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SUMMARY

The summarization of large quantities of multivariate data by clusters,
undefined a priori, is increasingly practiced, often irrelevantly and unjusti-
fiably. This paper attempts to survey the burgeoning bibliography, restrict-
ing itself to published, freely available, references of known provenance.
A plethora of definitions of similarity and of cluster are presented. The
principles, but not details of implementation, of the many empirical classi-
fication techniques currently in use are discussed, and limitations and short-
comings in their development and practice are pointed out. Methods based
on well-defined mathematical formulations of the problem are emphasized,
and other ways of summarizing data are suggested as alternatives to classi-
fication. The growing tendency to regard numerical taxonomy as a satis-
factory alternative to clear thinking is condemned.

1. INTRODUCTION

THE availability of computer packages of classification techniques has led to the waste
of more valuable scientific time than any other “statistical” innovation (with the
possible exception of multiple-regression techniques). The desire to produce a unique
labelled pigeon-hole into which an individual entity can be dropped (and then for-
gotten) is natural to the human brain, or else we have been told this so often that it is
now a conditioned response. “A preference for classification is developed in childhood
and persists as a habitual form of thought in adulthood” (Goodall, 1954a). Before the
new conditioning factor of swelling bibliographies reinforces the reflex we must stop
and ask why and when as well as how we should attempt a classification.

A classification, as usually understood, allocates entities to initially undefined
classes so that individuals in a class are in some sense close to one another. The
process of choosing which of a number of defined classes a new entity should be
allotted to is better called identification or assignment (Dagnelie, 1966). Distinction
should be made between three types of classification procedure:

(1) hierarchical classification, in which the classes are themselves classified into
groups, the process being repeated at different levels to form a tree;
(ii) partitioning, in which the classes are mutually exclusive, thus forming a
partition of the set of entities;
(iii) clumping, in which the classes or clumps can overlap, and a clump and its
complement are treated as different types of class.

Distinction must also be made between situations in which entities in one class are
or are not required to be distant from entities in another class: situations termed
respectively classification and dissection by Kendall (1966). All collections of entities
can be dissected: not all can be classified. “If there are two dense clusters of buildings
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separated by much empty space, we have no difficulty in perceiving the existence of
two villages ; whereas if a village by one name coalesces with a village by another name,
we feel that the separation is artificial and that there exist not two entities, but one”
(Gengerelli, 1963). In some statistical situations, for example a ¥? test of goodness of
fit to a continuous probability distribution, dissection is the aim. (See Bolshev, 1969,
for a summary of the theory of classification in such situations.) In most cases,
however, dissection does not serve any purpose.

Terminology is used somewhat haphazardly in the literature. Classification is
used to describe the whole subject or it may have either of the restricted uses given
above. Cluster methods again refer to the whole subject or to the restricted class of
partitioning or clumping. Moreover, one algorithm can lead to different methods of
classification: most sorting strategies, for example, lead to a hierarchical classification,
which when subjected to a stopping rule gives a partition or clump. I shall not there-
fore attempt to keep distinct the words “classification” and “clustering”; their meaning
should be explicit in each context.

In an amusing and illuminating classification of classifications Good (1965b) lists
five purposes:

(i) for mental clarification and communication,
(i) for discovering new fields of research,
(iii) for planning an organizational structure or machine,
(iv) as a check list,
(v) for fun.

Other authors emphasize (i) and (ii))—*‘to arrive at a useful description of the sample
and to discover unsuspected clusterings which may prove to be important™ (Fleiss
and Zubin, 1969); “to represent the data in a way which will suggest fruitful hypo-
theses” (Jardine, 1970); “‘a classification is predictive with precise purpose unknown
at the time of classifying. It cannot be true or false, probable or improbable, only
profitable or unprofitable” (Williams and Lance, 1965). However (iv) is expressed
explicitly only seldom, and then usually in the context of document retrieval: *“to
obtain classes such that any member of a class can be treated as if it possessed certain
properties”, the profile of the class (Jones, 1970)—although this is implicit in any
classification. Usually a classification is not intended “to get an answer to a problem
which is already set up” (Jardine, 1970) although it is often in practice used, without
validity, to test a hypothesis, frequently of the existence of the clusters which it finds.

Classification may be a technique for generating hypotheses: it seems to me that
dissection is not. If there are no distinct clusters the data have been forced into a
strait-jacket which restricts the domain of possible hypotheses and suggests that some
will be generated by the fact of dissection rather than by the data. A hierarchical
classification achieves the first four of Good’s objectives by providing a concise
summary of the inter-relations of the n entities in the form of (2n— 1) clusters or the 2n
links of the tree joining them. Partitioning achieves the first two of Good’s objectives
by providing a parsimonious summary of the original n x p data matrix: the » entities
are reduced to n*<n classes. Alternative summaries can be achieved by reducing the
dimensionality of the variable space from p to p*<p by some ordination technique
such as principal components or multidimensional scaling. In this argument between
classification and ordination the protagonists’ viewpoints have been put “on a par
with racial prejudices” (Mclntosh, 1967). Attempts. to reduce both dimensions
simultaneously have been made but have not been much used in practical situations.
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Three desiderata of a biological classification were laid down by Silvestri and
Hill (1964):

(i) objectivity—independent workers should reach similar conclusions;
(i) stability—the classification should be little affected by new data;
(iii) predictivity—of variates in new individuals.

These need not all always apply to all fields. Sometimes—for example, the classifica-
tion of an existing complete collection of documents from which information has to
be retrieved—there are no new individuals, and (iii) is inappropriate. The stability
requirement should also be taken to imply robustness against errors in the data
(Jones and Needham, 1968). If a classification is to remain virtually unaltered when
extra variables are measured on the same entities, it must clearly be able in some sense
to predict unobserved variables. This will be possible only if the unobserved variables
are correlated (linear relationship is not necessarily implied) with the observed vari-
ables. If a particular observed variable V] is the single variable most highly correlated
with the other observed variables, it may reasonably be assumed that it is most
highly correlated with unobserved variables. This leads, in ordination, to considera-
tion of principal components, and in classification to derived structure methods
(Williams and Dale, 1965) not involving any measure of closeness between individuals.
We may divide the individuals into clusters according to their value of ¥;. This was
proposed for binary variables by Williams and Lambert (1959). For such variables
such a division may be regarded as a true classification rather than a dissection, by
giving infinite weight to V] in the distance function used. Division into classes on the
basis of the value of a continuous variable V; need impose no distance between
entities allocated to different classes.

A corollary of this is that, when division between clusters accounts for the maxi-
mum correlation between variables, within clusters there should be no correlation
between variables. Latent structure analysis (see, for example, Lazarsfeld and Henry,
1968) defines, and seeks, clusters as sets of entities within which the observed variables
are independent.

Some writers are of the opinion that classification techniques are now established
and the need is for more data: “One of the principal impediments to the development
of numerical taxonomy is the difficulty biologists have of measuring and recording
taxonomic characters at speeds and in quantities commensurate with the ability of
modern computers to process these data” (Sokal and Rohlf, 1966). Others think that
“some way is now needed to integrate voluminous new data now being accumulated
from all sources into the body of taxonomy” (Sneath, 1969). Unfortunately the current
swell of classificatory publications (estimated at more than 1,000 a year) is mainly
devoted to “testing” published techniques on data for which “standard” classifica-
tions exist. When the technique fails the author’s response is to modify the technique
instead of thinking about the “‘standard” classification or questioning the value of the
whole process. Let me give one example; not the worst. A well-known technique was
applied to specially selected entities typical of a number of established groups. The
initial “success” rate of 12 per cent was increased to 60 per cent by a modification of
the technique, details of which are not given. Then, by the introduction of features
deliberately copying the subjective methods by which the established groups were
found, the success rate was increased to nearly 80 per cent. Many questions follow
from this finding. What properties of the remaining 20 per cent of the entities cause
their misclassification? Are these entities demonstrating a basic failure in the standard



324 CORMACK — A4 Review of Classification [Part 3,

classification? Would other numerical techniques give a “better” result? None of
these questions are raised in the paper. The one conclusion, not mentioned by the
authors, that I draw from the result is that this numerical technique will be quite
useless for classifying an unselected, atypical entity which the standard classification
has difficulty in allocating.

2. MEASURES OF SIMILARITY

The basic data can consist of a vector of observations x; = (x;, ..., X;;,) on each
entity E; in a set &, or of a similarity structure S on & or on & x&. In many fields
of study these entities are essentially unique individuals. In some, notably in the
taxonomy of living organisms, it is assumed that the entities are well-defined popula-
tions from which individuals may be sampled. The observations on these individuals
have a probability distribution, usually summarized by the mean and covariance
matrix. Thus in the classification of such population entities, data on within-entity
variation are available in addition to the entity mean observation vector x;. In either
case, when the co-ordinates of x; are quantitative, binary or ranked (but not unordered
qualitative) variables, it is natural to visualize the set & as n points in [pl-space,
which, as humans, we should like to be geometric or Euclidean, although this is not a
necessary condition,

Hartigan (1967) lists twelve similarity structures:

S1 S defined on & x & is Euclidean distance;

S2 S defined on & x & is a metric;

S3 S defined on & x & is symmetric real-valued;

S4 S defined on & x & is real-valued;

S5 Sis acomplete order < on &£x&;

S6 S isa partial order < on & x & (each comparable pair of entities can be ordered,
but not all pairs of entities need be comparable);

S7 S is a tree 7 on & {a partial similarity order, (i,j)<(k,]) whenever
sup,(i,j) = sup,(k, [)} (see Section 4);

S8  Sis a complete relative similarity order <, on & for each E; in €: j<,;k means
that E; is no more similar to E; than E, is;

S9  Sis a partial relative similarity order <; on &;

S10 Sis a similarity dichotomy on &€ x & in which & x & is divided into a set of
similar pairs and a set of dissimilar pairs;

S11 Sis a similarity trichotomy on & x & (similar pairs, dissimilar pairs, and the
rest);

S12 Sis a partition of & into sets of similar objects.

Most empirical studies have started with one of the structures S1 to S3, and
virtually each author has his own details of proceeding from X to S. Some proposals
are listed in Table 1, indices that are measures of dissimilarity, decreasing with
increasing similarity, being denoted by I. The final three indices are used essentially
for binary data and are therefore inapplicable to the classification of population
entities. The complement of I8 has been proposed for use with quantitative data—
the “Canberra” metric I8.

When all variables are quantitative, S1 can be obtained directly, I1. Calculation
of a distance, however, depends on the scales and inclination of the axes. In the case
of unique entities, most workers recommend normalizing each variable by dividing
by its standard deviation over the » individuals, although some (e.g. Carmichael et a/.,
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1968) advocate scaling by the range, some by a heterogeneity measure (Hall, 1969a)
or a measure of importance (Williams et al., 1964; Hall, 1965), while others (e.g.
Sawrey et al., 1960) use the raw data. A comprehensive computer package (e.g.
Williams et al., 1966) usually leaves the decision to the user. The unthinking use of

TABLE 1

Indices of similarity

D
11 Euclidean distance > w,(x;,— X;,)?
=1
Unstandardized: w, = 1
Standardized by S.D.: w, = 1/s%. Denote by A2
Standardized by range: w, = 1/max (x;,— x;,)?
i,

- »
12 City-block metric > w, | x;—X;y | Johnson and Wall (1969)
=1
Mean character difference: w, = 1/p Cain and Harrison (1958)
- P A
I3 Minkowski metrics [Z | %40 — X0 ]1//\] Boyce (1969)
=1
kd
z Xiv Xjo
14  Angular separation Tvﬂg—; . Gower (1967a); Boyce (1969)
PEDFA
v=1 =1
2 - -
2 (X=X (x55—%5) Sokal and Michener (1958); Fortier
IS Correlation p;; = — v=t — I and Solomon (1966); McQuitty
[Zo—g Sn—np| 0966
v=1 v=1
— A2
16  Profile similarity index: 2km—2 , where
2k + A Cattell (1949)
P(x2<ky) =05
17  Coefficient of nearness: {J(2p) — A}/{{(2p) + A} Cattell and Coulter (1966)
B “ . —— Bray and Curtis (1957); Lance and
I8 Canberra™ metric: gl | 30— %50 [/ a0+ X50) Williams (1966)( )
2a . R
18 YarbTe Czekanowski (1913); Dice (1945)
a Jaccard (1901); termed ““connection”
B a+b+e by Needham (1963)
a+d

110 Simple matching: Sokal and Michener (1958)

a+b+c+d

scaling must be condemned, even more in this context than in standard multivariate
analyses. Not only is there the same argument that the difference in scale between
two variables (particularly of the same dimension) may be intrinsic, but also, as
Fleiss and Zubin (1969) have pointed out, the scaling should be carried out on
individual clusters while it is in fact carried out on the complete set of data.
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Similar considerations affect the problem of correlated variables. Sokal (1961)
pointed out that »(x;,—X;,)? is not Euclidean distance in this case. If the entities to
be classified are populations from which several individuals can be sampled, informa-
tion is available on the scales of, and the correlation between, the variables within
these populations. Thus Mahalanobis’s D?, as advocated by Bolshev (1969) and, in a
form modified for discrete data, by Balakrishnan and Sanghvi (1968) and by
Kurczynski (1970), can be used. If the within-entity covariance matrices are reason-
ably similar, a pooled matrix can be used to determine the appropriate axes with
reference to which distances between entities should be evaluated.

The matrix of covariances between variables calculated from » unique entities
has been used to transform the axes of measurement. Minkoff (1965) found that this
yielded results less in agreement with expectations than the correct use of D2 There
are two major objections to basing a distance measure on such an overall covariance
matrix. Firstly, most of the correlation present is likely to be caused by the existence
of the clusters being sought. This must be retained (Gower, 1969b). Secondly, the
correlation structure within clusters may vary considerably from cluster to cluster, so
that a pooled covariance matrix is inappropriate. The first point does not wholly
imply that “in general, the contribution of any one property-resemblance to overall
similarity should not be influenced with respect to other features” (Hall, 1969b),
unless care has been taken to ensure that all variables measured are in fact uncor-
related within the clusters. .

If replicates do not exist, there appears to be a circularity in trying to transform
data by properties of the cluster that it is hoped to determine. Roblf (1970), however,
has proposed a sequential scheme for cluster formation in which distances from an
already clustered individual are measured in the local geometry of that cluster. Such a
distance is not symmetric—type S4. This procedure eliminates both scaling and
correlation problems, by being invariant under any linear transformation of the
original variables. A different way round these problems is found in Gower’s (1966)
proposal to replace the standardized observed variables by principal components
before calculating Euclidean distances.

Euclidean distance also has the property, disliked by some users, of giving extra
weight to outlying values of a single variate. This is partly overcome by scaling. How-
ever, some sets of variables (e.g. measurements of different plant species in an area) seem
unsuited to scaling, and it is possible (Bannister, 1968) for two areas containing identical
botanical species in differing amounts to be further apart than two areas with no species
in common. Some objections to Euclidean distance reduce to the complaint that it
does not behave in the desired way: ‘“‘taxonomic distance has distortions that make
it clearly not suitable” (Hall, 1969), although distortion is not defined.

Similarity indices with properties akin to correlation coefficients are often sought.
Cattell has advocated a series of such indices of which I6, 17 are examples. The
correlation coefficient 15 is not often used. Some arguments against it are circular,
amounting to saying that it can give p;; < p;;, when entities E;, E; are obviously more
similar than E,, E; (Eades, 1965). But use of the correlation coefficient must be
restricted to situations in which variables are uncoded, comparable measurements or
counts; it is not invariant under scaling of variables, or even under alterations in the
direction of coding of some variables (Minkoff, 1965).

If the variables are all binary characters, all coefficients of association from the

2 x 2 table % of numbers of characters possessed or not possessed by entities E;, E;



1971] CORMACK ~ A Review of Classification 327

are candidates for an index of similarity. The properties of these S3 measures are
discussed thoroughly by Sokal and Sneath (1963) and Dagnelie (1965). The choice
among I8, I9, 110 is dependent on whether co-absence of a particular character is
assumed to contain information. Rayner (1966) distinguishes between dichotomies
(d unimportant) and alternatives. Intermediate weightings of a, d can be used. Such
a scheme was used by Hayhoe ef al. (1964) in order to incorporate in the similarity
index the differing frequencies of occurrence of different attributes, co-presence of a
rare attribute scoring much higher than its co-absence or than the co-presence of a
common attribute. This approach has been condemned by some on the basis that it is
unjustified scaling. The simple matching coefficient 110 was supported by Williams
and Dale (1965) as being the one-complement of a Euclidean distance, while I8 and 19
are not, although their one-complements do satisfy the triangle inequality (Ihm, 1965).
Versions of I8, 19, 110 have been used with quantitative variables, I8 most extensively.

The probabilistic distribution of the simple matching coefficient was evaluated by
Goodall (1967) on the assumption of independent attributes. This assumption,
which may be reasonable for established clusters though not for the primal mix, also
underlies his probabilistic similarity index (1964, 1966a). For each attribute separately
a similarity index for each pair of entities is defined as the probability P, that a random
pair will have similarity strictly less than the pair in question. The overall similarity
of the pair is based on —23%2_, In P, and appeal is made to the x2,, distribution to find
s;» Goodall shows empirically that for random data the distribution of s; closely
approximates a uniform distribution.

Difficulties arise with binary data if a character, when present, can be in one of a
number of secondary states. A flower with petals can have white, red or striped petals
but a flower without petals is just that. Kendrick and Proctor (1964) argued strongly
for weighting primary characters by one more than the number of possible secondary
characters (m). Williams (1969) has re-examined this and shows that 1/m is a more
suitable weighting for secondary mis-matches. Other authors proposed that the
absence of a primary character in such circumstances be recorded as a “no com-
parison”, that variable to be excluded from that entity’s similarities. Beers and
Lockhart (1962) and others made use of this idea to incorporate variables with more
than two ordered states by replacing each such variable by a string of binary ones.
The most comprehensive treatment of such similarity coefficients is provided by
Rubin’s (1967) modified fractional match coefficient which makes allowance for non-
applicability of variables and for inclusion of some continuous variables as fractional
matches. The same procedure was proposed by Rayner (1966). Rubin argues strongly
against discretizing continuous variables, as had been proposed by Rogers and
Tanimoto (1960) among others, and warns of the dangers of many-state variables
whose effect on s;; will be swamped by a binary variable. Some guide to the magnitude
of the effect is given by Cochran and Hopkins (1961).

A similar type of problem arises when it is not clear what variable in one entity
corresponds to a particular variable in another. A sound mathematical basis for
assessing homologies was formulated by Jardine (1967), who showed that two
characters are homologous if their similarity with respect to spatial relation was
strictly greater than that of either character in the one individual with any other
character in the other. Rayner (1966) had adopted heuristically a similar approach to
soil horizons, although his proposals have been disputed, for example by Grigal and
Arneman (1969). The effect of making an error in assessing homologues has been
explored by Fisher and Rohlf (1969) by the numerical device of randomizing the order
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of some variables independently on each entity. In their example, 6 scrambled
variables out of 74 affected the final classification little but with 10 the structure of the
classification was much less clear.

Any monotonic function of a similarity index s;; can also act as a similarity (or
dissimilarity) function (see, for example, de la Vega, 1967). Choice of function
depends on the representation sought for the data. In an aftempt to develop the
intuitive analogy between similarity and information, Rogers and Tanimoto (1960)
used [—log,(s)]. The attempt fails for two reasons: the act of taking logarithms does
not in itself turn similarity into entropy, and the logarithms are not additive if the
variables are dependent (Lance and Williams, 1967b). Ihm’s (1965) further criticism
that [—log, (s)] is not a metric seems to misunderstand the reason for the transforma-
tion. In exploring the representation of multivariate data as entity-points in a
Euclidean space, Gower (1966, 1967a) proposes two further transformations. He
shows that d = \{2(1—s)} can function as Buclidean distance provided that S is
positive semi-definite. When the variables are ranked in order for each entity the
Euclidean representation of the entity points fall on a hypersphere, in which case the
angular separation [cos~1s] is a possible alternative transformation. The first proposal
has been extended by Gower (1967b) to demonstrate the geometrical implications of
various clustering techniques, and can be developed to provide a similarity index
suitable for mixed qualitative and quantitative data. In this a similarity is defined for
each attribute:

;54 = 0 if attribute u qualitative, x;,7# X;,,
=1 if attribute u qualitative, x;, = x;,,
= Xz, X5/f,,  if attribute # quantitative on scale f,,.

Overall an index of similarity is s;; = X2_; 5;;,/p Which can be defined recursively
over attributes. Since s, is not necessarily 1, d;; = y/(s;;+5;;— 25;;) must be used for
a distance measure. The geometrical implications of this d;; will be considered more
fully later. An alternative index of similarity for mixed data uses a quantified version
of I8 together with the one complement of I8 (Lance and Williams, 1966).

Standard statistical “measures” of association have not been overlooked, ecologists
in particular having made considerable use of functions of y% from the 2 x 2 table of
presence and absence. This implies that co-absence of any character is as important
as co-presence. Williams and Lambert (1959) used both y? itself and /(x¥/p), the
latter being identical with the correlation coefficient. Although these were used in a
derived structure analysis evaluating the association between variables, they have
been used to measure similarity between entities despite the dangers of their dependence
on p, which makes y? an unsuitable measure, albeit a good test of association. Cole
(1949) introduced a series of such measures, and a discussion of the features required
in such a coefficient by ecologists can be found there or in Hurlbert (1969). Hurlbert
adds another measure

ad—bc obs x%—min ¥?
|ad—bc| A \max y*—min y?
to the list, claiming it as *“‘the most satisfactory measure of association for use with

presence-absence data”. Comprehensive bibliographies of earlier measures are given
by Goodman and Kruskal (1959), Dagnelie (1960) and Sokal and Sneath (1963).
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The idea that any monotonic transformation of s; also provides a possible
similarity index has led to various proposals for simplifying the very large matrices
that can be involved. The crudest (S10) chooses a threshold ¢ and sets s = 1if s;;> ¢,
s# =0 if s;;<t (Bonner, 1964; Estabrook, 1966; Parker-Rhodes and Jackson, 1969).
The similarities can then be represented as a graph on &. Less prodigal of information
is the approach, worked out extensively by Lerman (1969, 1970), which takes as
informative data the ordering induced by s on & x & (S5 and S6). He takes as basic
definition of a similarity measure any function on the 2 x 2 table (q, b, ¢, d) which is
increasing in a, symmetrical in & and ¢, and decreasing in 4. Using straightforward
probability arguments, he deduces that:

(i) the two similarity measures whose ordering relations are most unlike are @ and
(a+d). They are unlike in the sense that the cardinal |A| of the symmetric
difference A between the graphs of the ordering on & x & induced by the two
measures is maximum;

(ii) if all individuals possess either m or (m - 1) attributes, for some m, 0<m<p,
the orderings induced by any two similarity measures are identical;

(iii) if the variance over the individuals of the number of attributes possessed by

any individual is ¥, then |A|<3n¥(n—1)2V for any two similarity measures.

The extension of these arguments to the assessment of clustering criteria will be
discussed later,

3. CLUSTERING TECHNIQUES

There are many intuitive ideas, often conflicting, of what constitutes a cluster, but
few formal definitions. Two basic ideas are involved: internal cohesion and external
isolation. Sometimes isolation is stressed: Rogers et al. (1967) found the maximal
acceptable restriction to be that similar entities shall not be placed in different classes
and that a discontinuity should be observable between classes. Sometimes cohesion
is stressed: an individual should be accepted into a cluster if its smallest correlation
with any member is greater than some threshold (Cattell, 1944). More usually, both
are included: the distance between any two points in the set is less than the distance
between any point in the set and any not in it (Gengerelli, 1963); the sum of the simi-
larities of any member to the other members should exceed the sum of its similarities
to non-members and vice versa for non-members (Needham, 1963).

In the social sciences the search has been for tight clusters or cliques in which each
entity resembles every other, and in which all are satisfactorily described by one—the
profile of the set. Often these have turned out to be will-o’-the wisps. Even when
found they are often seen to be not necessarily unique (Cattell and Coulter, 1966), as
one entity can be a member of more than one clique. Cliques thus proved difficult to
define (Fisher, 1969) even when present, and most subjects have accepted the need for
a more general idea of group. Coleman and MacRae (1960), for example, found that
“in large measure they (i.e. groups) are composed of chains of choices and have an
octopus-like configuration rather than a clear division into cliques”.

A weak definition of cluster will allow such multidimensional amoebae (Needham
and Jones, 1964). Are they acceptable? Without a formal definition anything can be
debated. The general aim should be to describe the data in a simpler way than the
original (Jones, 1970) without incurring offensive mathematical consequences (Need-
ham, 1965a). Some find amoeboid structures unacceptable, others reject any
unnecessary restriction to spherical clusters (Needham, 1965a; Rogers et al., 1967),
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although the most commonly used techniques impose severe variance resiraints
(Wishart, 1969¢) which are bound to result in hyperfootballs (Needham, 1965b). The
only attempt to set down universally acceptable mathematical criteria for deciding
whether a set & should be partitioned was made by Rubin (1967). There has been no
comment by users of clustering techniques as to whether these criteria are acceptable.

To provide a basis for discussion, Jones and Jackson (1970) have recently given
labels to certain forms of connected structure of sets & in which each pair E;, E; either
is or is not linked (S10). Their labels do not seem to have any advantages over
m-cliques, introduced by Luce (1950). An m-clique is a subset of entities of which
every entity is connected to every other entity by a chain of not more than m links,
one pair at least requiring the full m links: this subset cannot be a proper subset of
another set with the same properties. A recent proposal by Jardine and Sibson
(1968a) for k-partitions of & forms a kind of dual to m-cliques: their suggestion will
be discussed later.

Most techniques for clustering have developed, without formal basis, as algorithms.
A formal approach would set up a criterion to be optimized over the set of partitions
of &. Unfortunately there are far too many partitions of n, for n>20 say, for a
complete enumeration to be feasible. The search must be conducted over a limited
range of partitions. Three types of procedure are in general use for finding clusters:

(a) agglomerative—a series of successive fusions of the » entities into groups;

(b) divisive—partition of complete set & successively into finer partitions;

(c) clustering—successive re-allocation of individuals between the sets of some
initial partition.

Of these, (a) and (b) are methods for representing the data as a dendrogram (see
Section 4), from which clusters are obtained by cutting at any level; (¢} are procedures
for finding directly a partition of & with properties approximating to some desiderata.

Some sorting strategies do yield clusters with well-defined properties and hence are
exact algorithms for a properly defined method. Williams and his co-workers have
often made the distinction between the clusters and the route by which the clusters
are obtained, but even an exact algorithm for a properly defined method is not
necessarily optimal. With other sorting strategies, the resulting clusters are defined
only by the algorithm by which they were obtained. Unless the clusters can be shown
to have properties approximating to some desiderata for the clusters, the fact that they
have been obtained by successive steps each of which was best of the steps then
available seems irrelevant. Like least-squares estimation of a non-linear structure,
such procedures give results that are best of an undefined, and possibly undesirable,
class. Butthe analogy goes further: the algorithms can be carried through and an answer
obtained, whereas other better defined methods can perhaps not be implemented.

Inter-cluster similarity: a selection of definitions of similarity between entities is
available. The similarity between clusters must also be defined. The measures
proposed mostly satisfy a recurrence formula for the dissimilarity between group &
and a group (ij) formed by the fusion of groups i and j (Lance and Williams, 1966b,
1967a, Anderson 1971a):

digy = oy i+ o dyg+ B+ v iy — dig-

The values of the parameters for several well-known sorting strategies are given in
Table 2. If similarities s;; rather than dissimilarities d;; are given, the same relation
holds, with d;; replaced by s;; = 1—dy;; if o+ o+ =1, 5 can replace d directly.
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These relations are usually applied in clustering as an agglomerative procedure,
starting with a similarity or dissimilarity matrix between entities. A sorting procedure
not satisfying a relation such as the above has the computational disadvantage of
requiring the initial data, in addition to the cluster data, to be retained at all stages.

TABLE 2

Sorting strategies

Name o B ¥ References
L1 Single linkage 3 0 —1 Sokal and Sneath
(nearest neighbour) (1963)
L2 Complete linkage 3 0 3  Sokal and Sneath
(furthest neighbour) (1963); McQuitty
(1964)
L3 Group average n;/(n;+ny) 0 0 Sokal and Michener
(1958); McQuitty
(1964)
L4 Weighted average 3 0 0  McQuitty (1966,
1967a)
L5 Centroid ny/(n;+n;) —n;n;/(n;+n;22 0 Sokal and Michener
(1958); Gower
: (1967b)
L6 Median 3 -1 0  Gower (1967b)
L7 Minimum variance  (n;+n.)/(n;+n;+n,)  —ny/(n;+n;+n,) 0 Wishart (1969b);
Anderson (1971a)
L8 Flexible 3(1—-x) x(<1) 0 Lance and Williams
: (1967a)

Standard arithmetic procedures, however, are not invariant under monotonic trans-
formations of s. If this is required attention is restricted to L1, min(d,, dy;), and
L2, max (dy;, dy;) (Johnson, 1967).
Nearest neighbour is the simplest agglomerative sorting procedure and requires only
a similarity structure in the form of a complete ordering on & x &. The procedure
may be continued to give a complete dendrogram, in which form results are usually
expressed, or may be terminated at any threshold 7. The clusters so formed are
defined by the condition that two entities E;, E; belong to the same cluster if there
exists a chain of entities Ej, Ej, ..., E,, E, such that s;3,55, ..., Sqp S,; are all greater
than ¢. Sorting strategy L1 is an exact algorithm for such single-linkage clusters.
Entities tend to be incorporated into existing clusters rather than joined to form the
core of an independent cluster. Williams et al. (1966) define a coefficient of chaining to
give numerical expression to this tendency. In the absence of a formal definition of
chaining such a coefficient gives only spurious precision to any argument about the
undesirability of this property. Lance and Williams (1967a) term this feature of the
sorting strategy *“‘space-contraction”, a concept whose value is reduced by its lack of
formal definition. One advantage of single linkage is that successive fusions always
occur at lower levels of inter-cluster similarity.
Single linkage does not give satisfactory results if intermediates are present
between clusters (Hodson et al., 1966). Such intermediates can be viewed as the
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result of random noise, and methods have been proposed for eliminating noisy entities
(Wishart, 1969) or noisy variables (Baron and Fraser, 1968). Shepherd and Willmott
(1968) suggest imposing a requirement that an entity is added to a cluster only if its
similarities to k or more members of the cluster are all greater than some threshold.

Furthest neighbour sorting also requires only a similarity ordering on &x&. If
the dendrogram is terminated at a threshold ¢ the clusters so formed are defined by
the condition that the similarity between all pairs of entities in a cluster must be
greater than z. Strategy L2 is an exact algorithm for such complete-linkage clusters.
Since the similarity of a single entity with a cluster is the minimum of its similarities
to the individual entities in the cluster, this strategy produces compact clusters with no
chaining. Again successive fusions occur monotonically with inter-cluster similarity.

Group average methods require numerical similarity indices and are intermediate
in effect between L1 and L2. Only similarity indices whose average is meaningful
should be used. The correlation coefficient should not be chosen (Lance and Williams,
1967a) unless first turned into a covariance (King, 1967). The similarity between
groups is given by

X TSy ww [ ZXww;

ied jeB
(Sokal and Sneath, 1963). Strategy L3 takes w, = 1, L4 takes w; = n4. These strategies
are monotonic. However, the clusters formed are defined only by the strategies.

Centroid sorting has its origins in the characterization of the data matrix as points
in Euclidean space. Every cluster is regarded as a single point at its centroid. Agglo-
merative techniques fuse either the two clusters with minimum between-centroid
distance (L5) or those which yield minimum within-cluster variance (L7). However,
the former is not monotonic.

Although the geometrical basis of the method suggests that Euclidean distance
I1 be used as dissimilarity index, the method can be used with any index, although a
recurrence relation such as those in Table 2 need not result. The method first appeared
as Sokal and Michener’s (1958) unweighted pair-group method. The geometric
properties are given by Gower (1967b).

With I1 as dissimilarity measure, it is natural to seek to minimize the within-group
S.S. at each fusion (L7). The k-partition of & resulting at any level of the dendrogram
may be regarded as an approximation to the k-partition minimizing the total within-
group S.S. This is a measure of the disorder in the system. Algorithms and discus-
sions have been given by Ward (1963), Ward and Hook (1963), Orloci (1967) and
Wishart (1969b). A related method, described earlier by Sawrey et al. (1960), built up
a hierarchy from mutually dissimilar nucleus groups by incorporating in each group
those points nearer than a preassigned threshold: centroids and distances were
recomputed for these and the procedure repeated at a lower threshold.

In one dimension only contiguous partitions need be considered. For small
problems Fisher (1958) proposed finding the true minimum by enumeration, for
larger ones approximating the minimum by hierarchical splitting, a technique adopted
for small multidimensional populations by Edwards and Cavalli Sforza (1965). The
true significance levels for Fisher’s one-dimensional problem have been obtained by
Engelman and Hartigan (1969). The relationship between clustering and multiple
comparison tests has been explored by Calinski (1969): although overlapping clusters
are usually apposite, Engelman and Hartigan’s table might yield instructive com-
parisons with standard procedures.
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Fisher (1969) considers a generalization of the problem to allow weighting of the
points and their interactions so that there is a cost involved in expressing the » points
as n* centroids. The aim is to minimize this cost. He allows a general metric similarity
which can be transformed to Euclidean distance in the way proposed by Gower
(1966). The algorithm improves on that of Ward (1963) by trying some sub-optimal
fusions at specified places in the hierarchy in the hope that one of these may lead to a
better clustering than that obtained by optimizing the hierarchical route. Fisher
suggests that, for small n, the degree of optimality attained be assessed by continuing
the fusion until there are only two clusters, whose composition can be compared with
the optimal found from enumerating all such partitions. Some examples are moderately
encouraging.

Information theory

If a set € of c entities, characterized by p attributes, contains a, entities possessing
the uth attribute, the information content of the set can, following Shannon, be
defined as

%) = pclogc— §] {a, loga,+(c—a,)log(c—a,}.
u=1

KI%) is a measure of the disorder of the set %, so that centroid agglomerative sorting
to minimize Y I(¥;) can proceed as in the preceding section (Williams et al., 1966).
Either the gain in information A7 can be minimized or the sets fused whose fusion has
minimum [ (Lambert and Williams, 1966). Since I is strictly additive the hierarchy is
certainly monotonic in 7, and appears also to be monotonic in A, The significance of
any fusion can be assessed by appeal to the ¥% approximation for 2AT or for 7; Field
(1969) has warned that the degrees of freedom should be one less than the number of
attributes present in the sets under study. The strategy strongly favours clusters of
equal size (Lance and Williams, 1966a). The data are being forced into a particular
structure without any formal examination of that structure. The possibility of using
other information theory models for both binary and frequency data are discussed by
Orloci (1969). The relation between information and likelihood has brought informa-
tion concepts into several classification studies (Rogers and Tanimoto, 1960;
Macnaughton-Smith, 1965; Harrison, 1968). Sneath (1969a) has pointed out that
entropy is not identical with clustering tendency since a regular distribution also has
low entropy. A full discussion is given by Theil (1967). The clusters obtained from
information measures have been found to be very sensitive to the actual set of entities
included (Hall, 1967; Gower, 1969a). The early uses of information in classification
were due to Rescigno and Maccacaro (1961).

An ambitious attempt to express in information terms the complete classification
process from initial data to labelled classes has recently been made by Boulton and
Wallace (Wallace and Boulton, 1968; Boulton and Wallace, 1970). Variables are
assumed independent within classes, but both continuous (here assumed normal) and
multinomial variables can be incorporated. Replicate entities are required.

Iterative relocation

When a criterion to be minimized is well defined, as in the last two sections, a
direct attempt to find a partition that minimizes it, rather than the indirect hierarchical
approach of the preceding sections, can be made. Both procedures are sub-optimal,
but in different respects.

14
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Initially k£ points are chosen as cluster centres: either randomly (MacQueen, 1967),
regularly spaced (Beale, 1969a, b), mutually farthest apart (Thorndike, 1953: cf.
Kennard and Stone, 1969) or suitably chosen either from the data (Ball and Hall,
1967; Nagy, 1969) or supplementary to the data (Jancey, 1966). All points are then
allocated to the nearest centre. The centres may be changed after each point has been
allocated (e.g. MacQueen, 1967) or only after all points have been allocated (e.g. Ball
and Hall, 1967), to the centroid of the new cluster. Nagy (1969) gives a modification
which permits overlapping clusters. MacQueen (1967) establishes that his procedure
has satisfactory asymptotic properties.

Beale proposes a first trial with &k larger than should be necessary. When the
iterations stabilize the pair of clusters which increases least the total S.S. are merged
and the process repeated. On the assumption that clusters are spherical normal the
contribution of extra clusters in reducing the residual S.S. can be tested by an F-
statistic.

Both MacQueen (1967) and Ball and Hall (1967) by slightly different mechanisms
allow k to change during the relocations by enforcing the division of a cluster with
large within-cluster S.S. or the fusion of two clusters with small between-cluster S.S.
according to two parameters of coarsening and refinement set by the user. MacQueen
notes a tendency for final clusters to be of comparable size. He proposes to test the
clustering by computing the within-class variance when the values in each dimension
are randomly associated, and comparing the observed minimum variance with the
randomization distribution formed by repetitions of this process.

Intuitively one would feel that using as initial allocation the sub-optimal result
obtained from a hierarchical structure would lead to more rapid convergence; this has
been found by Nagy (1969). However, in a series of trials of a general relocation
procedure, Wishart (1971) found that the procedure converged more rapidly, and to
the optimal solution, from an extremely bad initial value than from a nearly optimal
one.

An alternative criterion to be minimized by iterative relocation has been proposed
by Rubin (1967). He defines the stability of an entity E; in a cluster C of n, entities as

[¢1
— 35— (1 — ) maxs,;.
-1 jc i¢C

An interesting innovation in Rubin’s approach is that he allows new groups to form
by considering an empty set whose similarity with every entity is «. From an initial
partition we try to maximize the average entity stability. Another innovation worthy
of examination is the provision of a residue set of unclassifiable entities, those entities
whose stability in the optimal partition is negative.

The concept of relocation of entities gives these techniques an immense advantage
over agglomerative sorting (Lance and Williams, 1967b).

Divisive techniques

The number of ways of partitioning a set of # entities into m groups is too immense
for all to be examined even for m = 2 (see, for example, Fortier and Solomon, 1966):

P(n,m) = {m”—iglm(m_i) P(n, i)} / m!

Monothetic divisions on the presence or absence of a single suitably chosen attribute
are feasible, but, since they do not depend on the similarities between entities, will be
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discussed later. The only feasible suggestion for a polythetic (i.e. dependent on several
attributes) divisive technique is dissimilarity analysis (Macnaughton-Smith et al.,
1964). In this a splinter group & is accumulated by sequential addition of the entity
whose total dissimilarity with (& — ) less its total dissimilarity with .7 is maximum.
When this difference becomes negative the process is repeated on the two sub-groups.
As with all divisive schemes an inefficient early partition cannot be corrected later.
The advantage that Macnaughton-Smith (1965) claims for divisive techniques “that
statistical error is more troublesome when we start at the ‘bottom of the page’” seems
totally unjustified for a set of entities for which no common error structure is assumed.

Single-cluster formation

An alternative strategy to building the whole dendrogram simultaneously is to
complete each cluster that is initiated before starting a new cluster. This technique
has been used by McQuitty (1964) and Carmichael et al. (1968) using L1, and by
Sokal and Michener (1958), Kendall (1965) and Hope (1969a) using L.3. Hope places
the extra requirement that inter-cluster fusions up to a chosen threshold be made
before entity-cluster ones. He forms a dendrogram by a set of decreasing thresholds.
Otherwise an arbitrary stopping rule has to be chosen, usually on the basis of some
discontinuity in the similarity with the cluster of the next entity to be incorporated.
In this case, overlapping clusters are a logically inescapable development. McQuitty’s
proposed stopping rule—to add a new entity only if it is nearer to a point in the
cluster than to a point not in the cluster—seems less arbitrary, avoids overlapping
clusters and undoubtedly lessens chaining.

Comparative studies

If clusters are really distinct it would be hoped that any strategy worthy of use
would find them (Gower, 1969b). Many studies have found close agreement between
different strategies (Sneath, 1966; Watson et al., 1966; El Gazzar et al., 1968; Muir
et al., 1970) and even between different subsets of variables (Grigal and Arneman,
1969). Other authors, however, report much less consistent results. For example,
Sammon (1969) finds the results of clustering procedures highly dependent on the
choice of index, thresholds and number of re-allocation iterations. See also papers by
Minkoff (1965) and Colman (1968).

Two types of study seem likely to be highly informative but have been surprisingly
little carried out. Firstly: studies of real data if either the variables or the entities are
divided into subsets, either randomly or to a chosen pattern, and clustering performed
independently on each subset. The example given by Lange et al. (1965) is a devastat-
ing comment on the results of Williams and Lambert’s (1959, 1960) association
analysis. Single linkage fared much better.

Secondly: studies of concocted data of known structure. Wishart (1971) has used
an iterative relocation scheme to compare different similarity indices in a manner
unaffected by sorting strategy. From their inability to separate correctly four well-
separated bivariate normal samples, he recommends that the correlation coefficient I5
and certain other indices not discussed here be debarred from further use.

Such empirical studies provide critical information of the behaviour of different
similarity measures and sorting techniques in practice. Theoretical studies are less
easy, but may be valuable. Lerman (1969) has studied two criteria for assessing a set
of clusters based on the sets &, @ of pairs of entities in the same or different clusters:
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(a) the number of times a pair in & are less similar than a pair in &;
(b) the excess of (a) over the number of times a pair in & are not less similar than
a pair in & (de la Vega, 1967).

By a combinatorial argument the first of these is shown to be unsatisfactory in that,
whatever the original similarities so long as no two are equal, certain partitions
cannot maximize (a). For example 49 objects can never be partitioned into 7 sets of 7.
Tendencies for criteria to give preference to certain patterns, such as discussed by
Gower (1967b), can be tolerated if understood: absolute exclusion of some patterns
renders a criterion wholly unacceptable.

Lerman does not comment on the effect of expressing the criteria as proportions
of the number of (2, &) pairs of pairs. In this form they are essentially equivalent,
and (a) is numerically identical to a measure g(—,0) proposed by Jackson (1969) for
the “‘discrepancy” between two similarity matrices (“‘discrepancy” appears to be
maximal for identical matrices). Jackson suggests that more informative results may
come from considering for different thresholds ¢ only pairs (i,) such that s;;>¢.

Miscellaneous probabilistic considerations

Various proposals have been made to take account of random variation in cluster
formation. McQuitty (1956) notes that some matches in a simple match coefficient
will occur by chance, and proposes subtracting the expected number of such matches
from the observed number before calculating the similarity index. He defines a
group’s attributes as those that are common to all members of the group so that
chance matches between groups are fewer than between individual entities.

Goodall (1968) extends his probabilistic similarity index to evaluate the affinity
of an entity to an existing cluster. For each attribute in turn he arranged all its
possible values in order of their similarity to the cluster norm, defined differently for
different types of attribute. The tail probability of an entity being further from
the cluster than it is can be estimated from the relative frequency of such events,
and these probabilities combined as before over attributes to give a y2, variable.
Goodall (1966b) has argued strongly that the hypothesis of a single cluster should be
tested.

With a fixed set & of entities the idea, implicit in this and in MacQueen’s test of
clustering, of a null hypothesis that the set of variable values observed are randomly
allocated to entities seems a proper and the only possible approach. If & is regarded
as a random sample of entities from an infinite population then models such as
spherical normal distributions can be invoked, and the standard type of significance
test applied. Two difficulties loom large: the formulation of appropriate null hypo-
theses and the evaluation of the probability distributions of the maxima that will be
used as test statistics. With a fixed set of entities any discontinuity is important
whether statistically significant or not. In deciding how, or whether, to cluster a
sampled set of entities such statistical problems must be faced. An example of a
possible approach has been given by Goodall (1966a).

If the entities are populations, for each of which a particular probability dis-
tribution of variables may be assumed, the problem of allocating a new individual to
an existing entity is the statistical one of multiple discrimination. The problem of
clustering, or forming a hierarchy, of the entities differs from that of clustering unique
entities only in so far as estimates of covariance matrices within entities permit more
effective probabilistic indices of similarity to be used.
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4. REPRESENTATIONS OF SIMILARITY STRUCTURES

Several authors have written down the logical stages in handling a large body of
multidimensional data. In Jardine’s (1970) framework the process should be:

(1) Set up a precise mathematical characterization of the data and of the repre-
sentation wanted.

(2) Lay down criteria of adequacy for transformations from the data to the
representation (e.g. invariance, structure, optimality).

(3) Examine the transformations for existence, uniqueness and further properties.

(4) If these are non-conmstructive or non-feasible, seek efficient algorithms for
implementing them.

Features of the representation will be denoted by *

Hierarchical structures

Hartigan’s (1967) similarity structures, discussed earlier, form one set of char-
acterizations of the data. Hierarchical stratified clustering (S7) is the most carefully
defined representation, given independently by Constantinescu (1966), Hartigan
(1967), Jardine et al. (1967), Johnson (1967) and Lerman (1970). Formally it is a tree
r=[&,¥€,T] consisting of a root & (the cluster containing all entities), a finite set €
of nodes C (clusters of entities) and a mapping T of ¥ into itself such that forall k> 1,
TEC = Cif and only if C = &, together with a real valued function ¢ on % such that
o(C)<o(C") if there exists a k>0 such that 7% C’ = C. The pictorial representation
as a dendrogram has long been used to describe classifications. The similarity s
between two clusters or two entities is defined as the value of ¢ at the first node in
which they are united by 7. The dissimilarity % = 1—s3; is an ultrametric satisfying
df<max[d},d¥,] for all ,j, k.

The representatlon distorts the characterlzatlon When the characterization is
numerical, various measures of distortion have been proposed and are given in
Table 3. When the characterization is an ordering on & x &, two further measures
have been proposed by Lerman (1970). These depend on consideration of sets of
three entities E,, By, E,in &. If 54, < 53, < 8, the triple has ultrametric structure if and
only if 5,5 = 8y, If 545 < 53, there will be g(a, b, ¢) >0 pairs of entities whose mutual
similarity lies in the open interval (s, 5,,). Lerman proposes either the average or the
maximum of g over all triples in & x & x & as a suitable distortion measure. Roux
(1969) independently considers the same representation and gives a systematic
procedure for making all triples ultrametric.

Jardine et al. (1967) also make precise what many authors have suggested, namely
that the transformation from S to S* should be (a) well defined and (b) continuous.
They reject complete-link clustering on criterion (a), and average-link clusterings on
(b), and support single linkage as the only sorting strategy satisfying the conditions.
To me their counter-examples show the limitations of the whole idea of classification
and not merely of certain techniques. Continuity or stability is a property of the data
and not an analytic property of the algorithm, unless the algorithm is expressed as a
continuous transformation of the data (Jackson, 1970). Some—I am tempted to say
most—data are just not classifiable. In one example Lange et al. (1965) found that
even with single linkage “relatively small change in a percentage similarity [was
amplified] in such a way as to impose large changes in the emerging pattern of cross-
linkages™ in a dendrogram.
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The cophenetic correlation coefficient D1 has been much used in practice to com-
pare hierarchical representations. Many authors have reported that pair-group
sorting L3 gives the highest D1 of the sorting strategies tried (Boyce, 1969; Sneath,
1969). L3 has been often deliberately chosen in consequence (Mello and Buzas, 1968).

TABLE 3

Distortion measures

B (54— 515) (55— 55) Sokal and Rohlf (1962)

[ (si5—5:0)% 2(sE—5H)7T Kruskal and Carroll (1969)
B 2dy;dY
D2 =i Guttman (1968

3%, SaFT (1568)
D3 Z[dy-df? Gower (1966, 1970)

B3| siy—sk M4, O0<p<l .
D4 mgx [ si5=s% | Jardine et al. (1967)
D5 Ywylsi—si? Hartigan (1967)
D5 Swyld;—diR Anderson (1971a)
- _ Shepard (1962)
D6 As DY with wy; = k Thompson and Woodbury (1970)
D7  As D5 with w;; = 1/d;; 3di; Sammon (1969)
Kruskal (1964)
* — s 2 Py
D8  3ldf—fd:)V/2d; Kruskal and Carroll (1969)
where f(d;;) some “regression” function
1
L di.ld¥*? i =

D9 w; di/d}E with wy; TS AT Shepard and Carroll (1969)

[N—l Z(d;_kj)ﬂa—b)]b/(a—b)
NI 3 (d;,)ta-vi]er(a=b)
witha=4%b=10ra=5b=1%

D10 N-13[d;/d%]e

Kruskal and Carroll (1969)

For use see text: D signifies a coefficient that decreases with increasing distortion.

El, D4, D5: used initially to compare dendrograms or a similarity matrix with a dendrogram.

D2, D3, D6-D10: used initially to compare geometrical representations in different number of
dimensions.

Recently Farris (1969) has shown algebraically that these reports are correct: as
measured by D1, L3 is optimal. A proposal by Hope (1970) seems allied to D1: he
proposes to compare “matrices of dendrogram scores with one another by testing the
regression of one set of scores on the other for significance, and by extracting the
canonical roots and variates of the regression”. No details are given, but the dis-
tributional and dependence problems seem immense.

Ordination

Another well-defined representation of a similarity structure is as a set of points in
Euclidean [p]-space. If the initial data are in the form of an (n x p) data matrix or in
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the form of a matrix of Euclidean inter-point distance matrix, representation Sl is
immediate. If the initial characterization is as similarity structure S2 or S3 this can be
represented in Euclidean [n]-space if the matrix S'(sj; = 5;;—§;~—5;+35) is positive
semi-definite (Gower, 1966, 1967a). This does not hold for the information-gain
statistic (Williams et al., 1969a). Characterization S4 can be represented as S3 by
5% = §(s;;+5;). Conditions for S5 to be representable as S2 are given by Beals and
Krantz (1967). Ordination is the process of representing a characterization as points
in Euclidean [p*]-space, p*<p.

Heuristic representations in [p*] where p* is as small as possible were developed
in ecology by Bray and Curtis (1957) and in psychology by several authors (see
Shepard, 1962, for references). D1 has been used to assess such procedures (Swan
and Dix, 1966). More statistically reputable were methods of factor analysis (Goodall,
1954b; IThm, 1965; Sneath, 1968) and principal component analysis (advocated by
Austin and Orloci, 1966). The geometric properties of these techniques were dis-
cussed by Orloci (1966), who pointed out the necessity for basing S on a centred
similarity index (cf. Wishart, 1971), and more extensively by Gower (1966, 1967a).
Gower uses the term “principal co-ordinate analysis’ for his representation of S as
n points in [n] and their subsequent reduction to [p*] by the projection of the points P,
on to the hyperplane of the first p* principal components. Such a representation
minimizes D3. Examination of the individual “residuals” P;Q,, and of the angles
P;GQ; (where Q; is the projection of P; and G the centroid of all points in both
representations, cf. I4), may enable outlying points or clusters to be identified
(Anderson, 1971a,b). Since outliers may seriously distort the principal axes, the
analysis should be rerun with the outlying points removed. These analyses have the
advantages that a representation in [p*] contains the representations in [¢] for all
g<p* (Howard, 1969), and that new points can easily be incorporated (Gower, 1968).

Most similarity coefficients do not define an obviously optimal distance function.
These functions which have been proposed (e.g. 1—s,cos7ls, —logs) are mono-
tonically related. This idea of monotonicity forms the basis of Shepard’s (1962)
multidimensional scaling: the inter-entity distances in [p*] should be monotonically
related to those in [p]. Kruskal (1964) introduced a measure of stress to represent
the amount by which the representation in [p*] failed to meet this criterion. Shepard
and Carroll (1966) later introduced the related idea of a continuous mapping from
[p*]into [p], developed further by Kruskal and Carroll (1969). These methods try to
minimize distortions D6, D8, D9, D10 respectively. The higher p* the smaller the
distortion, so that some further criterion is needed for the minimum acceptable p*.

These scaling techniques, being non-metric, have more flexibility than essentially
linear techniques of principal components, principal co-ordinates or factor analysis.
If the spatial forms of the characterized data are non-linear, these techniques will
produce an acceptable representation in fewer dimensions than required by linear
techniques. For examples of their success in extracting non-linear structural forms
from multidimensional data, see Hodson et al. (1966), Shepard and Carroll (1966). A
possible extension to polynomial principal components is introduced by Gnanadesikan
and Wilk (1969). A geometrical method of comparing different mappings into [p*}]
is given by Gower (1970).

Although such ordination procedures are not classification methods, they may
allow the data to be visually inspected and clusters found (Dupraw, 1964). If the
optimal p* is greater than 2 but not much greater, glyph techniques exist for picturing
three- or four-dimensional data in two dimensions (Anderson, 1960; Hall et al., 1968).
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When the data have not been forced into clusters, the observer can assess better whether
clusters exist. It has been argued that if only the ordering of the similarities is used,
as in multidimensional scaling, the sudden change in similarities between two well-
separated clusters will be disguised (Anderson, 1971a). However, it would be expected
that where the similarities within each of two sets of points are all lower than those
between the sets, multidimensional scaling would reveal two clusters. This situation
may be informative about the optimal choice of weights w;; in the measure of dis-
tortion: too much emphasis on correct representation of small distances may lead to
a distorted overall picture. The view is often expressed (e.g. Williams and Dale, 1965)
that ordination techniques do not reveal structure in the data. However, examples are
reported by Boyce (1969) and Williams et al. (1969) in which principal components or
co-ordinates provide clearer evidence, and understanding, of clustering than standard
classification techniques.

Minimum variance clustering

With data characterized, or capable of being characterized, as n points in Euclidean
[pl-space, we may seck a representation as »* points in Euclidean [p}-space, these
points being the type specimens or profiles of the clusters found. One set of optimality
criteria which has been much used is that of functions of the between and within cluster
covariance matrices, whose distributional properties are well known under standard
normality assumptions. The centroids of the clusters act as profiles. Algorithms for
centroid methods have been discussed earlier.

The most thorough discussion of the principles by which the criterion to be
maximized should be chosen is given by Friedman and Rubin (1967). They avoid the
problems of scaling and correlated variables by restricting themselves to criteria
invariant under non-singular linear transformations of the variables in the original
data matrix, | W+B]/|W] or tr [W—1B], both of which can be expressed as functions
of the eigenvalues of W—1B. Such criteria do not permit the definition of inter-entity
similarity and, by using a pooled within-cluster matrix W, have an underlying assump-
tion that all clusters have the same shape, even if not restricted to sphericity.

Local density

If entities are characterized as points in a metric space, a natural concept of
clustering is that there should be parts of the space in which the points are very dense
separated by parts of low density (Carmichael et al., 1968). In one dimension,
bimodality has long been taken as evidence of a mixture. No restriction should be
placed on the shape of the dense centres. One approach is to partition the space and
count points, but if the partitioning is done without reference to the points, as in the
Cartet count (Cattell and Coulter, 1966), the scale of partitioning must be exceedingly
coarse, since if each dimension is partitioned into z classes the n points are to be
shared among z? cells. More practicable is to consider each given point in turn and
partition the space into a region “near it” and “far from it”. A histogram of the
frequency distribution of distances to the other (n--1) points should have a mode near
zero if the centre point is part of a cluster, and other modes may reveal further clusters
(Johnson and Wall, 1969). But whether partition is made at a fixed distance r from the
chosen point (Wishart, 1969a, c) or at the gth nearest neighbour (Harrison, 1968), a
rotationally invariant local geometry is implied. A less severe restriction seems to be
required by the algorithm for detecting unimodal fuzzy sets given by Gitman and
Levine (1970).
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Harrison proposes to test for existence of clusters by finding the probability, with
binary data and assuming attributes independent, that, of the (#— 1) similarities with
the central point, g should have similarity no less than the observed gth nearest. This
proposal is closely related to that of Goodall (1964, 1966¢c). Most searches for local
modes are in practice closely related to single-linkage sorting. Wishart (1969¢c)
recommends single-linkage sorting of all points whose local density is above some
threshold, the remaining “noise” points being allocated later.

Multimodality can be sought directly by considering mixtures of distributions,
although, in view of the difficulty of expressing simply conditions for bimodality of a
mixture of two univariate normal distributions (Eisenberger 1964; Behboodian 1970),
the method may not be as productive as some authors have hoped (e.g. IThm, 1965).
The recent discussion by Day (1969) of properties of mixtures of multivariate normal
distributions gives some hope for future development, renders obsolete arguments
against seeking univariate bimodality that the wrong variable may be being studied
(Hope, 1970), and provides a statistically sound test of clustering in this situation.

Choice of dimension

Common to both partitional clustering and ordination is the problem that even
when optimal representation can be found with n* clusters or p* dimensions, choice
of n*, p* has still to be made. No formal criteria have been laid down to incorporate
aspects such as the loss in comprehension of an ordination with increasing p*. What
is common practice in many situations is to look for a discontinuity in slope in the
graph of the minimized distortion against p* or n* (Thorndike, 1953; Kruskal, 1964;
Thm, 1965; Jancey, 1966; Friedman and Rubin, 1967).

Calinski and Harabasz (1971) choose the m*-part partition of the minimum
spanning tree which maximizes

_ uB [trW
n*—1 / n—n*
C increasing monotonically with »* suggests no cluster structure; C decreasing
monotonically with n* suggests a hierarchical structure; C rising to a maximum at n*
suggests the presence of n* clusters. Applied to Rao’s (1952) data on Indian castes,
this procedure suggests the absence of any cluster structure, with a little evidence of the
existence of five groups identical with those postulated by Rao.

Reaching a decision on the basis of a discontinuity observed in the data is well
known to be a hazardous procedure. If the set & is unique it is all that can be done.
If & is in any sense a sample from a larger population, then the number of clusters or
dimensions suggested by the first analysis can be treated as a hypothesis to be tested
by new data.

5. MISCELLANEOUS FORMULATIONS
Graph theory

With suitable alterations in language most classification problems can be expressed
in terms of graph theory. With similarity structure S10 the binary matrix is the
adjacency matrix of a graph, and this structure can readily be obtained from a similarity
matrix S by replacing s;; by 1 or 0 according as it is greater or not greater than some
threshold ¢ (Bonner, 1964; Rose, 1964 ; Estabrook, 1966; Batty, 1969). The choice of ¢
is often determined by the nature of the computer used (Parker-Rhodes and Jackson,
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1969). Within this any connected subgraph corresponds to a single linkage cluster, a
maximal complete subgraph to complete linkage. An algorithm for finding all
maximal complete subgraphs is given by Cole and Wishart (1970).

Two procedures have been suggested for single-linkage clusters. As ¢ increases
connected subgraphs will become split, so that a breaking point ¢ can be associated
with every cluster. Any connected subgraph of r points must have at least (r—1),
at most 1r(r— 1), lines. Estabrook (1966) and Wirth et al. (1966) define the connected-
ness of a cluster by

_ s—=(=1)
S Ee-DG- 1

where s is the observed number of connections in the cluster. Its separation from
other clusters is measured by its moat M, the amount by which ¢ would have to be
reduced for another point to be included in the cluster. Consideration of C and M
should allow decisions to be taken on natural clusters, presumably by some dis-
continuity principle (cf. Rubin’s stability, discussed above). Very similar criteria are
given for overlapping clusters by Jardine and Sibson (1968b).

Rose (1964) determines those points and lines of any connected subgraph that are
most likely to be cut-points and cut-sets by repeatedly taking random pairs of points,
finding the shortest path between them, and building up randomization distributions
of the number of times each point and each line is included. From this a significance
threshold can be obtained, and the process repeated with new random choices until
significant points and lines are found. These can then be removed and the remaining
subgraph examined for connectedness.

To seek space-time clustering of diseases Pike and Smith (1968) following Knox
(1964b) construct adjacency digraphs (since time at least is irreversible) for space and
for time of associated events. The null hypothesis that the digraphs are independent
can be tested by a randomization test of the points of one digraph on the other or by
suitable approximation to this.

Of more interest because of the immense reduction in data achieved is the minimum
spanning tree, formed by joining each point to its nearest neighbour, each group thus
formed to its nearest group neighbour, and so on until one polygonal line, the shortest
possible, links all n points (Florek et al., 1951). The tree is unaffected by monotonic
transformations of the distance function and gives rise to single-linkage clusters at any
threshold ¢z by breaking links of length greater than ¢ (Gower and Ross, 1969). The
adaption of this to centroid clustering by Calinski and Harabasz (1971) is discussed
above. Plotting the minimum spanning tree (MST) on the results of another cluster
or ordination analysis is recommended for displaying distortion in the representation
(Gower and Ross, 1969; Thompson and Woodbury, 1970). The MST has also been
used to handle sets of data too large for more conventional classification procedures
(Ross, 1969).

Overlapping clusters

Most classification techniques lead to disjoint clusters. In biology this is usually
regarded as a sine qua non, although minimum distortion of data is sometimes given
priority (Dupraw, 1964). In language studies a word can have more than one meaning
and hence can reasonably be a member of more than one cluster of words (Jones and
Jackson, 1970). In such studies clustering is into a group set aside for further examina-
tion, and a group rejected: it is thus “intellectually odd to have complete symmetry
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between a clump and its complement” (Jones and Needham, 1968). This is a philo-
sophy which other workers, particularly in fields where co-presence is considered more
significant than co-absence, might seriously consider.

Needham (1967) initially considered a symmetric cohesion function between a
clump and its complement, s%/s. sz, Wwhere 5,5 = X 4255, S; taken as
Jaccard’s index 19 subjected to a threshold. This was found to yield small, well-
separated clumps but the lack of weighting led to unsatisfactory results (Jones and
Jackson, 1967). A modification

E {nc(nc— 1)__ See }

See pnc(nc_ 1)
by Jackson (Parker-Rhodes and Jackson, 1969) gives clumps which tend to be large
and overlapping, although the parameter p allows the user some control. Algorithms
to minimize these functions iterate to a local minimum by successive reallocation of
single individuals from an initial random partition, or from an initial randomly
chosen cluster centre (Jones and Jackson, 1967; Bonner 1964, 1966). All such
algorithms waste time through the repeated finding of the same clump: no way to
avoid this completely is known.

The clusters revealed by complete-linkage sorting can be represented as maximal
complete subgraphs at any assigned threshold. Often these will overlap, and a dis-
joint set cannot uniquely be defined. These overlapping clusters are part of a con-
nected subgraph found at the same threshold by single-linkage sorting. At a lower
threshold both subgraphs will still be present, but possibly submerged in larger maximal
complete subgraphs and longer connected subgraphs. A mathematical formulation
of such a system in which not more than (k—1) points are allowed in the overlap of
two clusters was given by Jardine and Sibson (1968a). In Sibson (1970) axioms of
stability, optimality, cluster-preservation and invariance under relabelling or any
monotonic transformation of S are shown to lead uniquely to this formulation. The
requirement of monotonicity ensures that only the logical operations of maximum and
minimum, expressed in complete linkage and single linkage, can be included. The
algorithm given by Jardine and Sibson (1968b) for implementing this method has
been improved by Cole and Wishart (1970).

The effect of increasing k is to lessen the distortion between the data and the
ultrametric of the hierarchic structure. When k = n—1 the distortion is zero, but
understanding of the overlapping system of clusters also approaches zero. The effect
of k can be assessed by measures of isolation and connectedness similar to these dis-
cussed earlier in this paper.

SCC

Second-order processes
A second-order concept of a cluster is obtained by requiring that

(sil’ veey Sz‘n)ﬁ(sjla veey S]n)

if E;, E; are in the same cluster. Tryon (1939, 1958), clustering variables rather than
entities, requires only that “in an ideal cluster the pattern of correlations of each
variable is collinear with those of its mates” and adopts an “index of proportionality”
(X Pix Pir)* [ 203, 223 (cf. D2) as his basic similarity index. Kendall (1963) adopts a
more precise version of this approach. McQuitty (1967b) proposes that this process of
treating column vectors of the matrix S as the co-ordinates of entities for which a
similarity matrix S’ can be calculated should be iterated until S stabilizes. Bonner
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(1964) had earlier made the same proposal, reducing each matrix to a binary one by
subjecting it to some threshold. Fascinating sequences of matrices result, particularly
if variables are rescaled each time, whose mathematical properties might repay
investigation. In practice they seem to converge quickly but not always to non-
overlapping clusters, but I know of no convergence theorem.

Derived structure analysis

Some early approaches to clusters regarded them as sets of entities within which
variables or attributes are independent. The correlations between botanical species
within an area implies that the area is heterogeneous (Goodall, 1953). Thus one
should choose the species most highly correlated with the other species and partition
the population of sample areas into two groups according to whether or not the area
does or does not contain the key species. This was formalized by Williams and
Lambert (1959, 1960) in association analysis. They measured the “information con-
tained by species u about the other species first by X2, x2, and later by Y2, J(x%/n),
summed over the (p— 1) 2 x 2 tables of presence and absence of species u and species v
in the areas. The resulting monothetic hierarchical divisions were assessed by the
maximum inter-species x? found in each cluster. This measure does not decrease
monotonically and does not have the distributional properties ascribed to it by Williams
and Lambert. Moreover, “natural taxa do not in general result from such monothetic
classifications” (Bailey, 1967; see also Sneath, 1965; Mandel 1969). However, the
method was feasible and gave answers.

Lance and Williams (1968) have recently re-activated the method using the true
information content instead of 2, which is an approximation to it (Macnaughton-
Smith, 1965). But they repeat the earlier error of having a stopping rule based on
assessing the maximum of a number of (correlated) x* against the distribution of a
single ¥2. The major criticism is that, since different parts of the hierarchy contain
different numbers of variables, the stopping rule is not comparable between different
parts of the same analysis. When users construct hierarchies “terminated at the
conventional P = 0-05 level” (Tracey, 1968) their results can be totally invalid. The
same criticism applies to any technique for obtaining clusters by stopping an agglo-
merative or divisive hierarchical process.

An alternative scheme has been proposed by Crawford and Wishart (1967, 1968)
for rapid assessment of a large-scale binary ecological matrix X,,. It is assumed that
ecological groups are determined by species which occur frequently with high density,
rather than those which are frequent but isolated, or occur infrequently in rich areas.
For each species V,, its group element potential (G.E.P.) is calculated essentially as

p» P
Wy= 2 2 XpXi

v=1 i=1
The set element potential (S.E.P.) of an entity E; is defined as X2_, W, x;, scaled
to be less than 1 by division by the maximum S.E.P. A simple measure is defined of
the interaction of S.E.P. and G.E.P. for each species and the population partitioned
into entities which contain or do not contain the species maximizing this interaction.
The classification obtained by terminating this monothetic hierarchical division at
an arbitrary level can be improved by iterative reallocation of those entities which

have low S.E.P. with respect to their cluster.
Latent structure analysis is a more direct approach to finding clusters within which
variates are uncorrelated (Lazarsfeld and Henry, 1968). The co-occurrences of up to
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k characters are required to allow estimation of allocation probabilities into k latent
classes. The classes found are disjoint, but each individual is labelled with probabilities
of belonging to the various classes, instead of being definitely assigned to one (Baker,
1962). Good (1965a) attacks the same problem via information theory. This formula-
tion does not seem to have been used by biologists, but could be worth considering for
such problems as disease diagnosis or land use.

Noda

Derived structure analyses make plain what can be forgotten in direct cluster
analyses, that there is an underlying relationship between entities and variables.
Hope (19692, b) has argued strongly that this be borne in mind even when doing
conventional analyses.

There have been few attempts to elicit directly from the data important combina-
tions of entities and variables, possibly because it is very difficult to define precisely
what is desired. “A nodum is an enumeration both of a set of points and of the set
of axes in which the points constitute a galaxy” (Williams and Dale, 1965). The first,
by Lambert and Williams (1962), clusters entities on the basis of inter-variable
associations and variables on the basis of inter-entity associations allowing each pro-
cess to be modified by the other. A simpler procedure is given by Tharu and Williams
(1966) who consider a binary data matrix partitioned into m and (n—m) entities, and
g and (p—q) variables. The four cells thus formed contain at most mq, m(p—q),
(n—m)q, (n—m)(p—q) unit entities. The observed numbers in these four cells may
be used to test the hypothesis that the proportion of 1’s is the same in all four cells.
The resulting y2 can be partitioned into terms representing the partitioning of indivi-
duals, the partitioning of variables and their interaction. Any of these terms, or their
total, could become the criterion to be maximized.

Factor analysis models for binary data place entities and characters on a sym-
metric basis. Macnaughton-Smith (1965) considers various representations of the
probability that entity E; possesses character V,, as a function of two sets of parameters.
He adopts p;, = o; B./(1+; 8,) as a suitable model for the desired lack of interaction
between characters and entities in a homogeneous cluster, and gives a first approach
to an algorithm for finding clusters which display a good fit to this model.

Day (1970) generalizes this idea in a model,

k
Piu =f[2 aurbir+di:| s
r=1

where f can be taken as the logistic function. The parameter can be fitted by maximum
likelihood successively for increasing values of &k until a sufficiently good fit to the
model is achieved. A unified geometrical representation of characters and entities is
obtained. Entities are represented as points, variables as hyperplanes (or vice versa) in
k-dimensional factor space. If k<3 the inter-relations of entities and variables can be
visually inspected.

6. CONCLUSION
Clustering uses much time and effort. We want to cluster only if clusters exist
(Fleiss and Zubin, 1969) and it would be useful to have some test of this without
going through the whole process of finding best clusters, which then turn out to be
not good enough: the ability of procedures to find non-existent clusters is well
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established (Forgy, 1965). A possible approach is provided by Hills (1969) for cor-
relation coefficients p;;. He applies the formal transformation z = 1log [(1 + p)/(1 — p)]
to normality and, ignoring non-independence, draws a half-normal plot of z. This can
be repeated on within-cluster correlation matrices, and on a matrix of similarities
between single representatives of each cluster. A gamma probability plot has been
suggested (Gnanadesikan and Wilk, 1969) for bringing to light certain configurations
of points. Suitable transformations and graphical representations of other similarity
indices could be explored. Conservative methods should be encouraged. But their
application to the lower branches of a hierarchy, assessing the properties of a group
formed as a consequence of an earlier statistical test, poses problems of a kind which
statisticians have, reasonably, tended to avoid.

Often the act of classification has a primary purpose. If so, that purpose should
be taken into account. Special techniques have been proposed when the aim is to
predict one of the variables (Macnaughton-Smith, 1963; Morgan and Sonquist, 1963)
or to construct an identification key (Gower, 1969a). One possible development is to
the study of temporal changes, either natural (Williams et al., 1969a) or experimental
(Tracey, 1968), in a complex set of multivariate entities. But if a specific question can
be asked it is likely that standard multi-purpose classification techniques will give a
poor answer. Easily observed variables may be little correlated with real structure:
consider Mendeleev’s periodic table (Muir, 1962). And the arguments about the
ethics of weighting become irrelevant when it is realized that infinitely more weight
is given to an observed variable compared to an unobserved one (Muir et al., 1970).

Every point raised by Tukey (1954) in his general principles for statisticians has
relevance for taximeters (i.e. practitioners of taximetrics; Johnson, 1968). Most users
ignore three of his dicta: “Different ends require different means and different logical
structures.” “While techniques are important...knowing when to use them and why
to use them is more important.” “In the long run it does not pay a statistician to
fool either himself or his clients.” But how in practice does one tailor statistical
methods to the real needs of the user, when the real need of the user is to be forced
to sit and think ?

One of Good’s (1965b) reasons for classification was “for fun”. Many people so
regard it. In a brilliant, witty and utterly scathing discussion, Johnson (1968) pillories
such “scientists” so accurately that I end with his words:

“Anyone who is prepared to learn quite a deal of matrix algebra, some classical
mathematical statistics, some advanced geometry, a little set theory, perhaps a little
information theory and graph theory, and some computer technique, and who has
access to a good computer and enjoys mathematics...will probably find the develop-
ment of new taximetric method much more rewarding, more up-to-date, more
‘general’, and hence more prestigious than merely classifying plants or animals or
working out their phylogenies.”
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DiscussioN oN DR CORMACK’S PAPER

Dr. M. HiLrs (London School of Hygiene and Tropical Medicine): The topic which
has been so ably reviewed this evening calls to mind, irresistibly, the once fashionable
custom of telling fortunes from tea leaves. There is the same rather arbitrary choice of
raw material, the same passionately argued differences in technique from one teller to
another, and, above all, the same injunction to judge the success of the teller solely by
whether he proves to be right. In the case of fortune tellers this usually led to good
publicity when they were right and no publicity when they were wrong.



