIC DAG 

FGES-Merge Merge sub-graphs learnt with FGES Bernaola et al., 2020 No Equivalence class Insert/Delete operations (see subsection 4.2.2) BIC CPDAG 

ELSA Improved acyclicity checks in CPBayes Troser et al., 2021 Yes Node ordering Swap adjacent nodes BDeu & BIC Optimal DAG 

MAHC Model Averaging Hill Climbing Constantinou et al., 2022 No DAG Add/remove/reverse arc BIC DAG 
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This categorisation by search space is also followed for the exact algorithms. Pruning 

the search space is particularly important for exact algorithms where the pruning rules must be 

sound so as to guarantee that the pruned space still contains the optimal solution, whereas 

heuristic pruning does not offer this guarantee. Table 3 describes the search space and the 

search space traversal method used by the score-based algorithms covered in this paper, as well 

as whether they are approximate or exact algorithms. It also includes the objective function 

used in the original paper proposing the algorithm. Note that Scutari et al (2019a) argued that 

the choice of algorithm and score used should be independent, and indeed, many BN tools 

support using different score functions for each algorithm. Thus, this column does not 

necessarily indicate a fundamental restriction on the scores that can be used with each 

algorithm, rather it gives a historical view on preferred scores at the time of their introduction. 

Finally, Table 3 describes the output graph type each algorithm produces. Approximate 

algorithms will typically produce a single DAG with a locally optimum score, whereas exact 

search algorithms will return a DAG with the globally optimum (that is, highest possible) score. 

Lastly, algorithms searching in equivalence class space will return a CPDAG.  

4.1. Objective functions 

Objective functions fall under two categories: the Bayesian scores which generally focus on 

the goodness of fit and allow the incorporation of prior knowledge, and information-theoretic 

scores which explicitly consider model complexity in addition to the goodness of fit, aiming to 

avoid model overfitting. Importantly, a score is said to be decomposable if the score of a graph 

can be decomposed into a sum of scores each associated with a node in the graph. 

Decomposable scores mean that only the scores for nodes affected by a graph change in a 

search process need to be re-computed, rather than re-computing the score of the whole graph 

for every single graph modification. As a result, a decomposable score greatly improves 

computational efficiency and virtually all algorithms employ them.  

As noted in the Introduction, all the DAGs in an equivalence class entail the same 

conditional independence relationships, and therefore there is no reason for preferring one of 

them above the others on the basis of the observational data alone6. Therefore, the objective 

function is usually specified so it gives the same score to all DAGs in an equivalence class – a 

property known as score equivalence. Most commonly used scores do have this property. 

However, it is worth noting that approximate and exact algorithms that use score equivalent 

objective functions often just return a single result DAG. In that case, we should regard the 

output DAG as being a representative of the equivalence class to which it belongs. Indeed, the 

particular DAG within an equivalence class that the algorithm returns is usually just an artefact 

of the dataset (Constantinou et al., 2021b). It may depend on the lexicographical ordering of 

the variable names, or the order in which the variables in the dataset are encountered. 

 

4.1.1. Bayesian scores 

Bayesian scoring functions return a relative posterior probability for a graph conditioned on 

the data, taking into account prior beliefs about the graphical structure and/or dependence 

relationship parameters. The approach provides a theoretical underpinning to assign a posterior 

probability to each possible structure, something that constraint-based approaches do not offer. 

This in turn allows Bayesian Model Averaging (BMA) where, for instance, the posterior 

 

 
6 Note that if we have data that includes the effects of interventions then we may be able to orientate some of the 

undirected edges in the equivalence class, and come closer to fully specifying the causal DAG. 
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probability of a given feature such as a specific arc can be averaged across a set of likely 

structures. 

Most commonly, one assumes that all graph structures are equally probable a priori. 

For discrete data, we generally assume a Dirichlet prior for the parameters which gives rise to 

the well-established general Bayesian Dirichlet (BD) score which, in its general form, is not 

score equivalent (Heckerman et al., 1995). Formally, the general BD score is defined as: 

 

𝑆𝐵𝐷(𝐺, 𝐷) = 𝑙𝑜𝑔 𝑃 (𝐺) + ∑ ∑ [𝑙𝑜𝑔
𝛤(𝑁′𝑖𝑗)

𝛤(𝑁𝑖𝑗 + 𝑁′𝑖𝑗)
+ ∑ 𝑙𝑜𝑔

𝛤(𝑁𝑖𝑗𝑘 + 𝑁′𝑖𝑗𝑘)

𝛤(𝑁′𝑖𝑗𝑘)

𝑟𝑖

𝑘=1

]

𝑞𝑖

𝑗=1

𝑛

𝑖=1

 

 

where 𝛤 is the Gamma function, 𝑖 is the index over the 𝑛 variables, 𝑗 is the index over the 𝑞𝑖 

combinations of values of the parents of the node 𝑋𝑖, and 𝑘 is the index over the 𝑟𝑖 possible 

values (states) of node 𝑋𝑖. Further, 𝑁𝑖𝑗𝑘  is the number of instances in the data 𝐷 where node 𝑋𝑖 

has the 𝑘𝑡ℎ  value, and its parents have the 𝑗𝑡ℎ  combination of values, and 𝑁𝑖𝑗 = ∑ 𝑁𝑖𝑗𝑘
𝑟𝑖
𝑘=1  

representing the total number of instances in the data 𝐷 where the parents of node 𝑋𝑖 have the 

𝑗𝑡ℎ  combination of values. Lastly, 𝑁′𝑖𝑗𝑘  and 𝑁′𝑖𝑗 = ∑ 𝑁′𝑖𝑗𝑘
𝑟𝑖
𝑘=1  are defined analogously based 

on prior beliefs of these values. 𝑃(𝐺) is the prior probability of a particular graph structure 

which is generally assumed to be the same for all graphs and so can be ignored. 

A drawback of the general BD score is that it requires the user to specify the values of 

𝑁′𝑖𝑗𝑘  individually, which renders it impractical. The K2 score is the BD score where 𝑁′𝑖𝑗𝑘 =

1, (Cooper and Herskovits, 1992) and simplifies the general BD score to: 

 

𝑆𝐾2(𝐺, 𝐷) = 𝑙𝑜𝑔 𝑃 (𝐺) + ∑ ∑ [𝑙𝑜𝑔
(𝑟𝑖 − 1)!

(𝑁𝑖𝑗 + 𝑟𝑖 − 1)!
+ ∑ 𝑙𝑜𝑔( 𝑁𝑖𝑗𝑘!)

𝑟𝑖

𝑘=1

]

𝑞𝑖

𝑗=1

𝑛

𝑖=1

 

 

The K2 score also is not score equivalent. Heckerman et al. (1995) introduced the score 

equivalent BDe score, defined as 

 

𝑆𝐵𝐷𝑒(𝐺, 𝐷) = 𝑙𝑜𝑔 𝑃 (𝐺) + ∑ ∑ [𝑙𝑜𝑔
𝛤(𝑁′ ∑ 𝜃′𝑖𝑗𝑘

𝑟𝑖
𝑘=1 )

𝛤(𝑁𝑖𝑗 + 𝑁′ ∑ 𝜃′𝑖𝑗𝑘
𝑟𝑖
𝑘=1

)
+ ∑ 𝑙𝑜𝑔

𝛤(𝑁𝑖𝑗𝑘 + 𝑁′𝜃′𝑖𝑗𝑘)

𝛤(𝑁′𝜃′𝑖𝑗𝑘)

𝑟𝑖

𝑘=1

]

𝑞𝑖

𝑗=1

𝑛

𝑖=1

 

 

Here, 𝜃′𝑖𝑗𝑘  is the prior conditional probability of node 𝑋𝑖  having the 𝑘𝑡ℎ  value given the 

parents have the 𝑗𝑡ℎ  combination of values in the prior distribution. 𝑁′ is the equivalent sample 

size (ESS, also sometimes known as the imaginary sample size, ISS) and expresses our 

confidence in the prior parameters. 

The most commonly used Bayesian score is the BDeu score (Buntine, 1991; 

Heckerman et al., 1995) which is a special case of BDe where the prior parameters are set to 

𝜃′𝑖𝑗𝑘 =  1 𝑟𝑖𝑞𝑖⁄  for all 𝑖, 𝑗, 𝑘 leading to the following definition: 

 

𝑆𝐵𝐷𝑒𝑢(𝐺, 𝐷) = 𝑙𝑜𝑔 𝑃 (𝐺) + ∑ ∑ [𝑙𝑜𝑔
𝛤(

𝑁′

𝑞𝑖
)

𝛤 (𝑁𝑖𝑗 +  
𝑁′

𝑞𝑖
 )

+ ∑ 𝑙𝑜𝑔
𝛤 (𝑁𝑖𝑗𝑘 +

𝑁′

𝑟𝑖𝑞𝑖
)

𝛤 (
𝑁′

𝑟𝑖𝑞𝑖
)

𝑟𝑖

𝑘=1

]

𝑞𝑖

𝑗=1

𝑛

𝑖=1
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Cooper and Yoo (1999) define a variant of BDeu which is suitable for a mix of observational 

and interventional data where the terms that express the likelihood of the data given a particular 

structure are left out for nodes that are intervened on. They showed that using this approach, a 

combination of observational and experimental data was the most effective at identifying 

causally-related nodes. 

BDeu is score equivalent but requires the user to choose a suitable value for ESS (𝑖. 𝑒. , 𝑁′). 

Unfortunately, BDeu, and hence the graphs learnt using it, are sensitive to the value of ESS 

chosen, and it is difficult to decide what value to use for ESS. As might be expected, large 

values of ESS will tend to regularise the parameter values (Heckerman et al., 1995). What is 

rather more surprising is the effect of ESS on the learnt graph structure. Steck and Jaakkola 

(2002) found that as ESS tends to zero, arc deletion is favoured producing sparser graphs. 

Similarly, Silander et al. (2006) observed that the number of arcs rose as ESS was increased. 

Ueno (2010) provided a detailed asymptotic analysis of BDeu supported by empirical 

experiments. This work showed that different elements of BDeu responded differently to ESS, 

with the complex behaviour heavily influenced by sample size and the skewness of the 

parameters. This work also showed that the K2 score approximates the BIC asymptotically as 

the sample size tends to infinity. The author recommended that ESS be set to 1 for small sample 

sizes.  

 Correia et al. (2019) introduced the concept of a robustness interval defined as the ESS 

range over which all the graphs generated are members of the same equivalence class. They 

found that this range increased with sample size, but that large amounts of data were required 

to achieve a reasonably wide robustness interval for ESS of [0.1, 4.0]. All 15 real-world 

datasets examined did not have sufficient data to achieve this robustness interval, leading them 

to conclude that “almost every real-world dataset might be too sparse for BDeu”. The robust 

interval calculated did not include the widely adopted value of ESS = 1 in 11/15 datasets. 

 Scutari (2016) introduced a new BD score, BDs, aiming to produce better results with 

sparse datasets where some possible combinations of parental values are not present in the 

dataset. BDs has the same algebraic form as BDeu given above, the difference being the way 

𝑞𝑖, the number of parental value combinations, is calculated. As an illustration, suppose node 

C has parents A and B, and A can take three possible values, and B two possible values, giving 

6 possible combinations of parental values, but suppose only 4 of these combinations are 

actually present in the data. BDs will use 𝑞𝑖 = 4, and BDeu will use 𝑞𝑖 = 6. This paper also 

showed that the uniform structural prior usually used with BDeu favoured the inclusion of arcs, 

and suggested a new structural prior named marginal uniform which weighted arc addition and 

deletion equally. The combination of BDs and the marginal uniform prior outperformed the 

traditional BDeu and structural uniform prior combination in terms of structural accuracy and 

the likelihood of the observed data given the learnt structure in all sixty combinations of BN 

and sample size tested. The improved structural accuracy resulting from using the combination 

of BDs and the marginal uniform prior instead of BDeu was more pronounced at lower sample 

sizes. It should be noted that a disadvantage of BDs is that it is not score equivalent when there 

are missing parental value combinations, a situation likely to occur in all but very large sample 

sizes. 

 The analogous score to the Bayesian Discrete equivalent scores for continuous 

variables is the Bayesian Gaussian equivalent score (BGe) defined in Geiger and Heckerman 

(2002) and subsequently corrected in Kuipers et. al. (2014). The prior beliefs of the parameter 

values are encapsulated as the parameters of a Normal-Wishart distribution in an analogous 

fashion to the Dirichlet prior for discrete Bayesian scores. 
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4.1.2. Information-theoretic scores 

Information-theoretic scores aim to avoid over-fitting by balancing the goodness of fit with 

model dimensionality given the available data. The most commonly used scores include the 

Bayesian Information Criterion (BIC) which is also known as the Minimum Description Length 

(MDL) (Suzuki, 1993, 1999), the Akaike Information Criterion (AIC) (Akaike, 1974), the 

Mutual Information Test (MIT) (de Campos, 2006), the Normalised Maximum Likelihood 

(NML) (Rissanen, 1996), the factorized Normalised Maximum Likelihood (fNML) ) (Silander 

et al., 2008), and the quotient Normalised Maximum Likelihood (qNML) (Silander et al., 2018). 

The general form of these scores can be expressed as: 

 

𝑆(𝐺, 𝐷) = log [𝑝̂(𝐷|𝐺)] − Δ(𝐷, 𝐺) 

 

where log [𝑝̂(𝐷|𝐺)] denotes the goodness of fit as measured by the log likelihood of the data 

given the graph, in the case where the distribution parameters, 𝚯 , take their Maximum 

Likelihood Estimation (MLE) values, and Δ(𝐷, 𝐺)  is a function which penalises graph 

complexity. The detailed expression of log [𝑝̂(𝐷|𝐺)] for discrete variables is 

 

log[𝑝̂(𝐷|𝐺)] = ∑ ∑ ∑ 𝑁𝑖𝑗𝑘

𝑟𝑖

𝑘=1

𝑞𝑖

𝑗=1

𝑛

𝑖=1

log
𝑁𝑖𝑗𝑘

𝑁𝑖𝑗
= 𝑆𝐿𝐿(𝐺, 𝐷) 

 

Setting Δ(𝐷, 𝐺) = 0 removes the dimensionality penalty and makes the score equivalent to the 

Log-likelihood score 𝑆𝐿𝐿(𝐺, 𝐷). Since each arc addition increases 𝑆𝐿𝐿(𝐺, 𝐷), this score will 

favour denser graphs. 

 In the AIC score, the complexity penalty is just the number of free parameters in the 

model, 𝐹, defined as: 

𝐹 = ∑(𝑟𝑖 − 1)𝑞𝑖

𝑛

𝑖=1

 , 

so that  

𝑆𝐴𝐼𝐶(𝐺, 𝐷) = 𝑆𝐿𝐿(𝐺, 𝐷) − 𝐹 

 

The AIC score represents a rather soft penalty in terms of the number of free parameters. As a 

result, the AIC score tends to favour networks with a higher number of free parameters 

compared to BIC which is represented by 

 

𝑆𝐵𝐼𝐶(𝐺, 𝐷) = 𝑆𝐿𝐿(𝐺, 𝐷) −
log 𝑁

2
∙ 𝐹 

 

where 𝑁 is the sample size. Note that in BIC, and even more so AIC, the relative influence of 

the complexity penalty decreases as 𝑁  grows, implying that increasing sample size will 

eventually allow LL to dominate the score. The BIC score is widely popular and has been found 

to be able to learn the true network faster than other scoring functions such as AIC, BDeu and 

fNML (Liu et al., 2012). 

While both the AIC and BIC scores can recover the underlying network when the 

sample size is sufficiently high, they are suboptimal with limited sample sizes. To that end, 

Silander et al. (2010) proposed the factorized Normalized Maximum Likelihood (fNML) score. 

fNML is based on the Normalised Maximum Likelihood (NML) distribution which gives the 
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probability of every possible dataset of sample size 𝑁 for a specific graph 𝐺. An NML-based 

score is not decomposable, so Silander et al. (2008) define a decomposable variant: 

 

𝑆𝑓𝑁𝑀𝐿(𝐺, 𝐷) = 𝑆𝐿𝐿(𝐺, 𝐷) − ∑ ∑ 𝜁𝑁𝑖𝑗

𝑟𝑖

𝑞𝑖

𝑗=1

𝑛

𝑖=1

 , 

 

where 𝜁𝑁𝑖𝑗

𝑟𝑖  is the stochastic complexity which reflects the amount of information required to 

encode all possible combinations of 𝑁𝑖𝑗  values of a multinomial variable with 𝑟𝑖  different 

possible values, where 𝜁𝑁
𝑟  is defined: 

 

𝜁𝑁
𝑟 = ∑

𝑁!

𝑘1! 𝑘2! … 𝑘𝑟!
∏ (

𝑘𝑗

𝑁
)

𝑘𝑗

 ,

𝑟

𝑗=1𝑘1+𝑘2+⋯+𝑘𝑟=𝑁

 

 

This stochastic complexity can be computed in linear time using a recursive formula 

(Kontkanen and Myllymäki, 2007): 

 

𝜁𝑁
𝑟 = 𝜁𝑁

𝑟−1 +
𝑁

𝑟 − 2
∙ 𝜁𝑁

𝑟−2 

 

fNML was shown to perform well on small datasets (Silander et al., 2010; Liu et al., 2012). 

fNML is not score equivalent, and Silander et al. (2018) proposed another variant of a NML-

based score, quotient Normalised Maximum Likelihood (qNML) which is score equivalent.  

Finally, the MIT score was proposed by de Campos (2006) and is expressed as 

 

𝑆𝑀𝐼𝑇(𝐺, 𝐷) = ∑ (2𝑁 ∙ 𝑀𝐼(𝑋𝑖, 𝑷𝒂(𝑋𝑖)) − ∑ 𝜖𝛼,𝑙𝑖𝑗

|𝑷𝒂(𝑋𝑖)|

𝑗=1

)

𝑛

 𝑖=1
𝑷𝒂(𝑋𝑖)≠∅

 

 

where 𝑀𝐼(𝑋𝑖, 𝜋𝑖) is the mutual information between variable 𝑋𝑖 and its parents 𝑷𝒂(𝑋𝑖). 𝜖𝛼,𝑙𝑖𝑗
 

is a threshold value for the mutual information between a parent and the variable 𝑋𝑖 below 

which we assume independence between that parent and the variable conditional on the 

remaining parents. 𝜖𝛼,𝑙𝑖𝑗
 depends on the statistical significance level 𝛼 chosen and 𝑙𝑖𝑗 which is 

the number of degrees of freedom based on the number of states of the parents. Thus, this score 

might be regarded as a “hybrid” score since it involves considerations of conditional 

independence. Furthermore, the summation of 2𝑁 ∙ 𝑀𝐼(𝑋𝑖 , 𝑷𝒂(𝑋𝑖)) results in an expression 

proportional to the log likelihood, so the MIT score is another example of a penalised log 

likelihood score. Using a simple hill-climbing score-based algorithm (see subsection 4.2.1), de 

Campos (2006) showed that, according to their empirical experiments, MIT achieves better 

structural accuracy and data fitting than K2, BIC and BDeu scores. Notice that, MIT score is 

decomposable but not score equivalent.  

Compared with Bayesian scoring functions, information-theoretic scoring functions 

(excluding MIT score which requires the significance level α) are objective and feature no prior 

parameters, which avoids the sensitivity problems. Therefore, when users have little 

background knowledge about the target network, information-theoretic scoring functions may 

be preferred. 
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4.2. Approximate score-based algorithms 

This section describes algorithms which do not guarantee to return the highest possible scoring 

graph. Instead, they tend to return a graph with a locally maximum score, although it is still 

possible that they will return a graph with the globally maximum score. It should also be noted 

that some approximate algorithms do offer a guarantee to return the optimal graph with 

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 → 1 as the sample size 𝑁 ⟶ ∞, which is known as (classical) consistency - or 

as the algorithm being asymptotically correct. Furthermore, some algorithms also offer high-

dimensional consistency which is where they will return the optimal graph with 

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 → 1, as both the sample size and number of variables grow 𝑁 → ∞, 𝑛 → ∞. 

4.2.1. Approximate search of DAG space 

One of the earliest BN structure learning algorithms was the K2 algorithm by Cooper and 

Herskovits (1992), which assumes that a node ordering is already known. The algorithm works 

down the ordered list of nodes and greedily adds arcs from the candidate parents higher up the 

list to increase the K2 score maximally. Note that K2 does not consider all possible parent sets 

for each node and therefore cannot guarantee to find the highest scoring DAG for a particular 

node ordering. 

Figure 13 - Pseudo-code for hill-climbing (HC) algorithm. Program code keywords are coloured blue, 

comments in grey, key variables in red, and application-specific complex operations or conditions in black.   

Bouckaert (1994) removed the restriction of having a predefined node ordering and 

describes a general hill-climbing (HC) greedy search algorithm over the space of DAGs. This 

is perhaps the simplest and the most commonly used search strategy. Pseudo-code for HC is 

shown in Figure 13. At each iteration, HC explores all the neighbouring DAGs 𝐺′ of the current 

DAG 𝐺 which can be formed by adding an arc to 𝐺, or (in later variants) removing or reversing 

an arc in 𝐺. The change in score corresponding to each 𝐺′ is stored in the delta variable in the 

pseudo-code in Figure 13, and the graph modification with the largest delta applied. If no 

neighbouring DAGs increase the score, then we have reached a local, or occasionally a global, 

maximum and the DAG is returned as the result. The starting point for HC search can be any 

DAG such as a random one, one produced by another structure learning algorithm, or even one 

based on expert knowledge. However, it typically starts from the empty graph. HC is a very 

efficient algorithm, however it may ‘get stuck’ on a poor local maximum score.  

algorithm HC is 

      input: dataset D 

      output: DAG G 

 

 1    G := empty DAG      // DAG, initially empty 

 

 2    repeat 

 

          // possible changes mustn’t create a cycle, and can delete 

          // or reverse arcs currently in G, or add an arc to G 

          // variable delta holds score change for each possible arc change 

 

 3        for each possible arc change in G do 

 4            if delta[change] needs calculating or recalculating 

 5               delta[change] := delta(G, change, D) 

 

 6        if max(delta[change]) > 0 

 7            change := change corresponding to max(delta[change]) 

 8            G := G + change 

 

 9    until max(delta[change]) ≤ 0 

 

10    return G 
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Several techniques are adopted to escape local maxima. Heckerman et al. (1995) used 

local restarts where random perturbations are made to the DAG at the local maximum, and 

hill-climbing restarted from the perturbed DAG. Bouckaert (1995) employs a tabu list to 

prevent returning to DAGs recently visited, and permits some changes to the graph where the 

score is allowed to decrease. Figure 14 shows the pseudo-code for the Tabu algorithm, the key 

differences from HC being a tabu_list structure which maintains a list of the most recently 

visited DAGs on line 9, and the fact that possible changes to a graph cannot result in a DAG in 

tabu_list on line 4. This approach encourages moving into new regions that may contain an 

improved local maximum. The tabu approach can make runtime less predictable and may be 

more susceptible to noise than plain hill climbing (Constantinou et al., 2021b). Despite its 

simplicity, HC remains a very competitive algorithm (Scutari et al., 2019a). 

 De Campos and Puerta (2001) used variable neighbourhood search (VNS) which 

widens the local neighbourhood explored by considering graphs resulting from changing 

several arcs in the current graph. Thus, each iteration of the graph may contain multiple 

differences from the previous iteration, whereas classic hill-climbing makes one change at a 

time. De Campos and Puerta (2001) found that this approach achieved better results than plain 

hill-climbing and hill-climbing with random restarts, although the results were based on a small 

set of experiments learning the Alarm network (Beinlich et al., 1989). Model Averaging Hill 

Climbing, MAHC (Constantinou et. al., 2022) is a recent algorithm which also considers the 

scores of graphs beyond one move ahead. However, it does so in a way that averages scores 

across these more distant graphs, and makes a single change to move to the neighbouring graph 

where the mean score of its neighbours is the highest. 

 Recognising the importance of providing a good node ordering to K2, Behjati and 

Beigy (2020) focus on determining such an ordering. To do this, their improved K2 algorithm 

first determines the highest scoring set of parents for each node separately and constructs the 

directed graph using these parent sets. This directed graph is generally cyclic, and if so, it is 

decomposed into strongly connected components (SCCs). The graph of these SCCs is itself a 

DAG of SCCs which defines an ordering of SCCs. This approach is used recursively on SCCs 

until a node ordering is produced which is then used with the original K2 algorithm. The 

authors evaluated this improved K2 algorithm against the original K2, HC, GES (see 

subsection 4.2.2), and an exact score-based algorithm, GOBNILP (subsection 4.3.2). The 

evaluation learnt well-known networks from the bnlearn repository (Scutari, 2021) with 

  algorithm TABU is 

      input: dataset D 

      output: DAG G  

 

 1    G := empty DAG      // DAG, initially empty 

 2    tabu_list := []     // fixed length list of last DAGs visited 

 

 3    repeat 

 

          // possible changes as for HC except also the change 

          // cannot result in a DAG currently in tabu_list 

 

 4        for each possible arc change in G do 

 5            if delta[change] needs calculating or recalculating 

 6                delta[change] := delta(G, change, D) 

 

 7        change := change corresponding to max(delta[change]) 

 8        G := G + change 

 9        add G to tabu_list 

 

 

10    until stop_condition  // e.g. limit on number of score decreases 

 

11    return G 

 
Figure 14 - Pseudo-code for Tabu algorithm. Program code keywords are coloured blue, comments in grey, key 

variables in red, and application-specific complex operations or conditions in black.   
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between 5 and 441 variables. GOBNILP is guaranteed to return the highest scoring graph, but 

the enhanced K2 algorithm nearly always produced the highest scoring graphs amongst the 

other algorithms and was generally the fastest algorithm. The authors did not report the 

structural accuracy of the learnt graphs, however. 

The approximate score-based algorithms considered so far have focussed on learning a 

single high-scoring graph. This can be a reasonable approach for small networks with large 

amounts of data where the highest scoring DAG may be much more likely than any other model 

(Heckerman et al., 1997). However, it is less appropriate for complex models with small 

amounts of data. Friedman and Koller (2003) argued that for the gene expression data they 

studied, there might be many models with similar high scores, and that any single model 

selected might be very sensitive to the actual data instances used for learning. In this 

circumstance, an approach which generates a sample of plausible DAGs, and which reflects 

the posterior probability distribution across all possible DAGs, may be more appropriate. This 

might also show how “peaked” the distribution is, and so offer some insight into how confident 

one might be in any particular DAG. 

Markov Chain Monte Carlo (MCMC) is a well-established technique for sampling from 

complex high-dimensional probability distributions, such as the posterior distribution of DAGs. 

In the context of structure learning, each state in the Markov chain represents a different model, 

such as a DAG or node ordering. The Metropolis-Hastings (MH) algorithm is the most 

common MCMC variant used. MH has a proposal distribution which defines the probability of 

specific state changes such as a particular edge addition or node order swap at each step in the 

chain. A change is randomly selected according to the proposal distribution and then accepted 

or not using a stochastic acceptance condition. The proposal distribution and acceptance 

condition are chosen so that models with high posterior probabilities are preferred. Provided 

certain conditions are met, the states generated by the Markov chain stabilise to a stationary 

distribution of models which represents a sample of the true posterior distribution. These 

conditions include that the chain must be irreducible such that every model is reachable from 

every other model in a finite number of steps. Madigan et al. (1995) used MH to sample DAGs 

in the MC3 algorithm. The proposal distribution used gives the same non-zero probability for 

each possible single edge addition or deletion, and one of these changes is randomly selected. 

The acceptance condition always accepts a change that increases the posterior probability of 

the DAG, but may reject the change if it decreases the posterior probability. The more the 

posterior probability decreases, the more likely the change is to be rejected. 

A concern with MC3 is slow convergence to the stationary distribution, a problem 

known as slow mixing. Eaton and Murphy (2007) therefore proposed a Hybrid MCMC7 

algorithm that uses an exact score-based algorithm, Dynamic Programming (see subsection 

4.3.1), to develop a global proposal distribution. They showed that the Hybrid MCMC method 

converges faster than both the MC3 and Order-MCMC methods (see subsection 4.2.3). 

Grzegorczyk and Husmeier (2008) also improved the convergence of DAG sampling using the 

REV-MCMC algorithm that adds a new edge reversal proposal that re-samples all possible 

parents of the two endpoints of the reversed edge.  

Goudie and Mukherjee (2016) used a special case of Metropolis-Hastings known as 

Gibbs Sampling, where proposed changes are always accepted. Gibbs sampling can lead to 

slow mixing which they counteracted with a broader proposal distribution that considers all 

possible changes made to the parents of a block of nodes. Experiments showed that this Gibbs 

sampling mixed better than MC3 and REV-MCMC, as well as producing more accurate DAGs 

 

 
7 Note that, following normal usage, we use “hybrid” in this paper to mean a combination of constraint-based 

and score-based approaches, whereas, although this algorithm is named “Hybrid MCMC”, it uses a combination 

of exact and approximate score-based approaches.  
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than both of them, and the constraint-based PC algorithm. Goudie and Mukherjee (2016) 

evaluated the DAG with the highest posterior probability, the Maximum A Posteriori (MAP) 

DAG, as being the single ‘best’ DAG from the sample. However, they also evaluated a single 

DAG constructed using arcs which have a marginal posterior edge probability above 0.5 across 

the sample, an example of model averaging whereby a single DAG is constructed from a 

collection of DAGs. 

The Birth-and-Death algorithm (Jennings and Corcoran, 2018) treats structure learning 

as a continuous time Markov chain process where the waiting times (intervals) between 

changes to the DAG follow exponential distributions. At any given point in the learning process 

there is a ‘birth’ rate for each possible edge addition, and a ‘death’ rate for deleting edges. The 

proportion of time each edge exists represents the posterior probability of that edge. The 

authors demonstrated superior mixing to Metropolis-Hastings approaches but did not report 

any accuracy evaluations. 

Many approaches inspired by biological systems have also been proposed and include 

Genetic Algorithms (Larranaga, 1996b), Ant Colony (de Campos et al., 2002), and Bacterial 

Foraging (Yang et al., 2016). These explore multiple DAGs and therefore are similar to the 

sampling approaches in that respect. They employ methods adopted from biology, for example, 

genetic mixing, mutation, swarming, foraging and selection of the fittest, to generate and select 

a high scoring graph. Genetic mixing, in other words breeding, is typically implemented by a 

merge operation where edges are taken from two graphs to create a new graph. Mutation is 

implemented by making random changes to the graph edges. To take one biological inspired 

algorithm in a little more detail, Bee Colony Optimisation (Ji et al., 2013) models the roles of 

real bees in a hive to search DAG space: 

 

• employed bees perform local search in a DAG neighbourhood moving to the first 

neighbour with an increased score using add, delete, and reverse arc, and swap parents 

operators; 

• onlooker bees perform more knowledgeable searches by moving to the best scoring 

neighbour which can be viewed as a form of hill climbing; 

• if a bee gets stuck on a local maximum it becomes a scout bee and moves to a randomly 

generated DAG to begin searching in a new region, which is analogous to a random 

restart in hill climbing; 

• pheromone is deposited on the best solution at each iteration to attract bees to high 

scoring regions. 

4.2.2. Approximate search of equivalence class space 

Chickering (2002) introduced the Greedy Equivalence Search (GES) algorithm which searches 

across the space of Markov equivalence classes rather than DAGs. A Markov equivalence class 

may contain several DAGs and hence the search space of Markov equivalence graphs is always 

smaller than the corresponding DAG space. Although Gillispie and Perlman (2002) suggest 

that most equivalence classes contain few DAGs, this is still sufficient to speed up search 

considerably.  

GES has an insert and then a delete phase. In the first phase, each insert operation 

performs a change equivalent to determining all the DAGs consistent with the current CPDAG 

(equivalence class), adding whichever arc increases their individual score the most, and then 

selecting the CPDAG corresponding to highest scoring DAG of all. This logic means that each 

insert operation on the CPDAG represents the addition of either a directed or an undirected 

edge, and may be accompanied by several other edge (re)orientations. Note that GES 

implements this process more efficiently than this explanatory description would suggest. The 
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insert phase continues until there is no further insert operation which would increase the score. 

The delete phase then proceeds in an analogous fashion until a final maximum scoring CPDAG 

is produced. Importantly, and surprisingly for an approximate algorithm, GES offers a 

guarantee of classical consistency. That is, it is guaranteed to produce a CPDAG which 

perfectly matches the conditional independence relationships in the data as 𝑁 → ∞. Ramsey et 

al. (2017) described fast GES (FGES) which optimises GES by parallelising operations and 

caching scores where possible.  

Greedy Interventional Equivalence Search (GIES) by Hauser and Bühlmann (2012) is 

a generalisation of GES which supports learning from datasets8 which all have the same set of 

variables and an assumed common underlying causal model, but where interventions have been 

performed on different sets of variables in each dataset. One of the datasets may be 

observational, that is, have no intervention variables. Like GES, GIES searches equivalence 

space in an addition and then deletion phase, but the equivalence graphs (which they term 

interventional essential graphs) are all consistent with the intervention targets across all 

datasets. The authors evaluate GIES against GES, learning random Gaussian graphs with 

number of variables, 𝑛 = {10, 20, 30, 40}, and a sample size between 50 and 10,000, and using 

a modified SHD suitable for interventional settings (Kalisch and Bühlmann, 2007). The 

evaluation uses one, two or four intervention nodes, and varies the number of intervention 

datasets, each having a different randomly chosen set of intervention nodes. The authors find 

that GIES orientates more edges and has increasingly better accuracy than GES as the number 

of different intervention datasets or number of intervention targets grows.  

 Bernaola et. al. (2020) introduce FGES-Merge which is focussed on learning very large 

networks, with tens of thousands of variables, some with very large degree, typical of those 

encountered when modelling gene regulation networks. FGES-Merge uses FGES to learn sub-

graphs around each node and then merges these to create the whole graph. The nodes chosen 

to be in each sub-graph learnt separately by FGES are those which have the largest BIC scores 

when treated as parents of the particular node. The number of nodes in each sub-graph is limited 

to a specified maximum, and so some edges for high degree nodes may be omitted, but they 

may be re-introduced from neighbouring nodes when the sub-graphs are merged. The union of 

the sub-graphs forms the final graph, with cycles and weaker arcs being eliminated. FGES-

Merge was found to be more accurate than all but one of the other BN structure learning 

algorithms evaluated in the DREAM5 gene network modelling challenge (Marbach et. al., 

2012). 

Madigan et al., (1996) noted that MCMC sampling over DAG space may be inefficient 

since DAGs in the same equivalence class have the same posterior probability, and instead 

proposed using Metropolis-Hastings sampling over equivalence classes. In this case, the 

proposal distribution must include one and two edge changes so that the chain is irreducible 

and can therefore sample the whole equivalence class space. 

 

4.2.3. Approximate search of node-ordering space 

Searching over a node ordering space offers some potential benefits (Teyssier and Koller, 

2005): 

 

 

 
8 In their paper, Hauser and Bühlmann (2012) describe the problem that GIES is tackling as structure learning 

from a single dataset, but where different intervention targets can be specified for different sets of rows. In this 

review, we prefer to describe this as learning from multiple datasets where each dataset has the same variables 
and assumed causal model, but with different intervention targets for each dataset. We do this so that the 

problem description is as common as possible across different algorithms. 
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• ordering-based space has complexity ( log )
2

n n  which is considerably smaller than 
2( )

2 n for DAG space; 

• each change to the ordering represents a larger change to the current hypothesis than 

those typically performed in DAG space, and so may be better at avoiding local maxima; 

• since node ordering imposes acyclicity, the algorithms can select the parents of one 

node independently of any other node. 

Larranaga et al. (1996a) used a genetic algorithm where the individual’s chromosomes 

represented the node ordering. The fitness of an individual is assessed using the K2 algorithm 

and score (see subsection 4.2.1) to determine a high scoring DAG consistent with the ordering. 

An initial population of individuals is created which is then iterated through generations as 

follows: 

 

1. pairs of high scoring parents are selected, and their children are created through a 

crossover operator which forms a new ordering from parts of each parent’s ordering; 

2. children have a small probability of the node ordering mutating so that new regions are 

explored; 

3. low scoring individuals are pruned from the population to return it to its original size. 

The K2SN algorithm by deCampos and Puerta (2001) uses a very simple strategy to 

explore node-ordering space. It randomly generates orderings and then uses the K2 algorithm 

to find a high scoring DAG consistent with that ordering. The Ordering Based Search (OBS) 

algorithm employs a more systematic search of ordering space (Teyssier and Koller, 2005) and 

moves through ordering space by swapping adjacent nodes in the ordering. OBS uses an 

exhaustive approach to find the highest scoring DAG consistent with each ordering. At each 

iteration, all 𝑛 − 1 node swaps are scored, and the ordering that has the highest scoring DAG 

is adopted for the next iteration. This process is repeated until a local maximum is reached. 

Note that the swap adjacent operator only changes the possible parents of two nodes and so the 

score of the new ordering can be computed cheaply. OBS used a simple sound pruning rule 

based on the observation that if 𝑷𝒂(𝑋𝑖) and 𝑷𝒂′(𝑋𝑖) are two possible sets of parents of node 

𝑋𝑖  and 𝑷𝒂(𝑋𝑖) ⊂ 𝑷𝒂′(𝑋𝑖)  and 𝑠𝑐𝑜𝑟𝑒(𝑋𝑖|𝑷𝒂(𝑋𝑖) ) ≥ 𝑠𝑐𝑜𝑟𝑒(𝑋𝑖|𝑷𝒂′(𝑋𝑖) ) , then 𝑷𝒂′(𝑋𝑖) 

cannot possibly be the best set of parents of 𝑋𝑖  and can be removed (pruned) from further 

consideration in any ordering. 

The pruning rule used in OBS is applicable to any decomposable score, but has the 

drawback that it is necessary to compute the score for the superset 𝑷𝒂′(𝑋𝑖) before it can be 

discounted. Other rules, typically specific to a particular score such as BIC or BDeu, are more 

powerful in that conditions applying for a set of parents can be used to prune supersets of 

parents without having to score these supersets. This makes the algorithm more efficient, and 

Figure 15 – Example illustrating the relaxed node ordering consistency used by the ASOBS algorithm 
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these scores often remove large portions of the search space. The ASOBS algorithm 

(Scanagatta et. al., 2015) uses the BIC* score which approximates BIC to accomplish this. Like 

OBS, ASOBS uses a primary search over node orderings using the swap adjacent operator. 

However, when generating a DAG from the ordering, ASOBS relaxes the restriction that a 

node can only have parents earlier in the ordering, whilst continuing to ensure the DAG is 

acyclic. Figure 15 illustrates a situation that might occur when learning the DAG shown in 

Figure 15(a). OBS would select parent sets for node ordering “ABCED” that are strictly 

consistent with the ordering as shown in Figure 15(b). In contrast, ASOBS allows some ‘back-

links’, shown in red in Figure 15(c), where nodes “C” and “E” have parent “D” from lower 

down the ordering. ASOBS will find a DAG with a score at least as high as OBS would find 

for any given ordering. The authors used ASOBS to model networks with more than 1,000 

nodes and removed the restriction on the number of parents for a node. 

The fact that the swap adjacent operator changes few parents makes it relatively 

inexpensive, but it does mean that there may be many relatively weak local maxima close to 

one another. The INOBS algorithm introduces an insert operator which causes larger steps in 

changing the order of a node in the node ordering input to address this (Lee and van Beek, 

2017). The authors also investigated a variant of INOBS, called IINOBS, which employs 

iterated local search. This is an extension to hill-climbing that adds a perturbation operator of 

swapping nodes in the ordering so that when a local maximum is reached, hill-climbing is 

restarted in a relatively close neighbourhood. The perturbation operator chosen should not be 

so weak that restarted hill-climbing just finds the same local maximum, and nor should it be so 

strong that hill-climbing is starting all over again in a completely new region. Iterated local 

search is based on the intuition that local maxima may occur in clusters. Similarly, Lee and van 

Beek (2017) combined INOBS with genetic algorithm techniques to create the memetic 

algorithm, MINOBS. Hill-climbing search is performed on an initial population of orderings 

to get a population of locally maxima orderings. Crossover, mutation and population pruning 

genetic techniques then operate on this population of locally optimum orderings to produce a 

new population to perform hill-climbing on. 

WINASOBS (Scanagatta et. al., 2017) employs a yet more impactful window operator 

which changes the position of a group of nodes in the node ordering, and uses the same 

relaxation as ASOBS when generating a DAG from the ordering. The authors evaluated 

WINASOBS against IINOBS and MINOBS when learning from 24 real-world datasets with 

between 16 and 1556 variables and synthetic networks with up to 10,000 variables. The learnt 

graphs were evaluated only on the basis of their BIC score. WINASOBS produced higher 

scoring graphs than the other algorithms except for being on par with MINOBS when execution 

time was limited to one hour. 

Sampling in node-ordering space can be implemented using MCMC approaches. This 

seeks to counter the slow convergence to a stationary distribution, also known as slow mixing, 

that can be encountered when sampling DAG space, for example, in the MC3 algorithm. 

Friedman and Koller (2003) sampled ordering space in the Order-MCMC algorithm. They 

derived a closed-form expression for the probability of specific graph features, such as an 

individual edge, occurring with a particular ordering. They then used MCMC to sample over 

the space of orderings and hence obtain the overall probability of a particular feature occurring. 

A DAG can then be constructed using only edges with a probability above a specified threshold 

in another example of model averaging. Niinimaki et al. (2011) proposed the Partial Order-

MCMC method, where nodes are grouped into ordered buckets which demonstrated better 

mixing than Order-MCMC. A disadvantage of order-based MCMC approaches arises because 

a given DAG may be consistent with many node orders and different DAGs will be consistent 

with different numbers of node orders. It is therefore difficult to define priors on node orders 
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which do not bias the posterior distribution of DAGs. This problem is more pronounced with 

small sample sizes where the priors have more influence. 

 

Kuipers and Moffa (2017) introduce Partition-MCMC to address the bias issue 

discussed in the previous paragraph. It searches in the space of partitions, illustrated as the set 

of light blue ellipses in Figure 16(b), which is the partial topological ordering of the nodes of 

the DAG shown in Figure 16(a). The algorithm assigns a score to each partition which is the 

sum of scores over all DAGs consistent with that partition, thus taking into account the number 

of DAGs in the partition and therefore removing the bias discussed previously. Partition-

MCMC samples the partitions using operators which split or merge an element within the 

partition as illustrated in Figure 16(c) and (d). They also assess the more impactful reverse 

operator proposed by Grzegorczyk and Husmeier (2008). 

 

4.2.4. Approximate search of ancestral graph space 

The majority of algorithms that assume the presence of latent variables are constraint-based, 

some of which were discussed in subsection 3.4. However, Triantafillou and Tsamardinos 

(2016) proposed the Global Search for Maximal Ancestral Graphs (GSMAG) algorithm which 

searches in the space of ancestral graphs containing directed or bidirected edges. That is, it 

allows latent, but not selection variables. It explores the search space using greedy search in 

which directed and bidirected edges are added, removed, reversed or converted between each 

other. A BIC score is defined based on the probability distribution factorisation for Gaussian 

MAGs described in Richardson (2009), which allows the score to be decomposed into a 

likelihood for each c-component in the MAG given the data. C-components are the fragments 

connected by bidirected edges that result from removing all directed edges in a MAG. Thus, 

only scores for the c-components affected by any edge change need to be recomputed. The 

authors evaluated GSMAG against FCI and CFCI constraint-based algorithms on synthetic 

random Gaussian networks of up to 50 variables, 10% of which are latent variables. They found 

that GSMAG had better recall (see subsection 6.1 for explanation of recall and precision) than 

FCI and CFCI (slightly), but worse precision than CFCI. It was also considerably slower than 

both FCI and CFCI.  

4.3. Exact score-based algorithms 

In contrast to the algorithms considered so far, exact algorithms guarantee to return the highest 

scoring DAG. Note that whilst some approximate algorithms can guarantee to return the 

highest scoring graph as 𝑁 → ∞  (Chickering, 2002; Chickering and Meek, 2002), exact 

algorithms guarantee to return the highest scoring graph for the input dataset, however small 

the sample size might be. They usually make use of sound pruning rules to avoid searching 

Figure 16 - Partitions used in Partition-MCMC (adapted from figure in Kuipers and Moffa, 2017). Note that 

other authors refer to this partitioning of the nodes as a (topological) partial ordering. 
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over the whole search space. Whilst these algorithms produce the DAG with the highest score, 

this may not be the graph which best matches the underlying ground-truth for reasons such as: 

 

• limitations in the data learnt from, particularly sample size and any form of noise; 

• biases introduced by the score used, for example, towards sparser or denser graphs. 

 

Note that some authors refer to exact algorithms as global algorithms since they guarantee to 

return the graph with the globally maximum score. However, in this paper, we apply the term 

“global” to constraint-based algorithms that consider the global structure, and so we prefer 

“exact” to “global” here. Exact algorithms typically treat structure learning as a constrained 

combinatorial optimisation problem which involves determining the optimally scoring 

combination of parents for each node subject to the constraint that the graph is acyclic. 

4.3.1. Exact search of node-ordering space 

Dynamic programming was an early technique used in exact algorithms (Koivisto and Sood, 

2004; Ott et al., 2004) searching in node-ordering space. Dynamic programming is an 

algorithm paradigm which solves small sub-problems first and uses these results to solve larger 

problems built on them. Singh and Moore (2005) and Silander and Myllymaki (2006) applied 

this paradigm to structure learning using the insight that every DAG must have at least one sink 

node (a node with no children, also referred to as a leaf node). So, any DAG with nodes 𝑿 can 

be constructed from a sink node 𝑋𝑠𝑖𝑛𝑘  and a sub-DAG with nodes 𝑿 − {𝑋𝑠𝑖𝑛𝑘}. The maximum 

graph score can thus be expressed as a recurrence relation: 

 

𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑥(𝑿) =  𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑥(𝑿 − {𝑋𝑠𝑖𝑛𝑘}) + 𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑥(𝑋𝑠𝑖𝑛𝑘|𝑷𝒂(𝑋𝑠𝑖𝑛𝑘)) 

 

Note that which nodes in the sub-DAG are chosen to be the parents of the sink node, 

𝑷𝒂(𝑋𝑠𝑖𝑛𝑘), does not affect the score of the sub-DAG itself, and so this element of the score 

can be maximised independently. Also, since the end of a node ordering is always a sink node, 

recursively finding sink nodes represents a way of traversing node ordering space.  

Figure 17 based on Singh and Moore (2005) shows how dynamic programming exploits 

this recurrence relationship. Each box in this ordering lattice represents one of the possible 

sub-DAGs in a small network with nodes {1, 2, 3, 4}. The optimal DAG is determined by a 

depth first search of this lattice. Starting at the top with the DAG containing all nodes, the 

search moves down the first blue arrow to sub-DAG {1, 2, 3} with node 4 left behind as the 

sink node. The highest scoring parents for node 4 in sub-DAG {1, 2, 3} are determined, in this 

illustration assumed to be {1, 2} with a score of 4. The search continues down the blue arrows, 

determining the highest scoring parents for each local sink node until we reach the bottom sub-

DAG on the blue path, {1}. This blue search path represents node ordering {1, 2, 3, 4}, and the 

DAG corresponding to the path is shown to the left of the lattice, where the concentric dashed 

ellipses represent the sub-DAGs encountered, and arcs showing the highest-scoring parents 

determined for each sink node. Having reached the bottom, the search backtracks to sub-DAG 

{1, 2} to then score the purple path. At this point, all search paths below {1, 2} have been 

followed, so a maximum score can be assigned to sub-DAG {1, 2} and the paths below {1, 2} 

never need to be revisited, illustrating the ‘self-pruning’ nature of this approach. The search is 

guaranteed to find the highest scoring DAG, illustrated in this example by the red search path. 
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Figure 17 - Lattice of all sub-DAGs for a hypothetical four node network based on Singh and Moore (2005), 

illustrating the dynamic programming approach using sink nodes. 

Yuan and Malone (2011) noted that dynamic programming is inefficient because it 

needed to fully evaluate the exponential solution space and that, by ignoring acyclic constraints, 

Branch and Bound (covered below in subsection 4.3.2) made the search space unnecessarily 

large. They proposed that navigating the lattice in Figure 17 be performed by the general-

purpose graph algorithm A* which finds optimal weighted paths. As with the dynamic 

programming technique explained above, the algorithm maintains a current best score down to 

the current sub-DAG reached in the lattice, but it also estimates the best score obtainable down 

the currently unexplored paths below the sub-DAG. At any one time, A* explores the paths 

which have the highest estimated score from top to bottom, a so-called ‘best-first’ approach. 

As long as the estimated score is admissible (i.e., never underestimates the score obtainable), 

A* guarantees to find the highest-scoring path and the hence highest-scoring DAG. Their 

approach proved to be several times faster than dynamic programming and much faster than 

Branch & Bound which we cover later in subsection 4.3.2. 

Another recent exact score-based algorithm called CPBayes (van Beek and Hoffman, 

2015) adopts the constraint programming paradigm. In this paradigm, constraints are defined 

across the variables and a domain of possible values maintained for each variable. Note that 

these are not conditional independence constraints, and so this approach should not be confused 

with the constraint-based structure learning described in section 2. As the algorithm explores 

possible solutions by changing one variable, the constraints mean that the possible values of 

other variables are altered; a process known as constraint propagation. A simple application 

of constraint programming to the Sudoko game may serve to illustrate the concept. The 

domains for each square are the numbers 1 to 9, but as a number is chosen for one square, this 

reduces the domains of possible values for other squares, according to the constraints of the 

game that each number can only occur in one row, column or 3x3 block. 

For application to BN structure learning, CPBayes defines three classes of variables 

describing: the node ordering; the parent set of each node; and depth, defined as the longest 

path of any source vertex to the node. Several types of constraints are defined, and the ones 

that relate the three classes of variables include acyclicity constraints, symmetry breaking 

constraints which avoid redundant solutions which belong to the same equivalence class or 

node ordering, for example, and dominance constraints which apply cost-based pruning. 

CPBayes is a depth-first branch-and-bound algorithm that explores the node-ordering space by 

swapping nodes in the order, with the constraints and score bounds used to reduce the search 

space. The authors argued that the inclusion of the depth variable together with the extensive 
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set of constraints reduces the search space compared to other exact algorithms, though without 

quantifying this. Results obtained at the time showed that runtimes were comparable to the 

Integer Linear Programming approach in GOBNILP (refer to subsection 4.3.2). 

Troser et al. (2021) introduce the ELSA algorithm which enhances CPBayes by 

including linear programming techniques similar to GOBNILP to provide more efficient 

acyclicity checking. It uses a more specialised greedy, and therefore efficient, algorithm than 

GOBNILP to solve the linear programming problem. ELSA is able to find the optimal graph 

within a time limit of 10 hours (for datasets with between 61 and 111 variables) in considerably 

more cases than either GOBNILP and CPBayes. Note that this time limit applies to the graph 

search only; it does not include the pre-computation of parent set scores. 

Tan et. al. (2022) propose two variable partitioning approaches which they demonstrate 

can improve learning times in algorithms such as A*, often by orders of magnitude. The first 

heuristic is ancestral partitioning which assumes a partial ordering as illustrated in Figure 16 

to greatly prune the number of nodes in the order graph. Note that, with this heuristic, the 

structure learning algorithm can only guarantee to return the optimal scoring graph if the partial 

ordering that is assumed is consistent with the ordering of the true graph. The second heuristic, 

heuristic partitioning, splits the variables into partitions in such a way that more paths in the 

order graph can be ruled out during the search phase. This heuristic does not invalidate the 

guarantee of returning the highest scoring graph. 

4.3.2. Exact search of DAG space 

The Branch & Bound algorithm uses another recursive approach but starting from a larger 

problem which it decomposes (de Campos et al., 2009). The algorithm first creates a cache of 

the highest scoring parents for each node. As the algorithm proceeds, it maintains a queue of 

candidate graphs ordered by score, and a record of the highest scoring DAG found so far. 

Initially, the queue is populated with the graph where each variable is assigned its optimally 

scoring parents without regard to acyclicity. The algorithm proceeds by considering the top 

scoring graph on the queue. If it is a DAG, it checks its score and updates the best scoring DAG 

if needed. If the graph contains a cycle, it breaks the cycle at each arc in the cycle creating 

several sub-graphs which it places back on the queue. The algorithm continues until the queue 

is empty by which time the globally optimal DAG will have been identified. 

 Most exact search algorithms, including Branch & Bound, maintain a cache of possible 

parent sets for each node together with their associated score. If done for every parent set this 

cache would have 2𝑛(𝑛−1) entries which quickly becomes prohibitive. Research into pruning 

(Cussens, 2012; Suzuki, 2017; de Campos et al., 2018, Correia et al., 2020) which can reduce 

the size of this cache whilst maintaining the guarantee of optimality has been important to the 

development of exact search. Most of the later pruning approaches are specific to a particular 

score (e.g. BIC or BDeu) and can have a dramatic effect on the cache size and search space 

considered. De Campos and Ji (2010) reported cache size being reduced by between 

approximately 102 and 107 times depending upon the network and specific score considered. 

In the most dramatic cases, this resulted in a reduction of the search space by hundreds of 

orders of magnitude. Guo and Constantinou (2020) show that pruning candidate parent sets 

simply by removing those with low scores can offer considerable runtime saving, particularly 

for larger networks. This type of pruning means that previously exact algorithms no longer 

guarantee to return the graph with the highest possible score, that is, they become approximate 

algorithms. Nonetheless, this often does not reduce the accuracy of the learnt graph by very 

much. 

Integer Linear Programming (ILP) approaches treat structure learning as a constrained 

integer programming problem (Jaakola et al., 2010; Bartlett and Cussens, 2017). Figure 18 

illustrates some of the concepts of integer linear programming with reference to a simple 
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optimisation problem. Suppose we wish to maximise 𝑦 where the following constraints apply: 

3𝑦 ≤ 2𝑥 + 6 , 3𝑦 ≤ 15 − 5𝑥 , 𝑥 ≥ 0.5 , and 𝑦 ≥ 0.5 . This is a linear programming (LP) 

problem, and the shaded space in the figure shows the feasible solutions which meet the 

constraints. With three variables the feasible solutions would be bounded by a polyhedron, and 

with 𝑛 variables they are bounded by an n-

polytope.  The LP solutions are always at 

vertices of the polytope, in this case at  𝑥 =
9 7⁄ , 𝑦 = 20 7⁄ . However, if we restrict the 

solutions to integer values then the problem 

becomes an integer linear programming 

(ILP) problem. The feasible integer 

solutions are shown as the black circles in 

the figure.  

The ILP problem is tackled by first 

using the well-established simplex 

algorithm (Dantzig, 2016) to solve the LP 

problem, which is referred to as solving the 

linear relaxation of the ILP program. The 

problem is then split into two by looking at 

the two solution spaces either side of one of 

the non-integer solution values; for 

example, either side of the dashed blue line 

in the figure. This branching is repeated, 

forming a branch-and-bound search of the 

solution space. The search can be made more efficient by including extra constraints at each 

step so that the search becomes branch-and-cut.  These extra constraints cut off part of the 

polytope between the LP solution and the integer solutions and are therefore known as cutting 

planes, illustrated by the dashed red line in the figure.  

The GOBNILP algorithm (Cussens, 2011) represents a DAG by binary integer 

variables, called family variables denoted 𝐼(𝑷𝒂(𝑋) → 𝑋), each family variable representing a 

possible parent set 𝑷𝒂(𝑋)  for node 𝑋  where 𝑷𝒂(𝑋) ⊆ 𝑿\{𝑋} . 𝐼(𝑷𝒂(𝑋) → 𝑋) = 1  for a 

particular value of 𝑷𝒂(𝑋) indicates that 𝑋 has that set of parents in the DAG. Learning the 

optimal DAG can be cast as an ILP problem in the family variable space where we wish to 

maximise the DAG score, given by: 

 

∑ 𝑠𝑐𝑜𝑟𝑒(𝑋|𝑷𝒂(𝑋)) ⋅ 𝐼(𝑷𝒂(𝑋) → 𝑋)

 

𝑋,𝑷𝒂(𝑋)

 

 

Convexity constraints are imposed to ensure that each variable can only have one of the 

possible parent sets: 

 

∀𝑋: ∑ 𝐼(𝑷𝒂(𝑋) → 𝑋)𝑷𝒂(𝑋) = 1, 

 

and cluster constraints to enforce acyclicity, where any subset 𝑿′ of all the nodes 𝑿 must 

contain at least one node that has no parent in the subset: 

 

∀𝑿′ : ∑  ∑ 𝐼(𝑷𝒂(𝑋) → 𝑋)

𝑷𝒂(𝑋): 𝑷𝒂(𝑋) ∩ 𝑿′=∅

 ≥ 1

 

𝑋∈𝑿′

 

Figure 18 - Simple Integer Linear Programming Example 
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GOBNILP employs an off-the-shelf optimisation program such as SCIP (Berthold, 2012) to 

solve this ILP problem. GOBNILP uses whether a particular family variable is 0 or 1, that is, 

whether a node has a particular parent set, as its branching strategy. There are a huge number 

of cluster constraints possible for reasonably sized networks, and so these are only applied 

where necessary as the search progresses. Even so, it is usually necessary to place a limit on 

the maximum number of parents for any node in most applications. 

The exact algorithms discussed in these subsections also naturally support BMA where 

the probability of specific features such as arcs, ancestral relations and Markov Blankets can 

be calculated by summing their posterior probability over all graph structures. This capability 

is explored by Koivisto and Sood (2004), Tian and He (2009) and Pensar et al. (2020). The 

latter two search over DAG structures and so avoid the bias that can arise because different 

numbers of DAGs are associated with each node-ordering, for example. Recently, Liao et al. 

(2019) proposed an adaption of the GOBNILP algorithm called GOBNILP-DEV which rather 

than returning a single highest scoring DAG, returns all the DAGs which have 𝑠𝑐𝑜𝑟𝑒(𝐺) 

meeting the condition that: 

 
(1 − 𝜀) ∙ 𝑠𝑐𝑜𝑟𝑒(𝐺𝑂𝑃𝑇) ≤ 𝑠𝑐𝑜𝑟𝑒(𝐺) ≤ 𝑠𝑐𝑜𝑟𝑒(𝐺𝑂𝑃𝑇) 

 

where 𝐺𝑂𝑃𝑇  is the DAG with the highest possible score; i.e., all DAGs within a fraction 𝜀 of 

optimal. This provides a principled algorithm for obtaining a set of plausible graphs. 

 

4.3.3. Exact search of equivalence class space 

Chen et al. (2016a) proposed an exact algorithm for searching equivalence class space by 

defining an Equivalence Class Tree (EC Tree) where each node represents a CPDAG, and 

which has a unique path to each CPDAG. The algorithm uses A* search to explore the EC Tree 

efficiently. Chen et al. (2016a) compared this algorithm with an earlier dynamic programming 

based approach proposed by Chen and Tian (2014) aimed to find the k-best equivalence classes. 

They found the EC Tree search to be always faster than the dynamic programming approach, 

and occasionally orders of magnitude faster. Interestingly, they also found that the highest 

scoring equivalence classes represented very different numbers of DAGs in the eleven 

networks studied which had between 14 and 23 variables. Whilst some networks had values 

around the 3.7 DAGs per CPDAG (Gillispie and Perlman, 2002) often quoted in the literature, 

others had hundreds or even thousands of DAGS in the highest scoring equivalence classes. 

5. HYBRID LEARNING AND OTHER APPROACHES 

Hybrid algorithms combine constraint-based and score-based approaches in an attempt to offer 

the best characteristics of each. Perhaps the most common way of combining the approaches 

is to use a constraint-based approach to restrict the search space in which a subsequent score-

based approach finds a graph with a local or globally maximum score. We refer to these as 

Restrict/Maximise hybrid algorithms and discuss them in subsection 5.1. A diverse set of other 

hybrid approaches is described in subsection 5.2. We then further group the algorithms 

according to which space they search in, to provide some commonality with the score-based 

section of this paper. Figure 6 shows the evolution of hybrid algorithms which are shown in 

yellow colours, and in particular how developments in score and constraint-based algorithms 

have informed that evolution. Table 4 presents the key characteristics of the hybrid algorithms 

reviewed here. 
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5.1. Restrict/Maximise algorithms 

5.1.1. Restrict/Maximise in DAG Space 

Early hybrid algorithms tended to have a constraint (restrict) and score-based (maximise) step 

in each iteration. For example, each iteration of the Constraint-Bayesian (CB) algorithm (Singh 

and Valtorta, 1993) had a restrict step in which the PC algorithm learnt a CPDAG, but only 

using conditioning sets up to a specified size for that iteration. The maximise step then firstly 

orientates undirected edges so that the product of the K2 score associated with the two 

endpoints is maximised, producing a DAG. The maximise step then uses the score-based K2 

algorithm to construct the optimum-scoring DAG consistent with that DAG’s ordering. The 

restrict and maximise steps are then repeated at increasing conditioning set size until the 

resulting DAG’s score no longer improves. 

Similarly, each iteration of the Sparse Candidate (SC) algorithm (Friedman et al., 1999) 

had a restrict step which used Mutual Information Independence tests to determine candidate 

parents for each node, followed by a maximise step using the Tabu algorithm constrained by 

those parent sets. The parent sets of the DAG produced in one iteration were always included 

as candidate parents for the next iteration, ensuring that each iteration would find a DAG with 

at least as high a score as the previous iteration. 
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Table 4 - Characteristics of hybrid algorithms reviewed, ordered chronologically. 

Algorithm 

Abbreviation 

Algorithm Name 

or Description Reference Algorithm Group Search space Search space traversal 

Causal 

sufficiency 

assumed 
Type of 

output 

CB Constraint Bayesian Singh and Valtorta, 1993 Restrict/Maximise DAG Add/remove/reverse arc yes DAG 

SC Sparse Candidate Friedman et al., 1999 Restrict/Maximise DAG Add/remove/reverse arc yes DAG 

HEA Hybrid Evolutionary Algorithm Wong and Leung, 2004 Restrict/Mamimise DAG Merge, mutate, select DAG yes DAG 

MMHC Max-min Parents and Children and Hill Climbing Tsamardinos, 2006 Restrict/Maximise DAG Add/remove/reverse arc yes DAG 

COS Constrained Optimal Search Perrier et al., 2008 Restrict/Maximise DAG Add/remove sink node yes DAG 

PCB Partial Correlation Bayesian Yang et al. 2011 Restrict/Maximise DAG Add/remove/reverse arc yes DAG 

BCCD Bayesian Constraint-based Causal Discovery Claassen and Heskes, 2012 Other DAG n/a no PAG 

H2PC Hybrid HPC (HPC is Hybrid Parents and Children) Gasse et al., 2014 Restrict/Maximise DAG Add/remove/reverse arc yes DAG 

ASP 
Weighted CI constraints optimised with Answer Set 

Programming 
Hyttinen et al., 2014 Other CI constraints n/a no 

Cyclic mixed 

graph 

COmbINE Causal Discovery from Overlapping Interventions 
Triantafillou and 

Tsarmadinos, 2015 
Other CI constraints n/a no PAG 

GFCI Greedy Fast Causal Inference Ogarrio et al., 2016 Other Equivalence class 
Insert/Delete operations (see 

subsection 4.2.24.2.2) 
no PAG 

GSP Greedy Sparsest Permutation Solus et al., 2017 Other Node ordering 
Reverse covered arc in associated 

DAG 
yes DAG 

ARGES Adaptively Restricted Greedy Equivalence Search Nandy et al., 2018 Restrict/Maximise Equivalence class Add/remove edge + orient edges yes CPDAG 

M3HC 
MAG Max-Min Parents and Children and Hill 

Climbing 
Tsirlis et al., 2018 Restrict/Maximise MAG 

Add/remove+ orient 

directed/undirected edges 
no MAG 

GSPo Greedy Sparsest Poset Bernstein et al., 2020 Other Node Ordering 
Directed/bidirected switch in 

associated DMAG 
no MAG 

SaiyanH Saiyan Hybrid Constantinou, 2020 Other DAG Add/remove/reverse arc yes DAG 

RFCI-BSC RFCI with Bayesian Scoring of Constraints Jabbari et al., 2017 Other MAG n/a no PAG 

CCHM 
Conservative rule and Causal effect Hill-climbing for 

MAG 

Chobtham and 

Constantinou, A 2020 
Restrict/Maximise MAG Add/remove + orient directed no MAG 

PC + MCMC 
PC restricts search space used by Order or Partition 

MCMC 
Kuipers et al., 2020 Restrict/Maximise DAG 

Swap adjacent nodes or split/merge 

partitions 
yes DAG 

mFGS-BS Majority rule with FGS and Bayesian Scoring Chobtham et al., 2022 Other Weighted arcs n/a no PAG 
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Wong and Leung (2004) also interleaved score and constraint-based operations, 

although in the context of an evolutionary algorithm. Their Hybrid Evolutionary Algorithm 

(HEA) begins by using low-order CI tests to evaluate the possible parents of each node, 

maintaining a record of the p-value indicating the likelihood of each CI relationship, and then 

creates a population of random DAGs. At each iteration, new DAGs are generated through 

genetic mutation and merge operations (see subsection 4.2.1), and then the population reduced 

back to its original size by removing the lowest scoring DAGs. Each individual DAG is 

assigned its own, dynamic, conditional independence significance level which is used in 

conjunction with the CI test p-values to restrict parent sets in individual creation, mutation and 

merge operations. This individualised significance level helps maintain population diversity. 

However, most Restrict/Maximise approaches do not interleave restrict and maximise 

operations. Rather, they use a constraint-based algorithm to define a restricted search space, 

and then a score-based algorithm operates within that restricted space. Max-Min Hill Climbing 

(MMHC) proposed by Tsamardinos (2006) is a widely-used example of this. In the restrict 

phase, MMHC uses the MMPC local constraint-based algorithm (see subsection 3.3.2) to 

construct the graph skeleton. The subsequent maximise phase uses Tabu hill-climbing (see 

subsection 4.2.1) to learn the output DAG, but is constrained to only use edges in the graph 

skeleton produced in the restrict phase. The author conducted a detailed evaluation of MMHC 

against leading constraint and score algorithms at the time with MMHC producing more 

accurate graphs than GES, PC and TPDA, and demonstrating the ability to learn networks with 

1,000 variables. Gasse et al. (2014) proposed Hybrid HPC (H2PC) which uses a Hybrid Parents 

and Children (HPC) algorithm to create a skeleton in the restrict phase with a focus on avoiding 

false missing edges. HPC uses an ensemble of weak parent-and-children algorithms to achieve 

this, and the maximise phase of H2PC uses Tabu hill-climbing. H2PC produced graphs with 

better structural accuracy and data fitting than MMHC across 10 networks with up to 1,836 

variables. However, H2PC was considerably slower than MMHC, being around 10 times 

slower at large sample sizes. 

Whilst most hybrid algorithms use an approximate score-based approach, Perrier et al. 

(2008) proposed Constrained Optimal Search (COS) which used an exact score-based dynamic 

programming approach (see subsection 4.3.1) in the maximise phase operating within a 

reduced search space defined by the skeleton returned by the restrict phase. Like MMHC, COS 

uses the MMPC algorithm to generate the skeleton, but uses a deliberatively high CI 

significance level so that the skeleton is denser than usual to increase the chances of the 

restricted search space including the globally optimal graph. COS was compared with MMHC 

and produced more accurate structures and data fitting scores, although comparisons were 

limited to 𝑛 = 20  due to runtime constraints of dynamic programming at that time. It is 

noteworthy that the authors found that using the output from either MMHC or COS as the 

initial graph for a further score-based hill-climbing phase improved graph quality for both 

algorithms. 

The papers introducing the hybrid algorithms discussed so far focussed on discrete 

variables, but Yang at al. (2011) described the Partial Correlation Bayesian (PCB) algorithm 

which considers continuous variables. The restrict phase uses partial correlation CI tests to 

determine the graph skeleton, followed by a hill-climbing maximise phase. The authors showed 

that their approach is applicable whenever a continuous variable is a linear function of its 

parents, not just the usual special case when the variables follow a Gaussian distribution. PCB 

produced more accurate graphs than Sparse Candidate, MMHC, PC and TPDA.  

5.1.2. Restrict/Maximise in equivalence class space 

Nandy et al. (2018) proposed Adaptively Restricted GES (ARGES) for continuous variables 

which uses MMPC for the restrict step and then a modified GES (see subsection 4.2.2) for the 
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maximise step. As is usual in restrict/maximise algorithms, they generally restrict GES to the 

skeleton produced in the restrict phase. However, they relax this restriction slightly to allow it 

to add shielding edges on v-structures whilst the CPDAG is being learnt. These extra shielding 

edges automatically disappear as the algorithm progresses, and so do not appear in the final 

CPDAG, hence why the algorithm is known as “adaptively restricted”. The authors provide 

theoretical arguments showing that temporarily allowing these extra edges means that the 

ARGES algorithm can offer both classical and high-dimensional consistency. 

5.1.3. Restrict/Sampling in ordering space 

Kuipers et al. (2022) describe a hybrid MCMC algorithm which creates a restricted search 

space using the PC constraint-based algorithm (see subsection 3.2.2) followed by MCMC 

sampling in the node ordering space (see the Order-MCMC algorithm in subsection 4.2.3), or 

sampling in the partition space (see the Partition-MCMC algorithm in subsection 4.2.3). The 

sampling is done in a space that initially corresponds to that identified by the PC algorithm, 

but each node is allowed an additional parent outside the initial space, so that the restriction is 

relaxed. The authors claim a large improvement in efficiency with the complexity to find the 

Maximum A-Posteriori (MAP) DAG reduced from 𝑛𝑘  to 2𝑘  where 𝑛  is the number of 

variables, and 𝑘 the maximum in-degree, making the algorithm suitable for high-dimensional 

problems. The authors find that accuracy is improved by allowing the sampling phase to add 

another parent node to the parent sets found during the constraint phase. Using PC in 

combination with Order-MCMC, the authors demonstrate considerably better SHD scores than 

GES or PC on random graphs with 𝑛 = {20, 80, 140, 200} and sample size 𝑁 = {2𝑛, 10𝑛}. 

Viinikka et. al. (2020) build upon the approach described in Kuipers and Moffa (2017) 

and Kuipers et. al. (2022) but reduce time and memory requirements to support much higher 

maximum in-degrees. They also improve the selection of candidate parent sets which they 

formulate as an optimisation problem which they solve exactly for smaller networks and 

heuristically for larger networks. The authors evaluated accuracy in predicting pairwise 

ancestral relationships and found improved accuracy over Partition-MCMC. 

 

5.1.4. Restrict/Maximise in ancestral graph space 

The MAG Max-Min Hill Climbing (M3HC) algorithm proposed by Tsirlis et al. (2018) uses 

MMPC in its restrict phase, and GSMAG (see subsection 4.2.4) in the maximise phase so that 

causal sufficiency is not assumed. MMPC produces a superset of the true adjacencies in the 

presence of latent variables and so is a suitable candidate for the restrict phase in causally 

insufficient settings. The empirical results of M3HC outperform GSMAG, FCI, CFCI and 

GFCI on standard BNs with up to 1041 variables (Tsirlis et al., 2018). 

CCHM (Chobtham and Constantinou, 2020) follows the approach used by the CFCI 

constraint-based algorithm (see subsection 3.4.4) to learn the skeleton and classify unshielded 

triples of nodes as either definitely a v-structure, definitely not a v-structure, or an ambiguous 

triple. It then uses a greedy hill-climbing search to further orientate edges in the MAG to 

maximise the BIC score for MAGs which is employed by M3HC and GSMAG. Since this score 

is score equivalent, some edges remain un-orientated, and so CCHM applies Pearl’s do-

calculus to orientate the remaining edges. Chobtham and Constantinou (2020) found that 

CCHM is generally more accurate than M3HC, FCI, CFCI and GFCI on both random and well-

known BNs. Both M3HC and CCHM were generally slower than FCI and GFCI while M3HC 

was faster than GSMAG, and CCHM is faster than CFCI. Note that GSMAG, M3HC and 

CCHM currently assume linear GBNs and so the data must be continuous values. 
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5.1.5. Symmetry correction 

As noted in subsection 3.3, skeletons produced by local discovery constraint algorithms, such 

as MMPC, are subject to errors arising from asymmetries in local structures where one node is 

in another’s local structure but not vice versa, making it unclear whether there should be an 

edge between the two nodes. In this situation, Zhao and Ho (2019) proposed Symmetry 

Correction which involves relearning the combined local structure of the two nodes using a 

score-based algorithm, and deciding whether to include the questionable edge dependent upon 

whether the local score-based search generates a graph including that edge. Incorporating 

Symmetry Correction, itself a hybrid approach, can improve the results of both constraint-

based local discovery algorithms, and hybrid algorithms which use them. The paper evaluated 

the technique across 16 BNs with the number of variables up to 𝑛 = 724, discovering that local 

structure asymmetries were commonly produced by MMPC, SI-HITON-PC, IAMB and GS 

algorithms. In the majority of cases, Symmetry Correction produced structurally more accurate 

and better fitting graphs, particularly when used in the restrict phase of a hybrid algorithm. 

5.2. Other hybrid approaches 

5.2.1. Other hybrid approaches which search in DAG space 

Structure learning algorithms often produce graphs with several isolated components with no 

edges between them. Constantinou (2020) argued that this is undesirable in real-world settings 

since it prevents the propagation of evidence between the variables in the different components 

if the learnt graph is subsequently parameterised and used for inference. The author therefore 

proposed the SaiyanH hybrid algorithm which guarantees to produce a DAG with a connected 

skeleton not containing independent components. SaiyanH begins by creating a connected 

undirected graph containing edges between pairs of nodes which have the strongest 

relationships between them according to a novel associational score. A second phase orientates 

all the edges in three steps: firstly, using a sequence of CI tests; secondly, using a score-based 

orientation heuristic; and thirdly, seeing which orientation maximises the effect of 

interventions. The resultant DAG is used as the initial graph for a third Tabu hill-climbing 

phase which is constrained to not violate independence relationships discovered in the first two 

phases, nor generate isolated components. Hence, the final DAG skeleton is guaranteed to be 

connected. SaiyanH ranked 4th when evaluated for structural accuracy against 12 other leading 

constraint, score and hybrid algorithms when learning six BNs with up to 𝑛 = 109 variables, 

whilst always achieving its aim of producing a connected skeleton. 

5.2.2. Other hybrid approaches which search in node-ordering space 

The Greedy Sparsest Permutation (GSP) algorithm (Solus et al., 2017) is an approximate 

algorithm building upon the exact Sparsest Permutation (SP) algorithm (Raskutti and Uhler, 

2013, 2018) which was only viable up to 10 variables. Both are hybrid algorithms which search 

node ordering (which the authors referred to as a permutation) space and use a constraint-based 

approach within the overall algorithm to generate a minimal I-MAP DAG associated with each 

node ordering encountered. This constraint-based approach generates a DAG, denoted 𝐺≺ , 

associated with node ordering ≺ = (≺1, ≺2, … , ≺𝑖, … , ≺𝑛), using the following rule to generate 

the edges in 𝐺≺: 

 

𝑗 < 𝑘 𝑎𝑛𝑑 𝑋≺𝑗
 ⊥/   𝑋≺𝑘

 | {𝑋≺1
, … , 𝑋≺𝑘−1

} \ {𝑋≺𝑗
}  ⟺  𝑎𝑟𝑐 𝑋≺𝑗

→ 𝑋≺𝑘
 𝑖𝑛 𝐺≺ 

 

where 𝑋≺𝑖
 is the node at position 𝑖 in the node ordering. That is to say, it generates an arc 𝐴 →

𝐵 in the associated DAG if 𝐵 is lower down the ordering than 𝐴, and if 𝐴 is dependent on 𝐵 
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conditional on any subset of the nodes higher up the ordering than 𝐵. Pearl (1998) showed that 

this creates a minimal I-MAP DAG for that node ordering. 

 Solus et al. (2017) proposed the Triangle Sparsest Permutation (TSP) algorithm which 

traverses ordering space in a depth-first search, by flipping a covered arc in the associated DAG 

and then moving to the new ordering associated with that DAG. A covered arc is one where 

the two endpoint nodes have the same set of parents (ignoring the endpoint node that is the 

parent of the other endpoint). Solus et al. (2017) demonstrated that TSP is asymptotically 

consistent, the first ordering space algorithm to offer this guarantee. GSP limits the depth of 

the search but restarts the search, and so offers shorter runtimes than TSP. Comparisons showed 

GSP was on par with GES and PC in high sample size settings (𝑛 = 10, 𝑁 = 10,000) and 

produced more accurate graphs in low sample size settings (𝑛 = 100, 𝑁 = 300). 

Bernstein et al. (2020) applied a similar approach to GSP but their Greedy Sparsest 

Poset (GSPo) algorithm targets causally insufficient problems. A poset is a partial node 

ordering associated with a directed MAG (DMAG), a MAG that has only directed and 

bidirected but no undirected edges, and so supports latent variables but not selection variables. 

Analogously to GSP, they provided a mapping from a poset to a minimal I-MAP DMAG and 

traverse poset space by making changes in the associated DMAG, moving to the poset 

associated with that new DMAG. In this case, the allowed change in the DMAG is changing a 

single bidirected edge into a directed one, or vice versa. Each of these moves in poset space 

results in a DMAG with the same or fewer edges. The authors conjectured, and supported with 

empirical evidence, that this algorithm produces a DMAG that is Markov equivalent to the true 

graph as 𝑁 → ∞. Results on synthetic Gaussian networks with between 10 and 50 variables, 

three of which are latent, showed better structural accuracy than FCI and FCI+. Runtime is 

sensitive to the initial poset provided to GSPo, although provided a good starting poset is used 

(for instance using GSP to produce an initial DAG), GSPo is faster than FCI in all cases and 

slower than FCI+ when there are more than 30−40 variables. 

5.2.3. Other hybrid approaches which search in equivalence class space 

Ogarrio et al. (2016) also aimed to produce a hybrid algorithm that provides asymptotic 

guarantees of correctness in the presence of latent variables. They observed that constraint-

based algorithms for causally insufficient settings such as FCI, RFCI and FCI+ are 

asymptotically correct, but low sample size performance is poorer, especially returning graphs 

with too many bidirected edges. The score-based GES and FGES are asymptotically correct in 

causally sufficient situations, although they produce extra adjacencies and incorrect 

orientations when there are latent variables present. Thus, they proposed the Greedy Fast 

Causal Inference (GFCI) algorithm which first uses GES to produce a CPDAG. GFCI then 

employs CI tests to remove extraneous adjacencies in this skeleton, followed by modified FCI 

orientation rules to produce a PAG. The authors evaluated GFCI on synthetic Gaussian BNs 

with number of variables, 𝑛 = 100, 1,000  with either 5% or 20% of those being latent 

variables. GFCI was shown to generally have better recall and precision on adjacencies and 

arrow end marks than FCI, RFCI and FCI+, and in the cases where it was worse, it was only 

slightly worse. GFCI has worse recall of bidirected edges but much better precision of them, 

supporting the theoretical argument advanced that FCI, RFCI and FCI+ tend to produce too 

many adjacencies. GFCI was around 23% slower than RFCI and faster than FCI+ (comparisons 

were not provided for FCI). 

5.2.4. Other hybrid approaches which search in ancestral graph space 

The Bayesian Constraint-based Causal Discovery (BCCD) algorithm (Claassen and Heskes, 

2012) is a hybrid algorithm which does not assume causal sufficiency and produces a PAG. It 

assigns a Bayesian score to CI constraints to reflect the reliability of each constraint, rather 



Revision 1, October, 2022. 

 
 

52 
 

than the binary true/false judgement made by most constraint-based approaches. The score is 

used to rank CI constraints, helping to prevent unreliable decisions being propagated, and 

providing a principled means to resolve orientation conflicts.  

BCCD follows the approach of PC and FCI and starts with a complete undirected graph 

and then uses conditioning sets of increasing size in the adjacency phase. The probability of CI 

constraints is incremented during this adjacency phase and if the probability exceeds a 

threshold the relevant edge is removed from the evolving skeleton. The ranked CI constraints 

are used to orientate unshielded triples and then further orientation rules applied using the CI 

constraint ranking to resolve conflicts. Claassen and Heskes (2012) evaluate BCCD on small 

random graphs with six or twelve variables and find that it is slightly more accurate than FCI 

and CFCI. 

Hyttinen et. al. (2014) use a similar approach that associates a cost with each 

independence and dependence constraint. However, the algorithm is targeted at learning a 

causal model from multiple datasets with different but overlapping sets of variables, with 

interventions on different sets of variables, in a causally insufficient setting. The problem is 

tackled as a constrained optimisation problem which is solved using an off-the-shelf Answer 

Set Programming approach. Performance is evaluated on small randomly generated graphs 

with six continuous variables and demonstrated better accuracy than PC and CPC for causally 

sufficient tests, and FCI and CFCI for causally insufficient tests. 

The COmbINE algorithm (Triantafillou and Tsamardinos, 2015) also assigns 

probabilities to CI statements and is applied to the same causally insufficient setting with 

multiple interventional datasets with overlapping variables. COmbINE uses FCI to learn the 

PAG for each interventional dataset. It merges these using an open-source Boolean 

satisifiability application, MINISAT (Sorensson and Een, 2005), to produce a summary graph 

showing the edges and orientations that are invariant across the individual PAGs. 

 Jabarri et al. (2017) proposed a hybrid variant of the RFCI constraint-based algorithm 

which supports latent and selection variables, known as RFCI-BSC. It assigns a novel Bayesian 

Scoring of Constraints (BSC) score to each CI test which reflects the probability that the 

variables are indeed conditionally independent. The RFCI algorithm is then modified so that it 

stochastically decides whether each CI is true or not according to its BSC score. The algorithm 

is not deterministic because it uses a different random seed each time it runs. 

The overall RFCI-BSC algorithm repeats this stochastic learning process to produce a 

series of PAGs. It then re-uses the BSC score concept to generate an overall BSC score for 

each PAG based on the BSC scores for the CI relationships used to generate that PAG. This 

BSC score is reflective of the posterior probability of that PAG. Finally, model averaging 

produces a single, non-deterministic, output PAG by considering the probability of each edge 

across all the PAGs. Jabarri et al. (2017) found that the structural accuracy of RFCI-BSC was 

generally better than RFCI, with up to 𝑛 = 70 variables and relatively small sample sizes of 

𝑁 = {200, 2000}, though it had worse adjacency accuracy with the largest number of variables. 

Chobtham et al. (2022) describe the mFGS-BS hybrid algorithm which learns a PAG 

from one observational dataset and one or more interventional datasets. The datasets must all 

have the same variables, but causal sufficiency is not assumed. FGES is used to learn a CPDAG 

from each dataset, and probabilities are then assigned to individual arcs based on their 

frequency in the different CPDAGs, a majority-voting constraint-based approach to arc 

orientation in unshielded triples, and from do-calculus considerations around intervened 

variables. A final arc orientation phase removes cycles and resolves any orientation conflicts 

to produce a single PAG. The authors find that mFGS-BS outperforms COmbINE, as well as  

GFCI and RFCI-BSC which are baselines that do not account for interventions. 
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5.3. Other Structure Learning Approaches 

We discuss some algorithms in this sub-section which take a different approach to the 

algorithms already discussed.   

5.3.1. Functional Causal Models 

Functional Causal Models (FCMs) can be used to model causal systems where it is assumed 

that a variable’s value can be expressed as some deterministic function of its parents plus a 

noise term that is independent of all the causes, that is: 

 

𝑋 = 𝑓(𝑷𝒂(𝑋), 𝜀) 

 

where 𝑓 is a deterministic function, and 𝜀 is a noise term which is independent of 𝑷𝒂(𝑋) and 

all the other variables’ noise terms. This approach is mostly used with continuous variables, 

though it can be used to model, for example, noisy-OR relationships between discrete variables. 

Given some assumptions about the form of 𝑓 and 𝜀, it is possible to learn the complete causal 

structure from observational data alone, including the case of identifying the arc orientation 

with just two variables. 

 One set of assumptions is the Linear Non-Gaussian Acyclic Model (LiNGAM) 

(Shimizu et al., 2006) which assumes 𝑓 is linear, 𝜀 is independent but non-Gaussian noise, and 

that the system is causally sufficient. With these assumptions, the authors show that structure 

learning can be undertaken by performing independent component analysis (ICA) on the data 

using well-established approaches (Hyvärinen and Oja, 2000). Hoyer et al. (2008b) extend 

LiNGAM to support latent variables.  

Zhang and Hyvärinen (2009) propose a more general type of FCM called the Post Non-

Linear (PNL) Causal Model which has the form: 

 

𝑋 = 𝑓𝑚𝑒𝑠(𝑓𝑛𝑙(𝑷𝒂(X)) + ε) 

 

where 𝑓𝑛𝑙 defines the variable’s value as a non-linear function of its causes, 𝑓𝑚𝑒𝑠  is a non-linear 

function that can represent measurement error, and 𝜀 is the independent noise term. This more 

general formulation of FCMs incorporates LiNGAM and Additive Noise Models (Hoyer et al., 

2008a, Gretton et al., 2009) as special cases. Zhang and Hyvärinen (2009) show that arc 

orientations are identifiable in the PNL model with five exceptions. The most important 

exception is when 𝑓𝑚𝑒𝑠  is the identity function, 𝑓𝑛𝑙 is linear, and ε is Gaussian. This is the linear 

Gaussian setting which is the usual assumption made by algorithms in the rest of this paper 

when modelling systems with continuous variables, and hence why, in that case, it is only 

possible to learn up to an equivalence class from observational data. We have only presented a 

brief overview of FCMs here and would encourage interested readers to read recent reviews of 

the area such as the one by Glymour et al. (2019). 

5.3.2. Continuous Optimisation 

Another recent development in structure learning is the continuous optimisation approach. In 

the combinatoric approaches discussed so far, a DAG can be represented as an adjacency 

matrix where a 1 at a particular position (𝑖, 𝑗) indicates the presence of an arc from node 𝑋𝑖 to 

node 𝑋𝑗, whereas a 0 would indicate the absence of an arc. In contrast, continuous optimisation 

treats the adjacency matrix as a real-valued matrix. As with non-continuous score-based 

methods the goal of continuous optimisation is to maximise how well the DAG fits the data, 

but the requirement for acyclicity is expressed as an equality constraint on real values making 

the method an equality constrained problem (Vowels et al., 2021). One of the key advantages 
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of this approach is that it is much closer to approaches used in mainstream machine learning 

and allows the use of powerful off-the-shelf optimisation approaches. 

The Non-Combinatoric Optimization via Trace Augmented Lagrangian Structure 

(NOTEARS) (Zheng et al., 2018) algorithm was perhaps the first to use continuous 

optimisation for structure learning. NOTEARs represents the DAG as a 𝑛 × 𝑛  weighted 

adjacency matrix 𝑊 with elements 𝑤𝑖𝑗  so that the value of any variable 𝑋𝑖 is given by: 

𝑋𝑖 = ∑ 𝑤𝑖𝑗 ∙ 𝑋𝑗

 

𝑗≠𝑖

+  𝑧𝑖 

where 𝑋𝑗 iterates over the other variables, and 𝑧𝑖 is noise for the variable which can be non-

Gaussian. If 𝑤𝑖𝑗  is zero this indicates that there is no arc from 𝑋𝑗 to 𝑋𝑖. Therefore, matrix 𝑊 

encapsulates both the DAG structure and the strength of relationships associated with each arc. 

This representation naturally fits where the variables take continuous values, but can be 

extended to discrete ordinal valued variables by using a logistic regression approach to obtain 

ordinal discrete values from continuous values. The objective function, 𝐹(𝑊), to be minimised 

is given by: 

 

𝐹(𝑊) =
1

2𝑁
‖𝑿 − 𝑿𝑊‖2 +  𝜆‖𝑊‖1 

 

where 𝑿 is the complete dataset over 𝑛 variables and 𝑁 instances, and therefore 𝑿𝑊 is the 

predicted data values derived from the weighted adjacency matrix and values of parentless 

variables.  Thus, the first term in 𝐹(𝑊) is the least square error of the predicted values minus 

actual data values and therefore a measure of data fitting. The second term is an L1 regulariser 

with ‖𝑊‖1 being the sum of the absolute weight values. Its inclusion therefore has the effect 

of penalising complex DAGs.  

The key contribution of Zheng et al. (2018) is to formulate the acyclicity requirement as 

the following continuous function constraint ℎ(𝑊): 

 

ℎ(𝑊) = 𝑡𝑟(𝑒𝑊○𝑊) − 𝑛 

 

where ○ is Hadamard matrix multiplication, 𝑒𝑚𝑎𝑡𝑟𝑖𝑥 is matrix exponentiation which may be 

expressed as a power series of matrix products, and 𝑡𝑟(𝑚𝑎𝑡𝑟𝑖𝑥) is the matrix trace operation 

which is the sum of the diagonal elements. The derivation of this expression relies on the fact 

that the trace of a normal binary adjacency matrix raised to power 𝑞 equals the number of 

cycles of length 𝑞 in a directed graph, and this must be zero for all 𝑞 for a DAG. The constraint 

ℎ(𝑊) has desirable properties such as being zero for a DAG, with lower values being closer 

to a DAG, and it is continuous and differentiable. This means that the problem can be solved 

by off-the-shelf optimisers, with NOTEARS using an augmented Lagrangian approach. Note 

that the problem is non-convex meaning that it has local minima so that NOTEARS is an 

approximate algorithm. 

 The authors compare NOTEARS with PC, LiNGAM and FGES in learning both Erdos-

Rényi (Erdos and Rényi, 1960) and scale-free9 random graphs (Barabási and Albert, 1999) 

which the authors argue can be more representative of real-world networks. They use 𝑛 ∈

 

 
9 Scale-free graphs have a power law probability distribution for the node degree, 𝑑, of the form 𝑃(𝑑) ∝ 𝑑−𝛾 

where 𝛾 is typically between 2 and 3. The resulting network has a small number of nodes with many tens or 
more of neighbours which are known as hubs. Biological networks such as gene regulation or metabolic 

networks are often scale-free, for example. 
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{10, 20, 50, 100} variables and 𝑁 = 20 as a low sample size, and 𝑁 = 1000 as a high sample 

size, and simulate Gaussian, Exponential and Gumbel noise. FGES and NOTEARS had 

comparable accuracy on sparser graphs, but NOTEARS was more accurate on denser networks 

across all noise types. We recommend that interested readers consult the review by Vowels et 

al. (2021) which covers continuous optimisation methods much more broadly. 

  

6. PRACTICAL CONSIDERATIONS 

This section deals with some of the practical considerations when using BN structure learning 

algorithms in real world applications. The first subsection discusses some of the methods used 

to evaluate BN structure learning algorithms, and the second subsection describes the 

performance of these algorithms in terms of the quality of the networks they produce and their 

computational efficiency, and how their real performance compares to the theoretical or 

synthetic performance. The third subsection discusses how various forms of noise in the data 

can affect the quality of the learnt graph including some techniques which can mitigate those 

effects. Subsection 6.4 considers how expert knowledge can be incorporated into the learning 

process to improve the learnt networks, subsection 6.5 provides details of open-source 

packages and datasets relevant to structure learning, and the final subsection provides some 

guidelines for choosing and using algorithms. 

6.1. Algorithm Evaluation 

Evaluating structure learning algorithms can be a straightforward or a complicated process, 

depending on the selected evaluation approach. Indeed, it is fair to say there is no agreed 

process to determine the effectiveness of these algorithms (Korb and Nicholson, 2011), partly 

because of the different types and aims of the algorithms. The relevant literature consists of 

various evaluation criteria and, whilst many are similar, others represent entirely different 

concepts. In the absence of an agreed evaluation method, it is difficult to reach a consensus on 

the effectiveness of an algorithm. As a result, it is not infrequent to observe conflicting 

conclusions about which algorithm is ‘best’. 

 Two main factors that tend to determine the evaluation criteria involve a) the learning 

class of the algorithm, each of which is described in Sections 2 to 4, and b) the data generation 

process. As shown in  

Table 5, there are two main types of evaluation, each of which is largely determined by the two 

above factors. Graphical evaluations correspond to scoring metrics that measure the differences 

between the learnt and ground truth graphs, whereas inference-based evaluations generally 

focus on how well the learnt distributions fit the observed distributions. 

When the algorithms are applied to real data, the evaluation is generally not based on 

graph comparisons since the true graph is unknown. However, graphical-based evaluations are 

occasionally used when a knowledge-based graph is produced that can be compared to a learnt 

graph, as in (Kitson and Constantinou, 2021). As a result, most real-world applications of BN 

structure learning are evaluated in terms of inference. 

Constraint-based learning tends not to be assessed with inference-based scores, at least 

in the case of synthetic experiments, because this learning class focuses on causal discovery 

which can only be effectively measured by means of graphical structure. On the other hand, 

inference-based evaluation is predominantly based on functions that only score-based 

algorithms employ. Therefore, while it makes sense to judge score-based algorithms in terms 

of the highest scoring graph achieved, it might be less appropriate to judge constraint-based 
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algorithms by the same standards since they are based on a learning process that does not aim 

to maximise the global score of the learnt graph. 
 

Table 5 - The most common type of evaluation for different combinations of learning class and data generation 

process. 

 

Learning class 

Data 

Synthetic Real 

Constraint-based Graphical Inference 

Score-based Graphical, 

Inference 

Inference 

Hybrid Graphical, 

Inference 

Inference 

 

Metrics that focus on measuring the relationship between two graphical structures can be 

viewed as variants, often with modifications, of a confusion matrix that consists of: 

 

a) True Positives (TP), corresponding to the number of true edges/arcs present in the learnt 

graph; i.e., number of corrects edges/arcs discovered, 

b) False Positives (FP), corresponding to the number of false edges/arcs present in the 

learnt graph; i.e., number of incorrect edges/arcs discovered, 

c) True Negatives (TN), corresponding to the number of true absent edges in the learnt 

graph; i.e., number of correct independence relationships discovered, and 

d) False negatives (FN), corresponding to the number of false absent edges in the learnt 

graph; i.e., number of incorrect independence relationships discovered. 

 

Two of the most commonly used metrics are Precision (P) and Recall (R), defined as 

 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

      

and                 

 
𝑅 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

respectively. Specifically, Precision represents the rate of correct edges discovered across all 

edges discovered, whereas Recall represents the rate of edges discovered across all true edges 

that could have been discovered. Independently, however, these metrics can be misleading in 

judging the performance of an algorithm, which is why the F1 score is often preferred since it 

provides the harmonic mean of Precision and Recall. The F1 score is defined as: 

 

F1 = 2
𝑃. 𝑅

𝑃 + 𝑅
 

 

 A frequent alternative, or an additional, metric, is the Structural Hamming Distance 

(SHD) proposed by Tsamardinos et al. (2006). The SHD score represents the number of edge 

insertions, deletions and arc reversals needed to convert the learnt graph into the true graph, 

and is defined as 

 

𝑆𝐻𝐷 = 𝐹𝑁 + 𝐹𝑃 

 

Tsamardinos et al. (2006) originally proposed using SHD to compare CPDAGs (representing 

equivalence classes) and this is the setting in which it is usually used, though it may also be 

applied to comparing DAGs. Variants of SHD are often applied and focus on assigning 
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different penalty weights for edge insertion, deletions and arc reversals. The most frequent 

modification involves assigning a lower weight to arc reversals on the basis that an arc reversal 

corresponds to the discovery of an edge, albeit one with an incorrect direction (de Jongh and 

Druzdzel, 2009; Constantinou, 2019a).  

Other structural metrics have focused on assessing the learnt graph in terms of causal 

effects, such as the Structural Intervention Distance (SID) by Peters and Buhlmann (2015) 

which measures the closeness of two DAGs in terms of their corresponding causal inference 

statements. More specifically, it is the number of ordered pairs of nodes (𝑋𝑖, 𝑋𝑗) where an 

intervention on 𝑋𝑖 produces a different intervention distribution in node 𝑋𝑗 in the two graphs 

𝐺1, 𝐺2 being compared. The SID of DAG 𝐺2 from DAG 𝐺1, denoted 𝑆𝐼𝐷(𝐺1, 𝐺2), is computed 

as the number of pairs of nodes (𝐴, 𝐵) where: 

 

𝐵 ∈ 𝑷𝒂𝑮𝟐 (𝐴) and 𝐵 ∈ 𝑫𝒆𝑮𝟏 (𝐴) 

 

plus the number of pairs of nodes (𝐴, 𝐵) where: 

 

𝐵 ∉ 𝑷𝒂𝑮𝟐 (𝐴) and 𝑷𝒂𝑮𝟐 (𝐴) meets one or both of the following conditions: 

• some 𝑍 ∈ 𝑷𝒂𝑮𝟐  is a descendant of any 𝑊 ≠ 𝐴 on a directed path from 𝐴 to 𝐵 in 𝐺1 

• 𝑷𝒂𝑮𝟐 (𝐴) does not d-separate 𝐴 and 𝐵 in 𝐺1 

 

where 𝐴 and 𝐵 represent nodes, 𝑷𝒂𝑮𝟐(𝐴) are the parents of node 𝐴 in graph 𝐺2 and 𝑫𝒆𝑮𝟏(𝐴) 

are the descendants of node 𝐴 in graph 𝐺1. Peters and Buhlmann (2015) also proposed a variant 

of SID which can be used to compare CPDAGs which only considers those pairs of nodes 

where the intervention is identifiable in the CPDAG. They also note that the SID metric only 

takes account of interventions on single nodes and that, in general, 𝑆𝐼𝐷(𝐺1, 𝐺2) ≠ 𝑆𝐼𝐷(𝐺2, 𝐺1). 

Lastly, the Balanced Scoring Function (BSF) proposed by Constantinou (2019a) takes 

into consideration the complete confusion matrix to eliminate score imbalance by adjusting the 

reward function relative to the difficulty of discovering an edge, or the absence of an edge, 

proportional to their occurrence rate in the true graph. The BSF is defined as: 

 

BSF =
(

TP

|𝐸|
+

TN

|𝑀|
−

FP

|𝑀|
−

FN

|𝐸|
)

2
⁄  

 

where |𝐸| and |𝑀| represent the number of edges present and the number of edges absent 

(compared to the complete graph) in the true graph respectively, and 

 

|𝑀| =
𝑛 × (𝑛 − 1)

2
− |𝐸| 

 

On the other hand, the BD/e/u, Log-Likelihood, and BIC scores described in 

subsections 3.1.1 and 3.1.2 are the approaches most commonly used as an alternative to metrics 

of graphical discrepancy. Specifically, they are used to judge algorithms in terms of the highest 

scoring graph discovered with reference to the input data, according to the preferred scoring 

function. Although often less desirable than structural metrics, inference-based approaches can 

be extended to include other types of evaluation, such as predictive accuracy as determined by 

the Area Under the Curve (AUC) of the Receiving Operating Characteristic (ROC) (Fawcett, 

2004).  

In general, the BIC score is the most widely used metric across the various inference-

based approaches, especially in real-world applications of BN structure learning. A problem 
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with BIC, however, and which applies to most inference-based scores, is that it is score-

equivalent; implying that it will generate the same score for multiple DAGs that are part of the 

same Markov equivalence class (refer to Fig 5). While this is not an issue when comparing 

CPDAGs, it is an issue when comparing DAGs which are generally required when applying 

structure learning to real problems.  

An important limitation of inference-based scores is that a higher scoring graph, or 

higher predictive accuracy, do not necessarily reflect a more accurate causal structure 

(Constantinou et al., 2021b). For example, the highest BIC scoring graph across all possible 

graphs is often not the ground truth graph that generated the data. This limitation is exaggerated 

with limited and noisy data that distort the scores, and relaxed with big and clean data that 

increase our confidence in the scores generated. Despite their imperfections, inference-based 

evaluations are considered reasonably effective and represent an important metric for structure 

learning. 

Lastly, a further limitation of most structural and inference metrics is that they scale 

with the number of variables in the graph, and in the case of inference metrics, with the sample 

size also. This makes comparisons between learning performance on different networks and 

datasets problematic. Several authors have attempted to address this by using scaled variants 

of the metrics. For example, Scutari et al. (2019a) used SHD divided by the number of arcs in 

the true graph in their comparative review of algorithms, and Malone et al. (2015) employed 

the Log-Likelihood divided by the product of the number of variables and sample size in their 

review of the generalisability of score-based algorithms. Note that BSF is one structural metric 

that has the advantage of not scaling with the number of variables. 

6.2. Algorithm Performance 

In this subsection, we consider the quality of the graphs that the algorithms produce, as well as 

their computational efficiency. Table 6 summarises some of the noteworthy papers which 

provide insights into algorithmic performance, and the type and scale of the data and networks 

to which they have been applied. Most papers which introduce a new structure learning 

algorithm tend to only evaluate it against previous algorithms of the same type, making it hard 

to get a picture of how they perform against the broad range of algorithms available. For this 

reason, we focus on comparative studies which cover a decent range of different types of 

algorithms, either studied as an end-goal in itself, or as part of study into some aspect of 

structure learning such as the effect of the objective function (Scutari, 2016) or noisy data 

(Constantinou et al., 2021b). Table 6 does include some papers which introduced a new 

algorithm: MMHC (Tsarmadinos et al., 2006); PC-Max (Ramsey, 2016) and FGES (Ramsey 

et al., 2017) where this has extended the scale of problems that have been tackled.  
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Table 6 - Sources and characteristics of performance information used. 

 

DATASET CHARACTERISTICS ALGORITHMS 

EVALUATED 

TYPE OF 

EVALUATION 

Principal area of investigation 

R
a

n
d

o
m

 N
e
tw

o
r
k

s 

S
ta

n
d

a
r
d

 N
e
tw

o
r
k

s 

R
e
a

l 
D

a
ta

se
ts

 

D
is

c
r
e
te

 v
a

r
ia

b
le

  

C
o

n
ti

n
u

o
u

s 
v

a
r
ia

b
le

s 

M
ix

e
d

 v
a

r
ia

b
le

s 

N
u

m
b

e
r
 o

f 
v

a
r
ia

b
le

s 

S
a

m
p

le
 S

iz
e
  

A
v

e
r
a

g
e
 d

e
g

r
e
e 

N
u

m
b

e
r
 o

f 
a

lg
o

r
it

h
m

s 

P
C

 F
a

m
il

y
 

F
C

I 
F

a
m

il
y

 

H
C

 /
 T

a
b

u
 

G
E

S
/F

G
E

S
/F

G
S

 

       G
G

E
S

/F
G

E
S

 

E
x

a
c
t 

sc
o

r
e
-b

a
se

d
 

H
y

b
r
id

 a
lg

o
r
it

h
m

s 

S
tr

u
c
tu

r
a

l 

In
fe

r
e
n

ti
a

l 
- 

fi
tt

in
g

 

In
fe

r
e
n

ti
a

l 
- 

c
a

u
sa

l 

E
ff

ic
ie

n
c
y

 

Introduce MMHC Algorithm 

(Tsarmadinos et al., 2006) 
 10  Y   

20 - 

801 

500 - 

20000 

1.17- 

2.08 
7 Y   Y  Y 

Y 

Y 
Y  Y 

Generalisation of score-based algorithms 

(Malone et al., 2015) 
 13 29 Y   

17 – 

60 

31 - 

20000 
n/a 5   Y 

Y 

Y 
Y Y Y Y   

Scoring Function and Structural Priors 

(Scutari, 2016) 
 10  Y   

8 – 

442 

~10 – 

2.2x106 

1.00 – 

1.93 
1   Y    Y Y   

Introduce PC-Max Algorithm 

(Ramsey, 2016) 
20    Y  

1000 - 

20000 
1000 

2.00 – 

4.00 
4 Y   Y   Y   Y 

Algorithms supporting latent variables 

and cycles (Singh et al., 2017) 
1  2  Y  

10 – 

100 

11 - 

10000 
n/a 10 Y Y Y   Y Y Y Y  

Scalability learning continuous variable 

networks (Ramsey and Andrews, 2017) 
270    Y  

50 - 

500 

100 - 

1000 

2.00 – 

6.00 
18 Y  Y Y  Y Y   Y 

Introduce FGES Algorithm 

(Ramsey et al., 2017) 
443   Y Y  

1000 - 

106 
1000 

1.00 – 

2.00 
1    Y   Y   Y 

Investigate learning mixed variable type 

networks (Raghu et al., 2018) 
13    Y Y 

50 – 

100 

100 – 

5000 

~3 – 

~5 
5 Y  Y    Y   Y 

Learning globally optimal graphs with 

exact score-based algorithms (Liao et al., 

2019) 

 6 20 Y   
10 – 

57 

32 – 

58265 
n/a 3     Y   Y  Y 

Comparing score, constraint and hybrid 

algorithms (Scutari et al., 2019a) 
 14  Y Y  

20 – 

442 

23 – 

3.9x105 

1.18 – 

2.06 
9 Y  Y Y  Y Y   Y 

Evaluating hill-climbing algorithm on 

large sample sizes (Scutari et al., 2019b) 
 1 5   Y 

19 – 

37 

106 – 

5.4x107 
n/a 1   Y    Y   Y 

The impact of noisy data on different 

algorithms (Constantinou et al., 2021b) 
 6  Y   

8 – 

109 

100 – 

106 

2.00 – 

3.58 
15 Y Y Y Y Y Y Y   Y 

 

6.2.1. Accuracy comparisons between algorithms 

The wide range of algorithmic approaches discussed in Sections 2, 3 and 4 and the varied ways 

in which performance has been evaluated shown in Table 6, make it difficult to make definitive 

statements about the optimal approach to use in a particular context. As Table 6 suggests, the 

algorithms selected for comparison vary considerably between studies, though we note that 

most include an algorithm from the PC family, hill-climbing or Tabu, one from the GES family, 

and a hybrid algorithm, usually MMHC. These may thus be regarded as a ‘benchmark’ set of 

algorithms to which performance can be usefully compared. It seems rare for comparative 

studies to include sampling or genetic algorithms, presumably because they tend to be non-

deterministic and produce a slightly different result each time they run, which makes it difficult 

to judge how these different kinds of approaches rank against the more established algorithms. 

Comparisons between algorithms usually consider datasets with either discrete or 

continuous variables, though Scutari et. al. (2019a) considered both discrete and continuous 

variable networks, and Raghu et al. (2018) is one of the few studies that examines algorithms 

capable of learning networks containing a mixture of discrete and continuous variables. With 

discrete data, Scutari et al. (2019a) found that Tabu was the most accurate algorithm (14/20 

cases) especially for large sample sizes (10/10 cases where sample size was equal to, or greater 
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than, the number free parameters), and Constantinou et al. (2021b) similarly found that Tabu 

and hill-climbing ranked highest, overall. However, Scutari (2019a) found that Tabu was less 

accurate than the constraint and hybrid algorithms studied when learning Gaussian BNs, 

tending to produce too dense a graph.  

Within score-based algorithms, Scutari (2019a) found that Tabu is more accurate than 

FGES (lower SHD in 18/20 cases), a finding echoed by Constantinou et al. (2021b). The study 

by Scutari (2019a) included a variant of the Order-MCMC sampling algorithm referred to as 

Simulated Annealing which fared poorly in terms of accuracy being the least accurate in 11/20 

cases. Constantinou et al. (2021b) found that Tabu and hill-climbing ranked more highly in 

graphical accuracy than the exact GOBNILP algorithm, suggesting that the latter’s theoretical 

advantages may be diminished with realistic sample sizes and/or noisy data, and that the 

highest scoring graph will not necessarily be closer to the ground truth graph than some other 

lower scoring graph. However, Malone et al. (2015) found evidence that exact algorithms (A* 

search and Integer Linear Programming) generalise better to unseen data than approximate 

algorithms do. 

Scutari et al. (2019a) found that there was “no systematic difference in accuracy” when 

comparing constraint-based and hybrid algorithms, though they and Constantinou et al. (2021b) 

found that H2PC tended to perform better than other non-score-based algorithms. Many of the 

papers comparing constraint-based algorithms have considered only Gaussian networks. Singh 

et al. (2017) noted that all the constraint-based algorithms they investigated tended to learn a 

similar skeleton. Ramsey (2016), Ramsey and Andrews (2017) and Singh et al. (2017) all found 

that constraint-based algorithms obtained better edge precision than score-based approaches, 

but worse edge recall. The weaker faithfulness assumptions made by the CPC algorithm 

resulted in better arrowhead precision than the PC algorithm achieved, but arrowhead recall 

was worse (Raghu et al., 2018; Ramsey and Andrews, 2017). Raghu et al. (2018) and Ramsey 

(2016) found that algorithms from the PC and FCI family performed better than score-based 

algorithms on real data sets suggesting that they may perform better in the presence of latent 

variables and other forms of noise. On the other hand, Constantinou et al. (2021b) found that 

the algorithms that accounted for latent variables (FCI, GFCI and RFCI-BSC) did not offer 

improved graphical accuracy relative to other algorithms, in experiments which incorporated 

latent variables. 

6.2.2. Efficiency comparisons between algorithms 

As with accuracy comparisons, the literature provides a complex picture as to which algorithms 

are fastest. Tabu is found to be faster than both constraint-based and hybrid algorithms by 

Scutari et al. (2019a) when learning discrete networks, whereas Constantinou et al. (2021b) 

found some hybrid (MMHC) and constraint (Grow-Shrink) algorithms have runtimes closer to 

Tabu than other constraint-based and hybrid algorithms. As might be expected, exact score-

based algorithms are considerably slower than approximate score-based algorithms 

(Constantinou et al., 2021b) and are generally limited to problems with less than 100 variables. 

In general, approximate score-based algorithms can tackle much higher dimensional problems, 

with Ramsey et al. (2017) using the FGES algorithm to learn both discrete and Gaussian BNs 

with 30,000 variables in a few minutes with parallel processing on a powerful laptop, and 

learning a Gaussian network with one million variables on a supercomputer. Scutari et al. 

(2019a) found that FGES was always faster than Tabu in the 20 discrete BN cases considered, 

whereas Constantinou et al. (2021b) found that FGES was considerably slower than Tabu and 

hill-climbing over the cases they considered. 

Considering Gaussian networks only, the study by Ramsey and Andrews (2017) 

provides evidence about the importance of the implementation of an algorithm, such as which 

programming language is used, showing an order of magnitude speed difference between two 
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implementations of the CPC algorithm. Tsarmadinos (2006) reported clear efficiency 

advantages of the MMHC algorithm being 41.35 and 10.09 times faster than the author’s 

implementation of PC and Tabu respectively, whereas subsequent studies such as by Scutari et 

al. (2019a) have not borne out these advantages. 

6.2.3. Other factors affecting performance 

Many other factors, beside the choice of algorithm, affect the accuracy and speed of the 

structure learning process. One factor where there seems to be consistency across the different 

studies is that increasing sample size improves the accuracy of the learnt graph. For example, 

Malone et al. (2015) find that increasing sample size both improves the predictive likelihood 

of test datasets and reduces the variability of the predicted likelihood between different test 

datasets for both Tabu and exact score-based algorithms. Similarly, Liao et al. (2019) used the 

exact GOBNILP-DEV algorithm to show that the number of graphs within a certain factor of 

the global optimally scoring graph reduces as sample size increases; i.e., the highest scoring 

graphs become more differentiated as the sample size increases. Scutari et al. (2019b) 

investigated learning with very large sample sizes where a 24 variable CLGBN is learnt 

accurately with sample sizes of 5 million cases and above, though it is not clear how accuracy 

behaves with sample size in the general case. 

The objective function chosen for score-based algorithms, as well as the CI test used in 

constraint-based algorithms, can have a large effect on the accuracy of the learnt graphs. Scutari 

(2016) showed that the choice of scoring function and structural priors within the hill-climbing 

algorithm affects the accuracy of the learnt graph as described in subsection 4.1.1. Indeed, 

Scutari et al. (2019a) argued that the choice of objective function and CI tests are confounding 

factors when comparing algorithms. Hence, they used equivalent objective functions and CI 

tests across all the algorithms they compared in their study. Raghu at al. (2018) showed that 

the choice of CI test had a large effect on structural accuracy when learning mixed variable 

type networks, and an even more dramatic effect on algorithm runtime with over three orders 

of magnitude difference in runtime of the CPC algorithm between using the fastest and slowest 

CI test. The choice of hyperparameters used, such as the ESS for Bayesian scoring functions 

(see subsection 4.1.1) and the significance level chosen for CI tests (subsection 3.1) affect 

performance too. 

A further factor affecting performance is the dimensionality and quality of the data used. 

As Table 6 indicates, many studies make use of randomly generated networks or standard 

networks to provide a reference graph to which the learnt graph can be compared. In these 

cases, data is randomly generated synthetically to be consistent with the global probability 

distribution implied by the network parameters (e.g., the entries in the CPTs in discrete 

networks). Less commonly, real-world datasets are used but these generally suffer from having 

no reference ground-truth graph with which to compare the learnt graph. Structural learning 

has been investigated with a handful of variables right through to one million variables, with 

higher dimensionality studies generally using synthetically generated graphs and data. The 

sparsity of graphs used in structure learning tends to be much more consistent, with most 

studies investigating graphs with an average degree between one and six. The preponderance 

of synthetic graphs and synthetic data in evaluation studies raises the concern that they may 

not reflect real world performance. This was the motivation behind Constantinou et al.’s 

(2021b) evaluation of algorithms in the presence of synthetically generated noise, which did 

indeed find that graph accuracy in the presence of different forms of synthetic noise could 

decrease by up to 37%. 

Lastly, comparative performance is strongly affected by the metrics chosen to evaluate 

the learnt graph. This includes the choice of the broad class of metrics used which typically 

include structural comparisons with a reference graph or inferential metrics based upon the 
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likelihood of the data being generated by the learnt BN. In the latter approach, the same data 

is generally used to evaluate the graph that was used to learn the graph. This does not capture 

how well the learnt graph might generalise to new data. Malone et al. (2015) are relatively 

unique in having tried to assess the generalisability of the learnt graph by reporting metrics on 

subsets of test data. Also, notable from Table 6, is the lack of evaluation of the causal inferential 

properties of the learnt graph, such as how well it can predict the effect of interventions, or 

perform counterfactual inferences. This is surprising given that presumably one often wishes 

to learn causal BNs from data for these kinds of purposes. It should also be noted that, even 

within the same broad type of metric, different metrics can alter the ranking of algorithms. For 

example, Constantinou et al. (2021b) report different rankings according to whether the SHD 

or F1 metric is used. 

6.3. Noise 

The structural learning algorithms considered so far implicitly assume that the input data is a 

perfect sample from the underlying true distribution. However, there are often multiple types 

of noise in real-world observed data sets. For example, instrumental error or a survey 

respondents’ unwillingness to respond to a question may mean that some of the values in a data 

instance may be missing, which we refer to as missing data. Even if the value is recorded in 

the data set, it may not be exactly same as the true value which is known as measurement error. 

This section will describe these two main types of noise in observed data and introduce 

algorithms that aim to handle these forms of noise in structure learning with discrete or 

continuous variables. 

6.3.1. Missing Data 

Missing data is a common and serious problem in many real-world scientific research areas 

such as medical research and gene analysis. Rubin (1976) categorised missing data into three 

types: Missing Completely At Random (MCAR), Missing At Random (MAR) and Missing 

Not At Random (MNAR). In the MCAR case, the missingness of data is a purely random 

process and is not dependent on any other substantive variables. This type of missing data 

pattern is often caused by instrumental failure and normally would not bias the learnt graph. In 

the MAR case, the probability of a particular data value being missing is dependent on observed 

values. For example, in an investigation between age and frequency of smoking, data is MAR 

if younger respondents are more likely to not disclose their smoking frequency. Finally, data 

is MNAR if it is neither MCAR nor MAR. In this case, the probability of being missing may 

be related to missing values of other observed variables or even unobserved variables. In the 

above example, data is MNAR if the age variable also contains missing values. 

One of the earliest algorithms which specifically deals with MAR missing data for 

structure learning is the structural EM algorithm (Friedman, 1997). Structural EM is an 

iterative process making the MAR assumption, which consists of two steps: an Expectation (E) 

step and a Maximisation (M) step. In the E step, Structural EM infers the missing values to 

produce a complete data set based on the current learned graph. Then, in the M step, Structural 

EM applies a standard structure learning algorithm using the inferred complete dataset to 

update the learned graph. Although Structural EM has the advantage of being able to work with 

any standard structure learning algorithm, and with both discrete and continuous variables, it 

is computationally inefficient due to the inference process in the E step. 

More recently, several algorithms based on constraint-based structure learning have 

been proposed for handling missing data for continuous variables. Strobl et al. (2018) treated 

missing data as a type of selection bias and justified using test-wise deletion of the missing 

data in CI tests. Test-wise deletion is an approach which ignores data cases with missing values 
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among the variables involved in a CI test. They showed that this a sound approach for handling 

missing data in the FCI and RFCI algorithms.  

Gain and Shpitser (2018) proposed a modified version of PC called CBR-PC which 

uses the Inverse Probability Weighting (IPW) method (Horvitz and Thompson, 1952) on test-

wise deleted data to construct an IPW-based CI test. IPW is an approach which alleviates 

distributional bias in data by reweighting each data case. By replacing the original CI test with 

IPW-based CI tests, CBR-PC maintains the consistency offered by PC but with missing data. 

However, IPW-based CI tests rely on knowing the causal relationships between observed 

variables and missing data, which is unlikely to be known in real-world problems. Tu et al. 

(2019) tackled this issue by firstly detecting the causal relationship between variables and 

missing data with a constraint-based process, and then used IPW-based CI tests in the PC 

algorithm.  

Liu and Constantinou (2022) propose a modified version of HC called HC-aIPW which 

applies the test-wise deletion and IPW method to the score-based HC algorithm to deal with 

missing data in discrete variables. They utilised pairwise deletion and the IPW method with 

the HC algorithm, thus extending the approaches applied to constraint-based algorithms 

described in the previous paragraph to a greedy search score-based algorithm. The 

experimental results in their paper show that the HC-aIPW algorithm outperforms the 

commonly used Structural EM algorithm both when data are missing at random, and missing 

not at random. 

6.3.2. Measurement Error 

Measurement error is the discrepancy between the measured value of a variable and its true 

value, which can be treated as a disturbance from its underlying distribution. For continuous 

variables, the simplest way to model measurement error on measured variable 𝑌𝑚 is to add a 

noise term 𝜖𝑌  on its underlying error-free variable 𝑌 , 

i.e., 𝑌𝑚 = 𝑌 + 𝜖𝑌. Under the presence of measurement 

error, the conditional independence relation detected 

from the measured variables may be different from the 

relation derived from their error-free variables. 

Consider the BN presented in Figure 19 and suppose we 

can acquire the true values of variables 𝑋 and 𝑍, but 

only the measured values of variable 𝑌  with 

measurement error 𝜖𝑌 . When 𝜖𝑌 ≠ 0 , and assuming 

faithfulness, the underlying independence relation 𝑋 ⊥
𝑍 | 𝑌 does not hold on the measured variables since the measured variable 𝑌𝑚  does not d-

separate 𝑋 and 𝑍. The following three approaches apply to measurement error in continuous 

variables. 

Scheines and Ramsey (2016) studied the effect of Gaussian measurement error on the 

score-based FGES algorithm (Ramsey et al., 2017). They generated synthetic data based on 

Linear Gaussian models with additional random Gaussian noise to simulate the measurement 

error. Their results indicate that minor levels of measurement error can considerably worsen 

the learning accuracy of FGES on small sample sizes. However, when the sample size is 5,000, 

the accuracy of FGES remains relatively high, even when 80% of the variance of each variable 

is due to the measurement error. 

Zhang et al. (2018) investigated the identifiability conditions for Linear Non-Gaussian 

Models in the presence of measurement error. Their theoretical result shows that under certain 

assumptions, the causal DAG remains fully identifiable learnt from noisy data by utilising 

overcomplete Independent Component Analysis (ICA) to learn the adjacency matrix. The 

assumptions used for their result include the causal Markov assumption, faithfulness 

Figure 19 - Example of measurement 

error. 
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assumption, non-linear noise assumption and two other assumptions that imply a sparse 

graphical structure. 

Blom et al. (2018) proposed a method to detect the upper bound of the variance of 

random measurement error in observed variables for linear Gaussian models. Their method is 

based on the tetrad constraints (Silva et al., 2006) which can identify sets of four variables that 

are mutually d-separated by a common latent variable. After obtaining the upper bound, the 

conditional independence can be corrected based on the minimal and maximal partial 

correlation that lie within that bound. The measurement error upper bound was wrongly 

computed in just three cases and could not be detected in 39 cases in 200 simulation 

experiments. 

Liu et al. (2020) studied the measurement error in discrete BNs and proposed a method 

called Spurious Edge Detection (SED) to remove spurious edges from the learned graph caused 

by measurement error. As illustrated in Figure 19, conditional independence relationships 

between error-free variables may not exist for measured variables in the presence of 

measurement error. Therefore, structure learning algorithms may learn spurious edges 

representing dependence relationships that do not exist in the true distribution. The SED 

algorithm firstly detects the candidate spurious edges that could form a 3-vertex clique, then 

assesses each candidate edge for removal based on an EM process. Their experimental results 

show that post-processing by the SED algorithm is able to generally improve the F1 and SHD 

performance of four different structure learning algorithms (HC, GOBNILP, PC-stable and 

H2PC) in the presence of measurement error. 

6.4. Knowledge 

The fusion of expert knowledge into the structure learning process provides a promising 

approach for improving performance and counteracting the effects of noise discussed in the 

previous two subsections. We discuss those approaches which seek to influence the learning 

process, known as soft constraints, and those which enforce requirements that the learnt 

structure must conform to, known as hard constraints. In both these cases, the knowledge is 

provided by experts to the algorithm before it starts the learning process. We also discuss active 

learning where the algorithm interacts with a human expert during the learning process. 

6.4.1. Soft Constraints 

Bayesian objective functions (see subsection 4.1.1) for score-based algorithms explicitly 

include terms for both the prior beliefs of the BN parameters and for a prior belief of each 

possible graph structure. These priors provide a Bayesian approach to incorporating expert 

knowledge into the learning process as a soft constraint. However, the vast numbers of possible 

graphs and resulting configurations of parameters make it impracticable to specify priors for 

individual parameters or graphs. As discussed in subsection 4.1.1, a standard conjugate prior 

(e.g. Dirichlet prior for discrete variables) is assumed for parameter priors, typically with a 

single hyperparameter value ESS. Likewise, it is not practical to provide a prior for each 

possible DAG, and therefore several approaches have been proposed where the human expert 

can provide priors on selected features, such as the presence or absence of a particular arc. 

Castelo and Siebes (2000) provided a mechanism for an expert to assign a prior to the 

presence or absence of an arc between any number of pairs of variables. The remaining priors 

for the pair are assigned uniformly. For example, if an expert specifies a prior of 0.8 for arc 

𝐴 → 𝐵, then arc 𝐵 → 𝐴 and no arc between 𝐴 and 𝐵 are both assigned a prior of 0.1. This 

scheme defines priors over the space of directed graphs that allow cycles. This represents a 

bigger space than DAG space, and so the approach redistributes probability mass from cyclic 

graphs to DAGs to correct for this. The approach was validated by showing that these priors 

could recover the true graph from synthetic noisy data. Eggeling et. al. (2019) evaluate more 
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general structure priors which influence the overall characteristics of the learnt graph. This 

includes priors which are uniform across all DAGs, those which model each edge as having a 

defined uniform probability of existing, a prior which balances the probabilities for nodes with 

different in-degrees, and one which limits the maximum in-degree. The authors evaluate these 

priors with the GOBNILP algorithm for moderately sized networks, and Tabu for larger 

networks. The results show that priors which favour sparser graphs produce more accurate 

graphs especially at low sample sizes. 

As well as constraints on particular arcs, it also possible to place constraints on the node 

ordering within the learnt structure. We have already encountered algorithms such as K2 (in 

subsection 4.2.1) where an ordering of all the nodes is specified. It is also possible to specify 

ordering constraints on a partial set of variables referred to as ancestral constraints, or since 

they are often derived from considerations of time and causality, temporal constraints. For 

example, Borboudakis and Tsamardinos (2013) allowed experts to specify a probability 

distribution over the possible ancestral relationships between a pair of variables ( 𝐴  is an 

ancestor or parent of 𝐵, 𝐵 is an ancestor or parent of 𝐴, they have a common ancestor or parent, 

or they have no ancestral relationship). They combined the resulting joint prior probability 

distribution of ancestral relationships with an approximation of the number of DAGs consistent 

with each configuration of ancestral relationships to define a prior on DAGs. The authors 

incorporated this prior into a standard hill-climbing algorithm (see subsection 4.2.1) and also 

augmented the standard add/remove/reverse arc operations with a new swap-equivalent 

operator which swaps the current DAG for one in the same equivalence class with the highest 

ancestral prior. Experiments showed that modest amounts of prior ancestral knowledge, 

involving 12 out of 37 nodes, and using the new swap-equivalent operator could reduce the 

SHD error by around 15 to 20%. 

Amirkhani et al. (2016) modified the objective function to include an explicit extra 

component representing the opinion of several, possibly conflicting, expert views on the 

presence and direction of arcs. The accuracy of each expert can also be specified. An 

Expectation-Maximisation variant of hill-climbing is described with the Expectation step 

adding, removing or reversing an arc to increase the score as usual, and the Maximisation step 

modifying the expert accuracy parameters to maximise the score of the current graph. The 

approach is evaluated using three synthetic sets of experts with their opinions generated from 

ground-truth graphs with three levels of accuracy: weak, mediocre and good. Using the ‘good 

standard’, experts halved SHD on the Alarm network (Beinlich et al., 1989) commonly used 

in evaluations, although improvement was limited when the weak set of experts were used. 

Specification of the initial graph used in score-based algorithms can also be considered 

a form of soft-constraint since it may well influence the final learnt graph whilst not 

representing a hard constraint. Surprisingly, there seems to have been relatively little research 

undertaken into the influence of the initial graph in general, though Constantinou et al. (2021a) 

do investigate it. This is despite several hybrid algorithms using one algorithm to create a good 

starting point for a subsequent algorithm. Examples of such algorithms include SaiyanH and 

GSPo described in subsections 5.2.1 and 5.2.2, respectively.  

6.4.2. Hard Constraints 

Early work with hard constraints involved specifying features (arcs or edges) that were either 

required or prohibited in the learnt graph, or specifying a topological ordering that the learnt 

graph must be consistent with. De Campos and Castellano (2007) modified the score-based 

hill-climbing algorithm and the constraint-based PC algorithm to produce graphs consistent 

with hard constraints. Simulations involved specifying between 10 and 40% of possible 

required or prohibited features. In general, increasing the number of constraints improved all 

structural accuracies in graphs learnt by the modified hill-climbing algorithm. However, 
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increasing the number of constraints, whilst improving most structural metrics, sometimes 

increased the number of extraneous arcs in the learnt graph with the PC algorithm. It was 

suggested this may have been because more constraints led to less CI tests being performed 

and hence less arcs being removed. 

The Branch & Bound algorithm (de Campos et al., 2009) discussed in subsection 4.2.1 

supports hard constraints to represent expert knowledge. These include specifying arcs which 

must appear in the result, and ones which are prohibited, as well as being able to limit the 

number of parents on an individual node basis. More unusually, it also supports parameter 

constraints which place restrictions on how parental values influence child values. These 

restrictions affect structural learning by changing the best scores achievable by different sets 

of parents. 

More recent work has supported ancestral relationships as hard constraints. 

Borboudakis and Tsarmadinos (2012) apply ancestral constraints to PDAGs and PAGs 

produced by, for example, the PC and FCI algorithms respectively. They developed a set of 

algorithms which can determine variant endpoints in PDAGs and PAGs, or identify when the 

ancestral constraints are not consistent with the learnt graph. They found that even small 

numbers (around 10) of ancestral constraints can orientate around 30% of variant endpoints. 

This orientation effect is generally larger in PDAGs than PAGs, since constraints propagate 

more in the absence of confounding variables. 

Li and van Beek (2018) described the MINOBSx algorithm which supports arc and 

edge, as well as ancestral, constraints which they claimed to be the first approximate score-

based algorithm to do so. It is based on the approximate MINOBS algorithm which searches 

in ordering-based space (see subsection 4.2.3). They modified the parent set pruning rules and 

the approach used to determine a high-scoring DAG for each order, in order to take account of 

ancestral constraints. Li and van Beek (2018) compared MINOBSx with a MCMC approach 

which also supports constraints called CaMML (Korb and Nicholson, 2011), when learning 

well-known BNs of up to 48 variables. Li and van Beek (2018) found MINOBSx to be more 

robust than CaMML as it was always able to satisfy all the knowledge constraints specified. 

They noted that ancestral constraints reduced the number of arcs erroneously missing or mis-

orientated in the learnt graph. However, ancestral constraints tended to encourage additional 

extraneous edges in the learnt graph. Ancestral constraints were more effective than simple 

arc/edge constraints in obtaining correct causal paths as measured by the SID metric (discussed 

in subsection 6.1). 

Chen et al. (2016b) applied ancestral constraints to their exact score-based algorithm 

which searches an EC Tree (Chen et al., 2016a) described in subsection 4.3.3. To do so, they 

pruned CPDAGs prohibited by the ancestral constraints from the EC Tree and converted 

ancestral constraints into decomposable edge constraints which can then be used by the A* 

search heuristic. They found that their constrained A* search was typically orders of magnitude 

faster than the GOBNILP integer linear programming approach described in subsection 0, 

when it applied the same ancestral constraints to sub-graphs of well-known BNs with up to 20 

variables. 

Wang et al. (2021) have also implemented ancestral constraints in an exact score-based 

algorithm named ACOG from the space it searches, the Ancestral Constraint Ordering Graph 

(ACOG). The ACOG space is a modified version of the order graph shown in subsection 4.3.1, 

but where nodes in the graph have multiple DAGs associated with them to account for the 

effect of ancestral constraints, and pruning is applied using a novel revenue function that 

accounts for the ancestral constraints.  

Constantinou et al. (2021a) provided a review of the effect of different forms of soft 

and hard constraint knowledge on the graphs learnt by Hill climbing, Tabu and SaiyanH 

algorithms. They found that specifying required arcs had the greatest effect followed by 
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specifying an initial graph with edges in common with the true graph. Conversely, prohibiting 

arcs seemed to have little effect. This may be because graphs tend to have many more edges 

absent than edges present, and this reduces the impact of prohibiting, compared to enforcing, 

a given number of edges. 

6.4.3. Active Learning 

Active learning identifies relationships between the variables which the algorithm finds 

difficult to adjudicate on the basis of the data alone, and so where it may be advantageous to 

ask for human input during the learning process. This may require less human input than the 

normal approach of inputting expert knowledge before the algorithm begins, since it avoids 

supplying knowledge which merely duplicates something that the data also clearly implies.  

 Active learning was applied to an MCMC algorithm by Cano et al. (2011). They 

assumed a node ordering was known, and used a MCMC approach to generate a probability 

distribution over all possible parent sets for each variable. The algorithm asks the human expert 

to specify whether arcs having a probability close to 0.5 actually existed or not in their opinion. 

Two variations were explored, one where the expert was consulted after the MCMC learning 

algorithm had completed, and another where the expert was consulted during the MCMC 

learning process. Simulations were conducted on standard BNs containing between 23 and 56 

variables with sample sizes 𝑁 = {50, 100, 500, 1000}. Cano et al. (2011) found that expert 

specification of uncertain edges improved structural accuracy metrics, and to a lesser extent 

but perhaps more surprisingly, improved data fitting. The algorithm identified relatively few 

edges as uncertain, so that typically between 10 and 16 queries were directed at the expert after 

processing was completed with 𝑁 = 50, and around 5 with 𝑁 = 1,000. In these cases, expert 

specification of uncertain edges reduced SHD by around a quarter. Interacting with the expert 

during the MCMC learning process made similar structural improvements, but required fewer 

judgements from the expert. 

Masegosa and Moral (2013) proposed a new hybrid restrict/maximise algorithm 

designed to support active learning which has three phases. The first phase constructs a 

probability distribution of plausible skeletons built from Markov Blankets, and the second 

phase builds a distribution of plausible DAGs using hill-climbing constrained by sampling 

from the first phase skeletons according to the relative probability of each skeleton. The 

distribution of plausible DAGs is improved in a third phase of unconstrained hill-climbing. A 

human expert can be asked about the existence of variables in Markov Blankets, or edges 

during hill-climbing if the algorithm judges that the answer would provide an information gain 

above a specified threshold. Masegosa and Moral (2013) evaluated their approach on standard 

networks with the number of variables varied between 23 and 56 and sample size 𝑁 =
{100, 500, 1000, 5000}. SHD improved by around 10% when knowledge was used. The 

number of queries asked of the expert ranged from 13-15 with 𝑁 = 100, to 1-4 with 𝑁 = 5000. 

Results were slightly better if knowledge was requested in both the Markov Blanket and DAG 

learning phases rather than just in the DAG learning phases. 

6.5. Structure Learning Software Packages and Datasets 

This subsection lists some of the open-source software packages that are freely available for 

BN structure learning and datasets which are often used to evaluate structure learning 

algorithms. The lists are not meant to be exhaustive but focus on the algorithms described in 

this paper, and datasets commonly used to evaluate them. 
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Table 7 – Open-source software providing algorithms described in this paper. 

Name Reference Algorithms Description or focus Programming 

Language 

BayesSuite Michiels et. al., 

2021 

Constraint: PC, GS, IAMB, Fast-IAMB 

and Inter-IAMB, MMPC 

Score: HC, Tabu, Hiton-PC, FGES-Merge 

Hybrid: MMHC 

Includes visualisation and 

inference capabilities. Focussed 

on massive BNs particularly in 

neuroscience 

Javascript and 

Python 

Bayesys Constantinou, 

2019b 

Score: HC, Tabu, MAHC 

Hybrid: SaiyanH 

Averaging version of score-based 

algorithms and incorporation of 

prior knowledge 

Java 

BiDAG Suter et. al., 2021 Score: Order-MCMC, Partition-MCMC 

Hybrid: Hybrid MCMC (Kuipers et. al., 

2022) 

MCMC algorithms for sampling 

and learning the MAP DAG 

especially in large networks. 

R 

Bnlearn Scutari, 2010 Constraint: PC-Stable, GS, IAMB, Fast-

IAMB, Inter-IAMB, MMPC, HITON-PC 

Score:  HC, Tabu 

Hybrid: MMHC, H2PC  

Well-established package often 

used as benchmark algorithms. 

R 

Bnstruct Franzin et. al., 

2017 

Constraint: MMPC 

Score: HC, Dynamic Programming 

Hybrid: MMHC 

Package focuses on handling 

missing data including missing 

data imputation. 

R 

CausalExplorer Aliferis et al., 

2003 

Constraint: GS, IAMB, Inter-IAMB, 

TPDA, MMPC, MMMB, HITON, SI-

HITON-PC, PC 

Local and global constraint-based 

algorithms with a focus on 

bioinformatics 

Matlab 

Gobnilp Cussens, 2020 Score: GOBNILP Often used as benchmark exact 

score-based algorithm 

C or Python 

Pcalg Kalisch et. al., 

2012 

Constraint: PC, CPC, PC-Stable, FCI, 

CFCI, FCI-Stable, RFCI, FCI+ 

Score: GES, GIES 

Hybrid: ARGES 

Includes algorithms which 

support latent variables and 

interventional data 

R 

Tetrad 

(including causal-

learn) 

Ramsey et. al., 

2018 

Constraint: FCI, FCI-MAX, PC, PC-

Stable, PC-MAX, CPC, RFCI 

Score: GES, FGES, A*, DP 

Hybrid: GFCI, RFCI-BSC 

Large range of constraint-based 

algorithms including supporting 

latent variables and time-series. 

Java (or Python) 

 

Table 7 provides details of some software packages that may be of interest and which 

provide algorithms described in this paper. The location where the software can currently be 

found is included in the References section at the end of this paper. Only the algorithms 

described in this paper are included, but note that these packages may include other algorithms. 

The programming language is given as this may be relevant for readers wishing to invoke them 

from their own software or learn the details of the algorithm from the program code. Note that 

we only list the ‘primary’ programming language, but some packages may provide ‘wrappers’ 

allowing easy access from other languages. Moreover, lower-level functions that need to be 

very performant are often written in languages such as C or C++. 

 
Table 8 – Repositories of networks and datasets commonly used to evaluate structure learning algorithms. 

Name Reference Variable Types Number of 

networks 

Number of 

variables 

Reference 

graphs 

available 

Notes 

Bayesys Constantinou et. al., 

2020 

Discrete 7 8 - 109 yes Includes datasets with synthetic 

noise 

Bnlearn Scutari, 2021 Continuous, discrete and 

mixed 

27 5 – 1,041 yes Contains networks most often 

used in BNSL 

DREAM5 Marbach et. al., 

2012 

Continuous 4 1,643 – 

5,667 

yes Real gene regulatory data often 

used in high-dimensional BNSL 

UCI ML Dua and Graff, 2019 Continuous, discrete and 

mixed 

622 3 – 

3,231,961 

no Real-world datasets used across 

machine learning 

DEBD Van Haaren  and 

Davis, 2012 

Binary 20 16 – 1,556 no Real-world datasets originally 

collected for Markov Network 

learning 
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Table 8 lists some repositories of networks and datasets commonly used to evaluate 

structure learning algorithms. Perhaps the most common evaluation approach is to generate 

synthetic data from a known BN, attempt to learn the DAG from that data, and then compare 

the learnt DAG with the DAG used to generate the data. This approach is appropriate for the 

entries in Table 8 where reference graphs are available. Another approach to obtaining a 

reference graph is to generate random graphs, for example Erdos-Rényi graphs (Erdos and 

Rényi, 1960) or scale-free networks (Barabási and Albert, 1999), typically with some specified 

characteristic such as expected node degree. An alternative to generating a dataset from a 

reference graph is to learn from a ‘real-world’ dataset where the underlying reference graph is 

unknown. In that case, the learnt graph is typically evaluated using model selection functions 

that take into consideration both data fitting and model dimensionality; for example, the BIC 

score. Another possibility when there is no reference graph available, is to compare the 

predictive abilities with other machine learning approaches. 

6.6. Guidelines on choosing and using structure learning algorithms. 

This subsection is aimed mostly at practitioners who want to learn the structure of BNs but are 

not necessarily familiar with the mechanics of learning algorithms. Thus, this section focuses 

on the capabilities of the algorithms available in the packages listed in Table 7, which tend to 

be well-maintained and documented. In our view, there is little consensus in the literature on 

what might be the best algorithm in any particular context, so the focus here is on providing 

some guidelines to choosing and using algorithms, rather than attempting to provide a 

definitive guide. Note that some of the content in this subsection depends upon what software 

packages currently provide and is subject to change. 

 

One factor which might affect algorithm choice is the data types of the variables. Figure 

20 shows whether the algorithms offered by the software in Table 7 support continuous or 

discrete variables or both. Note that whether a particular algorithm supports a variable type is 

often not a fundamental property of the algorithm, but rather whether the software 

implementation supports CI tests or scores that support that variable type. We classify 

algorithms that support both continuous and discrete variables in three categories of increasing 

flexibility. Firstly, those algorithm implementations that support continuous or discrete 

variables, but not both in the same network, are shown in the lightest green area in Figure 20. 

Secondly, those algorithm implementations that support mixtures of continuous and discrete 

variables in the same network, but with the restriction that continuous variables cannot be 

Figure 20 - Supported variable types for algorithms in open-source software. Note that where an algorithm is 

implemented by more than one package, we show the package with the most flexible variable type support. 
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parents of discrete variables. This kind of restricted mixed network in known as a Conditional 

Linear Gaussian network, and the algorithms which support it are shown in the mid-green area 

in the figure. Most flexibly of all, there are algorithms which support mixtures without that 

restriction. To our knowledge, only the Tetrad package offers this for some of its algorithms 

through the use of the Conditional Gaussian (Andrews et al., 2018) and Degenerate Gaussian 

(Andrews et al., 2019) scores or CI likelihood tests (Andrews et al., 2018). 

With score-based approaches a further choice is whether to opt for an approximate or 

exact algorithm. Exact algorithms can be feasible up to around one hundred variables and 

would therefore seem to be preferred in low to medium dimensional settings. However, they 

may not offer improved accuracy where latent confounders, selection bias or measurement 

error is present, a finding supported by some of the results in Constantinou et al. (2021b). It is 

also often necessary to place a limit on in-degree for exact algorithms to be tractable, and this  

may not be appropriate where dense or scale-free graphs are expected. 

Another consideration is whether the system may have latent confounders or selection 

variables present. The Tetrad software package focuses on this area and provides the FCI, 

CGCI, RFCI and FCI-Max algorithms that account for latent confounders and selection 

variables. FCI+ provided by the Pcalg software supports latent confounders too. Despite the 

theoretical advantages of these algorithms in causally insufficient settings, the study by 

Constantinou et al. (2021b) found that algorithms which did not account for latent confounders 

fared as well as those which did in simulated settings with latent confounders. 

Another decision point is whether to choose an algorithm which returns a single graph, 

usually referred to as model selection, or one which returns multiple graphs. Even where the 

algorithm produces a single graph this generally represents multiple DAGs (or MAGs) when 

they are learning from observational data. This is explicit for constraint-based approaches 

which return a CPDAG (or PAG). However, most hybrid or score-based approaches return a 

DAG, but since they invariably use equivalent scores, this graph might be best regarded as an 

example from the equivalence class. We note that even in causally sufficient settings, 

interpretation of CPDAGs may be problematic as many constraint-based algorithms mark arcs 

as ambiguous if they encounter conflicts in the orientation phase, for example. Interpretation 

of PAGs is rather more difficult given that edge types can have several meanings. Generally 

speaking, causal inference applications (Noguiera et al., 2022) require a BN model with a well-

defined DAG to be able to do causal inference. Incorporation of human knowledge either 

before the learning process, during the learning process (active learning) or by orientating 

undirected edges in the CPDAG can help towards obtaining a DAG for inference purposes. 

Inclusion of interventional data is another approach which can help orientate arcs, and we note 

that GIES (Hauser and Bühlmann, 2012) is provided in the Tetrad package. 

In some cases, a practitioner’s aim may be to identify the major causal effects rather 

than try to learn a complete causal graph. Here, approaches such as those provided by the 

BiDAG package which produce a sample of the most probable graphs may be useful. Model 

averaging over the sample graphs allow the most probable examples of features such as arcs or 

Markov Blankets to be identified. The approach can also be useful in understanding the 

uncertainty associated with particular graphs or features. 

One of the most common and perhaps most robust method for evaluating the result of 

a learning algorithm is to compare the learnt graph structurally with the true causal graph. 

However, this is generally only possible in simulation studies, as a reference causal structure 

is not usually available in practical problems. If a reference graph is not available, then one 

may perform sensitivity studies to gain some understanding of the confidence one might have 

in the result. These can examine the sensitivity of the results to the choice of algorithm, score 

or CI test, and hyperparameters. Recent work by Kitson and Constantinou (2022) find that 

some competitive algorithms such as Tabu and MMHC are sensitive to the order of columns 
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in the dataset and therefore this might also warrant investigation. Using a bootstrapping 

approach whereby graphs are learnt from sub-samples of the data can also cast light on the 

reliability of the result and provide some indication of whether the sample size is adequate. 

To conclude, we note that no structure learning algorithm is perfect and that the 

literature is quite inconsistent about which algorithms are the most accurate. We note that 

algorithm ranking is probably quite sensitive to the metrics used, and the scale and nature of 

the system being modelled. In these circumstances we recommend using a range of suitable 

algorithms where possible, and considering model averaging across algorithms to identify 

those features which are most reliably identified. Finally, we note that the involvement of a 

domain expert to input some constraints into the learning process or review the learnt graphs 

is liable to be beneficial. 

 

7. CONCLUDING REMARKS 

Causal discovery is fundamental to understanding our world and predicting the effects of our 

interventions in it. BNs are an important tool for modelling causal relationships between 

variables, and hence inferring the effects of our interventions. This paper aims to provide a 

comprehensive review of the algorithms used to learn the graphical structures of BNs from 

data, and the ways in which knowledge can be incorporated into that process. We acknowledge 

that this is a large and rapidly advancing field but aim to have described the major 

developments over the past thirty years, many of which are still relevant today. Current state-

of-the-art and pioneering algorithms are also described. 

We begin with a brief introduction to Bayesian Networks including the concepts of 

DAGs, conditional independence, causal classes, equivalence classes and graphical separation. 

This aims to be a succinct but accessible introduction for someone relatively new to the field. 

The bulk of the paper then describes structure learning algorithms broken down into the 

standard categories of score-based, constraint-based and hybrid algorithms. For each algorithm 

covered, we present detail for the reader to understand the basic principles that the algorithm 

employs, and the assumptions it makes. The review is relatively comprehensive and covers 24 

constraint-based, 22 score-based and 15 hybrid learning algorithm. Our goal is to highlight the 

similarities and differences between algorithms and, to that end, we use a consistent set of 

terms and emphasise the evolution of the algorithms and the relationships between them. 

Constraint-based algorithms use CI tests to learn the structure, and we describe these 

tests next. Constraint-based algorithms that assume causal sufficiency are then covered, 

categorised into global algorithms that learn the graph skeleton as a whole, and local algorithms 

that learn the skeleton around each variable and then merge them. The end of this section covers 

algorithms which do not assume causal sufficiency and the ancestral graphs needed to represent 

the relationships between observed variables in that context. Score-based algorithms follow a 

more traditional machine learning route of assigning a score to each graph and exploring 

possible graphs to find a high, or ideally, the highest, scoring graph. The relevant section 

describes common choices for the scoring function before discussing exact algorithms which 

guarantee to return the highest scoring graph for the training dataset, and approximate 

algorithms which do not offer this guarantee. Sampling algorithms which provide a sample of 

the higher scoring graphs are also covered under approximate algorithms. We highlight the 

commonalities across score-based algorithms by grouping them according to the type of search 

space they explore. We then discuss hybrid algorithms which combine constraint-based and 

score-based approaches. The most common hybrid approach is to use a “restrict” constraint-

based phase to define a reduced search space for the subsequent score-based “maximise” phase 

to explore. These are described in the first subsection. A second subsection describes other 
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ways in which score-based and constraint-based approaches are combined. As with score-based 

algorithms, the search space employed is used as a way of categorising hybrid algorithms. 

Our final substantive section discusses practical considerations when applying and 

evaluating the learning performance of these algorithms. We discuss the metrics used to 

evaluate structure learning, both in terms of graphical discovery and inference, and review the 

accuracy and runtime performance of algorithms by examining recent papers that focus on 

large scale comparative analyses. This provides an indication of the increasing scale of 

problems that can be tackled by the various algorithms and highlights inconsistencies within 

the literature about which algorithms might be ‘best’ for a given problem. Whilst papers 

proposing new algorithms generally include simulations demonstrating superior performance 

to previous algorithms, generally of the same type, we note that early approaches such as hill-

climbing, GES and PC remain competitive in many comparative reviews.  

We note that whilst many algorithms offer theoretical guarantees of accuracy such as 

asymptotically correct behaviour, these guarantees generally rely on unrealistic assumptions 

about the input data. We note that some or all of these assumptions are generally made for 

algorithms of all classes: exact and approximate score-based, constraint-based and hybrid ones. 

The quality of the learnt graphs is dependent on many complex interacting factors including 

the algorithm chosen, score or CI test employed, hyperparameter values, data size and quality, 

and the underlying graph. We note, too, that different evaluation metrics can paint different 

pictures about the superiority of one algorithm over another. This all makes algorithm 

comparisons rather problematic. Much of the evaluation of the algorithms is performed using 

synthetic graphs, and even more so, with synthetically generated clean data. Constantinou et 

al. (2021b) found that forms of noise likely to be found in real world data can have a 

considerable impact on learning performance. These forms of noise included latent variables, 

missing data, and measurement or discretisation error. Hence, we include a section on 

modifications that can be made to algorithms to account for various forms of noise.  

Given the huge diversity of algorithms and factors affecting their performance, 

incorporating expert knowledge into the learning process may be helpful in many situations 

and hence, we conclude by reviewing approaches for doing this. The relevant subsection 

discusses hard constraints where expert knowledge is used to restrict the graphs which the 

algorithm can consider, as well as soft constraints which less rigidly influence the learning 

process. Approaches to active learning, whereby the algorithm itself identifies which 

knowledge would be most beneficial, are also discussed. 

In conclusion, BN structure learning has become a vibrant research area. However, 

several key open questions remain, amongst which we would highlight: 

 

• a huge diversity of structure learning approaches with little consensus on the most 

appropriate algorithm in any given real-world context; 

• an absence of real-world datasets with accompanying causal graphs validated by 

experts, or ideally randomised controlled trials or experiments; 

• a need to identify the best ways of incorporating knowledge and interventional data into 

the learning process; 

• many confounding factors making algorithmic comparisons difficult, including sample 

size, distributional assumptions, faithfulness, linearity, choice of score or CI/test, 

hyperparameter values, data dimensionality, data noise, and the evaluation metrics. 
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APPENDIX A: GLOSSARY OF SYMBOLS 

 
Symbol Meaning 

⊥ Independent of, e.g. 𝐴 ⊥ 𝐵 means “𝐴 is independent of 𝐵” 

⊥/   Not independent of, e.g. 𝐴 ⊥/  B means “𝐴 is not independent of 𝐵” 

| Given or conditional on, e.g. 𝐴 | 𝐵 means “𝐴 conditional on (or given) 𝐵” 

\ Substract from set. e.g. 𝑿 \ {𝐴, 𝐵} means set 𝑿 with elements 𝐴 and 𝐵 removed 

⊂ Is a strict subset of, e.g. 𝑺 ⊂ 𝑿 means that all the elements of 𝑺 are in 𝑿, and 𝑿 

contains one or more elements not in 𝑺. 

⊆ Is a subset of, e.g. 𝑺 ⊆ 𝑿 means that all the elements of 𝑺 are in 𝑿, but 𝑿 may be the 

same as 𝑺. 

ℬ A Bayesian Network 

𝐺 A graph, typically the DAG in a Bayesian Network 

𝚯 The set of parameters defining the strength of the relationships between variables 

𝐹 The number of free parameters in the Bayesian Network, that is, in |𝚯| 
𝑛 Number of nodes (vertices) in the DAG 

|𝐺𝑛| Number of possible different graphs containing 𝑛 nodes 

𝑿 Set of nodes in a DAG, 𝑿 = {𝑋1, 𝑋2, … , 𝑋𝑛} representing the variables being modelled 

𝑋𝑖 , 𝐴, 𝐵, 𝑒𝑡𝑐 An individual node in the Bayesian Network’s DAG representing a variable 

𝑥𝑖 , 𝑎, 𝑏 The value of the variable 𝑋𝑖 , 𝐴, 𝐵 respectively 

𝑃(𝑿) The joint probability distribution over the variables represented by the nodes  

𝑬 Set of edges in a graph 
|𝐸| Number of edges in the graph 
|𝑀| Number of missing (absent) edges, that is, the number of edges in the complete graph 

minus |𝐸| 
𝑺 Set of nodes in a separating set, 𝑺 = {𝑠1, … , 𝑠𝑞} 

𝑷𝒂(𝑋𝑖) The set of nodes that are direct parents of node 𝑋𝑖 

𝑫𝒆(𝑋𝑖) The set of nodes that are descendants of node 𝑋𝑖 

𝑴𝑩(𝑇) The Markov Blanket of node 𝑇 

𝑷𝑪(𝑇) The parents and children of node 𝑇 

𝑫 Dataset from which the graph will be learnt 

𝒅𝒎 Individual data instance (i.e. row or case) within the dataset 

𝑁 Number of data instances (cases) in the data set, 𝑫 

𝛼 Significance level used in Conditional Independence tests. 

𝜖 Threshold level used in Mutual Information tests 

𝑑𝑓 Degrees of freedom used in statistical tests 
𝑖 Index over nodes in the DAG, 𝑖 = 1. . 𝑛 

𝑟𝑖 Number of different values (states) at node (variable) 𝑋𝑖 

𝑘 Index over possible values at a node, 𝑘 = 1. . 𝑟𝑖  at node 𝑋𝑖 

𝑞𝑖 Number of unique combinations of values of the parents 𝜋𝑖 of node 𝑋𝑖 

𝑗 Index over combinations of parental values, 𝑗 = 1. . 𝑞𝑖 at node 𝑋𝑖 

𝑁𝑖𝑗𝑘 Number of data instances with 𝑘𝑡ℎ value, and 𝑗𝑡ℎ combination of parental values at 

node 𝑋𝑖 in data set 𝐷 

𝜃𝑖𝑗𝑘 The conditional probability of node 𝑋𝑖 having value 𝑥𝑘 conditional on the parents of 𝑋𝑖 

having the 𝑗𝑡ℎ combination of parental values. 
𝑁′, 𝑁′

𝑖𝑗𝑘, 𝜃′𝑖𝑗𝑘 As 𝑁, 𝑁𝑖𝑗𝑘 , 𝜃𝑖𝑗𝑘 but applying to a prior belief of the parameters. 

𝜌𝑎𝑏 Partial correlation between values 𝒂 and 𝒃 

𝑇𝑃, 𝐹𝑃, 𝑇𝑁, 𝐹𝑁 True positive, false positive, true negative and false negative metrics 

𝑃 Precision metric 

𝑅 Recall metric 

𝐺2 The G-squared test statistic 

𝜒2  The Chi-squared test statistic 

𝑀𝐼(𝐴, 𝐵) The mutual information between random variables 𝐴 and 𝐵 

𝜁𝑁
𝑟  The stochastic complexity of 𝑁 values of a discrete variable with 𝑟 states 

 


