
M A N N I N G

Robert I. Kabacoff

Data analysis and graphics with R
IN ACTION

R in Action

R in Action
Data analysis and graphics with R

ROBERT I. KABACOFF

M A N N I N G

Shelter Island

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964 Email: orders@manning.com

©2011 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Sebastian Stirling
20 Baldwin Road Copyeditor: Liz Welch
PO Box 261 Typesetter: Composure Graphics
Shelter Island, NY 11964 Cover designer: Marija Tudor

ISBN: 9781935182399
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 -- MAL -- 16 15 14 13 12 11

http://www.manning.com

v

brief contents
Part I Getting started .. 1

1 ■ Introduction to R 3
2 ■ Creating a dataset 21
3 ■ Getting started with graphs 45
4 ■ Basic data management 73
5 ■ Advanced data management 91

Part II Basic methods .. 117
6 ■ Basic graphs 119
7 ■ Basic statistics 141

Part III Intermediate methods 171
8 ■ Regression 173
9 ■ Analysis of variance 219

10 ■ Power analysis 246
11 ■ Intermediate graphs 263
12 ■ Resampling statistics and bootstrapping 291

vi BRIEF CONTENTS

Part IV Advanced methods311
13 ■ Generalized linear models 313
14 ■ Principal components and factor analysis 331
15 ■ Advanced methods for missing data 352
16 ■ Advanced graphics 373

vii

contents
preface xv
acknowledgments xvii
about this book xix
about the cover illustration xxiv

Part I Getting started ...1

1 Introduction to R 3
1.1 Why use R? 5
1.2 Obtaining and installing R 7
1.3 Working with R 7

Getting started 8 ■ Getting help 11 ■ The workspace 11
Input and output 13

1.4 Packages 14
What are packages? 15 ■ Installing a package 16
Loading a package 16 ■ Learning about a package 16

1.5 Batch processing 17
1.6 Using output as input—reusing results 18
1.7 Working with large datasets 18

viii CONTENTS

1.8 Working through an example 18
1.9 Summary 20

2 Creating a dataset 21
2.1 Understanding datasets 22
2.2 Data structures 23

Vectors 24 ■ Matrices 24 ■ Arrays 26 ■ Data frames 27
Factors 30 ■ Lists 32

2.3 Data input 33
Entering data from the keyboard 34 ■ Importing data from a delimited text
file 35 ■ Importing data from Excel 36 ■ Importing data from XML 37
Webscraping 37 ■ Importing data from SPSS 38 ■ Importing data from SAS 38
Importing data from Stata 38 ■ Importing data from netCDF 39
Importing data from HDF5 39 ■ Accessing database management systems
(DBMSs) 39 ■ Importing data via Stat/Transfer 41

2.4 Annotating datasets 42
Variable labels 42 ■ Value labels 42

2.5 Useful functions for working with data objects 42
2.6 Summary 43

3 Getting started with graphs 45
3.1 Working with graphs 46
3.2 A simple example 48
3.3 Graphical parameters 49

Symbols and lines 50 ■ Colors 52 ■ Text characteristics 53
Graph and margin dimensions 54

3.4 Adding text, customized axes, and legends 56
Titles 57 ■ Axes 57 ■ Reference lines 60 ■ Legend 60
Text annotations 62

3.5 Combining graphs 65
Creating a figure arrangement with fine control 69

3.6 Summary 71

4 Basic data management 73
4.1 A working example 73
4.2 Creating new variables 75
4.3 Recoding variables 76

CONTENTS ix

4.4 Renaming variables 78
4.5 Missing values 79

Recoding values to missing 80 ■ Excluding missing values from analyses 80

4.6 Date values 81
Converting dates to character variables 83 ■ Going further 83

4.7 Type conversions 83
4.8 Sorting data 84
4.9 Merging datasets 85

Adding columns 85 ■ Adding rows 85

4.10 Subsetting datasets 86
Selecting (keeping) variables 86 ■ Excluding (dropping) variables 86
Selecting observations 87 ■ The subset() function 88 ■ Random samples 89

4.11 Using SQL statements to manipulate data frames 89
4.12 Summary 90

5 Advanced data management 91
5.1 A data management challenge 92
5.2 Numerical and character functions 93

Mathematical functions 93 ■ Statistical functions 94 ■ Probability functions 96
Character functions 99 ■ Other useful functions 101 ■ Applying functions to
matrices and data frames 102

5.3 A solution for our data management challenge 103
5.4 Control flow 107

Repetition and looping 107 ■ Conditional execution 108

5.5 User-written functions 109
5.6 Aggregation and restructuring 112

Transpose 112 ■ Aggregating data 112 ■ The reshape package 113

5.7 Summary 116

Part II Basic methods ..117

6 Basic graphs 119
6.1 Bar plots 120

Simple bar plots 120 ■ Stacked and grouped bar plots 121 ■ Mean bar plots 122
Tweaking bar plots 123 ■ Spinograms 124

6.2 Pie charts 125
6.3 Histograms 128

x CONTENTS

6.4 Kernel density plots 130
6.5 Box plots 133

Using parallel box plots to compare groups 134 ■ Violin plots 137

6.6 Dot plots 138
6.7 Summary 140

7 Basic statistics 141
7.1 Descriptive statistics 142

A menagerie of methods 142 ■ Descriptive statistics by group 146
Visualizing results 149

7.2 Frequency and contingency tables 149
Generating frequency tables 150 ■ Tests of independence 156
Measures of association 157 ■ Visualizing results 158
Converting tables to flat files 158

7.3 Correlations 159
Types of correlations 160 ■ Testing correlations for significance 162
Visualizing correlations 164

7.4 t-tests 164
Independent t-test 164 ■ Dependent t-test 165 ■ When there are more than two
groups 166

7.5 Nonparametric tests of group differences 166
Comparing two groups 166 ■ Comparing more than two groups 168

7.6 Visualizing group differences 170
7.7 Summary 170

Part III Intermediate methods171

8 Regression 173
8.1 The many faces of regression 174

Scenarios for using OLS regression 175 ■ What you need to know 176

8.2 OLS regression 177
Fitting regression models with lm() 178 ■ Simple linear regression 179
Polynomial regression 181 ■ Multiple linear regression 184
Multiple linear regression with interactions 186

8.3 Regression diagnostics 188
A typical approach 189 ■ An enhanced approach 192 ■ Global validation of
linear model assumption 199 ■ Multicollinearity 199

8.4 Unusual observations 200
Outliers 200 ■ High leverage points 201 ■ Influential observations 202

CONTENTS xi

8.5 Corrective measures 205
Deleting observations 205 ■ Transforming variables 205 ■ Adding or deleting
variables 207 ■ Trying a different approach 207

8.6 Selecting the “best” regression model 207
Comparing models 208 ■ Variable selection 209

8.7 Taking the analysis further 213
Cross-validation 213 ■ Relative importance 215

8.8 Summary 218

9 Analysis of variance 219
9.1 A crash course on terminology 220
9.2 Fitting ANOVA models 222

The aov() function 222 ■ The order of formula terms 223

9.3 One-way ANOVA 225
Multiple comparisons 227 ■ Assessing test assumptions 229

9.4 One-way ANCOVA 230
Assessing test assumptions 232 ■ Visualizing the results 232

9.5 Two-way factorial ANOVA 234
9.6 Repeated measures ANOVA 237
9.7 Multivariate analysis of variance (MANOVA) 239

Assessing test assumptions 241 ■ Robust MANOVA 242

9.8 ANOVA as regression 243
9.9 Summary 245

10 Power analysis 246
10.1 A quick review of hypothesis testing 247
10.2 Implementing power analysis with the pwr package 249

t-tests 250 ■ ANOVA 252 ■ Correlations 253 ■ Linear models 253
Tests of proportions 254 ■ Chi-square tests 255 ■ Choosing an appropriate effect
size in novel situations 257

10.3 Creating power analysis plots 258
10.4 Other packages 260
10.5 Summary 261

11 Intermediate graphs 263
11.1 Scatter plots 264

Scatter plot matrices 267 ■ High-density scatter plots 271 ■ 3D scatter plots 274
Bubble plots 278

xii CONTENTS

11.2 Line charts 280
11.3 Correlograms 283
11.4 Mosaic plots 288
11.5 Summary 290

12 Resampling statistics and bootstrapping 291
12.1 Permutation tests 292
12.2 Permutation test with the coin package 294

Independent two-sample and k-sample tests 295 ■ Independence in contingency
tables 296 ■ Independence between numeric variables 297
Dependent two-sample and k-sample tests 297 ■ Going further 298

12.3 Permutation tests with the lmPerm package 298
Simple and polynomial regression 299 ■ Multiple regression 300
One-way ANOVA and ANCOVA 301 ■ Two-way ANOVA 302

12.4 Additional comments on permutation tests 302
12.5 Bootstrapping 303
12.6 Bootstrapping with the boot package 304

Bootstrapping a single statistic 305 ■ Bootstrapping several statistics 307

12.7 Summary 309

Part IV Advanced methods311

13 Generalized linear models 313
13.1 Generalized linear models and the glm() function 314

The glm() function 315 ■ Supporting functions 316 ■ Model fit and regression
diagnostics 317

13.2 Logistic regression 317
Interpreting the model parameters 320 ■ Assessing the impact of predictors on the
probability of an outcome 321 ■ Overdispersion 322 ■ Extensions 323

13.3 Poisson regression 324
Interpreting the model parameters 326 ■ Overdispersion 327 ■ Extensions 328

13.4 Summary 330

14 Principal components and factor analysis 331
14.1 Principal components and factor analysis in R 333
14.2 Principal components 334

Selecting the number of components to extract 335

CONTENTS xiii

Extracting principal components 336 ■ Rotating principal components 339
Obtaining principal components scores 341

14.3 Exploratory factor analysis 342
Deciding how many common factors to extract 343 ■ Extracting common
factors 344 ■ Rotating factors 345 ■ Factor scores 349 ■ Other EFA-related
packages 349

14.4 Other latent variable models 349
14.5 Summary 350

15 Advanced methods for missing data 352
15.1 Steps in dealing with missing data 353
15.2 Identifying missing values 355
15.3 Exploring missing values patterns 356

Tabulating missing values 357 ■ Exploring missing data visually 357 ■ Using
correlations to explore missing values 360

15.4 Understanding the sources and impact of missing data 362
15.5 Rational approaches for dealing with incomplete data 363
15.6 Complete-case analysis (listwise deletion) 364
15.7 Multiple imputation 365
15.8 Other approaches to missing data 370

Pairwise deletion 370 ■ Simple (nonstochastic) imputation 371

15.9 Summary 371

16 Advanced graphics 373
16.1 The four graphic systems in R 374
16.2 The lattice package 375

Conditioning variables 379 ■ Panel functions 381 ■ Grouping variables 383
Graphic parameters 387 ■ Page arrangement 388

16.3 The ggplot2 package 390
16.4 Interactive graphs 394

Interacting with graphs: identifying points 394 ■ playwith 394
latticist 396 ■ Interactive graphics with the iplots package 397 ■ rggobi 399

16.5 Summary 399

 afterword Into the rabbit hole 400

xiv CONTENTS

 appendix A Graphic user interfaces 403

 appendix B Customizing the startup environment 406

 appendix C Exporting data from R 408

 appendix D Creating publication-quality output 410

 appendix E Matrix Algebra in R 419

 appendix F Packages used in this book 421

 appendix G Working with large datasets 429

 appendix H Updating an R installation 432

 index 435

xv

preface
What is the use of a book, without pictures or conversations?

—Alice, Alice in Wonderland

It’s wondrous, with treasures to satiate desires both subtle and gross; but it’s not for the
timid.
 —Q, “Q Who?” Stark Trek: The Next Generation

When I began writing this book, I spent quite a bit of time searching for a good
quote to start things off. I ended up with two. R is a wonderfully flexible platform
and language for exploring, visualizing, and understanding data. I chose the quote
from Alice in Wonderland to capture the flavor of statistical analysis today—an in-
teractive process of exploration, visualization, and interpretation.

The second quote reflects the generally held notion that R is difficult to learn.
What I hope to show you is that is doesn’t have to be. R is broad and powerful, with so
many analytic and graphic functions available (more than 50,000 at last count) that
it easily intimidates both novice and experienced users alike. But there is rhyme and
reason to the apparent madness. With guidelines and instructions, you can navigate
the tremendous resources available, selecting the tools you need to accomplish your
work with style, elegance, efficiency—and more than a little coolness.

I first encountered R several years ago, when applying for a new statistical
consulting position. The prospective employer asked in the pre-interview material
if I was conversant in R. Following the standard advice of recruiters, I immediately
said yes, and set off to learn it. I was an experienced statistician and researcher, had

xvi PREFACE

25 years experience as an SAS and SPSS programmer, and was fluent in a half dozen
programming languages. How hard could it be? Famous last words.

As I tried to learn the language (as fast as possible, with an interview looming), I
found either tomes on the underlying structure of the language or dense treatises on
specific advanced statistical methods, written by and for subject-matter experts. The
online help was written in a Spartan style that was more reference than tutorial. Every
time I thought I had a handle on the overall organization and capabilities of R, I found
something new that made me feel ignorant and small.

To make sense of it all, I approached R as a data scientist. I thought about what it
takes to successfully process, analyze, and understand data, including

■ Accessing the data (getting the data into the application from multiple sources)
■ Cleaning the data (coding missing data, fixing or deleting miscoded data, trans-

forming variables into more useful formats)
■ Annotating the data (in order to remember what each piece represents)
■ Summarizing the data (getting descriptive statistics to help characterize the

data)
■ Visualizing the data (because a picture really is worth a thousand words)
■

Preparing the results (creating publication-quality tables and graphs)
Modeling the data (uncovering relationships and testing hypotheses)

■

Then I tried to understand how I could use R to accomplish each of these tasks. Be-
cause I learn best by teaching, I eventually created a website (www.statmethods.net) to
document what I had learned.

Then, about a year ago, Marjan Bace (the publisher) called and asked if I would
like to write a book on R. I had already written 50 journal articles, 4 technical manuals,
numerous book chapters, and a book on research methodology, so how hard could it
be? At the risk of sounding repetitive—famous last words.

The book you’re holding is the one that I wished I had so many years ago. I have
tried to provide you with a guide to R that will allow you to quickly access the power
of this great open source endeavor, without all the frustration and angst. I hope you
enjoy it.

P.S. I was offered the job but didn’t take it. However, learning R has taken my career
in directions that I could never have anticipated. Life can be funny.

http://www.statmethods.net

xvii

acknowledgments
A number of people worked hard to make this a better book. They include

■ Marjan Bace, Manning publisher, who asked me to write this book in the first
place.

■ Sebastian Stirling, development editor, who spent many hours on the phone
with me, helping me organize the material, clarify concepts, and generally
make the text more interesting. He also helped me through the many steps to
publication.

■ Karen Tegtmeyer, review editor, who helped obtain reviewers and coordinate
the review process.

■ Mary Piergies, who helped shepherd this book through the production pro-
cess, and her team of Liz Welch, Susan Harkins, and Rachel Schroeder.

■ Pablo Domínguez Vaselli, technical proofreader, who helped uncover
areas of confusion and provided an independent and expert eye for testing
code.

■ The peer reviewers who spent hours of their own time carefully reading
through the material, finding typos and making valuable substantive sug-
gestions: Chris Williams, Charles Malpas, Angela Staples, PhD, Daniel Reis
Pereira, Dr. D. H. van Rijn, Dr. Christian Marquardt, Amos Folarin, Stuart
Jefferys, Dror Berel, Patrick Breen, Elizabeth Ostrowski, PhD, Atef Ouni,
Carles Fenollosa, Ricardo Pietrobon, Samuel McQuillin, Landon Cox, Austin
Ziegler, Rick Wagner, Ryan Cox, Sumit Pal, Philipp K. Janert, Deepak Vohra,
and Sophie Mormede.

ACKNOWLEDGMENTS xviii

■ The many Manning Early Access Program (MEAP) participants who bought the
book before it was finished, asked great questions, pointed out errors, and made
helpful suggestions.

Each contributor has made this a better and more comprehensive book.
I would also like to acknowledge the many software authors that have contributed

to making R such a powerful data-analytic platform. They include not only the core
developers, but also the selfless individuals who have created and maintain contributed
packages, extending R’s capabilities greatly. Appendix F provides a list of the authors
of contributed packages described in this book. In particular, I would like to mention
John Fox, Hadley Wickham, Frank E. Harrell, Jr., Deepayan Sarkar, and William
Revelle, whose works I greatly admire. I have tried to represent their contributions
accurately, and I remain solely responsible for any errors or distortions inadvertently
included in this book.

I really should have started this book by thanking my wife and partner, Carol Lynn.
Although she has no intrinsic interest in statistics or programming, she read each
chapter multiple times and made countless corrections and suggestions. No greater
love has any person than to read multivariate statistics for another. Just as important,
she suffered the long nights and weekends that I spent writing this book, with grace,
support, and affection. There is no logical explanation why I should be this lucky.

There are two other people I would like to thank. One is my father, whose love of
science was inspiring and who gave me an appreciation of the value of data. The other
is Gary K. Burger, my mentor in graduate school. Gary got me interested in a career in
statistics and teaching when I thought I wanted to be a clinician. This is all his fault.

xix

about this book
If you picked up this book, you probably have some data that you need to collect,
summarize, transform, explore, model, visualize, or present. If so, then R is for you!
R has become the world-wide language for statistics, predictive analytics, and data
visualization. It offers the widest range available of methodologies for understand-
ing data, from the most basic to the most complex and bleeding edge.

As an open source project it’s freely available for a range of platforms,
including Windows, Mac OS X, and Linux. It’s under constant development, with
new procedures added daily. Additionally, R is supported by a large and diverse
community of data scientists and programmers who gladly offer their help and
advice to users.

Although R is probably best known for its ability to create beautiful and
sophisticated graphs, it can handle just about any statistical problem. The base
installation provides hundreds of data-management, statistical, and graphical
functions out of the box. But some of its most powerful features come from the
thousands of extensions (packages) provided by contributing authors.

This breadth comes at a price. It can be hard for new users to get a handle on
what R is and what it can do. Even the most experienced R user is surprised to learn
about features they were unaware of.

R in Action provides you with a guided introduction to R, giving you a 2,000-foot
view of the platform and its capabilities. It will introduce you to the most important
functions in the base installation and more than 90 of the most useful contributed
packages. Throughout the book, the goal is practical application—how you can
make sense of your data and communicate that understanding to others. When you

ABOUT THIS BOOK xx

finish, you should have a good grasp of how R works and what it can do, and where you
can go to learn more. You’ll be able to apply a variety of techniques for visualizing data,
and you’ll have the skills to tackle both basic and advanced data analytic problems.

Who should read this book

R in Action should appeal to anyone who deals with data. No background in statistical
programming or the R language is assumed. Although the book is accessible to nov-
ices, there should be enough new and practical material to satisfy even experienced R
mavens.

Users without a statistical background who want to use R to manipulate, summarize,
and graph data should find chapters 1–6, 11, and 16 easily accessible. Chapter 7 and 10
assume a one-semester course in statistics; and readers of chapters 8, 9, and 12–15 will
benefit from two semesters of statistics. But I have tried to write each chapter in such
a way that both beginning and expert data analysts will find something interesting and
useful.

 Roadmap

This book is designed to give you a guided tour of the R platform, with a focus on
those methods most immediately applicable for manipulating, visualizing, and under-
standing data. There are 16 chapters divided into 4 parts: “Getting started,” “Basic
methods,” “Intermediate methods,” and “Advanced methods.” Additional topics are
covered in eight appendices.

Chapter 1 begins with an introduction to R and the features that make it so useful
as a data-analysis platform. The chapter covers how to obtain the program and how to
enhance the basic installation with extensions that are available online. The remainder
of the chapter is spent exploring the user interface and learning how to run programs
interactively and in batches.

Chapter 2 covers the many methods available for getting data into R. The first half
of the chapter introduces the data structures R uses to hold data, and how to enter data
from the keyboard. The second half discusses methods for importing data into R from
text files, web pages, spreadsheets, statistical packages, and databases.

Many users initially approach R because they want to create graphs, so we jump
right into that topic in chapter 3. No waiting required. We review methods of creating
graphs, modifying them, and saving them in a variety of formats.

Chapter 4 covers basic data management, including sorting, merging, and subsetting
datasets, and transforming, recoding, and deleting variables.

Building on the material in chapter 4, chapter 5 covers the use of functions
(mathematical, statistical, character) and control structures (looping, conditional
execution) for data management. We then discuss how to write your own R functions
and how to aggregate data in various ways.

ABOUT THIS BOOK xxi

Chapter 6 demonstrates methods for creating common univariate graphs, such as
bar plots, pie charts, histograms, density plots, box plots, and dot plots. Each is useful
for understanding the distribution of a single variable.

Chapter 7 starts by showing how to summarize data, including the use of descriptive
statistics and cross-tabulations. We then look at basic methods for understanding
relationships between two variables, including correlations, t-tests, chi-square tests, and
nonparametric methods.

Chapter 8 introduces regression methods for modeling the relationship between
a numeric outcome variable and a set of one or more numeric predictor variables.
Methods for fitting these models, evaluating their appropriateness, and interpreting
their meaning are discussed in detail.

Chapter 9 considers the analysis of basic experimental designs through the
analysis of variance and its variants. Here we are usually interested in how treatment
combinations or conditions affect a numerical outcome variable. Methods for assessing
the appropriateness of the analyses and visualizing the results are also covered.

A detailed treatment of power analysis is provided in chapter 10. Starting with a
discussion of hypothesis testing, the chapter focuses on how to determine the sample
size necessary to detect a treatment effect of a given size with a given degree of
confidence. This can help you to plan experimental and quasi-experimental studies
that are likely to yield useful results.

Chapter 11 expands on the material in chapter 5, covering the creation of graphs
that help you to visualize relationships among two or more variables. This includes
various types of 2D and 3D scatter plots, scatter-plot matrices, line plots, correlograms,
and mosaic plots.

Chapter 12 presents analytic methods that work well in cases where data are sampled
from unknown or mixed distributions, where sample sizes are small, where outliers are a
problem, or where devising an appropriate test based on a theoretical distribution is too
complex and mathematically intractable. They include both resampling and bootstrapping
approaches—computer-intensive methods that are easily implemented in R.

Chapter 13 expands on the regression methods in chapter 8 to cover data that are
not normally distributed. The chapter starts with a discussion of generalized linear
models and then focuses on cases where you’re trying to predict an outcome variable
that is either categorical (logistic regression) or a count (Poisson regression).

One of the challenges of multivariate data problems is simplification. Chapter 14
describes methods of transforming a large number of correlated variables into a smaller
set of uncorrelated variables (principal component analysis), as well as methods for
uncovering the latent structure underlying a given set of variables (factor analysis).
The many steps involved in an appropriate analysis are covered in detail.

In keeping with our attempt to present practical methods for analyzing data, chapter 15
considers modern approaches to the ubiquitous problem of missing data values. R

xxii ABOUT THIS BOOK

supports a number of elegant approaches for analyzing datasets that are incomplete
for various reasons. Several of the best are described here, along with guidance for
which ones to use when and which ones to avoid.

Chapter 16 wraps up the discussion of graphics with presentations of some of
R’s most advanced and useful approaches to visualizing data. This includes visual
representations of very complex data using lattice graphs, an introduction to the new
ggplot2 package, and a review of methods for interacting with graphs in real time.

The afterword points you to many of the best internet sites for learning more about
R, joining the R community, getting questions answered, and staying current with this
rapidly changing product.

Last, but not least, the eight appendices (A through H) extend the text’s coverage to
include such useful topics as R graphic user interfaces, customizing and upgrading an
R installation, exporting data to other applications, creating publication quality output,
using R for matrix algebra (à la MATLAB), and working with very large datasets.

 The examples

In order to make this book as broadly applicable as possible, I have chosen examples
from a range of disciplines, including psychology, sociology, medicine, biology, busi-
ness, and engineering. None of these examples require a specialized knowledge of
that field.

The datasets used in these examples were selected because they pose interesting
questions and because they’re small. This allows you to focus on the techniques
described and quickly understand the processes involved. When you’re learning new
methods, smaller is better.

The datasets are either provided with the base installation of R or available through
add-on packages that are available online. The source code for each example is available
from www.manning.com/RinAction. To get the most out of this book, I recommend
that you try the examples as you read them.

Finally, there is a common maxim that states that if you ask two statisticians how to
analyze a dataset, you’ll get three answers. The flip side of this assertion is that each
answer will move you closer to an understanding of the data. I make no claim that a
given analysis is the best or only approach to a given problem. Using the skills taught in
this text, I invite you to play with the data and see what you can learn. R is interactive,
and the best way to learn is to experiment.

 Code conventions

The following typographical conventions are used throughout this book:
■ A monospaced font is used for code listings that should be typed as is.
■ A monospaced font is also used within the general text to denote code words or

previously defined objects.
■ Italics within code listings indicate placeholders. You should replace them with

appropriate text and values for the problem at hand. For example, path_to_my_
file would be replaced with the actual path to a file on your computer.

http://www.manning.com/RinAction

ABOUT THIS BOOK xxiii

■ R is an interactive language that indicates readiness for the next line of user
input with a prompt (> by default). Many of the listings in this book capture
interactive sessions. When you see code lines that start with >, don’t type the
prompt.

■ Code annotations are used in place of inline comments (a common convention
in Manning books). Additionally, some annotations appear with numbered bullets
like q that refer to explanations appearing later in the text.

■ To save room or make text more legible, the output from interactive sessions
may include additional white space or omit text that is extraneous to the point
under discussion.

 Author Online

Purchase of R in Action includes free access to a private web forum run by Manning
Publications where you can make comments about the book, ask technical questions,
and receive help from the author and from other users. To access the forum and sub-
scribe to it, point your web browser to www.manning.com/RinAction. This page pro-
vides information on how to get on the forum once you’re registered, what kind of
help is available, and the rules of conduct on the forum.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the author can take place.
It isn’t a commitment to any specific amount of participation on the part of the author,
whose contribution to the AO forum remains voluntary (and unpaid). We suggest you
try asking the authors some challenging questions, lest his interest stray!

The AO forum and the archives of previous discussions will be accessible from the
publisher’s website as long as the book is in print.

About the author

Dr. Robert Kabacoff is Vice President of Research for Management Research Group,
an international organizational development and consulting firm. He has more than
20 years of experience providing research and statistical consultation to organizations
in health care, financial services, manufacturing, behavioral sciences, government, and
academia. Prior to joining MRG, Dr. Kabacoff was a professor of psychology at Nova
Southeastern University in Florida, where he taught graduate courses in quantitative
methods and statistical programming. For the past two years, he has managed Quick-R,
an R tutorial website.

http://www.manning.com/RinAction

xxiv

about the cover illustration
The figure on the cover of R in Action is captioned “A man from Zadar.” The illustra-
tion is taken from a reproduction of an album of Croatian traditional costumes from
the mid-nineteenth century by Nikola Arsenovic, published by the Ethnographic Mu-
seum in Split, Croatia, in 2003. The illustrations were obtained from a helpful librarian
at the Ethnographic Museum in Split, itself situated in the Roman core of the medieval
center of the town: the ruins of Emperor Diocletian’s retirement palace from around
AD 304. The book includes finely colored illustrations of figures from different regions
of Croatia, accompanied by descriptions of the costumes and of everyday life.

Zadar is an old Roman-era town on the northern Dalmatian coast of Croatia. It’s
over 2,000 years old and served for hundreds of years as an important port on the
trading route from Constantinople to the West. Situated on a peninsula framed
by small Adriatic islands, the city is picturesque and has become a popular tourist
destination with its architectural treasures of Roman ruins, moats, and old stone
walls. The figure on the cover wears blue woolen trousers and a white linen shirt,
over which he dons a blue vest and jacket trimmed with the colorful embroidery
typical for this region. A red woolen belt and cap complete the costume.

Dress codes and lifestyles have changed over the last 200 years, and the diversity by
region, so rich at the time, has faded away. It’s now hard to tell apart the inhabitants
of different continents, let alone of different hamlets or towns separated by only
a few miles. Perhaps we have traded cultural diversity for a more varied personal
life—certainly for a more varied and fast-paced technological life.

Manning celebrates the inventiveness and initiative of the computer business
with book covers based on the rich diversity of regional life of two centuries ago,
brought back to life by illustrations from old books and collections like this one.

Part 1

Getting started

Welcome to R in Action! R is one of the most popular platforms for data
analysis and visualization currently available. It is free, open-source software, with
versions for Windows, Mac OS X, and Linux operating systems. This book will
provide you with the skills needed to master this comprehensive software, and
apply it effectively to your own data.

 The book is divided into four sections. Part I covers the basics of installing
the software, learning to navigate the interface, importing data, and massaging it
into a useful format for further analysis.

Chapter 1 will familiarize you with the R environment. The chapter begins
with an overview of R and the features that make it such a powerful platform
for modern data analysis. After briefly describing how to obtain and install the
software, the user interface is explored through a series of simple examples.
Next, you’ll learn how to enhance the functionality of the basic installation with
extensions (called contributed packages), that can be freely downloaded from
online repositories. The chapter ends with an example that allows you to test
your new skills.

Once you’re familiar with the R interface, the next challenge is to get your
data into the program. In today’s information-rich world, data can come from
many sources and in many formats. Chapter 2 covers the wide variety of methods
available for importing data into R. The first half of the chapter introduces the
data structures R uses to hold data and describes how to input data manually.
The second half discusses methods for importing data from text files, web pages,
spreadsheets, statistical packages, and databases.

From a workflow point of view, it would probably make sense to discuss data
management and data cleaning next. However, many users approach R for the first
time out of an interest in its powerful graphics capabilities. Rather than frustrating
that interest and keeping you waiting, we dive right into graphics in chapter 3. The
chapter reviews methods for creating graphs, customizing them, and saving them in
a variety of formats. The chapter describes how to specify the colors, symbols, lines,
fonts, axes, titles, labels, and legends used in a graph, and ends with a description of
how to combine several graphs into a single plot.

Once you’ve had a chance to try out R’s graphics capabilities, it is time to get back to
the business of analyzing data. Data rarely comes in a readily usable format. Significant
time must often be spent combining data from different sources, cleaning messy data
(miscoded data, mismatched data, missing data), and creating new variables (combined
variables, transformed variables, recoded variables) before the questions of interest can
be addressed. Chapter 4 covers basic data management tasks in R, including sorting,
merging, and subsetting datasets, and transforming, recoding, and deleting variables.

Chapter 5 builds on the material in chapter 4. It covers the use of numeric
(arithmetic, trigonometric, and statistical) and character functions (string subsetting,
concatenation, and substitution) in data management. A comprehensive example is
used throughout this section to illustrate many of the functions described. Next,
control structures (looping, conditional execution) are discussed and you will learn
how to write your own R functions. Writing custom functions allows you to extend R’s
capabilities by encapsulating many programming steps into a single, flexible function
call. Finally, powerful methods for reorganizing (reshaping) and aggregating data
are discussed. Reshaping and aggregation are often useful in preparing data for
further analyses.

After having completed part 1, you will be thoroughly familiar with programming in
the R environment. You will have the skills needed to enter and access data, clean it up,
and prepare it for further analyses. You will also have experience creating, customizing,
and saving a variety of graphs.

1

3

Introduction to R

This chapter covers
 Installing R■

■ Understanding the R language

 Running programs■

How we analyze data has changed dramatically in recent years. With the advent of
personal computers and the internet, the sheer volume of data we have available
has grown enormously. Companies have terabytes of data on the consumers they
interact with, and governmental, academic, and private research institutions have
extensive archival and survey data on every manner of research topic. Gleaning
information (let alone wisdom) from these massive stores of data has become an
industry in itself. At the same time, presenting the information in easily accessible
and digestible ways has become increasingly challenging.

The science of data analysis (statistics, psychometrics, econometrics, machine
learning) has kept pace with this explosion of data. Before personal computers
and the internet, new statistical methods were developed by academic researchers
who published their results as theoretical papers in professional journals. It could
take years for these methods to be adapted by programmers and incorporated into
the statistical packages widely available to data analysts. Today, new methodologies
appear daily. Statistical researchers publish new and improved methods, along with
the code to produce them, on easily accessible websites.

4 CHAPTER 1 Introduction to R

Prepare, explore, and clean data

Import Data

Fit a sta�s�cal model

Cross-validate the model

Evaluate the model fit

Evaluate model predic�on on new data

Produce report Figure 1.1 Steps in a
typical data analysis

The advent of personal computers had another effect on the way we analyze data.
When data analysis was carried out on mainframe computers, computer time was pre-
cious and difficult to come by. Analysts would carefully set up a computer run with
all the parameters and options thought to be needed. When the procedure ran, the
resulting output could be dozens or hundreds of pages long. The analyst would sift
through this output, extracting useful material and discarding the rest. Many popular
statistical packages were originally developed during this period and still follow this
approach to some degree.

With the cheap and easy access afforded by personal computers, modern data
analysis has shifted to a different paradigm. Rather than setting up a complete data
analysis at once, the process has become highly interactive, with the output from each
stage serving as the input for the next stage. An example of a typical analysis is shown
in figure 1.1. At any point, the cycles may include transforming the data, imputing
missing values, adding or deleting variables, and looping back through the whole
process again. The process stops when the analyst believes he or she understands the
data intimately and has answered all the relevant questions that can be answered.

The advent of personal computers (and especially the availability of high-resolution
monitors) has also had an impact on how results are understood and presented.
A picture really can be worth a thousand words, and human beings are very adept
at extracting useful information from visual presentations. Modern data analysis
increasingly relies on graphical presentations to uncover meaning and convey results.

To summarize, today’s data analysts need to be able to access data from a wide
range of sources (database management systems, text files, statistical packages, and
spreadsheets), merge the pieces of data together, clean and annotate them, analyze
them with the latest methods, present the findings in meaningful and graphically

Why use R? 5

appealing ways, and incorporate the results into attractive reports that can be
distributed to stakeholders and the public. As you’ll see in the following pages, R is a
comprehensive software package that’s ideally suited to accomplish these goals.

1.1 Why use R?
R is a language and environment for statistical computing and graphics, similar to the
S language originally developed at Bell Labs. It’s an open source solution to data analy-
sis that’s supported by a large and active worldwide research community. But there are
many popular statistical and graphing packages available (such as Microsoft Excel, SAS,
IBM SPSS, Stata, and Minitab). Why turn to R?

R has many features to recommend it:

■ Most commercial statistical software platforms cost thousands, if not tens of
thousands of dollars. R is free! If you’re a teacher or a student, the benefits are
obvious.

■ R is a comprehensive statistical platform, offering all manner of data analytic
techniques. Just about any type of data analysis can be done in R.

■ R has state-of-the-art graphics capabilities. If you want to visualize complex data,
R has the most comprehensive and powerful feature set available.

■ R is a powerful platform for interactive data analysis and exploration. From its
inception it was designed to support the approach outlined in figure 1.1. For
example, the results of any analytic step can easily be saved, manipulated, and
used as input for additional analyses.

■ Getting data into a usable form from multiple sources can be a challenging propo-
sition. R can easily import data from a wide variety of sources, including text files,
database management systems, statistical packages, and specialized data reposito-
ries. It can write data out to these systems as well.

■ R provides an unparalleled platform for programming new statistical methods in
an easy and straightforward manner. It’s easily extensible and provides a natural
language for quickly programming recently published methods.

■ R contains advanced statistical routines not yet available in other packages. In
fact, new methods become available for download on a weekly basis. If you’re a
SAS user, imagine getting a new SAS PROC every few days.

■ If you don’t want to learn a new language, a variety of graphic user interfaces
(GUIs) are available, offering the power of R through menus and dialogs.

■ R runs on a wide array of platforms, including Windows, Unix, and Mac OS X. It’s
likely to run on any computer you might have (I’ve even come across guides for
installing R on an iPhone, which is impressive but probably not a good idea).

You can see an example of R’s graphic capabilities in figure 1.2. This graph, created
with a single line of code, describes the relationships between income, education, and
prestige for blue-collar, white-collar, and professional jobs. Technically, it’s a scatter
plot matrix with groups displayed by color and symbol, two types of fit lines (linear and

6 CHAPTER 1 Introduction to R

loess), confidence ellipses, and two types of density display (kernel density estimation ,
and rug plots). Additionally, the largest outlier in each scatter plot has been automati-
cally labeled. If these terms are unfamiliar to you, don’t worry. We’ll cover them in later
chapters. For now, trust me that they’re really cool (and that the statisticians reading
this are salivating).

Basically, this graph indicates the following:

■ Education, income, and job prestige are linearly related.
■ In general, blue-collar jobs involve lower education, income, and prestige, where-

as professional jobs involve higher education, income, and prestige. White-collar
jobs fall in between.

bc
prof
wc

income

20 40 60 80 100

RR.engineer

20
40

60
80

minister

20
40

60
80

10
0

RR engineer

education

RR engineer

20 40 60 80

minister

RR.engineer

0 20 40 60 80 100

0
20

40
60

80
10

0
prestige

Figure 1.2 Relationships between income, education, and prestige for blue-collar (bc), white-collar
(wc), and professional jobs (prof). Source: car package (scatterplotMatrix function) written by
John Fox. Graphs like this are difficult to create in other statistical programming languages but can
be created with a line or two of code in R.

Working with R 7

■ There are some interesting exceptions. Railroad Engineers have high income
and low education. Ministers have high prestige and low income.

■ Education and (to lesser extent) prestige are distributed bi-modally, with more
scores in the high and low ends than in the middle.

Chapter 8 will have much more to say about this type of graph. The important point
is that R allows you to create elegant, informative, and highly customized graphs in a
simple and straightforward fashion. Creating similar plots in other statistical languages
would be difficult, time consuming, or impossible.

Unfortunately, R can have a steep learning curve. Because it can do so much, the
documentation and help files available are voluminous. Additionally, because much of
the functionality comes from optional modules created by independent contributors,
this documentation can be scattered and difficult to locate. In fact, getting a handle on
all that R can do is a challenge.

The goal of this book is to make access to R quick and easy. We’ll tour the many
features of R, covering enough material to get you started on your data, with pointers
on where to go when you need to learn more. Let’s begin by installing the program.

1.2 Obtaining and installing R
R is freely available from the Comprehensive R Archive Network (CRAN) at http://
cran.r-project.org. Precompiled binaries are available for Linux, Mac OS X, and Win-
dows. Follow the directions for installing the base product on the platform of your
choice. Later we’ll talk about adding functionality through optional modules called
packages (also available from CRAN). Appendix H describes how to update an existing
R installation to a newer version.

1.3 Working with R
R is a case-sensitive, interpreted language. You can enter commands one at a time at
the command prompt (>) or run a set of commands from a source file. There are a
wide variety of data types, including vectors, matrices, data frames (similar to datasets),
and lists (collections of objects). We’ll discuss each of these data types in chapter 2.

Most functionality is provided through built-in and user-created functions, and all
data objects are kept in memory during an interactive session. Basic functions are
available by default. Other functions are contained in packages that can be attached to
a current session as needed.

Statements consist of functions and assignments. R uses the symbol <- for
assignments, rather than the typical = sign. For example, the statement

x <- rnorm(5)

creates a vector object named x containing five random deviates from a standard nor-
mal distribution.

http://www.eus-meets-voxelman.de
http://www.eus-meets-voxelman.de

8 CHAPTER 1 Introduction to R

NOTE R allows the = sign to be used for object assignments. However, you won’t
find many programs written that way, because it’s not standard syntax, there are
some situations in which it won’t work, and R programmers will make fun of you.
You can also reverse the assignment direction. For instance, rnorm(5) -> x
is equivalent to the previous statement. Again, doing so is uncommon and isn’t
recommended in this book.

Comments are preceded by the # symbol . Any text appearing after the # is ignored by
the R interpreter.

1.3.1 Getting started

If you’re using Windows, launch R from the Start Menu. On a Mac, double-click the R
icon in the Applications folder. For Linux, type R at the command prompt of a termi-
nal window. Any of these will start the R interface (see figure 1.3 for an example).

To get a feel for the interface, let’s work through a simple contrived example. Say
that you’re studying physical development and you’ve collected the ages and weights of
10 infants in their first year of life (see table 1.1). You’re interested in the distribution
of the weights and their relationship to age.

Figure 1.3 Example of the R interface on n owsFFFiFFFigFF 11 3 E3 E ll ff thth RR ii tt ff WWi di d

Working with R 9

Table 1.1 The age and weights of ten infants

Age (mo.) Weight (kg.) Age (mo.) Weight (kg.)

01 4.4 09 7.3

03 5.3 03 6.0

05 7.2 09 10.4

02 5.2 12 10.2

11 8.5 03 6.1

Note: These are fictional data.

You’ll enter the age and weight data as vectors, using the function c() , which com-
bines its arguments into a vector or list. Then you’ll get the mean and standard de-
viation of the weights, along with the correlation between age and weight, and plot
the relationship between age and weight so that you can inspect any trend visually.
The q() function , as shown in the following listing, will end the session and allow
you to quit.

Listing 1.1 A sample R session

> age <- c(1,3,5,2,11,9,3,9,12,3)
> weight <- c(4.4,5.3,7.2,5.2,8.5,7.3,6.0,10.4,10.2,6.1)
> mean(weight)
[1] 7.06
> sd(weight)
[1] 2.077498
> cor(age,weight)
[1] 0.9075655
> plot(age,weight)
> q()

You can see from listing 1.1 that the mean weight for these 10 infants is 7.06 kilograms,
that the standard deviation is 2.08 kilograms, and that there is strong linear relation-
ship between age in months and weight in kilograms (correlation = 0.91). The rela-
tionship can also be seen in the scatter plot in figure 1.4. Not surprisingly, as infants get
older, they tend to weigh more.

The scatter plot in figure 1.4 is informative but somewhat utilitarian and unattractive.
In later chapters, you’ll see how to customize graphs to suit your needs.

TIP To get a sense of what R can do graphically, enter demo(graphics) at
the command prompt. A sample of the graphs produced is included in figure
1.5. Other demonstrations include demo(Hershey) , demo(persp) , and
demo(image) . To see a complete list of demonstrations, enter demo() without
parameters.

10 CHAPTER 1 Introduction to R

2 4 6 8 10 12

5
6

7
8

9
10

age

w
ei

gh
t

Figure 1.4 Scatter plot of
infant weight (kg) by age (mo)

Figure 1.5 A sample of the graphs created with the demo() function

Working with R 11

1.3.2 Getting help

R provides extensive help facilities, and learning to navigate them will help you signifi-
cantly in your programming efforts. The built-in help system provides details, refer-
ences, and examples of any function contained in a currently installed package. Help
is obtained using the functions listed in table 1.2.

Table 1.2 R help functions

Function Action

help.start() General help.

help("foo") or
?foo

Help on function foo (the quotation marks are
optional).

help.search("foo") or
??foo

Search the help system for instances of the
string foo.

example("foo") Examples of function foo (the quotation marks
are optional).

RSiteSearch("foo") Search for the string foo in online help manuals
and archived mailing lists.

apropos("foo", mode="function") List all available functions with foo in their name.

data() List all available example datasets contained in
currently loaded packages.

vignette() List all available vignettes for currently installed
packages.

vignette("foo") Display specific vignettes for topic foo.

 The function help.start() opens a browser window with access to introductory
and advanced manuals, FAQs, and reference materials. The RSiteSearch() function
searches for a given topic in online help manuals and archives of the R-Help discus-
sion list and returns the results in a browser window. The vignettes returned by the
vignette() function are practical introductory articles provided in PDF format. Not
all packages will have vignettes. As you can see, R provides extensive help facilities, and
learning to navigate them will definitely aid your programming efforts. It’s a rare ses-
sion that I don’t use the ? to look up the features (such as options or return values) of
some function.

1.3.3 The workspace

The workspace is your current R working environment and includes any user-defined
objects (vectors, matrices, functions, data frames, or lists). At the end of an R session,
you can save an image of the current workspace that’s automatically reloaded the next
time R starts. Commands are entered interactively at the R user prompt. You can use the

12 CHAPTER 1 Introduction to R

up and down arrow keys to scroll through your command history. Doing so allows you to
select a previous command, edit it if desired, and resubmit it using the Enter key.

The current working directory is the directory R will read files from and save results
to by default. You can find out what the current working directory is by using the
getwd() function . You can set the current working directory by using the setwd()
function . If you need to input a file that isn’t in the current working directory, use the
full pathname in the call. Always enclose the names of files and directories from the
operating system in quote marks.

Some standard commands for managing your workspace are listed in table 1.3.

Table 1.3 Functions for managing the R workspace

Function Action

getwd() List the current working directory.

setwd("mydirectory") Change the current working directory to mydirectory.

ls() List the objects in the current workspace.

rm(objectlist) Remove (delete) one or more objects.

help(options) Learn about available options.

options() View or set current options.

history(#) Display your last # commands (default = 25).

savehistory("myfile") Save the commands history to myfile (default =
.Rhistory).

loadhistory("myfile") Reload a command’s history (default = .Rhistory).

save.image("myfile") Save the workspace to myfile (default = .RData).

save(objectlist,
file="myfile")

Save specific objects to a file.

load("myfile") Load a workspace into the current session (default =
.RData).

q() Quit R. You’ll be prompted to save the workspace.

To see these commands in action, take a look at the following listing.

Listing 1.2 An example of commands used to manage the R workspace

setwd("C:/myprojects/project1")
options()
options(digits=3)
x <- runif(20)
summary(x)
hist(x)
savehistory()
save.image()
q()

Working with R 13

First, the current working directory is set to C:/myprojects/project1, the current op-
tion settings are displayed, and numbers are formatted to print with three digits after
the decimal place. Next, a vector with 20 uniform random variates is created, and sum-
mary statistics and a histogram based on this data are generated. Finally, the command
history is saved to the file .Rhistory , the workspace (including vector x) is saved to the
file .RData , and the session is ended.

Note the forward slashes in the pathname of the setwd() command . R treats the
backslash (\) as an escape character . Even when using R on a Windows platform, use
forward slashes in pathnames. Also note that the setwd() function won’t create a
directory that doesn’t exist. If necessary, you can use the dir.create() function to
create a directory, and then use setwd() to change to its location.

It’s a good idea to keep your projects in separate directories. I typically start an
R session by issuing the setwd() command with the appropriate path to a project,
followed by the load() command without options. This lets me start up where I left
off in my last session and keeps the data and settings separate between projects. On
Windows and Mac OS X platforms, it’s even easier. Just navigate to the project directory
and double-click on the saved image file. Doing so will start R, load the saved workspace,
and set the current working directory to this location.

1.3.4 Input and output

By default, launching R starts an interactive session with input from the keyboard and
output to the screen. But you can also process commands from a script file (a file con-
taining R statements) and direct output to a variety of destinations.

INPUT

The source("filename") function submits a script to the current session. If the file-
name doesn’t include a path, the file is assumed to be in the current working directory.
For example, source("myscript.R") runs a set of R statements contained in file
myscript.R. By convention, script file names end with an .R extension, but this isn’t
required.

TEXT OUTPUT

The sink("filename") function redirects output to the file filename. By default, if
the file already exists, its contents are overwritten. Include the option append=TRUE
to append text to the file rather than overwriting it. Including the option split=TRUE
will send output to both the screen and the output file. Issuing the command sink()
without options will return output to the screen alone.

GRAPHIC OUTPUT

Although sink() redirects text output, it has no effect on graphic output. To redirect
graphic output, use one of the functions listed in table 1.4. Use dev.off() to return
output to the terminal.

14 CHAPTER 1 Introduction to R

Table 1.4 Functions for saving graphic output

Function Output

pdf("filename.pdf") PDF file

win.metafile("filename.wmf") Windows metafile

png("filename.png") PBG file

jpeg("filename.jpg") JPEG file

bmp("filename.bmp") BMP file

postscript("filename.ps") PostScript file

Let’s put it all together with an example. Assume that you have three script files con-
taining R code (script1.R, script2.R, and script3.R). Issuing the statement

source("script1.R")

will submit the R code from script1.R to the current session and the results will appear
on the screen.

If you then issue the statements

sink("myoutput", append=TRUE, split=TRUE)
pdf("mygraphs.pdf")
source("script2.R")

the R code from file script2.R will be submitted, and the results will again appear on
the screen. In addition, the text output will be appended to the file myoutput , and the
graphic output will be saved to the file mygraphs.pdf .

Finally, if you issue the statements

sink()
dev.off()
source("script3.R")

the R code from script3.R will be submitted, and the results will appear on the screen. This
time, no text or graphic output is saved to files. The sequence is outlined in figure 1.6.

R provides quite a bit of flexibility and control over where input comes from and
where it goes. In section 1.5 you’ll learn how to run a program in batch mode.

1.4 Packages
R comes with extensive capabilities right out of the box. But some of its most exciting
features are available as optional modules that you can download and install. There
are over 2,500 user-contributed modules called packages that you can download from
http://cran.r-project.org/web/packages. They provide a tremendous range of new
capabilities, from the analysis of geostatistical data to protein mass spectra process-
ing to the analysis of psychological tests! You’ll use many of these optional packages
in this book.

http://www.eus-meets-voxelman.de

 Packages 15

myoutput
Output added
to the file

Current
Session

sink("myoutput", append=TRUE, split=TRUE)

pdf("mygraphs.pdf")

Current
Session

source("script1.R")

source("script2.R")

Current
Session

sink(), dev.off()

script2.R

script3.R
source("script3.R")

script1.R

Figure 1.6 Input with the source() function and output with the sink() function

1.4.1 What are packages?

Packages are collections of R functions, data, and compiled code in a well-defined for-
mat. The directory where packages are stored on your computer is called the library.
The function .libPaths() shows you where your library is located, and the function
library() shows you what packages you’ve saved in your library.

16 CHAPTER 1 Introduction to R

R comes with a standard set of packages (including base, datasets, utils,
grDevices, graphics, stats, and methods). They provide a wide range of
functions and datasets that are available by default. Other packages are available for
download and installation. Once installed, they have to be loaded into the session
in order to be used. The command search() tells you which packages are loaded
and ready to use.

1.4.2 Installing a package

There are a number of R functions that let you manipulate packages. To install a pack-
age for the first time, use the install.packages() command . For example, in-
stall.packages() without options brings up a list of CRAN mirror sites. Once you
select a site, you’ll be presented with a list of all available packages. Selecting one will
download and install it. If you know what package you want to install, you can do so di-
rectly by providing it as an argument to the function. For example, the gclus package
contains functions for creating enhanced scatter plots. You can download and install
the package with the command install.packages("gclus") .

You only need to install a package once. But like any software, packages are
often updated by their authors. Use the command update.packages() to update
any packages that you’ve installed. To see details on your packages, you can use the
installed.packages() command . It lists the packages you have, along with their
version numbers, dependencies, and other information.

1.4.3 Loading a package

Installing a package downloads it from a CRAN mirror site and places it in your library.
To use it in an R session, you need to load the package using the library() com-
mand . For example, to use the packaged gclus issue the command library(gclus) .
Of course, you must have installed a package before you can load it. You’ll only have
to load the package once within a given session. If desired, you can customize your
startup environment to automatically load the packages you use most often. Custom-
izing your startup is covered in appendix B.

1.4.4 Learning about a package

When you load a package, a new set of functions and datasets becomes available.
Small illustrative datasets are provided along with sample code, allowing you to try
out the new functionalities. The help system contains a description of each func-
tion (along with examples), and information on each dataset included. Entering
help(package="package_name") provides a brief description of the package and an
index of the functions and datasets included. Using help() with any of these function
or dataset names will provide further details. The same information can be downloaded
as a PDF manual from CRAN.

 Batch processing 17

1.5 Batch processing
Most of the time, you’ll be running R interactively, entering commands at the com-
mand prompt and seeing the results of each statement as it’s processed. Occasionally,
you may want to run an R program in a repeated, standard, and possibly unattended
fashion. For example, you may need to generate the same report once a month. You
can write your program in R and run it in batch mode.

How you run R in batch mode depends on your operating system. On Linux or Mac
OS X systems, you can use the following command in a terminal window:

R CMD BATCH options infile outfile

where infile is the name of the file containing R code to be executed, outfile is
the name of the file receiving the output, and options lists options that control execu-
tion. By convention, infile is given the extension .R and outfile is given extension
.Rout .

For Windows, use

"C:\Program Files\R\R-2.13.0\bin\R.exe" CMD BATCH

➥--vanilla --slave "c:\my projects\myscript.R"

adjusting the paths to match the location of your R.exe binary and your script file. For
additional details on how to invoke R, including the use of command-line options, see the
“Introduction to R” documentation available from CRAN (http://cran.r-project.org).

Common mistakes in R programming
There are some common mistakes made frequently by both beginning and
experienced R programmers. If your program generates an error, be sure the check
for the following:

■ Using the wrong case —help(), Help(), and HELP() are three different
functions (only the first will work).

■ Forgetting to use quote marks when they’re needed —install.packages-
("gclus") works, whereas install.packages(gclus) generates an error.

■ Forgetting to include the parentheses in a function call —for example, help()
rather than help. Even if there are no options, you still need the ().

■ Using the \ in a pathname on Windows —R sees the backslash character
as an escape character. setwd("c:\mydata") generates an error. Use
setwd("c:/mydata") or setwd("c:\\mydata") instead.

■

Using a function from a package that’s not loaded —The function order.
clusters() is contained in the gclus package. If you try to use it before
loading the package, you’ll get an error.

The error messages in R can be cryptic, but if you’re careful to follow these points,
you should avoid seeing many of them.

http://www.eus-meets-voxelman.de

18 CHAPTER 1 Introduction to R

1.6 Using output as input—reusing results
One of the most useful design features of R is that the output of analyses can easily be
saved and used as input to additional analyses. Let’s walk through an example, using
one of the datasets that comes pre-installed with R. If you don’t understand the statis-
tics involved, don’t worry. We’re focusing on the general principle here.

First, run a simple linear regression predicting miles per gallon (mpg) from car weight
(wt), using the automotive dataset mtcars. This is accomplished with the function call:

lm(mpg~wt, data=mtcars)

The results are displayed on the screen and no information is saved.
Next, run the regression, but store the results in an object:

lmfit <- lm(mpg~wt, data=mtcars)

The assignment has created a list object called lmfit that contains extensive infor-
mation from the analysis (including the predicted values, residuals, regression coef-
ficients, and more). Although no output has been sent to the screen, the results can be
both displayed and manipulated further.

Typing summary(lmfit) displays a summary of the results, and plot(lmfit)
produces diagnostic plots. The statement cook<-cooks.distance(lmfit) generates
influence statistics and plot(cook) graphs them. To predict miles per gallon from car
weight in a new set of data, you’d use predict(lmfit, mynewdata).

To see what a function returns, look at the Value section of the online help for that
function. Here you’d look at help(lm) or ?lm. This tells you what’s saved when you
assign the results of that function to an object.

1.7 Working with large datasets
Programmers frequently ask me if R can handle large data problems. Typically, they
work with massive amounts of data gathered from web research, climatology, or genet-
ics. Because R holds objects in memory, you’re typically limited by the amount of RAM
available. For example, on my 5-year-old Windows PC with 2 GB of RAM, I can easily han-
dle datasets with 10 million elements (100 variables by 100,000 observations). On an
iMac with 4 GB of RAM, I can usually handle 100 million elements without difficulty.

But there are two issues to consider: the size of the dataset and the statistical methods
that will be applied. R can handle data analysis problems in the gigabyte to terabyte
range, but specialized procedures are required. The management and analysis of very
large datasets is discussed in appendix G.

1.8 Working through an example
We’ll finish this chapter with an example that ties many of these ideas together. Here’s
the task:

1 Open the general help and look at the “Introduction to R” section.
2 Install the vcd package (a package for visualizing categorical data that we’ll be

using in chapter 11).

Working through an example 19

3 List the functions and datasets available in this package.
4 Load the package and read the description of the dataset Arthritis.
5 Print out the Arthritis dataset (entering the name of an object will list it).
6 Run the example that comes with the Arthritis dataset . Don’t worry if you

don’t understand the results. It basically shows that arthritis patients receiving
treatment improved much more than patients receiving a placebo.

7 Quit.

The code required is provided in the following listing, with a sample of the results
displayed in figure 1.7.

Listing 1.3 Working with a new package

help.start()
install.packages("vcd")
help(package="vcd")
library(vcd)
help(Arthritis)
Arthritis
example(Arthritis)
q()

Figure 1.7 Output from listing 1.3 including (left to right) output from the arthritis example, general
help, information on the vcd package , information on the Arthritis dataset , and a graph displaying
the relationship between arthritis treatment and outcome

20 CHAPTER 1 Introduction to R

As this short exercise demonstrates, you can accomplish a great deal with a small
amount of code.

1.9 Summary
In this chapter, we looked at some of the strengths that make R an attractive option for
students, researchers, statisticians, and data analysts trying to understand the meaning
of their data. We walked through the program’s installation and talked about how to
enhance R’s capabilities by downloading additional packages. We explored the basic
interface, running programs interactively and in batches, and produced a few sample
graphs. You also learned how to save your work to both text and graphic files. Because
R can be a complex program, we spent some time looking at how to access the exten-
sive help that’s available. We hope you’re getting a sense of how powerful this freely
available software can be.

 Now that you have R up and running, it’s time to get your data into the mix. In the
next chapter, we’ll look at the types of data R can handle and how to import them into
R from text files, other programs, and database management systems.

2

21

Creating a dataset

This chapter covers
■ Exploring R data structures
■ Using data entry
■ Importing data
■ Annotating datasets

The first step in any data analysis is the creation of a dataset containing the infor-
mation to be studied, in a format that meets your needs. In R, this task involves the
following:

■ Selecting a data structure to hold your data
■ Entering or importing your data into the data structure

The first part of this chapter (sections 2.1–2.2) describes the wealth of structures
that R can use for holding data. In particular, section 2.2 describes vectors, fac-
tors, matrices, data frames, and lists. Familiarizing yourself with these structures
(and the notation used to access elements within them) will help you tremendously
in understanding how R works. You might want to take your time working through
this section.

The second part of this chapter (section 2.3) covers the many methods available
for importing data into R. Data can be entered manually, or imported from an

22 CHAPTER 2 Creating a dataset

external source. These data sources can include text files, spreadsheets, statistical
packages, and database management systems. For example, the data that I work with
typically comes from SQL databases. On occasion, though, I receive data from legacy
DOS systems, and from current SAS and SPSS databases. It’s likely that you’ll only have
to use one or two of the methods described in this section, so feel free to choose those
that fit your situation.

Once a dataset is created, you’ll typically annotate it, adding descriptive labels for
variables and variable codes. The third portion of this chapter (section 2.4) looks
at annotating datasets and reviews some useful functions for working with datasets
(section 2.5). Let’s start with the basics.

2.1 Understanding datasets
A dataset is usually a rectangular array of data with rows representing observations
and columns representing variables. Table 2.1 provides an example of a hypothetical
patient dataset.

Table 2.1 A patient dataset

PatientID AdmDate Age Diabetes Status

1 10/15/2009 25 Type1 Poor

2 11/01/2009 34 Type2 Improved

3 10/21/2009 28 Type1 Excellent

4 10/28/2009 52 Type1 Poor

Different traditions have different names for the rows and columns of a dataset. Statisti-
cians refer to them as observations and variables, database analysts call them records and
fields, and those from the data mining/machine learning disciplines call them examples
and attributes. We’ll use the terms observations and variables throughout this book.

You can distinguish between the structure of the dataset (in this case a rectangular
array) and the contents or data types included. In the dataset shown in table 2.1,
PatientID is a row or case identifier, AdmDate is a date variable, Age is a continuous
variable, Diabetes is a nominal variable, and Status is an ordinal variable.

R contains a wide variety of structures for holding data, including scalars, vectors,
arrays, data frames, and lists. Table 2.1 corresponds to a data frame in R. This diversity
of structures provides the R language with a great deal of flexibility in dealing with data.

The data types or modes that R can handle include numeric, character, logical
(TRUE/FALSE), complex (imaginary numbers), and raw (bytes). In R, PatientID,
AdmDate, and Age would be numeric variables, whereas Diabetes and Status would
be character variables. Additionally, you’ll need to tell R that PatientID is a case
identifier, that AdmDate contains dates, and that Diabetes and Status are nominal

Data structures 23

and ordinal variables, respectively. R refers to case identifiers as rownames and
categorical variables (nominal, ordinal) as factors . We’ll cover each of these in the
next section. You’ll learn about dates in chapter 3.

2.2 Data structures
R has a wide variety of objects for holding data, including scalars, vectors, matrices,
arrays, data frames, and lists. They differ in terms of the type of data they can hold,
how they’re created, their structural complexity, and the notation used to identify and
access individual elements. Figure 2.1 shows a diagram of these data structures.

Let’s look at each structure in turn, starting with vectors.

Some definitions
There are several terms that are idiosyncratic to R, and thus confusing to new users.

In R, an object is anything that can be assigned to a variable. This includes constants,
data structures, functions, and even graphs. Objects have a mode (which describes
how the object is stored) and a class (which tells generic functions like print how
to handle it).

A data frame is a structure in R that holds data and is similar to the datasets found
in standard statistical packages (for example, SAS, SPSS, and Stata). The columns
are variables and the rows are observations. You can have variables of different
types (for example, numeric, character) in the same data frame. Data frames are the
main structures you’ll use to store datasets.
(continued)

(a) Vector
(b) Matrix (c) Array

(d) Data frame

Columns can be different modes

(e) List

Vectors

Arrays

Data frames

Lists
Figure 2.1 R data
structures

 Factors are nominal or ordinal variables. They’re stored and treated specially in R.
You’ll learn about factors in section 2.2.5.

Most other terms should be familiar to you and follow the terminology used in
statistics and computing in general.

2.2.1 Vectors

Vectors are one-dimensional arrays that can hold numeric data, character data, or logi-
cal data. The combine function c() is used to form the vector. Here are examples of
each type of vector:

a <- c(1, 2, 5, 3, 6, -2, 4)
b <- c("one", "two", "three")
c <- c(TRUE, TRUE, TRUE, FALSE, TRUE, FALSE)

Here, a is numeric vector, b is a character vector, and c is a logical vector. Note that the
data in a vector must only be one type or mode (numeric, character, or logical). You
can’t mix modes in the same vector.

NOTE Scalars are one-element vectors. Examples include f <- 3, g <- "US" and
h <- TRUE. They’re used to hold constants.

You can refer to elements of a vector using a numeric vector of positions within brack-
ets. For example, a[c(2, 4)] refers to the 2nd and 4th element of vector a. Here are
additional examples:

> a <- c(1, 2, 5, 3, 6, -2, 4)
> a[3]
[1] 5
> a[c(1, 3, 5)]
[1] 1 5 6
> a[2:6]
[1] 2 5 3 6 -2

The colon operator used in the last statement is used to generate a sequence of num-
bers. For example, a <- c(2:6) is equivalent to a <- c(2, 3, 4, 5, 6).

2.2.2 Matrices

A matrix is a two-dimensional array where each element has the same mode (numeric,
character, or logical). Matrices are created with the matrix function . The general for-
mat is

myymatrix <- matrix(vector, nrow=number_of_rows, ncol=number_of_columns,
 byrow=logical_value, dimnames=list(
 char_vector_rownames, char_vector_colnames))

where vector contains the elements for the matrix, nrow and ncol specify the row and
column dimensions, and dimnames contains optional row and column labels stored in

24 CHAPTER 2 Creating a dataset

Data structures 25

character vectors. The option byrow indicates whether the matrix should be filled in
by row (byrow=TRUE) or by column (byrow=FALSE). The default is by column. The
following listing demonstrates the matrix function .

Listing 2.1 Creating matrices

> y <- matrix(1:20, nrow=5, ncol=4) q
> y
 [,1] [,2] [,3] [,4]
[1,] 1 6 11 16
[2,] 2 7 12 17
[3,] 3 8 13 18
[4,] 4 9 14 19
[5,] 5 10 15 20
> cells <- c(1,26,24,68)
> rnames <- c("R1", "R2")
> cnames <- c("C1", "C2")

w
> mymatrix <- matrix(cells, nrow=2, ncol=2, byrow=TRUE,
 dimnames=list(rnames, cnames))
> mymatrix
 C1 C2
R1 1 26
R2 24 68
> mymatrix <- matrix(cells, nrow=2, ncol=2, byrow=FALSE,
 dimnames=list(rnames, cnames))
> mymatrix e
 C1 C2
R1 1 24
R2 26 68

First, you create a 5x4 matrix q. Then you create a 2x2 matrix with labels and fill the
matrix by rows w. Finally, you create a 2x2 matrix and fill the matrix by columns e.

You can identify rows, columns, or elements of a matrix by using subscripts and
brackets. X[i,] refers to the ith row of matrix X, X[,j] refers to jth column, and X[i, j]
refers to the ijth element, respectively. The subscripts i and j can be numeric vectors in
order to select multiple rows or columns, as shown in the following listing.

Listing 2.2 Using matrix subscripts

> x <- matrix(1:10, nrow=2)
> x
 [,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10
> x[2,]
 [1] 2 4 6 8 10
> x[,2]
[1] 3 4
> x[1,4]
[1] 7
> x[1, c(4,5)]
[1] 7 9

Create a 5x4 matrix

2x2 matrix filled
by rows

2x2 matrix filled
by columns

First a 2 x 5 matrix is created containing numbers 1 to 10. By default, the matrix is
filled by column. Then the elements in the 2nd row are selected, followed by the ele-
ments in the 2nd column. Next, the element in the 1st row and 4th column is selected.
Finally, the elements in the 1st row and the 4th and 5th columns are selected.

Matrices are two-dimensional and, like vectors, can contain only one data type.
When there are more than two dimensions, you’ll use arrays (section 2.2.3). When
there are multiple modes of data, you’ll use data frames (section 2.2.4).

2.2.3 Arrays

Arrays are similar to matrices but can have more than two dimensions. They’re created
with an array function of the following form:

myarray <- array(vector, dimensions, dimnames)

where vector contains the data for the array, dimensions is a numeric vector giving
the maximal index for each dimension, and dimnames is an optional list of dimension
labels. The following listing gives an example of creating a three-dimensional (2x3x4)
array of numbers.

Listing 2.3 Creating an array

> dim1 <- c("A1", "A2")
> dim2 <- c("B1", "B2", "B3")
> dim3 <- c("C1", "C2", "C3", "C4")
> z <- array(1:24, c(2, 3, 4), dimnames=list(dim1, dim2, dim3))
> z
, , C1

 B1 B2 B3
A1 1 3 5
A2 2 4 6

, , C2

 B1 B2 B3
A1 7 9 11
A2 8 10 12

, , C3

 B1 B2 B3
A1 13 15 17
A2 14 16 18

, , C4

 B1 B2 B3
A1 19 21 23
A2 20 22 24

As you can see, arrays are a natural extension of matrices. They can be useful in
programming new statistical methods. Like matrices, they must be a single mode.

26 CHAPTER 2 Creating a dataset

Data structures 27

Identifying elements follows what you’ve seen for matrices. In the previous example,
the z[1,2,3] element is 15.

2.2.4 Data frames

A data frame is more general than a matrix in that different columns can contain
different modes of data (numeric, character, etc.). It’s similar to the datasets you’d
typically see in SAS, SPSS, and Stata. Data frames are the most common data structure
you’ll deal with in R.

The patient dataset in table 2.1 consists of numeric and character data. Because
there are multiple modes of data, you can’t contain this data in a matrix. In this case,
a data frame would be the structure of choice.

A data frame is created with the data.frame() function :

mydata <- data.frame(col1, col2, col3,…)

where col1, col2, col3, … are column vectors of any type (such as character, nu-
meric, or logical). Names for each column can be provided with the names function.
The following listing makes this clear.

Listing 2.4 Creating a data frame

> patientID <- c(1, 2, 3, 4)
> age <- c(25, 34, 28, 52)
> diabetes <- c("Type1", "Type2", "Type1", "Type1")
> status <- c("Poor", "Improved", "Excellent", "Poor")
> patientdata <- data.frame(patientID, age, diabetes, status)
> patientdata
 patientID age diabetes status
1 1 25 Type1 Poor
2 2 34 Type2 Improved
3 3 28 Type1 Excellent
4 4 52 Type1 Poor

Each column must have only one mode, but you can put columns of different modes
together to form the data frame. Because data frames are close to what analysts typi-
cally think of as datasets, we’ll use the terms columns and variables interchangeably
when discussing data frames.

There are several ways to identify the elements of a data frame. You can use the
subscript notation you used before (for example, with matrices) or you can specify
column names. Using the patientdata data frame created earlier, the following
listing demonstrates these approaches.

Listing 2.5 Specifying elements of a data frame

> patientdata[1:2]
 patientID age
1 1 25
2 2 34
3 3 28
4 4 52
> patientdata[c("diabetes", "status")]

 diabetes status
1 Type1 Poor
2 Type2 Improved
3 Type1 Excellent q
4 Type1 Poor
> patientdata$age
[1] 25 34 28 52

The $ notation in the third example is new q. It’s used to indicate a particular variable
from a given data frame. For example, if you want to cross tabulate diabetes type by
status, you could use the following code:

> table(patientdata$diabetes, patientdata$status)

 Excellent Improved Poor
 Type1 1 0 2
 Type2 0 1 0

It can get tiresome typing patientdata$ at the beginning of every variable name, so
shortcuts are available. You can use either the attach() and detach() or with()
functions to simplify your code.

ATTACH, DETACH, AND WITH

The attach() function adds the data frame to the R search path. When a variable
name is encountered, data frames in the search path are checked in order to locate
the variable. Using the mtcars data frame from chapter 1 as an example, you could use
the following code to obtain summary statistics for automobile mileage (mpg), and plot
this variable against engine displacement (disp), and weight (wt):

summary(mtcars$mpg)
plot(mtcars$mpg, mtcars$disp)
plot(mtcars$mpg, mtcars$wt)

This could also be written as

attach(mtcars)
 summary(mpg)
 plot(mpg, disp)
 plot(mpg, wt)
detach(mtcars)

The detach() function removes the data frame from the search path. Note that
detach() does nothing to the data frame itself. The statement is optional but is good
programming practice and should be included routinely. (I’ll sometimes ignore this
sage advice in later chapters in order to keep code fragments simple and short.)

The limitations with this approach are evident when more than one object can have
the same name. Consider the following code:

> mpg <- c(25, 36, 47)
> attach(mtcars)

The following object(s) are masked _by_ ‘.GlobalEnv’: mpg

Indicates age
variable in patient
data frame

28 CHAPTER 2 Creating a dataset

Data structures 29

> plot(mpg, wt)
Error in xy.coords(x, y, xlabel, ylabel, log) :
 ‘x’ and ‘y’ lengths differ
> mpg
[1] 25 36 47

Here we already have an object named mpg in our environment when the mtcars data
frame is attached. In such cases, the original object takes precedence, which isn’t what
you want. The plot statement fails because mpg has 3 elements and disp has 32 ele-
ments. The attach() and detach() functions are best used when you’re analyzing a
single data frame and you’re unlikely to have multiple objects with the same name. In
any case, be vigilant for warnings that say that objects are being masked.

An alternative approach is to use the with() function. You could write the previous
example as

with(mtcars, {
 summary(mpg, disp, wt)
 plot(mpg, disp)
 plot(mpg, wt)
})

In this case, the statements within the {} brackets are evaluated with reference to the
mtcars data frame. You don’t have to worry about name conflicts here. If there’s only
one statement (for example, summary(mpg)), the {} brackets are optional.

The limitation of the with() function is that assignments will only exist within the
function brackets. Consider the following:

> with(mtcars, {
 stats <- summary(mpg)
 stats
 })
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 10.40 15.43 19.20 20.09 22.80 33.90
> stats
Error: object ‘stats’ not found

If you need to create objects that will exist outside of the with() construct, use the
special assignment operator <<- instead of the standard one (<-). It will save the object
to the global environment outside of the with() call. This can be demonstrated with
the following code:

> with(mtcars, {
 nokeepstats <- summary(mpg)
 keepstats <<- summary(mpg)
})
> nokeepstats
Error: object ‘nokeepstats’ not found
> keepstats
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 10.40 15.43 19.20 20.09 22.80 33.90

Most books on R recommend using with() over attach(). I think that ultimately the
choice is a matter of preference and should be based on what you’re trying to achieve
and your understanding of the implications. We’ll use both in this book.

CASE IDENTIFIERS

In the patient data example, patientID is used to identify individuals in the dataset. In
R, case identifiers can be specified with a rowname option in the data frame function.
For example, the statement

patientdata <- data.frame(patientID, age, diabetes, status,
row.names=patientID)

specifies patientID as the variable to use in labeling cases on various printouts and
graphs produced by R.

2.2.5 Factors

As you’ve seen, variables can be described as nominal, ordinal, or continuous. Nomi-
nal variables are categorical, without an implied order. Diabetes (Type1, Type2) is
an example of a nominal variable. Even if Type1 is coded as a 1 and Type2 is coded
as a 2 in the data, no order is implied. Ordinal variables imply order but not amount.
Status (poor, improved, excellent) is a good example of an ordinal variable. You
know that a patient with a poor status isn’t doing as well as a patient with an improved
status, but not by how much. Continuous variables can take on any value within some
range, and both order and amount are implied. Age in years is a continuous variable
and can take on values such as 14.5 or 22.8 and any value in between. You know that
someone who is 15 is one year older than someone who is 14.

Categorical (nominal) and ordered categorical (ordinal) variables in R are called
factors. Factors are crucial in R because they determine how data will be analyzed and
presented visually. You’ll see examples of this throughout the book.

The function factor() stores the categorical values as a vector of integers in the
range [1... k] (where k is the number of unique values in the nominal variable), and
an internal vector of character strings (the original values) mapped to these integers.

For example, assume that you have the vector

diabetes <- c("Type1", "Type2", "Type1", "Type1")

The statement diabetes <- factor(diabetes) stores this vector as (1, 2, 1, 1) and
associates it with 1=Type1 and 2=Type2 internally (the assignment is alphabetical).
Any analyses performed on the vector diabetes will treat the variable as nominal and
select the statistical methods appropriate for this level of measurement.

For vectors representing ordinal variables, you add the parameter ordered=TRUE to
the factor() function . Given the vector

status <- c("Poor", "Improved", "Excellent", "Poor")

the statement status <- factor(status, ordered=TRUE) will encode the vector
as (3, 2, 1, 3) and associate these values internally as 1=Excellent, 2=Improved, and

30 CHAPTER 2 Creating a dataset

Data structures 31

3=Poor. Additionally, any analyses performed on this vector will treat the variable as
ordinal and select the statistical methods appropriately.

By default, factor levels for character vectors are created in alphabetical order. This
worked for the status factor, because the order “Excellent,” “Improved,” “Poor” made
sense. There would have been a problem if “Poor” had been coded as “Ailing” instead,
because the order would be “Ailing,” “Excellent,” “Improved.” A similar problem
exists if the desired order was “Poor,” “Improved,” “Excellent.” For ordered factors,
the alphabetical default is rarely sufficient.

You can override the default by specifying a levels option. For example,

status <- factor(status, order=TRUE,
 levels=c("Poor", "Improved", "Excellent"))

would assign the levels as 1=Poor, 2=Improved, 3=Excellent. Be sure that the specified
levels match your actual data values. Any data values not in the list will be set to missing.

The following listing demonstrates how specifying factors and ordered factors
impact data analyses.

Listing 2.6 Using factors

> patientID <- c(1, 2, 3, 4) q
> age <- c(25, 34, 28, 52)
> diabetes <- c("Type1", "Type2", "Type1", "Type1")
> status <- c("Poor", "Improved", "Excellent", "Poor")
> diabetes <- factor(diabetes)
> status <- factor(status, order=TRUE)
> patientdata <- data.frame(patientID, age, diabetes, status)
> str(patientdata)
‘data.frame’: 4 obs. of 4 variables:
 $ patientID: num 1 2 3 4 w
 $ age : num 25 34 28 52
 $ diabetes : Factor w/ 2 levels "Type1","Type2": 1 2 1 1
 $ status : Ord.factor w/ 3 levels "Excellent"<"Improved"<..: 3 2 1 3
> summary(patientdata)
 patientID age diabetes status
 Min. :1.00 Min. :25.00 Type1:3 Excellent:1 e
 1st Qu.:1.75 1st Qu.:27.25 Type2:1 Improved :1
 Median :2.50 Median :31.00 Poor :2
 Mean :2.50 Mean :34.75
 3rd Qu.:3.25 3rd Qu.:38.50
 Max. :4.00 Max. :52.00

First, you enter the data as vectors q. Then you specify that diabetes is a factor
and status is an ordered factor. Finally, you combine the data into a data frame. The
function str(object) provides information on an object in R (the data frame in this
case) w. It clearly shows that diabetes is a factor and status is an ordered factor,
along with how it’s coded internally. Note that the summary() function treats the vari-
ables differently e. It provides the minimum, maximum, mean, and quartiles for the
continuous variable age, and frequency counts for the categorical variables diabetes
and status.

Enter data as vectors

Display object
structure

Display object
summary

2.2.6 Lists

Lists are the most complex of the R data types. Basically, a list is an ordered collection
of objects (components). A list allows you to gather a variety of (possibly unrelated)
objects under one name. For example, a list may contain a combination of vectors,
matrices, data frames, and even other lists. You create a list using the list() function :

mylist <- list(object1, object2, …)

where the objects are any of the structures seen so far. Optionally, you can name the
objects in a list:

mylist <- list(name1=object1, name2=object2, …)

The following listing shows an example.

Listing 2.7 Creating a list

> g <- "My First List"
> h <- c(25, 26, 18, 39)
> j <- matrix(1:10, nrow=5)
> k <- c("one", "two", "three")
> mylist <- list(title=g, ages=h, j, k)
> mylist
$title
[1] "My First List"

$ages
[1] 25 26 18 39

[[3]]
 [,1] [,2]
[1,] 1 6
[2,] 2 7
[3,] 3 8
[4,] 4 9
[5,] 5 10

[[4]]
[1] "one" "two" "three"

> mylist[[2]]
[1] 25 26 18 39
> mylist[["ages"]]
[[1] 25 26 18 39

In this example, you create a list with four components: a string, a numeric vector, a
matrix, and a character vector. You can combine any number of objects and save them
as a list.

You can also specify elements of the list by indicating a component number or a
name within double brackets. In this example, mylist[[2]] and mylist[["ages"]]
both refer to the same four-element numeric vector. Lists are important R structures

Create list
Print entire list

Print second
component

32 CHAPTER 2 Creating a dataset

Data input 33

for two reasons. First, they allow you to organize and recall disparate information in a
simple way. Second, the results of many R functions return lists. It’s up to the analyst to
pull out the components that are needed. You’ll see numerous examples of functions
that return lists in later chapters.

A note for programmers
Experienced programmers typically find several aspects of the R language unusual.
Here are some features of the language you should be aware of:

■ The period (.) has no special significance in object names. But the dollar sign
($) has a somewhat analogous meaning, identifying the parts of an object. For
example, A$x refers to variable x in data frame A.

■ R doesn’t provide multiline or block comments . You must start each
line of a multiline comment with #. For debugging purposes, you can
also surround code that you want the interpreter to ignore with the state-
ment if(FALSE){…}. Changing the FALSE to TRUE allows the code to be
executed.

■ Assigning a value to a nonexistent element of a vector, matrix, array, or list will
expand that structure to accommodate the new value. For example, consider
the following:

> x <- c(8, 6, 4)
> x[7] <- 10
> x
[1] 8 6 4 NA NA NA 10

The vector x has expanded from three to seven elements through the
assignment.
x <- x[1:3] would shrink it back to three elements again.

■ R doesn’t have scalar values . Scalars are represented as one-element
vectors.

■ Indices in R start at 1, not at 0. In the vector earlier, x[1] is 8.
■ Variables can’t be declared. They come into existence on first assignment.

To learn more, see John Cook’s excellent blog post, R programming for those coming
from other languages (www.johndcook.com/R_language_for_programmers.html).

Programmers looking for stylistic guidance may also want to check out Google’s
R Style Guide (http://google-styleguide.googlecode.com/svn/trunk/google-r-style
.html).

2.3 Data input
Now that you have data structures, you need to put some data in them! As a data ana-
lyst, you’re typically faced with data that comes to you from a variety of sources and in
a variety of formats. Your task is to import the data into your tools, analyze the data,

http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html
http://google-styleguide.googlecode.com/svn/trunk/google-r-style
http://www.johndcook.com/R_language_for_programmers.html

R

Sta�s�cal Packages

Database Management Systems

Keyboard

Other
Text Files

SAS SPSS Stata

Excel
netCFD

SQL MySQL Oracle Access

ASCII

XML
HDF5Webscraping

Figure 2.2 Sources of data
that can be imported into R

and report on the results. R provides a wide range of tools for importing data. The
definitive guide for importing data in R is the R Data Import/Export manual available at
http://cran.r-project.org/doc/manuals/R-data.pdf.

As you can see in figure 2.2, R can import data from the keyboard, from flat files,
from Microsoft Excel and Access, from popular statistical packages, from specialty
formats, and from a variety of relational database management systems. Because you
never know where your data will come from, we’ll cover each of them here. You only
need to read about the ones you’re going to be using.

2.3.1 Entering data from the keyboard

Perhaps the simplest method of data entry is from the keyboard. The edit() function
in R will invoke a text editor that will allow you to enter your data manually. Here are
the steps involved:

1 Create an empty data frame (or matrix) with the variable names and modes
you want to have in the final dataset.

2 Invoke the text editor on this data object, enter your data, and save the results
back to the data object.

In the following example, you’ll create a data frame named mydata with three vari-
ables: age (numeric) , gender (character) , and weight (numeric) . You’ll then invoke
the text editor, add your data, and save the results.

mydata <- data.frame(age=numeric(0),
 gender=character(0), weight=numeric(0))
mydata <- edit(mydata)

Assignments like age=numeric(0) create a variable of a specific mode, but without
actual data. Note that the result of the editing is assigned back to the object itself. The
edit() function operates on a copy of the object. If you don’t assign it a destination,
all of your edits will be lost!

34 CHAPTER 2 Creating a dataset

http://www.eus-meets-voxelman.de

Data input 35

Figure 2.3 Entering data via the built-in editor on a Windows platform

The results of invoking the edit() function on a Windows platform can be seen in
figure 2.3.

In this figure, I’ve taken the liberty of adding some data. If you click on a column
title, the editor gives you the option of changing the variable name and type (numeric,
character). You can add additional variables by clicking on the titles of unused columns.
When the text editor is closed, the results are saved to the object assigned (mydata in
this case). Invoking mydata <- edit(mydata) again allows you to edit the data you’ve
entered and to add new data. A shortcut for mydata <- edit(mydata) is simply
fix(mydata) .

This method of data entry works well for small datasets. For larger datasets, you’ll
probably want to use the methods we’ll describe next: importing data from existing
text files, Excel spreadsheets, statistical packages, or database management systems.

2.3.2 Importing data from a delimited text file

You can import data from delimited text files using read.table() , a function that
reads a file in table format and saves it as a data frame. Here’s the syntax:

mydataframe <- read.table(file, header=logical_value,
 sep="delimiter", row.names="name")

where file is a delimited ASCII file , header is a logical value indicating whether
the first row contains variable names (TRUE or FALSE), sep specifies the delimiter

separating data values, and row.names is an optional parameter specifying one or
more variables to represent row identifiers.

For example, the statement

grades <- read.table("studentgrades.csv", header=TRUE, sep=",",
 row.names="STUDENTID")

reads a comma-delimited file named studentgrades.csv from the current working
directory, gets the variable names from the first line of the file, specifies the variable
STUDENTID as the row identifier, and saves the results as a data frame named grades.

Note that the sep parameter allows you to import files that use a symbol other than
a comma to delimit the data values. You could read tab-delimited files with sep="\t".
The default is sep="", which denotes one or more spaces, tabs, new lines, or carriage
returns.

By default, character variables are converted to factors. This behavior may not
always be desirable (for example, a variable containing respondents’ comments).
You can suppress this behavior in a number of ways. Including the option stringsAs
Factors=FALSE will turn this behavior off for all character variables. Alternatively,
you can use the colClasses option to specify a class (for example, logical, numeric,
character, factor) for each column.

The read.table() function has many additional options for fine-tuning the data
import. See help(read.table) for details.

NOTE Many of the examples in this chapter import data from files that exist
on the user’s computer. R provides several mechanisms for accessing data via
connections as well. For example, the functions file() , gzfile() , bzfile() ,
xzfile() , unz() , and url() can be used in place of the filename. The file()
function allows the user to access files, the clipboard, and C-level standard input.
The gzfile() , bzfile() , xzfile() , and unz() function s let the user read
compressed files. The url() function lets you access internet files through a
complete URL that includes http://, ftp://, or file://. For HTTP and FTP,
proxies can be specified. For convenience, complete URLs (surrounded by ""
marks) can usually be used directly in place of filenames as well. See help(file)
for details.

2.3.3 Importing data from Excel

The best way to read an Excel file is to export it to a comma-delimited file from within
Excel and import it to R using the method described earlier. On Windows systems you
can also use the RODBC package to access Excel files . The first row of the spreadsheet
should contain variable/column names.

First, download and install the RODBC package.

install.packages("RODBC")

36 CHAPTER 2 Creating a dataset

Data input 37

You can then use the following code to import the data:

library(RODBC)
channel <- odbcConnectExcel("myfile.xls")
mydataframe <- sqlFetch(channel, "mysheet")
odbcClose(channel)

Here, myfile.xls is an Excel file, mysheet is the name of the Excel worksheet
to read from the workbook, channel is an RODBC connection object returned by
odbcConnectExcel() , and mydataframe is the resulting data frame. RODBC can
also be used to import data from Microsoft Access. See help(RODBC) for details.

Excel 2007 uses an XLSX file format, which is essentially a zipped set of XML files. The
xlsx package can be used to access spreadsheets in this format. Be sure to download
and install it before first use. The read.xlsx() function imports a worksheet from an
XLSX file into a data frame. The simplest format is read.xlsx(file, n) where file
is the path to an Excel 2007 workbook and n is the number of the worksheet to be
imported. For example, on a Windows platform, the code

library(xlsx)
workbook <- "c:/myworkbook.xlsx"
mydataframe <- read.xlsx(workbook, 1)

imports the first worksheet from the workbook myworkbook.xlsx stored on the C:
drive and saves it as the data frame mydataframe. The xlsx package can do more than
import worksheets. It can create and manipulate Excel XLSX files as well. Program-
mers who need to develop an interface between R and Excel should check out this
relatively new package.

2.3.4 Importing data from XML

Increasingly, data is provided in the form of files encoded in XML. R has several pack-
ages for handling XML files. For example, the XML package written by Duncan Temple
Lang allows users to read, write, and manipulate XML files. Coverage of XML is beyond
the scope of this text. Readers interested in the accessing XML documents from within
R are referred to the excellent package documentation at www.omegahat.org/RSXML.

2.3.5 Webscraping

In webscraping, the user extracts information embedded in a web page available over
the internet and saves it into R structures for further analysis. One way to accomplish
this is to download the web page using the readLines() function and manipulate it
with functions such as grep() and gsub() . For complex web pages, the RCurl and
XML packages can be used to extract the information desired. For more information,
including examples, see “Webscraping using readLines and RCurl,” available from the
website Programming with R (www.programmingr.com).

http://www.omegahat.org/RSXML
http://www.programmingr.com

2.3.6 Importing data from SPSS

SPSS datasets can be imported into R via the read.spss() function in the foreign
package . Alternatively, you can use the spss.get() function in the Hmisc package .
spss.get() is a wrapper function that automatically sets many parameters of read.
spss() for you, making the transfer easier and more consistent with what data analysts
expect as a result.

First, download and install the Hmisc package (the foreign package is already
installed by default):

install.packages("Hmisc")

Then use the following code to import the data:

library(Hmisc)
mydataframe <- spss.get("mydata.sav", use.value.labels=TRUE)

In this code, mydata.sav is the SPSS data file to be imported, use.value.
labels=TRUE tells the function to convert variables with value labels into R factors
with those same levels, and mydataframe is the resulting R data frame.

2.3.7 Importing data from SAS

A number of functions in R are designed to import SAS datasets, including read.
ssd() in the foreign package and sas.get() in the Hmisc package . Unfortunately,
if you’re using a recent version of SAS (SAS 9.1 or higher), you’re likely to find that
these functions don’t work for you because R hasn’t caught up with changes in SAS file
structures. There are two solutions that I recommend.

You can save the SAS dataset as a comma-delimited text file from within SAS using
PROC EXPORT, and read the resulting file into R using the method described in section
2.3.2. Here’s an example:

SAS program:

proc export data=mydata
 outfile="mydata.csv"
 dbms=csv;
run;

R program:

mydata <- read.table("mydata.csv", header=TRUE, sep=",")

Alternatively, a commercial product called Stat Transfer (described in section 2.3.12)
does an excellent job of saving SAS datasets (including any existing variable formats)
as R data frames.

2.3.8 Importing data from Stata

Importing data from Stata to R is straightforward. The necessary code looks
like this:

38 CHAPTER 2 Creating a dataset

Data input 39

library(foreign)
mydataframe <- read.dta("mydata.dta")

Here, mydata.dta is the Stata dataset and mydataframe is the resulting R data frame.

2.3.9 Importing data from netCDF

Unidata’s netCDF (network Common Data Form) open source software contains ma-
chine-independent data formats for the creation and distribution of array-oriented sci-
entific data. netCDF is commonly used to store geophysical data. The ncdf and ncdf4
packages provide high-level R interfaces to netCDF data files.

The ncdf package provides support for data files created with Unidata’s netCDF library
(version 3 or earlier) and is available for Windows, Mac OS X, and Linux platforms. The
ncdf4 package supports version 4 or earlier, but isn’t yet available for Windows.

Consider this code:

library(ncdf)
nc <- nc_open("mynetCDFfile")
myarray <- get.var.ncdf(nc, myvar)

In this example, all the data from the variable myvar , contained in the netCDF file
mynetCDFfile , is read and saved into an R array called myarray .

Note that both ncdf and ncdf4 packages have received major recent upgrades and
may operate differently than previous versions. Additionally, function names in the two
packages differ. Read the online documentation for details.

2.3.10 Importing data from HDF5

HDF5 (Hierarchical Data Format) is a software technology suite for the management
of extremely large and complex data collections. The hdf5 package can be used to
write R objects into a file in a form that can be read by software that understands
the HDF5 format. These files can be read back into R at a later time. The package is
experimental and assumes that the user has the HDF5 library (version 1.2 or higher)
installed. At present, support for the HDF5 format in R is extremely limited.

2.3.11 Accessing database management systems (DBMSs)

R can interface with a wide variety of relational database management systems (DBMSs),
including Microsoft SQL Server, Microsoft Access, MySQL, Oracle, PostgreSQL, DB2,
Sybase, Teradata, and SQLite. Some packages provide access through native database
drivers, whereas others offer access via ODBC or JDBC. Using R to access data stored in
external DMBSs can be an efficient way to analyze large datasets (see appendix G), and
leverages the power of both SQL and R.

THE ODBC INTERFACE

Perhaps the most popular method of accessing a DBMS in R is through the RODBC pack-
age, which allows R to connect to any DBMS that has an ODBC driver. This includes all
of the DBMSs listed.

The first step is to install and configure the appropriate ODBC driver for your
platform and database—they’re not part of R. If the requisite drivers aren’t already
installed on your machine, an internet search should provide you with options.

Once the drivers are installed and configured for the database(s) of your choice,
install the RODBC package. You can do so by using the install.packages("RODBC")
command .

The primary functions included with the RODBC package are listed in table 2.2.

Table 2.2 RODBC functions

Function Description

odbcConnect(dsn,uid="",pwd="") Open a connection to an ODBC database

sqlFetch(channel,sqltable) Read a table from an ODBC database into a data
frame

sqlQuery(channel,query) Submit a query to an ODBC database and return
the results

sqlSave(channel,mydf,tablename =
sqtable,append=FALSE)

Write or update (append=TRUE) a data frame
to a table in the ODBC database

sqlDrop(channel,sqtable) Remove a table from the ODBC database

close(channel) Close the connection

The RODBC package allows two-way communication between R and an ODBC-connect-
ed SQL database. This means that you can not only read data from a connected data-
base into R, but you can use R to alter the contents of the database itself. Assume that
you want to import two tables (Crime and Punishment) from a DBMS into two R data
frames called crimedat and pundat , respectively. You can accomplish this with code
similar to the following:

library(RODBC)
myconn <-odbcConnect("mydsn", uid="Rob", pwd="aardvark")
crimedat <- sqlFetch(myconn, Crime)
pundat <- sqlQuery(myconn, "select * from Punishment")
close(myconn)

Here, you load the RODBC package and open a connection to the ODBC database
through a registered data source name (mydsn) with a security UID (rob) and pass-
word (aardvark). The connection string is passed to sqlFetch, which copies the
table Crime into the R data frame crimedat . You then run the SQL select statement
against the table Punishment and save the results to the data frame pundat . Finally,
you close the connection.

The sqlQuery() function is very powerful because any valid SQL statement can be
inserted. This flexibility allows you to select specific variables, subset the data, create
new variables, and recode and rename existing variables.

40 CHAPTER 2 Creating a dataset

Data input 41

DBI-RELATED PACKAGES

The DBI package provides a general and consistent client-side interface to DBMS. Build-
ing on this framework, the RJDBC package provides access to DBMS via a JDBC driver.
Be sure to install the necessary JDBC drivers for your platform and database. Other use-
ful DBI-based packages include RMySQL , ROracle , RPostgreSQL , and RSQLite . These
packages provide native database drivers for their respective databases but may not be
available on all platforms. Check the documentation on CRAN (http://cran.r-project.
org) for details.

2.3.12 Importing data via Stat/Transfer

Before we end our discussion of importing data, it’s worth mentioning a commercial
product that can make the task significantly easier. Stat/Transfer (www.stattransfer.
com) is a stand-alone application that can transfer data between 34 data formats, in-
cluding R (see figure 2.4).

Figure 2.4 Stat/Transfer’s main dialog on Windows

http://cran.r-project.org
http://cran.r-project.org
http://www.stattransfer.com
http://www.stattransfer.com

It’s available for Windows, Mac, and Unix platforms and supports the latest versions of
the statistical packages we’ve discussed so far, as well as ODBC-accessed DBMSs such as
Oracle, Sybase, Informix, and DB/2.

2.4 Annotating datasets
Data analysts typically annotate datasets to make the results easier to interpret. Typi-
cally annotation includes adding descriptive labels to variable names and value labels
to the codes used for categorical variables. For example, for the variable age, you
might want to attach the more descriptive label “Age at hospitalization (in years).” For
the variable gender coded 1 or 2, you might want to associate the labels “male” and
“female.”

2.4.1 Variable labels

Unfortunately, R’s ability to handle variable labels is limited. One approach is to use
the variable label as the variable’s name and then refer to the variable by its position
index. Consider our earlier example, where you have a data frame containing patient
data. The second column, named age, contains the ages at which individuals were first
hospitalized. The code

names(patientdata)[2] <- "Age at hospitalization (in years)"

renames age to "Age at hospitalization (in years)". Clearly this new name is
too long to type repeatedly. Instead, you can refer to this variable as patientdata[2]
and the string "Age at hospitalization (in years)" will print wherever age
would’ve originally. Obviously, this isn’t an ideal approach, and you may be better off
trying to come up with better names (for example, admissionAge).

2.4.2 Value labels

The factor() function can be used to create value labels for categorical variables.
Continuing our example, say that you have a variable named gender, which is coded 1
for male and 2 for female. You could create value labels with the code

patientdata$gender <- factor(patientdata$gender,
 levels = c(1,2),
 labels = c("male", "female"))

Here levels indicate the actual values of the variable, and labels refer to a character
vector containing the desired labels.

2.5 Useful functions for working with data objects
We’ll end this chapter with a brief summary of useful functions for working with data
objects (see table 2.3).

42 CHAPTER 2 Creating a dataset

Summary 43

Table 2.3 Useful functions for working with data objects

Function Purpose

length(object) Number of elements/components.

dim(object) Dimensions of an object.

str(object) Structure of an object.

class(object) Class or type of an object.

mode(object) How an object is stored.

names(object) Names of components in an object.

c(object, object,...) Combines objects into a vector.

cbind(object, object, ...) Combines objects as columns.

rbind(object, object, ...) Combines objects as rows.

object Prints the object.

head(object) Lists the first part of the object.

tail(object) Lists the last part of the object.

ls() Lists current objects.

rm(object, object, ...) Deletes one or more objects. The statement
rm(list = ls()) will remove most objects
from the working environment.

newobject <- edit(object) Edits object and saves as newobject.

fix(object) Edits in place.

We’ve already discussed most of these functions. The functions head() and tail()
are useful for quickly scanning large datasets. For example, head(patientdata)
lists the first six rows of the data frame, whereas tail(patientdata) lists the last six.
We’ll cover functions such as length(), cbind(), and rbind() in the next chapter.
They’re gathered here as a reference.

2.6 Summary
One of the most challenging tasks in data analysis is data preparation. We’ve made a
good start in this chapter by outlining the various structures that R provides for hold-
ing data and the many methods available for importing data from both keyboard and
external sources. In particular, we’ll use the definitions of a vector, matrix, data frame,
and list again and again in later chapters. Your ability to specify elements of these struc-
tures via the bracket notation will be particularly important in selecting, subsetting,
and transforming data.

As you’ve seen, R offers a wealth of functions for accessing external data. This
includes data from flat files, web files, statistical packages, spreadsheets, and databases.
Although the focus of this chapter has been on importing data into R, you can also
export data from R into these external formats. Exporting data is covered in appendix
C, and methods of working with large datasets (in the gigabyte to terabyte range) are
covered in appendix G.

Once you get your datasets into R, it’s likely that you’ll have to manipulate them into
a more conducive format (actually, I find guilt works well). In chapter 4, we’ll explore
ways of creating new variables, transforming and recoding existing variables, merging
datasets, and selecting observations.

But before turning to data management tasks, let’s spend some time with R graphics.
Many readers have turned to R out of an interest in its graphing capabilities, and I
don’t want to make you wait any longer. In the next chapter, we’ll jump directly into
the creation of graphs. Our emphasis will be on general methods for managing and
customizing graphs that can be applied throughout the remainder of this book.

44 CHAPTER 2 Creating a dataset

3

45

Getting started with graphs

This chapter covers
n Creating and saving graphs

n Customizing symbols, lines, colors, and axes

n Annotating with text and titles

n Controlling a graph’s dimensions

n Combining multiple graphs into one

On many occasions, I’ve presented clients with carefully crafted statistical results in
the form of numbers and text, only to have their eyes glaze over while the chirping
of crickets permeated the room. Yet those same clients had enthusiastic “Ah-ha!”
moments when I presented the same information to them in the form of graphs.
Many times I was able to see patterns in data or detect anomalies in data values by
looking at graphs—patterns or anomalies that I completely missed when conduct-
ing more formal statistical analyses.

Human beings are remarkably adept at discerning relationships from visual
representations. A well-crafted graph can help you make meaningful comparisons
among thousands of pieces of information, extracting patterns not easily found
through other methods. This is one reason why advances in the field of statistical
graphics have had such a major impact on data analysis. Data analysts need to look at
their data, and this is one area where R shines.

	 Chapter 3 Getting started with graphs

In this chapter, we’ll review general methods for working with graphs. We’ll start
with how to create and save graphs. Then we’ll look at how to modify the features that
are found in any graph. These features include graph titles, axes, labels, colors, lines,
symbols, and text annotations. Our focus will be on generic techniques that apply
across graphs. (In later chapters, we’ll focus on specific types of graphs.) Finally, we’ll
investigate ways to combine multiple graphs into one overall graph.

3.1 Working with graphs
R is an amazing platform for building graphs. I’m using the term “building” intention-
ally. In a typical interactive session, you build a graph one statement at a time, adding
features, until you have what you want.

Consider the following five lines:

attach(mtcars)
plot(wt, mpg)
abline(lm(mpg~wt))
title("Regression of MPG on Weight")
detach(mtcars)

The first statement attaches the data frame mtcars. The second statement opens a
graphics window and generates a scatter plot between automobile weight on the hori-
zontal axis and miles per gallon on the vertical axis. The third statement adds a line of
best fit. The fourth statement adds a title. The final statement detaches the data frame.
In R, graphs are typically created in this interactive fashion (see figure 3.1).

You can save your graphs via code or through GUI menus. To save a graph via
code, sandwich the statements that produce the graph between a statement that sets
a destination and a statement that closes that destination. For example, the following

Figure 3.1 Creating a graph

	 47

will save the graph as a PDF document named mygraph.pdf in the current working
directory:

pdf("mygraph.pdf")
 attach(mtcars)
 plot(wt, mpg)
 abline(lm(mpg~wt))
 title("Regression of MPG on Weight")
 detach(mtcars)
dev.off()

In addition to pdf(), you can use the functions win.metafile(), png(), jpeg(),
bmp(), tiff(), xfig(), and postscript() to save graphs in other formats. (Note:
The Windows metafile format is only available on Windows platforms.) See chapter 1,
section 1.3.4 for more details on sending graphic output to files.

Saving graphs via the GUI will be platform specific. On a Windows platform, select
File > Save As from the graphics window, and choose the format and location desired
in the resulting dialog. On a Mac, choose File > Save As from the menu bar when the
Quartz graphics window is highlighted. The only output format provided is PDF. On
a Unix platform, the graphs must be saved via code. In appendix A, we’ll consider
alternative GUIs for each platform that will give you more options.

Creating a new graph by issuing a high-level plotting command such as plot(),
hist() (for histograms), or boxplot() will typically overwrite a previous graph. How
can you create more than one graph and still have access to each? There are several
methods.

First, you can open a new graph window before creating a new graph:

dev.new()
 statements to create graph 1
dev.new()
 statements to create a graph 2
etc.

Each new graph will appear in the most recently opened window.
Second, you can access multiple graphs via the GUI. On a Mac platform, you can

step through the graphs at any time using Back and Forward on the Quartz menu. On
a Windows platform, you must use a two-step process. After opening the first graph
window, choose History > Recording. Then use the Previous and Next menu items to
step through the graphs that are created.

Third and finally, you can use the functions dev.new(), dev.next(), dev.prev(),
dev.set(), and dev.off() to have multiple graph windows open at one time and
choose which output are sent to which windows. This approach works on any platform.
See help(dev.cur) for details on this approach.

R will create attractive graphs with a minimum of input on our part. But you can also
use graphical parameters to specify fonts, colors, line styles, axes, reference lines, and
annotations. This flexibility allows for a wide degree of customization.

	 Chapter 3 Getting started with graphs

In this chapter, we’ll start with a simple graph and explore the ways you can modify
and enhance it to meet your needs. Then we’ll look at more complex examples that
illustrate additional customization methods. The focus will be on techniques that you
can apply to a wide range of the graphs that you’ll create in R. The methods discussed
here will work on all the graphs described in this book, with the exception of those
created with the lattice package in chapter 16. (The lattice package has its own
methods for customizing a graph’s appearance.) In other chapters, we’ll explore each
specific type of graph and discuss where and when they’re most useful.

3.2 A simple example
Let’s start with the simple fictitious dataset given in table 3.1. It describes patient re-
sponse to two drugs at five dosage levels.

Table 3.1 Patient response to two drugs at five dosage levels

Dosage Response to Drug A Response to Drug B

20 16 15

30 20 18

40 27 25

45 40 31

60 60 40

You can input this data using this code:

dose <- c(20, 30, 40, 45, 60)
drugA <- c(16, 20, 27, 40, 60)
drugB <- c(15, 18, 25, 31, 40)

A simple line graph relating dose to response for drug A can be created using

plot(dose, drugA, type="b")

plot() is a generic function that plots objects in R (its output will vary according to
the type of object being plotted). In this case, plot(x, y, type="b") places x on
the horizontal axis and y on the vertical axis, plots the (x, y) data points, and connects
them with line segments. The option type="b" indicates that both points and lines
should be plotted. Use help(plot) to view other options. The graph is displayed in
figure 3.2.

Line plots are covered in detail in chapter 11. Now let’s modify the appearance of
this graph.

	 49

20 30 40 50 60

20
30

40
50

60

dose

dr
ug

A

Figure 3.2 Line plot of dose vs. response for drug A

3.3 Graphical parameters
You can customize many features of a graph (fonts, colors, axes, titles) through options
called graphical parameters.

One way is to specify these options through the par() function. Values set in this
manner will be in effect for the rest of the session or until they’re changed. The
format is par(optionname=value, optionname=value, ...). Specifying par()
without parameters produces a list of the current graphical settings. Adding the
no.readonly=TRUE option produces a list of current graphical settings that can be
modified.

Continuing our example, let’s say that you’d like to use a solid triangle rather than
an open circle as your plotting symbol, and connect points using a dashed line rather
than a solid line. You can do so with the following code:

opar <- par(no.readonly=TRUE)
par(lty=2, pch=17)
plot(dose, drugA, type="b")
par(opar)

The resulting graph is shown in figure 3.3.
The first statement makes a copy of the current settings. The second statement

changes the default line type to dashed (lty=2) and the default symbol for plotting

	 Chapter 3 Getting started with graphs

points to a solid triangle (pch=17). You then generate the plot and restore the original
settings. Line types and symbols are covered in section 3.3.1.

You can have as many par() functions as desired, so par(lty=2, pch=17) could
also have been written as

par(lty=2)
par(pch=17)

A second way to specify graphical parameters is by providing the optionname=value
pairs directly to a high-level plotting function. In this case, the options are only in ef-
fect for that specific graph. You could’ve generated the same graph with the code

plot(dose, drugA, type="b", lty=2, pch=17)

Not all high-level plotting functions allow you to specify all possible graphical parame-
ters. See the help for a specific plotting function (such as ?plot, ?hist, or ?boxplot)
to determine which graphical parameters can be set in this way. The remainder of sec-
tion 3.3 describes many of the important graphical parameters that you can set.

3.3.1 Symbols and lines

As you’ve seen, you can use graphical parameters to specify the plotting symbols and
lines used in your graphs. The relevant parameters are shown in table 3.2.

20 30 40 50 60

20
30

40
50

60

dose

dr
ug

A

Figure 3.3 Line plot of dose vs. response for drug A with modified line type and symbol

	 51

Table 3.2 Parameters for specifying symbols and lines

Parameter Description

pch Specifies the symbol to use when plotting points (see figure 3.4).

cex Specifies the symbol size. cex is a number indicating the amount by which
plotting symbols should be scaled relative to the default. 1=default, 1.5 is 50%
larger, 0.5 is 50% smaller, and so forth.

lty Specifies the line type (see figure 3.5).

lwd Specifies the line width. lwd is expressed relative to the default (default=1).
For example, lwd=2 generates a line twice as wide as the default.

The pch= option specifies the symbols to use when plotting points. Possible values are
shown in figure 3.4.

For symbols 21 through 25 you can also specify the border (col=) and fill (bg=)
colors.

Use lty= to specify the type of line desired. The option values are shown in
figure 3.5.

Taking these options together, the code

plot(dose, drugA, type="b", lty=3, lwd=3, pch=15, cex=2)

would produce a plot with a dotted line that was three times wider than the default
width, connecting points displayed as filled squares that are twice as large as the default
symbol size. The results are displayed in figure 3.6.

Next, let’s look at specifying colors.

plot symbols: pch=

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Figure 3.4 Plotting symbols specified
with the pch parameter

Figure 3.5 Line types specified with the lty
parameter

line types: lty=

1

2

3

4

5

6

	 Chapter 3 Getting started with graphs

3.3.2 Colors

There are several color-related parameters in R. Table 3.3 shows some of the common
ones.

Table 3.3 Parameters for specifying color

Parameter Description

col Default plotting color. Some functions (such as lines and pie) accept a vector
of values that are recycled. For example, if col=c(“red”, “blue”)and
three lines are plotted, the first line will be red, the second blue, and the
third red.

col.axis Color for axis text.

col.lab Color for axis labels.

col.main Color for titles.

col.sub Color for subtitles.

fg The plot’s foreground color.

bg The plot’s background color.

20 30 40 50 60

20
30

40
50

60

dose

dr
ug

A

Figure 3.6 Line plot of dose vs. response for drug A with modified line type,
line width, symbol, and symbol width

	 53

You can specify colors in R by index, name, hexadecimal, RGB, or HSV. For example,
col=1, col="white", col="#FFFFFF", col=rgb(1,1,1), and col=hsv(0,0,1) are
equivalent ways of specifying the color white. The function rgb()creates colors based
on red-green-blue values, whereas hsv() creates colors based on hue-saturation values.
See the help feature on these functions for more details.

The function colors() returns all available color names. Earl F. Glynn has created
an excellent online chart of R colors, available at http://research.stowers-institute.
org/efg/R/Color/Chart. R also has a number of functions that can be used to create
vectors of contiguous colors. These include rainbow(), heat.colors(), terrain.
colors(), topo.colors(), and cm.colors(). For example, rainbow(10) produces
10 contiguous “rainbow" colors. Gray levels are generated with the gray() function. In
this case, you specify gray levels as a vector of numbers between 0 and 1. gray(0:10/10)
would produce 10 gray levels. Try the code

n <- 10
mycolors <- rainbow(n)
pie(rep(1, n), labels=mycolors, col=mycolors)
mygrays <- gray(0:n/n)
pie(rep(1, n), labels=mygrays, col=mygrays)

to see how this works. You’ll see examples that use color parameters throughout this
chapter.

3.3.3 Text characteristics

Graphic parameters are also used to specify text size, font, and style. Parameters con-
trolling text size are explained in table 3.4. Font family and style can be controlled with
font options (see table 3.5).

Table 3.4 Parameters specifying text size

Parameter Description

cex Number indicating the amount by which plotted text should be scaled relative
to the default. 1=default, 1.5 is 50% larger, 0.5 is 50% smaller, etc.

cex.axis Magnification of axis text relative to cex.

cex.lab Magnification of axis labels relative to cex.

cex.main Magnification of titles relative to cex.

cex.sub Magnification of subtitles relative to cex.

For example, all graphs created after the statement

par(font.lab=3, cex.lab=1.5, font.main=4, cex.main=2)

will have italic axis labels that are 1.5 times the default text size, and bold italic titles
that are twice the default text size.

http://research.stowers-institute.org/efg/R/Color/Chart
http://research.stowers-institute.org/efg/R/Color/Chart

	 Chapter 3 Getting started with graphs

Table 3.5 Parameters specifying font family, size, and style

Parameter Description

font Integer specifying font to use for plotted text.. 1=plain, 2=bold, 3=italic,
4=bold italic, 5=symbol (in Adobe symbol encoding).

font.axis Font for axis text.

font.lab Font for axis labels.

font.main Font for titles.

font.sub Font for subtitles.

ps Font point size (roughly 1/72 inch).
The text size = ps*cex.

family Font family for drawing text. Standard values are serif, sans, and mono.

Whereas font size and style are easily set, font family is a bit more complicated. This is
because the mapping of serif, sans, and mono are device dependent. For example, on
Windows platforms, mono is mapped to TT Courier New, serif is mapped to TT Times
New Roman, and sans is mapped to TT Arial (TT stands for True Type). If you’re satis-
fied with this mapping, you can use parameters like family="serif" to get the results
you want. If not, you need to create a new mapping. On Windows, you can create this
mapping via the windowsFont() function. For example, after issuing the statement

windowsFonts(
 A=windowsFont("Arial Black"),
 B=windowsFont("Bookman Old Style"),
 C=windowsFont("Comic Sans MS")
)

you can use A, B, and C as family values. In this case, par(family="A") will specify an
Arial Black font. (Listing 3.2 in section 3.4.2 provides an example of modifying text
parameters.) Note that the windowsFont() function only works for Windows. On a
Mac, use quartzFonts() instead.

If graphs will be output in PDF or PostScript format, changing the font
family is relatively straightforward. For PDFs, use names(pdfFonts())to find
out which fonts are available on your system and pdf(file="myplot.pdf",
family="fontname") to generate the plots. For graphs that are output in PostScript
format, use names(postscriptFonts()) and postscript(file="myplot.ps",
family="fontname"). See the online help for more information.

3.3.4 Graph and margin dimensions

Finally, you can control the plot dimensions and margin sizes using the parameters
listed in table 3.6.

	 55

Table 3.6 Parameters for graph and margin dimensions

Parameter Description

pin Plot dimensions (width, height) in inches.

mai Numerical vector indicating margin size where c(bottom, left, top, right) is
expressed in inches.

mar Numerical vector indicating margin size where c(bottom, left, top, right) is
expressed in lines. The default is c(5, 4, 4, 2) + 0.1.

The code

par(pin=c(4,3), mai=c(1,.5, 1, .2))

produces graphs that are 4 inches wide by 3 inches tall, with a 1-inch margin on the
bottom and top, a 0.5-inch margin on the left, and a 0.2-inch margin on the right.
For a complete tutorial on margins, see Earl F. Glynn’s comprehensive online tutorial
(http://research.stowers-institute.org/efg/R/Graphics/Basics/mar-oma/).

Let’s use the options we’ve covered so far to enhance our simple example. The code
in the following listing produces the graphs in figure 3.7.

Listing 3.1 Using graphical parameters to control graph appearance

dose <- c(20, 30, 40, 45, 60)
drugA <- c(16, 20, 27, 40, 60)
drugB <- c(15, 18, 25, 31, 40)
opar <- par(no.readonly=TRUE)
par(pin=c(2, 3))
par(lwd=2, cex=1.5)
par(cex.axis=.75, font.axis=3)
plot(dose, drugA, type="b", pch=19, lty=2, col="red")
plot(dose, drugB, type="b", pch=23, lty=6, col="blue", bg="green")
par(opar)

First you enter your data as vectors, then save the current graphical parameter settings
(so that you can restore them later). You modify the default graphical parameters so
that graphs will be 2 inches wide by 3 inches tall. Additionally, lines will be twice the
default width and symbols will be 1.5 times the default size. Axis text will be set to italic
and scaled to 75 percent of the default. The first plot is then created using filled red
circles and dashed lines. The second plot is created using filled green filled diamonds
and a blue border and blue dashed lines. Finally, you restore the original graphical
parameter settings.

Note that parameters set with the par() function apply to both graphs, whereas
parameters specified in the plot functions only apply to that specific graph. Looking
at figure 3.7 you can see some limitations in your presentation. The graphs lack titles
and the vertical axes are not on the same scale, limiting your ability to compare the two
drugs directly. The axis labels could also be more informative.

http://research.stowers-institute.org/efg/R/Graphics/Basics/mar-oma/

	 Chapter 3 Getting started with graphs

20 30 40 50 60

20
30

40
50

60

dose

dr
ug

A

20 30 40 50 60

15
20

25
30

35
40

dose

dr
ug

B
Figure 3.7 Line plot of dose vs. response for both drug A and drug B

In the next section, we’ll turn to the customization of text annotations (such as titles
and labels) and axes. For more information on the graphical parameters that are avail-
able, take a look at help(par).

3.4 Adding text, customized axes, and legends
Many high-level plotting functions (for example, plot, hist, boxplot) allow you to
include axis and text options, as well as graphical parameters. For example, the follow-
ing adds a title (main), subtitle (sub), axis labels (xlab, ylab), and axis ranges (xlim,
ylim). The results are presented in figure 3.8:

plot(dose, drugA, type="b",
 col="red", lty=2, pch=2, lwd=2,
 main="Clinical Trials for Drug A",
 sub="This is hypothetical data",
 xlab="Dosage", ylab="Drug Response",
 xlim=c(0, 60), ylim=c(0, 70))

Again, not all functions allow you to add these options. See the help for the function
of interest to see what options are accepted. For finer control and for modularization,
you can use the functions described in the remainder of this section to control titles,
axes, legends, and text annotations.

NoTe Some high-level plotting functions include default titles and labels. You
can remove them by adding ann=FALSE in the plot() statement or in a
separate par() statement.

	 57

0 10 20 30 40 50 60

0
10

20
30

40
50

60
70

Clinical Trials for Drug A

This is hypothetical data
Dosage

D
ru

g
R

es
po

ns
e

Figure 3.8 Line plot of dose
versus response for drug
A with title, subtitle, and
modified axes

3.4.1 Titles

Use the title() function to add title and axis labels to a plot. The format is

title(main="main title", sub="sub-title",
 xlab="x-axis label", ylab="y-axis label")

Graphical parameters (such as text size, font, rotation, and color) can also be specified
in the title() function. For example, the following produces a red title and a blue
subtitle, and creates green x and y labels that are 25 percent smaller than the default
text size:

title(main="My Title", col.main="red",
 sub="My Sub-title", col.sub="blue",
 xlab="My X label", ylab="My Y label",
 col.lab="green", cex.lab=0.75)

3.4.2 Axes

Rather than using R’s default axes, you can create custom axes with the axis() func-
tion. The format is

axis(side, at=, labels=, pos=, lty=, col=, las=, tck=, ...)

where each parameter is described in table 3.7.
When creating a custom axis, you should suppress the axis automatically generated by

the high-level plotting function. The option axes=FALSE suppresses all axes (including
all axis frame lines, unless you add the option frame.plot=TRUE). The options
xaxt=”n” and yaxt=”n” suppress the x- and y-axis, respectively (leaving the frame

	 Chapter 3 Getting started with graphs

Table 3.7 Axis options

option Description

side An integer indicating the side of the graph to draw the axis
(1=bottom, 2=left, 3=top, 4=right).

at A numeric vector indicating where tick marks should be drawn.

labels A character vector of labels to be placed at the tick marks
(if NULL, the at values will be used).

pos The coordinate at which the axis line is to be drawn
(that is, the value on the other axis where it crosses).

lty Line type.

col The line and tick mark color.

las Labels are parallel (=0) or perpendicular (=2) to the axis.

tck Length of tick mark as a fraction of the plotting region (a negative number is
outside the graph, a positive number is inside, 0 suppresses ticks, 1 creates
gridlines); the default is –0.01.

(...) Other graphical parameters.

lines, without ticks). The following listing is a somewhat silly and overblown example
that demonstrates each of the features we’ve discussed so far. The resulting graph is
presented in figure 3.9.

2 4 6 8 10

1
2

3
4

5
6

7
8

9
1

0

1
1 11
1 25
1 43
1 67

2

2 5

3 33

5

10

y=10/x

An Example of Creative Axes

X values

Y
=

X

Figure 3.9 A demonstration of
axis options

	 59

Listing 3.2 An example of custom axes

x <- c(1:10)
y <- x
z <- 10/x

opar <- par(no.readonly=TRUE)

par(mar=c(5, 4, 4, 8) + 0.1)

plot(x, y, type="b",
 pch=21, col="red",
 yaxt="n", lty=3, ann=FALSE)

lines(x, z, type="b", pch=22, col="blue", lty=2)

axis(2, at=x, labels=x, col.axis="red", las=2)

axis(4, at=z, labels=round(z, digits=2),
 col.axis="blue", las=2, cex.axis=0.7, tck=-.01)

mtext("y=1/x", side=4, line=3, cex.lab=1, las=2, col="blue")

title("An Example of Creative Axes",
 xlab="X values",
 ylab="Y=X")

par(opar)

At this point, we’ve covered everything in listing 3.2 except for the line()and the
mtext() statements. A plot() statement starts a new graph. By using the line()
statement instead, you can add new graph elements to an existing graph. You’ll use
it again when you plot the response of drug A and drug B on the same graph in sec-
tion 3.4.4. The mtext() function is used to add text to the margins of the plot. The
mtext()function is covered in section 3.4.5, and the line() function is covered more
fully in chapter 11.

MiNoR TiCk MARks

Notice that each of the graphs you’ve created so far have major tick marks but not mi-
nor tick marks. To create minor tick marks, you’ll need the minor.tick() function in
the Hmisc package. If you don’t already have Hmisc installed, be sure to install it first
(see chapter 1, section 1.4.2). You can add minor tick marks with the code

library(Hmisc)
minor.tick(nx=n, ny=n, tick.ratio=n)

where nx and ny specify the number of intervals in which to divide the area between
major tick marks on the x-axis and y-axis, respectively. tick.ratio is the size of the
minor tick mark relative to the major tick mark. The current length of the major tick
mark can be retrieved using par("tck"). For example, the following statement will
add one tick mark between each major tick mark on the x-axis and two tick marks be-
tween each major tick mark on the y-axis:

Specify data

Increase margins

Plot x versus y

Add x versus
1/x line

Draw your axes

Add titles
and text

	 Chapter 3 Getting started with graphs

minor.tick(nx=2, ny=3, tick.ratio=0.5)

The length of the tick marks will be 50 percent as long as the major tick marks. An
example of minor tick marks is given in the next section (listing 3.3 and figure 3.10).

3.4.3 Reference lines

The abline() function is used to add reference lines to our graph. The format is

abline(h=yvalues, v=xvalues)

Other graphical parameters (such as line type, color, and width) can also be specified
in the abline() function. For example:

abline(h=c(1,5,7))

adds solid horizontal lines at y = 1, 5, and 7, whereas the code

abline(v=seq(1, 10, 2), lty=2, col="blue")

adds dashed blue vertical lines at x = 1, 3, 5, 7, and 9. Listing 3.3 creates a reference line
for our drug example at y = 30. The resulting graph is displayed in figure 3.10.

3.4.4 Legend

When more than one set of data or group is incorporated into a graph, a legend can
help you to identify what’s being represented by each bar, pie slice, or line. A legend
can be added (not surprisingly) with the legend() function. The format is

legend(location, title, legend, ...)

The common options are described in table 3.8.

Table 3.8 Legend options

option Description

location There are several ways to indicate the location of the legend. You can
give an x,y coordinate for the upper-left corner of the legend. You can use
locator(1), in which case you use the mouse to indicate the location of
the legend. You can also use the keywords bottom, bottomleft, left,
topleft, top, topright, right, bottomright, or center to place
the legend in the graph. If you use one of these keywords, you can also use
inset= to specify an amount to move the legend into the graph (as fraction
of plot region).

title A character string for the legend title (optional).

legend A character vector with the labels.

	 61

Table 3.8 Legend options (continued)

option Description

... Other options. If the legend labels colored lines, specify col= and a
vector of colors. If the legend labels point symbols, specify pch= and a
vector of point symbols. If the legend labels line width or line style, use
lwd= or lty= and a vector of widths or styles. To create colored boxes for
the legend (common in bar, box, or pie charts), use fill= and a vector of
colors.

Other common legend options include bty for box type, bg for background color, cex
for size, and text.col for text color. Specifying horiz=TRUE sets the legend horizon-
tally rather than vertically. For more on legends, see help(legend). The examples in
the help file are particularly informative.

Let’s take a look at an example using our drug data (listing 3.3). Again, you’ll use
a number of the features that we’ve covered up to this point. The resulting graph is
presented in figure 3.10.

Listing 3.3 Comparing Drug A and Drug B response by dose

dose <- c(20, 30, 40, 45, 60)
drugA <- c(16, 20, 27, 40, 60)
drugB <- c(15, 18, 25, 31, 40)

opar <- par(no.readonly=TRUE)

par(lwd=2, cex=1.5, font.lab=2)

plot(dose, drugA, type="b",
 pch=15, lty=1, col="red", ylim=c(0, 60),
 main="Drug A vs. Drug B",
 xlab="Drug Dosage", ylab="Drug Response")

lines(dose, drugB, type="b",
 pch=17, lty=2, col="blue")

abline(h=c(30), lwd=1.5, lty=2, col="gray")

library(Hmisc)
minor.tick(nx=3, ny=3, tick.ratio=0.5)

legend("topleft", inset=.05, title="Drug Type", c("A","B"),
 lty=c(1, 2), pch=c(15, 17), col=c("red", "blue"))

par(opar)

Increase line, text,
symbol, label size

Generate graph

Add minor tick
marks

Add legend

	 Chapter 3 Getting started with graphs

20 30 40 50 60

0
1

0
2

0
3

0
4

0
5

0
6

0

Drug A vs. Drug B

Drug Dosage

Drug Type

A
B

D
ru

g
 R

es
p

o
n

se

Figure 3.10 An annotated
comparison of Drug A and Drug B

Almost all aspects of the graph in figure 3.10 can be modified using the options dis-
cussed in this chapter. Additionally, there are many ways to specify the options desired.
The final annotation to consider is the addition of text to the plot itself. This topic is
covered in the next section.

3.4.5 Text annotations

Text can be added to graphs using the text() and mtext() functions. text() places
text within the graph whereas mtext() places text in one of the four margins. The
formats are

text(location, "text to place", pos, ...)
mtext("text to place", side, line=n, ...)

and the common options are described in table 3.9.

Table 3.9 options for the text() and mtext() functions

option Description

location Location can be an x,y coordinate. Alternatively, the text can be placed
interactively via mouse by specifying location as locator(1).

pos Position relative to location. 1 = below, 2 = left, 3 = above, 4 = right. If you
specify pos, you can specify offset= in percent of character width.

side Which margin to place text in, where 1 = bottom, 2 = left, 3 = top, 4 = right.
You can specify line= to indicate the line in the margin starting with 0 (closest
to the plot area) and moving out. You can also specify adj=0 for left/bottom
alignment or adj=1 for top/right alignment.

	 63

Other common options are cex, col, and font (for size, color, and font style,
respectively).

The text() function is typically used for labeling points as well as for adding other
text annotations. Specify location as a set of x, y coordinates and specify the text to
place as a vector of labels. The x, y, and label vectors should all be the same length. An
example is given next and the resulting graph is shown in figure 3.11.

attach(mtcars)
plot(wt, mpg,
 main="Mileage vs. Car Weight",
 xlab="Weight", ylab="Mileage",
 pch=18, col="blue")
text(wt, mpg,
 row.names(mtcars),
 cex=0.6, pos=4, col="red")
detach(mtcars)

2 3 4 5

10
15

20
25

30

Mileage vs. Car Weight

Weight

M
ile

ag
e

Mazda RX4Mazda RX4 Wag

Datsun 710

Hornet 4 Drive

Hornet Sportabout
Valiant

Duster 360

Merc 240D

Merc 230

Merc 280

Merc 280C

Merc 450SE

Merc 450SL

Merc 450SLC

Cadil acLin

Chrys

Fiat 128

Honda Civic

Toyota Corolla

Toyota Corona

Dodge Challenger
AMC Javelin

Camaro Z28

Pontiac Firebird

Fiat X1−9

Porsche 914−2

Lotus Europa

Ford Pantera L

Ferrari Dino

Maserati Bora

Volvo 142E

Figure 3.11 example of a scatter plot (car weight vs. mileage) with labeled points (car make)

	 Chapter 3 Getting started with graphs

Here we’ve plotted car mileage versus car weight for the 32 automobile makes pro-
vided in the mtcars data frame. The text() function is used to add the car makes to
the right of each data point. The point labels are shrunk by 40 percent and presented
in red.

As a second example, the following code can be used to display font families:

opar <- par(no.readonly=TRUE)
par(cex=1.5)
plot(1:7,1:7,type="n")
text(3,3,"Example of default text")
text(4,4,family="mono","Example of mono-spaced text")
text(5,5,family="serif","Example of serif text")
par(opar)

The results, produced on a Windows platform, are shown in figure 3.12. Here the
par() function was used to increase the font size to produce a better display.

The resulting plot will differ from platform to platform, because plain, mono, and
serif text are mapped to different font families on different systems. What does it look
like on yours?

MATh ANNoTATioNs

Finally, you can add mathematical symbols and formulas to a graph using TEX-like rules.
See help(plotmath) for details and examples. You can also try demo(plotmath) to
see this in action. A portion of the results is presented in figure 3.13. The plotmath()
function can be used to add mathematical symbols to titles, axis labels, or text annota-
tion in the body or margins of the graph.

You can often gain greater insight into your data by comparing several graphs at one
time. So, we’ll end this chapter by looking at ways to combine more than one graph
into a single image.

1 2 3 4 5 6 7

1
2

3
4

5
6

7

1:7

1:
7

Example of default text

Example of mono−spaced text

Example of serif text

Figure 3.12 examples of font
families on a Windows platform

	 65

Arithmetic Operators

x + y x + y

x − y x − y

x * y xy

x/y x y

x %+−% y x ± y

x%/%y x √ y

x %*% y x × y

x %.% y x ⋅ y

−x − x

+x + x

Sub/Superscripts

x[i] xi

x^2 x2

Juxtaposition

x * y xy

paste(x, y, z) xyz

Lists

list(x, y, z) x, y, z

Radicals

sqrt(x) x

sqrt(x, y) y x

Relations

x == y x = y

x != y x ↑ y

x < y x < y

x <= y x ʺ y

x > y x > y

x >= y x ≥ y

x %~~% y x ⊕y

x %=~% y x ≅ y

x %==% y x ≡ y

x %prop% y x ∝ y

Typeface

plain(x) x

italic(x) x

bold(x) x

bolditalic(x) x

underline(x) x

Figure 3.13 Partial results from demo(plotmath)

3.5 Combining graphs
R makes it easy to combine several graphs into one overall graph, using either the
par() or layout() function. At this point, don’t worry about the specific types of
graphs being combined; our focus here is on the general methods used to com-
bine them. The creation and interpretation of each graph type is covered in later
chapters.

With the par() function, you can include the graphical parameter mfrow=c(nrows,
ncols) to create a matrix of nrows x ncols plots that are filled in by row. Alternatively,
you can use mfcol=c(nrows, ncols) to fill the matrix by columns.

For example, the following code creates four plots and arranges them into two rows
and two columns:

attach(mtcars)
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,2))
plot(wt,mpg, main="Scatterplot of wt vs. mpg")
plot(wt,disp, main="Scatterplot of wt vs disp")
hist(wt, main="Histogram of wt")

	 Chapter 3 Getting started with graphs

boxplot(wt, main="Boxplot of wt")
par(opar)
detach(mtcars)

The results are presented in figure 3.14.
As a second example, let’s arrange 3 plots in 3 rows and 1 column. Here’s the code:

attach(mtcars)
opar <- par(no.readonly=TRUE)
par(mfrow=c(3,1))
hist(wt)
hist(mpg)
hist(disp)
par(opar)
detach(mtcars)

The graph is displayed in figure 3.15. Note that the high-level function hist()includes
a default title (use main="" to suppress it, or ann=FALSE to suppress all titles and
labels).

2 3 4 5

10
15

20
25

30

Scatterplot of wt vs. mpg

wt

m
pg

2 3 4 5

10
0

20
0

30
0

40
0

Scatterplot of wt vs disp

wt

di
sp

Histogram of wt

wt

F
re

qu
en

cy

2 3 4 5

0
2

4
6

8

2
3

4
5

Boxplot of wt

Figure 3.14 Graph combining four figures through par(mfrow=c(2,2))

	 67

Histogram of wt

wt

F
re

qu
en

cy

2 3 4 5

0
2

4
6

8

Histogram of mpg

mpg

F
re

qu
en

cy

10 15 20 25 30 35

0
2

4
6

8
12

Histogram of disp

disp

F
re

qu
en

cy

100 200 300 400 500

0
2

4
6

Figure 3.15 Graph combining with three figures through par(mfrow=c(3,1))

The layout() function has the form layout(mat) where mat is a matrix object speci-
fying the location of the multiple plots to combine. In the following code, one figure
is placed in row 1 and two figures are placed in row 2:

attach(mtcars)
layout(matrix(c(1,1,2,3), 2, 2, byrow = TRUE))
hist(wt)
hist(mpg)
hist(disp)
detach(mtcars)

The resulting graph is presented in figure 3.16.
Optionally, you can include widths= and heights= options in the layout()

function to control the size of each figure more precisely. These options have the
form

widths = a vector of values for the widths of columns
heights = a vector of values for the heights of rows

Relative widths are specified with numeric values. Absolute widths (in centimeters) are
specified with the lcm() function.

	 Chapter 3 Getting started with graphs

Histogram of wt

wt

F
re

qu
en

cy

2 3 4 5

0
2

4
6

8

Histogram of mpg

mpg

F
re

qu
en

cy

10 15 20 25 30 35

0
2

4
6

8
10

12

Histogram of disp

disp

F
re

qu
en

cy

100 200 300 400 500

0
1

2
3

4
5

6
7

Figure 3.16 Graph combining three figures using the layout() function with
default widths

In the following code, one figure is again placed in row 1 and two figures are placed
in row 2. But the figure in row 1 is one-third the height of the figures in row 2. Addi-
tionally, the figure in the bottom-right cell is one-fourth the width of the figure in the
bottom-left cell:

attach(mtcars)
layout(matrix(c(1, 1, 2, 3), 2, 2, byrow = TRUE),
 widths=c(3, 1), heights=c(1, 2))
hist(wt)
hist(mpg)
hist(disp)
detach(mtcars)

The graph is presented in figure 3.17.
As you can see, the layout() function gives you easy control over both the number

and placement of graphs in a final image and the relative sizes of these graphs. See
help(layout) for more details.

	 69

Histogram of wt

wt

F
re

qu
en

cy

2 3 4 5
0

4
8

Histogram of mpg

mpg

F
re

qu
en

cy

10 15 20 25 30 35

0
2

4
6

8
10

12

Histogram of disp

disp

F
re

qu
en

cy
100 400

0
1

2
3

4
5

6
7

Figure 3.17 Graph combining three figures using the layout() function with
specified widths

3.5.1 Creating a figure arrangement with fine control

There are times when you want to arrange or superimpose several figures to create
a single meaningful plot. Doing so requires fine control over the placement of the
figures. You can accomplish this with the fig= graphical parameter. In the following
listing, two box plots are added to a scatter plot to create a single enhanced graph. The
resulting graph is shown in figure 3.18.

Listing 3.4 Fine placement of figures in a graph

	

Set up scatter plot

Add box plot above

	 Chapter 3 Getting started with graphs

par(fig=c(0.65, 1, 0, 0.8), new=TRUE)
boxplot(mtcars$mpg, axes=FALSE)

mtext("Enhanced Scatterplot", side=3, outer=TRUE, line=-3)
par(opar)

To understand how this graph was created, think of the full graph area as going from
(0,0) in the lower-left corner to (1,1) in the upper-right corner. Figure 3.19 will help
you visualize this. The format of the fig= parameter is a numerical vector of the form
c(x1, x2, y1, y2).

The first fig= sets up the scatter plot going from 0 to 0.8 on the x-axis and 0 to 0.8
on the y-axis. The top box plot goes from 0 to 0.8 on the x-axis and 0.55 to 1 on the
y-axis. The right-hand box plot goes from 0.65 to 1 on the x-axis and 0 to 0.8 on the
y-axis. fig= starts a new plot, so when adding a figure to an existing graph, include
the new=TRUE option.

I chose 0.55 rather than 0.8 so that the top figure would be pulled closer to the
scatter plot. Similarly, I chose 0.65 to pull the right-hand box plot closer to the scatter
plot. You have to experiment to get the placement right.

2 3 4 5

10
15

20
25

30

Miles Per Gallon

C
ar

 W
ei

gh
t

Enhanced Scatterplot

Figure 3.18 A scatter plot with two box plots added to the margins

Add box plot to right

	 71

(0,0)

(1,1)

x1 x2
y1

y2

Figure 3.19 specifying locations using the fig= graphical parameter

NoTe The amount of space needed for individual subplots can be device
dependent. If you get “Error in plot.new(): figure margins too large,” try
varying the area given for each portion of the overall graph.

You can use fig= graphical parameter to combine several plots into any arrangement
within a single graph. With a little practice, this approach gives you a great deal of
flexibility when creating complex visual presentations.

3.6 Summary
In this chapter, we reviewed methods for creating graphs and saving them in a variety
of formats. The majority of the chapter was concerned with modifying the default
graphs produced by R, in order to arrive at more useful or attractive plots. You learned
how to modify a graph’s axes, fonts, symbols, lines, and colors, as well as how to add
titles, subtitles, labels, plotted text, legends, and reference lines. You saw how to specify
the size of the graph and margins, and how to combine multiple graphs into a single
useful image.

Our focus in this chapter was on general techniques that you can apply to all graphs
(with the exception of lattice graphs in chapter 16). Later chapters look at specific
types of graphs. For example, chapter 7 covers methods for graphing a single variable.
Graphing relationships between variables will be described in chapter 11. In chapter
16, we discuss advanced graphic methods, including lattice graphs (graphs that display
the relationship between variables, for each level of other variables) and interactive
graphs. Interactive graphs let you use the mouse to dynamically explore the plotted
relationships.

In other chapters, we’ll discuss methods of visualizing data that are particularly
useful for the statistical approaches under consideration. Graphs are a central part of

	 Chapter 3 Getting started with graphs

modern data analysis, and I’ll endeavor to incorporate them into each of the statistical
approaches we discuss.

In the previous chapter we discussed a range of methods for inputting or importing
data into R. Unfortunately, in the real world your data is rarely usable in the format in
which you first get it. In the next chapter we look at ways to transform and massage our
data into a state that’s more useful and conducive to analysis.

4

73

Basic data management

This chapter covers
■ Manipulating dates and missing values
■ Understanding data type conversions
■ Creating and recoding variables
■

Selecting and dropping variables

Sorting, merging, and subsetting datasets
■

In chapter 2, we covered a variety of methods for importing data into R. Unfortu-
nately, getting our data in the rectangular arrangement of a matrix or data frame is
the first step in preparing it for analysis. To paraphrase Captain Kirk in the Star Trek
episode “A Taste of Armageddon” (and proving my geekiness once and for all):
“Data is a messy business—a very, very messy business.” In my own work, as much
as 60 percent of the time I spend on data analysis is focused on preparing the data
for analysis. I’ll go out a limb and say that the same is probably true in one form or
another for most real-world data analysts. Let’s take a look at an example.

4.1 A working example
One of the topics that I study in my current job is how men and women differ in the
ways they lead their organizations. Typical questions might be

■ Do men and women in management positions differ in the degree to which
they defer to superiors?

74 CHAPTER 4 Basic data management

Does this vary from country to country, or are these gender differences universal?■

One way to address these questions is to have bosses in multiple countries rate their
managers on deferential behavior, using questions like the following:

This manager asks my opinion before making personnel decisions.
1 2 3 4 5
strongly
disagree

disagree neither agree
nor disagree

agree strongly
agree

The resulting data might resemble those in table 4.1. Each row represents the ratings
given to a manager by his or her boss.

Table 4.1 Gender differences in leadership behavior

Manager Date Country Gender Age q1 q2 q3 q4 q5

1 10/24/08 US M 32 5 4 5 5 5

2 10/28/08 US F 45 3 5 2 5 5

3 10/01/08 UK F 25 3 5 5 5 2

4 10/12/08 UK M 39 3 3 4

5 05/01/09 UK F 99 2 2 1 2 1

Here, each manager is rated by their boss on five statements (q1 to q5) related to def-
erence to authority. For example, manager 1 is a 32-year-old male working in the US
and is rated deferential by his boss, while manager 5 is a female of unknown age (99
probably indicates missing) working in the UK and is rated low on deferential behavior.
The date column captures when the ratings were made.

Although a dataset might have dozens of variables and thousands of observations,
we’ve only included 10 columns and 5 rows to simplify the examples. Additionally, we’ve
limited the number of items pertaining to the managers’ deferential behavior to 5. In
a real-world study, you’d probably use 10–20 such items to improve the reliability and
validity of the results. You can create a data frame containing the data in table 4.1 using
the following code.

Listing 4.1 Creating the leadership data frame

manager <- c(1, 2, 3, 4, 5)
date <- c("10/24/08", "10/28/08", "10/1/08", "10/12/08", "5/1/09")
country <- c("US", "US", "UK", "UK", "UK")
gender <- c("M", "F", "F", "M", "F")
age <- c(32, 45, 25, 39, 99)
q1 <- c(5, 3, 3, 3, 2)
q2 <- c(4, 5, 5, 3, 2)
q3 <- c(5, 2, 5, 4, 1)
q4 <- c(5, 5, 5, NA, 2)
q5 <- c(5, 5, 2, NA, 1)
leadership <- data.frame(manager, date, country, gender, age,
 q1, q2, q3, q4, q5, stringsAsFactors=FALSE)

Creating new variables 75

In order to address the questions of interest, we must first address several data manage-
ment issues. Here’s a partial list:

■ The five ratings (q1 to q5) will need to be combined, yielding a single mean
deferential score from each manager.

■ In surveys, respondents often skip questions. For example, the boss rating man-
ager 4 skipped questions 4 and 5. We’ll need a method of handling incomplete
data. We’ll also need to recode values like 99 for age to missing.

■ There may be hundreds of variables in a dataset, but we may only be interested
in a few. To simplify matters, we’ll want to create a new dataset with only the vari-
ables of interest.

■ Past research suggests that leadership behavior may change as a function of the
manager’s age. To examine this, we may want to recode the current values of age
into a new categorical age grouping (for example, young, middle-aged, elder).

■ Leadership behavior may change over time. We might want to focus on deferen-
tial behavior during the recent global financial crisis. To do so, we may want to
limit the study to data gathered during a specific period of time (say, January 1,
2009 to December 31, 2009).

We’ll work through each of these issues in the current chapter, as well as other basic
data management tasks such as combining and sorting datasets. Then in chapter 5
we’ll look at some advanced topics.

4.2 Creating new variables
In a typical research project, you’ll need to create new variables and transform existing
ones. This is accomplished with statements of the form

variable <- expression

A wide array of operators and functions can be included in the expression portion of
the statement. Table 4.2 lists R’s arithmetic operators . Arithmetic operators are used
when developing formulas.

Table 4.2 Arithmetic operators

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

^ or ** Exponentiation

x%%y Modulus (x mod y) 5%%2 is 1

x%/%y Integer division 5%/%2 is 2

76 CHAPTER 4 Basic data management

Let’s say that you have a data frame named mydata, with variables x1 and x2, and you
want to create a new variable sumx that adds these two variables and a new variable
called meanx that averages the two variables. If you use the code

sumx <- x1 + x2
meanx <- (x1 + x2)/2

you’ll get an error, because R doesn’t know that x1 and x2 are from data frame mydata.
If you use this code instead

sumx <- mydata$x1 + mydata$x2
meanx <- (mydata$x1 + mydata$x2)/2

the statements will succeed but you’ll end up with a data frame (mydata) and two
separate vectors (sumx and meanx). This is probably not what you want. Ultimately, you
want to incorporate new variables into the original data frame. The following listing
provides three separate ways to accomplish this goal. The one you choose is up to you;
the results will be the same.

Listing 4.2 Creating new variables

mydata<-data.frame(x1 = c(2, 2, 6, 4),
 x2 = c(3, 4, 2, 8))

mydata$sumx <- mydata$x1 + mydata$x2
mydata$meanx <- (mydata$x1 + mydata$x2)/2

attach(mydata)
mydata$sumx <- x1 + x2
mydata$meanx <- (x1 + x2)/2
detach(mydata)

mydata <- transform(mydata,
 sumx = x1 + x2,
 meanx = (x1 + x2)/2)

Personally, I prefer the third method, exemplified by the use of the transform() func-
tion . It simplifies inclusion of as many new variables as desired and saves the results to
the data frame.

4.3 Recoding variables
Recoding involves creating new values of a variable conditional on the existing values
of the same and/or other variables. For example, you may want to

■ Change a continuous variable into a set of categories
■

Create a pass/fail variable based on a set of cutoff scores
Replace miscoded values with correct values

■

To recode data, you can use one or more of R’s logical operators (see table 4.3). Logi-
cal operators are expressions that return TRUE or FALSE.

 Recoding variables 77

Table 4.3 Logical operators

Operator Description

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Exactly equal to

!= Not equal to

!x Not x

x | y x or y

x & y x and y

isTRUE(x) Test if x is TRUE

Let’s say that you want to recode the ages of the managers in our leadership dataset from
the continuous variable age to the categorical variable agecat (Young, Middle Aged,
Elder). First, you must recode the value 99 for age to missing with code such as

leadership$age[leadership$age == 99] <- NA

The statement variable[condition] <- expression will only make the assignment
when condition is TRUE.

Once missing values for age have been specified, you can then use the following
code to create the agecat variable:

leadership$agecat[leadership$age > 75] <- "Elder"
leadership$agecat[leadership$age >= 55 &
 leadership$age <= 75] <- "Middle Aged"
leadership$agecat[leadership$age < 55] <- "Young"

You include the data frame names in leadership$agecat to ensure that the new
variable is saved back to the data frame. You define middle aged as 55 to 75 so that I
won’t feel so old. Note that if you hadn’t recoded 99 as missing for age first, manager
5 would’ve erroneously been given the value “Elder” for agecat.

This code can be written more compactly as

leadership <- within(leadership,{
 agecat <- NA
 agecat[age > 75] <- "Elder"
 agecat[age >= 55 & age <= 75] <- "Middle Aged"
 agecat[age < 55] <- "Young" })

The within() function is similar to the with() function (section 2.2.4) , but allows
you to modify the data frame. First, the variable agecat variable is created and set
to missing for each row of the data frame. Then the remaining statements within the

78 CHAPTER 4 Basic data management

braces are executed in order. Remember that agecat is a character variable; you’re
likely to want to turn it into an ordered factor, as explained in section 2.2.5.

Several packages offer useful recoding functions; in particular, the car package’s
recode() function recodes numeric and character vectors and factors very simply.
The package doBy offers recodevar() , another popular function. Finally, R ships
with cut() , which allows you to divide the range of a numeric variable into intervals,
returning a factor.

4.4 Renaming variables
If you’re not happy with your variable names, you can change them interactively or pro-
grammatically. Let’s say that you want to change the variables manager to managerID
and date to testDate. You can use the statement

fix(leadership)

to invoke an interactive editor, click on the variable names, and rename them in the
dialogs that are presented (see figure 4.1).

Programmatically, the reshape package has a rename() function that’s useful for
altering the names of variables. The format of the rename() function is

rename(dataframe, c(oldname="newname", oldname="newname",…))

Here’s an example:

library(reshape)
leadership <- rename(leadership,
 c(manager="managerID", date="testDate")
)

Figure 4.1 Renaming variables interactively using the fix() function

 Missing values 79

The reshape package isn’t installed by default, so you’ll need to install it on first use
using the install.packages("reshape") command . The reshape package has a
powerful set of functions for altering the structure of a dataset. We’ll explore several
in chapter 5.

Finally, you can rename variables via the names() function . For example:

names(leadership)[2] <- "testDate"

would rename date to testDate as demonstrated in the following code:

> names(leadership)
 [1] "manager" "date" "country" "gender" "age" "q1" "q2"
 [8] "q3" "q4" "q5"
> names(leadership)[2] <- "testDate"
> leadership
 manager testDate country gender age q1 q2 q3 q4 q5
1 1 10/24/08 US M 32 5 4 5 5 5
2 2 10/28/08 US F 45 3 5 2 5 5
3 3 10/1/08 UK F 25 3 5 5 5 2
4 4 10/12/08 UK M 39 3 3 4 NA NA
5 5 5/1/09 UK F 99 2 2 1 2 1

In a similar fashion,

names(leadership)[6:10] <- c("item1", "item2", "item3", "item4", "item5")

would rename q1 through q5 to item1 through item5.

4.5 Missing values
In a project of any size, data is likely to be incomplete because of missed questions,
faulty equipment, or improperly coded data. In R, missing values are represented by
the symbol NA (not available) . Impossible values (for example, dividing by 0) are rep-
resented by the symbol NaN (not a number) . Unlike programs such as SAS, R uses the
same missing values symbol for character and numeric data.

R provides a number of functions for identifying observations that contain missing
values. The function is.na() allows you to test for the presence of missing values.
Assume that you have a vector:

y <- c(1, 2, 3, NA)

then the function

is.na(y)

returns c(FALSE, FALSE, FALSE, TRUE).
Notice how the is.na() function works on an object. It returns an object of the

same size, with the entries replaced by TRUE if the element is a missing value, and
FALSE if the element is not a missing value. Listing 4.3 applies this to our leadership
example.

80 CHAPTER 4 Basic data management

Listing 4.3 Applying the is.na() function

> is.na(leadership[,6:10])
 q1 q2 q3 q4 q5
[1,] FALSE FALSE FALSE FALSE FALSE
[2,] FALSE FALSE FALSE FALSE FALSE
[3,] FALSE FALSE FALSE FALSE FALSE
[4,] FALSE FALSE FALSE TRUE TRUE
[5,] FALSE FALSE FALSE FALSE FALSE

Here, leadership[,6:10] limited the data frame to columns 6 to 10, and is.na()
identified which values are missing.

NOTE Missing values are considered noncomparable, even to themselves.
This means that you can’t use comparison operators to test for the presence
of missing values. For example, the logical test myvar == NA is never TRUE.
Instead, you have to use missing values functions, like those in this section, to
identify the missing values in R data objects.

4.5.1 Recoding values to missing

As demonstrated in section 4.3, you can use assignments to recode values to missing.
In our leadership example, missing age values were coded as 99. Before analyzing this
dataset, you must let R know that the value 99 means missing in this case (otherwise
the mean age for this sample of bosses will be way off!). You can accomplish this by
recoding the variable:

leadership$age[leadership$age == 99] <- NA

Any value of age that’s equal to 99 is changed to NA. Be sure that any missing data is
properly coded as missing before analyzing the data or the results will be meaningless.

4.5.2 Excluding missing values from analyses

Once you’ve identified the missing values, you need to eliminate them in some way
before analyzing your data further. The reason is that arithmetic expressions and func-
tions that contain missing values yield missing values. For example, consider the fol-
lowing code:

x <- c(1, 2, NA, 3)
y <- x[1] + x[2] + x[3] + x[4]
z <- sum(x)

Both y and z will be NA (missing) because the third element of x is missing.
Luckily, most numeric functions have a na.rm=TRUE option that removes missing

values prior to calculations and applies the function to the remaining values:

x <- c(1, 2, NA, 3)
y <- sum(x, na.rm=TRUE)

Here, y is equal to 6.
When using functions with incomplete data, be sure to check how that function

handles missing data by looking at its online help (for example, help(sum)). The

 Date values 81

sum() function is only one of many functions we’ll consider in chapter 5. Functions
allow you to transform data with flexibility and ease.

You can remove any observation with missing data by using the na.omit() function .
na.omit() deletes any rows with missing data. Let’s apply this to our leadership dataset
in the following listing.

Listing 4.4 Using na.omit() to delete incomplete observations

> leadership
 manager date country gender age q1 q2 q3 q4 q5
1 1 10/24/08 US M 32 5 4 5 5 5
2 2 10/28/08 US F 40 3 5 2 5 5
3 3 10/01/08 UK F 25 3 5 5 5 2
4 4 10/12/08 UK M 39 3 3 4 NA NA
5 5 05/01/09 UK F 99 2 2 1 2 1

> newdata <- na.omit(leadership)
> newdata
 manager date country gender age q1 q2 q3 q4 q5
1 1 10/24/08 US M 32 5 4 5 5 5
2 2 10/28/08 US F 40 3 5 2 5 5
3 3 10/01/08 UK F 25 3 5 5 5 2
5 5 05/01/09 UK F 99 2 2 1 2 1

Any rows containing missing data are deleted from leadership before the results are
saved to newdata.

Deleting all observations with missing data (called listwise deletion) is one of several
methods of handling incomplete datasets. If there are only a few missing values or
they’re concentrated in a small number of observations, listwise deletion can provide
a good solution to the missing values problem. But if missing values are spread
throughout the data, or there’s a great deal of missing data in a small number of
variables, listwise deletion can exclude a substantial percentage of your data. We’ll
explore several more sophisticated methods of dealing with missing values in chapter
15. Next, let’s take a look at dates.

4.6 Date values
Dates are typically entered into R as character strings and then translated into date vari-
ables that are stored numerically. The function as.Date() is used to make this transla-
tion. The syntax is as.Date(x, "input_format") , where x is the character data and
input_format gives the appropriate format for reading the date (see table 4.4).

Table 4.4 Date formats

Symbol Meaning Example

%d Day as a number (0–31) 01–31

%a
%A

Abbreviated weekday
Unabbreviated weekday

Mon
Monday

%m Month (00–12) 00–12

Data frame with
missing data

Data frame with
complete cases only

82 CHAPTER 4 Basic data management

Table 4.4 Date formats (continued)

Symbol Meaning Example

%b
%B

Abbreviated month
Unabbreviated month

Jan
January

%y
%Y

2-digit year
4-digit year

07
2007

The default format for inputting dates is yyyy-mm-dd. The statement

mydates <- as.Date(c("2007-06-22", "2004-02-13"))

converts the character data to dates using this default format. In contrast,

strDates <- c("01/05/1965", "08/16/1975")
dates <- as.Date(strDates, "%m/%d/%Y")

reads the data using a mm/dd/yyyy format.
In our leadership dataset, date is coded as a character variable in mm/dd/yy format.

Therefore:

myformat <- "%m/%d/%y"
leadership$date <- as.Date(leadership$date, myformat)

uses the specified format to read the character variable and replace it in the data frame
as a date variable. Once the variable is in date format, you can analyze and plot the
dates using the wide range of analytic techniques covered in later chapters.

Two functions are especially useful for time-stamping data . Sys.Date() returns
today’s date and date() returns the current date and time. As I write this, it’s December
12, 2010 at 4:28pm. So executing those functions produces

> Sys.Date()
[1] "2010-12-01"
> date()
[1] "Wed Dec 01 16:28:21 2010"

You can use the format(x, format="output_format") function to output dates in a
specified format, and to extract portions of dates:

> today <- Sys.Date()
> format(today, format="%B %d %Y")
[1] "December 01 2010"
> format(today, format="%A")
[1] "Wednesday"

The format() function takes an argument (a date in this case) and applies an output
format (in this case, assembled from the symbols in table 4.4). The important result
here is that there are only two more days until the weekend!

When R stores dates internally, they’re represented as the number of days since
January 1, 1970, with negative values for earlier dates. That means you can perform
arithmetic operations on them. For example:

> startdate <- as.Date("2004-02-13")
> enddate <- as.Date("2011-01-22")

 Type conversions 83

> days <- enddate - startdate
> days
Time difference of 2535 days

displays the number of days between February 13, 2004 and January 22, 2011.
Finally, you can also use the function difftime() to calculate a time interval and

express it as seconds, minutes, hours, days, or weeks. Let’s assume that I was born on
October 12, 1956. How old am I?

> today <- Sys.Date()
> dob <- as.Date("1956-10-12")
> difftime(today, dob, units="weeks")
Time difference of 2825 weeks

Apparently, I am 2825 weeks old. Who knew? Final test: On which day of the week was
I born?

4.6.1 Converting dates to character variables

Although less commonly used, you can also convert date variables to character vari-
ables. Date values can be converted to character values using the as.character()
function :

strDates <- as.character(dates)

The conversion allows you to apply a range of character functions to the data values
(subsetting, replacement, concatenation, etc.). We’ll cover character functions in de-
tail in chapter 5.

4.6.2 Going further

To learn more about converting character data to dates, take a look at help(as.
Date) and help(strftime) . To learn more about formatting dates and times, see
help(ISOdatetime) . The lubridate package contains a number of functions that
simplify working with dates, including functions to identify and parse date-time data,
extract date-time components (for example, years, months, days, etc.), and perform
arithmetic calculations on date-times. If you need to do complex calculations with
dates, the fCalendar package can also help. It provides a myriad of functions for deal-
ing with dates, can handle multiple time zones at once, and provides sophisticated
calendar manipulations that recognize business days, weekends, and holidays.

4.7 Type conversions
In the previous section, we discussed how to convert character data to date values, and
vice versa. R provides a set of functions to identify an object’s data type and convert it
to a different data type.

Type conversions in R work in a similar fashion to those in other statistical
programming languages. For example, adding a character string to a numeric vector
converts all the elements in the vector to character values. You can use the functions
listed in table 4.5 to test for a data type and to convert it to a given type.

84 CHAPTER 4 Basic data management

Table 4.5 Type conversion functions

Test Convert

is.numeric() as.numeric()

is.character() as.character()

is.vector() as.vector()

is.matrix() as.matrix()

is.data.frame() as.data.frame()

is.factor() as.factor()

is.logical() as.logical()

Functions of the form is.datatype()return TRUE or FALSE, whereas as.datatype()
converts the argument to that type. The following listing provides an example.

Listing 4.5 Converting from one data type to another

> a <- c(1,2,3)
> a
[1] 1 2 3
> is.numeric(a)
[1] TRUE
> is.vector(a)
[1] TRUE

> a <- as.character(a)
> a
[1] "1" "2" "3"
> is.numeric(a)
[1] FALSE
> is.vector(a)
[1] TRUE
> is.character(a)
[1] TRUE

When combined with the flow controls (such as if-then) that we’ll discuss in chapter
5, the is.datatype() function can be a powerful tool, allowing you to handle data in
different ways, depending on its type. Additionally, some R functions require data of
a specific type (character or numeric, matrix or data frame) and the as.datatype()
will let you transform your data into the format required prior to analyses.

4.8 Sorting data
Sometimes, viewing a dataset in a sorted order can tell you quite a bit about the data.
For example, which managers are most deferential? To sort a data frame in R, use
the order() function . By default, the sorting order is ascending. Prepend the sorting
variable with a minus sign to indicate a descending order. The following examples il-
lustrate sorting with the leadership data frame.

 Merging datasets 85

The statement

newdata <- leadership[order(leadership$age),]

creates a new dataset containing rows sorted from youngest manager to oldest man-
ager. The statement

attach(leadership)
newdata <- leadership[order(gender, age),]
detach(leadership)

sorts the rows into female followed by male, and youngest to oldest within each gender.
Finally,

attach(leadership)
newdata <-leadership[order(gender, -age),]
detach(leadership)

sorts the rows by gender, and then from oldest to youngest manager within each
gender.

4.9 Merging datasets
If your data exist in multiple locations, you’ll need to combine them before moving
forward. This section shows you how to add columns (variables) and rows (observa-
tions) to a data frame.

4.9.1 Adding columns

To merge two data frames (datasets) horizontally, you use the merge() function. In
most cases, two data frames are joined by one or more common key variables (that is
an inner join). For example:

total <- merge(dataframeA, dataframeB, by="ID")

merges dataframeA and dataframeB by ID. Similarly,

total <- merge(dataframeA, dataframeB, by=c("ID","Country"))

merges the two data frames by ID and Country. Horizontal joins like this are typically
used to add variables to a data frame.

NOTE If you’re joining two matrices or data frames horizontally and don’t
need to specify a common key, you can use the cbind() function :

total <- cbind(A, B)

This function will horizontally concatenate the objects A and B. For the function to work properly,
each object has to have the same number of rows and be sorted in the same order.

4.9.2 Adding rows

To join two data frames (datasets) vertically, use the rbind() function :

86 CHAPTER 4 Basic data management

total <- rbind(dataframeA, dataframeB)

The two data frames must have the same variables, but they don’t have to be in the
same order. If dataframeA has variables that dataframeB doesn’t, then before joining
them do one of the following:

■ Delete the extra variables in dataframeA
■ Create the additional variables in dataframeB and set them to NA (missing)

Vertical concatenation is typically used to add observations to a data frame.

4.10 Subsetting datasets
R has powerful indexing features for accessing the elements of an object. These features
can be used to select and exclude variables, observations, or both. The following sec-
tions demonstrate several methods for keeping or deleting variables and observations.

4.10.1 Selecting (keeping) variables

It’s a common practice to create a new dataset from a limited number of variables cho-
sen from a larger dataset. In chapter 2, you saw that the elements of a data frame are
accessed using the notation dataframe[row indices, column indices] . You can
use this to select variables. For example:

newdata <- leadership[, c(6:10)]

selects variables q1, q2, q3, q4, and q5 from the leadership data frame and saves
them to the data frame newdata . Leaving the row indices blank (,) selects all the rows
by default.

The statements

myvars <- c("q1", "q2", "q3", "q4", "q5")
newdata <-leadership[myvars]

accomplish the same variable selection. Here, variable names (in quotes) have been
entered as column indices, thereby selecting the same columns.

Finally, you could’ve used

myvars <- paste("q", 1:5, sep="")
newdata <- leadership[myvars]

This example uses the paste() function to create the same character vector as in the
previous example. The paste() function will be covered in chapter 5.

4.10.2 Excluding (dropping) variables

There are many reasons to exclude variables. For example, if a variable has several
missing values, you may want to drop it prior to further analyses. Let’s look at some
methods of excluding variables.

You could exclude variables q3 and q4 with the statements

myvars <- names(leadership) %in% c("q3", "q4")
newdata <- leadership[!myvars]

 Subsetting datasets 87

In order to understand why this works, you need to break it down:

1 names(leadership) produces a character vector containing the variable
names. c("managerID","testDate","country","gender","age","q1",
"q2","q3","q4","q5").

2 names(leadership) %in% c("q3", "q4") returns a logical vector with TRUE
for each element in names(leadership)that matches q3 or q4 and FALSE
otherwise. c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,
TRUE, TRUE, FALSE).

3 The not (!) operator reverses the logical values
c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE).

4 leadership[c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE,

FALSE, TRUE)] selects columns with TRUE logical values, so q3 and q4 are
excluded.

Knowing that q3 and q4 are the 8th and 9th variable, you could exclude them with the
statement

newdata <- leadership[c(-8,-9)]

This works because prepending a column index with a minus sign (-) excludes that
column.

Finally, the same deletion can be accomplished via

leadership$q3 <- leadership$q4 <- NULL

Here you set columns q3 and q4 to undefined (NULL). Note that NULL isn’t the same
as NA (missing).

Dropping variables is the converse of keeping variables. The choice will depend on
which is easier to code. If there are many variables to drop, it may be easier to keep the
ones that remain, or vice versa.

4.10.3 Selecting observations

Selecting or excluding observations (rows) is typically a key aspect of successful data
preparation and analysis. Several examples are given in the following listing.

Listing 4.6 Selecting observations

newdata <- leadership[1:3,]

newdata <- leadership[which(leadership$gender=="M" &
 leadership$age > 30),]

attach(leadership)
newdata <- leadership[which(gender=='M' & age > 30),]
detach(leadership)

In each of these examples, you provide the row indices and leave the column indi-
ces blank (therefore choosing all columns). In the first example, you ask for rows 1
through 3 (the first three observations).

88 CHAPTER 4 Basic data management

In the second example, you select all men over 30. Let’s break down this line of
code in order to understand it:

1 The logical comparison leadership$gender=="M" produces the vector
c(TRUE, FALSE, FALSE, TRUE, FALSE).

2 The logical comparison leadership$age > 30 produces the vector
c(TRUE, TRUE, FALSE, TRUE, TRUE).

3 The logical comparison c(TRUE, FALSE, FALSE, TRUE, TRUE) & c(TRUE,
TRUE, FALSE, TRUE, TRUE) produces the vector c(TRUE, FALSE, FALSE,
TRUE, FALSE).

4 The function which() gives the indices of a vector that are TRUE. Thus,
which(c(TRUE, FALSE, FALSE, TRUE, FALSE)) produces the vector
c(1, 4).

5 leadership[c(1,4),] selects the first and fourth observations from the data
frame. This meets our selection criteria (men over 30).

In the third example, the attach() function is used so that you don’t have to prepend
the variable names with the data frame names.

At the beginning of this chapter, I suggested that you might want to limit your
analyses to observations collected between January 1, 2009 and December 31, 2009.
How can you do this? Here’s one solution:

leadership$date <- as.Date(leadership$date, "%m/%d/%y")
startdate <- as.Date("2009-01-01")
enddate <- as.Date("2009-10-31")
newdata <- leadership[which(leadership$date >= startdate &
leadership$date <= enddate),]

Convert the date values read in originally as character values to date values using the
format mm/dd/yy. Then, create starting and ending dates. Because the default for
the as.Date() function is yyyy-mm-dd, you don’t have to supply it here. Finally, select
cases meeting your desired criteria as you did in the previous example.

4.10.4 The subset() function

The examples in the previous two sections are important because they help describe
the ways in which logical vectors and comparison operators are interpreted within R.
Understanding how these examples work will help you to interpret R code in general.
Now that you’ve done things the hard way, let’s look at a shortcut.

The subset function is probably the easiest way to select variables and observations.
Here are two examples:

newdata <- subset(leadership, age >= 35 | age < 24,
 select=c(q1, q2, q3, q4))

newdata <- subset(leadership, gender=="M" & age > 25,
 select=gender:q4)

In the first example, you select all rows that have a value of age greater than or equal
to 35 or age less than 24. You keep the variables q1 through q4. In the second example,

Using SQL statements to manipulate data frames 89

you select all men over the age of 25 and you keep variables gender through q4 (gen-
der, q4, and all columns between them). You’ve seen the colon operator from:to in
chapter 2. Here, it provides all variables in a data frame between the from variable and
the to variable, inclusive.

4.10.5 Random samples

Sampling from larger datasets is a common practice in data mining and machine learn-
ing. For example, you may want to select two random samples, creating a predictive
model from one and validating its effectiveness on the other. The sample() function
enables you to take a random sample (with or without replacement) of size n from a
dataset.

You could take a random sample of size 3 from the leadership dataset using the
statement

mysample <- leadership[sample(1:nrow(leadership), 3, replace=FALSE),]

The first argument to the sample() function is a vector of elements to choose from.
Here, the vector is 1 to the number of observations in the data frame. The second
argument is the number of elements to be selected, and the third argument indicates
sampling without replacement. The sample() function returns the randomly sampled
elements, which are then used to select rows from the data frame.

GOING FURTHER

R has extensive facilities for sampling, including drawing and calibrating survey sam-
ples (see the sampling package) and analyzing complex survey data (see the survey
package). Other methods that rely on sampling, including bootstrapping and resam-
pling statistics , are described in chapter 11.

4.11 Using SQL statements to manipulate data frames
Until now, you’ve been using R statements to manipulate data. But many data analysts
come to R well versed in Structured Query Language (SQL). It would be a shame to
lose all that accumulated knowledge. Therefore, before we end, let me briefly mention
the existence of the sqldf package. (If you’re unfamiliar with SQL, please feel free to
skip this section.)

After downloading and installing the package (install.packages("sqldf")) ,
you can use the sqldf() function to apply SQL SELECT statements to data frames. Two
examples are given in the following listing.

Listing 4.7 Using SQL statements to manipulate data frames

> library(sqldf)
> newdf <- sqldf("select * from mtcars where carb=1 order by mpg",
 row.names=TRUE)
> newdf
 mpg cyl disp hp drat wt qsec vs am gear carb
Valiant 18.1 6 225.0 105 2.76 3.46 20.2 1 0 3 1

90 CHAPTER 4 Basic data management

Hornet 4 Drive 21.4 6 258.0 110 3.08 3.21 19.4 1 0 3 1
Toyota Corona 21.5 4 120.1 97 3.70 2.46 20.0 1 0 3 1
Datsun 710 22.8 4 108.0 93 3.85 2.32 18.6 1 1 4 1
Fiat X1-9 27.3 4 79.0 66 4.08 1.94 18.9 1 1 4 1
Fiat 128 32.4 4 78.7 66 4.08 2.20 19.5 1 1 4 1
Toyota Corolla 33.9 4 71.1 65 4.22 1.83 19.9 1 1 4 1

> sqldf("select avg(mpg) as avg_mpg, avg(disp) as avg_disp, gear
 from mtcars where cyl in (4, 6) group by gear")
 avg_mpg avg_disp gear
1 20.3 201 3
2 24.5 123 4
3 25.4 120 5

In the first example, you selected all the variables (columns) from the data frame mt-
cars, kept only automobiles (rows) with one carburetor (carb), sorted the automo-
biles in ascending order by mpg, and saved the results as the data frame newdf. The
option row.names=TRUE carried the row names from the original data frame over to
the new one. In the second example, you printed the mean mpg and disp within each
level of gear for automobiles with four or six cylinders (cyl).

Experienced SQL users will find the sqldf package a useful adjunct to data
management in R. See the project home page (http://code.google.com/p/sqldf/)
for more details.

4.12 Summary
We covered a great deal of ground in this chapter. We looked at the way R stores miss-
ing and date values and explored various ways of handling them. You learned how to
determine the data type of an object and how to convert it to other types. You used
simple formulas to create new variables and recode existing variables. I showed you
how to sort your data and rename your variables. You learned how to merge your data
with other datasets both horizontally (adding variables) and vertically (adding observa-
tions). Finally, we discussed how to keep or drop variables and how to select observa-
tions based on a variety of criteria.

In the next chapter, we’ll look at the myriad of arithmetic, character, and
statistical functions that R makes available for creating and transforming variables.
After exploring ways of controlling program flow, you’ll see how to write your own
functions. We’ll also explore how you can use these functions to aggregate and
summarize your data.

By the end of chapter 5 you’ll have most of the tools necessary to manage complex
datasets. (And you’ll be the envy of data analysts everywhere!)

http://code.google.com/p/sqldf/

5

91

Advanced data management

This chapter covers
Mathematical and statistical functions■

 Character functions■

■ Looping and conditional execution

 User-written functions■

■ Ways to aggregate and reshape data

In chapter 4, we reviewed the basic techniques used for managing datasets within R.
In this chapter, we’ll focus on advanced topics. The chapter is divided into three ba-
sic parts. In the first part we’ll take a whirlwind tour of R’s many functions for math-
ematical, statistical, and character manipulation. To give this section relevance, we
begin with a data management problem that can be solved using these functions.
After covering the functions themselves, we’ll look at one possible solution to the
data management problem.

Next, we cover how to write your own functions to accomplish data management
and analysis tasks. First, you’ll explore ways of controlling program flow, including
looping and conditional statement execution. Then we’ll investigate the structure
of user-written functions and how to invoke them once created.

Then, we’ll look at ways of aggregating and summarizing data, along with
methods of reshaping and restructuring datasets. When aggregating data, you

92 CHAPTER 5 Advanced data management

can specify the use of any appropriate built-in or user-written function to accomplish
the summarization, so the topics you learned in the first two parts of the chapter will
provide a real benefit.

5.1 A data management challenge
To begin our discussion of numerical and character functions, let’s consider a data
management problem. A group of students have taken exams in Math, Science, and
English. You want to combine these scores in order to determine a single performance
indicator for each student. Additionally, you want to assign an A to the top 20 percent
of students, a B to the next 20 percent, and so on. Finally, you want to sort the students
alphabetically. The data are presented in table 5.1.

Table 5.1 Student exam data

Student Math Science English

John Davis 502 95 25

Angela Williams 600 99 22

Bullwinkle Moose 412 80 18

David Jones 358 82 15

Janice Markhammer 495 75 20

Cheryl Cushing 512 85 28

Reuven Ytzrhak 410 80 15

Greg Knox 625 95 30

Joel England 573 89 27

Mary Rayburn 522 86 18

Looking at this dataset, several obstacles are immediately evident. First, scores on the
three exams aren’t comparable. They have widely different means and standard devia-
tions, so averaging them doesn’t make sense. You must transform the exam scores into
comparable units before combining them. Second, you’ll need a method of determin-
ing a student’s percentile rank on this score in order to assign a grade. Third, there’s
a single field for names, complicating the task of sorting students. You’ll need to break
apart their names into first name and last name in order to sort them properly.

Each of these tasks can be accomplished through the judicious use of R’s numerical
and character functions. After working through the functions described in the next
section, we’ll consider a possible solution to this data management challenge.

Numerical and character functions 93

5.2 Numerical and character functions
In this section, we’ll review functions in R that can be used as the basic building blocks
for manipulating data. They can be divided into numerical (mathematical, statistical,
probability) and character functions. After we review each type, I’ll show you how to
apply functions to the columns (variables) and rows (observations) of matrices and
data frames (see section 5.2.6).

5.2.1 Mathematical functions

Table 5.2 lists common mathematical functions along with short examples.

Table 5.2 Mathematical functions

Function Description

abs(x) Absolute value
abs(-4) returns 4.

sqrt(x) Square root
sqrt(25) returns 5.
This is the same as 25^(0.5).

ceiling(x) Smallest integer not less than x
ceiling(3.475) returns 4.

floor(x) Largest integer not greater than x
floor(3.475) returns 3.

trunc(x) Integer formed by truncating values in x toward 0
trunc(5.99) returns 5.

round(x, digits=n) Round x to the specified number of decimal places
round(3.475, digits=2) returns 3.48.

signif(x, digits=n) Round x to the specified number of significant digits
signif(3.475, digits=2) returns 3.5.

cos(x) , sin(x) , tan(x) Cosine, sine, and tangent
cos(2) returns –0.416.

acos(x) , asin(x) , atan(x) Arc-cosine, arc-sine, and arc-tangent
acos(-0.416) returns 2.

cosh(x) , sinh(x) , tanh(x) Hyperbolic cosine, sine, and tangent
sinh(2) returns 3.627.

acosh(x) , asinh(x) , atanh(x) Hyperbolic arc-cosine, arc-sine, and arc-tangent
asinh(3.627) returns 2.

log(x,base=n)
log(x)
log10(x)

Logarithm of x to the base n
For convenience
log(x) is the natural logarithm.
log10(x) is the common logarithm.
log(10) returns 2.3026.
log10(10) returns 1.

94 CHAPTER 5 Advanced data management

Table 5.2 Mathematical functions (continued)

Function Description

exp(x) Exponential function
exp(2.3026) returns 10.

Data transformation is one of the primary uses for these functions. For example, you
often transform positively skewed variables such as income to a log scale before further
analyses. Mathematical functions will also be used as components in formulas, in plot-
ting functions (for example, x versus sin(x)) and in formatting numerical values
prior to printing.

 The examples in table 5.2 apply mathematical functions to scalars (individual
numbers). When these functions are applied to numeric vectors, matrices, or data
frames, they operate on each individual value. For example, sqrt(c(4, 16, 25))
returns c(2, 4, 5).

5.2.2 Statistical functions

Common statistical functions are presented in table 5.3. Many of these functions have
optional parameters that affect the outcome. For example:

y <- mean(x)

provides the arithmetic mean of the elements in object x, and

z <- mean(x, trim = 0.05, na.rm=TRUE)

provides the trimmed mean, dropping the highest and lowest 5 percent of scores and
any missing values. Use the help() function to learn more about each function and
its arguments.

Table 5.3 Statistical functions

Function Description

mean(x) Mean
mean(c(1,2,3,4)) returns 2.5.

median(x) Median
median(c(1,2,3,4)) returns 2.5.

sd(x) Standard deviation
sd(c(1,2,3,4)) returns 1.29.

var(x) Variance
var(c(1,2,3,4)) returns 1.67.

mad(x) Median absolute deviation
mad(c(1,2,3,4)) returns 1.48.

Numerical and character functions 95

Table 5.3 Statistical functions (continued)

Function Description

quantile(x, probs) Quantiles where x is the numeric vector where quantiles are desired
and probs is a numeric vector with probabilities in [0,1].
30th and 84th percentiles of x
y <- quantile(x, c(.3,.84))

range(x) Range
x <- c(1,2,3,4)
range(x) returns c(1,4).
diff(range(x)) returns 3.

sum(x) Sum
sum(c(1,2,3,4)) returns 10.

diff(x, lag=n) Lagged differences, with lag indicating which lag to use. The default
lag is 1.
x<- c(1, 5, 23, 29)
diff(x) returns c(4, 18, 6).

min(x) Minimum
min(c(1,2,3,4)) returns 1.

max(x) Maximum
max(c(1,2,3,4)) returns 4.

scale(x,
 center=TRUE,
 scale=TRUE)

Column center (center=TRUE) or standardize (center=TRUE,
scale=TRUE) data object x. An example is given in listing 5.6.

To see these functions in action, look at the next listing. This listing demonstrates two
ways to calculate the mean and standard deviation of a vector of numbers.

Listing 5.1 Calculating the mean and standard deviation

> x <- c(1,2,3,4,5,6,7,8)

> mean(x)
[1] 4.5
> sd(x)
[1] 2.449490

> n <- length(x)
> meanx <- sum(x)/n
> css <- sum((x - meanx)^2)
> sdx <- sqrt(css / (n-1))
> meanx
[1] 4.5
> sdx
[1] 2.449490

It’s instructive to view how the corrected sum of squares (css) is calculated in the
second approach:

Short way

Long way

96 CHAPTER 5 Advanced data management

1 x equals c(1, 2, 3, 4, 5, 6, 7, 8) and mean x equals 4.5 (length(x)
returns the number of elements in x).

2 (x – meanx) subtracts 4.5 from each element of x, resulting in
c(-3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5).

3 (x – meanx)^2 squares each element of (x - meanx), resulting in
c(12.25, 6.25, 2.25, 0.25, 0.25, 2.25, 6.25, 12.25).

4 sum((x - meanx)^2) sums each of the elements of (x - meanx)^2),
resulting in 42.

Writing formulas in R has much in common with matrix manipulation languages such as
MATLAB (we’ll look more specifically at solving matrix algebra problems in appendix E).

STANDARDIZING DATA

By default, the scale() function standardizes the specified columns of a matrix or
data frame to a mean of 0 and a standard deviation of 1:

newdata <- scale(mydata)

To standardize each column to an arbitrary mean and standard deviation, you can use
code similar to the following:

newdata <- scale(mydata)*SD + M

where M is the desired mean and SD is the desired standard deviation. Using the
scale() function on non-numeric columns will produce an error. To standardize a
specific column rather than an entire matrix or data frame, you can use code such as

newdata <- transform(mydata, myvar = scale(myvar)*10+50)

This code standardizes the variable myvar to a mean of 50 and standard deviation of
10. We’ll use the scale() function in the solution to the data management challenge
in section 5.3.

5.2.3 Probability functions

You may wonder why probability functions aren’t listed with the statistical functions (it
was really bothering you, wasn’t it?). Although probability functions are statistical by
definition, they’re unique enough to deserve their own section. Probability functions
are often used to generate simulated data with known characteristics and to calculate
probability values within user-written statistical functions.

In R, probability functions take the form

[dpqr]distribution_abbreviation()

where the first letter refers to the aspect of the distribution returned:

d = density
p = distribution function
q = quantile function
r = random generation (random deviates)

The common probability functions are listed in table 5.4.

Numerical and character functions 97

Table 5.4 Probability distributions

Distribution Abbreviation Distribution Abbreviation

Beta beta Logistic logis

Binomial binom Multinomial multinom

Cauchy cauchy Negative binomial nbinom

Chi-squared (noncentral) chisq Normal norm

Exponential exp Poisson pois

F f Wilcoxon Signed Rank signrank

Gamma gamma T t

Geometric geom Uniform unif

Hypergeometric hyper Weibull weibull

Lognormal lnorm Wilcoxon Rank Sum wilcox

To see how these work, let’s look at functions related to the normal distribution. If you
don’t specify a mean and a standard deviation, the standard normal distribution is as-
sumed (mean=0, sd=1). Examples of the density (dnorm), distribution (pnorm), quan-
tile (qnorm) and random deviate generation (rnorm) functions are given in table 5.5.

Table 5.5 Normal distribution functions

Problem Solution

Plot the standard normal curve on the interval [–3,3]
(see below)

−3 −2 −1 0 1 2 3

0.
1

0.
2

0.
3

Normal Deviate

D
en

si
ty

x <- pretty(c(-3,3), 30)
y <- dnorm(x)
plot(x, y,
 type = "l",
 xlab = "Normal Deviate",
 ylab = "Density",
 yaxs = "i"
)

What is the area under the standard normal curve to
the left of z=1.96?

pnorm(1.96)equals 0.975

98 CHAPTER 5 Advanced data management

Table 5.5 Normal distribution functions (continued)

Problem Solution

What is the value of the 90th percentile of a normal
distribution with a mean of 500 and a standard
deviation of 100?

qnorm(.9, mean=500, sd=100)
equals 628.16

Generate 50 random normal deviates with a mean of
50 and a standard deviation of 10.

rnorm(50, mean=50, sd=10)

Don’t worry if the plot function options are unfamiliar. They’re covered in detail in
chapter 11; pretty() is explained in table 5.7 later in this chapter.

SETTING THE SEED FOR RANDOM NUMBER GENERATION

Each time you generate pseudo-random deviates, a different seed, and therefore dif-
ferent results, are produced. To make your results reproducible, you can specify the
seed explicitly, using the set.seed() function . An example is given in the next listing.
Here, the runif() function is used to generate pseudo-random numbers from a uni-
form distribution on the interval 0 to 1.

Listing 5.2 Generating pseudo-random numbers from a uniform distribution

> runif(5)
[1] 0.8725344 0.3962501 0.6826534 0.3667821 0.9255909
> runif(5)
[1] 0.4273903 0.2641101 0.3550058 0.3233044 0.6584988
> set.seed(1234)
> runif(5)
[1] 0.1137034 0.6222994 0.6092747 0.6233794 0.8609154
> set.seed(1234)
> runif(5)
[1] 0.1137034 0.6222994 0.6092747 0.6233794 0.8609154

By setting the seed manually, you’re able to reproduce your results. This ability can be
helpful in creating examples you can access at a future time and share with others.

GENERATING MULTIVARIATE NORMAL DATA

In simulation research and Monte Carlo studies, you often want to draw data from
multivariate normal distribution with a given mean vector and covariance matrix. The
mvrnorm() function in the MASS package makes this easy. The function call is

mvrnorm(n, mean, sigma)

where n is the desired sample size, mean is the vector of means, and sigma is the vari-
ance-covariance (or correlation) matrix. In listing 5.3 you’ll sample 500 observations
from a three-variable multivariate normal distribution with

Mean Vector 230.7 146.7 3.6

Covariance Matrix 15360.8 6721.2 -47.1

 6721.2 4700.9 -16.5

 -47.1 -16.5 0.3

Numerical and character functions 99

Listing 5.3 Generating data from a multivariate normal distribution

> library(MASS)
> options(digits=3)
> set.seed(1234) q

> mean <- c(230.7, 146.7, 3.6)
> sigma <- matrix(c(15360.8, 6721.2, -47.1, w
 6721.2, 4700.9, -16.5,
 -47.1, -16.5, 0.3), nrow=3, ncol=3)

> mydata <- mvrnorm(500, mean, sigma) e
> mydata <- as.data.frame(mydata)
> names(mydata) <- c("y","x1","x2")

> dim(mydata) r
[1] 500 3
> head(mydata, n=10)
 y x1 x2
1 98.8 41.3 4.35
2 244.5 205.2 3.57
3 375.7 186.7 3.69
4 -59.2 11.2 4.23
5 313.0 111.0 2.91
6 288.8 185.1 4.18
7 134.8 165.0 3.68
8 171.7 97.4 3.81
9 167.3 101.0 4.01
10 121.1 94.5 3.76

In listing 5.3, you set a random number seed so that you can reproduce the results at a
later time q. You specify the desired mean vector and variance-covariance matrix w,
and generate 500 pseudo-random observations e. For convenience, the results are
converted from a matrix to a data frame, and the variables are given names. Finally,
you confirm that you have 500 observations and 3 variables, and print out the first 10
observations r. Note that because a correlation matrix is also a covariance matrix, you
could’ve specified the correlations structure directly.

The probability functions in R allow you to generate simulated data, sampled from
distributions with known characteristics. Statistical methods that rely on simulated data
have grown exponentially in recent years, and you’ll see several examples of these in
later chapters.

5.2.4 Character functions

Although mathematical and statistical functions operate on numerical data, character
functions extract information from textual data, or reformat textual data for printing
and reporting. For example, you may want to concatenate a person’s first name and
last name, ensuring that the first letter of each is capitalized. Or you may want to count
the instances of obscenities in open-ended feedback. Some of the most useful charac-
ter functions are listed in table 5.6.

Set random number seed

Specify mean vector,
covariance matrix

Generate data

View results

100 CHAPTER 5 Advanced data management

Table 5.6 Character functions

Function Description

nchar(x) Counts the number of characters of x
x <- c("ab", "cde", "fghij")
length(x) returns 3 (see table 5.7).
nchar(x[3]) returns 5.

substr(x, start, stop) Extract or replace substrings in a character vector.
x <- "abcdef"
substr(x, 2, 4) returns “bcd”.
substr(x, 2, 4) <- "22222" (x is now
"a222ef").

grep(pattern, x, ignore.
case=FALSE, fixed=FALSE)

Search for pattern in x. If fixed=FALSE, then
pattern is a regular expression. If fixed=TRUE,
then pattern is a text string. Returns matching
indices.
grep("A", c("b","A","c"), fixed=TRUE)
returns 2.

sub(pattern, replacement, x,
ignore.case=FALSE, fixed=FALSE)

Find pattern in x and substitute with
replacement text. If fixed=FALSE then
pattern is a regular expression. If fixed=TRUE
then pattern is a text string.
sub("\\s",".","Hello There") returns
Hello.There. Note "\s" is a regular expression
for finding whitespace; use "\\s" instead
because "\" is R’s escape character (see section
1.3.3).

strsplit(x, split, fixed=FALSE) Split the elements of character vector x at split.
If fixed=FALSE, then pattern is a regular
expression. If fixed=TRUE, then pattern is a
text string.

y <- strsplit("abc", "") returns a
1-component, 3-element list containing
"a" "b" "c".

unlist(y)[2] and sapply(y, "[", 2)
both return “b”.

paste(..., sep="") Concatenate strings after using sep string to
separate them.
paste("x", 1:3, sep="") returns
c("x1", "x2", "x3").
paste("x",1:3,sep="M") returns
c("xM1","xM2" "xM3").
paste("Today is", date()) returns
Today is Thu Jun 25 14:17:32 2011
 (I changed the date to appear more current.)

toupper(x) Uppercase
toupper("abc") returns “ABC”.

tolower(x) Lowercase
tolower("ABC") returns “abc”.

Numerical and character functions 101

Note that the functions grep(), sub(), and strsplit() can search for a text string
(fixed=TRUE) or a regular expression (fixed=FALSE) (FALSE is the default). Regular
expressions provide a clear and concise syntax for matching a pattern of text. For ex-
ample, the regular expression

^[hc]?at

matches any string that starts with 0 or one occurrences of h or c, followed by at. The
expression therefore matches hat, cat, and at, but not bat. To learn more, see the regu-
lar expression entry in Wikipedia.

5.2.5 Other useful functions

The functions in table 5.7 are also quite useful for data management and manipula-
tion, but they don’t fit cleanly into the other categories.

Table 5.7 Other useful functions

Function Description

length(x) Length of object x.
x <- c(2, 5, 6, 9)
length(x) returns 4.

seq(from, to, by) Generate a sequence.
indices <- seq(1,10,2)
indices is c(1, 3, 5, 7, 9).

rep(x, n) Repeat x n times.
y <- rep(1:3, 2)
y is c(1, 2, 3, 1, 2, 3).

cut(x, n) Divide continuous variable x into factor with n levels.
To create an ordered factor, include the option ordered_result =
TRUE.

pretty(x, n) Create pretty breakpoints. Divides a continuous variable x into n
intervals, by selecting n+1 equally spaced rounded values. Often used
in plotting.

cat(… , file =
"myfile", append =
FALSE)

Concatenates the objects in … and outputs them to the screen or to a
file (if one is declared) .
firstname <- c("Jane")
cat("Hello" , firstname, "\n").

The last example in the table demonstrates the use of escape characters in printing.
Use \n for new lines, \t for tabs, \' for a single quote, \b for backspace, and so forth
(type ?Quotes for more information). For example, the code

name <- "Bob"
cat("Hello", name, "\b.\n", "Isn\'t R", "\t", "GREAT?\n")

102 CHAPTER 5 Advanced data management

produces

Hello Bob.
 Isn't R GREAT?

Note that the second line is indented one space. When cat concatenates objects for
output, it separates each by a space. That’s why you include the backspace (\b) escape
character before the period. Otherwise it would have produced “Hello Bob .”

How you apply the functions you’ve covered so far to numbers, strings, and vectors is
intuitive and straightforward, but how do you apply them to matrices and data frames?
That’s the subject of the next section.

5.2.6 Applying functions to matrices and data frames

One of the interesting features of R functions is that they can be applied to a variety of
data objects (scalars, vectors, matrices, arrays, and data frames). The following listing
provides an example.

Listing 5.4 Applying functions to data objects

> a <- 5
> sqrt(a)
[1] 2.236068
> b <- c(1.243, 5.654, 2.99)
> round(b)
[1] 1 6 3
> c <- matrix(runif(12), nrow=3)
> c
 [,1] [,2] [,3] [,4]
[1,] 0.4205 0.355 0.699 0.323
[2,] 0.0270 0.601 0.181 0.926
[3,] 0.6682 0.319 0.599 0.215
> log(c)
 [,1] [,2] [,3] [,4]
[1,] -0.866 -1.036 -0.358 -1.130
[2,] -3.614 -0.508 -1.711 -0.077
[3,] -0.403 -1.144 -0.513 -1.538
> mean(c)
[1] 0.444

Notice that the mean of matrix c in listing 5.4 results in a scalar (0.444). The mean()
function took the average of all 12 elements in the matrix. But what if you wanted the
3 row means or the 4 column means?

R provides a function, apply() , that allows you to apply an arbitrary function to
any dimension of a matrix, array, or data frame. The format for the apply function is

apply(x, MARGIN, FUN, ...)

where x is the data object, MARGIN is the dimension index, FUN is a function you
specify, and ... are any parameters you want to pass to FUN. In a matrix or data
frame MARGIN=1 indicates rows and MARGIN=2 indicates columns. Take a look at the
examples in listing 5.5.

A solution for our data management challenge 103

Listing 5.5 Applying a function to the rows (columns) of a matrix

> mydata <- matrix(rnorm(30), nrow=6) q
> mydata
 [,1] [,2] [,3] [,4] [,5]
[1,] 0.71298 1.368 -0.8320 -1.234 -0.790
[2,] -0.15096 -1.149 -1.0001 -0.725 0.506
[3,] -1.77770 0.519 -0.6675 0.721 -1.350
[4,] -0.00132 -0.308 0.9117 -1.391 1.558
[5,] -0.00543 0.378 -0.0906 -1.485 -0.350
[6,] -0.52178 -0.539 -1.7347 2.050 1.569
> apply(mydata, 1, mean) w
[1] -0.155 -0.504 -0.511 0.154 -0.310 0.165
> apply(mydata, 2, mean) e

[1] -0.2907 0.0449 -0.5688 -0.3442 0.1906
> apply(mydata, 2, mean, trim=0.2)
[1] -0.1699 0.0127 -0.6475 -0.6575 0.2312 r

You start by generating a 6 x 5 matrix containing random normal variates q. Then you
calculate the 6 row means w, and 5 column means e. Finally, you calculate trimmed
column means (in this case, means based on the middle 60 percent of the data, with
the bottom 20 percent and top 20 percent of values discarded) r.

Because FUN can be any R function, including a function that you write yourself (see
section 5.4), apply() is a powerful mechanism. While apply() applies a function over
the margins of an array, lapply() and sapply() apply a function over a list. You’ll
see an example of sapply (which is a user-friendly version of lapply) in the next
section.

You now have all the tools you need to solve the data challenge in section 5.1, so
let’s give it a try.

5.3 A solution for our data management challenge
Your challenge from section 5.1 is to combine subject test scores into a single perfor-
mance indicator for each student, grade each student from A to F based on their rela-
tive standing (top 20 percent, next 20 percent, etc.), and sort the roster by students’
last name, followed by first name. A solution is given in the following listing.

Listing 5.6 A solution to the learning example

> options(digits=2)

> Student <- c("John Davis", "Angela Williams", "Bullwinkle Moose",
 "David Jones", "Janice Markhammer", "Cheryl Cushing",
 "Reuven Ytzrhak", "Greg Knox", "Joel England",
 "Mary Rayburn")
> Math <- c(502, 600, 412, 358, 495, 512, 410, 625, 573, 522)
> Science <- c(95, 99, 80, 82, 75, 85, 80, 95, 89, 86)
> English <- c(25, 22, 18, 15, 20, 28, 15, 30, 27, 18)
> roster <- data.frame(Student, Math, Science, English,
 stringsAsFactors=FALSE)

> z <- scale(roster[,2:4])
> score <- apply(z, 1, mean)
> roster <- cbind(roster, score)

Generate data

Calculate row means

Calculate column means

Calculate trimmed
column means

Obtain performance
scores

104 CHAPTER 5 Advanced data management

> y <- quantile(score, c(.8,.6,.4,.2))
> roster$grade[score >= y[1]] <- "A"
> roster$grade[score < y[1] & score >= y[2]] <- "B"
> roster$grade[score < y[2] & score >= y[3]] <- "C"
> roster$grade[score < y[3] & score >= y[4]] <- "D"
> roster$grade[score < y[4]] <- "F"

> name <- strsplit((roster$Student), " ")
> lastname <- sapply(name, "[", 2)
> firstname <- sapply(name, "[", 1)
> roster <- cbind(firstname,lastname, roster[,-1])

> roster <- roster[order(lastname,firstname),]

> roster
 Firstname Lastname Math Science English score grade
6 Cheryl Cushing 512 85 28 0.35 C
1 John Davis 502 95 25 0.56 B
9 Joel England 573 89 27 0.70 B
4 David Jones 358 82 15 -1.16 F
8 Greg Knox 625 95 30 1.34 A
5 Janice Markhammer 495 75 20 -0.63 D
3 Bullwinkle Moose 412 80 18 -0.86 D
10 Mary Rayburn 522 86 18 -0.18 C
2 Angela Williams 600 99 22 0.92 A
7 Reuven Ytzrhak 410 80 15 -1.05 F

The code is dense so let’s walk through the solution step by step:
Step 1. The original student roster is given. The options(digits=2) limits the num-
ber of digits printed after the decimal place and makes the printouts easier to read.

> options(digits=2)
> roster
 Student Math Science English
1 John Davis 502 95 25
2 Angela Williams 600 99 22
3 Bullwinkle Moose 412 80 18
4 David Jones 358 82 15
5 Janice Markhammer 495 75 20
6 Cheryl Cushing 512 85 28
7 Reuven Ytzrhak 410 80 15
8 Greg Knox 625 95 30
9 Joel England 573 89 27
10 Mary Rayburn 522 86 18

Step 2. Because the Math, Science, and English tests are reported on different scales
(with widely differing means and standard deviations), you need to make them compa-
rable before combining them. One way to do this is to standardize the variables so that
each test is reported in standard deviation units, rather than in their original scales.
You can do this with the scale() function :

> z <- scale(roster[,2:4])
> z
 Math Science English

Grade students

Extract last and
first names

Sort by last and
first names

A solution for our data management challenge 105

 [1,] 0.013 1.078 0.587
 [2,] 1.143 1.591 0.037
 [3,] -1.026 -0.847 -0.697
 [4,] -1.649 -0.590 -1.247
 [5,] -0.068 -1.489 -0.330
 [6,] 0.128 -0.205 1.137
 [7,] -1.049 -0.847 -1.247
 [8,] 1.432 1.078 1.504
 [9,] 0.832 0.308 0.954
[10,] 0.243 -0.077 -0.697

Step 3. You can then get a performance score for each student by calculating the
row means using the mean() function and adding it to the roster using the cbind()
function :

> score <- apply(z, 1, mean)
> roster <- cbind(roster, score)
> roster
 Student Math Science English score
1 John Davis 502 95 25 0.559
2 Angela Williams 600 99 22 0.924
3 Bullwinkle Moose 412 80 18 -0.857
4 David Jones 358 82 15 -1.162
5 Janice Markhammer 495 75 20 -0.629
6 Cheryl Cushing 512 85 28 0.353
7 Reuven Ytzrhak 410 80 15 -1.048
8 Greg Knox 625 95 30 1.338
9 Joel England 573 89 27 0.698
10 Mary Rayburn 522 86 18 -0.177

Step 4. The quantile() function gives you the percentile rank of each student’s per-
formance score. You see that the cutoff for an A is 0.74, for a B is 0.44, and so on.

> y <- quantile(roster$score, c(.8,.6,.4,.2))
> y
 80% 60% 40% 20%
 0.74 0.44 -0.36 -0.89

Step 5. Using logical operators, you can recode students’ percentile ranks into a new
categorical grade variable. This creates the variable grade in the roster data frame.

> roster$grade[score >= y[1]] <- "A"
> roster$grade[score < y[1] & score >= y[2]] <- "B"
> roster$grade[score < y[2] & score >= y[3]] <- "C"
> roster$grade[score < y[3] & score >= y[4]] <- "D"
> roster$grade[score < y[4]] <- "F"
> roster
 Student Math Science English score grade
1 John Davis 502 95 25 0.559 B
2 Angela Williams 600 99 22 0.924 A
3 Bullwinkle Moose 412 80 18 -0.857 D
4 David Jones 358 82 15 -1.162 F
5 Janice Markhammer 495 75 20 -0.629 D
6 Cheryl Cushing 512 85 28 0.353 C
7 Reuven Ytzrhak 410 80 15 -1.048 F
8 Greg Knox 625 95 30 1.338 A

106

CHAPTER 5 Advanced data management

9 Joel England 573 89 27 0.698 B
10 Mary Rayburn 522 86 18 -0.177 C

Step 6. You’ll use the strsplit() function to break student names into first name
and last name at the space character. Applying strsplit() to a vector of strings re-
turns a list:

> name <- strsplit((roster$Student), " ")
> name

[[1]]
[1] "John" "Davis"

[[2]]
[1] "Angela" "Williams"

[[3]]
[1] "Bullwinkle" "Moose"

[[4]]
[1] "David" "Jones"

[[5]]
[1] "Janice" "Markhammer"

[[6]]
[1] "Cheryl" "Cushing"

[[7]]
[1] "Reuven" "Ytzrhak"

[[8]]
[1] "Greg" "Knox"

[[9]]
[1] "Joel" "England"

[[10]]
[1] "Mary" "Rayburn"

Step 7. You can use the sapply() function to take the first element of each compo-
nent and put it in a firstname vector, and the second element of each component and
put it in a lastname vector. "[" is a function that extracts part of an object—here the
first or second component of the list name. You’ll use cbind() to add them to the
roster. Because you no longer need the student variable, you’ll drop it (with the –1 in
the roster index).

> Firstname <- sapply(name, "[", 1)
> Lastname <- sapply(name, "[", 2)
> roster <- cbind(Firstname, Lastname, roster[,-1])
> roster
 Firstname Lastname Math Science English score grade
1 John Davis 502 95 25 0.559 B
2 Angela Williams 600 99 22 0.924 A
3 Bullwinkle Moose 412 80 18 -0.857 D

 Control flow 107

4 David Jones 358 82 15 -1.162 F
5 Janice Markhammer 495 75 20 -0.629 D
6 Cheryl Cushing 512 85 28 0.353 C
7 Reuven Ytzrhak 410 80 15 -1.048 F
8 Greg Knox 625 95 30 1.338 A
9 Joel England 573 89 27 0.698 B
10 Mary Rayburn 522 86 18 -0.177 C

Step 8. Finally, you can sort the dataset by first and last name using the order()
function :

> roster[order(Lastname,Firstname),]
 Firstname Lastname Math Science English score grade
6 Cheryl Cushing 512 85 28 0.35 C
1 John Davis 502 95 25 0.56 B
9 Joel England 573 89 27 0.70 B
4 David Jones 358 82 15 -1.16 F
8 Greg Knox 625 95 30 1.34 A
5 Janice Markhammer 495 75 20 -0.63 D
3 Bullwinkle Moose 412 80 18 -0.86 D
10 Mary Rayburn 522 86 18 -0.18 C
2 Angela Williams 600 99 22 0.92 A
7 Reuven Ytzrhak 410 80 15 -1.05 F

Voilà! Piece of cake!
There are many other ways to accomplish these tasks, but this code helps capture

the flavor of these functions. Now it’s time to look at control structures and user-written
functions.

5.4 Control flow
In the normal course of events, the statements in an R program are executed sequen-
tially from the top of the program to the bottom. But there are times that you’ll want to
execute some statements repetitively, while only executing other statements if certain
conditions are met. This is where control-flow constructs come in.

R has the standard control structures you’d expect to see in a modern programming
language. First you’ll go through the constructs used for conditional execution,
followed by the constructs used for looping.

For the syntax examples throughout this section, keep the following in mind:

■ statement is a single R statement or a compound statement (a group of R state-
ments enclosed in curly braces { } and separated by semicolons).

■ cond is an expression that resolves to true or false.
■ expr is a statement that evaluates to a number or character string.
■ seq is a sequence of numbers or character strings.

After we discuss control-flow constructs, you’ll learn how to write your functions.

5.4.1 Repetition and looping

Looping constructs repetitively execute a statement or series of statements until a con-
dition isn’t true. These include the for and while structures.

108 CHAPTER 5 Advanced data management

FOR

The for loop executes a statement repetitively until a variable’s value is no longer con-
tained in the sequence seq. The syntax is

for (var in seq) statement

In this example

for (i in 1:10) print("Hello")

the word Hello is printed 10 times.

WHILE

A while loop executes a statement repetitively until the condition is no longer true.
The syntax is

while (cond) statement

In a second example, the code

i <- 10
while (i > 0) {print("Hello"); i <- i - 1}

once again prints the word Hello 10 times. Make sure that the statements inside the
brackets modify the while condition so that sooner or later it’s no longer true—other-
wise the loop will never end! In the previous example, the statement

i <- i - 1

subtracts 1 from object i on each loop, so that after the tenth loop it’s no longer larger
than 0. If you instead added 1 on each loop, R would never stop saying Hello. This is
why while loops can be more dangerous than other looping constructs.

Looping in R can be inefficient and time consuming when you’re processing the
rows or columns of large datasets. Whenever possible, it’s better to use R’s built-
in numerical and character functions in conjunction with the apply family of
functions.

5.4.2 Conditional execution

In conditional execution, a statement or statements are only executed if a specified
condition is met. These constructs include if-else, ifelse, and switch.

IF-ELSE

The if-else control structure executes a statement if a given condition is true. Op-
tionally, a different statement is executed if the condition is false. The syntax is

if (cond) statement
if (cond) statement1 else statement2

Here are examples:

if (is.character(grade)) grade <- as.factor(grade)
if (!is.factor(grade)) grade <- as.factor(grade) else print("Grade already
 is a factor")

 User-written functions 109

In the first instance, if grade is a character vector, it’s converted into a factor. In the
second instance, one of two statements is executed. If grade isn’t a factor (note the !
symbol), it’s turned into one. If it is a factor, then the message is printed.

IFELSE

The ifelse construct is a compact and vectorized version of the if-else construct .
The syntax is

ifelse(cond, statement1, statement2)

The first statement is executed if cond is TRUE. If cond is FALSE, the second statement
is executed. Here are examples:

ifelse(score > 0.5, print("Passed"), print("Failed"))
outcome <- ifelse (score > 0.5, "Passed", "Failed")

Use ifelse when you want to take a binary action or when you want to input and out-
put vectors from the construct.

SWITCH

switch chooses statements based on the value of an expression. The syntax is

switch(expr, ...)

where ... represents statements tied to the possible outcome values of expr. It’s easiest
to understand how switch works by looking at the example in the following listing.

Listing 5.7 A switch example

> feelings <- c("sad", "afraid")
> for (i in feelings)
 print(
 switch(i,
 happy = "I am glad you are happy",
 afraid = "There is nothing to fear",
 sad = "Cheer up",
 angry = "Calm down now"
)
)

[1] "Cheer up"
[1] "There is nothing to fear"

This is a silly example but shows the main features. You’ll learn how to use switch in
user-written functions in the next section.

5.5 User-written functions
One of R’s greatest strengths is the user’s ability to add functions. In fact, many of the
functions in R are functions of existing functions. The structure of a function looks
like this:

myfunction <- function(arg1, arg2, ...){
 statements
 return(object)
}

110 CHAPTER 5 Advanced data management

Objects in the function are local to the function. The object returned can be any data
type, from scalar to list. Let’s take a look at an example.

Say you’d like to have a function that calculates the central tendency and spread
of data objects. The function should give you a choice between parametric (mean
and standard deviation) and nonparametric (median and median absolute deviation)
statistics. The results should be returned as a named list. Additionally, the user should
have the choice of automatically printing the results, or not. Unless otherwise specified,
the function’s default behavior should be to calculate parametric statistics and not
print the results. One solution is given in the following listing.

Listing 5.8 mystats() : a user-written function for summary statistics

mystats <- function(x, parametric=TRUE, print=FALSE) {
 if (parametric) {
 center <- mean(x); spread <- sd(x)
 } else {
 center <- median(x); spread <- mad(x)
 }
 if (print & parametric) {
 cat("Mean=", center, "\n", "SD=", spread, "\n")
 } else if (print & !parametric) {
 cat("Median=", center, "\n", "MAD=", spread, "\n")
 }
 result <- list(center=center, spread=spread)
 return(result)
}

To see your function in action, first generate some data (a random sample of size 500
from a normal distribution):

set.seed(1234)
x <- rnorm(500)

After executing the statement

y <- mystats(x)

y$center will contain the mean (0.00184) and y$spread will contain the standard
deviation (1.03). No output is produced. If you execute the statement

y <- mystats(x, parametric=FALSE, print=TRUE)

y$center will contain the median (–0.0207) and y$spread will contain the median
absolute deviation (1.001). In addition, the following output is produced:

Median= -0.0207
MAD= 1

Next, let’s look at a user-written function that uses the switch construct . This function
gives the user a choice regarding the format of today’s date. Values that are assigned
to parameters in the function declaration are taken as defaults. In the mydate() func-
tion , long is the default format for dates if type isn’t specified:

 User-written functions 111

mydate <- function(type="long") {
 switch(type,
 long = format(Sys.time(), "%A %B %d %Y"),
 short = format(Sys.time(), "%m-%d-%y"),
 cat(type, "is not a recognized type\n")
)
}

Here’s the function in action:

> mydate("long")
[1] "Thursday December 02 2010"
> mydate("short")
[1] "12-02-10"
> mydate()
[1] "Thursday December 02 2010"
> mydate("medium")
medium is not a recognized type

Note that the cat() function is only executed if the entered type doesn’t match "long"
or "short". It’s usually a good idea to have an expression that catches user-supplied
arguments that have been entered incorrectly.

Several functions are available that can help add error trapping and correction to
your functions. You can use the function warning() to generate a warning message,
message() to generate a diagnostic message, and stop() to stop execution of the
current expression and carry out an error action. See each function’s online help for
more details.

TIP Once you start writing functions of any length and complexity, access to
good debugging tools becomes important. R has a number of useful built-
in functions for debugging, and user-contributed packages are available that
provide additional functionality. An excellent resource on this topic is Duncan
Murdoch’s “Debugging in R” (http://www.stats.uwo.ca/faculty/murdoch/
software/debuggingR).

After creating your own functions, you may want to make them available in every ses-
sion. Appendix B describes how to customize the R environment so that user-written
functions are loaded automatically at startup. We’ll look at additional examples of
user-written functions in chapters 6 and 8.

You can accomplish a great deal using the basic techniques provided in this section.
If you’d like to explore the subtleties of function writing, or want to write professional-
level code that you can distribute to others, I recommend two excellent books that
you’ll find in the References section at the end of this book: Venables & Ripley (2000)
and Chambers (2008). Together, they provide a significant level of detail and breadth
of examples.

Now that we’ve covered user-written functions, we’ll end this chapter with a
discussion of data aggregation and reshaping.

http://www.stats.uwo.ca/faculty/murdoch/software/debuggingR
http://www.stats.uwo.ca/faculty/murdoch/software/debuggingR

112 CHAPTER 5 Advanced data management

5.6 Aggregation and restructuring
R provides a number of powerful methods for aggregating and reshaping data. When
you aggregate data, you replace groups of observations with summary statistics based
on those observations. When you reshape data, you alter the structure (rows and col-
umns) determining how the data is organized. This section describes a variety of meth-
ods for accomplishing these tasks.

In the next two subsections, we’ll use the mtcars data frame that’s included
with the base installation of R. This dataset, extracted from Motor Trend magazine
(1974), describes the design and performance characteristics (number of cylinders,
displacement, horsepower, mpg, and so on) for 34 automobiles. To learn more about
the dataset, see help(mtcars) .

5.6.1 Transpose

The transpose (reversing rows and columns) is perhaps the simplest method of reshap-
ing a dataset. Use the t() function to transpose a matrix or a data frame. In the latter
case, row names become variable (column) names. An example is presented in the
next listing.

Listing 5.9 Transposing a dataset

> cars <- mtcars[1:5,1:4]
> cars
 mpg cyl disp hp
Mazda RX4 21.0 6 160 110
Mazda RX4 Wag 21.0 6 160 110
Datsun 710 22.8 4 108 93
Hornet 4 Drive 21.4 6 258 110
Hornet Sportabout 18.7 8 360 175
> t(cars)
 Mazda RX4 Mazda RX4 Wag Datsun 710 Hornet 4 Drive Hornet Sportabout
mpg 21 21 22.8 21.4 18.7
cyl 6 6 4.0 6.0 8.0
disp 160 160 108.0 258.0 360.0
hp 110 110 93.0 110.0 175.0

Listing 5.9 uses a subset of the mtcars dataset in order to conserve space on the page.
You’ll see a more flexible way of transposing data when we look at the shape package
later in this section.

5.6.2 Aggregating data

It’s relatively easy to collapse data in R using one or more by variables and a defined
function. The format is

aggregate(x, by, FUN)

where x is the data object to be collapsed, by is a list of variables that will be crossed to
form the new observations, and FUN is the scalar function used to calculate summary
statistics that will make up the new observation values.

Aggregation and restructuring 113

As an example, we’ll aggregate the mtcars data by number of cylinders and gears,
returning means on each of the numeric variables (see the next listing).

Listing 5.10 Aggregating data

> options(digits=3)
> attach(mtcars)
> aggdata <-aggregate(mtcars, by=list(cyl,gear), FUN=mean, na.rm=TRUE)
> aggdata
 Group.1 Group.2 mpg cyl disp hp drat wt qsec vs am gear carb
1 4 3 21.5 4 120 97 3.70 2.46 20.0 1.0 0.00 3 1.00
2 6 3 19.8 6 242 108 2.92 3.34 19.8 1.0 0.00 3 1.00
3 8 3 15.1 8 358 194 3.12 4.10 17.1 0.0 0.00 3 3.08
4 4 4 26.9 4 103 76 4.11 2.38 19.6 1.0 0.75 4 1.50
5 6 4 19.8 6 164 116 3.91 3.09 17.7 0.5 0.50 4 4.00
6 4 5 28.2 4 108 102 4.10 1.83 16.8 0.5 1.00 5 2.00
7 6 5 19.7 6 145 175 3.62 2.77 15.5 0.0 1.00 5 6.00
8 8 5 15.4 8 326 300 3.88 3.37 14.6 0.0 1.00 5 6.00

In these results, Group.1 represents the number of cylinders (4, 6, or 8) and Group.2
represents the number of gears (3, 4, or 5). For example, cars with 4 cylinders and 3
gears have a mean of 21.5 miles per gallon (mpg).

When you’re using the aggregate() function , the by variables must be in a
list (even if there’s only one). You can declare a custom name for the groups from
within the list, for instance, using by=list(Group.cyl=cyl, Group.gears=gear) .
The function specified can be any built-in or user-provided function. This gives the
aggregate command a great deal of power. But when it comes to power, nothing beats
the reshape package.

5.6.3 The reshape package

The reshape package is a tremendously versatile approach to both restructuring and
aggregating datasets. Because of this versatility, it can be a bit challenging to learn.
We’ll go through the process slowly and use a small dataset so that it’s clear what’s hap-
pening. Because reshape isn’t included in the standard installation of R, you’ll need
to install it one time, using install.packages("reshape") .

Basically, you’ll “melt” data so that each row is a unique ID-variable combination.
Then you’ll “cast” the melted data into any shape you desire. During the cast, you can
aggregate the data with any function you wish.
The dataset you’ll be working with is shown in
table 5.8.

In this dataset, the measurements are the
values in the last two columns (5, 6, 3, 5, 6,
1, 2, and 4). Each measurement is uniquely
identified by a combination of ID variables
(in this case ID, Time, and whether the
measurement is on X1 or X2). For example,
the measured value 5 in the first row is

Table 5.8 The original dataset (mydata)

ID Time X1 X2

1 1 5 6

1 2 3 5

2 1 6 1

2 2 2 4

114 CHAPTER 5 Advanced data management

uniquely identified by knowing that it’s from observation (ID) 1, at Time 1, and on
variable X1.

MELTING

When you melt a dataset, you restructure it into a format where each measured vari-
able is in its own row, along with the ID variables needed to uniquely identify it. If you
melt the data from table 5.8, using the following code

library(reshape)
md <- melt(mydata, id=(c("id", "time")))

you end up with the structure shown in table 5.9.
Note that you must specify the

variables needed to uniquely identify each
measurement (ID and Time) and that
the variable indicating the measurement
variable names (X1 or X2) is created for
you automatically.

Now that you have your data in a melted
form, you can recast it into any shape, using
the cast() function.

CASTING

The cast() function starts with melted
data and reshapes it using a formula that
you provide and an (optional) function
used to aggregate the data. The format is

newdata <- cast(md, formula, FUN)

where md is the melted data, formula describes the desired end result, and FUN is the
(optional) aggregating function. The formula takes the form

rowvar1 + rowvar2 + … ~ colvar1 + colvar2 + …

In this formula, rowvar1 + rowvar2 + … define the set of crossed variables that de-
fine the rows, and colvar1 + colvar2 + … define the set of crossed variables that
define the columns. See the examples in figure 5.1.

Because the formulas on the right side (d, e, and f) don’t include a function, the
data is reshaped. In contrast, the examples on the left side (a, b, and c) specify the
mean as an aggregating function. Thus the data are not only reshaped but aggregated
as well. For example, (a) gives the means on X1 and X2 averaged over time for each
observation. Example (b) gives the mean scores of X1 and X2 at Time 1 and Time 2,
averaged over observations. In (c) you have the mean score for each observation at
Time 1 and Time 2, averaged over X1 and X2.

As you can see, the flexibility provided by the melt() and cast() functions is
amazing. There are many times when you’ll have to reshape or aggregate your data
prior to analysis. For example, you’ll typically need to place your data in what’s called

Table 5.9 The melted dataset

ID Time Variable Value

1 1 X1 5

1 2 X1 3

2 1 X1 6

2 2 X1 2

1 1 X2 6

1 2 X2 5

2 1 X2 1

2 2 X2 4

A
ggregation and restructuring

115

ID Time X1 X2

1 1 5 6

1 2 3 5

2 1 6 1

2 2 2 4

ID Time Variable Value

1 1 X1 5

1 2 X1 3

2 1 X1 6

2 2 X1 2

1 1 X2 6

1 2 X2 5

2 1 X2 1

2 2 X2 4

ID Time X1 X2

1 1 5 6

1 2 3 5

2 1 6 1

2 2 2 4

ID Variable Time1 Time 2

1 X1 5 3

1 X2 6 5

2 X1 6 2

2 X2 1 4

ID X1
Time1

X1
Time2

X2
Time1

X2
Time2

1 5 3 6 5

2 6 2 1 4

ID X1 X2

1 4 5.5

2 4 2.5

Time X1 X2

1 5.5 3.5

2 2.5 4.5

ID Time1 Time2

1 5.5 4

2 3.5 3

With Aggregation Without Aggregation

cast(md, id+time~variable)

cast(md, id+variable~time)

cast(md, id~variable+time)

cast(md, id~variable, mean)

cast(md, time~variable, mean)

cast(md, id~time, mean)

mydata

md <- melt(mydata, id=c("id", "time"))

Reshaping a Dataset

(c)

(b)

(a)
(d)

(e)

(f)

Figure 5.1 Reshaping data with the melt() and cast() function s

116 CHAPTER 5 Advanced data management

“long format ” resembling table 5.9 when analyzing repeated measures data (data
where multiple measures are recorded for each observation). See section 9.6 for an
example.

5.7 Summary
This chapter reviewed dozens of mathematical, statistical, and probability func-
tions that are useful for manipulating data. We saw how to apply these functions
to a wide range of data objects, including vectors, matrices, and data frames. We
learned to use control-flow constructs for looping and branching to execute some
statements repetitively and execute other statements only when certain conditions
are met. You then had a chance to write your own functions and apply them to
data. Finally, we explored ways of collapsing, aggregating, and restructuring your
data.

Now that you’ve gathered the tools you need to get your data into shape (no pun
intended), we’re ready to bid part 1 goodbye and enter the exciting world of data
analysis! In upcoming chapters, we’ll begin to explore the many statistical and graphical
methods available for turning data into information.

Part 2

Basic methods

In part 1, we explored the R environment and discussed how to input data
from a wide variety of sources, combine and transform it, and prepare it for
further analyses. Once your data has been input and cleaned up, the next step is
typically to explore each variable one at a time. This provides you with informa-
tion about the distribution of each variable, which is useful in understanding
the characteristics of the sample, identifying unexpected or problematic values,
and selecting appropriate statistical methods. Next, a subset of variables is typi-
cally studied two at a time. This step can help you to uncover basic relationships
among variables, and is a useful first step in developing more complex models.

Part 2 focuses on graphical and statistical techniques for obtaining basic
information about data. Chapter 6 describes methods for visualizing the
distribution of individual variables. For categorical variables, this includes bar
plots, pie charts, and the newer fan plot. For numeric variables, this includes
histograms, density plots, box plots, dot plots, and the less well-known violin
plot. Each type of graph is useful for understanding the distribution of a single
variable.

Chapter 7 describes statistical methods for summarizing individual variables
and bivariate relationships. This chapter starts with coverage of descriptive statistics
for numerical data based on the dataset as a whole, and on subgroups of interest.
Next, the use of frequency tables and cross-tabulations for summarizing categorical
data is described. The chapter ends with coverage of basic inferential methods for
understanding relationships between two variables at a time, including bivariate
correlations, chi-square tests, t-tests, and nonparametric methods.

When you have finished part 2, you will be able to use basic graphical and
statistical methods available in R to describe your data, explore group differences,
and identify significant relationships among variables.

6

119

Basic graphs

This chapter covers
■ Bar, box, and dot plots
■ Pie and fan charts
■ Histograms and kernel density plots

Whenever we analyze data, the first thing that we should do is look at it. For each vari-
able, what are the most common values? How much variability is present? Are there
any unusual observations? R provides a wealth of functions for visualizing data. In
this chapter, we’ll look at graphs that help you understand a single categorical or
continuous variable. This topic includes

■ Visualizing the distribution of variable
■ Comparing groups on an outcome variable

In both cases, the variable could be continuous (for example, car mileage as miles
per gallon) or categorical (for example, treatment outcome as none, some, or
marked). In later chapters, we’ll explore graphs that display bivariate and multivari-
ate relationships among variables.

In the following sections, we’ll explore the use of bar plots, pie charts, fan charts,
histograms, kernel density plots, box plots, violin plots, and dot plots. Some of these
may be familiar to you, whereas others (such as fan plots or violin plots) may be new

120 CHAPTER 6 Basic graphs

to you. Our goal, as always, is to understand your data better and to communicate this
understanding to others.

Let’s start with bar plots.

6.1 Bar plots
Bar plots display the distribution (frequencies) of a categorical variable through verti-
cal or horizontal bars. In its simplest form, the format of the barplot() function is

barplot(height)

where height is a vector or matrix.
In the following examples, we’ll plot the outcome of a study investigating a new

treatment for rheumatoid arthritis. The data are contained in the Arthritis data
frame distributed with the vcd package . Because the vcd package isn’t included in the
default R installation, be sure to download and install it before first use (install.
packages("vcd")) .

Note that the vcd package isn’t needed to create bar plots. We’re loading it in order
to gain access to the Arthritis dataset. But we’ll need the vcd package when creating
spinogram, which are described in section 6.1.5.

6.1.1 Simple bar plots

If height is a vector, the values determine the heights of the bars in the plot and a ver-
tical bar plot is produced. Including the option horiz=TRUE produces a horizontal bar
chart instead. You can also add annotating options. The main option adds a plot title,
whereas the xlab and ylab options add x-axis and y-axis labels, respectively.

In the Arthritis study, the variable Improved records the patient outcomes for
individuals receiving a placebo or drug.

> library(vcd)
> counts <- table(Arthritis$Improved)
> counts
 None Some Marked
 42 14 28

Here, we see that 28 patients showed marked improvement, 14 showed some improve-
ment, and 42 showed no improvement. We’ll discuss the use of the table() function
to obtain cell counts more fully in chapter 7.

You can graph the variable counts using a vertical or horizontal bar plot. The code
is provided in the following listing and the resulting graphs are displayed in figure 6.1.

Listing 6.1 Simple bar plots

barplot(counts,
 main="Simple Bar Plot",
 xlab="Improvement", ylab="Frequency")

barplot(counts,
 main="Horizontal Bar Plot",
 xlab="Frequency", ylab="Improvement",
 horiz=TRUE)

Simple bar plot

Horizontal
bar plot

 Bar plots 121

None Some Marked

Simple Bar Plot

Improvement

F
re

qu
en

cy

0
10

20
30

40

N
on

e
S

om
e

M
ar

ke
d

Horizontal Bar Plot

Frequency

Im
pr

ov
em

en
t

0 10 20 30 40

Figure 6.1 Simple vertical and horizontal bar charts

TIP If the categorical variable to be plotted is a factor or ordered factor,
you can create a vertical bar plot quickly with the plot() function . Because
Arthritis$Improved is a factor, the code

plot(Arthritis$Improved, main="Simple Bar Plot",
 xlab="Improved", ylab="Frequency")
plot(Arthritis$Improved, horiz=TRUE, main="Horizontal Bar Plot",
 xlab="Frequency", ylab="Improved")

will generate the same bar plots as those in listing 6.1, but without the need to
tabulate values with the table() function .

What happens if you have long labels? In section 6.1.4, you’ll see how to tweak labels
so that they don’t overlap.

6.1.2 Stacked and grouped bar plots

If height is a matrix rather than a vector, the resulting graph will be a stacked or
grouped bar plot. If beside=FALSE (the default), then each column of the matrix
produces a bar in the plot, with the values in the column giving the heights of stacked
“sub-bars.” If beside=TRUE, each column of the matrix represents a group, and the
values in each column are juxtaposed rather than stacked.

Consider the cross-tabulation of treatment type and improvement status:

> library(vcd)
> counts <- table(Arthritis$Improved, Arthritis$Treatment)
> counts
 Treatment

122 CHAPTER 6 Basic graphs

Improved Placebo Treated
 None 29 13
 Some 7 7
 Marked 7 21

You can graph the results as either a stacked or a grouped bar plot (see the next
listing). The resulting graphs are displayed in figure 6.2.

Listing 6.2 Stacked and grouped bar plotsw

barplot(counts,
 main="Stacked Bar Plot",
 xlab="Treatment", ylab="Frequency",
 col=c("red", "yellow","green"),
 legend=rownames(counts))

barplot(counts,
 main="Grouped Bar Plot",
 xlab="Treatment", ylab="Frequency",
 col=c("red", "yellow", "green"),
 legend=rownames(counts), beside=TRUE)

The first barplot function produces a stacked bar plot, whereas the second produces
a grouped bar plot. We’ve also added the col option to add color to the bars plotted.
The legend.text parameter provides bar labels for the legend (which are only useful
when height is a matrix).

In chapter 3, we covered ways to format and place the legend to maximum benefit.
See if you can rearrange the legend to avoid overlap with the bars.

6.1.3 Mean bar plots

Bar plots needn’t be based on counts or frequencies. You can create bar plots that
represent means, medians, standard deviations, and so forth by using the aggregate

Stacked bar plot

Grouped bar plot

Placebo Treated

Marked
Some
None

Stacked Bar Plot

Treatment

F
re

qu
en

cy

0
10

20
30

40

Placebo Treated

None
Some
Marked

Grouped Bar Plot

Treatment

F
re

qu
en

cy

0
5

10
15

20
25

Figure 6.2 Stacked and grouped bar plots

 Bar plots 123

function and passing the results to the barplot() function . The following listing shows
an example, which is displayed in figure 6.3.

Listing 6.3 Bar plot for sorted mean values

> states <- data.frame(state.region, state.x77)
> means <- aggregate(states$Illiteracy, by=list(state.region), FUN=mean)
> means
 Group.1 x
1 Northeast 1.00
2 South 1.74
3 North Central 0.70
4 West 1.02
> means <- means[order(means$x),]
> means
 Group.1 x q
3 North Central 0.70
1 Northeast 1.00
4 West 1.02
2 South 1.74
> barplot(means$x, names.arg=means$Group.1)
> title("Mean Illiteracy Rate") w

Listing 6.3 sorts the means from small-
est to largest q. Also note that use of
the title() function w is equivalent
to adding the main option in the plot
call. means$x is the vector containing
the heights of the bars, and the option
names.arg=means$Group.1 is added to
provide labels.

You can take this example further. The
bars can be connected with straight line
segments using the lines() function .
You can also create mean bar plots with
superimposed confidence intervals using
the barplot2() function in the gplots
package . See “barplot2: Enhanced Bar
Plots” on the R Graph Gallery website
(http://addictedtor.free.fr/graphiques)
for an example.

6.1.4 Tweaking bar plots

There are several ways to tweak the appearance of a bar plot. For example, with many
bars, bar labels may start to overlap. You can decrease the font size using the cex.
names option . Specifying values smaller than 1 will shrink the size of the labels. Option-
ally, the names.arg argument allows you to specify a character vector of names used to
label the bars. You can also use graphical parameters to help text spacing. An example
is given in the following listing with the output displayed in figure 6.4.

Means sorted
smallest to
largest

Title added

North Central Northeast West South

0.
0

0.
5

1.
0

1.
5

Mean Illiteracy Rate

Figure 6.3 Bar plot of mean illiteracy rates for
US regions sorted by rate

http://addictedtor.free.fr/graphiques

124 CHAPTER 6 Basic graphs

Listing 6.4 Fitting labels in a bar plot

par(mar=c(5,8,4,2))
par(las=2)
counts <- table(Arthritis$Improved)

barplot(counts,
 main="Treatment Outcome",
 horiz=TRUE, cex.names=0.8,
 names.arg=c("No Improvement", "Some Improvement",
 "Marked Improvement"))

In this example, we’ve rotated the bar labels (with las=2), changed the label text, and
both increased the size of the y margin (with mar) and decreased the font size in order
to fit the labels comfortably (using cex.names=0.8). The par() function allows you
to make extensive modifications to the graphs that R produces by default. See chapter
3 for more details.

6.1.5 Spinograms

Before finishing our discussion of bar plots, let’s take a look at a specialized version
called a spinogram. In a spinogram, a stacked bar plot is rescaled so that the height of
each bar is 1 and the segment heights represent proportions. Spinograms are created
through the spine() function of the vcd package . The following code produces a
simple spinogram:

library(vcd)
attach(Arthritis)
counts <- table(Treatment, Improved)
spine(counts, main="Spinogram Example")
detach(Arthritis)

No Improvement

Some Improvement

Marked Improvement

Treatment Outcome

0 10 20 30 40

Figure 6.4 Horizontal bar plot with tweaked labels

 Pie charts 125

Placebo Treated

N
on

e
S

om
e

M
ar

ke
d

0

0.2

0.4

0.6

0.8

1

Treatment

Im
pr

ov
ed

Spinogram Example

Figure 6.5 Spinogram of arthritis treatment outcome

The output is provided in figure 6.5. The larger percentage of patients with marked
improvement in the Treated condition is quite evident when compared with the
Placebo condition.

In addition to bar plots, pie charts are a popular vehicle for displaying the distribution
of a categorical variable. We consider them next.

6.2 Pie charts
Whereas pie charts are ubiquitous in the business world, they’re denigrated by most
statisticians, including the authors of the R documentation. They recommend bar or
dot plots over pie charts because people are able to judge length more accurately than
volume. Perhaps for this reason, the pie chart options in R are quite limited when
compared with other statistical software.

Pie charts are created with the function

pie(x, labels)

where x is a non-negative numeric vector indicating the area of each slice and labels
provides a character vector of slice labels. Four examples are given in the next listing;
the resulting plots are provided in figure 6.6.

126 CHAPTER 6 Basic graphs

US

UK

Australia

Germany

France

Simple Pie Chart

US 20%

UK 24%

Australia 8%

Germany 32%

France 16%

Pie Chart with Percentages

3D Pie Chart

US
UK

Australia

Germany
France

Northeast
9

South
16

North Central
12

West
13

Pie Chart from a Table
 (with sample sizes)

Figure 6.6 Pie chart examples

Listing 6.5 Pie charts

par(mfrow=c(2, 2))
slices <- c(10, 12,4, 16, 8)
lbls <- c("US", "UK", "Australia", "Germany", "France") q

pie(slices, labels = lbls,
main="Simple Pie Chart")

pct <- round(slices/sum(slices)*100)
lbls2 <- paste(lbls, " ", pct, "%", sep="")
pie(slices, labels=lbls2, col=rainbow(length(lbls2)), w
 main="Pie Chart with Percentages")

library(plotrix)
pie3D(slices, labels=lbls,explode=0.1,
 main="3D Pie Chart ")

mytable <- table(state.region)
lbls3 <- paste(names(mytable), "\n", mytable, sep="") e
pie(mytable, labels = lbls3,
 main="Pie Chart from a Table\n (with sample sizes)")

Combine four
graphs into one

Add
percentages
to pie chart

Create chart
from table

 Pie charts 127

First you set up the plot so that four graphs are combined into one q. (Combining
multiple graphs is covered in chapter 3.) Then you input the data that will be used for
the first three graphs.

For the second pie chart w, you convert the sample sizes to percentages and add the
information to the slice labels. The second pie chart also defines the colors of the slices
using the rainbow() function , described in chapter 3. Here rainbow(length(lbls2))
resolves to rainbow(5), providing five colors for the graph.

The third pie chart is a 3D chart created using the pie3D() function from the
plotrix package . Be sure to download and install this package before using it for
the first time. If statisticians dislike pie charts, they positively despise 3D pie charts
(although they may secretly find them pretty). This is because the 3D effect adds no
additional insight into the data and is considered distracting eye candy.

The fourth pie chart demonstrates how to create a chart from a table e. In this
case, you count the number of states by US region, and append the information to the
labels before producing the plot.

Pie charts make it difficult to compare the values of the slices (unless the values are
appended to the labels). For example, looking at the simple pie chart, can you tell
how the US compares to Germany? (If you can, you’re more perceptive than I am.) In
an attempt to improve on this situation, a variation of the pie chart, called a fan plot ,
has been developed. The fan plot (Lemon & Tyagi, 2009) provides the user with a way
to display both relative quantities and differences. In R, it’s implemented through the
fan.plot() function in the plotrix package .

Consider the following code and the resulting graph (figure 6.7):

library(plotrix)
slices <- c(10, 12,4, 16, 8)
lbls <- c("US", "UK", "Australia", "Germany", "France")
fan.plot(slices, labels = lbls, main="Fan Plot")

In a fan plot , the slices are rearranged to overlap each other and the radii have been
modified so that each slice is visible. Here you can see that Germany is the largest slice

Fan Plot

Germany

UK
USFrance

Australia

Figure 6.7 A fan plot
of the country data

128 CHAPTER 6 Basic graphs

and that the US slice is roughly 60 percent as large. France appears to be half as large
as Germany and twice as large as Australia. Remember that the width of the slice and
not the radius is what’s important here.

As you can see, it’s much easier to determine the relative sizes of the slice in a fan
plot than in a pie chart. Fan plots haven’t caught on yet, but they’re new. Now that
we’ve covered pie and fan charts, let’s move on to histograms. Unlike bar plots and pie
charts, histograms describe the distribution of a continuous variable.

6.3 Histograms
Histograms display the distribution of a continuous variable by dividing up the range
of scores into a specified number of bins on the x-axis and displaying the frequency of
scores in each bin on the y-axis. You can create histograms with the function

hist(x)

where x is a numeric vector of values. The option freq=FALSE creates a plot based on
probability densities rather than frequencies. The breaks option controls the number
of bins. The default produces equally spaced breaks when defining the cells of the
histogram. Listing 6.6 provides the code for four variations of a histogram; the results
are plotted in figure 6.8.

Listing 6.6 Histograms

par(mfrow=c(2,2))

hist(mtcars$mpg) q

hist(mtcars$mpg,
 breaks=12, w
 col="red",
 xlab="Miles Per Gallon",
 main="Colored histogram with 12 bins")

hist(mtcars$mpg,
 freq=FALSE, e
 breaks=12,
 col="red",
 xlab="Miles Per Gallon",
 main="Histogram, rug plot, density curve")
rug(jitter(mtcars$mpg))
lines(density(mtcars$mpg), col="blue", lwd=2)

x <- mtcars$mpg r
h<-hist(x,
 breaks=12,
 col="red",
 xlab="Miles Per Gallon",
 main="Histogram with normal curve and box")
xfit<-seq(min(x), max(x), length=40)
yfit<-dnorm(xfit, mean=mean(x), sd=sd(x))
yfit <- yfit*diff(h$mids[1:2])*length(x)
lines(xfit, yfit, col="blue", lwd=2)
box()

Simple histogram

With specified
bins and color

With rug plot
and frame

With normal curve

 Histograms 129

The first histogram q demonstrates the default plot when no options are specified. In
this case, five bins are created, and the default axis labels and titles are printed. For the
second histogram w, you’ve specified 12 bins, a red fill for the bars, and more attrac-
tive and informative labels and title.

The third histogram e maintains the colors, bins, labels, and titles as the previous
plot, but adds a density curve and rug plot overlay. The density curve is a kernel density
estimate and is described in the next section. It provides a smoother description of
the distribution of scores. You use the lines() function to overlay this curve in a blue
color and a width that’s twice the default thickness for lines. Finally, a rug plot is a one-
dimensional representation of the actual data values. If there are many tied values, you
can jitter the data on the rug plot using code like the following:

rug(jitter(mtcars$mpag, amount=0.01))

This will add a small random value to each data point (a uniform random variate be-
tween ±amount), in order to avoid overlapping points.

Histogram of mtcars$mpg

mtcars$mpg

F
re

qu
en

cy

10 15 20 25 30 35

0
2

4
6

8
10

12

Colored histogram with 12 bins

Miles Per Gallon

F
re

qu
en

cy

10 15 20 25 30

0
1

2
3

4
5

6
7

Histogram, rug plot, density curve

Miles Per Gallon

D
en

si
ty

10 15 20 25 30

0.
00

0.
04

0.
08

Histogram with normal curve and box

Miles Per Gallon

F
re

qu
en

cy

10 15 20 25 30

0
1

2
3

4
5

6
7

Figure 6.8 Histograms examples

130 CHAPTER 6 Basic graphs

The fourth histogram r is similar to the second but has a superimposed normal curve
and a box around the figure. The code for superimposing the normal curve comes
from a suggestion posted to the R-help mailing list by Peter Dalgaard. The surround-
ing box is produced by the box() function.

6.4 Kernel density plots
In the previous section, you saw a kernel density plot superimposed on a histogram.
Technically, kernel density estimation is a nonparametric method for estimating the
probability density function of a random variable. Although the mathematics are be-
yond the scope of this text, in general kernel density plots can be an effective way to
view the distribution of a continuous variable. The format for a density plot (that’s not
being superimposed on another graph) is

plot(density(x))

where x is a numeric vector. Because the plot() function begins a new graph, use
the lines() function (listing 6.6) when superimposing a density curve on an existing
graph.

Two kernel density examples are given in the next listing, and the results are plotted
in figure 6.9.

Listing 6.7 Kernel density plots

par(mfrow=c(2,1))
d <- density(mtcars$mpg)

plot(d)

d <- density(mtcars$mpg)
plot(d, main="Kernel Density of Miles Per Gallon")
polygon(d, col="red", border="blue")
rug(mtcars$mpg, col="brown")

In the first plot, you see the minimal graph created with all the defaults in place. In
the second plot, you add a title, color the curve blue, fill the area under the curve with
solid red, and add a brown rug. The polygon() function draws a polygon whose verti-
ces are given by x and y (provided by the density() function in this case).

Kernel density plots can be used to compare groups. This is a highly underutilized
approach, probably due to a general lack of easily accessible software. Fortunately, the
sm package fills this gap nicely.

The sm.density.compare() function in the sm package allows you to superimpose
the kernel density plots of two or more groups. The format is

sm.density.compare(x, factor)

where x is a numeric vector and factor is a grouping variable. Be sure to install the sm
package before first use. An example comparing the mpg of cars with 4, 6, or 8 cylin-
ders is provided in listing 6.8.

Kernel density plots 131

10 20 30 40

0.
00

0.
03

0.
06

density.default(x = mtcars$mpg)

N = 32 Bandwidth = 2.477

D
en

si
ty

10 20 30 40

0.
00

0.
03

0.
06

Kernel Density of Miles Per Gallon

N = 32 Bandwidth = 2.477

D
en

si
ty

Figure 6.9 Kernel density plots

Listing 6.8 Comparative kernel density plots

par(lwd=2)
library(sm) q
attach(mtcars)

cyl.f <- factor(cyl, levels= c(4,6,8),
 labels = c("4 cylinder", "6 cylinder", w
 "8 cylinder"))

sm.density.compare(mpg, cyl, xlab="Miles Per Gallon") e
title(main="MPG Distribution by Car Cylinders")

colfill<-c(2:(1+length(levels(cyl.f))))
legend(locator(1), levels(cyl.f), fill=colfill) r

detach(mtcars)

The par() function is used to double the width of the plotted lines (lwd=2) so that
they’d be more readable in this book q. The sm packages is loaded and the mtcars
data frame is attached.

Double width of
plotted lines

Create grouping
factor

Plot densities

Add legend via
mouse click

132 CHAPTER 6 Basic graphs

In the mtcars data frame w, the variable cyl is a numeric variable coded 4, 6, or
8. cyl is transformed into a factor, named cyl.f, in order to provide value labels for
the plot. The sm.density.compare() function creates the plot e and a title()
statement adds a main title.

 Finally, you add a legend to improve interpretability r. (Legends are covered
in chapter 3.) First, a vector of colors is created. Here colfill is c(2, 3, 4). Then
a legend is added to the plot via the legend() function . The locator(1) option
indicates that you’ll place the legend interactively by clicking on the graph where you
want the legend to appear. The second option provides a character vector of the labels.
The third option assigns a color from the vector colfill to each level of cyl.f. The
results are displayed in figure 6.10.

As you can see, overlapping kernel density plots can be a powerful way to compare
groups of observations on an outcome variable. Here you can see both the shapes of
the distribution of scores for each group and the amount of overlap between groups.
(The moral of the story is that my next car will have four cylinders—or a battery.)

Box plots are also a wonderful (and more commonly used) graphical approach to
visualizing distributions and differences among groups. We’ll discuss them next.

5 10 15 20 25 30 35 40

0.
00

0.
05

0.
10

0.
15

0.
20

Miles Per Gallon

D
en

si
ty

MPG Distribution by Car Cylinders

4 cylinder
6 cylinder
8 cylinder

Figure 6.10 Kernel density plots of mpg by number of cylinders

 Box plots 133

6.5 Box plots
A “box-and-whiskers” plot describes the distribution of a continuous variable by plot-
ting its five-number summary: the minimum, lower quartile (25th percentile), median
(50th percentile), upper quartile (75th percentile), and maximum. It can also display
observations that may be outliers (values outside the range of ± 1.5*IQR, where IQR is
the interquartile range defined as the upper quartile minus the lower quartile). For
example:

boxplot(mtcars$mpg, main="Box plot", ylab="Miles per Gallon")

produces the plot shown in figure 6.11. I added annotations by hand to illustrate the
components.

By default, each whisker extends to the most extreme data point, which is no more
than the 1.5 times the interquartile range for the box. Values outside this range are
depicted as dots (not shown here).

For example, in our sample of cars the median mpg is 19.2, 50 percent of the scores
fall between 15.3 and 22.8, the smallest value is 10.4, and the largest value is 33.9. How
did I read this so precisely from the graph? Issuing boxplot.stats(mtcars$mpg)

1
0

1
5

2
0

2
5

3
0

Box plot

Upper hinge

Upper

quart ile

Lower

quart ile

Lower hinge

W hisker

M edian

W hisker

M
es

 P
er

 G
a

on

Figure 6.11 Box plot with annotations added by hand

134 CHAPTER 6 Basic graphs

prints the statistics used to build the graph (in other words, I cheated). There doesn’t
appear to be any outliers, and there is a mild positive skew (the upper whisker is longer
than the lower whisker).

6.5.1 Using parallel box plots to compare groups

Box plots can be created for individual variables or for variables by group. The
format is

boxplot(formula, data=dataframe)

where formula is a formula and dataframe denotes the data frame (or list) provid-
ing the data. An example of a formula is y ~ A, where a separate box plot for numeric
variable y is generated for each value of categorical variable A. The formula y ~ A*B
would produce a box plot of numeric variable y, for each combination of levels in
categorical variables A and B.

Adding the option varwidth=TRUE will make the box plot widths proportional
to the square root of their sample sizes. Add horizontal=TRUE to reverse the axis
orientation.

In the following code, we revisit the impact of four, six, and eight cylinders on auto
mpg with parallel box plots. The plot is provided in figure 6.12.

boxplot(mpg ~ cyl, data=mtcars,
 main="Car Mileage Data",
 xlab="Number of Cylinders",
 ylab="Miles Per Gallon")

You can see in figure 6.12 that there’s a good separation of groups based on gas mile-
age. You can also see that the distribution of mpg for six-cylinder cars is more sym-
metrical than for the other two car types. Cars with four cylinders show the greatest
spread (and positive skew) of mpg scores, when compared with six- and eight-cylinder
cars. There’s also an outlier in the eight-cylinder group.

Box plots are very versatile. By adding notch=TRUE, you get notched box plots . If
two boxes’ notches don’t overlap, there’s strong evidence that their medians differ
(Chambers et al., 1983, p. 62). The following code will create notched box plots for
our mpg example:

boxplot(mpg ~ cyl, data=mtcars,
 notch=TRUE,
 varwidth=TRUE,
 col="red",
 main="Car Mileage Data",
 xlab="Number of Cylinders",
 ylab="Miles Per Gallon")

The col option fills the box plots with a red color, and varwidth=TRUE produces box
plots with widths that are proportional to their sample sizes.

You can see in figure 6.13 that the median car mileage for four-, six-, and eight-
cylinder cars differ. Mileage clearly decreases with number of cylinders.

 Box plots 135

Figure 6.12 Box plots
of car mileage versus
number of cylinders

4 6 8

10
15

20
25

30

Car Milage Data

Number of Cylinders

M
ile

s
P

er
 G

al
lo

n

4 6 8

10
15

20
25

30

Car Mileage Data

Number of Cylinders

M
ile

s
P

er
 G

al
lo

n

Figure 6.13 Notched
box plots for car
mileage versus number
of cylinders

136 CHAPTER 6 Basic graphs

Finally, you can produce box plots for more than one grouping factor. Listing 6.9
provides box plots for mpg versus the number of cylinders and transmission type in an
automobile. Again, you use the col option to fill the box plots with color. Note that
colors recycle. In this case, there are six box plots and only two specified colors, so the
colors repeat three times.

Listing 6.9 Box plots for two crossed factors

mtcars$cyl.f <- factor(mtcars$cyl,
 levels=c(4,6,8),
 labels=c("4","6","8"))

mtcars$am.f <- factor(mtcars$am,
 levels=c(0,1),
 labels=c("auto", "standard"))

boxplot(mpg ~ am.f *cyl.f,
 data=mtcars,
 varwidth=TRUE,
 col=c("gold","darkgreen"),
 main="MPG Distribution by Auto Type",
 xlab="Auto Type")

The plot is provided in figure 6.14.
From figure 6.14 it’s again clear that median mileage decreases with cylinder

number. For four- and six-cylinder cars, mileage is higher for standard transmissions.
But for eight-cylinder cars there doesn’t appear to be a difference. You can also see

Create factor for # of
cylinders

Create factor for
transmission type

Generate box plot

auto.4 standard.4 auto.6 standard.6 auto.8 standard.8

10
15

20
25

30

MPG Distribution by Auto Type

Auto Type

Figure 6.14 Box plots for car
mileage versus transmission
type and number of cylinders

 Box plots 137

from the widths of the box plots that standard four-cylinder and automatic eight-
cylinder cars are the most common in this dataset.

6.5.2 Violin plots

Before we end our discussion of box plots, it’s worth examining a variation called a
violin plot. A violin plot is a combination of a box plot and a kernel density plot. You
can create one using the vioplot() function from the vioplot package . Be sure to
install the vioplot package before first use.

The format for the vioplot() function is

vioplot(x1, x2, … , names=, col=)

where x1, x2, … represent one or more numeric vectors to be plotted (one violin plot
will be produced for each vector). The names parameter provides a character vector of
labels for the violin plots, and col is a vector specifying the colors for each violin plot.
An example is given in the following listing.

Listing 6.10 Violin plots

library(vioplot)
x1 <- mtcars$mpg[mtcars$cyl==4]
x2 <- mtcars$mpg[mtcars$cyl==6]
x3 <- mtcars$mpg[mtcars$cyl==8]
vioplot(x1, x2, x3,
 names=c("4 cyl", "6 cyl", "8 cyl"),
 col="gold")
title("Violin Plots of Miles Per Gallon")

Note that the vioplot() function requires you to separate the groups to be plotted
into separate variables. The results are displayed in figure 6.15.

10
15

20
25

30

4 cyl 6 cyl 8 cyl

Violin Plots of Miles Per Gallon

Figure 6.15 Violin plots of mpg
versus number of cylinders

138 CHAPTER 6 Basic graphs

Violin plots are basically kernel density plots superimposed in a mirror image fashion
over box plots. Here, the white dot is the median, the black boxes range from the lower
to the upper quartile, and the thin black lines represent the whiskers. The outer shape
provides the kernel density plots. Violin plots haven’t really caught on yet. Again, this
may be due to a lack of easily accessible software. Time will tell.

We’ll end this chapter with a look at dot plots. Unlike the graphs you’ve seen
previously, dot plots plot every value for a variable.

6.6 Dot plots
Dot plots provide a method of plotting a large number of labeled values on a simple
horizontal scale. You create them with the dotchart() function , using the format

dotchart(x, labels=)

where x is a numeric vector and labels specifies a vector that labels each point. You
can add a groups option to designate a factor specifying how the elements of x are
grouped. If so, the option gcolor controls the color of the groups label and cex con-
trols the size of the labels. Here’s an example with the mtcars dataset:

dotchart(mtcars$mpg, labels=row.names(mtcars), cex=.7,
 main="Gas Mileage for Car Models",
 xlab="Miles Per Gallon")

The resulting plot is given in figure 6.16.

Mazda RX4

Mazda RX4 Wag

Datsun 710

Hornet 4 Drive

Hornet Sportabout

Valiant

Duster 360

Merc 240D

Merc 230

Merc 280

Merc 280C

Merc 450SE

Merc 450SL

Merc 450SLC

Cadillac Fleetwood

Lincoln Continental

Chrysler Imperial

Fiat 128

Honda Civic

Toyota Corolla

Toyota Corona

Dodge Challenger

AMC Javelin

Camaro Z28

Pontiac Firebird

Fiat X1−9

Porsche 914−2

Lotus Europa

Ford Pantera L

Ferrari Dino

Maserati Bora

Volvo 142E

10 15 20 25 30

Gas Milage for Car Models

Miles Per Gallon

Figure 6.16 Dot plot of
mpg for each car model

 Dot plots 139

The graph in figure 6.16 allows you to see the mpg for each make of car on the same
horizontal axis. Dot plots typically become most interesting when they’re sorted and
grouping factors are distinguished by symbol and color. An example is given in the
following listing.

Listing 6.11 Dot plot grouped, sorted, and colored

x <- mtcars[order(mtcars$mpg),]
x$cyl <- factor(x$cyl)
x$color[x$cyl==4] <- "red"
x$color[x$cyl==6] <- "blue"
x$color[x$cyl==8] <- "darkgreen"
dotchart(x$mpg,
 labels = row.names(x),
 cex=.7,
 groups = x$cyl,
 gcolor = "black",
 color = x$color,
 pch=19,
 main = "Gas Mileage for Car Models\ngrouped by cylinder",
 xlab = "Miles Per Gallon")

In this example, the data frame mtcars is sorted by mpg (lowest to highest) and saved
as data frame x. The numeric vector cyl is transformed into a factor. A character vec-
tor (color) is added to data frame x and contains the values "red", "blue", or "dark-
green" depending on the value of cyl. In addition, the labels for the data points are
taken from the row names of the data frame (car makes). Data points are grouped by
number of cylinders. The numbers 4, 6, and 8 are printed in black. The color of the
points and labels are derived from the color vector , and points are represented by
filled circles. The code produces the graph in figure 6.17.

In figure 6.17, a number of features become evident for the first time. Again, you
see an increase in gas mileage as the number of cylinders decrease. But you also see
exceptions. For example, the Pontiac Firebird, with eight cylinders, gets higher gas
mileage than the Mercury 280C and the Valiant, each with six cylinders. The Hornet
4 Drive, with six cylinders, gets the same miles per gallon as the Volvo 142E, which has
four cylinders. It’s also clear that the Toyota Corolla gets the best gas mileage by far,
whereas the Lincoln Continental and Cadillac Fleetwood are outliers on the low end.

You can gain significant insight from a dot plot in this example because each point is
labeled, the value of each point is inherently meaningful, and the points are arranged
in a manner that promotes comparisons. But as the number of data points increase,
the utility of the dot plot decreases.

NOTE There are many variations of the dot plot. Jacoby (2006) provides a
very informative discussion of the dot plot and provides R code for innovative
applications. Additionally, the Hmisc package offers a dot plot function (aptly
named dotchart2) with a number of additional features.

140 CHAPTER 6 Basic graphs

Cadillac Fleetwood
Lincoln Continental
Camaro Z28
Duster 360
Chrysler Imperial
Maserati Bora
Merc 450SLC
AMC Javelin
Dodge Challenger
Ford Pantera L
Merc 450SE
Merc 450SL
Hornet Sportabout
Pontiac Firebird

Merc 280C
Valiant
Merc 280
Ferrari Dino
Mazda RX4
Mazda RX4 Wag
Hornet 4 Drive

Volvo 142E
Toyota Corona
Datsun 710
Merc 230
Merc 240D
Porsche 914−2
Fiat X1−9
Honda Civic
Lotus Europa
Fiat 128
Toyota Corolla

4

6

8

10 15 20 25 30

Gas Milage for Car Models
grouped by cylinder

Miles Per Gallon

Figure 6.17 Dot plot of mpg for car models grouped by number of cylinders

6.7 Summary
In this chapter, we learned how to describe continuous and categorical variables. We
saw how bar plots and (to a lesser extent) pie charts can be used to gain insight into
the distribution of a categorical variable, and how stacked and grouped bar charts can
help us understand how groups differ on a categorical outcome. We also explored
how histograms, kernel density plots, box plots, rug plots, and dot plots can help us
visualize the distribution of continuous variables. Finally, we explored how overlapping
kernel density plots, parallel box plots, and grouped dot plots can help you visualize
group differences on a continuous outcome variable.

In later chapters, we’ll extend this univariate focus to include bivariate and
multivariate graphical methods. You’ll see how to visually depict relationships among
many variables at once, using such methods as scatter plots, multigroup line plots,
mosaic plots, correlograms, lattice graphs, and more.

In the next chapter, we’ll look at basic statistical methods for describing distributions
and bivariate relationships numerically, as well as inferential methods for evaluating
whether relationships among variables exist or are due to sampling error.

7

141

Basic statistics

This chapter covers
 Descriptive statistics■

■ Frequency and contingency tables
■ Correlations and covariances

 t-tests ■

 Nonparametric statistics■

In previous chapters, you learned how to import data into R and use a variety of
functions to organize and transform the data into a useful format. We then reviewed
basic methods for visualizing data.

Once your data is properly organized and you’ve begun to explore the data
visually, the next step will typically be to describe the distribution of each variable
numerically, followed by an exploration of the relationships among selected variables
two at a time. The goal is to answer questions like these:

■ What kind of mileage are cars getting these days? Specifically, what’s the dis-
tribution of miles per gallon (mean, standard deviation, median, range, etc.)
in a survey of automobile makes?

■ After a new drug trial, what’s the outcome (no improvement, some improve-
ment, marked improvement) for drug versus placebo groups? Does the gen-
der of the participants have an impact on the outcome?

142 CHAPTER 7 Basic statistics

■ What’s the correlation between income and life expectancy? Is it significantly
different from zero?

■ Are you more likely to receive imprisonment for a crime in different regions of
the United States? Are the differences between regions statistically significant?

In this chapter we’ll review R functions for generating basic descriptive and inferential
statistics. First we’ll look at measures of location and scale for quantitative variables.
Then we’ll learn how to generate frequency and contingency tables (and associated
chi-square tests) for categorical variables. Next, we’ll examine the various forms of
correlation coefficients available for continuous and ordinal variables. Finally, we’ll
turn to the study of group differences through parametric (t-tests) and nonparametric
(Mann–Whitney U test, Kruskal–Wallis test) methods. Although our focus is on numer-
ical results, we’ll refer to graphical methods for visualizing these results throughout.

The statistical methods covered in this chapter are typically taught in a first-year
undergraduate statistics course. If these methodologies are unfamiliar to you, two
excellent references are McCall (2000) and Snedecor & Cochran (1989). Alternatively,
there are many informative online resources available (such as Wikipedia) for each of
the topics covered.

7.1 Descriptive statistics
In this section, we’ll look at measures of central tendency, variability, and distribution
shape for continuous variables. For illustrative purposes, we’ll use several of the vari-
ables from the Motor Trend Car Road Tests (mtcars) dataset you first saw in chapter
1. Our focus will be on miles per gallon (mpg), horsepower (hp), and weight (wt).

> vars <- c("mpg", "hp", "wt")
> head(mtcars[vars])
 mpg hp wt
Mazda RX4 21.0 110 2.62
Mazda RX4 Wag 21.0 110 2.88
Datsun 710 22.8 93 2.32
Hornet 4 Drive 21.4 110 3.21
Hornet Sportabout 18.7 175 3.44
Valiant 18.1 105 3.46

First we’ll look at descriptive statistics for all 32 cars. Then we’ll examine descriptive
statistics by transmission type (am) and number of cylinders (cyl). Transmission type
is a dichotomous variable coded 0=automatic, 1=manual, and the number of cylinders
can be 4, 5, or 6.

7.1.1 A menagerie of methods

When it comes to calculating descriptive statistics, R has an embarrassment of riches.
Let’s start with functions that are included in the base installation. Then we’ll look at
extensions that are available through the use of user-contributed packages.

In the base installation, you can use the summary() function to obtain descriptive
statistics. An example is presented in the following listing.

 Descriptive statistics 143

Listing 7.1 Descriptive statistics via summary()

> summary(mtcars[vars])
 mpg hp wt
 Min. :10.4 Min. : 52.0 Min. :1.51
 1st Qu.:15.4 1st Qu.: 96.5 1st Qu.:2.58
 Median :19.2 Median :123.0 Median :3.33
 Mean :20.1 Mean :146.7 Mean :3.22
 3rd Qu.:22.8 3rd Qu.:180.0 3rd Qu.:3.61
 Max. :33.9 Max. :335.0 Max. :5.42

The summary() function provides the minimum, maximum, quartiles, and the mean
for numerical variables and frequencies for factors and logical vectors. You can use the
apply() or sapply() function from chapter 5 to provide any descriptive statistics you
choose. For the sapply() function, the format is

sapply(x, FUN, options)

where x is your data frame (or matrix) and FUN is an arbitrary function. If options are
present, they’re passed to FUN. Typical functions that you can plug in here are mean,
sd, var, min, max, median, length, range, and quantile. The function fivenum()
returns Tukey’s five-number summary (minimum, lower-hinge, median, upper-hinge,
and maximum).

Surprisingly, the base installation doesn’t provide functions for skew and kurtosis,
but you can add your own. The example in the next listing provides several descriptive
statistics, including skew and kurtosis.

Listing 7.2 Descriptive statistics via sapply()

> mystats <- function(x, na.omit=FALSE){
 if (na.omit)
 x <- x[!is.na(x)]
 m <- mean(x)
 n <- length(x)
 s <- sd(x)
 skew <- sum((x-m)^3/s^3)/n
 kurt <- sum((x-m)^4/s^4)/n - 3
 return(c(n=n, mean=m, stdev=s, skew=skew, kurtosis=kurt))

 }

> sapply(mtcars[vars], mystats)
 mpg hp wt
n 32.000 32.000 32.0000
mean 20.091 146.688 3.2172
stdev 6.027 68.563 0.9785
skew 0.611 0.726 0.4231
kurtosis -0.373 -0.136 -0.0227

For cars in this sample, the mean mpg is 20.1, with a standard deviation of 6.0. The
distribution is skewed to the right (+0.61) and somewhat flatter than a normal dis-
tribution (–0.37). This will be most evident if you graph the data. Note that if

144 CHAPTER 7 Basic statistics

you’d wanted to omit missing values, you would have used sapply(mtcars[vars],
mystats, na.omit=TRUE).

EXTENSIONS

Several user-contributed packages offer functions for descriptive statistics, including
Hmisc, pastecs, and psych. Because these packages aren’t included in the base dis-
tribution, you’ll need to install them on first use (see chapter 1, section 1.4).

The describe() function in the Hmisc package returns the number of variables
and observations, the number of missing and unique values, the mean, quantiles, and
the five highest and lowest values. An example is provided in the following listing.

Listing 7.3 Descriptive statistics via describe() in the Hmisc package()

> library(Hmisc)
> describe(mtcars[vars])

 3 Variables 32 Observations

mpg
n missing unique Mean .05 .10 .25 .50 .75 .90 .95
32 0 25 20.09 12.00 14.34 15.43 19.20 22.80 30.09 31.30

lowest : 10.4 13.3 14.3 14.7 15.0, highest: 26.0 27.3 30.4 32.4 33.9

hp
n missing unique Mean .05 .10 .2 .50 .75 .90 .95
32 0 22 146.7 63.65 66.00 96.50 123.00 180.00 243.50 253.55

lowest : 52 62 65 66 91, highest: 215 230 245 264 335

wt
n missing unique Mean .05 .10 .25 .50 .75 .90 .95
32 0 29 3.217 1.736 1.956 2.581 3.325 3.610 4.048 5.293

lowest : 1.513 1.615 1.835 1.935 2.140, highest: 3.845 4.070 5.250 5.345
5.424

The pastecs package includes a function named stat.desc() that provides a wide
range of descriptive statistics. The format is

stat.desc(x, basic=TRUE, desc=TRUE, norm=FALSE, p=0.95)

where x is a data frame or time series. If basic=TRUE (the default), the number of val-
ues, null values, missing values, minimum, maximum, range, and sum are provided. If
desc=TRUE (also the default), the median, mean, standard error of the mean, 95 per-
cent confidence interval for the mean, variance, standard deviation, and coefficient of
variation are also provided. Finally, if norm=TRUE (not the default), normal distribu-
tion statistics are returned, including skewness and kurtosis (and their statistical signifi-
cance), and the Shapiro–Wilk test of normality. A p-value option is used to calculate
the confidence interval for the mean (.95 by default). Listing 7.4 gives an example.

 Descriptive statistics 145

Listing 7.4 Descriptive statistics via stat.desc() in the pastecs package

> library(pastecs)
> stat.desc(mtcars[vars])
 mpg hp wt
nbr.val 32.00 32.000 32.000
nbr.null 0.00 0.000 0.000
nbr.na 0.00 0.000 0.000
min 10.40 52.000 1.513
max 33.90 335.000 5.424
range 23.50 283.000 3.911
sum 642.90 4694.000 102.952
median 19.20 123.000 3.325
mean 20.09 146.688 3.217
SE.mean 1.07 12.120 0.173
CI.mean.0.95 2.17 24.720 0.353
var 36.32 4700.867 0.957
std.dev 6.03 68.563 0.978
coef.var 0.30 0.467 0.304

As if this isn’t enough, the psych package also has a function called describe() that
provides the number of nonmissing observations, mean, standard deviation, median,
trimmed mean, median absolute deviation, minimum, maximum, range, skew, kurto-
sis, and standard error of the mean. You can see an example in the following listing.

Listing 7.5 Descriptive statistics via describe() in the psych package

> library(psych)

Attaching package: 'psych'
 The following object(s) are masked from package:Hmisc :
 describe

> describe(mtcars[vars])
 var n mean sd median trimmed mad min max
mpg 1 32 20.09 6.03 19.20 19.70 5.41 10.40 33.90
hp 2 32 146.69 68.56 123.00 141.19 77.10 52.00 335.00
wt 3 32 3.22 0.98 3.33 3.15 0.77 1.51 5.42
 range skew kurtosis se
mpg 23.50 0.61 -0.37 1.07
hp 283.00 0.73 -0.14 12.12
wt 3.91 0.42 -0.02 0.17

I told you that it was an embarrassment of riches!

NOTE In the previous examples, the packages psych and Hmisc both
provided functions named describe(). How does R know which one to use?
Simply put, the package last loaded takes precedence, as seen in listing 7.5.
Here, psych is loaded after Hmisc, and a message is printed indicating that
the describe() function in Hmisc is masked by the function in psych.
When you type in the describe() function and R searches for it, R comes
to the psych package first and executes it. If you want the Hmisc version
instead, you can type Hmisc::describe(mt). The function is still there.

146 CHAPTER 7 Basic statistics

You have to give R more information to find it.

Now that you know how to generate descriptive statistics for the data as a whole, let’s
review how to obtain statistics for subgroups of the data.

7.1.2 Descriptive statistics by group

When comparing groups of individuals or observations, the focus is usually on the de-
scriptive statistics of each group, rather than the total sample. Again, there are several
ways to accomplish this in R. We’ll start by getting descriptive statistics for each level of
transmission type.

In chapter 5, we discussed methods of aggregating data. You can use the aggregate()
function (section 5.6.2) to obtain descriptive statistics by group, as shown in the
following listing.

Listing 7.6 Descriptive statistics by group using aggregate()

> aggregate(mtcars[vars], by=list(am=mtcars$am), mean)
 am mpg hp wt
1 0 17.1 160 3.77
2 1 24.4 127 2.41
> aggregate(mtcars[vars], by=list(am=mtcars$am), sd)
 am mpg hp wt
1 0 3.83 53.9 0.777
2 1 6.17 84.1 0.617

Note the use of list(am=mtca rs$am). If you had used list(mtcars$am), the am col-
umn would have been labeled Group.1 rather than am. You use the assignment to pro-
vide a more useful column label. If you have more than one grouping variable, you can
use code like by=list(name1=groupvar1, name2=groupvar2, … , groupvarN).

Unfortunately, aggregate() only allows you to use single value functions such as
mean, standard deviation, and the like in each call. It won’t return several statistics at
once. For that task, you can use the by() function. The format is

by(data, INDICES, FUN)

where data is a data frame or matrix, INDICES is a factor or list of factors that define
the groups, and FUN is an arbitrary function. This next listing provides an example.

Listing 7.7 Descriptive statistics by group using by()

> dstats <- function(x)(c(mean=mean(x), sd=sd(x)))
> by(mtcars[vars], mtcars$am, dstats)

mtcars$am: 0
mean.mpg mean.hp mean.wt sd.mpg sd.hp sd.wt
 17.147 160.263 3.769 3.834 53.908 0.777
--
mtcars$am: 1
mean.mpg mean.hp mean.wt sd.mpg sd.hp sd.wt
 24.392 126.846 2.411 6.167 84.062 0.617

 Descriptive statistics 147

EXTENSIONS

The doBy package and the psych package also provide functions for descriptive sta-
tistics by group. Again, they aren’t distributed in the base installation and must be in-
stalled before first use. The summaryBy() function in the doBy package has the format

summaryBy(formula, data=dataframe, FUN=function)

where the formula takes the form

var1 + var2 + var3 + ... + varN ~ groupvar1 + groupvar2 + … + groupvarN

Variables on the left of the ~ are the numeric variables to be analyzed and variables on
the right are categorical grouping variables. The function can be any built-in or user-
created R function. An example using the mystats() function you created in section
7.2.1 is shown in the following listing.

Listing 7.8 Summary statistics by group using summaryBy() in the doBy package

> library(doBy)
> summaryBy(mpg+hp+wt~am, data=mtcars, FUN=mystats)
 am mpg.n mpg.mean mpg.stdev mpg.skew mpg.kurtosis hp.n hp.mean hp.stdev
1 0 19 17.1 3.83 0.0140 -0.803 19 160 53.9
2 1 13 24.4 6.17 0.0526 -1.455 13 127 84.1
 hp.skew hp.kurtosis wt.n wt.mean wt.stdev wt.skew wt.kurtosis
1 -0.0142 -1.210 19 3.77 0.777 0.976 0.142
2 1.3599 0.563 13 2.41 0.617 0.210 -1.174

The describe.by() function contained in the psych package provides the same de-
scriptive statistics as describe, stratified by one or more grouping variables, as you can
see in the following listing.

Listing 7.9 Summary statistics by group using describe.by() in the psych package

> library(psych)
> describe.by(mtcars[vars], mtcars$am)
group: 0
 var n mean sd median trimmed mad min max
mpg 1 19 17.15 3.83 17.30 17.12 3.11 10.40 24.40
hp 2 19 160.26 53.91 175.00 161.06 77.10 62.00 245.00
wt 3 19 3.77 0.78 3.52 3.75 0.45 2.46 5.42
 range skew kurtosis se
mpg 14.00 0.01 -0.80 0.88
hp 183.00 -0.01 -1.21 12.37
wt 2.96 0.98 0.14 0.18
--

group: 1

 var n mean sd median trimmed mad min max
mpg 1 13 24.39 6.17 22.80 24.38 6.67 15.00 33.90
hp 2 13 126.85 84.06 109.00 114.73 63.75 52.00 335.00
wt 3 13 2.41 0.62 2.32 2.39 0.68 1.51 3.57
 range skew kurtosis se

148 CHAPTER 7 Basic statistics

mpg 18.90 0.05 -1.46 1.71
hp 283.00 1.36 0.56 23.31
wt 2.06 0.21 -1.17 0.17

Unlike the previous example, the describe.by() function doesn’t allow you to specify
an arbitrary function, so it’s less generally applicable. If there’s more than one group-
ing variable, you can write them as list(groupvar1, groupvar2, … , groupvarN).
But this will only work if there are no empty cells when the grouping variables are
crossed.

Finally, you can use the reshape package described in section 5.6.3 to derive
descriptive statistics by group in a flexible way. (If you haven’t read that section, I
suggest you review it before continuing.) First, you melt the data frame using

dfm <- melt(dataframe, measure.vars=y, id.vars=g)

where dataframe contains the data, y is a vector indicating the numeric variables to
be summarized (the default is to use all), and g is a vector of one or more grouping
variables. You then cast the data using

cast(dfm, groupvar1 + groupvar2 + … + variable ~ ., FUN)

where the grouping variables are separated by + signs, the word variable is entered
exactly as is, and FUN is an arbitrary function.

In the final example of this section, we’ll apply the reshape approach to obtaining
descriptive statistics for each subgroup formed by transmission type and number
of cylinders. For descriptive statistics, we’ll get the sample size, mean, and standard
deviation. The code and results are shown in the following listing.

Listing 7.10 Summary statistics by group via the reshape package

> library(reshape)
> dstats <- function(x)(c(n=length(x), mean=mean(x), sd=sd(x)))
> dfm <- melt(mtcars, measure.vars=c("mpg", "hp", "wt"),
 id.vars=c("am", "cyl"))
> cast(dfm, am + cyl + variable ~ ., dstats)

 am cyl variable n mean sd
1 0 4 mpg 3 22.90 1.453
2 0 4 hp 3 84.67 19.655
3 0 4 wt 3 2.94 0.408
4 0 6 mpg 4 19.12 1.632
5 0 6 hp 4 115.25 9.179
6 0 6 wt 4 3.39 0.116
7 0 8 mpg 12 15.05 2.774
8 0 8 hp 12 194.17 33.360
9 0 8 wt 12 4.10 0.768
10 1 4 mpg 8 28.07 4.484
11 1 4 hp 8 81.88 22.655
12 1 4 wt 8 2.04 0.409

Frequency and contingency tables 149

13 1 6 mpg 3 20.57 0.751
14 1 6 hp 3 131.67 37.528
15 1 6 wt 3 2.75 0.128
16 1 8 mpg 2 15.40 0.566
17 1 8 hp 2 299.50 50.205
18 1 8 wt 2 3.37 0.283

Personally, I find this approach the most compact and appealing. Data analysts have
their own preferences for which descriptive statistics to display and how they like to see
them formatted. This is probably why there are many variations available. Choose the
one that works best for you, or create your own!

7.1.3 Visualizing results

Numerical summaries of a distribution’s characteristics are important, but they’re no
substitute for a visual representation. For quantitative variables you have histograms
(section 6.3), density plots (section 6.4), box plots (section 6.5), and dot plots (sec-
tion 6.6). They can provide insights that are easily missed by reliance on a small set of
descriptive statistics.

The functions considered so far provide summaries of quantitative variables. The
functions in the next section allow you to examine the distributions of categorical
variables.

7.2 Frequency and contingency tables
In this section, we’ll look at frequency and contingency tables from categorical vari-
ables, along with tests of independence, measures of association, and methods for
graphically displaying results. We’ll be using functions in the basic installation, along
with functions from the vcd and gmodels package. In the following examples, assume
that A, B, and C represent categorical variables.

The data for this section come from the Arthritis dataset included with the vcd
package. The data are from Kock & Edward (1988) and represent a double-blind clinical
trial of new treatments for rheumatoid arthritis. Here are the first few observations:

> library(vcd)
> head(Arthritis)
 ID Treatment Sex Age Improved
1 57 Treated Male 27 Some
2 46 Treated Male 29 None
3 77 Treated Male 30 None
4 17 Treated Male 32 Marked
5 36 Treated Male 46 Marked
6 23 Treated Male 58 Marked

Treatment (Placebo, Treated), Sex (Male, Female), and Improved (None, Some,
Marked) are all categorical factors. In the next section, we’ll create frequency and
contingency tables (cross-classifications) from the data.

150 CHAPTER 7 Basic statistics

7.2.1 Generating frequency tables

R provides several methods for creating frequency and contingency tables. The most
important functions are listed in table 7.1.

Table 7.1 Functions for creating and manipulating contingency tables

Function Description

table(var1, var2, …, varN) Creates an N-way contingency table from N
categorical variables (factors)

xtabs(formula, data) Creates an N-way contingency table based on a
formula and a matrix or data frame

prop.table(table, margins) Expresses table entries as fractions of the marginal
table defined by the margins

margin.table(table, margins) Computes the sum of table entries for a marginal
table defined by the margins

addmargins(table, margins) Puts summary margins (sums by default) on a table

ftable(table) Creates a compact "flat" contingency table

In the following sections, we’ll use each of these functions to explore categorical vari-
ables. We’ll begin with simple frequencies, followed by two-way contingency tables, and
end with multiway contingency tables. The first step is to create a table using either the
table() or the xtabs() function, then manipulate it using the other functions.

ONE-WAY TABLES

You can generate simple frequency counts using the table() function. Here’s an
example:

> mytable <- with(Arthritis, table(Improved))
> mytable
Improved
 None Some Marked
 42 14 28

You can turn these frequencies into proportions with prop.table():

> prop.table(mytable)
Improved
 None Some Marked
 0.500 0.167 0.333

or into percentages, using prop.table()*100:

> prop.table(mytable)*100
Improved
 None Some Marked
 50.0 16.7 33.3

Frequency and contingency tables 151

Here you can see that 50 percent of study participants had some or marked improve-
ment (16.7 + 33.3).

TWO-WAY TABLES

For two-way tables, the format for the table() function is

mytable <- table(A, B)

where A is the row variable, and B is the column variable. Alternatively, the xtabs()
function allows you to create a contingency table using formula style input. The for-
mat is

mytable <- xtabs(~ A + B, data=mydata)

where mydata is a matrix or data frame. In general, the variables to be cross-classified
appear on the right of the formula (that is, to the right of the ~) separated by + signs.
If a variable is included on the left side of the formula, it’s assumed to be a vector of
frequencies (useful if the data have already been tabulated).

For the Arthritis data, you have

> mytable <- xtabs(~ Treatment+Improved, data=Arthritis)
> mytable
 Improved
Treatment None Some Marked
 Placebo 29 7 7
 Treated 13 7 21

You can generate marginal frequencies and proportions using the margin.table()
and prop.table() functions, respectively. For row sums and row proportions, you
have

> margin.table(mytable, 1)
Treatment
Placebo Treated
 43 41
> prop.table(mytable, 1)
 Improved
Treatment None Some Marked
 Placebo 0.674 0.163 0.163
 Treated 0.317 0.171 0.512

The index (1) refers to the first variable in the table() statement. Looking at the
table, you can see that 51 percent of treated individuals had marked improvement,
compared to 16 percent of those receiving a placebo.

For column sums and column proportions, you have

> margin.table(mytable, 2)
Improved
 None Some Marked
 42 14 28
> prop.table(mytable, 2)
 Improved
Treatment None Some Marked

152 CHAPTER 7 Basic statistics

 Placebo 0.690 0.500 0.250
 Treated 0.310 0.500 0.750

Here, the index (2) refers to the second variable in the table() statement.
Cell proportions are obtained with this statement:

> prop.table(mytable)
 Improved
Treatment None Some Marked
 Placebo 0.3452 0.0833 0.0833
 Treated 0.1548 0.0833 0.2500

You can use the addmargins() function to add marginal sums to these tables. For
example, the following code adds a sum row and column:

> addmargins(mytable)
 Improved
Treatment None Some Marked Sum
 Placebo 29 7 7 43
 Treated 13 7 21 41
 Sum 42 14 28 84
> addmargins(prop.table(mytable))
 Improved
Treatment None Some Marked Sum
 Placebo 0.3452 0.0833 0.0833 0.5119
 Treated 0.1548 0.0833 0.2500 0.4881
 Sum 0.5000 0.1667 0.3333 1.0000

When using addmargins(), the default is to create sum margins for all variables in a
table. In contrast:

> addmargins(prop.table(mytable, 1), 2)
 Improved
Treatment None Some Marked Sum
 Placebo 0.674 0.163 0.163 1.000
 Treated 0.317 0.171 0.512 1.000

adds a sum column alone. Similarly,

> addmargins(prop.table(mytable, 2), 1)
 Improved
Treatment None Some Marked
 Placebo 0.690 0.500 0.250
 Treated 0.310 0.500 0.750
 Sum 1.000 1.000 1.000

adds a sum row. In the table, you see that 25 percent of those patients with marked
improvement received a placebo.

NOTE The table() function ignores missing values (NAs) by default. To
include NA as a valid category in the frequency counts, include the table option
useNA="ifany".

A third method for creating two-way tables is the CrossTable() function in the gmod-
els package. The CrossTable() function produces two-way tables modeled after
PROC FREQ in SAS or CROSSTABS in SPSS. See listing 7.11 for an example.

Frequency and contingency tables 153

Listing 7.11 Two-way table using CrossTable

> library(gmodels)
> CrossTable(Arthritis$Treatment, Arthritis$Improved)

 Cell Contents
|-------------------------|
| N |
| Chi-square contribution |
| N / Row Total |
| N / Col Total |
N / Table Total

Total Observations in Table: 84

 | Arthritis$Improved

Arthritis$Treatment	None	Some	Marked	Row Total
 Placebo | 29 | 7 | 7 | 43 |
 | 2.616 | 0.004 | 3.752 | |
 | 0.674 | 0.163 | 0.163 | 0.512 |
 | 0.690 | 0.500 | 0.250 | |
 | 0.345 | 0.083 | 0.083 | |
--------------------|-----------|-----------|-----------|-----------|
 Treated | 13 | 7 | 21 | 41 |
 | 2.744 | 0.004 | 3.935 | |
 | 0.317 | 0.171 | 0.512 | 0.488 |
 | 0.310 | 0.500 | 0.750 | |
 | 0.155 | 0.083 | 0.250 | |
--------------------|-----------|-----------|-----------|-----------|
 Column Total | 42 | 14 | 28 | 84 |
 | 0.500 | 0.167 | 0.333 | |
--------------------|-----------|-----------|-----------|-----------|

The CrossTable() function has options to report percentages (row, column, cell);
specify decimal places; produce chi-square, Fisher, and McNemar tests of indepen-
dence; report expected and residual values (Pearson, standardized, adjusted standard-
ized); include missing values as valid; annotate with row and column titles; and format
as SAS or SPSS style output. See help(CrossTable) for details.

If you have more than two categorical variables, you’re dealing with multidimensional
tables. We’ll consider these next.

MULTIDIMENSIONAL TABLES

Both table() and xtabs() can be used to generate multidimensional tables based
on three or more categorical variables. The margin.table(), prop.table(), and
addmargins() functions extend naturally to more than two dimensions. Additionally,
the ftable() function can be used to print multidimensional tables in a compact and
attractive manner. An example is given in listing 7.12.

154 CHAPTER 7 Basic statistics

Listing 7.12 Three-way contingency table

> mytable <- xtabs(~ Treatment+Sex+Improved, data=Arthritis)
> mytable
, , Improved = None

q

 Sex
Treatment Female Male
 Placebo 19 10
 Treated 6 7

, , Improved = Some

 Sex
Treatment Female Male
 Placebo 7 0
 Treated 5 2

, , Improved = Marked

 Sex
Treatment Female Male
 Placebo 6 1
 Treated 16 5

> ftable(mytable)
 Sex Female Male
Treatment Improved
Placebo None 19 10
 Some 7 0
 Marked 6 1
Treated None 6 7
 Some 5 2
 Marked 16 5

> margin.table(mytable, 1)
Treatment
Placebo Treated w
 43 41
> margin.table(mytable, 2)
Sex
Female Male
 59 25
> margin.table(mytable, 3)
Improved
 None Some Marked
 42 14 28
> margin.table(mytable, c(1, 3))
 Improved
Treatment None Some Marked e Placebo 29 7 7
 Treated 13 7 21
> ftable(prop.table(mytable, c(1, 2)))
 Improved None Some Marked
Treatment Sex r

Cell
frequencies

Marginal
frequencies

Treatment x
Improved marginal
frequencies

Improve
proportions for
Treatment x Sex

Frequency and contingency tables 155

Placebo Female 0.594 0.219 0.188
 Male 0.909 0.000 0.091
Treated Female 0.222 0.185 0.593
 Male 0.500 0.143 0.357

> ftable(addmargins(prop.table(mytable, c(1, 2)), 3))
 Improved None Some Marked Sum
Treatment Sex
Placebo Female 0.594 0.219 0.188 1.000
 Male 0.909 0.000 0.091 1.000
Treated Female 0.222 0.185 0.593 1.000
 Male 0.500 0.143 0.357 1.000

The code in q produces cell frequencies for the three-way classification. The code
also demonstrates how the ftable() function can be used to print a more compact
and attractive version of the table.

The code in w produces the marginal frequencies for Treatment, Sex, and Improved.
Because you created the table with the formula ~Treatement+Sex+Improve,
Treatment is referred to by index 1, Sex is referred to by index 2, and Improve is
referred to by index 3.

The code in e produces the marginal frequencies for the Treatment x Improved
classification, summed over Sex. The proportion of patients with None, Some, and
Marked improvement for each Treatment x Sex combination is provided in r. Here
you see that 36 percent of treated males had marked improvement, compared to 59
percent of treated females. In general, the proportions will add to one over the indices
not included in the prop.table() call (the third index, or Improve in this case). You
can see this in the last example, where you add a sum margin over the third index.

If you want percentages instead of proportions, you could multiply the resulting
table by 100. For example:

ftable(addmargins(prop.table(mytable, c(1, 2)), 3)) * 100

would produce this table:

 Sex Female Male Sum
Treatment Improved
Placebo None 65.5 34.5 100.0
 Some 100.0 0.0 100.0
 Marked 85.7 14.3 100.0
Treated None 46.2 53.8 100.0
 Some 71.4 28.6 100.0
 Marked 76.2 23.8 100.0

While contingency tables tell you the frequency or proportions of cases for each com-
bination of the variables that comprise the table, you’re probably also interested in
whether the variables in the table are related or independent. Tests of independence
are covered in the next section.

156 CHAPTER 7 Basic statistics

7.2.2 Tests of independence

R provides several methods of testing the independence of the categorical variables.
The three tests described in this section are the chi-square test of independence, the
Fisher exact test, and the Cochran-Mantel–Haenszel test.

CHI-SQUARE TEST OF INDEPENDENCE

You can apply the function chisq.test() to a two-way table in order to produce a
chi-square test of independence of the row and column variables. See this next listing
for an example.

Listing 7.13 Chi-square test of independence

> library(vcd)
> mytable <- xtabs(~Treatment+Improved, data=Arthritis)
> chisq.test(mytable)

 Pearson’s Chi-squared test

data: mytable
q

X-squared = 13.1, df = 2, p-value = 0.001463

> mytable <- xtabs(~Improved+Sex, data=Arthritis)
> chisq.test(mytable)

 Pearson’s Chi-squared test w
data: mytable
X-squared = 4.84, df = 2, p-value = 0.0889

Warning message:
In chisq.test(mytable) : Chi-squared approximation may be incorrect

From the results q, there appears to be a relationship between treatment received
and level of improvement (p < .01). But there doesn’t appear to be a relationship w
between patient sex and improvement (p > .05). The p-values are the probability of ob-
taining the sampled results assuming independence of the row and column variables
in the population. Because the probability is small for q, you reject the hypothesis
that treatment type and outcome are independent. Because the probability for w isn’t
small, it’s not unreasonable to assume that outcome and gender are independent. The
warning message in listing 7.13 is produced because one of the six cells in the table
(male-some improvement) has an expected value less than five, which may invalidate
the chi-square approximation.

FISHER’S EXACT TEST

You can produce a Fisher’s exact test via the fisher.test() function. Fisher’s exact
test evaluates the null hypothesis of independence of rows and columns in a contingen-
cy table with fixed marginals. The format is fisher.test(mytable), where mytable
is a two-way table. Here’s an example:

> mytable <- xtabs(~Treatment+Improved, data=Arthritis)
> fisher.test(mytable)

Treatment and
Improved not
independent

Gender and
Improved
independent

Frequency and contingency tables 157

 Fisher’s Exact Test for Count Data

data: mytable
p-value = 0.001393
alternative hypothesis: two.sided

In contrast to many statistical packages, the fisher.test() function can be applied
to any two-way table with two or more rows and columns, not a 2x2 table.

COCHRAN–MANTEL–HAENSZEL TEST

The mantelhaen.test() function provides a Cochran–Mantel–Haenszel chi-square
test of the null hypothesis that two nominal variables are conditionally independent
in each stratum of a third variable. The following code tests the hypothesis that Treat-
ment and Improved variables are independent within each level Sex. The test assumes
that there’s no three-way (Treatment x Improved x Sex) interaction.

> mytable <- xtabs(~Treatment+Improved+Sex, data=Arthritis)
> mantelhaen.test(mytable)

 Cochran-Mantel-Haenszel test

data: mytable
Cochran-Mantel-Haenszel M^2 = 14.6, df = 2, p-value = 0.0006647

The results suggest that the treatment received and the improvement reported aren’t
independent within each level of sex (that is, treated individuals improved more than
those receiving placebos when controlling for sex).

7.2.3 Measures of association

The significance tests in the previous section evaluated whether or not sufficient evi-
dence existed to reject a null hypothesis of independence between variables. If you can
reject the null hypothesis, your interest turns naturally to measures of association in or-
der to gauge the strength of the relationships present. The assocstats() function in
the vcd package can be used to calculate the phi coefficient, contingency coefficient,
and Cramer’s V for a two-way table. An example is given in the following listing.

Listing 7.14 Measures of association for a two-way table

> library(vcd)
> mytable <- xtabs(~Treatment+Improved, data=Arthritis)
> assocstats(mytable)

 X^2 df P(> X^2)
Likelihood Ratio 13.530 2 0.0011536
Pearson 13.055 2 0.0014626

Phi-Coefficient : 0.394
Contingency Coeff.: 0.367
Cramer’s V : 0.394

In general, larger magnitudes indicated stronger associations. The vcd package also
provides a kappa() function that can calculate Cohen’s kappa and weighted kappa for

158 CHAPTER 7 Basic statistics

a confusion matrix (for example, the degree of agreement between two judges classify-
ing a set of objects into categories).

7.2.4 Visualizing results

R has mechanisms for visually exploring the relationships among categorical variables
that go well beyond those found in most other statistical platforms. You typically use
bar charts to visualize frequencies in one dimension (see chapter 6, section 6.1). The
vcd package has excellent functions for visualizing relationships among categorical
variables in multidimensional datasets using mosaic and association plots (see chapter
11, section 11.4). Finally, correspondence analysis functions in the ca package allow
you to visually explore relationships between rows and columns in contingency tables
using various geometric representations (Nenadic and Greenacre, 2007).

7.2.5 Converting tables to flat files

We’ll end this section with a topic that’s rarely covered in books on R but that can be
very useful. What happens if you have a table but need the original raw data? For ex-
ample, say you have the following:

 Sex Female Male
Treatment Improved
Placebo None 19 10
 Some 7 0
 Marked 6 1
Treated None 6 7
 Some 5 2
 Marked 16 5

but you need this:

 ID Treatment Sex Age Improved
1 57 Treated Male 27 Some
2 46 Treated Male 29 None
3 77 Treated Male 30 None
4 17 Treated Male 32 Marked
5 36 Treated Male 46 Marked
6 23 Treated Male 58 Marked
[78 more rows go here]

There are many statistical functions in R that expect the latter format rather than the
former. You can use the function provided in the following listing to convert an R table
back into a flat data file.

Listing 7.15 Converting a table into a flat file via table2flat

table2flat <- function(mytable) {
 df <- as.data.frame(mytable)
 rows <- dim(df)[1]
 cols <- dim(df)[2]
 x <- NULL
 for (i in 1:rows){
 for (j in 1:df$Freq[i]){

 Correlations 159

 row <- df[i,c(1:(cols-1))]
 x <- rbind(x,row)
 }
 }
 row.names(x)<-c(1:dim(x)[1])
 return(x)

}

This function takes an R table (with any number of rows and columns) and returns a
data frame in flat file format. You can also use this function to input tables from pub-
lished studies. For example, let’s say that you came across table 7.2 in a journal and
wanted to save it into R as a flat file.

Table 7.2 Contingency table for treatment versus improvement from the Arthritis dataset

Treatment

Improved

None Some Marked

Placebo 29 7 7

Treated 13 17 21

This next listing describes a method that would do the trick.

Listing 7.16 Using the table2flat() function with published data

> treatment <- rep(c("Placebo", "Treated"), times=3)
> improved <- rep(c("None", "Some", "Marked"), each=2)
> Freq <- c(29,13,7,17,7,21)
> mytable <- as.data.frame(cbind(treatment, improved, Freq))
> mydata <- table2flat(mytable)
> head(mydata)
 treatment improved
1 Placebo None
2 Placebo None
3 Placebo None
4 Treated None
5 Placebo Some
6 Placebo Some
[12 more rows go here]

This ends the discussion of contingency tables, until we take up more advanced topics
in chapters 11 and 15. Next, let’s look at various types of correlation coefficients.

7.3 Correlations
Correlation coefficients are used to describe relationships among quantitative vari-
ables. The sign ± indicates the direction of the relationship (positive or inverse) and
the magnitude indicates the strength of the relationship (ranging from 0 for no rela-
tionship to 1 for a perfectly predictable relationship).

In this section, we’ll look at a variety of correlation coefficients, as well as tests of
significance. We’ll use the state.x77 dataset available in the base R installation. It

160 CHAPTER 7 Basic statistics

provides data on the population, income, illiteracy rate, life expectancy, murder rate,
and high school graduation rate for the 50 US states in 1977. There are also temperature
and land area measures, but we’ll drop them to save space. Use help(state.x77) to
learn more about the file. In addition to the base installation, we’ll be using the psych
and ggm packages.

7.3.1 Types of correlations

R can produce a variety of correlation coefficients, including Pearson, Spearman, Ken-
dall, partial, polychoric, and polyserial. Let’s look at each in turn.

PEARSON, SPEARMAN, AND KENDALL CORRELATIONS

The Pearson product moment correlation assesses the degree of linear relationship
between two quantitative variables. Spearman’s Rank Order correlation coefficient as-
sesses the degree of relationship between two rank-ordered variables. Kendall’s Tau is
also a nonparametric measure of rank correlation.

The cor() function produces all three correlation coefficients, whereas the cov()
function provides covariances. There are many options, but a simplified format for
producing correlations is

cor(x, use= , method=)

The options are described in table 7.3.

Table 7.3 cor/cov options

Option Description

x Matrix or data frame.

use Specifies the handling of missing data. The options are all.obs (assumes no
missing data—missing data will produce an error), everything (any correlation
involving a case with missing values will be set to missing), complete.obs
(listwise deletion), and pairwise.complete.obs (pairwise deletion).

method Specifies the type of correlation. The options are pearson, spearman, or
kendall.

The default options are use="everything" and method="pearson". You can see an
example in the following listing.

Listing 7.17 Covariances and correlations

> states<- state.x77[,1:6]
> cov(states)
 Population Income Illiteracy Life Exp Murder HS Grad
Population 19931684 571230 292.868 -407.842 5663.52 -3551.51
Income 571230 377573 -163.702 280.663 -521.89 3076.77
Illiteracy 293 -164 0.372 -0.482 1.58 -3.24
Life Exp -408 281 -0.482 1.802 -3.87 6.31
Murder 5664 -522 1.582 -3.869 13.63 -14.55
HS Grad -3552 3077 -3.235 6.313 -14.55 65.24

 Correlations 161

> cor(states)
 Population Income Illiteracy Life Exp Murder HS Grad
Population 1.0000 0.208 0.108 -0.068 0.344 -0.0985
Income 0.2082 1.000 -0.437 0.340 -0.230 0.6199
Illiteracy 0.1076 -0.437 1.000 -0.588 0.703 -0.6572
Life Exp -0.0681 0.340 -0.588 1.000 -0.781 0.5822
Murder 0.3436 -0.230 0.703 -0.781 1.000 -0.4880
HS Grad -0.0985 0.620 -0.657 0.582 -0.488 1.0000

> cor(states, method="spearman")
 Population Income Illiteracy Life Exp Murder HS Grad
Population 1.000 0.125 0.313 -0.104 0.346 -0.383
Income 0.125 1.000 -0.315 0.324 -0.217 0.510
Illiteracy 0.313 -0.315 1.000 -0.555 0.672 -0.655
Life Exp -0.104 0.324 -0.555 1.000 -0.780 0.524
Murder 0.346 -0.217 0.672 -0.780 1.000 -0.437
HS Grad -0.383 0.510 -0.655 0.524 -0.437 1.000

The first call produces the variances and covariances. The second provides Pearson
Product Moment correlation coefficients, whereas the third produces Spearman Rank
Order correlation coefficients. You can see, for example, that a strong positive correla-
tion exists between income and high school graduation rate and that a strong negative
correlation exists between illiteracy rates and life expectancy.

Notice that you get square matrices by default (all variables crossed with all other
variables). You can also produce nonsquare matrices; see the following example:

> x <- states[,c("Population", "Income", "Illiteracy", "HS Grad")]
> y <- states[,c("Life Exp", "Murder")]
> cor(x,y)
 Life Exp Murder
Population -0.068 0.344
Income 0.340 -0.230
Illiteracy -0.588 0.703
HS Grad 0.582 -0.488

This version of the function is particularly useful when you’re interested in the rela-
tionships between one set of variables and another. Notice that the results don’t tell
you if the correlations differ significantly from 0 (that is, whether there’s sufficient
evidence based on the sample data to conclude that the population correlations differ
from 0). For that, you need tests of significance (described in section 7.3.2).

PARTIAL CORRELATIONS

A partial correlation is a correlation between two quantitative variables, controlling for
one or more other quantitative variables. You can use the pcor() function in the ggm
package to provide partial correlation coefficients. The ggm package isn’t installed by
default, so be sure to install it on first use. The format is

pcor(u, S)

where u is a vector of numbers, with the first two numbers the indices of the variables
to be correlated, and the remaining numbers the indices of the conditioning variables

162 CHAPTER 7 Basic statistics

(that is, the variables being partialed out). S is the covariance matrix among the vari-
ables. An example will help clarify this:

> library(ggm)
> # partial correlation of population and murder rate, controlling
> # for income, illiteracy rate, and HS graduation rate
> pcor(c(1,5,2,3,6), cov(states))
[1] 0.346

In this case, 0.346 is the correlation between population and murder rate, controlling
for the influence of income, illiteracy rate, and HS graduation rate. The use of partial
correlations is common in the social sciences.

OTHER TYPES OF CORRELATIONS

The hetcor() function in the polycor package can compute a heterogeneous cor-
relation matrix containing Pearson product-moment correlations between numeric
variables, polyserial correlations between numeric and ordinal variables, polychoric
correlations between ordinal variables, and tetrachoric correlations between two di-
chotomous variables. Polyserial, polychoric, and tetrachoric correlations assume that
the ordinal or dichotomous variables are derived from underlying normal distribu-
tions. See the documentation that accompanies this package for more information.

7.3.2 Testing correlations for significance

Once you’ve generated correlation coefficients, how do you test them for statistical sig-
nificance? The typical null hypothesis is no relationship (that is, the correlation in the
population is 0). You can use the cor.test() function to test an individual Pearson,
Spearman, and Kendall correlation coefficient. A simplified format is

cor.test(x, y, alternative = , method =)

where x and y are the variables to be correlated, alternative specifies a two-tailed or one-
tailed test ("two.side", "less", or "greater") and method specifies the type of corre-
lation ("pearson", "kendall", or "spearman") to compute. Use alternative="less"
when the research hypothesis is that the population correlation is less than 0. Use
alternative="greater" when the research hypothesis is that the population correla-
tion is greater than 0. By default, alternative="two.side" (population correlation
isn’t equal to 0) is assumed. See the following listing for an example.

Listing 7.18 Testing a correlation coefficient for significance

> cor.test(states[,3], states[,5])

 Pearson’s product-moment correlation

data: states[, 3] and states[, 5]
t = 6.85, df = 48, p-value = 1.258e-08
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.528 0.821
sample estimates:
 cor
0.703

 Correlations 163

This code tests the null hypothesis that the Pearson correlation between life expec-
tancy and murder rate is 0. Assuming that the population correlation is 0, you’d expect
to see a sample correlation as large as 0.703 less than 1 time out of 10 million (that
is, p = 1.258e-08). Given how unlikely this is, you reject the null hypothesis in favor of
the research hypothesis, that the population correlation between life expectancy and
murder rate is not 0.

Unfortunately, you can test only one correlation at a time using cor.test. Luckily,
the corr.test() function provided in the psych package allows you to go further. The
corr.test() function produces correlations and significance levels for matrices of
Pearson, Spearman, or Kendall correlations. An example is given in the following listing.

Listing 7.19 Correlation matrix and tests of significance via corr.test

> library(psych)
> corr.test(states, use="complete")

Call:corr.test(x = states, use = "complete")
Correlation matrix
 Population Income Illiteracy Life Exp Murder HS Grad
Population 1.00 0.21 0.11 -0.07 0.34 -0.10
Income 0.21 1.00 -0.44 0.34 -0.23 0.62
Illiteracy 0.11 -0.44 1.00 -0.59 0.70 -0.66
Life Exp -0.07 0.34 -0.59 1.00 -0.78 0.58
Murder 0.34 -0.23 0.70 -0.78 1.00 -0.49
HS Grad -0.10 0.62 -0.66 0.58 -0.49 1.00

Sample Size
[1] 50
Probability value
 Population Income Illiteracy Life Exp Murder HS Grad
Population 0.00 0.15 0.46 0.64 0.01 0.5
Income 0.15 0.00 0.00 0.02 0.11 0.0
Illiteracy 0.46 0.00 0.00 0.00 0.00 0.0
Life Exp 0.64 0.02 0.00 0.00 0.00 0.0
Murder 0.01 0.11 0.00 0.00 0.00 0.0
HS Grad 0.50 0.00 0.00 0.00 0.00 0.0

The use= options can be "pairwise" or "complete" (for pairwise or listwise dele-
tion of missing values, respectively). The method= option is "pearson" (the default),
"spearman", or "kendall". Here you see that the correlation between population size
and high school graduation rate (–0.10) is not significantly different from 0 (p = 0.5).

OTHER TESTS OF SIGNIFICANCE

In section 7.4.1, we looked at partial correlations. The pcor.test() function in the
psych package can be used to test the conditional independence of two variables con-
trolling for one or more additional variables, assuming multivariate normality. The
format is

pcor.test(r, q, n)

where r is the partial correlation produced by the pcor() function, q is the number of
variables being controlled, and n is the sample size.

164 CHAPTER 7 Basic statistics

Before leaving this topic, it should be mentioned that the r.test() function in the
psych package also provides a number of useful significance tests. The function can
be used to test the following:

■ The significance of a correlation coefficient
■ The difference between two independent correlations
■ The difference between two dependent correlations sharing one single variable
■ The difference between two dependent correlations based on completely differ-

ent variables

See help(r.test) for details.

7.3.3 Visualizing correlations

The bivariate relationships underlying correlations can be visualized through scatter
plots and scatter plot matrices, whereas correlograms provide a unique and powerful
method for comparing a large numbers of correlation coefficients in a meaningful
way. Each is covered in chapter 11.

7.4 t-tests
The most common activity in research is the comparison of two groups. Do patients
receiving a new drug show greater improvement than patients using an existing
medication? Does one manufacturing process produce fewer defects than another?
Which of two teaching methods is most cost-effective? If your outcome variable is
categorical, you can use the methods described in section 7.3. Here, we’ll focus on
group comparisons, where the outcome variable is continuous and assumed to be
distributed normally.

For this illustration, we’ll use the UScrime dataset distributed with the MASS
package. It contains information on the effect of punishment regimes on crime
rates in 47 US states in 1960. The outcome variables of interest will be Prob (the
probability of imprisonment), U1 (the unemployment rate for urban males ages 14–
24) and U2 (the unemployment rate for urban males ages 35–39). The categorical
variable So (an indicator variable for Southern states) will serve as the grouping
variable. The data have been rescaled by the original authors. (Note: I considered
naming this section “Crime and Punishment in the Old South," but cooler heads
prevailed.)

7.4.1 Independent t-test

Are you more likely to be imprisoned if you commit a crime in the South? The com-
parison of interest is Southern versus non-Southern states and the dependent variable
is the probability of incarceration. A two-group independent t-test can be used to test
the hypothesis that the two population means are equal. Here, you assume that the
two groups are independent and that the data are sampled from normal populations.
The format is either

 t-tests 165

t.test(y ~ x, data)

where y is numeric and x is a dichotomous variable, or

t.test(y1, y2)

where y1 and y2 are numeric vectors (the outcome variable for each group). The
optional data argument refers to a matrix or data frame containing the variables. In
contrast to most statistical packages, the default test assumes unequal variance and
applies the Welsh degrees of freedom modification. You can add a var.equal=TRUE
option to specify equal variances and a pooled variance estimate. By default, a two-
tailed alternative is assumed (that is, the means differ but the direction isn’t specified).
You can add the option alternative="less" or alternative="greater" to specify
a directional test.

In the following code, you compare Southern (group 1) and non-Southern (group
0) states on the probability of imprisonment using a two-tailed test without the
assumption of equal variances:

> library(MASS)
> t.test(Prob ~ So, data=UScrime)

 Welch Two Sample t-test

data: Prob by So
t = -3.8954, df = 24.925, p-value = 0.0006506
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.03852569 -0.01187439
sample estimates:
mean in group 0 mean in group 1
 0.03851265 0.06371269

You can reject the hypothesis that Southern states and non-Southern states have equal
probabilities of imprisonment (p < .001).

NOTE Because the outcome variable is a proportion, you might try to transform
it to normality before carrying out the t-test. In the current case, all reasonable
transformations of the outcome variable (Y/1-Y, log(Y/1-Y), arcsin(Y),
arcsin(sqrt(Y)) would’ve led to the same conclusions. Transformations are
covered in detail in chapter 8.

7.4.2 Dependent t-test

As a second example, you might ask if unemployment rate for younger males (14–24)
is greater than for older males (35–39). In this case, the two groups aren’t indepen-
dent. You wouldn’t expect the unemployment rate for younger and older males in
Alabama to be unrelated. When observations in the two groups are related, you have
a dependent groups design. Pre-post or repeated measures designs also produce de-
pendent groups.

A dependent t-test assumes that the difference between groups is normally
distributed. In this case, the format is

166 CHAPTER 7 Basic statistics

t.test(y1, y2, paired=TRUE)

where y1 and y2 are the numeric vectors for the two dependent groups. The results
are as follows:

> library(MASS)
> sapply(UScrime[c("U1","U2")], function(x)(c(mean=mean(x),sd=sd(x))))
 U1 U2
mean 95.5 33.98
sd 18.0 8.45

> with(UScrime, t.test(U1, U2, paired=TRUE))

 Paired t-test

data: U1 and U2
t = 32.4066, df = 46, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 57.67003 65.30870
sample estimates:
mean of the differences
 61.48936

The mean difference (61.5) is large enough to warrant rejection of the hypothesis that
the mean unemployment rate for older and younger males is the same. Younger males
have a higher rate. In fact, the probability of obtaining a sample difference this large if
the population means are equal is less than 0.00000000000000022 (that is, 2.2e–16).

7.4.3 When there are more than two groups

What do you do if you want to compare more than two groups? If you can assume that
the data are independently sampled from normal populations, you can use analysis of
variance (ANOVA). ANOVA is a comprehensive methodology that covers many experi-
mental and quasi-experimental designs. As such, it has earned its own chapter. Feel
free to abandon this section and jump to chapter 9 at any time.

7.5 Nonparametric tests of group differences
If you’re unable to meet the parametric assumptions of a t-test or ANOVA, you can
turn to nonparametric approaches. For example, if the outcome variables are severely
skewed or ordinal in nature, you may wish to use the techniques in this section.

7.5.1 Comparing two groups

If the two groups are independent, you can use the Wilcoxon rank sum test (more
popularly known as the Mann–Whitney U test) to assess whether the observations are
sampled from the same probability distribution (that is, whether the probability of
obtaining higher scores is greater in one population than the other). The format is
either

wilcox.test(y ~ x, data)

Nonparametric tests of group differences 167

where y is numeric and x is a dichotomous variable, or

wilcox.test(y1, y2)

where y1 and y2 are the outcome variables for each group. The optional data argu-
ment refers to a matrix or data frame containing the variables. The default is a two-tailed
test. You can add the option exact to produce an exact test, and alternative="less"
or alternative="greater" to specify a directional test.

If you apply the Mann–Whitney U test to the question of incarceration rates from
the previous section, you’ll get these results:

> with(UScrime, by(Prob, So, median))

So: 0
[1] 0.0382

So: 1
[1] 0.0556

> wilcox.test(Prob ~ So, data=UScrime)

 Wilcoxon rank sum test

data: Prob by So
W = 81, p-value = 8.488e-05

alternative hypothesis: true location shift is not equal to 0

Again, you can reject the hypothesis that incarceration rates are the same in Southern
and non-Southern states (p < .001).

The Wilcoxon signed rank test provides a nonparametric alternative to the
dependent sample t-test. It’s appropriate in situations where the groups are paired
and the assumption of normality is unwarranted. The format is identical to the
Mann–Whitney U test, but you add the paired=TRUE option. Let’s apply it to the
unemployment question from the previous section:

> sapply(UScrime[c("U1","U2")], median)
U1 U2
92 34

> with(UScrime, wilcox.test(U1, U2, paired=TRUE))

 Wilcoxon signed rank test with continuity correction

data: U1 and U2
V = 1128, p-value = 2.464e-09
alternative hypothesis: true location shift is not equal to 0

Again, you’d reach the same conclusion reached with the paired t-test.
In this case, the parametric t-tests and their nonparametric equivalents reach

the same conclusions. When the assumptions for the t-tests are reasonable, the

168 CHAPTER 7 Basic statistics

parametric tests will be more powerful (more likely to find a difference if it exists).
The nonparametric tests are more appropriate when the assumptions are grossly
unreasonable (for example, rank ordered data).

7.5.2 Comparing more than two groups

When there are more than two groups to be compared, you must turn to other
methods. Consider the state.x77 dataset from section 7.4. It contains population,
income, illiteracy rate, life expectancy, murder rate, and high school graduation rate
data for US states. What if you want to compare the illiteracy rates in four regions of
the country (Northeast, South, North Central, and West)? This is called a one-way
design, and there are both parametric and nonparametric approaches available to
address the question.

If you can’t meet the assumptions of ANOVA designs, you can use nonparametric
methods to evaluate group differences. If the groups are independent, a Kruskal–
Wallis test will provide you with a useful approach. If the groups are dependent (for
example, repeated measures or randomized block design), the Friedman test is more
appropriate.

The format for the Kruskal–Wallis test is

kruskal.test(y ~ A, data)

where y is a numeric outcome variable and A is a grouping variable with two or more
levels (if there are two levels, it’s equivalent to the Mann–Whitney U test). For the
Friedman test, the format is

friedman.test(y ~ A | B, data)

where y is the numeric outcome variable, A is a grouping variable, and B is a blocking
variable that identifies matched observations. In both cases, data is an option argu-
ment specifying a matrix or data frame containing the variables.

Let’s apply the Kruskal–Wallis test to the illiteracy question. First, you’ll have to
add the region designations to the dataset. These are contained in the dataset state.
region distributed with the base installation of R.

states <- as.data.frame(cbind(state.region, state.x77))

Now you can apply the test:

> kruskal.test(Illiteracy ~ state.region, data=states)

 Kruskal-Wallis rank sum test

data: states$Illiteracy by states$state.region
Kruskal-Wallis chi-squared = 22.7, df = 3, p-value = 4.726e-05

The significance test suggests that the illiteracy rate isn’t the same in each of the four
regions of the country (p <.001).

Although you can reject the null hypothesis of no difference, the test doesn’t tell
you which regions differ significantly from each other. To answer this question, you

Nonparametric tests of group differences 169

could compare groups two at a time using the Mann–Whitney U test. A more elegant
approach is to apply a simultaneous multiple comparisons procedure that makes all
pairwise comparisons, while controlling the type I error rate (the probability of finding
a difference that isn’t there). The npmc package provides the nonparametric multiple
comparisons you need.

To be honest, I’m stretching the definition of basic in the chapter title quite a bit,
but because it fits well here, I hope you’ll bear with me. First, be sure to install the npmc
package. The npmc() function in this package expects input to be a two-column data
frame with a column named var (the dependent variable) and class (the grouping
variable). The following listing contains the code you can use to accomplish this.

Listing 7.20 Nonparametric multiple comparisons

> class <- state.region
> var <- state.x77[,c("Illiteracy")]
> mydata <- as.data.frame(cbind(class, var))
> rm(class, var)
> library(npmc)
> summary(npmc(mydata), type="BF")

$'Data-structure'
 group.index class.level nobs
Northeast 1 Northeast 9
South 2 South 16
North Central 3 North Central 12
West 4 West 13

$'Results of the multiple Behrens-Fisher-Test'
 cmp effect lower.cl upper.cl p.value.1s p.value.2s
1 1-2 0.8750 0.66149 1.0885 0.000665 0.00135

q
2 1-3 0.1898 -0.13797 0.5176 0.999999 0.06547
3 1-4 0.3974 -0.00554 0.8004 0.998030 0.92004
4 2-3 0.0104 -0.02060 0.0414 1.000000 0.00000
5 2-4 0.1875 -0.07923 0.4542 1.000000 0.02113
6 3-4 0.5641 0.18740 0.9408 0.797198 0.98430

> aggregate(mydata, by=list(mydata$class), median)
 Group.1 class var
1 1 1 1.10

w
2 2 2 1.75
3 3 3 0.70
4 4 4 0.60

The npmc call generates six statistical comparisons (Northeast versus South, Northeast
versus North Central, Northeast versus West, South versus North Central, South ver-
sus West, and North Central versus West) q. You can see from the two-sided p-values
(p.value.2s) that the South differs significantly from the other three regions, and
that the other three regions don’t differ from each other. In w you see that the South
has a higher median illiteracy rate. Note that npmc uses randomized values for integral
calculations, so results differ slightly from call to call.

Pairwise group
comparisons

Median illiteracy
by class

170 CHAPTER 7 Basic statistics

7.6 Visualizing group differences
In sections 7.4 and 7.5, we looked at statistical methods for comparing groups. Exam-
ining group differences visually is also a crucial part of a comprehensive data analysis
strategy. It allows you to assess the magnitude of the differences, identify any distribu-
tional characteristics that influence the results (such as skew, bimodality, or outliers),
and evaluate the appropriateness of the test assumptions. R provides a wide range of
graphical methods for comparing groups, including box plots (simple, notched, and
violin), covered in section 6.5; overlapping kernel density plots, covered in section
6.4.1; and graphical methods of assessing test assumptions, discussed in chapter 9.

7.7 Summary
In this chapter, we reviewed the functions in R that provide basic statistical summaries
and tests. We looked at sample statistics and frequency tables, tests of independence
and measures of association for categorical variables, correlations between quantita-
tive variables (and their associated significance tests), and comparisons of two or more
groups on a quantitative outcome variable.

In the next chapter, we’ll explore simple and multiple regression, where the focus
is on understanding relationships between one (simple) or more than one (multiple)
predictor variables and a predicted or criterion variable. Graphical methods will help
you diagnose potential problems, evaluate and improve the fit of your models, and
uncover unexpected gems of information in your data.

Part 3

Intermediate methods

While part 2 covered basic graphical and statistical methods, section 3
offers coverage of intermediate methods. We move from describing the relation-
ship between two variables, to modeling the relationship between a numerical
outcome variable and a set of numeric and/or categorical predictor variables.

Chapter 8 introduces regression methods for modeling the relationship
between a numeric outcome variable and a set of one or more predictor variables.
Modeling data is typically a complex, multistep, interactive process. Chapter 8
provides step-by-step coverage of the methods available for fitting linear models,
evaluating their appropriateness, and interpreting their meaning.

Chapter 9 considers the analysis of basic experimental and quasi-experimental
designs through the analysis of variance and its variants. Here we’re interested in
how treatment combinations or conditions affect a numerical outcome variable.
The chapter introduces the functions in R that are used to perform an analysis
of variance, analysis of covariance, repeated measures analysis of variance, multi-
factor analysis of variance, and multivariate analysis of variance. Methods for
assessing the appropriateness of these analyses, and visualizing the results are
also discussed.

In designing experimental and quasi-experimental studies, it’s important
to determine if the sample size is adequate for detecting the effects of interest
(power analysis). Otherwise, why conduct the study? A detailed treatment of
power analysis is provided in chapter 10. Starting with a discussion of hypothesis
testing, the presentation focuses on how to use R functions to determine the
sample size necessary to detect a treatment effect of a given size with a given
degree of confidence. This can help you to plan studies that are likely to yield
useful results.

Chapter 11 expands on the material in chapter 5 by covering the creation of graphs
that help you to visualize relationships among two or more variables. This includes
the various types of two- and three-dimensional scatter plots, scatter plot matrices, line
plots, and bubble plots. It also introduces the useful, but less well-known, correlograms
and mosaic plots.

The linear models described in chapters 8 and 9 assume that the outcome or
response variable is not only numeric, but also randomly sampled from a normal
distribution. There are situations where this distributional assumption is untenable.
Chapter 12 presents analytic methods that work well in cases where data are sampled
from unknown or mixed distributions, where sample sizes are small, where outliers are
a problem, or where devising an appropriate test based on a theoretical distribution
is mathematically intractable. They include both resampling and bootstrapping
approaches—computer intensive methods that are powerfully implemented in R. The
methods described in this chapter will allow you to devise hypothesis tests for data that
do not fit traditional parametric assumptions.

After completing part 3, you’ll have the tools to analyze most common data analytic
problems encountered in practice. And you will be able to create some gorgeous
graphs!

8

173

Regression

This chapter covers
n Fitting and interpreting linear models

n Evaluating model assumptions

n Selecting among competing models

In many ways, regression analysis lives at the heart of statistics. It’s a broad term for
a set of methodologies used to predict a response variable (also called a dependent,
criterion, or outcome variable) from one or more predictor variables (also called
independent or explanatory variables). In general, regression analysis can be used
to identify the explanatory variables that are related to a response variable, to describe
the form of the relationships involved, and to provide an equation for predicting the
response variable from the explanatory variables.

For example, an exercise physiologist might use regression analysis to develop
an equation for predicting the expected number of calories a person will burn
while exercising on a treadmill. The response variable is the number of calories
burned (calculated from the amount of oxygen consumed), and the predictor
variables might include duration of exercise (minutes), percentage of time spent
at their target heart rate, average speed (mph), age (years), gender, and body
mass index (BMI).

	 Chapter 8 Regression

From a theoretical point of view, the analysis will help answer such questions as
these:

n What’s the relationship between exercise duration and calories burned? Is it lin-
ear or curvilinear? For example, does exercise have less impact on the number
of calories burned after a certain point?

n How does effort (the percentage of time at the target heart rate, the average
walking speed) factor in?

n Are these relationships the same for young and old, male and female, heavy and
slim?

From a practical point of view, the analysis will help answer such questions as the
following:

n How many calories can a 30-year-old man with a BMI of 28.7 expect to burn if he
walks for 45 minutes at an average speed of 4 miles per hour and stays within his
target heart rate 80 percent of the time?

n What’s the minimum number of variables you need to collect in order to accu-
rately predict the number of calories a person will burn when walking?

n How accurate will your prediction tend to be?

Because regression analysis plays such a central role in modern statistics, we'll cover
it in some depth in this chapter. First, we’ll look at how to fit and interpret regression
models. Next, we’ll review a set of techniques for identifying potential problems with
these models and how to deal with them. Third, we’ll explore the issue of variable
selection. Of all the potential predictor variables available, how do you decide which
ones to include in your final model? Fourth, we’ll address the question of generaliz-
ability. How well will your model work when you apply it in the real world? Finally, we’ll
look at the issue of relative importance. Of all the predictors in your model, which one
is the most important, the second most important, and the least important?

As you can see, we’re covering a lot of ground. Effective regression analysis is an
interactive, holistic process with many steps, and it involves more than a little skill.
Rather than break it up into multiple chapters, I’ve opted to present this topic in a
single chapter in order to capture this flavor. As a result, this will be the longest and
most involved chapter in the book. Stick with it to the end and you’ll have all the tools
you need to tackle a wide variety of research questions. Promise!

8.1 The many faces of regression
The term regression can be confusing because there are so many specialized varieties
(see table 8.1). In addition, R has powerful and comprehensive features for fitting
regression models, and the abundance of options can be confusing as well. For ex-
ample, in 2005, Vito Ricci created a list of over 205 functions in R that are used to
generate regression analyses (http://cran.r-project.org/doc/contrib/Ricci-refcard-
regression.pdf).

http://cran.r-project.org/doc/contrib/Ricci-refcardregression.pdf
http://cran.r-project.org/doc/contrib/Ricci-refcardregression.pdf

	 175

Table 8.1 Varieties of regression analysis

Type of regression Typical use

Simple linear Predicting a quantitative response variable from a quantitative
explanatory variable

Polynomial Predicting a quantitative response variable from a quantitative
explanatory variable, where the relationship is modeled as an nth order
polynomial

Multiple linear Predicting a quantitative response variable from two or more
explanatory variables

Multivariate Predicting more than one response variable from one or more
explanatory variables

Logistic Predicting a categorical response variable from one or more
explanatory variables

Poisson Predicting a response variable representing counts from one or more
explanatory variables

Cox proportional hazards Predicting time to an event (death, failure, relapse) from one or more
explanatory variables

Time-series Modeling time-series data with correlated errors

Nonlinear Predicting a quantitative response variable from one or more
explanatory variables, where the form of the model is nonlinear

Nonparametric Predicting a quantitative response variable from one or more
explanatory variables, where the form of the model is derived from the
data and not specified a priori

Robust Predicting a quantitative response variable from one or more
explanatory variables using an approach that’s resistant to the effect of
influential observations

In this chapter, we’ll focus on regression methods that fall under the rubric of ordinary
least squares (OLS) regression, including simple linear regression, polynomial regres-
sion, and multiple linear regression. OLS regression is the most common variety of sta-
tistical analysis today. Other types of regression models (including logistic regression
and Poisson regression) will be covered in chapter 13.

8.1.1 Scenarios for using OLS regression

In OLS regression, a quantitative dependent variable is predicted from a weighted
sum of predictor variables, where the weights are parameters estimated from the
data. Let’s take a look at a concrete example (no pun intended), loosely adapted
from Fwa (2006).

An engineer wants to identify the most important factors related to bridge
deterioration (such as age, traffic volume, bridge design, construction materials
and methods, construction quality, and weather conditions) and determine the

	 Chapter 8 Regression

mathematical form of these relationships. She collects data on each of these variables
from a representative sample of bridges and models the data using OLS regression.

The approach is highly interactive. She fits a series of models, checks their compliance
with underlying statistical assumptions, explores any unexpected or aberrant findings,
and finally chooses the “best” model from among many possible models. If successful,
the results will help her to

n Focus on important variables, by determining which of the many collected
variables are useful in predicting bridge deterioration, along with their relative
importance.

n Look for bridges that are likely to be in trouble, by providing an equation that
can be used to predict bridge deterioration for new cases (where the values of
the predictor variables are known, but the degree of bridge deterioration isn’t).

n Take advantage of serendipity, by identifying unusual bridges. If she finds that
some bridges deteriorate much faster or slower than predicted by the model,
a study of these “outliers” may yield important findings that could help her to
understand the mechanisms involved in bridge deterioration.

Bridges may hold no interest for you. I’m a clinical psychologist and statistician,
and I know next to nothing about civil engineering. But the general principles ap-
ply to an amazingly wide selection of problems in the physical, biological, and so-
cial sciences. Each of the following questions could also be addressed using an OLS
approach:

n What’s the relationship between surface stream salinity and paved road surface
area (Montgomery, 2007)?

n What aspects of a user’s experience contribute to the overuse of massively multi-
player online role playing games (MMORPGs) (Hsu, Wen, & Wu, 2009)?

n Which qualities of an educational environment are most strongly related to
higher student achievement scores?

n What’s the form of the relationship between blood pressure, salt intake, and age?
Is it the same for men and women?

n What’s the impact of stadiums and professional sports on metropolitan area de-
velopment (Baade & Dye, 1990)?

n What factors account for interstate differences in the price of beer (Culbertson
& Bradford, 1991)? (That one got your attention!)

Our primary limitation is our ability to formulate an interesting question, devise a use-
ful response variable to measure, and gather appropriate data.

8.1.2 What you need to know

For the remainder of this chapter I’ll describe how to use R functions to fit OLS regres-
sion models, evaluate the fit, test assumptions, and select among competing models.
It’s assumed that the reader has had exposure to least squares regression as typical-
ly taught in a second semester undergraduate statistics course. However, I’ve made

	 177

efforts to keep the mathematical notation to a minimum and focus on practical rather
than theoretical issues. A number of excellent texts are available that cover the statis-
tical material outlined in this chapter. My favorites are John Fox’s Applied Regression
Analysis and Generalized Linear Models (for theory) and An R and S-Plus Companion to
Applied Regression (for application). They both served as major sources for this chapter.
A good nontechnical overview is provided by Licht (1995).

8.2 OLS regression
For most of this chapter, we’ll be predicting the response variable from a set of pre-
dictor variables (also called “regressing” the response variable on the predictor vari-
ables—hence the name) using OLS. OLS regression fits models of the form

Ŷi = b̂ 0 + b̂ 1 X1i + …+ b̂ k Xki i = 1…n

where n is the number of observations and k is the number of predictor variables. (Al-
though I’ve tried to keep equations out of our discussions, this is one of the few places
where it simplifies things.) In this equation:

Y i
is the predicted value of the dependent variable for observation i (specifically, it’s the
estimated mean of the Y distribution, conditional on the set of predictor values)

Xji is the jth predictor value for the ith observation

b0
is the intercept (the predicted value of Y when all the predictor variables equal zero)

b j
is the regression coefficient for the jth predictor (slope representing the change in Y for a unit
change in Xj)

Our goal is to select model parameters (intercept and slopes) that minimize the dif-
ference between actual response values and those predicted by the model. Specifically,
model parameters are selected to minimize the sum of squared residuals

To properly interpret the coefficients of the OLS model, you must satisfy a number of
statistical assumptions:

n Normality —For fixed values of the independent variables, the dependent
variable is normally distributed.

n Independence —The Yi values are independent of each other.
n Linearity —The dependent variable is linearly related to the independent

variables.
n Homoscedasticity —The variance of the dependent variable doesn’t vary with the

levels of the independent variables. We could call this constant variance, but
saying homoscedasticity makes me feel smarter.

	 Chapter 8 Regression

If you violate these assumptions, your statistical significance tests and confidence inter-
vals may not be accurate. Note that OLS regression also assumes that the independent
variables are fixed and measured without error, but this assumption is typically relaxed
in practice.

8.2.1 Fitting regression models with lm()

In R, the basic function for fitting a linear model is lm(). The format is

myfit <- lm(formula, data)

where formula describes the model to be fit and data is the data frame containing the
data to be used in fitting the model. The resulting object (myfit in this case) is a list
that contains extensive information about the fitted model. The formula is typically
written as

Y ~ X1 + X2 + … + Xk

where the ~ separates the response variable on the left from the predictor variables on
the right, and the predictor variables are separated by + signs. Other symbols can be
used to modify the formula in various ways (see table 8.2).

Table 8.2 Symbols commonly used in R formulas

Symbol Usage

~ Separates response variables on the left from the explanatory variables on the right.
For example, a prediction of y from x, z, and w would be coded y ~ x + z + w.

+ Separates predictor variables.

: Denotes an interaction between predictor variables. A prediction of y from x, z, and the
interaction between x and z would be coded y ~ x + z + x:z.

* A shortcut for denoting all possible interactions. The code y ~ x * z * w expands
to y ~ x + z + w + x:z + x:w + z:w + x:z:w.

^ Denotes interactions up to a specified degree. The code y ~ (x + z + w)^2
expands to y ~ x + z + w + x:z + x:w + z:w.

. A place holder for all other variables in the data frame except the dependent variable.
For example, if a data frame contained the variables x, y, z, and w, then the code y
~ . would expand to y ~ x + z + w.

- A minus sign removes a variable from the equation. For example, y ~ (x + z +
w)^2 – x:w expands to y ~ x + z + w + x:z + z:w.

-1 Suppresses the intercept. For example, the formula y ~ x -1 fits a regression of y
on x, and forces the line through the origin at x=0.

I() Elements within the parentheses are interpreted arithmetically. For example, y ~ x +
(z + w)^2 would expand to y ~ x + z + w + z:w. In contrast, the code y ~ x
+ I((z + w)^2) would expand to y ~ x + h, where h is a new variable created by
squaring the sum of z and w.

function Mathematical functions can be used in formulas. For example,
log(y) ~ x + z + w would predict log(y) from x, z, and w.

	 179

In addition to lm(), table 8.3 lists several functions that are useful when generating a
simple or multiple regression analysis. Each of these functions is applied to the object
returned by lm() in order to generate additional information based on that fitted
model.

Table 8.3 Other functions that are useful when fitting linear models

Function Action

summary() Displays detailed results for the fitted model

coefficients() Lists the model parameters (intercept and slopes) for the fitted model

confint() Provides confidence intervals for the model parameters (95 percent by
default)

fitted() Lists the predicted values in a fitted model

residuals() Lists the residual values in a fitted model

anova() Generates an ANOVA table for a fitted model, or an ANOVA table
comparing two or more fitted models

vcov() Lists the covariance matrix for model parameters

AIC() Prints Akaike’s Information Criterion

plot() Generates diagnostic plots for evaluating the fit of a model

predict() Uses a fitted model to predict response values for a new dataset

When the regression model contains one dependent variable and one independent
variable, we call the approach simple linear regression. When there’s one predictor
variable but powers of the variable are included (for example, X, X2, X3), we call it
polynomial regression. When there’s more than one predictor variable, you call it mul-
tiple linear regression. We’ll start with an example of a simple linear regression, then
progress to examples of polynomial and multiple linear regression, and end with an
example of multiple regression that includes an interaction among the predictors.

8.2.2 Simple linear regression

Let’s take a look at the functions in table 8.3 through a simple regression example.
The dataset women in the base installation provides the height and weight for a set of
15 women ages 30 to 39. We want to predict weight from height. Having an equation
for predicting weight from height can help us to identify overweight or underweight
individuals. The analysis is provided in the following listing, and the resulting graph is
shown in figure 8.1.

Listing 8.1 Simple linear regression

> fit <- lm(weight ~ height, data=women)
> summary(fit)

	 Chapter 8 Regression

Call:
lm(formula=weight ~ height, data=women)

Residuals:
 Min 1Q Median 3Q Max
-1.733 -1.133 -0.383 0.742 3.117

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -87.5167 5.9369 -14.7 1.7e-09 ***
height 3.4500 0.0911 37.9 1.1e-14 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1

Residual standard error: 1.53 on 13 degrees of freedom
Multiple R-squared: 0.991, Adjusted R-squared: 0.99
F-statistic: 1.43e+03 on 1 and 13 DF, p-value: 1.09e-14

> women$weight

 [1] 115 117 120 123 126 129 132 135 139 142 146 150 154 159 164

> fitted(fit)

 1 2 3 4 5 6 7 8 9
112.58 116.03 119.48 122.93 126.38 129.83 133.28 136.73 140.18
 10 11 12 13 14 15
143.63 147.08 150.53 153.98 157.43 160.88

> residuals(fit)

 1 2 3 4 5 6 7 8 9 10 11
 2.42 0.97 0.52 0.07 -0.38 -0.83 -1.28 -1.73 -1.18 -1.63 -1.08
 12 13 14 15
-0.53 0.02 1.57 3.12

> plot(women$height,women$weight,
 xlab="Height (in inches)",
 ylab="Weight (in pounds)")
> abline(fit)

From the output, you see that the prediction equation is

Weight . . ×= − +87 52 3 45 Height

Because a height of 0 is impossible, you wouldn’t try to give a physical interpretation
to the intercept. It merely becomes an adjustment constant. From the Pr(>|t|) col-
umn, you see that the regression coefficient (3.45) is significantly different from zero
(p < 0.001) and indicates that there’s an expected increase of 3.45 pounds of weight
for every 1 inch increase in height. The multiple R-squared (0.991) indicates that the
model accounts for 99.1 percent of the variance in weights. The multiple R-squared
is also the correlation between the actual and predicted value (that is, R r

YY

2 =


).
The residual standard error (1.53 lbs.) can be thought of as the average error in

	 181

predicting weight from height using this model. The F statistic tests whether the pre-
dictor variables taken together, predict the response variable above chance levels. Be-
cause there’s only one predictor variable in simple regression, in this example the F
test is equivalent to the t-test for the regression coefficient for height.

For demonstration purposes, we’ve printed out the actual, predicted, and residual
values. Evidently, the largest residuals occur for low and high heights, which can also
be seen in the plot (figure 8.1).

The plot suggests that you might be able to improve on the prediction by using a
line with one bend. For example, a model of the form Y = + +β β β

0 1 2

2X X may provide
a better fit to the data. Polynomial regression allows you to predict a response variable
from an explanatory variable, where the form of the relationship is an nth degree
polynomial.

8.2.3 Polynomial regression

The plot in figure 8.1 suggests that you might be able to improve your prediction using
a regression with a quadratic term (that is, X 2).

You can fit a quadratic equation using the statement

fit2 <- lm(weight ~ height + I(height^2), data=women)

The new term I(height^2) requires explanation. height^2 adds a height-squared
term to the prediction equation. The I function treats the contents within the paren-
theses as an R regular expression. You need this because the ^ operator has a special
meaning in formulas that you don’t want to invoke here (see table 8.2).

Listing 8.2 shows the results of fitting the quadratic equation.

58 60 62 64 66 68 70 72

12
0

13
0

14
0

15
0

16
0

Height (in inches)

W
ei

gh
t (

in
 p

ou
nd

s)

Figure 8.1 Scatter plot with
regression line for weight
predicted from height

	 Chapter 8 Regression

Listing 8.2 Polynomial regression

> fit2 <- lm(weight ~ height + I(height^2), data=women)
> summary(fit2)

Call:
lm(formula=weight ~ height + I(height^2), data=women)

Residuals:
 Min 1Q Median 3Q Max
-0.5094 -0.2961 -0.0094 0.2862 0.5971

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 261.87818 25.19677 10.39 2.4e-07 ***
height -7.34832 0.77769 -9.45 6.6e-07 ***
I(height^2) 0.08306 0.00598 13.89 9.3e-09 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.384 on 12 degrees of freedom
Multiple R-squared: 0.999, Adjusted R-squared: 0.999
F-statistic: 1.14e+04 on 2 and 12 DF, p-value: <2e-16

> plot(women$height,women$weight,
 xlab="Height (in inches)",
 ylab="Weight (in lbs)")
> lines(women$height,fitted(fit2))

From this new analysis, the prediction equation is

and both regression coefficients are significant at the p < 0.0001 level. The amount of
variance accounted for has increased to 99.9 percent. The significance of the squared
term (t = 13.89, p < .001) suggests that inclusion of the quadratic term improves the
model fit. If you look at the plot of fit2 (figure 8.2) you can see that the curve does
indeed provides a better fit.

58 60 62 64 66 68 70 72

12
0

13
0

14
0

15
0

16
0

Height (in inches)

W
ei

gh
t (

in
 lb

s)

Figure 8.2 Quadratic regression for weight
predicted by height

	 183

In general, an nth degree polynomial produces a curve with n-1 bends. To fit a cubic
polynomial, you’d use

fit3 <- lm(weight ~ height + I(height^2) +I(height^3), data=women)

Although higher polynomials are possible, I’ve rarely found that terms higher than
cubic are necessary.

Before we move on, I should mention that the scatterplot() function in the car
package provides a simple and convenient method of plotting a bivariate relationship.
The code

library(car)
scatterplot(weight ~ height,

data=women,
 spread=FALSE, lty.smooth=2,

pch=19,
 main="Women Age 30-39",
 xlab="Height (inches)",
 ylab="Weight (lbs.)")

produces the graph in figure 8.3.
This enhanced plot provides the

scatter plot of weight with height,
box plots for each variable in their
respective margins, the linear line
of best fit, and a smoothed (loess)
fit line. The spread=FALSE options
suppress spread and asymmetry
information. The lty.smooth=2

option specifies that the loess fit
be rendered as a dashed line. The

Linear versus nonlinear models

Note that this polynomial equation still fits under the rubric of linear regression. It’s
linear because the equation involves a weighted sum of predictor variables (height
and height-squared in this case). Even a model such as

would be considered a linear model (linear in terms of the parameters) and fit with
the formula

Y ~ log(X1) + sin(X2)

In contrast, here’s an example of a truly nonlinear model:

Nonlinear models of this form can be fit with the nls() function.

58 60 62 64 66 68 70 72

12
0

13
0

14
0

15
0

16
0

Wo men Age 30−39

Height (inches)

W
e i

gh
t (

lb
 s.

)

Figure 8.3 Scatter plot of height by weight, with linear
and smoothed fits, and marginal box plots

	 Chapter 8 Regression

pch=19 options display points as filled circles (the default is open circles). You can tell
at a glance that the two variables are roughly symmetrical and that a curved line will fit
the data points better than a straight line.

8.2.4 Multiple linear regression

When there’s more than one predictor variable, simple linear regression becomes mul-
tiple linear regression, and the analysis grows more involved. Technically, polynomial
regression is a special case of multiple regression. Quadratic regression has two predic-
tors (X and X 2), and cubic regression has three predictors (X, X 2, and X 3). Let’s look
at a more general example.

We’ll use the state.x77 dataset in the base package for this example. We want to
explore the relationship between a state’s murder rate and other characteristics of
the state, including population, illiteracy rate, average income, and frost levels (mean
number of days below freezing).

Because the lm() function requires a data frame (and the state.x77 dataset is
contained in a matrix), you can simplify your life with the following code:

states <- as.data.frame(state.x77[,c("Murder", "Population",
 "Illiteracy", "Income", "Frost")])

This code creates a data frame called states, containing the variables we’re interested
in. We’ll use this new data frame for the remainder of the chapter.

A good first step in multiple regression is to examine the relationships among the
variables two at a time. The bivariate correlations are provided by the cor() function,
and scatter plots are generated from the scatterplotMatrix() function in the car
package (see the following listing and figure 8.4).

Listing 8.3 Examining bivariate relationships

> cor(states)
 Murder Population Illiteracy Income Frost
Murder 1.00 0.34 0.70 -0.23 -0.54
Population 0.34 1.00 0.11 0.21 -0.33
Illiteracy 0.70 0.11 1.00 -0.44 -0.67
Income -0.23 0.21 -0.44 1.00 0.23
Frost -0.54 -0.33 -0.67 0.23 1.00

> library(car)
> scatterplotMatrix(states, spread=FALSE, lty.smooth=2,
 main="Scatter Plot Matrix")

By default, the scatterplotMatrix() function provides scatter plots of the variables
with each other in the off-diagonals and superimposes smoothed (loess) and linear
fit lines on these plots. The principal diagonal contains density and rug plots for each
variable.

You can see that murder rate may be bimodal and that each of the predictor variables
is skewed to some extent. Murder rates rise with population and illiteracy, and fall with
higher income levels and frost. At the same time, colder states have lower illiteracy
rates and population and higher incomes.

	 185

Murder

0 10000 20000 3000 4500 6000

2
6

 10

14

0
10

00
0

20
00

0

P opulation

Illiteracy

0
5

1
5

2
5

30
00

45

00

60
00

Income

2 6 10 14 0.5 1.5 2.5 0 5 0 100

0
5

0

10
0

Frost

Scatterplot Matrix

Figure 8.4 Scatter plot matrix of dependent and independent variables for the states data, including
linear and smoothed fits, and marginal distributions (kernel density plots and rug plots)

Now let’s fit the multiple regression model with the lm() function (see the following
listing).

Listing 8.4 Multiple linear regression

> fit <- lm(Murder ~ Population + Illiteracy + Income + Frost,
 data=states)
> summary(fit)

Call:
lm(formula=Murder ~ Population + Illiteracy + Income + Frost,
 data=states)

	 Chapter 8 Regression

Residuals:
 Min 1Q Median 3Q Max
-4.7960 -1.6495 -0.0811 1.4815 7.6210

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.23e+00 3.87e+00 0.32 0.751
Population 2.24e-04 9.05e-05 2.47 0.017 *
Illiteracy 4.14e+00 8.74e-01 4.74 2.2e-05 ***
Income 6.44e-05 6.84e-04 0.09 0.925
Frost 5.81e-04 1.01e-02 0.06 0.954

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.v 0.1 'v' 1

Residual standard error: 2.5 on 45 degrees of freedom
Multiple R-squared: 0.567, Adjusted R-squared: 0.528
F-statistic: 14.7 on 4 and 45 DF, p-value: 9.13e-08

When there’s more than one predictor variable, the regression coefficients indicate
the increase in the dependent variable for a unit change in a predictor variable, hold-
ing all other predictor variables constant. For example, the regression coefficient for
Illiteracy is 4.14, suggesting that an increase of 1 percent in illiteracy is associated
with a 4.14 percent increase in the murder rate, controlling for population, income,
and temperature. The coefficient is significantly different from zero at the p < .0001
level. On the other hand, the coefficient for Frost isn’t significantly different from zero
(p = 0.954) suggesting that Frost and Murder aren’t linearly related when controlling
for the other predictor variables. Taken together, the predictor variables account for
57 percent of the variance in murder rates across states.

Up to this point, we’ve assumed that the predictor variables don’t interact. In the
next section, we’ll consider a case in which they do.

8.2.5 Multiple linear regression with interactions

Some of the most interesting research findings are those involving interactions among
predictor variables. Consider the automobile data in the mtcars data frame. Let’s say
that you’re interested in the impact of automobile weight and horse power on mileage.
You could fit a regression model that includes both predictors, along with their interac-
tion, as shown in the next listing.

Listing 8.5 Multiple linear regression with a significant interaction term

> fit <- lm(mpg ~ hp + wt + hp:wt, data=mtcars)
> summary(fit)

Call:
lm(formula=mpg ~ hp + wt + hp:wt, data=mtcars)

Residuals:
 Min 1Q Median 3Q Max
-3.063 -1.649 -0.736 1.421 4.551

	 187

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 49.80842 3.60516 13.82 5.0e-14 ***
hp -0.12010 0.02470 -4.86 4.0e-05 ***
wt -8.21662 1.26971 -6.47 5.2e-07 ***
hp:wt 0.02785 0.00742 3.75 0.00081 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1

Residual standard error: 2.1 on 28 degrees of freedom
Multiple R-squared: 0.885, Adjusted R-squared: 0.872
F-statistic: 71.7 on 3 and 28 DF, p-value: 2.98e-13

You can see from the Pr(>|t|) column that the interaction between horse power
and car weight is significant. What does this mean? A significant interaction between
two predictor variables tells you that the relationship between one predictor and the
response variable depends on the level of the other predictor. Here it means that the
relationship between miles per gallon and horse power varies by car weight.

Our model for predicting mpg is mpg = 49.81 – 0.12 × hp – 8.22 × wt + 0.03 × hp × wt.
To interpret the interaction, you can plug in various values of wt and simplify the
equation. For example, you can try the mean of wt (3.2) and one standard deviation
below and above the mean (2.2 and 4.2, respectively). For wt=2.2, the equation
simplifies to mpg = 49.81 – 0.12 × hp – 8.22 × (2.2) + 0.03 × hp ×(2.2) = 31.41 – 0.06 × hp.
For wt=3.2, this becomes mpg = 23.37 – 0.03 × hp. Finally, for wt=4.2 the equation
becomes mpg = 15.33 – 0.003 × hp. You see that as weight increases (2.2, 3.2, 4.2), the
expected change in mpg from a unit increase in hp decreases (0.06, 0.03, 0.003).

You can visualize interactions
using the effect() function in the
effects package. The format is

plot(effect(term, mod, xlevels),
multiline=TRUE)

where term is the quoted model
term to plot, mod is the fitted model
returned by lm(), and xlevels is a
list specifying the variables to be set
to constant values and the values to
employ. The multiline=TRUE op-
tion superimposes the lines being
plotted. For the previous model,
this becomes

library(effects)
plot(effect("hp:wt", fit,

list(wt=c(2.2,3.2,4.2))),
multiline=TRUE)

The resulting graph is displayed in
figure 8.5.

hp*wt effect plot

hp

m
p g

15

20

25

50 100 150 200 250 300

wt
2.2
3.2
4.2

Figure 8.5 Interaction plot for hp*wt. This plot displays
the relationship between mpg and hp at 3 values of wt.

	 Chapter 8 Regression

You can see from this graph that as the weight of the car increases, the relationship
between horse power and miles per gallon weakens. For wt=4.2, the line is almost
horizontal, indicating that as hp increases, mpg doesn’t change.

Unfortunately, fitting the model is only the first step in the analysis. Once you fit a
regression model, you need to evaluate whether you’ve met the statistical assumptions
underlying your approach before you can have confidence in the inferences you draw.
This is the topic of the next section.

8.3 Regression diagnostics
In the previous section, you used the lm() function to fit an OLS regression model
and the summary() function to obtain the model parameters and summary statistics.
Unfortunately, there’s nothing in this printout that tells you if the model you have fit is
appropriate. Your confidence in inferences about regression parameters depends on
the degree to which you’ve met the statistical assumptions of the OLS model. Although
the summary() function in listing 8.4 describes the model, it provides no information
concerning the degree to which you’ve satisfied the statistical assumptions underlying
the model.

Why is this important? Irregularities in the data or misspecifications of the
relationships between the predictors and the response variable can lead you to settle on
a model that’s wildly inaccurate. On the one hand, you may conclude that a predictor
and response variable are unrelated when, in fact, they are. On the other hand, you
may conclude that a predictor and response variable are related when, in fact, they
aren’t! You may also end up with a model that makes poor predictions when applied in
real-world settings, with significant and unnecessary error.

Let’s look at the output from the confint() function applied to the states
multiple regression problem in section 8.2.4.

> fit <- lm(Murder ~ Population + Illiteracy + Income + Frost, data=states)
> confint(fit)
 2.5 % 97.5 %
(Intercept) -6.55e+00 9.021318
Population 4.14e-05 0.000406
Illiteracy 2.38e+00 5.903874
Income -1.31e-03 0.001441
Frost -1.97e-02 0.020830

The results suggest that you can be 95 percent confident that the interval [2.38, 5.90]
contains the true change in murder rate for a 1 percent change in illiteracy rate. Ad-
ditionally, because the confidence interval for Frost contains 0, you can conclude that
a change in temperature is unrelated to murder rate, holding the other variables con-
stant. But your faith in these results is only as strong as the evidence that you have that
your data satisfies the statistical assumptions underlying the model.

A set of techniques called regression diagnostics provides you with the necessary
tools for evaluating the appropriateness of the regression model and can help you
to uncover and correct problems. First, we’ll start with a standard approach that uses

	 189

functions that come with R’s base installation. Then we’ll look at newer, improved
methods available through the car package.

8.3.1 A typical approach

R’s base installation provides numerous methods for evaluating the statistical assump-
tions in a regression analysis. The most common approach is to apply the plot()
function to the object returned by the lm(). Doing so produces four graphs that are
useful for evaluating the model fit. Applying this approach to the simple linear regres-
sion example

fit <- lm(weight ~ height, data=women)
par(mfrow=c(2,2))
plot(fit)

produces the graphs shown in figure 8.6. The par(mfrow=c(2,2)) statement is used
to combine the four plots produced by the plot() function into one large 2x2 graph.
The par() function is described in chapter 3.

4 6 8 1 0 1 2 1 4

−5

0
5

Fitted va lues

R
es

id
ua

l s

Residuals vs Fitted

Ne v ada

Rhode Island
Massachusetts

2 1 0 1 2

−2

−1

0
1

2
3

Theoretical Quantile s

St
an

da
rd

iz
 ed

 re
si

du
al

 s

Nor mal Q Q

Ne v ada

Rhode Island

Alaska

4 6 8 1 0 1 2 1 4

0
0

0

5

1
 0

1

5

Fitted va lues

St
an

da
rd

iz
ed

 re
si

du
al

s

Scale Location
Ne v ada

Rhode Island
Alaska

0. 0 0 .1 0. 2 0 .3 0. 4

−2

−1

0
1

2
 3

Le ve rage

St
an

da
rd

iz
 ed

 re
si

du
al

 s

Cook’s distance
1

0.5

0.5

1

Residuals vs Le ve rage

Alaska

Ne v ada

Ha w aii

Figure 8.6 Diagnostic plots for the regression of weight on height

	 Chapter 8 Regression

To understand these graphs, consider the assumptions of OLS regression:

n Normality —If the dependent variable is normally distributed for a fixed set of
predictor values, then the residual values should be normally distributed with a
mean of 0. The Normal Q-Q plot (upper right) is a probability plot of the stan-
dardized residuals against the values that would be expected under normality. If
you’ve met the normality assumption, the points on this graph should fall on the
straight 45-degree line. Because they don’t, you’ve clearly violated the normality
assumption.

n Independence —You can’t tell if the dependent variable values are independent
from these plots. You have to use your understanding of how the data were col-
lected. There’s no a priori reason to believe that one woman’s weight influences
another woman’s weight. If you found out that the data were sampled from fami-
lies, you may have to adjust your assumption of independence.

n Linearity —If the dependent variable is linearly related to the independent vari-
ables, there should be no systematic relationship between the residuals and the
predicted (that is, fitted) values. In other words, the model should capture all
the systematic variance present in the data, leaving nothing but random noise. In
the Residuals versus Fitted graph (upper left), you see clear evidence of a curved
relationship, which suggests that you may want to add a quadratic term to the
regression.

n Homoscedasticity —If you’ve met the constant variance assumption, the points in
the Scale-Location graph (bottom left) should be a random band around a hori-
zontal line. You seem to meet this assumption.

Finally, the Residual versus Leverage graph (bottom right) provides information on
individual observations that you may wish to attend to. The graph identifies outliers,
high-leverage points, and influential observations. Specifically:

n An outlier is an observation that isn’t predicted well by the fitted regression
model (that is, has a large positive or negative residual).

n An observation with a high leverage value has an unusual combination of predic-
tor values. That is, it’s an outlier in the predictor space. The dependent variable
value isn’t used to calculate an observation’s leverage.

n An influential observation is an observation that has a disproportionate impact on
the determination of the model parameters. Influential observations are identi-
fied using a statistic called Cook’s distance, or Cook’s D.

To be honest, I find the Residual versus Leverage plot difficult to read and not useful.
You’ll see better representations of this information in later sections.

To complete this section, let’s look at the diagnostic plots for the quadratic fit. The
necessary code is

fit2 <- lm(weight ~ height + I(height^2), data=women)
par(mfrow=c(2,2))
plot(fit2)

and the resulting graph is provided in figure 8.7.

	 191

120 130 140 150 160

−0
6

−0
 2

0

2
0

 6

Fitted va lues

R
es

id
ua

l s

Residuals vs Fitted

15

13 2

1 0 1

−1

0
1

 2

Theoretical Quantile s

St
an

da
rd

iz
 ed

 re
si

du
al

 s

Nor mal Q−Q

15

13 2

120 130 140 150 160

0
0

0

5
1

 0
1

5

Fitted va lues

St
an

da
rd

iz
ed

 re
si

du
al

s

Scale−Location
15

13 2

0. 0 0 .1 0. 2 0 .3 0. 4

−1

0
1

2

Le ve rage

St
an

da
rd

iz
 ed

 re
si

du
al

 s

Cook’s distance
1

0.5

0.5

1

Residuals vs Le ve rage

15

2 13

Figure 8.7 Diagnostic plots for the regression of weight on height and height-squared

This second set of plots suggests that the polynomial regression provides a better fit
with regard to the linearity assumption, normality of residuals (except for observation
13), and homoscedasticity (constant residual variance). Observation 15 appears to be
influential (based on a large Cook’s D value), and deleting it has an impact on the
parameter estimates. In fact, dropping both observation 13 and 15 produces a better
model fit. To see this, try

newfit <- lm(weight~ height + I(height^2), data=women[-c(13,15),])

for yourself. But you need to be careful when deleting data. Your models should fit
your data, not the other way around!

Finally, let’s apply the basic approach to the states multiple regression problem:

fit <- lm(Murder ~ Population + Illiteracy + Income + Frost, data=states)
par(mfrow=c(2,2))
plot(fit)

	 Chapter 8 Regression

The results are displayed in figure 8.8. As you can see from the graph, the model
assumptions appear to be well satisfied, with the exception that Nevada is an outlier.

Although these standard diagnostic plots are helpful, better tools are now available
in R and I recommend their use over the plot(fit) approach.

8.3.2 An enhanced approach

The car package provides a number of functions that significantly enhance your
ability to fit and evaluate regression models (see table 8.4).

4 6 8 1 0 1 2 1 4

−5

0
5

Fitted va lues

R
es

id
ua

 s

Residuals vs Fitted

Ne v ada

Rhode Island
Massachusetts

2 1 0 1 2

−2

−1

0
1

2
3

Theoretical Quantile s

St
an

da
rd

iz
 ed

 re
si

du
a

 s

Nor mal Q−Q

Ne v ada

Rhode Island

Alaska

4 6 8 1 0 1 2 1 4

0
0

0

5

1
 0

1

5

Fitted va lues

St
an

da
rd

iz
ed

 re
si

du
a

s

Scale−Location
Ne v ada

Rhode Island
Alaska

0. 0 0 .1 0. 2 0 .3 0. 4

−2

−1

0
1

2
 3

Le ve rage

St
an

da
rd

iz
 ed

 re
si

du
a

 s

Cook’s distance
1

0.5

0.5

1

Residuals vs Le ve rage

Alaska

Ne v ada

Ha w aii

Figure 8.8 Diagnostic plots for the regression of murder rate on state characteristics

	 193

Table 8.4 Useful functions for regression diagnostics (car package)

Function Purpose

qqPlot() Quantile comparisons plot

durbinWatsonTest() Durbin–Watson test for autocorrelated errors

crPlots() Component plus residual plots

ncvTest() Score test for nonconstant error variance

spreadLevelPlot() Spread-level plot

outlierTest() Bonferroni outlier test

avPlots() Added variable plots

influencePlot() Regression influence plot

scatterplot() Enhanced scatter plot

scatterplotMatrix() Enhanced scatter plot matrix

vif() Variance inflation factors

It’s important to note that there are many changes between version 1.x and version 2.x
of the car package, including changes in function names and behavior. This chapter
is based on version 2.

In addition, the gvlma package provides a global test for linear model assumptions.
Let’s look at each in turn, by applying them to our multiple regression example.

NORMALITY

The qqPlot() function provides a more accurate method of assessing the normality
assumption than provided by the plot() function in the base package. It plots the
studentized residuals (also called studentized deleted residuals or jackknifed residuals) against
a t distribution with n-p-1 degrees of freedom, where n is the sample size and p is the
number of regression parameters (including the intercept). The code follows:

library(car)
fit <- lm(Murder ~ Population + Illiteracy + Income + Frost, data=states)
qqPlot(fit, labels=row.names(states), id.method="identify",
 simulate=TRUE, main="Q-Q Plot")

The qqPlot() function generates the probability plot displayed in figure 8.9. The
option id.method="identify" makes the plot interactive—after the graph is drawn,
mouse clicks on points within the graph will label them with values specified in the
labels option of the function. Hitting the Esc key, selecting Stop from the graph’s
drop-down menu, or right-clicking on the graph will turn off this interactive mode.
Here, I identified Nevada. When simulate=TRUE, a 95 percent confidence envelope
is produced using a parametric bootstrap. (Bootstrap methods are considered in
chapter 12.)

	 Chapter 8 Regression

2 1 0 1 2

2
1

0
1

2
3

Q Q Plot

t Quantiles

S
tu

de
nt

iz
ed

 R
es

id
ua

ls
(f

it)

Nevada

Figure 8.9 Q-Q plot for
studentized residuals

With the exception of Nevada, all the points fall close to the line and are within the con-
fidence envelope, suggesting that you’ve met the normality assumption fairly well. But
you should definitely look at Nevada. It has a large positive residual (actual-predicted),
indicating that the model underestimates the murder rate in this state. Specifically:

> states["Nevada",]

 Murder Population Illiteracy Income Frost
Nevada 11.5 590 0.5 5149 188

> fitted(fit)["Nevada"]

 Nevada
3.878958

> residuals(fit)["Nevada"]

 Nevada
7.621042

> rstudent(fit)["Nevada"]

 Nevada
3.542929

Here you see that the murder rate is 11.5 percent, but the model predicts a 3.9 percent
murder rate.

The question that you need to ask is, “Why does Nevada have a higher murder rate
than predicted from population, income, illiteracy, and temperature?” Anyone (who
hasn’t see Goodfellas) want to guess?

	 195

For completeness, here’s another way of visualizing errors. Take a look at the code
in the next listing. The residplot() function generates a histogram of the studen-
tized residuals and superimposes a normal curve, kernel density curve, and rug plot. It
doesn’t require the car package.

Listing 8.6 Function for plotting studentized residuals

residplot <- function(fit, nbreaks=10) {
 z <- rstudent(fit)
 hist(z, breaks=nbreaks, freq=FALSE,

xlab="Studentized Residual",
main="Distribution of Errors")

 rug(jitter(z), col="brown")
 curve(dnorm(x, mean=mean(z), sd=sd(z)),
 add=TRUE, col="blue", lwd=2)
 lines(density(z)$x, density(z)$y,
 col="red", lwd=2, lty=2)
 legend("topright",
 legend = c("Normal Curve", "Kernel Density Curve"),
 lty=1:2, col=c("blue","red"), cex=.7)

 }

residplot(fit)

The results are displayed in figure 8.10.

Distrib ution of Err or s

Studentiz ed Residual

D
en

si
ty

−2 −1 0 1 2 3 4

0
0

0
1

0
2

0
3

0
4 No rm al Cur ve
Ke r nel Density Cur ve

Figure 8.10 Distribution of
studentized residuals using
the residplot() function

	 Chapter 8 Regression

As you can see, the errors follow a normal distribution quite well, with the exception of
a large outlier. Although the Q-Q plot is probably more informative, I’ve always found
it easier to gauge the skew of a distribution from a histogram or density plot than from
a probability plot. Why not use both?

INDEPENDENCE OF ERRORS

As indicated earlier, the best way to assess whether the dependent variable values (and
thus the residuals) are independent is from your knowledge of how the data were col-
lected. For example, time series data will often display autocorrelation—observations
collected closer in time will be more correlated with each other than with observations
distant in time. The car package provides a function for the Durbin–Watson test to
detect such serially correlated errors. You can apply the Durbin–Watson test to the
multiple regression problem with the following code:

> durbinWatsonTest(fit)
 lag Autocorrelation D-W Statistic p-value
 1 -0.201 2.32 0.282
 Alternative hypothesis: rho != 0

The nonsignificant p-value (p=0.282) suggests a lack of autocorrelation, and conversely
an independence of errors. The lag value (1 in this case) indicates that each observa-
tion is being compared with the one next to it in the dataset. Although appropriate
for time-dependent data, the test is less applicable for data that isn’t clustered in this
fashion. Note that the durbinWatsonTest() function uses bootstrapping (see chapter
12) to derive p-values. Unless you add the option simulate=FALSE, you’ll get a slightly
different value each time you run the test.

LINEARITY

You can look for evidence of nonlinearity in the relationship between the dependent
variable and the independent variables by using component plus residual plots (also
known as partial residual plots). The plot is produced by crPlots() function in the
car package. You’re looking for any systematic departure from the linear model that
you’ve specified.

To create a component plus residual plot for variable Xj , you plot the points
ε , where the residuals ε are based on the full model, and i =1…n. The
straight line in each graph is given by . Loess fit lines are described in
chapter 11. The code to produce these plots is as follows:

> library(car)
> crPlots(fit)

The resulting plots are provided in figure 8.11. Nonlinearity in any of these plots sug-
gests that you may not have adequately modeled the functional form of that predictor
in the regression. If so, you may need to add curvilinear components such as polyno-
mial terms, transform one or more variables (for example, use log(X) instead of X), or
abandon linear regression in favor of some other regression variant. Transformations
are discussed later in this chapter.

	 197

0 5000 10000 15000 20000

−6

−4

−2

0
2

4
6

P opulatio n

C
om

po
ne

nt
+R

es
id

ua
(M

ur
de

r)

0. 5 1 .0 1. 5 2 .0 2. 5

−4

−2

0
2

4
6

8

Illiteracy

C
om

po
ne

nt
+R

es
id

ua
(M

ur
de

r)

3000 4000 5000 6000

−4

−2

0
2

4
6

 8

Income

C
om

po
ne

nt
+R

es
id

ua
(M

ur
de

r)

0 5 0 100 150

−4

−2

0
2

4
6

8

Frost

C
om

po
ne

nt
+R

es
id

ua
(M

ur
de

r)

Component + Residual Plots

Figure 8.11 Component plus residual plots for the regression of murder rate on state characteristics

The component plus residual plots confirm that you’ve met the linearity assumption.
The form of the linear model seems to be appropriate for this dataset.

HOMOSCEDASTICITY

The car package also provides two useful functions for identifying non-constant error
variance. The ncvTest() function produces a score test of the hypothesis of constant
error variance against the alternative that the error variance changes with the level of
the fitted values. A significant result suggests heteroscedasticity (nonconstant error
variance).

The spreadLevelPlot() function creates a scatter plot of the absolute standardized
residuals versus the fitted values, and superimposes a line of best fit. Both functions are
demonstrated in listing 8.7.

	 Chapter 8 Regression

Listing 8.7 Assessing homoscedasticity

> library(car)
> ncvTest(fit)

Non-constant Variance Score Test
Variance formula: ~ fitted.values
Chisquare=1.7 Df=1 p=0.19

> spreadLevelPlot(fit)

Suggested power transformation: 1.2

The score test is nonsignificant (p = 0.19), suggesting that you’ve met the constant
variance assumption. You can also see this in the spread-level plot (figure 8.12). The
points form a random horizontal band around a horizontal line of best fit. If you’d vio-
lated the assumption, you’d expect to see a nonhorizontal line. The suggested power
transformation in listing 8.7 is the suggested power p (Y p) that would stabilize the
nonconstant error variance. For example, if the plot showed a nonhorizontal trend
and the suggested power transformation was 0.5, then using Y rather than Y in the
regression equation might lead to a model that satisfies homoscedasticity. If the sug-
gested power was 0, you’d use a log transformation. In the current example, there’s no
evidence of heteroscedasticity and the suggested power is close to 1 (no transforma-
tion required).

4 6 8 1 0 1 2 1 4

0
05

0

10

0
20

0

50

1
00

2

00

Spread−Le vel Plot f or
 fit

Fitted V alues

Ab
so

lu
te

 S
tu

de
nt

iz
 ed

 R
es

id
ua

ls

Figure 8.12 Spread-level
plot for assessing constant
error variance

	 199

8.3.3 Global validation of linear model assumption

Finally, let’s examine the gvlma() function in the gvlma package. Written by Pena
and Slate (2006), the gvlma() function performs a global validation of linear model
assumptions as well as separate evaluations of skewness, kurtosis, and heteroscedastic-
ity. In other words, it provides a single omnibus (go/no go) test of model assumptions.
The following listing applies the test to the states data.

Listing 8.8 Global test of linear model assumptions

> library(gvlma)
> gvmodel <- gvlma(fit)
> summary(gvmodel)

ASSESSMENT OF THE LINEAR MODEL ASSUMPTIONS
USING THE GLOBAL TEST ON 4 DEGREES-OF-FREEDOM:
Level of Significance= 0.05

Call:
 gvlma(x=fit)

 Value p-value Decision
Global Stat 2.773 0.597 Assumptions acceptable.
Skewness 1.537 0.215 Assumptions acceptable.
Kurtosis 0.638 0.425 Assumptions acceptable.
Link Function 0.115 0.734 Assumptions acceptable.
Heteroscedasticity 0.482 0.487 Assumptions acceptable.

You can see from the printout (the Global Stat line) that the data meet all the statistical
assumptions that go with the OLS regression model (p = 0.597). If the decision line had
indicated that the assumptions were violated (say, p < 0.05), you’d have had to explore
the data using the previous methods discussed in this section to determine which as-
sumptions were the culprit.

8.3.4 Multicollinearity

Before leaving this section on regression diagnostics, let’s focus on a problem that’s
not directly related to statistical assumptions but is important in allowing you to inter-
pret multiple regression results.

Imagine you’re conducting a study of grip strength. Your independent variables
include date of birth (DOB) and age. You regress grip strength on DOB and age and
find a significant overall F test at p < .001. But when you look at the individual regression
coefficients for DOB and age, you find that they’re both nonsignificant (that is, there’s
no evidence that either is related to grip strength). What happened?

The problem is that DOB and age are perfectly correlated within rounding error. A
regression coefficient measures the impact of one predictor variable on the response
variable, holding all other predictor variables constant. This amounts to looking at
the relationship of grip strength and age, holding age constant. The problem is called
multicollinearity. It leads to large confidence intervals for your model parameters and
makes the interpretation of individual coefficients difficult.

	 Chapter 8 Regression

Multicollinearity can be detected using a statistic called the variance inflation factor
(VIF). For any predictor variable, the square root of the VIF indicates the degree to
which the confidence interval for that variable’s regression parameter is expanded
relative to a model with uncorrelated predictors (hence the name). VIF values are
provided by the vif() function in the car package. As a general rule, vif > 2
indicates a multicollinearity problem. The code is provided in the following listing.
The results indicate that multicollinearity isn’t a problem with our predictor variables.

Listing 8.9 Evaluating multicollinearity

>library(car)
> vif(fit)

Population Illiteracy Income Frost
 1.2 2.2 1.3 2.1

> sqrt(vif(fit)) > 2 # problem?
Population Illiteracy Income Frost
 FALSE FALSE FALSE FALSE

8.4 Unusual observations
A comprehensive regression analysis will also include a screening for unusual
observations—namely outliers, high-leverage observations, and influential observa-
tions. These are data points that warrant further investigation, either because they’re
different than other observations in some way, or because they exert a disproportion-
ate amount of influence on the results. Let’s look at each in turn.

8.4.1 Outliers

Outliers are observations that aren’t predicted well by the model. They have either
unusually large positive or negative residuals (Y Yi i–). Positive residuals indicate that
the model is underestimating the response value, while negative residuals indicate an
overestimation.

You’ve already seen one way to identify outliers. Points in the Q-Q plot of figure 8.9
that lie outside the confidence band are considered outliers. A rough rule of thumb is
that standardized residuals that are larger than 2 or less than –2 are worth attention.

The car package also provides a statistical test for outliers. The outlierTest()
function reports the Bonferroni adjusted p-value for the largest absolute studentized
residual:

 > library(car)
 > outlierTest(fit)

 rstudent unadjusted p-value Bonferonni p
Nevada 3.5 0.00095 0.048

Here, you see that Nevada is identified as an outlier (p = 0.048). Note that this function
tests the single largest (positive or negative) residual for significance as an outlier. If it

	 201

isn’t significant, there are no outliers in the dataset. If it is significant, you must delete
it and rerun the test to see if others are present.

8.4.2 High leverage points

Observations that have high leverage are outliers with regard to the other predictors.
In other words, they have an unusual combination of predictor values. The response
value isn’t involved in determining leverage.

Observations with high leverage are identified through the hat statistic. For a given
dataset, the average hat value is p/n, where p is the number of parameters estimated
in the model (including the intercept) and n is the sample size. Roughly speaking, an
observation with a hat value greater than 2 or 3 times the average hat value should be
examined. The code that follows plots the hat values:

hat.plot <- function(fit) {
 p <- length(coefficients(fit))
 n <- length(fitted(fit))
 plot(hatvalues(fit), main="Index Plot of Hat Values")
 abline(h=c(2,3)*p/n, col="red", lty=2)
 identify(1:n, hatvalues(fit), names(hatvalues(fit)))
 }
hat.plot(fit)

The resulting graph is shown in figure 8.13.

0 1 0 2 0 3 0 4 0 50

0
1

0
2

0
3

0
4

Inde x Plot of Hat V alues

Inde x

ha
tv

 al
ue

s(
fit

)

Alaska

Calif or nia

Ha w aii Ne w Yo rk
W ashington

Figure 8.13 Index plot of
hat values for assessing
observations with high
leverage

	 Chapter 8 Regression

Horizontal lines are drawn at 2 and 3 times the average hat value. The locator function
places the graph in interactive mode. Clicking on points of interest labels them until
the user presses Esc, selects Stop from the graph drop-down menu, or right-clicks on
the graph. Here you see that Alaska and California are particularly unusual when it
comes to their predictor values. Alaska has a much higher income than other states,
while having a lower population and temperature. California has a much higher popu-
lation than other states, while having a higher income and higher temperature. These
states are atypical compared with the other 48 observations.

High leverage observations may or may not be influential observations. That will
depend on whether they’re also outliers.

8.4.3 Influential observations

Influential observations are observations that have a disproportionate impact on the
values of the model parameters. Imagine finding that your model changes dramatical-
ly with the removal of a single observation. It’s this concern that leads you to examine
your data for influential points.

There are two methods for identifying influential observations: Cook’s distance,
or D statistic and added variable plots. Roughly speaking, Cook’s D values greater than
4/(n-k-1), where n is the sample size and k is the number of predictor variables,
indicate influential observations. You can create a Cook’s D plot (figure 8.14) with the
following code:

cutoff <- 4/(nrow(states)-length(fit$coefficients)-2)
plot(fit, which=4, cook.levels=cutoff)
abline(h=cutoff, lty=2, col="red")

The graph identifies Alaska, Hawaii, and Nevada as influential observations. Deleting
these states will have a notable impact on the values of the intercept and slopes in the

0 1 0 2 0 3 0 4 0 50

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Obs . number

C
oo

k’
s

di
st

an
ce

lm(Murder ~ P opulation + Illiteracy + Income + Frost)

Cook’s distance

Alaska

Ne v ada

Ha wa ii

Figure 8.14 Cook’s D plot for
identifying influential observations

	 203

regression model. Note that although it’s useful to cast a wide net when searching
for influential observations, I tend to find a cutoff of 1 more generally useful than 4/
(n-k-1). Given a criterion of D=1, none of the observations in the dataset would appear
to be influential.

Cook’s D plots can help identify influential observations, but they don’t provide
information on how these observations affect the model. Added-variable plots can
help in this regard. For one response variable and k predictor variables, you’d create k
added-variable plots as follows.

For each predictor Xk , plot the residuals from regressing the response variable
on the other k-1 predictors versus the residuals from regressing Xk on the other k-1
predictors. Added-variable plots can be created using the avPlots() function in the
car package:

library(car)
avPlots(fit, ask=FALSE, onepage=TRUE, id.method="identify")

The resulting graphs are provided in figure 8.15. The graphs are produced one at a
time, and users can click on points to identify them. Press Esc, choose Stop from the
graph’s menu, or right-click to move on to the next plot. Here, I’ve identified Alaska
in the bottom-left plot.

−5000 0 5000 10000

−4

−2

0
2

4
6

P opulation | other s

M
ur

de
r

 o
th

er
 s

−1.0 −0. 5 0 .0 0. 5 1 .0

−4

−2

0
2

4
6

8

Illiteracy | other s

M
ur

de
r

 o
th

er
 s

−500 0 500 1500

−4

−2

0
2

4
6

 8

Income | other s

M
ur

de
r

 o
th

er
 s Alask a

−100 −50 0 50

−4

−2

0
2

4
6

 8

Frost | other s

M
ur

de
r

 o
th

er
 s

Added V ar iab le Plots

Figure 8.15 Added-variable plots for assessing the impact of influential
observations

	 Chapter 8 Regression

The straight line in each plot is the actual regression coefficient for that predictor
variable. You can see the impact of influential observations by imagining how the line
would change if the point representing that observation was deleted. For example,
look at the graph of Murder | others versus Income | others in the lower-left corner.
You can see that eliminating the point labeled Alaska would move the line in a negative
direction. In fact, deleting Alaska changes the regression coefficient for Income from
positive (.00006) to negative (–.00085).

You can combine the information from outlier, leverage, and influence plots into
one highly informative plot using the influencePlot() function from the car
package:

library(car)
influencePlot(fit, id.method="identify", main="Influence Plot",
 sub="Circle size is proportional to Cook’s distance")

The resulting plot (figure 8.16) shows that Nevada and Rhode Island are outliers; New
York, California, Hawaii, and Washington have high leverage; and Nevada, Alaska, and
Hawaii are influential observations.

0.1 0.2 0.3 0.4

−2
−1

0
1

2
3

Influence Plot

Circle size is proportial to Cook’s Distance
Hat Values

St
ud

en
tiz

ed
 R

es
id

ua
ls

Alaska

California

Hawaii

Nevada

New York

Rhode Island

Washington

Figure 8.16 Influence plot. States above +2 or below –2 on the vertical axis
are considered outliers. States above 0.2 or 0.3 on the horizontal axis have high
leverage (unusual combinations of predictor values). Circle size is proportional
to influence. Observations depicted by large circles may have disproportionate
influence on the parameters estimates of the model.

	 205

8.5 Corrective measures
Having spent the last 20 pages learning about regression diagnostics, you may ask,
“What do you do if you identify problems?” There are four approaches to dealing with
violations of regression assumptions:

n Deleting observations
n Transforming variables
n Adding or deleting variables
n Using another regression approach

Let’s look at each in turn.

8.5.1 Deleting observations

Deleting outliers can often improve a dataset’s fit to the normality assumption. Influ-
ential observations are often deleted as well, because they have an inordinate impact
on the results. The largest outlier or influential observation is deleted, and the model
is refit. If there are still outliers or influential observations, the process is repeated until
an acceptable fit is obtained.

Again, I urge caution when considering the deletion of observations. Sometimes,
you can determine that the observation is an outlier because of data errors
in recording, or because a protocol wasn’t followed, or because a test subject
misunderstood instructions. In these cases, deleting the offending observation seems
perfectly reasonable.

In other cases, the unusual observation may be the most interesting thing about
the data you’ve collected. Uncovering why an observation differs from the rest can
contribute great insight to the topic at hand, and to other topics you might not have
thought of. Some of our greatest advances have come from the serendipity of noticing
that something doesn’t fit our preconceptions (pardon the hyperbole).

8.5.2 Transforming variables

When models don’t meet the normality, linearity, or homoscedasticity assumptions,
transforming one or more variables can often improve or correct the situation. Trans-
formations typically involve replacing a variable Y with Y l. Common values of l and
their interpretations are given in table 8.5.

If Y is a proportion, a logit transformation [ln (Y/1-Y)] is often used.

Table 8.5 Common transformations

–2 –1 –0.5 0 0.5 1 2

Transformation 1/Y 2 1/Y 1/ Y log(Y) Y None Y 2

	 Chapter 8 Regression

When the model violates the normality assumption, you typically attempt a transforma-
tion of the response variable. You can use the powerTransform() function in the car
package to generate a maximum-likelihood estimation of the power l most likely to
normalize the variable X l. In the next listing, this is applied to the states data.

Listing 8.10 Box–Cox transformation to normality

> library(car)
> summary(powerTransform(states$Murder))

bcPower Transformation to Normality

 Est.Power Std.Err. Wald Lower Bound Wald Upper Bound
states$Murder 0.6 0.26 0.088 1.1

Likelihood ratio tests about transformation parameters
 LRT df pval
LR test, lambda=(0) 5.7 1 0.017
LR test, lambda=(1) 2.1 1 0.145

The results suggest that you can normalize the variable Murder by replacing it with
Murder0.6. Because 0.6 is close to 0.5, you could try a square root transformation to
improve the model’s fit to normality. But in this case the hypothesis that l=1 can’t be
rejected (p = 0.145), so there’s no strong evidence that a transformation is actually
needed in this case. This is consistent with the results of the Q-Q plot in figure 8.9.

When the assumption of linearity is violated, a transformation of the predictor
variables can often help. The boxTidwell() function in the car package can be
used to generate maximum-likelihood estimates of predictor powers that can improve
linearity. An example of applying the Box–Tidwell transformations to a model that
predicts state murder rates from their population and illiteracy rates follows:

> library(car)
> boxTidwell(Murder~Population+Illiteracy,data=states)

 Score Statistic p-value MLE of lambda
Population -0.32 0.75 0.87
Illiteracy 0.62 0.54 1.36

The results suggest trying the transformations Population.87 and Population1.36 to
achieve greater linearity. But the score tests for Population (p = .75) and Illiteracy
(p = .54) suggest that neither variable needs to be transformed. Again, these results are
consistent with the component plus residual plots in figure 8.11.

Finally, transformations of the response variable can help in situations of
heteroscedasticity (nonconstant error variance). You saw in listing 8.7 that the
spreadLevelPlot() function in the car package offers a power transformation for
improving homoscedasticity. Again, in the case of the states example, the constant
error variance assumption is met and no transformation is necessary.

	 207

8.5.3 Adding or deleting variables

Changing the variables in a model will impact the fit of a model. Sometimes, adding
an important variable will correct many of the problems that we’ve discussed. Deleting
a troublesome variable can do the same thing.

Deleting variables is a particularly important approach for dealing with
multicollinearity. If your only goal is to make predictions, then multicollinearity isn’t a
problem. But if you want to make interpretations about individual predictor variables,
then you must deal with it. The most common approach is to delete one of the
variables involved in the multicollinearity (that is, one of the variables with a vif > 2).
An alternative is to use ridge regression, a variant of multiple regression designed to
deal with multicollinearity situations.

8.5.4 Trying a different approach

As you’ve just seen, one approach to dealing with multicollinearity is to fit a different
type of model (ridge regression in this case). If there are outliers and/or influential
observations, you could fit a robust regression model rather than an OLS regression.
If you’ve violated the normality assumption, you can fit a nonparametric regression
model. If there’s significant nonlinearity, you can try a nonlinear regression model. If
you’ve violated the assumptions of independence of errors, you can fit a model that
specifically takes the error structure into account, such as time-series models or multi-
level regression models. Finally, you can turn to generalized linear models to fit a wide
range of models in situations where the assumptions of OLS regression don’t hold.

We’ll discuss some of these alternative approaches in chapter 13. The decision
regarding when to try to improve the fit of an OLS regression model and when to try a
different approach, is a complex one. It’s typically based on knowledge of the subject
matter and an assessment of which approach will provide the best result.

Speaking of best results, let’s turn now to the problem of deciding which predictor
variables to include in our regression model.

8.6 Selecting the “best” regression model
When developing a regression equation, you’re implicitly faced with a selection of
many possible models. Should you include all the variables under study, or drop ones

A caution concerning transformations

There’s an old joke in statistics: If you can’t prove A, prove B and pretend it was A.
(For statisticians, that’s pretty funny.) The relevance here is that if you transform
your variables, your interpretations must be based on the transformed variables, not
the original variables. If the transformation makes sense, such as the log of income
or the inverse of distance, the interpretation is easier. But how do you interpret
the relationship between the frequency of suicidal ideation and the cube root of
depression? If a transformation doesn’t make sense, you should avoid it.

	 Chapter 8 Regression

that don’t make a significant contribution to prediction? Should you add polynomial
and/or interaction terms to improve the fit? The selection of a final regression model
always involves a compromise between predictive accuracy (a model that fits the data
as well as possible) and parsimony (a simple and replicable model). All things being
equal, if you have two models with approximately equal predictive accuracy, you fa-
vor the simpler one. This section describes methods for choosing among competing
models. The word “best” is in quotation marks, because there’s no single criterion you
can use to make the decision. The final decision requires judgment on the part of the
investigator. (Think of it as job security.)

8.6.1 Comparing models

You can compare the fit of two nested models using the anova() function in the base
installation. A nested model is one whose terms are completely included in the other
model. In our states multiple regression model, we found that the regression coeffi-
cients for Income and Frost were nonsignificant. You can test whether a model without
these two variables predicts as well as one that includes them (see the following listing).

Listing 8.11 Comparing nested models using the anova() function

> fit1 <- lm(Murder ~ Population + Illiteracy + Income + Frost,
 data=states)
> fit2 <- lm(Murder ~ Population + Illiteracy, data=states)
> anova(fit2, fit1)

Analysis of Variance Table

Model 1: Murder ~ Population + Illiteracy
Model 2: Murder ~ Population + Illiteracy + Income + Frost
 Res.Df RSS Df Sum of Sq F Pr(>F)
1 47 289.246
2 45 289.167 2 0.079 0.0061 0.994

Here, model 1 is nested within model 2. The anova() function provides a simultane-
ous test that Income and Frost add to linear prediction above and beyond Population
and Illiteracy. Because the test is nonsignificant (p = .994), we conclude that they don’t
add to the linear prediction and we’re justified in dropping them from our model.

The Akaike Information Criterion (AIC) provides another method for comparing
models. The index takes into account a model’s statistical fit and the number of
parameters needed to achieve this fit. Models with smaller AIC values—indicating
adequate fit with fewer parameters—are preferred. The criterion is provided by the
AIC() function (see the following listing).

Listing 8.12 Comparing models with the AIC

> fit1 <- lm(Murder ~ Population + Illiteracy + Income + Frost,
 data=states)
> fit2 <- lm(Murder ~ Population + Illiteracy, data=states)

	 209

> AIC(fit1,fit2)

 df AIC
fit1 6 241.6429
fit2 4 237.6565

The AIC values suggest that the model without Income and Frost is the better model.
Note that although the ANOVA approach requires nested models, the AIC approach
doesn’t.

Comparing two models is relatively straightforward, but what do you do when there
are four, or ten, or a hundred possible models to consider? That’s the topic of the next
section.

8.6.2 Variable selection

Two popular approaches to selecting a final set of predictor variables from a larger
pool of candidate variables are stepwise methods and all-subsets regression.

STEPWISE REGRESSION

In stepwise selection, variables are added to or deleted from a model one at a time,
until some stopping criterion is reached. For example, in forward stepwise regression
you add predictor variables to the model one at a time, stopping when the addition of
variables would no longer improve the model. In backward stepwise regression, you start
with a model that includes all predictor variables, and then delete them one at a time
until removing variables would degrade the quality of the model. In stepwise stepwise
regression (usually called stepwise to avoid sounding silly), you combine the forward
and backward stepwise approaches. Variables are entered one at a time, but at each
step, the variables in the model are reevaluated, and those that don’t contribute to the
model are deleted. A predictor variable may be added to, and deleted from, a model
several times before a final solution is reached.

The implementation of stepwise regression methods vary by the criteria used to
enter or remove variables. The stepAIC() function in the MASS package performs
stepwise model selection (forward, backward, stepwise) using an exact AIC criterion.
In the next listing, we apply backward stepwise regression to the multiple regression
problem.

Listing 8.13 Backward stepwise selection

> library(MASS)
> fit1 <- lm(Murder ~ Population + Illiteracy + Income + Frost,
 data=states)
> stepAIC(fit, direction="backward")

Start: AIC=97.75
Murder ~ Population + Illiteracy + Income + Frost

 Df Sum of Sq RSS AIC
- Frost 1 0.02 289.19 95.75
- Income 1 0.06 289.22 95.76

	 Chapter 8 Regression

<none> 289.17 97.75
- Population 1 39.24 328.41 102.11
- Illiteracy 1 144.26 433.43 115.99

Step: AIC=95.75
Murder ~ Population + Illiteracy + Income

 Df Sum of Sq RSS AIC
- Income 1 0.06 289.25 93.76
<none> 289.19 95.75
- Population 1 43.66 332.85 100.78
- Illiteracy 1 236.20 525.38 123.61

Step: AIC=93.76
Murder ~ Population + Illiteracy

 Df Sum of Sq RSS AIC
<none> 289.25 93.76
- Population 1 48.52 337.76 99.52
- Illiteracy 1 299.65 588.89 127.31

Call:
lm(formula=Murder ~ Population + Illiteracy, data=states)

Coefficients:
(Intercept) Population Illiteracy
 1.6515497 0.0002242 4.0807366

You start with all four predictors in the model. For each step, the AIC column provides
the model AIC resulting from the deletion of the variable listed in that row. The AIC
value for <none> is the model AIC if no variables are removed. In the first step, Frost
is removed, decreasing the AIC from 97.75 to 95.75. In the second step, Income is re-
moved, decreasing the AIC to 93.76. Deleting any more variables would increase the
AIC, so the process stops.

Stepwise regression is controversial. Although it may find a good model, there’s no
guarantee that it will find the best model. This is because not every possible model is
evaluated. An approach that attempts to overcome this limitation is all subsets regression.

ALL SUBSETS REGRESSION

In all subsets regression, every possible model is inspected. The analyst can choose to
have all possible results displayed, or ask for the nbest models of each subset size (one
predictor, two predictors, etc.). For example, if nbest=2, the two best one-predictor
models are displayed, followed by the two best two-predictor models, followed by the
two best three-predictor models, up to a model with all predictors.

All subsets regression is performed using the regsubsets() function from the
leaps package. You can choose R-squared, Adjusted R-squared, or Mallows Cp statistic
as your criterion for reporting “best” models.

As you’ve seen, R-squared is the amount of variance accounted for in the response
variable by the predictors variables. Adjusted R-squared is similar, but takes into account
the number of parameters in the model. R-squared always increases with the addition

	 211

of predictors. When the number of predictors is large compared to the sample size,
this can lead to significant overfitting. The Adjusted R-squared is an attempt to provide
a more honest estimate of the population R-squared—one that’s less likely to take
advantage of chance variation in the data. The Mallows Cp statistic is also used as a
stopping rule in stepwise regression. It has been widely suggested that a good model
is one in which the Cp statistic is close to the number of model parameters (including
the intercept).

In listing 8.14, we’ll apply all subsets regression to the states data. The results can
be plotted with either the plot() function in the leaps package or the subsets()
function in the car package. An example of the former is provided in figure 8.17, and
an example of the latter is given in figure 8.18.

Listing 8.14 All subsets regression

library(leaps)
leaps <-regsubsets(Murder ~ Population + Illiteracy + Income +
 Frost, data=states, nbest=4)
plot(leaps, scale="adjr2")

library(car)
subsets(leaps, statistic="cp",
 main="Cp Plot for All Subsets Regression")
abline(1,1,lty=2,col="red")

ad
jr2

(In
te

rc
ep

t)

Po
pu

at
io

n

I
ite

ra
cy

In
co

m
e

Fr
os

t

0.033

0.1

0.28

0.29

0.31

0.48

0.48

0.48

0.48

0.53

0.54

0.54

0.55

Figure 8.17 Best four models for each subset size based on Adjusted R-square

	 Chapter 8 Regression

Figure 8.17 can be confusing to read. Looking at the first row (starting at the bottom),
you can see that a model with the intercept and Income has an adjusted R-square of
0.33. A model with the intercept and Population has an adjusted R-square of 0.1. Jump-
ing to the 12th row, you see that a model with the intercept, Population, Illiteracy, and
Income has an adjusted R-square of 0.54, whereas one with the intercept, Population,
and Illiteracy alone has an adjusted R-square of 0.55. Here you see that a model with
fewer predictors has a larger adjusted R-square (something that can’t happen with an
unadjusted R-square). The graph suggests that the two-predictor model (Population
and Illiteracy) is the best.

In figure 8.18, you see the best four models for each subset size based on the
Mallows Cp statistic. Better models will fall close to a line with intercept 1 and slope
1. The plot suggests that you consider a two-predictor model with Population and
Illiteracy; a three-predictor model with Population, Illiteracy, and Frost, or Population,
Illiteracy and Income (they overlap on the graph and are hard to read); or a four-
predictor model with Population, Illiteracy, Income, and Frost. You can reject the
other possible models.

In most instances, all subsets regression is preferable to stepwise regression, because
more models are considered. However, when the number of predictors is large, the

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0
10

20
30

40
50

Cp Plot for All Subsets Regression

Subset Size

S
ta

tis
tic

: c
p

Il

F

P

In

P−Il

Il−−FIl In

P−F

P−−Il−InIl F

Il−In−F

P−In−F

P−Il−In−F

P: Population
Il: Illiteracy
In: Income
F: Frost

Figure 8.18 Best four models for each subset size based on the Mallows Cp statistic

	 213

procedure can require significant computing time. In general, automated variable se-
lection methods should be seen as an aid rather than a directing force in model selec-
tion. A well-fitting model that doesn’t make sense doesn’t help you. Ultimately, it’s your
knowledge of the subject matter that should guide you.

8.7 Taking the analysis further
We’ll end our discussion of regression by considering methods for assessing model
generalizability and predictor relative importance.

8.7.1 Cross-validation

In the previous section, we examined methods for selecting the variables to include
in a regression equation. When description is your primary goal, the selection and
interpretation of a regression model signals the end of your labor. But when your
goal is prediction, you can justifiably ask, “How well will this equation perform in the
real world?”

By definition, regression techniques obtain model parameters that are optimal for
a given set of data. In OLS regression, the model parameters are selected to minimize
the sum of squared errors of prediction (residuals), and conversely, maximize the
amount of variance accounted for in the response variable (R-squared). Because the
equation has been optimized for the given set of data, it won’t perform as well with a
new set of data.

We began this chapter with an example involving a research physiologist who
wanted to predict the number of calories an individual will burn from the duration
and intensity of their exercise, age, gender, and BMI. If you fit an OLS regression
equation to this data, you’ll obtain model parameters that uniquely maximize the
R-squared for this particular set of observations. But our researcher wants to use this
equation to predict the calories burned by individuals in general, not only those in the
original study. You know that the equation won’t perform as well with a new sample
of observations, but how much will you lose? Cross-validation is a useful method for
evaluating the generalizability of a regression equation.

In cross-validation, a portion of the data is selected as the training sample and a
portion is selected as the hold-out sample. A regression equation is developed on
the training sample, and then applied to the hold-out sample. Because the hold-out
sample wasn’t involved in the selection of the model parameters, the performance on
this sample is a more accurate estimate of the operating characteristics of the model
with new data.

In k-fold cross-validation, the sample is divided into k subsamples. Each of the k
subsamples serves as a hold-out group and the combined observations from the
remaining k-1 subsamples serves as the training group. The performance for the
k prediction equations applied to the k hold-out samples are recorded and then
averaged. (When k equals n, the total number of observations, this approach is called
jackknifing.)

	 Chapter 8 Regression

You can perform k-fold cross-validation using the crossval() function in the
bootstrap package. The following listing provides a function (called shrinkage())
for cross-validating a model’s R-square statistic using k-fold cross-validation.

Listing 8.15 Function for k-fold cross-validated R-square

shrinkage <- function(fit, k=10){
 require(bootstrap)

 theta.fit <- function(x,y){lsfit(x,y)}
 theta.predict <- function(fit,x){cbind(1,x)%*%fit$coef}

 x <- fit$model[,2:ncol(fit$model)]
 y <- fit$model[,1]

 results <- crossval(x, y, theta.fit, theta.predict, ngroup=k)
 r2 <- cor(y, fit$fitted.values)^2
 r2cv <- cor(y, results$cv.fit)^2
 cat("Original R-square =", r2, "\n")
 cat(k, "Fold Cross-Validated R-square =", r2cv, "\n")
 cat("Change =", r2-r2cv, "\n")
 }

Using this listing you define your functions, create a matrix of predictor and predicted
values, get the raw R-squared, and get the cross-validated R-squared. (Chapter 12 cov-
ers bootstrapping in detail.)

The shrinkage() function is then used to perform a 10-fold cross-validation with
the states data, using a model with all four predictor variables:

> fit <- lm(Murder ~ Population + Income + Illiteracy + Frost, data=states)
> shrinkage(fit)

Original R-square=0.567
10 Fold Cross-Validated R-square=0.4481
Change=0.1188

You can see that the R-square based on our sample (0.567) is overly optimistic. A bet-
ter estimate of the amount of variance in murder rates our model will account for with
new data is the cross-validated R-square (0.448). (Note that observations are assigned
to the k groups randomly, so you will get a slightly different result each time you ex-
ecute the shrinkage() function.)

You could use cross-validation in variable selection by choosing a model that
demonstrates better generalizability. For example, a model with two predictors
(Population and Illiteracy) shows less R-square shrinkage (.03 versus .12) than the full
model:

> fit2 <- lm(Murder~Population+Illiteracy,data=states)
> shrinkage(fit2)

Original R-square=0.5668327
10 Fold Cross-Validated R-square=0.5346871
Change=0.03214554

	 215

This may make the two-predictor model a more attractive alternative.
All other things being equal, a regression equation that’s based on a larger training

sample and one that’s more representative of the population of interest will cross-
validate better. You’ll get less R-squared shrinkage and make more accurate predictions.

8.7.2 Relative importance

Up to this point in the chapter, we’ve been asking, “Which variables are useful for pre-
dicting the outcome?” But often your real interest is in the question, “Which variables
are most important in predicting the outcome?” You implicitly want to rank-order the
predictors in terms of relative importance. There may be practical grounds for asking
the second question. For example, if you could rank-order leadership practices by
their relative importance for organizational success, you could help managers focus on
the behaviors they most need to develop.

If predictor variables were uncorrelated, this would be a simple task. You would
rank-order the predictor variables by their correlation with the response variable. In
most cases, though, the predictors are correlated with each other, and this complicates
the task significantly.

There have been many attempts to develop a means for assessing the relative
importance of predictors. The simplest has been to compare standardized regression
coefficients. Standardized regression coefficients describe the expected change in
the response variable (expressed in standard deviation units) for a standard deviation
change in a predictor variable, holding the other predictor variables constant. You
can obtain the standardized regression coefficients in R by standardizing each of the
variables in your dataset to a mean of 0 and standard deviation of 1 using the scale()
function, before submitting the dataset to a regression analysis. (Note that because
the scale() function returns a matrix and the lm() function requires a data frame,
you convert between the two in an intermediate step.) The code and results for our
multiple regression problem are shown here:

> zstates <- as.data.frame(scale(states))
> zfit <- lm(Murder~Population + Income + Illiteracy + Frost, data=zstates)
> coef(zfit)

(Intercept) Population Income Illiteracy Frost
 -9.406e-17 2.705e-01 1.072e-02 6.840e-01 8.185e-03

Here you see that a one standard deviation increase in illiteracy rate yields a 0.68 stan-
dard deviation increase in murder rate, when controlling for population, income, and
temperature. Using standardized regression coefficients as our guide, Illiteracy is the
most important predictor and Frost is the least.

There have been many other attempts at quantifying relative importance. Relative
importance can be thought of as the contribution each predictor makes to R-square,
both alone and in combination with other predictors. Several possible approaches to
relative importance are captured in the relaimpo package written by Ulrike Grömping
(http://prof.beuth-hochschule.de/groemping/relaimpo/).

(http://prof.beuth-hochschule.de/groemping/relaimpo/

	 Chapter 8 Regression

A new method called relative weights shows significant promise. The method closely
approximates the average increase in R-square obtained by adding a predictor variable
across all possible submodels (Johnson, 2004; Johnson and Lebreton, 2004; LeBreton
and Tonidandel, 2008). A function for generating relative weights is provided in the
next listing.

Listing 8.16 relweights() function for calculating relative importance of predictors

relweights <- function(fit,...){
 R <- cor(fit$model)
 nvar <- ncol(R)
 rxx <- R[2:nvar, 2:nvar]
 rxy <- R[2:nvar, 1]
 svd <- eigen(rxx)
 evec <- svd$vectors
 ev <- svd$values
 delta <- diag(sqrt(ev))
 lambda <- evec %*% delta %*% t(evec)
 lambdasq <- lambda ^ 2
 beta <- solve(lambda) %*% rxy
 rsquare <- colSums(beta ^ 2)
 rawwgt <- lambdasq %*% beta ^ 2
 import <- (rawwgt / rsquare) * 100
 lbls <- names(fit$model[2:nvar])
 rownames(import) <- lbls
 colnames(import) <- "Weights"
 barplot(t(import),names.arg=lbls,
 ylab="% of R-Square",
 xlab="Predictor Variables",
 main="Relative Importance of Predictor Variables",
 sub=paste("R-Square=", round(rsquare, digits=3)),
 ...)
return(import)
}

NOTE The code in listing 8.16 is adapted from an SPSS program generously
provided by Dr. Johnson. See Johnson (2000, Multivariate Behavioral Research, 35,
1–19) for an explanation of how the relative weights are derived.

In listing 8.17 the relweights() function is applied to the states data with murder
rate predicted by the population, illiteracy, income, and temperature.

You can see from figure 8.19 that the total amount of variance accounted for by
the model (R-square=0.567) has been divided among the predictor variables. Illiteracy
accounts for 59 percent of the R-square, Frost accounts for 20.79 percent, and so forth.
Based on the method of relative weights, Illiteracy has the greatest relative importance,
followed by Frost, Population, and Income, in that order.

	 217

Listing 8.17 Applying the relweights() function

> fit <- lm(Murder ~ Population + Illiteracy + Income + Frost, data=states)
> relweights(fit, col="lightgrey")

 Weights
Population 14.72
Illiteracy 59.00
Income 5.49
Frost 20.79

Relative importance measures (and in particular, the method of relative weights) have
wide applicability. They come much closer to our intuitive conception of relative im-
portance than standardized regression coefficients do, and I expect to see their use
increase dramatically in coming years.

Population Illiteracy Income Frost

Relative Importance of Predictor Variables

R−Square = 0.567
Predictor Variables

%
 o

f R
−S

qu
ar

e

0
10

20
30

40
50

Figure 8.19 Bar plot of relative weights for the states multiple regression problem

	 Chapter 8 Regression

8.8 Summary
Regression analysis is a term that covers a broad range of methodologies in statistics.
You’ve seen that it’s a highly interactive approach that involves fitting models, assessing
their fit to statistical assumptions, modifying both the data and the models, and refit-
ting to arrive at a final result. In many ways, this final result is based on art and skill as
much as science.

This has been a long chapter, because regression analysis is a process with many parts.
We’ve discussed fitting OLS regression models, using regression diagnostics to assess
the data’s fit to statistical assumptions, and methods for modifying the data to meet
these assumptions more closely. We looked at ways of selecting a final regression model
from many possible models, and you learned how to evaluate its likely performance on
new samples of data. Finally, we tackled the thorny problem of variable importance:
identifying which variables are the most important for predicting an outcome.

In each of the examples in this chapter, the predictor variables have been quantitative.
However, there are no restrictions against using categorical variables as predictors as
well. Using categorical predictors such as gender, treatment type, or manufacturing
process allows you to examine group differences on a response or outcome variable.
This is the focus of our next chapter.

219

9Analysis of variance

This chapter covers
n Using R to model basic experimental designs

n Fitting and interpreting ANOVA type models

n Evaluating model assumptions

In chapter 7, we looked at regression models for predicting a quantitative response
variable from quantitative predictor variables. But there’s no reason that we couldn’t
have included nominal or ordinal factors as predictors as well. When factors are
included as explanatory variables, our focus usually shifts from prediction to under-
standing group differences, and the methodology is referred to as analysis of variance
(ANOVA). ANOVA methodology is used to analyze a wide variety of experimental and
quasi-experimental designs. This chapter provides an overview of R functions for
analyzing common research designs.

First we’ll look at design terminology, followed by a general discussion of R’s
approach to fitting ANOVA models. Then we’ll explore several examples that illustrate
the analysis of common designs. Along the way, we’ll treat anxiety disorders, lower
blood cholesterol levels, help pregnant mice have fat babies, assure that pigs grow long
in the tooth, facilitate breathing in plants, and learn which grocery shelves to avoid.

In addition to the base installation, we’ll be using the car, gplots, HH, rrcov,
and mvoutlier packages in our examples. Be sure to install them before trying out
the sample code.

	 Chapter 9 Analysis of variance

9.1 A crash course on terminology
Experimental design in general, and analysis of variance in particular, has its own lan-
guage. Before discussing the analysis of these designs, we’ll quickly review some impor-
tant terms. We’ll use a series of increasingly complex study designs to introduce the
most significant concepts.

Say you’re interested in studying the treatment of anxiety. Two popular therapies
for anxiety are cognitive behavior therapy (CBT) and eye movement desensitization
and reprocessing (EMDR). You recruit 10 anxious individuals and randomly assign
half of them to receive five weeks of CBT and half to receive five weeks of EMDR. At
the conclusion of therapy, each patient is asked to complete the State-Trait Anxiety
Inventory (STAI), a self-report measure of
anxiety. The design is outlined in table 9.1.

In this design, Treatment is a between-groups
factor with two levels (CBT, EMDR). It’s called
a between-groups factor because patients
are assigned to one and only one group. No
patient receives both CBT and EMDR. The s
characters represent the subjects (patients).
STAI is the dependent variable, and Treatment
is the independent variable. Because there are
an equal number of observations in each
treatment condition, you have a balanced
design. When the sample sizes are unequal
across the cells of a design, you have an
unbalanced design.

The statistical design in table 9.1 is called
a one-way ANOVA because there’s a single
classification variable. Specifically, it’s a one-
way between-groups ANOVA. Effects in ANOVA
designs are primarily evaluated through F tests.
If the F test for Treatment is significant, you
can conclude that the mean STAI scores for two
therapies differed after five weeks of treatment.

If you were interested in the effect of CBT
on anxiety over time, you could place all 10
patients in the CBT group and assess them at
the conclusion of therapy and again six months
later. This design is displayed in table 9.2.

Time is a within-groups factor with two
levels (five weeks, six months). It’s called a
within-groups factor because each patient is
measured under both levels. The statistical

Table 9.1 One-way between-groups ANOVA

Treatment

CBT EMDR

s1 s6

s2 s7

s3 s8

s4 s9

s5 s10

Table 9.2 One-way within-groups ANOVA

Patient

Time

5 weeks 6 months

	 221

design is a one-way within-groups ANOVA. Because each subject is measured more
than once, the design is also called repeated measures ANOVA. If the F test for Time is
significant, you can conclude that patients’ mean STAI scores changed between five
weeks and six months.

If you were interested in both treatment differences and change over time, you
could combine the first two study designs, and randomly assign five patients to CBT
and five patients to EMDR, and assess their STAI results at the end of therapy (five
weeks) and at six months (see table 9.3).

By including both Therapy and Time as factors, you’re able to examine the impact
of Therapy (averaged across time), Time (averaged across therapy type), and the
interaction of Therapy and Time. The first two are called the main effects, whereas the
interaction is (not surprisingly) called an interaction effect.

When you cross two or more factors, as you’ve done here, you have a factorial
ANOVA design. Crossing two factors produces a two-way ANOVA, crossing three factors
produces a three-way ANOVA, and so forth. When a factorial design includes both
between-groups and within-groups factors, it’s also called a mixed-model ANOVA. The
current design is a two-way mixed-model factorial ANOVA (phew!).

In this case you’ll have three F tests: one for Therapy, one for Time, and one for
the Therapy x Time interaction. A significant result for Therapy indicates that CBT
and EMDR differ in their impact on anxiety. A significant result for Time indicates that

Table 9.3 Two-way factorial ANOVA with one between-groups and one within-groups factor

Patient

Time

5 weeks 6 months

Therapy

CBT

s1

s2

s3

s4

s5

EMDR

s6

s7

s8

s9

s10

	 Chapter 9 Analysis of variance

anxiety changed from week five to the six month follow-up. A significant Therapy x
Time interaction indicates that the two treatments for anxiety had a differential impact
over time (that is, the change in anxiety from five weeks to six months was different for
the two treatments).

Now let’s extend the design a bit. It’s known that depression can have an impact
on therapy, and that depression and anxiety often co-occur. Even though subjects
were randomly assigned to treatment conditions, it’s possible that the two therapy
groups differed in patient depression levels at the initiation of the study. Any post-
therapy differences might then be due to the preexisting depression differences and
not to your experimental manipulation. Because depression could also explain the
group differences on the dependent variable, it’s a confounding factor. And because
you’re not interested in depression, it’s called a nuisance variable.

If you recorded depression levels using a self-report depression measure such as the
Beck Depression Inventory (BDI) when patients were recruited, you could statistically
adjust for any treatment group differences in depression before assessing the impact
of therapy type. In this case, BDI would be called a covariate, and the design would be
called an analysis of covariance (ANCOVA).

Finally, you’ve recorded a single dependent variable in this study (the STAI). You
could increase the validity of this study by including additional measures of anxiety
(such as family ratings, therapist ratings, and a measure assessing the impact of anxiety
on their daily functioning). When there’s more than one dependent variable, the
design is called a multivariate analysis of variance (MANOVA). If there are covariates
present, it’s called a multivariate analysis of covariance (MANCOVA).

Now that you have the basic terminology under your belt, you’re ready to amaze
your friends, dazzle new acquaintances, and discuss how to fit ANOVA/ANCOVA/
MANOVA models with R.

9.2 Fitting ANOVA models
Although ANOVA and regression methodologies developed separately, functionally
they’re both special cases of the general linear model. We could analyze ANOVA
models using the same lm() function used for regression in chapter 7. However, we’ll
primarily use the aov() function in this chapter. The results of lm() and aov() are
equivalent, but the aov() function presents these results in a format that’s more famil-
iar to ANOVA methodologists. For completeness, I’ll provide an example using lm()at
the end of this chapter.

9.2.1 The aov() function

The syntax of the aov() function is aov(formula, data=dataframe). Table 9.4 de-
scribes special symbols that can be used in the formulas. In this table, y is the depen-
dent variable and the letters A, B, and C represent factors.

	 223

Table 9.4 Special symbols used in R formulas

Symbol Usage

~ Separates response variables on the left from the explanatory variables on the right. For
example, a prediction of y from A, B, and C would be coded y ~ A + B + C.

+ Separates explanatory variables.

: Denotes an interaction between variables. A prediction of y from A, B, and the
interaction between A and B would be coded y ~ A + B + A:B.

* Denotes the complete crossing variables. The code y ~ A*B*C expands to
y ~ A + B + C + A:B + A:C + B:C + A:B:C.

^ Denotes crossing to a specified degree. The code y ~ (A+B+C)^2 expands to
y ~ A + B + C + A:B + A:C + A:B.

. A place holder for all other variables in the data frame except the dependent variable. For
example, if a data frame contained the variables y, A, B, and C, then the code y ~ .
would expand to y ~ A + B + C.

Table 9.5 provides formulas for several common research designs. In this table, low-
ercase letters are quantitative variables, uppercase letters are grouping factors, and
Subject is a unique identifier variable for subjects.

Table 9.5 Formulas for common research designs

Design Formula

One-way ANOVA y ~ A

One-way ANCOVA with one covariate y ~ x + A

Two-way Factorial ANOVA y ~ A * B

Two-way Factorial ANCOVA with two covariates y ~ x1 + x2 + A * B

Randomized Block y ~ B + A (where B is a blocking factor)

One-way within-groups ANOVA y ~ A + Error(Subject/A)

Repeated measures ANOVA with one within-groups
factor (W) and one between-groups factor (B)

y ~ B * W + Error(Subject/W)

We’ll explore in-depth examples of several of these designs later in this chapter.

9.2.2 The order of formula terms

The order in which the effects appear in a formula matters when (a) there’s more than
one factor and the design is unbalanced, or (b) covariates are present. When either of
these two conditions is present, the variables on the right side of the equation will be
correlated with each other. In this case, there’s no unambiguous way to divide up their
impact on the dependent variable.

	 Chapter 9 Analysis of variance

For example, in a two-way ANOVA with unequal numbers of observations in the
treatment combinations, the model y ~ A*B will not produce the same results as the
model y ~ B*A.

By default, R employs the Type I (sequential) approach to calculating ANOVA effects
(see the sidebar “Order counts!”). The first model can be written out as y ~ A + B + A:B.
The resulting R ANOVA table will assess

n The impact of A on y
n The impact of B on y, controlling for A
n The interaction of A and B, controlling for the A and B main effects

Order counts!

When independent variables are correlated with each other or with covariates,
there’s no unambiguous method for assessing the independent contributions of
these variables to the dependent variable. Consider an unbalanced two-way factorial
design with factors A and B and dependent variable y. There are three effects in
this design: the A and B main effects and the A x B interaction. Assuming that you’re
modeling the data using the formula

Y ~ A + B + A:B

there are three typical approaches for partitioning the variance in y among the
effects on the right side of this equation.

Type I (sequential)
Effects are adjusted for those that appear earlier in the formula. A is unadjusted. B
is adjusted for the A. The A:B interaction is adjusted for A and B.

Type II (hierarchical)
Effects are adjusted for other effects at the same or lower level. A is adjusted for B.
B is adjusted for A. The A:B interaction is adjusted for both A and B.

Type III (marginal)
Each effect is adjusted for every other effect in the model. A is adjusted for B and
A:B. B is adjusted for A and A:B. The A:B interaction is adjusted for A and B.
R employs the Type I approach by default. Other programs such as SAS and SPSS
employ the Type III approach by default.

The greater the imbalance in sample sizes, the greater the impact that the order of the
terms will have on the results. In general, more fundamental effects should be listed
earlier in the formula. In particular, covariates should be listed first, followed by main
effects, followed by two-way interactions, followed by three-way interactions, and so
on. For main effects, more fundamental variables should be listed first. Thus gender
would be listed before treatment. Here’s the bottom line: When the research design
isn’t orthogonal (that is, when the factors and/or covariates are correlated), be careful
when specifying the order of effects.

	 225

Before moving on to specific examples, note that the Anova() function in the car
package (not to be confused with the standard anova() function) provides the option
of using the Type II or Type III approach, rather than the Type I approach used by the
aov() function. You may want to use the Anova() function if you’re concerned about
matching your results to those provided by other packages such as SAS and SPSS. See
help(Anova, package="car") for details.

9.3 One-way ANOVA
In a one-way ANOVA, you’re interested in comparing the dependent variable means
of two or more groups defined by a categorical grouping factor. Our example comes
from the cholesterol dataset in the multcomp package, and taken from Westfall, To-
bia, Rom, & Hochberg (1999). Fifty patients received one of five cholesterol-reducing
drug regiments (trt). Three of the treatment conditions involved the same drug
administered as 20 mg once per day (1time), 10mg twice per day (2times), or 5 mg
four times per day (4times). The two remaining conditions (drugD and drugE) rep-
resented competing drugs. Which drug regimen produced the greatest cholesterol
reduction (response)? The analysis is provided in the following listing.

Listing 9.1 One-way ANOVA

	

 
	
	

 
	

 
	



> summary(fit)
 Df Sum Sq Mean Sq F value Pr(>F)
trt 4 1351 338 32.4 9.8e-13 ***
Residuals 45 469 10

Group sample sizes

Group means

Group standard
deviations

Test for group
differences (ANOVA)

	 Chapter 9 Analysis of variance

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

> library(gplots)
> plotmeans(response ~ trt, xlab="Treatment", ylab="Response",
 main="Mean Plot\nwith 95% CI")
> detach(cholesterol)

Looking at the output, you can see that 10 patients received each of the drug regi-
ments . From the means, it appears that drugE produced the greatest cholesterol
reduction, whereas 1time produced the least . Standard deviations were relatively
constant across the five groups, ranging from 2.88 to 3.48 . The ANOVA F test for
treatment (trt) is significant (p < .0001), providing evidence that the five treatments
aren’t all equally effective .

The plotmeans() function in the gplots package can be used to produce a graph
of group means and their confidence intervals . A plot of the treatment means, with
95 percent confidence limits, is provided in figure 9.1 and allows you to clearly see
these treatment differences.

5
10

15
20

Mean Plot
with 95% CI

Treatment

R
es

po
ns

e

1time 2times 4times drugD drugE

n=10 n=10 n=10 n=10 n=10

Figure 9.1 Treatment group means with 95 percent confidence intervals
for five cholesterol-reducing drug regiments

Plot group
means,
confidence
intervals

	 227

9.3.1 Multiple comparisons

The ANOVA F test for treatment tells you that the five drug regiments aren’t equally
effective, but it doesn’t tell you which treatments differ from one another. You can
use a multiple comparison procedure to answer this question. For example, the
TukeyHSD() function provides a test of all pairwise differences between group means
(see listing 9.2). Note that the TukeyHSD() function has compatibility issues with
package HH also used in this chapter; if HH is loaded, TukeyHSD() will fail. In that
case, use detach("package:HH") to remove it from the search path and then call
TukeyHSD().

Listing 9.2 Tukey HSD pairwise group comparisons

> TukeyHSD(fit)
 Tukey multiple comparisons of means
 95% family-wise confidence level

Fit: aov(formula = response ~ trt)

$trt
 diff lwr upr p adj
2times-1time 3.44 -0.658 7.54 0.138
4times-1time 6.59 2.492 10.69 0.000
drugD-1time 9.58 5.478 13.68 0.000
drugE-1time 15.17 11.064 19.27 0.000
4times-2times 3.15 -0.951 7.25 0.205
drugD-2times 6.14 2.035 10.24 0.001
drugE-2times 11.72 7.621 15.82 0.000
drugD-4times 2.99 -1.115 7.09 0.251
drugE-4times 8.57 4.471 12.67 0.000
drugE-drugD 5.59 1.485 9.69 0.003

> par(las=2)
> par(mar=c(5,8,4,2))
> plot(TukeyHSD(fit))

For example, the mean cholesterol reductions for 1time and 2times aren’t signifi-
cantly different from each other (p = 0.138), whereas the difference between 1time
and 4times is significantly different (p < .001).

The pairwise comparisons are plotted in figure 9.2. The first par statement rotates
the axis labels, and the second one increases the left margin area so that the labels fit
(par options are covered in chapter 3). In this graph, confidence intervals that include
0 indicate treatments that aren’t significantly different (p > 0.5).

The glht() function in the multcomp package provides a much more comprehen-
sive set of methods for multiple mean comparisons that you can use for both linear
models (such as those described in this chapter) and generalized linear models (cov-
ered in chapter 13). The following code reproduces the Tukey HSD test, along with a
different graphical representation of the results (figure 9.3):

> library(multcomp)
> par(mar=c(5,4,6,2))
> tuk <- glht(fit, linfct=mcp(trt="Tukey"))
> plot(cld(tuk, level=.05),col="lightgrey")

	 Chapter 9 Analysis of variance

Figure 9.2 Plot of Tukey HSD
pairwise mean comparisons

In this code, the par statement increased the top margin to fit the letter array. The
level option in the cld() function provides the significance level to use (0.05, or 95
percent confidence in this case).

Groups (represented by box plots) that have the same letter don’t have significantly
different means. You can see that 1time and 2times aren’t significantly different (they

1time 2times 4times drugD drugE

5
10

15
20

25

trt

re
sp

on
se

a

a
b

b
c

c

d

Figure 9.3 Tukey HSD tests
provided by the multcomp package

	 229

both have the letter a) and that 2times and 4times aren’t significantly different (they
both have the letter b), but that 1time and 4times are different (they don’t share a
letter). Personally, I find figure 9.3 easier to read than figure 9.2. It also has the advan-
tage of providing information on the distribution of scores within each group.

From these results, you can see that taking the cholesterol-lowering drug in
5 mg doses four times a day was better than taking a 20 mg dose once per day. The
competitor drugD wasn’t superior to this four-times-per-day regimen. But competitor
drugE was superior to both drugD and all three dosage strategies for our focus drug.

Multiple comparisons methodology is a complex and rapidly changing area of
study. To learn more, see Bretz, Hothorn, and Westfall (2010).

9.3.2 Assessing test assumptions

As we saw in the previous chapter, our confidence in results depends on the degree to
which our data satisfies the assumptions underlying the statistical tests. In a one-way
ANOVA, the dependent variable is assumed to be normally distributed, and have equal
variance in each group. You can use a Q-Q plot to assess the normality assumption:

> library(car)
> qqPlot(lm(response ~ trt, data=cholesterol),
 simulate=TRUE, main="Q-Q Plot", labels=FALSE)

Note the qqPlot() requires an lm() fit. The graph is provided in figure 9.4.
The data fall within the 95 percent confidence envelope, suggesting that the

normality assumption has been met fairly well.

−2 −1 0 1 2

−2

−1

0
1

 2

QQ Plot

t Quantiles

St
ud

en
tiz

 ed
 R

es
id

ua
ls

(fi
t)

Figure 9.4 Test of normality

	 Chapter 9 Analysis of variance

R provides several tests for the equality (homogeneity) of variances. For example, you
can perform Bartlett’s test with this code:

> bartlett.test(response ~ trt, data=cholesterol)

 Bartlett test of homogeneity of variances

data: response by trt
Bartlett's K-squared = 0.5797, df = 4, p-value = 0.9653

Bartlett’s test indicates that the variances in the five groups don’t differ significantly
(p = 0.97). Other possible tests include the Fligner–Killeen test (provided by the
fligner.test() function), and the Brown–Forsythe test (provided by the hov()
function in the HH package). Although not shown, the other two tests reach the same
conclusion.

Finally, analysis of variance methodologies can be sensitive to the presence of outliers.
You can test for outliers using the outlierTest() function in the car package:

> library(car)
> outlierTest(fit)

No Studentized residuals with Bonferonni p < 0.05
Largest |rstudent|:
 rstudent unadjusted p-value Bonferonni p
19 2.251149 0.029422 NA

From the output, you can see that there’s no indication of outliers in the cholesterol
data (NA occurs when p > 1). Taking the Q-Q plot, Bartlett’s test, and outlier test to-
gether, the data appear to fit the ANOVA model quite well. This, in turn, adds to your
confidence in the results.

9.4 One-way ANCOVA
A one-way analysis of covariance (ANCOVA) extends the one-way ANOVA to include one
or more quantitative covariates. This example comes from the litter dataset in the
multcomp package (see Westfall et al., 1999). Pregnant mice were divided into four
treatment groups; each group received a different dose of a drug (0, 5, 50, or 500).
The mean post-birth weight for each litter was the dependent variable and gestation
time was included as a covariate. The analysis is given in the following listing.

Listing 9.3 One-way ANCOVA

> data(litter, package="multcomp")
> attach(litter)
> table(dose)
dose
 0 5 50 500
 20 19 18 17
> aggregate(weight, by=list(dose), FUN=mean)
 Group.1 x
1 0 32.3
2 5 29.3

	 231

3 50 29.9
4 500 29.6
> fit <- aov(weight ~ gesttime + dose)
> summary(fit)
 Df Sum Sq Mean Sq F value Pr(>F)
gesttime 1 134.30 134.30 8.0493 0.005971 **
dose 3 137.12 45.71 2.7394 0.049883 *
Residuals 69 1151.27 16.69

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

From the table() function you can see that there are an unequal number of litters at
each dosage level, with 20 litters at zero dosage (no drug) and 17 litters at dosage 500.
Based on the group means provided by the aggregate() function, the no-drug group
had the highest mean litter weight (32.3). The ANCOVA F tests indicate that (a) gesta-
tion time was related to birth weight, and (b) drug dosage was related to birth weight
after controlling for gestation time. The mean birth weight isn’t the same for each of
the drug dosages, after controlling for gestation time.

Because you’re using a covariate, you may want to obtain adjusted group means—
that is, the group means obtained after partialing out the effects of the covariate. You
can use the effect() function in the effects library to calculate adjusted means:

> library(effects)
> effect("dose", fit)

 dose effect
dose
 0 5 50 500
32.4 28.9 30.6 29.3

In this case, the adjusted means are similar to the unadjusted means produced by
the aggregate() function, but this won’t always be the case. The effects package
provides a powerful method of obtaining adjusted means for complex research de-
signs and presenting them visually. See the package documentation on CRAN for more
details.

As with the one-way ANOVA example in the last section, the F test for dose indicates
that the treatments don’t have the same mean birth weight, but it doesn’t tell you
which means differ from one another. Again you can use the multiple comparison
procedures provided by the multcomp package to compute all pairwise mean
comparisons. Additionally, the multcomp package can be used to test specific user-
defined hypotheses about the means.

Suppose you’re interested in whether the no-drug condition differs from the three-
drug condition. The code in the following listing can be used to test this hypothesis.

Listing 9.4 Multiple comparisons employing user-supplied contrasts

> library(multcomp)
> contrast <- rbind("no drug vs. drug" = c(3, -1, -1, -1))
> summary(glht(fit, linfct=mcp(dose=contrast)))

Multiple Comparisons of Means: User-defined Contrasts

	 Chapter 9 Analysis of variance

Fit: aov(formula = weight ~ gesttime + dose)

Linear Hypotheses:
 Estimate Std. Error t value Pr(>|t|)
no drug vs. drug == 0 8.284 3.209 2.581 0.0120 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The contrast c(3, -1, -1, -1) specifies a comparison of the first group with the av-
erage of the other three. The hypothesis is tested with a t statistic (2.581 in this case),
which is significant at the p < .05 level. Therefore, you can conclude that the no-drug
group has a higher birth weight than drug conditions. Other contrasts can be added
to the rbind() function (see help(glht) for details).

9.4.1 Assessing test assumptions

ANCOVA designs make the same normality and homogeneity of variance assumptions
described for ANOVA designs, and you can test these assumptions using the same pro-
cedures described in section 9.3.2. In addition, standard ANCOVA designs assumes ho-
mogeneity of regression slopes. In this case, it’s assumed that the regression slope for
predicting birth weight from gestation time is the same in each of the four treatment
groups. A test for the homogeneity of regression slopes can be obtained by including
a gestation*dose interaction term in your ANCOVA model. A significant interaction
would imply that the relationship between gestation and birth weight depends on the
level of the dose variable. The code and results are provided in the following listing.

Listing 9.5 Testing for homogeneity of regression slopes

> library(multcomp)
> fit2 <- aov(weight ~ gesttime*dose, data=litter)
> summary(fit2)
 Df Sum Sq Mean Sq F value Pr(>F)
gesttime 1 134 134 8.29 0.0054 **
dose 3 137 46 2.82 0.0456 *
gesttime:dose 3 82 27 1.68 0.1789
Residuals 66 1069 16

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The interaction is nonsignificant, supporting the assumption of equality of slopes. If
the assumption is untenable, you could try transforming the covariate or dependent
variable, using a model that accounts for separate slopes, or employing a nonparamet-
ric ANCOVA method that doesn’t require homogeneity of regression slopes. See the
sm.ancova() function in the sm package for an example of the latter.

9.4.2 Visualizing the results

The ancova() function in the HH package provides a plot of the relationship between
the dependent variable, the covariate, and the factor. For example:

	 233

> library(HH)
> ancova(weight ~ gesttime + dose, data=litter)

produces the plot shown in the following figure 9.5. Note: the figure has been modi-
fied to display better in black and white and will look slightly different when you run
the code yourself.

Here you can see that the regression lines for predicting birth weight from
gestation time are parallel in each group but have different intercepts. As gestation
time increases, birth weight increases. Additionally, you can see that the 0-dose
group has the largest intercept and the 5-dose group has the lowest intercept. The
lines are parallel because you’ve specified them to be. If you’d used the statement
ancova(weight ~ gesttime*dose) instead, you’d generate a plot that allows both the
slopes and intercepts to vary by group. This approach is useful for visualizing the case
where the homogeneity of regression slopes doesn’t hold.

weight ~ gesttime + dose

gesttime

w
e

gh
t

20

25

30

35

21.5 22.5

0

21.5 22.5

5

21.5 22.5

50

21.5 22.5

500

21.5 22.5

superpose

dose
0
5
50
500

Figure 9.5 Plot of the relationship between gestation time and birth weight for each of four
drug treatment groups

	 Chapter 9 Analysis of variance

9.5 Two-way factorial ANOVA
In a two-way factorial ANOVA, subjects are assigned to groups that are formed from the
cross-classification of two factors. This example uses the ToothGrowth dataset in the
base installation to demonstrate a two-way between-groups ANOVA. Sixty guinea pigs
are randomly assigned to receive one of three levels of ascorbic acid (0.5, 1, or 2mg),
and one of two delivery methods (orange juice or Vitamin C), under the restriction
that each treatment combination has 10 guinea pigs. The dependent variable is tooth
length. The following listing shows the code for the analysis.

Listing 9.6 Two-way ANOVA

> attach(ToothGrowth)
> table(supp, dose)
 dose
supp 0.5 1 2
 OJ 10 10 10
 VC 10 10 10

> aggregate(len, by=list(supp, dose), FUN=mean)
 Group.1 Group.2 x
1 OJ 0.5 13.23
2 VC 0.5 7.98
3 OJ 1.0 22.70
4 VC 1.0 16.77
5 OJ 2.0 26.06
6 VC 2.0 26.14

> aggregate(len, by=list(supp, dose), FUN=sd)
 Group.1 Group.2 x
1 OJ 0.5 4.46
2 VC 0.5 2.75
3 OJ 1.0 3.91
4 VC 1.0 2.52
5 OJ 2.0 2.66
6 VC 2.0 4.80

> fit <- aov(len ~ supp*dose)
> summary(fit)

 Df Sum Sq Mean Sq F value Pr(>F)
supp 1 205 205 12.32 0.0009 ***
dose 1 2224 2224 133.42 <2e-16 ***
supp:dose 1 89 89 5.33 0.0246 *
Residuals 56 934 17

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The table statement indicates that you have a balanced design (equal sample sizes
in each cell of the design), and the aggregate statements provide the cell means and
standard deviations. The ANOVA table provided by the summary() function indicates
that both main effects (supp and dose) and the interaction between these factors are
significant.

	 235

10

15

20

25

Interaction between Dose and Supplement T ype

dose

m
ea

n
of

 l
en

0.5 1 2

 supp

VC
OJ

Figure 9.6 Interaction between
dose and delivery mechanism on
tooth growth. The plot of means was
created using the interaction.
plot() function.

You can visualize the results in several ways. You can use the interaction.plot()
function to display the interaction in a two-way ANOVA. The code is

interaction.plot(dose, supp, len, type="b",
 col=c("red","blue"), pch=c(16, 18),
 main = "Interaction between Dose and Supplement Type")

and the resulting plot is presented in figure 9.6. The plot provides the mean tooth
length for each supplement at each dosage.

With a little finesse, you can get an interaction plot out of the plotmeans() function
in the gplots package. The following code produces the graph in figure 9.7:

library(gplots)
plotmeans(len ~ interaction(supp, dose, sep=" "),
 connect=list(c(1,3,5),c(2,4,6)),
 col=c("red", "darkgreen"),
 main = "Interaction Plot with 95% CIs",
 xlab="Treatment and Dose Combination")

The graph includes the means, as well as error bars (95 percent confidence intervals)
and sample sizes.

Finally, you can use the interaction2wt() function in the HH package to produce
a plot of both main effects and two-way interactions for any factorial design of any
order (figure 9.8):

library(HH)
interaction2wt(len~supp*dose)

Again, this figure has been modified to display more clearly in black and white and will
look slightly different when you run the code yourself.

All three graphs indicate that tooth growth increases with the dose of ascorbic acid
for both orange juice and Vitamin C. For the 0.5 and 1mg doses, orange juice produced

	 Chapter 9 Analysis of variance

10

15

20

25

30

Interaction Plot with 95% CIs

T reatment and Dose Combination

le
n

OJ 0.5 VC 0.5 OJ 1 VC 1 OJ 2 VC 2

n 10 n 10 n 10 n 10 n 10 n 10

Figure 9.7 Interaction between
dose and delivery mechanism
on tooth growth. The mean plot
with 95 percent confidence
intervals was created by the
plotmeans() function.

more tooth growth than Vitamin C. For 2mg of ascorbic acid, both delivery methods
produced identical growth. Of the three plotting methods provided, I prefer the in-
teraction2wt() function in the HH package. It displays both the main effects (the
box plots) and the two-way interactions for designs of any complexity (two-way ANOVA,
three-way ANOVA, etc.).

Although I don’t cover the tests of model assumptions and mean comparison
procedures, they’re a natural extension of the methods you’ve seen so far. Additionally,
the design is balanced, so you don’t have to worry about the order of effects.

len: main effects and 2−way interactions

x.values

re
sp

on
se

va
r

OJ VC

ssuupp

len ~ supp | supp

0.5 1 2

doose

5

10

15

20

25

30

lenn

len ~ dose | supp

len ~ supp | dose

5

10

15

20

25

30

lenn

len ~ dose | dose

dose
0.5
1
2

supp
OJ
VC

Figure 9.8 Main effects
and two-way interaction for
the ToothGrowth dataset.
This plot was created by the
interaction2way() function.

	 237

9.6 Repeated measures ANOVA
In repeated measures ANOVA, subjects are measured more than once. This section fo-
cuses on a repeated measures ANOVA with one within-groups and one between-groups
factor (a common design). We’ll take our example from the field of physiological ecol-
ogy. Physiological ecologists study how the physiological and biochemical processes of
living systems respond to variations in environmental factors (a crucial area of study
given the realities of global warming). The CO2 dataset included in the base installa-
tion contains the results of a study of cold tolerance in Northern and Southern plants
of the grass species Echinochloa crus-galli (Potvin, Lechowicz, & Tardif, 1990). The
photosynthetic rates of chilled plants were compared with the photosynthetic rates of
nonchilled plants at several ambient CO2 concentrations. Half the plants were from
Quebec and half were from Mississippi.

In this example, we’ll focus on chilled plants. The dependent variable is carbon
dioxide uptake (uptake) in ml/L, and the independent variables are Type (Quebec
versus Mississippi) and ambient CO2 concentration (conc) with seven levels (ranging
from 95 to 1000 umol/m^2 sec). Type is a between-groups factor and conc is a within-
groups factor. The analysis is presented in the next listing.

Listing 9.7 Repeated measures ANOVA with one between- and within-groups factor

> w1b1 <- subset(CO2, Treatment=='chilled')
> fit <- aov(uptake ~ conc*Type + Error(Plant/(conc), w1b1)
> summary(fit)

Error: Plant
 Df Sum Sq Mean Sq F value Pr(>F)
Type 1 2667.24 2667.24 60.414 0.001477 **
Residuals 4 176.60 44.15

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Error: Plant:conc
 Df Sum Sq Mean Sq F value Pr(>F)
conc 1 888.57 888.57 215.46 0.0001253 ***
conc:Type 1 239.24 239.24 58.01 0.0015952 **
Residuals 4 16.50 4.12

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Error: Within
 Df Sum Sq Mean Sq F value Pr(>F)
Residuals 30 869.05 28.97

> par(las=2)
> par(mar=c(10,4,4,2))
> with(w1b1, interaction.plot(conc,Type,uptake,
 type="b", col=c("red","blue"), pch=c(16,18),
 main="Interaction Plot for Plant Type and Concentration"))
> boxplot(uptake ~ Type*conc, data=w1b1, col=(c("gold", "green")),
 main=”Chilled Quebec and Mississippi Plants”,
 ylab=”Carbon dioxide uptake rate (umol/m^2 sec)”)

	 Chapter 9 Analysis of variance

10

15

20

25

30

35

40

Interaction Plot f or Plant T ype and Concentration

conc

m
ea

n
of

 u
pt

ak
 e

95

17
5

25
0

35
0

50
0

67
5

10
00

 T ype

Quebec
Mississippi

Figure 9.9 Interaction of
ambient CO2 concentration and
plant type on CO2 uptake. Graph
produced by the interaction.
plot() function.

The ANOVA table indicates that the Type and concentration main effects and the Type
x concentration interaction are all significant at the 0.01 level. The interaction is plot-
ted via the interaction.plot() function in figure 9.9.

In order to demonstrate a different presentation of the interaction, the boxplot()
function is used to plot the same data. The results are provided in figure 9.10.

Q
ue

be
c

95

M
is

si
ss

ip
pi

95

Q
ue

be
c

17
5

M
is

si
ss

ip
pi

17
5

Q
ue

be
c

25
0

M
is

si
ss

ip
pi

25
0

Q
ue

be
c

35
0

M
is

si
ss

ip
pi

35
0

Q
ue

be
c

50
0

M
is

si
ss

ip
pi

50
0

Q
ue

be
c

67
5

M
is

si
ss

ip
pi

67
5

Q
ue

be
c

10
00

M
is

si
ss

ip
pi

10
00

10

15

20

25

30

35

40

Chilled Quebec and Mississippi Plants

C
ar

bo
n

di
o x

id
e

up
ta

k e
 ra

te
 (u

m
ol

/m
^2

 s
ec

)

Figure 9.10 Interaction of
ambient CO2 concentration and
plant type on CO2 uptake. Graph
produced by the boxplot()
function.

	 239

From either graph, you can see that there’s a greater carbon dioxide uptake in plants
from Quebec compared to Mississippi. The difference is more pronounced at higher
ambient CO2 concentrations.

NOTE The datasets that you work with are typically in wide format, where columns
are variables and rows are observations, and there’s a single row for each subject.
The litter data frame from section 9.4 is a good example. When dealing with
repeated measures designs, you typically need the data in long format before fitting
your models. In long format, each measurement of the dependent variable is placed
in its own row. The CO2 dataset follows this form. Luckily, the reshape package
described in chapter 5 (section 5.6.3) can easily reorganize your data into the
required format.

The many approaches to mixed-model designs

The CO2 example in this section was analyzed using a traditional repeated measures
ANOVA. The approach assumes that the covariance matrix for any within-groups
factor follows a specified form known as sphericity. Specifically, it assumes that the
variances of the differences between any two levels of the within-groups factor are
equal. In real-world data, it’s unlikely that this assumption will be met. This has led
to a number of alternative approaches, including the following:

n Using the lmer() function in the lme4 package to fit linear mixed models
(Bates, 2005)

n Using the Anova() function in the car package to adjust traditional test sta-
tistics to account for lack of sphericity (for example, Geisser–Greenhouse cor-
rection)

n Using the gls() function in the nlme package to fit generalized least squares
models with specified variance-covariance structures (UCLA, 2009)

n Using multivariate analysis of variance to model repeated measured data
(Hand, 1987)

Coverage of these approaches is beyond the scope of this text. If you’re interested in
learning more, check out Pinheiro and Bates (2000) and Zuur et al. (2009).

Up to this point, all the methods in this chapter have assumed that there’s a single de-
pendent variable. In the next section, we’ll briefly consider designs that include more
than one outcome variable.

9.7 Multivariate analysis of variance (MANOVA)
If there’s more than one dependent (outcome) variable, you can test them simultane-
ously using a multivariate analysis of variance (MANOVA). The following example is
based on the UScereal dataset in the MASS package. The dataset comes from Venables

	 Chapter 9 Analysis of variance

& Ripley (1999). In this example, we’re interested in whether the calories, fat, and
sugar content of US cereals vary by store shelf, where 1 is the bottom shelf, 2 is the
middle shelf, and 3 is the top shelf. Calories, fat, and sugars are the dependent vari-
ables, and shelf is the independent variable with three levels (1, 2, and 3). The analysis
is presented in the following listing.

Listing 9.8 One-way MANOVA

> library(MASS)
> attach(UScereal)
> y <- cbind(calories, fat, sugars)
> aggregate(y, by=list(shelf), FUN=mean)
 Group.1 calories fat sugars
1 1 119 0.662 6.3
2 2 130 1.341 12.5
3 3 180 1.945 10.9
> cov(y)
 calories fat sugars
calories 3895.2 60.67 180.38
fat 60.7 2.71 4.00
sugars 180.4 4.00 34.05
> fit <- manova(y ~ shelf)
> summary(fit)
 Df Pillai approx F num Df den Df Pr(>F)
shelf 1 0.1959 4.9550 3 61 0.00383 **
Residuals 63

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> summary.aov(fit)
 Response calories :
 Df Sum Sq Mean Sq F value Pr(>F)
shelf 1 45313 45313 13.995 0.0003983 ***
Residuals 63 203982 3238

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 Response fat :
 Df Sum Sq Mean Sq F value Pr(>F)
shelf 1 18.421 18.421 7.476 0.008108 **
Residuals 63 155.236 2.464

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 Response sugars :
 Df Sum Sq Mean Sq F value Pr(>F)
shelf 1 183.34 183.34 5.787 0.01909 *
Residuals 63 1995.87 31.68

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This listing uses the cbind() function to form a matrix of the three dependent vari-
ables (calories, fat, and sugars). The aggregate() function provides the shelf means,
and the cov() function provides the variance and the covariances across cereals.

Print
univariate
results

	 241

The manova() function provides the multivariate test of group differences. The
significant F value indicates that the three groups differ on the set of nutritional
measures.

Because the multivariate test is significant, you can use the summary.aov()
function to obtain the univariate one-way ANOVAs. Here, you see that the three groups
differ on each nutritional measure considered separately. Finally, you can use a mean
comparison procedure (such as TukeyHSD) to determine which shelves differ from
each other for each of the three dependent variables (omitted here to save space).

9.7.1 Assessing test assumptions

The two assumptions underlying a one-way MANOVA are multivariate normality and
homogeneity of variance-covariance matrices.

The first assumption states that the vector of dependent variables jointly follows a
multivariate normal distribution. You can use a Q-Q plot to assess this assumption (see
the sidebar “A Theory Interlude” for a statistical explanation of how this works).

A theory interlude

If you have p x 1 multivariate normal random vector x with mean μ and covariance
matrix Σ, then the squared Mahalanobis distance between x and μ is chi-square
distributed with p degrees of freedom. The Q-Q plot graphs the quantiles of the chi-
square distribution for the sample against the Mahalanobis D-squared values. To the
degree that the points fall along a line with slope 1 and intercept 0, there’s evidence
that the data is multivariate normal.

The code is provided in the following listing and the resulting graph is displayed in
figure 9.11.

Listing 9.9 Assessing multivariate normality

> center <- colMeans(y)
> n <- nrow(y)
> p <- ncol(y)
> cov <- cov(y)
> d <- mahalanobis(y,center,cov)
> coord <- qqplot(qchisq(ppoints(n),df=p),
 d, main="Q-Q Plot Assessing Multivariate Normality",
 ylab="Mahalanobis D2")
> abline(a=0,b=1)
> identify(coord$x, coord$y, labels=row.names(UScereal))

If the data follow a multivariate normal distribution, then points will fall on the line.
The identify() function allows you to interactively identify points in the graph. (The
identify() function is covered in chapter 16, section 16.4.) Here, the dataset appears
to violate multivariate normality, primarily due to the observations for Wheaties Honey
Gold and Wheaties. You may want to delete these two cases and rerun the analyses.

	 Chapter 9 Analysis of variance

0 2 4 6 8 10 12

0
10

20
30

40

QQ Plot Assessing Multivariate Normality

qchisq(ppoints(n), df p)

M
ah

al
an

ob
is

 D
2 Wheaties

Wheaties Honey Gold

Figure 9.11 A Q-Q plot for
assessing multivariate normality

The homogeneity of variance-covariance matrices assumption requires that the covari-
ance matrix for each group are equal. The assumption is usually evaluated with a Box’s
M test. R doesn’t include a function for Box’s M, but an internet search will provide the
appropriate code. Unfortunately, the test is sensitive to violations of normality, leading
to rejection in most typical cases. This means that we don’t yet have a good working
method for evaluating this important assumption (but see Anderson [2006] and Silva
et al. [2008] for interesting alternative approaches not yet available in R).

Finally, you can test for multivariate outliers using the aq.plot() function in the
mvoutlier package. The code in this case looks like this:

library(mvoutlier)
outliers <- aq.plot(y)
outliers

Try it out and see what you get!

9.7.2 Robust MANOVA

If the assumptions of multivariate normality or homogeneity of variance-covariance
matrices are untenable, or if you’re concerned about multivariate outliers, you may
want to consider using a robust or nonparametric version of the MANOVA test instead.
A robust version of the one-way MANOVA is provided by the Wilks.test() function
in the rrcov package. The adonis() function in the vegan package can provide the
equivalent of a nonparametric MANOVA. Listing 9.10 applies Wilks.test() to our
example.

	 243

Listing 9.10 Robust one-way MANOVA

library(rrcov)
> Wilks.test(y,shelf,method="mcd")

 Robust One-way MANOVA (Bartlett Chi2)

data: x
Wilks' Lambda = 0.511, Chi2-Value = 23.71, DF = 4.85, p-value =
0.0002143
sample estimates:
 calories fat sugars
1 120 0.701 5.66
2 128 1.185 12.54
3 161 1.652 10.35

From the results, you can see that using a robust test that’s insensitive to both outli-
ers and violations of MANOVA assumptions still indicates that the cereals on the top,
middle, and bottom store shelves differ in their nutritional profiles.

9.8 ANOVA as regression
In section 9.2, we noted that ANOVA and regression are both special cases of the same
general linear model. As such, the designs in this chapter could have been analyzed
using the lm() function. However, in order to understand the output, you need to
understand how R deals with categorical variables when fitting models.

Consider the one-way ANOVA problem in section 9.3, which compares the impact of
five cholesterol-reducing drug regiments (trt).

> library(multcomp)
> levels(cholesterol$trt)

[1] "1time" "2times" "4times" "drugD" "drugE"

First, let’s fit the model using the aov() function:

> fit.aov <- aov(response ~ trt, data=cholesterol)
> summary(fit.aov)

 Df Sum Sq Mean Sq F value Pr(>F)
trt 4 1351.37 337.84 32.433 9.819e-13 ***
Residuals 45 468.75 10.42

Now, let’s fit the same model using lm(). In this case you get the results shown in
the next listing.

Listing 9.11 A regression approach to the ANOVA problem in section 9.3

> fit.lm <- lm(response ~ trt, data=cholesterol)
> summary(fit.lm)

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.782 1.021 5.665 9.78e-07 ***
trt2times 3.443 1.443 2.385 0.0213 *

	 Chapter 9 Analysis of variance

trt4times 6.593 1.443 4.568 3.82e-05 ***
trtdrugD 9.579 1.443 6.637 3.53e-08 ***
trtdrugE 15.166 1.443 10.507 1.08e-13 ***

Residual standard error: 3.227 on 45 degrees of freedom
Multiple R-squared: 0.7425, Adjusted R-squared: 0.7196
F-statistic: 32.43 on 4 and 45 DF, p-value: 9.819e-13

What are we looking at? Because linear models require numeric predictors, when the
lm() function encounters a factor, it replaces that factor with a set of numeric variables
representing contrasts among the levels. If the factor has k levels, k-1 contrast variables
will be created. R provides five built-in methods for creating these contrast variables
(see table 9.6). You can also create your own (we won’t cover that here). By default,
treatment contrasts are used for unordered factors and orthogonal polynomials are
used for ordered factors.

Table 9.6 Built-in contrasts

Contrast Description

contr.helmert Contrasts the second level with the first, the third level with the average of
the first two, the fourth level with the average of the first three, and so on.

contr.poly Contrasts used for trend analysis (linear, quadratic, cubic, and so on.)
based on orthogonal polynomials. Use for ordered factors with equally
spaced levels.

contr.sum Contrasts are constrained to sum to zero. Also called deviation contrasts,
they compare the mean of each level to the overall mean across levels.

contr.treatment Contrasts each level with the baseline level (first level by default). Also
called dummy coding.

contr.SAS Similar to contr.treatment but the baseline level is the last level. This
produces coefficients similar to contrasts used in most SAS procedures.

With treatment contrasts, the first level of the factor becomes the reference group
and each subsequent level is compared with it. You can see the coding scheme via the
contrasts() function:

> contrasts(cholesterol$trt)
 2times 4times drugD drugE
1time 0 0 0 0
2times 1 0 0 0
4times 0 1 0 0
drugD 0 0 1 0
drugE 0 0 0 1

If a patient is in the drugD condition, then the variable drugD equals 1, and the vari-
ables 2times, 4times, and drugE will each equal zero. You don’t need a variable for
the first group, because a zero on each of the four indicator variables uniquely deter-
mines that the patient is in the 1times condition.

	 245

In listing 9.11, the variable trt2times represents a contrast between the levels
1time and 2time. Similarly, trt4times is a contrast between 1time and 4times, and
so on. You can see from the probability values in the output that each drug condition
is significantly different from the first (1time).

You can change the default contrasts used in lm() by specifying a contrasts option.
For example, you can specify Helmert contrasts by using

fit.lm <- lm(response ~ trt, data=cholesterol, contrasts="contr.helmert")

You can change the default contrasts used during an R session via the options() func-
tion. For example,

options(contrasts = c("contr.SAS", "contr.helmert"))

would set the default contrast for unordered factors to contr.SAS and for ordered fac-
tors to contr.helmert. Although we’ve limited our discussion to the use of contrasts
in linear models, note that they’re applicable to other modeling functions in R. This
includes the generalized linear models covered in chapter 13.

9.9 Summary
In this chapter, we reviewed the analysis of basic experimental and quasi-experimental
designs using ANOVA/ANCOVA/MANOVA methodology. We reviewed the basic termi-
nology used, and looked at examples of between and within-groups designs, including
the one-way ANOVA, one-way ANCOVA, two-way factorial ANOVA, repeated measures
ANOVA, and one-way MANOVA.

In addition to the basic analyses, we reviewed methods of assessing model
assumptions and applying multiple comparison procedures following significant
omnibus tests. Finally, we explored a wide variety of methods for displaying the results
visually. If you’re interested in learning more about the design of experiments (DOE)
using R, be sure to see the CRAN View provided by Groemping (2009).

Chapters 8 and 9 have covered the statistical methods most often used by researchers
in a wide variety of fields. In the next chapter, we’ll address issues of power analysis.
Power analysis helps us to determine the sample sizes needed to detect an effect of a
given size with a given degree of confidence, and is a crucial component of research
design.

246

10Power analysis

This chapter covers
n Determining sample size requirements

n Calculating effect sizes

n Assessing statistical power

As a statistical consultant, I am often asked the question, “How many subjects do I need
for my study?” Sometimes the question is phrased this way: “I have x number of people
available for this study. Is the study worth doing?” Questions like these can be answered
through power analysis, an important set of techniques in experimental design.

Power analysis allows you to determine the sample size required to detect an
effect of a given size with a given degree of confidence. Conversely, it allows you to
determine the probability of detecting an effect of a given size with a given level of
confidence, under sample size constraints. If the probability is unacceptably low,
you’d be wise to alter or abandon the experiment.

In this chapter, you’ll learn how to conduct power analyses for a variety of
statistical tests, including tests of proportions, t-tests, chi-square tests, balanced one-
way ANOVA, tests of correlations, and linear models. Because power analysis applies
to hypothesis testing situations, we’ll start with a brief review of null hypothesis
significance testing (NHST). Then we’ll review conducting power analyses within R,
focusing primarily on the pwr package. Finally, we’ll consider other approaches to
power analysis available with R.

	 247

10.1 A quick review of hypothesis testing
To help you understand the steps in a power analysis, we’ll briefly review statistical
hypothesis testing in general. If you have a statistical background, feel free to skip to
section 10.2.

In statistical hypothesis testing, you specify a hypothesis about a population
parameter (your null hypothesis, or H0). You then draw a sample from this population
and calculate a statistic that’s used to make inferences about the population parameter.
Assuming that the null hypothesis is true, you calculate the probability of obtaining the
observed sample statistic or one more extreme. If the probability is sufficiently small,
you reject the null hypothesis in favor of its opposite (referred to as the alternative or
research hypothesis, H1).

 An example will clarify the process. Say you’re interested in evaluating the impact
of cell phone use on driver reaction time. Your null hypothesis is Ho: µ1 – µ2 = 0, where
µ1 is the mean response time for drivers using a cell phone and µ2 is the mean response
time for drivers that are cell phone free (here, µ1 – µ2 is the population parameter of
interest). If you reject this null hypothesis, you’re left with the alternate or research
hypothesis, namely H1: µ1 – µ2 ≠ 0. This is equivalent to µ1 ≠ µ2, that the mean reaction
times for the two conditions are not equal.

A sample of individuals is selected and randomly assigned to one of two conditions.
In the first condition, participants react to a series of driving challenges in a simulator
while talking on a cell phone. In the second condition, participants complete the same
series of challenges but without a cell phone. Overall reaction time is assessed for each
individual.

Based on the sample data, you can calculate the statistic

where X1 and X 2 are the sample reaction time means in the two conditions, s is the
pooled sample standard deviation, and n is the number of participants in each condi-
tion. If the null hypothesis is true and you can assume that reaction times are normally
distributed, this sample statistic will follow a t distribution with 2n-2 degrees of free-
dom. Using this fact, you can calculate the probability of obtaining a sample statistic
this large or larger. If the probability (p) is smaller than some predetermined cutoff
(say p < .05), you reject the null hypothesis in favor of the alternate hypothesis. This
predetermined cutoff (0.05) is called the significance level of the test.

Note that you use sample data to make an inference about the population it’s drawn
from. Your null hypothesis is that the mean reaction time of all drivers talking on cell
phones isn’t different from the mean reaction time of all drivers who aren’t talking on
cell phones, not just those drivers in your sample. The four possible outcomes from
your decision are as follows:

n If the null hypothesis is false and the statistical test leads us to reject it, you’ve
made a correct decision. You’ve correctly determined that reaction time is
affected by cell phone use.

	 Chapter 10 Power analysis

n If the null hypothesis is true and you don’t reject it, again you’ve made a correct
decision. Reaction time isn’t affected by cell phone use.

n If the null hypothesis is true but you reject it, you’ve committed a Type I error.
You’ve concluded that cell phone use affects reaction time when it doesn’t.

n If the null hypothesis is false and you fail to reject it, you’ve committed a Type II
error. Cell phone use affects reaction time, but you’ve failed to discern this.

Each of these outcomes is illustrated in the table below.

Decision

Reject H
0

Fail to Reject H
0

Actual H
0
 true Type I error correct

H
0
 false correct Type II error

Controversy surrounding null hypothesis significance testing

Null hypothesis significance testing is not without controversy and detractors have
raised numerous concerns about the approach, particularly as practiced in the field
of psychology. They point to a widespread misunderstanding of p values, reliance on
statistical significance over practical significance, the fact that the null hypothesis
is never exactly true and will always be rejected for sufficient sample sizes, and a
number of logical inconsistencies in NHST practices.

An in-depth discussion of this topic is beyond the scope of this book. Interested
readers are referred to Harlow, Mulaik, and Steiger (1997).

In planning research, the researcher typically pays special attention to four quantities:
sample size, significance level, power, and effect size (see figure 10.1).

Specifically:

n Sample size refers to the number of observations in each condition/group of the
experimental design.

n The significance level (also referred to as alpha) is defined as the probability of
making a Type I error. The significance level can also be thought of as the prob-
ability of finding an effect that is not there.

n Power is defined as one minus the probability of making a Type II error. Power
can be thought of as the probability of finding an effect that is there.

n Effect size is the magnitude of the effect under the alternate or research hypothe-
sis. The formula for effect size depends on the statistical methodology employed
in the hypothesis testing.

	 249

Figure 10.1 Four primary quantities
considered in a study design power
analysis. Given any three, you can
calculate the fourth.

Power
1-P(Type II Error)

Sample Size
n

Significance Level
P(Type I Error)

Effect Size
ES

Although the sample size and significance level are under the direct control of the
researcher, power and effect size are affected more indirectly. For example, as you re-
lax the significance level (in other words, make it easier to reject the null hypothesis),
power increases. Similarly, increasing the sample size increases power.

Your research goal is typically to maximize the power of your statistical tests while
maintaining an acceptable significance level and employing as small a sample size
as possible. That is, you want to maximize the chances of finding a real effect and
minimize the chances of finding an effect that isn’t really there, while keeping study
costs within reason.

The four quantities (sample size, significance level, power, and effect size) have an
intimate relationship. Given any three, you can determine the fourth. We’ll use this fact to
carry out various power analyses throughout the remainder of the chapter. In the next
section, we’ll look at ways of implementing power analyses using the R package pwr.
Later, we’ll briefly look at some highly specialized power functions that are used in
biology and genetics.

10.2 Implementing power analysis with the pwr package
The pwr package, developed by Stéphane Champely, implements power analysis as
outlined by Cohen (1988). Some of the more important functions are listed in table
10.1. For each function, the user can specify three of the four quantities (sample size,
significance level, power, effect size) and the fourth will be calculated.

	 Chapter 10 Power analysis

Table 10.1 pwr package functions

Function Power calculations for

pwr.2p.test() Two proportions (equal n)

pwr.2p2n.test() Two proportions (unequal n)

pwr.anova.test() Balanced one-way ANOVA

pwr.chisq.test() Chi-square test

pwr.f2.test() General linear model

pwr.p.test() Proportion (one sample)

pwr.r.test() Correlation

pwr.t.test() t-tests (one sample, two sample, paired)

pwr.t2n.test() t-test (two samples with unequal n)

Of the four quantities, effect size is often the most difficult to specify. Calculating effect
size typically requires some experience with the measures involved and knowledge of
past research. But what can you do if you have no clue what effect size to expect in a
given study? You’ll look at this difficult question in section 10.2.7. In the remainder of
this section, you’ll look at the application of pwr functions to common statistical tests.
Before invoking these functions, be sure to install and load the pwr package.

       

where m1 = mean of group 1
m2 = mean of group 2
s2 = common error variance

n sig.level is the significance level (0.05 is the default).
n power is the power level.
n type is two-sample t-test ("two.sample"), a one-sample t-test ("one.sample"),

or a dependent sample t-test ("paired"). A two-sample test is the default.
n alternative indicates whether the statistical test is two-sided ("two.sided")

or one-sided ("less" or "greater"). A two-sided test is the default.

	 251

Let’s work through an example. Continuing the cell phone use and driving reaction
time experiment from section 10.1, assume that you’ll be using a two-tailed indepen-
dent sample t-test to compare the mean reaction time for participants in the cell phone
condition with the mean reaction time for participants driving unencumbered.

Let’s assume that you know from past experience that reaction time has a standard
deviation of 1.25 seconds. Also suppose that a 1-second difference in reaction time is
considered an important difference. You’d therefore like to conduct a study in which
you’re able to detect an effect size of d = 1/1.25 = 0.8 or larger. Additionally, you
want to be 90 percent sure to detect such a difference if it exists, and 95 percent sure
that you won’t declare a difference to be significant when it’s actually due to random
variability. How many participants will you need in your study?

Entering this information in the pwr.t.test() function, you have the following:

> library(pwr)
> pwr.t.test(d=.8, sig.level=.05, power=.9, type="two.sample",

alternative="two.sided")

 Two-sample t test power calculation

 n = 34
 d = 0.8
 sig.level = 0.05
 power = 0.9
 alternative = two.sided

 NOTE: n is number in *each* group

The results suggest that you need 34 participants in each group (for a total of 68 par-
ticipants) in order to detect an effect size of 0.8 with 90 percent certainty and no more
than a 5 percent chance of erroneously concluding that a difference exists when, in
fact, it doesn’t.

Let’s alter the question. Assume that in comparing the two conditions you want to
be able to detect a 0.5 standard deviation difference in population means. You want to
limit the chances of falsely declaring the population means to be different to 1 out of
100. Additionally, you can only afford to include 40 participants in the study. What’s
the probability that you’ll be able to detect a difference between the population means
that’s this large, given the constraints outlined?

Assuming that an equal number of participants will be placed in each condition,
you have

> pwr.t.test(n=20, d=.5, sig.level=.01, type="two.sample",
 alternative="two.sided")

 Two-sample t test power calculation

 n = 20
 d = 0.5
 sig.level = 0.01
 power = 0.14

	 Chapter 10 Power analysis

 alternative = two.sided

 NOTE: n is number in *each* group

With 20 participants in each group, an a priori significance level of 0.01, and a de-
pendent variable standard deviation of 1.25 seconds, you have less than a 14 per-
cent chance of declaring a difference of 0.625 seconds or less significant (d = 0.5 =
0.625/1.25). Conversely, there’s a 86 percent chance that you’ll miss the effect that
you’re looking for. You may want to seriously rethink putting the time and effort into
the study as it stands.

The previous examples assumed that there are equal sample sizes in the two groups.
If the sample sizes for the two groups are unequal, the function

pwr.t2n.test(n1=, n2=, d=, sig.level=, power=, alternative=)

can be used. Here, n1 and n2 are the sample sizes and the other parameters are the
same as for pwer.t.test. Try varying the values input to the pwr.t2n.test function
and see the effect on the output.

10.2.2 ANOVA

The pwr.anova.test() function provides power analysis options for a balanced one-
way analysis of variance. The format is

pwr.anova.test(k=, n=, f=, sig.level=, power=)

where k is the number of groups and n is the common sample size in each group.
For a one-way ANOVA, effect size is measured by f, where

where p i = ni/N,

ni = number of observations in group i

N = total number of observations

mi = mean of group i

m	 = grand mean

s2 = error variance within groups

Let’s try an example. For a one-way ANOVA comparing five groups, calculate the sam-
ple size needed in each group to obtain a power of 0.80, when the effect size is 0.25 and
a significance level of 0.05 is employed. The code looks like this:

> pwr.anova.test(k=5, f=.25, sig.level=.05, power=.8)

 Balanced one-way analysis of variance power calculation

 k = 5
 n = 39
 f = 0.25
 sig.level = 0.05
 power = 0.8

 NOTE: n is number in each group

	 253

The total sample size is therefore 5 × 39, or 195. Note that this example requires you
to estimate what the means of the five groups will be, along with the common variance.
When you have no idea what to expect, the approaches described in section 10.2.7
may help.

10.2.3 Correlations

The pwr.r.test() function provides a power analysis for tests of correlation coef-
ficients. The format is as follows:

pwr.r.test(n=, r=, sig.level=, power=, alternative=)

where n is the number of observations, r is the effect size (as measured by a linear cor-
relation coefficient), sig.level is the significance level, power is the power level, and
alternative specifies a two-sided ("two.sided") or a one-sided ("less" or "great-
er") significance test.

For example, let’s assume that you’re studying the relationship between depression
and loneliness. Your null and research hypotheses are

H0: ρ	≤ 0.25 versus H1: ρ > 0.25

where ρ is the population correlation between these two psychological variables.
You’ve set your significance level to 0.05 and you want to be 90 percent confident that
you’ll reject H0 if it’s false. How many observations will you need? This code provides
the answer:

> pwr.r.test(r=.25, sig.level=.05, power=.90, alternative="greater")

 approximate correlation power calculation (arctangh transformation)

 n = 134
 r = 0.25
 sig.level = 0.05
 power = 0.9
 alternative = greater

Thus, you need to assess depression and loneliness in 134 participants in order to be
90 percent confident that you’ll reject the null hypothesis if it’s false.

10.2.4 Linear models

For linear models (such as multiple regression), the pwr.f2.test() function can be
used to carry out a power analysis. The format is

 pwr.f2.test(u=, v=, f2=, sig.level=, power=)

where u and v are the numerator and denominator degrees of freedom and f2 is the
effect size.

f
R

R
2

2

21
=

−

where R2 = population squared
multiple correlation

	 Chapter 10 Power analysis

where R2
A = variance accounted for in the

population by variable set A

R2
AB = variance accounted for in the

population by variable set A and B
together

f
R R

R
AB A

AB

2
2 2

2=
−

1−

The first formula for f2 is appropriate when you’re evaluating the impact of a set of
predictors on an outcome. The second formula is appropriate when you’re evaluating
the impact of one set of predictors above and beyond a second set of predictors (or
covariates).

Let’s say you’re interested in whether a boss’s leadership style impacts workers’
satisfaction above and beyond the salary and perks associated with the job. Leadership
style is assessed by four variables, and salary and perks are associated with three
variables. Past experience suggests that salary and perks account for roughly 30
percent of the variance in worker satisfaction. From a practical standpoint, it would
be interesting if leadership style accounted for at least 5 percent above this figure.
Assuming a significance level of 0.05, how many subjects would be needed to identify
such a contribution with 90 percent confidence?

Here, sig.level=0.05, power=0.90, u=3 (total number of predictors minus the
number of predictors in set B), and the effect size is f2 = (.35-.30)/(1-.35) = 0.0769.
Entering this into the function yields the following:

> pwr.f2.test(u=3, f2=0.0769, sig.level=0.05, power=0.90)

 Multiple regression power calculation

 u = 3
 v = 184.2426
 f2 = 0.0769
 sig.level = 0.05
 power = 0.9

In multiple regression, the denominator degrees of freedom equals N-k-1, where N is
the number of observations and k is the number of predictors. In this case, N-7-1=185,
which means the required sample size is N = 185 + 7 + 1 = 193.

10.2.5 Tests of proportions

The pwr.2p.test() function can be used to perform a power analysis when compar-
ing two proportions. The format is

pwr.2p.test(h=, n=, sig.level=, power=)

where h is the effect size and n is the common sample size in each group. The effect
size h is defined as

h p p= ()− ()2 21 2arcsin arcsin

and can be calculated with the function ES.h(p1, p2).

	 255

For unequal ns the desired function is

pwr.2p2n.test(h =, n1 =, n2 =, sig.level=, power=).

The alternative= option can be used to specify a two-tailed ("two.sided") or one-
tailed ("less" or "greater") test. A two-tailed test is the default.

Let’s say that you suspect that a popular medication relieves symptoms in 60 percent
of users. A new (and more expensive) medication will be marketed if it improves
symptoms in 65 percent of users. How many participants will you need to include in
a study comparing these two medications if you want to detect a difference this large?

Assume that you want to be 90 percent confident in a conclusion that the new drug
is better and 95 percent confident that you won’t reach this conclusion erroneously.
You’ll use a one-tailed test because you’re only interested in assessing whether the new
drug is better than the standard. The code looks like this:

> pwr.2p.test(h=ES.h(.65, .6), sig.level=.05, power=.9,
 alternative="greater")

 Difference of proportion power calculation for binomial
 distribution (arcsine transformation)

 h = 0.1033347
 n = 1604.007
 sig.level = 0.05
 power = 0.9
 alternative = greater

 NOTE: same sample sizes

Based on these results, you’ll need to conduct a study with 1,605 individuals receiving
the new drug and 1,605 receiving the existing drug in order to meet the criteria.

10.2.6 Chi-square tests

Chi-square tests are often used to assess the relationship between two categorical vari-
ables. The null hypothesis is typically that the variables are independent versus a re-
search hypothesis that they aren’t. The pwr.chisq.test() function can be used to
evaluate the power, effect size, or requisite sample size when employing a chi-square
test. The format is

 pwr.chisq.test(w =, N = , df = , sig.level =, power =)

where w is the effect size, N is the total sample size, and df is the degrees of freedom.
Here, effect size w is defined as

where p0i = cell probability in ith cell under H0

p1i = cell probability in ith cell under H1

The summation goes from 1 to m, where m is the number of cells in the contingency
table. The function ES.w2(P) can be used to calculate the effect size corresponding

	 Chapter 10 Power analysis

the alternative hypothesis in a two-way contingency table. Here, P is a hypothesized
two-way probability table.

As a simple example, let’s assume that you’re looking the relationship between
ethnicity and promotion. You anticipate that 70 percent of your sample will be
Caucasian, 10 percent will be African American, and 20 percent will be Hispanic.
Further, you believe that 60 percent of Caucasians tend to be promoted, compared
with 30 percent for African Americans, and 50 percent for Hispanics. Your research
hypothesis is that the probability of promotion follows the values in table 10.2.

Table 10.2 Proportion of individuals expected to be promoted based on the research hypothesis

Ethnicity Promoted Not promoted

Caucasian 0.42 0.28

African American 0.03 0.07

Hispanic 0.10 0.10

For example, you expect that 42 percent of the population will be promoted Cauca-
sians (.42 = .70 × .60) and 7 percent of the population will be nonpromoted African
Americans (.07 = .10 × .70). Let’s assume a significance level of 0.05 and the de-
sired power level is 0.90. The degrees of freedom in a two-way contingency table are
(r-1)*(c-1), where r is the number of rows and c is the number of columns. You can
calculate the hypothesized effect size with the following code:

> prob <- matrix(c(.42, .28, .03, .07, .10, .10), byrow=TRUE, nrow=3)
> ES.w2(prob)

[1] 0.1853198

Using this information, you can calculate the necessary sample size like this:

> pwr.chisq.test(w=.1853, df=2, sig.level=.05, power=.9)

 Chi squared power calculation

 w = 0.1853
 N = 368.5317
 df = 2
 sig.level = 0.05
 power = 0.9

 NOTE: N is the number of observations

The results suggest that a study with 369 participants will be adequate to detect a
relationship between ethnicity and promotion given the effect size, power, and signifi-
cance level specified.

	 257

10.2.7 Choosing an appropriate effect size in novel situations

In power analysis, the expected effect size is the most difficult parameter to determine.
It typically requires that you have experience with the subject matter and the measures
employed. For example, the data from past studies can be used to calculate effect sizes,
which can then be used to plan future studies.

But what can you do when the research situation is completely novel and you have
no past experience to call upon? In the area of behavioral sciences, Cohen (1988)
attempted to provide benchmarks for “small,” “medium,” and “large” effect sizes for
various statistical tests. These guidelines are provided in table 10.3.

Table 10.3 Cohen’s effect size benchmarks

Statistical method Effect size measures Suggested guidelines for effect size

Small Medium Large

t-test d 0.20 0.50 0.80

ANOVA f 0.10 0.25 0.40

Linear models f2 0.02 0.15 0.35

Test of proportions h 0.20 0.50 0.80

Chi-square w 0.10 0.30 0.50

When you have no idea what effect size may be present, this table may provide some
guidance. For example, what’s the probability of rejecting a false null hypothesis (that
is, finding a real effect), if you’re using a one-way ANOVA with 5 groups, 25 subjects per
group, and a significance level of 0.05?

Using the pwr.anova.test() function and the suggestions in f row of table 10.3,
the power would be 0.118 for detecting a small effect, 0.574 for detecting a moderate
effect, and 0.957 for detecting a large effect. Given the sample size limitations, you’re
only likely to find an effect if it’s large.

It’s important to keep in mind that Cohen’s benchmarks are just general suggestions
derived from a range of social research studies and may not apply to your particular
field of research. An alternative is to vary the study parameters and note the impact
on such things as sample size and power. For example, again assume that you want
to compare five groups using a one-way ANOVA and a 0.05 significance level. The
following listing computes the sample sizes needed to detect a range of effect sizes and
plots the results in figure 10.2.

	 Chapter 10 Power analysis

50 100 150 200 250 300

0
1

0
2

0
3

0
4

0
5

One Way ANOVA with Power=.90 and Alpha=.05

Sample Size (per cell)

Ef
fe

ct
 S

iz
e

Figure 10.2 Sample size
needed to detect various
effect sizes in a one-way
ANOVA with five groups
(assuming a power of 0.90
and significance level of 0.05)

Listing 10.1 Sample sizes for detecting significant effects in a one-way ANOVA

library(pwr)
es <- seq(.1, .5, .01)
nes <- length(es)

samsize <- NULL
for (i in 1:nes){
 result <- pwr.anova.test(k=5, f=es[i], sig.level=.05, power=.9)
 samsize[i] <- ceiling(result$n)
}

plot(samsize,es, type="l", lwd=2, col="red",
 ylab="Effect Size",
 xlab="Sample Size (per cell)",
 main="One Way ANOVA with Power=.90 and Alpha=.05")

Graphs such as these can help you estimate the impact of various conditions on your
experimental design. For example, there appears to be little bang for the buck increas-
ing the sample size above 200 observations per group. We’ll look at another plotting
example in the next section.

10.3 Creating power analysis plots
Before leaving the pwr package, let’s look at a more involved graphing example. Sup-
pose you’d like to see the sample size necessary to declare a correlation coefficient
statistically significant for a range of effect sizes and power levels. You can use the
pwr.r.test() function and for loops to accomplish this task, as shown in the follow-
ing listing.

	 259

Listing 10.2 Sample size curves for detecting correlations of various sizes

library(pwr)
r <- seq(.1,.5,.01)
nr <- length(r)

p <- seq(.4,.9,.1)
np <- length(p)



	 
	

 
	

 
 lines(r, samsize[,i], type="l", lwd=2, col=colors[i])
}

abline(v=0, h=seq(0,yrange[2],50), lty=2, col="grey89") 
abline(h=0, v=seq(xrange[1],xrange[2],.02), lty=2,
 col="gray89")
title("Sample Size Estimation for Correlation Studies\n
 Sig=0.05 (Two-tailed)")
legend("topright", title="Power", as.character(p),
 fill=colors)

Listing 10.2 uses the seq function to generate a range of effect sizes r (correlation co-
efficients under H1) and power levels p . It then uses two for loops to cycle through
these effect sizes and power levels, calculating the corresponding sample sizes required
and saving them in the array samsize . The graph is set up with the appropriate
horizontal and vertical axes and labels . Power curves are added using lines rather
than points . Finally, a grid and legend are added to aid in reading the graph .
The resulting graph is displayed in figure 10.3.

As you can see from the graph, you’d need a sample size of approximately 75 to
detect a correlation of 0.20 with 40 percent confidence. You’d need approximately
185 additional observations (n=260) to detect the same correlation with 90 percent
confidence. With simple modifications, the same approach can be used to create
sample size and power curve graphs for a wide range of statistical tests.

We’ll close this chapter by briefly looking at other R functions that are useful for
power analysis.

Set range of
correlations &
power values

Obtain sample sizes

Set up graph

Add power curves

Add annotations

	 Chapter 10 Power analysis

0.1 0.2 0.3 0.4 0.5

0
20

0
40

0
60

0
80

0
10

00

Correlation Coefficient (r)

Sa
m

pl
e

Si
z e

 (n
)

Sample Size Estimation f or Correlation Studies

 Sig=0.05 (T w o−tailed)
Po wer

0.4
0.5
0.6
0.7
0.8
0.9

Figure 10.3 Sample size
curves for detecting a
significant correlation
at various power levels

10.4 Other packages
There are several other packages in R that can be useful in the planning stages of stud-
ies. Some contain general tools, whereas some are highly specialized.

The piface package (see figure 10.4) provides a Java GUI for sample-size methods
that interfaces with R. The GUI allows the user to vary study parameters interactively
and see their impact on other parameters.

Although the package is described as Pre-Alpha, it’s definitely worth checking out.
You can download the package source and binaries for Windows and Mac OS X from
http://r-forge.r-project.org/projects/piface/. In R, enter the code

Figure 10.4 Sample dialog boxes from the piface program

http://r-forge.r-project.org/projects/piface/

	 261

install.packages(“piface”, repos=”http://R-Forge.R-project.org”)
library(piface)
piface()

The package is particularly useful for exploring the impact of changes in sample size,
effect size, significance levels, and desired power on the other parameters.

Other packages related to power analysis are described in table 10.4. The last five
are particularly focused on power analysis in genetic studies. Genome-wide association
studies (GWAS) are studies used to identify genetic associations with observable traits.
For example, these studies would focus on why some people get a specific type of heart
disease.

Table 10.4 Specialized power analysis packages

Package Purpose

asypow Power calculations via asymptotic likelihood ratio methods

PwrGSD Power analysis for group sequential designs

pamm Power analysis for random effects in mixed models

powerSurvEpi Power and sample size calculations for survival analysis in
epidemiological studies

powerpkg Power analyses for the affected sib pair and the TDT (transmission
disequilibrium test) design

powerGWASinteraction Power calculations for interactions for GWAS

pedantics Functions to facilitate power analyses for genetic studies
of natural populations

gap Functions for power and sample size calculations in
case-cohort designs

ssize.fdr Sample size calculations for microarray experiments

Finally, the MBESS package contains a wide range of functions that can be used for vari-
ous forms of power analysis. The functions are particularly relevant for researchers in
the behavioral, educational, and social sciences.

10.5 Summary
In chapters 7, 8, and 9, we explored a wide range of R functions for statistical hypothesis
testing. In this chapter, we focused on the planning stages of such research. Power
analysis helps you to determine the sample sizes needed to discern an effect of a given
size with a given degree of confidence. It can also tell you the probability of detecting
such an effect for a given sample size. You can directly see the tradeoff between limit-
ing the likelihood of wrongly declaring an effect significant (a Type I error) with the
likelihood of rightly identifying a real effect (power).

http://R-Forge.R-project.org

	 Chapter 10 Power analysis

The bulk of this chapter has focused on the use of functions provided by the
pwr package. These functions can be used to carry out power and sample size
determinations for common statistical methods (including t-tests, chi-square tests, and
tests of proportions, ANOVA, and regression). Pointers to more specialized methods
were provided in the final section.

Power analysis is typically an interactive process. The investigator varies the
parameters of sample size, effect size, desired significance level, and desired power
to observe their impact on each other. The results are used to plan studies that are
more likely to yield meaningful results. Information from past research (particularly
regarding effect sizes) can be used to design more effective and efficient future
research.

An important side benefit of power analysis is the shift that it encourages, away
from a singular focus on binary hypothesis testing (that is, does an effect exists or not),
toward an appreciation of the size of the effect under consideration. Journal editors are
increasingly requiring authors to include effect sizes as well as p values when reporting
research results. This helps you to determine both the practical implications of the
research and provides you with information that can be used to plan future studies.

In the next chapter, we’ll look at additional and novel ways to visualize multivariate
relationships. These graphic methods can complement and enhance the analytic
methods that we’ve discussed so far and prepare you for the advanced methods
covered in part 3.

263

11Intermediate graphs

This chapter covers
■ Visualizing bivariate and multivariate relationships
■ Working with scatter and line plots
■ Understanding correlograms
■ Using mosaic and association plots

In chapter 6 (basic graphs), we considered a wide range of graph types for dis-
playing the distribution of single categorical or continuous variables. Chapter 8
(regression) reviewed graphical methods that are useful when predicting a con-
tinuous outcome variable from a set of predictor variables. In chapter 9 (analysis of
variance), we considered techniques that are particularly useful for visualizing how
groups differ on a continuous outcome variable. In many ways, the current chapter
is a continuation and extension of the topics covered so far.

In this chapter, we’ll focus on graphical methods for displaying relationships
between two variables (bivariate relationships) and between many variables
(multivariate relationships). For example:

■ What’s the relationship between automobile mileage and car weight? Does it
vary by the number of cylinders the car has?

■ How can you picture the relationships among an automobile’s mileage,
weight, displacement, and rear axle ratio in a single graph?

264 CHAPTER 11 Intermediate graphs

■ When plotting the relationship between two variables drawn from a large dataset
(say 10,000 observations), how can you deal with the massive overlap of data
points you’re likely to see? In other words, what do you do when your graph is
one big smudge?

■ How can you visualize the multivariate relationships among three variables at
once (given a 2D computer screen or sheet of paper, and a budget slightly less
than that for Avatar)?

■ How can you display the growth of several trees over time?
■ How can you visualize the correlations among a dozen variables in a single

graph? How does it help you to understand the structure of your data?
■ How can you visualize the relationship of class, gender, and age with passenger

survival on the Titanic? What can you learn from such a graph?

These are the types of questions that can be answered with the methods described in
this chapter. The datasets that we’ll use are examples of what’s possible. It’s the general
techniques that are most important. If the topic of automobile characteristics or tree
growth isn’t interesting to you, plug in your own data!

We’ll start with scatter plots and scatter plot matrices. Then, we’ll explore line charts
of various types. These approaches are well known and widely used in research. Next,
we’ll review the use of correlograms for visualizing correlations and mosaic plots for
visualizing multivariate relationships among categorical variables. These approaches
are also useful but much less well known among researchers and data analysts. You’ll see
examples of how you can use each of these approaches to gain a better understanding
of your data and communicate these findings to others.

11.1 Scatter plots
As you’ve seen in previous chapters, scatter plots describe the relationship between
two continuous variables. In this section, we’ll start with a depiction of a single bivari-
ate relationship (x versus y). We’ll then explore ways to enhance this plot by super-
imposing additional information. Next, we’ll learn how to combine several scatter
plots into a scatter plot matrix so that you can view many bivariate relationships at
once. We’ll also review the special case where many data points overlap, limiting our
ability to picture the data, and we’ll discuss a number of ways around this difficulty.
Finally, we’ll extend the two-dimensional graph to three dimensions, with the ad-
dition of a third continuous variable. This will include 3D scatter plots and bubble
plots. Each can help you understand the multivariate relationship among three vari-
ables at once.

The basic function for creating a scatter plot in R is plot(x, y), where x and y are
numeric vectors denoting the (x, y) points to plot. Listing 11.1 presents an example.

 Scatter plots 265

Listing 11.1 A scatter plot with best fit lines

attach(mtcars)
plot(wt, mpg,
 main="Basic Scatter plot of MPG vs. Weight",
 xlab="Car Weight (lbs/1000)",
 ylab="Miles Per Gallon ", pch=19)

abline(lm(mpg~wt), col="red", lwd=2, lty=1)

lines(lowess(wt,mpg), col="blue", lwd=2, lty=2)

The resulting graph is provided in figure 11.1.
The code in listing 11.1 attaches the mtcars data frame and creates a basic

scatter plot using filled circles for the plotting symbol. As expected, as car weight
increases, miles per gallon decreases, though the relationship isn’t perfectly linear.
The a bline() function is used to add a linear line of best fit, while the l owess()
function is used to add a smoothed line. This smoothed line is a nonparametric
fit line based on locally weighted polynomial regression. See Cleveland (1981) for
details on the algorithm.

Figure 11.1 Scatter plot of car mileage versus weight, with superimposed linear
and lowess fit lines.

266 CHAPTER 11 Intermediate graphs

NOTE R has two functions for producing lowess fits: l owess() and l oess().
The loess() function is a newer, formula-based version of lowess() and is more
powerful. The two functions have different defaults, so be careful not to confuse
them.

The s catterplot() function in the c ar package offers many enhanced features and
convenience functions for producing scatter plots, including fit lines, marginal box
plots, confidence ellipses, plotting by subgroups, and interactive point identification.
For example, a more complex version of the previous plot is produced by the follow-
ing code:

library(car)
scatterplot(mpg ~ wt | cyl, data=mtcars, lwd=2,
 main="Scatter Plot of MPG vs. Weight by # Cylinders",
 xlab="Weight of Car (lbs/1000)",
 ylab="Miles Per Gallon",
 legend.plot=TRUE,
 id.method="identify",
 labels=row.names(mtcars),
 boxplots="xy"
)

Here, the scatterplot() function is used to plot miles per gallon versus weight for
automobiles that have four, six, or eight cylinders. The formula mpg ~ wt | cyl indi-
cates conditioning (that is, separate plots between mpg and wt for each level of cyl).
The graph is provided in figure 11.2.

By default, subgroups are differentiated by color and plotting symbol, and separate
linear and loess lines are fit. By
default, the loess fit requires
five unique data points, so no
smoothed fit is plotted for six-
cylinder cars. The i d.method
option indicates that points
will be identified interactively
by mouse clicks, until the user
selects Stop (via the Graphics
or context-sensitive menu)
or the Esc key. The l abels
option indicates that points
will be identified with their
row names. Here you see that
the Toyota Corolla and Fiat
128 have unusually good gas
mileage, given their weights.
The l egend.plot option
adds a legend to the upper-left
margin and marginal box plots

10

15

20

25

30

Scatter Plot of MPG vs. W eight b y # Cylinder s

We ight of Car (lbs/1000)

M
ile

s
 Pe

 r G
al

lo
 n

cyl
4
6
8

Fiat 128
To yota Corolla

Figure 11.2 Scatter plot with subgroups and separately
estimated fit lines

 Scatter plots 267

for mpg and weight are requested with the b oxplots option. The scatterplot()
function has many features worth investigating, including robust options and data
concentration ellipses not covered here. See help(scatterplot) for more details.

Scatter plots help you visualize relationships between quantitative variables, two at a
time. But what if you wanted to look at the bivariate relationships between automobile
mileage, weight, displacement (cubic inch), and rear axle ratio? One way is to arrange
these six scatter plots in a matrix. When there are several quantitative variables, you
can represent their relationships in a scatter plot matrix, which is covered next.

11.1.1 Scatter plot matrices

There are at least four useful functions for creating scatter plot matrices in R. Analysts
must love scatter plot matrices! A basic scatter plot matrix can be created with the
p airs() function. The following code produces a scatter plot matrix for the variables
mpg, disp, drat, and wt:

pairs(~mpg+disp+drat+wt, data=mtcars,
 main="Basic Scatter Plot Matrix")

All the variables on the right of the ~ are included in the plot. The graph is provided
in figure 11.3.

mpg

100 200 300 400 2 3 4 5

10
15

20
25

30

10
0

20
0

30
0

40
0

disp

drat

3.
0

3.
5

4.
0

4.
5

5.
0

10 15 20 25 30

2
3

4
5

3.0 3.5 4.0 4.5 5.0

wt

Basic Scatterplot Matrix

Figure 11.3 Scatter plot matrix created by the pairs() function

268 CHAPTER 11 Intermediate graphs

Here you can see the bivariate relationship among all the variables specified. For
example, the scatter plot between mpg and disp is found at the row and column
intersection of those two variables. Note that the six scatter plots below the principal
diagonal are the same as those above the diagonal. This arrangement is a matter of
convenience. By adjusting the options, you could display just the lower or upper tri-
angle. For example, the option upper.panel=NULL would produce a graph with just
the lower triangle of plots.

The s catterplotMatrix() function in the c ar package can also produce scatter
plot matrices and can optionally do the following:

■ Condition the scatter plot matrix on a factor
■ Include linear and loess fit lines
■ Place box plots, densities, or histograms in the principal diagonal
■ Add rug plots in the margins of the cells

Here’s an example:

library(car)
scatterplotMatrix(~ mpg + disp + drat + wt, data=mtcars, spread=FALSE,
 lty.smooth=2, main="Scatter Plot Matrix via car Package")

The graph is provided in figure 11.4. Here you can see that linear and smoothed
(loess) fit lines are added by default and that kernel density and rug plots are

mpg

100 200 300 400 2 3 4 5

10

15

20

25

30

10
0

20
0

30
0

40
0 disp

drat

3.
0

3.
5

4.
0

4.
5

5.
0

10 15 20 25 30

2
3

4
 5

3.0 3.5 4.0 4.5 5.0

wt

Scatterplot Matrix via car pac kage

Figure 11.4
Scatter plot matrix
created with the
scatterplotMatrix()
function. The graph
includes kernel density
and rug plots in the
principal diagonal and
linear and loess fit lines.

 Scatter plots 269

added to the principal diagonal. The s pread=FALSE option suppresses lines show-
ing spread and asymmetry, and the lty.smooth=2 option displays the loess fit lines
using dashed rather than solid lines.

As a second example of the scatterplotMatrix() function, consider the following
code:

library(car)
scatterplotMatrix(~ mpg + disp + drat + wt | cyl, data=mtcars,
 spread=FALSE, diagonal="histogram",
 main="Scatter Plot Matrix via car Package")

Here, you change the kernel density plots to histograms and condition the results on
the number of cylinders for each car. The results are displayed in figure 11.5.

By default, the regression lines are fit for the entire sample. Including the option
by.groups = TRUE would have produced separate fit lines by subgroup.

An interesting variation on the scatter plot matrix is provided by the c pairs()
function in the g clus package. The cpairs() function provides options to rearrange

4
6
8

mpg

100 200 300 400 2 3 4 5

10

15

20

25

30

10
0

20
0

30
0

40
0 disp

drat

3.
0

3.
5

4.
0

4.
5

5.
0

10 15 20 25 30

2
3

4
 5

3.0 3.5 4.0 4.5 5.0

wt

Scatterplot Matrix via car pac kage

Figure 11.5 Scatter plot matrix produced by the scatterplot.Matrix()
function. The graph includes histograms in the principal diagonal and linear
and loess fit lines. Additionally, subgroups (defined by number of cylinders)
are indicated by symbol type and color.

270 CHAPTER 11 Intermediate graphs

variables in the matrix so that variable pairs with higher correlations are closer to the
principal diagonal. The function can also color-code the cells to reflect the size of
these correlations. Consider the correlations among mpg, wt, disp, and drat:

> cor(mtcars[c("mpg", "wt", "disp", "drat")])

 mpg wt disp drat
mpg 1.000 -0.868 -0.848 0.681
wt -0.868 1.000 0.888 -0.712
disp -0.848 0.888 1.000 -0.710
drat 0.681 -0.712 -0.710 1.000

You can see that the highest correlations are between weight and displacement (0.89)
and between weight and miles per gallon (–0.87). The lowest correlation is between
miles per gallon and rear axle ratio (0.68). You can reorder and color the scatter plot
matrix among these variables using the code in the following listing.

Listing 11.2 Scatter plot matrix produced with the gclus package

library(gclus)
mydata <- mtcars[c(1, 3, 5, 6)]
mydata.corr <- abs(cor(mydata))

mycolors <- dmat.color(mydata.corr)

myorder <- order.single(mydata.corr)

cpairs(mydata,
 myorder,
 panel.colors=mycolors,
 gap=.5,
 main="Variables Ordered and Colored by Correlation"
)

The code in listing 11.2 uses the d mat.color(), o rder.single(), and c pairs()
functions from the g clus package. First, you select the desired variables from the
mtcars data frame and calculate the absolute values of the correlations among them.
Next, you obtain the colors to plot using the dmat.color() function. Given a sym-
metric matrix (a correlation matrix in this case), dmat.color() returns a matrix of
colors. You also sort the variables for plotting. The order.single() function sorts
objects so that similar object pairs are adjacent. In this case, the variable ordering is
based on the similarity of the correlations. Finally, the scatter plot matrix is plotted
and colored using the new ordering (myorder) and the color list (mycolors). The
gap option adds a small space between cells of the matrix. The resulting graph is
provided in figure 11.6.

You can see from the figure that the highest correlations are between weight
and displacement and weight and miles per gallon (red and closest to the principal
diagonal). The lowest correlation is between rear axle ratio and miles per gallon

 Scatter plots 271

drat

100 200 300 400 10 15 20 25 30

3.
0

3.
5

4.
0

4.
5

5.
0

10
0

20
0

30
0

40
0

disp

wt

2
3

4
5

3.0 3.5 4.0 4.5 5.0

10

15

20

25

30

2 3 4 5

mpg

V ariables Or dered and Colored b y Correlation

Figure 11.6 Scatter plot matrix produced with the cpairs() function in the gclus package.
Variables closer to the principal diagonal are more highly correlated.

(yellow and far from the principal diagonal). This method is particularly useful when
many variables, with widely varying inter-correlations, are considered. You’ll see other
examples of scatter plot matrices in chapter 16.

11.1.2 High-density scatter plots

When there’s a significant overlap among data points, scatter plots become less use-
ful for observing relationships. Consider the following contrived example with 10,000
observations falling into two overlapping clusters of data:

set.seed(1234)

n <- 10000
c1 <- matrix(rnorm(n, mean=0, sd=.5), ncol=2)
c2 <- matrix(rnorm(n, mean=3, sd=2), ncol=2)
mydata <- rbind(c1, c2)
mydata <- as.data.frame(mydata)
names(mydata) <- c("x", "y")

272 CHAPTER 11 Intermediate graphs

Figure 11.7 Scatter plot
with 10,000 observations
and significant overlap
of data points. Note that
the overlap of data points
makes it difficult to discern
where the concentration of
data is greatest.

If you generate a standard scatter plot between these variables using the following
code

with(mydata,
 plot(x, y, pch=19, main="Scatter Plot with 10,000 Observations"))

you’ll obtain a graph like the one in figure 11.7.
The overlap of data points in figure 11.7 makes it difficult to discern the relationship

between x and y. R provides several graphical approaches that can be used when
this occurs. They include the use of binning, color, and transparency to indicate the
number of overprinted data points at any point on the graph.

The s moothScatter() function uses a kernel density estimate to produce smoothed
color density representations of the scatterplot. The following code

with(mydata,
 smoothScatter(x, y, main="Scatterplot Colored by Smoothed Densities"))

produces the graph in figure 11.8.
Using a different approach, the h exbin() function in the h exbin package provides

bivariate binning into hexagonal cells (it looks better than it sounds). Applying this
function to the dataset

library(hexbin)
with(mydata, {
 bin <- hexbin(x, y, xbins=50)
 plot(bin, main="Hexagonal Binning with 10,000 Observations")
 })

 Scatter plots 273

Figure 11.8 Scatterplot using
smoothScatter() to plot
smoothed density estimates.
Densities are easy to read from
the graph.

you get the scatter plot in figure 11.9.
Finally, the i plot() function in the I DPmisc package can be used to display density

(the number of data points at a specific spot) using color. The code

library(IDPmisc)
with(mydata,
 iplot(x, y, main="Image Scatter Plot with Color Indicating Density"))

produces the graph in figure 11.10.

Figure 11.9 Scatter plot using
hexagonal binning to display the
number of observations at each
point. Data concentrations are
easy to see and counts can be
read from the legend.

274 CHAPTER 11 Intermediate graphs

Image Scatter Plot with Color Indicating Density

0

max

x

y

0 5 10
−5

0

5

10

Figure 11.10 Scatter plot of 10,000 observations, where density is
indicated by color. The data concentrations are easily discernable.

It’s useful to note that the s moothScatter() function in the b ase package, along with
the i pairs() function in the I DPmisc package, can be used to create readable scat-
ter plot matrices for large datasets as well. See ?smoothScatter and ?ipairs for ex-
amples.

11.1.3 3D scatter plots

Scatter plots and scatter plot matrices display bivariate relationships. What if you want
to visualize the interaction of three quantitative variables at once? In this case, you can
use a 3D scatter plot.

For example, say that you’re interested in the relationship between automobile
mileage, weight, and displacement. You can use the s catterplot3d() function in the
s catterplot3d package to picture their relationship. The format is

scatterplot3d(x, y, z)

where x is plotted on the horizontal axis, y is plotted on the vertical axis, and z is plot-
ted in perspective. Continuing our example

library(scatterplot3d)
attach(mtcars)
scatterplot3d(wt, disp, mpg,
 main="Basic 3D Scatter Plot")

produces the 3D scatter plot in figure 11.11.

 Scatter plots 275

Basic 3D Scatterplot

1 2 3 4 5 6

10
15

20
25

30
35

 0

100

200

300

400

500

wt

di
spm

pg

Figure 11.11 3D scatter plot
of miles per gallon, auto weight,
and displacement

The scatterplot3d() function offers many options, including the ability to specify
symbols, axes, colors, lines, grids, highlighting, and angles. For example, the code

library(scatterplot3d)
attach(mtcars)
scatterplot3d(wt, disp, mpg,
 pch=16,
 highlight.3d=TRUE,
 type="h",
 main="3D Scatter Plot with Vertical Lines")

produces a 3D scatter plot with highlighting to enhance the impression of depth, and
vertical lines connecting points to the horizontal plane (see figure 11.12).

As a final example, let’s take the previous graph and add a regression plane. The
necessary code is:

library(scatterplot3d)
attach(mtcars)
s3d <-scatterplot3d(wt, disp, mpg,
 pch=16,
 highlight.3d=TRUE,
 type="h",
 main="3D Scatter Plot with Vertical Lines and Regression Plane")
fit <- lm(mpg ~ wt+disp)
s3d$plane3d(fit)

The resulting graph is provided in figure 11.13.

276 CHAPTER 11 Intermediate graphs

3D Scatterplot with V er tical Lines

1 2 3 4 5 6

10

15

20

25

30

35

 0

100

200

300

400

500

wt

di
sp

m
p g

Figure 11.12 3D scatter plot
with vertical lines and shading

The graph allows you to visualize the prediction of miles per gallon from automobile
weight and displacement using a multiple regression equation. The plane represents
the predicted values, and the points are the actual values. The vertical distances from
the plane to the points are the residuals. Points that lie above the plane are under-
predicted, while points that lie below the line are over-predicted. Multiple regression
is covered in chapter 8.

3D Scatter Plot with V erical Lines and Regression Plane

1 2 3 4 5 6

10

15

20

25

30

35

 0

100

200

300

400

500

wt

di
sp

m
p g

Figure 11.13 3D scatter plot
with vertical lines, shading, and
overlaid regression plane

 Scatter plots 277

SPINNING 3D SCATTER PLOTS

Three-dimensional scatter plots are much easier to interpret if you can interact with
them. R provides several mechanisms for rotating graphs so that you can see the plot-
ted points from more than one angle.

For example, you can create an interactive 3D scatter plot using the p lot3d()
function in the r gl package. It creates a spinning 3D scatter plot that can be rotated
with the mouse. The format is

plot3d(x, y, z)

where x, y, and z are numeric vectors representing points. You can also add options
like col and size to control the color and size of the points, respectively. Continuing
our example, try the code

library(rgl)
attach(mtcars)
plot3d(wt, disp, mpg, col="red", size=5)

You should get a graph like the one depicted in figure 11.14. Use the mouse to rotate
the axes. I think that you’ll find that being able to rotate the scatter plot in three di-
mensions makes the graph much easier to understand.

You can perform a similar function with the s catter3d() in the R cmdr package:

library(Rcmdr)
attach(mtcars)
scatter3d(wt, disp, mpg)

The results are displayed in figure 11.15.
The scatter3d() function can include a variety of regression surfaces, such as linear,

quadratic, smooth, and additive. The linear surface depicted is the default. Additionally,
there are options for interactively identifying points. See help(scatter3d) for more
details. I’ll have more to say about the Rcmdr package in appendix A.

Figure 11.14 Rotating 3D scatter
plot produced by the plot3d()
function in the rgl package

278 CHAPTER 11 Intermediate graphs

Figure 11.15 Spinning 3D scatter
plot produced by the scatter3d()
function in the Rcmdr package

11.1.4 Bubble plots

In the previous section, you displayed the relationship between three quantitative vari-
ables using a 3D scatter plot. Another approach is to create a 2D scatter plot and use
the size of the plotted point to represent the value of the third variable. This approach
is referred to as a bubble plot.

You can create a bubble plot using the s ymbols() function. This function can be
used to draw circles, squares, stars, thermometers, and box plots at a specified set of (x,
y) coordinates. For plotting circles, the format is

symbols(x, y, circle=radius)

where x and y and radius are vectors specifying the x and y coordinates and circle
radiuses, respectively.

You want the areas, rather than the radiuses of the circles, to be proportional to the
values of a third variable. Given the formula for the radius of a circle (r A= π) the
proper call is

symbols(x, y, circle=sqrt(z/pi))

where z is the third variable to be plotted.
Let’s apply this to the mtcars data, plotting car weight on the x-axis, miles per

gallon on the y-axis, and engine displacement as the bubble size. The following code

attach(mtcars)
r <- sqrt(disp/pi)
symbols(wt, mpg, circle=r, inches=0.30,
 fg="white", bg="lightblue",

 Scatter plots 279

 main="Bubble Plot with point size proportional to displacement",
 ylab="Miles Per Gallon",
 xlab="Weight of Car (lbs/1000)")
text(wt, mpg, rownames(mtcars), cex=0.6)
detach(mtcars)

produces the graph in figure 11.16. The option inches is a scaling factor that can be
used to control the size of the circles (the default is to make the largest circle 1 inch).
The text() function is optional. Here it is used to add the names of the cars to the
plot. From the figure, you can see that increased gas mileage is associated with both
decreased car weight and engine displacement.

In general, statisticians involved in the R project tend to avoid bubble plots for
the same reason they avoid pie charts. Humans typically have a harder time making
judgments about volume than distance. But bubble charts are certainly popular in the
business world, so I’m including them here for completeness.

l’ve certainly had a lot to say about scatter plots. This attention to detail is due, in
part, to the central place that scatter plots hold in data analysis. While simple, they can
help you visualize your data in an immediate and straightforward manner, uncovering
relationships that might otherwise be missed.

10

15

20

25

30

35

Bubble Plot with point size pr opor tional to displacement

W eight of Car (lbs/1000)

M
ile

s
P e

r G
al

lo
n

Mazda RX4 Mazda RX4 W ag

Datsun 710

Hor net 4 D ri ve

Hor net Spor tabout
V aliant

Duster 360

Merc 240D

Merc 230

Merc 280

Merc 280C

Merc 450S E
Merc 450S L

M c 450SLC

Cadi l c Fll etw dLinco n Continental

Chr ysler Imper ial

Fiat 128

Honda Civic

To y ota Corolla

To y ota Co ona

Dodge Challenger AMC Jav elin

Camaro Z28

P ontiac Firebird

Fiat X1 9

P orsche 914 2

Lotus Europa

F ord P antera L

F errar i Dino

Maserati Bor a

V olv o 142E

Figure 11.16 Bubble plot of car weight versus mpg where point size is
proportional to engine displacement

280 CHAPTER 11 Intermediate graphs

11.2 Line charts
If you connect the points in a scatter plot moving from left to right, you have a line
plot. The dataset Orange that come with the base installation contains age and cir-
cumference data for five orange trees. Consider the growth of the first orange tree,
depicted in figure 11.17. The plot on the left is a scatter plot, and the plot on the
right is a line chart. As you can see, line charts are particularly good vehicles for
conveying change.

The graphs in figure 11.17 were created with the code in the following listing.

Listing 11.3 Creating side-by-side scatter and line plots

opar <- par(no.readonly=TRUE)
par(mfrow=c(1,2))
t1 <- subset(Orange, Tree==1)
plot(t1$age, t1$circumference,
 xlab="Age (days)",
 ylab="Circumference (mm)",
 main="Orange Tree 1 Growth")
plot(t1$age, t1$circumference,
 xlab="Age (days)",
 ylab="Circumference (mm)",
 main="Orange Tree 1 Growth",
 type="b")
par(opar)

You’ve seen the elements that make up this code in chapter 3, so I won’t go into details
here. The main difference between the two plots in figure 11.17 is produced by the
option type="b". In general, line charts are created with one of the following two
functions

plot(x, y, type=)
lines(x, y, type=)

500 1000 1500

40
60

80
10

0
12

0
14

0

Orange Tree 1 Growth

Age (days)

C
irc

um
fe

re
nc

e
(m

m
)

500 1000 1500

40
60

80
10

0
12

0
14

0

Orange Tree 1 Growth

Age (days)

C
irc

um
fe

re
nc

e
(m

m
)

Figure 11.17 Comparison of a scatter plot and a line plot

 Line charts 281

where x and y are numeric vectors of (x,y) points to connect. The option type= can
take the values described in table 11.1.

Table 11.1 Line chart options

Type What is plotted

p Points only

l Lines only

o Over-plotted points (that is, lines overlaid on top of points)

b, c Points (empty if c) joined by lines

s, S Stair steps

h Histogram-line vertical lines

n Doesn’t produce any points or lines (used to set up the axes for later commands)

Examples of each type are given in figure 11.18. As you can see, type="p" produces
the typical scatter plot. The option type="b" is the most common for line charts.
The difference between b and c is whether the points appear or gaps are left instead.
Both type="s" and type="S" produce stair steps (step functions). The first runs, then
rises, whereas the second rises, then runs.

1 2 3 4 5

1
2

3
4

5

type= "p"

x

y

1 2 3 4 5

1
2

3
4

5

type= "l"

x

y

1 2 3 4 5

1
2

3
4

5

type= "o"

x

y

1 2 3 4 5

1
2

3
4

5

type= "b"

x

y

1 2 3 4 5

1
2

3
4

5

type= "c"

x

y

1 2 3 4 5

1
2

3
4

5

type= "s"

x

y

1 2 3 4 5

1
2

3
4

5

type= "S"

x

y

1 2 3 4 5

1
2

3
4

5

type= "h"

x

y

Figure 11.18 type=
options in the plot()
and lines() functions

282 CHAPTER 11 Intermediate graphs

There’s an important difference between the p lot() and l ines() functions. The
plot() function will create a new graph when invoked. The lines() function adds
information to an existing graph but can’t produce a graph on its own.

Because of this, the lines() function is typically used after a plot() command has
produced a graph. If desired, you can use the type="n" option in the plot() function
to set up the axes, titles, and other graph features, and then use the lines() function
to add various lines to the plot.

To demonstrate the creation of a more complex line chart, let’s plot the growth of
all five orange trees over time. Each tree will have its own distinctive line. The code is
shown in the next listing and the results in figure 11.19.

Listing 11.4 Line chart displaying the growth of five orange trees over time

Orange$Tree <- as.numeric(Orange$Tree)
ntrees <- max(Orange$Tree)

xrange <- range(Orange$age)
yrange <- range(Orange$circumference)

plot(xrange, yrange,
 type="n",
 xlab="Age (days)",
 ylab="Circumference (mm)"
)

colors <- rainbow(ntrees)
linetype <- c(1:ntrees)
plotchar <- seq(18, 18+ntrees, 1)

for (i in 1:ntrees) {
 tree <- subset(Orange, Tree==i)
 lines(tree$age, tree$circumference,
 type="b",
 lwd=2,
 lty=linetype[i],
 col=colors[i],
 pch=plotchar[i]
)
}

title("Tree Growth", "example of line plot")

legend(xrange[1], yrange[2],
 1:ntrees,
 cex=0.8,
 col=colors,
 pch=plotchar,
 lty=linetype,
 title="Tree"
)

Convert factor
to numeric for
convenience

Set up plot

Add lines

Add legend

 Correlograms 283

500 1000 1500

50

10
0

15
0

20
0

Age (da ys)

C
irc

um
f e

re
nc

e
(m

m
)

T ree Gr o wth

e xample of line plot

Tr ee
1
2
3
4
5

Figure 11.19 Line chart
displaying the growth of
five orange trees

In listing 11.4, the plot() function is used to set up the graph and specify the axis
labels and ranges but plots no actual data. The lines() function is then used to add
a separate line and set of points for each orange tree. You can see that tree 4 and tree
5 demonstrated the greatest growth across the range of days measured, and that tree 5
overtakes tree 4 at around 664 days.

Many of the programming conventions in R that I discussed in chapters 2, 3, and 4 are
used in listing 11.4. You may want to test your understanding by working through each
line of code and visualizing what it’s doing. If you can, you are on your way to becoming
a serious R programmer (and fame and fortune is near at hand)! In the next section,
you’ll explore ways of examining a number of correlation coefficients at once.

11.3 Correlograms
Correlation matrices are a fundamental aspect of multivariate statistics. Which vari-
ables under consideration are strongly related to each other and which aren’t? Are
there clusters of variables that relate in specific ways? As the number of variables grow,
such questions can be harder to answer. Correlograms are a relatively recent tool for
visualizing the data in correlation matrices.

It’s easier to explain a correlogram once you’ve seen one. Consider the correlations
among the variables in the mtcars data frame. Here you have 11 variables, each measuring
some aspect of 32 automobiles. You can get the correlations using the following code:

> options(digits=2)
> cor(mtcars)

284 CHAPTER 11 Intermediate graphs

 mpg cyl disp hp drat wt qsec vs am gear carb
mpg 1.00 -0.85 -0.85 -0.78 0.681 -0.87 0.419 0.66 0.600 0.48 -0.551
cyl -0.85 1.00 0.90 0.83 -0.700 0.78 -0.591 -0.81 -0.523 -0.49 0.527
disp -0.85 0.90 1.00 0.79 -0.710 0.89 -0.434 -0.71 -0.591 -0.56 0.395
hp -0.78 0.83 0.79 1.00 -0.449 0.66 -0.708 -0.72 -0.243 -0.13 0.750
drat 0.68 -0.70 -0.71 -0.45 1.000 -0.71 0.091 0.44 0.713 0.70 -0.091
wt -0.87 0.78 0.89 0.66 -0.712 1.00 -0.175 -0.55 -0.692 -0.58 0.428
qsec 0.42 -0.59 -0.43 -0.71 0.091 -0.17 1.000 0.74 -0.230 -0.21 -0.656
vs 0.66 -0.81 -0.71 -0.72 0.440 -0.55 0.745 1.00 0.168 0.21 -0.570
am 0.60 -0.52 -0.59 -0.24 0.713 -0.69 -0.230 0.17 1.000 0.79 0.058
gear 0.48 -0.49 -0.56 -0.13 0.700 -0.58 -0.213 0.21 0.794 1.00 0.274
carb -0.55 0.53 0.39 0.75 -0.091 0.43 -0.656 -0.57 0.058 0.27 1.000

Which variables are most related? Which variables are relatively independent? Are
there any patterns? It isn’t that easy to tell from the correlation matrix without signifi-
cant time and effort (and probably a set of colored pens to make notations).

You can display that same correlation matrix using the c orrgram() function in the
c orrgram package (see figure 11.20). The code is:

library(corrgram)
corrgram(mtcars, order=TRUE, lower.panel=panel.shade,
 upper.panel=panel.pie, text.panel=panel.txt,
 main="Correlogram of mtcars intercorrelations")

To interpret this graph, start with the lower triangle of cells (the cells below the princi-
pal diagonal). By default, a blue color and hashing that goes from lower left to upper
right represents a positive correlation between the two variables that meet at that cell.
Conversely, a red color and hashing that goes from the upper left to the lower right rep-
resents a negative correlation. The darker and more saturated the color, the greater the
magnitude of the correlation. Weak correlations, near zero, will appear washed out. In
the current graph, the rows and columns have been reordered (using principal compo-
nents analysis) to cluster variables together that have similar correlation patterns.

Figure 11.20 Correlogram
of the correlations among
the variables in the
mtcars data frame. Rows
and columns have been
reordered using principal
components analysis.

 Correlograms 285

You can see from shaded cells that gear, am, drat, and mpg are positively correlated
with one another. You can also see that wt, disp, cyl, hp, and carb are positively cor-
related with one another. But the first group of variables is negatively correlated with
the second group of variables. You can also see that the correlation between carb and
am is weak, as is the correlation between vs and gear, vs and am, and drat and qsec.

The upper triangle of cells displays the same information using pies. Here, color plays
the same role, but the strength of the correlation is displayed by the size of the filled pie
slice. Positive correlations fill the pie starting at 12 o’clock and moving in a clockwise
direction. Negative correlations fill the pie by moving in a counterclockwise direction.
The format of the corrgram() function is

corrgram(x, order=, panel=, text.panel=, diag.panel=)

where x is a data frame with one observation per row. When order=TRUE, the variables
are reordered using a principal component analysis of the correlation matrix. Reor-
dering can help make patterns of bivariate relationships more obvious.

The option p anel specifies the type of off-diagonal panels to use. Alternatively, you
can use the options l ower.panel and u pper.panel to choose different options below
and above the main diagonal. The t ext.panel and d iag.panel options refer to the
main diagonal. Allowable values for panel are described in table 11.2.

Table 11.2 Panel options for the corrgram() function

Placement Panel Option Description

Off diagonal p anel.pie The filled portion of the pie indicates the magnitude
of the correlation.

p anel.shade The depth of the shading indicates the magnitude
of the correlation.

p anel.ellipse A confidence ellipse and smoothed line are plotted.

p anel.pts A scatter plot is plotted.

Main diagonal p anel.minmax The minimum and maximum values of the variable are
printed.

p anel.txt The variable name is printed.

Let’s try a second example. The code

library(corrgram)
corrgram(mtcars, order=TRUE, lower.panel=panel.ellipse,
 upper.panel=panel.pts, text.panel=panel.txt,
 diag.panel=panel.minmax,
 main="Correlogram of mtcars data using scatter plots and ellipses")

produces the graph in figure 11.21. Here you’re using smoothed fit lines and confi-
dence ellipses in the lower triangle and scatter plots in the upper triangle.

286 CHAPTER 11 Intermediate graphs

Figure 11.21 Correlogram of the correlations among the variables in the mtcars data frame. The
lower triangle contains smoothed best fit lines and confidence ellipses, and the upper triangle contains
scatter plots. The diagonal panel contains minimum and maximum values. Rows and columns have
been reordered using principal components analysis.

Why do the scatter plots look odd?
Several of the variables that are plotted in figure 11.21 have limited allowable val-
ues. For example, the number of gears is 3, 4, or 5. The number of cylinders is 4, 6,
or 8. Both am (transmission type) and vs (V/S) are dichotomous. This explains the
odd-looking scatter plots in the upper diagonal.

Always be careful that the statistical methods you choose are appropriate to the
form of the data. Specifying these variables as ordered or unordered factors can
serve as a useful check. When R knows that a variable is categorical or ordi-
nal, it attempts to apply statistical methods that are appropriate to that level of
measurement.

 Correlograms 287

We’ll finish with one more example. The code

library(corrgram)
corrgram(mtcars, lower.panel=panel.shade,
 upper.panel=NULL, text.panel=panel.txt,
 main="Car Mileage Data (unsorted)")

produces the graph in figure 11.22. Here we’re using shading in the lower triangle,
keeping the original variable order, and leaving the upper triangle blank.

Before moving on, I should point out that you can control the colors used by the
corrgram() function. To do so, specify four colors in the c olorRampPalette()
function within the c ol.corrgram() function. Here’s an example:

library(corrgram)
col.corrgram <- function(ncol){
 colorRampPalette(c("darkgoldenrod4", "burlywood1",
 "darkkhaki", "darkgreen"))(ncol)}
corrgram(mtcars, order=TRUE, lower.panel=panel.shade,
 upper.panel=panel.pie, text.panel=panel.txt,
 main="A Corrgram (or Horse) of a Different Color")

Try it and see what you get.
Correlograms can be a useful way to examine large numbers of bivariate relationships

among quantitative variables. Because they’re relatively new, the greatest challenge is
to educate the recipient on how to interpret them.

To learn more, see M ichael Friendly’s article “Corrgrams: Exploratory Displays for
Correlation Matrices,” available at http://www.math.yorku.ca/SCS/Papers/corrgram.pdf.

Figure 11.22 Correlogram of the
correlations among the variables
in the mtcars data frame. The
lower triangle is shaded to
represent the magnitude and
direction of the correlations.
The variables are plotted in their
original order.

Car Mileage Data (unsor ted)

http://www.math.yorku.ca/SCS/Papers/corrgram.pdf

288 CHAPTER 11 Intermediate graphs

11.4 Mosaic plots
Up to this point, we’ve been exploring methods of visualizing relationships among
quantitative/continuous variables. But what if your variables are categorical? When
you’re looking at a single categorical variable, you can use a bar or pie chart. If there
are two categorical variables, you can look at a 3D bar chart (which, by the way, is not
so easy to do in R). But what do you do if there are more than two categorical variables?

One approach is to use mosaic plots. In a mosaic plot, the frequencies in a
multidimensional contingency table are represented by nested rectangular regions
that are proportional to their cell frequency. Color and or shading can be used to
represent residuals from a fitted model. For details, see Meyer, Zeileis and Hornick
(2006), or Michael Friendly’s Statistical Graphics page (http://datavis.ca). S teve Simon
has created a good conceptual tutorial on how mosaic plots are created, available at
http://www.childrensmercy.org/stats/definitions/mosaic.htm.

Mosaic plots can be created with the m osaic() function from the v cd library
(there’s a m osaicplot() function in the basic installation of R, but I recommend
you use the v cd package for its more extensive features). As an example, consider the
Titanic dataset available in the base installation. It describes the number of passengers
who survived or died, cross-classified by their class (1st, 2nd, 3rd, Crew), sex (Male,
Female), and age (Child, Adult). This is a well-studied dataset. You can see the cross-
classification using the following code:

> ftable(Titanic)
 Survived No Yes
Class Sex Age
1st Male Child 0 5
 Adult 118 57
 Female Child 0 1
 Adult 4 140
2nd Male Child 0 11
 Adult 154 14
 Female Child 0 13
 Adult 13 80
3rd Male Child 35 13
 Adult 387 75
 Female Child 17 14
 Adult 89 76
Crew Male Child 0 0
 Adult 670 192
 Female Child 0 0
 Adult 3 20

The mosaic() function can be invoked as

mosaic(table)

where table is a contingency table in array form, or

mosaic(formula, data=)

where formula is a standard R formula, and data specifies either a data frame or table.
Adding the option shade=TRUE will color the figure based on Pearson residuals from

http://datavus.ca
http://www.childrensmercy.org/stats/definitions/mosaic.htm

 Mosaic plots 289

a fitted model (independence by default) and the option legend=TRUE will display a
legend for these residuals.

For example, both

library(vcd)
mosaic(Titanic, shade=TRUE, legend=TRUE)

and

library(vcd)
mosaic(~Class+Sex+Age+Survived, data=Titanic, shade=TRUE, legend=TRUE)

will produce the graph shown in figure 11.23. The formula version gives you greater
control over the selection and placement of variables in the graph.

There’s a great deal of information packed into this one picture. For example, as one
moves from crew to first class, the survival rate increases precipitously. Most children
were in third and second class. Most females in first class survived, whereas only about
half the females in third class survived. There were few females in the crew, causing
the Survived labels (No, Yes at the bottom of the chart) to overlap for this group. Keep
looking and you’ll see many more interesting facts. Remember to look at the relative
widths and heights of the rectangles. What else can you learn about that night?

Pearson
residuals:

p-value =
< 2.22e-16

Sex

Survived

C
la

ss

A
g

e

C
re

w

No Yes

A
du

lt

NoYes

C
hi

ld

3r
d

A
du

lt
C

hi
ld

2n
d

A
du

ltC
hi

ld

1s
t

Male Female
A

du
lt

C
hi

ld

-10.8

 -4.0

 -2.0

 0.0

 2.0

 4.0

 25.7

Figure 11.23 Mosaic plot describing Titanic survivors by class, sex, and age

290 CHAPTER 11 Intermediate graphs

Extended mosaic plots add color and shading to represent the residuals from a fit-
ted model. In this example, the blue shading indicates cross-classifications that occur
more often than expected, assuming that survival is unrelated to class, gender, and
age. Red shading indicates cross-classifications that occur less often than expected un-
der the independence model. Be sure to run the example so that you can see the re-
sults in color. The graph indicates that more first-class women survived and more male
crew members died than would be expected under an independence model. Fewer
third-class men survived than would be expected if survival was independent of class,
gender, and age. If you would like to explore mosaic plots in greater detail, try running
example(mosaic).

11.5 Summary
In this chapter, we considered a wide range of techniques for displaying relationships
among two or more variables. This included the use of 2D and 3D scatter plots, scatter
plot matrices, bubble plots, line plots, correlograms, and mosaic plots. Some of these
methods are standard techniques, while some are relatively new.

Taken together with methods that allow you to customize graphs (chapter 3),
display univariate distributions (chapter 6), explore regression models (chapter 8),
and visualize group differences (chapter 9), you now have a comprehensive toolbox
for visualizing and extracting meaning from your data.

In later chapters, you’ll expand your skills with additional specialized techniques,
including graphics for latent variable models (chapter 14), methods for visualizing
missing data patterns (chapter 15), and techniques for creating graphs that are
conditioned on one or more variables (chapter 16).

In the next chapter, we’ll explore resampling statistics and bootstrapping. These are
computer intensive methods that allow you to analyze data in new and unique ways.

1

291

12Resampling statistics
and bootstrapping

This chapter covers
■ Understanding the logic of permutation tests
■

Using bootstrapping to obtain confidence intervals

Applying permutation tests to linear models
■

In chapters 7, 8, and 9, we reviewed statistical methods that test hypotheses and esti-
mate confidence intervals for population parameters by assuming that the observed
data is sampled from a normal distribution or some other well-known theoretical
distribution. But there will be many cases in which this assumption is unwarranted.
Statistical approaches based on randomization and resampling can be used in cases
where the data is sampled from unknown or mixed distributions, where sample sizes
are small, where outliers are a problem, or where devising an appropriate test based
on a theoretical distribution is too complex and mathematically intractable.

In this chapter, we’ll explore two broad statistical approaches that use
randomization: permutation tests and bootstrapping. Historically, these methods
were only available to experienced programmers and expert statisticians.
Contributed packages in R now make them readily available to a wider audience of
data analysts.

292 CHAPTER 12 Resampling statistics and bootstrapping

We’ll also revisit problems that were initially analyzed using traditional methods
(for example, t-tests, chi-square tests, ANOVA, regression) and see how they can be
approached using these robust, computer-intensive methods. To get the most out of
section 12.2, be sure to read chapter 7 first. Chapters 8 and 9 serve as prerequisites for
section 12.3. Other sections can be read on their own.

12.1 Permutation tests
Permutation tests, also called randomization or re-randomization tests, have been
around for decades, but it took the advent of high-speed computers to make them
practically available.

To understand the logic of a permutation
test, consider the following hypothetical
problem. Ten subjects have been randomly
assigned to one of two treatment conditions
(A or B) and an outcome variable (score)
has been recorded. The results of the
experiment are presented in table 12.1.

The data are also displayed in the
strip chart in figure 12.1. Is there enough
evidence to conclude that the treatments
differ in their impact?

In a parametric approach, you might assume that the data are sampled from normal
populations with equal variances and apply a two-tailed independent groups t-test. The
null hypothesis is that the population mean for treatment A is equal to the population
mean for treatment B. You’d calculate a t-statistic from the data and compare it to the
theoretical distribution. If the observed t-statistic is sufficiently extreme, say outside
the middle 95 percent of values in the theoretical distribution, you’d reject the null
hypothesis and declare that the population means for the two groups are unequal at
the 0.05 level of significance.

score

T r
ea

tm
en

t

A

B

40 45 50 55 60 65

Figure 12.1 Strip chart of the hypothetical treatment data in table 12.1

Table 12.1 Hypothetical two-group problem

Treatment A Treatment B

40 57

57 64

45 55

55 62

58 65

 Permutation tests 293

A permutation test takes a different approach. If the two treatments are truly
equivalent, the label (Treatment A or Treatment B) assigned to an observed score is
arbitrary. To test for differences between the two treatments, we could follow these
steps:

1 Calculate the observed t-statistic, as in the parametric approach; call this t0.
2 Place all 10 scores in a single group.
3 Randomly assign five scores to Treatment A and five scores to Treatment B.
4 Calculate and record the new observed t-statistic.
5 Repeat steps 3–4 for every possible way of assigning five scores to Treatment A

and five scores to Treatment B. There are 252 such possible arrangements.
6 Arrange the 252 t-statistics in ascending order. This is the empirical

distribution, based on (or conditioned on) the sample data.
7 If t0 falls outside the middle 95 percent of the empirical distribution, reject the

null hypothesis that the population means for the two treatment groups are
equal at the 0.05 level of significance.

Notice that the same t-statistic is calculated in both the permutation and parametric
approaches. But instead of comparing the statistic to a theoretical distribution in order
to determine if it was extreme enough to reject the null hypothesis, it’s compared to an
empirical distribution created from permutations of the observed data. This logic can
be extended to most classical statistical tests and linear models.

In the previous example, the empirical distribution was based on all possible
permutations of the data. In such cases, the permutation test is called an “exact” test.
As the sample sizes increase, the time required to form all possible permutations can
become prohibitive. In such cases, you can use Monte Carlo simulation to sample from
all possible permutations. Doing so provides an approximate test.

If you’re uncomfortable assuming that the data is normally distributed, concerned
about the impact of outliers, or feel that the dataset is too small for standard parametric
approaches, a permutation test provides an excellent alternative.

R has some of the most comprehensive and sophisticated packages for performing
permutation tests currently available. The remainder of this section focuses on two
contributed packages: the coin package and the lmPerm package. Be sure to install
them before first use:

install.packages(c(“coin”,"lmPerm"))

The coin package provides a comprehensive framework for permutation tests applied
to independence problems, whereas the lmPerm package provides permutation tests
for ANOVA and regression designs. We’ll consider each in turn, and end the section
with a quick review of other permutation packages available in R.

Before moving on, it’s important to remember that permutation tests use pseudo-
random numbers to sample from all possible permutations (when performing an
approximate test). Therefore, the results will change each time the test is performed.
Setting the random number seed in R allows you to fix the random numbers generated.

294 CHAPTER 12 Resampling statistics and bootstrapping

This is particularly useful when you want to share your examples with others, because
results will always be the same if the calls are made with the same seed. Setting the
random number seed to 1234 (that is, set.seed(1234)) will allow you to replicate the
results presented in this chapter.

12.2 Permutation test with the coin package
The coin package provides a general framework for applying permutation tests to
independence problems. With this package, we can answer such questions as

■ Are responses independent of group assignment?
■

Are two categorical variables independent?
Are two numeric variables independent?

■

Using convenience functions provided in the package (see table 12.2), we can per-
form permutation test equivalents for most of the traditional statistical tests covered
in chapter 7.

Table 12.2 coin functions providing permutation test alternatives to traditional tests

Test coin function

Two- and K-sample permutation test oneway_test(y ~ A)

Two- and K-sample permutation test with a
stratification (blocking) factor

oneway_test(y ~ A | C)

Wilcoxon–Mann–Whitney rank sum test wilcox_test(y ~ A)

Kruskal–Wallis test kruskal_test(y ~ A)

Person’s chi-square test chisq_test(A ~ B)

Cochran–Mantel–Haenszel test cmh_test(A ~ B | C)

Linear-by-linear association test lbl_test(D ~ E)

Spearman’s test spearman_test(y ~ x)

Friedman test friedman_test(y ~ A | C)

Wilcoxon–Signed–Rank test wilcoxsign_test(y1 ~ y2)

In the coin function column, y and x are numeric variables, A and B are categorical factors, C is a categorical blocking
variable, D and E are ordered factors, and y1 and y2 are matched numeric variables.

Each of the functions listed in table 12.2 take the form

function_name(formula, data, distribution=)

where

■ formula describes the relationship among variables to be tested. Examples are
given in the table.

■ data identifies a data frame.
■ distribution specifies how the empirical distribution under the null hypothesis

should be derived. Possible values are exact, asymptotic, and approximate.

Permutation test with the coin package 295

If distribution="exact", the distribution under the null hypothesis is computed
exactly (that is, from all possible permutations). The distribution can also be
approximated by its asymptotic distribution (distribution="asymptotic") or via
Monte Carlo resampling (distribution="approximate(B=#)"), where # indicates
the number of replications used to approximate the exact distribution. At present,
distribution="exact" is only available for two-sample problems.

NOTE In the coin package, categorical variables and ordinal variables must be
coded as factors and ordered factors, respectively. Additionally, the data must be
stored in a data frame.

In the remainder of this section, we’ll apply several of the permutation tests described
in table 12.2 to problems from previous chapters. This will allow you to compare the
results with more traditional parametric and nonparametric approaches. We’ll end
this discussion of the coin package by considering advanced extensions.

12.2.1 Independent two-sample and k-sample tests

To begin, compare an independent samples t-test with a one-way exact test applied to
the hypothetical data in table 12.2. The results are given in the following listing.

Listing 12.1 t-test versus one-way permutation test for the hypothetical data

> library(coin)
> score <- c(40, 57, 45, 55, 58, 57, 64, 55, 62, 65)
> treatment <- factor(c(rep("A",5), rep("B",5)))
> mydata <- data.frame(treatment, score)
> t.test(score~treatment, data=mydata, var.equal=TRUE)

 Two Sample t-test

data: score by treatment
t = -2.3, df = 8, p-value = 0.04705
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -19.04 -0.16
sample estimates:
mean in group A mean in group B
 51 61

> oneway_test(score~treatment, data=mydata, distribution="exact")

 Exact 2-Sample Permutation Test

data: score by treatment (A, B)
Z = -1.9, p-value = 0.07143
alternative hypothesis: true mu is not equal to 0

The traditional t-test indicates a significant group difference (p < .05), whereas the
exact test doesn’t (p > 0.072). With only 10 observations, l’d be more inclined to trust
the results of the permutation test and attempt to collect more data before reaching a
final conclusion.

296 CHAPTER 12 Resampling statistics and bootstrapping

Next, consider the Wilcoxon–Mann–Whitney U test. In chapter 7, we examined
the difference in the probability of imprisonment in Southern versus non-Southern
US states using the wilcox.test() function. Using an exact Wilcoxon rank sum test,
we’d get

> library(MASS)
> UScrime <- transform(UScrime, So = factor(So))
> wilcox_test(Prob ~ So, data=UScrime, distribution="exact")

 Exact Wilcoxon Mann-Whitney Rank Sum Test

data: Prob by So (0, 1)
Z = -3.7, p-value = 8.488e-05
alternative hypothesis: true mu is not equal to 0

suggesting that incarceration is more likely in Southern states. Note that in the previ-
ous code, the numeric variable So was transformed into a factor. This is because the
coin package requires that all categorical variables be coded as factors. Additionally,
the astute reader may have noted that these results agree exactly with the results of the
wilcox.test() in chapter 7. This is because the wilcox.test() also computes an
exact distribution by default.

Finally, consider a k-sample test. In chapter 9, we used a one-way ANOVA to evaluate
the impact of five drug regimens on cholesterol reduction in a sample of 50 patients. An
approximate k-sample permutation test can be performed instead, using this code:

> library(multcomp)
> set.seed(1234)
> oneway_test(response~trt, data=cholesterol,
 distribution=approximate(B=9999))

 Approximative K-Sample Permutation Test

data: response by
 trt (1time, 2times, 4times, drugD, drugE)
maxT = 4.7623, p-value < 2.2e-16

Here, the reference distribution is based on 9,999 permutations of the data. The ran-
dom number seed was set so that your results would be the same as mine. There’s
clearly a difference in response among patients in the various groups.

12.2.2 Independence in contingency tables

We can use permutation tests to assess the independence of two categorical variables
using either the chisq_test() or the cmh_test() function. The latter function is
used when the data is stratified on a third categorical variable. If both variables are
ordinal, we can use the lbl_test() function to test for a linear trend.

In chapter 7, we applied a chi-square test to assess the relationship between
Arthritis treatment and improvement. Treatment had two levels (Placebo, Treated),
and Improved had three levels (None, Some, Marked). The Improved variable was
encoded as an ordered factor.

Permutation test with the coin package 297

If you want to perform a permutation version of the chi-square test, you could use
the following code:

> library(coin)
> library(vcd)
> Arthritis <- transform(Arthritis,
 Improved=as.factor(as.numeric(Improved)))
> set.seed(1234)
> chisq_test(Treatment~Improved, data=Arthritis,
 distribution=approximate(B=9999))

 Approximative Pearson’s Chi-Squared Test

data: Treatment by Improved (1, 2, 3)
chi-squared = 13.055, p-value = 0.0018

This gives you an approximate chi-square test based on 9,999 replications. You might
ask why you transformed the variable Improved from an ordered factor to a categorical
factor. (Good question!) If you’d left it an ordered factor, coin() would have gener-
ated a linear x linear trend test instead of a chi-square test. Although a trend test would
be a good choice in this situation, keeping it a chi-square test allows you to compare
the results with those reported in chapter 7.

12.2.3 Independence between numeric variables

The spearman_test() function provides a permutation test of the independence of
two numeric variables. In chapter 7, we examined the correlation between illiteracy
rates and murder rates for US states. You can test the association via permutation, us-
ing the following code:

> states <- as.data.frame(state.x77)
> set.seed(1234)
> spearman_test(Illiteracy~Murder, data=states,
 distribution=approximate(B=9999))

 Approximative Spearman Correlation Test

data: Illiteracy by Murder
Z = 4.7065, p-value < 2.2e-16
alternative hypothesis: true mu is not equal to 0

Based on an approximate permutation test with 9,999 replications, the hypothesis of
independence can be rejected. Note that state.x77 is a matrix. It had to be converted
into a data frame for use in the coin package.

12.2.4 Dependent two-sample and k-sample tests

Dependent sample tests are used when observations in different groups have been
matched, or when repeated measures are used. For permutation tests with two paired
groups, the wilcoxsign_test() function can be used. For more than two groups, use
the friedman_test() function.

298 CHAPTER 12 Resampling statistics and bootstrapping

In chapter 7, we compared the unemployment rate for urban males age 14–24 (U1)
with urban males age 35–39 (U2). Because the two variables are reported for each of
the 50 US states, you have a two-dependent groups design (state is the matching
variable). We can use an exact Wilcoxon Signed Rank Test to see if unemployment
rates for the two age groups are equal:

> library(coin)
> library(MASS)
> wilcoxsign_test(U1~U2, data=UScrime, distribution="exact")

 Exact Wilcoxon-Signed-Rank Test

data: y by x (neg, pos)
 stratified by block
Z = 5.9691, p-value = 1.421e-14
alternative hypothesis: true mu is not equal to 0

Based on the results, you’d conclude that the unemployment rates differ.

12.2.5 Going further

The coin package provides a general framework for testing that one group of vari-
ables is independent of a second group of variables (with optional stratification on a
blocking variable) against arbitrary alternatives, via approximate permutation tests.
In particular, the independence_test() function allows the user to approach most
traditional tests from a permutation perspective, and to create new and novel statisti-
cal tests for situations not covered by traditional methods. This flexibility comes at a
price: a high level of statistical knowledge is required to use the function appropriately.
See the vignettes that accompany the package (accessed via vignette("coin")) for
further details.

In the next section, you’ll learn about the lmPerm package. This package provides
a permutation approach to linear models, including regression and analysis of
variance.

12.3 Permutation tests with the lmPerm package
The lmPerm package provides support for a permutation approach to linear models.
In particular, the lmp() and aovp() functions are the lm() and aov() functions modi-
fied to perform permutation tests rather than normal theory tests.

The parameters within the lmp() and aovp() functions are similar to those in the
lm() and aov()functions, with the addition of a perm= parameter. The perm= option
can take on the values "Exact", "Prob", or "SPR". Exact produces an exact test, based
on all possible permutations. Prob samples from all possible permutations. Sampling
continues until the estimated standard deviation falls below 0.1 of the estimated
p-value. The stopping rule is controlled by an optional Ca parameter. Finally, SPR uses
a sequential probability ratio test to decide when to stop sampling. Note that if the
number of observations is greater than 10, perm="Exact" will automatically default to
perm="Prob"; exact tests are only available for small problems.

Permutation tests with the lmPerm package 299

To see how this works, we’ll apply a permutation approach to simple regression,
polynomial regression, multiple regression, one-way analysis of variance, one-way
analysis of covariance, and a two-way factorial design.

12.3.1 Simple and polynomial regression

In chapter 8, we used linear regression to study the relationship between weight and
height for a group of 15 women. Using lmp() instead of lm() generates the permuta-
tion test results shown in the following listing.

Listing 12.2 Permutation tests for simple linear regression

> library(lmPerm)
> set.seed(1234)
> fit <- lmp(weight~height, data=women, perm="Prob")
[1] "Settings: unique SS : numeric variables centered"
> summary(fit)

Call:
lmp(formula = weight ~ height, data = women, perm = "Prob")

Residuals:
 Min 1Q Median 3Q Max
-1.733 -1.133 -0.383 0.742 3.117

Coefficients:
 Estimate Iter Pr(Prob)
height 3.45 5000 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.5 on 13 degrees of freedom
Multiple R-Squared: 0.991, Adjusted R-squared: 0.99
F-statistic: 1.43e+03 on 1 and 13 DF, p-value: 1.09e-14

To fit a quadratic equation, you could use the code in this next listing.

Listing 12.3 Permutation tests for polynomial regression

> library(lmPerm)
> set.seed(1234)
> fit <- lmp(weight~height + I(height^2), data=women, perm="Prob")
[1] "Settings: unique SS : numeric variables centered"
> summary(fit)

Call:
lmp(formula = weight ~ height + I(height^2), data = women, perm = "Prob")

Residuals:
 Min 1Q Median 3Q Max
-0.5094 -0.2961 -0.0094 0.2862 0.5971

Coefficients:
 Estimate Iter Pr(Prob)

300 CHAPTER 12 Resampling statistics and bootstrapping

height -7.3483 5000 <2e-16 ***
I(height^2) 0.0831 5000 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.38 on 12 degrees of freedom
Multiple R-Squared: 0.999, Adjusted R-squared: 0.999
F-statistic: 1.14e+04 on 2 and 12 DF, p-value: <2e-16

As you can see, it’s a simple matter to test these regressions using permutation tests
and requires little change in the underlying code. The output is also similar to that
produced by the lm() function. Note that an Iter column is added indicating how
many iterations were required to reach the stopping rule.

12.3.2 Multiple regression

In chapter 8, multiple regression was used to predict the murder rate from popula-
tion, illiteracy, income, and frost for 50 US states. Applying the lmp() function to this
problem, results in the following output.

Listing 12.4 Permutation tests for multiple regression

> library(lmPerm)
> set.seed(1234)
> states <- as.data.frame(state.x77)
> fit <- lmp(Murder~Population + Illiteracy+Income+Frost,
 data=states, perm="Prob")
[1] "Settings: unique SS : numeric variables centered"
> summary(fit)

Call:
lmp(formula = Murder ~ Population + Illiteracy + Income + Frost,
 data = states, perm = "Prob")

Residuals:
 Min 1Q Median 3Q Max
-4.79597 -1.64946 -0.08112 1.48150 7.62104

Coefficients:
 Estimate Iter Pr(Prob)
Population 2.237e-04 51 1.0000
Illiteracy 4.143e+00 5000 0.0004 ***
Income 6.442e-05 51 1.0000
Frost 5.813e-04 51 0.8627

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '. ' 0.1 ' ' 1

Residual standard error: 2.535 on 45 degrees of freedom
Multiple R-Squared: 0.567, Adjusted R-squared: 0.5285
F-statistic: 14.73 on 4 and 45 DF, p-value: 9.133e-08

Looking back to chapter 8, both Population and Illiteracy are significant
(p < 0.05) when normal theory is used. Based on the permutation tests, the Population

Permutation tests with the lmPerm package 301

variable is no longer significant. When the two approaches don’t agree, you should
look at your data more carefully. It may be that the assumption of normality is unten-
able or that outliers are present.

12.3.3 One-way ANOVA and ANCOVA

Each of the analysis of variance designs discussed in chapter 9 can be performed via
permutation tests. First, let’s look at the one-way ANOVA problem considered in sec-
tions 9.1 on the impact of treatment regimens on cholesterol reduction. The code and
results are given in the next listing.

Listing 12.5 Permutation test for One-Way ANOVA

> library(lmPerm)
> library(multcomp)
> set.seed(1234)
> fit <- aovp(response~trt, data=cholesterol, perm="Prob")
[1] "Settings: unique SS "
> summary(fit)
Component 1 :
 Df R Sum Sq R Mean Sq Iter Pr(Prob)
trt 4 1351.37 337.84 5000 < 2.2e-16 ***
Residuals 45 468.75 10.42

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '. ' 0.1 ' ' 1

The results suggest that the treatment effects are not all equal.
This second example in this section applies a permutation test to a one-way analysis

of covariance. The problem is from chapter 9, where you investigated the impact of
four drug doses on the litter weights of rats, controlling for gestation times. The next
listing shows the permutation test and results.

Listing 12.6 Permutation test for one-way ANCOVA

> library(lmPerm)
> set.seed(1234)
> fit <- aovp(weight ~ gesttime + dose, data=litter, perm="Prob")
[1] "Settings: unique SS : numeric variables centered"
> summary(fit)
Component 1 :
 Df R Sum Sq R Mean Sq Iter Pr(Prob)
gesttime 1 161.49 161.493 5000 0.0006 ***
dose 3 137.12 45.708 5000 0.0392 *
Residuals 69 1151.27 16.685

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Based on the p-values, the four drug doses do not equally impact litter weights, control-
ling for gestation time.

302 CHAPTER 12 Resampling statistics and bootstrapping

12.3.4 Two-way ANOVA

We’ll end this section by applying permutation tests to a factorial design. In chapter
9, we examined the impact of vitamin C on the tooth growth in guinea pigs. The two
manipulated factors were dose (three levels) and delivery method (two levels). Ten
guinea pigs were placed in each treatment combination, resulting in a balanced 3 x 2
factorial design. The permutation tests are provided in the next listing.

Listing 12.7 Permutation test for two-way ANOVA

> library(lmPerm)
> set.seed(1234)
> fit <- aovp(len~supp*dose, data=ToothGrowth, perm="Prob")
[1] "Settings: unique SS : numeric variables centered"
> summary(fit)
Component 1 :
 Df R Sum Sq R Mean Sq Iter Pr(Prob)
supp 1 205.35 205.35 5000 < 2e-16 ***
dose 1 2224.30 2224.30 5000 < 2e-16 ***
supp:dose 1 88.92 88.92 2032 0.04724 *
Residuals 56 933.63 16.67

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

At the .05 level of significance, all three effects are statistically different from zero. At
the .01 level, only the main effects are significant.

It’s important to note that when aovp() is applied to ANOVA designs, it defaults
to unique sums of squares (also called SAS Type III sums of squares). Each effect is
adjusted for every other effect. The default for parametric ANOVA designs in R is
sequential sums of squares (SAS Type I sums of squares). Each effect is adjusted for
those that appear earlier in the model. For balanced designs, the two approaches will
agree, but for unbalanced designs with unequal numbers of observations per cell, they
won’t. The greater the imbalance, the greater the disagreement. If desired, specifying
seqs=TRUE in the aovp() function will produce sequential sums of squares. For more
on Type I and Type III sums of squares, see chapter 9, section 9.2.

12.4 Additional comments on permutation tests
R offers other permutation packages besides coin and lmPerm. The perm package pro-
vides some of the same functionality provided by the coin package and can act as an
independent validation of that package. The corrperm package provides permutation
tests of correlations with repeated measures. The logregperm package offers a per-
mutation test for logistic regression. Perhaps most importantly, the glmperm package
extends permutation tests to generalized linear models. Generalized linear models are
described in the next chapter.

Permutation tests provide a powerful alternative to tests that rely on a knowledge
of the underlying sampling distribution. In each of the permutation tests described,
we were able to test statistical hypotheses without recourse to the normal, t, F, or chi-
square distributions.

 Bootstrapping 303

You may have noticed how closely the results of the tests based on normal theory
agreed with the results of the permutation approach in previous sections. The data in
these problems were well behaved and the agreement between methods is a testament
to how well normal theory methods work in such cases.

Where permutation tests really shine are in cases where the data is clearly non-
normal (for example, highly skewed), outliers are present, samples sizes are small,
or no parametric tests exist. However, if the original sample is a poor representation
of the population of interest, no test, including permutation tests, will improve the
inferences generated.

Permutation tests are primarily useful for generating p-values that can be used to test
null hypotheses. They can help answer the question, “Does an effect exist?” It’s more
difficult to use permutation methods to obtain confidence intervals and estimates of
measurement precision. Fortunately, this is an area in which bootstrapping excels.

12.5 Bootstrapping
Bootstrapping generates an empirical distribution of a test statistic or set of test statis-
tics, by repeated random sampling with replacement, from the original sample. It al-
lows you to generate confidence intervals and test statistical hypotheses without having
to assume a specific underlying theoretical distribution.

It’s easiest to demonstrate the logic of bootstrapping with an example. Say that
you want to calculate the 95 percent confidence interval for a sample mean. Your
sample has 10 observations, a sample mean of 40, and a sample standard deviation of
5. If you’re willing to assume that the sampling distribution of the mean is normally
distributed, the (1-α/2)% confidence interval can be calculated using

X t
s

n
X t

s

n
< < +

where t is the upper 1-α/2 critical value for a t distribution with n-1 degrees of free-
dom. For a 95 percent confidence interval, you have 40 – 2.262(5/3.163) < µ < 40 +
2.262(5/3.162) or 36.424 < µ < 43.577. You’d expect 95 percent of confidence intervals
created in this way to surround the true population mean.

But what if you aren’t willing to assume that the sampling distribution of the mean
is normally distributed? You could use a bootstrapping approach instead:

1 Randomly select 10 observations from the sample, with replacement after each
selection. Some observations may be selected more than once, and some may
not be selected at all.

2 Calculate and record the sample mean.
3 Repeat steps 1 and 2 a thousand times.
4 Order the 1,000 sample means from smallest to largest.
5 Find the sample means representing the 2.5th and 97.5th percentiles. In this

case, it’s the 25th number from the bottom and top. These are your 95 percent
confidence limits.

In the present case, where the sample mean is likely to be normally distributed, you
gain little from the bootstrap approach. Yet there are many cases where the bootstrap

304 CHAPTER 12 Resampling statistics and bootstrapping

approach is advantageous. What if you wanted confidence intervals for the sample
median, or the difference between two sample medians? There are no simple normal
theory formulas here, and bootstrapping is the approach of choice. If the underlying
distributions are unknown, if outliers are a problem, if sample sizes are small, or if
parametric approaches don’t exist, bootstrapping can often provide a useful method
of generating confidence intervals and testing hypotheses.

12.6 Bootstrapping with the boot package
The boot package provides extensive facilities for bootstrapping and related resam-
pling methods. You can bootstrap a single statistic (for example, a median), or a vector
of statistics (for example, a set of regression coefficients). Be sure to download and
install the boot package before first use:

install.packages("boot")

The bootstrapping process will seem complicated, but once you review the examples
it should make sense.

In general, bootstrapping involves three main steps:

1 Write a function that returns the statistic or statistics of interest. If there is a
single statistic (for example, a median), the function should return a number.
If there is a set of statistics (for example, a set of regression coefficients), the
function should return a vector.

2 Process this function through the boot() function in order to generate R
bootstrap replications of the statistic(s).

3 Use the boot.ci() function to obtain confidence intervals for the statistic(s)
generated in step 2.

Now to the specifics.
The main bootstrapping function is boot(). The boot() function has the format

bootobject <- boot(data=, statistic=, R=, ...)

The parameters are described in table 12.3.

Table 12.3 Parameters of the boot() function

Parameter Description

data A vector, matrix, or data frame.

statistic A function that produces the k statistics to be bootstrapped (k=1 if
bootstrapping a single statistic).

The function should include an indices parameter that the boot()
function can use to select cases for each replication (see examples in
the text).

R Number of bootstrap replicates.

... Additional parameters to be passed to the function that is used to produce
statistic(s) of interest.

Bootstrapping with the boot package 305

The boot() function calls the statistic function R times. Each time, it generates a set
of random indices, with replacement, from the integers 1:nrow(data). These indices
are used within the statistic function to select a sample. The statistics are calculated
on the sample and the results are accumulated in the bootobject. The bootobject
structure is described in table 12.4.

Table 12.4 Elements of the object returned by the boot() function

Element Description

t0 The observed values of k statistics applied to the original data

t An R x k matrix where each row is a bootstrap replicate of the k statistics

You can access these elements as bootobject$t0 and bootobject$t.
Once you generate the bootstrap samples, you can use print() and plot() to

examine the results. If the results look reasonable, you can use the boot.ci() function
to obtain confidence intervals for the statistic(s). The format is

boot.ci(bootobject, conf=, type=)

The parameters are given in table 12.5.

Table 12.5 Parameters of the boot.ci() function

Parameter Description

bootobject The object returned by the boot() function.

conf The desired confidence interval (default: conf=0.95).

type The type of confidence interval returned. Possible values are "norm",
"basic", "stud", "perc", "bca", and "all" (default: type="all").

The type parameter specifies the method for obtaining the confidence limits. The perc
method (percentile) was demonstrated in the sample mean example. The bca provides
an interval that makes simple adjustments for bias. I find bca preferable in most circum-
stances. See Mooney and Duval (1993) for an introduction to these methods.

In the remaining sections, we’ll look at bootstrapping a single statistic and a vector
of statistics.

12.6.1 Bootstrapping a single statistic

The mtcars dataset contains information on 32 automobiles reported in the 1974
Motor Trend magazine. Suppose you’re using multiple regression to predict miles per
gallon from a car’s weight (lb/1,000) and engine displacement (cu. in.). In addition to
the standard regression statistics, you’d like to obtain a 95 percent confidence interval
for the R-squared value (the percent of variance in the response variable explained by
the predictors). The confidence interval can be obtained using nonparametric boot-
strapping.

306 CHAPTER 12 Resampling statistics and bootstrapping

The first task is to write a function for obtaining the R-squared value:

rsq <- function(formula, data, indices) {
 d <- data[indices,]
 fit <- lm(formula, data=d)
 return(summary(fit)$r.square)

}

The function returns the R-square value from a regression. The d <- data[indices,]
statement is required for boot() to be able to select samples.

You can then draw a large number of bootstrap replications (say, 1,000) with the
following code:

library(boot)
set.seed(1234)
results <- boot(data=mtcars, statistic=rsq,
 R=1000, formula=mpg~wt+disp)

 The boot object can be printed using

> print(results)

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = mtcars, statistic = rsq, R = 1000, formula = mpg ~
 wt + disp)

Bootstrap Statistics :
 original bias std. error
t1* 0.7809306 0.01333670 0.05068926

and plotted using plot(results). The resulting graph is shown in figure 12.2.
In figure 12.2, you can see that the distribution of bootstrapped R-squared values

isn’t normally distributed. A 95 percent confidence interval for the R-squared values
can be obtained using

> boot.ci(results, type=c("perc", "bca"))
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates

CALL :
boot.ci(boot.out = results, type = c("perc", "bca"))

Intervals :
Level Percentile BCa
95% (0.6838, 0.8833) (0.6344, 0.8549)
Calculations and Intervals on Original Scale
Some BCa intervals may be unstable

You can see from this example that different approaches to generating the confi-
dence intervals can lead to different intervals. In this case the bias adjusted interval is

Bootstrapping with the boot package 307

Histogram of t

t*

D
en

si
ty

0.6 0.7 0.8 0.9

0
2

4
6

8

−3 −2 −1 0 1 2 3

0
60

0
65

0
70

0
75

0
80

0
85

0
90

Quantiles of Standard Normal

t*

Figure 12.2 Distribution of bootstrapped R-squared values

moderately different from the percentile method. In either case, the null hypothesis
H0: R-square = 0, would be rejected, because zero is outside the confidence limits.

In this section, we estimated the confidence limits of a single statistic. In the next
section, we’ll estimate confidence intervals for several statistics.

12.6.2 Bootstrapping several statistics

In the previous example, bootstrapping was used to estimate the confidence interval
for a single statistic (R-squared). Continuing the example, let’s obtain the 95 percent
confidence intervals for a vector of statistics. Specifically, let’s get confidence intervals
for the three model regression coefficients (intercept, car weight, and engine displace-
ment).

First, create a function that returns the vector of regression coefficients:

bs <- function(formula, data, indices) {
 d <- data[indices,]
 fit <- lm(formula, data=d)
 return(coef(fit))
}

Then use this function to bootstrap 1,000 replications:

308 CHAPTER 12 Resampling statistics and bootstrapping

library(boot)
set.seed(1234)
results <- boot(data=mtcars, statistic=bs,
 R=1000, formula=mpg~wt+disp)
> print(results)
ORDINARY NONPARAMETRIC BOOTSTRAP
Call:
boot(data = mtcars, statistic = bs, R = 1000, formula = mpg ~
 wt + disp)

Bootstrap Statistics :
 original bias std. error
t1* 34.9606 0.137873 2.48576
t2* -3.3508 -0.053904 1.17043
t3* -0.0177 -0.000121 0.00879

When bootstrapping multiple statistics, add an index parameter to the plot() and
boot.ci() functions to indicate which column of bootobject$t to analyze. In this ex-
ample, index 1 refers to the intercept, index 2 is car weight, and index 3 is the engine
displacement. To plot the results for car weight, use

plot(results, index=2)

The graph is given in figure 12.3.
To get the 95 percent confidence intervals for car weight and engine displacement,

use

> boot.ci(results, type="bca", index=2)
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates

CALL :
boot.ci(boot.out = results, type = "bca", index = 2)

Figure 12.3 Distribution of bootstrapping
regression coefficients for car weight

Histogram of t

t*

D
en

si
ty

6 4 2 0

0.
0

0.
1

0.
2

0.
3

0.
4

3 2 1 0 1 2 3

−6
−5

−4
−3

−2
−1

0

Quantiles of Standard Normal

t*

 Summary 309

Intervals :
Level BCa
95% (-5.66, -1.19)
Calculations and Intervals on Original Scale

> boot.ci(results, type="bca", index=3)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates

CALL :
boot.ci(boot.out = results, type = "bca", index = 3)

Intervals :
Level BCa
95% (-0.0331, 0.0010)
Calculations and Intervals on Original Scale

NOTE In the previous example, we resampled the entire sample of data each
time. If we assume that the predictor variables have fixed levels (typical in planned
experiments), we’d do better to only resample residual terms. See Mooney and
Duval (1993, pp. 16–17) for a simple explanation and algorithm.

Before we leave bootstrapping, it’s worth addressing two questions that come up
often:

■

How many replications are needed?
How large does the original sample need to be?

■

There’s no simple answer to the first question. Some say that an original sample size of
20–30 is sufficient for good results, as long as the sample is representative of the popu-
lation. Random sampling from the population of interest is the most trusted method
for assuring the original sample’s representativeness. With regard to the second ques-
tion, I find that 1,000 replications are more than adequate in most cases. Computer
power is cheap and you can always increase the number of replications if desired.

There are many helpful sources of information on permutation tests and
bootstrapping. An excellent starting place is an online article by Yu (2003). Good
(2006) provides a comprehensive overview of resampling in general and includes R
code. A good, accessible introduction to the bootstrap is provided by Mooney and
Duval (1993). The definitive source on bootstrapping is Efron and Tibshirani (1998).
Finally, there are a number of great online resources, including Simon (1997), Canty
(2002), Shah (2005), and Fox (2002).

12.7 Summary
In this chapter, we introduced a set of computer-intensive methods based on random-
ization and resampling that allow you to test hypotheses and form confidence intervals
without reference to a known theoretical distribution. They’re particularly valuable
when your data comes from unknown population distributions, when there are serious

310 CHAPTER 12 Resampling statistics and bootstrapping

outliers, when your sample sizes are small, and when there are no existing parametric
methods to answer the hypotheses of interest.

The methods in this chapter are particularly exciting because they provide an avenue
for answering questions when your standard data assumptions are clearly untenable,
or when you have no other idea how to approach the problem. Permutation tests and
bootstrapping aren’t panaceas, though. They can’t turn bad data into good data. If
your original samples aren’t representative of the population of interest, or are too
small to accurately reflect it, then these techniques won’t help.

In the next chapter, we’ll consider data models for variables that follow known, but
not necessarily normal, distributions.

Part 4

Advanced methods

In this final section, we consider advanced methods of statistical and graphi-
cal analysis to round out your data analysis toolkit. Chapter 13 expands on the
regression methods in chapter 8 to cover parametric approaches to data that
aren’t normally distributed. The chapter starts with a discussion of the general-
ized linear model, and then focuses on cases where we’re trying to predict an
outcome variable that’s either categorical (logistic regression) or a count (pois-
son regression).

Dealing with a large number of variables can be challenging, due to the
complexity inherent in multivariate data. Chapter 14 describes two popular
methods for exploring and simplifying multivariate data. Principal components
analysis can be used to transform a large number of correlated variables into a
smaller set of composite variables. Factor analysis consists of a set of techniques
for uncovering the latent structure underlying a given set of variables. Chapter
14 provides step-by-step instructions for carrying out each.

More often than not, researchers must deal with incomplete datasets. Chapter
15 considers modern approaches to the ubiquitous problem of missing data
values. R supports a number of elegant approaches for analyzing datasets that
are incomplete for various reasons. Several of the best approaches are described
here, along with guidance around which ones to use, and which ones to avoid.

Chapter 16 completes our discussion of graphics with presentations of some of
R’s most advanced and useful approaches to visualizing data. This includes visual
representations of complex data using the lattice package, and an introduction
to the new, and increasingly popular, ggplot2 package. The chapter ends with a
review of packages that provide functions for interacting with graphs in real-time.

After completing part 4, you will have the tools to manage a wide range of complex
data analysis problems. This includes modeling non-normal outcome variables, dealing
with large numbers of correlated variables, and handling messy and incomplete data.
Additionally, you will have the tools to visualize complex data in useful, innovative and
creative ways.

313

13Generalized linear models

This chapter covers
n Formulating a generalized linear model

n Predicting categorical outcomes

n Modeling count data

In chapters 8 (regression) and 9 (ANOVA), we explored linear models that can be
used to predict a normally distributed response variable from a set of continuous
and/or categorical predictor variables. But there are many situations in which it’s
unreasonable to assume that the dependent variable is normally distributed (or
even continuous). For example:

n The outcome variable may be categorical. Binary variables (for example, yes/
no, passed/failed, lived/died) and polytomous variables (for example, poor/
good/excellent, republican/democrat/independent) are clearly not normal-
ly distributed.

n The outcome variable may be a count (for example, number of traffic acci-
dents in a week, number of drinks per day). Such variables take on a limited
number of values and are never negative. Additionally, their mean and vari-
ance are often related (which isn’t true for normally distributed variables).

	 Chapter 13 Generalized linear models

Generalized linear models extend the linear model framework to include dependent vari-
ables that are decidedly non-normal.

In this chapter, we’ll start with a brief overview of generalized linear models and the
glm() function used to estimate them. Then we’ll focus on two popular models within
this framework: logistic regression (where the dependent variable is categorical) and
Poisson regression (where the dependent variable is a count variable).

To motivate the discussion, we’ll apply generalized linear models to two research
questions that aren’t easily addressed with standard linear models:

n What personal, demographic, and relationship variables predict marital infidel-
ity? In this case, the outcome variable is binary (affair/no affair).

n What impact does a drug treatment for seizures have on the number of seizures
experienced over an eight-week period? In this case, the outcome variable is a
count (number of seizures).

We’ll apply logistic regression to address the first question and Poisson regression to
address the second. Along the way, we’ll consider extensions of each technique.

13.1 Generalized linear models and the glm() function
A wide range of popular data analytic methods are subsumed within the framework of
the generalized linear model. In this section we’ll briefly explore some of the theory
behind this approach. You can safely skip over this section if you like and come back
to it later.

Let’s say that you want to model the relationship between a response variable Y and
a set of p predictor variables X1 ...Xp . In the standard linear model, you assume that Y
is normally distributed and that the form of the relationship is

This equation states that the conditional mean of the response variable is a linear com-
bination of the predictor variables. The b j are the parameters specifying the expected

change in Y for a unit change in Xj and b0 is the expected value of Y when all the pre-
dictor variables are 0. You’re saying that you can predict the mean of the Y distribution
for observations with a given set of X values by applying the proper weights to the X
variables and adding them up.

Note that you’ve made no distributional assumptions about the predictor variables,
Xj. Unlike Y, there’s no requirement that they be normally distributed. In fact, they’re
often categorical (for example, ANOVA designs). Additionally, nonlinear functions of
the predictors are allowed. You often include such predictors as X 2 or X1 × X2. What is
important is that the equation is linear in the parameters (b0, b1,... bp).

In generalized linear models, you fit models of the form

where g(µY) is a function of the conditional mean (called the link function). Addition-
ally, you relax the assumption that Y is normally distributed. Instead, you assume that

	 315

Y follows a distribution that’s a member of the exponential family. You specify the link
function and the probability distribution, and the parameters are derived through an
iterative maximum likelihood estimation procedure.

13.1.1 The glm() function

Generalized linear models are typically fit in R through the glm() function (although
other specialized functions are available). The form of the function is similar to lm()
but includes additional parameters. The basic format of the function is

glm(formula, family=family(link=function), data=)

where the probability distribution (family) and corresponding default link function
(function) are given in table 13.1.

Table 13.1 glm() parameters

Family Default link function

binomial (link = "logit")

gaussian (link = "identity")

gamma (link = "inverse")

inverse.gaussian (link = "1/mu^2")

poisson (link = "log")

quasi (link = "identity", variance = "constant")

quasibinomial (link = "logit")

quasipoisson (link = "log")

The glm() function allows you to fit a number of popular models, including logistic
regression, Poisson regression, and survival analysis (not considered here). You can
demonstrate this for the first two models as follows. Assume that you have a single
response variable (Y), three predictor variables (X1, X2, X3), and a data frame (my-
data) containing the data.

Logistic regression is applied to situations in which the response variable is
dichotomous (0,1). The model assumes that Y follows a binomial distribution, and
that you can fit a linear model of the form

where p = mY is the conditional mean of Y (that is, the probability that Y = 1 given a set
of X values), (p/1 – p) is the odds that Y = 1, and log(p/1 – p) is the log odds, or logit.
In this case, log(p/1 – p) is the link function, the probability distribution is binomial,
and the logistic regression model can be fit using

glm(Y~X1+X2+X3, family=binomial(link="logit"), data=mydata)

Logistic regression is described more fully in section 13.2.

	 Chapter 13 Generalized linear models

Poisson regression is applied to situations in which the response variable is the number
of events to occur in a given period of time. The Poisson regression model assumes that Y
follows a Poisson distribution, and that you can fit a linear model of the form

where l is the mean (and variance) of Y. In this case, the link function is log(l), the
probability distribution is Poisson, and the Poisson regression model can be fit using

glm(Y~X1+X2+X3, family=poisson(link="log"), data=mydata)

Poisson regression is described in section 13.3.
It is worth noting that the standard linear model is also a special case of the

generalized linear model. If you let the link function g(mY) = mY or the identity function
and specify that the probability distribution is normal (Gaussian), then

glm(Y~X1+X2+X3, family=gaussian(link="identity"), data=mydata)

would produce the same results as

lm(Y~X1+X2+X3, data=mydata)

To summarize, generalized linear models extend the standard linear model by fitting
a function of the conditional mean response (rather than the conditional mean re-
sponse), and assuming that the response variable follows a member of the exponential
family of distributions (rather than being limited to the normal distribution). The
parameter estimates are derived via maximum likelihood rather than least squares.

13.1.2 Supporting functions

Many of the functions that you used in conjunction with lm() when analyzing standard
linear models have corresponding versions for glm(). Some commonly used functions
are given in table 13.2.

We’ll explore examples of these functions in later sections. In the next section, we’ll
briefly consider the assessment of model adequacy.

Table 13.2 Functions that support glm()

Function Description

summary() Displays detailed results for the fitted model

coefficients(), coef() Lists the model parameters (intercept and slopes) for the fitted
model

confint() Provides confidence intervals for the model parameters (95
percent by default)

residuals() Lists the residual values for a fitted model

anova() Generates an ANOVA table comparing two fitted models

plot() Generates diagnostic plots for evaluating the fit of a model

predict() Uses a fitted model to predict response values for a new dataset

	 317

13.1.3 Model fit and regression diagnostics

The assessment of model adequacy is as important for generalized linear models as it is
for standard (OLS) linear models. Unfortunately, there’s less agreement in the statisti-
cal community regarding appropriate assessment procedures. In general, you can use
the techniques described in chapter 8, with the following caveats.

When assessing model adequacy, you’ll typically want to plot predicted values
expressed in the metric of the original response variable against residuals of the
deviance type. For example, a common diagnostic plot would be

plot(predict(model, type="response"),
 residuals(model, type= "deviance"))

where model is the object returned by the glm() function.
The hat values, studentized residuals, and Cook’s D statistics that R provides will

be approximate values. Additionally, there’s no general consensus on cutoff values
for identifying problematic observations. Values have to be judged relative to each
other. One approach is to create index plots for each statistic and look for unusually
large values. For example, you could use the following code to create three diagnostic
plots:

plot(hatvalues(model))
plot(rstudent(model))
plot(cooks.distance(model))

Alternatively, you could use the code

library(car)
influencePlot(model)

to create one omnibus plot. In the latter graph, the horizontal axis is the leverage, the
vertical axis is the studentized residual, and the plotted symbol is proportional to the
Cook’s distance.

Diagnostic plots tend to be most helpful when the response variable takes on many
values. When the response variable can only take on a limited number of values (for
example, logistic regression), their utility is decreased.

For more on regression diagnostics for generalized linear models, see Fox (2008)
and Faraway (2006). In the remaining portion of this chapter, we’ll consider two of the
most popular forms of the generalized linear model in detail: logistic regression and
Poisson regression.

13.2 Logistic regression
Logistic regression is useful when predicting a binary outcome from a set of continu-
ous and/or categorical predictor variables. To demonstrate this, we’ll explore the data
on infidelity contained in the data frame Affairs, provided with the AER package. Be
sure to download and install the package (using install.packages("AER")) before
first use.

The infidelity data, known as Fair’s Affairs, is based on a cross-sectional survey
conducted by Psychology Today in 1969, and is described in Greene (2003) and Fair

	 Chapter 13 Generalized linear models

(1978). It contains nine variables collected on 601 participants and includes how
often the respondent engaged in extramarital sexual intercourse during the past
year, as well as their gender, age, years married, whether or not they had children,
their religiousness (on a 5-point scale from 1=anti to 5=very), education, occupation
(Hollingshead 7-point classification with reverse numbering), and a numeric self-
rating of their marriage (from 1=very unhappy to 5=very happy).

Let’s look at some descriptive statistics:

> data(Affairs, package="AER")
> summary(Affairs)
 affairs gender age yearsmarried children
 Min. : 0.000 female:315 Min. :17.50 Min. : 0.125 no :171
 1st Qu.: 0.000 male :286 1st Qu.:27.00 1st Qu.: 4.000 yes:430
 Median : 0.000 Median :32.00 Median : 7.000
 Mean : 1.456 Mean :32.49 Mean : 8.178
 3rd Qu.: 0.000 3rd Qu.:37.00 3rd Qu.:15.000
 Max. :12.000 Max. :57.00 Max. :15.000
 religiousness education occupation rating
 Min. :1.000 Min. : 9.00 Min. :1.000 Min. :1.000
 1st Qu.:2.000 1st Qu.:14.00 1st Qu.:3.000 1st Qu.:3.000
 Median :3.000 Median :16.00 Median :5.000 Median :4.000
 Mean :3.116 Mean :16.17 Mean :4.195 Mean :3.932
 3rd Qu.:4.000 3rd Qu.:18.00 3rd Qu.:6.000 3rd Qu.:5.000
 Max. :5.000 Max. :20.00 Max. :7.000 Max. :5.000

> table(Affairs$affairs)
 0 1 2 3 7 12
451 34 17 19 42 38

From these statistics, you can see that that 52 percent of respondents were female, that
72 percent had children, and that the median age for the sample was 32 years. With
regard to the response variable, 75 percent of respondents reported not engaging in
an infidelity in the past year (451/601). The largest number of encounters reported
was 12 (6 percent).

Although the number of indiscretions was recorded, our interest here is in the binary
outcome (had an affair/didn’t have an affair). You can transform affairs into a
dichotomous factor called ynaffair with the following code.

> Affairs$ynaffair[Affairs$affairs > 0] <- 1
> Affairs$ynaffair[Affairs$affairs == 0] <- 0
> Affairs$ynaffair <- factor(Affairs$ynaffair,
 levels=c(0,1),
 labels=c("No","Yes"))
> table(Affairs$ynaffair)
No Yes
451 150

This dichotomous factor can now be used as the outcome variable in a logistic regres-
sion model:

> fit.full <- glm(ynaffair ~ gender + age + yearsmarried + children +
 religiousness + education + occupation +rating,
 data=Affairs,family=binomial())

	 319

> summary(fit.full)

Call:
glm(formula = ynaffair ~ gender + age + yearsmarried + children +
 religiousness + education + occupation + rating, family = binomial(),
 data = Affairs)

Deviance Residuals:
 Min 1Q Median 3Q Max
-1.571 -0.750 -0.569 -0.254 2.519

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.3773 0.8878 1.55 0.12081
gendermale 0.2803 0.2391 1.17 0.24108
age -0.0443 0.0182 -2.43 0.01530 *
yearsmarried 0.0948 0.0322 2.94 0.00326 **
childrenyes 0.3977 0.2915 1.36 0.17251
religiousness -0.3247 0.0898 -3.62 0.00030 ***
education 0.0211 0.0505 0.42 0.67685
occupation 0.0309 0.0718 0.43 0.66663
rating -0.4685 0.0909 -5.15 2.6e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 675.38 on 600 degrees of freedom
Residual deviance: 609.51 on 592 degrees of freedom
AIC: 627.5

Number of Fisher Scoring iterations: 4

From the p-values for the regression coefficients (last column), you can see that gen-
der, presence of children, education, and occupation may not make a significant con-
tribution to the equation (you can’t reject the hypothesis that the parameters are 0).
Let’s fit a second equation without them, and test whether this reduced model fits the
data as well:

> fit.reduced <- glm(ynaffair ~ age + yearsmarried + religiousness +
 rating, data=Affairs, family=binomial())
> summary(fit.reduced)

Call:
glm(formula = ynaffair ~ age + yearsmarried + religiousness + rating,
 family = binomial(), data = Affairs)

Deviance Residuals:
 Min 1Q Median 3Q Max
-1.628 -0.755 -0.570 -0.262 2.400

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.9308 0.6103 3.16 0.00156 **
age -0.0353 0.0174 -2.03 0.04213 *

	 Chapter 13 Generalized linear models

yearsmarried 0.1006 0.0292 3.44 0.00057 ***
religiousness -0.3290 0.0895 -3.68 0.00023 ***
rating -0.4614 0.0888 -5.19 2.1e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 675.38 on 600 degrees of freedom
Residual deviance: 615.36 on 596 degrees of freedom
AIC: 625.4

Number of Fisher Scoring iterations: 4

Each regression coefficient in the reduced model is statistically significant (p<.05).
Because the two models are nested (fit.reduced is a subset of fit.full), you can
use the anova() function to compare them. For generalized linear models, you’ll want
a chi-square version of this test.

> anova(fit.reduced, fit.full, test="Chisq")
Analysis of Deviance Table

Model 1: ynaffair ~ age + yearsmarried + religiousness + rating
Model 2: ynaffair ~ gender + age + yearsmarried + children +
 religiousness + education + occupation + rating
 Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 596 615
2 592 610 4 5.85 0.21

The nonsignificant chi-square value (p=0.21) suggests that the reduced model with
four predictors fits as well as the full model with nine predictors, reinforcing your
belief that gender, children, education, and occupation don’t add significantly to the
prediction above and beyond the other variables in the equation. Therefore, you can
base your interpretations on the simpler model.

13.2.1 Interpreting the model parameters

Let’s take a look at the regression coefficients:

> coef(fit.reduced)
 (Intercept) age yearsmarried religiousness rating
 1.931 -0.035 0.101 -0.329 -0.461

In a logistic regression, the response being modeled is the log(odds) that Y=1. The
regression coefficients give the change in log(odds) in the response for a unit change
in the predictor variable, holding all other predictor variables constant.

Because log(odds) are difficult to interpret, you can exponentiate them to put the
results on an odds scale:

> exp(coef(fit.reduced))
 (Intercept) age yearsmarried religiousness rating
 6.895 0.965 1.106 0.720 0.630

	 321

Now you can see that the odds of an extramarital encounter are increased by a factor of
1.106 for a one-year increase in years married (holding age, religiousness, and marital
rating constant). Conversely, the odds of an extramarital affair are multiplied by a fac-
tor of 0.965 for every year increase in age. The odds of an extramarital affair increase
with years married, and decrease with age, religiousness, and marital rating. Because
the predictor variables can’t equal 0, the intercept isn’t meaningful in this case.

If desired, you can use the confint() function to obtain confidence intervals for
the coefficients. For example, exp(confint(fit.reduced)) would print 95 percent
confidence intervals for each of the coefficients on an odds scale.

Finally, a one-unit change in a predictor variable may not be inherently interesting.
For binary logistic regression, the change in the odds of the higher value on the
response variable for an n unit change in a predictor variable is exp(b j)^n. If a one-year
increase in years married multiplies the odds of an affair by 1.106, a 10-year increase
would increase the odds by a factor of 1.106^10, or 2.7, holding the other predictor
variables constant.

13.2.2 Assessing the impact of predictors on the probability of an outcome

For many of us, it’s easier to think in terms of probabilities than odds. You can use the
predict() function to observe the impact of varying the levels of a predictor variable
on the probability of the outcome. The first step is to create an artificial dataset con-
taining the values of the predictor variables that you’re interested in. Then you can use
this artificial dataset with the predict() function to predict the probabilities of the
outcome event occurring for these values.

Let’s apply this strategy to assess the impact of marital ratings on the probability of
having an extramarital affair. First, create an artificial dataset, where age, years married,
and religiousness are set to their means, and marital rating varies from 1 to 5.

> testdata <- data.frame(rating=c(1, 2, 3, 4, 5), age=mean(Affairs$age),
 yearsmarried=mean(Affairs$yearsmarried),
 religiousness=mean(Affairs$religiousness))
> testdata
 rating age yearsmarried religiousness
1 1 32.5 8.18 3.12
2 2 32.5 8.18 3.12
3 3 32.5 8.18 3.12
4 4 32.5 8.18 3.12
5 5 32.5 8.18 3.12

Next, use the test dataset and prediction equation to obtain probabilities:

> testdata$prob <- predict(fit.reduced, newdata=testdata, type="response")
 testdata
 rating age yearsmarried religiousness prob
1 1 32.5 8.18 3.12 0.530
2 2 32.5 8.18 3.12 0.416
3 3 32.5 8.18 3.12 0.310
4 4 32.5 8.18 3.12 0.220
5 5 32.5 8.18 3.12 0.151

	 Chapter 13 Generalized linear models

From these results you see that the probability of an extramarital affair decreases from
0.53 when the marriage is rated 1=very unhappy to 0.15 when the marriage is rated
5=very happy (holding age, years married, and religiousness constant). Now look at
the impact of age:

> testdata <- data.frame(rating=mean(Affairs$rating),
 age=seq(17, 57, 10),
 yearsmarried=mean(Affairs$yearsmarried),
 religiousness=mean(Affairs$religiousness))
> testdata
 rating age yearsmarried religiousness
1 3.93 17 8.18 3.12
2 3.93 27 8.18 3.12
3 3.93 37 8.18 3.12
4 3.93 47 8.18 3.12
5 3.93 57 8.18 3.12

> testdata$prob <- predict(fit.reduced, newdata=testdata, type="response")
> testdata
 rating age yearsmarried religiousness prob
1 3.93 17 8.18 3.12 0.335
2 3.93 27 8.18 3.12 0.262
3 3.93 37 8.18 3.12 0.199
4 3.93 47 8.18 3.12 0.149
5 3.93 57 8.18 3.12 0.109

Here, you see that as age increases from 17 to 57, the probability of an extramarital
encounter decreases from 0.34 to 0.11, holding the other variables constant. Using this
approach, you can explore the impact of each predictor variable on the outcome.

13.2.3 Overdispersion

The expected variance for data drawn from a binomial distribution is s2 = n p(1 - p),
where n is the number of observations and p is the probability of belonging to the Y=1
group. Overdispersion occurs when the observed variance of the response variable is
larger than what would be expected from a binomial distribution. Overdispersion can
lead to distorted test standard errors and inaccurate tests of significance.

When overdispersion is present, you can still fit a logistic regression using the glm()
function, but in this case, you should use the quasibinomial distribution rather than
the binomial distribution.

One way to detect overdispersion is to compare the residual deviance with the
residual degrees of freedom in your binomial model. If the ratio

f =
Residual deviance

Residual df

is considerably larger than 1, you have evidence of overdispersion. Applying this to the
Affairs example, you have

f = Residual deviance
Residual df

 = 615.36
596

 = 1.03

	 323

which is close to 1, suggesting no overdispersion.
You can also test for overdispersion. To do this, you fit the model twice, but in

the first instance you use family="binomial" and in the second instance you use
family="quasibinomial". If the glm() object returned in the first case is called fit
and the object returned in the second case is called fit.od, then

 pchisq(summary(fit.od)$dispersion * fit$df.residual,
 fit$df.residual, lower = F)

provides the p-value for testing the null hypothesis H0: f = 1 versus the alternative hy-
pothesis H1: f ≠ 1. If p is small (say, less than 0.05), you’d reject the null hypothesis.

Applying this to the Affairs dataset, you have

> fit <- glm(ynaffair ~ age + yearsmarried + religiousness +
 rating, family = binomial(), data = Affairs)
> fit.od <- glm(ynaffair ~ age + yearsmarried + religiousness +
 rating, family = quasibinomial(), data = Affairs)
> pchisq(summary(fit.od)$dispersion * fit$df.residual,
 fit$df.residual, lower = F)

[1] 0.34

The resulting p-value (0.34) is clearly not significant (p>0.05), strengthening our be-
lief that overdispersion isn’t a problem. We’ll return to the issue of overdispersion
when we discuss Poisson regression.

13.2.4 Extensions

Several logistic regression extensions and variations are available in R:

n Robust logistic regression —The glmRob() function in the robust package can be
used to fit a robust generalized linear model, including robust logistic regres-
sion. Robust logistic regression can be helpful when fitting logistic regression
models to data containing outliers and influential observations.

n Multinomial logistic regression —If the response variable has more than two unor-
dered categories (for example, married/widowed/divorced), you can fit a polyto-
mous logistic regression using the mlogit() function in the mlogit package.

n Ordinal logistic regression —If the response variable is a set of ordered categories
(for example, credit risk as poor/good/excellent), you can fit an ordinal logis-
tic regression using the lrm() function in the rms package.

The ability to model a response variable with multiple categories (both ordered and
unordered) is an important extension, but it comes at the expense of greater interpre-
tive complexity. Assessing model fit and regression diagnostics in these cases will also
be more complex.

In the Affairs example, the number of extramarital contacts was dichotomized into a
yes/no response variable because our interest centered on whether respondents had an
affair in the past year. If our interest had been centered on magnitude—the number of
encounters in the past year—we would have analyzed the count data directly. One popular
approach to analyzing count data is Poisson regression, the next topic we’ll address.

	 Chapter 13 Generalized linear models

13.3 Poisson regression
Poisson regression is useful when you’re predicting an outcome variable representing
counts from a set of continuous and/or categorical predictor variables. A comprehen-
sive yet accessible introduction to Poisson regression is provided by Coxe, West, and
Aiken (2009).

To illustrate the fitting of a Poisson regression model, along with some issues
that can come up in the analysis, we’ll use the Breslow seizure data (Breslow, 1993)
provided in the robust package. Specifically, we’ll consider the impact of an
antiepileptic drug treatment on the number of seizures occurring over an eight-week
period following the initiation of therapy. Be sure to install the robust package
before continuing.

Data were collected on the age and number of seizures reported by patients suffering
from simple or complex partial seizures during an eight-week period before, and eight-
week period after, randomization into a drug or placebo condition. sumY (the number
of seizures in the eight-week period post-randomization) is the response variable.
Treatment condition (Trt), age in years (Age), and number of seizures reported in the
baseline eight-week period (Base) are the predictor variables. The baseline number
of seizures and age are included because of their potential effect on the response
variable. We are interested in whether or not evidence exists that the drug treatment
decreases the number of seizures after accounting for these covariates.

First, let’s look at summary statistics for the dataset:

> data(breslow.dat, package="robust")
> names(breslow.dat)
 [1] "ID" "Y1" "Y2" "Y3" "Y4" "Base" "Age" "Trt" "Ysum"
[10] "sumY" "Age10" "Base4"

> summary(breslow.dat[c(6,7,8,10)])
 Base Age Trt sumY
 Min. : 6.0 Min. :18.0 placebo :28 Min. : 0.0
 1st Qu.: 12.0 1st Qu.:23.0 progabide:31 1st Qu.: 11.5
 Median : 22.0 Median :28.0 Median : 16.0
 Mean : 31.2 Mean :28.3 Mean : 33.1
 3rd Qu.: 41.0 3rd Qu.:32.0 3rd Qu.: 36.0
 Max. :151.0 Max. :42.0 Max. :302.0

Note that although there are 12 variables in the dataset, we’re limiting our attention
to the four described earlier. Both the baseline and post-randomization number of sei-
zures is highly skewed. Let’s look at the response variable in more detail. The following
code produces the graphs in figure 13.1.

opar <- par(no.readonly=TRUE)
par(mfrow=c(1,2))
attach(breslow.dat)
hist(sumY, breaks=20, xlab=”Seizure Count”,
 main=”Distribution of Seizures”)
boxplot(sumY ~ Trt, xlab=”Treatment”, main=”Group Comparisons”)
par(opar)

	 325

Distribution of Seizures

Seizure Count

F
re

qu
en

cy

0 50 150 250

0
5

10
15

20
25

30

placebo progabide

0
50

10
0

15
0

20
0

25
0

30
0

Group Comparisons

Treatment

Figure 13.1 Distribution of post-treatment seizure counts (Source:
Breslow seizure data)

You can clearly see the skewed nature of the dependent variable and the possible pres-
ence of outliers. At first glance, the number of seizures in the drug condition appears
to be smaller and have a smaller variance. (You’d expect a smaller variance to accom-
pany a smaller mean with Poisson distributed data.) Unlike standard OLS regression,
this heterogeneity of variance isn’t a problem in Poisson regression.

The next step is to fit the Poisson regression:

> fit <- glm(sumY ~ Base + Age + Trt, data=breslow.dat, family=poisson())
> summary(fit)

Call:
glm(formula = sumY ~ Base + Age + Trt, family = poisson(), data = breslow.

dat)

Deviance Residuals:
 Min 1Q Median 3Q Max
-6.057 -2.043 -0.940 0.793 11.006

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.948826 0.135619 14.37 < 2e-16 ***
Base 0.022652 0.000509 44.48 < 2e-16 ***

	 Chapter 13 Generalized linear models

Age 0.022740 0.004024 5.65 1.6e-08 ***
Trtprogabide -0.152701 0.047805 -3.19 0.0014 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

 Null deviance: 2122.73 on 58 degrees of freedom
Residual deviance: 559.44 on 55 degrees of freedom
AIC: 850.7

Number of Fisher Scoring iterations: 5

The output provides the deviances, regression parameters, standard errors, and tests
that these parameters are 0. Note that each of the predictor variables is significant at
the p<0.05 level.

13.3.1 Interpreting the model parameters

The model coefficients are obtained using the coef() function, or by examining the
Coefficients table in the summary() function output:

> coef(fit)
 (Intercept) Base Age Trtprogabide
 1.9488 0.0227 0.0227 -0.1527

In a Poisson regression, the dependent variable being modeled is the log of the con-
ditional mean loge(l) . The regression parameter 0.0227 for Age indicates that a one-
year increase in age is associated with a 0.03 increase in the log mean number of sei-
zures, holding baseline seizures and treatment condition constant. The intercept is the
log mean number of seizures when each of the predictors equals 0. Because you can’t
have a zero age and none of the participants had a zero number of baseline seizures,
the intercept isn’t meaningful in this case.

It’s usually much easier to interpret the regression coefficients in the original scale
of the dependent variable (number of seizures, rather than log number of seizures).
To accomplish this, exponentiate the coefficients:

> exp(coef(fit))
 (Intercept) Base Age Trtprogabide
 7.020 1.023 1.023 0.858

Now you see that a one-year increase in age multiplies the expected number of sei-
zures by 1.023, holding the other variables constant. This means that increased age
is associated with higher numbers of seizures. More importantly, a one-unit change
in Trt (that is, moving from placebo to progabide) multiplies the expected number
of seizures by 0.86. You’d expect a 20 percent decrease in the number of seizures
for the drug group compared with the placebo group, holding baseline number of
seizures and age constant.

It’s important to remember that, like the exponeniated parameters in logistic

	 327

regression, the exponeniated parameters in the Poisson model have a multiplicative
rather than an additive effect on the response variable. Also, as with logistic regression,
you must evaluate your model for overdispersion.

13.3.2 Overdispersion

In a Poisson distribution, the variance and mean are equal. Overdispersion occurs
in Poisson regression when the observed variance of the response variable is larger
than would be predicted by the Poisson distribution. Because overdispersion is often
encountered when dealing with count data, and can have a negative impact on the
interpretation of the results, we’ll spend some time discussing it.

There are several reasons why overdispersion may occur (Coxe et al., 2009):

n The omission of an important predictor variable can lead to overdispersion.
n Overdispersion can also be caused by a phenomenon known as state depen-

dence. Within observations, each event in a count is assumed to be independent.
For the seizure data, this would imply that for any patient, the probability of a
seizure is independent of each other seizure. But this assumption is often unten-
able. For a given individual, the probability of having a first seizure is unlikely to
be the same as the probability of having a 40th seizure, given that they’ve already
had 39.

n In longitudinal studies, overdispersion can be caused by the clustering inherent
in repeated measures data. We won’t discuss longitudinal Poisson models here.

If overdispersion is present and you don’t account for it in your model, you’ll get stan-
dard errors and confidence intervals that are too small, and significance tests that are
too liberal (that is, you’ll find effects that aren’t really there).

As with logistic regression, overdispersion is suggested if the ratio of the residual
deviance to the residual degrees of freedom is much larger than 1. For your seizure
data, the ratio is

Residual deviance
Residual df

 = 559.44
55

 = 10.17

which is clearly much larger than 1.
The qcc package provides a test for overdispersion in the Poisson case. (Be sure to

download and install this package before first use.) You can test for overdispersion in
the seizure data using the following code:

> library(qcc)
> qcc.overdispersion.test(breslow.dat$sumY, type="poisson")

Overdispersion test Obs.Var/Theor.Var Statistic p-value
 poisson data 62.9 3646 0

Not surprisingly, the significance test has a p-value less than 0.05, strongly suggesting
the presence of overdispersion.

You can still fit a model to your data using the glm() function, by replacing

	 Chapter 13 Generalized linear models

family="poisson" with family="quasipoisson". Doing so is analogous to our
approach to logistic regression when overdispersion is present.

> fit.od <- glm(sumY ~ Base + Age + Trt, data=breslow.dat,
 family=quasipoisson())
> summary(fit.od)

Call:
glm(formula = sumY ~ Base + Age + Trt, family = quasipoisson(),
 data = breslow.dat)

Deviance Residuals:
 Min 1Q Median 3Q Max
-6.057 -2.043 -0.940 0.793 11.006

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.94883 0.46509 4.19 0.00010 ***
Base 0.02265 0.00175 12.97 < 2e-16 ***
Age 0.02274 0.01380 1.65 0.10509
Trtprogabide -0.15270 0.16394 -0.93 0.35570

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for quasipoisson family taken to be 11.8)

 Null deviance: 2122.73 on 58 degrees of freedom
Residual deviance: 559.44 on 55 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 5

Notice that the parameter estimates in the quasi-Poisson approach are identical to
those produced by the Poisson approach. The standard errors are much larger, though.
In this case, the larger standard errors have led to p-values for Trt (and Age) that are
greater than 0.05. When you take overdispersion into account, there’s insufficient evi-
dence to declare that the drug regimen reduces seizure counts more than receiving a
placebo, after controlling for baseline seizure rate and age.

Please remember that this example is used for demonstration purposes only. The
results shouldn’t be taken to imply anything about the efficacy of progabide in the real
world. I’m not a doctor—at least not a medical doctor—and I don’t even play one on
TV.

We’ll finish this exploration of Poisson regression with a discussion of some
important variants and extensions.

13.3.3 Extensions

R provides several useful extensions to the basic Poisson regression model, including
models that allow varying time periods, models that correct for too many zeros, and
robust models that are useful when data includes outliers and influential observations.
I’ll describe each separately.

	 329

POISSON REGRESSION WITH VARYING TIME PERIODS

Our discussion of Poisson regression has been limited to response variables that
measure a count over a fixed length of time (for example, number of seizures in an
eight-week period, number of traffic accidents in the past year, number of pro-social
behaviors in a day). The length of time is constant across observations. But you can fit
Poisson regression models that allow the time period to vary for each observation. In
this case, the outcome variable is a rate.

To analyze rates, you must include a variable (for example, time) that records the
length of time over which the count occurs for each observation. You then change your
model from

to

or equivalently to

To fit this new model, you use the offset option in the glm() function. For example,
assume that the length of time that patients participated post-randomization in the
Breslow study varied from 14 days to 60 days. You could use the rate of seizures as the
dependent variable (assuming you had recorded time for each patient in days), and
fit the model

fit <- glm(sumY ~ Base + Age + Trt, data=breslow.dat,
 offset= log(time), family=poisson())

where sumY is the number of seizures that occurred post-randomization for a patient dur-
ing the time the patient was studied. In this case you’re assuming that rate doesn’t vary
over time (for example, 2 seizures in 4 days is equivalent to 10 seizures in 20 days).

ZERO-INFLATED POISSON REGRESSION

There are times when the number of zero counts in a dataset is larger than would
be predicted by the Poisson model. This can occur when there’s a subgroup of the
population that would never engage in the behavior being counted. For example, in
the Affairs dataset described in the section on logistic regression, the original outcome
variable (affairs) counted the number of extramarital sexual intercourse experience
participants had in the past year. It’s likely that there’s a subgroup of faithful marital
partners who would never have an affair, no matter how long the period of time stud-
ied. These are called structural zeros (primarily by the swingers in the group).

In such cases, you can analyze the data using an approach called zero-inflated Poisson
regression. The approach fits two models simultaneously—one that predicts who would
or would not have an affair, and the second that predicts how many affairs a participant

	 Chapter 13 Generalized linear models

would have if you excluded the permanently faithful. Think of this as a model that
combines a logistic regression (for predicting structural zeros) and a Poisson regression
model (that predicts counts for observations that aren’t structural zeros). Zero-inflated
Poisson regression can be fit using the zeroinfl() function in the pscl package.

ROBUST POISSON REGRESSION

Finally, the glmRob() function in the robust package can be used to fit a robust gener-
alized linear model, including robust Poisson regression. As mentioned previously, this
can be helpful in the presence of outliers and influential observations.

Going further

Generalized linear models are a complex and mathematically sophisticated
subject, but many fine resources are available for learning about them. A good,
short introduction to the topic is Dunteman and Ho (2006). The classic (and
advanced) text on generalized linear models is provided by McCullagh and Nelder
(1989). Comprehensive and accessible presentations are provided by Dobson and
Barnett (2008) and Fox (2008). Faraway (2006) and Fox (2002) provide excellent
introductions within the context of R.

13.4 Summary
In this chapter, we used generalized linear models to expand the range of approaches
available for helping you to understand your data. In particular, the framework allows
you to analyze response variables that are decidedly non-normal, including categori-
cal outcomes and discrete counts. After briefly describing the general approach, we
focused on logistic regression (for analyzing a dichotomous outcome) and Poisson
regression (for analyzing outcomes measured as counts or rates).

We also discussed the important topic of overdispersion, including how to detect
it and how to adjust for it. Finally, we looked at some of the extensions and variations
that are available in R.

Each of the statistical approaches covered so far has dealt with directly observed
and recorded variables. In the next chapter, we’ll look at statistical models that deal
with latent variables—unobserved, theoretical variables that you believe underlie
and account for the behavior of the variables you do observe. In particular, you’ll see
how you can use factor analytic methods to detect and test hypotheses about these
unobserved variables.

331

14Principal components
and factor analysis

This chapter covers
■ Principal components analysis
■

Other latent variable models

Exploratory factor analysis
■

One of the most challenging aspects of multivariate data is the sheer complexity of
the information. If you have a dataset with 100 variables, how do you make sense of
all the interrelationships present? Even with 20 variables, there are 190 pairwise cor-
relations to consider when you’re trying to understand how the individual variables
relate to one another. Two related but distinct methodologies for exploring and
simplifying complex multivariate data are principal components and exploratory
factor analysis.

P rincipal components analysis (PCA) is a data reduction technique that
transforms a larger number of correlated variables into a much smaller set of
uncorrelated variables called principal components. For example, you might use
PCA to transform 30 correlated (and possibly redundant) environmental variables
into five uncorrelated composite variables that retain as much information from the
original set of variables as possible.

332 CHAPTER 14 Principal components and factor analysis

In contrast, e xploratory factor analysis (EFA) is a collection of methods designed
to uncover the latent structure in a given set of variables. It looks for a smaller set of
underlying or latent constructs that can explain the relationships among the observed
or manifest variables. For example, the dataset Harman74.cor contains the correlations
among 24 psychological tests given to 145 seventh- and eighth-grade children. If
you apply EFA to this data, the results suggest that the 276 test intercorrelations can
be explained by the children’s abilities on four underlying factors (verbal ability,
processing speed, deduction, and memory).

The differences between the PCA and EFA models can be seen in figure 14.1.
Principal components (PC1 and PC2) are linear combinations of the observed
variables (X1 to X5). The weights used to form the linear composites are chosen to
maximize the variance each principal component accounts for, while keeping the
components uncorrelated.

In contrast, factors (F1 and F2) are assumed to underlie or “cause” the observed
variables, rather than being linear combinations of them. The errors (e1 to e5)
represent the variance in the observed variables unexplained by the factors. The
circles indicate that the factors and errors aren’t directly observable but are inferred
from the correlations among the variables. In this example, the curved arrow between
the factors indicates that they’re correlated. Correlated factors are common, but not
required, in the EFA model.

The methods described in this chapter require large samples to derive stable
solutions. What constitutes an adequate sample size is somewhat complicated. Until
recently, analysts used rules of thumb like “factor analysis requires 5–10 times as many
subjects as variables.” Recent studies suggest that the required sample size depends on
the number of factors, the number of variables associated with each factor, and how well
the set of factors explains the variance in the variables (Bandalos and Boehm-Kaufman,
2009). I’ll go out on a limb and say that if you have several hundred observations,
you’re probably safe. In this chapter, we’ll look at artificially small problems in order
to keep the output (and page count) manageable.

Figure 14.1 Comparing principal
components and factor analysis
models. The diagrams show the
observed variables (X1 to X5), the
principal components (PC1, PC2),
factors (F1, F2), and errors (e1
to e5).

Principal components and factor analysis in R 333

We’ll start by reviewing the functions in R that can be used to perform PCA or EFA and
give a brief overview of the steps involved. Then we’ll work carefully through two PCA
examples, followed by an extended EFA example. A brief overview of other packages
in R that can be used for fitting latent variable models is provided at the end of the
chapter. This discussion includes packages for confirmatory factor analysis, structural
equation modeling, correspondence analysis, and latent class analysis.

14.1 Principal components and factor analysis in R
In the base installation of R, the functions for PCA and EFA are p rincomp() and f ac-
tanal(), respectively. In this chapter, in this chapter, we’ll focus on functions provided
in the psych package. They offer many more useful options than their base counter-
parts. Additionally, the results are reported in a metric that will be more familiar to
social scientists and more likely to match the output provided by corresponding pro-
grams in other statistical packages such as SAS and SPSS.

The p sych package functions that are most relevant here are listed in table 14.1. Be
sure to install the package before trying the examples in this chapter.

Table 14.1 Useful factor analytic functions in the psych package

Function Description

p rincipal() Principal components analysis with optional rotation

f a() Factor analysis by principal axis, minimum residual, weighted least squares, or
maximum likelihood

f a.parallel() Scree plots with parallel analyses

f actor.plot() Plot the results of a factor or principal components analysis

f a.diagram() Graph factor or principal components loading matrices

s cree() Scree plot for factor and principal components analysis

EFA (and to a lesser degree PCA) are often confusing to new users. The reason is that
they describe a wide range of approaches, and each approach requires several steps
(and decisions) to achieve a final result. The most common steps are as follows:

1 Prepare the data. Both PCA and EFA derive their solutions from the correlations
among the observed variables. Users can input either the raw data matrix or
the correlation matrix to the p rincipal() and f a() functions. If raw data is
input, the correlation matrix will automatically be calculated. Be sure to screen
the data for missing values before proceeding.

2 Select a factor model. Decide whether PCA (data reduction) or EFA (uncovering
latent structure) is a better fit for your research goals. If you select an EFA
approach, you’ll also need to choose a specific factoring method (for example,
maximum likelihood).

334 CHAPTER 14 Principal components and factor analysis

3 Decide how many components/factors to extract.
4 Extract the components/factors.
5 Rotate the components/factors.
6 Interpret the results.
7 Compute component or factor scores.

In the remainder of this chapter, we’ll carefully consider each of the steps, starting with
PCA. At the end of the chapter, you’ll find a detailed flow chart of the possible steps in
PCA/EFA (figure 14.7). The chart will make more sense once you’ve read through the
intervening material.

14.2 Principal components
The goal of PCA is to replace a large number of correlated variables with a smaller
number of uncorrelated variables while capturing as much information in the origi-
nal variables as possible. These derived variables, called principal components,
are linear combinations of the observed variables. Specifically, the first principal
component

PC1 = a1X1 + a2X2 + … + akX k

is the weighted combination of the k observed variables that accounts for the most
variance in the original set of variables. The second principal component is the linear
combination that accounts for the most variance in the original variables, under the
constraint that it’s orthogonal (uncorrelated) to the first principal component. Each
subsequent component maximizes the variance accounted for, while at the same time
remaining uncorrelated with all previous components. Theoretically, you can extract
as many principal components as there are variables. But from a practical viewpoint,
you hope that you can approximate the full set of variables with a much smaller set of
components. Let’s look at a simple example.

The dataset USJudgeRatings contains lawyers’ ratings of state judges in the US
Superior Court. The data frame contains 43 observations on 12 numeric variables. The
variables are listed in table 14.2.

Table 14.2 Variables in the USJudgeRatings dataset

Variable Description Variable Description

C ONT Number of contacts of lawyer with judge P REP Preparation for trial

I NTG Judicial integrity F AMI Familiarity with law

DMNR Demeanor O RAL Sound oral rulings

D ILG Diligence W RIT Sound written rulings

C FMG Case flow managing P HYS Physical ability

D ECI Prompt decisions R TEN Worthy of retention

 Principal components 335

From a practical point of view, can you summarize the 11 evaluative ratings (INTG to
RTEN) with a smaller number of composite variables? If so, how many will you need and
how will they be defined? Because our goal is to simplify the data, we’ll approach this
problem using PCA. The data are in raw score format and there are no missing values.
Therefore, your next decision is deciding how many principal components you’ll need.

14.2.1 Selecting the number of components to extract

Several criteria are available for deciding how many components to retain in a PCA.
They include:

■ Basing the number of components on prior experience and theory
■ Selecting the number of components needed to account for some threshold

cumulative amount of variance in the variables (for example, 80 percent)
■ Selecting the number of components to retain by examining the eigenvalues of

the k x k correlation matrix among the variables

The most common approach is based on the eigenvalues. Each component is associ-
ated with an eigenvalue of the correlation matrix. The first PC is associated with the
largest eigenvalue, the second PC with the second-largest eigenvalue, and so on. The
Kaiser–Harris criterion suggests retaining components with eigenvalues greater than
1. Components with eigenvalues less than 1 explain less variance than contained in
a single variable. In the Cattell Scree test, the eigenvalues are plotted against their
component numbers. Such plots will typically demonstrate a bend or elbow, and the
components above this sharp break are retained. Finally, you can run simulations, ex-
tracting eigenvalues from random data matrices of the same size as the original matrix.
If an eigenvalue based on real data is larger than the average corresponding eigenval-
ues from a set of random data matrices, that component is retained. The approach is
called p arallel analysis (see Hayton, Allen, and Scarpello, 2004 for more details).

You can assess all three eigenvalue criteria at the same time via the f a.parallel()
function. For the 11 ratings (dropping the CONT variable), the necessary code is as
follows:

library(psych)
fa.parallel(USJudgeRatings[,-1], fa="PC", ntrials=100,
 show.legend=FALSE, main="Scree plot with parallel analysis")

This code produces the graph shown in figure 14.2. The plot displays the scree test
based on the observed eigenvalues (as straight-line segments and x’s), the mean eigen-
values derived from 100 random data matrices (as dashed lines), and the eigenvalues
greater than 1 criteria (as a horizontal line at y=1).

All three criteria suggest that a single component is appropriate for summarizing this
dataset. Your next step is to extract the principal component using the principal()
function.

336 CHAPTER 14 Principal components and factor analysis

2 4 6 8 10

0
2

4
6

8
10

Scree plot with parallel analysis

Factor Number

ei
ge

n
va

lu
es

 o
f p

rin
ci

pa
l c

om
po

ne
nt

s

Figure 14.2 Assessing the number of principal components to retain for
the US Judge Rating example. A scree plot (the line with x’s), eigenvalues
greater than 1 criteria (horizontal line), and parallel analysis with 100
simulations (dashed line) suggest retaining a single component.

14.2.2 Extracting principal components

As indicated earlier, the p rincipal() function will perform a principal components
analysis starting with either a raw data matrix or a correlation matrix. The format is

principal(r, nfactors=, rotate=, scores=)

where

■ r is a correlation matrix or a raw data matrix
■ nfactors specifies the number of principal components to extract (1 by

default)
■ rotate indicates the rotation to be applied (varimax by default; see section

14.2.3)
■ scores specifies whether or not to calculate principal component scores (false

by default)

To extract the first principal component, you can use the code in the following listing.

Listing 14.1 Principal components analysis of US Judge Ratings

> library(psych)
> pc <- principal(USJudgeRatings[,-1], nfactors=1)
> pc

 Principal components 337

Principal Components Analysis
Call: principal(r = USJudgeRatings[, -1], nfactors=1)
Standardized loadings based upon correlation matrix
 PC1 h2 u2
INTG 0.92 0.84 0.157
DMNR 0.91 0.83 0.166
DILG 0.97 0.94 0.061
CFMG 0.96 0.93 0.072
DECI 0.96 0.92 0.076
PREP 0.98 0.97 0.030
FAMI 0.98 0.95 0.047
ORAL 1.00 0.99 0.009
WRIT 0.99 0.98 0.020
PHYS 0.89 0.80 0.201
RTEN 0.99 0.97 0.028

 PC1
SS loadings 10.13
Proportion Var 0.92
[… additional output omitted …]

Here, you’re inputting the raw data without the C ONT variable and specifying that one
unrotated component should be extracted. (Rotation will be explained in section
14.3.3.) Because PCA is performed on a correlation matrix, the raw data is automati-
cally converted to a correlation matrix before extracting the components.

The column labeled PC1 contains the component loadings, which are the correlations
of the observed variables with the principal component(s). If you had extracted
more than one principal component, there would be columns for PC2, PC3, and so
on. Component loadings are used to interpret the meaning of components. You can
see that each variable correlates highly with the first component (PC1). It therefore
appears to be a general evaluative dimension.

The column labeled h2 contains the component communalities—the amount of
variance in each variable explained by the components. The u 2 column contains the
component uniquenesses, the amount of variance not accounted for by the components
(or 1–h2). For example, 80 percent of the variance in physical ability (PHYS) ratings
is accounted for by the first PC, and 20 percent is not. PHYS is the variable least well
represented by a one-component solution.

The row labeled SS loadings contains the eigenvalues associated with the
components. The eigenvalues are the standardized variance associated with a particular
component (in this case, the value for the first component is 10.). Finally, the row
labeled P roportion Var represents the amount of variance accounted for by each
component. Here you see that the first principal component accounts for 92 percent
of the variance in the 11 variables.

Let’s consider a second example, one that results in a solution with more than
one principal component. The dataset Harman23.cor contains data on 8 body
measurements for 305 girls. In this case, the dataset consists of the correlations among
the variables rather than the original data (see table 14.3).

338 CHAPTER 14 Principal components and factor analysis

Table 14.3 Correlations among body measurements for 305 girls (Harman23.cor)

height
arm
span forearm

lower
leg weight

bitro
diameter

chest
girth

chest
width

height 1.00 0.85 0.80 0.86 0.47 0.40 0.30 0.38

arm span 0.85 1.00 0.88 0.83 0.38 0.33 0.28 0.41

forearm 0.80 0.88 1.00 0.80 0.38 0.32 0.24 0.34

lower.leg 0.86 0.83 0.8 1.00 0.44 0.33 0.33 0.36

weight 0.47 0.38 0.38 0.44 1.00 0.76 0.73 0.63

bitro diameter 0.40 0.33 0.32 0.33 0.76 1.00 0.58 0.58

chest girth 0.30 0.28 0.24 0.33 0.73 0.58 1.00 0.54

chest width 0.38 0.41 0.34 0.36 0.63 0.58 0.54 1.00

Source: Harman, H. H. (1976) Modern Factor Analysis, Third Edition Revised, University of Chicago Press, Table 2.3.

Again, you wish to replace the original physical measurements with a smaller number
of derived variables. You can determine the number of components to extract using
the following code. In this case, you need to identify the correlation matrix (the cov
component of the Harman23.cor object) and specify the sample size (n.obs):

library(psych)
fa.parallel(Harman23.cor$cov, n.obs=302, fa="pc", ntrials=100,
 show.legend=FALSE, main="Scree plot with parallel analysis")

The resulting graph is displayed in figure 14.3.

1 2 3 4 5 6 7 8

0
1

2
3

4

Scree plot with parallel analysis

Factor Number

ei
ge

n
va

lu
es

 o
f p

rin
ci

pa
l c

om
po

ne
nt

s

Figure 14.3 Assessing
the number of principal
components to retain for the
Body Measurements example.
The scree plot (line with x’s),
eigenvalues greater than
1 criteria (horizontal line),
and parallel analysis with
100 simulations (dashed
line) suggest retaining two
components.

 Principal components 339

You can see from the plot that a two-component solution is suggested. As in the first
example, the Kaiser–Harris criteria, scree test, and parallel analysis agree. This won’t
always be the case, and you may need to extract different numbers of components and
select the solution that appears most useful. The next listing extracts the first two prin-
cipal components from the correlation matrix.

Listing 14.2 Principal components analysis of body measurements

> library(psych)
> PC <- principal(Harman23.cor$cov, nfactors=2, rotate="none")
> PC

Principal Components Analysis
Call: principal(r = Harman23.cor$cov, nfactors = 2, rotate = "none")
Standardized loadings based upon correlation matrix
 PC1 PC2 h2 u2
height 0.86 -0.37 0.88 0.123
arm.span 0.84 -0.44 0.90 0.097
forearm 0.81 -0.46 0.87 0.128
lower.leg 0.84 -0.40 0.86 0.139
weight 0.76 0.52 0.85 0.150
bitro.diameter 0.67 0.53 0.74 0.261
chest.girth 0.62 0.58 0.72 0.283
chest.width 0.67 0.42 0.62 0.375

 PC1 PC2
SS loadings 4.67 1.77
Proportion Var 0.58 0.22
Cumulative Var 0.58 0.81

[… additional output omitted …]

If you examine the PC1 and PC2 columns in listing 14.2, you see that the first compo-
nent accounts for 58 percent of the variance in the physical measurements, while the
second component accounts for 22 percent. Together, the two components account
for 81 percent of the variance. The two components together account for 88 percent
of the variance in the height variable.

Components and factors are interpreted by examining their loadings. The first
component correlates positively with each physical measure and appears to be a
general size factor. The second component contrasts the first four variables (h eight,
a rm.span, f orearm, and l ower.leg), with the second four variables (w eight, b itro.
diameter, c hest.girth, and c hest.width). It therefore appears to be a length-
versus-volume factor. Conceptually, this isn’t an easy construct to work with. Whenever
two or more components have been extracted, you can rotate the solution to make it
more interpretable. This is the topic we’ll turn to next.

14.2.3 Rotating principal components

Rotations are a set of mathematical techniques for transforming the component
loading matrix into one that’s more interpretable. They do this by “purifying” the

340 CHAPTER 14 Principal components and factor analysis

components as much as possible. Rotation methods differ with regard to whether
the resulting components remain uncorrelated (o rthogonal rotation) or are allowed
to correlate (o blique rotation). They also differ in their definition of purifying. The
most popular orthogonal rotation is the v arimax rotation, which attempts to purify
the columns of the loading matrix, so that each component is defined by a limited
set of variables (that is, each column has a few large loadings and many very small
loadings). Applying a varimax rotation to the body measurement data, you get the
results provided in the next listing. You’ll see an example of an oblique rotation in
section 14.4.

Listing 14.3 Principal components analysis with varimax rotation

> rc <- principal(Harman23.cor$cov, nfactors=2, rotate="varimax")
> rc

Principal Components Analysis
Call: principal(r = Harman23.cor$cov, nfactors = 2, rotate = "varimax")
Standardized loadings based upon correlation matrix
 RC1 RC2 h2 u2
height 0.90 0.25 0.88 0.123
arm.span 0.93 0.19 0.90 0.097
forearm 0.92 0.16 0.87 0.128
lower.leg 0.90 0.22 0.86 0.139
weight 0.26 0.88 0.85 0.150
bitro.diameter 0.19 0.84 0.74 0.261
chest.girth 0.11 0.84 0.72 0.283
chest.width 0.26 0.75 0.62 0.375

 RC1 RC2
SS loadings 3.52 2.92
Proportion Var 0.44 0.37
Cumulative Var 0.44 0.81

[… additional output omitted …]

The column names change from PC to RC to denote rotated components. Looking
at the loadings in column R C1, you see that the first component is primarily defined
by the first four variables (length variables). The loadings in the column R C2 indicate
that the second component is primarily defined by variables 5 through 8 (volume vari-
ables). Note that the two components are still uncorrelated and that together, they
still explain the variables equally well. You can see that the rotated solution explains
the variables equally well because the variable communalities haven’t changed. Addi-
tionally, the cumulative variance accounted for by the two-component rotated solution
(81 percent) hasn’t changed. But the proportion of variance accounted for by each in-
dividual component has changed (from 58 percent to 44 percent for component 1 and
from 22 percent to 37 percent for component 2). This spreading out of the variance
across components is common, and technically you should now call them components
rather than principal components (because the variance maximizing properties of indi-
vidual components has not been retained).

 Principal components 341

Our ultimate goal is to replace a larger set of correlated variables with a smaller set
of derived variables. To do this, you need to obtain scores for each observation on the
components.

14.2.4 Obtaining principal components scores

In the US Judge Rating example, you extracted a single principal component from
the raw data describing lawyers’ ratings on 11 variables. The principal() func-
tion makes it easy to obtain scores for each participant on this derived variable (see
the next listing).

Listing 14.4 Obtaining component scores from raw data

> library(psych)
> pc <- principal(USJudgeRatings[,-1], nfactors=1, score=TRUE)
> head(pc$scores)
 PC1
AARONSON,L.H. -0.1857981
ALEXANDER,J.M. 0.7469865
ARMENTANO,A.J. 0.0704772
BERDON,R.I. 1.1358765
BRACKEN,J.J. -2.1586211
BURNS,E.B. 0.7669406

The principal component scores are saved in the s cores element of the object re-
turned by the p rincipal() function when the option s cores=TRUE. If you wanted,
you could now get the correlation between the number of contacts occurring between
a lawyer and a judge and their evaluation of the judge using

> cor(USJudgeRatings$CONT, PC$score)
 PC1
[1,] -0.008815895

Apparently, there’s no relationship between the lawyer’s familiarity and his or her
opinions!

When the principal components analysis is based on a correlation matrix and the
raw data aren’t available, getting principal component scores for each observation is
clearly not possible. But you can get the coefficients used to calculate the principal
components.

In the body measurement data, you have correlations among body measurements,
but you don’t have the individual measurements for these 305 girls. You can get the
scoring coefficients using the code in the following listing.

Listing 14.5 Obtaining principal component scoring coefficients

> library(psych)
> rc <- principal(Harman23.cor$cov, nfactors=2, rotate="varimax")
> round(unclass(rc$weights), 2)
 RC1 RC2
height 0.28 -0.05
arm.span 0.30 -0.08

342 CHAPTER 14 Principal components and factor analysis

forearm 0.30 -0.09
lower.leg 0.28 -0.06
weight -0.06 0.33
bitro.diameter -0.08 0.32
chest.girth -0.10 0.34
chest.width -0.04 0.27

The component scores are obtained using the formulas

PC1 = 0.28*height + 0.30*arm.span + 0.30*forearm + 0.29*lower.leg -
 0.06*weight - 0.08*bitro.diameter - 0.10*chest.girth -
 0.04*chest.width

and

PC2 = -0.05*height - 0.08*arm.span - 0.09*forearm - 0.06*lower.leg +
 0.33*weight + 0.32*bitro.diameter + 0.34*chest.girth +
 0.27*chest.width

These equations assume that the physical measurements have been standardized
(mean=0, sd=1). Note that the weights for PC1 tend to be around 0.3 or 0. The same is
true for PC2. As a practical matter, you could simplify your approach further by taking
the first composite variable as the mean of the standardized scores for the first four
variables. Similarly, you could define the second composite variable as the mean of
the standardized scores for the second four variables. This is typically what I’d do in
practice.

Little Jiffy conquers the world
There’s quite a bit of confusion among data analysts regarding PCA and EFA. One
reason for this is historical and can be traced back to a program called Little Jiffy (no
kidding). Little Jiffy was one of the most popular early programs for factor analysis,
and defaulted to a principal components analysis, extracting components with eigen-
values greater than 1 and rotating them to a varimax solution. The program was so
widely used that many social scientists came to think of this defaults as synonymous
with EFA. Many later statistical packages also incorporated these defaults in their
EFA programs.

As I hope you’ll see in the next section, there are important and fundamental dif-
ferences between PCA and EFA. To learn more about the PCA/EFA confusion, see
Hayton, Allen, and Scarpello, 2004.

If your goal is to look for latent underlying variables that explain your observed vari-
ables, you can turn to factor analysis. This is the topic of the next section.

14.3 Exploratory factor analysis
The goal of EFA is to explain the correlations among a set of observed variables by un-
covering a smaller set of more fundamental unobserved variables underlying the data.
These hypothetical, unobserved variables are called factors. (Each factor is assumed to
explain the variance shared among two or more observed variables, so technically, they
are called c ommon factors.)

Exploratory factor analysis 343

The model can be represented as

Xi = a1F1 + a2F2 + … + apFp
 + Ui

where Xi is the ith observed variable (i = 1…k), Fj are the common factors (j =1…p),
and p<k. Ui is the portion of variable Xi unique to that variable (not explained by the
common factors). The ai can be thought of as the degree to which each factor contrib-
utes to the composition of an observed variable. If we go back to the Harman74.cor
example at the beginning of this chapter, we’d say that an individual’s scores on each
of the 24 observed psychological tests is due to a weighted combination of their ability
on four underlying psychological constructs.

Although the PCA and EFA models differ, many of the steps will appear similar. To
illustrate the process, we’ll apply EFA to the correlations among six psychological tests.
One hundred twelve individuals were given six tests, including a nonverbal measure of
general intelligence (general), a picture-completion test (picture), a block design
test (blocks), a maze test (maze), a reading comprehension test (reading), and a
vocabulary test (vocab). Can we explain the participants’ scores on these tests with a
smaller number of underlying or latent psychological constructs?

The covariance matrix among the variables is provided in the dataset ability.cov.
You can transform this into a correlation matrix using the c ov2cor() function. There
are no missing data present.

> options(digits=2)
> covariances <- ability.cov$cov
> correlations <- cov2cor(covariances)
> correlations
 general picture blocks maze reading vocab
general 1.00 0.47 0.55 0.34 0.58 0.51
picture 0.47 1.00 0.57 0.19 0.26 0.24
blocks 0.55 0.57 1.00 0.45 0.35 0.36
maze 0.34 0.19 0.45 1.00 0.18 0.22
reading 0.58 0.26 0.35 0.18 1.00 0.79
vocab 0.51 0.24 0.36 0.22 0.79 1.00

Because you’re looking for hypothetical constructs that explain the data, you’ll use an
EFA approach. As in PCA, the next task is to decide how many factors to extract.

14.3.1 Deciding how many common factors to extract

To decide on the number of factors to extract, turn to the f a.parallel() function:

> library(psych)
> covariances <- ability.cov$cov
> correlations <- cov2cor(covariances)
> fa.parallel(correlations, n.obs=112, fa="both", ntrials=100,
 main="Scree plots with parallel analysis")

The resulting plot is shown in figure 14.4. Notice you’ve requested that the function
display results for both a principal components and common factor approach, so that
you can compare them (fa="both").

344 CHAPTER 14 Principal components and factor analysis

1 2 3 4 5 6

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Scree plots with parallel analysis

Factor Number

ei
ge

nv
al

ue
s

of
 p

rin
ci

pa
l c

om
po

ne
nt

s
an

d
fa

ct
or

 a
na

ly
si

s

PC Actual Data
 PC Simulated Data
FA Actual Data
FA Simulated Data

Figure 14.4 Assessing the number of
factors to retain for the psychological
tests example. Results for both PCA
and EFA are present. The PCA results
suggest one or two components. The
EFA results suggest two factors.

There are several things to notice in this graph. If you’d taken a PCA approach, you
might have chosen one component (scree test, parallel analysis) or two components
(eigenvalues greater than 1). When in doubt, it’s usually a better idea to overfactor than
to underfactor. Overfactoring tends to lead to less distortion of the “true” solution.

Looking at the EFA results, a two-factor solution is clearly indicated. The first two
eigenvalues (triangles) are above the bend in the scree test and also above the mean
eigenvalues based on 100 simulated data matrices. For EFA, the Kaiser–Harris criterion
is number of eigenvalues above 0, rather than 1. (Most people don’t realize this, so it’s
a good way to win bets at parties.) In the present case the Kaiser–Harris criteria also
suggest two factors.

14.3.2 Extracting common factors

Now that you’ve decided to extract two factors, you can use the f a() function to obtain
your solution. The format of the fa() function is

fa(r, nfactors=, n.obs=, rotate=, scores=, fm=)

where

■ r is a correlation matrix or a raw data matrix
■ nfactors specifies the number of factors to extract (1 by default)
■ n.obs is the number of observations (if a correlation matrix is input)
■ rotate indicates the rotation to be applied (oblimin by default)
■ scores specifies whether or not to calculate factor scores (false by default)
■ fm specifies the factoring method (minres by default)

Unlike PCA, there are many methods of extracting common factors. They include
maximum likelihood (ml), iterated principal axis (pa), weighted least square (wls),

Exploratory factor analysis 345

generalized weighted least squares (gls), and minimum residual (minres). Statisti-
cians tend to prefer the maximum likelihood approach because of its well-defined
statistical model. Sometimes, this approach fails to converge, in which case the iterated
principal axis option often works well. To learn more about the different approaches,
see Mulaik (2009) and Gorsuch (1983).

For this example, you’ll extract the unrotated factors using the iterated principal
axis (fm="pa") approach. The results are given in the next listing.

Listing 14.6 Principal axis factoring without rotation

> fa <- fa(correlations, nfactors=2, rotate="none", fm="pa")
> fa
Factor Analysis using method = pa
Call: fa(r = correlations, nfactors = 2, rotate = "none", fm = "pa")
Standardized loadings based upon correlation matrix
 PA1 PA2 h2 u2
general 0.75 0.07 0.57 0.43
picture 0.52 0.32 0.38 0.62
blocks 0.75 0.52 0.83 0.17
maze 0.39 0.22 0.20 0.80
reading 0.81 -0.51 0.91 0.09
vocab 0.73 -0.39 0.69 0.31

 PA1 PA2
SS loadings 2.75 0.83
Proportion Var 0.46 0.14
Cumulative Var 0.46 0.60
[… additional output deleted …]

You can see that the two factors account for 60 percent of the variance in the six psy-
chological tests. When you examine the loadings, though, they aren’t easy to interpret.
Rotating them should help.

14.3.3 Rotating factors

You can rotate the two-factor solution from section 14.3.4 using either an o rthogonal
rotation or an o blique rotation. Let’s try both so you can see how they differ. First try
an orthogonal rotation (in the next listing).

Listing 14.7 Factor extraction with orthogonal rotation

> fa.varimax <- fa(correlations, nfactors=2, rotate="varimax", fm="pa")
> fa.varimax
Factor Analysis using method = pa
Call: fa(r = correlations, nfactors = 2, rotate = "varimax", fm = "pa")
Standardized loadings based upon correlation matrix
 PA1 PA2 h2 u2
general 0.49 0.57 0.57 0.43
picture 0.16 0.59 0.38 0.62
blocks 0.18 0.89 0.83 0.17
maze 0.13 0.43 0.20 0.80
reading 0.93 0.20 0.91 0.09

346 CHAPTER 14 Principal components and factor analysis

vocab 0.80 0.23 0.69 0.31

 PA1 PA2
SS loadings 1.83 1.75
Proportion Var 0.30 0.29
Cumulative Var 0.30 0.60

[… additional output omitted …]

Looking at the factor loadings, the factors are certainly easier to interpret. Reading
and vocabulary load on the first factor, and picture completion, block design, and
mazes loads on the second factor. The general nonverbal intelligence measure loads
on both factors. This may indicate a verbal intelligence factor and a nonverbal intel-
ligence factor.

By using an orthogonal rotation, you’ve artificially forced the two factors to be
uncorrelated. What would you find if you allowed the two factors to correlate? You can
try an oblique rotation such as promax (see the next listing).

Listing 14.8 Factor extraction with oblique rotation

> fa.promax <- fa(correlations, nfactors=2, rotate="promax", fm="pa")
> fa.promax
Factor Analysis using method = pa
Call: fa(r = correlations, nfactors = 2, rotate = "promax", fm = "pa")
Standardized loadings based upon correlation matrix
 PA1 PA2 h2 u2
general 0.36 0.49 0.57 0.43
picture -0.04 0.64 0.38 0.62
blocks -0.12 0.98 0.83 0.17
maze -0.01 0.45 0.20 0.80
reading 1.01 -0.11 0.91 0.09
vocab 0.84 -0.02 0.69 0.31

 PA1 PA2
SS loadings 1.82 1.76
Proportion Var 0.30 0.29
Cumulative Var 0.30 0.60

 With factor correlations of
 PA1 PA2
PA1 1.00 0.57
PA2 0.57 1.00
[… additional output omitted …]

Several differences exist between the orthogonal and oblique solutions. In an orthogonal
solution, attention focuses on the f actor structure matrix (the correlations of the variables
with the factors). In an oblique solution, there are three matrices to consider: the factor
structure matrix, the f actor pattern matrix, and the f actor intercorrelation matrix.

The factor pattern matrix is a matrix of standardized regression coefficients. They
give the weights for predicting the variables from the factors. The factor intercorrelation
matrix gives the correlations among the factors.

Exploratory factor analysis 347

In listing 14.8, the values in the P A1 and P A2 columns constitute the factor
pattern matrix. They’re standardized regression coefficients rather than correlations.
Examination of the columns of this matrix is still used to name the factors (although
there’s some controversy here). Again you’d find a verbal and nonverbal factor.

The factor intercorrelation matrix indicates that the correlation between the two
factors is 0.57. This is a hefty correlation. If the factor intercorrelations had been low,
you might have gone back to an orthogonal solution to keep things simple.

The factor structure matrix (or factor loading matrix) isn’t provided. But you can
easily calculate it using the formula F = P*Phi, where F is the factor loading matrix,
P is the factor pattern matrix, and Phi is the factor intercorrelation matrix. A simple
function for carrying out the multiplication is as follows:

fsm <- function(oblique) {
if (class(oblique)[2]=="fa" & is.null(oblique$Phi)) {

warning("Object doesn't look like oblique EFA")
} else {

P <- unclass(oblique$loading)
F <- P %*% oblique$Phi
colnames(F) <- c("PA1", "PA2")

 return(F)
 }
}

Applying this to the example, you get

> fsm(fa.promax)
 PA1 PA2
general 0.64 0.69
picture 0.33 0.61
blocks 0.44 0.91
maze 0.25 0.45
reading 0.95 0.47
vocab 0.83 0.46

Now you can review the correlations between the variables and the factors. Compar-
ing them to the factor loading matrix in the orthogonal solution, you see that these
columns aren’t as pure. This is because you’ve allowed the underlying factors to be cor-
related. Although the oblique approach is more complicated, it’s often a more realistic
model of the data.

You can graph an orthogonal or oblique solution using the f actor.plot() or f a.
diagram() function. The code

 factor.plot(fa.promax, labels=rownames(fa.promax$loadings))

produces the graph in figure 14.5.
The code

fa.diagram(fa.promax, simple=FALSE)

produces the diagram in figure 14.6. If you let simple=TRUE, only the largest loading
per item would be displayed. It shows the largest loadings for each factor, as well as
the correlations between the factors. This type of diagram is helpful when there are
several factors.

348 CHAPTER 14 Principal components and factor analysis

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Factor Analysis

PA1

PA
2 general

picture

blocks

maze

reading

vocab

Figure 14.5 Two factor plot for
the psychological tests in
ability.cov. Vocab and reading
load on the first factor (PA1).
while blocks, picture, and maze
load on the second factor (PA2).
The general intelligence test
loads on both.

When you’re dealing with data in real life, it’s unlikely that you’d apply factor analysis
to a dataset with so few variables. You’ve done it here to keep things manageable. If
you’d like to test your skills, try factor-analyzing the 24 psychological tests contained in
Harman74.cor. The code

library(psych)
fa.24tests <- fa(Harman74.cor$cov, nfactors=4, rotate="promax")

should get you started!

Factor Analysis

reading

vocab

blocks

picture

general

maze

PA1

1

0.8

0.4

PA2

1

0.6

0.5

0.5

0.6

Figure 14.6 Diagram of the oblique two
factor solution for the psychological test
data in ability.cov

Other latent variable models 349

14.3.4 Factor scores

Compared with PCA, the goal of EFA is much less likely to be the calculation of factor
scores. But these scores are easily obtained from the f a() function by including the
score=TRUE option (when raw data is available). Additionally, the scoring coefficients
(standardized regression weights) are available in the weights element of the object
returned.

For the ability.cov dataset, you can obtain the beta weights for calculating the
factor score estimates for the two-factor oblique solution using

> fa.promax$weights
 [,1] [,2]
general 0.080 0.210
picture 0.021 0.090
blocks 0.044 0.695
maze 0.027 0.035
reading 0.739 0.044
vocab 0.176 0.039

Unlike component scores, which are calculated exactly, factor scores can only be es-
timated. Several methods exist. The f a() function uses the regression approach. To
learn more about factor scores, see DiStefano, Zhu, and Mîndrilă , (2009).

Before moving on, let’s briefly review other R packages that are useful for exploratory
factor analysis.

14.3.5 Other EFA-related packages

R contains a number of other contributed packages that are useful for conducting
factor analyses. The F actoMineR package provides methods for PCA and EFA, as well
as other latent variable models. It provides many options that we haven’t considered
here, including the use of both numeric and categorical variables. The F AiR package
estimates factor analysis models using a genetic algorithm that permits the ability to
impose inequality restrictions on model parameters. The G PArotation package offers
many additional factor rotation methods. Finally, the n Factors package offers sophis-
ticated techniques for determining the number of factors underlying data.

14.4 Other latent variable models
EFA is only one of a wide range of latent variable models used in statistics. We’ll end
this chapter with a brief description of other models that can be fit within R. These
include models that test a priori theories, that can handle mixed data types (numeric
and categorical), or that are based solely on categorical multiway tables.

In EFA, you allow the data to determine the number of factors to be extracted and
their meaning. But you could start with a theory about how many factors underlie a
set of variables, how the variables load on those factors, and how the factors correlate
with one another. You could then test this theory against a set of collected data. The
approach is called c onfirmatory factor analysis (CFA).

CFA is a subset of a methodology called s tructural equation modeling (SEM). SEM
not only allows you to posit the number and composition of underlying factors but

350 CHAPTER 14 Principal components and factor analysis

how these factors impact one another as well. You can think of SEM as a combination
of confirmatory factor analyses (for the variables) and regression analyses (for the
factors). The resulting output includes statistical tests and fit indices. There are several
excellent packages for CFA and SEM in R. They include s em, o penMx, and l avaan.

The ltm package can be used to fit latent models to the items contained in tests
and questionnaires. The methodology is often used to create large scale standardized
tests. Examples include the S cholastic Aptitude Test (SAT) and the G raduate Record
Exam (GRE).

Latent class models (where the underlying factors are assumed to be categorical
rather than continuous) can be fit with the F lexMix, l cmm, r andomLCA, and p oLC
packages. The l cda package performs latent class discriminant analysis, and the l sa
package performs latent semantic analysis, a methodology used in natural language
processing.

The ca package provides functions for simple and multiple correspondence analysis.
These methods allow you to explore the structure of categorical variables in two-way
and multiway tables, respectively.

Finally, R contains numerous methods for m ultidimensional scaling (MDS). MDS is
designed to detect underlying dimensions that explain the similarities and distances
between a set of measured objects (for example, countries). The c mdscale() function
in the base installation performs a classical MDS, while the i soMDS() function in the
M ASS package performs a nonmetric MDS. The vegan package also contains functions
for classical and nonmetric MDS.

14.5 Summary
In this chapter, we reviewed methods for principal components (PCA) analysis and
exploratory factor analysis (EFA). PCA is a useful data reduction method that can re-
place a large number of correlated variables with a smaller number of uncorrelated
variables, simplifying the analyses. EFA contains a broad range of methods for identify-
ing latent or unobserved constructs (factors) that may underlie a set of observed or
manifest variables.

Whereas the goal of PCA is typically to summarize the data and reduce its
dimensionality, EFA can be used as a hypothesis generating tool, useful when you’re
trying to understand the relationships between a large number of variables. It’s often
used in the social sciences for theory development.

Although there are many superficial similarities between the two approaches,
important differences exist as well. In this chapter, we considered the models underlying
each, methods for selecting the number of components/factors to extract, methods
for extracting components/factors and rotating (transforming) them to enhance
interpretability, and techniques for obtaining component or factor scores. The steps
in a PCA or EFA are summarized in figure 14.7. We ended the chapter with a brief
discussion of other latent variable methods available in R.

 Summary 351

Select Factor Model

Components Common Factor

Principal Axis

Maximum Likelihood

Weighted Least Squares

Minimum Residual

Select Number of
Components/Factors

Kaiser/Harris Scree Test Parallel Analysis

TheoryInterpretabilityVariance Accounted

Rotate Components/Factors

Orthogonal Oblique

Interpret Components/Factors

Principal Components

Varimax

Other Orthogonal Rota�on

Promax

Other Oblique Rota�on

Calculate Factor Scores

Figure 14.7 A principal components/exploratory factor analysis decision chart

Because PCA and EFA are based on correlation matrices, it’s important that any missing
data be eliminated before proceeding with the analyses. Section 4.5 briefly mentioned
simple methods for dealing with missing data. In the next chapter, we’ll consider more
sophisticated methods for both understanding and handling missing values.

352

15Advanced methods
for missing data

This chapter covers
■

Visualization of missing data patterns

Identification of missing data
■

 Complete-case analysis■

■ Multiple imputation of missing data

In previous chapters, we focused on the analysis of complete datasets (that is, data-
sets without missing values). Although doing so has helped simplify the presentation
of statistical and graphical methods, in the real world, missing data are ubiquitous.

 In some ways, the impact of missing data is a subject that most of us want to avoid.
Statistics books may not mention it or may limit discussion to a few paragraphs.
Statistical packages offer automatic handling of missing data using methods that
may not be optimal. Even though most data analyses (at least in social sciences)
involve missing data, this topic is rarely mentioned in the methods and results
sections of journal articles. Given how often missing values occur, and the degree to
which their presence can invalidate study results, it’s fair to say that the subject has
received insufficient attention outside of specialized books and courses.

Steps in dealing with missing data 353

Data can be missing for many reasons. Survey participants may forget to answer one
or more questions, refuse to answer sensitive questions, or grow fatigued and fail to
complete a long questionnaire. Study participants may miss appointments or drop out
of a study prematurely. Recording equipment may fail, internet connections may be
lost, and data may be miscoded. The presence of missing data may even be planned.
For example, to increase study efficiency or reduce costs, you may choose not to collect
all data from all participants. Finally, data may be lost for reasons that you’re never able
to ascertain.

Unfortunately, most statistical methods assume that you’re working with complete
matrices, vectors, and data frames. In most cases, you have to eliminate missing data
before you address the substantive questions that led you to collect the data. You
can eliminate missing data by (1) removing cases with missing data, or (2) replacing
missing data with reasonable substitute values. In either case, the end result is a dataset
without missing values.

In this chapter, we’ll look at both traditional and modern approaches for dealing
with missing data. We’ll primarily use the V IM and m ice packages. The command
install.packages(c("VIM", "mice")) will download and install both.

To motivate the discussion, we’ll look at the mammal sleep dataset (sleep) provided
in the VIM package (not to be confused with the sleep dataset describing the impact
of drugs on sleep provided in the base installation). The data come from a study by
Allison and Chichetti (1976) that examined the relationship between sleep, ecological,
and constitutional variables for 62 mammal species. The authors were interested in why
animals’ sleep requirements vary from species to species. The sleep variables served as
the dependent variables, whereas the ecological and constitutional variables served as
the independent or predictor variables.

Sleep variables included length of dreaming sleep (Dream), nondreaming sleep
(NonD), and their sum (Sleep). The constitutional variables included body weight in
kilograms (BodyWgt), brain weight in grams (BrainWgt), life span in years (Span),
and gestation time in days (Gest). The ecological variables included degree to which
species were preyed upon (Pred), degree of their exposure while sleeping (Exp), and
overall danger (Danger) faced. The ecological variables were measured on 5-point
rating scales that ranged from 1 (low) to 5 (high).

In their original article, Allison and Chichetti limited their analyses to the species
that had complete data. We’ll go further, analyzing all 62 cases using a multiple
imputation approach.

15.1 Steps in dealing with missing data
Readers new to the study of missing data will find a bewildering array of approaches,
critiques, and methodologies. The classic text in this area is Little and Rubin (2002).
Excellent, accessible reviews can be found in Allison (2001), Schafer and Graham
(2002) and Schlomer, Bauman, and Card (2010). A comprehensive approach will usu-
ally include the following steps:

354 CHAPTER 15 Advanced methods for missing data

1 Identify the missing data.
2 Examine the causes of the missing data.
3 Delete the cases containing missing data or replace (impute) the missing

values with reasonable alternative data values.

Unfortunately, identifying missing data is usually the only unambiguous step. Learning
why data are missing depends on your understanding of the processes that generated
the data. Deciding how to treat missing values will depend on your estimation of which
procedures will produce the most reliable and accurate results.

A classification system for missing data
Statisticians typically classify missing data into one of three types. These types are
usually described in probabilistic terms, but the underlying ideas are straightforward.
We’ll use the measurement of dreaming in the sleep study (where 12 animals have
missing values) to illustrate each type in turn.

(1) Missing completely at random—If the presence of missing data on a variable is
unrelated to any other observed or unobserved variable, then the data are m issing
completely at random (MCAR). If there’s no systematic reason why dream sleep is
missing for these 12 animals, the data is said to be MCAR. Note that if every vari-
able with missing data is MCAR, you can consider the complete cases to be a simple
random sample from the larger dataset.

(2) Missing at random—If the presence of missing data on a variable is related to
other observed variables but not to its own unobserved value, the data is m issing
at random (MAR). For example, if animals with smaller body weights are more likely
to have missing values for dream sleep (perhaps because it’s harder to observe
smaller animals), and the “missingness” is unrelated to an animal’s time spent
dreaming, the data would be considered MAR. In this case, the presence or absence
of dream sleep data would be random, once you controlled for body weight.

(3) Not missing at random—If the missing data for a variable is neither MCAR nor
MAR, it is n ot missing at random (NMAR). For example, if animals that spend less
time dreaming are also more likely to have a missing dream value (perhaps because
it’s harder to measure shorter events), the data would be considered NMAR.

Most approaches to missing data assume that the data is either MCAR or MAR.
In this case, you can ignore the mechanism producing the missing data and (after
replacing or deleting the missing data) model the relationships of interest directly.
Data that’s NMAR can be difficult to analyze properly. When data is NMAR, you have
to model the mechanisms that produced the missing values, as well as the relation-
ships of interest. (Current approaches to analyzing NMAR data include the use of
selection models and pattern mixtures. The analysis of NMAR data can be quite
complex and is beyond the scope of this book.)

Identifying missing values 355

Identify Missing Values
is.na()

!complete.cases()
VIM package

Delete Missing Values Maximum Likelihood
Estimation

mvmle package

Impute Missing Values

Casewise (Listwise)
omit.na()

Available Case
(Pairwise)

Option available for
some functions

Single (simple)
Imputation
Hmisc Package

Multiple Imputation
mi package

mice package
amelia package
mitools package

Figure 15.1 Methods for handling incomplete data, along with the R packages that support them

There are many methods for dealing with missing data—and no guarantee that they’ll
produce the same results. Figure 15.1 describes an array of methods used for handling
incomplete data and the R packages that support them.

A complete review of missing data methodologies would require a book in itself. In
this chapter, we’ll review methods for exploring missing values patterns and focus on
the three most popular methods for dealing with incomplete data (a rational approach,
listwise deletion, and multiple imputation). We’ll end the chapter with a brief discussion
of other methods, including those that are useful in special circumstances.

15.2 Identifying missing values
To begin, let’s review the material introduced in chapter 4, section 4.5, and expand on it.
R represents missing values using the symbol N A (not available) and impossible values by
the symbol N aN (not a number). In addition, the symbols Inf and -Inf represent posi-
tive infinity and negative infinity, respectively. The functions i s.na(), i s.nan(), and
i s.infinite() can be used to identify missing, impossible, and infinite values respec-
tively. Each returns either TRUE or FALSE. Examples are given in table 15.1.

Table 15.1 Examples of return values for the is.na(), is.nan(), and is.infinite() functions

x is.na(x) is.nan(x) is.infinite(x)

x <- NA TRUE FALSE FALSE

x <- 0 / 0 TRUE TRUE FALSE

x <- 1 / 0 FALSE FALSE TRUE

356 CHAPTER 15 Advanced methods for missing data

These functions return an object that’s the same size as its argument, with each ele-
ment replaced by TRUE if the element is of the type being tested, and FALSE otherwise.
For example, let y <- c(1, 2, 3, NA). Then is.na(y) will return the vector
c(FALSE, FALSE, FALSE, TRUE).

The function c omplete.cases() can be used to identify the rows in a matrix or data
frame that don’t contain missing data. It returns a logical vector with TRUE for every row that
contains complete cases and FALSE for every row that has one or more missing values.

Let’s apply this to the sleep dataset:

load the dataset
data(sleep, package="VIM")

list the rows that do not have missing values
sleep[complete.cases(sleep),]

list the rows that have one or more missing values
sleep[!complete.cases(sleep),]

Examining the output reveals that 42 cases have complete data and 20 cases have one
or more missing values.

Because the logical values TRUE and FALSE are equivalent to the numeric values
1 and 0, the s um() and m ean() functions can be used to obtain useful information
about missing data. Consider the following:

> sum(is.na(sleep$Dream))
[1] 12
> mean(is.na(sleep$Dream))
[1] 0.19
> mean(!complete.cases(sleep))
[1] 0.32

The results indicate that there are 12 missing values for the variable D ream. Nineteen
percent of the cases have a missing value on this variable. In addition, 32 percent of the
cases in the dataset contain one or more missing values.

There are two things to keep in mind when identifying missing values. First, the
c omplete.cases() function only identifies NA and NaN as missing. Infinite values (Inf
and –Inf) are treated as valid values. Second, you must use missing values functions,
like those in this section, to identify the missing values in R data objects. Logical
comparisons such as myvar == NA are never true.

Now that you know how to identify missing values programmatically, let’s look at
tools that help you explore possible patterns in the occurrence of missing data.

15.3 Exploring missing values patterns
Before deciding how to deal with missing data, you’ll find it useful to determine which
variables have missing values, in what amounts, and in what combinations. In this sec-
tion, we’ll review tabular, graphical, and correlational methods for exploring missing
values patterns. Ultimately, you want to understand why the data is missing. The answer
will have implications for how you proceed with further analyses.

Exploring missing values patterns 357

15.3.1 Tabulating missing values

You’ve already seen a rudimentary approach to identifying missing values. You can
use the c omplete.cases() function from section 15.2 to list cases that are complete,
or conversely, list cases that have one or more missing values. As the size of a dataset
grows, though, it becomes a less attractive approach. In this case, you can turn to other
R functions.

The m d.pattern() function in the m ice package will produce a tabulation of the
missing data patterns in a matrix or data frame. Applying this function to the sleep
dataset, you get the following:

> library(mice)
> data(sleep, package="VIM")
> md.pattern(sleep)
 BodyWgt BrainWgt Pred Exp Danger Sleep Span Gest Dream NonD
42 1 1 1 1 1 1 1 1 1 1 0
 2 1 1 1 1 1 1 0 1 1 1 1
 3 1 1 1 1 1 1 1 0 1 1 1
 9 1 1 1 1 1 1 1 1 0 0 2
 2 1 1 1 1 1 0 1 1 1 0 2
 1 1 1 1 1 1 1 0 0 1 1 2
 2 1 1 1 1 1 0 1 1 0 0 3
 1 1 1 1 1 1 1 0 1 0 0 3
 0 0 0 0 0 4 4 4 12 14 38

The 1’s and 0’s in the body of the table indicate the missing values patterns, with a 0
indicating a missing value for a given column variable and a 1 indicating a nonmissing
value. The first row describes the pattern of “no missing values” (all elements are 1).
The second row describes the pattern “no missing values except for Span.” The first
column indicates the number of cases in each missing data pattern, and the last col-
umn indicates the number of variables with missing values present in each pattern.
Here you can see that there are 42 cases without missing data and 2 cases that are
missing Span alone. Nine cases are missing both NonD and Dream values. The dataset
contains a total of (42 x 0) + (2 x 1) + … + (1 x 3) = 38 missing values. The last row gives
the total number of missing values present on each variable.

15.3.2 Exploring missing data visually

Although the tabular output from the md.pattern() function is compact, I often find
it easier to discern patterns visually. Luckily, the VIM package provides numerous func-
tions for visualizing missing values patterns in datasets. In this section, we’ll review
several, including aggr(), matrixplot(), and scattMiss().

The a ggr() function plots the number of missing values for each variable alone
and for each combination of variables. For example, the code

library("VIM")
aggr(sleep, prop=FALSE, numbers=TRUE)

358 CHAPTER 15 Advanced methods for missing data

N
um

be
r

of
 M

is
si

ng
s

0
2

4
6

8
10

12
14

B
od

yW
gt

B
ra

in
W

gt
N

on
D

D
re

am
S

le
ep

S
pa

n
G

es
t

P
re

d
E

xp
D

an
ge

r

C
om

bi
na

tio
ns

B
od

yW
gt

B
ra

in
W

gt
N

on
D

D
re

am
S

le
ep

S
pa

n
G

es
t

P
re

d
E

xp
D

an
ge

r

42

9

3

2

2

2

1

1

Figure 15.2 aggr()
produced plot of missing
values patterns for the sleep
dataset.

produces the graph in figure 15.2. (The VIM package opens up a GUI interface. You
can close it; we’ll be using code to accomplish the tasks in this chapter.)

You can see that the variable NonD has the largest number of missing values (14),
and that 2 mammals are missing NonD, Dream, and Sleep scores. Forty-two mammals
have no missing data.

The statement aggr(sleep, prop=TRUE, numbers=TRUE)produces the same plot,
but proportions are displayed instead of counts. The option numbers=FALSE (the
default) suppresses the numeric labels.

The m atrixplot() function produces a plot displaying the data for each case.
A graph created using matrixplot(sleep) is displayed in figure 15.3. Here, the
numeric data is rescaled to the interval [0, 1] and represented by grayscale colors, with
lighter colors representing lower values and darker colors representing larger values.
By default, missing values are represented in red. Note that in figure 15.3, red has
been replaced with crosshatching by hand, so that the missing values are viewable in
grayscale. It will look different when you create the graph yourself.

The graph is interactive: clicking on a column will re-sort the matrix by that variable.
The rows in figure 15.3 are sorted in descending order by BodyWgt. A matrix plot
allows you to see if the presence of missing values on one or more variables is related
to the actual values of other variables. Here, you can see that there are no missing
values on sleep variables (Dream, NonD, Sleep) for low values of body or brain weight
(BodyWgt, BrainWgt).

Exploring missing values patterns 359

Figure 15.3 Matrix plot of
actual and missing values
by case (row) for the sleep
dataset. The matrix is
sorted by BodyWgt.

The m arginplot() function produces a scatter plot between two variables with infor-
mation about missing values shown in the plot’s margins. Consider the relationship be-
tween amount of dream sleep and the length of a mammal’s gestation. The statement

marginplot(sleep[c("Gest","Dream")], pch=c(20),
 col=c("darkgray", "red", "blue"))

produces the graph in figure 15.4. The p ch and c ol parameters are optional and pro-
vide control over the plotting symbols and colors used.

The body of the graph displays the scatter plot between Gest and Dream (based
on complete cases for the two variables). In the left margin, box plots display the
distribution of Dream for mammals with (dark gray) and without (red) Gest values.
Note that in grayscale, red is the darker shade. Four red dots represent the values of
Dream for mammals missing Gest scores. In the bottom margin, the roles of Gest and
Dream are reversed. You can see that a negative relationship exists between length
of gestation and dream sleep and that dream sleep tends to be higher for mammals
that are missing a gestation score. The number of observations with missing values on
both variables at the same time is printed in blue at the intersection of both margins
(bottom left).

The V IM package has many graphs that can help you understand the role of missing
data in a dataset and is well worth exploring. There are functions to produce scatter
plots, box plots, histograms, scatter plot matrices, parallel plots, rug plots, and bubble
plots that incorporate information about missing values.

360 CHAPTER 15 Advanced methods for missing data

12

40

0 100 200 300 400 500 600

0
1

2
3

4
5

6

Gest

D
re

am

Figure 15.4 Scatter plot
between amount of dream
sleep and length of gestation,
with information about missing
data in the margins

15.3.3 Using correlations to explore missing values

Before moving on, there’s one more approach worth noting. You can replace the data
in a dataset with indicator variables, coded 1 for missing and 0 for present. The result-
ing matrix is sometimes called a s hadow matrix. Correlating these indicator variables
with each other and with the original (observed) variables can help you to see which
variables tend to be missing together, as well as relationships between a variable’s “miss-
ingness” and the values of the other variables.

Consider the following code:

x <- as.data.frame(abs(is.na(sleep)))

The elements of data frame x are 1 if the corresponding element of sleep is missing
and 0 otherwise. You can see this by viewing the first few rows of each:

> head(sleep, n=5)
 BodyWgt BrainWgt NonD Dream Sleep Span Gest Pred Exp Danger
1 6654.000 5712.0 NA NA 3.3 38.6 645 3 5 3
2 1.000 6.6 6.3 2.0 8.3 4.5 42 3 1 3
3 3.385 44.5 NA NA 12.5 14.0 60 1 1 1
4 0.920 5.7 NA NA 16.5 NA 25 5 2 3
5 2547.000 4603.0 2.1 1.8 3.9 69.0 624 3 5 4

> head(x, n=5)
 BodyWgt BrainWgt NonD Dream Sleep Span Gest Pred Exp Danger
1 0 0 1 1 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
3 0 0 1 1 0 0 0 0 0 0
4 0 0 1 1 0 1 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0

Exploring missing values patterns 361

The statement

y <- x[which(sd(x) > 0)]

extracts the variables that have some (but not all) missing values, and

cor(y)

gives you the correlations among these indicator variables:

 NonD Dream Sleep Span Gest
NonD 1.000 0.907 0.486 0.015 -0.142
Dream 0.907 1.000 0.204 0.038 -0.129
Sleep 0.486 0.204 1.000 -0.069 -0.069
Span 0.015 0.038 -0.069 1.000 0.198
Gest -0.142 -0.129 -0.069 0.198 1.000

Here, you can see that Dream and NonD tend to be missing together (r=0.91). To a
lesser extent, Sleep and NonD tend to be missing together (r=0.49) and Sleep and
Dream tend to be missing together (r=0.20).

Finally, you can look at the relationship between the presence of missing values in a
variable and the observed values on other variables:

> cor(sleep, y, use="pairwise.complete.obs")
 NonD Dream Sleep Span Gest
BodyWgt 0.227 0.223 0.0017 -0.058 -0.054
BrainWgt 0.179 0.163 0.0079 -0.079 -0.073
NonD NA NA NA -0.043 -0.046
Dream -0.189 NA -0.1890 0.117 0.228
Sleep -0.080 -0.080 NA 0.096 0.040
Span 0.083 0.060 0.0052 NA -0.065
Gest 0.202 0.051 0.1597 -0.175 NA
Pred 0.048 -0.068 0.2025 0.023 -0.201
Exp 0.245 0.127 0.2608 -0.193 -0.193
Danger 0.065 -0.067 0.2089 -0.067 -0.204
Warning message:
In cor(sleep, y, use = "pairwise.complete.obs") :
 the standard deviation is zero

In this correlation matrix, the rows are observed variables, and the columns are indica-
tor variables representing missingness. You can ignore the warning message and NA
values in the correlation matrix; they’re artifacts of our approach.

From the first column of the correlation matrix, you can see that nondreaming sleep
scores are more likely to be missing for mammals with higher body weight (r=0.227),
gestation period (r=0.202), and sleeping exposure (0.245). Other columns are read in
a similar fashion. None of the correlations in this table are particularly large or striking,
which suggests that the data deviates minimally from MCAR and may be MAR.

Note that you can never rule out the possibility that the data are NMAR because
you don’t know what the actual values would have been for data that are missing. For
example, you don’t know if there’s a relationship between the amount of dreaming a
mammal engages in and the probability of obtaining a missing value on this variable.
In the absence of strong external evidence to the contrary, we typically assume that
data is either MCAR or MAR.

362 CHAPTER 15 Advanced methods for missing data

15.4 Understanding the sources and impact of missing data
We identify the amount, distribution, and pattern of missing data in order to evaluate
(1) the potential mechanisms producing the missing data and (2) the impact of the
missing data on our ability to answer substantive questions. In particular, we want to
answer the following questions:

■ What percentage of the data is missing?
■ Is it concentrated in a few variables, or widely distributed?
■ Does it appear to be random?
■ Does the covariation of missing data with each other or with observed data sug-

gest a possible mechanism that’s producing the missing values?

Answers to these questions will help determine which statistical methods are most ap-
propriate for analyzing your data. For example, if the missing data are concentrated
in a few relatively unimportant variables, you may be able to delete these variables
and continue your analyses normally. If there’s a small amount of data (say less than
10 percent) that’s randomly distributed throughout the dataset (MCAR), you may be
able to limit your analyses to cases with complete data and still get reliable and valid
results. If you can assume that the data are either MCAR or MAR, you may be able to
apply multiple imputation methods to arrive at valid conclusions. If the data are NMAR,
you can turn to specialized methods, collect new data, or go into an easier and more
rewarding profession.

Here are some examples:

■ In a recent survey employing paper questionnaires, I found that several items tend-
ed to be missing together. It became apparent that these items clustered together
because participants didn’t realize that the third page of the questionnaire had a
reverse side containing them. In this case, the data could be considered MCAR.

■ In another study, an education variable was frequently missing in a global sur-
vey of leadership styles. Investigation revealed that European participants were
more likely to leave this item blank. It turned out that the categories didn’t make
sense for participants in certain countries. In this case, the data was most likely
MAR.

■ Finally, I was involved in a study of depression in which older patients were more
likely to omit items describing depressed mood when compared with young-
er patients. Interviews revealed that older patients were loath to admit to such
symptoms because doing so violated their values about keeping a “stiff upper
lip.” Unfortunately, it was also determined that severely depressed patients were
more likely to omit these items due to a sense of hopelessness and difficulties
with concentration. In this case, the data had to be considered NMAR.

As you can see, the identification of patterns is only the first step. You need to bring
your understanding of the research subject matter and the data collection process to
bear in order to determine the source of the missing values.

Rational approaches for dealing with incomplete data 363

Now that we’ve considered the source and impact of missing data, let’s see how
standard statistical approaches can be altered to accommodate them. We’ll focus on
three approaches that are very popular: a rational approach for recovering data, a
traditional approach that involves deleting missing data, and a modern approach
that involves the use of simulation. Along the way, we’ll briefly look at methods for
specialized situations, and methods that have become obsolete and should be retired.
Our goal will remain constant: to answer, as accurately as possible, the substantive
questions that led us to collect the data, given the absence of complete information.

15.5 Rational approaches for dealing with incomplete data
In a rational approach, you use mathematical or logical relationships among variables
to attempt to fill in or recover the missing values. A few examples will help clarify this
approach.

In the sleep dataset, the variable S leep is the sum of the D ream and N onD variables.
If you know a mammal’s scores on any two, you can derive the third. Thus, if there were
some observations that were missing only one of the three variables, you could recover
the missing information through addition or subtraction.

As a second example, consider research that focuses on work/ life balance differences
between generational cohorts (for example, Silents, Early Boomers, Late Boomers,
Xers, Millennials), where cohorts are defined by their birth year. Participants are asked
both their date of birth and their age. If date of birth is missing, you can recover their
birth year (and therefore their generational cohort) by knowing their age and the date
they completed the survey.

An example that uses logical relationships to recover missing data comes from a set
of leadership studies in which participants were asked if they were a manager (yes/
no) and the number of their direct reports (integer). If they left the manager question
blank but indicated that they had one or more direct reports, it would be reasonable
to infer that they were a manager.

As a final example, I frequently engage in gender research that compares the
leadership styles and effectiveness of men and women. Participants complete surveys
that include their name (first and last), gender, and a detailed assessment of their
leadership approach and impact. If participants leave the gender question blank, I
have to impute the value in order to include them in the research. In one recent study
of 66,000 managers, 11,000 (17 percent) had a missing value for gender.

To remedy the situation, I employed the following rational process. First, I cross-
tabulated first name with gender. Some first names were associated with males, some
with females, and some with both. For example, “William” appeared 417 times and was
always a male. Conversely, the name “Chris” appeared 237 times but was sometimes
a male (86 percent) and sometimes a female (14 percent). If a first name appeared
more than 20 times in the dataset and was always associated with males or with females
(but never both), I assumed that the name represented a single gender. I used this
assumption to create a gender lookup table for gender-specific first names. Using this
lookup table for participants with missing gender values, I was able to recover 7,000
cases (63 percent of the missing responses).

364 CHAPTER 15 Advanced methods for missing data

A rational approach typically requires creativity and thoughtfulness, along with a
degree of data management skill. Data recovery may be exact (as in the sleep example)
or approximate (as in the gender example). In the next section, we’ll explore an
approach that creates complete datasets by removing observations.

15.6 Complete-case analysis (listwise deletion)
In complete-case analysis, only observations containing valid data values on every vari-
able are retained for further analysis. Practically, this involves deleting any row contain-
ing one or more missing values, and is also known as listwise, or case-wise, deletion.
Most popular statistical packages employ listwise deletion as the default approach for
handling missing data. In fact, it’s so common that many analysts carrying out analyses
like regression or ANOVA may not even realize that there’s a “missing values problem”
to be dealt with!

The function c omplete.cases() can be used to save the cases (rows) of a matrix
or data frame without missing data:

newdata <- mydata[complete.cases(mydata),]

The same result can be accomplished with the n a.omit function:

newdata <- na.omit(mydata)

In both statements, any rows containing missing data are deleted from mydata before
the results are saved to newdata.

Suppose you’re interested in the correlations among the variables in the sleep
study. Applying listwise deletion, you’d delete all mammals with missing data prior to
calculating the correlations:

> options(digits=1)
> cor(na.omit(sleep))
 BodyWgt BrainWgt NonD Dream Sleep Span Gest Pred Exp Danger
BodyWgt 1.00 0.96 -0.4 -0.07 -0.3 0.47 0.71 0.10 0.4 0.26
BrainWgt 0.96 1.00 -0.4 -0.07 -0.3 0.63 0.73 -0.02 0.3 0.15
NonD -0.39 -0.39 1.0 0.52 1.0 -0.37 -0.61 -0.35 -0.6 -0.53
Dream -0.07 -0.07 0.5 1.00 0.7 -0.27 -0.41 -0.40 -0.5 -0.57
Sleep -0.34 -0.34 1.0 0.72 1.0 -0.38 -0.61 -0.40 -0.6 -0.60
Span 0.47 0.63 -0.4 -0.27 -0.4 1.00 0.65 -0.17 0.3 0.01
Gest 0.71 0.73 -0.6 -0.41 -0.6 0.65 1.00 0.09 0.6 0.31
Pred 0.10 -0.02 -0.4 -0.40 -0.4 -0.17 0.09 1.00 0.6 0.93
Exp 0.41 0.32 -0.6 -0.50 -0.6 0.32 0.57 0.63 1.0 0.79
Danger 0.26 0.15 -0.5 -0.57 -0.6 0.01 0.31 0.93 0.8 1.00

The correlations in this table are based solely on the 42 mammals that have complete
data on all variables. (Note that the statement cor(sleep, use="complete.obs")
would have produced the same results.)

If you wanted to study the impact of life span and length of gestation on the amount
of dream sleep, you could employ linear regression with listwise deletion:

> fit <- lm(Dream ~ Span + Gest, data=na.omit(sleep))
> summary(fit)

 Multiple imputation 365

Call:
lm(formula = Dream ~ Span + Gest, data = na.omit(sleep))

Residuals:
 Min 1Q Median 3Q Max
-2.333 -0.915 -0.221 0.382 4.183

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.480122 0.298476 8.31 3.7e-10 ***
Span -0.000472 0.013130 -0.04 0.971
Gest -0.004394 0.002081 -2.11 0.041 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1

Residual standard error: 1 on 39 degrees of freedom
Multiple R-squared: 0.167, Adjusted R-squared: 0.125
F-statistic: 3.92 on 2 and 39 DF, p-value: 0.0282

Here you see that mammals with shorter gestation periods have more dream sleep
(controlling for life span) and that life span is unrelated to dream sleep when control-
ling for gestation period. The analysis is based on 42 cases with complete data.

In the previous example, what would have happened if data=na.omit(sleep) had
been replaced with data=sleep? Like many R function, l m() uses a limited definition
of listwise deletion. Cases with any missing data on the variables fitted by the function
(Dream, Span, and Gest in this case) would have been deleted. The analysis would
have been based on 44 cases.

Listwise deletion assumes that the data are MCAR (that is, the complete observations
are a random subsample of the full dataset). In the current example, we’ve assumed
that the 42 mammals used are a random subsample of the 62 mammals collected. To
the degree that the MCAR assumption is violated, the resulting regression parameters
will be biased. Deleting all observations with missing data can also reduce statistical
power by reducing the available sample size. In the current example, listwise deletion
reduced the sample size by 32 percent. Next, we’ll consider an approach that employs
the entire dataset (including cases with missing data).

15.7 Multiple imputation
M ultiple imputation (MI) provides an approach to missing values that’s based on re-
peated simulations. MI is frequently the method of choice for complex missing values
problems. In MI, a set of complete datasets (typically 3 to 10) is generated from an
existing dataset containing missing values. Monte Carlo methods are used to fill in
the missing data in each of the simulated datasets. Standard statistical methods are
applied to each of the simulated datasets, and the outcomes are combined to provide
estimated results and confidence intervals that take into account the uncertainty in-
troduced by the missing values. Good implementations are available in R through the
A melia, m ice, and m i packages. In this section we’ll focus on the approach provided
by the mice (multivariate imputation by chained equations) package.

366 CHAPTER 15 Advanced methods for missing data

with()

pool()

Final result

Imputed datasets Analysis results

Data frame

mice()

Figure 15.5 Steps in applying multiple imputation to missing data via the
mice approach.

To understand how the mice package operates, consider the diagram in figure 15.5.
The function m ice() starts with a data frame containing missing data and returns an

object containing several complete datasets (the default is 5). Each complete dataset
is created by imputing values for the missing data in the original data frame. There’s a
random component to the imputations, so each complete dataset is slightly different.
The w ith() function is then used to apply a statistical model (for example, linear
or generalized linear model) to each complete dataset in turn. Finally, the p ool()
function combines the results of these separate analyses into a single set of results.
The standard errors and p-values in this final model correctly reflect the uncertainty
produced by both the missing values and the multiple imputations.

How does the m ice() function impute missing values?
Missing values are imputed by G ibbs sampling. By default, each variable containing
missing values is predicted from all other variables in the dataset. These prediction
equations are used to impute plausible values for the missing data. The process
iterates until convergence over the missing values is achieved. For each variable, the
user can choose the form of the prediction model (called an elementary imputation
method), and the variables entered into it.

By default, predictive mean matching is used to replace missing data on con-
tinuous variables, while logistic or polytomous logistic regression is used for target
variables that are dichotomous (factors with two levels) or polytomous (factors with
more than two levels) respectively. Other elementary imputation methods include
Bayesian linear regression, discriminant function analysis, two-level normal impu-
tation, and random sampling from observed values. Users can supply their own
methods as well.

 Multiple imputation 367

An analysis based on the mice package will typically conform to the following structure:

library(mice)
imp <- mice(mydata, m)
fit <- with(imp, analysis)
pooled <- pool(fit)
summary(pooled)

where

■ mydata is a matrix or data frame containing missing values.
■ imp is a list object containing the m imputed datasets, along with information on

how the imputations were accomplished. By default, m=5.
■ analysis is a formula object specifying the statistical analysis to be applied to

each of the m imputed datasets. Examples include lm() for linear regression
models, glm() for generalized linear models, gam() for generalized additive
models, and nbrm() for negative binomial models. Formulas within the paren-
theses give the response variables on the left of the ~ and the predictor variables
(separated by + signs) on the right.

■ fit is a list object containing the results of the m separate statistical analyses.
■ pooled is a list object containing the averaged results of these m statistical

analyses.

Let’s apply multiple imputation to our sleep dataset. We’ll repeat the analysis from sec-
tion 15.6, but this time, use all 62 mammals. Set the seed value for the random number
generator to 1234 so that your results will match mine.

> library(mice)
> data(sleep, package="VIM")
> imp <- mice(sleep, seed=1234)

 […output deleted to save space…]

> fit <- with(imp, lm(Dream ~ Span + Gest))
> pooled <- pool(fit)
> summary(pooled)
 est se t df Pr(>|t|) lo 95
(Intercept) 2.58858 0.27552 9.395 52.1 8.34e-13 2.03576
Span -0.00276 0.01295 -0.213 52.9 8.32e-01 -0.02874
Gest -0.00421 0.00157 -2.671 55.6 9.91e-03 -0.00736
 hi 95 nmis fmi
(Intercept) 3.14141 NA 0.0870
Span 0.02322 4 0.0806
Gest -0.00105 4 0.0537

Here, you see that the regression coefficient for Span isn’t significant (p ≅ 0.08), and
the coefficient for Gest is significant at the p<0.01 level. If you compare these results
with those produced by a complete case analysis (section 15.6), you see that you’d
come to the same conclusions in this instance. Length of gestation has a (statistically)
significant, negative relationship with amount of dream sleep, controlling for life span.
Although the complete-case analysis was based on the 42 mammals with complete data,

368 CHAPTER 15 Advanced methods for missing data

the current analysis is based on information gathered from the full set of 62 mammals.
By the way, the f mi column reports the fraction of missing information (that is, the
proportion of variability that is attributable to the uncertainty introduced by the miss-
ing data).

You can access more information about the imputation by examining the objects
created in the analysis. For example, let’s view a summary of the imp object:

> imp

Multiply imputed data set
Call:
mice(data = sleep, seed = 1234)
Number of multiple imputations: 5
Missing cells per column:
 BodyWgt BrainWgt NonD Dream Sleep Span Gest Pred
 0 0 14 12 4 4 4 0
 Exp Danger
 0 0
Imputation methods:
 BodyWgt BrainWgt NonD Dream Sleep Span Gest Pred
 "" "" "pmm" "pmm" "pmm" "pmm" "pmm" ""
 Exp Danger
 "" ""
VisitSequence:
 NonD Dream Sleep Span Gest
 3 4 5 6 7
PredictorMatrix:
 BodyWgt BrainWgt NonD Dream Sleep Span Gest Pred Exp Danger
BodyWgt 0 0 0 0 0 0 0 0 0 0
BrainWgt 0 0 0 0 0 0 0 0 0 0
NonD 1 1 0 1 1 1 1 1 1 1
Dream 1 1 1 0 1 1 1 1 1 1
Sleep 1 1 1 1 0 1 1 1 1 1
Span 1 1 1 1 1 0 1 1 1 1
Gest 1 1 1 1 1 1 0 1 1 1
Pred 0 0 0 0 0 0 0 0 0 0
Exp 0 0 0 0 0 0 0 0 0 0
Danger 0 0 0 0 0 0 0 0 0 0
Random generator seed value: 1234

From the resulting output, you can see that five synthetic datasets were created, and
that the predictive mean matching (pmm) method was used for each variable with miss-
ing data. No imputation ("") was needed for BodyWgt, BrainWgt, Pred, Exp, or Dan-
ger, because they had no missing values. The Visit Sequence tells you that variables
were imputed from right to left, starting with NonD and ending with Gest. Finally, the
Predictor Matrix indicates that each variable with missing data was imputed using all
the other variables in the dataset. (In this matrix, the rows represent the variables be-
ing imputed, the columns represent the variables used for the imputation, and 1’s/0’s
indicate used/not used).

You can view the actual imputations by looking at subcomponents of the imp object.
For example,

 Multiple imputation 369

> impimpDream
 1 2 3 4 5
1 0.5 0.5 0.5 0.5 0.0
3 2.3 2.4 1.9 1.5 2.4
4 1.2 1.3 5.6 2.3 1.3
14 0.6 1.0 0.0 0.3 0.5
24 1.2 1.0 5.6 1.0 6.6
26 1.9 6.6 0.9 2.2 2.0
30 1.0 1.2 2.6 2.3 1.4
31 5.6 0.5 1.2 0.5 1.4
47 0.7 0.6 1.4 1.8 3.6
53 0.7 0.5 0.7 0.5 0.5
55 0.5 2.4 0.7 2.6 2.6
62 1.9 1.4 3.6 5.6 6.6

displays the five imputed values for each of the 12 mammals with missing data on
the Dream variable. A review of these matrices helps you determine if the imputed
values are reasonable. A negative value for length of sleep might give you pause (or
nightmares).

You can view each of the m imputed datasets via the c omplete() function. The
format is

complete(imp, action=#)

where # specifies one of the m synthetically complete datasets. For example,

> dataset3 <- complete(imp, action=3)
> dataset3
 BodyWgt BrainWgt NonD Dream Sleep Span Gest Pred Exp Danger
1 6654.00 5712.0 2.1 0.5 3.3 38.6 645 3 5 3
2 1.00 6.6 6.3 2.0 8.3 4.5 42 3 1 3
3 3.38 44.5 10.6 1.9 12.5 14.0 60 1 1 1
4 0.92 5.7 11.0 5.6 16.5 4.7 25 5 2 3
5 2547.00 4603.0 2.1 1.8 3.9 69.0 624 3 5 4
6 10.55 179.5 9.1 0.7 9.8 27.0 180 4 4 4
[…output deleted to save space…]

displays the third (out of five) complete datasets created by the multiple imputation
process.

Due to space limitations, we’ve only briefly considered the MI implementation
provided in the m ice package. The m i and A melia packages also contain valuable
approaches. If you are interested in the multiple imputation approach to missing data,
I recommend the following resources:

■ The multiple imputation FAQ page (www.stat.psu.edu/~jls/mifaq.html)
■ Articles by Van Buuren and Groothuis-Oudshoorn (2010) and Yu-Sung, Gelman,

Hill, and Yajima (2010)
■ Amelia II: A Program for Missing Data (http://gking.harvard.edu/amelia/)

Each can help to reinforce and extend your understanding of this important, but un-
derutilized, methodology.

(www.stat.psu.edu/~jls/mifaq.html
http://gking.harvard.edu/amelia/

370 CHAPTER 15 Advanced methods for missing data

15.8 Other approaches to missing data
R supports several other approaches for dealing with missing data. Although not as
broadly applicable as the methods described thus far, the packages described in table
15.2 offer functions that can be quite useful in specialized circumstances.

Table 15.2 Specialized methods for dealing with missing data

Package Description

H misc Contains numerous functions supporting simple imputation, multiple
imputation, and imputation using canonical variates

m vnmle Maximum likelihood estimation for multivariate normal data with missing
values

c at Multiple imputation of multivariate categorical data under log-linear
models

a rrayImpute,
a rrayMissPattern,
S eqKnn

Useful functions for dealing with missing microarray data

l ongitudinalData Contains utility functions, including interpolation routines for imputing
missing time series values

k mi Kaplan–Meier multiple imputation for survival analysis with missing data

m ix Multiple imputation for mixed categorical and continuous data under the
general location model

p an Multiple imputation for multivariate panel or clustered data

Finally, there are two methods for dealing with missing data that are still in use, but
should now be considered obsolete. They are pairwise deletion and simple imputation.

15.8.1 Pairwise deletion

Pairwise deletion is often considered an alternative to listwise deletion when working
with datasets containing missing values. In pairwise deletion, observations are only
deleted if they’re missing data for the variables involved in a specific analysis. Consider
the following code:

> cor(sleep, use="pairwise.complete.obs")
 BodyWgt BrainWgt NonD Dream Sleep Span Gest Pred Exp Danger
BodyWgt 1.00 0.93 -0.4 -0.1 -0.3 0.30 0.7 0.06 0.3 0.13
BrainWgt 0.93 1.00 -0.4 -0.1 -0.4 0.51 0.7 0.03 0.4 0.15
NonD -0.38 -0.37 1.0 0.5 1.0 -0.38 -0.6 -0.32 -0.5 -0.48
Dream -0.11 -0.11 0.5 1.0 0.7 -0.30 -0.5 -0.45 -0.5 -0.58
Sleep -0.31 -0.36 1.0 0.7 1.0 -0.41 -0.6 -0.40 -0.6 -0.59
Span 0.30 0.51 -0.4 -0.3 -0.4 1.00 0.6 -0.10 0.4 0.06
Gest 0.65 0.75 -0.6 -0.5 -0.6 0.61 1.0 0.20 0.6 0.38
Pred 0.06 0.03 -0.3 -0.4 -0.4 -0.10 0.2 1.00 0.6 0.92
Exp 0.34 0.37 -0.5 -0.5 -0.6 0.36 0.6 0.62 1.0 0.79
Danger 0.13 0.15 -0.5 -0.6 -0.6 0.06 0.4 0.92 0.8 1.00

 Summary 371

In this example, correlations between any two variables use all available observations
for those two variables (ignoring the other variables). The correlation between Body-
Wgt and BrainWgt is based on all 62 mammals (the number of mammals with data on
both variables). The correlation between BodyWgt and NonD is based on the 42 mam-
mals, and the correlation between Dream and NonDream is based on 46 mammals.

Although pairwise deletion appears to use all available data, in fact each calculation
is based on a different subset of the data. This can lead to distorted and difficult-to-
interpret results. I recommend staying away from this approach.

15.8.2 Simple (nonstochastic) imputation

In simple imputation, the missing values in a variable are replaced with a single value
(for example, mean, median, or mode). Using m ean substitution you could replace miss-
ing values on Dream with the value 1.97 and missing values on NonD with the value 8.67
(the means on Dream and NonD, respectively). Note that the substitution is nonstochas-
tic, meaning that random error isn’t introduced (unlike multiple imputation).

An advantage to simple imputation is that it solves the “missing values problem”
without reducing the sample size available for the analyses. Simple imputation is, well,
simple, but it produces biased results for data that aren’t MCAR. If there are moderate
to large amounts of missing data, simple imputation is likely to underestimate standard
errors, distort correlations among variables, and produce incorrect p-values in statistical
tests. Like pairwise deletion, I recommend avoiding this approach for most missing
data problems.

15.9 Summary
Most statistical methods assume that the input data is complete and doesn’t include
missing values (for example, NA, NaN, Inf). But most datasets in real-world settings
contain missing values. Therefore, you must either delete the missing values or replace
them with reasonable substitute values before continuing with the desired analyses.
Often, statistical packages will provide default methods for handling missing data, but
these approaches may not be optimal. Therefore, it’s important that you understand
the various approaches available, and the ramifications of using each.

 In this chapter, we examined methods for identifying missing values and exploring
patterns of missing data. Our goal was to understand the mechanisms that led to the
missing data and their possible impact on subsequent analyses. We then reviewed three
popular methods for dealing with missing data: a rational approach, listwise deletion,
and the use of multiple imputation.

Rational approaches can be used to recover missing values when there are
redundancies in the data, or external information that can be brought to bear on
the problem. The listwise deletion of missing data is useful if the data are MCAR and
the subsequent sample size reduction doesn’t seriously impact the power of statistical
tests. Multiple imputation is rapidly becoming the method of choice for complex

372 CHAPTER 15 Advanced methods for missing data

missing data problems when you can assume that the data are MCAR or MAR. Although
many analysts may be unfamiliar with multiple imputation strategies, user-contributed
packages (mice, mi, Amelia) make them readily accessible. I believe that we’ll see a
rapid growth in their use over the next few years.

We ended the chapter by briefly mentioning R packages that provide specialized
approaches for dealing with missing data, and singled out general approaches for
handling missing data (pairwise deletion, simple imputation) that should be avoided.

In the next chapter, we’ll explore advanced graphical methods, including the use of
lattice graphs, the ggplot2 system, and interactive graphical methods.

373

16Advanced graphics

This chapter covers
■

The grammar of graphs via ggplot2

Trellis graphs and the lattice package
■

 Interactive graphics■

In previous chapters, we created a wide variety of both general and specialized graphs
(and had lots of fun in the process). Most were produced using R’s base graphics sys-
tem. Given the diversity of methods available in R, it may not surprise you to learn that
there are actually four separate and complete graphics systems currently available.

In addition to base graphics, we have graphics systems provided by the grid,
lattice, and ggplot2 packages. Each is designed to expand on the capabilities of,
and correct for deficiencies in, R’s base graphics system.

The grid graphics system provides low-level access to graphic primitives,
giving programmers a great deal of flexibility in the creation of graphic output.
The lattice package provides an intuitive approach for examining multivariate
relationships through conditional 1-, 2-, or 3-dimensional graphs called trellis graphs.
The ggplot2 package provides a method of creating innovative graphs based on a
comprehensive graphical “grammar.”

In this chapter, we’ll start with an overview of the four graphic systems. Then we’ll
focus on graphs that can be generated with the lattice and ggplot2 packages. These
packages greatly expand the range and quality of the graphs you can produce in R.

374 CHAPTER 16 Advanced graphics

We’ll end the chapter by considering interactive graphics. Interacting with graphs
in real time can help you understand your data more thoroughly and develop greater
insights into the relationships among variables. Here, we’ll focus on the functionality
offered by the iplots, playwith, latticist, and rggobi packages.

16.1 The four graphic systems in R
As stated earlier, four primary graphical systems are available in R. The base graphic
system in R, written by Ross Ihaka, is included in every R installation. Most of the
graphs produced in previous chapters rely on base graphics functions.

 The grid graphics system, written by Paul Murrell (2006), is implemented through
the grid package. Grid graphics offer a lower-level alternative to the standard graphics
system. The user can create arbitrary rectangular regions on graphics devices, define
coordinate systems for each region, and use a rich set of drawing primitives to control
the arrangement and appearance of graphic elements.

This flexibility makes grid graphics a valuable tool for software developers. But the
grid package doesn’t provide functions for producing statistical graphics or complete
plots. Because of this, the package is rarely used directly by data analysts.

The lattice package , written by Deepayan Sarkar (2008), implements trellis graphics
as outlined by Cleveland (1985, 1993) and described on the Trellis website (http://
netlib.bell-labs.com/cm/ms/departments/sia/project/trellis/). Built using the grid
package, the lattice package has grown beyond Cleveland’s original approach to
visualizing multivariate data, and now provides a comprehensive alternative system for
creating statistical graphics in R.

The ggplot2 package , written by Hadley Wickham (2009a), provides a system for
creating graphs based on the grammar of graphics described by Wilkinson (2005) and
expanded by Wickham (2009b). The intention of the ggplot2 package is to provide a
comprehensive, grammar-based system for generating graphs in a unified and coherent
manner, allowing users to create new and innovative data visualizations.

Access to the four systems differs, as outlined in table 16.1. Base graphic functions
are automatically available. To access grid and lattice function s, you must load the
package explicitly (for example, library(lattice)) . To access ggplot2 functions ,
you have to download and install the package (install.packages("ggplot2"))
before first use, and then load it (library(ggplot2)) .

Table 16.1 Access to graphic systems

System Included in base installation? Must be explicitly loaded?

base Yes No

grid Yes Yes

lattice Yes Yes

ggplot2 No Yes

http://netlib.bell-labs.com/cm/ms/departments/sia/project/trellis/
http://netlib.bell-labs.com/cm/ms/departments/sia/project/trellis/

The lattice package 375

Because our attention is primarily focused on practical data analyses, we won’t elabo-
rate on the grid package in this chapter. (If you’re interested, refer to Dr. Murrell’s
Grid website [www.stat.auckland.ac.nz/~paul/grid/grid.html] for details on this pack-
age.) Instead, we’ll explore the lattice and ggplot2 packages in some detail. Each
allows you to create unique and useful graphs that aren’t easily created in other ways.

16.2 The lattice package
The lattice package provides a comprehensive graphical system for visualizing uni-
variate and multivariate data. In particular, many users turn to the lattice package
because of its ability to easily generate trellis graphs.

A trellis graph displays the distribution of a variable or the relationship between
variables, separately for each level of one or more other variables. Consider the
following question: How do the heights of singers in the New York Choral Society vary by their
vocal parts?

Data on the heights and voice parts of choral members is provided in the singer
dataset contained in the lattice package. In the following code

library(lattice)
histogram(~height | voice.part, data = singer,
 main="Distribution of Heights by Voice Pitch",
 xlab="Height (inches)")

height is the dependent variable, voice.part is called the conditioning variable, and
a histogram is created for each of the eight voice parts. The graph is shown in figure
16.1. It appears that tenors and basses tend to be taller than altos and sopranos.

In trellis graphs, a separate panel is created for each level of the conditioning
variable. If more than one conditioning variable is specified, a panel is created for
each combination of factor levels. The panels are arranged into an array to facilitate
comparisons. A label is provided for each panel in an area called the strip. As you’ll see,
the user has control over the graph displayed in each panel, the format and placement
of the strip, the arrangement of the panels, the placement and content of legends, and
many other graphic features.

The lattice package provides a wide variety of functions for producing univariate
(dot plots, kernel density plots, histograms, bar charts, box plots), bivariate (scatter plots,
strip plots, parallel box plots), and multivariate (3D plots, scatter plot matrices) graphs.

Each high-level graphing function follows the format

graph_function(formula, data=, options)

where:

■ graph_function is one of the functions listed in the second column of table 16.2.
■ formula specifies the variable(s) to display and any conditioning variables.
■ data specifies a data frame.
 ■ options are comma-separated parameters used to modify the content, arrange-

ment, and annotation of the graph. See table 16.3 for a description of common
options.

[www.stat.auckland.ac.nz/~paul/grid/grid.html

376 CHAPTER 16 Advanced graphics

Distribution of Heights by Voice Pitch

Height (inches)

P
er

ce
nt

 o
f T

ot
al

0

10

20

30

40

60 65 70 75

Bass 2 Bass 1

60 65 70 75

Tenor 2

Tenor 1 Alto 2

0

10

20

30

40

Alto 1
0

10

20

30

40

Soprano 2

60 65 70 75

Soprano 1

Figure 16.1 Trellis
graph of singer heights
by voice pitch

Let lowercase letters represent numeric variables and uppercase letters represent
categorical variables (factors). The formula in a high-level graphing function typically
takes the form

y ~ x | A * B

where variables on the left side of the vertical bar are called the primary variables and
variables on the right are the conditioning variables. Primary variables map variables to
the axes in each panel. Here, y~x describes the variables to place on the vertical and
horizontal axes, respectively. For single-variable plots, replace y~x with ~x. For 3D
plots, replace y~x with z~x*y. Finally, for multivariate plots (scatter plot matrix or par-
allel coordinates plot) replace y~x with a data frame. Note that conditioning variables
are always optional.

Following this logic, ~x|A displays numeric variable x for each level of factor A.
y~x|A*B displays the relationship between numeric variables y and x separately for
every combination of factor A and B levels. A~x displays categorical variable A on
the vertical axis and numeric variable x on the horizontal axis. ~x displays numeric
variable x alone. Other examples are shown in table 16.2.

To gain a quick overview of lattice graphs, try running the code in listing 16.1. The
graphs are based on the automotive data (mileage, weight, number of gears, number

The lattice package 377

Table 16.2 Graph types and corresponding functions in the lattice package

Graph type Function Formula examples

3D contour plot contourplot() z~x*y

3D level plot levelplot() z~y*x

3D scatter plot cloud() z~x*y|A

3D wireframe graph wireframe() z~y*x

Bar chart barchart() x~A or A~x

Box plot bwplot() x~A or A~x

Dot plot dotplot() ~x|A

Histogram histogram() ~x

Kernel density plot densityplot() ~x|A*B

Parallel coordinates plot parallel() dataframe

Scatter plot xyplot() y~x|A

Scatter plot matrix splom() dataframe

Strip plots stripplot() A~x or x~A

Note: In these formulas, lowercase letters represent numeric variables and uppercase letters represent categorical
variables.

of cylinders, and so on) included in the mtcars data frame . You may want to vary the
formulas and view the results. (The resulting output has been omitted to save space.)

Listing 16.1 lattice plot examples

library(lattice)
attach(mtcars)

gear <- factor(gear, levels=c(3, 4, 5),
 labels=c("3 gears", "4 gears", "5 gears"))
cyl <- factor(cyl, levels=c(4, 6, 8),
 labels=c("4 cylinders", "6 cylinders", "8 cylinders"))

densityplot(~mpg,
 main="Density Plot",
 xlab="Miles per Gallon")

densityplot(~mpg | cyl,
 main="Density Plot by Number of Cylinders",
 xlab="Miles per Gallon")

bwplot(cyl ~ mpg | gear,

Create factors
with value labels

378 CHAPTER 16 Advanced graphics

 main="Box Plots by Cylinders and Gears",
 xlab="Miles per Gallon", ylab="Cylinders")

xyplot(mpg ~ wt | cyl * gear,
 main="Scatter Plots by Cylinders and Gears",
 xlab="Car Weight", ylab="Miles per Gallon")

cloud(mpg ~ wt * qsec | cyl,
 main="3D Scatter Plots by Cylinders")

dotplot(cyl ~ mpg | gear,
 main="Dot Plots by Number of Gears and Cylinders",
 xlab="Miles Per Gallon")

splom(mtcars[c(1, 3, 4, 5, 6)],
 main="Scatter Plot Matrix for mtcars Data")

detach(mtcars)

High-level plotting functions in the lattice package produce graphic objects that can
be saved and manipulated. For example,

library(lattice)
mygraph <- densityplot(~height|voice.part, data=singer)

creates a trellis density plot and saves it as object mygraph. But no graph is displayed.
Issuing the statement plot(mygraph) (or simply mygraph) will display the graph.

It’s easy to modify lattice graphs through the use of options. Common options are
given in table 16.3. You’ll see examples of many of these later in the chapter.

Table 16.3 Common options for lattice high-level graphing functions

Options Description

aspect A number specifying the aspect ratio (height/width) for the graph in each
panel.

col , pch , lty , lwd Vectors specifying the colors, symbols, line types, and line widths to be
used in plotting, respectively.

groups Grouping variable (factor).

index.cond List specifying the display order of the panels.

key (or auto.key) Function used to supply legend(s) for grouping variable(s).

layout Two-element numeric vector specifying the arrangement of the panels
(number of columns, number of rows). If desired, a third element can be
added to indicate the number of pages.

main, sub Character vectors specifying the main title and subtitle.

panel Function used to generate the graph in each panel.

The lattice package 379

Table 16.3 Common options for lattice high-level graphing functions (continued)

Options Description

scales List providing axis annotation information.

strip Function used to customize panel strips.

split , position Numeric vectors used to place more than one graph on a page.

type Character vector specifying one or more plotting options for scatter plots
(p=points, l=lines, r=regression line, smooth=loess fit, g=grid, and so on).

xlab, ylab Character vectors specifying horizontal and vertical axis labels.

xlim , ylim Two-element numeric vectors giving the minimum and maximum values for
the horizontal and vertical axes, respectively.

You can issue these options in the high-level function calls or within the panel func-
tions discussed in section 16.2.2.

You can also use the update() function to modify a lattice graphic object. Continuing
the singer example, the following

update(mygraph, col=”red”, pch=16, cex=.8, jitter=.05, lwd=2)

would redraw the graph using red curves and symbols (color="red"), filled dots
(pch=16), smaller (cex=.8) and more highly jittered points (jitter=.05), and curves
of double thickness (lwd=2). Now that we’ve reviewed the general structure of a high-
level lattice function, let’s look at conditioning variables in more detail.

16.2.1 Conditioning variables

As you’ve seen, one of the most powerful features of lattice graphs is the ability to
add conditioning variables. If one conditioning variable is present, a separate panel
is created for each level. If two conditioning variables are present, a separate panel is
created for each combination of levels for the two variables. It’s rarely useful to include
more than two conditioning variables.

Typically, conditioning variables are factors. But what if you want to condition on
a continuous variable? One approach would be to transform the continuous variable
into a discrete variable using R’s cut() function . Alternatively, the lattice package
provides functions for transforming a continuous variable into a data structure called
a shingle. Specifically, the continuous variable is divided up into a series of (possibly)
overlapping ranges. For example, the function

myshingle <- equal.count(x, number=#, overlap=proportion)

will take continuous variable x and divide it up into # intervals, with proportion
overlap, and equal numbers of observations in each range, and return it as the vari-
able myshingle (of class shingle). Printing or plotting this object (for example,
plot(myshingle)) will display the shingle’s intervals.

380 CHAPTER 16 Advanced graphics

Once a continuous variable has been converted to a shingle, you can use it as a
conditioning variable. For example, let’s use the mtcars dataset to explore the
relationship between miles per gallon and car weight conditioned on engine
displacement. Because engine displacement is a continuous variable, first let’s convert
it to a shingle variable with three levels:

displacement <- equal.count(mtcars$disp, number=3, overlap=0)

Next, use this variable in the xyplot() function:

xyplot(mpg~wt|displacement, data=mtcars,
 main = "Miles per Gallon vs. Weight by Engine Displacement",
 xlab = "Weight", ylab = "Miles per Gallon",
 layout=c(3, 1), aspect=1.5)

The results are shown in figure 16.2. Note that we’ve also used options to modify the
layout of the panels (three columns and one row) and the aspect ratio (height/width)
in order to make comparisons among the three groups easier.

You can see that the labels in the panel strips of figure 16.1 and figure 16.2 differ.
The representation in figure 16.2 indicates the continuous nature of the conditioning
variable, with the darker color indicating the range of values for the conditioning
variable in the given panel. In the next section, we’ll use panel functions to customize
the output further.

Miles per Gallon vs. Weight by Engine Displacement

Weight

M
ile

 p
er

 G
al

lo
n

10

15

20

25

30

35

2 3 4 5

displacement

2 3 4 5

displacement

2 3 4 5

displacement

Figure 16.2 Trellis plot of mpg versus car weight conditioned on engine displacement. Because
engine displacement is a continuous variable, it has been converted to three nonoverlapping shingles
with equal numbers of observations.

The lattice package 381

16.2.2 Panel functions

Each of the high-level plotting functions in table 16.2 employs a default function
to draw the panels. These default functions follow the naming convention panel.
graph_function, where graph_function is the high-level function. For example,

xyplot(mpg~wt|displacement, data=mtcars)

could have also be written as

xyplot(mpg~wt|displacement, data=mtcars, panel=panel.xyplot)

This is a powerful feature because it allows you to replace the default panel function
with a customized function of your own design. You can incorporate one or more of
the 50+ default panel functions in the lattice package into your customized function
as well. Customized panel functions give you a great deal of flexibility in designing an
output that meets your needs. Let’s look at some examples.

In the previous section, you plotted gas mileage by automobile weight, conditioned
on engine displacement. What if you wanted to include regression lines, rug plots,
and grid lines? You can do this by creating your own panel function (see the following
listing). The resulting graph is provided in figure 16.3.

Listing 16.2 xyplot with custom panel function

displacement <- equal.count(mtcars$disp, number=3, overlap=0)

mypanel <- function(x, y) {
 panel.xyplot(x, y, pch=19)
 panel.rug(x, y)
 panel.grid(h=-1, v=-1)

q
 panel.lmline(x, y, col="red", lwd=1, lty=2)
 }

xyplot(mpg~wt|displacement, data=mtcars,
 layout=c(3, 1),
 aspect=1.5,
 main = "Miles per Gallon vs. Weight by Engine Displacement",
 xlab = "Weight",
 ylab = "Miles per Gallon",
 panel = mypanel)

Here, we’ve wrapped four separate building block functions into our own mypanel()
function and applied it within xyplot() through the panel= option q. The panel.
xyplot() function generates the scatter plot using a filled circle (pch=19). The panel.
rug() function adds rug plots to both the x and y axes of each panel. panel.rug(x,
FALSE) or panel.rug(FALSE, y) would have added rugs to just the horizontal or ver-
tical axis, respectively. The panel.grid() function adds horizontal and vertical grid
lines (using negative numbers forces them to line up with the axis labels). Finally, the
panel.lmline() function adds a regression line that’s rendered as red (col="red"),
dashed (lty=2) lines, of standard thickness (lwd=1). Each default panel function has
its own structure and options. See the help page on each (for example, help(panel.
abline)) for further details.

Customized panel
function

382 CHAPTER 16 Advanced graphics

Miles per Gallon vs. Weight by Engine Displacement

Weight

M
ile

 p
er

 G
al

lo
n

10

15

20

25

30

35

2 3 4 5

displacement

2 3 4 5

displacement

2 3 4 5

displacement

Figure 16.3 Trellis plot of mpg versus car weight conditioned on engine displacement. A
custom panel function has been used to add regression lines, rug plots, and grid lines.

As a second example, we’ll graph the relationship between gas mileage and engine dis-
placement (considered as a continuous variable), conditioned on type of automobile
transmission. In addition to creating separate panels for automatic and manual trans-
mission engines, we’ll add smoothed fit lines and horizontal mean lines. The code is
given in the following listing.

Listing 16.3 xyplot with custom panel function and additional options

library(lattice)
mtcars$transmission <- factor(mtcars$am, levels=c(0,1),
 labels=c("Automatic", "Manual"))

panel.smoother <- function(x, y) {
 panel.grid(h=-1, v=-1)
 panel.xyplot(x, y)
 panel.loess(x, y)
 panel.abline(h=mean(y), lwd=2, lty=2, col="green")
 }

xyplot(mpg~disp|transmission,data=mtcars,
 scales=list(cex=.8, col="red"),
 panel=panel.smoother,
 xlab="Displacement", ylab="Miles per Gallon",
 main="MGP vs Displacement by Transmission Type",
 sub = "Dotted lines are Group Means", aspect=1)

The graph produced by this code is provided in figure 16.4.

The lattice package 383

MGP vs Displacement by Transmission Type

Dotted lines are Group Means
Displacement

M
ile

s
pe

r
G

al
lo

n

10

15

20

25

30

35

100 200 300 400

Automatic

100 200 300 400

Manual

Figure 16.4 Trellis graph of mpg versus engine displacement conditioned on transmission type.
Smoothed lines (loess), grids, and group mean levels have been added.

There are several things to note in this new code. The panel.xyplot() function
plots the individual points, and the panel.loess() function plots nonparametric fit
lines in each panel. The panel.abline() function adds horizontal reference lines at
the mean mpg value for each level of the conditioning variable. (If we had replaced
h=mean(y) with h=mean(mtcars$mpg), a single reference line would have been drawn
at the mean mpg value for the entire sample.) The scales= option renders scale an-
notations in red and at 80 percent of their default size.

In the previous example, we could have used scales=list(x=list() , y=list())
to specify separate options for the horizontal and vertical axes. See help(xyplot)
for details on the many scale options available. In the next section, you’ll learn how
to superimpose data from groups of observations, rather than presenting them in
separate panels.

16.2.3 Grouping variables

When you include a conditioning variable in a lattice graph formula, a separate panel
is produced for each level of that variable. If you want to superimpose the results for each
level instead, you can specify the variable as a group variable.

Let’s say that you want to display the distribution of gas mileage for cars with manual
and automatic transmissions using kernel density plots. You can superimpose these
plots using this code:

384 CHAPTER 16 Advanced graphics

library(lattice)
mtcars$transmission <- factor(mtcars$am, levels=c(0, 1),
 labels=c("Automatic", "Manual"))
densityplot(~mpg, data=mtcars,
 group=transmission,
 main="MPG Distribution by Transmission Type",
 xlab="Miles per Gallon",
 auto.key=TRUE)

The resulting graph is presented in figure 16.5. By default, the group=option super-
imposes the plots from each level of the grouping variable. Points are plotted as open
circles, lines are solid, and level information is distinguished by color. As you can see,
the colors are difficult to differentiate when printed in grayscale. Later you’ll see how
to change these defaults.

 Note that legends or keys aren’t produced by default. The option auto.key=TRUE
will create a rudimentary legend and place it above the graph. You can make limited
changes to this automated key by specifying options in a list. For example,

auto.key=list(space=”right”, columns=1, title=”Transmission”)

would move the legend to the right of the graph, present the key values in a single
column, and add a legend title.

If you want to exert greater control over the legend, you can use the key= option.
An example is given in listing 16.4. The resulting graph is provided in figure 16.6.

MPG Distribution by Transmission Type

Miles per Gallon

D
en

si
ty

0.00

0.02

0.04

0.06

0.08

0.10

10 20 30 40

Automatic
Manual

Figure 16.5 Kernel density
plots for miles per gallon
grouped by transmission type.
Jittered points are provided on
the horizontal axis.

The lattice package 385

Listing 16.4 Kernel density plot with a group variable and customized legend

library(lattice)
mtcars$transmission <- factor(mtcars$am, levels=c(0, 1),
 labels=c("Automatic", "Manual"))

colors = c("red", "blue")
lines = c(1,2) q
points = c(16,17)

key.trans <- list(title="Trasmission",
 space="bottom", columns=2, w
 text=list(levels(mtcars$transmission)),
 points=list(pch=points, col=colors),
 lines=list(col=colors, lty=lines),
 cex.title=1, cex=.9)

densityplot(~mpg, data=mtcars,
 group=transmission,
 main="MPG Distribution by Transmission Type",
 xlab="Miles per Gallon",
 pch=points, lty=lines, col=colors,
 lwd=2, jitter=.005, e
 key=key.trans)

Here, the plotting symbols, line types, and colors are specified as vectors q. The first
element of each vector will be applied to the first level of the group variable, the sec-
ond element to the second level, and so forth. A list object is created to hold the
legend options w. These options place the legend below the graph in two columns,
and include the level names, point symbols, line types, and colors. The legend title is
rendered slightly larger than the text for the symbols.

MPG Distribution by Transmission Type

Miles per Gallon

D
en

si
ty

0.00

0.02

0.04

0.06

0.08

0.10

10 20 30 40

Trasmission
Automatic Manual

Figure 16.6 Kernel density plots
for miles per gallon grouped by
transmission type. Graphical
parameters have been modified
and a customized legend has been
added. The custom legend specifies
color, shape, line type, character
size, and title.

Color, line, point
specifications

Legend
customization

Density plot
customization

386 CHAPTER 16 Advanced graphics

The same plot symbols, line types, and colors are specified within the densityplot()
function e. Additionally, the line width and jitter are increased to improve the ap-
pearance of the graph. Finally, the key is set to use the previously defined list. This ap-
proach to specifying a legend for the grouping variable allows a great deal of flexibility.
In fact, you can create more than one legend and place them in different areas of the
graph (not shown here).

Before completing this section, let’s consider an example that includes group and
conditioning variables in a single plot. The CO2 data frame, included with the base
R installation, describes a study of cold tolerance of the grass species Echinocholoa
crus-galli.

The data describe carbon dioxide uptake rates (uptake) for 12 plants (Plant), at
seven ambient carbon dioxide concentrations (conc). Six plants were from Quebec
and six plants were from Mississippi. Three plants from each location were studied
under chilled conditions and three plants were studied under nonchilled conditions.
In this example, Plant is the group variable and both Type (Quebec/Mississippi)
and Treatment (chilled/nonchilled) are conditioning variables. The following code
produces the plot in figure 16.7.

Listing 16.5 xyplot with group and conditioning variables and customized legend

library(lattice)
colors <- "darkgreen"
symbols <- c(1:12)
linetype <- c(1:3)

key.species <- list(title="Plant",
 space="right",
 text=list(levels(CO2$Plant)),
 points=list(pch=symbols, col=colors))

xyplot(uptake~conc|Type*Treatment, data=CO2,
 group=Plant,
 type="o",
 pch=symbols, col=colors, lty=linetype,
 main="Carbon Dioxide Uptake\nin Grass Plants",
 ylab=expression(paste("Uptake ",
 bgroup("(", italic(frac("umol","m"^2)), ")"))),
 xlab=expression(paste("Concentration ",
 bgroup("(", italic(frac(mL,L)), ")"))),
 sub = "Grass Species: Echinochloa crus-galli",
 key=key.species)

Note the use of \n to give you a two-line title and the use of the expression() func-
tion to add mathematical notation to the axis labels. Here, color is suppressed as a
group differentiator by specifying a single color in the col= option. In this case, add-
ing 12 different colors is overkill and distracts from the goal of easily visualizing the
relationships in each panel. Clearly, there’s something different about the Mississippi
grasses in the chilled condition.

The lattice package 387

Carbon Dioxide Uptake
in Grass Plants

Concentration
mL

L

U
pt

ak
e

um
ol

m
2

10

20

30

40

200 400 600 800 1000

Quebec
nonchilled

Mississippi
nonchilled

Quebec
chilled

200 400 600 800 1000

10

20

30

40

Mississippi
chilled

Plant
Qn1
Qn2
Qn3
Qc1
Qc3
Qc2
Mn3
Mn2
Mn1
Mc2
Mc3
Mc1

Figure 16.7 xyplot showing the impact of ambient carbon dioxide concentrations
on carbon dioxide uptake for 12 plants in two treatment conditions and two types.
Plant is the group variable and Treatment and Type are the conditioning variables.

Up to this point, you’ve been modifying graphic elements in your charts through op-
tions passed to either the high-level graph function (for example, xyplot(pch=17))
or within the panel functions that they use (for example, panel.xyplot(pch=17)).
But such changes are in effect only for the duration of the function call. In the next
section, we’ll review a method for changing graphical parameters that persists for the
duration of the interactive session or batch execution.

16.2.4 Graphic parameters

In chapter 3, you learned how to view and set default graphics parameters using the
par() function . Although this works for graphs produced with R’s native graphic sys-
tem, lattice graphs are unaffected by these settings. Instead, the graphic defaults used
by lattice functions are contained in a large list object that can be accessed with the
trellis.par.get() function and modified through the trellis.par.set() func-
tion . The show.settings() function can be used to display the current graphic set-
tings visually.

388 CHAPTER 16 Advanced graphics

As an example, let’s change the default symbol used for superimposed points (that
is, points in a graph that includes a group variable). The default is an open circle. We’ll
give each group their own symbol instead.

First, view the current defaults and save them into a list called mysettings:

> show.settings()
> mysettings <- trellis.par.get()

Next, look at the defaults that are specific to superimposed symbols:

> mysettings$superpose.symbol
$alpha
[1] 1 1 1 1 1 1 1

$cex
[1] 0.8 0.8 0.8 0.8 0.8 0.8 0.8

$col
[1] "#0080ff" "#ff00ff" "darkgreen" "#ff0000" "orange" "#00ff00"
[7] "brown"

$fill
[1] "#CCFFFF" "#FFCCFF" "#CCFFCC" "#FFE5CC" "#CCE6FF" "#FFFFCC" "#FFCCCC"

$font
[1] 1 1 1 1 1 1 1

$pch
[1] 1 1 1 1 1 1 1

Here you see that the symbol used for each level of a group variable is an open circle
(pch=1). Seven levels are defined, after which symbols recycle.

Finally, issue the following statements:

mysettings$superpose.symbol$pch <- c(1:10)
trellis.par.set(mysettings)
show.settings()

Lattice graphs now use symbol 1 (open circle) for the first level of a group variable,
symbol 2 (open triangle) for the second, and so on. Additionally, symbols have been
defined for 10 levels of a grouping variable, rather than 7. The changes will remain in
effect until all graphic devices are closed. You can change any graphic setting in this
manner.

16.2.5 Page arrangement

In chapter 3 you learned how to place more than one graph on a page using the par()
function. Because lattice functions don’t recognize par() settings, you’ll need a dif-
ferent approach. The easiest method involves saving your lattice graphs as objects, and
using the plot() function with either the split= or position= option specified.

The split option divides a page up into a specified number of rows and columns
and places graphs into designated cells of the resulting matrix. The format for the
split option is

The lattice package 389

split=c(placement row, placement column,
 total number of rows, total number of columns)

For example, the following code

library(lattice)
graph1 <- histogram(~height|voice.part, data=singer,
 main="Heights of Choral Singers by Voice Part")
graph2 <- densityplot(~height, data=singer, group=voice.part,
 plot.points=FALSE, auto.key=list(columns=4))
plot(graph1, split=c(1, 1, 1, 2))
 plot(graph2, split=c(1, 2, 1, 2), newpage=FALSE)

places the first graph directly above the second graph. Specifically, the first plot() state-
ment divides the page up into one column and two rows and places the graph in the first
column and first row (counting top-down and left-right). The second plot() statement
divides the page up in the same way, but places the graph in the first column and second
row. Because the plot() function starts a new page by default, you suppress this action
by including the newpage=FALSE option. (I’ve omitted the graph to save space.)

You can gain more control of sizing and placement by using the position= option.
Consider the following code:

library(lattice)
graph1 <- histogram(~height|voice.part, data=singer,
 main="Heights of Choral Singers by Voice Part")
graph2 <- densityplot(~height, data=singer, group=voice.part,
 plot.points=FALSE, auto.key=list(columns=4))
plot(graph1, position=c(0, .3, 1, 1))
plot(graph2, position=c(0, 0, 1, .3), newpage=FALSE)

Here, position=c(xmin, ymin, xmax, ymax), where the x-y coordinate system for the
page is a rectangle with dimensions ranging from 0 to 1 on both the x and y axes, and the
origin (0,0) at the bottom left. (Again, the resulting graph is omitted to save space.)

You can also change the order of the panels in a lattice graph. The index.cond=
option in a high-level lattice graph function specifies the order of the conditioning
variable levels. For the voice.part factor, the levels are

> levels(singer$voice.part)
[1] "Bass 2" "Bass 1" "Tenor 2" "Tenor 1" "Alto 2" "Alto 1"
[7] "Soprano 2" "Soprano 1"

Adding index.cond=list(c(2, 4, 6, 8, 1, 3, 5, 7)) would place the "1" voice
parts together, followed by "2" voice parts. When there are two conditioning variables,
include two vectors in the list. In listing 16.5, adding index.cond=list(c(1, 2),
c(2, 1)) would reverse the order of treatments in figure 16.7.

To learn more about lattice graphs, take a look the excellent text by Sarkar (2008)
and its supporting website at http://lmdvr.r-forge.r-project.org. The Trellis Graphics
User’s Manual (http://cm.bell-labs.com/cm/ms/departments/sia/doc/trellis.user.
pdf) is also an excellent source of information.

In the next section, we’ll explore a second comprehensive alternative to R’s native
graphic system. This one is based on the ggplot2 package.

http://lmdvr.r-forge.r-project.org
http://cm.bell-labs.com/cm/ms/departments/sia/doc/trellis.user.pdf
http://cm.bell-labs.com/cm/ms/departments/sia/doc/trellis.user.pdf

390 CHAPTER 16 Advanced graphics

16.3 The ggplot2 package
The ggplot2 package implements a system for creating graphics in R based on a com-
prehensive and coherent grammar. This provides a consistency to graph creation often
lacking in R, and allows the user to create graph types that are innovative and novel.

 The simplest approach for creating graphs in ggplot2 is through the qplot() or
quick plot function. The format is

qplot(x, y, data=, color=, shape=, size=, alpha=, geom=, method=, formula=,
 facets=, xlim=, ylim=, xlab=, ylab=, main=, sub=)

where the parameters/options are defined in table 16.4.

Table 16.4 qplot options

Option Description

alpha Alpha transparency for overlapping elements expressed as a fraction between 0
(complete transparency) and 1 (complete opacity).

color , shape ,
size , fill

Associates the levels of variable with symbol color, shape, or size. For line plots,
color associates levels of a variable with line color. For density and box plots,
fill associates fill colors with a variable. Legends are drawn automatically.

data Specifies a data frame.

facets Creates a trellis graph by specifying conditioning variables. Its value is expressed
as rowvar ~ colvar (see the example in figure 16.10). To create trellis graphs
based on a single conditioning variable, use rowvar~. or .~colvar.

geom Specifies the geometric objects that define the graph type. The geom option is
expressed as a character vector with one or more entries. geom values include
"point", "smooth", "boxplot", "line", "histogram", "density",
"bar", and "jitter".

main , sub Character vectors specifying the title and subtitle.

method ,
formula

If geom="smooth", a loess fit line and confidence limits are added by default.
When the number of observations is greater than 1,000, a more efficient
smoothing algorithm is employed. Methods include "lm" for regression, "gam"
for generalized additive models, and "rlm" for robust regression. The formula
parameter gives the form of the fit.

For example, to add simple linear regression lines, you’d specify
geom="smooth", method="lm", formula=y~x. Changing the formula to
y~poly(x,2) would produce a quadratic fit. Note that the formula uses the
letters x and y, not the names of the variables.

For method="gam", be sure to load the mgcv package. For method="rml",
load the MASS package.

x , y Specifies the variables placed on the horizontal and vertical axis. For univariate
plots (for example, histograms), omit y.

xlab, ylab Character vectors specifying horizontal and vertical axis labels.

xlim , ylim Two-element numeric vectors giving the minimum and maximum values for the
horizontal and vertical axes, respectively.

The ggplot2 package 391

To see how qplot() works, let’s review some examples. The following code creates box
plots of gas mileage by number of cylinders. The actual data points are superimposed
(and jittered to reduce overlap). Box plot colors vary by number of cylinders.

library(ggplot2)
mtcars$cylinder <- as.factor(mtcars$cyl)
qplot(cylinder, mpg, data=mtcars, geom=c("boxplot", "jitter"),
 fill=cylinder,
 main="Box plots with superimposed data points",
 xlab= "Number of Cylinders",
 ylab="Miles per Gallon")

The graph is displayed in figure 16.8.
As a second example, let’s create a scatter plot matrix of gas mileage by car weight

and use color and symbol shape to differentiate cars with automatic transmissions from
those with manual transmissions. Additionally, we’ll add separate regression lines and
confidence bands for each transmission type.

library(ggplot2)
transmission <- factor(mtcars$am, levels=c(0, 1),
 labels=c("Automatic", "Manual"))
qplot(wt,mpg, data=mtcars,
 color=transmission, shape=transmission,
 geom=c("point", "smooth"),
 method="lm", formula=y~x,
 xlab="Weight", ylab="Miles Per Gallon",
 main="Regression Example")

Box plots with superimposed data points

Number of Cylinders

M
ile

s
pe

r
G

al
lo

n

15

20

25

30

Figure 16.8 Box plots of auto
mileage by number of cylinders.
Data points are superimposed and
jittered.

392 CHAPTER 16 Advanced graphics

Figure 16.9 Scatter plot
between auto mileage and
car weight, with
separate regression lines
and confidence bands by
engine transmission
type (manual, automatic)

The resulting graph is provided in figure 16.9. This is a useful type of graph, not easily
created using other packages.

As a third example, we’ll create a faceted (trellis) graph. Each facet (panel) displays
the scatter plot between gas mileage and car weight. Row facets are defined by the
transmission type, whereas column facets are defined by the number of cylinders
present. The size of each data point represents the car’s horsepower rating.

library(ggplot2)
mtcars$cyl <- factor(mtcars$cyl, levels=c(4, 6, 8),
 labels=c("4 cylinders", "6 cylinders", "8 cylinders"))
mtcars$am <- factor(mtcars$am, levels=c(0, 1),
 labels=c("Automatic", "Manual"))
qplot(wt,mpg, data=mtcars, facets=am~cyl, size=hp)

The graph is displayed in figure 16.10. Note how simple it is to create a complex graph
(actually a bubble chart). You may want to try adding shape and color options to the
function call and see how the resulting graph is affected.

We’ll end this section by revisiting the singer data with which we began the chapter.
This code produces the graph in figure 16.11:

library(ggplot2)
data(singer, package="lattice")
qplot(height, data=singer, geom=c("density"),
 facets=voice.part~., fill=voice.part)

The ggplot2 package 393

wt

m
pg

15

20

25

30

15

20

25

30

4 cylinders

2 3 4 5

6 cylinders

2 3 4 5

8 cylinders

2 3 4 5

A
utom

atic
M

anual

hp

100

150

200

250

300

Figure 16.10 Scatter plot between
auto mileage and car weight,
faceted by transmission type
(manual, automatic) and number of
cylinders (4, 6, or 8). Symbol size
represents horsepower.

height

de
ns

ity

0.00
0.05
0.10
0.15
0.20
0.25

0.00
0.05
0.10
0.15
0.20
0.25

0.00
0.05
0.10
0.15
0.20
0.25

0.00
0.05
0.10
0.15
0.20
0.25

0.00
0.05
0.10
0.15
0.20
0.25

0.00
0.05
0.10
0.15
0.20
0.25

0.00
0.05
0.10
0.15
0.20
0.25

0.00
0.05
0.10
0.15
0.20
0.25

60 65 70 75

B
ass 2

B
ass 1

Tenor 2
Tenor 1

A
lto 2

A
lto 1

S
oprano 2

S
oprano 1

voice.part

Bass 2

Bass 1

Tenor 2

Tenor 1

Alto 2

Alto 1

Soprano 2

Soprano 1

Figure 16.11 Faceted density plots
for singer heights by voice part

394 CHAPTER 16 Advanced graphics

Comparing the distribution of heights is easier in this format than in the format pre-
sented in figure 16.1. (Once again, this looks better when displayed in color.)

We’ve only scratched the surface of this powerful graphical system. Interested
readers are referred to Wickham (2009), and the ggplot2 website (http://had.co.nz/
ggplot2/) for more information. We’ll end this chapter with a review of interactive
graphics and R functions that support them.

16.4 Interactive graphs
The base installation of R provides limited interactivity with graphs. You can modify
graphs by issuing additional program statements, but there’s little that you can do to
modify them or gather new information from them using the mouse. However, there
are contributed packages that greatly enhance your ability to interact with the graphs
you create. In this section, we’ll focus on functions provided by the playwith , latti-
cist, iplots , and rggobi packages . Be sure to install them before first use.

16.4.1 Interacting with graphs: identifying points

Before getting to the specialize packages, let’s review a function in the base R installa-
tion that allows you to identify and label points in scatter plots. Using the identify()
function , you can label selected points in a scatter plot with their row number or row
name using your mouse. Identification continues until you select Stop or right-click on
the graph. For example, after issuing the following statements

plot(mtcars$wt, mtcars$mpg)
identify(mtcars$wt, mtcars$mpg, labels=row.names(mtcars))

the cursor will change from a pointer to a crosshair. Clicking on scatter plot points will
label them until you select Stop from the Graphics Device menu or right-click on the
graph and select Stop from the context menu.

Many graphic functions in contributed packages (including functions from the car
package discussed in chapter 8) employ this method for labeling points. Unfortunately,
the identify() function doesn’t work with lattice or ggplot2 graphs .

16.4.2 playwith

The playwith package provides a GTK+ graphical user interface that allows users to
edit and interact with R plots. You can install the playwith package on any platform
using install.packages("playwith", depend=TRUE). On platforms running Mac
OS X and Linux, it’s best to also install the JGR graphic user interface (see appendix
A), and run playwith from within this GUI.

The playwith()function allows users to identify and label points, view all variable
values for an observation, zoom and pan, add annotations (text, arrows, lines,
rectangles, titles, labels), change visual elements (colors, text sizes, and so on), apply
previously saved styles, and output the resulting graph in a variety of formats. This is
easily demonstrated with an example. After running the following code

http://www.eus-meets-voxelman.de
http://www.eus-meets-voxelman.de

 Interactive graphs 395

library(playwith)
library(lattice)

playwith(
 xyplot(mpg~wt|factor(cyl)*factor(am),
 data=mtcars, subscripts=TRUE,
 type=c("r", "p"))
)

the window in figure 16.12 will appear on the screen. Try out the buttons on the left, as
well as the menu items. The GUI is fairly self-explanatory. Unlike the identify() func-
tion, playwith() works with lattice and ggplot2 graphs as well as base R graphs.
Some options in the Theme menu only work properly with base graphics. Additionally,
some features work with ggplot2 graphs (such as annotating) and some don’t (such
as identifying points).

To learn more about the playwith package, visit the project website at http://code.
google.com/p/playwith/.

Figure 16.12 The playwith window. The user can edit the graph using the mouse
with this GTK+ GUI.

http://code.google.com/p/playwith/
http://code.google.com/p/playwith/

396 CHAPTER 16 Advanced graphics

16.4.3 latticist

The latticist package lets you explore a data set using lattice displays. It provides a
graphic user interface to the graphs described in section 16.2, but it can also be used to
create displays from the vcd package (see chapter 11, section 11.4). If desired, latticist
and can also be integrated with playwith. For example, executing the following code

library(latticist)
mtcars$cyl <- factor(mtcars$cyl)
mtcars$gear <- factor(mtcars$gear)
latticist(mtcars, use.playwith=TRUE)

will bring up the interface in figure 16.13.
In addition to having the playwith functionality (point identification, annotation,

zooming, panning, styles), the user can now create lattice graphs by selecting from
drop-down menus and buttons. To learn more about the latticist package, see
http://code.google.com/p/latticist/.

Figure 16.13 playwith window with latticist functionality. The user can create lattice and
vcd graphs interactively.

http://code.google.com/p/latticist/

 Interactive graphs 397

A similar interface is available for ggplot2 graphs , through Plot Builder, a plug-in for
Deducer, a popular GUI for R (see appendix A). Because it can’t be run from the R
console, we won’t discuss it here. If you’re interested, visit the Deducer website at www.
deducer.org.

16.4.4 Interactive graphics with the iplots package

Whereas playwith and latticist allow you to interact with a single graph, the
iplots package takes interaction in a different direction. This package provides inter-
active mosaic plots, bar plots, box plots, par-
allel plots, scatter plots, and histograms that
can be linked together and color brushed.
This means that you can select and identify
observations using the mouse, and highlight-
ing observations in one graph will automati-
cally highlight the same observations in all
other open graphs. You can also use the
mouse to obtain information about graphic
objects such as points, bars, lines, and box
plots.

The iplots package is implemented
through Java and the primary functions are
listed in table 16.5.

To understand how iplots works, execute
the code provided in listing 16.6.

Listing 16.6 iplots demonstration

library(iplots)
attach(mtcars)
cylinders <- factor(cyl)
gears <- factor(gear)
transmission <- factor(am)
ihist(mpg)
ibar(gears)
iplot(mpg, wt)
ibox(mtcars[c("mpg", "wt", "qsec", "disp", "hp")])
ipcp(mtcars[c("mpg", "wt", "qsec", "disp", "hp")])
imosaic(transmission, cylinders)
detach(mtcars)

Six windows containing graphs will open. Rearrange them on the desktop so that each
is visible (each can be resized if necessary). A portion of the display is provided in
figure 16.14.

Now try the following:

■ Click on the three-gear bar in the Barchart (gears) window. The bar will turn
red. In addition, all cars with three-gear engines will be highlighted in the other
graphic windows.

Table 16.5 iplot functions

Function Description

ibar() Interactive bar chart

ibox() Interactive box plot

ihist() Interactive histogram

imap() Interactive map

imosaic() Interactive mosaic plot

ipcp() Interactive parallel
coordinates plot

iplot() Interactive scatter plot

http://www.deducer.org

398 CHAPTER 16 Advanced graphics

■ Mouse down and drag to select a rectangular region of points in the Scatter plot
(wt vs mpg) window. These points will be highlighted and the corresponding
observations in every other graphics window will also turn red.

■ Hold down the Ctrl key and move the mouse pointer over a point, bar, box plot,
or line in one of the graphs. Details about that object will appear in a pop-up
window.

■ Right-click on any object and note the options that are offered in the context
menu. For example, you can right-click on the Boxplot (mpg) window and
change the graph to a parallel coordinates plot (PCP).

■ You can drag to select more than one object (point, bar, and so on) or use Shift-
click to select noncontiguous objects. Try selecting both the three- and five-gear
bars in the Barchart (gears) window.

The functions in the iplots package allow you to explore the variable distributions
and relationships among variables in subgroups of observations that you select interac-
tively. This can provide insights that would be difficult and time-consuming to obtain
in other ways. For more information on the iplots package, visit the project website
at http://rosuda.org/iplots/.

Figure 16.14 An iplots demonstration created by listing 16.6. Only four of the
six windows are displayed to save room. In these graphs, the user has clicked
on the three-gear bar in the bar chart window.

http://rosuda.org/iplots/

 Summary 399

16.4.5 rggobi

For our final example of interactivity, we’ll actually look beyond the R platform to the
open source GGobi application (www.ggobi.org). GGobi is a comprehensive program
for the visual and dynamic exploration of high-dimensional data and is freely available
for Windows, Mac OS X, and Linux platforms. It offers a number of attractive features,
including linked interactive scatter plots, bar charts, parallel coordinate plots, time
series plots, scatter plot matrices, and 3D rotation; brushing and identification; mul-
tivariate transformation methods; and sophisticated exploratory support, including
guided and manual 1D and 2D tours. Happily, the rggobi package provides a seamless
interface between GGobi and R.

The first step in using GGobi is to download and install the appropriate software for
your platform (www.ggobi.org/downloads/). Then install the rggobi package within
R using install.packages("rggobi", depend=TRUE).

Once you’ve installed both, you can use the ggobi() function to run GGobi from
within R. This gives you sophisticated interactive graphics access to all of your R data.
To see this in action, execute the following code:

library(rggobi)
g <- ggobi(mtcars)

The GGobi interface will open and allow you to explore the mtcars dataset in a highly
interactive fashion. To learn more, review the introduction, tutorial, manual, and vid-
eo guides available on the GGobi website. A comprehensive overview is also provided
in Cook and Swayne (2008).

16.5 Summary
In this chapter, we reviewed several packages that provide access to advanced graphi-
cal methods. We started with the lattice package, designed to provide a system for
creating trellis graphs, followed by the ggplot2 package, based on a comprehensive
grammar of graphics. Both packages are designed to provide you with a complete and
comprehensive alternative to the native graphics provided with R. Each offers methods
of creating attractive and meaningful visualizations of data that are difficult to gener-
ate in other ways.

We then explored several packages for dynamically interacting with graphs,
including playwith, latticist, iplots, and rggobi. These packages allow you to
interact directly with data in graphs, leading to a greater intimacy with your data and
expanded opportunities for developing insights.

You should now have a firm grasp of the many ways that R allows you to create
visual representations of data. If a picture is worth a thousand words, and R provides a
thousand ways to create a picture, then R must be worth a million words (or something
to that effect). These resources are a testament to the hard and selfless work of the
initial R development team and the thousands of hours of work contributed by package
authors.

http://www.ggobi.org
http://www.ggobi.org/downloads/

400

afterword: Into the rabbit hole

We’ve covered a broad range of topics in the book, including major ones like the
R development environment, data management, traditional statistical models, and
statistical graphics. We’ve also covered hidden gems like resampling statistics, miss-
ing values imputation, and interactive graphics. The great (or perhaps infuriating)
thing about R is that there’s always more to learn.

R is a large, robust, and evolving statistical platform and programming language.
With so many new packages, frequent updates, and new directions, how can a user
stay current? Happily, many websites support this active community and provide
coverage of platform and package changes, new methodologies, and a wealth of
tutorials. I’ve listed some of my favorite sites below.

The R Project (http://www.r-project.org/)
The official R website and your first stop for all things R. The site includes extensive
documentation, including An Introduction to R, The R Language Definition, Writing R
Extensions, R Data Import/Export, R Installation and Administration, and The R FAQ.

The R Journal (http://journal.r-project.org/)
A freely accessible refereed journal containing articles on the R project and contrib-
uted packages.

R Bloggers (http://www.r-bloggers.com/)
A central hub (blog aggregator) collecting content from bloggers writing about R.
Contains new articles daily. I’m addicted to it.

Planet R (http://planetr.stderr.org)
Another good site-aggregator, including information from a wide range of sources.
Updated daily.

http://www.r-project.org/
http://journal.r-project.org/
http://www.r-bloggers.com/
http://planetr.stderr.org

AFTERWORD Into the rabbit hole 401

CRANberries (http://dirk.eddelbuettel.com/cranberries/)
A site that aggregates information about new and updated packages, and contains
links to CRAN for each.

R Graph Gallery (http://addictedtor.free.fr/graphiques/)
A collection of innovative graphs, along with their source code.

R Graphics Manual (http://bm2.genes.nig.ac.jp/)
A collection of R graphics from all R packages, arranged by topic, package, and func-
tion. At last count, there were 35,000+ images!

Journal of Statistical Software (http://www.jstatsoft.org/)
A freely accessible refereed journal containing articles, book reviews, and code snip-
pets on statistical computing. Contains frequent articles about R.

Revolutions (http://blog.revolution-computing.com/)
A popular, well-organized blog, dedicated to news and information about R.

CRAN Task Views (http://cran.r-project.org/web/views/)
Task views are guides to the use of R in different academic and research fields. They
include a description of the packages and methods available for a given area. Currently
there are 28 task views available (see table below).

CRAN Task Views

Bayesian Inference Machine Learning & Statistical Learning

Chemometrics and Computational Physics Medical Image Analysis

Design, Monitoring, and Analysis of Clinical Trials Multivariate Statistics

Clinical Trial Design, Monitoring, and Analysis Natural Language Processing

Cluster Analysis & Finite Mixture Models Official Statistics & Survey Methodology

Probability Distributions Optimization and Mathematical Programming

Computational Econometrics Analysis of Pharmacokinetic Data

Analysis of Ecological and Environmental Data Phylogenetics, Especially Comparative Methods

Design of Experiments (DoE) Psychometric Models and Methods

Empirical Finance Robust Statistical Methods

Statistical Genetics Statistics for the Social Sciences

Graphic Displays & Dynamic Graphics Analysis of Spatial Data

gRaphical Models in R Survival Analysis

High-Performance and Parallel Computing with R Time Series Analysis

http://dirk.eddelbuettel.com/cranberries/
http://addictedtor.free.fr/graphiques/
http://bm2.genes.nig.ac.jp/
http://www.jstatsoft.org/
http://blog.revolution-computing.com/
http://cran.r-project.org/web/views/

402 AFTERWORD Into the rabbit hole

R-Help Main R Mailing List (https://stat.ethz.ch/mailman/listinfo/r-help)
This electronic mailing list is the best place to ask questions about R. The archives are
also searchable. Be sure to read the FAQ before posting questions.

Quick-R (http://www.statmethods.net)
This is my R website. It’s stocked with more than 80 brief tutorials on R topics. False
modesty forbids me from saying more.

The R community is a helpful, vibrant, and exciting lot. Welcome to Wonderland.

https://stat.ethz.ch/mailman/listinfo/r-help
http://www.statmethods.net

403

appendix A
Graphic user interfaces

You turned here first, didn’t you? By default, R provides a simple command-line in-
terface (CLI). The user enters statements at a command-line prompt (> by default)
and each command is executed one at a time. For many data analysts, the CLI is one
of R’s most significant limitations.

There have been a number of attempts to create more graphical interfaces,
ranging from code editors that interact with R (such as RStudio), to GUIs for specific
functions or packages (such as BiplotGUI), to full-blown GUIs that allow the user to
construct analyses through interactions with menus and dialog boxes (such as R
Commander).

Several of the more useful code editors are listed in table A.1.

Table A.1 Integrated development environments and syntax editors

Name URL

Eclipse with StatET plug-in http://www.eclipse.org and http://www.walware.de/goto/statet

ESS (Emacs Speaks
Statistics)

http://ess.r-project.org/

Komodo Edit
with SciViews-K plug-in

http://www.activestate.com/komodo_edit/ http://www.
sciviews.org/SciViews-K/

JGR http://www.rforge.net/JGR/

http://www.eclipse.org
http://ess.r-project.org/
http://www.activestate.com/komodo_edit/
http://www.rforge.net/JGR/
http://www.walware.de/goto/statet
http://www.sciviews.org/SciViews-K/
http://www.sciviews.org/SciViews-K/

404 APPENDIX A Graphic user interfaces

Table A.1 Integrated development environments and syntax editors (continued)

Name URL

RStudio http://www.rstudio.org

Tinn-R (Windows only) http://www.sciviews.org/Tinn-R/

Notepad++ with NppToR
(windows only)

http://notepad-plus-plus.org/
http://sourceforge.net/projects/npptor/

The code editors in table A.1 allow the user to edit and execute R code and include
syntax highlighting, statement completion, object exploration, project organization,
and online help. A screenshot of RStudio is provided in figure A.1.

Several promising full-blown GUIs for R are listed in table A.2. The GUIs available
for R are less comprehensive and mature than those offered by SAS or IBM SPSS, but
they’re developing rapidly.

Figure A.1 RStudio IDE

http://www.rstudio.org
http://www.sciviews.org/Tinn-R/
http://notepad-plus-plus.org/
http://sourceforge.net/projects/npptor/

APPENDIX A Graphic user interfaces 405

Table A.2 Comprehensive GUIs for R

Name URL

JGR/ Deducer http://ifellows.ucsd.edu/pmwiki/pmwiki.php?n=Main.DeducerManual

R AnalyticFlow http://www.ef-prime.com/products/ranalyticflow_en/

Rattle (for data mining) http://rattle.togaware.com/

R Commander http://socserv.mcmaster.ca/jfox/Misc/Rcmdr/

Red R http://www.red-r.org/

Rkward http://rkward.sourceforge.net/

My favorite GUI for introductory statistics courses is R Commander (shown in figure A.2).
Finally, there are a number of applications that allow the user to create a GUI

wrapper for any given R function (including user-written functions). These include
the R GUI Generator (RGG) (http://rgg.r-forge.r-project.org/), and the fgui and
twiddler packages available from CRAN.

GUI projects in R are undergoing rapid change and expansion. For more information,
visit the R GUI Projects page at http://www.sciviews.org/_rgui/.

Figure A.2
R Commander GUI

http://ifellows.ucsd.edu/pmwiki/pmwiki.php?n=Main.DeducerManual
http://www.ef-prime.com/products/ranalyticflow_en/
http://rattle.togaware.com/
http://socserv.mcmaster.ca/jfox/Misc/Rcmdr/
http://www.red-r.org/
http://rkward.sourceforge.net/
http://rgg.r-forge.r-project.org/
http://www.sciviews.org/_rgui/

406

appendix B
Customizing the startup

environment

One of the first things that programmers like to do is customize their startup envi-
ronment to conform to their preferred way of working. Customizing the startup en-
vironment allows you to set R options, specify a working directory, load commonly
used packages, load user-written functions, set a default CRAN download site , and
perform any number of housekeeping tasks.

You can customize the R environment through either a site initialization file
(Rprofile.site) or a directory initialization file (.Rprofile). These are text files
containing R code to be executed at startup.

At startup, R will source the file Rprofile.site from the R_HOME/etc directory ,
where R_HOME is an environment value. It will then look for an .Rprofile file
to source in the current working directory. If R doesn’t find this file, it will look
for it in the user’s home directory. You can use Sys.getenv("R_HOME") , Sys.
getenv("HOME") , and getwd() to identify the location of the R_HOME, HOME, and
current working directory, respectively.

You can place two special functions in these files. The .First() function is
executed at the start of each R session, and the .Last() function is executed at the
end of each session. An example of an Rprofile.site file is shown in listing B.1.

APPENDIX B Customizing the startup environment 407

Listing B.1 Sample Rprofile.site file

options(papersize="a4")
options(editor="notepad")
options(pager="internal")
options(tab.width = 2)
options(width = 130)
options(graphics.record=TRUE)
options(show.signif.stars=FALSE)

options(prompt="> ")
options(continue="+ ")

.libPaths("C:/my_R_library")

local({r <- getOption("repos")
 r["CRAN"] <- "http://cran.case.edu/"
 options(repos=r)})

.First <- function(){
 library(lattice)
 library(Hmisc)
 source("C:/mydir/myfunctions.R")
 cat("\nWelcome at", date(), "\n")
}

.Last <- function(){
 cat("\nGoodbye at ", date(), "\n")
}

There are several things you should note about this file:

■ Setting a .libPaths value allows you to create a local library for packages out-
side of the R directory tree. This can be useful for retaining packages during an
upgrade.

■ Setting a default CRAN mirror site frees you from having to choose one each
time you issue an install.packages() command .

■ The .First() function is an excellent place to load libraries that you use often,
as well as source text files containing user-written functions that you apply fre-
quently.

■ The .Last() function is an excellent place for any cleanup activities, including
archiving command histories, program output, and data files.

There are other ways to customize the startup environment, including the use of com-
mand-line options and environment variables . See help(Startup) and appendix B
in the Introduction to R manual (http://cran.r-project.org/doc/manuals/R-intro.pdf)
for more details.

Set common options

Set R interactive prompt

Set path for local library

Set CRAN mirror
default

Startup function

Session end
function

http://cran.r-project.org/doc/manuals/R-intro.pdf
http://cran.case.edu/

408

appendix C
Exporting data from R

In chapter 2, we reviewed a wide range of methods for importing data into R. But
there are times that you’ll want to go the other way—exporting data from R—so that
data can be archived or imported into external applications. In this appendix, you’ll
learn how to output an R object to a delimited text file, an Excel spreadsheet, or a
statistical application (such as SPSS, SAS, or Stata).

C.1 Delimited text file
You can use the write.table() function to output an R object to a delimited text
file. The format is

write.table(x, outfile, sep=delimiter, quote=TRUE, na="NA")

where x is the object and outfile is the target file. For example, the statement

write.table(mydata, "mydata.txt", sep=",")

would save the dataset mydata to a comma-delimited file named mydata.txt in the
current working directory. Include a path (for example, “c:/myprojects/mydata.
txt”) to save the output file elsewhere. Replacing sep="," with sep="\t" would
save the data in a tab-delimited file. By default, strings are enclosed in quotes ("")
and missing values are written as NA.

 Statistical applications 409

C.2 Excel spreadsheet
The write.xlsx() function in the xlsx package can be used to save an R data frame
to an Excel 2007 workbook. The format is

library(xlsx)
write.xlsx(x, outfile, col.Names=TRUE, row.names=TRUE,

 sheetName="Sheet 1", append=FALSE)

For example, the statements

library(xlsx)
write.xlsx(mydata, "mydata.xlsx")

export the data frame mydata to a worksheet (Sheet 1 by default) in an Excel work-
book named mydata.xlsx in the current working directory. By default, the variable
names in the dataset are used to create column headings in the spreadsheet and row
names are placed in the first column of the spreadsheet. If mydata.xlsx already exists,
it is overwritten.

The xlsx package is a powerful tool for manipulating Excel 2007 workbooks. See
the package documentation for more details.

C.3 Statistical applications
The write.foreign() function in the foreign package can be used to export
a data frame to an external statistical application. Two files are created—a free-
format text file containing the data, and a code file containing instructions for reading
the data into the external statistical application. The format is

write.foreign(dataframe, datafile, codefile, package=package)

For example, the code

library(foreign)
write.foreign(mydata, "mydata.txt", "mycode.sps", package="SPSS")

would export the dataframe mydata into a free-format text file named mydata.txt in
the current working directory and an SPSS program named mycode.sps that can be
used to read the text file. Other values of package include "SAS " and "Stata ".

To learn more about exporting data from R, see the R Data Import/Export
documentation, available from http://cran.r-project.org/doc/manuals/R-data.pdf.

http://cran.r-project.org/doc/manuals/R-data.pdf

410

appendix D
Creating publication-quality output

Research doesn’t end when the last statistical analysis or graph is completed. We
need to include the results in a report that effectively communicates these findings
to a teacher, supervisor, client, government agency, or journal editor. Although R
creates state-of-the-art graphics, its text output is woefully retro—tables of mono-
spaced text with columns lined up using spaces.

There are two common approaches to creating publication quality reports in
R: Sweave and odfWeave. The Sweave package allows you to embed R code and
output in LaTeX documents, in order to produce high-end typeset reports in PDF,
PostScript, and DVI formats. Sweave is an elegant, precise, and highly flexible system,
but it requires the author to be conversant with LaTeX coding .

In a similar fashion, the odfWeave package provides a mechanism for embedding
R code and output in documents that follow the Open Documents Format (ODF).
These reports can be further edited via an ODF word processor, such as OpenOffice
Writer, and saved in either ODF or Microsoft Word format. The process is not as
flexible as the Sweave approach, but it eliminates the need to learn LaTeX. We’ll
look at each approach in turn.

D.1 High-quality typesetting with Sweave (R + LaTeX)
LaTeX is a document preparation system for high-quality typesetting (http://www.
latex-project.org) that’s freely available for Windows, Mac, and Linux platforms.
An author creates a text document that includes markup code for formatting the

http://www.latex-project.org
http://www.latex-project.org

High-quality typesetting with Sweave (R + LaTeX) 411

content. The document is then processed through a LaTeX compiler , producing a
finished document in PDF, PostScript, or DVI format.

The Sweave package allows you to embed R code and output (including graphs)
within the LaTeX document. This is a multistep process:

1 A special document called a noweb file (typically with the extension .Rnw) is
created using any text editor. The file contains the written content, LaTeX
markup code , and R code chunks. Each R code chunk starts with the delimiter
<<>>= and ends with the delimiter @.

2 The Sweave() function processes the noweb file and generates a LaTeX
file. During this step, the R code chunks are processed, and depending on
options, replaced with LaTeX-formatted R code and output. This step can be
accomplished from within R or from the command line.

Within R, the format is

Sweave("infile.Rnw")

By default, Sweave("example.Rnw") would input the file example.Rnw from the
current working directory and output the file example.tex to the same directory.
Alternatively, use can use

Sweave("infile.Rnw", syntax="SweaveSyntaxNoweb")

Specifying this syntax option can help avoid some common parsing errors, as well
as conflicts with the R2HTML package .

Execution from the command line will depend on the operating system. For
example, on a Linux system, this might look like $ R CMD Sweave infile.Rnw

3 The LaTeX file is then run through a LaTeX compiler, creating a PDF,
PostScript, or DVI file. Popular LaTeX compilers include TeX Live for Linux,
MacTeX for Mac, and proTeXt for Windows.

The complete process is outlined in figure D.1.

example.rnw
example.rnw

example.pdf

PDF file
Run through

LaTeX
compiler

example.ps

Postscript file

example.dvi
DVI file

LaTex (TeX) file
Text file with LaTex
markup and Rcode

Chunks

Run through Sweave() function in R

Figure D.1 Process for generating a publication-quality report using Sweave

412 APPENDIX D Creating publication-quality output

As indicated earlier, each chunk of R code is surrounded by <<>>= and @. You can add
options to each <<>>= delimiter in order to control the processing of the correspond-
ing R code chunk. For example

<<echo=TRUE, results=HIDE>>=
summary(lm(Y~X, data=mydata))
@

would output the code, but not the results, whereas

<<echo=FALSE, fig=TRUE>>=
plot(A)
@

wouldn’t print the code but would include the graph in the output. Common delim-
iter options are described in table D.1.

Table D.1 Common options for R code chunks

Option Description

echo Include the code in the output (echo=TRUE) or not (echo=FALSE). The default is
TRUE.

eval Use eval=FALSE to keep the code from being evaluated/executed. The default is
TRUE.

fig Use fig=TRUE when the output is a graph. The default is FALSE.

results Include R code output (results=verbatim), suppress the output (results=hide),
or include the output and assume that it contains LaTeX markup (results=tex).
The default is verbatim. Use results=tex when the output is generated by the
xtable() function in the xtable package or the latex() function in the Hmisc
package.

By default, Sweave will add LaTeX markup code to attractively format data frames, ma-
trices, and vectors. Additionally, R objects can be embedded inline using a \Sexpr{}
statement . Note that lattice graphs must be embedded in a print() statement to be
processed properly.

The xtable() function in the xtable package can be used to format data frames
and matrices more precisely. In addition, it can be used to format other R objects,
including those produced by lm(), glm(), aov(), table(), ts(), and coxph().
Use method(xtable) to view a comprehensive list. When formatting R output using
xtable() , be sure to include the results=tex option in the code chunk delimiter.

It’s easier to see how this all works with an example. Consider the noweb file in
listing D.1. This is a reworking of the one-way ANOVA example in section 8.3. LaTeX
markup code begins with a backslash (\). The exception is \Sexpr{}, which is a Sweave
addition. R related code is presented in bold italics.

Listing D.1 A sample noweb file (example.nrw)

\documentclass[12pt]{article}
\title{Sample Report}

High-quality typesetting with Sweave (R + LaTeX) 413

\author{Robert I. Kabacoff, Ph.D.}
\date{}
\begin{document}
\maketitle

<<echo=false, results=hide>>=
library(multcomp)
library(xtable)
attach(cholesterol)
@

\section{Results}

Cholesterol reduction was assessed in a study
that randomized \Sexpr{nrow(cholesterol)} patients
to one of \Sexpr{length(unique(trt))} treatments.
Summary statistics are provided in
Table \ref{table:descriptives}.

<<echo = false, results = tex>>=
descTable <- data.frame("Treatment" = sort(unique(trt)),
 "N" = as.vector(table(trt)),
 "Mean" = tapply(response, list(trt), mean, na.rm=TRUE),
 "SD" = tapply(response, list(trt), sd, na.rm=TRUE)
)
print(xtable(descTable, caption = "Descriptive statistics
for each treatment group", label = "table:descriptives"),
caption.placement = "top", include.rownames = FALSE)
@

The analysis of variance is provided in Table \ref{table:anova}.

<<echo=false, results=tex>>=
fit <- aov(response ~ trt)
print(xtable(fit, caption = "Analysis of variance",
 label = "table:anova"), caption.placement = "top")
@

\noindent and group differences are plotted in Figure \ref{figure:tukey}.

\begin{figure}\label{figure:tukey}
\begin{center}

<<fig=TRUE,echo=FALSE>>=
par(mar=c(5,4,6,2))
tuk <- glht(fit, linfct=mcp(trt="Tukey"))
plot(cld(tuk, level=.05),col="lightgrey",xlab="Treatment", ylab="Response")
box("figure")
@

\caption{Distribution of response times and pairwise comparisons.}
\end{center}
\end{figure}
\end{document}

414 APPENDIX D Creating publication-quality output

Sample Report

Robert I. Kabacoff, Ph.D.

1 Results

Cholesterol reduction was assessed in a study that randomized 50 patients
to one of 5 treatments. Summary statistics are provided in Table 1.

Table 1: Descriptive statistics for each treatment group
Treatment N Mean SD
1time 10 5.78 2.88
2times 10 9.22 3.48
4times 10 12.37 2.92
drugD 10 15.36 3.45
drugE 10 20.95 3.35

The analysis of variance is provided in Table 2.

Table 2: Analysis of variance
Df Sum Sq Mean Sq F value Pr(>F)

trt 4 1351.37 337.84 32.43 0.0000
Residuals 45 468.75 10.42

and group differences are plotted in Figure 1.

Figure D.2 Page 1 of the
report created from the
sample noweb file in listing
D.1. The noweb file was
processed through the
Sweave() function in R and
the resulting TeX file was
processed through a LaTeX
compiler to produce a PDF
document.

After processing the noweb file through the Sweave() function in R and processing
the resulting TeX file through a LaTeX compiler, the PDF document in figures D.2 and
D.3 is generated.

●

●

1time 2times 4times drugD drugE

5
10

15
20

25

Treatment

R
es
po
ns
e

a a
b b

c c
d

Figure 1: Distribution of response times and pairwise comparisons.

Figure D.3 Page 2 of the
report created from the sample
noweb file in listing D.1.

Joining forces with OpenOffice using odfWeave 415

To learn more about Sweave, visit the Sweave home page (www.stat.uni-muenchen.
de/~leisch/Sweave/). An excellent presentation is also provided by Theresa Scott
(http://biostat.mc.vanderbilt.edu/TheresaScott). To learn more about LaTeX, check
out the article "The Not So Short Introduction to LaTeX 2e,” available on the LaTeX
home page (www.latex-project.org).

D.2 Joining forces with OpenOffice using odfWeave
Sweave provides a means of embedding R code and output in a LaTeX document that’s
compiled into a PDF, PostScript, or DVI file. Although beautiful, the final document
isn’t editable. Additionally, many recipients require reports in a format such as Word.

odfWeave provides a mechanism for embedding R code and output in OpenOffice
documents. Instead of placing R code chunks in a LaTeX document, the user places
R code chunks in an OpenOffice ODT file (see figure D.3.). An advantage is that the
ODT file can be created with a WYSIWYG editor such as OpenOffice Writer (www.
OpenOffice.org); there’s no need to learn a markup language.

Once the noweb document is created as an ODT file, you process it through the
odfWeave() function in the odfWeave package . Unlike Sweave, odfWeave has to
be downloaded, installed before first use (install.packages("odfWeave")), and
loaded in each session in which it will be used. For example,

library(odfWeave)
infile <- "example.odt"
outfile <- "example-out.odt"
odfWeave(infile, outfile)

will take the example.odt file displayed in figure D.4 and produce the example-out.
odt file displayed in figure D.5. Adding options(SweaveSyntax="SweaveSyntaxNo
web") before the odfWeave() statement may help reduce parsing errors on some
platforms.

There are several differences between Sweave and odfWeave:

■ The xtable() function doesn’t work with odfWeave. By default, odfWeave will
render data frames, matrices, and vectors in an attractive format. Optionally, the
odfTable() function can be used to format these objects with a high degree of
control.

■

ODF documents use XML markup rather than LaTeX. Therefore, the code chunk
option result=tex should never be used. Use result=xml for code chunks that
use odfTable().

■ The infile and outfile names should be different. Unlike Sweave,
odfWeave("example.odt") would overwrite the noweb document with the fi-
nal report.

www.stat.uni-muenchen.de/~leisch/Sweave/
www.stat.uni-muenchen.de/~leisch/Sweave/
http://biostat.mc.vanderbilt.edu/TheresaScott
http://www.latex-project.org
http://www.OpenOffice.org
http://www.OpenOffice.org

416 APPENDIX D Creating publication-quality output

If you look at Figure D.4, you’ll note that the ANOVA table isn’t attractively formatted
(as it was in Sweave). Rather, the table is in the standard monospaced font produced
by R. This is because odfWeave doesn’t have a formatting function for the objects

My Sample Report

Robert I. Kabacoff, Ph.D.

<<echo=false, results=hide>>=
library(multcomp)
library(xtable)
attach(cholesterol)
@

1 Results

Cholesterol reduction was assessed in a study that randomized \Sexpr{nrow(cholesterol)}
patients to one of \Sexpr{length(unique(trt))} treatments. Summary statistics are provided in
Table 1.

Table 1. Descriptive Statistics for each treatment group
<<echo = false, results = xml>>=
descTable <- data.frame("Treatment" = sort(unique(trt)),
 "N" = as.vector(table(trt)),
 "Mean" = tapply(response, list(trt), mean, na.rm=TRUE),
 "SD" = tapply(response, list(trt), sd, na.rm=TRUE)
)
odfTable(descTable)
@

The analysis of variance is provided Table 2.

Table 2. Analysis of Variance
<<echo=false>>=
fit <- aov(response ~ trt)
summary(fit)
@

and group differences are plotted in Figure 1.

<<fig=TRUE,echo=FALSE>>=
par(mar=c(5,4,6,2))
tuk <- glht(fit, linfct=mcp(trt="Tukey"))
plot(cld(tuk, level=.05),col="lightgrey",xlab="Treatment", ylab="Response")
box("figure")
@

Figure1. Distribution of response times and pair-wise comparisons.

Figure D.4 Initial noweb file (example.odt) to be processed through odfWeave

Joining forces with OpenOffice using odfWeave 417

My Sample Report

Robert I. Kabacoff, Ph.D.

1 Results

Cholesterol reduction was assessed in a study that randomized 50 patients to one of 5
treatments. Summary statistics are provided in Table 1.

Table 1. Descriptive Statistics for each treatment group

Treatment N Mean SD

1time 1time 10 5.782 2.878

2times 2times 10 9.225 3.483

4times 4times 10 12.375 2.923

drugD drugD 10 15.361 3.455

drugE drugE 10 20.948 3.345

The analysis of variance is provided Table 2.

Table 2. Analysis of Variance

 Df Sum Sq Mean Sq F value Pr(>F)

trt 4 1351.37 337.84 32.433 9.819e-13 ***

Residuals 45 468.75 10.42

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

and group differences are plotted in Figure 1.

Figure D.5 Final report in ODF format (example-out.odt). Page 2 is similar to the second page of the
Sweave output in figure D.2 and is omitted to save space

returned by lm(), glm(), and so forth. To properly format these results, we’d have to
pull the components out of the object in question (fit in this case), and arrange them
in a matrix or data frame.

Once you have your report in ODF format, you can continue to edit it, tighten up
the formatting, and save the results to an ODT, HTML, DOC, or DOCX file format. To
learn more, read the odfWeave manual and vignette.

418 APPENDIX D Creating publication-quality output

D.3 Comments
There are several advantages to the Sweave and odfWeave approaches described here.
By embedding the code needed to perform the statistical analyses directly into the
final report, you document exactly how the results were calculated. Six months from
now, you can easily see what was done. You can also modify the statistical analyses
or add new data and immediately regenerate the report with minimum effort.
Additionally, you avoid the need to cut and paste and reformat the results.

Unfortunately, you gain these advantages by putting in significantly more work at
the front-end. There are other disadvantages as well. In the case of LaTeX, you need
to learn a typesetting language. In the case of ODF, you need to use a program like
OpenOffice that may not be standard in your work environment.

For good or ill, Microsoft Word and PowerPoint are the current report and
presentation standards in the business world. The packages R2wd and R2PPT can be
used to dynamically create Word and PowerPoint documents with inserted R output,
but they are in their formative stages of development. I’m looking forward to seeing
fully developed implementations.

419

appendix E
Matrix Algebra in R

Many of the functions described in this book operate on matrices. The manipula-
tion of matrices is built deeply into the R language. Table E.1 describes operators
and functions that are particularly important for solving linear algebra problems. In
the following table, A and B are matrices, x and b are vectors, and k is a scalar.

Table E.1 R functions and operators for matrix algebra

Operator or Function Description

+ - * / ^ Element-wise addition, subtraction, multiplication, division, and
exponentiation, respectively.

A %*% B Matrix multiplication.

A %o% B Outer product. AB'.

cbind(A, B, …) Combine matrices or vectors horizontally.

chol(A) Choleski factorization of A. If R <- chol(A), then chol(A)
contains the upper triangular factor, such that R’R = A.

colMeans(A) Returns a vector containing the column means of A.

crossprod(A) A’A.

crossprod(A,B) A’B.

420 APPENDIX E Matrix Algebra in R

Table E.1 R functions and operators for matrix algebra (continued)

Operator or Function Description

colSums(A) Returns a vector containing the column sums of A.

diag(A) Returns a vector containing the elements of the principal diagonal.

diag(x) Creates a diagonal matrix with the elements of x in the principal diagonal.

diag(k) If k is a scalar, this creates a k x k identity matrix.

eigen(A) Eigenvalues and eigenvectors of A. If y <- eigen(A), then
 y$val are the eigenvalues of A and
 y$vec are the eigenvectors of A.

ginv(A) Moore-Penrose Generalized Inverse of A. (Requires the MASS package).

qr(A) QR decomposition of A. If y <- qr(A), then
 y$qr has an upper triangle containing the decomposition and a lower
 triangle that contains information on the decomposition,
 y$rank is the rank of A,
 y$qraux is a vector containing additional information on Q, and
 y$pivot contains information on the pivoting strategy used.

rbind(A, B, …) Combines matrices or vectors vertically.

rowMeans(A) Returns a vector containing the row means of A.

rowSums(A) Returns a vector containing the row sums of A.

solve(A) Inverse of A where A is a square matrix.

solve(A, b) Solves for vector x in the equation b = Ax.

svd(A) Single value decomposition of A. If y <- svd(A), then
y$d is a vector containing the singular values of A,
y$u is a matrix with columns containing the left singular vectors of A, and
y$v is a matrix with columns containing the right singular vectors of A.

t(A) Transpose of A.

There are several user-contributed packages that are particularly useful for matrix al-
gebra. The matlab package contains wrapper functions and variables used to replicate
MATLAB function calls as closely as possible. These functions can help port MATLAB
applications and code to R. There’s also a useful cheat sheet for converting MATLAB
statements to R statements at http://mathesaurus.sourceforge.net/octave-r.html.

The Matrix package contains functions that extend R in order to support highly
dense or sparse matrices. It provides efficient access to BLAS (Basic Linear Algebra
Subroutines), Lapack (dense matrix), TAUCS (sparse matrix), and UMFPACK (sparse
matrix) routines.

Finally, the matrixStats package provides methods for operating on the rows and
columns of matrices, including functions that calculate counts, sums, products, central
tendency, dispersion, and more. Each is optimized for speed and efficient memory use.

http://mathesaurus.sourceforge.net/octave-r.html

421

appendix F
Packages used in this book

R derives much of its breadth and power from the contributions of selfless authors.
Table F.1 lists the user-contributed packages described in this book, along with the
chapter(s) in which they appear.

Table F.1 Contributed packages used in this book

Package Authors Description Chapters

AER Christian Kleiber and
Achim Zeileis

Functions, data sets,
examples, demos,
and vignettes from
the book Applied
Econometrics with R by
Christian Kleiber and
Achim Zeileis

13

Amelia James Honaker, Gary
King, and Matthew
Blackwell

Amelia II: A program
for missing data via
multiple imputation

15

arrayImpute Eun-kyung Lee, Dankyu
Yoon, and Taesung Park

Missing imputation for
microarray data

15

arrayMissPattern Eun-kyung Lee and
Taesung Park

Exploratory analysis of
missing patterns for
microarray data

15

422 APPENDIX F Packages used in this book

Table F.1 Contributed packages used in this book (continued)

Package Authors Description Chapters

boot S original by Angelo Canty.
R port by Brian Ripley.

Bootstrap functions 12

ca Michael Greenacre and
Oleg Nenadic

Simple, multiple and joint
correspondence analysis

7

car John Fox and Sanford
Weisberg

Companion to Applied
Regression

1, 8, 9,
10, 11

cat Ported to R by Ted Harding
and Fernando Tusell.
Original by Joseph L.
Schafer.

Analysis of categorical-
variable datasets with
missing values

15

coin Torsten Hothorn, Kurt
Hornik, Mark A. van de
Wiel, and Achim Zeileis

Conditional inference
procedures in a permutation
test framework

12

corrgram Kevin Wright Plot a correlogram 11

corrperm Douglas M. Potter Permutation tests of
correlation with repeated
measurements

12

doBy Søren Højsgaard with
contributions from Kevin
Wright and Alessandro A.
Leidi.

Group-wise computations of
summary statistics, general
linear contrasts and other
utilities

7

effects John Fox and Jangman
Hong

Effect displays for linear,
generalized linear,
multinomial-logit, and
proportional-odds logit
models

8, 9

FactoMineR Francois Husson, Julie
Josse, Sebastien Le, and
Jeremy Mazet

Multivariate exploratory data
analysis and data mining
with R

14

FAiR Ben Goodrich Factor analysis using a
genetic algorithm

14

fCalendar Diethelm Wuertz and
Yohan Chalabi

Functions for chronological
and calendarical objects

4

foreign R-core members, Saikat
DebRoy, Roger Bivand,
and others

Read data stored by Minitab,
S, SAS, SPSS, Stata, Systat,
dBase, and others

2

gclus Catherine Hurley Clustering graphics 1, 11

APPENDIX F Packages used in this book 423

Table F.1 Contributed packages used in this book (continued)

Package Authors Description Chapters

glmPerm Wiebke Werft and Douglas
M. Potter

Permutation test for
inference in generalized
linear models

12

gmodels Gregory R. Warnes.
Includes R source code
and/or documentation
contributed by Ben
Bolker, Thomas Lumley,
and Randall C Johnson.
Contributions from Randall
C. Johnson are Copyright
(2005) SAIC-Frederick, Inc.

Various R programming tools
for model fitting

7

gplots Gregory R. Warnes.
Includes R source code
and/or documentation
contributed by Ben Bolker,
Lodewijk Bonebakker,
Robert Gentleman,
Wolfgang Huber Andy
Liaw, Thomas Lumley,
Martin Maechler, Arni
Magnusson, Steffen
Moeller, Marc Schwartz,
and Bill Venables

Various R programming tools
for plotting data

6, 9

grid Paul Murrell A rewrite of the graphics
layout capabilities, plus
some support for interaction

16

gvlma Edsel A. Pena and
Elizabeth H. Slate

Global validation of linear
models assumptions

8

hdf5 Marcus G. Daniels Interface to the NCSA HDF5
library

2

hexbin Dan Carr, ported by
Nicholas Lewin-Koh and
Martin Maechler

Hexagonal binning routines 11

HH Richard M. Heiberger Support software for
Statistical Analysis and Data
Display by Heiberger and
Holland

9

Hmisc Frank E Harrell Jr, with
contributions from many
other users

Harrell miscellaneous
functions for data analysis,
high-level graphics, utility
operations, and more

2, 3, 7

424 APPENDIX F Packages used in this book

Table F.1 Contributed packages used in this book (continued)

Package Authors Description Chapters

kmi Arthur Allignol Kaplan-Meier multiple
imputation for the analysis
of cumulative incidence
functions in the competing
risks setting

15

lattice Deepayan Sarkar Lattice graphics 16

latticist Felix Andrews GUI for exploratory
visualization

16

lavaan Yves Rosseel Functions for latent
variable models, including
confirmatory factor analysis,
structural equation modeling,
and latent growth curve
models

14

lcda Michael Buecker Latent class discriminant
analysis

14

leaps Thomas Lumley using
Fortran code by Alan Miller

Regression subset selection
including exhaustive search

8

lmPerm Bob Wheeler Permutation tests for linear
models

12

logregperm Douglas M. Potter Permutation test for
inference in logistic
regression

12

longitudinalData Christophe Genolini Tools for longitudinal data 15

lsa Fridolin Wild Latent semantic analysis 14

ltm Dimitris Rizopoulos Latent trait models under
item response theory

14

lubridate Garrett Grolemund and
Hadley Wickham

Functions to identify and
parse date-time data, extract
and modify components of a
date-time, perform accurate
math on date-times, and
handle time zones and
Daylight Savings Time

4

MASS S original by Venables and
Ripley. R port by Brian
Ripley, following earlier
work by Kurt Hornik and
Albrecht Gebhardt.

Functions and datasets
to support Venables and
Ripley’s Modern Applied
Statistics with S (4th edition)

4, 5, 7,
8, 9, 12

APPENDIX F Packages used in this book 425

Table F.1 Contributed packages used in this book (continued)

Package Authors Description Chapters

mlogit Yves Croissant Estimation of the multinomial
logit model

13

multcomp Torsten Hothorn, Frank
Bretz Peter Westfall,
Richard M. Heiberger, and
Andre Schuetzenmeister

Simultaneous tests and
confidence intervals for
general linear hypotheses in
parametric models, including
linear, generalized linear,
linear mixed effects, and
survival models

9, 12

mvnmle Kevin Gross, with help
from Douglas Bates

ML estimation for
multivariate normal data with
missing values

15

mvoutlier Moritz Gschwandtner and
Peter Filzmoser

Multivariate outlier detection
based on robust methods

9

ncdf , ncdf4 David Pierce Interface to Unidata netCDF
data files

2

nFactors Gilles Raiche Parallel analysis and non
graphical solutions to the
Cattell scree test

14

npmc Joerg Helms and Ullrich
Munzel

Nonparametric multiple
comparisons

7

OpenMx Steven Boker, Michael
Neale, Hermine Maes,
Michael Wilde, Michael
Spiegel, Timothy R. Brick,
Jeffrey Spies, Ryne
Estabrook, Sarah Kenny,
Timothy Bates, Paras
Mehta, and John Fox

Advanced structural equation
modeling.

14

pastecs Frederic Ibanez, Philippe
Grosjean, and Michele
Etienne

Package for the analysis of
space-time ecological series

7

piface Russell Lenth, R package
interface by Tobias
Verbeke

Java applets for power and
sample size assessment

10

playwith Felix Andrews A GTK+ graphical user
interface for editing and
interacting with R plots

16

poLCA Drew Linzer and Jeffrey
Lewis

Polytomous variable latent
class analysis

14

426 APPENDIX F Packages used in this book

Table F.1 Contributed packages used in this book (continued)

Package Authors Description Chapters

psych William Revelle Procedures for psychological,
psychometric, and
personality research

7, 14

pwr Stephane Champely Basic functions for power
analysis

10

qcc Luca Scrucca Quality control charts 13

randomLCA Ken Beath Random effects latent class
analysis

14

Rcmdr John Fox, with
contributions from
Liviu Andronic, Michael
Ash, Theophilius Boye,
Stefano Calza, Andy
Chang, Philippe Grosjean,
Richard Heiberger, G. Jay
Kerns, Renaud Lancelot,
Matthieu Lesnoff, Uwe
Ligges, Samir Messad,
Martin Maechler, Robert
Muenchen, Duncan
Murdoch, Erich Neuwirth,
Dan Putler, Brian Ripley,
Miroslav Ristic, and Peter
Wolf.

R Commander, a platform-
independent basic-statistics
graphical user interface
for R, based on the tcltk
package

11

reshape Hadley Wickham Flexibly reshape data 4, 5, 7

rggobi Duncan Temple Lang,
Debby Swayne, Hadley
Wickham, and Michael
Lawrence

An interface between R and
GGobi

16

rgl Daniel Adler and Duncan
Murdoch

3D visualization device
system (OpenGL)

11

RJDBC Simon Urbanek Provides access to
databases through the JDBC
interface

2

rms Frank E. Harrell, Jr. Regression modeling
strategies - about 225
function that assist with
and streamline regression
modeling, testing,
estimations, validation,
graphics, prediction, and
typesetting

13

APPENDIX F Packages used in this book 427

Table F.1 Contributed packages used in this book (continued)

Package Authors Description Chapters

robust Jiahui Wang, Ruben
Zamar, Alfio Marazzi,
Victor Yohai, Matias
Salibian-Barrera, Ricardo
Maronna, Eric Zivot, David
Rocke, Doug Martin,
Martin Maechler, and Kjell
Konis

A package of robust methods 13

RODBC Brian Ripley and Michael
Lapsley

ODBC database access 2

ROracle David A. James and Jake
Luciani

Oracle database interface
for R

2

rrcov Valentin Todorov Robust location and scatter
estimation and robust
multivariate analysis with
high breakdown point

9

sampling Yves Tillé and Alina Matei Functions for drawing and
calibrating samples

4

scatterplot3d Uwe Ligges Plots a three dimensional
(3D) point cloud

11

sem John Fox with contributions
from Adam Kramer and
Michael Friendly

Structural equation models 14

SeqKnn Ki-Yeol Kim and Gwan-Su
Yi, CSBio lab., Information
and Communications
University

Sequential KNN imputation
method

15

sm Adrian Bowman and
Adelchi Azzalini. Ported
to R by B. D. Ripley up to
version 2.0, version 2.1
by Adrian Bowman and
Adelchi Azzalini, version
2.2 by Adrian Bowman.

Smoothing methods for
nonparametric regression
and density estimation

6, 9

vcd David Meyer, Achim
Zeileis, and Kurt Hornik

Functions for visualizing
categorical data

1, 6, 7,
11, 12

vegan Jari Oksanen, F. Guillaume
Blanchet, Roeland Kindt,
Pierre Legendre, R. B.
O’Hara, Gavin L. Simpson,
Peter Solymos, M. Henry
H. Stevens, and Helene
Wagner

Ordination methods, diversity
analysis, and other functions
for community and vegetation
ecologists

9

428 APPENDIX F Packages used in this book

Table F.1 Contributed packages used in this book (continued)

Package Authors Description Chapters

VIM Matthias Templ, Andreas
Alfons, and Alexander
Kowarik

Visualization and imputation
of missing values

15

xlsx Adrian A. Dragulescu Read, write, and format Excel
2007 (xlsx) files

2

XML Duncan Temple Lang Tools for parsing and
generating XML within R and
S-Plus

2

429

appendix G
Working with large datasets

R holds all of its objects in virtual memory. For most of us, this design decision has
led to a zippy interactive experience, but for analysts working with large datasets, it
can lead to slow program execution and memory-related errors.

Memory limits will depend primarily on the R build (32 versus 64-bit) and for
32-bit Windows, on the OS version involved. Error messages starting with cannot
allocate vector of size typically indicate a failure to obtain sufficient contiguous
memory, while error messages starting with cannot allocate vector of length
indicate that an address limit has been exceeded. When working with large datasets,
try to use a 64-bit build if at all possible. For all builds, the number of elements in a
vector is limited to 2,147,483,647 (see ?Memory for more information).

There are three issues to consider when working with large datasets: (a) efficient
programming to speed execution, (b) storing data externally to limit memory issues,
and (c) using specialized statistical routines designed to efficiently analyze massive
amounts of data. We will briefly consider each.

G.1 Efficient programming
There are a number of programming tips that improve performance when working
with large datasets.

■ Vectorize calculations when possible. Use R’s built-in functions for manipulat-
ing vectors, matrices, and lists (for example, sapply, lappy, and mapply)
and avoid loops (for and while) when feasible.

430 APPENDIX G Working with large datasets

■ Use matrices rather than data frames (they have less overhead).
■

When using the read.table() family of functions to input external data into
data frames, specify the colClasses and nrows options explicitly, set comment.
char = "", and specify "NULL" for columns that aren’t needed. This will
decrease memory usage and speed up processing considerably. When reading
external data into a matrix, use the scan() function instead.

■ Test programs on subsets of the data, in order to optimize code and remove
bugs, before attempting a run on the full dataset.

■

Delete temporary objects and objects that are no longer needed. The call
rm(list=ls()) will remove all objects from memory, providing a clean slate.
Specific objects can be removed with rm(object) .

■ Use the function .ls.objects() described in Jeromy Anglim’s blog entry
“Memory Management in R: A Few Tips and Tricks” (jeromyanglim.blogspot.
com), to list all workspace objects sorted by size (MB). This function will help you
find and deal with memory hogs.

■

Profile your programs to see how much time is being spent in each function.
You can accomplish this with the Rprof() and summaryRprof() functions. The
system.time() function can also help. The profr and prooftools packages
provide functions that can help in analyzing profiling output.

■ The Rcpp package can be used to transfer R objects to C++ functions and back
when more optimized subroutines are needed.

With large datasets, increasing code efficiency will only get you so far. When bumping
up against memory limits, you can also store our data externally and use specialized
analysis routines.

G.2 Storing data outside of RAM
There are several packages available for storing data outside of R’s main memory. The
strategy involves storing data in external databases or in binary flat files on disk, and
then accessing portions as they are needed. Several useful packages are described in
table G.1.

Table G.1 R packages for accessing large datasets

Package Description

ff Provides data structures that are stored on disk but behave as if they
were in RAM.

bigmemory Supports the creation, storage, access, and manipulation of massive
matrices. Matrices are allocated to shared memory and memory-
mapped files.

filehash Implements a simple key-value database where character string keys
are associated with data values stored on disk.

Analytic packages for large datasets 431

Table G.1 R packages for accessing large datasets (continued)

Package Description

ncdf , ncdf4 Provides an interface to Unidata netCDF data files.

RODBC , RMySQL ,
ROracle ,
RPostgreSQL ,
RSQLite

Each provides access to external relational database management
systems.

The packages above help overcome R’s memory limits on data storage. However, spe-
cialized methods are also needed when attempting to analyze large datasets in a rea-
sonable length of time. Some of the most useful are described below.

G.3 Analytic packages for large datasets
R provides several packages for the analysis of large datasets:

■

The biglm and speedglm packages fit linear and generalized linear models to
large datasets in a memory efficient manner. This offers lm() and glm() type
functionality when dealing with massive datasets.

■ Several packages offer analytic functions for working with the massive matri-
ces produced by the bigmemory package . The biganalytics package offers
k-means clustering, column statistics, and a wrapper to biglm. The bigtabu-
late package provides table() , split() , and tapply() functionality and the
bigalgebra package provides advanced linear algebra functions.

■ The biglars package offers least-angle regression, lasso, and stepwise regres-
sion for datasets that are too large to be held in memory, when used in conjunc-
tion with the ff package .

■ The Brobdingnag package can be used to manipulate large numbers (numbers
larger than 2^1024).

Working with datasets in the gigabyte to terabyte range can be challenging in any lan-
guage. For more information on the methods available within R, see the CRAN Task
View: High-Performance and Parallel Computing with R (cran.r-project.org/web/views/).

432

appendix H
Updating an R installation

As consumers, we take for granted that we can update a piece of software via a
“Check for updates…” option. In chapter 1, I noted that the update.packages()
function can be used to download and install the most recent version of a contrib-
uted package. Unfortunately, there’s no corresponding function for updating the R
installation itself. If you want to update an R installation from version 4.1.0 to 5.1.1,
you must get creative. (As I write this, the current version is actually 2.13.0, but I
want this book to appear hip and current for years to come).

Downloading and installing the latest version of R from CRAN (http://cran.r-
project.org/bin/) is relatively straightforward. The complicating factor is that
customizations (including previously installed contributed packages) will not
be included in the new installation. In my current set-up, I have 248 contributed
packages installed. I really don’t want to have to write their names down and reinstall
them by hand the next time I upgrade my R installation.

There has been much discussion on the web concerning the most elegant and
efficient way to update an R installation. The method described below is neither
elegant nor efficient, but I find that it works well on a variety of platforms (Windows,
Mac, and Linux).

In this approach, the installed.packages() function is used to save a list of
packages to a location outside of the R directory tree, and then the list is used with
the install.packages() function to download and install the latest contributed
packages into the new R installation. Here are the steps:

http://cran.rproject.org/bin/
http://cran.rproject.org/bin/

APPENDIX H Updating an R installation 433

1 If you have a customized Rprofile.site file (see appendix B), save a copy
outside of R.

2 Launch your current version of R and issue the following statements

oldip <- installed.packages()[,1]
save(oldip, file="path/installedPackages.Rdata")

where path is a directory outside of R.
3 Download and install the newer version of R.
4 If you saved a customized version of the Rprofile.site file in step 1, copy it

into the new installation.
5 Launch the new version of R, and issue the following statements

load("path/installedPackages.Rdata")
newip <- installed.packages()[,1]
for(i in setdiff(oldip, newip))
 install.packages(i)

where path is the location specified in step 2.
6 Delete the old installation (optional).

This approach will install only packages that are available from the CRAN. It won’t
find packages obtained from other locations. You’ll have to find and download these
separately. Luckily, the process will display a list of packages that can’t be installed. Dur-
ing my last installation, globaltest and Biobase couldn’t be found. Since I got them
from the Bioconductor site, I was able to install them via the code

source(http://bioconductor.org/biocLite.R)
biocLite("globaltest")
biocLite("Biobase")

Step 6 involves the optional deletion of the old installation. On a Windows machine,
more than one version of R can be installed at a time. If desired, uninstall the older
version via Start > Control Panel > Uninstall a Program. On Mac and Linux
platforms, the new version of R will overwrite the older version. To delete any rem-
nants on a Mac, use the Finder to go to the /Library/Frameworks/R.frameworks/
versions/ directory and delete the folder representing the older version. On a Linux
platform, it’s probably best to leave well enough alone.

Clearly, updating an existing version of R is more involved than is desirable for such
a sophisticated piece of software. I’m hopeful that someday this appendix will simply
say “Select the Check for Updates… option” to update an R installation.

http://bioconductor.org/biocLite.R

435

index
Symbol

! operator 77
!= operator 77
symbol 8
%a symbol 81
%A symbol 81
%B symbol 82
%b symbol 82
%d symbol 81
%m symbol 81
%Y symbol 82
%y symbol 82
* operator 75, 178
** operator 75
... option 58, 61
. symbol 178
/ operator 75
: symbol 178
? function 11
?? function 11
^ operator 75, 178, 181
~ symbol 178
+ operator 75, 178
< operator 77
<<- operator 29
<= operator 77
== operator 77
> operator 77
>= operator 77
-1 symbol 178
brackets 29
3D pie charts 127
3D scatter plots 274–278

A

abline() function 60, 265
abs() function 93
absolute widths 67
acos() function 93
acosh() function 93
AER package 421

aggr() function, VIM
package 357

aggregate() function 113, 240
aggregating data 112–113
AIC() function 179, 208
all subsets regression 210, 213
alpha option 390
alternative= option 255
Amelia package 365, 369, 421
analyses, excluding missing

values from 80–81
analysis of covariance

(ANCOVA)
one-way 230–233

assessing test
assumptions 232

visualizing results 232–233
overview 222

analysis of variance (ANOVA)
219–245, 252–253

fitting models 222–225
aov() function 222–223
order of formula

terms 223–225
MANOVA 239–243

assessing test assumptions
241–242

robust 242–243
one-way 225–230

assessing test
assumptions 229–230

multiple comparisons
227–229

one-way ANCOVA 230–233
assessing test

assumptions 232
visualizing results 232–233

as regression 243–245
repeated measures 237–239
terminology of 220–222
two-way factorial 234–236

analytic packages, for large
datasets 431

ANCOVA. See analysis of
covariance

ancova() function, HH
package 232

AND operator 77
annotating datasets 42
annotations 62–64
ANOVA. See analysis of variance
anova() function 179, 208
Anova() function, car

package 225, 239
aov() function 222–223
append option 13
apply() function 102–103
apropos() function 11
aq.plot() function, mvoutlier

package 242
arithmetic operators 75
arrayImpute package

370 421
arrayMissPattern package 370,

421
arrays 26–27
Arthritis dataset 19
as.character() function 83
ASCII file 35
as.datatype()function 84
as.Date() function 81, 88
asin() function 93
asinh() function 93
aspect option 378
assumptions

linear model, global
validation of 199

of MANOVA tests,
assessing 241–242

of OLS regression,
assessing 188–199

of one-way ANCOVA tests,
assessing 232

of one-way ANOVA tests,
assessing 229–230

asypow package 261

436 INDEX

at option 58
atan() function 93
atanh() function 93
attach() function 28, 30, 88
auto.key option 384
avPlots() function 193, 203
axes 57, 60
axes option 57
axis() function 57

B

background color (bg)
option 61

backslash character 13, 102
bar plots 120–125

fitting labels in 124
for mean values 122–123
simple 120–121
spinograms 124–125
stacked and grouped

121–122
tweaking 123–124

barplot() function 120,
122–123

base package 274
batch processing 17
Beta distribution 97
bg option. See background color

option
bg parameter 52
biganalytics package 431
biglars package 431
bigmemory package 430–431
bigtabulate package 431
Binomial distribution 97
bitro.diameter variable 339
bivariate relationships 184
block comments 33
bmp() function 47
boot package 422
bootstrap package 214
bootstrapping 89, 303–309
box plots 133–138

parallel, comparing groups
with 134–137

violin variation of 137–138
box type (bty) option 61
boxplot() function 47, 238
boxplots option 267
boxplot.stats() function 133
boxTidwell() function 206
Box-Tidwell transformations

206
breaks option 128

Brobdingnag package 431
bty option. See box type option
bubble plots 278–279
by function 146
by option 113
byrow option 25
bzfile() function 36

C

c() function 9, 24, 43
ca package 422
car package 225, 230, 239, 266,

268
case identifiers 23, 30
case-wise deletion 364–365
cast() function 114–115
casting 114, 116
cat() function 101, 111
cat package 370, 422
categorical variables 23
Cauchy distribution 97
cbind() function 43, 85,

105–106, 240
ceiling() function 93
cex () option 61
cex parameter 51, 53
cex.axis parameter 53
cex.lab parameter 53
cex.main parameter 53
cex.names option 123
cex.sub parameter 53
CFA. See confirmatory factor

analysis
character functions 99–101
character variables, converting

date values to 83
Chi-square tests 255–256
Chi-squared (noncentral)

distribution 97
class() function 43
cld() function 228
CLI. See command-line interface
close() function 40
cm.colors() function 53
cmdscale() function 350
code editors, list of 403–404
coefficients() function 179
coin package 422
col option 52, 58, 122, 134,

136, 359, 378
col.axis parameter 52
colClasses option 36, 430
col.corrgram() function 287
colfill vector 132

col.lab parameter 52
col.main parameter 52
color option 139, 390
colorRampPalett()

function 287
colors, graphical parameters

52–53
colors() function 53
col.sub parameter 52
columns

adding 85
data frames 27

combine objects. See c()
 function

combining graphs. See page
arrangement of graphs

command prompt 7
command-line interface

(CLI) 403
command-line options 407
command-line prompt 403
comments, # symbol 8, 33
common factors 342
comparisons, multiple

227–229
complete() function 369
complete-case analysis 364–365
complete.cases()

function 356–357, 364
components, principal

extracting 339
rotating 339–341
scores 341–342
selecting number to

extract 335
comprehensive GUIs, for

R 405
Comprehensive R Archive

Network (CRAN) 7,
406

conditional execution 107–109
if-else construct 108–109
ifelse construct 109
repetition and looping

107–108
switch construct 109

conditioning variables 376,
379–380

confint() function 179, 188
confirmatory factor analysis

(CFA) 349
constant residual variance 191
contrasts() function 244
contr.helmert function 244
control flow 107–109

INDEX 437

contr.poly function 244
contr.SAS function 244
contr.sum function 244
contr.treatment function 244
conversions, type 83–84
Cook’s distance 18, 189–191,

202–204, 317
cooks.distance() function 18
cor() function 184
corrective measures 205–207

deleting observations 205
variables

adding or deleting 207
transforming 205–207

correlations
tests of significance

162–164, 253
types 159–162
using to assess missing data

patterns 360–361
correlograms 283, 287
corrgram() function, corrgram

package 284
corrgram package 284, 422
corrperm package 422
cos() function 93
cosh() function 93
cov() function 240
cov2cor() function 343
Cox proportional hazards

regression 175
cpairs() function 269–270
CRAN. See Comprehensive R

Archive Network
crimedat dataframe 40
cross-tabulations 151–155
crossval() function 214
cross-validation 213, 215
crPlots() function 193, 196
curly braces 107
cut() function 78, 101, 379

D

D plots, Cook. See Cook’s
distance

D values, Cook. See Cook’s
distance

data
exporting of 408–409

delimited text file 408
Excel spreadsheet 409
missing. See missing data
for statistical

applications 409
long format 114

time-stamping 82
data() function 11
data frames 22–23, 27–30

applying functions to
102–103

attach(), detach(), and with()
functions 28–30

case identifiers 30
using SQL statements to

manipulate 89–90
data management

aggregating 112–113
control flow 107–109

conditional execution
108–109

repetition and
looping 107–108

datasets
merging 85–86
subsetting 86–89

date values 81–83
example 73–75
functions 93–103

applying to matrices and
data frames 102–103

character 99–101
mathematical 93–94
probability 96–99
statistical 94–96

missing values 79–81
excluding from

analyses 80–81
recoding values to

missing 80
restructuring

reshape package 113–116
transpose 112

sorting 84–85
type conversions 83–84
user-written functions

109–111
using SQL statements

to manipulate data
frames 89–90

variables
creating new 75–76
recoding 76–78
renaming 78–79

data objects
applying functions to 102
functions for working

with 42–44
data option 299, 300, 306, 308,

319, 323, 325, 328, 365,
368, 375

data storage, outside of
RAM 430–431

data structures 23–33
arrays 26–27
data frames 27–30

attach(), detach(), and
with() functions 28–30

case identifiers 30
factors 30-31
lists 32–33
matrices 24–26
vectors 24

data type, converting from one
to another 84

database interface (DBI) related
packages 41

database management systems
(DBMSs), accessing
39–41

DBI-related packages 41
ODBC interface 39–40

data.frame() function 27
datasets

annotating 42
data structures 23–33

arrays 26–27
factors 30–31
frames 27–30
lists 32–33
matrices 24–26
vectors 24

description of 22–23
functions for working with

data objects 42–44
input 33–42

accessing DBMSs 39–41
entering data from

keyboard 34–35
importing data 35–39,

41–42
webscraping 37

large 18, 429–431
analytic packages for 431
efficient

programming 429–430
storing data outside of

RAM 430–431
merging 85–86

adding columns 85
adding rows 86

subsetting 86–89
excluding variables 86–87
random samples 89
selecting observations

87–88

438 INDEX

selecting variables 86
subset() function 88–89

transposing 112
date()function 82
date values 81–83
DBI related packages. See

database interface
related packages

DBMSs, accessing. See database
management systems,
accessing

deleting old versions of R 433
deletion, pairwise 370–371
delimited text files

exporting data to 408
importing data from 35–36

demo() function 9–10
density() function 130
densityplot() function 386
dependent variable 220
detach() function 28, 30
dev.new() function 47
dev.next() function 47
dev.off() function 13, 47
dev.prev() function 47
dev.set() function 47
diagnostics, regression

188–200
enhanced approach

192–198
global validation of linear

model assumption 199
multicollinearity 199–200
typical approach 189–192

diag.panel option 285
diff() function 95
difftime()function 83
dim() function 43
dimensions

of an array 26
of graphs and margins

54–56
dimnames 26
dir.create() function 13
directory initialization file 406
distribution functions,

normal 97–98
dmat.color() function, gclus

package 270
doBy package 422
dollar sign character 33
dot plots 138, 140
dotchart() function 138
Durbin-Watson test 196
durbinWatsonTest()

function 193, 196

E

echo option 412
edit() function 34–35
EFA. See exploratory factor

analysis
effect() function 187, 231

defined for ANOVA 252
defined for chi-square

tests 255
defined for correlation 253
defined for linear

models 253, 254
defined for test of

proportions 254
defined for t-test 250
effect size 248–260
effect size benchmarks

257–258
effects library 231
effects package 187, 231, 422
environment, customizing

startup 406–407
environment variables 407
errors, independence of 196
escape character 13, 102
ES.w2() function 255
eval option 412
example() function 11
example.Rnw file 411
Excel, Microsoft

accessing files with
RODBC 36

exporting data to
spreadsheet 409

importing data from 36–37
excluding

missing values from
analyses 80–81

observations 87–89
variables 86–87

exp() function 94
exploratory factor analysis

(EFA) 331–334,
342–349

deciding number of common
factors to extract
343–344

FactoMineR package 349
factors

extracting common
344–345

rotating 345–348
scores 349

FAiR package 349
GPArotation package 349

nFactors package 349
other latent variable

models 349–351
exponential distribution

97, 315
exponentiation operator 75
exporting data 408–409

delimited text file 408
Excel spreadsheet 409
for statistical

applications 409
expression() function 386
expression statement 107
extracting

common factors 344–345
principal components 339

F

F distribution 97
fa() function 333, 344, 349
facets, ggplot2 package

390–394
facets option 390
factanal() function 333
FactoMineR package 349, 422
factor() function 30, 42
factor intercorrelation

matrix 346
factor pattern matrix 346
factor structure matrix 346
factorial ANOVA design 221
factor.plot() function 333, 347
factors

as dimensions in principal
components or factor
analysis deciding
number of common to
extract 343–344

extracting common
344–345

rotating 345–348
scores 349

as R data structures 23–24,
30–31

fa.diagram() function
333, 347

FAiR package 349, 422
family parameter 54
fan plots 127–128
fan.plot() function 127
fa.parallel() function 333,

335, 343
fCalendar package 83, 422
ff package 430–431
fg parameter 52

INDEX 439

fgui package 405
fig graphical parameter 69–71
fig option, in Sweave 412
figures, creating with fine

control 69–72
file() function 36
filehash package 430
fill option 390
fine control, creating figure

arrangements with
69–72

First() function 406–407
fit lines 5
fitted() function 179
fitting ANOVA models

222–225
aov() function 222–223
order of formula terms

223–225
fitting regression models, with

lm() function 178–179
fix() function 35, 43, 78
FlexMix package 350
floor() function 93
fmi, fraction of missing

information 367–368
font families

changing 54
examples on Windows

platform 64
font parameter 54
font.axis parameter 54
font.lab parameter 54
font.main parameter 54
font.sub parameter 54
for loop 108
foreign package 38, 409, 422
format() function 82
formulas, in R 178, 223–225
frame.plot option 57
freq option 128
frequency tables 149–155
Friedman test 168
functions

applying to data objects 102
character 99–101
date 81–83
for debugging 111
mathematical 93–94
numeric 93–99
other useful 101
probability 96–99
for saving graphic output 14
statistical 94–96
type conversion 84
user-written 109–111

G

Gamma distribution 97
gap package 261
gclus package 16, 269–270,

422
gcolor option 138
generalizability 174
genome-wide association studies

(GWAS) 261
geom option 390
geometric distribution 97
geostatistical data 14
getwd() function 12, 406
GGobi program 399
ggplot2 package 374–375,

390–394
Gibbs sampling 366
glht() function, multcomp

package 227
glm() function 431
glmPerm package 423
global validation, of linear

model assumption 199
gls() function, nlme

package 239
gmodels package 423
GPArotation package 349
gplots package 123, 226, 235,

423
graph dimensions 54, 56
graphic output 13–14
graphic user interfaces

(GUIs) 5, 403–405
IDEs for 403–404
for R 405

graphical parameters 49–56
colors 52–53
graph and margin

dimensions 54–56
reference lines 60
symbols and lines 50–51
text characteristics 53–54

graphics 373–399
four systems of 374–375
ggplot2 package 390–394
interactive graphs 394–399

identifying points 394
iplots package 397–398
latticist package 396–397
playwith package 394–395
rggobi package 399

lattice package 375–389
graphic parameters 387–388
page arrangement 388–389
panel functions 381–383

variables 379–380, 383–387
parameters 387–388

graphs
axis and text options 56–64

annotations 62–64
axes 57–60
legend 60–62
reference lines 60
titles 57

bar plots 120–125
for mean values 122–123
simple 120–121
spinograms 124–125
stacked and grouped

121–122
tweaking 123–124

box plots 133–138
parallel 134–137
violin variation of 137–138

combining 65–72
creating 46
dot plots 138–140
example 48
graphical parameters 49–56

colors 52–53
graph and margin

dimensions 54–56
symbols and lines 50–51
text characteristics 53–54

histograms 128–130
interactive 394–399. See also

intermediate graphs
identifying points 394
iplots package 397–398
latticist package 396–397
playwith package 394–395
rggobi package 399

kernel density plots 130–132
pie charts 125–128
single enhanced 69

gray() function 53
grep() function 37, 100
grid function 374
grid package 374, 423
grouped bar plots 121–122
grouping variables 383–387
groups option

dot plots 138
lattice package 378, 384

gsub() function 37
GUIs. See graphic user interfaces
gvlma() function 199
gvlma package 193, 199, 423
GWAS. See genome-wide

association studies
gzfile() function 36

440 INDEX

H

hat statistic 201
HDF5 files. See Hierarchical

Data Format files
hdf5 package 39, 423
head() function 43
header value 35
heat.colors()function 53
height variable 339
height vector 120
heights option 67
help () or ? function 11
help facilities 11, 16
help.search() or ??

function 11
help.start() function 11
hexbin() function 272
hexbin package 272, 423
HH package 232, 235–236, 423
Hierarchical Data Format

(HDF5) files 39
high-density scatter plots

271–274
high-leverage

observations 201–202
hist() command 47
hist() function 66
histograms 128–130

of bootstrapped
statistics 306–308

in ggplot2 plots 390
in iplots 397
in lattice plots 375, 377
in scatterplot matrices 269
of studentized residuals 195

history() function 12
Hmisc package 38, 59, 370,

423
homoscedasticity 191, 197–198

regression 190
statistical assumption 177

horiz option 120
hsv() function 53
hypergeometric

distribution 97
hypothesis testing 247–249

I

I() operator 178, 181
ibar() function 397
ibox() function 397
identify() function 394–395
IDEs. See integrated

development
environments

id.method option 193, 266
IDPmisc package 273–274
if-else construct 108–109
ifelse construct 109
if-else control structure 108
ihist() function 397
imap() function 397
imosaic() function 397
importing data

from database management
systems 39–41

from delimited text file 35–36
from HDF5 files 39
from the keyboard 34–35
from Microsoft Excel 36–37
from netCDF files 39
from SAS datasets 38
from SPSS datasets 38
from Stata datasets 38–39
via Stat/Transfer

application 41–42
from web pages 39
from XML files 37

imputation
multiple 365–369
simple 371–372

incomplete data. See missing
data

independence, of errors 177,
190, 196

index.cond option 378
indices in R, 33
infile 17
influencePlot() function

193, 204
influential observations 190,

202, 204
input 13–14, 18
installations, updating

432–433
installed.packages()

function 16, 432, 433
installing

packages 116
R application 7
setting default CRAN

site 407
install.packages() function 16,

407, 432
integrated development

environments
(IDEs) 403–404

interaction2wt() function, HH
package 235–236

interaction.plot()
function 235, 238

interactions, multiple linear
regression with
186–188

interactive graphs 394–399
identifying points 394
iplots package 397–398
latticist package 396–397
playwith package 394–395
rggobi package 399

intermediate graphs 263
bubble plots 278–279
correlograms 283–287
line charts 280–283
mosaic plots 288
scatter plots 264–279

3D, 274–277
high-density 271–274
matrices 267–271

ipairs() function, IDPmisc
package 274

ipcp() function 397
iplot() function 273, 397
iplots package 394, 397–398
is.datatype() function 84
is.infinite() function 355
is.na() function 79, 355
is.nan() function 355
isoMDS() function 350
isTRUE() operator 77

J

JGR/Deducer GUI 405
jpeg() function 47

K

kernel density estimation 6
kernel density plots 130, 132
key (or auto.key) option 378
keyboards, entering data

from 34–35
k-fold cross-validation 214
kmi package 370, 424
Kruskal-Wallis test 168

L

labels, fitting in bar plots 124
labels option 58, 193, 266
lapply() function 103
las option 58
Last() function 406–407
latent variable models 349, 351
LaTeX documents, R code +

(Sweave package)
410–415

INDEX 441

lattice package 48, 374–375,
378–381, 424

graphic parameters 387–388
graphs types 377
page arrangement 388–389
panel functions 381–383
variables

conditioning 379–380
grouping 383–387

latticist package 396–397, 424
lavaan package 350, 424
layout() function 65–69
layout option 378
lcda package 350, 424
lcm() function 67
lcmm package 350
leadership data frame 86
leaps package 211, 424
legend() function 60, 132
legend option 60
legend.plot option 266
legends 60–62

in bar plots 122
in kernel density plots

131–132
in lattice plots 384–386
in line plots 282–283
in mosaic plots 289
in scatter plots 264, 273

legend.text parameter 122
length() function 43, 101,

143, 148
level option, cld()

function 228
leverage value, of

observations 190
.libPaths() function 15, 407
library() function 15–16
line() function 59
line charts 280–283
linear models 253–254, 257

assumption, global validation
of 199

versus nonlinear model 183
linear regression

multiple 184–186
simple 179–181

linearity 196–197
regression 190
statistical assumption 177

lines
graphical parameters 50–51
reference 60

lines() function 123, 129–130,
282

link function 315
list() function 32
lists 32–33
list-wise deletion 81
listwise deletion 364–365
lm() function 178–179,

184–188
lme4 package 239
lmer() function, lme4

package 239
lmfit list object 18
lmPerm package 424
load() function 12, 13
loadhistory() function 12
location option 60, 62
locator() function 132
loess() function 266
log() function 93
log10() function 93
logical operators 76
logistic regression 175, 314,

315, 317–323
extensions 323
fitting 317–320
interpreting

parameters 320–322
overdispersion 322–323

lognormal distribution 97
logregperm package 424
long data format 116
longitudinalData package 370,

424
looping, repetition and

107–108
lower.panel option 285
lowess() function 265–266
ls() function 12, 43
lsa package 350, 424
.ls.objects() function 430
ltm package 424
lty option 58, 378
lty parameter 51
lty.smooth option 183–184,

268–269
lubridate package 83, 424
lwd option 378
lwd parameter 51

M

mad() function 94
mai parameter 55
main option 378, 390
Mallows Cp statistic 211
MANCOVA. See multivariate

analysis of covariance
Mann-Whitney U test 166–167
MANOVA. See multivariate

analysis of variance
manova() function 241
MAR. See missing at random
mar parameter 55
margin dimensions 54–56
marginplot() function, VIM

package 359
MASS package 98, 209, 350, 424
math annotations 64
mathematical functions 93–94
matrices 24–26

applying functions to
102–103

matrix algebra with R
419–420

of scatter plots 267–271
matrix function 24–25
matrixplot() function, VIM

package 358
max() function 95
MCAR. See missing completely at

random
md.pattern() function, mice

package 357
MDS. See multidimensional

scaling
mean() function 94, 102, 105,

356
mean substitution 371
mean values, bar plots for

122–123
median() function 94
melt() function 114–115
melting 114
merging datasets 85–86

adding columns 85
adding rows 86

metafile format, Windows 47
method option 390
mfrow parameter 65
MI. See multiple imputation
mi package 365, 369
mice() function 366
mice package 353, 357, 365,

369
Microsoft Excel, importing data

from 36–37
min() function 95
minor.tick() function 59
minus sign 87
missing at random (MAR) 354
missing completely at random

442 INDEX

(MCAR) 354
missing data 352–372

approaches for dealing with
incomplete data
363–364

complete-case analysis
364–365

exploring patterns 356–361
exploring missing data

visually 357–359
missing values 357,

360–361
identifying 355–356
multiple imputation

365–369
pairwise deletion 370–371
rational approaches for

correcting 363–364
simple imputation 371
steps in dealing with

353–355
understanding sources and

impact of 362–363
missing values 79–81

excluding from analyses
80–81

recoding values to missing 80
mix package 370
mixed-model ANOVA

design 221
mlogit package 425
mode() function 43
MODULUS operator 75
mosaic() function, vcd

library 288
mosaic plots 288
mosaicplot() function 288
mtcars data frame 29, 46, 377
mtext() function 59, 62
multcomp package 227, 231,

425
multicollinearity 199–200
multidimensional scaling

(MDS) 350
multiline comments 33
multiple comparisons

nonparametric 169
parametric

one-way ANCOVA 231
one-way ANOVA 227–229

multiple graphs per page. See
page arrangement of
graphs

multiple imputation (MI)
365, 369

multiple linear regression 175,
179, 184–188

multiple regression 184
multivariate analysis

of covariance
(MANCOVA) 222

multivariate analysis of variance
(MANOVA) 222,
239–243

assessing test
assumptions 241–242

robust 242–243
multivariate normal data,

generating 98–99
multivariate regression 175
mvnmle package 370, 425
mvoutlier package 242, 425
mvrnorm() function 98

N

NA. See not available
names() function 43, 79
names.arg argument 123
NaN. See not a number
na.omit() function 81, 364
na.rm option 80
ncdf package 39, 425, 431
ncdf4 package 39, 425, 431
nchar() function 100
ncvTest() function 193, 197
netCDF files. See network

Common Data Form files
netCDF library, Unidata 39
network Common Data Form

(netCDF) files 39
new option 70
nFactors package 349, 425
NHST. See null hypothesis

significance testing
nlme package 239
NMAR. See not missing at

random
nonlinear model, versus linear

model 183
nonlinear regression 175
nonparametric regression 175
nonparametric tests 166–170
nonstochastic imputation

371–372
no.readonly option 49
normal data, generating

multivariate 98–99
normal distribution

functions 97–98

normal Q-Q plot 190
normality 193, 196

regression 190
statistical assumption 177

not a number (NaN) 79, 355
not available (NA) 79, 355
not missing at random

(NMAR) 355
notched box plots 134–135
noweb file 411, 414
npmc package 425
nrows option 430
null hypothesis significance

testing (NHST) 246

O

obcConnectExcel()
function 37

objects 23
oblique rotation 340, 345
observations

deleting 205
deleting with na.omit()

function 81
selecting 87–88
unusual 200–204

high leverage 201–202
influential 202–204
outliers 200–201

ODBC interface. See Open
Database Connectivity
interface

odbcConnect() function 40
ODF. See Open Documents

Format
odfTable() function 415
odfWeave package 410–415
OLS regression. See ordinary

least squares regression
one-way analysis of covariance

(ANCOVA) 230–233
assessing test

assumptions 232
visualizing results 232–233

one-way analysis of variance
(ANOVA) 225–230

assessing test
assumptions 229–230

multiple comparisons
227–229

power and effect size
252, 257

terminology 220–221
one-way between-groups

INDEX 443

ANOVA design 220
one-way within-groups ANOVA

design 220–221
Open Database Connectivity

(ODBC) interface 39–40
Open Documents Format

(ODF) 410
openMx package 350, 425
OpenOffice documents,

creating reports with
odfWeave package
415–417

OpenOffice ODT file 415
options() function 12, 245
OR operator 77
order() function 84, 107
order of formula terms 223,

225
order.clusters() function 17
ordered factor 31
order.single() function, gclus

package 270
ordinary least squares (OLS)

regression 175–218
cross-validation 213–215
fitting regression models with

lm() function 178–179
multiple linear

regression 184–186
multiple linear regression with

interactions 186–188
polynomial regression

181–184
regression diagnostics

188–207
simple linear

regression 179–181
variable (model)

selection 207–213
variable importance 215–217

orthogonal rotation 340, 345
outlier observation 190
outliers 200–201
outlierTest() function 193,

200, 230
output

graphic 13–14
text 13
using as input 18

P

packages 14–17
analytic, for large

datasets 431

description of 15–16
function of 16–17
installing 16
list of 421–428
loading 16
updating 432

page arrangement of graphs
with base graphics 65–71
with lattice graphs 388–389

pairs() function 267
pairwise deletion 370–371
pamm package 261
pan package 370
panel functions 381, 383
panel option 285, 378
panel.abline() function 383
panel.ellipse option 285
panel.grid() function 381
panel.lmline() function 381
panel.loess() function 383
panel.minmax option 285
panel.pie option 285
panel.pts option 285
panel.rug() function 381
panel.shade option 285
panel.txt option 285
panel.xyplot() function 381,

383
par() function 49–50, 53–56,

59–61, 64–67, 69–70, 124
parallel analysis approach 335
parallel box plots, comparing

groups with 134–137
parameters, graphic 387–388
paste() function 86, 100
pastecs package 425
PCA. See principal components

analysis
pch parameter 49–51
pdf() function 47
pedantics package 261
period character 33
PHYS variable 334
pie charts 125–128
pie3D() function 127
piface package 260, 425
pin parameter 55
playwith package 394–396, 425
plot() function 47–48, 59,

282, 388–389
plot3d() function, rgl

package 277
plotmath() function 64
plotmeans() function, gplots

package 226, 235

plot.new() function 71
plotrix package 127
plots, power analysis 258–259
plotting symbols, with pch

parameter 51
pmm. See predictive mean

matching
png() function 47
points, identifying 394
poisson regression 175,

324–330
fitting 325
interpreting parameters 326
overdispersion 327
robust 330
with varying time

periods 329
zero-inflated 329

poLC package 350
poLCA package 425
polygon() function 130
polynomial regression 175,

179, 181, 184
pool() function 366
pos option 58, 62
position option 379
postscript() function 47
power analysis 246–262, 313

hypothesis testing 247–249
implementing with pwr

package 249–258
ANOVA 252–253
Chi-square tests 255–256
correlations 253
effect size

benchmarks 257–258
linear models 253–254
tests of proportions

254–255
t-tests 250–252

plots 258–259
specialized packages

260–262
powerGWASinteraction

package 261
powerpkg package 261
powerSurvEpi package 261
predict() function 179
predictive mean matching

(pmm) 368
pretty() function 101
primary variables, in lattice

functions 376
principal() function 333, 336,

341

444 INDEX

principal components analysis
(PCA) 331–351

other latent variable
models 349–351

principal components
extracting 339
obtaining scores 341–342
rotating 339–341

selecting number of
components to
extract 335

princomp() function 333
print() statement 412
probability functions 96–99

generating multivariate
normal data 98–99

setting seed for random
number generation 98

profr package 430
prooftools package 430
proportions, tests of 254–255
ps parameter 54
pseudo-random numbers 96–99

multivariate normal 98–99
probability distributions

96–97
setting the seed 98

psych package 333, 426
publication-quality reports

OpenOffice documents with
odfWeave package
415–417

typesetting with
Sweave package
(R code + LaTeX
documents) 410–415

pundat dataframe 40
pwr package, implementing

power analysis
with 249–258

ANOVA 252–253
Chi-square tests 255–256
correlations 253
effect size benchmarks

257–258
linear models 253–254
tests of proportions 254–255
t-tests 250–252

pwr.2p2n.test function 250
pwr.2p.test() function 250,

254
pwr.anova.test() function 250,

252, 257
pwr.chisq.test() function

250, 255

pwr.f2.test() function 250, 253
PwrGSD package 261
pwr.p.test function 250
pwr.r.test() function 250, 253,

258
pwr.t2n.test function 250, 252
pwr.t.test() function 250

Q

q() function 9, 12
qcc package 426
qplot() function 390–393
qqPlot() function 193
quadratic regression 184
quantile() function 95, 105
quartzFonts()function 54

R

R AnalyticFlow GUI 405
R CMD BATCH statement 17
R code + LaTeX documents

(Sweave package),
typesetting with 410–415

R Commander GUI 405
R Data Import/Export

manual 34
.R extension 17
R GUI Generator (RGG) 405
R GUI Projects page 405
R icon 8
R language

batch processing 17
example 18
getting help 11
getting started 8–10
input 13
large datasets and 18
obtaining and installing 7
output

graphic 13–14
text 13
using as input 18

packages 14–17
description of 15–16
function of 16–17
installing 16
loading 16

reasons to use 5–7
workspace 11–13

R programming, common
mistakes in 17

R statements 107
R_HOME value 406

R_HOME/etc directory 406
R2HTML package 411
rainbow() function 53, 127
Random Access Memory

(RAM), storing data
outside of 430–431

random number generation,
setting seed for 98

random samples 89
randomized block design 223
randomLCA package 350, 426
range() function 95
Rattle (for data mining)

GUI 405
rbind() function 43, 86, 232
Rcmdr package 277, 426
Rcpp package 430
RCurl package 37
.RData file 13
readLines() function 37
read.spss() function 38
read.ssd() function 38
read.table() function 35–36,

430
read.xlsx() function 37
recode() function 78
recodevar() function 78
recoding, values to missing 80
Red R GUI 405
reference lines 60
regression 173–218

ANOVA as 243–245
corrective measures 205–207

deleting observations 205
variables 205–207

diagnostics 188–200
enhanced approach

192–198
global validation of linear

model assumption 199
multicollinearity 199–200
typical approach 189–192

measuring
performance 213–218

cross-validation 213–215
relative importance

215–218
OLS 177–188

fitting regression
models with lm()
function 178–179

multiple linear
regression 184–186

polynomial regression
181–184

INDEX 445

simple linear
regression 179–181

selecting model 207–213
comparing models

208–209
variable selection 209–213

unusual observations
200–204

high leverage 201–202
influential 202–204
outliers 200–201

varieties of 174–177
regression diagnostics 188–207
regsubsets() function 210
relaimpo package 215
relative importance, of

variables 215–218
relative weights 216
relative widths 67
relweights() function 216
rename() function 78
rep() function 101
repeated measures,

ANOVA 221, 237–239
repetition, and looping

107–108
reports, publication-quality

OpenOfice documents with
odfWeave package
415–417

typesetting with
Sweave package
(R code + LaTeX
documents) 410–415

resampling statistics 89,
291–303

reshape package 78–79,
113–116, 426

casting 114–116
melting 114

residplot() function 195
residual versus leverage

plot 190
residuals() function 179
restructuring data

reshape package 113–116
casting 114–116
melting 114

transpose 112
results option, Sweave 412
RGG. See R GUI Generator
rggobi package 394, 399, 426
rgl package 277, 426
.Rhistory file 13
RJDBC package 426

Rkward GUI 405
rm() function 12, 43, 430
rms package 426
RMySQL package 41, 431
robust MANOVA 242–243
robust package 427
Robust regression 175
RODBC package 36–40,

427–431
ROracle package 41, 427–431
rotating

3D scatter plots 277
factors 345–348
principal components

339–341
round() function 93
.Rout extension 17
rownames 23
row.names option 30, 36
rows, adding 86
RPostgreSQL package 41, 431
Rprof() function 430
.Rprofile file 406
Rprofile.site file 406–407,

433
rrcov package 242, 427
RSiteSearch() function 11
RSQLite package 41, 431
R-square statistic 214
rug plots 6, 129
runif() function 98

S

sample() function 89
sample size quantity 248
samples, random 89
sampling package 427
sapply() function 103, 106
sas.get() function 38
save() function 12
savehistory() function 12
save.image() function 12
scalar values 33
scale() function 96, 104, 215
scales option 379
scan() function 430
scatter plots 264–279

3D 274–277
high-density 271–274
matrices 267–271

scatter3d() function, Rcmdr
package 277

scatterplot() function 183,
193, 266

scatterplot3d() function,
scatterplot3d
package 274

scatterplot3d package 274, 427
scatterplotMatrix()

function 6, 184, 193,
268

scores
factors 349
principal components 342

scores option 341
scree() function 333
sd() function 94
search() command 16
seed, setting for random

number generation 98
SELECT statements 40, 89
selecting

observations 87–88
variables 86

SEM. See structural equation
modeling

sem package 350, 427
seq() function 101
SeqKnn package 370, 427
sequence, in for

statements 107–108
set.seed() function 98
setwd() function 12–13
Sexpr statement 412
shadow matrix 360
shape option 390
show.settings() function 387
shrinkage() function 214
side option 58, 62
signif() function 93
significance levels 248
simple imputation 371–372
simple linear regression 175,

179, 181
simulate option 196
sin() function 93
singer dataset 392
sinh() function 93
sink() function 13, 15
site initialization file 406
size option, in ggplot2 390
sm packages 130–131, 427
sm.density.compare()

function 130, 132
smoothScatter() function, base

package 272, 274
software, updating 432–433
sorting, data management

84–85

446 INDEX

source() function 13–15
speedglm package 431
sphericity 239
spine() function 124
spinning 3D scatter plots 277
spinograms 124–125
split() function, in bigtabulate

package 431
split option, in lattice

plots 379, 388
splitting output 13
spread option 183, 269
spreadLevelPlot()

function 193, 197, 206
SPSS datasets. See Statistical

Package for the Social
Sciences datasets,
importing data from spss.
get() function 38

SQL. See Structured Query
Language

sqldf() function 89
sqldf package 90
sqlDrop() function 40
sqlFetch() function 40
sqlQuery() function 40
sqlSave() function 40
sqrt() function 93
ssize.fdr package 261
stacked bar plots 121–122
standardizing data 96
startup environment

customizing 406–407
Stata datasets

exporting data to 409
importing data from 38–39

statements, in R 107
state.x77 dataset 184
Statistical Analysis System (SAS)

datasets, importing data
from 38

statistical applications, exporting
data for 409

statistical functions 94–96
Statistical Package for the Social

Sciences (SPSS) datasets,
importing data from 38

Stat/Transfer application,
importing data via 41–42

stepAIC() function 209
stepwise regression 209–210
stop() function 111
storage, outside of RAM

430–431
str() function 31, 43

stringsAsFactors option 36
strip option 379
strsplit() function 100, 106
structural equation modeling

(SEM) 349
Structured Query Language

(SQL) 89–90
sub() function 100
sub option 390
subset() function 88–89
subsets() function 211
subsetting datasets 86–89

selecting observations 87–88
selecting variables 86
subset() function 88–89

substr() function 100
sum() function 81, 95, 356
sum of squares

Type I (sequential) 224
Type II (hierarchical) 224
Type III (marginal) 224

summary() function 31, 179,
188

summary.aov() function 241
summaryRprof() function 430
Sweave() function 411, 414
Sweave package (R code + LaTeX

documents), typesetting
with 410–415

switch construct 109–110
symbols

graphical parameters 50–51
plotting with pch

parameter 51
in R formulas 178

symbols() function 278
Sys.Date() function 82
Sys.getenv() function 406
system.time() function 430

T

t() function 112
tab-delimited files 36
table() function 120–121, 431
tabulating missing values 357
tail() function 43
tan() function 93
tanh() function 93
tapply() function 431
tck option 58
terrain.colors()function 53
Test of proportions 257
TeX file 414
text() function 62–64

text characteristics, graphical
parameters 53–54

text files, delimited
exporting data to 408
importing data from 35–36

text options
annotations 62–64
legend 60–62
titles 57

text output 13
text.col () option 61
text.panel option 285
tick marks 59–60
tick.ratio 59
tiff() function 47
time-series regression 175
time-stamping data 82
title() function 57, 123, 132
title option 60
titles 57
tolower() function 100
topo.colors()function 53
toupper() function 100
transform() function 76
transformations, of

variables 205–207
transmission disequilibrium test

(TDT) 261
transpose 112
trellis.par.get() function 387
trellis.par.set() function 387
trt2times variable 245
trunc() function 93
t-tests

dependent groups 165–166
independent groups

164–165
power 250–252, 257

twiddler package 405
two-way ANOVA design 221
two-way factorial ANOVA 223,

234–236
type conversions 83–84
Type I (sequential)

approach 224
Type II (hierarchical)

approach 224
Type III (marginal)

approach 224
type option 379

U

unbalanced design 220
Unidata netCDF library 39

INDEX 447

uniquenesses 337
unz() function 36
update() function 379
update.packages()

function 16, 432
updating installations 432–433
upper.panel option 285
url() function 36
user-written functions

109, 111

V

validation, of linear model
assumption 199

value labels 42
var() function 94
variable <- expression

statement 75
variable labels 42
variable[condition]

<- expression
statement 77

variables
adding or deleting 207
conditioning 379–380
creating new 75–76
data frames 27
excluding 86–87
grouping 383–387
recoding 76–78
renaming 78–79

selecting 86, 209–213
in stepwise regression

209–210
in subsets regression

210–213
transforming 205–207

variance inflation factor
(VIF) 200

varimax rotation 340
varwidth option 134
vcd package 18–19, 120, 124,

288, 427
vcov() function 179
vectors 24
vegan package 427
VIF. See variance inflation factor
vif() function 193, 200
vignette() function 11
VIM package 353, 359, 428
violin plots 137–138
vioplot() function 137
vioplot package 137

W

warning() function 111
webscraping 37
which()function 88
while loop 108
widths option 67
Wilcoxon rank sum test

166–167

Wilks.test() function, rrcov
package 242

Windows metafile format 47
windowsFont() function 54
win.metafile() function 47
with() function 28, 30, 77, 366
within() function 77
workspace 11, 13
write.foreign() function 409
write.table() function 408
write.xlsx() function 409

X

xaxt option 57
xfig() function 47
xlab option 120, 379, 390
xlim option 379, 390
xlsx package 37, 409, 428
XML files, importing data

from 37
XML package 37, 428
xtable() function 412, 415
xtable package 412
xyplot() function 381
xzfile() function 36

Y

yaxt option 57
ylab option 120, 379, 390
ylim option 379, 390

Robert I. Kabacoff

R
is a powerful language for statistical computing and graph-
ics that can handle virtually any data-crunching task. It
runs on all important platforms and provides thousands

of useful specialized modules and utilities. Th is makes R a great
way to get meaningful information from mountains of raw data.

R in Action is a language tutorial focused on practical problems.
It presents useful statistics examples and includes elegant meth-
ods for handling messy, incomplete, and nonnormal data that
are diffi cult to analyze using traditional methods. And statistical
analysis is only part of the story. You’ll also master R’s extensive
graphical capabilities for exploring and presenting data visually.

What’s Inside
Practical data analysis, step by step
Interfacing R with other soft ware
Using R to visualize data
Over 130 graphs
Eight reference appendixes

Dr. Rob Kabacoff is a seasoned researcher who specializes in data
analysis. He has taught graduate courses in statistical program-
ming and manages the Quick-R website at statmethods.net.

For access to the book’s forum and a free ebook for owners of this
book, go to manning.com/RinAction

$59.99 / Can $68.99 [INCLUDING eBOOK]

R IN ACTION

DATA/STATISTICS/PROGRAMMING

M A N N I N G

SEE INSERT

“Lucid and engaging ... a fun
 way to learn R!” —Amos A. Folarin
 University College London

“Finally, a book that brings
 R to the real world.”
 —Charles Malpas
 University of Melbourne

“R from a programmer’s
 point of view.”
 —Philipp K. Janert
 Principal Value, LLC

“A great balance of targeted
 tutorials and in-depth
 examples.”
 —Landon Cox, 360VL, Inc.

“An excellent introduction
 and reference from the
 author of the best
 R website.”
 —Christopher Williams
 University of Idaho

	Front Cover
	brief contents
	contents
	preface
	acknowledgments
	about this book
	The examples
	Code conventions
	Author Online
	About the author
	Who should read this book
	Roadmap

	about the cover illustration
	Part 1 Getting started
	1 Introduction to R
	1.1 Why use R?
	1.2 Obtaining and installing R
	1.3 Working with R
	1.3.1 Getting started
	1.3.2 Getting help
	1.3.3 The workspace
	1.3.4 Input and output

	1.4 Packages
	1.4.1 What are packages?
	1.4.2 Installing a package
	1.4.3 Loading a package
	1.4.4 Learning about a package

	1.5 Batch processing
	1.6 Using output as input—reusing results
	1.7 Working with large datasets
	1.8 Working through an example
	1.9 Summary

	2 Creating a dataset
	2.1 Understanding datasets
	2.2 Data structures
	2.2.1 Vectors
	2.2.2 Matrices
	2.2.3 Arrays
	2.2.4 Data frames
	2.2.5 Factors
	2.2.6 Lists

	2.3 Data input
	2.3.1 Entering data from the keyboard
	2.3.2 Importing data from a delimited text file
	2.3.3 Importing data from Excel
	2.3.4 Importing data from XML
	2.3.5 Webscraping
	2.3.6 Importing data from SPSS
	2.3.7 Importing data from SAS
	2.3.8 Importing data from Stata
	2.3.9 Importing data from netCDF
	2.3.10 Importing data from HDF5
	2.3.11 Accessing database management systems (DBMSs)
	2.3.12 Importing data via Stat/Transfer

	2.4 Annotating datasets
	2.4.1 Variable labels
	2.4.2 Value labels

	2.5 Useful functions for working with data objects
	2.6 Summary

	3 Getting started with graphs
	3.1 Working with graphs
	3.2 A simple example
	3.3 Graphical parameters
	3.3.1 Symbols and lines
	3.3.2 Colors
	3.3.3 Text characteristics
	3.3.4 Graph and margin dimensions

	3.4 Adding text, customized axes, and legends
	3.4.1 Titles
	3.4.2 Axes
	3.4.3 Reference lines
	3.4.4 Legend
	3.4.5 Text annotations

	3.5 Combining graphs
	3.5.1 Creating a figure arrangement with fine control

	3.6 Summary

	4 Basic data management
	4.1 A working example
	4.2 Creating new variables
	4.3 Recoding variables
	4.4 Renaming variables
	4.5 Missing values
	4.5.1 Recoding values to missing
	4.5.2 Excluding missing values from analyses

	4.6 Date values
	4.6.1 Converting dates to character variables
	4.6.2 Going further

	4.7 Type conversions
	4.8 Sorting data
	4.9 Merging datasets
	4.9.1 Adding columns
	4.9.2 Adding rows

	4.10 Subsetting datasets
	4.10.1 Selecting (keeping) variables
	4.10.2 Excluding (dropping) variables
	4.10.3 Selecting observations
	4.10.4 The subset() function
	4.10.5 Random samples

	4.11 Using SQL statements to manipulate data frames
	4.12 Summary

	5 Advanced data management
	5.1 A data management challenge
	5.2 Numerical and character functions
	5.2.1 Mathematical functions
	5.2.2 Statistical functions
	5.2.3 Probability functions
	5.2.4 Character functions
	5.2.5 Other useful functions
	5.2.6 Applying functions to matrices and data frames

	5.3 A solution for our data management challenge
	5.4 Control flow
	5.4.1 Repetition and looping
	5.4.2 Conditional execution

	5.5 User-written functions
	5.6 Aggregation and restructuring
	5.6.1 Transpose
	5.6.2 Aggregating data
	5.6.3 The reshape package

	5.7 Summary

	Part 2 Basic methods
	6 Basic graphs
	6.1 Bar plots
	6.1.1 Simple bar plots
	6.1.2 Stacked and grouped bar plots
	6.1.3 Mean bar plots
	6.1.4 Tweaking bar plots
	6.1.5 Spinograms

	6.2 Pie charts
	6.3 Histograms
	6.4 Kernel density plots
	6.5 Box plots
	6.5.1 Using parallel box plots to compare groups
	6.5.2 Violin plots

	6.6 Dot plots
	6.7 Summary

	7 Basic statistics
	7.1 Descriptive statistics
	7.1.1 A menagerie of methods
	7.1.2 Descriptive statistics by group
	7.1.3 Visualizing results

	7.2 Frequency and contingency tables
	7.2.1 Generating frequency tables
	7.2.2 Tests of independence
	7.2.3 Measures of association
	7.2.4 Visualizing results
	7.2.5 Converting tables to flat files

	7.3 Correlations
	7.3.1 Types of correlations
	7.3.2 Testing correlations for significance
	7.3.3 Visualizing correlations

	7.4 t-tests
	7.4.1 Independent t-test
	7.4.2 Dependent t-test
	7.4.3 When there are more than two groups

	7.5 Nonparametric tests of group differences
	7.5.1 Comparing two groups
	7.5.2 Comparing more than two groups

	7.6 Visualizing group differences
	7.7 Summary

	Part 3 Intermediate methods
	8 Regression
	8.1 The many faces of regression
	8.1.1 Scenarios for using OLS regression
	8.1.2 What you need to know

	8.2 OLS regression
	8.2.1 Fitting regression models with lm()
	8.2.2 Simple linear regression
	8.2.3 Polynomial regression
	8.2.4 Multiple linear regression
	8.2.5 Multiple linear regression with interactions

	8.3 Regression diagnostics
	8.3.1 A typical approach
	8.3.2 An enhanced approach
	8.3.3 Global validation of linear model assumption
	8.3.4 Multicollinearity

	8.4 Unusual observations
	8.4.1 Outliers
	8.4.2 High leverage points
	8.4.3 Influential observations

	8.5 Corrective measures
	8.5.1 Deleting observations
	8.5.2 Transforming variables
	8.5.3 Adding or deleting variables
	8.5.4 Trying a different approach

	8.6 Selecting the "best" regression model
	8.6.1 Comparing models
	8.6.2 Variable selection

	8.7 Taking the analysis further
	8.7.1 Cross-validation
	8.7.2 Relative importance

	8.8 Summary

	9 Analysis of variance
	9.1 A crash course on terminology
	9.2 Fitting ANOVA models
	9.2.1 The aov() function
	9.2.2 The order of formula terms

	9.3 One-way ANOVA
	9.3.1 Multiple comparisons
	9.3.2 Assessing test assumptions

	9.4 One-way ANCOVA
	9.4.1 Assessing test assumptions
	9.4.2 Visualizing the results

	9.5 Two-way factorial ANOVA
	9.6 Repeated measures ANOVA
	9.7 Multivariate analysis of variance (MANOVA)
	9.7.1 Assessing test assumptions
	9.7.2 Robust MANOVA

	9.8 ANOVA as regression
	9.9 Summary

	10 Power analysis
	10.1 A quick review of hypothesis testing
	10.2 Implementing power analysis with the pwr package
	10.2.1 t-tests
	10.2.2 ANOVA
	10.2.3 Correlations
	10.2.4 Linear models
	10.2.5 Tests of proportions
	10.2.6 Chi-square tests
	10.2.7 Choosing an appropriate effect size in novel situations

	10.3 Creating power analysis plots
	10.4 Other packages
	10.5 Summary

	11 Intermediate graphs
	11.1 Scatter plots
	11.1.1 Scatter plot matrices
	11.1.2 High-density scatter plots
	11.1.3 3D scatter plots
	11.1.4 Bubble plots

	11.2 Line charts
	11.3 Correlograms
	11.4 Mosaic plots
	11.5 Summary

	12 Resampling statistics and bootstrapping
	12.1 Permutation tests
	12.2 Permutation test with the coin package
	12.2.1 Independent two-sample and k-sample tests
	12.2.2 Independence in contingency tables
	12.2.3 Independence between numeric variables
	12.2.4 Dependent two-sample and k-sample tests
	12.2.5 Going further

	12.3 Permutation tests with the lmPerm package
	12.3.1 Simple and polynomial regression
	12.3.2 Multiple regression
	12.3.2 One-way ANOVA and ANCOVA
	12.3.4 Two-way ANOVA

	12.4 Additional comments on permutation tests
	12.5 Bootstrapping
	12.6 Bootstrapping with the boot package
	12.6.1 Bootstrapping a single statistic
	12.6.2 Bootstrapping several statistics

	12.7 Summary

	Part 4 Advanced methods
	13 Generalized linear models
	13.1 Generalized linear models and the glm() function
	13.1.1 The glm() function
	13.1.2 Supporting functions
	13.1.3 Model fit and regression diagnostics

	13.2 Logistic regression
	13.2.1 Interpreting the model parameters
	13.2.2 Assessing the impact of predictors on the probability of an outcome
	13.2.3 Overdispersion
	13.2.4 Extensions

	13.3 Poisson regression
	13.3.1 Interpreting the model parameters
	13.3.2 Overdispersion
	13.3.3 Extensions

	13.4 Summary

	14 Principal components and factor analysis
	14.1 Principal components and factor analysis in R
	14.2 Principal components
	14.2.1 Selecting the number of components to extract
	14.2.2 Extracting principal components
	14.2.3 Rotating principal components
	14.2.4 Obtaining principal components scores

	14.3 Exploratory factor analysis
	14.3.1 Deciding how many common factors to extract
	14.3.2 Extracting common factors
	14.3.3 Rotating factors
	14.3.4 Factor scores
	14.3.5 Other EFA-related packages

	14.4 Other latent variable models
	14.5 Summary

	15 Advanced methods for missing data
	15.1 Steps in dealing with missing data
	15.2 Identifying missing values
	15.3 Exploring missing values patterns
	15.3.1 Tabulating missing values
	15.3.2 Exploring missing data visually
	15.3.3 Using correlations to explore missing values

	15.4 Understanding the sources and impact of missing data
	15.5 Rational approaches for dealing with incomplete data
	15.6 Complete-case analysis (listwise deletion)
	15.7 Multiple imputation
	15.8 Other approaches to missing data
	15.8.1 Pairwise deletion
	15.8.2 Simple (nonstochastic) imputation

	15.9 Summary

	16 Advanced graphics
	16.1 The four graphic systems in R
	16.2 The lattice package
	16.2.1 Conditioning variables
	16.2.2 Panel functions
	16.2.3 Grouping variables
	16.2.4 Graphic parameters
	16.2.5 Page arrangement

	16.3 The ggplot2 package
	16.4 Interactive graphs
	16.4.1 Interacting with graphs: identifying points
	16.4.2 playwith
	16.4.3 latticist
	16.4.4 Interactive graphics with the iplots package
	16.4.5 rggobi

	16.5 Summary

	afterword: Into the rabbit hole
	appendix A Graphic user interfaces
	appendix B Customizing the startup environment
	appendix C Exporting data from R
	C.1 Delimited text file
	C.2 Excel spreadsheet
	C.3 Statistical applications

	appendix D Creating publication-quality output
	D.3 Comments
	D.1 High-quality typesetting with Sweave (R + LaTeX)
	D.2 Joining forces with OpenOffice using odfWeave

	appendix E Matrix Algebra in R
	appendix F Packages used in this book
	appendix G Working with large datasets
	G.1 Efficient programming
	G.2 Storing data outside of RAM
	G.3 Analytic packages for large datasets

	appendix H Updating an R installation
	Index
	Symbol
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

	Back Cover

