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Preface 

Preface xvii 

Technological advances change the world, and statistics is no exception. The 
cornerstone of classical statistics is the notion of sample. Today, data are richer: 
We may have repeated measurements with thousands of clusters; data may come 
in the form of shapes or images. This book is about statistical analysis of data 
that constitute a sample of samples. In the first ten chapters we discuss statistical 
models when data come in traditional form as a sequence of numbers. Chapter 11 
deals with a sample (ensemble) of shapes, and in Chapter 12 we discuss how to 
analyze an ensemble of images. 

We take the statistical model based approach to analyzing data. Then the method 
of analysis is a derivative. Although the method sometimes comes first, the model-
based approach has obvious advantages: Assumptions are clearly formulated, and 
properties of several methods can be studied and compared. For example, least 
squares is a method of fitting, but its pros and cons can be fully understood only 
when a statistical model is put forward to describe how observations are obtained. 
Then least squares is deduced, for example, from maximum likelihood. 

Statistical treatment is carried out under a unifying mixed effects approach. This 
approach becomes fruitful not only to analyze complex clustered data (a sample of 
samples) but also as a statistical model for penalization and a common ground for 
the Bayesian and frequentist camps. 

Use of the mixed modeling technique in shape and image analysis is exciting and 
promising. Much work remains to reveal the full power of this statistical approach 
to these nontraditional statistical data. 

The book is divided into three parts. The first eight chapters cover the theory of 
mixed models: the linear mixed effects (LME) model, the generalized linear mixed 
model (GLMM), and the nonlinear mixed effects (NLME) model. In Chapter 9 
we discuss methods of model diagnostics and influential analysis. The final three 
chapters are devoted to applications: tumor regrowth, shape, and image. Major 
results and points of discussion in each chapter are written in lay language and are 
collected in Summary Points sections so that the reader can get a quick chapter 
overview. 

I look forward to hearing from readers and invite them to visit the book web site 
at 

http://www.dartmouth.edu/~eugened 

where some additional information with data and images is presented. 
I would like to thank the many people I worked with on various projects that have 

led up to this book. First, I would like to mention my long-term collaboration with 
Thérèse Stukel and Tor Tosteson and thank them for their support. I am grateful to 
Harold Swartz and Jack Hoopes for the exposure to biological problems, and to the 
team led by Keith Paulsen, including Alex Hartov, Paul Meaney, and Brian Pogue, 
all from Dartmouth, who introduced me to the world of image reconstruction. Many 



xviii Preface 

thanks to John Baron, Margaret Karagas, and Mark Israel for creating a friendly 
scientific atmosphere. I am grateful to Ed Vonesh for discussion and his helpful 
comments. 

Finally, thanks to the Scientific Workplace, a WYSIWYG version of the WT$i 
typesetting system (http://www.mackichan.com)—it is hard to imagine writing this 
book without this software. 

Eugene Demidenko 

Hanover, New Hampshire 
Dartmouth College 
January 2004 
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Preface to the Second Edition 

Time proved that mixed model is an indispensable tool in studying multilevel and 
clustered data. Mixed model became one of the mainstreams of moderns statistics, 
on both the theoretical and practical fronts. Several books on the topic have been 
published since the first edition; see Section 1.16 for a comprehensive list. Most of 
these books target applications of mixed models and illustrate the examples with 
popular statistical software packages, such as SAS and R. This book has a distinct 
theoretical and research flavor. It is intended to explain what is "under the hood" 
of the mixed model methodology. In particular, it may be used for educational 
purposes by graduate and Ph.D. students in statistics. 

Two major additions have been made in the second edition: 

• Each section ends with a set of problems that should be important for an active 
understanding of the material. There are two type of problems: unmarked 
problems are regular problems, and problems marked with an asterisk are 
more difficult and are broader in scope. Usually, they involve an analytical 
derivation with further empirical confirmation through simulations. In many 
cases, I deliberately left the solution plan open so that students, together with 
their instructors, could use their own interpretation, and address questions to 
different depths. Some problems could be used for graduate or even Ph.D. 
research. 

• Most parts of the theoretical material and methods of estimation are accom-
panied by respective R codes. While the first edition used S-Plus/S+, the 
second edition switches to the R language. The data sets and R codes can be 
downloaded at the author's web site, 

www.dartmouth.edu/~eugened 

It is suggested that they be saved on the hard drive in the directory 

C : \MixedModels\ 

with a subdirectory that corresponds to the chapter in the book. All the codes 
can be distributed and modified freely. 

The theory of mixed models has several important unsolved problems. I hope 
that the list that follows will stimulate research in this direction. 

I would like to hear comments and suggestions from readers, including interesting 
solutions to the problems, and of course typos, which can be e-mailed to me at 
eugened@dartmouth. edu. 

Eugene Demidenko 

Hanover, New Hampshire 
January 2013 



R software 

R Software and Functions 

R function 
lme 
ginverse.sym 
GLSest 
lmeFS 
dupp 
familyl 
lmeD 
lmevarMINQUE 
lmevarMM 
lmevarUVLS 
lmesim 
calcium 
PRdistance 
metaMLFS 
ups2 
RobustMedianML 
nlsMM 
logG 
o r t r ee 
phototurn 
SSlogprob 
gauher 
LNGHint 
twoint 
t h r e e i n t 
l og r i c 
logMLEl 
logMLEgh 
logFS 
logFSL 
glmmPQL 
logVARLINKl 
logs im 
poiss f ix 
poissGEEl 
poissGEE 
poissHeck 
poissMLE 
gee 

Descript ion 
ML estimation of linear mixed model 
Generalized inverse of symmetric matrix 
GLS beta-estimate for LME 
FS ML estimation of linear mixed model 
Duplication matrix Vn 

Family-specific weight-height relationship 
Simulations with lme 
MINQUE for matrix D 
Method of Moments (MM) for matrix D 
Unbiased VLS for matrix D 
Simulations with ML, MINQUE, MM, UVLS 
Bone density in girls and boys 
Analysis of dental growth for girls and boys 
MLE for meta-analysis model 
Upper confidence limit for σ2 

Robust estimation of meta-analysis model 
Simulations with Michaelis-Menten model 
Log-Gompertz curve with nlme and xyplot 
Trunk circumference of trees fitting with nlme 
Photodynamic tumor growth fitted with nlme 
Logistic-normal integral with i n t eg ra t e 
Nodes and weights in GH quadrature 
Comparison of GH with i n t eg ra t e 
Example of double integration with gauher 
Example of 3D integration with gauher 
Conditional logistic regression 
ML for logistic regression using in t eg ra t e 
ML for logistic regression using gauher 
Fixed sample likelihood for logistic regression 
ML gauher fixed sample likelihood 
PQL for GLMM from library MASS 
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Open Problems in Mixed Models 

• Determining how to deal with a not positive definite covariance matrix of 
random effects, D, during maximum likelihood estimation algorithms. Several 
strategies are discussed in Section 2.15. For example, in our own R function 
lmeFS, we allow matrix D to be any (no restriction) but symmetric. As studied 
in Section 2.16, if matrix D becomes not positive definite during iterations, 
function lme of library nlme in R returns an error. Function lme4 of the library 
with the same name does not fail and returns a singular nonnegative definite 
matrix. The question remains how a not nonnegative definite matrix D can 
be projected on the space of nonnegative definite matrices, B+. In particular, 
shall we benefit from an expensive log-likelihood maximization on the bound-
ary of B+? This question is closely related to testing what random effects 
variables are statistically significant. 

• Testing the variance-covariance matrix of random effects, particularly testing 
whether a specific random effect is not statistically significant (variance=0). 
This question is closely related to difficulties of the numerical implementation 
described above. The exact F-test for a linear mixed model, as a general-
ization of an ANOVA test, is suggested in Section 3.5, and generalized to 
a nonlinear mixed model in Section 8.15.2. Tests for overdispersion in the 
framework of random intercepts in logistic and Poisson models are discussed 
in Sections 7.3.7 and 7.5.10, respectively, and the test for homogeneity in the 
meta-analysis model is discussed in Section 5.2.3. However, unlike its linear 
version most of these tests do not yield the exact/nominal significance level 
in a small sample, and more work is required to eliminate or reduce this dis-
crepancy. Even the F-test by itself may not be very powerful, and a search 
for a better test is urgent and practically important as a tool for mixed model 
criticism. Several recent papers study the alternatives, including those of Gi-
ampaoli and Singer (2009), and Li and Zhu (2013). 

• Testing what variables belong to fixed effects and what variables belong to 
random effects. Which variables affect the mean function and which variables 
affect the variance of the dependent variable is not a trivial matter. Exist-
ing methods of hypothesis testing work separately with fixed and random 
effects. We need tests that identify fixed and random parts in a mixed model 
simultaneously. Practically nothing has been done in this direction. Again, in 
asymptotic setting, when the number of clusters is large, the information ma-
trix is block diagonal which implies that the choice of the fixed or random can 
be done separately. For small AT, this is not true, and therefore simultaneous 
variable selection is required. 

• Development of mixed-model-specific information criteria to address the in-
creasing number of parameters, such as generalization of AIC/BIC, or Mal-
low's Cp. We have sufficient evidence that these criteria are helpful when 
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adjusting for an increasing number of fixed effects parameters. However, ran-
dom effects parameters, namely, elements of the random effects covariance 
matrix, have a different nature and should not be counted in the same way as 
fixed effects coefficients. In Section 1.6 we suggest some variants of Akaike's 
criterion treating the mixed model with a large number of parameters as an 
inverse ill-posed problem, called healthy AIC, but much work remains to be 
done. 

• Variable selection, or more generally, model selection in the framework of 
mixed models. This topic is closely related to problems formulated previously. 
Three types of variable selection schema are available: (1) fixed effects variable 
selection assuming that random effects variables are known, say, random in-
tercepts; (2) random effects variable selection assuming that fixed effects vari-
ables are known; and (3) having a set of variables, what variables go to fixed 
effects, what variables go to random effects, and what variables go nowhere. 
Only a handful of papers consider the problem, such as a recent paper by 
Peng and Lu (2012) in an asymptotic setting where selection is much easier. 
Especially important and difficult is the problem of mixed model selection 
when the number of potential variables is larger, sometimes much larger than 
the number of clusters, as in the case of genetics data. Then in addition to the 
difficulty of the variable selection criterion, a computational burden emerges. 

• Power computation and sample size determination for mixed models. An im-
portant feature of a mixed model is that two sample sizes should be dis-
tinguished: the number of clusters, iV, and the number of observations per 
cluster, n. Obviously, the number of clusters is more important because when 
the number of clusters goes to infinity and the number of observations per 
cluster is fixed, beta-estimates are consistent, but not otherwise. On the other 
hand, n plays a role in getting the power desired. Prom asymptotic consider-
ation, the power function of detecting a beta-coefficient δ versus the zero null 
hypothesis is equal: P = Φ(—Ζι_α/2 + S/y/V(N,n)), where Φ is the cumu-
lative distribution function of the standard normal distribution, a is the size 
of the test (typically, a = 0.05), Ζ ι_ α / 2 = Φ " ^ 1 - <*/2), and V(N,n) is the 
variance of the beta estimate. In a particular case when n = 1, we arrive at 
the standard formula for sample size determination in the double-sided Wald 
test, n = (Zp + Zi_a/2)

2V/ô2 (Demidenko, 2007b). For example, in the case 
of a linear balanced model, the variance of the beta-coefficient is a diagonal 
element of the matrix Ν~1σ2 (X'(I + ZDZ ) _ 1 X) , which is a function of 
N and n. A similar formula for the variance can be applied to generalized and 
nonlinear mixed models, but then it would require integration to obtain the 
Fisher information matrix. We need to extend these computations to the case 
of unbalanced data where the distribution of the number of observations per 
cluster is a part of the statistical design. 

• Design of optimal experiments with mixed models. In engineering and indus-
trial settings, fixed and random effects design matrices may be chosen as a part 
of experimental design. Although the theory of optimal design of experiments 
is well studied for linear and nonlinear regression models, not many theoreti-
cal developments exist in the mixed model framework. Similar to sample size 
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determination, a mixed model leads to a nontrivial choice between design for 
fixed and random effects. Only a handful of papers exist on the topic (e.g., 
Dette et al., 2010) and more research is needed to address this important 
application of mixed models. The idea of adaptive design seems attractive 
(Glaholt et a l , 2012). 

• Statistical hypothesis testing using noniterative quadratic estimators of σ2 and 
matrix D are discussed in Sections 3.10 to 3.12. The closed-form expression 
for these estimators makes it possible to study the small-sample properties 
and development of new statistical tests. In particular, we need extensive 
simulations; how these estimates behave for small number of clusters, N] and 
non-Gaussian, possibly skewed, distributions with long tails. The importance 
of noniterative estimates is explained by the possibility of using them for 
testing a statistical hypothesis on D that creates an opportunity to testing 
the statistical significance of the random effects. 

• Studying the small-sample-size properties of the beta-estimates and the re-
spective statistical hypothesis tests. A paramount question regarding non-
linear statistical models involves small-sample properties of estimators. The 
linear mixed effects model is the simplest nonlinear statistical model in which 
advances can be achieved. Currently, the t-test is used for the statistical sig-
nificance of fixed effects coefficients assuming that the covariance matrix of 
random effects is fixed and known. We can adjust for the fact that an esti-
mate of matrix D is used that would lead to widening the confidence intervals. 
More research should be done in studying how the confidence intervals and 
hypothesis testing can be improved using the profile likelihood; see Section 
3.4 as an introduction. 

• The Gauss-Markov theorem for mixed model or estimated GLS. The Gauss-
Markov theorem is the cornerstone of linear models. If the scaled covariance 
matrix of random effects, D, is known, the estimated generalized least squares 
estimator for fixed effects coefficients, /3, is BLUE (best linear unbiased es-
timator) and has a minimum covariance matrix (the estimator is efficient) 
among all (linear and nonlinear) unbiased estimators with normal observa-
tions. In Section 3.6.1 it is shown that the maximum likelihood estimator of 
fixed effects is unbiased in a small sample, and it remains unbiased with many 
other quadratic estimates of D, such as MINQUE, MM, and VLS, discussed 
in Chapter 3. Thus, the set of unbiased estimator for ß is nonempty, and 
therefore the question as to which is the most efficient unbiased estimator is 
valid. Several avenues can be taken to tackle this problem. For example, one 
may seek an estimate of D as a quadratic function of the observations that 
minimizes the covariance matrix of the fixed effects coefficients or its deriva-
tives at D = 0. A good start may be the simplest random effect model, the 
meta-analysis model, discussed in Chapter 5. 

• Develop better computational algorithms for generalized linear and nonlinear 
mixed models, including maximum likelihood estimation based on numerical 
integration. Three types of quantities are computed in traditional (or approx-
imate) log-likelihood maximization: the values of the log-likelihood function, 
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its derivatives (the score equations), and the Hessian (or information) ma-
trix. It should be noted that score equations are most important because the 
MLE is defined as the solution of these equations. The Hessian estimate is 
less important because any positive definite matrix provides the convergence 
of the maximization algorithm. While the existing methods concentrate on the 
log-likelihood approximation via integration, we should pay more attention to 
score equations. The improved Laplace approximation suggested in Section 
7.1.2 can be used to approximate the integral or the Gauss-Hermite quadra-
ture. To speed up the convergence, one can increase the number of nodes while 
iterations progress. 

• Improve computational algorithms by recognizing that the beta-parameters, 
ß, and Cholesky factor elements, 5, can be combined in a linear combination 
Aiß + \Jaö, as outlined in Section 8.14. The prototype of the algorithm is 
implemented in our function nlmeFSL, but more efficient C/FOTRAN code is 
required to see the full advantage. 

• Starting values for linear and nonlinear mixed model estimation algorithms. 
A good choice for starting values may be crucial for a successful run, es-
pecially for generalized and nonlinear mixed models with a large number of 
random effects or complicated variance-covariance structure. It seems that the 
most important is the choice of matrix D. Several recommendations may be 
explored: (1) a few iterations of the fixed-point algorithm, as discussed in Sec-
tion 2.13; and (2) noniterative quadratic estimates of matrix D* and σ2, as 
discussed in Sections 3.10 to 3.12. Less obvious and yet more important is the 
choice for starting values for nonlinear mixed models. Beta-parameters may 
be estimated using glm and n l s , and matrix D* may be estimated based on 
the residuals. Definitely, more work is required to study theoretical properties 
of these starting values and to test these suggestions via extensive simulations 
involving 'difficult' data sets. 

• Development of the criterion that the MLE of D is a positive definite matrix. 
We have developed such criterion for a linear mixed model in Section 2.6 and 
for a meta-analysis model in Section 5.1.2. A similar criterion is needed for 
generalized linear and nonlinear mixed models. This criterion can serve as a 
preliminary test for the adequateness of the mixed model and random effects 
against overspecification. 

• Development of an adequate stopping criterion (criteria) for maximization of 
the log-likelihood function, especially with generalized linear and nonlinear 
models. The log-likelihood maximization may be a complex problem, espe-
cially when variables are close to collinear or when the nonlinear model has a 
complicated variance-covariance structure. Proximity between iterations de-
fined as ||as — a s_i | | < ε, where ε is a small number, does not guarantee that 
a s is the point of the global maximum. In order to claim that iterations con-
verged to a local maximum, the gradient of the log-likelihood function at a s 

must be zero. A question arises: What small is small? For instance, is 10_ 1 or 
10 - 8 a small gradient? The interprétable stopping criteria were developed for 
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the nonlinear least squares, and discussed in Section 13.3.5. Similar criteria 
should be developed for mixed model maximization algorithms. 

• Existence of the maximum likelihood estimate (MLE) for generalized linear 
and nonlinear mixed models. The MLE may not exist; thus, before starting 
a maximization algorithm one has to be sure that the maximizer exists. You 
may spend a lot of time on model testing and playing with the start values but 
eventually fail because the MLE, simply does not exist—the criteria for MLE 
existence are important. For a linear mixed effects model, MLE exists with 
probability 1, as discussed in Section 2.5. Things become more complicated 
for generalized and nonlinear mixed models. For example, in the case of binary 
dependent data, the conditions for the data separation must be fulfilled, as 
presented in Section 7.10. You may generalize the existence criteria developed 
for nonlinear regression by the author (Demidenko, 1989, 2000, 2008) to the 
existence of the MLE in the mixed model. 

• Uniqueness of the log-likelihood maximum. The log-likelihood function is not 
a quadratic function even for a linear mixed model because of the presence of 
variances and covariances. Thus, the possibility exists of converging to a local 
maximum. As proven by Demidenko (2000), for many nonlinear regressions 
the probability that the normal equation has two or more distinct solutions 
is positive. We need criteria by which one can test whether the maximum 
log-likelihood found is global, as suggested by Demidenko (2008). As a con-
jecture, the log-likelihood function for a linear mixed model is unimodal (local 
maximum=global maximum). For a generalized linear mixed model, such as 
the logistic or Poisson model, this question is open A good start is to investi-
gate the uniqueness of the maximum likelihood estimate for a Poisson model 
with random intercepts. The uniqueness criteria for a general nonlinear mixed 
model are even more difficult than those for a nonlinear regression but are not 
completely intractable. In general, criteria for uniqueness are model-dependent 
and mathematically challenging. 

It should be noted that some literature exists that deals with some of the problems 
outlined above. We have deliberately not tried to mention all existing publications in 
these directions because it would require much more space. Therefore, an important 
part of advancing along the lines of these problems will be a careful review of work 
already done. 





1 
Introduction: Why Mixed Models? 

Big ideas have many names and applications. Sometimes the mixed model is called 
the model for repeated measurements, sometimes a hierarchical model. Sometimes 
the mixed model is used to analyze clustered or panel data, sometimes longitudinal 
data. 

Mixed model methodology brings statistics to the next level. In classical statistics 
a typical assumption is that observations are drawn from the same general popula-
tion and are independent and identically distributed. Mixed model data have a more 
complex, multilevel, hierarchical structure. Observations between levels or clusters 
are independent, but observations within each cluster are dependent because they 
belong to the same subpopulation. Consequently, we speak of two sources of varia-
tion: between clusters and within clusters. 

Mixed model is also well suited for the analysis of longitudinal data, where each 
time series constitutes an individual curve, a cluster. Mixed model is well suited 
for biological and medical data, which display notorious heterogeneity of responses 
to stimuli and treatment. An advantage of the mixed model is the ability to gen-
uinely combine the data by introducing multilevel random effects. Mixed model is 
a nonlinear statistical model, due mainly to the presence of variance parameters, 
and thus it requires special theoretical treatment. The goal of this book is to pro-
vide systematic coverage and development of all spectra of mixed models: linear, 
generalized linear, and nonlinear. 

The aim of this chapter is to show the variety of applications for which the 
mixed model methodology can be useful, or even a breakthrough. For example, 
application of mixed modeling methodology to shape and image analysis seems 
especially exciting and challenging. 

Mixed models can be used for the following purposes: 

• To model complex clustered or longitudinal data. 
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• To model data with multiple sources of variation. 

• To model biological variety and heterogeneity. 

• As a compromise between the frequent ist and Bayesian approaches. 

• As a statistical model for the penalized log-likelihood. 

• To provide a theoretical basis for the Healthy Akaike Information Criterion 
(HAIC). 

• To cope with parameter multidimensionality. 

• As a statistical model to solve ill-posed problems, including image reconstruc-
tion problems. 

• To model shapes and images. 

An important feature of this book is that it provides numerical algorithms as 
a realization of statistical methods that it develops. We strongly believe that an 
approach is not valuable without an appropriate efficient algorithm. Each chapter 
ends with a summary points section that may help the reader to quickly grasp the 
chapter's major points. 

1.1 Mixed effects for clustered data 

The mixed effects approach copes with clustered data that can be viewed as a sample 
of samples. To illustrate, let us consider the relationship between price (x) and sales 
(y). Let {(xfc,yfc),A; = Ι,.,.,Κ} be the sample of observations collected on price 
and sales for several commodities. Plotting y versus x reveals that the relationship 
is close to linear with a negative slope; see the left-hand panel in Figure 1.1. In 
classical statistics it is assumed that pairs (xk,Vk) are independent and identically 
distributed (iid) with the regression line E(y\x) = a-\- ßx. However, one may argue 
that we deal with clustered data, where each cluster is a commodity. In the right-
hand panel, we connect observation points for each commodity and obtain a reverse 
picture—increase in price leads to increase in sales. A paradox? 

Classical statistics assumes the model 

yk = a + ßxk+ek, fc = 1, . . . ,# , (1.1) 

where the {ε/J are independent and identically distributed random variables with 
zero mean and constant variance σ2. In other words, it is assumed that the data are 
collected from similar, homogeneous commodities. As follows from the right panel, 
the commodities are not homogeneous and vary substantially in terms of price 
and sales. An adequate model for the sales problem would be to assume that each 
commodity has its own commodity-specific sales (in statistical language, intercept); 
namely, 

Vij =Oii + ßxij+eij, i = l,...,iV, j = Ι,.,.,π». (1.2) 
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Note that we use a double index now because we are dealing with clustered/panel 
/tabular data: i corresponds to the ith commodity, j corresponds to the j t h observa-
tion of the ith commodity, rii is the number of observations for the zth commodity, 
and OLi is the commodity-specific intercept. The total number of observations is 
K = Σί=ι ni- Regarding the error terms {ε^·}, we assume that, as previously, they 
are iid with the variance σ2. 

Classical statistics Mixed effects approach 

T 1 1 1 1 r 

12 14 16 18 20 22 12 14 16 18 20 22 

Price, x Price, x 

FIGURE 1.1. Classical and mixed effects approaches lead to reverse conclusions. Left: In 
the classical approach, it is assumed that observations are independent and identically 
distributed, resulting in a negative relationship. The straight line shows simple regression 
estimated by ordinary least squares. Right: In the mixed effects approach, it is assumed 
that each commodity represents a cluster and therefore that an increase in price for a 
specific commodity leads to an increase in sales. The straight line shows the linear mixed 
effects model with population-averaged slope and commodity-specific intercept. 

Obviously, model (1.2) is more complex than the classical regression model (1.1), 
and in a special case, a; = a, we come to (1.1). The central assumption of the 
mixed effects model is that intercepts {α^,ζ = 1,..., N} are random and belong to 
a general population that can be expressed in the second equation as 

ai = a + bil (1.3) 

where a is the population-averaged sale (intercept) and bi is the random effect, or 
deviation of the commodity-specific sale from the population-averaged sale. Thus, 
on the one hand, we allow commodity-specific sales, but on the other hand, we 
assume that commodities represent the country market economy, and therefore one 
can speak of how an increase in price affects sales across all commodities. Coupled 
models (1.2) and (1.3) define a linear mixed effects model, parameters a and β are 
fixed effects (population-averaged parameters), and bi is the random effect with zero 
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mean and variance σ\ independent of {ε^·}. This is a hierarchical model or a model 
with random coefficients. The model defined by equations (1.2) and (1.3) can be 
combined into one as 

yij =α + βχν+ηίρ i = 1,...,ΛΓ, j = Ι,.,.,η», (1.4) 

where η^ — ε^ + bi is the composite random error. As follows from (1.4), obser-
vations on the same commodity (within a cluster) correlate with the correlation 
coefficient: 

p= ™M , = - s ^ , (1-5) 

but observations on different commodities (from different clusters) do not correlate. 
In a mixed effects model, there are two sources of variation: the within (or intra) 
-cluster variation, σ2, and the between (or inter) -cluster variation, σ\. Recall that 
classical regression assumes one variation. As follows from (1.5), the larger the 
variation between commodities, the higher the correlation within each cluster. If 
σ\ == 0, the correlation is zero and α̂  = a, ordinary linear regression. For the data 
in Figure 1.1, p = 0.99, so the major source of variation is the variation between 
commodities. That is why the slope has different signs in the two approaches. 

Observations {yn,yi2,...,yi,m} can also be interpreted as repeated measurements. 
Therefore, model (1.4) is sometimes called the model for repeated measurements. 
An important example of clustered data is that of longitudinal data when subjects 
are observed over time. In fact, the pioneering work by Laird and Ware (1982) 
on the linear mixed effects model was concerned with this kind of data. Model 
(1.4) belongs to the family of linear mixed effects (LME) models and is studied 
extensively in Chapters 2 through 4. Specifically, model (1.4) is called the LME 
model with random intercepts, and it has many nice properties (see Section 2.4). 
There is more on ignoring random effects in the LME model in Section 3.9. 

Summing up, ignoring clustered structure may lead to false analysis. The linear 
mixed effects model is an adequate model for clustered (repeated) data that involve 
two sources of variation, within and between clusters. 

1.2 ANOVA, variance components, and the mixed model 

The mixed model may be viewed as a combination of analysis of variance (ANOVA), 
variance component (VARCOMP), and regression models. For example, the sim-
plest, one-way ANOVA model deals with tabular data: 

Via = ßi+£ij, i = Ϊ , - , Ν , j = l , . . . ,ni, (1.6) 

where TV is the number of units (subjects or clusters), rii is the number of obser-
vations per unit, and {ε^·} are independent and identically distributed (iid) errors 
with zero mean and variance σ2. An important, sometimes not well emphasized 
assumption of the ANOVA model is that {βΧι ...,βΝ} are fixed parameters. Con-
sequently, for each unit, observations {yn,yi2, ...,2/mi} c a n be treated as replicates 
because they are iid with the mean β{. A traditional hypothesis in the framework 
of the ANOVA model is that the units are the same, or HQ : βχ = ... = βΝ. 
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The ANOVA model is a special case of the linear regression model, 

y = Xß + e, (1.7) 

where y is a K x 1 vector of observations, X is a K x m design matrix, and ß is an 
m x 1 vector of parameters. For example, the one-way ANOVA model (1.6) can be 
expressed in the regression form (1.7) if the {yij} are arranged in the vector y so 
that K = Σ ί = = 1 rii, the elements of the design matrix X are 0 or 1, and m = N. A 
classic reference, where various ANOVA models are represented as a linear model, 
is Searle (1971a). All ANOVA models have two important features: (a) parameters 
{ßi,i = 1, ...,ra} are estimated by ordinary least squares, and (b) the F-test is the 
workhorse for linear hypothesis testing. Models (1.6) and (1.7) can also be called 
fixed effects models. 

We come to a different statistical model when the {β^ are assumed random, say 
iid normally distributed (independent of ε^) with the common mean β and variance 
σ | . Representing ßi = ß + &̂ , we arrive at the variance components (VARCOMP) 
model: 

yij = ß + h+Sij, (1.8) 

where bi is called a random effect. The ANOVA is a fixed effects model and VAR-
COMP is a random effects model. Although models (1.6) and (1.8) seem similar, 
they have different statistical properties. In ANOVA, observations do not correlate; 
in VARCOMP, observations correlate within each unit and the correlation coeffi-
cient is equal to σ | / ( σ 2 + σ | ) . According to the Gauss-Markov theorem, for model 
(1.6) the ordinary least squares coincides with the MLE and is efficient, but this 
does not hold for model (1.8). Moreover, if Ui are different, there is no closed-form 
solution for the MLE. The null hypothesis H0 : βλ = ... = βΝ for the ANOVA 
model transforms into H$ : σ2β = 0 and the F-test cannot be applied directly, as 
it requires substantial modification (see Section 3.5). When the number of units 
is relatively small (say, N < minn^), the ANOVA model is preferable. When the 
number of units is relatively large (say, N > maxn^), the VARCOMP model may 
be better. The VARCOMP model has a long history (Rao, 1973; Harville, 1977; 
Searle et al., 1992). 

The mixed model may be viewed as a combination of the ANOVA and VARCOMP 
models. For example, consider the problem of measuring the blood pressure for 
i = 1,..., N people at time points £a?te> . . . , ί ^ . If y^ denotes the blood pressure 
of the zth person at time Uj, the VARCOMP model (1.8) may be adequate because 
it reflects the fact that the blood pressure changes from person to person, but for 
the same time, one can speak of the population-averaged blood pressure, β. Now 
we realize that besides blood pressure for each person, we have information about 
gender, age, and so on. Also, to reflect the fact that measurements are made over a 
fairly long period of time, we incorporate Uj into the vector of complete covariates 
Xij. Then the expanded VARCOMP model transforms into the mixed effects model, 

yij = x'ijß + bi+ Sij. (1.9) 

The similarity with the regression model (1.7) becomes evident. 
In general, the linear mixed effects (LME) model is written as 

Yi = Χφ + Zfii + eh i = 1,..., AT, (1.10) 
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where b* is a vector of random effects such that cov(b^) = σ2Ό and Z* is the design 
matrix. For example, for model (1.9), the random effect is scalar and Z^ = 1. The 
variance parameters, σ2 and D, are unknown and are subject to estimation along 
with the population-averaged parameter β. 

By combining vectors {y^} and matrices {X*} into ^ n* x 1 vector y and Y^rtiXm 
matrix X, and letting Z =diag(Zi, ...,Zjv), model (1.10) can be written as one 
equation, y = X/3 + Zb + e. Although some authors prefer to work with this one-
equation LME model, such representation is excessive because observations across 
i are independent. 

Although model (1.10) looks like a linear model, the fact that the variance para-
meters are unknown makes it a nonlinear statistical model with elaborated estima-
tion methodology. Usually, we assume that the random effects and the error term 
have a normal distribution, so that model (1.10) can be written more compactly as 

Υ ί - Λ φ ί ^ , σ ^ Ι + Ζ , Ό ^ ) ) , i = l,...,N, (1.11) 

meaning that y^ has a multivariate normal distribution with mean X^/3 and covari-
ance matrix σ2(Ι + Z^DZ^). If D were known, as follows from the Gauss-Markov 
theorem, the generalized least squares estimator, 

3 = (f^X'ß + ZiOZ'^xA f f ; X ' i l + Z i D Z i ) - 1 * ) , 

would be efficient. But the variance-covariance matrix of the random effects is un-
known, and its estimation becomes a central theme in the framework of the mixed 
effects model. Two families of estimators for the variance parameters are consid-
ered: maximum likelihood (Chapter 2) and quadratic noniterative distribution-free 
estimators, including MINQUE, variance least squares, and method of moments 
(Chapter 3). 

The LME model and its generalizations are studied in the first three chapters 
of the book. In the first chapter we discuss computational aspects of maximum 
likelihood, the second chapter is about statistical properties, and in the third chapter 
we consider several generalizations and important special cases of the LME model. 
In Chapter 5, meta-analysis, a very special case of the mixed model, is studied; this 
model is not covered by (1.10) and therefore requires special treatment. 

1.3 Other special cases of the mixed effects model 

Another important special case of linear mixed effects model (1.10) is the regression 
model with random coefficients, 

yi = Xi&i + fii, aii = ß + b i 5 i = 1,..., N. (1.12) 

For example, Swamy (1971) studied this model in connection with the analysis of 
cross-sectional (panel) data where y* is a time series of length n and i is an index 
economic sector. One comes to (1.12) letting Z$ = Χ^ in the LME model (1.10). An 
interesting special case of model (1.12) is when the data are balanced, X* = Z. For 
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balanced data, the ordinary and generalized least squares lead to the same estimate. 
This model is studied in Section 2.3. In Chapter 4 we study the growth curve model, 
where â  = A^/3 + b^ and A; is the design matrix. Sometimes only a subvector â  
can be specified, so that other coefficients may be anything. For example, in model 
(1.9), only the intercept is random; this models is studied in Section 2.4, while a 
more general family of growth curve models is studied in Section 4.2. 

Another special case of the LME model is when rii = 1, which leads to a linear 
regression with heteroscedastic errors, yi = ß'x.i + η{1 where ηί has zero mean 
and variance var(ryj = σ2(1 + dzf) and d is the parameter to estimate. Many 
examples and treatments of the regression model with heteroscedastic errors may 
be found in the book by Carroll and Ruppert (1988). A nonlinear regression model 
with heteroscedastic errors and a nonlinear variance function defined as var(T^) = 
a2Wi(ß, Θ) can be studied in the framework of the nonlinear marginal mixed model 
of Chapter 6. 

1.4 Compromise between Bayesian and frequentist 
approaches 

The goal of this section is to convince the reader that the mixed model may serve 
as a compromise between the frequentist (classical) and Bayesian approaches. Both 
the Bayesian and mixed model approaches are based on a hierarchical statistical 
model, but in the former the values for all parameters must be specified, whereas 
in the latter, parameters are estimated from the data. 

Specifically, let y be the data observed. In the Bayesian approach, the model is 
specified in hierarchical fashion as 

y|0 ~ L(y|0), (1.13) 

Θ ~ G(0). (1.14) 

Equation (1.13) defines the conditional distribution of y given Θ through density L. 
The second equation, (1.14), defines a priori the distribution of Θ through density 
G. Since G is usually a member of a family of distributions, the parameter that 
specifies G is called the hyperparameter. Thus, unlike the frequentist approach, the 
Bayesian approach assumes that parameter Θ is random and densities L and G must 
be specified completely. The main computational concern in the Bayesian framework 
is calculation of the normalization constant 

A= j L{y\ff)G{ß)dß (1.15) 

in the posterior density 

p(0|y) =jL(y\e)G(e). (1.16) 

Obviously, computation of A is required to ensure that the area under the sur-
face defined by (1.16) is 1. Much effort has been spent on developing integration 
techniques for (1.15). In particular, one of the most popular approaches, based on 
the Markov Chain Monte Carlo (MCMC) technique, is realized in BUGS software 
(http://www.mrc-bsu.cam.ac.uk/bugs). 
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The major criticism of Bayesian theory is the requirement for complete specifica-
tion of the prior distribution G. It is worthwhile to note that G directly affects the 
posterior density (1.16) because it acts as a factor. Consequently, sensitivity to the 
choice of the prior distribution in the Bayesian approach is substantial. 

In the mixed model approach, the model is also specified as a hierarchical model, 
(1.13) and (1.14), but it is allowed to have nonrandom parameters, r , namely, 

y|fl ~ £ ( y | 0 , r ) , (1.17) 

Θ ~ G(ß,r). (1.18) 

In the Bayesian framework, τ is known and is the hyperparameter. When r is 
unknown we come to the frequent ist model, where r is estimated, for example, 
by maximum likelihood. As in Bayesian theory, integration becomes a technical 
problem because ML maximizes the marginal likelihood, 

L{r) = / L(y |0, r )G(0, τ)άθ. (1.19) 

In the framework of the mixed model, we call Θ random (or subject-specific) and r 
fixed effects (or population-averaged) parameters. Random effects are unobservable 
and are integrated out in (1.19), but r is estimated. Thus, the normalizing constant, 
(1.15), plays the role of the likelihood in the mixed model. After τ is computed, 
we apply standard Bayesian formulas, such as posterior density, posterior mean, 
and so on. In the language of the mixed model, the posterior mean is called the 
estimate of the random effect. We refer the reader to Sections 3.7 and 8.15, where 
these quantities are estimated. 

In summary, a mixed model combines major features of the frequent ist and 
Bayesian approaches. Symbolically, 

mixed model = Bayesian + frequent ist. 

On the one hand, as in the Bayesian approach, mixed model assumes a hierarchical 
(conditional) model where the parameter is treated as random. On the other hand, 
the hyperparameter, r , is not specified arbitrarily as in the Bayesian approach, 
but is estimated from the data. As such, a mixed model is more flexible than the 
Bayesian approach. 

We illustrate the difference between the Bayesian and mixed model approaches 
by a linear model under a normal distribution, 

y\ß ~ Λφ£/3,σ2Ιη), (1.20) 

β ~ A/"(0,a|lm) (1.21) 

(Lindley and Smith, 1972; Smith, 1973). These equations are special cases of the 
general Bayesian model (1.13) and (1.14). In words, if the vector of regression coef-
ficients β were known, y would have a multivariate normal distribution with mean 
X/3 and variance σ2. As follows from (1.21), the prior distribution for β is also nor-
mal with zero mean and variance σ | . To complete the Bayesian specification, one 
needs to provide distributions for the variance parameters, σ2 and σ2β. Typically, 
a gamma distribution with the density T~l{a)\OLta~1e~Xt is used for this purpose, 
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where a and λ are the known positive (hyper-) parameters. The idea behind the 
choice of a and λ is to obtain a noninformative prior. When the hyperparameter 
belongs to a bounded set, the noninformative prior is constant. For example, if 
a probability p is the hyperparameter, it is reasonable to assume that the prior 
density of p is 1 on (0,1). Things are complicated when the hyperparameter is not 
bounded, such as variance. For example, in BUGS the default values are λ = 1/1000 
and a = 1/1000. Since for the gamma distribution, E = a/X and var= α/λ2, this 
choice implies that the a priori mean equals 1 and the variance equals 1000. In 
terms of the variance parameters for our linear model, such a choice would mean 
that σ2 = σ\ = 1000. Apparently, this choice of the hyperparameters is arbitrary. 

Now we turn our attention to the mixed model approach. It uses the same hierar-
chical models (1.20) and (1.21) but the variance parameters are assumed unknown. 
We can estimate σ2 and σ | either by maximum likelihood (ML) or by nonitera-
tively using unbiased quadratic estimators (Chapter 3). For example, using the ML 
approach, the pair of models (1.20) and (1.21) imply the model 

y~A/XO,a2(I + dXX')), 

where d = cri/a2 is the scaled variance parameter. In the Bayesian approach, pa-
rameters σ2 and d have to be specified through known distributions. In the mixed 
model approach, we treat them as unknown parameters to be estimated from max-
imum likelihood. The log-likelihood, up to a constant — n In \/2π5 takes the form 

Z(a
2,d) = -Ο.δηΐησ2 - 0.5In |l+dXX7| -0.5σ~2γ'(Ι +dXX')-^. 

Differentiating with respect to σ2, we obtain σ2 = n~1y/(I + dXX/)~1y. Plugging 
it back into Z, the variance-profile log-likelihood function simplifies to a function of 
one argument, 

1(d) = -0 .5n lny ' ( I n + dXX ; ) _ 1 y - 0.5In | l+dXX'| . 

A number of algorithms may be used to maximize this function and to obtain the 
MLE, d. So the hyperparameters in the Bayesian approach are estimated in the 
mixed model. After parameter values are determined, we compute the posterior 
distribution, which is also normal with mean /3=eZX/(In+dXX/)"~1y. Using the 
dimension-reduction formula of Section 2.2.3 or Appendix 13.2, we can express 
3= (X / X+d" 1 I m )~ 1 X / y 5 as in Lindley and Smith (1972) but with the estimate 
instead of an arbitrary d. 

1.5 Penalized likelihood and mixed effects 

Penalized likelihood is encountered in many applications as a way to make a prob-
lem solvable by replacing an ill-posed problem with a well-posed problem. This 
methodology has to be proven to make a great deal of improvement in a variety of 
applications, from applied mathematics and computer science to engineering. How-
ever, a substantial drawback of the penalized likelihood approach is the need to 
know the penalty coefficient (sometimes called a regularization parameter). Strictly 
speaking, an ill-posed problem is merely reduced to another problem of choosing the 
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penalty coefficient. Our aim in this section is to show how the penalized likelihood 
may be derived from a hierarchical statistical model so that the penalty coefficient 
term may be estimated along with the parameter of interest. Here we suggest the 
solution in general terms, and in the following sections we illustrate it by various 
examples. 

Let y be an n-dimensional vector of observations with the density function L 
dependent on a fc-dimensional parameter b, where k may be large. Denote Z(b;y) 
as the log-likelihood and L(b; y) as the likelihood. If n is close to k, the maximum 
likelihood solution 

max/(b;y) (1.22) 
b 

turns into an ill-posed problem. To improve (1.22) a penalty term is introduced, so 
instead one maximizes the penalized log-likelihood, 

max[Z(b;y)+p£(b)], (1.23) 
b 

where p is a nonnegative penalty coefficient and g(b) is a penalty function. Typically, 
a quadratic term is used, g(b) = — ||b|| , so the penalized log-likelihood reduces to 
minimization of 

-Z(b;y)+p | |b | | 2 . (1.24) 

Sometimes, the penalized log-likelihood is used not in a statistical but in an ap-
plied mathematics framework as a regularization technique (Tikhonov and Arsenin, 
1977). For example, let y be an n x 1 normally distributed vector and X an n x k 
matrix such that y = X b + e, where ε is the error term with independent iden-
tically distributed (iid) components ε^ ~ Λ/"(0, σ2). For this linear model we have 
' (b;y) = —(2σ2) -1 ||y — Xb| | 2 , up to a constant term. If matrix X 'X is singular 
(e.g., when k > n), (1.22) is an ill-posed problem because b is not unique. On the 
other hand, if p is a fixed positive number, the penalized negative log-likelihood 
yields a unique solution, b = (X'X+z/E) - X'y, where v — 2σ2ρ. 

What is the value of pi The answer is important because if p = 0, we come to 
the previous ill-posed problem. If p —> oo, we have b = 0. Thus, by varying p, one 
obtains a variety of solutions, from unstable MLE to trivial 0. 

To estimate p we assume that b is random, so that L(b;y) is the conditional 
likelihood. Let G be a density, so the density of b is u~kG(uj~1b), where a; is a pos-
itive scale parameter. Symbolically, this scheme may be expressed as a hierarchical 
statistical model, 

y |b ~L, b ~G. (1.25) 

Since only observations on y are available, we need to deal with the marginal dis-
tribution 

/ L(b;y)a;-fcG(a;-1b)iZb, 

where random b is integrated out. Letting g = In G, the marginal log-likelihood 
takes the form 

1(ω) = -Jfelno; + In / e z ( b ; y ) +^ ( u ;" l b )db. (1.26) 
JR* 

The MLE, ω turns I into a maximum. Now the Laplace approximation comes into 
play to show the link between maximum and penalized likelihood (see Section 7.7.1 
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for more details), 

-1/2 

(1.27) 

where / i m a x = /i(bmax) and |H| is the determinant of the negative Hessian at the 
maximum, H = —d2h/dh2. Applying this approximation to (1.26), one obtains 

1(ω) ~ -fclno; + i(b;y) +fl(a;"1b)-0.51n|H| . 

Finally, assuming that In |H| changes little with b , the marginal log-likelihood (1.26) 
can be approximated as 

1(ω) ~ -Jfelnω + Z(b;y) +g(u"1b). (1.28) 

In the particular case when ω is known, maximization of the marginal log-likelihood 
is almost equivalent to maximization of 

Z(b;y)+g(u;-1b) . (1.29) 

In an important special case, when the marginal distribution of b is normal (G = λί) 
with zero mean, we have g(u~1h) = — 0.5a;-2 ||b|| , so the maximum likelihood 
estimation of the hierarchical statistical model (1.25) is almost equivalent to the 
minimization of the penalized log-likelihood (1.24) with p = 1/(2ω2). Finally, to 
estimate b and ω simultaneously, we maximize the right-hand side of (1.28), which 
is a well-posed problem. In the literature on mixed models, (1.28) is called quasi-
likelihood (Breslow and Clayton, 1993). This likelihood approximation plays an 
important role in estimation in the generalized linear mixed models of Chapters 7 
and 8, respectively. Typically, besides random effects b , we have fixed effects (or 
population-averaged) parameters 0, but their presence does not alter the reasoning, 
described above. 

Generally, any penalized log-likelihood may be derived through a mixed model. 
For a linear model, the penalized log-likelihood is exact; for a nonlinear model, 
the penalized log-likelihood is an approximation of the original log-likelihood. The 
Laplace approximation is the key to proving this link. 

In the following sections we show some applications of this general result. 

1.6 Healthy Akaike information criterion 

The Akaike (1974) information criterion (AIC) became very popular as a criterion 
for model selection. The rationale behind this criterion is the divergence between 
the true distribution and a candidate measured in terms of the Kullback-Leibler 
information criterion, Kullback (1968). It was shown that based on this criterion, 
the model should be chosen such that 

AIC = -2Zmax + 2fc (1.30) 

reaches a minimum, where im a x is the log-likelihood maximum and k is the number 
of unknown parameters. The smaller the AIC, the better the model. The AIC is 

/ eh^db ~ (2π)*/2βΛ» 
d2h 
<9b2 

b=b„ 
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especially useful for nonnested models; if the models are nested, standard statistical 
hypothesis techniques are applied. It is worthwhile to notice that (1.30) has the 
form of a penalized negative log-likelihood. For example, consider a linear regression 
model, 

y = X/3 + e, (1.31) 

where ß is the fc-dimensional parameter vector, components S{ are independent 
normally distributed random variables with zero mean and variance σ2, and i = 
1,2,..., n. Assuming that all candidate models use the same number of observations 
(n =const), it is elementary to check that up to a constant, 

AIC = n l n $ 2 + 2fc, (1.32) 

-2 _i I! - II2 

where σ = n y — X/3^5 is the regression variance and ßLS is the least squares 
estimate. 

Several researchers noted that there can be appreciable bias in the AIC estimate. 
For example, Hurvich and Tsai (1991) suggested using the term fe+(fe+l)(fe+2)/(n— 
k—2) instead of 2k. Sclove (1987) and Dayton (1998) consider a generalization of the 
Akaike information criterion expressed as — 2/m a x + a(n)k, where a(n) is a function 
of the sample size. 

Although many researchers demonstrated that the AIC is a useful quantity to 
characterize the information property of a statistical model, Ishiguro et al. (1997) 
and Mittelhammer et al. (2000), among others, pointed out a weakness of this 
criterion. In particular, the AIC works poorly in the case of multicollinearity. To 
illustrate, let us consider the problem of finding the right linear regression model 
using a set of independent (explanatory) variables or covariates {XJ, j = 1,..., J } , 
where the number of candidate covariates, J, is quite large (perhaps even larger than 
the number of observations, n). Assume that an analyst has come to a satisfactory 
set of k — 1 explanatory variables x\,..., Xk-i and wants to try to add new variables 
u or v, one at a time. Consider the situation when both sets, {χχ, ...,Xk-i,u} and 
{#i,..., x/c-i, i>}, yield the same, or a very close, residual sum of squares and conse-
quently, σ . Then, in terms of the AIC, the two models are indistinguishable because 
as follows from (1.32), they produce the same AIC value. For example, due to the 
multicollinearity between χ ι , . . . , χ^- ι and u, the first model yields large standard 
errors and low t-statistics for the least squares estimates and assume that the second 
model still has satisfactory ^-statistics. Clearly, the second model would be better, 
but the AIC fails to identify it, especially when the design matrix is ill-conditioned. 
The model selection criterion developed below is free of this drawback. 

We turn our attention to the penalized log-likelihood (1.28). Assuming that the 
prior distribution of parameters is normal, we obtain 

Z . - f W + /(b;y)-^||b||2. 

The maximum of the log-likelihood function over the variance is attained at ω 
| |b|| //c, so the healthy Akaike information criterion takes the form 

2 

H AIC = i J - 2 Z m a x + 2fc (1.33) 

= H + AIC, 
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where 

H = k r in ( | | b M L | 2 /h) - l\ . (1.34) 

The AIC works well when two models are compared with different numbers of 
estimated parameters, fc, but it fails to discriminate models with the same fc and 
quality of fit when the models are ill-conditioned (ill-posed problems). To illustrate, 
let us come back to our linear regression example. Consider a linear regression with 
the number of explanatory variables equals k and the variance σ2. Now add a new 
variable, which is highly correlated with the other variables. The result of such 
addition in terms of the AIC may not be well reflected because σ will not change, 
due to multicollinearity. To the contrary, due to |X'X| ~ 0, the OLS estimate 

|2 

ß LS The after addition becomes unstable, which would lead to a large value, 
instability will be picked up immediately by H AIC because H becomes large. Now 
it is clear why the term healthy is used to reflect that HAIC works well for ill-posed 
estimation problems as well. 

The healthy AIC works in both directions: when the number of parameters, fc, 
increases and when k is constant. In the latter situation, between two models with 
the same log-likelihood value, the healthy AIC chooses the model with the shorter 
estimate length. 

1.7 Penalized smoothing 

Several authors have pointed out a close relationship between penalized smoothing 
and the mixed model (Zeger and Diggle, 1994; Wang, 1998; Zhang et al., 1998; 
Ruppert et al., 2003). To illustrate the connection, we start with the following 
simplified problem: Let 2/1,2/2 > •••>yn be time series data as observations at time 
2 = 1,2,..., n (in fact, y may be any equidistant data). We want to find μ1? μ2, ···, μη 

such that 
yi = Vi + ei, z = l,. . . ,n, (1.35) 

where the {si} are iid random variables with zero mean and constant variance σ2. 
Clearly, without any restriction on {μ^}, this problem has a trivial solution, μί = yi. 
To restrict {/^}, several cost functions have been suggested. The most popular is 
the bending energy cost function (for further discussion see, e.g., Chalmond, 2003). 
Then total criterion takes the form 

n n—1 

Σ( ΪΚ - Mi)2 + Ρ Σ ^ + Ι - 2 ^ + ̂ -i)2> ( ° 6 ) 
i = l 2=2 

where p is a positive parameter, the penalty coefficient. The first term in (1.36) is the 
usual sum of squares, and the second term is the penalty on the curvature of {μ^}. 
Indeed, if the second term is zero, then μί+1 = 2μί — μ^_!, and by induction we ex-
press {μ^ι = 3, ...,n} through μλ and μ2 as μί+1 = ίμ2 — (ί — 1)μι = ^ ( M 2 - M I ) + M I · 

But this is a linear function of i, so the second term puts a penalty on the non-
linearity of {μ^}. Prom calculus, μ ί + 1 — 2μ^ + μί_ι can be viewed as a discrete 
approximation of the second derivative, so the second term may be viewed as a dis-
cretization of the commonly used function f[^'(x)]2dx to penalize the nonlinearity. 
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Several different terminologies are used in the literature for the problem specified 
by equations (1.35) and (1.36), such as scatter plot smoothing and spline regression. 

FIGURE 1.2. Penalized smoothing (1.40) with two values of the penalty coefficient, p. The 
larger the penalty coefficient, the smoother the average curve. 

Since (1.36) is a quadratic function, its minimization can be expressed through 
matrix inverse. Indeed, introduce an n x (n ■ 
parallel to the main diagonal; for example, 

Q 

2) matrix Q with elements 1 and —2 

1 
2 
1 
0 
0 
0 

0 
1 

- 2 
1 
0 
0 

0 
0 
1 

- 2 
1 
0 

0 
0 
0 
1 

- 2 
1 

for n = 6. Then it is elementary to see that the zth element of vector Q'/x is 
μί — 2μ ί + 1 + μ ί+2, a n d therefore the second term in sum (1.36) can be represented 
as μ'ΟΙθ!μ, so that the function to minimize takes the form 

■ μ\\2 + ρμ'Ο,θ!μ. (1.37) 

Let X be the n x 2 matrix with the first column 1 and the second column 1,2,..., n. 
It is elementary to see that Q'X = 0, so in (1.37) we can make a substitution 
μ = X/3 + b n and come to an equivalent minimization problem, 

| | y - X / 3 - b „ | | 2 + p b ; Q Q ' b n , (1.38) 

over β and b n , a n x 1 vector. Differentiating with respect to β, we obtain β = 
(X 'X) _ 1 X'y and 

bn = (I+pQQ') _ 1 (y-X3)· (1.39) 
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Equivalently, in terms of (1.39), one can show that the solution to penalized smooth-
ing (1.36) is given by 

μ= x3+bn = (I+pQQTV. (1-40) 
As follows from (1.40), if p = 0, we come to the trivial solution μ = y. When p —> oo 
we obtain the least squares prediction μ = X/3. In Figure 1.2 we show data generated 
with a penalized smoothing with p = 1000 and p = 10. Clearly, the first value is more 
satisfactory. The choice of the penalty coefficient is crucial. Several ad hoc methods 
are available to choose p, such as cross-validation or Akaike information (Hurvich, 
1998; Jacqmin-Gadda et al., 2002; Ruppert et al., 2003). Below we illustrate how 
this parameter may be chosen based on a linear mixed effects model. 

Now we construct a linear mixed effects (LME) model that leads to automatic 
choice of the penalty coefficient. Since X is the fixed effects matrix, we may treat 
b as a random effect with uncorrelated components, yielding the following LME 
model: 

y = X/3 + Zb + e, 

where 
Z = Q t Q ' Q ) - 1 , b ~Λ/*(0,σ2<2Ιη_2), ε ~Λ/χθ,σ2Ιη). 

This model is a special case of the general LME model (1.10) where N = 1 and 
D =dlm (we use a subindex at the identity matrix to show its size). In brief, this 
model can be written as y ~Λ/"(Χ/3,σ2(Ι-Κ2ΖΖ')). Several methods of estimation 
may be suggested: ordinary or restricted maximum likelihood of Chapter 2 or 
distribution-free quadratic estimation such as variance least squares, MINQUE, or 
the method of moments of Chapter 3. As follows from Section 3.7, after d is esti-
mated, there are two equivalent ways to estimate β and b in LME model: using the 
closed-form formulas 

3 = (X , ( I+dZZ , ) - 1 X)" 1 X , ( I+dZZ , )" 1 y , (1.41) 

b = d ( I n _ 2 + d Z , Z ) - 1 Z , ( y - X 3 ) (1.42) 

or as the minimizers of the penalized function, 

||y - Xy3 - Zb| |2 + d-1 | |b||2 . 

To show the equivalence among (1.41), (1.42), and (1.40), where p = 1/d, we use the 
dimension-reduction formula of Section 2.2.3. Then, since Z'X = 0 (1.41) simplifies 
to the OLS estimate and prediction from the LME model, X/3 + Zb yields (1.40). 

In a nonequidistant case, x\ < X2 < ... < xn instead of μΐ+1 — 2μί + μί_1 = δ^ 
we have 

^ Ι ^ - ^ Ι ^ " 1 ^ i = 2,...,n-l, (1.43) 
X%-\-\ X% X% X%—1 

where μ0 and μη+χ are fixed and unknown and Si ~ Λ/*(0, σ2ά). This model can 
be applied in a more general setting of spline (or semiparametric) regression with 
covariates U: for example, y = U/3 + Zb 4- ε, where components of vector μ satisfy 
(1.43). Again, introducing an appropriate band matrix Q, we reduce the model 
to LME model y = X/3 + Zb + e, where X is composed of two vectors, 1 and x, 
augmented by matrix U. This method can be applied to a regression coefficient as 
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well; for example, yi = β'χΐι+μ^ι + ε$, where the {μ^ satisfy (1.43) and u^ is a 
vector of adjustment covariates. 

Other more complicated LME models may be suggested: for example, to account 
for autocorrelation (see the literature cited at the beginning of this section). 

1.8 Penalized polynomial fitting 

One can apply a mixed model to any regression model where penalization is re-
quired. For example, here we use this approach for a fully parametric model with 
a polynomial of high degree. More specifically, without loss of generality, let x\ < 
x2 < ··· < %n and 

K 

yi = ß'ui + ] Γ bk-iXi + 6i, i = 1,..., n, (1.44) 
k=2 

where the {u^} are design (explanatory) variables and the {&&, fc = 1,..., if — 1} are 
unknown coefficients. For a reason to be explained later, we start from the second 
degree; the linear part (x) can be represented in the fixed effects (u^). It is assumed 
that maximum polynomial degree, if, may be sufficiently large but known. To avoid 
multicollinearity, instead of x\ we can use Legendre orthogonal polynomials Pk(xi) 
of the kth degree, so model (1.44) can be replaced by 

K 

Vi = ß'\n + ] Γ bk^Pkixi) + ε^ (1.45) 
k=2 

By construction, Y%=1Pk(xi)Pj(%i) = 0 îor k ^ j and Υ^Ι=χΡ^{χί) — 1? which 
simplifies further computation. Introducing a (if—1) x 1 vector p^ = (P2(xi), Ps(xi), 
...,Ρκ(χί)Υ, we come to a regression (conditional) model yi\b = ß'\ii + b ; p; + ε ,̂ 
and in conjunction with the a priori distribution for the polynomial coefficients, 
treated as random effects, we arrive at the LME model, 

y |b = U/3 + P b + e, b ~/V(0,a2D). (1.46) 

There may be several strategies to specify matrix D. First, we can assume that 
D is proportional to the identity matrix. Second, D may be unstructured, but this 
would involve a large number of estimated parameters, if (if — l) /2 . Third, we can 
penalize the high degree, in other words, nonlinearity, as we did in the penalized 
smoothing model (1.36). Let us take the latter approach. We note that the curvature 
of the elementary polynomial xk is associated with the second derivative. Since for 
fixed x the second derivative of xk is proportional to k(k — 1), we can assume that 
the diagonal elements of matrix D are reciprocals of the curvature. For instance, 
assuming that {bk} do not correlate for if = 4, we have 

O=d 
[2(2 - l ) ] - 2 

0 
0 

0 
[3(3 - l ) ] - 2 

0 

0 
0 

[4(4- l ) ] - 2 
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where d is the scaled unknown variance. This choice means that the variance of 
{i>fc_i, k = 2,..., K} is decreasing with k and proportional to l/[k(k — l)]2 . Combin-
ing this into (1.46), we finally arrive at the LME model, 

y~A/XU/3,a2(I+dPDP')). (1.47) 

If the scaled variance d were known, we would estimate β and b from 

lly - U/3 - Pbll2 + c T V D ^ b => min, 

so 1/d acts as the penalty coefficient. If the scaled variance is large, the contribution 
of the penalty term is negligible and we come to an unconstrained least squares 
estimation of model (1.45). Vice versa, if d —► 0, we suppress the polynomial part 
and simply estimate regression y = U/3 + e. Thus, the d estimation becomes the 
first priority of the penalized polynomial fitting. 

FIGURE 1.3. Two penalized polynomial fittings. The fitting is robust to the choice of the 
highest degree, K. 

Again, several methods are available to estimate d: ordinary or restricted max-
imum likelihood or noniterative quadratic estimation. In Figure 1.3 we show two 
penalized polynomial fittings with the penalty coefficient, d, estimated from the 
linear mixed model (1.47). Points in the left-hand panel were generated as yi = 
x}'s(l + Xi)~x + Si and in the right-hand panel as yi = sin(2.5a^) + 10 + ε ,̂ 
where the {xi} are randomly distributed on the interval (0,1) and ε% ~ Λ/"(0,0.12), 
i = l,..., 500. For this model, the first column of matrix U is 1 and the second col-
umn is {xi}. We can draw the following conclusions: (a) the penalized polynomial 
fitting can adequately approximate nonpolynomial functions such as sin; and (b) 
since the higher degree is penalized more severely, the choice of K does not make 
much difference. In particular, polynomials with the highest degree K = 5 and 
K = 14 produce almost identical approximation (polynomial curves with K = 5 
and K = 14 overlap). 
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1.9 Restraining parameters, or what to eat 

We have shown above how to restrain (penalize) coefficients in a linear model. In 
this section we illustrate how a mixed model may be applied to cope with multidi-
mensionality in a nonlinear model: namely, logistic regression with a large number 
of parameters. 
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FIGURE 1.4. Coefficients in logistic regression as a function of a priori variance σ2 in 
the penalized log-likelihood (1.51). Cauliflower, raw oranges, and cereal protect against 
adenoma, but eating peanuts and spinach increases risk. 

A problem with a large number of parameters emerges in nutritional epidemiology 
(Willett, 1990). To be concrete, let us consider the effect of diet on the health status 
represented by a binary variable y: If the health status is satisfactory we say that 
y = 0; otherwise, y = 1. Let Zii,Zi2,...,Zim indicate how much the j t h food item 
was consumed monthly by the zth person, i = 1, ...,n. Then, to determine the diet 
effect, one may relate yi to {zij,j = 1, ...,ra} through logistic regression as 

Pr(y* = 1) 
exp(/?0 + ßiZn + ... + PmZirn) 

1 + exp(/30 + ßxZn + ... + ßmZirn) ' 
Ι , . , . ,η. (1.48) 

If a food item increases the probability, β > 0 ("bad" food); otherwise, β < 0 
("good" food). Typically, y codes the presence of a disease and quantities z are 
obtained from a questionnaire. If the number of food items is large (e.g., so large 
that it exceeds the number of observations), one obtains a wide range of coefficient 
values with high standard errors. Thus, to obtain meaningful estimates, the food 
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coefficients should be restrained or penalized. A popular idea in epidemiology to 
reduce the number of food items is to consider food agglomerates, such as calories, 
fat, fiber, folate, and so on. This approach is realized in a special DIETSYS program 
developed under the National Institutes of Health, which replaces a list of original 
food items with a linear combination representing those agglomerates. Another 
approach is based on the energy adjustment method (Brown et al., 1994). A big 
disadvantage of those approaches is that the endpoint recommendation of what 
to eat is expressed in the agglomerate form, such as "eat less fat food and more 
vegetables" and therefore is not specific. The approach we discuss here is designed 
to answer the question: Exactly which food items help to improve health status? 
To restrain the large number of parameters, a nonlinear mixed model is used. 

As an example, we consider a nutritional questionnaire study to reduce the recur-
rence of colorectal adenoma (Baron et al., 1998). A multicenter study was aimed to 
investigate the possible beneficial effects of folate intake (mostly from vegetables) 
based on a questionnaire of patients with at least one recent large-bowel adenoma. 
It was found that neither cigarette smoking nor folate intake was associated with 
increased risk of adenoma recurrence. The dependent variable is yi = 1 if for the ith 
person there was adenoma recurrence and yi = 0 otherwise for i = 1,2, ...,n = 751 
people. Thus, according to the logistic regression model (1.48), a large positive co-
efficient would indicate a risk-increasing food (bad) and a negative coefficient would 
indicate a risk-preventive food (good). We do not aim to provide a comprehensive 
statistical analysis but illustrate how the mixed effects methodology can help to 
cope with a large number of parameters. Therefore, only m = 11 food items were 
taken into consideration. 

Basically, the mixed model is a Bayesian model with unknown food variance, 
σ2 as in Section 1.4. More precisely, we treat (1.48) as a conditional model: If 
β = (/?!,..·, ßm)' were known, then the probability of having an adenoma recurrence 
is expressed by equation (1.48). A priori, we assume that food does not affect 
recurrence, so we can write 

β ~ΛΓ(0,σ2Ι). (1.49) 

This means that the mean of regression coefficients is zero and that, they are inde-
pendent and have variation σ2. Equations (1.48) and (1.49) define the generalized 
linear mixed model (GLMM), to be studied in Chapter 7. To estimate σ2, we obtain 
the marginal likelihood with β integrated out as 

1(β0,σ
2) = (2πσ2)-^2 [ β^ο ,Λ-ο .δσ-^ ΐ ΐ^ ( L 5 0 ) 

where l(ß0,ß) is the ordinary log-likelihood for model (1.48). Direct integration is 
prohibitive because dimension m is large (in our case, m = 11). Therefore, approxi-
mate methods for integral (1.50), such as Laplace approximation or quasi-likelihood, 
should be used. After estimates σ2 and β0 are obtained, we derive the posterior 
means for β that maximize the penalized log-likelihood, 

Ζ(30,/3)-0.5σ-2| | /3| |2 . (1.51) 

Note that in the Bayesian approach we need to define values for β0 and σ2, but in 
mixed model we obtain them from the data. 



20 1. Introduction: Why Mixed Models? 

In Figure 1.4 we plot posterior regression coefficients as a function of a priori 
variance, σ2. When the variance is zero, all coefficients are zero. Indeed, the second 
term in the penalized log-likelihood function (1.51) then prevails, yielding β = 0. 
Larger σ2 implies less penalty and more variation in the regression coefficients. 
When σ2 —► oo, GLMM converges to ordinary logistic regression. Interestingly, 
cereal, raw oranges, and cauliflower prevent adenoma, but peanuts and spinach 
increase the risk. 

1.10 Ill-posed problems, Tikhonov regularization, and 
mixed effects 

Mixed models may be considered a tool for solving ill-posed problems. Let 0i, 02, ···, 0, 
be system inputs and let / i , /2, . . . , fn be a system output. For example, consider an 
image reconstruction problem based on the Near-Infra Red (NIR) technique. The 
light goes through a semitransparent body with the absorption density 0j at loca-
tion (UJ,VJ) within the body. More details may be found in a recent book by Barrett 
and Myers (2004). Due to the law of optics, if {0j, j = 1, ...,ra} were known, the 
light intensity fa at detector i on the periphery of the body would be known exactly 
as a function of {0j}, or in vector form, fa = /i(0), where Θ is the m-dimensional 
unknown vector. Vector Θ is called the system vector parameter or, in statistical lan-
guage, simply the parameter. Having n measurements on the periphery, {yi,..., y n } , 
we want to reconstruct the optical properties within the body (absorption coeffi-
cients), {0i , . . . ,0m}, at as many points as possible—this is an inverse problem. An 
interested reader may read more about statistical aspects of inverse problems in a 
review paper by Evans and Stark (2002). 

Often, inverse problems are ill-posed. In our example we would like to have as few 
detectors and as many points as possible, so dimensions n and m are close. Besides, 
the system is usually noisy, leading to a nonlinear regression problem, 

Vi = fi(e)+6i, i = l,2,. . . ,n. (1.52) 

To obtain estimates of 0, the least squares criterion is generally used, ]CiLi(2/i ~~ 
hiß)) =̂  m m · However, since πι^η and functions f%{0) are nonlinear, estimation 
(reconstruction) of Θ becomes problematic. Therefore, the problem is called ill-posed. 
A Russian mathematician, Tikhonov (Tikhonov and Arsenin, 1977), suggested aug-
menting the sum of squares by a quadratic term that leads to the functional 

Γ(*)=ΐ>-Λ(0))2 + ρ||*ΙΙ2, ί1·53) 

where p is called the regularization parameter (p > 0). The original ill-posed prob-
lem becomes a well-posed problem. Tikhonov regularization became very popular in 
applied mathematics and engineering, with a variety of applications: solution of an 
ill-conditioned linear system, integral equations, density estimation, image recon-
struction, and so on. Although several heuristic techniques are available to assess 
the regularization parameter, such as cross-validation, there is no unified approach 
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to the selection of p (Vogel, 2002). However, selection of the value of the regulariza-
tion parameter is crucial: If p is close to 0, we come again to an ill-posed problem; 
if p is too large, the solution degenerates to 0 = 0. Strictly speaking, the problem of 
ill-posedness is just reduced to another problem: the selection of p. 

Tikhonov regularization may be treated from a statistical point of view, inter-
preting the inverse problem as a mixed model written in a hierarchical (two-stage) 
fashion. Indeed, following the line of the Bayesian approach, we assume that 0 is 
random and (1.52) is treated as a conditional equation, where the {ε*} are normally 
distributed with zero mean and constant (system) variance σ2. Assume that our 
prior experience says that the component values of vector 0 are expected to be in 
the neighborhood of zero with certain variance σ#; or more precisely, 0j ~ Λ/"(0, σ |) . 
This is called the prior distribution for the parameters. Let us assume for awhile 
that the system variance, σ2, and parameter variance, σ#, are known. After obser-
vations {yi} are collected, we may ask how our prior distribution changes to become 
a posterior distribution with the density / (0 |y) =C x / (y |0 ) / (0 ) , where C is the 
normalizing constant, / (y |0) is the conditional density, and / (0) is the parameter 
density (see Section 1.4). Since we assume normal distribution, 

/ (y |0) = ^ ) - " / 2 e - * l l y - f W " 2 , /(Θ) = {2ixaeTml2e~^m\ 

Note that the posterior distribution, / (0 |y) , is not a normal distribution of 0, and 
the "center" of the distribution would give an idea of where the posterior values 
are concentrated. Let us take the mode of the distribution, where the density takes 
its maximum. In image processing and reconstruction literature the model is called 
MAximum a Posteriori (MAP) estimation ( Geman and Geman, 1984; Besag, 1986, 
1989). Since the variances are known, the MAP estimator for 0 reduces to the 
minimization problem, 

el |y-f(Ö) | | 2 + ^ | |Ö | | 2 ^min . (1.54) 

But this is the Tikhonov functional (1.53) with p = σ 2 /σ | . 
Summing up: 

1. The Tikhonov regularization procedure can be derived through the Bayesian 
approach with known variances of the system error and a priori parameters 
assuming a normal distribution. 

2. The regularization (penalty) coefficient is the ratio of the system to the para-
meter variance. 

3. The Tikhonov solution is the mode of the posterior distribution, the MAP 
estimator. 

4. The Tikhonov solution assumes that the a priori value of the parameter is 
zero. 

We make several comments. First, if the system is not too noisy but there is 
substantial a priori variation in 0, the regularization parameter should be small. 
Second, the assumption that the a priori value of the parameter is zero may be 
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inadequate. For example, in the NIR problem this would mean that the absorption 
is zero, which is equivalent to assuming that the body is absolutely transparent (as 
a vacuum). It would be better to assume that 6j ~ Λί(θο, σ | ) , so that the modified 
Tikhonov functional takes the form 

n 

Σ,(Κ-ΜΘ))2 + Ρ\\Θ-Θ0\\
2, (1-55) 

2 = 1 

where θο is the background absorption coefficient. Although the Bayesian interpre-
tation gives Tikhonov regularization a nice statistical interpretation, the problem 
of selection of the regularization parameter remains. Now we shall show that using 
a mixed effects approach, p can be obtained along with 0. The following reasoning 
follows the line of penalized likelihood of Section 1.5, the only difference being that 
now we apply it to reducing an ill-posed problem to a well-posed problem. 

In the mixed effects approach, we change nothing in the Bayesian approach except 
for the assumption that σ2 and σ2

θ are unknown along with 0. Thus, the mixed model 
is written in hierarchical fashion as 

y|0~A/-(f(0),a2In), 0 ~Af(0o ,^ I m ) , (1.56) 

where I is an identity matrix of the appropriate size and 0o is known. Model (1.56) 
belongs to the family of nonlinear mixed effects model studied in Chapter 8. Since 
only the observations {yi} are available to estimate the parameters, we need to find 
the marginal distribution with the likelihood expressed via an integral as 

Γ(σ2 ,σ|) = (2πσ2)-"/2(2πσ^)—/2 / ^ ^ - ' W l l ' - ^ « · - * ^ 
JRrn 

One could maximize L over the unknown parameters σ2 and σ2
θ to obtain the max-

imum likelihood (ML) estimation that involves a multidimensional integration. The 
core of the approximation methods to the ML solution is the Laplace approxima-
tion (1.27), implemented in Section 8.8; we also refer the reader to Section 8.15. 
The easiest way to estimate the variance parameters is to approximate f by a linear 
function about 0o, see Section 8.6. Then model (1.56) simplifies to a LME model 
e ~Λ/"(0, σ2(Ι+</ΖΖ')), where d = σ2

θ/σ
2 and Z = df/θθ is evaluated at 0 = 0O. The 

maximum likelihood algorithm for estimation of σ2 and d is described in the next 
section. When the variance parameters are known, estimation of a posteriori 0, as 
follows from the Laplace approximation (1.27), is almost equivalent to minimization 
of (1.55), where p = 1/d. Symbolically, 

MAP estimator = mixed model ML estimator, 

but unlike MAP, we do not require values for σ2 and σ2
Β (specifically for their 

ratio), which are estimated from maximization of L. The appropriate methods are 
to be studied extensively in Chapter 8. In fact, the choice of p based on our mixed 
model has much in common with what other authors suggested based on the noise 
level, σ2 (Kirsch, 1996; Kress, 1999; Colton et al., 2000). Notice that model (1.56) 
allows a combination of repeated measurements of y, leading to a multilevel mixed 
model. This nonlinear mixed model technique has been applied to breast image 
reconstruction by microwave, with promising results (Meaney et al., 2001). 
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Application of the mixed model methodology to a linear image reconstruction 
is described in Section 1.11. We provide a constructive procedure to estimate the 
regularization parameter, p in the penalized least squares (1.54) from the data. 

1.11 Computerized tomography and linear image 
reconstruction 

Computerized (sometimes called computed) tomography (CT) reconstructs an im-
age from projections. Thus, by measuring signals on the periphery of the body, CT 
reconstructs what is inside the body. This technique has many applications in ra-
diology, and the interested reader can learn more from Andrews and Hunt (1977), 
Hall (1979), Herman (1980), Parker (1990), Seeram (1994), and Kak and Slaney 
(2001) among others. Epstein (2003) provides a comprehensive account of mathe-
matical aspects of image reconstruction with medical applications. An up-to-date 
and complete discussion of image analysis is given in a book by Barrett and Myers 
(2004). 

Side B, Sources (j) 

FIGURE 1.5. Principal idea of CT image reconstruction from projections. Beams penetrate 
the body so that the initial signal intensity is reduced. Measuring the exit intensities at 
several locations, CT reconstructs the attenuation coefficient in each box. Plotting these 
attenuation coefficients results in an image. 

A CT device consists of several sources and detectors located on the periphery of a 
square or circle—we refer the reader to Figure 1.5, where the principal idea of a CT 
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scan is represented schematically. Beams of x-rays or light come out of the source at 
a given angle, penetrate the body, and are received at detectors on an opposite side. 
If 7o is the initial intensity of the beam, which comes in at one end of a homogeneous 
bar of length x and comes out at the other end with intensity 7χ, with a certain 
degree of approximation we have I\ = Ι$β~θχ, where 0 is called the attenuation 
coefficient. If a nonhomogeneous bar is composed of m homogeneous bars of length 
Xi and attenuation coefficient 0$, the intensity at the end is I\ = Ιοβ~^^θίΧ\ or 
on the log scale, y = ^ ^ 1 0 ^ z , where y = ln(Io/Ii). This simple formula gives 
rise to the CT image reconstruction. Imagine that the body is divided into m small 
boxes (dotted lines in Figure 1.5) and within each box the attenuation coefficient 
0j is constant, j = l, . . . ,m. If the beam comes out from the source at a given 
angle, we can compute the length of the ray within each box so that the following 
representation takes place: 

m 

where i is the number of beams, Xij is the length of the zth beam within the j t h box, 
and Si is the iid random term (see Figure 1.5). Since beam angles are predefined, 
{xij,i = 1,...,η,,7 = l,.. . ,ra} are fixed numbers and can be derived from the CT 
hardware specification. Having n measurements {yi}, we reconstruct (estimate in 
statistical terminology) m attenuation coefficients {0j}. Plotting {0^} at appropriate 
locations yields a CT image, so the set of attenuation coefficients {0^} is called an 
image. The larger 0j, the denser the image. This is a linear image reconstruction 
because it reduces to a linear problem. Special features of this problem are: (a) 
since we want to see as many pixels as possible, m and n are close; and (b) the 
number of estimated coefficients, m, is large; for example, to see a 64 x 64 image, 
we have m = 622 = 3844 unknown parameters. This makes the CT problem ill-
posed. To improve the least squares solution, several approaches have been put 
forward, such as Tikhonov regularization and the Bayesian approach. The former 
requires knowledge of the regularization parameter, and the latter requires complete 
specification of an a priori image. 

We apply the mixed effects approach, in which the a priori image is not specified 
completely but is up to some unknown parameters. Then the regularization parame-
ter is estimated from the CT data along with attenuation coefficients. Introducing 
the n x m projection matrix X with elements x^, we rewrite (1.57) in vector form 
as 

y = X0 + e, (1.58) 

where ε ~ΛΓ(0,σ2Ιη) and I n is the nx n identity matrix. Model (1.58) is an 
ordinary linear regression model with the efficient least squares (LS) estimator 
9LS= (X'X)~ X'y- This estimator is valid if n > m. When m approaches n, the LS 
estimator becomes unstable because matrix cov(0LS) — σ2(Χ'Χ)~ becomes unsta-
bleJUS well. Consequently, a small perturbation in data leads to a large perturbation 
in 0LS- To improve the solution, we use a priori information on the image to be 
reconstructed. For example, we may know how the image may look from previous 
experiments. Statistically, if #o is the prior image, we write 

Θ = 0o + b, (1.59) 
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where Θ is known and b is the deviation, a random vector. The reader will immedi-
ately recognize that b may be treated as the random effect, so that the couple (1.58) 
and (1.59) specify a linear mixed effects model, or, more precisely, a linear model 
with random coefficients. It is simplest to assume that b ~Λ/"(0, a 2 d l m ) , where d is 
the scaled variance. 

A distinctive feature of the LME model from/ the Bayesian standpoint is that we 
do not specify variances σ2 and d, but estimate them along with Θ. In the rest of 
this section we provide a constructive algorithm to estimate Θ and σ2 and d, which 
becomes the reciprocal of the penalty coefficient in the Tikhonov regularization 
(1.55). 

The two equations (1.58) and (1.59) can be combined to produce a one-equation 
statistical model 

y ~Λ/ΧΧ0Ο, σ2(Ιη+<*ΧΧ')). (1.60) 

Our plan to estimate σ2 and d is as follows. First we estimate σ2 and d by maximum 
likelihood. Second, we apply the penalized least squares with the regularization 
parameter d~x to derive an improved a posteriori image. For details, we refer the 
reader to Chapter 2. Another, pedagogical purpose of the following derivation is for 
the reader to get a flavor of the statistical and matrix algebra techniques to be used 
throughout the book. 

Letting e = y — X0O> the log-likelihood, up to a constant term, can be written as 

Ζ(σ2, d) = -0 .5 {ηΐησ2 + In | l n +dXX' | + a - 2 e , ( I n + d X X , ) " 1 e } , (1.61) 

where I n is the identity matrix of the order indicated. Using the dimension-reduction 
formulas of Section 2.2.3, we obtain 

| ln+dXX;| = | I m +dX 'X | , (In + d X X ' ) - 1 = In - rfX(Im + d X ' X ) " 1 ^ . 

Let Ai,...,Am be the eigenvalues and p i , . . . , p m the corresponding eigenvectors of 
matrix X'X. Then we can represent 

m w2 m 

e'X(Im + dX'XJ^X'e = V Λ ' , In |Im+dX'X| = V l n ( l + dXj), 

where Wj = e'Xp^·. Then (1.61) simplifies to 

-0 .5 < η1ησ2 + σ~2 ^ 

I L j=1 J 
where S = e'e. When d is held fixed, the maximum over σ2 is computed exactly: 

J = I 

S-dY^w^l + dXj)-1 

3=1 

+ 5 > ( 1 + <ίλ,.)}, 

■*ΣΪ 
wn 

i = i 
+ d8\ s/\3 

When σ2 is held fixed, we use the fixed-point iterations 

\ - 2 

s + 1 " ν2ΣΓ=ιλ,·(ΐ + ^Λ·)-ΐ' 5 = 0,1,2,... 
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See Appendix 13.3.4 for a general discussion of optimization algorithms, includ-
ing the FP algorithm. We can start from σ% = (S — Yyr=1Wj/Xj)/n and do = 

ΣΤ=ι WjMj/(mcro)· At convergence, we obtain 5 M L and (1ML· 

To obtain the posterior image, 0, after σ2 and d are determined, we can use a 
closed-form formula or derive 0 from the penalized least squares (PLS); the equiv-
alence is proved in Section 3.7. The PLS takes the form 

||y - X0O - X0| |2 + drfL \\θ - 0o||2 =* min. (1.62) 
θ 

Denoting θο — θ = b , we come to the Tikhonov optimization criterion function 
||y - Xb| | 2 + p \\bf , where p = l/dML- This is a quadratic function of 0 and the 
closed-form solution exists. Thus, the final mixed effects (ME) CT image is given 
by 

0 = 0o + ( x ' X + d j ^ l ) ' x ' y . (1.63) 

When the variance of the random effect is zero, we obtain 0 = 0O; when d —> ooAthe 
ME estimate converges to the LS estimate, 0^5- The covariance matrix, cov(0) = 

<7ML ( X ' X - f d ^ I J , is well-conditioned, and therefore the ME image is stable. 

As the reader may notice, (1.62) is the Tikhonov regularization (1.55) with the 
penalty coefficient equal to the reciprocal of the scaled variance estimate. 

We may put other restrictions on the reconstructed image. For example, one may 
assume that the image is fairly smooth. Then, introducing the ( m - l ) x m difference 
matrix, 

L = 

1 
0 
0 
0 

- 1 
1 
0 
0 

0 
- 1 

0 
0 

0 
0 

0 

0 
0 

1 

0 
0 
0 

- 1 

(1.64) 

we come to the model y ~Λ/"(Χ0ο, a
2 ( I n +dW)) , where W = XL/LX' is a fixed ma-

trix. Then, nonsmoothed solutions will be penalized with PLS ||y — X0 — XL/0|| + 

It is straightforward to generalize a mixed model (1.60) to a multilevel clustered 
model where, for example, repeated imaging data may be combined into one pool to 
detect differences between visits to the doctor, or to determine a trend, differences 
in gender, differences in age, and so on. 

1.12 GLMM for PET 

In this section we consider an image reconstruction method popular in medical 
applications. The statistical solution involves two components: a statistical model 
and an estimation algorithm. We emphasize that computational features become 
integral to successful implementation. 

Positron emission tomography (PET) is important in nuclear medicine and has 
features common with x-ray computerized tomography. The difference with the 
linear image reconstruction considered above is that the observations are not con-
tinuous but are photon counts that imply a nonlinear statistical model. Shepp and 
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Vardi (1982) described PET as a probabilistic model based on the Poisson distrib-
ution. A current review of reconstruction methods for PET may be found in Lewitt 
and Matej (2003). The idea of PET is as follows: A subject is administered a dose 
of the molecules labeled with radioactive atoms. These atoms are unstable isotopes 
leading to the emission of gamma-ray photons, which are detected outside the body 
by a ring of surrounding detectors. To simplify, we consider a two-dimensional PET 
system. By counting the number of photons in different directions, PET attempts to 
reconstruct the decay rate, λ, at each point within the body. The PET image is the 
distribution of these rates. To make the problem solvable, instead of a continuum of 
points, imagine that the body is divided into m disjoint boxes. The number of decay 
events, rij occurring over a fixed time in box j is random and follows the Poisson 
law with the rate Aj, so that E(rij) = λ^, j = 1, ...,ra. Numbers rij are unobserv-
able and \j are unknown. However, there is a ring of detectors around the body 
which count the total number of decay events in n cross-section tubes. Let the total 
number of decay events occurring in the zth tube be fc^, i = 1, ...,n. There exists a 
fixed nxm matrix A such that ki = ΣΤ=ιa^rij. This matrix, called the projection 
matrix, is derived from the geometry of the body: tube angle, size, etc. Assuming 
that counts rij are independent, ki also has a Poisson distribution with the rate 
E{ki) = Σ™=ι aijE(rij) = Y^JLi a>ij^j. Further, assuming that {ki,i = 1, ...,n} are 
independent, we come to the likelihood function 

n I Z-ji=l aijAj I ^m 

i=\ &i· 

The log-likelihood, up to a constant term, is 

Z(Ài,...,Àm) =Σ kiln^aijXj -^αίό\ό . (1.65) 

To find the maximum likelihood estimate, we need to solve m score equations, 

OAP i=1 2^j=iaijA3 

where hiP — kiüiP and rp = Σ2=ι aiv Usually, the EM algorithm is used to maximize 
(1.65): 

Αρ,θ+ι = - ^ Σ srm %V \ -> V = li-imi ( L 6 7 ) 
TP i=1 Z^j=l aijAjs 

with iterations s = 0 ,1 , . . . The iterations can be started from λρο = τ~λ Σ™=ι αϊρ1^ρ-
At convergence, AP)S+i = λρ5, satisfying the score equations (1.66) and meaning that 
the EM algorithms converges to the maximum likelihood estimate (MLE). More-
over, as follows from the general properties of the EM algorithm, iterations (1.67) 
increase the log-likelihood value, I from iteration to iteration. For a general discus-
sion of the optimization algorithms used in statistics, including EM, see Appendix 
13.3.4. 
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An alternative maximization algorithm for I is the Newton-Raphson (NR). We 
rewrite the estimating equations (1.66) in vector form, but first we need the first 
and second derivatives, 

ι—\ ζ = 1 τ 

where λ = (λι, ...,Am)', r = ( n , . . . , r m ) ' , Wi = Y™=iaij^s, and az is the zth row 
vector of matrix A. Then the NR iterations are 

VHI (1.68) 

Noticing that E(ki) = Wi, we obtain the expected NR or Fisher scoring algorithm: 

**-*-+(ts^) ' (§£*-')■ <"" 
At the final iteration, the inverse matrix is the covariance matrix for the MLE. This 
matrix will be needed later for various statistical hypothesis testing. Note that the 
EM algorithm does not produce this matrix, which may partially explain the fact 
that little statistical testing has been reported in the PET literature. 

Our practice shows that whereas the EM algorithm may be very slow (sometimes 
it requires 1000 iterations) algorithms (1.68) and (1.69) are very fast and require 
only four or five iterations to obtain the MLE with the same precision. However, 
an advantage of the EM algorithm is that it does not require a matrix inverse. 
Since the number of reconstructed nodes/pixels is typically large, a matrix inverse 
at each iteration may become a limitation. We can modify the NR or FS to avoid 
the matrix inverse by employing the idea of the Unit Step (US) algorithm (see 
also Section 7.1.5). The idea of this algorithm is to obtain an approximation of the 
matrix inverse from above. For example, for the FS algorithm, we have 

n n 

Y^w'1^ < ν~λ Y^w~x^i = ζ/_1Α'Α, 
2=1 i=l 

where v = m i n ^ . Then the US algorithm, as an economical version of the FS 
algorithm, takes the form 

λ 5 + 1 = \ s + us (A 'A)" 1 [y^hwr1^ - r J , (1.70) 

where (A'A)~ is computed once beforehand. Although the US algorithm is usually 
slower than NR or FS, it is faster than EM and requires a dozen iterations rather 
than hundreds or even thousands. 

PET is, as are many image reconstruction problems, an ill-posed problem be-
cause we want to have the number of pixels as large as possible and the number of 
measurements as small as possible, so that m is close t o n . If no a priori informa-
tion is available, the ML estimate is unstable. The Bayesian approach gained much 
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popularity for PET image reconstruction (Hebert and Leahy, 1989; Kaufman, 1993; 
Fessier, 1994; Qi and Huesman, 2001; De Pierro and Yamagishi, 2001; Nuyts and 
Fessier, 2003). As mentioned above, under the Bayesian approach a priori image 
does not allow unknown parameters, whereas the mixed model does. 

In the following parameterization, we assume that the rate, λ, is expressed through 
an exponential function as λ = e7, which is convenient because (a) one does not 
have to care about the positiveness of the rate, and (b) it is easy to penalize 7 us-
ing a normal distribution. Following the line of the generalized linear mixed model 
(GLMM) technique of Chapter 7, we write the conditional log-likelihood in the form 

n / m m \ 

i = l \ 3=1 i = l / 

where 7i , . . . , 7 m are iid random rates specified in the second equation as 

7j ~Ν(η0,σ
2), j = l,...,ra, 

where 70 is known and σ1 is unknown. To obtain a marginal likelihood, we need to 
use integration, 

L ( 7 l , . . . , 7 m ) = - i = / e ^ - ^ ^ ^ ^ x C T . - T o ) 2 ^ . . ^ ^ . 
σ ν 2 π jRm 

This mixed model belongs to the family of Poisson models with random intercepts 
(see Section 7.5). Since m is large, exact integration is prohibitive. Several methods 
were developed to avoid integration using approximate estimation. Importantly, to 
obtain a posteriori rates, as follows from Laplace approximation (1.27), we maximize 
the penalized log-likelihood 

n I m m \ n 
p= Σ [ki ln Ί2 a^elj ~ Yl °^e7j ~ σ~2 Σ ^ - ^o)2 

t=l \ j=l j= l J i=l 

after σ2 and 70 are estimated. If the image is close to the prior image, σ2 is small 
and the second term in P overshadows the first. If the image is far from the prior 
image, the penalizing term is small. After σ2 is estimated, one can maximize P 
by the NR or FS algorithm. The inverse matrix at the final iteration gives the 
covariance matrix of the mixed model MLE. Many a priori assumptions may be 
realized in the mixed model. For example, if one wants to penalize nonsmoothness 
7 rsj Λ/"(701, σ2Ι/Ι ι) , where L is the difference matrix defined in (1.64). 

1.13 Maple leaf shape analysis 

The mixed model is an adequate statistical model to describe individual variety 
within a biological category. Indeed, the milestone concepts of the mixed model, 
the within- and between-subject variation, exactly match the principles of biological 
variety. Look at Figure 1.6: Nine maple leaves from the same tree have significant 
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individual variation, but at the same time look similar. In the language of the mixed 
model, population-averaged parameters specify the common biological type (such as 
average maple leaf), and subject-specific parameters specify subject individuality. 
In classical statistics, observations are assumed to be independent and identically 
distributed; in the mixed effects approach, observations from the same individual 
constitute a cluster and therefore are correlated. 

Shape is perhaps the simplest characteristic of a biological subject. We apply 
mixed model techniques to shape analysis in Chapter 11. Importantly, ordinary 
shape analysis deals with one shape, whereas a mixed model processes a sample 
(ensemble) of shapes simultaneously. 

An important step in shape analysis is shape quantification, or in other terms, 
representation of a two-dimensional geometrical object numerically as a sequence 
of numbers. Typically, different quantification methods lead to different statistical 
models. 

For example, for this maple leaf analysis, we use the Random Fourier Descriptor 
(RFD) model (see Section 11.7.2 for details). This model deals with pair coordinates, 
{(xijiVij)iJ = 1,2, ...,n^} for each shape i = l,2,...,iV : for example, the outlines 
of maple leaf images in Figure 1.6. To obtain these coordinates, a characteristic 
(original) point on each shape should be identified manually, this point is shown by 
the circle at the top of each maple leaf. Then a traverse technique is implemented. 
Moving counterclockwise along the image outline, we record (x, y) coordinates, so 
that eventually we come to the same point/circle (Gonzalez and Woods, 2002). In 
Figure 1.7 we plot x and y versus the point for each leaf—these are the data with 
which the mixed model works. 

FIGURE 1.6. Nine maple leaf shapes. The circle on the top of each leaf is the starting 
point where the traverse starts. 
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An important feature of this shape quantification is that x and y are periodic 
functions because moving along the shape, one comes to the original point. There-
fore, Fourier analysis is an adequate mathematical tool to describe x and y through 
a linear combination of a finite number of harmonics (see Section 11.7). Ordinarily, 
such analysis assumes that the Fourier coefficients {α&,& = 1,2, ...,K} are fixed, 
where K is the number of harmonics. According to the mixed model methodology, 
the coefficients vary from shape to shape but stay constant within the population: 
namely, α^ = α& + bik, where α^ is the fcth Fourier coefficient for the ith shape 
and au is the population-averaged coefficient. The RFD model for shape reduces to 
a LME model with appropriate formulas and algorithms. 

Shape analysis is complicated by the fact that shapes may have different sizes 
and may be rotated arbitrarily. Fortunately, the traverse method is not affected by 
rotation, but the size and the specific location of the original point should be taken 
into account. Thus, before analyzing data in Figure 1.7, normalization and rescaling 
are required. 

- i 1 i . ■ " " " - I 1 . 1 -

0 1000 2000 3000 0 1000 2000 3000 

Point index 

FIGURE 1.7. Quantified maple leaf shapes; x and y coordinates as a function of the 
traverse point for each shape. Before doing the analysis, these curves must be properly 
normalized and rescaled. 

1.14 DNA Western blot analysis 

Western blot analysis (or immunoblotting) is a popular DNA imaging analysis used 
for the detection of specific proteins. In this technique DNA is electrophoresed 
through a gel matrix to separate the individual fragments by size. The result of 
this procedure is a bandlike image. Two typical Western blot images, for a normal 
patient and a cancer patient, are shown in Figure 1.8. 

Special interpretation skills are required to identify blocks and to detect the dif-
ference between two sample tissues. Besides general difficulties of interpretation 
and identification, the variation between samples, laboratories, and patients be-
comes overwhelming. Needless to say, often the DNA analysis becomes imprecise 
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Normal Tissue D N A 

O SO tOO ISO 2 0 0 2SO 3 0 0 

Tumor Tissue D N A 

O SO -tOO 1SO 2 0 0 2SO 3 0 0 

FIGURE 1.8. Typical Western blot 45 x 327 image for normal- and cancer-patient DNA. 

and subjective. Moreover, since the human eye cannot compare hundreds of im-
ages, the analysis is reduced to just a few comparisons—biased and false results are 
unavoidable. 

To address sample, laboratory, and patient heterogeneity, a multilevel mixed 
model should be applied. We quantify the two images and show the result in Figure 
1.9. The result of quantification is two matrices with integer values in the range 
from 0 (absolute black) to 255 (absolute white). The reader may learn more about 
image quantification in Chapter 12. The columns are interpreted as repeated mea-
surements, and therefore averaging is allowed. Assuming that values are normally 
distributed (not integers), perhaps the simplest statistical model takes the form 

Control: y^\ = μό1 + ε^ι, 

Patient: yij2 = μύ2 + £ij2-> (I·7 1) 

where μ^λ and μ -2 are the mean values at the jth vertical readings and e^k ~ 
Λ/*(0, σ2) are iid random variables (fc = 1,2) and % = 1,..., m = 45 and j = 1,..., n = 
327. The null hypothesis is H0 : μ Μ = Mi,2,^2,i = M2,2>->A*327,i = /̂ 327,2· I n 

this setting, this hypothesis may be tested by the paired t-test applied to average 
data, yji = Y^LiViji/m and yj2 = ]C£Li î/iW771· Several improvements may be 
made to model (1.71). First, one may assume that observations along the x-axis 
are dependent. A parsimonious correlation structure can be described by a Toeplitz 
(band) matrix assuming that observations follow a stationary random process, see 
Section 4.3.4. Second, one can address the curvature along the y-axis using the 
model y^ = μ^ +Vk(i — ra/2) + ο^(ζ — ra/2)2 + ε ^ . Then v^ and α^ are nuisance 
curvature coefficients. Again, we are concerned with the same null hypothesis, HQ. 

More important, model (1.71) can be used as a building block to test Ho when 
repeated measurements are available, such as from different laboratories, tissue 
samples, etc. For example, if DNA analysis is available for M\ controls and M2 

cancer patients, we introduce an additional index p so that yijpk = μ^ + bpk + ε ^ , 
where bpk is the subject-specific random effect. Moreover, one may be interested in 
the dependence of DNA analysis on age, gender, or other covariates χρ&, leading to 
a linear mixed effects model 

Vijpk — μ^]ς, ' P ^-pk T Opk -j- £ijpk· 
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FIGURE 1.9. Quantified Western blot images with the difference. The average across 
vertical readings is shown by the bold line. The paired t-test produced a p-value of 0.0001. 

Obviously, it takes the form (1.10) after combining observations in vectors and 
matrices. If the covariance matrix eijvk is modeled via a Toeplitz matrix, we come 
to the LME model with linear covariance structure (see Section 4.3). 

1.15 Where does the wind blow? 

In this section we illustrate how a mixed model may be applied to analyze moving 
objects. In Figure 1.10 four images of the same sky are taken at 15-second intervals 
(the camera position was held fixed). Prom an analysis of these images, we want 
to determine where the wind blows, or in other words, in what direction/angle the 
clouds move and with what speed. First, we solve this problem assuming that the 
shape of the clouds does not change with time. Second, we show how to describe 
this problem via a nonlinear mixed model under the more realistic assumption that 
the moving clouds change. 
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A grayscale image is a P x Q matrix with integer entries from 0 (absolute black) 
to 255 (absolute white). Let Mt(p,q) be the intensity of the image at time t at 
pixel (p, q), where p = 1,2,..., P and q = 1,2,..., Q. In our example, P = 576 and 
Q = 432, t = 1,2,3,4 = T. See Chapter 12 for more discussion. 

0 seconds 15 seconds 

South 

FIGURE 1.10. Pictures of the sky taken at 15-second intervals. Where does the wind blow? 
We apply the mixed modeling technique to answer this question. 

To fix the idea, we consider the case when only two sky images, Mi and M2, are 
available. If pixel (p, q) moved to a new position (p + a, q + /?), we could identify a 
and ß from nonlinear least squares by minimizing the mean squared error 

1 P Q 

S(a,ß) = p â £ 5 > f i ( p , Ç ) - M2{p + a,q + β)}2. 
P = l 9=1 

Although Mi(p,q) and M2(p,g) are discrete functions, actually matrices, we can 
find the minimum of 5; we refer the reader to Section 12.7.7, where a derivative-
free algorithm is discussed. In image analysis, we treat elements as functions of p 
and g, and therefore we use the notation M(p, q) rather than Mpq. 

Next we assume that there are t = 1,2, ...,T images moving with a constant 
speed. Let M(p, q) be the image of the moving object, which is unknown. Since 
after time t, pixel (p, q) on image M moved to pixel (p + at,q-\- ßt) on image Mt, 
we find a and ß which minimize the MSE, 

S(a,ß) = J2 
t=i 

J-JTJ Σ [Mt(p + at,q + ßt)-M(p,q)Y 
\M\ 

(p,q)€M 

(1.72) 
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where M is the index set (p, <?), so that 1 < p + at < P and 1 < q + at < Q\ \M\ 
is the number of pair elements in ΛΊ, or in other words, the number of summation 
terms. We use MSE rather than a simple sum of squares to account for the number 
of summation terms; this technique is called affine image registration, see Section 
12.7.1 for more details. Prom (1.72), we immediately obtain the fact that the optimal 
M is the average, 

M{p,q) = M(p,q) = 
T\M\ 

Σ Mt(p + at,q + ßt), (1.73) 
(p,q)EM 

so M is replaced in (1.72) with (1.73) after each iteration for a and /?. 

0 seconds 15 seconds 30 seconds 

% 

100 200 300 400 500 100 200 300 400 500 15 20 25 30 35 40 45 

South 

FIGURE 1.11. Reconstructed sky and wind direction indicated by an arrow. The wind 
blows at —60° with speed of 62 pixels per 15 seconds. 

After a few iterations we get a = 31 and ß = —54, so the angle at which the 
wind blows is —60°, indicated by an arrow on the images in Figure 1.11. After a 

and ß are estimated, we estimate the speed as (a + ß )1//2 = 62 pixels per 15 
seconds. In Figure 1.11 we show four images Mt(p + Si, q 4- ßt) at t = 0,15,30,45, 
the average image (1.73), and the contours for the mean squared error (1.72) in 
coordinate system (α,/3). 

Now we set up a nonlinear mixed effects model (studied in Chapter 8 in a general 
form). In the least squares criterion (1.72), it was assumed that the moving clouds 
do not change, which clearly is not true. To account for change, we allow coefficients 
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a and ß to be random, leading us to a statistical model, 

Mt(p + a(p, q% q + /3(p, q)t) = M(p, q) + ε(ρ, g), (1.74) 

where α(ρ, g) and /3(p, g) are random variables with means a and /?, or more specif-
ically, 

a(p,q) = a + ba(p,q), ß(p,q) = ß + bß{p,q). (1.75) 

In this model, e(p,q) is the iid error term with zero mean and variance σ2, and 
ba(p,q) and bß(p,q) are treated as random effects with zero mean and the 2 x 2 
covariance matrix σ2Ό. The stochastic equations (1.74) and (1.75) define a nonlinear 
mixed effects model. When D = 0, we come to an ordinary nonlinear regression 
model and criterion (1.72): otherwise, the population-averaged parameters a and 
β should be estimated using approximate methods from Chapter 8, such as those 
based on the Laplace approximation. 

1.16 Software and books 

There are several statistical packages for linear and nonlinear mixed effects model 
estimation. The most advanced are proc mixed for SAS (SAS Institute, Inc.) and 
library nlme (or lme4) for R (R Development Core Team, 2011). Other relevant R 
packages/libraries are gee and MASS (function glmmPQL); all these can be downloaded 
from h t t p : //www. R-pro j e c t . org. The documentation for R functions is usually too 
succinct for immediate programming. For example, there is no explanation of how 
to extract the variance-covariance matrix of random effects, D* = σ2Ό, from lme 
or lme4, or how to keep these functions running in the case of a failure during 
simulations—we illustrate these features. However, providing details on the use of 
this software is beyond the scope of this book. The relevant coverage of linear and 
nonlinear mixed models within S-Plus is given in the book by Pinheiro and Bates 
(2000). For SAS users we recommend books by Verbeke and Molenberghs (2009) 
and Vonesh (2012), which have numerous examples. 

A number of books on mixed models have been published. Below is a list arranged 
in order of similarity to this book: 

• McCulloch, C E . and Searle, S.R. (2001). Generalized, Linear and Mixed Mod-
els. New York: Wiley. 

• Vonesh, E.F. and Chinchilli, V.M. (1997). Linear and Nonlinear Models for 
the Analysis of Repeated Measurements. New York: Marcel Dekker. 

• Vonesh, E.F. (2012). Generalized Linear and Nonlinear Models for Correlated 
Data. Theory and Applications Using SAS. Cary, NC: SAS Institute. 

• Davidian, M. and Giltinan, D.M. (1995). Nonlinear Models for Repeated Mea-
surement Data. London: Chapman & Hall. 

• Pan, J.X. and Fang, K.T. (2002). Growth Curve Models and Statistical Diag-
nostics. New York: Springer-Verlag. 
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• Davis, C.S. (2002). Statistical Methods for the Analysis of Repeated Measure-
ments. New York: Springer-Verlag. 

• Diggle, P., Heagerty, P., Liang, K.-Y., and Zeger, S. (2002). Analysis of Lon-
gitudinal Data. Oxford, UK: Oxford University Press. 

• Fahrmeir, L. and Tutz, G. (2001). Multivariate Statistical Modelling Based on 
Generalized Linear Models. New York: Springer-Verlag. 

• Agresti, A. (2002). Categorical Data Analysis. New York: Wiley. 

• Pinheiro, J.C. and Bates, D.M. (2000). Mixed Effects Models in S-Plus. New 
York: Springer-Verlag. 

• Fitzmaurice, CM. , Laird, N.M., and Ware, J.H. (2011). Applied Longitudinal 
Analysis. Hoboken, NJ: Wiley. 

• Hedeker, D. and Gibbons, R.D. (2006). Longitudinal Data Analysis. Hoboken: 
Wiley. 

• Verbeke, G. and Molenberghs, G. (2009). Linear Mixed Models for Longitudi-
nal Data. New York: Springer-Verlag. 

• Fitzmaurice, G., Davidian, M., Verbeke, G., and Molenberghs, G. (Eds.) 
(2009). Longitudinal Data Analysis. Boca Raton, FL: CRC Press. 

• Hsiao, C. (2003). Analysis of Panel Data. Cambridge, UK: Cambridge Uni-
versity Press. 

• Searle, S.R., Casella G., and McCulloch, CM. (1992). Variance Components. 
New York: Wiley. 

1.17 Summary points 

• Often, data have a clustered (panel or tabular) structure. Classical statistics 
assumes that observations are independent and identically distributed (iid). 
Applied to clustered data, this assumption may lead to false results. In con-
trast, the mixed effects model treats clustered data adequately and assumes 
two sources of variation, within cluster and between clusters. Two types of 
coefficients are distinguished in the mixed model: population-averaged and 
cluster (or subject)-specific. The former have the same meaning as in classical 
statistics, but the latter are random and are estimated as posteriori means. 

• The linear mixed effects (LME) model may be viewed as a generalization of 
the variance component (VARCOMP) and regression analysis models. When 
the number of clusters is small and the number of observations per cluster is 
large, we treat the cluster-specific coefficients as fixed, and ordinary regression 
analysis with dummy variables applies, as in the ANOVA model. Such a model 
is called a fixed effects model. Vice versa, when the number of clusters is 
large but the number of observations per cluster is relatively small, a random 
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effects model would be more adequate—then the cluster-specific coefficients 
are random. 

• The mixed model technique is a child of the marriage of the frequentist and 
Bayesian approaches. Similar to the Bayesian approach, a mixed model speci-
fies the model in a hierarchical fashion, assuming that parameters are random. 
However, unlike the Bayesian approach, hyperparameters are estimated from 
the data as in the frequentist approach. As in the Bayesian approach, one 
has to make a decision as to the prior distribution, but that distribution may 
contain unknown parameters that are estimated from the data, as in the fre-
quentist approach. 

• Penalized likelihood is frequently used to cope with parameter multidimen-
sionahty. We show that the penalized likelihood may be derived from a mixed 
model as an approximation of the marginal likelihood after applying the 
Laplace approximation. Moreover, the penalty coefficient, often derived from 
a heuristic procedure, is estimated by maximum likelihood as an ordinary 
parameter. 

• The Akaike information criterion (AIC) is used to compare statistical models 
and to choose the most informative. The AIC has the form of a penalized log-
likelihood with the penalty equal to the dimension of the parameter vector. 
A drawback of the AIC is that it does not penalize ill-posed statistical prob-
lems, as in the case of multicollinearity among explanatory variables in linear 
regression. We develop a healthy AIC that copes with ill-posedness as well 
because the penalty term involves the average length of the parameter vector. 
Consequently, among models with the same log-likelihood value and number 
of parameters, H AIC will choose the model with the shortest parameter vector 
length. 

• Since the mixed model naturally leads to penalized likelihood, it can be ap-
plied to penalized smoothing and polynomial fitting. Importantly, the difficult 
problem of penalty coefficient selection is solved using the mixed model tech-
nique by estimating this coefficient from the data. In penalized smoothing, 
we restrain the parameters through the bending energy, in polynomial fitting 
through the second derivative. 

• The mixed model copes with parameter multidimensionahty. For example, if 
a statistical model contains a large number of parameters, one may assume 
that a priori parameters have zero mean and unknown variance. Estimating 
this variance from the data, after Laplace approximation we come to the 
penalized log-likelihood. We illustrate this approach with a dietary problem in 
conjunction with logistic regression where the number of food items consumed 
may be large. 

• Tikhonov regularization aims to replace an ill-posed problem with a well-
posed problem by adding a quadratic penalty term. However, selection of the 
penalty coefficient is a problem. Although Tikhonov regularization receives a 
nice statistical interpretation in the Bayesian framework, the problem of the 
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penalty coefficient remains. A nonlinear mixed model estimates the penalty 
coefficient from the data along with the parameter of interest, Θ. 

• Computerized tomography (CT) reconstructs an image from projections and 
belongs to the family of linear image reconstruction. Since the number of im-
age pixels is close to the number of observations, CT leads to an ill-posed 
problem. To obtain a well-posed problem, a priori assumptions on the recon-
structed image should be taken into account. We show that a mixed model 
may accommodate various prior assumptions without complete specification 
of the prior distribution. 

• Positron emission tomography (PET) uses the Poisson regression model for 
image reconstruction and the EM algorithm for likelihood maximization. Little 
statistical hypothesis testing has been reported, perhaps due to the fact that 
the EM algorithm does not produce the covariance image matrix. The Fisher 
scoring or Unit step algorithms are much faster and allow computation of the 
covariance matrix needed for various hypothesis testing as if two images in the 
area of interest are the same. To cope with ill-posedness, Bayesian methods 
and methods of penalized likelihood have been widely applied. The generalized 
linear mixed model (GLMM), studied extensively in Chapter 7, also follows 
the line of the Bayesian approach, but enables estimation of the regularization 
parameter from PET data. A multilevel GLMM model can combine repeated 
PET measurements and process them simultaneously, increasing statistical 
power substantially. 

• The mixed model is well suited for the analysis of biological data when, on the 
one hand, observations are of the same biological category (maple leaf), but 
on the other hand, individuals differ. Consequently, there are two sources of 
variation: variation between individuals (intersubject variance) and variation 
within an individual (intrasubject variance). The common biological type cor-
responds to population-averaged parameters and individuality corresponds to 
subject-specific parameters. Shape is the simplest biological characteristic. Its 
analysis is complicated by the fact that shapes may be rotated and translated 
arbitrarily. Several mixed models for shape analysis are discussed in Chapter 
11. 

• Image science enables us to derive a large data set of repeated structure; 
thus, application of the repeated-measurements model, such as a mixed model, 
seems natural. Until now, image comparison in medicine has been subjective 
and based on "eyeball" evaluation of a few images (often, just a couple). 
Statistical thinking in image analysis is generally poor. For example, a proper 
DNA Western blot image evaluation should be based on several tissue samples 
analyzed by a multilevel mixed model. 

• Mixed models can be applied for statistical image analysis, particularly to 
analyze an ensemble of images (see Chapter 12). As with shape analysis, 
two sources of variation are considered, the within-image and between-images 
variation. Since an image may be described as a large matrix, we may treat the 
element as a nonlinear function of the index and apply the nonlinear mixed 
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effects model of Chapter 6. The mixed model can also be applied to study the 
motion of fuzzy objects such as clouds. 



2 
MLE for the LME Model 

In this chapter the Linear Mixed Effects (LME) model, as it was originally intro-
duced by Laird and Ware (1982), is estimated by the method of maximum likelihood 
(ML), assuming that distribution of the random terms is normal. It is worthwhile 
to mention that the variance-covariance matrix of the random effects D is the key 
parameter because if this matrix is known, an estimate of the beta coefficients (fixed 
effects) is found by generalized least squares. This chapter concerns numerical issues 
in the log-likelihood maximization; statistical issues are considered in Chapter 3. 

The reader can consult other books published on the topic (see Section 1.16); 
in no way we can claim that this chapter covers all computational aspects of the 
maximum likelihood estimation of the LME model. Section 2.16 compares our own 
code with a widely known lme function in R. 

There are several equivalent parameterizations of the log-likelihood function. In 
particular, the log-likelihood can be simplified by eliminating the within-subject 
variance σ2 that leads to the variance-profile log-likelihood function. The dimension-
reduction formulas apply to reduce the dimension of the inverse matrices, leading to 
economical computations. One should remember that the linear mixed effects model 
is an example of nonlinear statistical estimation on restricted parameter space for 
matrix D, and therefore special care should be taken to ensure that this matrix 
stays nonnegative definite during computations. In this chapter several algorithms 
for the likelihood maximization are considered, with a detailed discussion of their 
numerical properties. Our choice is the Fisher scoring algorithm because the inverse 
matrix is always positive definite and its inverse provides the covariance matrix for 
the entire vector of estimated parameters, including variance parameters. 

Matrix algebra, common to all linear models, is the major apparatus in our devel-
opments (Searle, 1971a). The reader is referred to several books on matrix algebra 
with statistical emphasis: Searle (1982), Graybill (1983), Lancaster and Tismenet-
sky (1985), Magnus (1988), Harville (1997), and Schott (1997). 
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2.1 Example: weight versus height 

To illustrate application of the LME model, let us consider a simple statistical re-
lationship between weight and height using family data in the format (Fk, Hk, Wk), 
where Fk is the family code/id for the kth person, Hk is his/her height in inches, and 
Wk is his/her weight in pounds. Typical tabular data on 18 family members (a total 
of 71 people) are given below, where members of the same family are represented 
by the family id, from 1 to 18: 

F 
1 
1 
1 
1 
1 
1 

18 
18 

H (inches) 
67 
64 
63 
71 
61 
68 

65 
59 

W ( 
215 
155 
145 
227 
120 
220 

144 
120 

Obviously, one can expect that family members have somewhat similar weight and 
height. Can we use linear regression Wk = OL + ßHk + ε&, estimating coefficients 
a and β by Ordinary Least Squares (OLS), and minimizing the sum of squares of 
residuals, 

71 

^(Wk-a-ßHk)2? (2.1) 
fc=l 

Apparently, minimization (2.1) ignores the within-family correlation and treats each 
person/observation independently. Even though ordinary least squares produces 
unbiased estimates, even when observations are correlated, we may obtain more 
efficient estimates of a and ß accounting for familial correlation. However, to provide 
a better estimation, we have to specify the correlation structure and construct an 
estimation procedure that takes that familial correlation into account. The objective 
of the chapter is to formulate a relevant statistical model that handles data like 
these and estimate the model by maximum likelihood under the normal distribution 
assumption. The consequences of ignoring familial correlation are studied in Section 
3.9, where we show that the OLS estimator remains unbiased but has larger standard 
errors (is less efficient). 

Now we specify how to address familial correlation using the mixed effects ap-
proach. A proper model for the familial relationship between weight and height 
makes use of double indexing (z, j ) , where i denotes the ith family and j denotes 
the jth member of the ith family (cluster). Then, if a family consists of n^ mem-
bers, the vectors W» = (Wii, Wi2,..., Win i) ' and H* = (HiUHi2,...,Hiniy would 
represent the weight and height data of individuals, with a total number of obser-
vations J2i=1rii = 71. We can model clustered correlation assuming that there is 
a positive constant correlation coefficient p between members of the same family, 
cor(W^j, Wik) = P for j Φ k for all i = 1,2,..., AT, where Af denotes the number of 
families (in our case, N = 18). However, in the spirit of mixed effects modeling, we 
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come to the same statistical model, introducing a random intercept. (The model 
with random intercepts is considered in detail in Section 2.4.) Indeed, it is more 
realistic to assume that each family has its own intercept, a* = a + 6̂ , where b{ is 
a random variable (random effect) with zero mean and unknown variance σ^, and 
a is the common intercept. In the language of the mixed effects approach, we call 
ai a subject (or family)-specific and parameter a the population-averaged parame-
ter (Davidian and Giltinan, 1995; Vonesh and Chinchilli, 1997). Thus, if the linear 
model with random intercepts is written in the form Wj = α* + βΐΐι + ε^, where ε\ 
is the random vector with zero mean and uncorrelated components with variance 
σ2, replacing α̂  with a + bi one arrives at the linear mixed effects model, 

W< = a + ßOi + 6iZi+e<, % = 1,..., AT, (2.2) 

where Z$ = 1* = (1,1,. . . , 1)' is a vector column of dimension n*. It is easy to see 
that the covariance matrix of W* has the form a2V^, where the rii x Ui matrix V* 
is defined as 

Γΐ + σ /̂σ2 ... σ > 2 1 
V i = : · · . : · (2.3) 

[ οΐ'/σ* ... 1 + σΐ/σ*\ 

Clearly, this covariance structure implies an equivi-correlation (compound symme-
try) structure because cor(W^·, Wik) = p = (^/{σ^-^σ^). The key point of the mixed 
effects model is that we obtain more efficient estimates for a and /3, minimizing the 
weighted sum of squares 

N=18 

Σ (W< - a - ßHiYVr^Wi - a - /3H,), (2.4) 
2 = 1 

which produces the generalized least squares estimate. Obviously, one needs the 
ratio σ2

ά/σ
2 to realize the weighted least squares; this ratio may be estimated by 

maximum likelihood assuming normal distribution—this method is discussed in this 
chapter. Also, the variance parameters may be estimated by a quadratic function 
of Wi , without assuming the normal distribution (see Chapter 3). 

In Section 2.4.2 we investigate how the generalized least squares estimate for β 
is affected by σ^/σ2. 

2.1.1 The fir st R script 

In this section we show how to estimate the simplest linear mixed model, or more 
specifically, the linear model with random intercepts, using the function lme in 
R with the family data discussed previously. You have to install the library nlme 
in your R before running the scripts shown below. The library nlme contains all 
necessary software components to estimate linear and nonlinear mixed models. Go 
to R page h t tp : / /www.r -p ro jec t .o rg / and type 'nlme' in the search box (located 
at left) using a Google search (you can also search other libraries and packages this 
way). Put the zipped version of the package in some directory on your computer (the 
default subdirectory is \\Downloads) and unzipp to the l i b r a r y subdirectory of R 
(you may see other libraries as well). Then issue l i b r a r y (nlme) in the command 
line. 
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The data on 18 families are contained in the text file Family. txt with variable 
names (headers) in the first row. Assuming that this file is located in the directory 
c:\\MixedModels\\R\\, we use the r e a d . t a b l e function to open the file 

famdat=read.table("c:\ \MixedModels\\Chapter02\\Family.txt",header=T, 
stringsAsFactors=F) 

The dataframe famdat has six columns: Height, Weight, Sex, ParentChild, 
Age, and FamilylD. In this particular example, we shall use only three variables, 
Height, Weight, and FamilylD. The option stringsAsFactors=F means that the 
input data are treated as purely numeric (the default value is T). Other variables will 
be used in future examples to estimate more complicated mixed models. To estimate 
the relationship between weight and height with a family-specific intercept, we issue 
the following command: 

out . lme=lme (f ixed=Weight "Height, random=~ 1 |FamilyID, data=f amdat ) 

Two parts should be specified in lme: the fixed effects part (fixed) and the ran-
dom effects part (random). The syntax for both parts is the same as the specification 
of a standard linear regression model in R (function lm). In the fixed effects part ~ 
separates the dependent variable at the left from the list of independent variables at 
the right (in our case one independent variable, Height); random=~l means that the 
only intercept is random. Clusters are specified via the vertical bar |. In our exam-
ple, |FamilylD means that observations with the same FamilylD value constitute a 
cluster. The lme function is dicussed further in Section 2.16. 

The call to lme described above produces the following output after issuing the 
summary (out. lme) : 

Linear mixed-effects model 

Data: famdat 

Log-restricted-likelihood : 

Fixed: Weight "Height 

(Intercept) Height 

-206.832149 5.345309 

Random effects: 

Formula: ~1 | FamilylD 

(Intercept) Residual 

StdDev: 14.07057 24.70590 

Number of Observations: 71 

Number of Groups: 18 

fit by REML 

-331.6369 

As follows from this output, the common intercept is a = —206.83 and the slope 
is /? = 5.35, so that weight and height are related as W = -206.83 -I- 5.35-ff. The 
estimates of the standard deviations are dd = 14.07 and σ = 24.71. We estimate 
the correlation coefficient of weights among individuals of the same family as p = 
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14.072/(14.072 + 24.712) = 0.244. Other parts of the output, such as REML and 
Log- res t r i c t ed - l ike l ihood , are explained in Section 2.2.7. 

Problems for Section 2.1 

1. Estimate slope ß using the data Family. txt , assuming that the family-specific 
intercepts are fixed, using the dummy variable technique. [Hint: Estimate the linear 
regression model with 1+18=19 parameters using lm(y~X-l), where y=f amdat$Weight 
and X is the 71 x 19 matrix with the first column f amdat$Height and the other 18 
columns as dummy variables.] 

2. Denote d = σ^/σ2 as the scaled (or relative) variance of the random intercept. 
Express the covariance matrix (2.3) in the form I+dl l ' , where 1 is the column-
vector of Is. 

3. Write an R code to plot the slope estimate, β = (X) i= 1 XiV~ 1 Xn x 

(Z^ i= iX^î~ 1 yO > th e weighted sum of squares minimizer of (2.4), where X^ = 
[li, Hi] and Vi is defined in (2.3), as a function of d in the range 0 < d < 20. Show 
three estimates on this plot using lines of different color (use legend): (1) OLS, (2) 
REML, and (3) the family-specific intercept approach from Problem 1. 

4. Incorporate Sex (and possibly Age) into the model using fixed=Weight "Height 
+Age. Is Age statistically significant? Provide an interpretation for the model. 

2.2 The model and log-likelihood functions 

In this section we formulate the linear mixed effects model under the normal assump-
tion and provide several equivalent parameterizations of the log-likelihood function. 

2.2.1 The model 

In this chapter we study the Linear Mixed Effects (LME) model in the form devel-
oped by Laird and Ware (1982), 

Yi = Xiß + Zfii + Ei, i = 1,..., N, (2.5) 

where: 

• yi is an n^ x 1 vector of responses of the zth subject; also called an individual 
or cluster. 

• X^ is anrii xm design matrix of explanatory variables; also called covariates 
or fixed effects. 

• ß is an m x 1 vector of population parameters; also called population-averaged 
or fixed effects coefficients. 

• Zi is an ni x k design matrix of random effects. 

• Si is an n^ x 1 error term with independent components, each of them having 
zero mean and the within-subject variance σ2. 
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• hi is an k x 1 vector of random effects with zero mean and covariance matrix 
D* = σ2Ό. 

It is assumed that all random vectors {bi,ei,i = 1, ...,iV} are mutually indepen-
dent. 

Throughout the book we use boldface type to denote vectors and matrices. Usu-
ally, we use lowercase for vectors and uppercase for matrices. The inequality sign for 
matrices, as in A < B (A < B), means that matrix B — A is nonnegative (positive) 
definite. Recall that a symmetric matrix C is called nonnegative definite if a 'Ca >0 
for all nonzero a (matrix C is said to be positive definite if a 'Ca >0). We often use 
Greek letters to denote random unobservable variables such as error terms. 

To make the LME model identifiable for /3, we assume that matrix ^ Χ ^ Χ ^ is 
nonsingular and that ^ n* > m. To make the LME model identifiable for σ2 and 
D, we assume that at least one matrix Z^Z^ is positive definite and 

N 

J2(ni - k) > 0 (2.6) 
2 = 1 

(see the details in Section 3.2). We call a LME model balanced if nz- =const and the 
design matrices of random effects Z* are the same for all subjects/clusters, Zz = Z. 
We call a random-coefficient model (1.12) balanced if, in addition, the design matrix 
of fixed effects is the same for all individuals, Xz = X (see Section 2.3). Balanced 
models are important special cases of (2.5) because they admit closed-form solutions 
for the maximum likelihood estimate (MLE). We call a LME model a balanced 
growth curve model if Xz- = X and Z2- = I <g> q ,̂ where qz- is a vector column (see 
Section 4.1.5 for details). 

The log-likelihood function for the LME model is simpler if the scaled covariance 
matrix of the random effects is used, 

D = — D* = _cov(b<). (2.7) 

With this parameterization, σ2 can be factored out, that is expressed in the closed 
form holding other parameters fixed (that is why we prefer to work with matrix 
D). We use the asterisk * for the usual (non-scaled) covariance matrix of the ran-
dom effects; we use this notation particularly in Chapter 3 when considering a 
distribution-free quadratic estimation. 

Getting back to the family data example, the model for the relationship between 
weight and height (2.2) is a special case of (2.5) with one random effect (k = 1), 
where y» = W», 

> Xi = llijHiJ , Zii = 1^, 

where 12- is the nz x 1 vector-column of Is. 
N equations of (2.5) can be compressed into one as 

y = X/3 + Zb + e (2.8) 

ß = a 
ß 
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after stacking the data in a single vector and matrix form as follows: 

y = 

yi 
Ύ2 

ΎΝ 

X = 

Xl 

X 2 

Xiv 

z = 0 
0 

0 

0 

" b x 

b 2 

I b;v _ 

, e = 

"ει 1 
£2 

. £ i V 

(2.9) 

are of order Ντ x 1, Νχ x TO, JVX X iVA:, iVfc x 1 and Νχ x 1 respectively, where 

NT = E ^ j n , (2.10) 

is the total number of observations, and cov(b) =σ 2 (Ι <g> D). Model (2.8) can be 
rewritten with one error term as 

y = X/3 + 77, (2.11) 

where 

η = 

Vi 
V2 

VN 

ει + Zibi 
62 + Z2b2 

ε^ν 4- Zjvbjv 

(2.12) 

£̂ (77) = 0, and the Ντ x iVr covariance matrix of 77 has block diagonal form: 

Υ = σ2 

Ιη,+ZiDZi 
0 

0 
In2+Z2DZ2 

0 

0 
0 

0 
0 

InN+ZjvDZjv 

(2.13) 

Hereafter, the LME model written in one matrix equation (2.8) or (2.11) will be 
referred to as "long" notation. 

In this chapter it is assumed that b^ and Ei are normally distributed as 

^~.Λ/·(0,σ2Ι), ^ ~ Λ Γ ( 0 , σ 2 Ό ) , 

where I = Ini is an rii x rii identity matrix. Therefore, the LME model (2.5) with 
normally distributed random variables can be written in marginal form as 

y < - M (Χ*/3,σ2(Ι + Ζ,ΌΖ^)), i = 1,..., N. (2.14) 

In the first two chapters we study the LME model specified by (2.5), which as-
sumes that the components of the error vector are uncorrelated [cov(^) is propor-
tional to the identity matrix]. In Chapter 4, particularly in Section 4.3, we extend 
the model to the case when this covariance matrix has a more complex structure, 
such as autocorrelation, when the dependent variable is the time series. The reader 
is referred to Section 4.4, where the normal distribution is viewed as a second-order 
approximation to the original distribution. 
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2.2.2 Log-likelihood functions 

Dropping the constant term C = —(Ντ/2)\η(2π), the log-likelihood function for 
the LME model is given by 

1 N 

1(θ) = - - { W r l n ^ + V p n l l + ZiDZjl 

+a~2(yi - Xiß)'(l + Z i D Z i r ^ y i - Xiß)]} , (2.15) 

where 
0 = (/3',<72,vech'(D)) 

is a combined vector of unknown parameters. Hereafter vech(D) denotes the k(k + 
l ) /2 vector of unique elements of symmetric matrix D (Magnus, 1988). Hence, the 
total dimension of the parameter vector 0 is m + 1 + k(k + l ) /2 . The Maximum 
Likelihood Estimate (MLE) maximizes the function I over the parameter space 

0 = {0 : ß GÄm, σ2 > 0, D is nonnegative definite}. (2.16) 

Note that we seek an estimate of matrix D on the set of all nonnegative definite 
matrices, which will be denoted B+ with a finite boundary, where matrix D is 
singular. The parameter space (2.16) will be referred to as Nonnegative Definite 
(ND). It is used traditionally in the literature on mixed models for maximization 
of the likelihood function. Sometimes, a more restrictive parameter space is used, 
assuming that matrix D is positive definite. For example, this assumption is used in 
the library nlme in R. The disadvantage of parameter space with a positive definite 
matrix D is that the MLE may not exist when the maximum of the likelihood 
function occurs on the boundary (see more detail in Section 2.5). For example, 
the chance to hit the boundary of Θ is very high, especially for relatively small 
N, and special attention should be given to recognize this situation during the 
maximization algorithm because the value of the log-likelihood function is finite 
when |D| = 0 . Some remedies are discussed in Section 2.15. It is easy to show that 
the ND parameter space is convex. Moreover, we show that Θ is a convex cone: If 
01,02 G Θ then λι0ι + À2#2 € Θ for any nonnegative scalars Ai,À2· This follows 
from the fact that a nonnegative linear combination of two nonnegative (positive) 
definite matrices is a nonnegative (positive) definite matrix. 

There exists an alternative approach taken by Rao and Kleffé (1988), who as-
sumed that matrix D may not necessarily be nonnegative (or positive) definite 
provided that matrix (2.13) is positive definite. The latter holds if and only if all 
matrices I + Z^DZ^ are positive definite. Thus, Rao-Kleffe (RK) parameter space 
is defined as 

© = {0 : ß eRm, σ2 > 0,1 + Z^DZ· is positive definite for every i = 1,..., N}. 
(2.17) 

Maximization of the log-likelihood function over this parameter space is somewhat 
easier because I —» — co with probability 1 when D approaches the boundary of this 
parameter space (see more detail in Section 2.15.2). 

Omission of the term C in (2.15) does not affect I maximization and ML esti-
mates. However, when the likelihood values are compared with a different number 
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of observations or when the exact likelihood function is compared to its approxi-
mate value via statistical simulations, this constant should be taken into account. 
We omit C for simplification. 

The scaled covariance matrix of the vector of the dependent variable γι is given 
by 

V i = V i ( D ) = I + ZiDZ^; (2.18) 

this notation is used throughout the chapter. Random effects induce within-cluster 
correlation between components of vector y, because the matrix V; is not diagonal. 

Using the notation V^, the log-likelihood function (2.15) can be rewritten as 

1(θ) = - \ INTΙησ2 + jl· [in|V*| + σ'^Υτ^] 1, (2.19) 

where 
ei = ei(ß)=yi-Xiß (2.20) 

is an rii x 1 residual vector for the ith cluster, i = 1,..., N. 
Three equivalent types of parameterization for the log-likelihood function (2.15) 

exist: 

1. Dimension-reduction parameterization. Standard log-likelihood function (2.15) 
involves n\ x n* matrix inverse and determinant calculation. One can reduce 
the dimension to k using the dimension-reduction formulas provided below. 

2. Profile-likelihood. One can take advantage of the fact that the optimum vector 
of fixed effects ß and the within-subject variance σ2 may be expressed via 
matrix D, so that they can be eliminated from the log-likelihood function. 
Two profile-functions will be considered: variance-profile and full-profile. 

3. Inverse D (or precision matrix) parameterization. In the dimension-reduction 
parameterization, one notices that the log-likelihood function can be expressed 
via D - 1 , which excludes the matrix inverse. Prom computational point of 
view, the most economical form of the log-likelihood is full-profile inverse D 
parameterization. 

2.2.3 Dimension-reduction formulas 

We will use the following dimension-reduction formulas: 

V r 1 = {lni+1iDZ,
i)-

1=lni-1i{lk+DZ'iZi)-
l-D'Ll

i 

= I ^ - Z i D O U + Z ^ D ) - 1 ^ = I ^ - Z ^ D ^ + Z ^ ) - 1 ^ , 

(2.21) 

where matrix V^ is given by (2.18). These formulas may be verified by direct 
multiplication (the last identity holds when matrix D is nonsingular). A similar 
dimension-reduction formula holds for the determinant: 

| V, |= | I n i+Z,DZ^ |= | I f c + D Z ^ | . (2.22) 
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As we see, the left-hand sides in formulas (2.21) and (2.22) involve a rii x ni matrix, 
but the right-hand sides involve k x k matrices. Further, to shorten the notation, 
the subscript at I will be suppressed. If matrix D is nonsingular, we can express 
the log of the determinant as a function of D _ 1 , namely, 

In |V<| - In (|D| |D- 1 +ZiZ < | ) = In |D- 1 +ZiZ < | - In [D" 1 ] , (2.23) 

which will constitute the basis for the inverse D parameterization. 
Another matrix formula, which may be derived from (2.21), will be used: 

zy^Zi = (i + zjZiDj-^Zi = z;z<(i + DZ5Z<)-\ (2.24) 

which can also be verified by direct multiplication. If matrix (Z^Z^)-1 exists, formula 
(2.24) takes a simpler form, 

Z j V r ^ i = Z<(I + Z i D Z i r ' Z i = ((Z^Z,)-1 + D) 
- 1 (2.25) 

Using these formulas, the log-likelihood function (2.15) can be rewritten in an 
equivalent and economical form as 

1(θ) 
i f N 

- - l Ντ\ησ2 + ^ l n | I + D Z ^ I 

N Λ 

+σ~2 Σ [Si - (Ziei)'(I + D Z ^ ^ D f e ) ] \ , (2. 
»=i J 

where 
5 , = 5 , ( / 3 ) - Θ ; Θ , = | | Υ , - Χ ^ | | 2 (2.27) 

is the residual sum of squares of the ith cluster and I is the k x k identity matrix. 
A characteristic feature of model (2.14) is that holding matrix D constant, / is 

maximized by the Generalized Least Squares (GLS) estimator, 

ßüLS 

N -i - 1 r 

^ X ^ I + Z i D Z ^ X , 
,i=l 

N 

^ X j i l + Z i D Z i r V i 
i=l 

(2.28) 

An economical formula for computation of the GLS estimate is given in Section 
2.2.5. 

One can show that the matrix Σί X*(I + ZiDZ^)_1Xi is positive definite if ma-
trix Σί X-i^i1S n ° t singular, as assumed at the beginning of the section. In a special 
case when D = 0, the GLS estimator collapses to the Ordinary Least Squares (OLS) 
estimator, 

3oLs = (Ex*x0~1(Ex*y*)· (2.29) 

Another extreme case is when matrix D becomes infinite, or more precisely, D =dl, 
d—>oo. Then, using the dimension-reduction formula (2.21) and denoting δ = 1/d —» 
0, we obtain 

lim Vf 1 = lim [I - Z<(d-xI + Z^Z; ) - 1 ^] = I - Z< lim(<51 + Z<Z<)-1Zj. 
d-+oo d—>oo <5—»0 
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But the last limit is the Moore-Penrose generalized matrix inverse (Albert 1972), 
so that 

Zt = \im(5l + 7/iZi)-
1Z'i. (2.30) 

Note that if matrix Z* has full rank, then matrix Z^Z* is nonsingular and Zf = 
(Z^Zi)_1Z^. Thus, the GLS (OLS) estimator for infinite matrix D becomes 

β0ΰ=[Σχ!ί(Ι-ΖίΖΐ)Χι]
+[Σ^(1-ΖίΖΪ)Υί]· (2.31) 

Note that this formula works even when the inverse matrix X)X^(I — Z^Z+)Xi is 
zero (e.g., it happens when X* = Z^A* in the growth curve model, Chapter 4). 
Since the generalized inverse of the null matrix is the null matrix β^ = 0 for this 
case. More on the generalized matrix inverse is given in Appendix 13.2. 

Below we suggest an R function that computes the generalized inverse of a sym-
metric matrix: 

g inverse . sym=f unction (A, eps=lCT (-8) ) 

{ 
#Generalized inverse of a symmetric matrix A 
PV=eigen(A,symmetric=T) 
VO=IV=PV$values 

IV [abs (VO) >eps] =1/V0 [abs (V0) >eps] 
IV[abs(VO)<=eps]=0 
Ainv=PV$vectors°/„*7o (IV* (t (PV$vectors) ) ) 

return(Ainv) 

} 

This method uses the spectral decomposition of matrix A = PAP 7 , where P 
is the orthogonal matrix and A is the diagonal matrix with eigenvalues on the 
diagonal. The eigenvalue is zero if its absolute value is less than ε, the numerical 
precision for computation of the eigenvalue (the user-defined small value). Using this 
decomposition, the Moore-Penrose generalized inverse is A + = P A + P ' , where Λ+ is 
the diagonal matrix with reciprocal nonzero eigenvalues and zero values otherwise. 

In combination with (2.30), we can write 

M+ = ( M / M ) + M / 

for any rectangular matrix M. Therefore, by computing the generalized inverse of 
a symmetric matrix we can compute the generalized inverse of any matrix. 

Estimator (2.31) has a nice interpretation as the fixed effects estimator. Indeed, 
let us consider the fixed effects model as an alternative to the LME model with 
random effects, namely, 

Yi = Χφ + Z;b* + e<, hi is fixed, (2.32) 

and as earlier, the {ei} are independent random vectors with zero mean and variance 
σ2. In the fixed effects approach, {b^,i = 1, ...,iV} are unknown nuisance parame-
ters. Since the {b^} are fixed and cov(y^) = σ2Ι, the OLS estimator is the Best 
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Linear Unbiased Estimator (BLUE), which minimizes the total sum of squares, 

N 

. . m i n w y i l l y * - x i / 3 - z ; M 2 = S m i n . (2.33) 
z = l 

We can rewrite this optimization problem as a standard least squares problem in-
troducing a composite Ντ x (m + Nk) matrix, 

W = [X,Z] = 
Xi Zx 0 0 

o ' · . o 
XJV 0 0 ZN 

(2.34) 

with v = (/3, b ' ) ' . Then (2.33) is equivalent to || y — Wi/ ||2, where y and X are as 
defined in (2.9). The OLS solution to the latter sum of squares has the minimum 

5 m i n = y / ( I - W W + ) y . (2.35) 

Alternatively, we can derive an economical formula for (2.35) holding β constant 
and minimizing the sum of squares over {b^}. Indeed, if β is fixed, the quadratic 
forms in (2.33) can be minimized for bz separately. As follows from the theory of 
least squares with the design matrix not necessarily of full rank (Rao, 1973; Graybill, 
1983), the estimates are bz = Zf(y — X/3), with the minimum 

min || y, - Χφ - Zfc | |2= (ν;-Χ;/3) '(Ι - Z,Z+)(y,-X,/3). (2.36) 

Next, minimizing £ (y i -X i /3 ) ' ( I - Z;Z+)(yz-Xi/3) for β leads finally to (2.31). 
We can interpret this result by saying that the fixed effects model corresponds to 
the random effects model with infinite covariance matrix, D = oo. 

Which model, (2.5) or (2.32), is better: random or fixed effects? One cannot 
answer this question because this choice is, in fact, an assumption; some discussion 
on this topic may be found in the variance components literature (Searle, 1971b, 
Lindman, 1992). Clearly, a fixed effects model is less restrictive and is easy to handle 
because it reduces to a standard linear model, but the price is that the number of 
nuisance parameters increases with the number of subjects (clusters). In particular, 
the fixed effects approach would be preferable if the number of clusters (TV) is 
small and the number of observations per cluster is large. A general linear growth 
curve model (considered in Chapter 4), is a reasonable compromise between fixed 
and random effects models. As follows from (2.31), the fixed-effect OLS estimator, 
β^, is consistent for ß when N —» oo, despite an increasing number of nuisance 
parameters, if the inverse matrix is nonsingular. A special case of a linear model 
with a cluster-specific intercept term is considered in Section 2.4. In Section 3.2.1 
we explain why the combination of random and fixed effects leads to an invalid 
model. 

As we shall learn later, the quantity Sm[n plays an important role in the LME 
model; particularly, as we shall learn later, the inequality 

N 

Smi„ - Y^iYi-Xiß^'il - ZiZf^yi-Xiß^) >0 (2.37) 
2 = 1 
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provides a necessary and sufficient condition for the existence of the maximum 
likelihood estimate (Section 2.5). Also, 5min is the key characteristic of statistical 
testing for the presence of random effects (Section 3.5) and MINQUE for parameter 
σ2 (Section 3.10.2). 

We shall prove that Sm[n is the lower bound for the weighted sum of squares, or 
more precisely, 

N 

Σ(Υί - ΧφΥ(1 + ZiDZ^-Hy* - X;/3)>Smin (2.38) 
2 = 1 

for any β and D. 
Proof. First we show that (I + Z i D Z ; ) - 1 > I - Z;Z+. It follows from multiply-

ing both sides of this inequality by I + Z^DZ^ and the following straightforward 
matrix algebra: 

( I - Z i Z t ) ( I + ZiDZi) = I + ZiOZl-ZiZf-ZiZ+ZiOZ'i 

= I + ZiDZ^ - Z ,Z t - ZiDZ^ = I - ZiZf < I. 

Hence, the left-hand side of (2.38) is greater than or equal to 

N 

£ > < - Χφ)'(Ι - Ζ«Ζ+)(γ« - Xi/3) 
ï = l 

N 

> m i n £ ( y i - ΧφΥ(1 - ZÄZ+)(y< - X*ß) = 5min 
" i=l 

2.2.4 Profile log-likelihood functions 

Taking the derivative of (2.15) with respect to σ2, it is easy to see that function I 
is maximized at 

1 N 

σ2 = -rr- £ ( y < - XißYQL + Z i D Z j ) " 1 ^ - Xiß). (2.39) 

Lindstrom and Bates (1988) and Wolfinger et al. (1994), among others, take ad-
vantage of formula (2.39) and suggest the vanance-profile log-likelihood function 
substituting (2.39) back into (2.15). This leads to an equivalent maximization prob-
lem with σ2 eliminated, 

lp(ß, D) = - i IN T I n Ç ( y , - X ^ ' V ^ y , - Χφ) + £ In |V«| 1 , (2.40) 

where constant c = ^Ντ(\ηΝτ — 1) is ignored (the subscript p indicates that the 
function is profiled). Applying formulas (2.21) and (2.23) and assuming that D is 
nonsingular, we obtain an economical dimension-reduction parameterization of the 
profile function, 

ZP(/3,D) = - \ j jVr ln Î Ç [ £ - r J i D ^ + M i ) " 1 * ] J + Ç l n | I + DMi | 1 , 

(2.41) 
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where Si = Si(ß) is as defined in (2.27), 

Π = Zfe , Mi = Z[Zi. (2.42) 

Further, in the last parameterization we can consider D_ = D _ 1 as the argument; 
sometimes D _ 1 is called a precision matrix. This leads to the precision matrix 
parameterization 

Jp(/3,D_) = - i | A r T l n m 5 , - r ^ D _ + M i ) - 1 r , ] J 

+ ^ l n | D _ + M i | - A T l n | D _ | I . (2.43) 

A further possibility is to exclude ß using the GLS formula (2.28). We need the 
following general result to derive the ultimate (σ2, /3)-profile log-likelihood function. 

Proposition 1 Let y and X be an N x 1 vector and an N xm matrix of full rank 
(m < N), respectively, and V be a N x N positive definite matrix. Then 

mmJy-XßyV-^y-Xß) 

= y ' V - 1 y - ( X ' V - 1 y ) / ( X ' V - 1 X ) - 1 ( X ' V - 1 y ) · 

Proof. The minimum of the quadratic form at the left is attained at ß = 
(X /V~ 1X)~ 1X /V~ 1y, so that the minimum value is 

(y-x3)'v-1(y-x3) 

= y ' [(I - X ( X ' V - 1 X ) " 1 X ' V - 1 ) ' V - 1 ( I - X ( X ' V - 1 X ) _ 1 X ' V - 1 ) | y. 

But the matrix in brackets can be rewritten as 

V - 1 - 2 V - 1 X ( X / V - 1 X ) " 1 X ' V - 1 

+v-1x(x'v-1x)_1x'v-1x(x'v-1x)"1x'v-1 

= v-1-v-1x(x'v-1x)_1x'v-1, 
which proves the proposition. ■ 

Using "long" notation (2.9), the total sum of squares can be rewritten as 

N 

J2(Yi - Xi/3)'V-1(yi - Xi/3) = (y - X/3)'V-1(y - X/3). 
i=l 

Then, applying Proposition 1, we obtain 

q = min £ ( y i - Χφ)'V.r1 (Yi - Χφ) (2.44) 

= ErfV* - (Exivrv*)' (Exiv^x*)"1 (Exjvrv«) · 
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Consequently, if V» is known, the GLS estimator (2.28) leads to the following 
formula for (2.39): 

-ILS = mm ± J > - Xi/3)'V^(yi - Χφ) = X . 

The full-profile log-likelihood function, as a function of D _ , is given by 

Z P ( D _ ) = - \ NThxq(O-) + ^ l n | D _ + Μ * | - iVln |D_| (2.45) 

where q is defined in (2.44). Using the dimension-reduction formula (2.21), the 
quantities in (2.44) can be found as 

E ^ v r 1 * = Ey,^-E(ziy*)/(D- + ziz<)-
1(z/

iy<), 
ExivrVi = Exiy*-E(X*Z*)(D-+Ziz*)"1(ziyi), 

(2.46) 

This form of the log-likelihood function is perhaps the most economical because 
quantities such as ^ y ^ y i , Z^y*, X^y;, and X^X* can be computed beforehand. 
The profile-likelihood parameterization is well suited for profile-likelihood confidence 
interval construction (see Section 3.4). 

2.2.5 Dimension-reduction GLS estimate 
In this section we use the dimension-reduction formulas (2.46) to compute the GLS 
estimate, 

ßGLS = [ΣΧίΧ*-Σ(Χ*Ζ«)( Ι* + ΟΖίΖ*)"1θ(ΧίΖ*),]~1 

x [ £ x j y i - £ ( X & ) ( I * + DZÎZi)-
1D(Zjyi)] · (2.47) 

Note that the direct use of formula (2.28) requires N inverses of a n* x rii matrix. 
Using the dimension-reduction formulas, we reduce the computation to N inverses 
of a k x k matrix. This method is used in our economical R code for maximization 
of the log-likelihood function based on Fisher scoring algorithm in Section 2.16. 

The R code based on the economical formula (2.47) is given below. In this code 
the data are supplied in the matrix argument d: The first column is the cluster id, 
the second column contains observations of y, columns from 3 to (2 + m) contain 
observations of X, and the rest is matrix Z. This data format and R syntax are used 
in the following codes. 
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GLSest=function(d,m,k,D) 

#computes beta_GLS 

{ 
id < - d [ , 1] 
undi < - unique (id) 
y < - d [ , 2] 
X < - a s .ma t r ix (d [ , 3: (2 + m)] , ncol = m) 
Z < - a s .ma t r ix (d [ , (3 + m) : (2 + m + k)] , ncol = k) 
Xty=t(X)°/,*yoy # m a t r i x £ X ^ 
XtX=t(X)7,*°/oX #matrix X; X^Xi 
Ik=d iag ( rep ( l , k ) ,k ,k ) 
f o r ( i in undi) 
{ 

yi < - y [id == i ] 
Xi < - X[id == i , ] 
Zi < - Z[id == i , ] 
ZtZ < - t(Zi)7,*7,Zi 
XtZ < - t(Xi)7,*7,Zi 

Zty < - t(Zi)7,*7eyi 
iM=solve(Ik+D7o*7oZtZ)7.*7oD #matrix (I + D Z - Z ^ ^ D 
Xty=Xty-XtZ7o*7oiM7o*7,Zty 

XtX=XtX-XtZ7o*7oiM7e*7ot (XtZ) 

} 

beta. GLS=solve (XtX) y.*7.Xty 

return(beta.GLS) 

} 

2.2.6 Restricted maximum likelihood 

It is known that maximum likelihood estimation of variances is biased for finite 
samples. For example, in a standard linear regression model y ~ Λ/"(Χ/3,σ2Ι), the 
MLE of the variance, a2

ML = SS/n, underestimates σ2, where 5 5 is the residual 
sum of squares, n is the number of observations, and m is the number of regression 
coefficients. The unbiased estimator of σ2 is SS/(n — m), which takes the degrees 
of freedom into account. To reduce the bias in the variance components model, 
Patterson and Thompson (1971), and later Harville (1974), suggested modifying 
the standard log-likelihood function using generalized least squares residuals. The 
resulting method is referred to as Restricted (or perhaps more precisely, Resid-
ual) Maximum Likelihood Estimation (RMLE). Laird and Ware (1982) applied this 
method to LME model (2.14). 

First we derive the RML for the general linear model and then apply it to the 
LME model. 
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Let the general linear model be defined as y ~Λ/"(Χ/3, V) where X is an n x m 
matrix of full rank and V is the nxn covariance matrix, dependent on some parame-
ter Θ. In RML estimation wejnaximize the log-likelihood function for the residual 
vector ê = y - Χβ, where β is the GLS estimator, β = (X'V-1Xy1X'V-1y. 
Notice that since y has normal distribution,^ and ê are linear functions of y and 
have normal distribution as well. Moreover, β and ê are independent because 

οον(χ'ν-ν,β) = χ 'ν-ΐνμ-ν-^χ'ν-^χ^χ'] 
= X'-X'V^XfX'V^X)"^' = 0. 

This implies that the likelihoodjFunction for y is the product of the likelihood 
functions for ê and for β. But β ~ λί(β, ( X ' V - 1 X ) - 1 ) , and therefore the log-
likelihood function for the residual vector ê, up to a constant, is 

1(8,0) = i(y>ÖH(3,Ö) = - i { l n | X ' V - 1 X | + l n | V | 

+(y - X ^ ' V - ^ y - X/3) - (ß-0)'X'V-lX(ß-ß)}. 

But since 

(y-XßyV-ifr-Xß) 

= ( y - x 3 ) ' V - 1 ( y - x 3 ) + (3 - /3 ) , X 'V- 1 X(3- J 9 ) , (2.48) 

we can rewrite the log-likelihood function for ê as 

1(β,Θ) = - \ [In I X ' V ^ X l + In |V| + 8 Ύ _ 1 β | . 

Clearly, the maximization of this function is equivalent to 

lR(ß, θ) = ~ [In I X ' V - ^ I + In |V| + (y - X jSJ 'V" 1 ^ - X/3)] , (2.49) 

because maximization of IR for β gives ê = y — X/3. Function IR is called the resid-
ual log-likelihood function. Notice that IR differs from the standard log-likelihood 
function by the term — | ΐη |Χ/ Ίν"Χ|. As a word of caution, IR is not a real log-
likelihood function and consequently the covariance matrix for Θ cannot be derived 
as the inverse of the expected second derivative. Although asymptotically, ML and 
RML and the respective covariance matrices coincide (see Section 3.6.3). 

An alternative way to come to the restricted likelihood function (2.49) is to use a 
Bayesian approach with a non-informative/uniform prior distribution for β (Laird 
and Ware, 1982). More precisely, let β be treated as random with uniform distrib-
ution on Äm. Then, to obtain the marginal distribution for σ2 and D, we need to 
integrate out /3, 

LR(a2,O)=[ L(ß,a2,O)dß, 

where L is the standard likelihood function, 

L ( / V 2 , D ) = (2π) -" / 2 i v r ^ e - i f r - ^ ' ^ f r - * « . 
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Again using identity (2.48) we rewrite the integral above as 

(2π)" η / 2 | v | " 1 / 2 e " i ( y " x i § ) / v " 1 ( y " x i S ) / e-i(ß-ßY^,v-1Mß-ß)dß. 

Now we use a well known result on the integration of an exponential function of 
quadratic form, / e~ i ( z - m ) ' ' A ( z - m )dz = (2π)πι^2 | A | - 1 ' 2 for any m x 1 vector m 
and any positive definite m x m matrix A (Graybill, 1983, p. 332). Applying this 
result, we obtain 

LR(a2,O) = (2π)-("-™>/2 |V | " 1 / 2 \χ'ν^χ\-^ e-ify-^)'^1^-^), 

which is equivalent to the previously derived restricted log-likelihood function (2.49). 
Due to this derivation RML is sometimes called marginal ML. 

Since the regular and restricted versions of the log-likelihood differ by the term 
-0.5 In I X ' V ^ X l , which translates into In | Σ χ ί ν Γ 1 χ * Ι for the LME model, we 
come to the RML function 

IR{9) ( iV T - r a )ma 2 - f -m 
N 

N Λ 

+ ^ [In |V<| + σ"2(νζ· - X ^ ' V ^ y , - Xiß)] l . 
2 = 1 J 

(2.50) 

Notice that this is the standard log-likelihood function (2.15) augmented by the 
term 

— - ( — τηΐησ2 + In 
N 

EW 1 * 
2 = 1 

(2.51) 

and the constant term is augmented by 0.5τη1η(2π). 
The log-likelihood function for RML may be reparameterized following the line of 

previous reparameterization. For example, we come to the a2-profile RML function 
by substituting 

1 N 

Ντ — m 
(2.52) 

2 = 1 

into (2.50), which leads to the variance-profile log-likelihood function (up to a con-
stant term) 

JÄPOS.D) = --l(NT-m)\n 
N 

+ ln 
ΛΓ 

E x ^ 7 l X i 

= 1 

N -J 

+Σ1ηΐν4· 
2 = 1 

(2.53) 
2 = 1 

Notice that the degrees of freedom in the restricted version of the σ2 estimator 
(2.52) are adjusted by the number of fixed effects, m. However, if the total number 
of observations is much greater than m, the adjustment will be negligible. 
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We can further reduce the computational burden using the dimension-reduction 
formulas (2.21) to (2.25). In fact, we can use all previously derived log-likelihood 
parameterizations augmented by the term (2.51). Clearly, one can use formula (2.21) 
to reduce the dimension of the inverse matrix in (2.51). 

2.2.7 Weight versus height (continued) 

We continue working on the begun started in Section 2.1 and modify the R code to 
account for possible excessive variation due to the age and sex of individuals. But 
before that we note that lme has two method options to estimate a linear mixed 
model. The default method is REML, which means that if the user does not specify 
the method of estimation, the model will be estimated by the restricted maximum 
likelihood described in Section 2.2.6. Thus, the log-restricted-likelihood = —331.6369 
in the output of the lme call in Section 2.1.1 equals (2.49) — (N — 7η)/21η(2π), where 
for our example, N = 71, the total number of observations, and m = 2, the number 
of fixed effects parameters. Below we show the output with the option method=nML". 

Linear mixed-effects model fit by maximum likelihood 

Data: famdat 

Log-likelihood: -334.7041 

Fixed: Weight "Height 

(Intercept) Height 

-205.015367 5.319309 

Random effects: 

Formula: ~1 | FamilylD 

(Intercept) Residual 

StdDev: 13.34261 24.50155 

Number of Observations: 71 

Number of Groups: 18 

The difference in the log-likelihoods is — \ In |X'VX| , where X is the 71 x 2 matrix 
with the first column of 1 and the second column of Height, and V is the 72 x 72 
block diagonal covariance matrix with 1-fd on the diagonal and d off diagonal, where 
d = σ^/σ2, the relative variance intercept. The difference between ML and REML 
is visible but not considerable. In general, this difference vanishes quickly with the 
growing sample size —the consequence that maximum and restricted maximum 
likelihoods are asymptotically equivalent. 

Problems for Section 2.2 

1. Prove that if S is a convex cone then S is a convex set. More precisely, if 
for every pair si,S2 G S and every pair of positive scalars λι and λ'2 we have 
AiSi + À2s2 G S then λβχ + (1 - A)s2 € S for all 0 < λ < 1. This means that the 
parameter space (2.16) is convex. 

2. Find the GLS estimator that minimizes the weighted sum of squares in Propo-
sition 1, where V = I+pXX', using formula (2.21). 
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3*. Experiment with the generalized inverse function g inverse . sym to find the 
optimal parameter e: Generate random rectangular matrices X and use this func-
tion to compute the generalized inverse of matrix I - X f X X ) " ! ' . Find the true 
theoretical generalized inverse of this matrix. Find ε such that the difference be-
tween the computed and the true generalized inverse matrices is minimum. You can 
generate random matrices using runif or rnorm or generate determininstic matrices 
with columns xi = l , x 2 = (1,2, ...,n)',X3 = (12,22, . . . ,n2) ' , and so on. 

4. Derive the full-profile likelihood (2.45) in the case of one random effect (matrix 
D is scalar). Write an R program which generates data according to y^ = a + ßUj + 
h + 6ij, where 2 = 1,2,..., N = 10 and Uj = j for j = 1,2,..., n*, and Ui are random 
integers in the range specified. 

5. Prove that the ordinary least squares remains unbiased for the beta-coefficients 
in mixed model (2.5). Explain why one should bother with sophisticated estimation 
if OLS is unbiased. 

6. Use the dummy variable approach to estimate mixed model (1.4) assuming 
that {b{} are fixed and unknown (these estimates are reffered to as fixed effects). 
Represent the model as y = X 7 + e, where y and X are the (Σηί) x 1 vector 
and the (Σηί) x (N + 1) matrix, respectively. Write an R code to compute the 
fixed effects and compare them with the random effects model. Use the command 
outLME$coef f icients$random to extract the random effects, where outLME is the 
variable that contains the output of lme. 

|2 
7. Prove that Smin = y -w/3 0 
8. Express the GLS estimator (2.47) in terms of D _ . 
9. Show that the restricted log-likelihood function term (2.51) is on the order of 

ln(iV) when N goes to infinity. To simplify the derivation, assume balanced data: 
m = n and X; = X, Z; = Z. This exercise implies that the restricted and regular 
likelihood approaches converge when the number of clusters increases. 

2.3 Balanced random-coefficient model 

In this section we consider a very special case of the LME model (2.5), the balanced 
random-coefficient model. In this model all clusters have the same size (n^ = n) and 

Z = Xi = Zi, ζ = 1,..,ΑΓ, (2.54) 

where matrix Z has full rank. In view of (1.12), it can be called the balanced random-
coefficient model. This model is attractive because it allows us to obtain maximum 
likelihood estimates in closed forms. A more general situation when MLEs admit 
closed forms is considered in Section 4.1.5. 

First, we notice that for model (2.5) with data (2.54), the fixed effects estimate 
(2.31) is zero because the matrix to invert, Z'(I — Z(Z /Z)~1Z /)Z, is null, and there-
fore the generalized inverse is null as well. Second, the model with balanced data may 
be represented in rectangular format as Y = Z/3l' + E, where Y is an n x N matrix 
and 1 is an iV x 1 vector of Is; E is the N xn matrix of error terms with zero mean, 
mutually independent rows, with the covariance matrix σ 2 ν =σ 2 ( Ι + ZDZ'). This 
model is a special case of the classical growth curve model Y = Z/3X + E, where 
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the vector columns of E are iid with unstructured nxn covariance matrix Ω, stud-
ied by many authors. The early authors were: Potthoff and Roy (1964), Rao (1965), 
Khatri (1966), and Grizzle and Allen (1969). See Vonesh and Chinchilli (1997) for 
an overview, where it was termed the generalized multivariate analysis of variance 
model, and a book by Pan and Fang (2002), where it was termed simply the growth 
curve model. In particular, the latter authors derive closed-form expressions for 
variance parameters, as we do below in Theorem 2. 

We start by proving that for model (2.5) with data (2.54), the GLS estimator 
(2.28) collapses to the OLS estimator and therefore does not depend on the matrix 
D. More precisely, 

ßGLS = POLS = ( Z ' Z ^ Z ' y , (2.55) 

where y = γ^=1 y*/iV. 
Proof. By definition, the GLS estimate minimizes the weighted sum of squares, 

N 

J > < - Zß)'V-\yi - Z/3) = 5 > , - y)'Y-\yi - y) 

+ 2 ^ > i - y / V - H y - Zß)+N{y- Zß)'W~l(y- Z/3). (2.56) 

But the middle term vanishes because 

5 > * - yyv-^y - Z/3) = [5>< - y)'] V ^ y - Z/3) =0, 

and therefore minimization of the weighted sum is equivalent to minimization of 
(y—Z/3)'V_1(y—Z/3), because the first term in (2.56) is constant. Further, denoting 
ß = (Z'Z)~ Z'y and applying the dimension-reduction formula (2.21) for the last 
term of (2.56), we obtain 

(y-Zß)'Y-\y-Zß) (2.57) 

= [e - Z(/3 - 3)]'[I - Z(D-X + Z 'Z^Z 'Hê - Z(/3 - ß)], 

where e = y — Z/3 is a residual vector. But as in the standard linear model, regressors 
and residuals are orthogonal, Z'e = 0, because 

Z'e = Z'[I - Z t Z ' z r ^ j y = 0. 

Hence, the sum (2.57) simplifies to 

Sfe + 09-i9)/Z,V-1Z09-3). 

Finally, since the matrix Z/V~1Z is positive definite, the minimum of (2.57) occurs 
at β = /3; thus, (2.55) is proved. 

■ 
Thus, from (2.55) we see that for a balanced random-coefficient regression model, 

OLS = GLS = MLE. For example, for a balanced linear trend model with random 
parameters 

Vij = a>i + bitj + 6ij, (2.58) 

(H = OL + ni,bi=ß + £ti i = l,2,...,iV, j = l,2,. . . ,n, 
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one obtains efficient estimates for a and ß by applying the OLS to the mean data, 
Vj = a + ßtj + Çj, j = 1,2, ...,n, namely, 

ß= m-Ψ · a=y~ßt-
Now we find the MLEs and RMLEs for σ2 and D (Laird et a l , 1987). As we learn 

in Chapter 4, dML and &MLDRML are unbiased, but CMLOML is not. As a word 
of caution, the unbiasedness of the restricted MLE for variance parameters is not a 
general property—that is true only for balanced models. 

Theorem 2 The MLEs and RMLEs for the balanced random-coefficient model 
(Z = Xi = Zi) are given by 

1 N 

ZML = ZRML = N(n _ m) Σ ^ ^ - Z^Zr 'zOy*. (2.59) 

D M L = —^— ( Z , Z ) - 1 Z , Ê Ê , Z ( Z , Z ) - 1 - ( Z , Z ) - 1 , (2.60) 

ORML = - — 4 T ^ - ( Z , Z ) - 1 Z , Ê Ê , Z ( Z , Z ) - 1 - ( Z , Z ) - 1 , (2.61) 
(A - 1)σΜί/ 

where 
N 

ÊÊ' = £ ( y i - z3GLS)(yi-z3GLS)' 

is the n x n matrix of the sum of residuals cross-product, and ßcLS = ßoLS ^s as 

defined in (2.55). 

Proof. Denote e* = yi—ZßGLS, the n x l residual vector of the ith cluster, 
and E = [ei,..., ejy], the matrix n x A", so that EE7= Σί=ι e ^ . Note that ê  does 
not depend on D. First, we express σ2, given by (2.39), through matrix D using 
dimension-reduction formula (2.21). We obtain 

σ1 

2=1 \Z=1 / 

i-tr [ÊÊ7(I - Z(D_1 + Ζ'Ζ)'1^)} 
vn L J Nn 

— - t r E E 7 - —-t r 
Nn Nn 
— - t r E E 7 - - — tr 
An An 

Ê Ê ' Z Î D ^ + Z ' Z ) " ^ ' 

ÊÊ7ZD(D + (Ζ7Ζ)"1)"1τ1 , (2.62) 

where it is denoted T =(Z7Z)~ Z7. Second, we work on matrix D. The MLE for 
D satisfies the score equation, the partial derivative of the log-likelihood function 
with respect to matrix D. In a general case the derivative is provided by formula 
(2.105). In the balanced case the score equation for D simplifies to 

ΝΖ,γ-ιΖ-σ-2Ζ,\-1ΈιΈΎ-ιΖ = 0. (2.63) 
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We have 

Z 'V" 1 = Z'(I - Z ( D _ 1 + Z ' Z ) - 1 ^ ) 

= [I - Z 'Z (D _ 1 + Z'Z)_ 1]Z' = D ^ D 1 + Z 'Z ) _ 1 T = M- 1 !? , 

where it is denoted M = ( Z ' Z ) - 1 + D . Next, using formula (2.25) we rewrite (2.63) 
as i V M - 1 - a - 2 M - 1 T R T / M - 1 = 0, which gives the equation for D, 

D = — ^ Τ Ε Ε ' τ ' - (Ζ 'Ζ) - 1 . (2.64) 

Substituting this formula into (2.62), one obtains 

σ2 = - L t r Ê Ê ' - —trÊÊ 'Z f - ^ r T E T - (Z'Z)"1 ) ( Τ Ε Ε ' τ ' ^ Τ 
Nn n \Νσ2 J 

= - ^ - t r (ÊÊ ' ( I - P z ) ) + — t r ( Ê Ê / T , ( T Ê T , ) - 1 T ) , 

where P z = Z(Z 'Z) - 1 Z is a projection matrix. But for the third term we have 

t r (ÊÊ / T / (TÊT / ) - 1 T ) = t r ( (TÊÊ / T , ) - 1 TÊÊ / T / ) =ra, and hence, solving for σ2, we 
finally obtain the MLE: 

N 

—* J > - z3OM)'(i - P»)(y* - WGLS)-

Since (I — Pz)Z = 0, the preceding formula may be rewritten as (2.59). Replacing 
σ2 with d2

ML in (2.64), we arrive at the MLE 

D M L = - ^ — ( Z , Z ) - 1 Z , E E , Z ( Z , Z ) - 1 - (Z'Z)"1. 
N(JML 

Again, using the fact that (I — Pz )Z = 0, the preceding formula is equivalent to 
(2.60). 

For the restricted maximum likelihood the expressions for σ2 and the score 
equation for D become (2.52) and (2.129), respectively. Hence, equation (2.63) 
transforms to (N - ^ Z ' V ^ Z - a ^ Z ' V ^ E E ' V ^ Z = 0, and consequently (2.64) 
changes to 

D =(N-l)a*TÈÈ'T' - ( Z ' Z ) _ 1 · ( 2 · 6 5 ) 

Then, analogous to (2.62), for the RML estimator, 

„2 
σ 

t rÊÊ ' l 
Nn — m Nn — m 

tr ÊÊ'ZT + (N- 1)σ2ΕΕ/Τ/(ΤΕΕ/Τ,)-1τ| 

Nn-m Nn-m L v ' 

Nn — m Nn — m 
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Solving for σ2, we come to the same MLE, (2.59). The estimator (2.61) follows from 
(2.65). ■ 

Since, according to our convention, D denotes the scaled coyariance matrix, the 
estimator for the covariance matrix of random effects is σ2

ΜΙΌ, where D is either 
an ML or RML estimator (we prefer RML because it is unbiased). 

<7ML is positive if at least one y^ is not a linear combination of vector columns of 
matrix Z (we learn in Section 2.5 that this is a necessary and sufficient condition 
for the existence of MLE). However, there is no guarantee that OML or ORML is a 
positive definite matrix (there is a slightly better chance for ORML to be positive 
definite). If either of the matrices is not nonnegative definite, one could project the 
matrix on the space of all nonnegative definite matrices, as defined in Section 2.15. 
Notice that for balanced data, OML < &RML- This makes perfect sense because 
OML is negatively biased and ORML is unbiased. 

In Section 3.3.1 we show that the RML estimators are efficient, i.e., their vari-
ance/covariance matrix attains the lower bound. We use the results of this section 
for identification of the star shape in Chapter 11 (see Section 11.7). We will en-
counter the balanced random-coefficient model in the analysis of shape in Chapter 
11. 

P rob lems for Section 2.3 

1. Why are balanced data favorable in practice? Justify your answer by referring 
to mathematical results from this section. 

2. Use model (2.58) to illustrate numerically that the parameters and their vari-
ances from lme give the same results as those given by formulas for /?, a and Theorem 
2. Pick n, TV, and tj, values for a and ß and variances, generate random intercept 
and random slope data, and compute estimates using formulas; then run lme. 

3*. Can we claim that the RML estimates for σ2 and σ2Ώ are unbiased? Either 
prove or carry out a simulation study (use the model specification from Problem 2). 

4*. Do the results of this section hold if only some coefficients are random, say, 
the slope is fixed but the intercept is random? Adjust Theorem 2 to cover this more 
general case. 

2.4 LME model with random intercepts 

In this section a very special LME model with one random effect is considered in de-
tail, the LME model with random intercepts. This model will serve as a benchmark 
to compare estimators and numerical procedures for log-likelihood maximization. 

The LME model with random intercepts is written 

Vij =ai+'j,uij +€ij, j = 1,...,η», i = 1,...,JV, (2.66) 

where yij is interpreted as the j t h observation of the zth subject. The individual 
intercept is the sum of a population-averaged parameter a and a random effect, 
ai = a + bi. It is assumed that ε^ ~ Λ/"(0, σ2) and bi ~ JV(0, a2d) are independent, 
where σ2 is the within-subject variance and d is the scaled variance of the random 
effect. The simplest case of model (2.66), when there are no covariates, reduces to 
a one-variance component model (1.8). 
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The LME model with individual (random) intercepts can emerge in the following 
longitudinal setting. Consider a group of N patients. Each patient has his/her own 
covariates, such as age, gender, weight, diet, and physical performance. Let the 
treatment outcome be represented by a longitudinal variable, such as the blood 
pressure yij of the ith patient measured at time Uj. Then the vector of covariates 
is Uij = (Ageij,Genderi,Weighty,Dietij). If longitudinal observations cover a fairly 
long period of time, Age, Weight, and Diet are time-varying covariates, so they are 
supplied with subindex j . We are interested in how the blood pressure is affected 
by these covariates. The key assumption is that the relationship does not vary from 
patient to patient, meaning that 7 is a fixed vector. However, we admit that at the 
time the study begins, each patient may have a different baseline blood pressure, 
even for patients of the same age, gender, weight, and diet. Certainly, one could 
design the experiment to involve patients with the same initial conditions: the same 
age, gender, weight, and diet. However, the reader will agree how difficult it would 
be to obtain such data. A model with individual intercepts would be more realistic 
because it allows the analysis of patients with different baseline blood pressures. 

The LME model with random intercepts also emerges in econometrics as the 
model for panel data in the cross-sectional analysis (see Maddala, 1987 for a review). 
In the variance components literature this model is called a linear model with nested 
error structure (Christensen, 1996; Wang and Ma, 2002). 

In matrix notation, the LME model with random intercepts can be written as 

yintfiXiß^ili+dlilÜ), i = 1,..., TV, (2.67) 

where X* is an rii x m design matrix of full rank with the j t h row x^· = (l,u^·); 
ß = (α ,7 ' ) ; is an m x 1 vector of fixed effects; li is an n* x 1 unit vector; σ2 is the 
within-subject variance; and a2d is the variance of the random effect. In the notation 
of (2.14), k = 1, li = Zi, d = D. Model (2.66) has an exchangeable (compound 
symmetry) correlation structure because the correlation coefficient between y^ and 
yik is constant, d/(l -f d) for j φ fc. In fact, our LME model of Section 2.1 with 
family data on weight and height has the form (2.66). 

The variance-profile log-likelihood function, written in the form (2.40), is 

r N N Λ 

lp(ß4) = " 2 { ] [ > | Ι + Λ Α ΐ ί Ι + i V r l n [ X ; e U l + d l i i ; ) - 1 e i ] \ , (2.68) 

where ê  = y^ — X^/3 is an ni x 1 residual vector. The dimension-reduction formulas 
(2.21) and (2.22) simplify to 

|H-d ia - | = 1 + rud, ( I + d i a · ) " 1 = Ι - Τ 3 Γ - 3 1 * 1 « · (2·69) 

Thus, the GLS estimator (2.28) for this model is 

ßöLS = Σ (*» - Ï&**) - [Σ (*» - i&j»*) (2.70) 

where 
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The fixed-effects estimator (2.31) is the limit of (2.70) when d —> oo. We notice 
that the inverse matrix in (2.70) becomes singular when d —> oo because the first 
row and column are zero. We could use the generalized inverse as in (2.31), but it 
is easier to minimize the quadratic form (2.33) as a function of N + m parameters 
ai, . . . ,ajv,7 directly, 

N ni 

Σ Σ ^ ~ai~ u^'7)2 =* min · 
The minimum is attained at Zi=yi— ^OQÛÎ, which leads to the Fixed Effects (FE) 
estimator, 

Too 

N I m 
Σ [J2uijuij - ηΜ% 

- 1 
N / m 

Σ Συ^~η*π^ (2.71) 

This estimator could also be obtained by centering observations around the in-
dividual means for each i (differencing out) and applying OLS. Interestingly, the 
estimator 7 ^ is consistent despite the fact that the number of nuisance parame-
ters (subject-specific intercepts) increases with the number of clusters N —» 00. In 
fact, this is true only for linear models, and we shall establish similar asymptotic 
properties for the general linear growth curve model, as a compromise between the 
fixed and random effect models. Contrary to the linear model, as we shall learn in 
Section 7.2.2, the MLE for the logistic regression model with fixed subject-specific 
intercept is not consistent, but the conditional maximum likelihood is—although, 
as shown in Section 3.2.1, the simultaneous presence of fixed and mixed effects leads 
to an invalid statistical model. 

In a special case of the VARCOMP model (1.8), we obtain 

OLGLS = 
Σ Ν 

2 = 1 
—'■**—Ti- N 

Σ 
N ni 

i=l l+drii 
aQ 

= ̂ Σ ·̂ (2.72) 

Note that these estimates coincide when ni =const (i.e., when the design is bal-
anced). 

Recall that the fixed effects approach assumes that intercepts are fixed and dif-
ferent for each person. On the contrary, the mixed effects model assumes that α̂  
are independent identically distributed (iid) random variables with the same mean, 
a. An economical version of the variance-profile log-likelihood function, based on 
the dimension-reduction formulas (2.69), has the form 

k >(^)=4{έ ΐη( ι+^^ (2.73) 

and as a special case of (2.53) for the restricted ML 

lRp{ßA) - - Η Σ ln(l H- md) -I- In Σ(*ί*-ι£» 
HNr-mnjs-dEj!m\ (2.74) 
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where the scalars S and hi are defined as 

N 

S = S(ß)=Y/\\yi-Xiß\\\ 

fk = ^ ( ^ ) = - Σ ( ^ - Χ · ^ ) = ^ - ^ . (2.75) 

The log-likelihood function lp may be simplified for balanced data (n; = n). In this 
case the function admits a closed-form solution for the maximum over d. Indeed, if 
m = n, then (2.73) takes the form 

H"ln(1+^)+"nKs-r^)}' 
where A = X^i==1 hf. The MLE for d turns the partial derivative to zero, which 
yields 

d- n 2 A ~ s = n2Z(Vi-ß%)2-Ehi-XißW2
 ( 2 7 6 ) 

n(S - nA) n ( Σ | | y . -Xißf-nUy. _ß%)2̂  ' 

Below we consider the case when a linear model with random intercepts admits a 
closed-form solution. Comprehensive coverage of the random-intercept model with 
an equal number of observations per cluster (rii =const) with econometric applica-
tions may be found in a book by Hsiao (2003). 

2.4-1 Balanced random-intercept model 

In this section we consider the case when Ui — n and X^ = X, the balanced data. 
Our aim is to derive closed-form expressions for ML estimates as we did in Section 
2.3. First we show that the GLS estimate (2.70) does not depend on d and coincides 
with the OLS estimate. As we shall see later, a similar result holds for the Poisson 
regression model with random intercepts if the data are balanced (see Section 7.5.7 
for details). 

If X; = X, it takes the form 

^ - ( " - Ï T ^ H ^ - Ï T S * ) · ^ 
where y = y ' l / n . We use the formula 

(A-cbb')-'=A-+c£g£i 
to invert the matrix in (2.77). Using this formula, we obtain 

V 1 + nd J V } l /c-x^X'X)"1^ V ; 

where c = n2d/(l 4- nd). The following simple fact is very useful in studying the 
random-intercept model. 
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Lemma 3 Let X = [1,U] be an n x m matrix of full rank, where 1 = (1, . . . , 1)' is 
an n x 1 vector of Is, U be an n x (m — 1) matrix of full rank, and x = X ' l / n 6e 
a sector o/ averages. Then: (a) ( X ' X ) _ 1 X ' l = (1,0)'; (b) X ( X ' X ) _ 1 X ' l = 1; (c) 
l ' X ( X ' X ) _ 1 X ' l =n; fdj x ' (X 'X) _ 1 x = l / n . 

Proof. It is easy to see that 

( X ' X ) _ 1 X ' l = 
n l ' U 
U ' l U 'U 

n 
U ' l 

Now we use the matrix block-inverse formula 

[ a b ' " 
[ b H 

1 
a - b'H-

- 1 

*b 
-b 'H" 

- 1 [ - H ^ b (a - ο ' Η - ^ Ε Γ 1 + H - W H V T T - I 

(2.79) 

where a is a positive scalar, H is a positive definite matrix, and b is a vector of 
appropriate size. Denoting q = (U'U)~ U ' l and κ = l 'Uq, we obtain (a), 

( X ' X ^ X ' l 
n — K 

1 
n — K 

1 - q ' 
- q ( n - « ) ( U / U ) - 1 + q q / 

n — K 1 _ Γ 1 
0 1 0 

n 
U ' l 

Statement (b) follows directly from (a) because 

X(X / X)~ 1 X / 1 = [1,U] 1. 

Statements (c) and (d) are apparent consequences of (b). 
■ 

Due to statement (b) of Lemma 3, the denominator in (2.78) simplifies to (1 + 
nd){n2d) — 1/n = l / (n2d). Thus, letting M = ( X ' X ) - 1 to shorten the notation, we 
obtain 

(M+n 2 dMxx 'M) ( X'y - γ ^ ~ ^ # GLS 

M X ' y -

M X ' y -

M X ' y -

Mxy + n 2 dMxx 'MX'y - -Mxx 'Mxy 
1 + nd 

n2d 
l+nd 

n2d 

Mxy + n 2 dMxx 'MX'y · 

1 + nd 
n3d2 

1 + nd 
Mxy 

+ 
n3d2 \ 

Mxy + n ^ M x x ' M X ' y 
1 +ndj l + n d 

= M X ' y - n2d(f - x 'MX'yjMx, (2.80) 

where y = Σΐ=ι Yi/N. We observe that y — x 'MX'y = 0 follows directly from (b) 
of Lemma 3. Indeed, 

f - x 'MX'y = ( l / n - x ' M X ' ) y = n^CL'-l'XiX'xy1*!)? = 0. 
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Thus, the second term in the last expression of (2.80) vanishes, and for balanced 
data we obtain 

ßGLs = ßoLs = (X 'X) _ 1 X 'y . (2.81) 

From standard regression theory with an intercept term, it follows that the OLS 
estimates for slopes and intercept may be expressed further as 

IOLS = ( Ü ' Ü ^ Ü ' y , aoLS =V~ ^'IOLS 

where U is the centerized matrix, and U = U — lu7, where ΰ = U ' l / n . 
Now we work on σ2 and d. Since ßML = ßoLS does not depend on d, from (2.39) 

we obtain 

1 
ÎVVÎ Σ Ih - X&OLSÎ - : - % - Σ (<* - xßoLsYiY 

^ " M 14- ndML v ' 

= l(s-&£±), (2.82) 
Nn\ 1 + ndMLj 

where S = ̂  \\&ί\\ > e» = Yi — X-ßoLS is an n x 1 vector of the OLS residuals, and 
A = J2(Vi ~~ y)2 ^ above. From (2.76) we have 

n2A-S 
d>ML = ; 

where 

ί " 1 = ̂ ^ = ^ Γ Ι Σ ( 5 . - 5 ) 2 - ; · (2'83) 

Next we find the RML estimates for a balanced random-intercept model. Using 
the formula for the determinant 

|A -abb ' l = |A| (1 - a b ' A ^ b ) 

and the fact that x ' X ^ ' X ) - x = l / n , we can simplify the log-likelihood function 
(2.74) to an equivalent function, 

- i ÎN ln(l + nd) + (Nn - m) In (s - γ ^ ι ) ~ ln(l + nd)\. 

Letting v = 1 + nd and taking the derivative with respect to v, we come to the 
closed-form solution 

? _[N(n-l)-m + l]An-(N-l)(S-An) 
dRML n(N-l)(S-An) ' ( 2 · 8 5 ) 

Analogous to (2.82), we obtain the relationship between RML estimates of σ2 and 
d, 

^ L = i_(s_J3ii*£LY (2.8e) 
Nn-m\ l + ndRML 
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Estimate of the slope Standard error 

4 6 8 10 0 2 
The scaled variance of the random effect, d 

FIGURE 2.1. Generalized least squares estimate of the slope in the random intercept 
model (compound symmetry correlation structure) as a function of the scaled variance of 
the random effect d, family data (weight versus height). When d = 0, GLS = OLS. When 
d —> oo, the GLS estimate approaches the fixed effects estimate 7^ . The standard error 
(SE) of the slope estimate is an increasing function of d. The estimate and SE are not 
constants because the family data are not balanced. For balanced data the estimate and 
SE do not depend on d. 

Substituting (2.85) into (2.86), we finally obtain the closed-form RML estimate for 
σ , d, and d* = ad : 

aRML 

IRML 

i*RML 

γΣθ^ΐΐ2-^-^)2) N(n - 1) - m + 1 frf 
v ' z = l 

N 
2 = 1 

(2.87) 

(2.88) 

(2.89) 

We make a few comments on the restricted ML estimates for the variance parame-
ters. Generally, RML estimates are close to standard ML estimates. The difference 
is in degrees of freedom/denominator. For σ2, the denominator is adjusted by the 
number of fixed effects slopes (m — 1) and for d by 1. As we shall learn in Section 
3.14, the RMLEs for the random-intercept model with balanced data are unbiased 
and coincide with other quadratic unbiased estimators: minimum norm, method 
of moments, and variance least squares. Interestingly, for the balanced random-
coefficient model of the preceding section, ML = RML for σ2, but it is different for 
the balanced random-intercept model. 
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2.^.2 How random effect affects the variance of MLE 

Before advancing to mixed effects business, it is important to know how the presence 
of the random effect would affect the variance of the maximum likelihood estimate. 
Does the introduction of the random effect reduce or increase the variance of the 
ordinary least squares estimate? Is the variance of the MLE an increasing or de-
creasing function of the variance of the random effect? We answer this question 
for a balanced model with a random intercept where a closed-form solution ex-
ists. We shall find out how the scaled variance of the random effect d affects the 
covariance matrix of the generalized least squares estimate (2.77) in the balanced 
random-intercept model. 

The covariance matrix for the GLS estimator is given by 

( N 

c o v ( / W > = a 2 J ^ X j V X i 

For the balanced random-intercept model, the covariance matrix of (2.77) reduces 
to 

cov(3GIS) - ^ Χ ' ν - Χ Γ ' ^ Χ ' Χ - ^ - ) " 1 

= Ç ( (X 'X)" 1 + n 2 d (X , X) - 1 5S ' (X / X) - 1 ) 

1 0 ] 
0 0 J 

because of statement (a) of Lemma 3. 
Thus, one infers the following: 

• The variance of the random intercept in the random-intercept model with 
balanced data affects only the variance of the intercept term. 

• The variances of the slopes do not change with d*. 

One can interpret this result by saying that an equal correlation for balanced data 
does not affect the estimates of slopes: (a) the GLS/ML estimates do not change; (b) 
the variance of the estimates do not change either (the same result holds for Poisson 
regression; see Section 7.5.7). We emphasize that this is true only for balanced data. 
To illustrate, we consider our previous example with family unbalanced data. 

Example (continued). We consider the family data from Section 2.1, where 
the LME model (2.2) with equal correlation within the family has the form of the 
random-intercept model (2.66). The data are not balanced and we want to know 
whether the GLS estimate (2.70) or its variance depends on d. In Figure 2.1 we plot 
the slope at height and its SE as a function of d. Since the data are not balanced, 
PGLS

 an (* SE{ßGLS) change with d. Two extremes are the OLS (d = 0) and the 
FE estimator (d = oo). Note that the difference between two extremes values of the 
slope is fairly small. ■ 

An attractive feature of the random-intercept model is that exact tests are avail-
able for a linear hypothesis on coefficients ß (see Section 3.8 for details). 

^ ( X ' X ) _ 1 + 
ci* 
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Problems for Section 2.4 

1. Is it true to say that the fixed effects model with cluster (or subject) -specific 
intercepts is the limiting case of the random intercept model when its variance goes 
to infinity? Use theory to justify your answer. 

2. Is it true that GLS slope estimates given by formula (2.70) are monotonie 
functions of the scaled variance of the random intercept, d? If this is true provide a 
proof; if this is not true, provide a counterexample. 

3*. Confirm by statistical simulations that the MLE or RMLE of the slope with 
random intercept is unbiased in a small sample. For balanced data it follows from 
the fact that OLS=GLS [see equation (2.81)], so unbalanced data should be used 
for simulations (you can use f amdat for this purpose). 

4. Reproduce Figure 2.1 in R. Prove that SE is an increasing function of d. 

2.5 Criterion for MLE existence 

The aim of this section is to provide a criterion for the existence of the MLE 
in the LME model. There is an opinion that such a criterion would be of purely 
theoretical interest: Let an algorithm for the log-likelihood function maximization 
start. If it finds the solution, the MLE exists; if it fails, the MLE does not exist. 
Such a pragmatic and naive approach relies completely on the effectiveness of the 
maximization algorithm. However, the failure of the algorithm does not mean that 
the MLE does not exist! It may fail because (a) matrix D becomes nonnegative 
definite; (b) the sequence of points generated by an iterative algorithm may not 
converge due to a poor starting point; or (c) a computer program may terminate 
due to overflow, memory shortage, etc. Then, what is the reason: a poorly specified 
model, a wrong starting value, a poor algorithm, an error in the computer program, 
or perhaps the maximum of the log-likelihood function cannot be attained because 
the MLE does not exist? Therefore, before starting a maximization process, one has 
to be sure that the MLE exists. We need criteria for MLE existence! 

Below, we formulate and prove a necessary and sufficient condition for the exis-
tence of the MLE in the LME model. A similar condition for a variance components 
model has been derived by Rao and Kleffé (1988) and modified by Demidenko and 
Massam (1999). 

A practical implication of the following theorem is that the MLE in the LME 
model exists with probability 1 if the total number of observations is sufficiently 
large, particularly if ^ ( n ^ — A;) — m > 0. However, the MLE existence does not 
guarantee that matrix D M L is positive definite, and we discuss this issue in the 
next section. 

Theorem 4 Under the assumptions of Section 2.2, the ML and RML estimates 
for the mixed effects model (2.14) on the parameter space (2.16) exist if and only if 
there does not exist such a ß G Rm,/y1^ ...,*yN G Rk, that 

yi = Xiß + Zi<yi, ΐ = 1,...,ΛΓ, (2.90) 

or, equivalently, that inequality (2.37) holds. 
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Proof is given in Section 2.17 (for RML we assume that at least m + 1 matrices 
Zi^Zi are nonsingular). 

Remarks 

1. Let the NTx(m + Nk) matrix W =[X; Z] be defined as in (2.34). If 

rank(W)<iVT, (2.91) 

the MLE exists with probability 1. Indeed, y eRNr has normal distribution 
with a positive definite covariance matrix V. Condition (2.90) means that the 
MLE does not exist if y belongs to the linear space generated by the vector 
columns of matrix W . But this probability is zero if (2.91) holds. Clearly, 
condition (2.91) holds if Σ ( η » — k) > m. 

2. One can verify inequality (2.37) in two ways. First, we can construct a stacked 
vector and matrix 

Γ y iz 

L y NT,. 

> Xz = 

X i z Ί 

_ XJVZ j 

where y i Z = (I - Z<Z+)y< and XiZ = (I - Z<Z+)X<. Then the MLE exists if 
and only if the sum of squares of the OLS residuals in the regression of yz on 
Xz is positive. Second, one can compute the OLS regression y on W . Again, 
the MLE exists if and only if the sum of squares is positive; if matrix W ' W 
is singular, one needs to take the generalized inverse. 

3. If the MLE exists, then β'β —» oo or σ2 —> 0 or D —> oo implies that I —» — oo. 
Therefore, under (2.37), the level set S0 = {Θ : 1(θ) > 1(θ0)} is compact. 
Moreover, for any starting point 0o the sequence of parameters generated by 
any iterative maximization algorithm, which increases the value of the log-
likelihood function from iteration to iteration, converges (Demidenko, 1989). 
In particular, this implies convergence of the EM algorithm. 

4. If the MLE exists, the estimate of σ2 must be strictly positive. 

5. Assumption of the nonnegative definiteness of matrix D is important for proof 
of MLE existence. If one looks for the maximum of the log-likelihood over 
the set of positive definite matrices D, this maximum may be outside the 
parameter space if the maximum point in (2.16) belongs to the boundary 
(i.e., where |D| = 0). 

Interestingly, the MLE may exist but make no sense for matrix D (see the example 
in the next section). 

Problems for Section 2.5 

1. Formulate Theorem 4 for the classical linear regression model (N = 1, k = 0). 
What happens with the log-likelihood when σ2 —> 0 if (2.90) holds? 
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2. Does Theorem 4 hold for the Rao and Kleffé (1988) parameter space: that is 
when matrices I + Z^DZ^ are positive definite for alH = 1,2,..., N? 

3. Regarding Remark 3, construct an example of a function f(x) bounded from 
below, where x G (—00,00), so that a sequence of values Xk minimizes the value 
from iteration to iteration, f(xk+i) < /(#&), yet the sequence does not converge 
when k = 1,2,... 

4. Reduce the criterion for the existence of the MLE to a least squares solution 
with the block diagonal matrix Z. 

5. Write an R function that tests whether the MLE exists (it should return 1 if 
MLE exists and 0 otherwise). Use the ginverse function listed in Section 2.2.3. 

6. Prove that the MLE exists for the data f amdat by means of inequality (2.37). 

2.6 Criterion for the positive définiteness of matrix D 

Sometimes the maximum likelihood procedure fails during likelihood function max-
imization. Certainly, this might be the case when (2.90) holds, so that there is no 
solution to the maximum likelihood estimation. In cases where (2.90) does not hold, 
perhaps the only reason for failure is that during iterations the covariance matrix 
of random effects does not become nonnegative definite. In particular, the diagonal 
elements of matrix D might become negative. A primary question is posed: are ran-
dom effects relevant? That is, perhaps, the covariance matrix of random effects is 
zero. Obviously, if random effects are irrelevant, one might expect different kinds of 
problems from divergence to computer program overflow. Before getting into trou-
ble, is it possible to find out if a positive solution exists ? The aim of this section 
is to provide a relevant criterion for the LME model (2.5). A statistical criterion 
regarding the presence of random effects is considered in Section 3.5. 

Theorem 5 Let ê  = yi — ~KißOLS denote the n^ x 1 OLS residual vector and 
&OLS = Σ II ®* II2 /NT denote the OLS variance. If the k x k matrix 

Σ ZjSieJZi - d2
OLS Σ Z% (2.93) 

is nonzero nonnegative definite, the MLE ofO is a nonzero matrix. 

Proof. It suffices to show that there^exists a nonzero nonnegative definite matrix 
D* such that maxjg)(T2 Ζ(/3,σ2,Ό*) >l(ßoLsfi<OLSi®)' First we find the derivatives 
of I with respect to D using the formulas 

^ p - 1 = ZjVrX ^ p i = -ZjVr^e iVZ, . (2.94) 

Hence, the derivative of the log-likelihood function (2.19) with respect to D is given 
by 

^ = -\ Σ Κ ν ζ « - a - ^ V - ^ V - 1 ^ ] , (2.95) 

see Section 2.9. Now we use the following fact of multivariate calculus: if F(K) is 
a function of a vector argument and g =<9F(x = 0) /9x φ 0, there exists such a 
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positive scalar λ that for x* = Ag, we have F(x*) > F(0). If matrix (2.93) is 
nonnegative definite, then 

_9Z_ 

ΘΌ 
is not zero and is a nonnegative defined matrix. 

ß=ß0L3*<r2=^0LS*'Dss0 

Therefore, there exists a nonzero nonnegative definite matrix D* such that 

maxZ(/3,a2,D*) >l(ß0LsfioLSiO*) >l(ßoLsfioLSi°) =max/(/3,a2,0), 
β,σ2 β,σ2 

which proves the theorem. 
■ 

For one random effect (k = 1) we obtain the following simple criterion: if 

°OLS < ψ-τζ » (2·96) 
2^ζίζί 

then DML is positive, where Ζ^ = ζ̂  is an Π{ χ 1 design vector of the random effect. 
The proof follows from the fact that under condition (2.96), the derivative of the 
log-likelihood function at ß =ßoLS a n d o2 — °2OLS *S positive, and therefore there 
exists a positive D that gives a greater value of the log-likelihood function than that 
at D = 0. 

In the preceding section it was shown that the MLE exists with probability 1 if 
Σ(ηι — k) > m. As follows from this section, there is always a positive probability 
that D M L = 0. 

2.6.1 Example of an invalid LME model 
In this section a peculiar LME model is considered for which the MLE exists but 
&ML = 0. For that model the condition of Theorem 4 holds with probability 1, 
but the condition of Theorem 5 does not. A more general LME model for which 
the MLE of D is zero, linear regression with random coefficients, is considered in 
Section 3.2.1. 

Consider a simple example of a LME model, in fact, a VARCOMP model. Let 
yij denote a characteristic of subject j in experimental group i. For example, yij 
could measure the response to treatment of individual j under treatment plan i. It 
is assumed that all subjects in the same group behave similarly; that is all {yij, j = 
1, ...,rii} have common mean ßi and the same variance, where n* is the number of 
subjects in the ith group and there are N groups. We believe that subjects from 
different groups behave independently but within one group react to experimental 
conditions somewhat similarly (i.e., yij and yu correlate). Taking all of the above 
into account, it seems that an adequate model to describe data {yij} is 

Vij =ßi + bi + eij, ί = 1,...,JV, j = l,...,rii, (2.97) 

where ε^ is the error term with zero mean and variance σ2, bi is the random 
effect with zero mean and variance d* = da2, and ßi is the fixed effect. Also, it 
is assumed that {ε^-,&ί} are mutually independent and normally distributed. The 
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reader can recognize that model (2.97) looks like the VARGOMP model (1.8) but the 
{/^} are different. As follows from model (2.97), the subjects from different groups 
are independent, but within the group they have compound symmetry correlation, 
cor(yij,yik) = d*/(d* +σ 2 ) = d/(l + d). This, a seemingly valid statistical model, is 
inadequate because the maximum likelihood estimator does not exist. We will show 
this using Theorem 4. For this model X^ is an Tii x N matrix, with l n . as the ith 
column and zero elsewhere, and β = (/3ΐ5 ...,βΝ)\ Ζ^ = ζ̂  = ln. is an η^ χ 1 vector. 
The rank of matrix W is N and, as follows from Theorem 4, if at least for one % we 
have rii > 1, the MLE exists with probability 1. For model (2.97), X;/3 =ßi%i and 
the log-likelihood function (2.26) takes the form 

-\ S.NT Ιησ2 + f > ( l + dm) + σ~2 g "*~ ffi11' ) · (2-98) 

This function reaches its maximum at ßi = y{ regardless of d, so that (IML = 0. In 
fact, we could obtain this result from Theorem 5 because Zze2· = 0, and therefore 
(2.93) is a nonzero negative definite matrix. 

In the literature on the variance components model, it is usually assumed that 
fixed effects are not confounded with random effects. This excludes pathological 
models such as (2.97) (Hartley and Rao, 1967). A valid model is to assume that all 
ßi are the same, which leads us to (1.8). 

P rob lems for Section 2.6 

1. Derive a sufficient criterion for the positiveness of the variance MLE in the 
random intercept model using (2.96). 

2. Does Theorem 5 hold for RML? 
3. Give a nonformal explanation as to why model (2.97) is a greedy (overspecified) 

model. 
4. Provide a formal proof that the maximum of function (2.98) is attained at 

ßi = d = 0. 
5*. Test the performance of criterion (2.93) via simulations. More specifically, test 

criterion (2.96) for a linear model with a random intercept using the family data (you 
may use the results of Problem 1). Set the true parameter values as a = —204 and 
ß = 5.3. Generate ATexp = 100 dataframes using the same cluster id as FamilylD and 
x=f amdat$Height; generate y=alpha+beta*x+rnorm(N ,mean=0, sd=sigma), where 
sigma=24 as in the family example. Note that the y-generation assumes zero vari-
ance of the random intercept, or in other words, all intercepts are the same. Estimate 
the model using lme under an assumption of random intercepts. Count the number 
of times the estimate of the variance of the random effect is greater than 10~4 and 
count the number of times inequality (2.96) holds at the same time. How many times 
the estimate of the random effect variance less than 10~4? Does (2.96) hold if and 
only if the MLE of the random intercept variance is greater than 10"4? Summarize 
your findings. 
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2.7 Pre-estimation bounds for variance parameters 

In this section pre-estimation bounds for the MLE of variance parameters σ2 and D 
are derived under model (2.5). These bounds provide some insight into the interpre-
tation of the variance components and its relationship to the fixed effects approach 
when the b* are treated as fixed. 

Let d2
ML be the MLE of σ2 in the LME model. We shall prove that 

°xz < °ML < 9OLS, ( 2 · " ) 

where 

°\z = ^ = ^ 7 || y z - Xz/3 | |2= ^ - y z ( I - X Z X£)yz , (2-100) 

and 5min is as defined in (2.37) with yz and Xz as defined in (2.92), and &OLS as 
defined in Theorem 5 in Section 2.6. 

Proof. To prove the left inequality (2.99), we note that as follows from (2.21), 
V^-1 > I — Ζ^Ζ+, meaning that the difference between the left and right sides is a 
nonnegative definite matrix. Applying this inequality to (2.39), we obtain 

^ > - ^ m i n ^ y . - X ^ ' V - ^ - X ^ ) 'ML NT ß 

* ^ π ι ι η ^ ( Υ ΐ - Χ , / 3 / ( Ι - Ζ , Ζ + ) ( Υ ί - Χ , / 3 ) 
NT ß 

γ'ζ[1 - Xz(X,
zXz)-1X,z]yz = σ\ζ, 

which proves the left side of (2.99). To prove the right inequality in (2.99), we let 
D = 0, σ2 = σΟ Ι /5, and ß = ßoLS-> which gives the value of the log-likelihood 
function at OLS, 

I = IOLS = -^(NTlna2
OLS + NT). 

Since d2
ML satisfies (2.39), we obtain 

IOLS < m a x / = ZML 

= - i { i V T l n ^ L + iVT + 5 ] l n | I + D M L Z ^ | } 

- - { i V T l n a ^ L + iV T } , 

which implies that d2
OLS < a2

ML. 
m 

There is a nice interpretation of inequality (2.99): The least squares variance 
&OLSI

 m a s ense> estimates the total variation, which is the sum of the variance 
of the random term Si and the variance of the random effect Ζ ^ . The variance 
σχζ estimates the variance of y* in the fixed effects model approach, and therefore 
is the minimal variance. Inequality (2.99) means that the MLE variance of σ2 lies 
between them. 
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Now we find a similar inequality for the MLE of the covariance matrix D. Using 
the left side of (2.99), we obtain 

IOLS = -l{NTlna2
OLS + NT} < lML 

= -\{NT\na2
ML + NT + $ > | I + D M L ^ Z ; |} 

< -ί{Ντ\ησ2
χζ + NT + £ l n | I + D M L ^ Z * | } , 

which implies that 

N ^ 2 

^ l n I I + D M L Z ; Z ; |< i V T l n ^ § M . (2.101) 
i=l σΧΖ 

As seen from this inequality, the magnitude of matrix OML depends on how close 
the variance σχζ is to the variance &OLS. If these two variances are the same, 
DML = 0. Actually, this fact is the basis for our F-test in Section 3.5 in the 
presence of random effects. 

Inequality (2.101) yields an upper bound for the MLE matrix D. It is possible to 
find the exact upper bound for one random effect when D =d is a scalar (k = 1). 
Then, inequality (2.101) can be rewritten as 

N 

5^1n(l + dpi )< i4 , (2.102) 
i=l 

where pi = Z^Z^ is scalar and A = Ντ ^(^OLS/^XZ)- Since the left side of (2.102) 
is an increasing and concave function of d, the upper bound is the solution to the 
equation J ] ln ( l + dpi) = A. The Newton algorithm with a starting value do = 0 
leads to an increasing iterative sequence of ds that converges to the upper bound of 
the variance of the random effect. The reader can derive an explicit bound for dML 
in the balanced random-intercept model of Section 2.4. 

Generally, inequality (2.101) defines a compact set in D-space. If the matrices 
{Zi} are of full rank, applying the matrix inequality I + D M L Z ^ > DMjLZ^Zi, we 
obtain a rough approximation to the upper bound for the general variance as 

ÖML |<exp NT°OLS 

Applying the further matrix inequality ln(|M| ) <fcln(fc-1tr(M)) for any positive 
definite k x k matrix M, we obtain the inequality Σί m ( ^ + r ) ^ -̂ » where it is 
denoted r = tr(D), and 

"-k A-^lnlZ^i + iVlnfc, i<=tr(Z^Z<)"1 . 

Again, this inequality may be solved for r successfully using the Newton algorithm 
starting from r = 0. 
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Problems for Section 2.7 

1. Show that σ2
χζ > 0 is a necessary and sufficient criterion for the existence of 

the MLE (see Section 2.5). 
2. Prove the inequality ln(|M| ) <fcln(fc_1tr(M)) for any positive definite k x k 

matrix M using the fact that the geometric mean is equal or less than the arithmetic 
/ m \ V m 

mean, namely, j ]^[ λ* 1 < ^ Y^Li î> where λ̂  > 0. 

3. Derive pre-estimation bounds for the model with random intercepts. 
4*. Using the results from Problem 2, compute the upper bound for the MLE of 

the scaled variance of the random intercept in the weight versus height example of 
Section 2.1.1 by solving the equation Σί=ι m(^i + d) = B. You can use either the 
R built-in function uniroot or write your own function using Newton iterations, 

ds+i = ds - fej=! ln(ti + ds) - B) / Σ * = Ι V(*t + ds), where s is the iteration 
index. Is the upper bound sharp? Find conditions when the inequality turns into 
an equality. 

5*. Generalize the pre-estimation bounds for the restricted MLE. 

2.8 Maximization algorithms 

Three general types of algorithms are used in statistics to maximize the log-likelihood 
function: Expectation-Maximization (EM), Fisher scoring (FS), and Newton-Rap 
hson (NR). All these algorithms can be applied in the framework of the linear 
mixed effects model (Jennrich and Schluchter, 1986; Laird et al., 1987; Lindstrom 
and Bates, 1988; Jamshidian and Jennrich, 1993; Wolfinger et al., 1994). These 
algorithms have the generic form 

t s + i = t e + \8δ8, s = 0,1, . . . , (2.103) 

where t s is the ML estimate at the 5th iteration, t s+i is the updated vector, 0 < 
Xs < 1 is the step length, and Ss is the direction vector or adjustment vector, 
calculated as 

δ8 = H ^ g , , (2.104) 

where 

g s ~~ ßt\ 
οτ lt=ts 

is the gradient of the log-likelihood function Z, and H s is a positive definite matrix. 
The step length Xs is required to ensure the increase in function / from iteration 
to iteration. In fact, the three algorithms mentioned above differ by matrix H. 
For the NR algorithm, H is the negative Hessian matrix (negative matrix of the 
second derivatives, -92Z/02) , and for the FS algorithm H is the information matrix 
(the expected matrix —d2l/02). For convergence, the matrix H must be positive 
definite. For the NR algorithm, one may expect that H is positive definite in a 
neighborhood of the maximum. For the FS algorithm, this matrix is always positive 
definite if the statistical model is specified correctly. For the EM algorithm, the 
matrix H is also positive definite, and Xs = 1 is fixed. Characteristically, for this 
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algorithm, the log-likelihood function increases from iteration to iteration, Z(ts+i) > 
Z(ts), if the gradient at t s is not zero, so Xs is redundant. Unfortunately, this is 
not true for the other two algorithms, and Xs should be found empirically (e.g., 
by halving starting from λ = 1). As follows from multivariate calculus, at each 
iteration there exists a positive Xs that provides an increase in the log-likelihood if 
g s φ 0. Also theoretically, the Newton-Raphson algorithm has a quadratic speed 
of convergence in a neighborhood of the maximum. However, if iterations are far 
from the maximum, the NR algorithm may fail. In particular, it happens when 
the negative matrix of the second derivatives does not become positive definite. 
Conversely, the EM algorithm seems more robust at the starting point, although it 
may exhibit slower convergence. Often, in the framework of mixed effects modeling, 
the failure to converge is associated with the fact that some diagonal elements 
of matrix D become close to zero or, more generally, D does not become positive 
definite (Jennrich and Schluchter, 1986). Theoretically, the Fisher scoring algorithm 
provides positive definiteness of H and potentially inherits positive properties of 
the other two algorithms, at least for large N. A big advantage of the NR and FS 
algorithms over the EM algorithm is that they produce the asymptotic covariance 
matrix of the estimated parameters, H j 1 , as a by-product of the maximization 
process. We prefer using the expected negative Hessian to estimate the covariance 
matrix rather than empirical Hessian (second derivatives) because the latter may 
lead to an undesirable statistical paradox (Demidenko and Spiegelman, 1998). 

The EM algorithm was suggested initially by Laird and Ware (1982) in their 
pioneering work on linear mixed effects models. The Newton-Raphson algorithm 
for the LME model was developed by Lindstrom and Bates (1988), and Wolfinger 
et al. (1994). They give formulas for the first and second derivatives of the log-
likelihood function in coordinate form that make the algorithm presentation quite 
cumbersome. The NR algorithm is used in statistical packages SAS (the procedure 
mixed) and the R package nlme (function lme) and the recent lme4 (the function 
lme4). In subsequent sections we consider matrix versions of the NR, EM, and FS 
algorithms and their modifications based on a perturbation formula for the inverse 
matrix. Matrix formulation makes these algorithms compact and facilitates study 
of their properties. The important part is to obtain updates for matrix D because 
beta coefficients are derived from GLS. 

The choice of starting point in any nonlinear optimization problem is important. 
A good idea is to start the maximization algorithm from an unbiased quadratic 
estimate of D, such as MINQUE, method of moments, or variance least squares, 
developed in Chapter 4. They produce the exact MLE for balanced data so that 
the iterative maximization converges at the first iteration. 

In this chapter we use (σ2, D) parameterization; in Section 6.4.4 we consider log-
likelihood maximization, under parameterization (σ2 ,Ό*), as an illustration of the 
total generalized estimating equations approach. The reader can find more discus-
sion on optimization issues in Appendix 13.3. 

Problems for Section 2.8 

1. Let function / (x) be continuous on Rm and bounded from above, / (x) <K. 
Let a sequence {x/c} gradually increase the value of / , i.e. /(x/c+i) > /(xfc). Does 
the sequence {x/c,fc = 1,2,...} converge? Does the sequence {x/c} have at least 
one limiting point (is there a subsequence that converges)? Prove the statements 
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or provide counterexamples. Does converence imply that {x&} converge to a local 
maximum? Refer to Section 13.3 in the Appendix for a general discussion. 

2. Does MLE always exist? Is it unique? Does the solution of the score equation 
(the derivative of the log-likelihood function with respect to parameter is zero) yield 
maximum likelihood? Give conditions and examples when it does. Does MLE (with 
the maximum likelihood value) satisfy the score equation? 

3. How often can one find a solution of the score equation that is neither minimum 
nor maximum (sometimes this solution is called the saddle point)? What is the 
probability of this event? 

2.9 Derivatives of the log-likelihood function 

All maximization algorithms require derivatives of function (2.15) with respect to 
the parameters. Using standard formulas we obtain 

a - ^ X i V r ^ y i - X i j S ) , 

-\Ντσ~2 + \σ~* Yjxi - Xift'V^fri - Χ,/3), (2.105) 

-\ T\ziyïlz* - " " ^ V f o - X^Xy.-Xi^'vr1^]. 

We use formulas (2.94) to obtain dl/dO; the first two derivatives are straight-
forward. The maximum likelihood estimate maximizes function I or, equivalent ly, 
solves the system of nonlinear equations 

— -n — -n —-n 
dß " ' da2 ' ÖD " ' 

for ß, σ2 and D, where the last equation is the k x k matrix equation. For the 
Newton-Raphson algorithm, we also need the second derivatives. We could obtain 
them by differentiating (2.105) again, but then we would have to differentiate a 
matrix with respect to a matrix to find d2l/dO2. Fortunately, we can avoid this 
cumbersome procedure by applying the following perturbation formula for the in-
verse matrix (Schott 1997). 

Proposition 6 Let M be a positive definite matrix and C a nonn$gative definite 
matrix of the same order. Then for sufficiently small C, 

(M + C ) " 1 = M " 1 - M - ^ C M - 1 + Δ , (2.106) 

where (i) A = Δ ( ϋ ) is a positive definite matrix, and (ii) || Δ ||= o(|| C ||). 

Proof. First we prove that Δ is a positive definite matrix. We use the following 
matrix inequality: (14- C)~ > I — C for all nonnegative definite matrices C. This 
inequality follows from 

I - ( I + C ) _ 1 = (I + C ) - 1 / 2 ( I + C - I ) ( I + C ) - 1 / 2 

= (I + C ) - 1 / 2 C ( I + C ) _ 1 / 2 < C , 

ËL 
dß 
dl 

θσ2 

m_ 
ÖD 
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because (I + C) < I. As follows from this inequality, 

(M + C ) " 1 = M - ^ t l + M - ^ C M " 1 / 2 ) - ^ - 1 / 2 

> M - ^ i l - M - ^ C M - ^ J M " 1 / 2 

= M ^ - M ^ C M " 1 , 

which proves the first statement of the proposition. To prove the second statement, 
we apply the following well known matrix result (Graybill, 1983): 

( Ι - Α Γ ^ Ι + Α + Α ^ . . , 

if all eigenvalues of matrix A are less than 1 in absolute value. Applying this result 
to the left-hand side of (2.106) with sufficiently small C (more precisely for C with 
eigenvalues in absolute value less than 1), we obtain 

(M + c ) _ 1 = M - 1 / 2 ^ - {-m-1/2CM-1/2))-lm~^2 

oo 

= M ^ ^ ^ t - I J ^ M - ^ C M " 1 / 2 ) ^ - 1 / 2 

fc=0 

= M ^ - M ^ C M ^ + A , 
where 

oo 

Δ = M " 1 / 2 ^ ( - l ) f c ( M - 1 / 2 C M - 1 / 2 ) f c M - 1 / 2 . 
k=2 

Clearly, || Δ ||= o(|| C ||), meaning that matrix Δ is of smaller order than matrix 
C. ■ 

In the next section we use perturbation formula (2.106) to derive the matrix 
version of the NR algorithm and its modifications. 

Problems for Section 2.9 

1. Derive approximation (2.106) for numbers. 
2. Derive approximation (2.106) for a special case when C = c l l ' and compare it 

with the exact formula inverse. (Hint: Use the matrix inverse formula from Section 
2.4.1.) 

3. Derive approximation (2.106) in a special case when M = I (the identity ma-
trix) and C =A11', where λ > 0 and 1 is a vector of Is. Check Proposition, using 
the exact matrix inverse (2.69) by showing that ϋπΐλ->ο Δ = 0. Also prove that Δ 
is a positive definite matrix for λ > 0. 

4*. Is matrix Δ in the proof positive definite if C is positive definite? Start with 
the case when matrices are scalars. Compute Δ and test its positive definiteness 
for several M and C before proving the general case. 

2.10 Newton-Raphson algorithm 

As mentioned above, all iterative maximization algorithms have generic forms (2.103) 
and (2.104). For the NR algorithm, H is the Hessian (second derivatives) matrix. 
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One could obtain second derivatives by differentiating (2.15) directly as Lindstrom 
and Bates (1988) and Wolfinger et al. (1994) did, but we suggest another, less 
cumbersome matrix approach based on the perturbation formula derived in the 
preceding section. 

Let /35,σ^, and D s be approximations to the ML estimate at the sth iteration. 
We update these approximations as 

ß = ßs + δβ, σ2 = σ\ + δσ2, D = D s + A D , (2.107) 

where δβ, 5σ2, and Δ Β are parameter adjustments (presumably small). We use the 
following first-order approximations to the nonlinear terms of (2.105): 

We apply perturbation formula (2.106) to update the inverse matrix V. Letting 
M = ViS, C = Ζ^ΔϋΖ^, we obtain a first-order approximation to the updated in-
verse, 

V r 1 = [I + Z*(De + A D J Z Î ] - 1 = ( V ^ + Z ^ D Z J ) - 1 ~ V r 1 - V ^ Z ^ D ^ V r 1 . 
(2.108) 

Now we substitute the updated values into system (2.105) leaving only the first-
order terms, i.e., quadratic and product terms are omitted. As is easy to see, this 
substitution produces two parts: the first part contains no adjustments and cor-
responds to the derivative of I at iteration s; the second (adjusted) part contains 
three adjustment components. We do not write the first part because it corresponds 
to derivatives (2.105) at iteration s; also, the subindex i is omitted to shorten the 
notation. The adjusted part for equation (2.105) has the form 

[σ,-2 ^X'V-^oß + [ t r J ^ X ' V ^ e ] ^ + [σ? ^X'V^ZAoZ'V^e]. 

The adjusted part for the second equation has the form 

[aj4 Σ e ' V ^ X ] ^ + [ a j 6 £ e ' V ^ e - 0 . 5 i W ] δ σ , 

+ [ 0 . 5 σ - 4 ^ ν ν - 1 Ζ Δ Ε > Ζ ' ν - 1 β ] , 

and for the third equation 

[ σ 7 2 ^ β / ν - 1 Ζ Δ η Ζ , ν - 1 Χ ] ί / 9 + [0 .5<7- 4 5%'V- 1 ZA D Z , V- 1 e ] i ( r a 

+ 0 . 5 [ 5 ^ { σ 7 2 ( Κ Δ ϋ Ζ / ν - 1 β β ' ν - 1 Ζ + Z ' V ^ e e ' V ^ Z A o R ) - R A D R } ] , 

where R = Z ' V _ 1 Z is the k x k matrix. Importantly, this method produces terms 
at the adjustments corresponding to the second derivative of I or the Jacobian of 
system (2.105). To use the NR algorithm we need to represent matrix A D in vector 
form using formulas from Appendix 13.2.3, so we let δτ> =vec(Ao)· For example, 
taking the vec operation of the last term in the equation above, we obtain 

a 7 2 ^ X ' V - 1 Z A D Z ' V - 1 e 

= vec[a72 Σ X ' V ^ Z A n Z ' V ^ e ] = [σ72 £ e ' V ^ Z <g> X ' V - 1 ^ . 
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After rewriting the estimating equations above in the vector form, we come to the 
following negative Hessian matrix of the log-likelihood function (2.15) in terms of 
the (m + 1 + k2) x 1 vector (/3/,a2,vec/(D))/ : 

H 

Γ τττηΧτη 
^ 1 1 

H 1 2 

L H 1 3 

W 1 2 
r r l x l 
^ 2 2 

H 2 3 

jjrmxk2 

M 1 3 
Tj lXfe 2 

^ 2 3 
Txfc2Xfc2 

^ 3 3 

where 

H n 

Hi3 

H23 

H33 

σ~2 Σ ^ ν ^ Ζ ; ® X j V r ' Z i , F22 = σ - β Σ β ί ν ^ β ί - 0.5ΛΓτσ-4, 

O - ö f f - ^ e i V ^ Z i O e i V r 1 ^ , 

0.5 Y]{a-2{7,'iY-leie'iy-1Zi ® R i + R ; ® Z j V f ^ e J V f ^ i ) - R, ® R»}. 

Thus, the Newton-Raphson algorithm is written as 

ß. i+1 

σί+ι 
vec(D s+1) 

= 
' ßs 

°l 
_ vec(Ds) _ 

+AS 

" H n 
H ' l 2 

. H ' l 3 

(2.109) 

H12 

# 2 2 

H 2 3 

H13 

H23 
H33 

- 1 

s 

Γ dl 

da2
 a 

I vec(^) 

where the first derivatives of the log-likelihood are calculated by formulas (2.105). 
The step length Xs is chosen by the following rule: Start with Xs = 1; if Zs+i > Zs, 
accept Xs = 1 and go to the next iteration. If Zs+i < Zs, take Xs = 1/2, 1/22,... until 
Zs+i > ls. We cannot find positive Xs in two cases: in the first case the gradient of 
the log-likelihood is zero or very small—the maximum (at least local) is found. In 
the second case, which occurs more often, the gradient is not zero; the NR algorithm 
fails because the Hessian matrix is not positive definite. Unfortunately, the Hessian 
may not be positive definite, especially when iterations are far from the maximum 
point, and this is the main drawback of the NR algorithm. As we shall see later, 
Fisher scoring is as fast as the NR algorithm but more reliable in the sense that the 
inverse matrix (the information matrix) is always positive definite for a well-defined 
LME model (see the next section for more detail). In fact, one can interpret the 
FS algorithm as the "expected version" of the NR algorithm, meaning that the 
information matrix is the expected (average) negative Hessian matrix. 

P rob lems for Section 2.10 

1. Derive NR iterations (2.109) for a linear mixed model with a univariate random 
effect (vec is not necessary in this case). 

2. Prove that the NR algorithm leads to a symmetric matrix D at each iteration. 
3*. Implement NR iterations in R for a linear mixed model with a univariate 

random effect. Test your code with lme using simulated data. 
4*. Implement NR iterations in R for a general linear mixed model (2.5). Use 

kronecker for 0 and as .vec to r for vec. Test your code with lme. 
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2.11 Fisher scoring algorithm 

The Fisher Scoring (FS) algorithm is a general algorithm for log-likelihood maxi-
mization with matrix H as the expected negative Hessian, the information matrix, 
X. The formula for the information matrix for parameters /3,a2,vec(D), which are 
derived in Chapter 4, is given by 

σ ^ Σ Χ ' , ν ^ Χ ; 0 0 1 
0 0.5ΛΓτσ-4 0 .5a" 2 5>ec ' (R. ) 
0 0 .5a - 2 £vec (R . ) 0.5 Σ R i ® Ri J 

(2.110) 

where R^= Z^V^"1Zi, so that iterations take the form (2.103) with H = J , adjust-
ments (2.104), and the gradient calculated by formulas (2.105). Since this informa-
tion matrix has a block diagonal structure (the MLEs for β and variance parameters 
(σ2,Ό) are asymptotically independent), we adjust fixed effects and variance para-
meters separately. The new ßs+\ is estimated by GLS (2.28), replacing D with D s , 
and σ2 and D are recalculated using the bottom-right block of matrix X. 

There are three reasons to prefer Fisher scoring to the Newton-Raphson algo-
rithm: 

1. The negative Hessian matrix ,—ô2Z/ô02, or empirical information matrix, may 
not be positive definite (more precisely, not nonnegative definite), especially 
when the current approximation is far from the MLE. When this happens, the 
NR algorithm slows down or even fails. On the contrary, the expected infor-
mation matrix (2.110), used in the FS algorithm, is always positive definite if 
the LME model is well defined (see Proposition 13 in Chapter 4). 

2. The expected information matrix at the final iteration leads to a better esti-
mate of the asymptotic covariance than does the empirical information matrix 
(Demidenko and Spiegelman, 1997). Additionally, the expected information 
matrix is robust to possible outliers, unlike the empirical information matrix. 
To illustrate this point, let us consider the nonlinear regression model yi — 
fi(6)+Si, with normally distributed errors and a scalar parameter Θ. Then the 
empirical Fisher information is proportional to Y^(dfi/d0)2 — ^(d2fi/d62)ei, 
where ê  is the ith residual and the expected information is proportional to 
Y^(dfi/d6)2. Clearly, in the presence of an outlier (e* is large in absolute value), 
the empirical information will be influenced by that outlier. On the contrary, 
the expected information is not affected by the outlier. In fact, in nonlinear 
regression use of the expected information to calculate the variance of the 
least squares estimate is the rule (Bates and Watts, 1988; Seber and Wild, 
1989). 

3. Use of the expected information matrix simplifies construction of different 
versions of maximization algorithms based on profile log-likelihood functions 
and the restricted MLE (see Section 3.6.3). For instance, if we want to apply 
the FS algorithm to the variance profile log-likelihood function, we use matrix 
(3.20). If we want to use the RMLE, we use the same information matrix be-
cause the asymptotic properties of MLE and RMLE are the same, see Section 
3.6.3. 
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Therefore, we prefer the Fisher scoring algorithm over the Newton-Raphson or 
EM algorithms; in practical maximization the FS algorithm is almost as fast as the 
NR algorithm but is more robust to the starting point. As will follow from Section 
3.12, the FS algorithm may be interpreted as the least squares solution. 

We apply the FS algorithm to the nonlinear marginal model of Chapter 7 in the 
framework of the total generalized estimating equations approach (see Section 6.4). 

2.11.1 Simplified FS algorithm 

Since maximization over σ2 admits a closed-form solution (2.39), if β and D hold, 
we can use the (3,3) block of matrix (2.110) to find the adjustment for D; that is, 

vec(D s +i) = vec(Ds) + Xs ( ] T R i s 0 R i s ) 

xvec {jya^Zy^e^WT^ - R*]) , (2.111) 

where the subscript s indicates that quantities are computed at the sth iteration. 
Then σ2 and β are recalculated by (2.39) and (2.28) using D s + i , and iterations con-
tinue. Iterations (2.111) may be derived directly from the score equation dl/ΘΏ = 0, 
rewriting 

Z j V ^ Z i = Z i V V i V r 1 ^ = Z j V r ^ I + Z i D Z O V Z i 

= Z ^ V - ^ + RiDR; . 

Then the score equation for D is equivalent to 

^ R i D R j = ^ [ a - ^ V - ^ V ^ Z i - Z^V^Z, ] . (2.112) 

Applying the vec operator to both sides, we obtain 

vec(D s+1) = ( ^ R * O R * ) " 1 vec ( ^ K ^ Î V ^ e ^ ^ r 1 ^ - Z ^ V r 2 ^ ] ) . 

It is straightforward to show that the last equation is equivalent to (2.111) with 
Xs = 1. One can use the dimension-reduction formulas; for example, if the Z^ have 
full rank, then R^ = ((Z^Z^)-1 + D ) ~ and the matrices (Z^Z^)-1 can be computed 
beforehand. In the next subsection we use the dimension-reduction formulas for 
variance-profile parameterization. 

2.11.2 Empirical FS algorithm 

One can use first derivatives to approximate the information matrix. This idea 
comes from the fact that, generally, for the information matrix, 

*—(£)-*(s)(S)'· 
Thus, approximately, 

-s(S)(sy 
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for a sufficiently large N. An attractive feature of the Empirical FS (EFS) algorithm 
is that it does not require second derivatives at all and it may work well when N 
is fairly large, due to asymptotic theory. We use this algorithm in Chapter 5 for 
ML estimation of the robust/median meta-analysis model and in Chapters 7 and 
8 for nonlinear mixed models, where computation of second derivatives becomes 
cumbersome. 

2.11.3 Variance-profile FS algorithm 

The FS algorithm can be applied to the variance-profile log-likelihood function 
(2.41) derived in Section 2.2.4. As follows from formula (3.20), the information 
matrix for vec(D) in the variance-profile log-likelihood function is given by 

H =0.5 
' N 1 N N 

Σ &i ® Ri - T p v e c ^ Ri )vec ' ( ] r R*) 
U = i 

NT 2 = 1 i=l 

(2.113) 

where 
R; = ZiZ<(Ifc + DZ^Z;)-1 = (Ifc + Z i Z i D ^ Z j Z i 

is a symmetric matrix. Hence, to apply the FS algorithm, we need only the first 
derivatives of (2.41) with respect to D, where the beta coefficients are recalculated 
by formula (2.28). Applying the dimension-reduction formulas, we come to an eco-
nomical expression for the bet a-vector: 

ß = [ N - ^ T ^ D - 1 + MO^TjrMt- E T i ( D _ 1 + Μ*)-1Ρί]> 

where in addition to notation (2.42) we denote 

(2.114) 

(2.115) 

Notice that these quantities are fixed and may be computed beforehand. 
To obtain the derivative of (2.41) with respect to matrix D we use the general 

formula (Appendix 13.2.4) 

dr'iO-1 + M ) _ 1 r 
9D 

(I + MD)~ r r ' ( I + DM) \ - i (2.116) 

which yields 

dip 
dO 

1 N ΓΛΓ 
T = Ö Σ -fi1 + M i D r V - t l + DMi)-1 - Mi (I + DMj) 

i = l 

- 1 

where 
S = J2[Si-r'i(O-1+Mi)-

1ri] 
i 

Finally, matrix D updates as 

vec(Ds+1) = vec(Ds) + X^vec ( ^ 
D = D S , 

(2.117) 
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where matrix (2.113) and the derivative are computed at the sth iteration. In prac-
tice, often Xs = 1; however, we cannot guarantee that the unit step always increases 
the value of the log-likelihood function. 

Problems for Section 2.11 

1. State conditions under which the Fisher information matrix given by (2.110) 
is positive definite. 

2. Prove that matrix Rz is symmetric. 
3. Prove that (3.20) implies (2.113). 
4. Check the matrix derivative (2.116) for scalars (all matrices and vectors are 

scalars). 

2.12 EM algorithm 

The Expectation-Maximization (EM) algorithm was one of the first to maximize the 
log-likelihood function for the LME model. See Laird and Ware (1982), Jennrich and 
Schluchter (1986), Laird et al. (1987), Lindstrom and Bates (1988). The derivation 
of this algorithm may be found in Laird and Ware (1982), and for a multilevel 
nested random effect model in Longford (1987). Jamshidian and Jennrich (1993) 
discuss several improvements to speed up the algorithm. A comprehensive account 
of the EM algorithm may be found in a book by McLachan and Krishnan (1996). A 
general discussion of the EM algorithm, along with other optimization algorithms, 
is given in Appendix 13.3.4. 

In a version of the EM algorithm applied to the LME model, variance parameters 
are updated by the formulas 

and ß is recalculated by formula (2.28). Since the updates are linear combinations 
of the derivatives, the EM algorithm can be viewed as a special form of the generic 
algorithm (2.103) with Xs = 1. Using formulas for derivatives (2.105), we can rep-
resent the EM algorithm (2.118) explicitly in a form suitable for computation as 

1 N 

*Ui = o*-l + -^J2(yi-Xißa)'V7f(yi-Xißa), (2.119) 

N 

Ds+1 = Ds - 1 ^ [Ο ,Ζ ίν^Ζ ίΌ. - σ Γ ' ϋ , Ζ ί ν ^ β ί , ν ^ Ζ ί ϋ , ] , 

(2.120) 

N ■ , 

2 = 1 

where the beta coefficients are recalculated by the GLS formula, 

ß, β+1 

N -ι - 1 

^ X j f l + Z i D . Z i ) - 1 ^ 
. i=l 

N 

Σχίίΐ + ζ^,ζί)-1*· 
i=l 
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At convergence, the limit point turns the derivatives (2.105) to zero, so that the 
EM iterations converge to the MLE. Precisely, let the EM iterations converge, 
l im^oo ßs = l im^oo ß8+1 = 3*, l im^oo σ\ = l im^oo a2

s+1 = σ\ and lim^oo D s 

= l ims_ooDs +i = D*, a positive definite matrix. Then, taking limits in (2.119) 
and (2.120) as s —► oo, we come to the pair of equations 

1 N - -

£* = î î - i + ̂ 2— ^ ( y i - x A / v - ^ y - x A ) , 

which are equivalent to dl/da2 = 0 and dl/dO = 0. The second equation is equiv-
alent to dl/dO = 0 if matrix D* is nonsingular. We use the dimension-reduction 
formula (2.25) to facilitate matrix inverse, especially when the n* are much larger 
than k. 

The EM algorithm has two merits: 

1. It maximizes the log-likelihood function from iteration to iteration, Zs+i > Zs, 
if the gradient is not zero (Laird and Ware, 1982). 

2. Formula (2.120) generates positive definite matrices {Ds} if the starting ma-
trix Do is positive definite. To see this, we rewrite the right-hand side of 
(2.120) times N as follows: 

^ D . i D j 1 - Z i V ^ Z O D . + a J ^ ^ i Z i V r ^ e ^ V ^ Z i J D a . (2.121) 

We prove that (2.121) is a positive definite matrix for all s by induction. Let D s 

be positive definite. Then the second matrix term in (2.121) is a nonnegative 
definite matrix. For the first term, at least for one i matrix Z$ has full rank 
and therefore the first term is a positive definite matrix due to the matrix 
identity (2.25). Since the sum of a positive and a nonnegative matrix is a 
positive definite matrix, (2.121) is positive definite. It is worthwhile to note 
that the NR and FS algorithms do not produce the nonnegative matrix even 
if at the previous iteration the matrix was nonnegative definite; thus special 
care should be taken to ensure nonnegative definiteness, See details in Section 
2.15, where several methods to control D are discussed. 

A major drawback of the EM algorithm is that it may exhibit a slow convergence 
when matrix D is close to zero (recall that when we showed convergence of the EM 
algorithm, we assumed that matrix D* is positive definite). It can be seen from 
formula (2.118) that the EM algorithm stops at zero since Do = 0 generates all 
D s = 0. Note that although each matrix D s is positive definite, the limit matrix may 
not be positive definite. A slow convergence of the algorithm in the neighborhood 
of zero is illustrated at length below. 

The EM algorithm belongs to the class of fixed-point iterative algorithms, 

w s + i = R ( w s ) , 5 = 0,1, . . . , (2.122) 
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FIGURE 2.2. EM algorithm σ2
+1 = σ2 - 1 + 2/σ2

8. In the left-hand graph the starting 
point is to the left and in the right-hand graph the starting point is to the right of the 
solution σ2 = 2. For large σ2 the function R(cr2) may be well approximated by σ2 — 1, the 
dotted line. The dot 'MLE' with coordinates (2,2), is the intersection of R(a2) with the 
45° line. 

where w is a vector and R is a vector function. When (2.122) converges, the limit 
(fixed) point w*=lims_>oo we satisfies the equation w* = R(w*). However, itera-
tions may diverge, and in particular, their behavior may depend crucially on the 
starting point, w0 . 

To illustrate the fixed-point nature of the EM algorithm, we consider a simplified 
version of the algorithm where β and D are held fixed. Then, as follows from 
formula (2.119), the EM algorithm for σ2 takes the form σ 2

+ 1 = R(a2) where 
Β(σ2) = σ2 _ i + Α/σ2 and A = £ ( y - X/3) ,V"1(y - Χβ)/Ντ > 0 is fixed. It is 
easy to see that lim<T2_00 R(a2) = 1ίιησ2_>0 R(a2) = oo with the minimum attained 
at a^ i n = \fÄ and the unique fixed-point σ\ = A. Two possible iteration patterns 
are shown in Figure 2.2. At the left, the starting point σ\ — 0.3 is to the left of the 
solution; at the right, the starting point is to the right of the solution. 

Now we illustrate iterations (2.120) in fixed-point form for k = 1 (one random 
effect) holding parameters β and σ2 constant. Then, denoting a; = ||zi|| and Vi = 
ζ^βΐ, after using formulas (2.21) and (2.25), we come to the following fixed-point 
function: 

R(D) 
D 

σ2Ν 

N 

Σ- + (t72ai + rf)D 
(1 + a;£>)2 ' 

(2.123) 
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FIGURE 2.3. EM (fixed-point) algorithm Ds+i — R(DS) for one random effect when other 
parameters are held constant. The first derivative of R at zero is 1, and for this case the 
second derivative is positive. These imply that the MLE is positive (dot). 

As is easy to see, the value of function R at D = 0 is zero and has an asymptote 
when D —► oo, 

R(0) = 0, R(œ) = - ^ Σ σ Q>% + rf 
= const, 

see Figures 2.3 and 2.4. Also, we find that the slope of function R at zero is 1 and 

N 

^ ^ Σ ^ - Α ) · 
Since R{D) is a continuous function and Ä'(0) = 1, we conclude that the equa-
tion D = R(D) has a positive solution if R"(0) > 0, which is equivalent to 
σ2 < Σ ri/ Σ αί - This inequality corresponds exactly to the condition on the posi-
tiveness of the MLE derived in Section 2.6. On the contrary, if Ä"(0) < 0, the MLE 
is zero as shown in Figure 2.4. 

In case of balanced data (BRC model), we have ai = a and r\ = r2, so that EM 
iterations become 

D 8+1 
Dsa

2 + {a2a + r2)Ds 

σ2 (l + aL>s)
2 " 

As we see, even for balanced data the EM algorithm may be very slow if D is close 
to zero. Recall that for balanced data the NR and FS algorithms produce the MLE 
after the first iteration. 

Summarizing, (a) when the MLE for D is on the boundary of the parameter space, 
the EM algorithm converges very slow; (b) even for balanced data the EM algorithm 
requires many iterations; and (c) a good starting point for the EM algorithm is 
D = oo. 
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Êk / 45 

maxR 

/ 

» 
Do 

FIGURE 2.4. EM (fixed-point) algorithm Ds+1 = R(DS) when #"(0) < 0. The MLE is 
zero and iterations converge to zero very slowly. 

2.12.1 Fixed-point algorithm 
In this section we derive a Fixed-Point (FP) algorithm using the dimension-reduction 
formulas, which may be viewed as a version of the EM algorithm. An attractive fea-
ture of this algorithm is that instead of inverting an ni x n* matrix, one needs to 
inverse a k x k matrix, see also Appendix 13.3.4. 

First, applying these formulas to the GLS estimator, we recompute ß using for-
mula (2.114), which gives 

/VHN-^T^TrMt-E1"^"1^]' (2.124) 

where Fj = D s * + Mj. Second, applying the dimension-reduction formulas to 
dlp/dO = 0, we come to an equivalent matrix equation, 

rNT X ^ F r W i F r 1 + F"1] - NO = 0, 

which we rewrite in fixed-point form as 

D e+l 
NT 

N N 

iDINf-PÎF^Piléi Σ^Ρί^'+Σ^1 
2 = 1 

(2.125) 

This algorithm has the same merits and demerits as those of the EM algorithm. 
Note that the denominator Σ[||βί| | — Ρί^ϊ^Ρΐ] is positive at each iteration if the 
condition on the MLE existence (2.37) holds. Again, a good start for (2.125) is to 
take DQ = «I, where κ is a big positive number. However, the FP algorithm has all 
the drawbacks outlined above as for the EM algorithm. 
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Problems for Section 2.12 

1. What are the advantages of using large σ% and Do in recursive formulas (2.119) 
and (2.120)? Illustrate your answer using Figures 2.2 and 2.3. 

2. Estimate the weight versus height LME model from Section 2.1 using the EM 
algorithm. Plot iterations for σ2 and d as in Figures 2.2 and 2.3. 

3*. Write your own R function which estimates the LME model using the EM 
algorithm. Test the performance of the EM algorithm using simulations. Generate 
the LME model with random intercept and estimate it with lme and your own 
function. Compare the results. In how many cases are the results identical? 

2.13 Starting point 

Every iterative procedure requires a starting point (value), and maximization of the 
log-likelihood function is not an exception. Since the maximum of the log-likelihood 
function admits a closed-form solution for β and σ2, it suffices to provide a starting 
point for matrix D. Here we suggest two starting points for matrix D based on the 
FS and FP algorithms. Another strategy to find a satisfactory starting point is to 
use a distribution-free estimate such as the MINQUE or MM estimate (see the next 
chapter). The advantage of this starting point is that if data are close to balanced, 
the starting point is close to the MLE/RMLE. 

It is especially useful to have several starting points when an algorithm converges 
to a matrix D* on the boundary of the parameter space, i.e., when |D*| = 0 (see 
Section 2.15). 

2.13.1 FS starting point 
We derive the starting point for D jas the first iteration of the FS algorithm based 
on the OLS solution (D = 0). Let ßoLS be the OLS estimate derived from (2.28) 
letting D = 0, and ê  be the OLS residual vector for the ith individual (object, 
cluster). The OLS estimate of σ2 is d2

OLS = Νγ1 Y^eßi. When D = 0 we have 
simply V^ = I, and in the previous notation, R; = Z^Z;. Then the derivative of the 
log-likelihood function with respect to D at zero, as follows from (2.105), is written 
as 

dV 
dO D = 0 

= \ YpolsZ'&e'fr - Zfa]. (2.126) 

Since we are interested in the solution for D, we take the (3,3)-block of the infor-
mation matrix (2.110). Hence, repeating arguments of the matrix version of the NR 
algorithm we come to the starting point Do as the solution to the following matrix 
equation: 

N N 

J^ZiZiPiZjZi) = YjfolsV$$a>i - W 
i = l i = l 

We notice that matrix D cannot simply be derived from this equation unless all 
Zfei are the same. Therefore, we take the vec operator of both sides, which leads 



94 2. MLE for the LME Model 

us to an explicit form, 

vec(D0) = 
N n - 1 

X)(ZjZi)®(ZiZi)| 

' N 

xvec 
. i = l 

(2.127) 

As follows, this starting point, D 0 , is a positive definite matrix if the derivative 
(2.126) is positive definite, in accordance with the criterion of the positive definite-
ness of the MLE, Section 2.6. We need the following matrix result to prove this 
statement (we refer the reader to Appendix 13.2.3 for matrix algebra formulas to 
be used in the proof). 

Proposition 7 Let {R2, z = 1, ...,iV} be k x k symmetric nonnegative definite ma-
trices such that at least one of them is positive definite, and let B be a positive 
definite matrix of the same order. Then (a) matrix ]T^ Rz <g) Rz is positive defi-
nite, and (b) matrix D, as the solution to the matrix equation Σ% R-iDR^ = B, is 
symmetric and positive definite. 

Proof, (a) Let u be any nonzero k2 x 1 vector; we want to prove that u ' ]Γν R^ 0 
R2u > 0. Let U be the k x k matrix such that vec(U) = u. Then 

u' Σ Ri ® RzU = vec' (U) ^ R* <g> Rzvec(U) 
i i 

= Σ vec'tUJvec^URO = Ç t r ^ U ) 2 . 
i i 

Thus, u ' Y^i Hi <S> RzU = 0 if and only if R^U = 0 for all i. (b) Note that matrix D 
is positive definite if and only if tr(DU) is positive for any k x k positive definite 
matrix U. Since vec(D) = ( ]T]R; <8> Ri)_1vec(B) we have 

tr(DU) = vec'(U)( ] T R* ® R i)-1vec(B) = tr(UR2
2B) >0. 

To prove (b), we find a large enough ω that R ·̂ < ωΐ. This inequality implies that 
B <o;2D, and therefore, matrix D is positive definite. 

■ 
As follows from this proposition the starting point is a positive definite matrix if 

the derivative (2.126) is a positive definite matrix. 

2.13.2 FP starting point 
This starting point is derived from equation (2.125), letting D = oo. Recall that 
infinite matrix D corresponds to the fixed effects approach, see the discussion around 
formula (2.37). Then we set F " 1 = (Z^Z^)~ and, as follows from Section 2.5, Sm\n > 
0 implies the existence of the MLE. We use notation σχζ = iV)p 1Sm in and interpret 
it as the lower bound for the variance estimate, (2.100). Then, as follows from 
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(2.125), we obtain 

Wxz ΣίΖίΖ,ΓΓ,ΓίίΖ&Γ + Σ(ΖίΖ0-^ = h (2.128) 

where σ ^ ζ is defined in (2.100) and r» = Z£(y; - X ^ ^ - Z ^ Z f y»). 

P rob lems for Section 2.13 

1. Express the starting point (2.127) explicitly in matrix form when Z* = Z, 
where Z is a full-rank matrix. 

2*. Compare starting point matrices (2.127) and (2.128) when Z» = Z, where Z is 
a full-rank matrix and variances σ2 are known replacing the empirical values with 
their expectation. Under what additional conditions will the two matrices coincide? 
Use simulations to support and verify your analytical derivation. 

3*. Compare starting point matrices (2.127) and (2.128) with a single random 
effect assuming that variances σ2 and σ\ are known. Can one prove that one point 
is always smaller than another? Under what additional conditions do the two points 
coincide? Under what conditions do the starting points coincide with the MLE of d? 
Use simulations to support and verify your analytical derivation. Use the random 
intercept model for simulations (consult the next chapter). 

4*. Use simulations in R to determine which starting point yields the higher value 
of the log-likelihood function. Use the random intercept and slope model for simu-
lations (consult the next chapter). 

2.14 Algorithms for restricted MLE 

In this section we discuss briefly how to maximize the restricted maximum likelihood 
in the form (2.50) or (2.53). 

2.I4.I Fisher scoring algorithm 
As a result of the asymptotic equivalence of RML and ML, they have the same 
asymptotic covariance matrices. Consequently, the Fisher scoring algorithm applied 
to the restricted log-likelihood function may use the same matrix H s but different 
gradient gs, in view of the generic maximization algorithm (2.104). The gradient g 
of function (2.50) has three components. The first component, the derivative with 
respect to /3, is the same as for the ML method, dlR/dß = σ~2 ^ X ^ V ^ e * . The 
second component, the derivative with respect to σ2 for the RML log-likelihood 
function, is 

0 = -0.5a"2(iVT - m) + 0.5σ"4 ^ e J V ^ e , 

The third component, the derivative with respect to D, is 

N 

- Z i V r i X ^ X j V j ^ r ^ V ^ Z j . (2.129) 
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Thus, the FS algorithm for the RML estimation, which maximizes the log-likelihood 
function (2.50), has the form (2.104), where g s is the (m 4- 1 + k2) x 1 vector 

S* = ( ( ^ ) ,
5 ( i * ) , ' v e c , ( l f e ) ) evaluated at ß = ßs,a

2 = ^ , D = DS , with 

matrix H s defined by (2.110). 

2.I4.2 EM algorithm 

We use the fixed-point approach to create an EM/FP version for RMLE as we did in 
Section 2.12.1. Indeed, the estimating equation for D is 0 =<9Ζ#/ο?ϋ, where ÔIR/ÔO 

is given by (2.129), which can be rewritten equivalently as 

N 

0 = D-£D[D-1-ZiVr1Z<]D 
i=l 

2=1 j = l 

Moving D to the left-hand side leads to the fixed-point iterations 

N 

D s + 1 = ^ D . p ; 1 - ZJV^ZJD. (2.130) 

N N 

+σ~2 Σ D -Z iVi 1 [ e ^ s - X ^ X j V T / X , - ) " 1 ^ ] V ^ Z ^ D , 
i = l j = l 

where e^s is the ith residual vector, as in standard ML. Parameter σ2 may be 
updated as in the ML algorithm: d2

s = X) i = 1 e
f
isV~s

1eiS/(NT — m). The restricted 
EM algorithm has the same properties as the standard EM algorithm; namely, it 
increases the log-likelihood value at each iteration but may be slow, especially when 
the determinant of matrix D is close to zero. 

Problems for Section 2.14 

1. Prove that the expected values for the derivatives (2.129) are zero. 
2. Plot several functions of d to illustrate the fixed-point iterations (2.130), similar 

to Figure 2.3. Use the random intercept model to generate the data. 
3*. Construct starting points FS and FP for RMLE following the derivation from 

Section 2.13. 

2.15 Optimization on nonnegative definite matrices 

As mentioned earlier, during likelihood maximization one may encounter a matrix 
D that is not nonnegative definite (some eigenvalues are negative) or even nega-
tive definite (all eigenvalues are negative). Thus, strictly speaking, we need to deal 
with constrained maximization over the space of nonnegative definite matrices. This 
problem is common to maximum likelihood estimation of random effects models, 
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so that the following discussion is applicable to variance components or nonlinear 
mixed effects models as well. A routine practice in variance components model is to 
set the MLE to zero if the log-likelihood maximum is attained at a negative value 
(Searle et al., 1992). In fact, the chance of getting a negative definite matrix D 
in the course of the maximization procedure is a typical reason for failure of com-
mercial statistical packages. Usually, the problem with matrix D arises when the 
number of clusters, N, is too small (see the simulations below). Note that when an 
iterative algorithm converges to a nonnegative definite singular matrix, the gradient 
of the log-likelihood function is not zero, which may be interpreted as the failure 
to converge. However, the gradient cannot be zero if one deals with constrained 
maximization with the solution on the boundary of the parameter set (Ortega and 
Rheinboldt, 1970; Polak, 1971; Dennis and Schnabel, 1983). The problem of a non-
negative definite matrix does not apply to EM or FP algorithms because they 
produce nonnegative definite matrices if the starting matrix is nonnegative definite. 
Thus, the following discussion concerns the NR and FS algorithms. For a general 
discussion of optimization algorithms, we refer the reader to Appendix 13.3. 

There are three strategies to cope with matrix D over the course of likelihood 
maximization: 

1. Allow the matrix D to be negative definite, but replace it with a nonnegative 
definite matrix after iterations converged (in SAS this corresponds to the 
option NONBOUND). 

2. Force the matrix D to stay nonnegative definite (constrained maximization). 

3. Use matrix reparameterization such that D is always nonnegative definite, 
e.g., use Cholesky decomposition D = l / L and accomplish maximization for 
matrix L. 

These methods are discussed in detail below. But before moving to the remedies 
we shall investigate how often T>ML belongs to the boundary of the parameter space. 

2.15.1 How often can one hit the boundary? 

To assess the chance during maximization of hitting the boundary of the parameter 
space (2.16), where matrix D becomes singular, we conducted the following statis-
tical experiment. We use the fact that a closed-form solution exists for the balanced 
random-coefficient model; see Section 2.3. Hence, we take a random-coefficient lin-
ear trend model (2.58) with n = 4 and true σ2 = 1, a = l,/3 = 0.1, tj = j , and true 
scaled covariance matrix for the intercept and the slope, 

Five hundred data sets for each N have been generated, and for each data set we 
computed the exact MLE and RMLE using formulas (2.60) and (2.61). Then we 
computed eigenvalues of each 2 x 2 matrix and percent simulations in which the 
minimal eigenvalue is negative. This assesses the chance that during maximization 
of the log-likelihood we "hit the wall" (e.g., the solution will be on the boundary 
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FIGURE 2.5. Percent of simulations when matrix T>ML (empty circles) and matrix ORML 
(filled circles) are singular. The chance of hitting the boundary of the parameter space 
during likelihood maximization is high: 50% for N = 20 and 20% for N = 100. 

of the parameter space). As one can see from Figure 2.5, the chance to obtain a 
deficient jestimate of D is substantial, although it is a little less for RML because 
DML < DRML always. For instance, for N — 20 there is 50% chance that one con-
fronts a constrained optimization problems. This phenomenon was also mentioned 
by Jennrich and Schluchter (1986). Even for large TV, the chance to get a deficient 
D is quite high, 1 out of 5. 

2.15.2 Allow matrix D to be not nonnegative definite 

This is the case when the parameter space is defined by (2.17). From a numerical 
point of view, this means that matrix D does not necessarily have to stay nonnega-
tive definite during a maximization process. However, matrix V$ = 1-f Z^DZ^ must 
be positive definite for each i — l,...,iV to be able to compute the log-likelihood 
function. Thus, we can expand the parameter space to P_={D : I + Z^DZ^ is pos-
itive definite for each i = 1,..., N}, which is less restrictive than B+={D is nonneg-
ative definite}; namely, 1 + C B _ . As mentioned in Section 2.2.2, P_ was used by 
Rao and Kleffé (1988) in their general variance components model. The RK para-
meter space (2.17) is convex as an intersection of N convex sets (see the problems 
at the end of the section). After the point of maximum is found, we transform a 
possible not nonnegative definite matrix D into a nonnegative definite matrix (see 
the end of this section). 

To illustrate the difference between the two parameter sets, we consider the fol-
lowing example with two uncorrelated random effects. 

Example. The LME model with two uncorrelated random effects, k = 2: 

D = 
DX1 0 
0 £>22 

, Z»= [ZU, z2»], V<= I+DnZiiZ^ 4- D22^2iA 2i-
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FIGURE 2.6. Two parameter spaces for the 2x2 diagonal matrix D. The parameter space 
P+ consists of all nonnegative numbers. The boundary of B_ is shown in bold. 

It is assumed that neither vector z is zero. Since the matrix D has only two free 
elements, we can depict B+ and B_ graphically on the plane in the coordinate 
system (^11,^22), see Figure 2.6. B + is the first quadrant on the plane (Dn > 
0, D22 > 0). Now we determine B_ where some diagonal elements may be negative. 
As follows from linear algebra, matrix V^ has rii — 2 eigenvalues 1 and two non-1 
eigenvalues coinciding with the eigenvalues of the matrix 

1 + £>ιι||ζκ 
D22z'uZ2i 

Dnz'uz2i 

l + D22\\z2if 

Thus, the matrix V^ is positive definite if and only if the diagonal elements are 
positive, 

1 + £> ι ι | | ζ Η | | 2 >0 , l + £>2 2 | |z2 ; | | 2>0, 

and the determinant is positive, 

(1 + L>n | |zH| |)(l + D22 \\z2i\\
2) - D11D22(z

/
liz2i)

2 > 0. 

Inequalities (2.131) yield the lower bounds for Dn and D22 : 

Dn> ■min Z U 
i 

1 -2 , D2 2 > -min | | z 2 i 

(2.131) 

(2.132) 

(2.133) 

Inequality (2.132) yields a hyperbolic region that superimposes the rectangular re-
gion specified by (2.133). A typical parameter space B_ is depicted in Figure 2.6. 
The dotted rectangular region is determined by inequalities (2.131); the curve is 
determined by inequalities (2.132), i = 1,2,..., N. m 
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There is the jeopardy that maximization over P_ leads to an indefinite solution; 
more precisely, I —> +00 when |Vi| —► 0 for some i. Indeed, let us examine what 
happens when for certain i the matrix V^ = I + Z^DZ^ becomes singular. Drop-
ping % and the a2-term, to shorten the notation, the zth log-likelihood contribution 
is —0.5{ln|V| + e / V ~ 1 e } . Let λι < \<ι < ... < λη denote eigenvalues of matrix 
V and Ρι,Ρ2ΐ···>Ρη denote its eigenvectors. Then from eigenvalue decomposition, 
V _ 1 = Σ?=ι ^JXPjPj a n d In |V| = Σ?=ι m - \ r Hence, the ith log-likelihood contri-
bution is rewritten as 

In Xj + λ^ W (2.134) 

If, during iterations, D comes close to a boundary point of HD_, the matrix V 
becomes close to singular, i.e., πύηλ^ = λι —> 0. However, taking ß such that 
p^e = p i (y — X/3) =0 the log-likelihood function approaches +00 since the first 
term in (2.134) approaches +00 and the second term is zero. 

Positive Definite Matrices 

Det = 0 

Not Nonnegative Definite Matrices 

FIGURE 2.7. The space of 2x2 nonnegative definite matrices B+ defined by the inequalities 
Det = |D| = D11D22 — £>i2 > 0 and D\\ > 0, D22 > 0. Positive definite matrices lie within 
the surface, nonnegative singular matrices lie on the surface, and nonnegative definite 
matrices lie under the surface. D is not a nonnegative definite matrix; however, we can 
find the projection of D onto ©+. 

The good news is that p[ (y — X/3) =0 happens with probability 0 because y 
has a continuous (actually normal) distribution. Numerically, this means that if the 
direction of the log-likelihood increase is determined, the log-likelihood goes to —00 
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almost surely on the ray approaching the boundary of the RK parameter space, i.e. 
where for some j we have |Vj | = 0. This property serves as a justification for our 
unconstrained log-likelihood maximization algorithm realized in R; see Section 2.16 
for details. 

We can easily satisfy the condition Ds€lD)_ during the maximization process. 
Indeed, at each iteration (2.103), we check whether matrix V^ is positive definite 
for each i by computing eigenvalues of matrix Z^Z^D. If for at least one i the 
minimum eigenvalue is zero or negative, we reduce Xs by 2 (the step length should 
be reduced further to satisfy the monotonicity, ls+i > ls). 

Now let the log-likelihood maximum on B_ be found and D correspond to the 
final iteration. If D is a nonnegative definite matrix, we call it the MLE. If D is 
not nonnegative definite, we project it onto the space of all nonnegative definite 
matrices HD+. In the previous example, k = 2 and D12 = 0, so that B+ is the first 
quadrant i? + . In the general case, D12 φ 0, and the set of all nonnegative matrices 
is defined by the square-root envelope D12 = ± Λ / ^ Ι 1-̂ 22 in the coordinate system 
(1)11,^12,^22) =vech(D) with nonnegative Du and £>22> see Figure 2.7. If D is 
outside the envelope, we must find the closest point (projection) on B+. In the next 
theorem we determine how to find this projection. 

Theorem 8 Let a symmetric kxk matrix D be represented via eigenvalue decom-
position asT> = ΡΛΡ', where P is the kxk matrix of eigenvectors and A =diag(Xi, 
A2, ••-,λ/ί) is the diagonal matrix of eigenvalues. Then the projection ofO onto B+ 
is defined as ΡΛ+Ρ', where 

A+=diag(max(0, Ai), max(0, À2),.., max(0, λ&)). 

Proof. We want to find a k x k nonnegative definite (symmetric) matrix D such 
that 

k 

tr(D - D) 2 = ] T (Dij - Dio)
2 = min. (2.135) 

Prom the properties of the trace, since P'P = P P ' = I, it follows that 

t r ( D - D ) 2 = t r ( P A P ' - D ) 2 = t r [ P ( A - P ' D P ) P ' ] 2 

= tr [P(A - P'DP)P'] [P(A - P'DP)P'] 

= tr [P (A - P'DP) (A - P'DP)P'] 

- tr [(A - P'DP)(A - P'DP)P'P] 
k 

= tv{K-^'O^f = Y^{Xi-Mii)
2 + YjMfj, (2.136) 

i=l i^j 

where M = P ; D P is a nonnegative definite matrix. But minimum (2.136) is attained 
at 

> 0 
0 

Ma = A+u 
( Xiif\i> 
\ 0 if Xi < 

and Mij = 0 for i ^ j . Doing the back transformation, we come to the solution to 
(2.135) as Ρ Λ + Ρ ; , where Λ+ is the diagonal matrix with the ith. diagonal element 
A+ii = max(0, λ»), i = 1,2,..., k. m 
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Maximization on the boundary Reduced step length 

FIGURE 2.8. Two strategies to stay within the space of nonnegative definite matrices. 
Maximization on the boundary: stay on the boundary by projecting the direction vector 
on the maximization space (here Du > 0, D22 > 0). Reduced step length: reduce the 
length of the direction vector to stay within the maximization space (easy to implement). 
However, the latter approach may lead to a slower convergence. 

Thus, if D is notjionnegative definite, we define the MLE as a nonnegative definite 
matrix closest to D, namely, 

D M L = ΡΛ+Ρ7 , (2.137) 

where P and Λ+ are eigenvectors and nonnegative eigenvalues of D as defined in 
Theorem 8. 

However, we may not be satisfied with (2.137) and seek further simplification. 
Indeed, if T>ML is singular, it may indicate that we have too many random effects 
in the LME model (overspecification). What random effects should be eliminated? 
This leads to the following question: what rows and columns of matrix Y>ML should 
be set to zero to make the matrix as close as possible to the original matrix and 
positive definite? Clearly, the number of zero rows and columns must be equal to 
the number of zero eigenvalues. This problem can be solved by simple enumeration 
since k is usually not big. 

Example. For k = 2 a nonnegative definite singular matrix has the form 

a2 ab 1 
ab b2 \' 

What row and row/column should be set to zero with the least distortion while 
minimizing the trace of the squared difference, as in (2.135)? When k = 2, we have 
two possibilities: to zero the first row and column, or to set the second row and 
column. For the first case, the trace of the squared difference is a4 + 2a262, and for 

*E>ML = 
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the second case the trace is 64 + 2a2b2. Thus, for k = 2 we zero the row and column 
with the larger diagonal element. This rule makes perfect statistical sense: we leave 
the random effect with lesser variance. 

■ 
The method to cope with a matrix that is not nonnegative definite may be viewed 

as a multivariate generalization of routine MLE adjustment in the variance compo-
nents model when the MLE is set to zero if the log-likelihood maximization produces 
a negative variance (Searle et al., 1992). 

2.15.3 Force matrix D to stay nonnegative definite 

We may force matrix D to stay nonnegative in the course of the log-likelihood 
maximization. We assume that the starting point for matrix D in the NR or FS 
algorithm, Do, is nonnegative definite. Let D s be nonnegative definite at the sth 
iteration. Then, the (s + l)th approximation to the MLE is computed as 

D s + i = D s + AsAs, (2.138) 

where 0 < Xs < 1 is the step length and As is the adjustment matrix. Two situations 
may occur, Figure 2.8: 

1. Matrix D s is positive definite. Then, for any As there exists a positive Xs 

such that D s + i = D s + XSAS is positive definite and Ds+i increases the log-
likelihood. An appropriate Xs may be found by a simple halving procedure, 
or more precisely we can set Xs = min | λ _ ( Ό 5 Δ 7 ) | , where Aj is the gener-
alized inverse of matrix As and λ_ is the negative eigenvalue (if matrix As 

is nonnegative definite we set Xs = 1). It is easy to prove that D s + XAS is 
positive definite for any 0 < X < Xs but that matrix D s -f XSAS is singular if 
matrix As has at least one negative eigenvalue. 

2. Matrix D s is singular but nonnegative definite, i.e., belongs to the boundary of 
the set of all nonnegative definite matrices B+ defined in the previous section; 
refer to Figure 2.7 for a geometrical illustration for k = 2. This case is more 
complex and requires more attention. If matrix As is nonnegative definite 
then any positive Xs leaves us within B+, so we can proceed without compli-
cations and find the step length to satisfy the increase of the log-likelihood, 
the right-hand graph in Figure 2.8. Now let us consider the case when As 

is not nonnegative definite. Then positive Xs may lead to a not nonnegative 
definite matrix; that is we cannot use As to stay in the parameter space B+. 
However, instead of As we may take the projection of As onto B+ as in Sec-
tion 2.15.2. Thus, when D s is singular and As is not nonnegative definite, 
we take D s + i = D s + XSA+S, where Δ + 5 is the projection of As onto B+ 
derived similarly to (2.137). Namely, Δ + 5 = Ρ Λ + Ρ ' , where P is the eigenvec-
tor matrix and Λ+ is the diagonal matrix with max(0, ν£) as the zth diagonal 
element and Vi is the eigenvalue of As. Such a modification makes the matrix 
Ds+i nonnegative definite for any positive Xs. 

Two ways to control matrix D are depicted in Figure 2.8, with k = 2 and Di2 = 0 
as in the preceeding example. Matrix D 0 is positive definite (Du > 0, £>22 > 0). 
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F(x) F(z) 

0 0 

FIGURE 2.9. Original constrained optimization function F(x), x > 0, and the equivalent 
unconstrained optimization function F(z), —oo < z < oo, after reparameterization x = z2. 

> 
Vector Δο = D Q A is the adjustment to Do, which leads to a not nonnegative matrix 
since the (1,1) element is negative (left-hand graph). However, λ0 = 1/2 leads to 
a positive definite matrix Di (left graph), which corresponds to case 1. Taking 
Xs = min |A_(DSÄ7)| leads to the approximation Di , which is the boundary point 

> of B+. Then the next adjustment, Δχ = D i B , is not a nonnegative definite matrix, 
and therefore we need to take the projection of Δ ι on the Z)22-axis that gives D2; 
further adjustments provide positive definite matrices {D s , s > 2}, and eventually 
the maximization leads to the MLE. On the right-hand graph we come to the same 
MLE using a halving procedure, but it would require more steps. 

2Λ5.4 Matrix D reparameterization 

The idea of replacing matrix D with a nonnegative definite matrix has been sug-
gested by Pinheiro and Bates (1996). The simplest and intuitively appealing repa-
rameterization, proposed by Lindstrom and Bates (1988) in the framework of linear 
mixed effects models, is based on Cholesky decomposition, D = L'L, where L is 
an upper triangular matrix (some authors define D = LL', where L is a lower tri-
angular matrix). Then, substituting L'L for D in the log-likelihood function, one 
comes to an unconstrained maximization problem with L as the argument. How-
ever, despite the fact that this reparameterization reduces a constrained problem to 
an unconstrained problem, there is a price—slower convergence. To illustrate this 
point, let us take a simple function, 

F(x) = 1 - (1 + x)2 , x > 0 (2.139) 

to be maximized over nonnegative values x (see the left-hand plot in Figure 2.9). 
This function attains its absolute maximum on (—00,00) at xmax — — 1; however, the 
constrained maximum point is £m a x = 0, with the maximum value F zero. We can 
reduce optimization problem (2.139) to an equivalent unconstrained maximization 
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FIGURE 2.10. Newton-Raphson algorithm for F(z) maximization with fixed-point itera-
tions Zs+i = G(zs). 

problem, taking the reparameterization x = z2, which leads to a function F(z) = 
1 — (1 + z2)2 to be maximized over — oo < z < oo. Below we compare constrained 
and unconstrained optimization problems assuming that the Newton-Raphson (NR) 
algorithm is used. 

First, we consider the NR maximization algorithm when x is allowed to be nega-
tive. Since F(x) is a quadratic function, the NR algorithm gives x\ = — 1 at the first 
iteration starting from any initial value x$. Taking the closest nonnegative point to 
#i = — 1, which may be viewed as the projection of x = —1 on the set of nonnegative 
numbers in the line of Section 2.15.2, leads to the constrained maximum, zero. Sec-
ond, we apply the NR algorithm to the unconstrained function F(z) = 1 — (1 -fz2)2, 
where — oo < z < oo. It is easy to verify that the NR algorithm leads to iterations 
zs+i = zs — F'(zs)/F"(zs) = 2Zg/(Sz2 + 1), which can be written symbolically 
as z s + i = G(zs)1 where the function G(z) is 2zs/(3z2 -f 1); see Figure 2.10. Slow 
convergence to zero is obvious. 

Summing up, for function (2.139) the NR algorithm applied to the constrained 
optimization problem converges at the first iteration, but the same algorithm applied 
to an equivalent unconstrained optimization problem requires many iterations to 
converge. 

2.15.5 Criteria for convergence 

Some optimization algorithms stop when two consecutive iterations give close re-
sults in terms of either the value of the optimization function or the argument value 
(parameters in statistical terminology). Then, when either or both absolute differ-
ences are less than some small number (ε), it is claimed that iterations converged 
to an optimum (maximum). Unfortunately, being close neighboring iterations does 
not guarantee that the iterations converged to an optimum-strictly speaking, it 
says only that further iterations do not increase the log-likelihood. To be sure that 
iterations in fact converged to a maximum, we need to check whether the gradient 
is zero, assuming that at the final iteration the matrix D is positive definite. There-
fore, a necessary output parameter of the log-likelihood function maximization is its 
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gradient, ||9Z/<90||. In optimization theory, ||<9Z/<90|| = 0 is called the first-order con-
dition. It provides a necessary condition for the unconstrained local maximum (or 
minimum), e.g. Ortega and Rheinboldt (1970), Polak (1971), Dennis and Schnabel 
(1983). In the Newton-Raphson algorithm it is better to use a relative gradient, 
which leads to a criterion for convergence (stopping criterion), 

(ly-'d)*«·· 
where the inverse matrix is the Hessian. Similarly, in the Fisher scoring algorithm, 
we use an information matrix instead of the Hessian. The value ε « 10~5 seems to 
be appropriate. Since there are closed-form formulas for the maximum over β and σ2 

which turn the respective derivatives to zero, we may take only the derivative with 
respect to D in expression (2.140). Good practical advice is to start the algorithm 
from another starting point, especially when, at the final iteration, it hit the bound-
ary of the parameter set (D is singular)—it should converge to the same value. If 
the algorithm arrives at different points with zero gradient, two local maxima of the 
log-likelihood function are encountered (this seldom happens). However, often, two 
limiting points emerge due to the algorithm's failure to compute the gradient. Then 
it would be premature to claim that the maximum of the log-likelihood is achieved. 
In fact, we do not know if the log-likelihood function of the LME model is generally 
unimodal. In particular, it would be desirable to obtain constructive criteria to test 
whether a specific local minimum is a global minimum. Some approaches to sum of 
squares in nonlinear regression are discussed by Demidenko (2000). 

It is important to understand that the first-order criterion works only when at 
the final iteration, the matrix D is positive definite. If iterations lead to matrix 
D, which is nonnegative definite but singular, the derivative cannot be zero and 
another convergence criterion should be used, because a constrained optimization 
takes place and the maximum lies on the boundary of the parameter space (2.16). 
To derive a first-order condition for the constrained log-likelihood maximum, we 
adopt Kuhn-Tucker conditions for the optimization problem 

JF(X) =>max under restriction g(x) =0, (2.141) 

where x eRK and F and g are differentiate functions (Hestenes, 1975; Walsh, 
1975). The Kuhn-Tucker condition says that for x to be a solution to (2.141), 
derivatives of F and g evaluated at x should be negative proportional, or more 
precisely there exists λ < 0 that 9.F(x)/9x = λ<9#(χ)/9χ. In our case, F is the 
log-likelihood function, x is the matrix D, and g is the determinant function. Since 
d\D\/dO =adj(D), where adj means adjoint matrix, we find that the necessary 
condition to reach the maximum of the log-likelihood is that elements of dl/dO, 
defined in (2.105), and adj(D) are negative proportional (for k = 1 we formally take 
adj = 1 because then d |D| /<9D = 1). 

Summing up, the Kuhn-Tucker condition for a local maximum of the log-likelihood 
function at D is as follows: 

1. All eigenvalues of D are zero or positive. (This implies that all diagonal elements 
are nonnegative.) 

2. There is a nonpositive λ such that dl/ΘΌ =X x adj(D). 
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Clearly, if dl/dO = 0, one can take λ = 0, showing that the Kuhn-Tucker condi-
tion works in regular situations as well. 

It is easy to confirm that λ < 0 exists. Indeed, let A =dl/dO and B =adj(D). 
Condition 2 holds if and only if B^ = 0 implies that Aij = 0 and that for all 
Bij φ 0, the ratio Aij/Bij is constant and negative. 

We illustrate this stopping criterion by a one- and a two-random effects LME 
model (k = 1,2). 

For k = 1, if an algorithm converged to D = 0, the Kuhn-Tucker condition 
becomes dl/dD < 0, where the derivative is evaluated at D = D. 

For k = 2, we assume that D =diag(£)i i, 1̂ 22)5 as in the example of Section 
2.15.2. Thus, let the final D lie on the boundary P + , or, more precisely, Dn = 0 and 
D22 > 0. Hence, to satisfy the Kuhn-Tucker condition, we need to have dl/D22 = 0 
and dl/Dn < 0. 

According to the manuals, in current commercial software such as nlme and proc 
mixed, the Kuhn-Tucker condition is not checked. 

Problems for Section 2.15 

1. Is it true that for any linear model with random intercept, the probability that 
the derivative (2.126) is negative is positive? 

2. Prove that P_ and ©+ defined in Section 2.15.2 are convex sets (the set is 
convex if for every pair of elements from this set the segment that connects these 
elements belongs to this set as well). Are B_ and B+ convex sets (a set is a cone if for 
every pair of elements from this set a linear combination with positive coefficients 
belongs to this set)? Find Ζχ, Z2, and D such that D G B _ but D ^ B + . 

3. Explain why maximization on the boundary requires a solution to a generally 
nonlinear equation. What is that equation when the boundary of the maximization 
domain is defined by equation |D| = 0 ? 

4. Generalize function (2.139) from Section 2.15.4 to maximization on the matrix 
space, F(D) =1 — tr(Ifc+D) , where D& is the k x k symmetric matrix, using the 
parameterization D = L/L. Write down the iterative NR algorithm and demonstrate 
a slow convergence. To simplify, you may assume that k = 2. 

5. Give a geometric illustration for the Kuhn-Tucker condition when (a) k = 1, 
and (b) k = 2 as discussed at the end of Section 2.15.5. 

2.16 lmeFS and lme in R 

In this section we discuss our own R code for the estimation of a linear mixed 
effects model, lmeFS, and compare it with a widely popular lme function in package 
nlme. When it comes to the implementation of any algorithm for the log-likelihood 
maximization, the major question is how to deal with cases when the matrix D 
during iterations becomes not positive definite. To illustrate complications with 
lme, we suggest a short simulation study for a simple linear mixed model with 
random intercept and slope, 

yij = {a + ai) + (ß + bi)j + By, j = 1,2, ...,n*, i = 1,2,.., iV, (2.142) 
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FIGURE 2.11. Simulation results with model (2.142); number of simulations = 5,000. 

where α̂  and bi are random effects with zero mean, variance σ\ and σ^, and corre-
lation coefficient p. In these simulations, we use a = —l,/3 = 0.2, σ2 = σ\ — σ\ = 
0.1, p = 0.5 with the number of observations per cluster, n^, varying from 3 to 7. To 
keep simulations running even in case of failure to converge we use the command 
t ry . Below is a fragment of the R code using method=ML with the default values for 
the number of iterations and tolerance convergence (dL is the dataframe with the 
simulated data): 

out<-try(lme(fixed=y"'X2,random=Ä'Z2|id,data=dL,method="ML")) 

if(attr(out,"class")=="try-error") lmeF=lmeF+l/Nexp 

The variable lmeF is the proportion of Nexp=5000 experiments when lme fails 
to converge. The result of this simulation study for N ranging from 10 to 30 is 
displayed in Figure 2.11 (we have tried increasing the maximum number of iter-
ations using command lmeControl, but the percent lme failure did not change). 
As follows from this simulation study, even when the model is specified correctly, 
lme may fail, especially for a small number of clusters. Not surprisingly, the percent 
failure increases when the model becomes more complicated, i.e. when the number 
of random effects is large. We assert that these failures are due to the fact that in 
the lme software matrix, D is forced to be positive definite. Indeed, matrix D is 
factorized via Cholesky decomposition in the nlme library. Of course, the lme failure 
does not always mean that the matrix D tends to be not positive definite, but in 
most cases it is the reason (our code below confirms this assertion). 

Several sophisticated strategies to cope with the nonnegative definiteness of ma-
trix D have been discussed in this chapter. After rigorous testing and simulations 
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we came to the conclusion that the best way to cope with the nonnegative defi-
niteness is not to cope at all, that is to maximize I on the Rao-Kleffé parameter 
space (2.17), that is, allow D to be not positive definite and even not nonnegative 
definite during iterations. There are three reasons for this strategy: (1) the algo-
rithms simplify, (2) the maximum of the log-likelihood function does not belong to 
the boundary of the parameter set (the function goes to — oo when the point ap-
proaches the boundary that keeps iterations away from it, see Section 2.15.2), and 
(3) the post-maximization analysis of matrix D may shed light on what random 
effects lead to negative variance estimate and therefore can be omitted. Thus we 
follow the principle that it is better to get any solution than no solution at all, as 
in the case of lme failure. 

The call to our own linear mixed model estimation function lmeFS is as follows: 

lmeFS(d,m,k,D=matrix(0,k,k),MLRML=MMLn,MaxIter=25,epsparO.0001,pr=F) 

The parameters have the following meaning: 

• d is the data matrix (or a da ta i rame); the first column is id, which specifies 
what cluster the observation belongs to, the second column is the y-variable 
(y^); the next m columns are fixed effects (X*); and the next k columns are 
random effects (Z^). 

• m is the number of fixed effects, the number of columns in matrix X^, including 
vector of ones for the intercept. 

• k is the number of random effects, the number of columns in matrix Z^. 

• D is the starting values for the k x k matrix D =a_ 2cov(bi) , the scaled matrix 
of the random effects; the default starting matrix is zero. 

• MLRML specifies ML or RML; the default method is maximum likelihood. 

• Maxlter is the maximum number of iterations; the default value is 25. 

• epspar is the ε for parameter change from iteration to iteration; iterations 
stop if max | change | < e. 

• pr controls the output at each iteration; by default there is no printout. 

If the file lmeFS . r is saved in the directory c:\\MixedModels\\Chapter02, it can 
be downloaded into R by issuing the 

source("c:\\MixedModels\\Chapter02\\lmeFS.r") 

This function implements the Fisher scoring algorithm with an information matrix 
given by formula (2.110). The inverse of this matrix gives the covariance matrix for 
all estimated parameters. Our practice showed that the unit length strategy, \ s = 1, 
works well; and it saves time. We suggest starting the log-likelihood maximization 
from D = 0 which corresponds to the Variance Least Squares (VLS) estimate, see 
Section 3.12.4 for detail. Choice of the unction lmeFS converged in all simulations, 
unlike lme, including those presented in Figure 2.11. In those simulations where lme 
did not converge, our function returned matrix D, which was not positive definite 
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(in most cases one of the diagonal elements was negative). Thus, we conclude that 
the reason for the lme failure was that matrix D was not positive definite. 

An example of the output/return of this function is shown below. 

$solcode 

[13 0 

$iterdone 

[1] 7 

$loglik 

[1] -201.2231 

$b 

[,i] 

XI -1.0473094 

X2 0.2205644 

$s2 

[1] 0.1071485 

$covbeta 

[,1] [,2] 

[1,] 0.001793903C 

[2,] -0.0006319487 

$cov.s2vecD 

) -0.0006319487 

' 0.0003536507 

[,1] [,2] [,3] [,4] [,5] 

[1,] 0.000106666 

[2,] -0.001579123 

[3,] 0.000538691 

[4,] 0.000538691 -

[5,] -0.000301641 

$grad 

[1] 0.0002057721 

$D 

[,1] [,2] 

[1,] 0.2388303 -0. 

[2,] -0.1136758 0. 

-0.00157912 

0.07751204 -

-0.02667306 

0.02667306 

0.01084698 

1136758 

1368344 

O.i 

-O.i 

0 

O.i 

-0 

000538691 0.000538691 -0 

026673063 -

.013193838 

009101669 

.005098106 

-0.026673063 0 

0.009101669 ■ 

0.013193838 H 

-0.005098106 

.000301641 

.010846980 

-0.005098106 

D.005098106 

0.002854657 

The output of this function is a list with the following components: 

1. solcode: 0 means normal solution (the iterations converged); 1 means that 
the iterations reached maximum, Maxlter; 2 means that the returned matrix 
D is not positive definite (there are negative eigenvalues). 

2. i t er done: the number of iterations made until convergence. 

3. logl ik : the maximum log-likelihood function (including the constant). 

4. b: the ML beta estimate at the final iteration. 
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5. s2: the estimate of σ2. 

6. covbeta: the m x m covariance matrix of the beta-parameter. 

7. cov. s2vecD: the (1 + fc2) x (1 + k2) matrix of the variance-covariance matrix, 
(a2,vec(D)). 

8. grad: the gradient; it must return a small value. 

9. D: matrix ML estimate of D. If the matrix returned is not positive definite, 
say, some diagonal elements are negative that may be interpreted as an advice 
to remove the respective random effect from the model. 

In a recent package by D. Bates, lme4, another version of lme is offered, lmer 
(this package contains functions for estimation of generalized linear and nonlinear 
mixed models as well; we consider them later). Unlike lme, a new version does 
not break down when the matrix D tends to be not positive definite. Instead, this 
function returns matrix D* =cov(bi) with one of the variances (diagonal elements 
of matrix D*) almost equal zero. Our function lmeFS returns a matrix D estimate, 
which may have negative diagonal elements. It may be further projected on the 
space of nonnegative definite matrices, as discussed in Section 2.15.2. 

P rob lems for Section 2.16 

1. Use lmeFS for the weight example from Section 2.1.1. 
2. Reproduce Figure 2.11. 

2.17 Appendix: proof of the existence of MLE 

We start with the MLE; proof of the existence of RMLE is considered later. 
A. Existence of the MLE 
Sufficient condition. Assume that for any ß G Ä m , 7 l 9 . . . ,7# € Rk, there exists 

at least one i such that yi ψ X^/3 4- Z*7i. We then prove that the MLE exists. The 
latter inequality implies that 

N 

Sm i n = min V || y < - Χφ - ΖίΊί | |2> 0, (2.143) 

and as follows from (2.36), Smin = min^ X).(y< - Χ*/3)'(Ι - Z<Zt)(y< - Χφ) > 0. 
For further proof, we need the following log-likelihood function representation: 

1 1 N 

Ζ(/3,σ2,Ό) = --iVTlna2--^{ln|I + DZ^| 
i = l 

+ σ " 2 & ( 1 - ZiZf^i + e ^ e , ] } , (2.144) 

where Q^ is an UiXUi symmetric matrix defined as Q* = ZiZ+-Zi(H-DZ^Zi)~1DZ^, 
and the residual vector e* is defined as (2.20). We show that Q^ is a nonnegative 
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(1)D 
(3)σ2 

—► oo 

—> + 0 0 

(2) σ2 - * 

(4) II /3 I 
0 

1 — > · 00. 

definite matrix. Indeed, using the formula for the generalized inverse (2.30), we 
obtain 

Q, = Hm^oIZiiZiZi + i l ) " 1 ^ - Z<(I + D Z ^ ) " ^ ] 
= l i m ^ o Z<(I + OZ^Zi)-1^ + DZ^Z, - D ( Z ^ + δί^Ζ'^+δΙ)-1^ 

= l im^o[Zi(I + D Z ^ r H l - ÔD)(Z;Z,+5I)-1Z^]. 

Since for small δ the matrix in the last set of brackets is nonnegative definite, Q^ is 
also a symmetric nonnegative definite matrix, as a limit of nonnegative definite ma-
trices. Moreover, using (2.30) for the last limit, we obtain Q^ = Zi(I+DZ^Zi)_ 1Z+. 
In particular, this implies that e^Q^e^ > 0 for alH = 1,..., N. 

To prove the existence of the MLE, it suffices to show that when the parameter 
vector Θ approaches a boundary point of the parameter set Θ that does not belong 
to this set, then 1(θ) —> —oo, Demidenko (1997). There are four such possibilities: 

(2.145) 

We aim to prove that each case implies that I —► — oo. 
Case 1: D —» oo, which means that at least for one element (r, s) we have Drs —» 

oo. The following elementary inequality will be used: 

.Α1ηλ + λ _ 1 £ > 1 + Α1ηΒ, λ > 0, (2.146) 

where A > 0, B > 0. We seek an upper bound for I as a function of D only. Since 
Qi is a nonnegative definite matrix, we can drop the term e^Q^e;. Further, applying 
(2.146) to (2.144) with A{ = nu B = Σ Χ ( Ι - Z<Z+)ei > Smin > 0, λ = σ2, we 
obtain 

/ < - y - ^ l n 5 m i n - ^ l n | I + DZ:Z,| . (2.147) 
i 

By assumption, there exists at least one matrix Zj of full rank, i.e., at least for 
one j there exists a positive scalar v such that Z^-Zj > v\. This implies that | 
I + Z-ZiD |>| I+z/D | for % = j and | I + Z-Z^D |> 1 for % φ j . Now we prove that 

Drs —► oo implies In | I+z/D |—> +oo. (2.148) 

Indeed, since matrix D is nonnegative definite D%s < DrsDss which implies that 
at least one diagonal element goes to infinity and consequently tr(D) —>oo. There-
fore, the maximum eigenvalue, Àmax(D) —> oo because Àmax > k_1 Σα=ι \ = 

/c_1tr(D) —> oo, where \q is the qth. eigenvalue of matrix D. Hence, 

k 

In | I+i/D |= ^ Ιη(λ + v \ ) ^ (fc - l) l n ( X + ^min) + ln(l + v\max) -+ oo, 
9=1 

when Amax —► oo, which proves (2.148). Now taking the limit on the right side of 
(2.147) when D —> oo, we obtain I —> —oo. 

Case 2 or 3: σ2 —> 0 or σ2 -> oo. Since | I + DZ-Z* |> 1, we obtain 

2 σ 2 ^ , Γ - t ~ t y ~ t _ 2 2σ 2 
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Obviously, this implies that I —> — oo if either σ2 —> 0 or σ2 —> oo. 
Case ^; || /3 ||—> oo. Without loss of generality, we can assume that for some μ > 0 

we have D <μΙ because otherwise we have case l.Then there exists a constant p > 1 
such that I + Z;DZ^ < pi for all i = 1,..., N. Applying inequality (2.146) to the log-
likelihood function (2.15), we obtain l< -N/2-(NT/2)lnp-1 Σ?=1 II Ύχ-Τ^β \? · 
But by assumption ^ Χ ^ Χ ^ has full rank, which implies that Σ II Ύί-^iß l|2—> °° 
if || β ||—> oo. Then, from the inequality above, / —> —oo. 

Necessary condition. Let us assume that (2.90) holds for some β G i2 m ,7 i , •••>7jv· 
We aim to find a sequence of parameters that leads to Z —► +oo. Indeed, if (2.90) 
holds, then Sm[n = 0 and maximization over σ2 gives 

max/ > - f - ^ r M Ç e i z * ( I + D Z i z < ) " l z i " e i ] - ^ Σ 1 η Ι Ι + Β Ζ ί Ζ ί Ι · 
z i 

We let D =dl , d > 0. Let λ^· denote the j t h eigenvalue of matrix Z^Z*; then the 
right-hand side of the last inequality can be rewritten as 

- ψ HZi e jZi i ld-1 + ZjZO-^+e*] - 1 ^ In |I + dZ'M 
= - f - ψ I n E i eJZi iH" 1 + Z j Z O ^ Z t e , ] + ±(iVT - JVfc) Ind ^ 1 4 y j 

-|ΣίΙιΣ*=ιΜ(ΐ + <^)/4 
Consider the limit of each term in (2.149) when d —» oo. For the second term we 

have 

In lim ^ e ^ Z ^ I d " 1 +Z ' i Z i ) " 1 Z+e i = - - / l n £ || Z+e; 
Z 

which is either +00 or a finite number. The third term in (2.149) tends to +00 
because by assumption, Νχ > Nk. For the fourth term we have 

N k f 

■1 lim f f l n f i l + Λλ.·.·ΪΛίΙ = / " l E y l n A y if VA*,· > 0 
oo otherwise 

=1 3=1 

Combining all the limits, we find that I goes to +00 when d —> 00, so the MLE does 
not exist. 

B . Existence of t h e R M L E with the log-likelihood function defined by (2.50) 
Sufficient condition. We need to show that in four cases shown in (2.145), the 

log-likelihood function approaches —00. Since Νψ — m > 0, it suffices to consider 
only case 1. Let <5i,..., ok denote eigenvalues of matrix D in ascending order, i.e., ok 
is the maximum eigenvalue. We shall prove that function 

N N 

* ( D ) = l n I £ x < ( I + Z i D Z 0 - 1 X i | + ] T > | l + Ζ ,ϋΖ ί | 
ί = 1 i=l 

approaches +00 when D —>oo. By assumption, there are m + 1 matrices Z* that 
have full rank. This implies the existence of a positive scalar φ such that Z^Z^ > 
φΐ for at least m + 1 indices i. Then for the second term of Φ(ϋ) , we have 
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Σ In | l n i+ZiDZ^| = J^ln |ΐ/-+ΌΖ^Ζΐ| , and thus this term is bounded from below 
by (m + 1) In | I+0D| = (m + 1) £ * = 1 ln(l + </><̂ ). To find the lower bound for the 
first term, we denote ç = max^i , . . . ^ Amax(Z£Zi) so that Z*ZJ < çl. Then the first 
term of Φ(Ό) can be bounded from below as follows: In | £ X < ( I + Z - D Z · ) " ^ > 

In | Σ X J i l + i f c Z i Z i ) " 1 ^ ! > In | Σ?=ι X ^ I - K M ) " 1 * ! = In | Σ?=ι X&i\ - m l n ( l + 
ς£&). By assumption, the matrix ^ i = 1 X^Xi is not singular and thus In | ^ X ^ X ^ | 
exists. Combining the two bounds, we obtain Φ(Ό) > In | Σ X^X*| — m ln(l+ς£&) + 

(m + 1) E j = i l n ( ! + # ; ) so that Φ(ϋ) > In | £ X p q - m In ±±g£ + Σ?=ι h ( l + 
05j) —► oo, when <5& —» oo. This implies that Z —► — oo when D —>oo. 

Necessary condition. The proof is similar to the MLE. Since I + Z^DZ^ > I, we 
have V " 1 < I and therefore In | Σ χ ί ( Ι + Ζ ζ ϋ Ζ ί ) ~ 1 χ * | < n i | E X p Q | . Hence, 
for the RML log-likelihood function we come to a slightly different inequality, 
max0Z > - 0 . 5 A ^ - 0 . 5 ( i V T - m ) l n E e ^ Z i ( I + D Z ; Z 0 - 1 Z t e i ] - 0 . 5 E l n | I + D Z ; Z i | -
0.5 In I^X^X^I. Again, letting D =dl and d —» oo, we find that the right side ap-
proaches +oo meaning that the RMLE does not exist. 

2.18 Summary points 

• The Linear Mixed Effects (LME) model developed by Laird and Ware (1982) 
is a generalization and combination of the VARCOMP and linear regres-
sion models. This model is adequate to describe clustered/panel/tabular data 
for the dependent variable where the rows are independent but observations 
within each row constitute a cluster and therefore are dependent. This de-
pendence is modeled via random effects in the manner of the VARCOMP 
model. 

• There are many equivalent parameterizations of the log-likelihood function for 
the linear mixed effects model under normal assumption. In particular, one 
can eliminate variance σ2 and/or fixed effects β to yield the profile parame-
terization. Dimension-reduction formulas apply which reduce the η^ χ rti to 
the k x k matrix inverse, where Ui is the number of observations per individual 
(subject or cluster) and k is the number of random effects. If the covariance 
matrix of random effects D is known, the Generalized Least Squares (GLS) 
estimator is the best unbiased estimator because it has minimum variance 
among all unbiased estimators under normal distribution. However, matrix D 
in most cases is unknown, so that we need to estimate it along with the fixed 
effects coefficients. This makes the estimation problem nonlinear. 

• Random effects in the LME model may be treated as fixed unknown nuisance 
parameters. The fixed effects approach leads to a large number of nuisance 
parameters, and the least squares estimator for ß in this approach may be 
formally derived from the GLS estimator, letting D go to infinity. The fixed 
effects approach is theoretically easier to handle because it can be reduced 
to standard linear regression. It is preferable when the number of subjects is 
small and the number of observations per cluster is large. 



2.18 Summary points 115 

• Balanced data (equal cluster size and no missing values, rectangular format) 
are preferred in the mixed effects model because then the ML, GLS, and OLS 
estimates coincide and there exists a closed-form solution for the variance 
parameters. Two important balanced LME models are the random-intercept 
and random-coefficient models. In a balanced random-intercept model, the 
variance of the random effect affects neither the MLE of the slopes nor their 
variances. The ML estimator is unbiased and efficient among all unbiased esti-
mators of the fixed effects coefficients under normal distribution for balanced 
data. 

• The MLE exists with probability 1 if the rank of the combined design matrices 
of fixed and random effects is less than the total number of observations. More 
precisely, the MLE exists if the vector of the response variable does not belong 
to the linear space spanned by the vector columns of the matrices of fixed and 
random effects. Equivalently, the MLE exists if the residual sum of squares 
in the fixed effects approach is positive. However, this existence does not 
guarantee that OML is positive definite. 

• Condition (2.93) provides a numerical criterion that the MLE of D is not zero, 
i.e., random effects are present. This condition should be checked before the 
log-likelihood maximization algorithm begins. 

• The MLE of σ2 lies within bounds specified by inequality (2.99): the OLS 
estimate of σ2 is the upper bound and the OLS estimate of σ2 in the fixed 
effects approach is the lower bound for d2

ML. 

• Generally, there are three types of algorithms for the log-likelihood maximiza-
tion: the Newton-Raphson (NR), Fisher scoring (FS), and EM (Expectation-
Maximization) algorithms; they all have generic form (2.103) and differ by 
matrix H. The log-likelihood function for the linear mixed effects model is 
not convex, and therefore the Hessian matrix may not be positive definite. 
However, one can expect positive definiteness of the Hessian in a neighbor-
hood of the maximum. Hence, if the starting point in the NR algorithm is 
far from the maximum, the algorithm may fail, but if the starting point is 
relatively close to the maximum, the NR algorithm is fast. The FS algorithm 
is more robust to the choice of starting point because its (information) matrix 
is always positive definite (under mild assumptions). The EM algorithm may 
be slow when the matrix D is close to zero. We recommend use of the FS 
algorithm with the starting point for D derived from a few iterations of the 
EM algorithm, starting from D = oo. Quadratic estimation of the variance 
parameters developed in Chapter 3 suggests another way to obtain starting 
points. 

• The most economical and reliable algorithm for likelihood maximization is 
the FS for variance-profile or full-profile parameterization with the precision 
matrix as the argument and the starting point as a quadratic estimate of 
matrix D from Chapter 4. The inverse to the negative Hessian matrix gives 
an asymptotic covariance matrix for variance parameters. 
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• There exists a risk that during iterations the matrix D does not become 
nonnegative definite. For example, for a balanced growth curve model with 
random coefficients and number of individuals N = 20, the chance that T>ML 

or ORML he on the boundary of the parameter space (i.e., are singular) is 
about 50%. However, when N grows, the chances become less. 

• The matrix D needs special attention in the course of the log-likelihood maxi-
mization procedure because it must be nonnegative definite. Three approaches 
may be suggested to cope with the nonnegative definiteness of D. In the first 
approach, we allow matrix D to be negative definite during the iteration 
process, but all matrices V* must stay positive definite to be able to compute 
the log-likelihood function. This approach makes the parameter space less re-
strictive, and under certain conditions the log-likelihood function approaches 
infinity when V; becomes singular. After maximization is finished, we project 
the solution D onto the space of all nonnegative definite matrices E3)+. In the 
second approach, one may force matrix D to stay nonnegative definite in the 
course of maximization. There are two ways to do this. The easiest way is to 
take a shorter step to ensure that the next approximation is a positive definite 
matrix. A more sophisticated way is to project the adjustment matrix on P + . 
In the third approach the matrix D is reparameterized in such a way that it 
remains nonnegative definite. For example, using Cholesky decomposition, we 
can write D = L/L, where L is an upper triangular matrix, and maximize the 
log-likelihood over L. 

• Stopping criteria must include evaluation of the gradient or the relative gra-
dient of the log-likelihood function, which must^be zero at the final iteration 
if the matrix D is positive definite. If the final D is not positive definite (sin-
gular), the gradient is not zero and another first-order condition should be 
employed that makes use of the Kuhn-Tucker condition for constrained op-
timization. It should be remembered that maximization of the log-likelihood 
function is a nonlinear constrained optimization problem, and, in particular, 
it may have several local maxima. A good practice is to start from a different 
initial point to confirm that iterations converge to the same estimate. This 
check is especially important when at the final iteration, the matrix D is found 
to be singular. 

• The R function lme of the package nlme may fail when matrix D tends to be 
not positive definite during iterations. We recommend using the R function 
lme4 of the package lme4 which protects the code from the abnormal ending. 
Unfortunately, the syntax in lme4 is different from that in lme, so programs 
written for lme will not run with lme4. The output matrix D* may be non-
negative definite and singular. Our own R function lmeFS converges in most 
cases but may return a not nonnegative definite matrix D, so that the user 
needs to decide what random effects are excessive and should therefore be 
eliminated to make the LME model well specified. 



3 
Statistical Properties of the LME Model 

3.1 Introduction 

In this chapter we continue studying the Linear Mixed Effects (LME) model defined 
in (2.5). In Chapter 2, we were concerned primarily with numerical algorithms 
for the likelihood maximization. In this chapter our attention is on the statistical 
properties of the LME model, particularly the distribution-free estimation of the 
variance parameters. Once the covariance matrix of the random effects is estimated, 
we use a generalized least squares estimator to estimate the fixed effects (beta) 
coefficients. In this chapter we shall learn that this estimated GLS leads to unbiased 
estimates of the fixed effects coefficients, even in a small sample. 

3.2 Identifiability of the LME model 

In Section 2.2 we formulated conditions under which the LME model is identifiable. 
The identifiability of a statistical model is essential. In this section we provide more 
detail on identifiability and prove that under the conditions formulated, the LME 
model is identifiable. We start with a general definition. 

Definition 9 Let a statistical model be defined by a family of distributions for y 
parameterized by the vector 0, {P#, 0 G Θ}, where Θ is the parameter space and PQ 
denotes the distribution associated with 0. We say that the model is identifiable on 
Θ if Ρβλ = ΡΘ2 implies that θ\ = 0 2 · 

Identifiability may be viewed as a necessary property for the adequacy of a sta-
tistical model. Briefly, it provides the uniqueness of the distribution as a function 
of the parameter. Clearly, if 0χ φ 02 but ΡΘ1 = Ρβ2, one cannot distinguish two 
parameters, regardless of the number of observations. Consequently, if the model 
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is not identifiable, there are no consistent estimators for Θ. For example, in the 
standard linear regression model y ~Λ/*(Χ/3,σ2Ι), the necessary and sufficient con-
dition for the identifiability of β is that the matrix X have full rank (sometimes 
this condition is called the estimability of β). Interestingly, the condition of full 
rank is not necessary for σ2. A well known example of a nonidentifiable statistical 
model is the measurement error (errors-in-variables) model, where the dependent 
and independent variables are iid (called the structural case): It has been proven 
by Kendall and Stuart (1961) that the model with normally distributed variables is 
not identifiable unless the ratio of the measurement error variances is known. 

Apparently, a necessary condition for identifiability is the uniqueness of the first 
two moments as functions of the model parameters: 

Εθι{γ) =E02(y) and cov01(y) =covÔ2(y) imply θλ = 02 . (3.1) 

It is worthwhile to note that, generally, (3.1) is just a necessary, not a sufficient, con-
dition for identifiability. However, for regression models with normal distribution, 
condition (3.1) is sufficient because the normal distribution is uniquely specified by 
the first two moments. More precisely, this statement is formulated as follows. 

Proposition 10 Let a regression model be defined as 

y ~Μ(ΐ(β),ν(β,θ)), 

where y is annxl vector of data, f (/3) is a linear or nonlinear nxl vector function 
ofanmxl vector parameter β, αηάλί(β,θ) is thenxn covariance matrix dependent 
on β and the k x 1 vector parameter Θ. Then the regression model is identifiable if 
and only i / f ^ ) = f(/32) and V ^ , ^ ) = V(/32,02) imply that βχ= β2, θχ= 02 . 

Now we apply this result to the linear mixed effects model with normally distrib-
uted random variables (2.14). The following conditions imply the nonsingularity of 
the information matrix (see Proposition 13 in Section 3.3). 

Theorem 11 If matrix X has full rank, at least one matrix Z^ has full rank, and 
Σ(ηί — k) > 0, the LME model (2.14) i>s identifiable. 

Proof. Since the expectation and covariance matrix do not have common parame-
ters, the conditions of Proposition 10 may be separated for β and Θ =(a2,vech(D)). 
The condition f{βλ) = f(/32) f° r t n e LME model is written as X/3X = X/32, which 
implies that βχ = β2 if and only if matrix X has full rank. Now we prove that the 
covariance matrix V is uniquely specified by (a2,vech(D)) if at least one matrix 
7ii has full rank and Σ(ηί — k) > 0. Indeed, it suffices to prove that TV equations 
(σ? - σ|)Ιη .+Ζί(ϋ*ι - D*2)Z^ = 0 imply that σ\ = σ\ and D*i = D*2. Taking 
the vec transformation, we obtain 

vec ((σ2 - a\)\ni + Zf(D*i - D*2)Z^ 

= {σ\ - a|)vec(In . ) + (Z< <g> Z») vec (D*i - D*2) . 

Hence, introducing a (5^n?) x (l + A:2) matrix E with the ith ni x (1 + k2) matrix 
block (vec(InJ, Z* ® Z^), the identifiability for the second moments is equivalent to 
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the condition that matrix E have rank k2. Obviously, matrix E has full rank if and 
only if the matrix 

F / F _ [ Evec ' ( I n i )vec(I n J Evec ' ( I n i ) (Z ; ® Z<) 
1 E ( Z ^ Z 0 v e c ( I n i ) Ε ^ Ζ , Θ Ζ ^ 

NT £ v e c ' ( Z ^ ) 

is nonsingular. The proof that matrix E 'E has full rank if at least one matrix Z^ 
has full rank and Σ(τΐ{ — k) > 0 is provided in Proposition 13 of Section 3.3. ■ 

As a word of caution, the identifiability of a statistical model does not imply that 
the maximum likelihood estimation will not fail. For instance, in linear model (2.66) 
with fixed intercepts {a*} and bounded {r^}, the MLE of α̂  is not consistent when 
N —> oo. This is a classical example of a statistical model with a large number 
of (nuisance) parameters, introduced by Neyman and Scott (1948). In the next 
subsection we provide a peculiar example of an identifiable statistical model, where 
the MLE does not make much sense, although it does exist. 

3.2.1 Linear regression with random coefficients 

Identifiability is not a sufficient condition for the validity of a statistical model. 
Here we consider a linear regression model with random coefficients, y = X b +e, 
where ε is an n x 1 normally distributed error term with zero mean and variance 
σ2. This model may be viewed as a generalization of (2.97). The vector of regression 
coefficients, b , is random: b = β 4- δ, where δ ~Λί(0,σ2Ό) and ß =E(h) is the pa-
rameter of interest. Variance parameters σ2 and D are assumed unknown. Also, we 
shall assume that the nxm design matrix, X, has full rank and m <n. Compactly, 
this model can be written as 

y~Af(X/3,a2(I + XDX')) . (3.2) 

Applying Proposition 10, it is possible to show that model (3.2) is identifiable. We 
estimate this model maximizing the log-likelihood function, which, up to a constant 
term, is 

Z(/3,a2,D) = - i { n l n a 2 + l n | I + X D X , | + a - 2 ( y - X / 3 ) , ( I + X D X , ) - 1 ( y - X / 3 ) } · 

Let ßoLS — (X'X)~ X'y be the OLS estimator and ê = y — XßoLS be an n x 1 
OLS residual vector. We simplify the weighted sum of squares using the matrix 
inverse formulas (2.21) and (2.25) and the fact that for the least squares, X ' e= 0 
as follows: 

(y -X/Syp + X D X ' r ^ y - X / î ) 

= (e - X(ß-ßOLS))'(l + X D X ' ) - 1 ^ - X(ß-ßoLs)) 

= e' Γΐ - X(D_1 + Χ 'Χ^Χ' ] e - 2e' Γΐ - XfD^+X'X)"^ ' 

+(/3-3oLs)'((X'Xr1+D)-1(/3-3OLS) 
= ||êf + (/3-3OL5)'((X'X)-1+D)-1(/3-3OLS). 

Mß-ß0Ls) 
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Furthermore, the maximum of I over σ2 admits a closed-form solution so that we 
come to the minus twice variance-profile log-likelihood function, 

In |I + XDX'I + nln[||e||2 + ( / 3 - 3 O L S ) ' ( ( X ' X ) - 1 + D ) - 1 ( / 3 - 3 O L 5 ) ] ) (3.3) 

after omitting a constant term. But this function reaches its maximum when the 
second term under the logarithm vanishes, ß—ßoLS = 0· Therefore, the GLS/ML 
estimator for model (3.2) coincides with the OLS estimator, ßML = ßoLS- Conse-
quently, the log-likelihood function I collapses to — 0.5{ln |I + XDX'| + nln ||e|| }. 
Since ||e|| does not depend on D, the latter maximum corresponds to the minimum 
of |I + XDX'I, which leads to the trivial solution, D M L = 0· Thus, the MLE for 
model (3.2) coincides with the OLS estimator, and the variance-covariance matrix 
is zero—thus matrix D fails to estimate. We can interpret this result by saying that 
model (3.2) is not specific enough to identify the "randomness" of b . 

Model (3.2) would make more sense if observations are collected over several 
individuals, namely, 

γ,~Λφ£./3,σ2(Ι + XzDX^)), i = 1 , . . , N. (3.4) 

But this model is a special case of the LME model (2.5) with Z» = X;, and is 
studied in the next chapter. This example explains why we need observations on 
individuals (repeated measurements) to estimate a random-coefficient model. 

Another illustration of an invalid model is when fixed and mixed effects are present 
in the model at the same time. To be specific, let us consider the random-intercept 
model of Section 2.4 but where intercepts have different means, 

Vij = OLi + 7'iiij + hi + Sij. (3.5) 

Here bi ~ ΛΓ(0,σ2<ί), ε^ ~ Λ/*(0,σ2), and α̂  are fixed and unknown. This model is 
similar to (3.2), with the difference that in (3.5) only the intercept is random. It 
is easy to see that for model (3.5) the log-likelihood is given by (2.73) with hi = 0 
because S^ = yi— 7 'u^ . Therefore, similarly to model (3.2), we obtain UML = 0 
and 7 M L = 7 ^ given by (2.71). In Section 11.6 we confront the problem with 
simultaneous estimation of fixed and random effects in the statistical analysis of 
shape. 

Problems for Section 3.2 
1. Is it true that if a statistical model is not identifiable, the ML estimator is 

inconsistent? Provide an example. 
2. Is it possible that a LME model is not identifiable but the variance parameters 

MLE are unique and consistent? 
3. Prove that for model (3.5) we have OML = 0 and 7 M L = 7 ^ given by (2.71). 

Provide a layperson explanation that (1ML = 0. Why is (2.71) an overspecified 
model? 

3.3 Information matrix for variance parameters 

Besides estimates of fixed effects coefficients, we may be interested in the covariance 
matrix of variance parameters per se. The aim of this section is to provide formulas 
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for the asymptotic covariance matrix of Θ = (a2,vech'(D)) , derived as the inverse of 
the information matrix. The information matrix for the variance components model 
is usually expressed element-wise in terms of matrix trace (Searle et al., 1992). Here 
we derive a more compact formula using the duplication matrix and its properties, 
see Appendix 13.2.3. 

Because observations are independent for different subjects, we can drop subindex 
i for simplicity of notation. Then the log-likelihood function for the ith individual 
is written as 

I = -±{η\τνσ2+σ-\γ-*β)\ΐ + ΖΌ'Ζ')-\γ-Κβ) 

+ l n | I + ZDZ'|} . (3.6) 

The (1 + k(k +1)/2) x (1 + k(k 4-1)/2) information matrix for Θ is calculated as the 
covariance matrix of the first derivatives of (3.6) with respect to σ2 and vech(D), 
where vech denotes the vector collection of unique elements of matrix D (we refer 
the reader to formula (2.105) and Appendix 13.2). Differentiating (3.6) with respect 
to σ2, we obtain 

dl n 1 , / n „N 

ä ^ = - 2 ^ + 2 ^ U U ' ( 3 · 7 ) 

where u = σ - 1 ( Ι + ΖΌΖ)~ι'2η ~Λ/"(0,Ι). Further, using the formula for the vari-
ance of a quadratic form with a normally distributed vector (Graybill, 1983; Schott, 
1997), one obtains 

/ dl \ 1 , , . n 
varVä^J = 4 ^ v a r ( u u ) = ^ · 

The derivative of I with respect to D in terms of u can be expressed as 

^ = ^ 2 Z , ( I + ZDZ,)-1ee , (I + Z D Z , ) " 1 Z - i z , ( I + ZDZ,)-1Z 

= i (Tu) (Tu) ' -±Z'V- i Z , (3.8) 

where T = Z'(I + ZDZ' )" 1 / 2 , see Section 2.9. 
For the LME model, the information about beta and variance parameters is or-

thogonal (corresponding derivatives are uncorrelated, or more precisely, indepen-
dent), which can be expressed mathematically as 

cov 
91 dl \ ^ ( dl dl\ Λ 

W^)=^ COVW9D)=0' (3'9) 

To show the first orthogonality, we rewrite the derivative with respect to beta pa-
rameters as 

J | = σ-2Χ'(Ι + ZDZ'r'iy - X/3) = X'V"1/^. 

Then the independence of dl/dß and dl/da2 follows from the fact that the third 
moment of the normal distribution is zero, 

cov I'l^K^'^l·0· 
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A similar proof works for the independence ofdl/dß and dl/dO. Indeed, considering 
the covariance between dl/dß and c'(dl/dO)c for any fixed vector c, we obtain 

cov e^-Ka^1"«^*)-* 
which again follows from the fact that the third moment of the normal distribution 
is zero. Since the information matrix is block diagonal, without loss of generality, 
we can assume that ß is the true vector when calculating the asymptotic covariance 
matrix for the variance parameter Θ. The fact that the information matrix in the 
LME model for (/3, Θ) is block diagonal has been known for a long time (Jennrich and 
Schluchter, 1986). We refer the reader to Appendix 13.1.3 for a general discussion. 
Consequently, the asymptotic covariance matrix for ß^L 1S approximated as 

N - 1 

cov(3M L) = σ2 £ X ^ ( I + Z * Ô Z i ) - 1 X * (3.10) 
\i=l 

In the rest of this section we consider variance parameters; our objective is to cal-
culate the information matrix for Θ. For this, we need more advanced use of vector 
functions vec and vech to represent symmetric matrices. These matrix-to-vector op-
erators are described at length by Lancaster and Tismenetsky (1985), Fuller (1987), 
Magnus (1988), Schott (1997), and Harville (1997), among others. Many facts of 
matrix algebra and calculus used in this book are collected in Appendix 13.2. The 
vec function applies to a matrix and represents the matrix as a vector by stacking 
the columns into a column-vector. By vech we denote a similar function, but applied 
to a symmetric matrix, with columns starting from the main diagonal. The dupli-
cation matrix, described by Magnus (1988), relates the two functions in a simple 
way: let M be any k x k symmetric matrix; then the k2 x k(k + l ) /2 duplication 
matrix V^ of full rank is such that vec(M) =Dfcvech(M). Based on T>k it is possible 
to construct a generalized inverse matrix V\ — {J)'^D^)~xVk for the back repre-
sentation, vech(M) =£>^vec(M). Magnus provides explicit expressions for Vk and 
V^\ following are examples for k = 3: 

1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 1 0 0 0 0 
0 0 0 1 0 0 
0 0 0 0 1 0 
0 0 1 0 0 0 
0 0 0 0 1 0 
0 0 0 0 0 1 

p 9 x 6 <Pt)' = 

1 
0 
0 
0 
0 
0 
0 
0 
0 

0 
1 
2 
0 
1 
2 
0 
0 
0 
0 
0 

0 
0 
1 
2 
0 
0 
0 
1 
2 
0 
0 

0 
0 
0 
0 
1 
0 
0 
0 
0 

0 
0 
0 
0 
0 
1 
2 
0 
1 
2 
0 

0 
0 
0 
0 
0 
0 
0 
0 
1 

We will use duplication matrices to calculate the information and covariance matri-
ces for D. Note that the covariance matrix for vec(D) is deficient (singular) because 
matrix D is symmetric. To shorten the notation, we introduce the function covh 
which denotes the covariance matrix of vech(M), where M is a symmetric matrix, 
i.e., covh(M) =cov(vech(M)). 
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Below is the R code for computation of the duplication matrix Vn based on the 
Magnus representation: 

dupp<-function(n) 

{ 

dl < - n~2 
d2 < - (n * (n + l ) ) / 2 
D < - matrix (rep (0, dl * d2) , nrow = dl) 
for ( i in l:n) 

for( j in l : i ) { 
u < - matrix(rep(0, d2), ncol = 1) 
u[ ( j - 1) * n + i - (j * (j - l ) ) / 2 , 1] < - 1 
Tm < - matrix(rep(0, d l ) , ncol = n) 

i f ( i == j ) 
Tm[i, i ] < - 1 

e l se Tm[i, j ] < - Tm[j, i ] < - 1 
D < - D + matr ix (as. vector (Tm) , ncol = 1) 0/0*

0/0 t (u) 

} 

return (D) 

} 

We can use Dplus < - solve(t(D) 0/0*
0/0 D) %*% t(D) to compute £>+, where 

D=dupp(n). 

Since we are interested in covariance, the nonrandom term, 0.5Z/V~1Z in (3.8) 
can be omitted, so that 

covh (JL^ = cmh (± (Tu) (Tu) ' ) . (3.11) 

To express (3.11) in terms of Z and D, the following result will be used (the com-
mutation matrix K n is defined in Appendix 13.2.3). 

Lemma 12 Let u be annxl vector, u ~JV(0,In). Then cov(u®u) =2N n , where 
N n = (In2 + K n ) /2 , In2 is an n2 x n2 identity matrix, and K n is a commutation 
matrix. 

The proof is given in Magnus (1988). Then, using this lemma, we obtain 

c c ^ Q t T u X T u ) ' ) 

= D+cov ( i(Tu)(Tu)' J V+' = ix»+cov (Tu ® Tu) V+' 

= i î ? + cov ((T ® T) (u ® u)) V+' = \v+ (T ® T) N n (Τ ' ® Τ') D + / . 
4r Δ 
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Now we find the expectation of the cross-product. As it is easy to see, we can write 
u 'u = (u (g> u) /vec(In), so that 

cov ( J ^ e d i b ) ) = ^V+(T®V™(u®u)vec(ln) 

2<72 
P + ( T ® T ) N n v e c ( I n ) . 

Thus, the information matrix for (a2,vech(D)) is given by 

ησ 
- 4 a-2vec'(ln)Nn(T®T')V+' 

a~2V+ (T ® T) Nnvec(In) V+ (T <g> T) N n (Τ' ® Τ') V+l 

(3.12) 

In fact, this matrix can be simplified further as follows. The following property of 
matrix Nra will be used: 

( A ® A ) N n = N „ ( A ® A ) , D+N n =D+, (3.13) 

where A is a matrix of appropriate size. Then, for the (l,2)th block of I, we obtain 

N n (T' <g> Ί " ) V+' = (Τ' ® Τ') ΝηΧ>+' = (Τ' ® Τ') Ρ+ ' . 

The analogous transformation is valid for the (2,l)th block. For the last term of 
(3.12), we have 

V+ (T ® T) N n (Τ' ® Τ') Ρ + ' 

= V+ (T ® T) (T' ® T') V+l = V+ (ΤΤ ' ® ΤΤ ' ) £>+'. 

But Τ Τ ' = R, where 

and using the identity 

R = Z'(I + ZDZ' ) _ 1 Z, (3.14) 

(3.15) vec(ABF) = (F' ® A)vec(B) 

for any matrices of appropriate size, we obtain 

(T ® T) vec(In) = vec(TT') = vec(Z'(I + ZDZ') _ 1 Z). 

Combining all derivations, we finally arrive at the information matrix for Θ from 
cluster i, 

1 = 
1 riiO - 4 σ-2νβο'(ΈΙί)ν+' 

a-2r»+vec(Ri) V+ (Ri ® R;) V+' 
(3.16) 

In a special case of uncorrelated random effects, this matrix is found in Harville 
(1997). The asymptotic covariance matrix of the variance parameters, based on the 
entire sample i = 1,..., iV, is the inverse to the total information matrix, 

COV(ÖML) = 2 
Ντσ~ a - 2 v e c ' ( E R ^ + / 

a - 2 P + v e c ( E R i ) P + ( E R ; ® R i ) ^ + ' 

- 1 

(3.17) 
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where the k x k matrix Ri is defined as 

Ri = Z<(I + Z . D Z ^ ) - 1 ^ = ( ( Ζ ^ Γ 1 + D ) _ 1 . 

Note that this identity holds if matrix Z* has full rank. Using matrix block-inverse, 
we can find the asymptotic Ί 

random effects (Νχ = Σ ^ ) , 
we can find the asymptotic variance for dML and the covariance matrix of the 

2σ4 

var(^} = W^> (3Λ8) 

where 

ω = vec' (J2 R * ) v+l (v+ ( Σ R * ® R i ) V+/) _ 1 V+Yec ( Σ ***) ' (3·19) 

and 

COV/I(DML) 

P + f £ Ri ® Ri - ^ - v e c ( ] T R i ) vec' ( £ R*) ) 2?+' 
- 1 

(3.20) 

Notice that this covariance matrix does not depend on σ2. 
The covariance matrix for restricted ML may be found from the sandwich formula, 

see Appendix 13.1.4. For the variance components model this matrix is found in 
Searle et al. (1992) and McGilchrist (1994). 

Using matrix identities (3.13), it is possible to show that in expression (3.19) one 
can get rid of the duplication matrix, or more precisely, 

ω = v e c ' ( ^ R i ) ( $ ^ R » ® Ri ) vecQTRi) . (3.21) 

Proof. Indeed, using the definition of £>+, we have 

ω = vec ' ( ] T Ri)V+,(D'T)) (V+ (J2 Ri ® R i ) I?) P+vec( J ] Ri) 

= vec'(]T Ri)2> (V+ (J2 R-i ® R i ) T>) _ 1 Τ>+νβο(Σ Ri) . 

But 

because 

( z > + ( 5 ^ R i ® R j ) l > ) ^ P + ^ R i ^ R i ) lV (3.22) 

P + ( X ) Ri ® R i ) - 1 P 2 ? + ( 5 3 Ri ® R i ) î> 

= 2 > + ( 5 3 R i ® R i ) ~ 1 ] £ N ( R i ® R i ) I > 

= î > + ( 5 3 R i < 8 ) R i ) ~ ( 5 ] R i < 8 ) R i ) N Î ) = I ) + N D = I. 
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Thus, continuing, we have 

ω = vec 

But for a symmetric matrix, PP + vec(A) =vec(A); therefore, we finally come to 
(3.21). ■ 

Analogously, using the identity (3.22) and the fact that Nvec(A) =vec(A) for 
symmetric matrix A, one can show that (3.20) is equivalent to 

2V Σ Ri ® Ri - ier-vec(H R*)vec'(]L R*) NT 

- 1 

V. (3.23) 

As follows from classical mathematical statistics, (3.18) and (3.20) define the 
lower bound for the variance and covariance of unbiased estimators for σ2 and D, 
the Cramér-Rao inequality. See, for example, Rao (1973) or Casella and Berger 
(1990). In the next subsection we prove that this bound is attained for σ2 when the 
data are balanced, i.e., r^ =const and Z^ =const. 

In practice, we estimate COV(#ML) by replacing σ2 and D with their MLEs. 
Sometimes we need the^ covariance matrix for the MLE of D* = σ2Ό. Since 

vech(D*ML) = 5MLvech(DML)5 by the delta-method (Rice 1995) we yield 

covh(O*ML) = var(a2
VfL)vech(DML)vech/(DML) + a4covh(DML) 

+a2[cov(a2
ML, vech(DML))vech /(DML) 

+vech(DML)cov ,(a2
UL,vech(DML))], (3.24) 

where var(aM L) and COVH^ML) are defined by (3.18) and (3.20), respectively, and 
cov(aML,vech(DML)) is the (2, l)th block of matrix (3.17). 

It is well known that the information matrix is always nonnegative definite be-
cause essentially it is a covariance matrix. However, to make the statistical model 
correct, we have to be sure that the information matrix is positive definite (nonnega-
tive definite and nonsingular). Conditions on positive definiteness of the information 
matrix provide minimal requirements for the validity of the model. In particular, 
these conditions imply that in a large sample, the variance-covariance matrix of D 
approaches zero with the order iV_1. 

Proposition 13 The information matrix for the LME model is positive definite if 
(2.6) holds and at least for one i matrix, Z^ is not zero. 

Proof. We use the following simple matrix fact: If matrix M is partitioned as 

M : 
c b ' 
b H (3.25) 

where c > 0, then matrix M is positive definite if and only if matrix H—c_ 1bb / 

is positive definite. Since matrix V+ has full rank, the inverse matrix in (3.17) is 
positive definite if and only if the matrix 

Σ Ki 0 Ki - N^vec^ R i ) v e c ' ( ^ R*) (3.26) 
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is positive definite. Let U be any nonzero k x k matrix. Without loss of generality, 
we can assume that this matrix is normalized, tr(U'U) = 1 . To show that matrix 
(3.26) is positive definite, it suffices to prove that 

vec'(U) fr** ® Ki - ^ v e c ( $ Z R i ) v e c , E R i ) ) v e c ( U ) 

= v e c ' O J M ^ R ; ® Ri]vec(U) - - ^ [ v e c ' ( U ) v e c ( ^ R 0 ] 2 > 0. (3.27) 

For the first term in (3.27), we apply the formula 

vec'(U)(A ® B)vec(U) =t r (UAU'B' ) , (3.28) 

which yields vec/(U)[X)Ri(8)Ri]vec(U) = £ t r ( U R i U ' R i ) . For the second term of 
(3.27), we apply the formula vec'(A)vec(B) =tr(A'B) , which yields 

^ [ v e c ' ( U ) v e c £ > ) ] 2 = ^ [ ^ ( U R , ) ] 2 · 

Then, denoting A^ = UR^, it suffices to show that the quantity 

Q = f ; t r ( A i A j ) - j - β > ( Α 0 ] 2 (3.29) 
i = l i=l 

N 

is positive. We have 

N 

Q = 5^tr(Ai 
2 = 1 

N 

= Etr(A* 
i = l 

N(NT-

- A ) ( A i -

- Ä ) ( A i -

-_mtrH 

-A)' + N 

-A)' + N 

ÄY 

t r ( A A ' ) - - ^ - t r 2 ( A ) 

t r (AT)- i t r 2 (Ä) 

NTk v " 

where A = Σ Ai/N. The middle term is nonnegative because t r (MM') > fc_1tr2(M) 
for any k x k matrix M. Let, on the contrary, Q = 0; then Az = A, so R2- does not 
depend on i. Since NT - Nk > 0 and Σ?=ι t r ( A 0 = ° [t follows from (3.29) that 
t r (U 'R 2 U) =vec/(U)(R(8)R)vec(U) =0, which implies that ZJ(I + ZiDZ,

i)~1Zi= 0 
for alH, a contradiction. ■ 

Remarks 

1. In the absence of random effects (D = 0), from formula (3.17) we obtain a 
familiar asymptotic variance of σΜ Ι / , namely, var(cr ) = 2σ4/ΑΓ^, where N? 
is the total number of observations. 

2. The covariance matrix of variance parameters does not depend on the fixed 
effects, β. 
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3. For one random effect (k = 1) we have Ri = ||ζ;| | / ( l + ||ζ^|| ), and the 
Kronecker product is replaced by the s tandard product. Then matr ix P + 

vanishes and the covariance simplifies to 

cov 

^ 2 
°JAL 
dML 

Ντσ~Α - 2 ^ p HZill 

i+d||»<ll Σ ( i+d | | Z i | |
2 ) 2 

where a2d is the variance of the random effect. Using the s tandard formula 
for the 2 x 2 matr ix inverse, we obtain 

^ o 
var(dMz,) = 

V IM4 L. ( V H*Ha Ί 
^ (l+d| |Z i | |

2)2 NT \2^ l+d\\Zi\\
2) 

2* 

We illustrate the calculation of the asymptotic covariance matrix of variance 
parameters with the LME model with random intercepts (2.67), where Z^ = 1;. 
Then Ri = ηι/{1 + riid) and 

cov 
^ 2 

°JdL 
dML 

l σ L· l+nid Σ \l+nid) 

-, - 1 

(3.30) 

As follows from formula (3.24), 

var (d*ML) = 2σ4 
JV-

For balanced da ta (n^ = n ) , we obtain 

(3.31) 

COV 
^ 2 

aJÄL 

dML 

2 σ 1+nd 

1+nd (1+nd)2 J 

with diagonal elements 

~ 2 x 2σ' 
v a r ( a M L ) = i V ( n - l ) ' 

var (CÎML) = 
2(1 + nd ) 2 

7Vn(n - 1) 

and 

var (<2* M L) = 
2σ4 

-[(l + ( n - l ) d ) 2 + ( n - l ) d 2 ] . 

(3.32) 

(3.33) 
N n ( n - 1) ' 

As follows from these formulas, the variance of aML has the order (TVn) - 1 and the 
order of the variance of dML is AT -1. This means tha t we can consistently estimate 
σ 2 , even having a finite number of subjects/clusters when the cluster size increases. 
However, we cannot consistently estimate the variance of the random effect without 
having a large number of clusters. 

A comparison of the MLE for the variance parameters with quadratic unbiased 
estimators such as MINQUE and the method of moments for unbalanced da ta is 
deferred to Section 3.14. 



3.3 Information matrix for variance parameters 129 

3.3.1 Efficiency of variance parameters for balanced data 

The aim of this section is to investigate whether the MLEs of the variance parame-
ters with balanced data for the random-coefficient and random-intercept model of 
Sections 2.3 and 2.4.1 are efficient, i.e., if they reach the Cramér-Rao bound. We 
prove that the estimator of σ2 is efficient in the random-coefficient model; however, 
other estimators are not. 

Theorem 14 For the random-coefficient model with balanced data, a2
ML = σ# Μ Ι / , 

given by formula (2.59), is efficient, i.e., it reaches the Cramér-Rao bound. 

Proof. Using the fact that ν&τ(η'Αη) =2tr(VA)2 for η ~Λ/χθ, V), we find that 

V a r ( ^ } = (N(n - m)f Σ""foiC - Ζ(Ζ/ΖΓ1Ζ)^) 

rtr((I + ZDZ')(I - Z(Z'Z)_ 1Z))2 2ΑΓσ4 

(N(n - m))2 ' 

2Νσ4 ,tr(i-z(z'z)-1z)) 2σ4 
(AT(n-m))2 v v ; " N(n-m)' 

In view of (3.18) and (3.21), the efficiency of a2
ML would follow from ω = Nm. 

However, 

vec'(R)(R(g> R)_ 1vec(R) = t r t R R ^ R R - 1 ) = m, 

which proves its efficiency. 
■ 

However, the RMLE for σ2 in the random-intercept model is not efficient, i.e., 
its variance does not reach the lower bound. To simplify, we consider the balanced 
random-intercept model of Section 2.4.1 in the form y^ = α̂  + 7 'u + e^, where 
a{ ~ ΛΓ(α, d*), Si ~ Λ/*(0, σ2), and u is an (m — 1) x 1 vector. The RML unbiased 
estimate for σ2 is given by (2.87), and it may be shown that 

.2 x 2 σ 4 

var(aÄ M L) 
N(n-l)-m + V 

see Section 3.10.2. But from (3.32) it follows that the efficiency of the RMLE, as 
the ratio of the lower bound to the variance of the estimate, is 

N(n - 1) - ra + 1 m-I 
N(n-l) N(n-1)' 

^ 2 This means that if m = 1, then dRML is efficient, but this is the case when 
the random-intercept model collapses to the random-coefficient model. Otherwise, 
var(<7ÄML) does not reach its lower bound, but the efficiency does approach 1 with 
the order 1/N. 

Now we look at the efficiency of d*RML given by formula (2.89). The lower bound 
for var(d5|{jRML) is given by (3.33). Since (1*RML is unbiased and is a quadratic func-
tion of observations, its variance may be computed based on the formula νΒ,τ(η'Αη) 
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N = 10 N = 30 

I 1 1 1 1 1 1 I 1 1 1 1 1 1 — 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

Variance of the random effect 

FIGURE 3.1. Cramér-Rao lower bound for the MLE and the percent standard error (SE) 
of d*RML for different true values of d* and N = 10,30 in the random-intercept model. 
For small iV, the RML estimator does not reach the lower bound; for relatively large AT, 
the difference becomes negligible. 

=2tr(AV)2, where Ύ] ~Λ/"(0, V). In Figure 3.1 we compare var(d*#ML) with the 
lower bound as a function of the true d* for N = 10 and N = 30 in terms of 

A/vari^ßML) 
%SE = -¥—V^—- x ioo%, 

a* 
the relative SE. As the reader can see, %SE decreases with increasing d* and reaches 
a plateau. For the small sample (N = 10), we lose a few percent of efficiency; for N = 
30, the efficiency is pretty high. The efficiency of the variance parameter estimation 
for unbalanced data in the random-intercept model is considered in Section 3.14. 

Problems for Section 3.3 

1. Prove representation (3.7). 
2. Write an R code for computation of the commutation matrix K n using the 

representation in Appendix 13.2.3. 
3. Check Lemma 12 using simulations. 
4. Express (3.24) in closed form using (3.18), (3.20), and (3.17). 
5. Is it true that % SE decreases with N for the fixed value of the random effect, 

as shown in Figure 3.1? 
6*. Does Theorem 14 hold for random effects? If not, why? Support your state-

ment with simulations. 
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3.4 Profile-likelihood confidence intervals 

Confidence interval (CI) construction and statistical testing on beta parameters 
in the LME model are usually based on the asymptotic covariance matrix (3.10). 
For example, the statistical significance of the j t h component of vector ß uses the 
ratio ßj/sj, where Sj is the MLE standard error calculated as the square root of 
the (j, j ) th diagonal element of matrix (3.10). Approximately, or more precisely, 
asymptotically (when the number of clusters is large), ßj/sj ~ Λ/"(0,1) under the 
null hypothesis, which will be referred to as the Wald CI because of its association 
with Wald hypothesis testing. If the number of estimated parameters is relatively 
large (say, Νχ — m < 30), one can use the t-ratio: 

- i ~ t ( 7 V T - m ) , (3.34) 
S3 

where Ντ = Σ ni is the total number of observations and Νψ — m is the degrees 
of freedom (d.f.). It is worthwhile to note that the ratio in (3.34) does not have a 
^-distribution, as in a standard linear regression model, because we use an estimate 
of matrix D, not the true value. 

Many authors have indicated that profile-likelihood (PL) intervals perform better 
than usual Wald CIs in a nonlinear statistical model (Bates and Watts, 1988; Ritter 
and Bates, 1996). The idea of a PL confidence interval is as follows. Let j be fixed 
and we want to construct a confidence interval of the jih component of the vector 
7 =(7i5 72)--->7fc)/ based on the log-likelihood 1(*γ). Let 7 be the MLE with the 
log-likelihood maximum, Zmax = £(7). We fix 7^ and denote the (k — 1) x 1 vector 
7 = (/y1, . . . ,7 J _ 1 ,7 J + 1 , . . . , 7fc)', with the jih component removed and find the max-
imum of the log-likelihood function over 7, which we denote 2(7^), the constrained 
maximum. Then the (1 — a) 100% profile-likelihood CI for 7^ are the roots, x, of the 
equation 

l(x) = Zmax — - ^ I _ Q ; / 2 ? (3.35) 

where Zi_a/2 is the (1 — a/2)th quantile of the normal distribution. Supposedly 
equation (3.35) has two roots, x\ < X2 (it may happen that either of the roots is 
infinity). Then the PL (1 —a)100% CI for 7· is (χι,α^)· To account for d.f. following 
the line of (3.34), we use the ^-distribution to take another critical value that leads 
to the PL CI 

l(x) = Zm a x - 2^1-a/2, t (n-m)> (3.36) 

where qi-a/2,t(n-m) is the (1 — a/2)-quantile of the ί-distribution with n — m d.f. 
and n is the sample size. The advantage of (3.36) over (3.35) is that the former gives 
the exact CI for the linear model, e.g., when matrix D is known in the LME model. 
The reader is also referred to Section 4.3.4, where the profile-likelihood region is 
constructed for the growth curve model with random intercepts and autocorrelated 
residuals. Also, it is worthwhile to mention that, since confidence intervals and 
hypothesis testing are equivalent (Rao, 1973), the PL CI leads to a better test of 
Ho : ßj = 0. We accept Ho if the CI covers 0. 

Now we come back to the LME model. The key point of the PL CI for the beta 
coefficient in the LME model is that computation of the constrained / reduces to 
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another LME model. Indeed, assume that we want to find the PL CI for ßy Denoting 
the ( m - l ) x l vector β = (βχ,..., β^_λ,β^+11... , ßm)' and a key dependent variable 
Yi = Yi — ßjxj, under fixed /3 ·, the LME model can be written as 

ft = X i/3 + Z<bi + e i , (3.37) 

where X$ is an rii x (n — 1) matrix with the j th column removed from X$. Since 
(3.37) is the LME model, we apply the same software as for the initial LME model 
to find maximum I. The profile likelihood parameterizations of Section 2.2.4 are 
well suited for PL confidence interval construction. 

Several numerical algorithms can be used to find the two roots of equation (3.36). 
Since computation of the constrained maximum I does not require new software, we 
can easily plot the graph of I against /? · in the interval where the roots of (3.36) are 

expected. For instance, if a = 0.05, we may plot I in the interval (/3 · ± 3 x Sj) to 
obtain rough confidence limits by bracketing. More accurate limits can be computed 
using the derivative-free bisection or secant algorithms (Press et al. , 1992). Venzon 
and Moolgavkar (1988) suggest a Newton-Raphson procedure to find exact roots, 
but its realization requires special software. 

<? i 1 " i 1 1 1 1 1 r 1 - 1 — i 1 
3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 

Coefficient at Height 

FIGURE 3.2. Profile-likelihood (PL)-based confidence interval for the coefficient at height, 
ß in the LME model with family data. The PL confidence limits are the roots of the 
equation l(ß) = Zmax — 0.5g?, where qt is the (1 — a/2)th quantile of the i-distribution 
with Σηΐ ~ m d-f- (in our example, a = 0.05, Y^rn = 75, m = 2). The PL interval is 
the widest; the narrowest is the Wald CI (N), 3 ± 1.96 x SE. The t-Wald CI (t) is a little 
wider because the t-quantile with 73 d.f. is 1.99 > 1.96. 

Example . We illustrate the profile-likelihood CI by the weight-height LME 
model with family data of Section 2.1; W$ = a + ßUi + bi+ei. If we are concerned 
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with the CI for the slope /?, we fix its value and come to the single random-intercept 
model y* = a + bi+Si where 

yi=Wi-ßHi. (3.38) 

Using the lme function in R, we issue 

lme(y~., random=~l|Family, data=FamilyData)$logLik 

which returns the value Z, where y computed by formula (3.38) belongs to the 
dataframe FamilyData. By default, the method of estimation is RML, and we could 
use the ML-based CI using method="ML". Three confidence intervals for ß are de-
picted in Figure 3.2; 95% confidence intervals N and t are classical Wald CI based 
on ß/sß. The former is (3.97, 7.10) and takes the coefficient 1.96 at Sß. The latter 
is (3.99, 7.07) and takes 1.99, the 0.975 quantile of the t-distribution with 73 d.f. 
The PL CI is wider, (3.88, 7.21). 

Problems for Section 3.4 

1. Prove that the profile-likelihood CI defined by (3.36) coincides with the stan-
dard CI for linear regression. 

2. Write an R function that finds two roots of (3.36) using the uniroot function. 
This function requires specification of a segment such that the left-hand side of 
(3.36) has values with opposite signs at the ends. The ML estimate may serve one 
point and the four fold estimate SE may serve as another point. 

3*. Compare the profile likelihood CI with the standard CI for the slope coefficient 
in a small sample using simulations. Use a linear model with a random intercept 
(2.66) for this purpose. Compute the coverage probability and the average width 
for a sequence of N and a variance of the random intercept. Can you defend the 
statement that the profile CI is better for small N and that the difference is negligible 
for large N? 

3.5 Statistical testing of the presence of random effects 

A question of essential importance in the LME model is whether random effects are 
relevant. In statistical language, this translates into hypothesis testing, 

H0 : D = 0. (3.39) 

A "computational" answer is suggested in Section 2.6: if (2.93) is a positive definite 
matrix, then D M L is not zero. But what if T>ML is very small; can we still claim 
that the true D is zero? What is small? Recall that the idea of statistical hypothesis 
testing is to find what is small in the language of the type I error. 

Hypothesis (3.39) belongs to the nonstandard testing situation described by Self 
and Liang (1987) because D = 0 is the boundary point of the parameter space. 
This is a well-recognized problem in statistics and several authors have addressed 
this problem in general terms (Chernoff, 1954; Moran, 1971). In particular, the 
consequences of the fact that D = 0 lies on the boundary of the parameter set in 
the LME model have been described in detail by Stram and Lee (1994) and more 
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recently by Stern and Welsh (2000). The point of complication comes from the fact 
that if 0o is a boundary point, the likelihood ratio-test does not have a limiting 
X2-distribution. Indeed, the optimal properties of the MLE and likelihood ratio test 
are developed for the case when the true parameter is an inner point to be able to 
apply the Taylor series expansion. Consequently, the likelihood ratio test for (3.39) 
would lead to a lower power even in large samples. A large-sample adjustment of 
the likelihood ratio test in variance components model has been suggested by Stern 
and Welsh (2000). The score test for the LME model has been discussed by Verbeke 
and Molenberghs (2003). 

One can expect that the actual significance level of the likelihood ratio test will be 
less than nominal—this is the conclusion of Morrell (1998) after extensive simulation 
study. We shall illustrate this statement by a simple example in which the power 
function admits a closed-form solution. 

Example: Statistical testing on the boundary of the parameter space. We consider 
a simple example that illustrates the difficulty of hypothesis testing, particularly the 
failure of the likelihood ratio test when the null hypothesis is on the boundary of the 
parameter space. Let yi ~ Λί(μ, σ2) be iid (i = 1,..., TV), where μ is nonnegative and 
σ2 is known. The null hypothesis is H0 : μ = 0, with the alternative HA ' μ > 0. The 
standard test, which is equivalent to the likelihood ratio test with the alternative 
HA ' μ φ 0, is based on the MLE y = J2i=i Vi/N and uses the fact that under 
μ = 0, 

Λ Γ σ - γ ~ χ 2 ( 1 ) , (3.40) 

meaning that under the null hypothesis, the left-hand side is distributed as χ2 with 
1 degree of freedom. The standard test statistic (3.40) assumes implicitly that the 
parameter μ is unrestricted, μ G (—οο,οο). What is wrong when it applies to the 
parameter space μ > 0? When the parameter μ is restricted, the likelihood should 
be maximized on the interval [0, oo), which leads to the MLE different from the 
average, namely, 

2 = max(0,y) = { J * * ^ (3.41) 

Now the likelihood ratio test breaks down for (3.41) because Na~2fi is no longer 
distributed as χ2(1)! Let us examine the consequences of the use of the standard 
likelihood ratio test for the restricted parameter space. Let the significance level 
be fixed, a. Then, as follows from (3.40), the critical value of the likelihood ratio 
test, c, is the (1 — a)th quantile of the %2-distribution with 1 degree of freedom. 
We compute the real power of the test, where instead of y, one uses the restricted 
MLE, μ : 

Power(/x) = Pr(Reject Η0\μ) = Ρτ{Νσ~2μ2 > ο\μ) 

= 1 - Ρν(Νσ~2μ2 < φ ) = 1 - Prfo < ν^|μ)], 

where μ is the true parameter and y ~ Λ/"(0,1). Thus, the true power function for 
the standard likelihood ratio test, which ignores the fact that μ = 0 is the boundary 
point, is 

Power^) = 1 - -^= [ e'^'^dt = 1 - Φ(ν^ - μ). 
v 2π J-οο 
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FIGURE 3.3. Two power functions for the likelihood ratio test: for example, Ho : μ = 0 
with parameter space {μ : μ > 0}. The real power is less, especially in the neighborhood 
of small μ. This leads to a double increase in type II error when μ is close to zero. 

Recall that if μ = 0 would not be a boundary point then the naive power would be 

l-Pr(Na-2f < ο\μ) = 1 - Pr(y < </ϊ\μ) + Pr(y < -^\μ) 

= 1 - Φ(γ/ο - μ) - &{-y/c - μ). 

The two power functions are shown in Figure 3.3. When applying the likelihood ratio 
test to Ho : μ = 0, it is wrongly believed that the power function is dashed. The 
real power is less; the difference is particularly striking at small positive values of μ. 
Specifically, the significance level of the test is half as large as believed. Practically, 
it means that using the restricted MLE and standard likelihood ratio test, we will 
increase type II error, i.e., we will accept μ = 0 when in fact μ > 0. 

■ 
Next we develop an exact F-test for hypothesis (3.39) for the LME model (2.14). 

That test may be viewed as a generalization of the F-test for the variance compo-
nents model. The attractive feature of the test is that it has an exact significance 
level and it should work in small samples as well. 

The idea of the test is that when D = 0, the difference between the minimum 
sum of squares with random effects, 5min, and the minimum sum of squares without 
random effects (OLS) should be close. Thus, we compute the residual SS: 

N II ~ I I 2 

SOLS = 2 J ||y*~xÂ)LS 

Real power 
Naive power 
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assuming no random effects. Next we compare it to the minimum sum of squares in 
the presence of random effects, i.e., the minimum (2.33), 5min = minT ||y — W7H , 
where matrix the W is defined by (2.34) and 7 = (ßf ,b[,..., b ^ ) ' . The next result 
is crucial to our test. 

Theorem 15 Let r =rank(W). Then under (3.39), the ratio of the two quadratic 
forms has F-distribution, or more precisely, 

(SOLS - S M r - m ) „ p { r y _ r ) _ ^ 

Omin/{NT -r) 

Proof. We shall prove that if D = 0, the two quadratic forms a~25m in and 
a~2(SoLS — Smin) follow a x2-distribution, with Ντ — r and r — m degrees of 
freedom respectively, and are independent. We start with the denominator. Since 
P w = W ( W / W ) + W / is the projection matrix and X is a submatrix of W , we 
have (I — P w ) X = 0 and therefore 

Smin = y '(I - P w ) y =(Xj9 + e)'(I - Pw)(X/3 + e) = e'(I - P w ) e . 

But I — P w is an idempotent matrix with the rank and trace equal to Ντ — r 
and therefore o~ ^min rsJ X ( ^ τ — ^)· Further, we have SOLS — y'(I — P x ) y 
= e'(I - P x ) e and SOLS - Sm[n = e ' ( P w - P x ) e = ε'Ύε where T = P w - Ρ χ , 
the matrix of quadratic form in the numerator. It is easy to see that (I — P W ) T = 0 
because (I - P W ) X = 0 and (I - P W ) W = 0. 

Now we shall prove that matrix T is idempotent. First, we see that 

(I - P X ) ( I - P w ) = (I - P w ) ( I - P x ) = I - Pw-

Then 

T 2 = ( P w - P x ) ( P w - P x ) 
= [ ( I - P x ) - ( I - P w ) ] [ ( I - P x ) - ( I - P w ) ] 

= I - P x - I + P w - I + P w + I - P w = P w - P x = T, 

so the matrix T is idempotent. Now we find the trace (rank) tr(T) = t r ( P w ) 
—tr(Px) =r — m, and therefore σ~2(8οΣ3 — Smin) ~ X2(r — m). The F-distribution 
(3.42) follows from the fact that the ratio of two independent quadratic forms di-
vided by their degrees of freedom has F-distribution. 

■ 
When random effects are present in the LME model (2.14) (D ^ 0), 5min should 

be relatively small, and therefore the ratio (3.42) becomes large. Recall that the 
relationship between SOLS/Smin and the magnitude of matrix OML was noticed in 
Section 2.7. Thus, we reject Ho : D = 0 if the left-hand side of (3.42) is large. More 
precisely, the F-test for hypothesis Ho : D = 0 works as follows. Let 1 — a be a 
chosen significance level (e.g., a = 0.05) and /0.95 be the quantile of F-distribution 
with r — m and Νψ — r degrees of freedom. Then H0 is rejected when 

(SQLS - Smin)/(r - m) 
Smm/{NT-r) 
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In another interpretation, the null is rejected when the ratio SoLs/Smin exceeds 
l + ( r - m ) / ( i V T - r ) / o . 9 5 . 

This test may be viewed as a generalization of the F-test developed for the 
VARCOMP models; see Searle et al. (1992), and Mathew and Sinha (1992), and for 
a mixed effects model with one random effect, Khuri et al. (1998). Indeed, for the 
VARCOMP model of Section 1.2 we have 

yij = ß + bi + Sij, j = l,...,7ii,i = l,...,iV, (3.44) 

where είά ~ ΛΓ(0,σ2) and 6< ~ λί{0,σ2ά). Then (3.42) for hypothesis H0 : d = 0 
collapses to a well known F-test 

(Σ^4 · -ΣΓ=Ι^ Ϊ ) / (ΛΓ Τ -ΛΓ) 

see Searle et al. (1992, p. 77). We prove that for model (3.44) our F-test (3.42) 
collapses to (3.45). Indeed, for (3.44) we have r = N, and for the denominator of 
(3.42), 

N 
i j ij i=l 

For the numerator, after some algebra, 

SOLS ~ Sm\n 

i j i,j i i j 

Thus, (3.42) for the VARCOMP model collapses to (3.45). It is possible to show 
that our F-test collapses to existing tests in other special cases described by Khuri 
et al. (1998). Since the statistic in (3.42) is expressed in terms of the minimum sum 
of squares, one can easily generalize it to nonlinear models, e.g., see Section 7.7.5. 

Problems for Section 3.5 

1. Confirm by simulations the two power functions displayed in Figure 3.3. 
2. Under what assumption r > ml 
3*. Estimate the power of the F-test for VARCOMP model (3.44) using simula-

tions. Derive the power analytically using the noncentral F-distribution. 
4*. Compare the F-test (3.42) with the likelihood ratio test. Take note of the fact 

that the size of the latter test is not equal to a (the nominal size of the test). 

3.6 Statistical properties of MLE 

3.6.1 Small-sample properties 

Little is known about small-sample properties of estimators in linear mixed effects 
models. Here we recover and prove the often-forgotten important fact that the 
ML estimator for β is unbiased in small samples. Also we prove that the variance 
parameters in a balanced random growth curve model are unbiased as well. 
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Fixed effects coefficients 

It is well known that the OLS estimator is unbiased in linear regression model. 
Also, the GLS estimator is unbiased if the variance-covariance matrix is known. 
Generally, if an estimator depends on an unknown parameter and we replace that 
parameter with its estimate, the resulting estimator is biased. Perhaps because of 
this fact, many believe that the estimated GLS (EGLS); i.e., the GLS estimator 
with estimated variance-covariance matrix is biased. Indeed, the fact that the es-
timated GLS is unbiased in small samples is known, but not widely; see Kackar 
and Harville (1984) or Kenward and Roger (1997). The unbiasedness simply fol-
lows from the facts that in most cases (a) the estimate of the covariance matrix is 
an even function of residuals and (b) the EGLS estimator can be expressed as an 
odd function of residuals. Therefore, the resulting expected value is the true beta 
because the distribution is symmetric about ß. 

Below, we provide conditions on the unbiasedness of the GLS estimator with an 
estimated variance-covariance matrix and prove that the MLE for ß in the LME 
model is unbiased in small samples. 

Lemma 16 Let the general linear model be defined as y = X/3 + 77, where y is an 
n x 1 vector of the dependent variable, Ε(η) = 0, and cov{r)) =σ2 V. The estimated 
GLS estimator is 

%LS = (x'v^xr^x'v-V), 
where V = V(T7) is an estimator of V. If (a) 77 has a symmetric distribution, i.e., 
f(v) =f(~v)i where f is the density 0/77, and (b) V is an even function ofr\, i.e., 
V(ry) =V(—77), the EGLS estimator is unbiased. 

Proof. Since ßGLS -ß =(X /V- 1X)" 1(X /V- 1T7), it suffices to show that Ερ(η) 
= 0 where ρ(η) = ßcLS~ß- But P ^s a n °dd function of 77 because V(—77) =V(?7) = V 
and 

p ( - î l ) = ( X ' V - 1 X ) - 1 ( X ' V - 1 ( - i ï ) ) = -ρ(η). 

It follows from multivariate calculus that an odd function has a zero integral: 

Ep(v)=fp(v)f(v)dv = 0, 

because ρ(η)/(η) is an odd function. Thus, ßcLS ls unbiased for any n. ■ 
Now we apply this lemma to the maximum/restricted maximum likelihood esti-

mator / 3 M L , which is (2.28) with D replaced by OML or T)RML> 

Theorem 17 The maximum likelihood estimator ßML in the linear mixed effects 
model with normal errors is unbiased. 

Proof. We write the LME model (2.14) in one equation as (2.8), with y ,X , and 
77 defined by (2.9). We notice that since Si and b^ are normally distributed, 77 has 
a symmetric distribution so that condition (a) of Lemma 16 holds. Since j 3 M L has 
the form of the GLS estimator (2.28) with D replaced by D M L , it suffices to show 
that OML is an even function of {77^}. The log-likelihood function (2.15) in terms 
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of 77^ up to a constant term, can be rewritten as 

1 N 

--{NT Ιησ2 + V p n |I + Ζ,ϋΖ', | + σ" V<(I + Ζ ,ΌΖ^)" 1 ^]} , 

which is an even function of {r^}. Therefore, D M L is also an even function as its 
maximizer. All conditions of Lemma 16 are fulfilled and the MLE for β is unbiased. 

■ 
The unbiasedness of β in small samples holds when D is estimated by any of the 

methods considered below, such as MINQUE and method of moments, because D 
can be expressed as an even function of {r^}. 

Variance parameters 

Generally, maximum likelihood estimators of variance parameters σ2 and D are 
biased. Some have the mistaken impression that the RML estimators of the variance 
parameters are unbiased in a small sample (Brown and Prescott, 1999). In fact, 
the RML estimators are unbiased in balanced models. Here, we prove that these 
estimators are unbiased for the balanced random-coefficient (BRC) model of Section 
2.3. This unbiasedness follows from the fact that for the BRC model the unbiased 
quadratic estimators MINQUE, MM, and VLS (considered later) collapse to the 
MLE. Nevertheless, the following theorem is instructive. 

Theorem 18 The variance parameters a2
ML and &2

MLORML given by formulas 
(2.59) and (2.61) are unbiased for the balanced random-coefficient model. 

Proof. First, we prove the unbiasedness of &ML. If P z denotes the projection 
matrix, then taking the expectation, we obtain 

E[y'i(l-Pz)yi] = E[(Zß + Vi)'(l-Pz)(Z,ß + Viy] 
= Ε[η/(Ι-Ρζ)η/], 

where Efa) = 0 and cov(^) = a2(I + ZDZ'). Next, using the formula for the 
expected value of the quadratic form, the expectation above simplifies to 

a2 t r [(I + ZDZ')(I - Pz)] = <J2tr(I - P z ) = σ2(η - m), 

which yields Ea2
ML = σ2. 

Second, we prove the unbiasedness OÎG2
MLDRML· Since ê  = η{—iV-1Pz Σ^=ι Wji 

we have 

N N N N 

5>βί = Σ ^ - Λ Γ _ 1 ( Σ ^ ) ( Σ ^ · ) ' ρ ζ 
i=l i=l i = l j=l 

j=l i = l j=l j = l 

The expected value of the first term is ΛΓσ2(Ι + ZDZ'). The expected value of 
the second and third terms is σ 2 (Ρζ+ΖΌΖ' ) . The expected value of the fourth 
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term is also σ 2 ( Ρ ζ + Ζ ϋ Ζ ' ) . Combining all four expectations yields E^EE') 
σ1 [NI - P z + (N - 1)ZDZ'] , and finally, since a2

ML is unbiased, 

E(a2
MLORML) = j ^ [(N - ΐ χ Ζ ' Ζ ) " 1 + (N- 1)ϋ] - σ2(Ζ'Ζ) 

= σ2Ό, 

which proves the unbiasedness. 

3.6.2 Large-sample properties 

A characteristic property of the linear mixed effects model with normally distributed 
errors is that the information matrix for beta coefficients and variance parameters is 
block diagonal, which means that the MLEs for β and (σ2, D) are asymptotically in-
dependent (Section 3.3). There are two consequences of this fact. The numerical con-
sequence is that maximization of the log-likelihood function may be accomplished 
separately for β and the variance parameters (σ2, D) because the expected Hessian 
matrix has a block diagonal form (one may expect that the off-diagonal elements 
of the actual Hessian are close to zero, especially in a large sample). The statistical 
consequence, in the line of the pseudo-likelihood theory (Gong and Saminiego, 1981; 
Parke, 1986), is that the use of any consistent estimate of D in the GLS formula 
(2.28) would lead to an efficient estimator of ß. See Section 3.15, where the LME 
model with not necessarily random variables is considered. As we shall learn from 
the following chapters, this fact remains true for nonlinear marginal mixed models. 
See Appendix 13.1.3 for a general theory on pseudo-likelihood. 

To make mathematically correct asymptotic statements about ß and D, we need 
to specify the behavior of matrices X* and Z$ on infinity when N —> oo. There are 
two ways to do it: to assume that these matrices are fixed (deterministic scheme or 
fixed design) or random (stochastic scheme or random design). In the deterministic 
scheme, we need to assume the boundedness of matrix elements and the existence 
of certain matrix limits. In the stochastic scheme, we assume that X* and Z$ are 
random, or more precisely, independent and identically distributed (iid), meaning 
that there exists a multivariate distribution from which X$ and Z$ are drawn. Notice 
that if matrices X^ and Z* are fixed, the {y^} are not iid even when rii =const. To 
the contrary, if X^ and Z^ are random independent and identically distributed then 
the {yi} are iid as well. The major advantage of the stochastic scheme is that we can 
apply maximum likelihood or estimating equation theory because the observations 
are iid. However, in the deterministic approach, one needs to provide individual 
asymptotic study because {y^} are not iid. 

To illustrate the difference between the deterministic and stochastic schemes, we 
consider the linear regression model. 

Asymptotic properties of the OLS estimator in linear regression 

We consider the standard linear regression model in the form 

yi = &Xi + 6i, (3.46) 

where the {ε^} are iid, Ε(ει) = 0, var(e^) = σ2, i = Ι,.,.,ΑΓ. Note that the distri-
bution of the Si may or may not be normal. The Ordinary Least Squares (OLS) 
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estimator is 

ßN= (X'X)-aX'y = if]XixA i f ; χ & j . 

We use the index N to emphasize the dependence on the sample size. We want to 
provide conditions on consistency and asymptotic normality of the OLS estimator 
when N —■> oo. Surprisingly, in the literature there is not much clarity on the issue of 
whether the independent variables {x^} are deterministic or random (stochastic). A 
deterministic scheme is convenient and broadly accepted when the statistical prop-
erties of the OLS estimator are studied in a small sample; then (3.46) is referred to 
as a linear model. In fact, the celebrated Gauss-Markov theorem about the optimal-
l y of ßN works for fixed x^. However, it is less well known that the Gauss-Markov 
theorem is not true for random x$, i.e., in the stochastic approach, as shown by 
Demidenko (1981) and Shaffer (1991). 

Deterministic scheme: x* are fixed vectors. It is important to note that 
if the {x^} are fixed, the {yi} are not identically distributed because they have 
different means, E{yi) = /37Xi ^const. To prove the asymptotic properties of the 
OLS estimator we use a multivariate version of the Central Limit Theorem (CLT) 
of Appendix 13.1.1. In view of that theorem, and to provide the penalized and 
asymptotic normality of the OLS estimator, we need to assume that 

1 N 

||x;||<£, lim T7$>^ = A> (3·47) 
i—\ 

where B is a constant and A is a nonsingular matrix. Then it is easy to show that 
under conditions (3.47), the OLS estimator is consistent, 

V Jim βΝ = β, 

and asymptotically normal: namely, 

To prove that the OLS estimator is asymptotically efficient requires more work 
because observations {yi} are not iid. To the contrary, we do not have such a 
problem in the stochastic scheme because then the {yi} are iid and we simply refer 
to the estimating equation or M-theory; see Appendix 13.1.4. 

Stochastic scheme: x$ are random vectors. Following Gallant (1987), we 
assume that there is a general multivariate distribution Fx from which the x» is 
drawn; thus the {x^} are iid. More precisely, we assume that the marginal mean 
and covariance matrix exist, 

£ (x) = / z d F ( z ) , £(xx ' ) = fzz'dFx(z), (3.48) 

and moreover, the matrix E(xx!) is not singular. Also, as part of the standard 
regression analysis, it is assumed that e% and x^ are independent. The marginal dis-
tribution F may have unknown parameters £, so that the complete linear regression 
model with random x* is written as 

y<|xi = ß'xi +5 i , x* ~ F(-]Ç). 
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Importantly, ξ must be unrelated to β. In the special case when ε% ~ Λ/"(0, σ2), the 
complete log-likelihood function is 

1(β,σ2;ξ) = - \ | η 1 η σ 2 + ^ f > - faA + f > / ( x i ; £ ) , 

where / = F'. Since the information matrix for (/3, σ2 ,ξ) is block diagonal, esti-
mation of (/3, σ2) and ξ may be accomplished separately without efficiency loss. 
Consequently, ξ does not affect the efficiency of the estimation of the regression 
parameters β and σ2. A characteristic feature of this scheme is that it leads to iid 
{^,χ^,ε^}. Conditions (3.48) suffice to prove consistency and asymptotic normality 
of the OLS estimator. For example, to see that equation (3.48) implies consistency, 
we write 

3„-^(lf^)-'(i|> (). 
Then, by the Law of Large Numbers (LLN), plimjv_>oo N~l Χ^ = 1 χ ^ = £'(xx /). 
Further, since the { x ^ } are iid, plimjv^oo iV_1 Σί=1 χ ^ = Ε(χ.'ε) = Ε(χ/)Ε(ε) = 
0, due to the independence of ε and x. Similarly, one proves the asymptotic nor-
mality of the OLS estimator because the {x^i} are iid with zero mean and finite 
covariance matrix. Finally, by CLT we have 

y/N0N -β)^Λί (θ,σ2 (J zz'dFx(z)\ j (3.49) 

when N —> oo. 
Deterministic or stochastic scheme? When asymptotic properties are stud-

ied, the stochastic scheme is more convenient because the observations {(y^, x;), i = 
1,..., N} are then iid, which allows one to refer to standard maximum likelihood or 
estimating equation theory (see Appendix 13.1.4). 

Asymptotic properties of the LME model 

In view of the preceding discussion,-we prefer to take the stochastic scheme when 
studying large-sample properties of the linear mixed effects model, i.e., to assume 
that matrices X^ and Z^ are random and independent of Si and b^. The assumption 
that matrices X^ and Z^ are random and iid greatly simplifies the asymptotic study 
and has been utilized in several papers (Hooper, 1993). A little trickier is specifi-
cation of the number of observations per individual/cluster, n^. In the stochastic 
scheme we assume that {n^} are random with a distribution defined on positive 
integers. Thus, observations (X^Z^n^) may be carried out first by sampling ni 
and then sampling (Χ^, Ζ^) conditional on rii. The distribution of Χ^, Ζ^, or rii may 
depend on unknown parameters, but importantly, those parameters do not contain 
/3,σ2, or D. We assume that in addition to the {ε^}, the triples {(Xz, Z^, n^)} are iid. 
Let the density of (X^Z^n^) be denoted / dependent on an unknown parameter 
ξ. Then the complete LME model in the stochastic scheme can be written as 

yiKXi, z4, m) ~ Af(Xiß,a2(i + Z<DZÎ)), (xi; z<, m) ~ /(·; €), 
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with the complete log-likelihood function 

N 

/ ( / 3 , σ 2 , Ό ) + ^ 1 η / ( Χ , , Ζ , , η , ; 0 , 

where I is the log-likelihood function for the LME model. It is important to observe 
that £ does not affect estimation of (/3,σ2,Ό); in particular, the estimating equa-
tions are the same and the information matrix for (/3,σ2, D) and ξ is block diagonal. 
Since {(Χΐ,Ζΐ,η;)} are iid, so are {y*} and { (y^X^Z^r i i )} . This property is cru-
cial: Since the observations are iid, we can legitimately refer to the maximum likeli-
hood theory, and therefore the ML estimator is consistent, asymptotically normally 
distributed, and efficient, without additional proof. In particular, the information 
matrix for the variance parameters is E<zX, where X is given by (3.16) and (3.17) is a 
consistent estimator of the covariance matrix. For example, for a random-coefficient 
model (1.12), as follows from formula (2.25), the asymptotic normality of the ML 
estimator can be written as 

VN(J3N -β)~λίΙ Ο,σ2 [ E f t ' / zz 'dF^z) j + D* 

where Fj is the distribution function of Zj and pj = Pr(n = rij). Here we interpret 
the integral as the conditional expectation of Z'Z at n = Uj and pj as the marginal 
probability that n takes value rij. 

What happens when rii goes to infinity? 

In some situations it is difficult to expect that the number of individuals/clusters 
N goes to infinity, as in the previous asymptotic. Can one still yield consistent 
estimates by infinitely increasing the number of observations per individual, η$, 
while keeping N bounded? The answer is negative. To illustrate, let us take the 
random-coefficient model, X^ = Z*. Using formula (2.25), we obtain 

cov(3) = σ2 f Σ Χ ί ( Ι + X ^ D X J ) - 1 ^ = σ2 (jl· ( ( X ^ ) " 1 + D ) " 1 ^ . 

(3.50) 
When rii —> oo and N is fixed, we have (X.'iX.i)~

1=0(n^1) —> 0, so that cov(/3) —► 
σ2Ό/Ν. Thus, for the LME model, an increasing number of individuals is a re-
quirement for consistency, and N —» oo cannot be compensated by increasing the 
number of observations per individual. 

Certainly, if both N and n» go to infinity, the MLE regains its consistency: Then N 
times the covariance matrix is approximately σ2Ό. For a special balanced random-
coefficient model, X$ = X and n» = n =const, and as follows from (3.50), the N 
times covariance matrix is 

σ2((Χ,Χ)"1+Ό) >σ2ϋ. 

Thus, although large {ni) improve estimates, one needs to have as many subjects 
as possible. Loosely speaking, N is more important than r^. Interestingly, a similar 
result holds for the nonlinear mixed effects model (see Section 8.4 for details). 
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3.6.3 ML and RML are asymptotically equivalent 

In many instances, ML and RML estimates are close. For example, as follows from 
Section 4.1.5, for balanced data the difference between <rML and &RML is on the 
order mjN^. The fact that the two methods give close estimates comes from their 
asymptotic equivalence: if N is relatively large, one may expect that the two meth-
ods are close. 

The aim of this section is to prove that ML and RML have identical statistical 
properties in large samples. Since ß and σ are functions of D, it suffices to prove the 
asymptotic equivalence of D. This equivalence implies that the expected negative 
Hessian of the RML will be close to the standard ML for sufficiently large N. Thus, 
we can use the information matrix derived for ML when applying the Fisher scoring 
algorithm to RML, see Section 2.14. 

As follows from Section 2.2.6, the log-likelihood functions for RML and ML differ 

Σ*=1 X<(I + ZiDZ^-^xJ . We show that the contribution of this by the term In 
term vanishes when N 
dividing by iV, we obtain 

oo. Indeed, normalizing the log-likelihood function by 

1_ 
AT 

In 
N 

^ X j i l + Z i D Z i ) - 1 ^ 
i = l 

N 
rln 

1 N 

- ^ X J i l + Z i D Z ^ X i 
2 = 1 

+±1ηΝ = θ ( 1 ΐ η | Μ | + 1 ΐ η Λ Γ ) = 0 , 

assuming that M =limjv->oo N~x Σ ΐ = ι ^ ί θ - + Z2\DZ^)_1X2· is a constant matrix. 
The fact that the augmented term vanishes serves as a heuristic proof. To prove 
that the two estimators are equivalent, we shall show that the estimating equations 
for ML and RML coincide for large N. 

Proposition 19 The statistical properties of the standard and restricted MLE are 
equivalent in large samples, or, more precisely, the augmented term in the estimating 
equation for D vanishes when N —> oo : 

lim —: —— In 
N-oo N <9D 

N 

£ x ; ( I + ZiDZ )̂-1Xi 
2 = 1 

= 0. 

Proof. The estimating equations for ML and RML differ by the term 

I N 

^ X i i l + Z i D Z i ) " 1 ^ 
d 

N 

In 
2 = 1 

N 
- 1 

= ^z jv r^ lSx jv j^ ) xjvr1^, 
2 = 1 

where V2- = I + ZZDZ^. We shall show that this term vanishes when N —► oo; that 
is, lim^-^oo N~1GN = 0, where 

N I N 

2 = 1 
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is an m x m nonnegative definite matrix. Since G < Itr(G), it suffices to prove that 
limiv^oo N-Hi(GN) = 0. But 

N \ / N 

tr(Gtf) = ( Σ Χ 5 ν 7 1 χ * tr ^ Z j V r ^ X j V r 1 ^ 
ij=l / \ t = l J 

x -1 
N \ N 

= (Σ χ ί ν 7 1 χ Η E^WVZiZjv^x*). 

Finally, we note that V ^ Z ^ V ^ 1 < V ^ 1 which gives tr(Gjv) < tr(I) =m. This 
implies that limjv->oo ^~1^(GN) = 0. 

■ 
More detail on the asymptotic properties of ML and RML may be found in Cressie 

and Lahiri (1993) and Richardson and Welsh (1994). 

Problems for Section 3.6 

1. Prove that the statistic X = ß,e/g(e,Ae) has zero mean, where ε ~Λ/"(0, Ω), 
β is a fixed vector, A is a positive definite fixed matrix, and g is a positive function. 

2. Prove that a limiting point of the sequence Xn = β'ηε/#η(ε'Αηε), n -> oo with 
the entries defined as in the previous problem has zero mean (this sequence may be 
thought of as the iteration sequence of an algorithm, such as Newton's algorithm). 

3. Describe in a few words the difference between stochastic and deterministic 
approaches to studying the asymptotic properties of estimators. 

4. Derive the asymptotic normality of the LS estimator of ß in the form (3.49) 
for the simple regression model y = a + βχ + ε, where x is a binary variable. 

5*. Prove the asymptotic equivalence between ML and RML by demonstrating 
that the information matrices converge to the same limit as N —> oo under a 
stochastic scheme. Use information matrices from Section 3.3. 

3.7 Estimation of random effects 

A peculiar property of the mixed effects model is that one is able to make individual 
predictions even if the number of observation points for a specific individual is less 
than the number of estimated parameters (fixed effects). This property of the mixed 
effects model comes from the principal assumption that each individual (cluster) has 
its own subject-specific parameter with the common (population-averaged) mean. 
Obviously, individual predictions may be accomplished in standard linear regression 
model as well, but then the beta parameters are not subject-specific as in the mixed 
model. 

Let us first assume that β and variance parameters σ2 and D are known. We 
want to find an estimate for the random effect b^ as the conditional expectation 
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of hi given y^. Assuming normal distribution, from model (2.14) it follows that 
cov(hi,yi) = σ 2 ϋ Ζ · . Therefore, using the formula for the conditional mean (Rao 
1973) we yield the posterior mean of the random effect, 

E(bi\yi) = covibi.yOcov-^yO (y« - E(Yi)) = DZ^(I + Z i D Z j ) - ^ ^ - *iß). 

This estimator has a strong Bayesian flavor, as noted by many authors: Laird and 
Ware (1982), Pinheiro and Bates (2000), to name a few. Hence, an estimator for 
random effect (if ß and D are given) is 

hi = D Z ^ I + Z i D Z ; ) - 1 ^ - X<3), (3.51) 

where ß is the generalized least squares estimator (2.28). This formula may be 
simplified using the dimension-reduction formula (2.21) and noting that 

ZJil + ZiDZj)- 1 = ^ - ^ 0 ( 1 + Z ^ D ) - 1 ^ 

= (i + Z j Z i D - Z j Z i D ^ I + Z i Z i D ) - ^ 

= (I + Z ^ D ) " 1 ^ , 

which leads to 
bi = D(I + Z i Z i D ) " 1 ^ - Χφ). (3.52) 

Interestingly, if D = 0, the estimate is zero. In another extreme situation, when 
D =pl —► oo, we have b* = Z+(yi — X ^ ^ ) , the fixed effects scheme estimator, 
where β^ is as defined in (2.31). In practice we estimate the random effect using 
an estimate of D. 

The estimator of the random effect (3.51) or (3.52) is the Best Linear Unbiased 
Predictor (BLUP); see Henderson (1963) and Robinson (1991). We will show this 
with a Lagrange function to minimize a quadratic function under linear constraints. 
For easy presentation, we work with one model equation, 

y = Xß + Zb + ε, 

where y is an TV x 1 vector, X is an TV x m full-rank matrix of fixed effects, Z is 
an iVxfc matrix of random effects, b is a k x 1 random effect vector and ε is an 
TV x 1 error term. It is assumed that b and ε have zero mean and known covariance 
matrices σ 2 ϋ / and σ2Ι, respectively (we use the notation D/ for the covariance 
matrix of random effect b , not to be confused with the covariance matrix of the 
random effect b^ in the LME model). We consider the family of unbiased linear 
estimators of b, i.e., the predictor for b has thejbrm b = Cy, where C is the kx N 
matrix to be found. We seek C such that E(b) = C(X/3 + Zb + ε) = CX/3 = 0, 
which implies that CX = 0, to provide the unbiasedness of b. Further, we want to 
choose C to make 

cov(b - b) = σ2 [CC7 + (I - CZ)D(I - CZ) ;] 

as small as possible. Let p be any k x 1 vector and find the C that minimizes 

p ' [CCr + (CZ - I)D(CZ - I)7] p 
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under the restriction C X = 0. The Lagrange function is 

£ (C, L) = p ' [ C C + (CZ - I )D(CZ - I)'] p - tr(CXL), 

where L is an m x k Lagrange multiplier matrix. We have 

^ = 2pp'C(I + ZDZ') - 2pp 'DZ' - L'X' = 0, 

which implies 
2pp'C = (2pp'DZ' + L'X')(I + ZDZ' )" 1 . (3.53) 

Multiplying by X, we obtain 

(2pp'DZ' + L'X')(I + ZDZ ' ) _ 1 X = 0 

and consequently, 
L' = - 2 p p , D Z / V - 1 X ( X / V - 1 X ) " 1 . 

Substituting for L' with this, we obtain 

2pp'C = 2pp/DZ/ i v ^ - V ^ X i X V ^ X ) " 1 ^ - 1 ] . 

Since this is true for all p , we obtain 

c = DZ 'V 1 [i - xtx'v-^xr^-x'v-1]. 

Now we apply this result to the LME model, where y, X, Z, ε, and b are defined as 
in (2.9) and D/ = I (g) D. Then the ith block of matrix C is 

D Z ^ V r 1 ( I _ X i ( X / V - 1 X ) - 1 X ' V - 1 ) y i = D Z ^ V - ^ I - X ^ Y i 

= D Z j V r 1 ^ - ^ ) , 

which agrees with (3.51). 
There is another method to estimate random effects and β simultaneously that 

will be used later for nonlinear mixed models. It can be shown that the estimate 
(3.51) can be derived as the solution to the following optimization problem: 

N 

Σ \\\Yi - yUß - Z ^ f + biD-1^] =► Λ min . (3.54) 
2 = 1 

We notice that (3.54) collapses to the sum (2.33) when D =oo, as in the fixed effects 
approach. Holding β constant, we find the minimum of the sum (3.54) with respect 
to h^ which gives bz = (Z^Z2 H-D~1)~1Z^(yi - X*/3). Thus, it suffices to prove that 
(3.54) gives the solution (2.28). To see this, we find the minimum of (3.54) with 
respect to β using the bz above. Combining the terms, we come to the following 
quadratic form as a function of β: 

N 

Σ& - XijS/Gifri - Xiß), (3.55) 
i = l 
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Weight versus Height for 18 families 
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FIGURE 3.4. Estimation of 18 family-specific relationships between weight and height 
(thin straight lines). 

where 

G, = [ ( I - Z ^ Z ^ + D - ^ Z ^ I - Z ^ Z i + D - 1 ) - 1 ^ ) ] 

+Z i(Z^Z i + D - 1 ) - ^ - 1 ^ + D - 1 ) - 1 ^ 

= I - Zi(Z^Zi + D - 1 ) - 1 [2(Ζ<Ζ< + D - 1 ) - Z^Zi - D" 1] 

x i z j Z i + D - 1 ) - ^ ; 

= I - Z^ZjZi + D - 1 ) - 1 ^ = (1 + ZiDZ^)-1 = V " 1 . 

Since Gj = V^ 1 , we infer that (3.54) leads to the generalized least squares solution 
(3.52). 

3.7.1 Implementation in R 
To illustrate the estimation of random effects in R, we use our previous data on 
family weight versus height. The function below extracts random intercepts from 
the lme call and plots the expected family-specific relationship between weight and 
height shown in Figure 3.4. As we did in our previous R examples, the function is 
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saved as a t x t file using the dump command every time it is executed. This function 
can be restored using the source command. 

familyI=function() 

{ 

dump("familyI","c:\ \MixedModels\\Chapter03\\familyl.r") 
l ibrary(nlme) 
f amdat=read.table("c:\ \MixedModels\ \Chapter02\\Family. txt", 

header=T,stringsAsFactors=F) 
lmout=lme (Weight "Height, random=~ 1 |FamilyID, data=f amdat ,method="ML" ) 
p r i n t ( summary ( lmout ) ) 
fam.uniq-unique(famdat$FamilyID) 
nfam=length(fam.uniq) 
p lo t (f amdat$Height, f amdat$Weight, type="n" , 

xlab="Height, inches",ylab="Weight, pounds", 
main=paste("Weight versus Height for" ,nfam,"famil ies") ) 
text(famdat$Height,famdat$W,famdat$FamilyID) 
af=lmout$coefficients$fixed 
ar=lmout$coefficients$random$FamilyID 
lines(famdat$Height,af[1]+af[2]*famdat$Height,col=2,lwd=5) 
maxH=max(f amdat $He ight ) +.1 
x=range(famdat$Height) 
f o r ( i in l:nfam) 
{ 

l i nes (x , a f [ l ]+a r [ i ]+a f [2 ]*x ,co l=3 , lwd=l ) 
t e x t (x [2] , af [1] +ar [ i ] +af [2] *x [2] , i , adj=0) 

} 

legend(x[l],max(famdat$Weight),c("Fixed effect"»"Random e f f e c t " ) , 

l t y= l , co l=2 :3 , lwd=c(5 ,D) 

} 

A few remarks about this code: (1) af and ar contain the fixed effects estimates 
(betas) and estimates of the random intercepts respectively; (2) we use the same 
numbers to plot the weight and the height of relatives from the same family; (3) the 
family-specific relationships (straight lines) are parallel to each other because they 
differ by a random intercept/baseline having the same slope; and (4) the family ID 
is plotted at the right end of the straight line. 

Extraction of the matrix D estimate from the lme function is not straightforward. 
The following R function illustrates how to get this estimate and compares with 
our function ImeFS discussed in Section 2.16. This function generates the random 
number of observations per cluster, n^, true /3, true D, and finally, y^. All data are 
saved in the dataframe dL. 
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lmeD=function(N=100,m=3,rs=434,s2=.02) 

{ 

dumpO'lmeD", "c:\\MixedModels\\Chapter03\\lmeD.rn) 

library(nlme) 

set.seed(rs) 

s=sqrt(s2) 

k=m+l 

b=rnorm(m) # generating random true ß 
ni=round(runif(n=N,min=80,max=100)) # random ni 
NT=sum(ni) 

d=matrix(nrow=NT,ncol=2+m+k) 

D=matrix(rnorm(k~2),k,k) 

D=t(D)7o*7oD # random true D 

TD=t(chol(D)) 

j <- 1 # the loop generates y ^ X ^ Z ; and saves in the dataframe 

for(i in 1:N) { 

n <- ni[i] 

d[j:(j + n - 1), 1] <- i 

Xi <- matrix(rnorm(n*m) ,ncol=m) 

d[j:(j + n - 1), 3:(2+m)] <- Xi 

Zi <- cbind(rep(l,n),Xi) 

d[j:(j + n - 1), (3+m) : (2+m+k)] <- Zi 

d[j:(j + n - l),23<-Xi7o*7ob+Zi7o*7oTD7o*7.rnorm(k,0,s))+rnorm(n,0,s)) 

j <- j + n 

} 

dL <- as.data.frame(d) 

names(dL) <-c("id*' , "y" , "XI" , "X2" , "X3'·, "Zint" , "ZI" , "Z2" , "Ζ3") 

o <- lme(fixed=yÄ'Xl+X2+X3,random=Ä'Zl+Z2+Z3|id,data=dL,method=MMLM) 

print(summary(o)) # extracting D * M L 

os <- matrix(as.numeric(VarCorr(o)),ncol=k+l) 

sdb=diag(os[l:k,2],k,k) 

LR=os[2:k,3:(k+l)] 

Db=matrix(ncol=k,nrow=k) 

R=diag(rep(1,k),ncol=k,nrow=k) 

for(i in 2:k) 

R[i,l:(i-l)]=R[l:(i-l),i]=LR[(i-l),l:(i-l)] 
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Db=sdbe/.*e/,R7.*e/.sdb 
p r i n t ("Estimate of matrix D from lme:") #matrix D M L 
print(Db/o$sigma~2) 
dFS=cbind(dL$id,dL$y,rep(1,NT),dL$Xl,dL$X2,dL$X3,dL$Zint, 

dL$Zl,dL$Z2,dL$Z3) 
of s < - lmeFS(d=dFS,m=4,k=4,D=matrix(0,4,4), 

MLRML=nMLH,MaxIter=25,epspar=0.0001,pr=F) # our function 
p r in t ( "Es t imate of matrix D from lmeFS:") 
r e t u r n ( o f s [ [ 9 ] ] ) #matrix D M L 

} 

In this linear mixed model the slope coefficients are random, 

y< = (ßx + 6i)l< + (ß2 + b2)xi + (/33 + h)*2 + (/34 + h)*3 + e< 

with four random effects. As the reader can see, our extraction of the D-estimate 
needs seven lines of code. For this particular example, the lme function took 12 
seconds and our function lmeFS took only 3 seconds. The estimates of matrix D 
from the two codes are practically the same. Note that in the lme function the 
intercept is present by default (for fixed and random effects), but for the function 
lmeFS it must be created (vectors of Is). 

Problems for Section 3.7 
1. Demonstrate that estimates of the random effects can be viewed as shrinkage 

of fixed effects estimates obtained by the dummy variable approach (assume that 
the matrix D is positive definite and fixed). 

2. Reduce the minimization problem (3.54) to linear least squares. Check your 
solution by an R code in which random effects are estimated as the coeflBicients in 
the lm call (the matrix D is fixed and known). 

3. Append the code lmeD by computing the estimates of random effects by formula 
(3.52). Verify that your values coincide with those extracted from the lme call. 

3.8 Hypothesis and membership testing 

Before considering hypothesis testing for the mixed effects model, let us remember 
the test for a linear hypothesis in a general linear model with known covariance 
matrix, up to a scalar factor. Let the general linear model be defined as 

y = X/3 + 7/, η ~JV(0,a2V), 

where σ2 is unknown but the covariance matrix V is known and nonsingular, and 
X is the nx m design matrix of full rank. We want to test the linear hypothesis 

H0 : Cß = 0 (3.56) 

against the alternative HA : Cß Φ 0, where C is a fixed q x m matrix of full rank, 
q <m. Define two residual sums of squares, 

RSS = (y - x 3 ) ' V - 1 ( y - Xß), RSS0 = (y - x3o) , V" 1 (y - x30)> 
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where RSS is the absolute minimum of the weighted least squares and ß is the GLS 
estimate. RSSo is the residual sum of the weighted least squares under restriction 
Cß = 0 and ß0 is the GLS estimate under restriction (3.56). Note that in many 
instances one can derive RSSo by reducing the regression under restriction to a 
regression with m — q coefficients. Then it is a textbook result that under Ho, 

(RSSp - RSS)/q 
RSS/(n-m) ~F^n-m); (3.57) 

e.g., Searle (1971a), Rao and Toutenburg (1999). The F-test (3.57) is very flexible 
and allows testing various statistical hypotheses on ß. 

In order to test (3.56) through the F-test (3.57) for the linear mixed effects 
model (2.5), we treat V* = I + Z^DZ^ as fixed and as follows from the "long" 
representation (2.11), 

N 

RSS = Σ(Υί - Xißyv^fc - X,3), (3.58) 
i=l 

where ß is defined by (2.28). Analogously, we define RSSo- Thus, we straightfor-
wardly apply (3.57) to (2.5) with n = Ση^ Alternatively, one could apply the 
likelihood ratio test to (3.56) with D unknown. However, if V is known, test (3.57) 
is better because it is uniformly the most powerful invariant test (Lehmann, 1986). 
For large samples the tests are equivalent. 

Usually, for individual significance testing Ho : ßi = 0, one employs the Wald 
test (I = 1,..., m). Recall that the Wald and likelihood ratio tests are asymptotically 
equivalent for ordinary linear regression but differ for nonlinear statistical models. 
Generally the likelihood ratio test outperforms the Wald test (Cox and Hinkley, 
1974) although the latter is computationally easier. The same is true for confidence 
intervals: the profile-likelihood intervals discussed in Section 3.4 outperform Wald 
intervals but are more time consuming. 

3.8.1 Membership test 
Here we apply the F-test to the following membership problem: let 2/1,2/2, ···, Vn be 
an iid sample from a general population and yn+i be a new observation, independent 
of the previous n observations. Does yn+i belong to the same population, that is, 
is 2/n+i a member? This is a typical question in medical diagnostics, in which case 
the {yi} are observations of normal patients and 2/n+i is the observation of a new 
patient. 

To simplify, we assume that observations have a normal distribution and the same 
variance, or more precisely, yi ~ Λί(μ, σ2) for i = 1,2, ...,n and yn+i ~ Ν(μ*,σ2). 
Then the question of whether yn+i is a member reduces to the hypothesis Ho : μ = 
μ* with the alternative HA : μ φ M*· Applying the general test (3.57) it is easy to 
check that in this case q = 1, RSS = Y^=1(yi-y)2, and RSS0 = Υ%=1 (yi-yn+i)2·> 
where y = Υ™=χ y%jn and y n + i = ΣΓ=ι W ( n + 1)· After elementary algebra one 
finds that 

RSSo - RSS = - ^ - ( 2 / n + i - y)2, 
n + 1 
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and therefore, if yn+i is a member, 

n +1 5; 
~ F ( l , n - l ) , (3.59) 

where s y = RSS/(n — 1). Taking the square root, the F-test (3.59) becomes equiv-
alent to the i-test. Thus, one accepts the membership if 

|yn +i -y\< SyJ—^—h-a^n-i, (3.60.) 

where ίι_α/2,η-ι 1S the (1 ~~ <*/2)th quantile of the ^-distribution with n — 1 degrees 
of freedom (d.f.). As follows from (3.60) for large n, one accepts the membership if 
yn+i belongs to the (1 — a)th confidence interval constructed based on the sample 
{yi,i = l , . . . , n} . 

Now we generalize the membership test to the LME model (2.5). Again, for clarity 
we use a patient diagnostic interpretation. Thus, we have N normal patients defined 
by (2.5) and there is a (N 4- l) th patient who follows the same model but possibly 
with different fixed effect coefficients, 

Yiv+i = ΧΛΓ+Ι/3* + Zjv+ibiv+i 4- ew+i, 

where bjv+i ~ λί(0,σ2Ό) and εχ+ι ~ Λί(0,σ2ΐ). Then in hypothesis testing lan-
guage, the membership problem can be translated into the hypothesis 

Η0:β = β*. (3.61) 

We start with RSSo. If β = β+, all N + 1 patients belong to the same population 
and, for example, applying maximum likelihood gives the estimates /3#+ι a n d D. 
Then the minimal weighted sum of squares under (3.61) is RSS0 = E?J?(Vi ~ 
^ißN^ri)

,Yj1{yi — Xi/3N + 1) where V* = IH-Z^DZ^. Now we find the minimal 
weighted sum of squares when (3.61) is not true, i.e., ß and ß* are unrelated. Thus, 
we want to find the minimum of the weighted sum of squares, 

N 

Y^bi-Xißyv^bi-Xiß) 
t = l 

+(yN+1 - XN+1ßJVü1
+1(yN+1 - Xiv+i/3J, (3.62) 

where VJV+I = I + ZN+IDZ'N+1. TWO situations may occur. In the first situation 
there exists ß* such that yw+i = X J V + I 3 * · In particular, this happens when the 
length of VJV+I is less then m and matrix Xjv+i has full rank. Then the second 
term of (3.62) vanishes and the minimal sum of squares reduces to RSS = Si = 
EÜLifo - X<3)/Vr1(y< - X;3) , where ß is defined by (2.28) with D = D . In 
the second situation, the minimum of the second term of (3.62) is 52 = (yjv+i — 

Xiv+ iß j 'V^+^y iv+ i - Χ Ν + ι 3 * ) , where 3* = ( X N + I V Î V + I X ^ + I ) " 1 X J V + I V Ï V + I 
yjv+i» so that RSS = Si 4- 52. Hence, in both situations, according to the F-test, 
we say that the new patient is normal if 

(RSSo-RSS)/m „ , ν ^ χ / 0 ,.0* 
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Further, we refer to (3.63) as the membership test. Note that as follows from formula 
(2.52), RSSo = (Σΐ="ϊ ni ~ m)^JRML· Note also that the membership test for the 
LME model is not exact because we use an estimate of D. 

Example (continued). We illustrate the membership test by verifying that 
family 15 from the motivating example of Section 2.1 belongs to the rest of the 
population. We refer the reader to Figure 3.4. First, we run the lme function of 
R/S-Plus with the entire sample (family 15 is included). Assuming that the random-
intercept model estimated by RML gives &RML = 25.19 and ad = 13.72. Then for 
each family we compute matrix (2.3) with the true value σ2

ά/σ
2 substituted by its 

estimate d2
d/d

2
RML = 13.72/25.19 = 0.545. Also, we obtain RSS0 = 25.192 x (75 -

2) = 46,306.8. Second, we compute β by formula (2.28) with V^ obtained before 
for the data excluding family 15; this gives the sum of squares Si = 33887.1. Third, 
for family 15 with 

1 278 1 
1 130 
1 120 ' 
1 135 J 

we compute the minimum sum of squares S2 = (yi5~Xi5/3i5)/V^5
1(yi5—Xi5/315) = 

427.5 so that RSS = 33887.1+427.5 = 34314.6. Finally, the value of the F-statistic 
is 12.7 and the critical value from F-distribution with 12.73 d.f. is 3.12. Thus, we 
conclude that, indeed, family 15 does not belong to the rest. We may interpret this 
by saying that this family/cluster is an outlier. In Section 9.9.1 we continue with 
an influence analysis of this data set. Using a different statistical technique, we will 
discover that family 15 is indeed influential. Thus, the membership test (3.63) may 
serve as a test for outliers in the LME model. 

The membership test is easy to generalize to a nonlinear mixed effects model. In 
particular, we apply this test to statistical shape analysis in Chapter 11. 

Problems for Section 3.8 

1*. Assess how well the F-test (3.57) works in a small sample (N is small) using 
simulations when matrix D is unknown and estimated (modify the function lmeD 
from Section 3.7.1). Is there any difference between ML and RML? Estimate the 
size of the test and the power. 

2. Generalize the membership test for the mean to simple linear regression. 
3. Test whether family 4 belongs to the rest of the population. 

3.9 Ignoring random effects 

What if we ignore random effects in the LME model (2.5) and estimate beta pa-
rameters using ordinary least squares? This question is especially relevant at the 
preliminary stage of a mixed model setup. Assume that the beta parameters have 
been estimated by the OLS method, but we might not be satisfied with the esti-
mation results for two reasons: (a) The OLS estimate has the wrong sign, or (b) 
the OLS estimate is not statistically significant. Should we go for a random effects 

y i 5 

72 
65 
63 
64 

X15 = 
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model? If "yes," what kind of improvements in terms of (a) or (b) can we expect? 
In particular, can we expect that after accounting for random effects, the beta co-
efficients change significantly, or that perhaps their standard errors are reduced? 
Clearly, to answer these questions we need to investigate the properties of the OLS 
estimator (2.29) under model (2.5). 

(a) The OLS estimator is unbiased in the linear model. Therefore, one may expect 
that least squares applied to the LME model provides fairly good estimates even 
in the presence of random effects. Moreover, as we shall learn later, for a balanced 
growth curve model (i.e., when X* = X ( l 0 q · ) and Z* = X) the OLS, GLS and ML 
estimators coincide, so that estimator (2.28) does not depend on matrix D. Thus, 
the MLE should not change the OLS estimate dramatically. 

(b) Does least squares provide correct standard errors for beta coefficients? The 
answer to this question is given below: generally, the OLS method inflates standard 
errors, even for balanced data when beta estimates coincide. 

First, we consider the quality (bias) of the OLS estimator σ2. We have 

—2 
1 N ii 

= Λ ^ Σ ^ - χ * ( Σ χ ί χ ; Γ 1 χ ' ^ 
i=l j=l 

where cov(r/i) = a2V{ = σ2(Ιϊ+Ζ^ϋΖ^), Ι̂  is the η% x rii identity matrix, and 
NT = Y^rii is the total number of observations. Thus, generally, we have 

E{O2
OLS) = j ^ - ^ Σ t r | ( fc-XiÇ χ Α · ) - 1 χ ί ) v< I · (3·64) 

To illustrate the properties of the OLS estimator, we consider the random-intercept 
model studied in Section 2.4 with V^ = 1̂  + dlil£, where 1̂  is the n ^ x l vector of 
l's (the first column of X; is 1^), and a2d is the variance of the random intercept. 
In this special case, (3.64) takes the form 

Combining terms, we yield the bias, 

NT — m 
E(dlLS)-a* = -^-K, 

where 

K = NT- Σ(χ&)' (Σχί χ ; I (χί̂ )· 



156 3. Statistical Properties of the LME Model 

We shall prove that K > 0 and thus d2
OLS has a positive bias. Indeed, for each % we 

have ( £ j L i X^Xj)" 1 < (X^X;)"1 for all i = 1, ...,N > 1, which implies that 

NT - f > ^ y ffx;-Xi ] (xjii) > £^1-Χίίχίχ*)-1^)!* = o. 

Therefore, we conclude that the OLS estimator of σ2 is positively biased (inflated) 
when the random effect is ignored. For example, for VARCOMP model (1.8) we 
have Xi = 1^, and it is easy to see that the bias is 

ΛΑ N 

(NT-m)NT
K ί 4^Λ 

For the balanced random-intercept model with one covariate, 

at = a + öi, i = l,...,N,j = Ι , . , . ,η, 

we have 

(3.65) 

N 
- 1 

Σχ;·χ,· 
u = i 

Nnsl 
J2 x2- -nx 
—nx n 

where s% = Y^=I(XJ — x)2, and the slope is the parameter of interest. Hence, 

Σ*3 
Sl L 

3 -no: 
n 

Nn — n, 

and the bias is 
E(°OLS) - σ 

2 _ N{n-l)_2 
<r*d. 

Nn-2 
For large N the quantity N(n — l)/(Nn — 2) is close to (n — l ) / n and we deduce 
that <JOLS overestimates σ2 roughly by the variance of the random effect. Indeed, 
it has a perfect explanation: since the random effect is not taken into account, it 
comes out by inflating the variance estimator. 

We continue to study the balanced model (3.65) to determine whether the OLS 
variance, 

™0OLS) = %f, (3.66) 

is unbiased. For model (3.65), using formula (2.69), we have 

- NTV'TTu'd 
1_ 

~N 

1 1 ' X 
1_ 

N x'x-
dn2 

l + nd xx 

l+nd l+nd° 

L l+ndX bx ^ l+ndJ 

- 1 

l + nd 
Nnsl 

sl + x * l+nd 
ÎL-X 

l+ndX 

X l+ndX 

l+nd 
(3.67) 
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Denoting y = N λ Y^=1 y< and y = (nN) l Σ]=λ £*Li Vij a n d d o i n S similar alge-
bra, we obtain 

Finally, the GLS estimator for the slope is 

PGLS - ~2 > 

the OLS estimator. Thus, we proved that the GLS estimator of the slope in model 
(3.65) does not depend on the variance of the random effect d and coincides with 
the OLS estimator. We prove a more general result concerning a balanced growth 
curve model in the next chapter. Taking the (2,2) element of matrix (3.67), we come 
to the asymptotic variance of the MLE, 

2 

™0ML) = j ^ | > (3·68) 

which is also d independent. Since d2
ML is consistent, the estimate of the MLE 

variance computed by formula (3.68) is consistent as well, unlike the OLS variance 
(3.66) which has systematic positive bias. Therefore, we conclude that the variance 
of the OLS estimator in the LME model (3.65) is incorrect; more precisely, it is 
inflated, which may result in statistically insignificant OLS estimate. Introducing 
random effects and doing maximum likelihood estimation would lead to the same 
estimate but less standard error. 

Problems for Section 3.9 

1. Prove that the OLS estimate of the beta-coefficient remains unbiased when 
random effects are ignored. 

2. Prove that (XL=i Xi-Xj) - 1 < (X^X*)-1 when N > 1, assuming that matrix 
Xi has full rank for all i = 1,2,..., N. 

3*. Use simulations in R to support the conclusion of this section: if random effects 
are ignored, the OLS estimate of the fixed effects coefficient remains unbiased but 
has a larger variance (use (3.65) model for simulations). 

3.10 MINQUE for variance parameters 

Maximum likelihood estimation requires specification of the distribution for the er-
ror term and the random effects. Particularly, the MLE for the LME model assumes 
that both distributions are normal. Therefore, the MLE may not be robust to the 
distribution specification. Quadratic estimation of variance parameters seems nat-
ural in the framework of linear models; it does not require distribution specification 
and produces noniterative distribution-free estimates. The estimation of variance 
parameters is crucial for the beta estimation because if an estimate of matrix D is 
known, we apply the generalized least squares estimator (2.28). A desirable prop-
erty of an estimator is the unbiasedness. So, in finding a quadratic estimator, we 
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impose this condition. Further, within the class of quadratic unbiased estimators we 
want to find the best estimator in a certain sense. Unfortunately, the variance of a 
quadratic form involves the third and fourth moments, so instead of minimizing the 
variance, Rao (1973) suggested minimizing the norm of the matrix. The resulting 
estimator is called the Minimum Norm Quadratic Unbiased Estimator (MINQUE), 
and for some models, under the normal assumption, it leads to a quadratic unbiased 
estimator with minimum variance. 

In constructing the MINQUE, we start with the general mixed effects model 

y = X/3 + T7, Ε(η) = 0, cov(r/) =σ 2 Ι + ZD*Z', (3.69) 

where y is an n x 1 vector of the dependent variable, X is an n x m nonzero design 
matrix of fixed effects, and Z is an n x k nonzero design matrix of random effects. 
In maximum likelihood theory, we dealt with the scaled variance-covariance matrix 
D, where D* = σ2Ό. However, use of D* makes development of the distribution-
free estimation easier. To illustrate the principle of the MINQUE theory, we start 
with the standard linear model. Then the technique will be extended to the more 
complicated problem of quadratic estimation in model (3.69) and further to the 
LME model (2.5) as a special case. 

3.10A Example: linear regression 

It is instructive to illustrate how MINQUE works for the standard linear regression 
model 

y = X/3 + e J3(e) = 0,. οον(ε) =σ 2 Ι . (3.70) 

Here y is an n x 1 vector of observations of the dependent variable; X is an n x 
m design matrix, not necessarily of full rank; β is an m x 1 vector of unknown 
parameters; and e is an n x 1 random error term. It is well known that 

5 2 = ^ y ' ( J - χ ( χ , χ Γ χ ' ) y ~ r y ' (1 - x x + ) y. (3·71) 

where r =rank(X), is an unbiased estimator of σ2. Now we shall prove that this 
estimator is the MINQUE. Moreover, we shall prove that estimator (3.71) has a 
minimum variance among all unbiased quadratic estimators when the distribution 
of ε is normal. The technique we use will be employed later to derive the MINQUE 
for the mixed model (3.69). 

Thus, we are looking for a quadratic estimator for σ2 in model (3.70). Let A be 
a n n x n matrix; then a quadratic estimator for σ2 is defined as 

σ2 = y 'Ay. (3.72) 

First, without loss of generality, we can assume that A is a symmetric matrix. 
Second, to make σ nonnegative for all y, we assume that matrix A is nonneg-
ative definite. We want the estimator (3.72) to be unbiased. Using the formula 
Ε(ε'Αε) =tr(Acov(s)) yields 

Ε(σ2) = E(y'Ay) =E (/3'Χ'ΑΧ/3+2ε'ΑΧ/3 + e'Ae) 

= ß?X'AXß+tr(Acov(e)) = &Χ'ΑΧβ+σΗτ(Α). 
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The unbiasedness of σ2 implies that for all β we need to have X ' A X = 0 and 
tr(A) = 1 . Following the MINQUE principle, we find the quadratic unbiased esti-
mator that minimizes the norm of matrix A. This leads to the following quadratic 
optimization problem: 

tr(AA') =* min, (3.73) 

under linear restrictions 
X 'AX = 0, t r ( A ) = l . (3.74) 

To solve this problem, we use a matrix version of the Lagrange function. We 
introduce an m x m Lagrange multiplier matrix Li and a scalar Z2 so that the 
Lagrange function is written as 

CiA.L^h) = J t r (AA') + t r (X;AXLi) + (1 - tr(A))Z2. 

Now we differentiate function C with respect to A using the formulas 

0tr(A) T atr(AA') fltr(CAB) 
~ 9 Ä ~ = I ' — d Ä T ~ = 2 A ' ÔA = C B ' 

for arbitrary matrices A, B, C of appropriate size. The first-order condition for 
optimization (3.73) under restrictions (3.74) is that the derivative dC/dA must be 
zero, 

| ^ - = A + XL 1 X , -Z 2 I = 0, 
9A 

which gives A =Z2I — XLiX' . We find matrix Li from the first condition in (3.74), 

which yields Li = Z2(X'X) and thus 

A =I2(I - X(X 'X) + X ' ) =Z2(I - X X + ) . 

To satisfy the second condition in (3.74), we take 

rank(I - X X + ) 

But matrix I — X X + is idempotent (Graybill, 1983) and therefore its rank equals 
its trace, tr(I — X X + ) =n—rank(X). This finally yields the estimator (3.71). 

The key point of the MINQUE approach is the minimization (3.73). For normally 
distributed ε, this approach leads to an estimator with minimum variance. Indeed, if 
e is normally distributed, then var(y'Ay) =2a4tr(AA') so that minimizing tr(AA') 
is equivalent to minimization of the variance of σ . Hence, for the standard regres-
sion model, (3.70), with normally distributed errors, the MINQUE for σ2 coincides 
with the minimum variance quadratic unbiased estimator. 

If ε is not normally distributed, the variance of y 'Ay depends on the third and 
fourth moments. However, we observe that generally, larger elements of A lead to 
a larger variance of σ2—if all elements of A would increase by the factor p > 1, 
the variance of σ2 would increase by p2. Thus, it makes sense to minimize J2a<ïj = 

t r(AA'). If the {yi} are normally distributed, then 

f~*\ 2 < j 4 
var(a ) = 

n — r 
Remarkably, the estimator (3.71) is consistent even when the matrix X does not 
have full rank—it requires only that n — r —> oo when n —> oo. 
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3.10.2 MINQUE fora2 

Now we employ the MINQUE theory to find a quadratic estimator for σ2 in the 
same form (3.72) but for a mixed model (3.69), where again we seek a symmetric 
nonnegative definite matrix A. We start by taking the expectation 

Ε(σ2) = /3'X'AX/3+tr(Acov(77)) = /3 ;X'AX/3+a2tr(A) + tr(AZD*Z') 

= /3'X'AX/3+a2tr(A) + tr(D*Z'AZ). (3.75) 

To make σ2 unbiased, we need to have X 'AX = 0 and Z'AZ = 0, and tr(A) =1 . 
By introducing the nx(m+k) matrix W = [X; Z], the first two linear restrictions are 
combined as W AW = 0. However, we need to show that X 'AX = 0 and Z'AZ = 0 
imply that W ' A W = 0. It suffices to show that the former pair of restrictions 
imply that Z 'AX = 0. Indeed, since the matrix A is symmetric and nonnegative 
definite, there exists the square root, A1 /2 , which is also a symmetric nonnegative 
definite matrix. Then X 'AX = 0 may be rewritten as (A1 /2X) /(A ' X) = 0, which 
implies that tr[(A1 /2X) /(A1 / 2X)] =0 and AX/2X = 0. Multiplying this equation by 
A 1 / 2 we obtain AX = 0. Finally, multiplying the latter equation by Z', we obtain 
Z'AX = 0. It is worthwhile to note that in the literature on the variance components 
model, a distinction is made between conditions AX = 0 and X 'AX = 0. The latter 
condition ensures unbiasedness, and the former ensures unbiasedness and invariance, 
Rao (1971, 1973). As follows from our proof, the two conditions are equivalent if 
matrix A is nonnegative definite. 

Following the MINQUE theory, we minimize (3.73) under the restrictions 

W ' A W = 0, t r ( A ) = l . (3.76) 

But this problem was solved in the previous section when we dealt with the standard 
linear regression model. The only difference is that now we have W instead of X. 
Hence, the MINQUE for σ2 in model (3.69) is 

n — rank(W) 

where for normal y, we have 

^ 2 1 y ' ( l - W W + ) y , (3.77) σ = 

var(a2) = - ^ - . (3.78) 
n — r 

Now we apply the MINQUE to the LME model (2.5), where matrix Z is block 
diagonal and defined by (2.9). Matrix D* in model (3.69), admitting some ambiguity 
of notation, takes the form ( I®D*) where D* =cov(b^). Note that the size of 
matrix A for model (2.5) is Ντ x Ντ, where Ντ = Y2i=i η% is the total number of 
observations. Then, for matrix W as defined in (2.34), we obtain 

y ' ( l - W W + ) y = min lly - Wi/ - vv u\\ 

N 

min Y" ||y< - X;/3 - Z ^ f = 5 m i n , 
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as in (2.33). Thus finally the MINQUE estimator for σ2 in model (2.5) is 

ZMINQUE = E n . _ r a n k ( W ) · ( 3 J 9 ) 

As follows from (3.78), under the normal assumption, this estimator has the variance 

2σ4 

™@MINQUE) = E n . _ r a n k ( W ) · ( 3 · 8 0 ) 

To illustrate estimator (3.79), we apply it to the linear growth curve model, where 
each vector column of matrix X* is a linear combination of vector columns of matrix 
Zi, or, more precisely, X^ = Z;A; for a certain design matrix A* (this model is be 
considered at length in the next chapter). In this case, 

N N 

*^min = m i n ^ ||y, - Ζ4Α</3 - ΖίΊί\\
2 = m i n ^ ||y< - Ζ^Αφ + 7 i ) | | 2 

ß a i i=l Ρ'Ίί z = l 

N N 

= ^ m i n l l y i - Z ^ H ^ ^ y K l - Z i Z ^ y i · (3-81) 

Therefore, for the linear growth curve model Sm[n is equal to the sum of individual 
residual sum of squares RSSi = y^(I — ZiZf)yi and rank(W) = J2(ni ~ &*)> where 
ki =rank(Z^). Hence if X; = Z;A;, the MINQUE estimator of σ2 is 

^MINQUE - Un._ky 

This is a well known pooled variance estimator, see Section 4.1.3 for detail. 
Now we show that MINQUE=RMLE for the balanced random-intercept model 

(2.67) with rii = n, X* = X = [1, U] of Section 2.4.1, where 1 is the nxl vector of 
Is and matrix X has full rank. For this model 

W 

It is easy to see that the rank of matrix W is equal to the number of columns, 
N + m — 1, so that the denominator of (3.79) is N(n — 1) — m + 1 . Next, proceeding 
as in Section 2.4.1, we obtain 

N N 

Smin = mmY^llyi-ail-^f^mmY^lliyi-aiV-Xßf 

N 

1 
0 

0 
0 

0 
1 

0 
0 

0 
0 

1 

u 
u 

u 

= min V ; ( y i - O i l J - X Î X ' x r ^ y - â l ) 
OLi^oc *—* Il II 

i = l 

= £ mi2 Hg-(<* - «)i|l2 = Σ NI2 - 7, Σ^'1) 
t=l z = l z = l 

= ΣΙΙ«ΙΙ2-"Σ^-^)2· 
2 = 1 2 = 1 
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Thus, the numerators for (3.79) and (2.87) coincide and it was shown that they have 
a common denominator, &MINQUE = &RML f° r the balanced random-intercept 
model. 

In another very special case, the VARCOMP model (1.8), the MINQUE (3.79) 
takes the form 

Ί N n 

°MINQUE = ^Ν . — 7 \^ Z^iVij ~ Vi) · 

This is a well known estimator in the variance components literature (Searle et al., 
1992). 

3.10.3 MINQUE for Ό* 
Now we find the MINQUE for matrix D* = σ2Ό =cov(bz) in the LME model 
(2.5). In the "long" notation (2.8), the quadratic estimator for d*= vec(D*) can be 
expressed via a k2 x N? matrix A, 

d*=A(y®y). (3.82) 

We require that d* be unbiased for all /3,a2,and D*, and that matrix A have 
minimum norm. We start by calculating the expectation 

£(d*) = A £ ( y ® y) = A(X/3 ® Χβ) + AE(Zb ® Zb) + ΑΕ{ε ® e). 

Using standard formulas for the Kronecker product, we obtain 

(X/3 0X/3) = (X®X)(/3(g)/3), 

Ε(ε<8>ε) = Evec{ee) =a2vec(lNT), 

E(Zb ® Zb) = (Z ® Z)E(b (8) b) = (Z ® Z)B(vec(bb ;)), 

= (Z(8)Z)vec(Iiv(8)D*). 

Further, we use the fact that vec(I;v ® D#) can be expressed as a linear function 
of d*; namely, vec(I;v <8>D*) = Jd*, where the (Nk)2 x k2 matrix J is defined as 
J = [(IJV 0 Kfc,jv)(vec(Iw) ® Ifc)] 0 Ifc and Kk,N is the (Nk)2 x (TVA;)2 commutation 
matrix of the specified order (Magnus, 1988). Thus, to make d* unbiased, we need 
to impose the following linear restrictions on matrix A : 

A(X 0 X) = 0, Avec(IivT ) = 0, A(Z 0 Z) J = Ifc2. 

Introducing the iVj. x (m2 + 1) matrix F = [vec(IjvT),X 0 X], we come to the 
following optimization problem 

tr(AA') => min (3.83) 

under the restrictions 
A F = 0, A(Z 0 Z) J = Ifc2. (3.84) 
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Notice that the function to minimize is a quadratic function under liner restrictions; 
hence we can find a closed-form solution. We solve this problem by means of the 
Lagrange function 

CiA^M) = i t r ( A A , ) + t r ( A F L ,
1 ) + t r ( ( I f e 2 - A ( Z 0 Z ) J ) L /

2 ) , 

where Li is an N%, x (m2 -f1) matrix and L2 is a k2 x fc2 matrix. The first-order 
condition for minimum (3.83) is 

Ü = A + L i P ' - L2 J ' (Z ' 0 Z') = 0, 

which implies that A = L 2 J ' (Z ' 0 Z') - L iF ' . Prom the first condition of (3.84), 
we obtain L 2 J ' (Z ' 0 Z')F - L i F ' F = 0 and Li = L2J ' (Z ' 0 Z O F ^ F ) - 1 , which 
gives A = L 2 J ' (Z ' 0 Z')(I - M), where we denoted M = F t F ' F ) " 1 ^ . NOW we use 
the second condition of (3.84), which yields L2J / (Z / 0 Z')(I - M)(Z 0 Z)J = I and 
L2 = [J(Z7 0 Z')(I - M)(Z 0 Z ) J ] _ 1 . Thus, finally we arrive at 

A = [J'(Z' 0 Z')(I - M)(Z 0 Z ) j p J ' (Z ' 0 Z')(I - M). (3.85) 

In the rest of this section we simplify this matrix expression for the LME model 
(2.5), for which Z =diag(Zi,Z2,.. . ,Zjv). In our derivation, we have not used the 
diagonal structure of Z. We start by simplifying the inverse of the matrix 

F ' F = 
NT vec'(X'X) 

vec(X'X) X ' X 0 X ' X 
(3.86) 

noticing that for the ( l , l ) th block we have vec'(lNT)vec(lNT) = trIjvT = N T . 
Notice that matrix F ' F takes the form of matrix (3.25). To invert (3.86) we use the 
matrix block-inverse formula (2.79). For matrix (3.86) we have 

a - b ' H - ^ b = NT- vec'(X'X) [(X'X)"1 0 (X'X)"1] vectX'X) 

= NT - tr [(X/X)(X/X)"1(X/X)"1(X'X)1 =NT-m 

and 
Η Γ ^ = (X 'X)" 1 0 (X 'X) - 1 ! veciX'X) =vec(X;X)" 

where hereafter it is denoted 

N = (X 'X)" 1 

Hence, 

N 

Σχ;χ* (3.87) 

u=i 

( F ' F ) - 1 -
NT — m 

-vec'(N) 
-vec(N) (NT - m)N ® N + vec(N)vec'(N) 
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After some matrix algebra, 

(Ζ' 0 Z7)M(Z 0 Z) 

= ~ [vec(Z7Z), Z'X 0 Z7X] 

1 -vec7(N) 

vec(N) (NT - ra)N Θ N + vec(N)vec7(N) 
1 

vec7(Z7Z) 
X 7 Z 0 X 7 Z 

= R 0 R + 

= R 0 R + 

vec(R)vec7(R)-vec(R)vec7(Z7Z) 

) + vec(Z7Z)vec' 

vec(Q)vec/(Q), 

NT — m 
vec(Z/Z)vec,(R) + vec(Z,Z)vec,(Z/Z)] 

1 

iVp — m 

where R = Ζ ' Ρ χ Ζ and Q = Z'(I - P X ) Z are Nk x Nk matrices, and P x = X N X ' 
is the projection matrix. Analogously, 

P ; ( y ® y ) 

and therefore, 

( Z 7 0 Z 7 ) ( I - P x ) ( y 0 y ) 

= Z 7 y 0 Z 7 y - ( Z 7 0 Z 7 ) M ( y 0 y ) 

y y 
x 7 y 0 X 7 y 

= Z 7 y 0 Z 7 y — [vec(Z7Z),Z'X0Z7X] 
iVr — m 

1 -vec'(N) 
-vec(N) (NT - ra)N 0 N + vec(N)vec7(N) 

= Z7y 0 Z7y - Z 7 P x y 0 Z 7 P x y - a ^ L 5 v e c ( Q ) , 

y y 
X 'y®X'y 

where 
^ 2 - l 

aOLS — 
lly-y|| = - y ' ( i - P x ) y 

i - l 

AT-p — m iVy — TTT 

can be viewed as the OLS estimator of σ2. Finally, in terms of matrix J, 

vec(D*MINQUE) = 

[ j7 (z7Z 0 Z'Z - Ζ ' Ρ χ Ζ 0 Z'PxZ-C/Vr - m)_1vec(Q)vec'(Q)) j j 

x [ j7 (z 7y 0 Z7y - Z 7 P x y 0 Z 7 P x y - ^ L 5 v e c ( Q ) ) ] . 

Using the definition for J above, after some matrix algebra manipulations, one can 
show that the MINQUE formula is equivalent to 

vec(D*MiNQUE) = Q _ 1 q , 

where the k2 x 1 vector and k2 x k2 matrix are 
N 

(3.88) 

2 = 1 

N 

Q = ^ ( Ζ 7 Ζ , ) 0 ( Ζ 7 Ζ , ) - α 7 ( Ν 0 Ν ) Ο -
1 

i=l 
NT — m ce 
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and 

N / N \ 

G = Σ *iZi ® XJ Zi, c = vec [Σ [ZiZ< - (Z,
iXi)N(Z^Xi)

/] . (3.89) 
t= l \ t = l / 

It is easy to see that O*MINQUE is the solution to the following matrix equation: 

N N 

^Z^ZiD*ZjZ i— 2 ^ Z'iPijZjO+ZjP'ijZi 

Γ N 

D ^ Z i ( I - P « ) Z - ^ E ^ - P ^ t r 
i = l L i = l 

= E z* ̂  - &#)z* - ? ° ^ E Z'< (J - p « ) z - (3·90) 
i = l i = l 

where Pij = X^NX^·. Since matrix D* is between matrices, one needs to apply the 
vec operator provided by solution (3.88). In the case of one random effect (k = 1) 
there is no need to use the vec operator, so equation (3.90) can be solved explicitly 
for D* = d*. This case is considered below. 

3.10-4 Linear model with random intercepts 

Here we derive a special case of the MINQUE (3.90) when the LME model has one 
random effect, namely, the random-intercept model considered in Section 2.4, where 
Zi = lni. For one random effect, vectors q and c, and matrix Q collapse to scalars. 
We have 

G = ] Γ sxi 0 sxU c= J2(ni - s^Nsrf), G'(N ® N)G = t r ( ] T s ^ s ^ N ) 2 , 

where sxi = X^Z; = Σ"= ι xu> a n c ^ t n u s 

d*MINQUE * E ^ - t r i E s ^ N f - ^ - , ) - ^ ' (3'91) 

where 5yi = Z&i = Σ " ΐ ι j/^· and *# = J ^ &,· = s'xißOLS. 

3.10.5 MINQUE for the balanced model 

In this section we apply the MINQUE to the balanced random-coefficient (BRC) 
model studied in Section 2.3. We will show that the MINQUE for D* coincides 
with the RML estimate derived in Section 2.3. For the balanced random-coefficient 
model, Z = X^ = Z» and the left-hand side of equation (3.90) simplifies to 

(AT - l ) ( Z ' Z ) D . ( Z Z ) - ^ = ^ ( Z ' Z ) t r ( D . Z ' Z ) . 

Also for the BRC model ßOLS = ( Ζ ' Ζ Γ ^ ' γ and y, = y = Z(Z'Z)_ 1Z 'y. There-
fore, cOLS = (Nn — m)/(N(n — m))aML, where aML is given by (2.59). Also, in 
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the notation of Section 2.3, EE ' = Σ(γίγ[ — y ^ ) , so that equation (3.90) takes 
the form 

(N - l ) ( Z , Z ) D , ( Z Z ) - - ^ ^ Ü - ( Z , Z ) t r ( D * Z , Z ) 

= Ζ ' Ε Ε - Ζ - ^ - ^ - ' ^ Ζ - Ζ ) . (3.92) 

Multiplying both sides by (Z'Z)~ and taking the trace, we obtain the expression 
for tr(D*Z'Z), noting that tr(EE') = {Nn — m)a2

OLS. Then, multiplying both sides 
of (3.92) by (Z'Z)"1 , we finally find D*, which leads to (2.61). 

3.10.6 ImevarMINQ UE function 

The R code for MINQUE of σ2 and D* can be downloaded to an R session as 

source("c:\\MixedModels\\Chapter03\\lmevarMINQUE.r") 

This function call is lmevarMINQUE(m,k,d), where m, k, and d have the same 
meaning as in the lmeFS function (see Section 2.16). It returns a list with two 
components: (1) the MINQUE estimate of σ2, and (2) the MINQUE estimate of 
D*. It does not guarantee that the returned matrix is positive definite. The function 
lmevarMINQUE requires the g inversè . sym function described in Section 2.2.3. 

Problems for Section 3.10 

1. Suppose that matrix X has full rank. Express (3.71) in terms of the residuals 

^% — Vi— X-ißoLS-
2. Provide a geometric interpretation of the fact that the variance of σ2 does not 

depend on matrix X, assuming that it has full rank. 
3. Show that calculation of 5min can be reduced to the classical linear least squares 

using the projection values y* = (I — Pi)y; and X^ = (I — P^)X^, where P^ = 
Ζ;(Ζ·Ζ;)+Ζ·. This method is realized in the function lmevarMINQUE. 

4. Show that O*MINQUE is the solution to the matrix equation (3.90). 
5. Simplify (3.91) when x* = x (balanced LME with random intercepts) and show 

that it coincides with (2.61). 
6*. Conduct a simulation study for the LME model with random intercept and 

slope to compare the restricted ML with MINQUE in terms of the Mean Square 
Error (MSE) for the slope of the fixed effects, β, and matrix D*. Plot the MSEs 
versus N to demonstrate that MSEs converge for large N. Run the comparison for 
several true values /3, σ2, and D. 

3.11 Method of moments 

Here we derive a Method of Moments (MM) estimator for D* = σ2Ό — cov(b^) in 
the LME model (2.5) assuming that an unbiased estimator of σ2 is given; for exam-
ple, one can take the MINQUE (3.79). In a manner similar to MINQUE derivation, 
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the MM estimator does not require a specification of the distribution for Si or for b^. 
We will show that the MM estimator is unbiased and consistent. We will also derive 
a simplified MM estimator which has a nice variance decomposition interpretation. 
A special case of the MM estimator for the linear growth curve model (X* = Z^A^) 
is considered in Section 4.1.3. 

The idea behind deriving a MM estimator for D* is as follows: First, we construct 
the empirical covariance matrix for random effects as the sum of cross-products of 
residuals, using the OLS estimator. Second, we compute the expectation of that 
empirical matrix, which is a linear function of the true matrix D*. Third, we solve 
the matrix equation for D*; that is, the MM estimator. We realize our plan below. 
In fact, this idea of deriving an unbiased quadratic estimation for the variance of 
random effects is not new and is used widely in the variance components literature 
(the ANOVA method of estimation). It was introduced by Henderson (1953). Thus, 
our MM estimator for D* can be viewed as a generalization of Henderson's method 
III (Searle et al., 1992). At that time, this method was considered computationally 
intensive but^most preferable. ^ 

First, let ßoLS be the ordinary least squares estimator in model (2.5), ßoLS = 

( Z ) ^ i ^ ) _ 1 ( S ^ i y i ) · We calculate the individual OLS residual vector as ê  = 
yi — XißoLS a n d regress it onto covariates of random effects to obtain an estimate 
of the random effect. Since matrix Z* may not be of full rank, we use the general-
ized inverse to obtain the random effects prediction, b^ = Zfe^, where Z/" is the 
generalized inverse of Z^ which can be computed as Zf = (Z^Zi)+Z£; recall that 
the generalized inverse of a symmeric matrix can be calculated using the function 
g inverse . sym. Second, we construct the matrix of cross-products, X^bzb^, and 
calculate its expectation, 

E Σ b«bj = Σ ZfEftW. (3.93) 

Denoting r]i = Z^b; + Si with covariance matrix σ2Ι + ZiD*Z£, we find the expec-
tation of matrix êiêj, 

E<fii%) = E(Vi - X i N ^ X ^ X i f c - X i N ^ X ; · ^ . ) ' 

= σ 2 Ι - σ 2 Χ ί Ν Χ ; + ZiD»Z< - Z ^ Z p C i N X j 

- X i N X ^ D * ^ + X i Nj] [X$Z J D.Z$X i ]NX; > 

3 

where matrix N is defined by (3.87). Substituting this expression into (3.93) yields 

E^b& = °2ΣΖ^ - X * N X W + Σ J * D * J i - Σ^Ο.ΖίΧ,ΝΧίΖ,+' 
i i i 

- Σ ZtXiNXjZiD* J i + Σ Z+XiNX^Zj-D^ZjXjNXiZf ;, 

where we denoted J* = Z^Z^. It is easy to prove that J^ is a k x k symmetric 
nonnegative definite idempotent matrix and that rank(Ji) =rank(Z^). In fact, if Z* 
has full rank, 3i is the identity matrix. After denoting 

L = Σ*&i - & Σ ZiV - XiNXj)Z+', Ry = Z+XiNXjZj, 
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where σ is any unbiased estimator, e.g., the MINQUE (3.79), we come to the 
following matrix equation for D* : 

N N 

L = ^ ( J ; D * J i - J * D * R 4 J ^ - J i R ^ D * J i ) + J2 RijD«R<j· (3.94) 

We notice that the unknown matrix is between the known matrices, so we apply 
vec operation to extract D* as follows. Let d* =vec(D*) be the k2 x 1 vector of all 
elements of matrix D*. Taking the vec operator of both sides of (3.94) and using 
formula (3.15), we finally obtain the Method of Moments (MM) estimator, 

vec(D*MM) = F_ 1vec(L), (3.95) 

where 
N N 

F = J2(Ji ® J , - Ji ® J<Ri< - JiKu ® Ji) + Σ Rij ® Rij. (3.96) 
i = i ij=i 

The double sum in (3.96) may be replaced by single sums as follows: 

N N 

Σ Rij ® R<i = Σ Zf XiNX^Z,· ® Ζ+Χ,ΝΧ^Ζ,-
i,j=l ij=l 

N 

= Σ (ZtX<N ® Ζ2+Χ^Ν)(Χ;.Ζ,· ® Xfa) 
* i J = l 

i f ^ Z + X i O Z t X i j ( N ® N ) i f ^ X j Z i e X i Z i j . 

Following are a few comments about the MM estimator for D*. First, this estima-
tor is unbiased because the expectation of the left-hand side of the matrix equation 
(3.94) is equal to the right-hand side, and σ is an unbiased estimator. Second, this 
estimator is a quadratic function of {y*} since b^ty is a quadratic function of {y2}. 
Third, the estimator (3.95) always exists because the matrix (3.96) is nonsingular. 
Now we prove the latter statement. To simplify, we shall assume that all the Z2-
have full rank. Let U be any k x k nonzero matrix, i.e., tr(UU') > 0. We prove that 
the matrix F is positive definite by showing that 

-j=W(U)Fvec(U) 

> vec'(U) Ifc2 " ΐν Σ (Rii ® îk + lk ® R") vec(U) >0, (3.97) 

since vec /(U)(J^R^· ® R^)vec(U) > 0. Indeed, using the formula (3.28) and ap-
plying the inequality tr(AB) < tr(A)tr(B) for any nonnegative definite matrices A 
and B, one obtains 

ΛΤHvec'iU) ( Σ R« ® I) vec(U)) =iV"1(vec /(U) QT Kü ®1) vec(U)) 
=Ν~λ £ t r ( U R z i U ' ) = N-1 £ t r ( R ^ U ' U ) < AT 1 £ t r ( R ^ ) 

= ^ _ 1 E i t r i X i N X j Z i i Z i Z i ) - 1 ^ ) < N-1 ΣΜ^Σ^^) = m/N. 
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Thus, the left-hand side of inequality (3.97) is greater than 1 - 2m/N, and therefore 
matrix F is nonsingular if 2ra < N. 

To get the flavor of (3.95), we derive the MM estimator for a linear model with 
random coefficients, Z^ = X*, where X* has full rank; that is, 

y< = XiSii + eu fy = ß + hi. (3.98) 

Then 3i = I and R^ = NX^X;, and 

N N N N 

= N Î ^ X j Z i j D . ί £ ζ $ Χ , | Ν = ϋ . . 

Hence, the right-hand side of the matrix equation (3.94) is rewritten as (AT — 1)0*. 
Further, 

bi = Z+êi = ( X j X ^ X i f o - XißOLS) = S? - ßoLs, 

where a? is the OLS estimator for the ith. individual regression. Also, it is easy to 
see that 

Σ Z?-(I - Χ,ΝΧ^Ζ+' = Σ&^)-1 - JVN, 

and finally for model (3.98), we yield 

1 N 

D.MM = ^ 3 T E ( â ? - 3 o L s ) ( S i - 3 o L 5 ) ' 

σ2 

N-l 
(3.99) 

In particular, for the balanced growth curve model (Z = Zj = Xi, Section 2.3), the 
MM estimator (3.99) collapses to the unbiased estimator 

1 N 

Ô.MM = jj—j ΣΦΙ-ßoLsWi - ßoLs)' - σ 2 ( Ζ ' Ζ Γ \ (3.100) 
2 = 1 

It is straightforward to show that <T~2D*MM coincides with the RML estimator 
(2.61). It is not unusual that for the balanced variance components model, the 
RML is identical to MM (Searle et al., 1992). Also, it is easy to show that for 
balanced one-way VARCOMP model (ni = n), the estimator (3.100) reduces to 

1 N _ = 1 
d*,uMVU = -jy—L Y^iVi - y)2 - -V2UMVU- (3-101) 

z = l 

This ANOVA estimator is the Uniformly Minimum Variance Unbiased (UMVU) 
estimator under the normal assumption, Lehmann and Casella (1998). 
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In the case of one random effect (k = 1), the MM estimator takes the form 

V^/ / ^ \ 2 II 11-4 ^ 2 / r - ^ il 11-2 \ 

Σ ( ζ ^ ) INI ~σ [Σ\\ζί\\ -Q2) 
d*MM = i V - 2 g 1 + t r ( N A 0 N A 1 ) ' ( 3 · 1 0 2 ) 

where ẑ  = Z^ is a nonzero rii x 1 vector, and 

qr = ^(XjziJ'NiXjzi) 11^11-^^ = 1,2, 

A p = ^ X ^ i ^ X i | | z i | r 4 p , p = 0,l . 

In particular, we derive the MM estimator for the balanced LME model with 
random intercepts of Section 2.4 as we did in Section 3.10.4. Using Lemma 3, we 
obtain 

Ql = - ( X ' l ) ' N ( X ' l ) = l, ç2 = l / n 
n 

t r (NA 0 NA!) = \ ( l ' X t X ' X ^ X l ) 2 = 1. 

We finally obtain for the balanced model with random intercepts, as the general-
ization of the ANOVA estimator (3.101), 

d*MM = T ^ - T ^ - 5 L σ2, 3.103 
N — 1 nz n 

where e ·̂ = y^ - (X / X)" 1 X / y and σ2 is the MINQUE/RML estimate defined by 
(2.87). In the following theorem we obtain a simplified/asymptotic MM estimator. 

Theorem 20 Let all matrices {Z^} have full rank and, moreover, Z^Z; > al for all 
i = 1,2,..., AT, where a is a positive number. Then, when N —> oo, the MM estimator 
(3.95) is equivalent to the Asymptotic MM (AMM) estimator, 

N N 

Ό,ΑΜΜ=-^Μ - σ 2 - Σ ( Ζ ^ ) - 1 · (3.104) 
i=l i=l 

Proof. Here we give only a sketch of the proof; a rigorous proof may be found in 
Demidenko and Stukel (2002) for a more general statistical model. Similar to the 
proof of (3.97), N'1 Σ Z^XiNX-Zt ' -> 0, because if Z* has full rank then 

t r Q r z t X i N X X ' ) = t ^ N ^ X ^ Z , ) - 1 ^ ) 

* ΜΝ Σ Χί*) = 2. 

Analogously, we can show that matrices Σ Ha and Σ ^ij a r e a l s o bounded. Thus, 
F —>NI 0 1 and we arrive at the estimator (3.104). 
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The AMM estimator (3.104) has a clear variance decomposition interpretation. 
Let σ2 be fixed, N be sufficiently large, and Z^ have full rank. Then, since ßoi,s is 
a consistent estimator, it is close to /3, and therefore 

E (bibj) =s E(ZtViVW) = ^ (Z ' iZ i ) " 1 + D „ i = 1, ...,ΛΓ. 

Summing up these equations and expressing D*, we come to the estimator (3.104). 
Note that this estimator is biased for small N. The asymptotic covariance matrix 
of the MM estimator is derived in Section 4.1.3. This estimator may be used in 
nonlinear mixed models as well (see Section 6.1). 

3.11.1 ImevarMM function 

The R code for MM estimation of D* can be downloaded to an R session as 

source("c:\\MixedModels\\Chapter03\\lmevarMM.r") 

The function call is lmevarMM(m,k,d,s2), where m, k, and d have the same 
meaning as in the previous lmevarMINQUE function, and s2 is the MINQUE estimate 
as the first component of the lmevarMINQUE return. ImevarMM returns the MM 
estimate of D* given by formula (3.95). As in the case of MINQUE, it does not 
gurantee that the returned matrix is positive definite, and it requires the generalized 
inverse function g inverse . sym. 

P rob lems for Section 3.11 

1. Simplify (3.96) for the case when all matrices Z^ have full rank. 
2. Prove that the denominator of (3.102) is positive under regular assumptions 

about the LME model. 
3. Derive the AMM estimator for the random intercept model. 
4*. Use simulations to compare the MM estimator with RML and MINQUE 

estimators as in Problem 6 from the previous section. 

3.12 Variance least squares estimator 

Here we develop another noniterative distribution-free estimator for variance para-
meters σ2 and D* in the LME model (2.5). We show that this estimator corresponds 
to the first iteration of the Fisher scoring algorithm under normal assumption. Two 
versions are considered, biased and unbiased. This method of quadratic estimation 
of variance parameters will be extended to models with a linear covariance struc-
ture. The idea of this method comes from "least squares on squared residuals," 
suggested by Amemiya (1977) and used widely in the literature on regression with 
heteroscedastic errors (Jobson and Puller, 1980; Davidian and Carroll, 1987; Carroll 
and Ruppert, 1988). The variance least squares is especially useful for generalized 
linear and nonlinear mixed models (Prentice, 1988). We use this method for variance 
parameters estimation further in Chapters 6 through 8. 

The idea is intuitively appealing. Let ßoLS be the OLS estimator and we pretend 
that ßoLS *s the t r u e beta vector. Then ê  = y—y^ißoLS-* a n d the n x l residual 
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vector for individual i, might be treated as η{. Then, the ith empirical covariance 
matrix can be assessed as ê ^ . We find an estimator for σ2 and D* by minimizing 
the sum of traces of squared matrices of the difference between the empirical and 
theoretical covariance matrix, σ2Ι + Z;D*Z^. The resulting estimator will be called 
Variance Least Squares (VLS) estimator. Precisely, the VLS estimator for σ2 and 
D* minimizes the sum of traces, 

N 
^ Γ ( β ^ - σ 2 Ι - Ζ , Ό * Ζ 0 2 . (3.105) 
2 = 1 

In fact, the minimization of (3.105) can be interpreted as the least squares method 
applied to the variance parameters because tr(A2) = Σ Afj for a symmetric matrix 
A. To find the minimum of the quadratic form (3.105) we differentiate it with respect 
to σ2 and D*, which leads us to a system of linear equations. After differentiating 
(3.105) with respect to σ2, we obtain the equation 

^ t r (e<e< - σ2Ι - Z<D,Zi) = 0. 

After differentiating (3.105) with respect to D*, we come to 

(3.106) 

(3.107) 

As we see, matrix D appears between two matrices, so to solve (3.106) and (3.107) 
for σ2 and D we need to employ the vector presentation of the matrix using the vec 
function (Puller, 1987; Magnus, 1988). First, we represent (3.106) in the vec form 
as 

Ντσ
2 + ] Γ vec'(ZiZi)d* = ^ ê f è , 

where d* =vec(D#). Second, taking the vec operation on both sides of (3.107) and 
using the formula vec(ABC) = ( C 0 A)vec(B), where 0 denotes the Kronecker 
product, we come to an equivalent linear equation, 

a 2 v e c ( £ Z ^ ) + (Σ Zfa ® Z ^ d . = £ > ^ ) ® (Z&) . 

Thus, finally, the VLS estimator is 

σ 
d* VLS 

NT vec^ZjZi) 
vecQ^Z,) ^zjZiOZJZ^ 

Σ(ζ^)0(ζ^) 

Ί " I 

(3.108) 

We can use the block-matrix formula (2.79) to simplify the inverse matrix and to 
derive separate estimators for σ2 and D*. Denoting 

A=J2z[Zi 0 ZjZ*, b =5^vec(ZiZ<), c = NT- b ' A ^ b 

we arrive at the VLS estimator for σ2 and d* in the explicit form 

°\LS = c-1 [ Σ β & - b'A-1 Σ{Ζ'&) ® (Zjêi)] (3.109) 
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and 

d*VLS = c-1 {[cA-1 + A^bb'A"1] Σ(Ζ&) ® (Zfè) - A ^ b ^ ê - ê * } . 
(3.110) 

Note that σ2 and d* are quadratic functions of {y;}. We have shown in Section 
3.3 that if at least one matrix Z^ has full rank, the inverse matrix in (3.108) is 
nonsingular. The VLS estimator is easy to generalize to nonlinear mixed models. 

3.12.1 Unbiased VLS estimator 

The VLS estimator (3.108) is biased. However, we can easily make the bias adjust-
ment by taking the expectation of the VLS estimator. This idea is realized now. 

Since the inverse matrix in (3.108) is fixed, it suffices to take the expectation of 
the vector. Noticing that ê  = r\i — X*N V . X ^ , where N = ( ^ X ^ X ; ) - 1 and 
{7^} are uncorrelated, Εη{ = 0 and cov(i7j = σ2Ι + Ζ^ϋ*Ζ£, we obtain 

£ ( Z & ) ® (Z&) 

-^z^zpwNK^x;.^) 

+ Σ ζ ίχ*Ν( Σ XW<) ® Z*X*N( Σ Χ'Μ (3·ιη) 
Since Efa ® tyj = Evecfatfi) = a2vec(I) + (Z^ 0 Zi)d*, the expectations of the 
first through the fourth terms of (3.111) become 

σ2 ^ v e c ^ Z i ) + ( Σ Ζ ί Ζ * ® ZiZ*)d*> 

- σ 2 ^ v e c ^ P Ä ) - ( ] T Z^Z* ® Ζ',Ρ,Ζ,)«!., 

- σ 2 5 3 v e c ^ P Ä ) - ( 5 ] Z^PiZi ® Z{Z,)d», 

σ2 Σ veciZ^PiZi) + ( £ ZjX<N ® ZjX,N)( ] T X^Z* ® XjZOd. 

where P^ = XjNX^. Assembling the terms, we obtain 

a 2 v e c ( ^ z ^ ( I - P i ) z i ) + Hd», 

where 

H = J^ZjZi ® Z*Z* - ZiZi ® ZiP*Z* - Z*P*Z* ® z i z 0 + G> (3·112) 

and for the expectation of the scalar term in the vector of (3.111) we have σ2(Ντ — 
ra) + c'd*, where G and c are as defined in (3.89). Thus, the Unbiased VLS (UVLS) 
estimator is 

-1 σ 2 ■" 

lUVLS 

NT-m c' 
c H Σ(Ζ^)Θ(Ζ£;) (3.113) 

One can obtain separate solutions for σ and d* by applying the formula for the 
matrix inverse (2.79). 
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3.12.2 Linear model with random intercepts 

Using the notation and results of Section 3.10.4 and inverting the 2 x 2 matrix, we 
obtain 

OUVLS = Ä [ ( Σ n ^ n i - 2 s xi N s xi ) + * Γ ( Σ s ^ s x i N ) 2 ) Σ 9 ^ 

d*uvLS = ^KNT-m)^4i-^2(ni-e^iNsIBi)'^2%êi], (3.115) 

with the determinant 

Δ = (NT-m)[Y^ni(ni-2s'xi-Nsxi)+tT(Y^sxis'xiN)2] 

and sei = / jj—i e%y 

3.12.3 Balanced design 

When matrices Z$ are the same (balanced design, n» = n, Z$ = Z) the VLS solutions 
simplify. Indeed, then 

c = NT- Nvec1'(Z'Z) [(Z'Z)"1 ® (Z'Z)"1] vec(Z'Z) = iVT - JVfc. 

Further, 

and 

b'A-1 £(z&) ® (z;ê,) = ̂ êjzfz'zr'z'ê; 

We could derive the solution for D* from (3.110), but it is easier to derive it from 
the matrix equation (3.107). Since Z^ = Z, we rewrite it as 

iVZ'ZD*Z'Z + Νσ2Ζ'Ζ = Ζ ' ( ] Γ β ^ ) Ζ , 

so that the VLS estimator for D* in this case becomes 

D, = (z'zy'z' (1 $>$) z(z'z)_1 - ̂ (z'z)-1. 

It is obvious that this estimator is equivalent to the simplified MM estimator (3.104), 
where (Z 'Z) _ 1Z' = Z+ and b* = Z+e*. 

Now we find the UVLS estimator in case of a balanced random-coefficient (BRC) 
model, i.e., Z = X^ = Z^. Then 

Σ z i ( I - Pi)Z* = (N- 1)Z'Z, H = (N - 1)(Z'Z) <g> (Z'Z) 
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and using formula (2.79), after some algebra, 

Nn-m (N- l)vec'(Z'Z) 1 _ 1 

(N - l)vec(Z'Z) (N - 1)(Z'Z) <g> (Z'Z) J 

1 -vec'(M) 1 
-vec(M) ^Er M (g) M + vec(M)vec' (M) J -

N(n - m) 

where M = (Z 'Z) - 1 . Thus for the BRC model, 

d2jJVLS = N(n - m) [ Σ ^ - v e c /(M)(z ® z) Σ ^ ® ê*] ' 

d*UVLS = N(n- m) { [ i v^ f M ®M + v e c ( M ) v e c / ( M ) 
x ^2(Z%) ® (Z'êi) - vec(Z'Z)-1 £ > & } . 

We prove that d2
UVLS = a2

ML = a\ML = a2
MINQUE. Indeed, (Z ® Z) vec(M) = 

vec(Z(Z'Z) Z') and the term in brackets is 

£ 3 [ i - ζίζ'ζ)-1^]^ = £ > a i - ζίζ'ζ)-1^]^, 

which gives (2.59). After some tedious matrix algebra one can show that the UVLS 
estimator of D* coincides with the RMLE, ^2

RMLDRML^ where ORML is given by 
(2.61). 

3.124 VLS as the first iteration of ML 

Now we show that (3.109) and (3.110) are derived as the first iteration of the 
log-likelihood function maximization starting from Do = 0. Indeed, assuming that 
the {y*} are normally distributed, the log-likelihood function, up to a constant, 
is written as I = — 0 . 5 ^ (in | V^ | - f e ^ V " 1 ^ ) , where V» = σ2Ι + Z^D^Z^ and 
&i = Yi — X-iß- Differentiating this function with respect to σ2 and D*, we come to 
a pair of estimating equations 

5 > ( V M - V^Vr1) = 0, J Z ^ V - 1 ( e ^ - V<) V^Z« = 0. (3.116) 

At the first iteration, D = D 0 = 0, so that V; = I and ê; = y^ — X^/3 is the OLS 
residual vector. But then the first equation of (3.116) is equivalent to (3.106), and 
the second equation is equivalent to (3.107). 

The advantage of the VLS estimator is that it can be applied to more general 
mixed models, such as the linear model with linear covariance structure of Section 
4.3.2 and the nonlinear marginal model, considered in Chapter 8. 

3.12.5 ImevarUVLS function 

The R code for unbiased VLS estimation for σ2 and D* can be downloaded to an R 
session as 
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source("c:\\MixedModels\\Chapter03\\lmevarUVLS.r") 

The function call is lmevarUVLS(m,k,d), where m, k, and d have the same 
meaning as in our previous codes. Upon completion, this function returns a list 
with two components: UVLS estimates for σ2 and D*. 

Problems for Section 3.12 

1. Apply the VLS in the form (3.105) to the weighted linear regression model, 
yi = ß'x.i +1/; , where E^^ = 0 and var(7yj = σ2 + nzf. 

2. Prove that c = NT^~ b 'A _ 1 b > 0. 
3. Express &VLS and d*vLS as quadratic functions of the Ντ x 1 vector y, defined 

in (2.9), in the form g + y'Hy, where g is a constant and H is a Νχ x Νχ fixed 
matrix. 

4. Prove that for linear model with random intercepts we have Δ > 0. 
5*. Derive the asymptotic version of the VLS and the unbiased VLS estimators 

when N —> oo in the manner of the MM estimator (3.104). 

3.13 Projection on B+ space 

The problem of negative estimates of variance parameters in variance components 
model is common, Searle et al. (1992). If a variance estimate is negative, we set it to 
zero. However, in the LME model, we estimate the matrix D, and this truncation 
procedure cannot be generalized in a straightforward manner. If a matrix estimate 
D is not nonnegative definite, we project it onto the space of all nonnegative definite 
matrices B+ using formula (2.137). Thus, if D is a noniterative quadratic estimate, 
we replace it with ΡΛ+Ρ', where P is the matrix of eigenvectors, Λ is the diagonal 
matrix of eigenvalues, and Λ+ = max(0, A). If D is nonnegative definite, this pro-
cedure does not change D. Otherwise, ΡΛ+Ρ' is the closest matrix to D among all 
nonnegative definite matrices, B+. It is easy to see that the projection is a singular 
matrix. 

3.14 Comparison of the variance parameter estimation 

In this section we compare four estimators of the variance of the random effect d* 
in a linear model with random intercepts, Section 2.4. In the next theorem we prove 
that all four estimates for variance parameters coincide for the balanced random-
intercept model of Section 2.4.1, where ni = n and X^ = X. Recall that for this 
model ßOLS = ( X ' X ^ X ' y , where y = N~l Σ?=ι Yi-

Theorem 21 In a balanced random-intercept model, RML=MINQUE= 
MM= UVLS for variance parameters σ2 and d* = a2d. 

Proof. First we deal with σ2. The fact that the MINQU estimate=RML estimate 
in a balanced random-intercept model was proved in Section 3.10.2. Now we prove 
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that UVLS=RML, i.e., (3.114) collapses to (2.87). We start with the calculation of 
Δ. Since sXi = X ' l , as follows from Lemma 3 of Section 2.4, we have 

Σ & Ν β ^ = tr (^s x i S ; i N) = (X'l)'(X'X)-1(X'l)=n, 

tr(^sxis^N)2 = κ[{Χ'ΐ)'{Χ'Χ)-\Χ'ΐ)]2 =n2, 

and thus Δ = n2(N — l)[N(n - 1) - m + 1]. Using these computations, we obtain 

^2 _ n2(N-l) 
aUVLS — ^ 

1 
S*>i 

N(n-1) -ra + 1 

But due to Lemma 3 

sei = 1% = l ' (yi - X i X ' X ) " 1 ^ ) = ny, - l ' y = n(y< - f) , (3.117) 

which leads to estimate (2.87). 
Now we deal with c£*. We prove that (1*MINQUE = d*RML, defined as (3.91) and 

(2.89). Since c = n(N - 1) and 

Σ ί 4 - 4 ] = Σκ1'*)2 - (i'xtx'xr'x'y)2] 
= n 

(3.91) is reduced to 

î ri2(Nn - m) £ ( % ~ f ) 2 - n(* ~ 1) Σ I f ë f i 
d*MiNQUE = n2(N-l)[N(n-l)-m + l] = d*RML-

MM=RML follows from the fact that D t ( E j ey)2 = Σ» *ei = ™2 Σ (» ί ~ £)2 a n d 

" = vMiNQUE — VRML m (3.103). For the UVLS estimate of d* using (3.117) 
after some elementary algebra we have 

-> (Nn - m)n2 ττ^,_ =,2 n(N - 1) v-^ Ι|Λ l|2 
<WLS = - ^ — 22(Vi-v) - Δ Ό β * Ι Ι 

_ i v-rî7 =x2 Σ Ι Ν 1 2 - η Σ & - £ ) 2 y 
- ÄT3l2>-2>) - n(JV(»-l)-m+l) " ^ ^ 

m 
Since estimators coincide for balanced data, to compare estimators, we need to 

consider unbalanced data. Specifically, the following simple random-intercept model 
with unbalanced data is taken as y^· = α̂  +/3j'■+■£#, where i = 1,..., iV,j = 1,..., τ^, 
α̂  ~ Λ/"(α, d*) is the random intercept, and ε^· ~ Af(0, σ2) is the error term. We take 
two values, N = 10,30, wither2 = 0.5, a = Ι,β = 0.5, and ni varying from 3 to 7. 
We compute the variance of d* for RML, MINQUE (3.91), MM (3.102), and UVLS 
(3.114) with Zi = Zi = lni. The MSE for the restricted ML estimate is assessed 
via simulations (number of experiments = 3000), and the variance of the other 
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N = 10 N = 30 

Ί 1 1 1 ι ' I 1 1 1 1 r 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

Variance of the random effect 

FIGURE 3.5. Comparison of four estimators for the variance of the random effect in a 
linear model with a random intercept. The variances of the unbiased quadratic estimators 
are computed exactly, and the MSE of the restricted MLE is assessed via simulations (3000 
experiments, dots). % SE is computed as the square root of the variance/MSE divided by 
the value of d* times 100. First, the relative SE of d* decreases with the true value d* 
approaching a limit. Second, the SE is about y/3 less for N = 30 than for N = 10, in 
agreement with asymptotic theory. Third, MM outperforms MINQUE and VLSU. Fourth, 
the restricted maximum likelihood does not outperform the MM estimation. Fifth, when 
N increases, the SE of the MM/RMLE quickly approaches the lower bound. 

three estimates are computed exactly as follows. To compute these variances we 
use the following fact: v a r ^ ' A ^ ) =2ir(AV) , where η is a random vector normally 
distributed with zero mean and covariance matrix V and A is a fixed matrix of 
appropriate size. To use this formula, we observe that the three unbiased estimates 
of of* may be expressed as a quadratic function η'Αη, where η has zero mean and the 
block diagonal covariance matrix with the zth block σ2Ι + Z^D*ZJ is as in equation 
(2.12). For example, for the MINQUE (3.91) the sum Y2isyi ~~ Syi) c a n ke expressed 
in terms of η as 

η'ΕΕ'η - η'(Ι - Ρχ)ΕΕ'(Ι - P x )r , = Τ7'[ΕΕ'-(Ι - Ρχ)ΕΕ'(Ι - Ρχ)]τ,, 

where Ρ χ is the projection matrix and E is the Νψ x N block diagonal matrix with 
ln. at the zth block. Similarly, we obtain the exact variance for the MM and UVLS 
estimates. Since there is no closed solution to the RMLE, when the ni are different, 
we use simulations. Also, we compute the lower Cramér-Rao bound for the variance 
of d* using formula (3.31). 

The results of the comparison are shown in Figure 3.5. We make three major com-
ments: (a) among the three unbiased quadratic estimators, the best is the method 
of moments estimator; (b) the performance of the MM and RML estimators is very 
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close; and (c) the MM/RML estimators quickly approach the Cramér-Rao bound 
for the variance of the random effect when N increases. 

In summary, we did not get enough evidence beyond a reasonable doubt that the 
RMLE outperforms the MM estimator for the variance of the random effect, c?*, 
even when the distribution is normal. Thus, the noniterative distribution-free MM 
estimator may be a reasonable alternative to the RMLE. 

3.I4..I Imesim function 

In this section, we compare five methods of estimation of matrix D*: ML, RML, 
MINQUE, MM, and UVLS using a simple random intercept and slope model (2.142) 
with normally distributed errors. The function can be downloaded as 

source("c:\\MixedModels\\Chapter03\\lmesim.r") 

The call to this function is as follows: 

Imesim(N=6,minn=5,maxn=8,betas=c(l,.1),s2=l, 
D=matr ix(c( l , .09 , .09, .1) ,2 ,2) ,nExp=100,sr=2) 

This function depends on other functions to be in the R environment at the time 
of the execution: g inverse . sym, GLSest, ImeFS, ImevarMINQUE, ImevarMM, and 
lmevarUVLS. The parameters of Imesim have the following meaning: 

• N is the number of clusters, N. 

• minm is the minimum number of observations per cluster. 

• maxn is the maximum number of observations per cluster. 

• be tas is the two-dimensional vector of fixed effects coefficients, ß. 

• s2 is the variance of the error term, σ2. 

• D is the 2 x 2 scaled matrix of the random effects, D. 

• nExp is the number of simulation experiments. 

• s r is the seed number. 

We make a few remarks: (1) The default value of the number of clusters, N = 6, is 
chosen deliberately small to see whether maximum likelihood works for an extremely 
low sample size; (2) our function ImeFS is used, not lme, because in many cases 
the latter fails with such small sample size; and (3) the figure of merit for the five 
methods is MSE for D* =cov(bi) estimation. With default values, the call lmesimO 
produced the following result: 
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MSE 
ML 0.8958097 
RML 0 .9336062 
MINQUE 2 .2926588 
MM 1.0148874 
UVLS 1.5529435 

As follows from this prel iminary simulations, t he max imum likelihood es t imators 
slightly outperform the distribution-free es t imators of D * when errors have normal 
dis t r ibut ion even for extremely small sample size. I t is interest ing t o know whether 
M L E remains superior for nonnormal and skewed error dis t r ibut ions such as those 
suggested in the problem below. 

Problems for Section 3.14 

1*. Use simulations to compare five estimators of matrix D : ML, RML, MINQUE, 
MM, and UVLS when error terms do not have a normal distribution; for example, 
they are distributed as (χ^ — n)/ \ /2n, where χ^ is chi-square distributed with n 
d.f. (for large n the distribution is close to the standard normal distribution). Use 
the LME model with random intercepts and slopes (2.142) and compute MSE for 
β and matrix D for a sequence of N. State your conclusion. 

3.15 Asymptotically efficient estimation for β 

The main result of this section is that any of the estimators of D considered above 
lead to the same asymptotic and efficient estimation for β applying estimated GLS: 
For example, when β is estimated by (2.28) with D substituted by D. The result 
that the estimated GLS is efficient in linear regression models has been proven by 
many authors, including Anderson (1973) and Carroll (1982). First, it is necessary 
to specify what we mean by "asymptotically efficient." In the framework of the LME 
model, we say that the GLS estimator (2.28) with estimated D is asymptotically ef-
ficient if its limiting/asymptotic distribution coincides with the limiting distribution 
using the true matrix D. Since, under mild assumptions, both have^limiting normal 
distribution, it suffices to show that the covariance matrices of /3(D) and /3(D) are 
the same in large samples. Second, one needs to prove that all estimators of D con-
sidered above are consistent. The proof of consistency for quadratic estimators is 
somewhat tedious but principally straightforward, as follows from Demidenko and 
Stukel (2002), because for a quadratic estimator the variance/covariance matrix 
may be expressed in closed form. Interestingly, due to the central limit theorem for 
the asymptotic study, it suffices to assume that the {ε*} and {b^} are both iid, and 
they are independent. 

As discussed in̂  Section 3.6, two schema are available when studying the asymp-
totic behavior of/3: deterministic or stochastic. Let us first consider the deterministic 
scheme. We assume that rii are uniformly bounded and elements of matrices {X*} 
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and {Zj} are uniformly bounded as well when N -* oo. We assume that the limit 

1 N 

H = H ( D ) = N l i m o - ^ X i ( I + Z iDZ^)-1Xi (3.118) 

exists for any nonnegative definite matrix D. Using the standard theorem of multi-
variate calculus, it is easy to prove that H is a continuous function of D which 
belongs to the family of nonnegative definite matrices. Then, if matrix D was 
known, the GLS jestimator is unbiased, consistent, and asymptotically normally 
distributed, VN(J3(D) - β) ~Λ/*(0,Η-1), as follows from the multivariate CLT. 
Since plimjv_»00D = D and p l i m j v - ^ H ( D ) = H(D) from the Slutsky theorem, 
it follows that y/N(ß(O) — ß) has the same asymptotic normal distribution. The 
asymptotic equivalence of/3(D) and /3(D) also follows from pseudo-maximum likeli-
hood theory because the information matrix for ß and (σ2, D) has a block diagonal 
form. 

Under the stochastic scheme, matrix H in (3.118) is the expectation/integral over 
Xi and Zf, and the asymptotic properties are readily derived from M-estimation 
theory. See Appendix 13.1 for the basics of the asymptotic theory. 

Problems for Section 3.15 

1*. Prove that all five (ML, RML, MINQUE, MM, UVLS) estimators of matrix 
D* are consistent under the stochastic scheme when N —» oo. Based on this fact, 
prove that all five estimators of β are asymptotically equivalent using the^ Slutsky 
theorem and pseudo-maximum likelihood theory based on the fact that β and D 
are asymptotically orthogonal, see Appendix 13.1. 

3.16 Summary points 

• To make the LME model identifiable, one should take either a random or a 
fixed effects approach. The simultaneous presence of both leads to an unidenti-
fiable statistical model. An example of a poorly defined model is a combination 
of ANOVA and VARCOMP models, y^· = a* + bi + ε^·, where the {a*} are 
fixed and unknown and bi is the random effect. 

• The information matrix for β and (a2 ,D) has block diagonal form. There 
are two consequences of this fact. Numerically, it means that the off-diagonal 
blocks in the Hessian matrix are close to zero, which justifies separate max-
imization of the log-likelihood over the beta coefficients and variance para-
meters. Statistically, the block diagonal structure means asymptotic indepen-
dence, which implies that any consistent estimate of matrix D leads to an 
asymptotically efficient estimate of /3. 

• Profile-likelihood confidence intervals for beta coefficients are preferable over 
standard Wald confidence intervals. They are easy to compute using con-
ventional software because the constrained log-likelihood maximum can be 
obtained via another LME model. 
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• The likelihood ratio test of the presence of random effects Ho : D = 0 is not 
of nominal size. The F-test based on (3.42) is exact, i.e., provides the exact 
significance level. This test is a generalization of the F-test commonly used 
in ANOVA and VARCOMP models. 

• The restricted and standard maximum likelihood approaches have equivalent 
statistical properties in large samples. However, one may expect that RML 
produces less biased estimates of the variance parameters in small samples 
because for a balanced model, when all design matrices are equal, it gives un-
biased estimates for σ2 and D. RML and ML lead to biased variance estimates 
for an unbalanced model in small samples. 

• An often-forgotten fact is that the maximum likelihood estimator for beta 
parameters is unbiased in small (and certainly in large) samples. Any estimator 
of D, as a symmetric function of the error term 77, in generalized least squares 
leads to an unbiased estimator of β. 

• Random effects may be estimated as posterior means treating the LME model 
in a Bayesian fashion. For a linear mixed model under normal distribution, 
there is a closed-form expression. Alternatively, random effects may be derived 
from penalized least squares, where the penalty is the reciprocal of the scaled 
matrix of the random effects. The latter approach is used for nonlinear mixed 
models and for various penalization methods, as described in Chapters 1 and 
8. 

• Asymptotic properties may be studied under two schema (designs). In the 
deterministic approach/fixed design, we assume that matrices X^ and Z; are 
fixed (nonrandom). Then the {y^} are not identically distributed and special 
study is required to prove consistency, asymptotic normality, and efficiency 
because standard ML theory works only for the iid case. In the stochastic ap-
proach/random design, we assume that {Xi}, {Z^}, and {rii} are random and 
iid, with certain distributions that may be unknown but that have parame-
ters other than the parameters of the LME model. In this approach the {y^} 
are iid, and therefore we can invoke the ML theory, which implies that the 
estimators are consistent, asymptotically normal, and efficient without addi-
tional proof. In particular, this implies that the asymptotic covariance matrix 
of beta coefficients and variance parameters is obtained as the inverse of the 
information matrix. 

• One cannot expect much difference between the OLS and ML estimates of 
fixed effects, especially when they have small standard errors and the number 
of subjects/clusters is large. In particular, the OLS and ML estimates coin-
cide for balanced data. However, the standard error of the OLS estimate in 
the LME model computed by the standard formula, which ignores random 
effects, is inflated. Therefore, ML estimation of the LME may lead to statis-
tically significant estimates, whereas the OLS does not. Remember that the 
difference between standard regression and the mixed effects approach may 
be considerable in small samples, as pointed out in Section 1.1. 
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• We develop three noniterative distribution-free quadratic unbiased estimators 
of the variance parameters in the LME model: MINQUE, Method of Moments 
(MM), and Unbiased Variance Least Squares (UVLS). In particular, the MM 
approach may be viewed as a straightforward generalization of Henderson's 
(1953) method III. For a balanced random-coefficient and random-intercept 
model, the restricted ML and all unbiased quadratic estimators coincide. One 
may expect that unbiased quadratic estimation would perform better in a 
small sample with sparse data. Our simulations demonstrated that the MM 
estimator is best among three unbiased quadratic estimators of d* in the 
random-intercept model. In any event, noniterative estimates can serve as a 
reasonable starting point for the maximum likelihood iterations considered in 
Chapter 2, especially when the MLE is on the boundary. 

• In a small sample, it is quite possible that an estimate of matrix D is not non-
negative definite. Then a projection on the space of the nonnegative definite 
matrices should be carried out that is equivalent to the truncation procedure 
where the negative eigenvalues are replaced by zeros, as follows from Sec-
tion 2.15.2. Unfortunately, such a procedure destroys the unbiasedness of the 
estimate. 

• In a balanced random-intercept model the variance parameter estimators co-
incide: restricted MLE = MINQUE = method of moments = variance least 
squares unbiased. For unbalanced data, RML and MM are closest. 

• All estimators of variance parameters considered are consistent. They all lead 
to the equivalent asymptotic distribution of β ϊοτ large N. This statement 
follows from the asymptotic independence of ß and D (see the details in 
Appendix 13.1.3). 





4 
Growth Curve Model and Generalizations 

Several special cases and generalizations of the LME model are considered in this 
chapter. The linear growth curve model may be viewed as a special case of (2.5), 
where matrix X^ is a linear combination of vector columns of matrix Z^. Although 
all results of Chapters 2 and 3 are applicable, one can simplify the theory and obtain 
new results, specific to the growth curve model, such as the two-step computation 
of the GLS estimate. The general growth curve serves as an intermediate model 
between fixed and random effects. This statistical model is more robust because it 
does not require specification of all growth curve coefficients in the second-stage 
model, unlike the standard growth curve model. We also consider the most gen-
eral linear model with linear covariance structure. This model accommodates well 
the analysis of longitudinal serially correlated data, a characteristic feature of time 
series. Another important generalization of the LME model (2.5), the multidimen-
sional mixed model, also has a linear covariance structure. This mixed model is 
used for our image analysis in Chapter 12. In the last section we consider robust 
estimation using the Huber function with an estimated threshold. First we illustrate 
this approach by a simple location problem and then outline its generalization to a 
mixed effects model. 

4.1 Linear growth curve model 

The Linear Growth Curve (LGC) model is a special case of the Linear Mixed Effects 
(LME) model (2.5). Yet it deserves special consideration because of its frequent 
practical use and the chance to simplify the theory. The model for the LGC is 
written in hierarchical fashion and is composed of two equations. The first-stage 
model consists of a set of N independent linear regressions with random coefficients: 
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yi = Zi8Li+6i, E(£i) = 0, cov(6i) = σ 2 Ι η ί , (4.1) 

where y^ is an ni x 1 vector of the response variable, Z^ is an rii x k design matrix, and 
â  is a k x 1 random vector of individual coefficients, i = 1, ...,iV. Random vectors 
a.i and e% are mutually independent and independent across i. In the second-stage 
model the individual coefficients are expressed via a linear model as 

aii = Αφ + hi, E(bi) = 0, cov(bi) = σ2Ό, (4.2) 

where A* is a k x m design matrix and β is an m x 1 parameter of interest. Scalar σ2 

and matrix D are called variance parameters and are unknown. Index i is referred to 
as the ith subject, so that σ2 may be interpreted as the within-subject variance and 
D may be referred to as the scaled between-subject covariance matrix. The simplest 
example of the linear growth curve model in a longitudinal setting is given by (2.58). 
Sometimes we use the notation D* =cov(b^) to denote the covariance matrix of 
random effects. Recall that throughout the book we use the notation D* = σ2Ό. 
In particular, we estimate D* by the method of moments and MINQUE. To avoid 
the LGC model deficiency, we shall assume that 

N 

2_] A[Ai is a nonsingular matrix. 
2 = 1 

Also, in this chapter we assume that all matrices Zz- have full rank: 

rank(Z^) = fc < n», i = 1,..., JV, (4.3) 

and that for at least one i, we have k < n». Note that we do not assume that m < k. 
In a special case when Az = I, we come to the growth curve model with random 
coefficients studied by Swamy (1971) although he assumed that the within-subject 
variance varies with i. 

Substituting (4.2) into (4.1), we come to the LME model yz- = Xz/3 +Zbi + e i? 

where 
Xi = ZiAu i = l,...,JV. (4.4) 

Thus, the LGC model is a special case of the LME model when the design matrix 
of fixed effects is a linear combination of the design matrix of random effects. This 
observation implies that all results obtained in the previous chapters apply to the 
LGC model as well. However, the relationship Xz = ZiAi brings up something 
specific—this is the subject of our investigation in this chapter. 

When the random variables have a normal distribution, the LGC model may be 
written compactly as 

y i ^ A T i Z i A i ^ i l + ZiDZi)), z = l,...,7V. (4.5) 

As for the linear mixed effects model, matrix D plays a crucial role in estimation of 
the beta coefficients because if D were known, we could apply the generalized least 
squares, which is efficient. In the next section we start with known D, and in the 
rest of this chapter we deal with unknown D. 

Notice in the LGC model that all coefficients of the growth curve (4.1) are as-
sumed random. However, the LME model with random intercepts considered in 
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Section 2.4 may be treated as a growth curve model with Dn = d and the other 
elements zero. If a part of vector parameter â  is specified in the second stage (4.2) 
but the rest is unspecified, we need to apply the general LGC model considered in 
the next section. 

Sometimes the growth curve model is defined in matrix form as 

Y = XBZ + e, (4.6) 

where Y is a p x n matrix of observations, X and Z are p x m and r x n design 
matrices, B is an m x r matrix of unknown coefficients, and ε is a p x n unobserved 
matrix of random variables (the error term). It is assumed that the error term 
has zero mean; the columns are independent and have the same p x p covariance 
matrix Ω. After taking the vec operator we come to the model y = U/3 + 77, where 
COV(T7) = I (g) Ω and ß =vec(B). This model was studied initially by Potthoff and 
Roy (1964) and Rao (1965). A modern discussion of this model can be found in Pan 
and Fang (2002). The difference between (4.6) and the model defined by (4.1) and 
(4.2) is that the latter has a more specific covariance structure due to the assumed 
randomness of the growth curve coefficients although these models share a lot of 
common statistical properties. Also, in model (4.6) the number of observations for 
each column is the same. That is, it is a balanced statistical model, unlike our LGC 
model. For further discussion, see Section 2.3. 

4.1.1 Known matrix D 
If matrix D is known, the GLS estimator of /3, as follows from (2.28), takes the 
form 

ßGLS = ί Σ AÎZJVr^AiJ φ Κ%Vr'Yi ] . (4-7) 

with the covariance matrix 

cov(ßGLS) = σ2 (jr Α ί Ζ ί ν ^ Ζ , Α , j 

Here we use the earlier notation, 

ν , = Ι + ΖίϋΖί , (4.8) 

the Ui x rii covariance matrix of the response vector y^. Letting 

W Î ^ Z J Z O - ' + D , i = l,...,N, (4.9) 

and applying the dimension-reduction formula (2.25), we obtain 

= ZJ(I - Z ^ D - 1 + Z j Z i ) - 1 ^ ) ^ = (Z j -Z jZ i iD- 1 + Z j Z i ) " 1 ^ ) ^ 

= (I - ZjZi tD" 1 + Ζ ί Ζ , Γ 1 ^ = ( D - 1 + Z jZ i -Z jZ iXD- 1 + Z j Z * ) - ^ ^ 

= D - ^ D - 1 + Z J Z * ) - 1 ^ - (I + Z j Z i D ) " 1 ^ 

= (I + Z ^ Z i D ) - 1 ( Z ^ Z i ) ( ^ Z i ) - 1 Z ^ = W r * a ° . 



188 4. Growth Curve Model and Generalizations 

Hence, an economical version of (4.7) takes the form 

ßGLS = ( S A j W r 1 Α ^ (jl·AiWr1«^ , (4.10) 

where 
a° = (ΖϊϋΓ'Ζάί (4-11) 

is the OLS estimator of â  in model (4.1). Note that the assumption (4.3) implies 
that a? exists for alH = 1,..., N. The covariance matrix simplifies to 

cov0GLS) = a2r£A'iW^AA 

The GLS estimator has the following two-step implementation: 

1. Separately estimate (4.1) by the OLS to obtain (4.11) for each i = 1, ...,iV. 

2. Replace â  with a^ in (4.2) and apply the weighted least squares with the 
weight matrix inverse to (4.9). 

This interpretation could be called algebraic, however (4.10) can be justified sta-
tistically. Indeed, substituting y^ with ZiAiß + Z^b; -f Si in (4.11) one obtains 

a?=(Z5Z i)-1Zi(Z iA ii9 + Z,b; + Gi) = Αφ + b , + ( Z ^ ) " 1 ^ . 

Hence, for a^ we have 

£?(a?) =A i /3, cov(a?) = a2W, = a ^ D + i Z j Z , ) - 1 ) , 

and therefore (4.10) may be derived as an implementation of the weighted least 
squares to the second-stage model with the weight matrix W " 1 . 

Two cases of matrix D are worthwhile considering. The first case corresponds to 
the assumption that there are no random effects (D = 0). Then, as follows from 
(4.10), the GLS estimator collapses to the OLS estimator, 

%LS = ( E A ^ Z ^ J f f ] AiZjy« J . (4.12) 

Another extreme case is when D becomes infinitely large. More precisely, we let 
D =dl and d —> oo, as we did for the LME model in Section 2.2.3. Taking the limit 
of (4.10), we obtain . 

£ m ( Σ Α ^ Ζ , Γ 1 +diy1Aiy
1
 Q T A ^ Z ^ ) - 1 + d l ) - 1 a?) 

= ton ( Σ Α ί ^ Ζ & Γ 1 + I ) - 1 A i ) ~ 1 ( ^ A j W Z & r 1 + I ) - 1 a ? ) 

= (ΣΑ^Γ(ΣΑ^0)· 
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Thus, the infinitely large matrix D leads to the fixed effects estimator 

J80=ff;AÎA4) ( f>^Y (4.13) 
\i=l / \i=l 

This estimator may be interpreted as ordinary least squares applied to the second-
stage model (W* = I, no weighting). It is elementary to prove that ß0 and ßoLS 
are unbiased. See Section 2.2 for more discussion of the fixed effects model. 

4-1.2 Maximum likelihood estimation 

Starting from this section it is assumed that matrix D is unknown and subject to 
estimation. In this section we apply maximum likelihood assuming that the distri-
butions of hi and Si are normal. The log-likelihood function for the LGC model 
(4.5), up to a constant term, is 

1(β,σ\Ώ) = _Ι{ΑΓ τ 1ησ 2 + ^ 1 η | ν , | 

+ * " 2 Yfri - ZiAißYVT^i - ZiAiß)} , (4.14) 

where Vj is the covariance matrix of the response variable defined in (4.8) and 
NT = ]Ci=i ni 1S * n e total number of observations. For the linear growth curve 
model the log-likelihood function may be simplified in the manner in which we 
derived (4.10). Let e* = y* — Zja° be the OLS residual vector. Then 

y i - ZiAiß = (yi - Ζίβ?) + Zi(a? - Ai/3) =9; + Z;(a? - Αφ), 

and since Z'fii = 0, we obtain 

(y, - Z i A i ^ ) ' V - 1 ( y i - Ζ , Α ^ ) 

= [êi + Zi(a° - A^) ] ' [ I - Z ^ D " 1 + ZfayiZ'tWei + Zi{4 - Αφ)] 

= \\eif + (a° - Αφ)%(1 + Z i D Z i ) " 1 ^ 0 - Αφ) 

= \\eif + (a? - Αφ)'(Ρί + D)-1(aî° - Αφ), 

where 
Pi = (Z'ßi)-\ < = 1,...,JV. (4.15) 

The determinant of V* may be simplified using the dimension-reduction formula 
(2.22), 

| V, |= | I + ZiDZj |=| ZjZ* | . | P< + D | . 

Thus, dropping the constant term 1η|Ζ^Ζ^|, we come to the following economical 
log-likelihood function 

+σ-2 

1 f " 
,a2 ,D) = - - l Ντ1ησ2 + £ l n | P , + D | 

I i=l 
N 

So + £(a? - Αφ)'(Ρί + D)-1(a° - Αφ) 

W 
N 

i=l 

(4.16) 
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where the (fixed) total sum 

£ο = Σιι^ιι2 = Ι > * - ζ ^ | | 2 (4·17) 

i=l i=l 

is the sum of individual sum of squares. As the reader can see, in the original log-
likelihood (4.14) one needs to invert rii x rii matrices, whereas in (4.16) one needs 
to invert k x k matrices. 

Next we show that for the LGC model, we have Sm[n = 5o, where Sm[n is defined 
in (2.33). To show this we use the fact that for the LGC model, X^ = Z^A^, which 
implies that 

N N 
II2 Smm = a min Y ] II y{ - Xiß - Zfo | |2= min 5 2 || y» - Ζ ^ Α ^ - Z^b; 

/3 ,b l 5 . . . ,biv . . ' £,!>!,...,bjv . Λ 
1 = 1 Z = l 

N N 

= a . m i n £ Il y< - Z * ( A ^ + hi) ll2= m i n Σ ! Il y< - z*a* ll2= s^ (4·18) 
%=! 1=1 

Consequently, applying Theorem 4 of Section 2.5, we find that the MLE for the 
LGC model exists if and only if So > 0. This means that not all individual fits 
are perfect. Hence, to avoid nonexistence, we shall assume that 5o > 0. Applying 
inequality (2.99), we yield the lower bound for the within-subject MLE variance, 
°ML > So/NT. 

We can also derive the variance-profile log-likelihood function, as we did for the 
LME model in Section 2.2.4, because the maximum of I over σ2 is attained at 

σ 2 = W ί > 9 - *iß)'Pi + D) - 1 ( a? - Ai/3). (4.19) 

Hence the variance-profile log-likelihood function for the LGC model is 

N 

2 
1 N 

Ιρ(β,Ό) = - - ^ { l n l P i + D 
i=l 

N 

-h/VTln So + J > ° - A^)'(P* + D)_1(a" - Aiß) 
i=l 

(4.20) 

Further, we can obtain the full-profile log-likelihood function as in Section 2.2 using 
expression (4.10). We can also apply restricted ML to estimate the LGC model with 
the augmented term (2.51), where for the LGC model, 

^ X J V X i = ]T) AiZjVr^A* = £>i(p< + O)~1Ai. 

Maximization algorithms 

One can use any algorithm discussed in Chapter 2 to maximize the log-likelihood 
function for the LGC model (we refer the reader to Appendix 13.2.4 for basic ma-
trix calculus). Here, we derive a simplified version of the variance-profile Newton-
Raphson algorithm applying the perturbation formula (2.106). At each iteration, 
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it suffices to obtain an adjustment only for matrix D because ß and σ2 admit 
closed-form solutions if D is known. Differentiating (4.20) with respect to D, we 
obtain 

I D = 4 {Σ(ρ< + D ) _ 1 - ^ 5 - 1 Σ(ρ* + D)_1^i(pi + D)"1}. (4·21) 
where 

N 

S = 5(D) =So + £ r * ( P * + D)" l r<» Ti = a ° * A ^ · 

Let DQ be the current approximation to the MLE; we aim to find the next approx-
imation as D = DQ + Δ , where the increment matrix Δ is supposed to be small. 
To approximate the inverse matrix, we use the perturbation formula (2.106), 

(P< + D ) - 1 = (Pi + D o + Δ ) - 1 ~ (P^+Do)-1 - ( P i + D o ) - 1 Δ ( P i + D 0 ) _ 1 . 

Substituting this approximation into (4.21) and omitting terms of the second order, 
the estimating/score equation dlp/dO = 0 can be approximated as 

-NrS-'WrWiWr'AWr1} = 0, 

where matrix W» is defined by (4.9) and D = D 0 . To find Δ as the solution to this 
matrix equation, we employ the vec operator, as we did in Section 2.10. Hence, the 
increment matrix is given by 

νβο(Δ) = J~ vec 

where the k2 x k2 matrix is defined as 

and the derivative dl/dO is computed by formula (4.21). Thus, the simplified version 
of the Newton-Raphson algorithm for the LGC model consists of the following steps: 

1. Chose an initial matrix Do and calculate β0 by formula (4.10). Two choices 
may be used: Do = 0 assumes that random effects are small and leads to the 
estimate (4.12); D 0 = oo assumes that random effects are large and leads to 
the estimate (4.13). Also, any quadratic estimate, such as MM or MINQUE, 
of matrix D may be used, see Section 4.1.3. 

2. Calculate the increment matrix Δ by formula (4.22) and compute the next 
approximation, Di = D 0 + Δ . 

3. Recalculate β by formula (4.10), return to step 2, and continue until conver-
gence. 

D=Dn 
(4.22) 
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Algorithm (4.22) may be enhanced in different ways following the line of Chapter 
2. First, the reduced step length may be used to achieve maximization of I at 
each iteration. Second, special attention should be paid to matrix D to arrive at 
a nonnegative definite solution, see Section 2.15. The Fisher scoring and EM/FP 
algorithms also apply. 

4-1.3 Method of moments for variance parameters 

All quadratic estimators developed for the LME model in the previous chapter apply 
readily to the LGC model with X^ = Z^A^. Application of the method of moments 
for the estimation of variance parameters σ2 and D seems natural in the LGC 
model. The advantage of this approach is that it is distribution-free, so that it does 
not require normal assumptions. Quadratic estimators for variance parameters were 
developed by several authors for special cases of linear growth curve. For instance, 
Swamy (1971) proposed the MM estimator of D for the random-coefficient model 
(Zi = Xi); Reinsel (1985) proposed the MM estimator for the linear growth curve 
model with A^= I 0 q ;̂ Carter and Yang (1986) and Vonesh and Carter (1987) 
further applied the MM estimator in conjunction with the β estimation. In this 
section we derive the MM estimator of matrix D* for the LGC model and show 
that it collapses to existing estimators in those special cases mentioned. 

MM estimator of σ2 

The unbiased and consistent estimator for σ2, the pooled variance estimator, is well 
known, 

à2
MM = =fTT TZ Σ II Yi - Z*a? Il2, (4.23) 

where a^ is the OLS estimator of the vector of individual regression coefficients, 
(4.11). The condition Ui > fc, for at least one z, guarantees that the denominator is 
positive. We calculate the variance of σ2

ΜΜ under the normal assumption using the 
fact that var(u'Au) =2tr(Acov(u)) , where u is a normally distributed vector with 
zero mean and A is a fixed symmetric matrix (Graybill, 1983). Then, as follows 
from this formula, 

νΆτ(σ2
ΜΜ) = X ^ v a r M l ~ WfrT^'ÙYi)· 

But 

yj(l - ZiiZjZ,)-1^) = (ZiAiß + Z,bi + £i)'(I - Z ^ Z i ) " ^ ) 

= (Ai/3 + b4)Zj(I - ZiiZjZi)"1^) + ei(I - ^(ΖίΖ*)"1^) 

= e'i(I-Zi(ZjZi)-
1Zi), 

because Z<(I - Z i^Z i ) -^ ) = 0. Hence, finally 

var(a^M) = ( E ( r J _ fc))2 Σ
νΆτ«(1 - ΖίίΖίΖΟ^Ζί)*) 

« Ë C T 5>(I - KM*™ = ̂ ^ y (4-24) 
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As follows from (4.24), the MM estimator of σ2 is consistent regardless of matrices 
Zi and Ai because var(<r^-M) —> 0 when Σ(ηί — k) —► oo. 

Now we show that the pooled variance estimator (4.23) coincides with the MINQUE 
estimator (3.79) derived for the LME model. Indeed, as follows from (4.18), the de-
nominator of (4.23) is Smin 5 so it suffices to prove that for the linear growth curve 
model, rank(W) =Y^ki. But this equality follows from X* = Z^A^, which implies 
that rank(W) =rank(Z) = ] T / ^ , where matrix Z is defined in (2.9). 

MM estimator of D* 

Now we derive the MM unbiased estimator of D* =cov(bi) = σ2Ό, based on the 
OLS estimator (4.12) and the cross-product residual matrix 

N 

S = £ ( a ? - A i 3 O L S ) (a? - ΑφΟΙί8)'. (4.25) 

We find the MM estimator of D* by equating matrix S to its expectation. Thus, 
we need to find the expected value of matrix (4.25). To shorten the notation, we 
introduce the matrices 

P , = (ZjZi)"1, P< = ( Z j Z i ) - 1 ^ , 

H = ( ^ A i i Z j Z i ) - 1 ^ ) - 1 , N ^ P i H A i . 

Also, we introduce the random vector u* = a? — AißGLS, where ßcLS ls calculated 
by formula (4.10) with D =a~ 2 D*. Then it is easy to see that 

E(ui) = 0, cov(u0 = cov(bi + (Zfc^Ziei) = Ό*+σ 2 Ρΐ · (4.26) 

Hence, the residual vector in (4.25) can be rewritten as 

a? - Mß0LS= (a° - ASGLS) - MßoLS - ßGLs) = ^~ A i H ^ F j u , · ) , 
3 

so that the matrix (4.25) takes the form 

Σ u^ - E < £ uiF;)HAi - Σ Α*Η(Σ F'iuM 
i i j i j 

+ £ Α , Η ( Σ F ; . U J ) ( ^ U ^ P ^ H A J . (4.27) 
* 3 3 

Since u^ and Uj are uncorrelated for i φ j , we have 

E E i MZj u;Fi)HA^ = D , E i Ni+σ 2 E PiNi , 
E E , Α,Η(Ε, · F'jUjXEi U J P ^ H A ; 

= Ei Α , Η Ε ^ PJU^P^HAJ + σ2 Ε* Α * Η ( Ε , F ^ F ^ H A ^ . 

Combining these terms, after some rearrangement, we come to the expectation of 

s, 
JVD. - D , E i N< - E i NJD. + E i AiHCE,· P^D^P^HAj 

+<>2E Pi - E i P iNi - E i N^Pi + E i ΑίΗ(Ε, · ^ Ρ , Τ , Ο Η Α ; ] . 

(4.28) 
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To find matrix D*, we first calculate the matrix 

N 

L = S-a2
MM Y^[Pi - PM - Nfr + A^H^F^-F^HA^], (4.29) 

i = l 

with σ2
ΜΜ as defined by (4.23). Second, we observe that matrix D* in (4.28) appears 

between two matrices. To solve the equation for D*, we employ the matrix-to-vector 
transformation, as in Section 3.3. Thus, applying the vec operator to (4.28), we 
obtain 

vec(L) = d . - i l Ç N Î ® I f c j d . - i l Ç l f c ® N Î j d . 

+ ί^Σκ«®κ«)α·> 

where d*=vec(D*), K^· = A^HF^ and i,j = l,...,iV. Finally, the MM estimator 
for vec(D*) is 

d*MM=F-1vec(L), (4.30) 

where the k2 x k2 matrix 

h3 

Applying the formula (A 0 B)(C 0 D) = (AC 0 BD), we can reduce the double 
sum in (4.31) to the product of single sums, 

Ç Ky ® K'tj = Y^(AiH ® I)E(I ® HAi) , 

where E = £ A^P; 0 P< A^ 
We show that F is nonsingular in (4.30) if 2k < N. Let U be any k x k matrix. 

Without loss of generality, we can assume that it is normalized as tr(U U) =1 . 
We use the formula vec'(U)(A 0 B)vec(U) =t r (UAU / B / ) . Since for nonnegative 
definite matrices A and B we have tr(AB) <tr(A) tr(B) for the second term of 
(4.31), one obtains 

(vec'(U)[i E i NJ ® I]vec(U) = £ £ , tr(UNÎU') = 
.^Ei t r (_NJu;U) < ^ E i t r ( N i ) = £ E i M A i H A j W r 1 ) 

~~ ~N' = jf Σ - t r i H A i W f 1 ^ ) = j,tr{UZi AJWr iAi ) = ^ ( Η Η Γ 1 ) = ± 

The same holds for the third term of (4.31). Now, since matrix ]Γ^ · ^ ύ ' ® K-ij ̂ s 

nonnegative definite, vec /(U)Jvec(U) >1 — 2fc/iV, which implies that F is nonsin-
gular. 

It is easy to see that the MM estimator (4.30) is a special case of the MM estimator 
for the LME model derived previously, (3.95). It suffices to prove that the matrix 
Y^bib'i, where hi = Zfei for the LME model from Section 3.11, coincides with 



4.1 Linear growth curve model 195 

matrix (4.25). Indeed, since in this section matrix Z* is assumed to have full rank, 
Z+ = ( Z ^ Z i ) - ^ , and therefore 

b, = (Z^Zi)-
1ZUy,-X3oL5) = (^Z0-1Z^(yi-Z,A,3OL5) 

= a i — -^ißoLS' 

The asymptotic properties of the MM estimator for D* are formulated in the 
following theorem (matrix V+ was introduced in Section 3.3; see also Appendix 
13.2.3). 

Theo rem 22 Let N —> oo; then under mild assumptions, 

1 - 1 N 

D* = ^ S - a 2
M M - Σ (^Ζ,)-1 (4.32) 

i = l 

is asymptotically equivalent to (4-30). Under the normal distribution, the asymptotic 
covariance matrix for t;ee/i(D*) is 

2σ* 

N 
V+ (Ό ® D + l f ; (Z^Z,)-1 ® (Z^Z,)-1 j D + / . (4.33) 

The proof is similar to that of Theorem 20. 
Some special cases of the MM estimator (4.30) are considered in Section 4.1.5. 

MMFE estimator for D* 

Recall that the derivation of the MM estimator (4.30) was based on ßoLSi ^3 a n 

initial estimate of the beta coefficients. This implicitly assumes that D = 0, and 
therefore one may expect that (4.30) could be a better estimator in a neighborhood 
of small random effects. However, we can start with β0, which implicitly assumes 
that D = oo, as in the fixed effects approach of Section 4.1.1. The resulting esti-
mator, called MM Fixed Effects (MMFE), could be a better estimator when D* is 
large. 

To derive the MMFE estimator we need to find the expectation of the matrix 

8Ο = £ (^ -Α3Ο)(^ 0 -Α3Ο) ' · (4-34) 
N 

Σ 
2 = 1 

Similar to the previous derivation, we can express aq — Aiß0 = m — A^HQ X 
(J2j^Ojuj)i where H 0 = ( ^ A ^ A * ) - 1 and F02- = A*. Thus, the expectation of 
matrix (4.34) is 

JVD. - D , E i N« - Σ , N P . + Σ ; Α;Η(Ε, · F j D . F ^ H A i 
+ΛΈPi - Ei PiNi - Ei N<P« + E* Α , Η ( £ , . F J P ^ H A Î ] , 

so that the unbiased MMEF estimator for d* =vec(D*) is 

d*MMFE= FQ 1vec(L0), (4.35) 
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where N 0 ; = Α^ΗοΑ^ and 

N 

L0 = So—σΜΜ ^ [ Ρ ί — P^Noi — NoiPi 
2 = 1 

+A iH0(ÇAjPJ-A. i)HoAÎ], (4.36) 

Fo = I f c a - ^ J ^ N o j e l f c - ^ I f c e J ^ N o i 
z i 

+jj Σ ( Α * Η ° ® J)( Σ Α ίρ < ® P i A i ) ( J ® Η°Αί)· (4·37) 
i 

We illustrate the MM estimators by some special cases of the linear growth curve 
model. 

4-1-4 Two-stage estimation 

Due to representation (4.10), estimation of the population parameter β may be 
accomplished in two stages (Davidian and Giltinan, 1995; Stukel and Demidenko, 
1997a). At the first stage, we estimate each curve individually by OLS to obtain 
the subject-specific estimate a£. At the second stage, we apply maximum likelihood 
in the form (4.20) or use the MM estimator for the variance parameters. Note that 
the former method gives the MLE of the underlying LME model as follows from 
representation (4.16). 

4*1.5 Special growth curve models 

The aim of this subsection is to consider some special cases of the LGC model where 
the MM and ML estimates simplify. These results may be viewed as an extension 
of results obtained in Section 2.3. We start with the following definition. 

Definition 23 We say that the LGC model, (4-1) and (4-2), is a rectangular linear 
growth curve (RLGC) model if matrices A» can be represented as 

Α< = ( 1 ® ^ ) , i = l,...,iV, (4.38) 

where q̂  is a p x 1 design vector. 

The name rectangular comes from the fact that the second-stage model with 
(4.38) can be written as a* = Bq^ + b^, where B is the k xp matrix of coefficients. 
Equivalently, we come to (4.38) when each component of the random vector â  = 
(au, •••>aifc)/ has the same set of covariates/explanatory variables, namely, 

Oij = <ißj + *>φ j = 1,..., fc, < = 1, ·.., N. (4.39) 

Then in the notation (4.2), /3'= (ß^ß^-^ßk) and B = \ß1,ß2,-',ßp] with m = 
kp. These types of growth curves have been studied by Reinsel (1985), Vonesh and 
Carter (1987), and Vonesh and Chinchilli (1997). The random-coefficient model 
where a^· = ßj + bij is a special case of (4.38) with q» = 1. 
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Now we apply the MMFE estimator (4.35) to the RLGC model and show that it 
coincides with the estimator developed by Reinsel (1985). As follows from (4.38), 

F0i = I(g>q·, 

Ho = (^«»^«^r^iE 1 ®*^)"^ 1 ®^" 1 ' 
No* = ( i 0 q - ) ( i ^ Q " 1 ) ( i ^ q O = qiQ~1qii , 

where Q = Σ QiQi- Further, for the second and the third terms of expression (4.36), 
we obtain 

^ N 0 i = I ^ q ' i Q - 1 ^ = I t r ( Ç q i Q - 1 * ) = I ^ r Q " 1 J > q i ) = p L 
i i i i 

For the fourth term of (4.36), we have 

Ç A Î H O Î Ç F ' O ^ D . P O ^ H O A J 
i 3 

= Υμ ® qi)(I ® Q_1)(I ® qi)D,(I ® q£)(I ® Q-X)(I ® q,·) 

= D.ÇiqjQ-1^)2 =D,tr(Q- i ;£qiq;Q-1X>q;) 
ij i 3 

= pD*. 

Analogously, 

Ç P i N i = Ç N j P i = ^ q < Q - 1 q i ( Z j Z < ) - 1
> 

* 3 

Combining the terms, we come to the expectation of So, 

( W - p p . - h r ^ q i Q - ^ Z j Z i ) - 1 . 

Replacing σ2 with the unbiased î M M , we come to the unbiased MMFE estimator 
of D* for the linear growth curve model, 

D.MMBF = ^ S - 1 ^ £ > - q i Q - ^ Î Î Z j Z i ) " 1 . (4.40) 

This estimator coincides with what has been derived by Reinsel (1985). Thus, the 
MMFE estimator can be viewed as a generalization of the Reinsel estimator to the 
linear growth curve model. 

Definition 24 The RLGC with equal Z» is called the balanced LGC (BLGC) model 

For the BLGC model, in addition to (4.38), we have n$ = n and Z = Z* with 
kp < n. When p = 1 and q\ = 1, BLGC=BRC, or more precisely, the balanced 
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growth curve model collapses to the balanced random-coefficient model. As was 
proved in Section 2.3, GLS=OLS for the BRC model. Here, we prove that the same 
holds for the BLGC model. More precisely, the relevant statement is formulated 
below. 

Theorem 25 For the BLGC model, ßcLS does not depend on matrix D and coin-
cides with the OLS estimator 

ßi = ( E ^ ) _ 1 Œ > a ° ; ) ' 3 = i,-,fc 

and 

(4.41) 

(4.42) cav0j)=a3((Z'Z)jl+Djj)(£qiqi)-1. 

Proof. The following properties of the Kronecker product are used: 

( A ® B ) ( C ® D ) = A C ® B D , 

( A ® B ) ' = A ' ® B ' , (A(g>B)~1 = A - 1 ( g ) B - 1 

for any suitable matrices A and B. Applying these formulas and observing that for 
the BLGC model W 4 = W = ( Z ' Z ) - 1 + D one obtains 

EA^w-1A i = E(i®q i)w-1(i®qO = E(i®qi)(w-1®i)(i®qD 
= E t w - 1 ® qiq<) = w - 1 ® (Eq*q& 

which yields (EAJWr 'Aj ) " 1 = W ® ( Σ ^ ί ) - 1 · Analogously, 

£ AjWf ^ = £ ( I ® q^CW-1 ® l)a? = E t W " 1 ® q<)a? 
= E i W - 1 ® I)(I ® q,)a? = (W- 1 ® I) £ (I ® q i)aJ. 

Combing these results, we obtain 

ßGLS = ( W ® ^ ^ ) - 1 ) ^ - 1 ® ! ) ^ ^ ® ^ ) ^ ) 

It can be rewritten as 

ßl 
3 2 

ßm 

(Σ^ ίΓ 1 o o 
o (Eq<qi)_1 o 

o 
0 

0 
0 

0 
0 

ΣΦ4 
x i 2 Eq*4 

E<bOftr o (Σφοί)"1 

which implies (4.41). As follows from the formula above 

œv(3GL5) = σ2 (W® E ^ q J ) - 1 ) , 

which gives (4.42). ■ 
Comment. Theorem 25 can be applied to balanced growth curves where (4.39) 

holds for k! < fc, and for j = kf + 1, k' + 2,..., k we have a^ = q /̂3 ·̂/ (no random 
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effect). Indeed, formally we can say that A ' j ' = 0 if %' > k' or f > k' and apply 
Theorem 25., In particular, for the balanced linear model with random intercepts 
studied in Subsections 3.3.1 and 3.10.4, GLS = OLS. The estimate for the variance 
of the random effect, d*, is given in Section 3.10.4. 

Now we derive the MM and MMFE estimators for the BLGC model. We start 
with the MMFE estimator. Since ^ q i Q _ 1 q i = V when Z^ = Z, (4.40) reduces to 

^>*MMEF = -T7 S0 - σ Μ Μ (Ζ 'Ζ)~ , (4.43) 
iV — p 

where matrix So is defined by (4.34). Next we show that the BLGC model estimates 
(4.12) and (4.13) coincide. Indeed, 

%LS = ( ] [ > ® *)z'z(l ® <&)_1 ( Σ ( * ® *)z 'yi) 

= (Q-1 ® (Z'Z)-1) ( £ ( I ® quJZ'yi) = Q-1 ® ( ^ ( I ^ q ^ i Z ' Z ) - 1 ^ ) 

= (^Α^) _ 1 (^ΑΧ°)=3 0 . 

Hence, for the BLGC model, O*MMEF = Û*MM-

Maximum likelihood for the BLGC model 

Here we derive the closed-form solution to the MLE for variance parameters in the 
BLGC model, as an extension of the results of Section 2.3. We show that for the 
BLGC model, results (2.59), (2.60), and (2.61) hold with the following modification. 
First, in the denominator of (2.59), for the BLGC model we have m = kp. Second, 
D M L does not change. Third, in the denominator of the first term of (2.61), we have 
N — p. The first two statements follow from the fact that GLS = OLS under the 
BLGC model and repeating step by step following the line of the proof of Theorem 
2. For restricted ML, the estimating equation (2.129) in the case of the BLGC model 
reduces to 

i V Z ' V ^ Z - σ - 2 Ζ , ν 1 Ε Ε / ν - 1 Ζ 

+Z'V-1Y^Xi^X'jV'1Xj)'
1XiV'1Z. (4.44) 

* 3 

But 
53XJ-V^X,· = 53(χ ® qjOZ'V^Zil ® qj) = (Z'V^Z) ® Q, 

3 

and the third term in (4.44) becomes 

( Z ' V ^ Z ) Ç [ ( I ® ^ ( ( Z ' V ^ Z ) - 1 ® Q-X)(I ® ^ ( Z ' V ^ Z ) 

= ( Z ' V - 1 Z ) ( Z ' V - 1 Z ) - 1 ( Z ' V - 1 Z ) ^ q ^ Q - 1 q i = p Z ' V - 1 Z . 
i 

Finally, equation (4.44) can be rewritten as 

(N - p)Z / V" 1 Z - σ ^ Ζ ' ν ^ Ε Ε Ύ ^ Ζ , 
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which leads to the estimate 

O*RML = ^ — ( Z , Z ) - 1 Z , Ê Ê , Z ( Z , Z ) - 1 - σ ^ Ζ ' Ζ ) " 1 . (4.45) 

where, as shown previously, d2
ML = σ2

ΜΜ = $2
MINQUE. 

4- 1.6 Unbiasedness and efficient estimation for β 
Following the line of arguments of Section 3.6, one can easily prove that MLE, 
RMLE, and any quadratic estimators of D in the growth curve model considered 
above are even functions of b^ and independent of β. Thus, using those D in the 
GLS estimator (4.10) will lead to unbiased estimation for β for any N. 

Also, as follows from Section 3.15, in the deterministic approach, use of any fixed 
matrix D in (4.10) produces a consistent and asymptotically normally distributed 
estimator such that y/N(ß — β) ~Λ/"(0,σ2Η), where it is assumed that the limit 

H = H(D) = ^ l ^ g A i W r ^ 

x (J2 MW-1 A^ (jl· AjWf1 A,) (4.46) 

exists and W* = ( Z ^ ) - 1 + D and W; = ( Ζ ^ ) " 1 + D, where D is the true 
matrix. Then, by the Slutsky theorem (Appendix 13.1.2), the two-stage procedure, 
when at the first stage one estimates D and at the second stage one uses (4.10) with 
D replaced by its estimate (estimated GLS), leads to a consistent, asymptotically 
normally distributed and efficient estimator for /3, with the matrix 

, N x " I 

H = lim i V A j W ^ A i 

Vonesh and Carter (1987). According to our definition, the estimator is asymptoti-
cally efficient if its asymptotic distribution coincides with the estimator, which uses 
the true matrix D (Section 3.15). We come to the same conclusion in the stochastic 
approach; then the assumption on the limit (4.46) is not necessary. 

Problems for Section 4.1 

1. Prove that estimators ß0 and ßoLS-> given by formulas (4.13) and (4.12) re-
spectively, arejjnbiased whenJD is unknown. 

2. Simplify ßcLS^ßoi anc^ ßoLS f° r balanced data. 
3. Derive ß0 when D =dDo, where Do is a fixed positive definite matrix and 

d —» oo. 
4. Explain why 5min = 5Ό in equation (4.18). 
5. Write an R code for maximization of the function Ιρ(β,Ό) given by equation 

(4.20) using algorithm (4.22), and test it through lmeFS. 
6. Prove that matrix J in equation (4.22) is positive definite. 
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7. Prove that σ2
ΜΜ given by equation (4.23) can be derived from (3.79). Prove 

that Ε(σ2
ΜΜ) = σ . 

8*. Write an R code for computation of d*MM defined by equation (4.30) and 
demonstrate that it coincides with that obtained from the function lmevarMM. 

9*. Provide a rigorous proof of Theorem 22. ^ 
10. State conditions when estimators d*MM and d*MMFE are the same. 
11. Derive a special case of estimator (4.45) for the random intercept model and 

compare it with (3.103). 

4.2 General linear growth curve model 

Recall that the linear growth curve model is written in two stages. The first-stage 
model (4.1) consists of N independent linear regression models with random subject-
specific coefficients. The second-stage model (4.2) further describes the vector of 
coefficients â  through population covariates (explanatory variables). Importantly, 
in the LGC model all growth curve coefficients are present at the second-stage 
model. However, sometimes we are interested in only a few components of vector 
a^. In the general linear growth curve model, the second-stage model specifies only 
certain linear combinations of a ;̂ the rest of the growth curve coefficients are left 
unspecified (Stukel and Demidenko, 1997a; Demidenko and Stukel, 2002). 

The general linear growth curve (GLGC) model is set up as follows. The first-
stage model remains the same, (4.1). The second-stage model specifies r linear 
combinations of â  via a linear model of the form 

Cai=Aiß + Si, (4.47) 

where C is a known rxk matrix of full rank r < k. Denoting B = CDC' , we obtain 
COY(δι) = σ2Β, where B is called the scaled covariance matrix of the random effects 
Si. The design matrix A^ in (4.47) is r x ra, and it is assumed that matrix ]Γ A^A^ 
has full rank. When r = k the GLGC model is equivalent to the usual linear growth 
curve model. 

To illustrate, let us consider the growth as a quadratic function of time y^ = 
o>n + o,i2Uj + üistij + Sij for individual i = 1, ...,iV at time Uj. Let it be assumed 
that the rate of growth at time to depends on gender. Thus, the second-stage model 
is written as 

ai2 + 2aist0 = βλ + ß2genderi 4- δ^ (4.48) 

which can be accommodated in the form of the GLGC model (4.47) with C = (0,1, 
2£0), the 1 x 3 vector-row. Sometimes, the left-hand side of (4.47) will be called 
the growth curve characteristic. Note that we do not specify the coefficients of the 
quadratic growth function rather than (4.48). 

For estimation purposes, it is convenient to rewrite the GLGC model (4.1, 4.47) 
in the marginal form: 

y^ZitXi+Ci, E(Ci) = 0, cov(Ci) = a2Vu (4.49) 

where, as in the previous notation, 

Vi = l + ZiOZ'i 
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is the covariance matrix of the dependent variable y^. As follows from (4.47) para-
meters a i , . . . ,a n , /3 are subject to linear constraints 

Cai=Ai/3, i = l,...,7V (4.50) 

where a* = E(a.i). We denote b* = â  — a* with E(bi) = 0 and cov(b*) = 
σ2Ό = D*. The marginal means cti are not specified completely unless r = k. 
In particular, the number of coefficients/parameters increases with the number of 
individuals. This feature of the GLGC model makes the study of its statistical 
properties somewhat complicated because we deal with a large number of nuisance 
parameters. This was first studied by Neyman and Scott (1948). 

Before advancing to methods of estimation for the GLGC model, the following 
motivating example is suggested, which highlights the advantage of the general 
linear growth curve model. 

4-2.1 Example: Calcium supplementation for bone gain 

This example is borrowed from Lloyd et al. (1993) and was considered later in a 
book by Vonesh and Chinchilli (1997). The objective of this example is to motivate 
the general growth curve model and to demonstrate that it is less restrictive than 
the usual LGC model. 

The data are from a trial in which healthy adolescent girls were randomized to 
ingest a daily calcium supplement (500 mg of calcium citrate malate) or a placebo 
over a two-year period. One of the objectives of the trial was to determine if calcium 
supplementation improves the rate of bone gain during early adolescence. The girls 
were scheduled for visits approximately every six months during the two-year follow-
up. The placebo group consisted of 53 girls and the calcium group consisted of 52 
girls (girls with only one visit have been removed from the analysis). The average 
age of the girls involved in the study was 11.9 years with a standard deviation 
of 0.5 year. At each visit, the total body bone mineral density (TBBMD, g/cm2) 
was measured. The data for the two groups are shown in Figure 4.1. These graphs 
reveal a fairly linear growth in time. The question is: Does calcium supplementation 
improve bone gain? Clearly, to answer this question we have to compare the bone 
density in the two groups. 

In the function below we read and plot the data on two groups. We make a few 
remarks: (1) as in in our previous codes, the function is saved in ASCII every time it 
runs; (2) the function p lo t displays the points and the individual lines (sometimes 
called a spaghetti line plot) are plotted over the loop based on the girls' id. 

calcium=function() 
{ 
dump("calcium","c:\\MixedModels\\Chapter04\\calcium.r") 
da=read.csv("c:\ \MixedModels\ \Chapter04\\calcium.txt") 
pax(mfrow=c(1,2)) 
grnam=c("Placebo Group","Calcium Group") 
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f o r ( t r e i n c ( l , 0 ) ) 

{ 

d a t = d a [ d a $ t r e a t = = t r e , ] 
p l o t ( d a t $ t i m e , d a t $ y , x l a b = 

x l i m = c ( 0 , 1 2 0 ) ; 

t i t l e ( g r n a m [ t r e + l ] ) 

u id=unique(dat$ id) 

nu id= length(u id) 

f o r ( j i n l : n u i d ) 

=»'Weeks" ,ylab="Bone 

,ylim=< 

l i n e s ( d a t $ t i m e [ d a t $ i d = = u i d [ j ] ] 

: ( . 7 , 1 . D ) 

,dat$y[dat$id= 

d e n s i t y , g/cnT2", 

==uid[ j ] ] ) 

To set up the model, we denote the TBBMD of the iih girl at time Uj as yij. 
Hence, the first-stage model for this example has the form 

yij = Q>nUj +a>i2 +s%ji i = 1,...,ΑΓ= 105, j = 1, ...,η». (4.51) 

The error term ε^ has zero mean and constant variance σ2 > 0. Model (4.51) 
implies that each girl has an individual intercept and slope. The intercept measures 
the baseline TBBMD and the slope measures the weekly bone density gain. We 
expect the slope to be affected by the calcium intake, so the second-stage model for 
the slope takes the form 

ail=ß1+ß2Ci + bil, (4.52) 

where the dummy variable d is 0 for the placebo and 1 for the calcium group. 
Random effect bn has zero mean and variance d*n. If calcium increases the bone 
density, the coefficient ß2 should be positive and statistically significant. 

Following a standard setting of the linear growth curve model, one has to specify 
the intercept term in the second-stage model as well. The simplest way to do this 
is to assume α^ to have a common distribution with the mean, regardless of the 
group: 

ai2=ß3 + bi2, (4.53) 

where bi2 is the second random effect, E{bi2) = 0, var(6^) = c?*22> and cov(bn, bi2) = 
d*i2- Clearly, while model (4.52) has certain grounds and is relevant to the design of 
the study, the model for the intercept (4.53) is, in fact, irrelevant and is needed to 
comply with the assumption that all growth curve coefficients must be specified in 
the second-stage model. In particular, as follows from (4.53), the baseline bone den-
sity for all girls (at time zero) belongs to the same general population Λί(β3,ά*22), 
under the normal assumption. 

Furthermore, two kinds of arguments against the model for the intercept (4.53) 
may be put forward: biological and empirical. From a biological point of view, 
since TBBMD has a positive trend, the age of the girls at the first visit is critical 
in determining the intercept. The entire model becomes vulnerable if the baseline 
TBBMD on May 1, 1990 does not belong to the same general population. To verify 
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Calcium Group Placebo Group 

-T 1 1 1 1 1 r - 1 "-1 1 1 1 1 1 r1 
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Weeks 

FIGURE 4.1. Total Body Bone Mineral Density (TBBMD), g/cm2 versus time in two 
groups of girls, calcium supplementation data. Apparently, bone density increases with 
time following a linear trend. Does calcium supplementation increase bone density, i.e., is 
the slope in the calcium group (left) greater? 

empirically that the intercepts have the same general population we estimate (4.51) 
individually by OLS; see the left-hand plot in Figure 4.2. The pair of plots display 
the estimated densities of the individual intercepts and slopes for the two groups 
of girls. The slopes for the control and calcium groups have smooth distributions 
that look very much like normal. In contrast, the left-hand plot reveals that the 
distributions of the intercept term are not so smooth, and far from normal. In 
particular, one might suspect that the placebo group consisted of two subgroups 
with different baseline TBBMD. Therefore, the hypothesis that the TBBMD at 
May 1, 1990 has the same general population is questionable and may be wrong. 

By contrast, the general setting of the growth curve does not require specification 
of the intercept term: instead of (4.53), we just write 

where α^ is any number, treated as a nuisance parameter. 
Summing up, the GLGC model is less restrictive because it does not require 

specification of all growth curve coefficients, particularly coefficients not of interest. 

4-2.2 Variance parameters are known 

We begin the discussion of estimation for the general linear growth curve model 
assuming that the variance parameters σ2 and D are known in the manner of 
Section 4.1.1. As follows from the marginal model (4.49), the Generalized Least 
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intercept slope 

0.7 0.8 0.9 1.0 -0.001 0.0 0.001 0.002 

FIGURE 4.2. Densities for individually estimated intercept and slope:"solid line, placebo 
group; dashed line, calcium group. Clearly, the bone density in the placebo group in the 
initial period may be a mixture of two populations. Consequently, the standard growth 
curve model, which assumes that subject-specific intercepts have the same mean, is not 
adequate. The general linear growth curve model would be more appropriate because it 
allows different subject-specific means for the intercept. 

Squares (GLS) estimator for ß would minimize the weighted sum of squares: 

i m n ^ ( y i - Z i a O ' V r ^ y i - Z ^ ) , (4.54) 
i 

under linear constraints (4.50). To find the solution to this quadratic form, we 
introduce the Lagrange function 

£ = I > < - Ziou/V^y, - ZiOi) + 2j2K(Ceti - Αφ), 
i 

where λ^ is the r x 1 vector of Lagrange multipliers. Differentiating C with respect 
to oti and /3, we obtain the necessary conditions for the minimum, 

~ \ ^ = Z i V r ^ y , - ZiOi) - Cl\i = 0, i = l,...,iV (4.55) 

and 

-Η§-Σ*ί*.-0· (4.56) 
Define 

Ri =ZiVr 1 Z i > Mi = CR-'C, a? = ( Z ^ V r 1 ^ ) " ^ ^ 1 ^ , (4.57) 

and notice that matrices R* and M» are positive definite and a? is the GLS estimator 
of oti in the ith growth curve. Using dimension-reduction formula (2.25), we obtain 

R r 1 = ( Z ^ ) - 1 + D, Mi = Ρ , + Β , (4.58) 
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where 
Pi = C ^ Z O ^ C ' , B = C D C . (4.59) 

Prom (4.55) we obtain oti = a° — R~1C /A i . Substituting this into Can — A^/3, we 
find that λ^ = (CR~1C /)~1(c^ ) — A^/3), where hereafter it is denoted 

c° = Ca°, i = l,..,7V. (4.60) 

Substituting λ^ into (4.56), we arrive at the solution to (4.54), 

β= (Σ A ΜΓ 1 A*) _ 1 Q T A M - ^ R - ^ ^ V - V i ) , (4.61) 

which is called the Generalized Least Squares under Constraints (GLSC) estimator. 
This estimator can be simplified noting that 

R ^ Z i V r 1 = (Z^Zi ) - 1 ^ . (4.62) 

To prove (4.62), we use the dimension-reduction formula (2.21), which yields 

[ ( Z ^ ) - 1 + D] Z[ [I - ZiiDZjZi + I ^ D Z j ] 

= ( Z ^ ) - 1 ^ - (Z^Zi)"1 [(DZjZi + 1 ) " 1 + D Z ^ D Z ^ +1)" 1 ] Z< 

= (z^)-1^. 
Hence, the GLSC estimator (4.61) can be simplified as 

β= ( £ A M " 1 A * ) _ 1 ( £ A M T ' c ? ) . (4.63) 

Analogously to the LGC model of Section 4.1.1, two extreme cases can be con-
sidered. If there are no random effects (B = 0), the GLSC estimator becomes 

ßoLS= ( Σ Α Ρ , Γ ' Α , ) " 1 ( ^ A P ^ C » ) . (4.64) 

If matrix B becomes large (fixed effects approach), i.e., B = pi, p —> oo, the GLSC 
estimator approaches the OLS estimator applied to the second-stage model, 

= (Σ^Γ'ίΣ^*)· (4·65) 
The estimator of the subject-specific growth curve coefficients, α^, is 

a i = a i
0 -Rr 1 C'MT 1 (c° -A i i &). 

Using this expression and denoting the OLS residual as e^ = y^ — Zja° with the 
sum of squares SO = Σ \\ e® || , the minimum (4.54) can be expressed as 

]T(y* - Z i a O ' V r ^ y i - ZiOti) 

= So + iai-^'iZ'iV^ZiXai-eÇ) 

= So + (c? - Ai^'^CRr^^CMT1^ - Αφ) 

= 5o + ( c ° - A ^ ) ' M r i ( c ? - A i y â ) 

= 5 0 + ( c ? - A ^ ) ' ( P i + B ) - 1 ( c ° - A 3 ) , (4.66) 
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where matrices P^ and B are as defined in (4.59). As follows from (4.66), the 
minimum of the weighted sum of squares can be decomposed into a sum of squares 
of the OLS residuals plus the weighted sum of squares from the second-stage model 
(4.47). This decomposition will be used later to simplify the log-likelihood function. 

The covariance matrix of the GLSC estimator (4.63) is given by 

cav(j9) =σ2(ΣΑΜ-1Αί)~\ (4.67) 

As follows from formula (4.63), the GLSC estimator can be computed in two steps: 

1. Estimate each curve (4.1) individually by OLS. 

2. Apply the weighted least squares to (4.47), replacing Ca; with c^ =Ca^ by 
the weight matrix M^ defined in (4.58). 

Applying the standard theory of linear models with restrictions on parameters 
(Rao, 1973; Rao and Toutenburg, 1999), it follows that when the variance parame-
ters are known, β is the best linear unbiased estimator (BLUE). As is shown below, 
the GLSC estimator does not depend on matrix B for the balanced GLGC model. 

4-2.3 Balanced model 

In this section we extend the results of Section 4.1.5 to the GLGC model (4.1, 4.47). 
We call the GLGC model balanced if n; = n, Z^ = Z, A^= I ® q^. For a balanced 
model, individual random designs are the same and all components of the vector 
Ci = Ca.i have the same set of population explanatory variables. Then in coordinate 
form, the second-stage model can be written as c ·̂ = q^ßj + bij. 

Proposition 26 In the balanced GLGC model, the estimator (4-63) does not de-
pend on the matrix B . In particular, for j = 1, ...,r, we have 

3;=(i>^) (i>4) (4-68) 

and 

c o v ^ . ) = <72((X'X)^ + Da) (J2 q i q A . 

Proof. The following properties of the Kronecker product are used: 

(A<g)B)(C®D) = A C ® B D , 

( A ® B ) ' = Α ' Ο Β ' , ( Α 0 Β ) " 1 = Α " 1 ( 8 ) Β - 1 

for any suitable matrices A and B. Applying these formulas and observing that 
Mi = M = ( X ' X ) - 1 + D, one obtains 

Σ, A^M" 1 A, = Σ ( Ι ® q ^ M - ^ I ® qj) = Σ ( Ι ® ^ ) ( Μ " 1 ® 1)(I ® qj) 
= E ( M - X ® <MÎ) = M " 1 ® ( Σ q*qi), 
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which yields ( £ A^M- 1Ai) ^ M 0 ( Σ ^ ) " 1 · Analogously, 

Σ A i M ^ c ? = Σ ( Ι ® q i î i M " 1 ® l)c? = Σ ί Μ " 1 ® *)<£ 
= Σ ί Μ " 1 0 I ) (10 q<)c? = ( M " 1 0 1 ) £ (I ® q<)c?. 

Combing these results, we finally obtain 

which immediately implies (4.68). Also, as is easy to see, 

c o v ( 3 ) = a 2 ( M ® ( ^ q i q O ) - 1 , 

which gives (4.42). 
■ 

In practice, the variance parameters are unknown and the data are seldom bal-
anced, so that to use the GLSC estimator (4.63) we need to estimate D. As follows 
from formula (4.58), the GLSC estimator depends on B = CDC' , and consequently, 
it suffices to estimate B, which is of lesser size. Two types of estimators for variance 
parameters are considered below: (a) likelihood-based estimators, assuming normal 
distribution for random terms, and (b) the method of moments estimator. 

4-2.4 Likelihood-based estimation 

We can apply maximum likelihood to estimate parameters of the general linear 
growth curve model (4.49), assuming the normal distribution for ζ^ Thus, the 
model discussed in this section takes the form 

y< - λί (Ζ<α<, σ2(Ι + Z,DZ^)), < = 1,..., Ν (4.69) 

under constraints (4.50). Two types of likelihood estimates may be considered: full 
ML and second-stage ML. 

Full maximum likelihood estimation 

As follows from model (4.69), the log-likelihood function has the form 

1{β,<*1,...,α.Ν,σ2,Ώ) 

= - \ {7VTlna2 + £ > | Vtf | + σ " 2 £ ( y < - Z ^ O ' V " 1 ^ - Ζ ,α , )} , 

where β and αι,.,.,α^ν are subject to constraints (4.50). To find the maximum of 
this function over all parameters, we first minimize it over αχ, . . . ,α^ , holding the 
rest of the parameters fixed, to obtain the profile function. It is easy to see that 
this optimization problem is equivalent to (4.54). Using the dimension-reduction 
formula, 

| V, 1=11 + Z,DZ; |= | Z% I · I (ZjZ,)-1 + D |, 
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and the decomposition (4.66), the profile function, as a function of ß and the vari-
ance parameters, is given by 

— { J V r l n ^ + ^ l n K Z j Z i ^ + D l + ^ l n l Z i Z i l 

+a~2[So + $ > ° - A ^ P . + C D C T H c ? - Αφ)]}, 

where c? is a vector of the OLS characteristics (4.60) and SO is the sum of squares 
of the OLS residuals. Dropping the constant ]Γ]1η |Z^Zi|, we come to the following 
equivalent profile function: 

i ( / V , D ) = -±{Ντ1ησ2+ Σΐη\(Ζ'ίΖί)-
1+Ό\ 

+a~2[So + X)(c? - A ^ P . + C D C ' ) - 1 ^ - Αφ)}}. 

Given matrix D, β maximizes I at 

β= (J2 A^P.+CDC')-1^)"1 (J2 A^P.+CDC')-1^) . (4.70) 

Given β and D, σ2 maximizes I at 

* = J- u 
Ντ Γ 

σ* = — \S0 + ]T (c ° - AißYCPi+COC')-1^ - Αφ) . (4.71) 

As a consequence, one obtains a lower bound for the MLE of the within-subject 
variance, aML > So/Ντ- We can consider the variance-profile function eliminating 
σ2 by (4.71), which gives 

Zp(/3,D) = - i { ^ l n | ( Z ^ Z i ) - 1 + D | 

+ J V T l n ^ [ 5 o + (c? - Αφ)'(Ρί+ΟΌΟ')-1(ο0
ί - Αφ)}}. (4.72) 

We require that So > 0 to guarantee the existence of the Z-maximum (see Section 
2.5). 

Maximization of these functions can be accomplished by any algorithm applied 
in Chapter 2, since the c^ are treated as fixed. Here we develop a simplified version 
of the Newton-Raphson algorithm using the perturbation formula (2.106) for the 
variance-profile log-likelihood function (4.72). 

First, we need the derivative of I with respect to D. Using standard matrix for-
mulas, as in Section 2.9, we obtain for dlp/dO 

-l&m'iZ^+O)-1 - i V T 5 - 1 C ' ( P i + B ) - 1 r i r K P i + B ) - 1 C ] } , (4.73) 

where S = SO + r ^ P ^ + B ) - 1 ! - and r^ = c° — A*/3. At each iteration we can only 
adjust matrix D, because β is computed by formula (4.70). 

Newton-Raphson algorithm. Let D 0 be the current approximation to the MLE 
for matrix D in function lp. We aim to find the next approximation as D = D 0 + Δ , 
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where the increment Δ is supposedly small. Using formula (2.106), as in Section 
2.10, we obtain 

( ( Z ^ ) - 1 + D 0 + A ) " 

( ( Z j Z O ^ + D o ) - 1 - ( (Z^Z i ) - 1 +Do)" 1 A((Z^Z i ) - 1 +D 0 ) " 1 

x(Pi+Bo + C A C ' ) - 1 ĉ  (P i+Bo) - 1 - ( P i + B 0 ) - 1 C A C ' ( P i + B 0 ) - 1 . 

Substituting these approximations into (4.73) and omitting terms of the second 
order, the score equation dlp/dD = 0 can be approximated as 

\ Σ [ Μ α Δ Μ ^ - M i 2 A M i 3 - M i 3 A M i 2 ] = 
dip 

(4.74) 
D=Dn 

where 

MiX = ( (ZjZO^+Do) \ Mi2 = NTS-1C'(Pi+B0)-
1C, 

MiS = C , ( P i + B 0 ) - 1 r i r ^ ( P i + B o ) - 1 C . 

In order to find Δ as the solution to the matrix equation (4.74), we again employ 
the vec function, so that the solution to (4.74) can be rewritten as 

vec(A) = J xvec ( ^ g (4.75) 
D = D 0 > 

where 
N 

3 = 9 Σ \-Mil ® Mil - M^3 ® Mi2~Mi2 ® M i 3] , 
Z i=i 

and the derivative of lp with respect to D is defined by (4.73). 
Summing up, a simplified Newton-Raphson algorithm for the GLGC model con-

sists of the following steps: 
1. Take D 0 = 0 and calculate β0 by formula (4.70). 

2. Calculate the increment Δ by formula (4.75) and set the next approximation 
as Di = D 0 + Δ . 

3. Calculate βλ by formula (4.70), return to step 2, and continue until conver-
gence. 

One could use another starting point for matrix D at step 1, such as the method 
of moments estimate considered in Section 4.2.5. Also, one could use a fraction of 
step λ to guarantee maximization of lp from iteration to iteration. 

Second-stage maximum likelihood estimation 

The second-stage MLE treats individual estimates c9 = Ca° as fixed. Furthermore, 
the following variance decomposition, as a characteristic property of the LME model, 
takes place: 

cov(a?) = cov((Z^Z i)-1ZK i) 

= ^ ( Z j Z i ) " 1 ^ ! + ZiDZOZ^ZjZi)- 1 = σ2 ((ZjZ,)-1 + D ) , (4.76) 
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which yields cov(c?) = σ2Ρ* + B*, where B* = σ2Β. Therefore, the second-stage 
model becomes equivalent to c^ ~ iV(Ai/3,a2Pi + B*), with the log-likelihood 
function 

Ζ2(/3,σ2,Β*) (4.77) 

1 N 

= "5 Σ [ln k2p'+B*l + (c° - AißYi^Pi+B^)'1^ - Aiß)] . 

Also, one arrives at this expression considering the conditional likelihood for yi|c£ 
(Demidenko and Stukel, 2002). 

Two approaches may be undertaken to estimate ß from the second-stage model 
based on the function Z2· In the first approach we replace σ2 with its estimate 
(pooled-variance), and therefore I2 reduces to a function of β and B*. We shall 
confront the same estimation problem in the meta-analysis model of Chapter 5. In 
the second approach we estimate σ2 along with B* and β (simultaneous estimation). 

Approach 1: pooled variance for σ2. We eliminate σ2 from I2 by replacing it 
with the pooled variance (4.23). We prove that this estimator is unbiased for the 
general growth curve model as well. As is easy to see, y^—Z^a^ = M ^ , where M^ = 
I — Zi(Z^Zi)_1Z^ is an idempotent matrix, which implies that || y^—Z^a? | | 2=^Mi<^. 
Now using the fact that E(u 'Au) = tr(AC) for any random vector u such that 
E(u) = 0 and cov(u) = C, we obtain 

E*™ - Σ 5 ^ ) Σ>»y* -Zia? l|2= Tshkj Σ «a»4*) 
="sä^)£tr (Mi( I+z ,Dz; ) ) 

Further, replacing σ2 with σΜΜ in (4.77), we come to a simplified log-likelihood 
function, 

hiß,*.) = -^J2[\n\a2
MMPi+BJ (4.78) 

+(c° - Αφ)'{σ2
ΜΜνί+Β,)-ι{^ - Aiß)]. 

with the score equation for B* as dfo/dB* = 0,namely, 

Σ [ (σ^ΜΡί+Β*) - 1 - ( Ϊ Μ Μ Ρ . + Β ^ ^ ί ^ σ ^ Ρ ^ Β , ) - 1 ] = 0. (4.79) 

Generally, this matrix equation must be solved iteratively; however, for the balanced 
model there is a closed-form solution. Indeed, if Z^ = Z then P* = P , d ^ / d B * = 0 
becomes equivalent to (σ2Ρ + B * ) - 1 = ΣΥΪΥ'Ϊ/Ν, which yields 

£ Σ * Ό '-^p- (48°) 
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Approach 2: simultaneous estimation. Two algorithms for the maximization of 
the I2 function, defined by (4.77), are considered briefly below. 

Newton-Raphson algorithm. We again use the perturbation formula, which 
gives the increment for the covariance matrix 

1 / dl2 

vec(A) = J vec (4.81) 
B*—B*o/ v d B * 

where 

J = \ Σ [ ( ^ Μ Μ ^ + Β * ) - 1 ® (σ 'Ρ ,+Β*)" 1 - M^3 ® M, 2 -M^ 2 ® MiS 

After the next approximation for B* is determined, we compute the next approxi-
mation for β using (4.70). 

Fixed-Point algorithm. Pockock et al. (1981) proposed a simple recurrent 
formula to maximize (4.78) with one random effect, which has a fixed-point form, 
(2.122). Berkey and Laird (1986) extended that formula to the multivariate case. 
In the spirit of Section 2.12.1 the Fixed-Point (FP) algorithm can be derived based 
on rewriting the estimating equation (4.79) 

^ ( σ 2 Ρ < + Β * ) - 1 ( ^ Γ · - σ ^ Χ σ ^ + Β * ) " 1 + B* ^ ( σ 2 Ρ , + Β * ) " 2 = 0 

Solving for B* we come to the fixed-point iterations 

B* = (Σ> 2 ρ *+ Β *Γ 2 ) - 1 (4·82) 
x ( j ^ P i + B . ) - 1 ^ - σ ^ Χ σ ^ + Β » ) - 1 ) " 1 . 

This formula provides a solution to the score equation d^/dü* = 0 under conver-
gence. At each iteration ß is recalculated by formula (4.70). For instructive purposes 
we consider below an important special case when only one growth curve charac-
teristic is specified in the second-stage model. 

Second-stage MLE for one characteristic 

In this subsection we consider an important case when only one characteristic, as a 
linear combination of the growth curve coefficients, is specified in the second-stage 
model (r = 1). In this case the second-stage model (4.47) is written as 

c'a* = Ai/3+£i, 

where c is a fixed nonzero k x 1 vector, Ai is a 1 x m design vector and Si is the 
scalar random effect with zero mean and var(<^) = 6*. This model emerges in meta-
analysis where c® are obtained as estimates from individual studies; see Chapter 5 
for more detail. Introducing scalars c^ = c'a^ and hi = a2

W Mc /(Z^Z i)
_ 1c, where 

σΜΜ is the pooled-variance estimate, the second-stage log-likelihood function (4.78) 
takes the form 

1 N 

b09W = - ö E 2 , = 1 

N r γ 

1η(/ΐ;+ &*) + — — - { é l - Α φ ) 2 

hi +0» 
(4.83) 
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Below we discuss briefly computational aspects of the ^-maximization. 
Holding &* constant, the maximum of l<i is attained at the GLS estimator, 

3=(C^A,Aj)rl(c^A;c?). (4.84) 

To find the maximum of li for 6, we hold ß fixed and denote residuals as ri = 
C? — Aiß. Taking the derivative of l<i with respect to &*, we come to the score 
equation, 

Σ r? 1 
' % 

|_(^ + M 2 fci + 6*J 
: 0. (4.85) 

Pockock et al. (1981) suggested the following recurrent formula to solve (4.85), 
which is the univariate version of algorithm (4.82): 

where s denotes the iteration index, starting from 6*o = 0. Vector ß can be re-
computed by formula (4.84) after convergence or at each iteration of (4.86). It is 
easy to verify that at convergence the limit of {Ks} satisfies the score equation 
(4.85), i.e., provides the maximum of I2 when ß is fixed. It is worthwhile to note 
that the nonlinear equation (4.85) may have several positive solutions or may have 
no positive solutions at all. The following result provides a sufficient condition for 
the existence of a positive solution; this result is very close to the criterion for the 
positive definiteness of matrix D for the LME model of Section 2.6. 

Proposition 27 If^2iri^2 > Σ ^ ϊ " 1 ? ^ e score equation (4-85) has at least one 
positive solution for a given β. If Σί(°ί~ Αφ0)

2Ιι~2 > ]TV ftr1, where β0 is defined 
as (4.84) with &* = 0, then (4-85) has at least one positive solution for any β, and 
the minimum of (4-83) exists. 

Proof. We introduce function %(&*) as the left side of (4.85). By the condition 
of the proposition, χ(0) > 0. For large &*, the function %(&*) is negative because 

lim &*%(&*) = lim Υ^ 
*.—KY5 h^.—»on * J 6*—>οο 6* 

6*rf 6* 
{hi + b*)2 hi + b* 

= -N<0. 

This implies that there is at least one positive solution to (4.85). To prove the second 
statement we notice that 

minX(0) = min^(c» - Aißfh? - ^ h ^ = £ > ? - Αφ0)%* -J^h;1 

i i i i 

and then repeat the previous arguments. 

4.2.5 MM estimator for variance parameters 
In this section we generalize the method of moments of Section 4.1.3 to the general 
linear growth curve model. The unbiasedness of the pooled variance estimator (4.23) 
was proved before. Now we construct the MM estimator for the covariance matrix 
of the random effects using σ2

ΜΜ. 
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MMFE estimator for matrix B* 

As follows from Section 4.1.3, there are two variants for the MM estimation of 
the covariance matrix of random effects. Here we extend the MM estimator to the 
GLGC model based on the estimator (4.65). Analogously, one can derive another 
MM estimator based on (4.64). Following the idea of the method of moments, we 
construct the matrix of cross-products of residuals, 

§o= £(c° - A*A))(Ci - A 3 0 ) ' · (4-87) 

Then the MMFE estimator for B* is found by equating (4.87) to its mathematical 
expectation (see Appendix 4.5 for details): 

N 

vec(B*) = J - 1 v e c ( S 0 - ^ M ^ [ P , - P , Q , - Q .P , + QiPiQd), (4.88) 

where 
N 

J =iVIr2 - ] T (Qi ® I r + I r ® Qi - Qi ® Qj) (4.89) 
i=l 

and Qi = A^(V · AjAj)~~1A,
i. It is shown in Appendix 4.5 that matrix J is nonsin-

gular if 2r < N. Since B* is a linear function of (4.87) and σΜΜ is unbiased, the 
estimator (4.88) is unbiased as well. It is not difficult to show that (4.89) collapses 
to (4.31) and (4.88) collapses to (4.30) when C = I and all the Z* have full rank. 

When N goes to infinity, terms in (4.88) containing Q^ vanish and we come to a 
simplified estimator, 

B , = ^ S o - ^ C ^ ( Z J Z Î ) - ^ ' , (4.90) 
i 

which collapses to (4.32) when C = I. This estimator has a clear variance compo-
nents interpretation from the formula cov(Ca? — A$/3) =cov(Ca?)+cov(<5;). 

Under mild assumptions, the estimators (4.88) and (4.90) are consistent and 
asymptotically equivalent when N —> oo with the common covariance matrix for 
vech(Bs(c) as 

^ Ι > + ( Β Θ Β + 1 Σ > ® Ρ ^ . 

The proof is given in Demidenko and Stukel (2002). 

4-2.6 Two-stage estimator and asymptotic properties 
Following the arguments of Section 4.1.6, the estimated GLS leads to β estimation 
that is unbiased for any N. This estimator is consistent, asymptotically normally 
distributed, and efficient. 



4.2 General linear growth curve model 215 

4-2.7 Analysis of misspecification 

In the general linear growth curve model, coefficients are not specified completely. 
A natural question arises: What are the consequences of imposing extra restrictions 
on coefficients when a standard growth curve model is used (overspecification)? 
Vice versa, what are consequences when the true model is a standard growth curve 
but we use the general growth curve model, leaving some coefficients unspecified 
(underspecification)? Below we investigate these two situations. 

Overspecification 

We start with the case when the true second-stage model is (4.47) with r < k but 
the standard growth curve model is used to estimate the population parameters 
ß. To simplify, the variance parameters are assumed known and the true model 
specifies only the first component of a ;̂ namely, r = 1 and 

an = qiß+bn, i = 1, ...,iV, (4.91) 

where q̂  is a 1 x m vector of covariates, ß is a k x 1 population parameter with 
E(bn) = 0, and var(&ü) = a 2 d n , where dpq is the (p,q)th element of matrix D. 
Application of the standard LGC model forces us to make an additional, irrelevant 
assumption as to the remainder of the components of a^. This leads to overspecifi-
cation. Apparently, there are three ways/models to overspecify: 

1. Parameters of the growth curve not covered by the specification (4.91) are 
assumed to be fixed (nonrandom) and unknown, 

aij = rj> var(a^) = 0, j = 2,..., k. (4.92) 

2. The remaining parameters are random with unknown means: 

a>ij=Tj+bij, j = 2,...,fc. (4.93) 

where b^ = (bu, . . . ,6^) ' and cov(b^) = σ2Ό. 

3. Model (4.91) is applied to all elements of â  as in the RLGC model 

a< = ( I®qi) i / + b i , (4.94) 

where v = (β , τ ' ) is an mk x 1 vector of parameters, r = (ß'2, ...,ß'm)f, and 
cov(b) = a 2 D , see Section 4.1.5. 

We aim to show that all three models generally lead to a bias in the population 
parameter. As follows from (4.63), the GLS estimator for all three models can be 
written in the form 

[ I ] = (Σοί^Γ 1 ^)" 1 (ΣοίΜΓ1«?). <4·95) 
where Q* =diag(q i ,T i ) , T* = Ifc_i for models (4.91) and (4.92), T< = (Ifc-i ® q») 
for model (4.93), and r is the vector of nuisance parameters. Note that the GLSC 
estimator (4.63) takes the form 

ß=v^{i'^i+dj {^(2/^+dJ (496) 
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and is unbiased. 
In the orthogonal case, when Z^ZZ- and D are diagonal, all four estimators coincide. 

As shown previously, for balanced data when Z2- = Z, the estimator (4.95) does not 
depend on the matrix D and coincides with the OLS estimator, so that (4.95) and 
(4.96) coincide. However, in the general case, all three models lead to biased esti-
mates. To show this, we partition o!i as (αϋ ,α · 2 ) , where o!i2 = (c^2, •••>^m), and 
the other quantities are partitioned correspondingly. Then, from (4.95), we find the 
expectation 

EMTiiqWi EqiM-^τ, r 1 

Γ (ΣΜΓιΙςίς^+ΣοίΜΓι!«« 1 
L (ΣΤΪΜΓι^^+ΣΤίΜ,^α« J ' 

where, for instance, M ^ is the (1, l)th element of matrix M " 1 . Denote U n = 
E M ^ q l q i , U i 2 = E q < M t ^ T i , and U 2 2 = E T l M z 7 22 T i · T h e n > u s i n S t h e formula 
for the partial inverse, we come to the following formula for the bias: 

Ε(β) -β = ¥ΣqiMTiào« - U ^ U i a E " 1 £ Τ ' , Μ ^ , 

where E = U2 2 - U'12V^\J12 and F = U ^ 1 + U ^ U ^ E " ^ ! ^ 1 . Further, it is 
easy to check that F Σ q^Mr^ T z ä = A ^ B E " 1 ^ T - M ^ T ^ â for any ä . Thus, 
the above bias can be expressed in terms of the deviation of α ϊ 2 from its "modeled" 
value Tiöt : 

N 

E(ß) -ß= ^ ( P q j M T ^ - υτ1
1υ12Ε~1Τ'ίΜτ2\)(οΗ2 - T«ä). (4.97) 

2 = 1 

Thus, the estimate (4.95) is unbiased if either E(a.i2) = T 2 a for some a , or if 
Fq-M^2 = Uf1

1Ui2E~1T<M^2 fc>r i = 1,..., N. Notice that the latter case occurs 
when q^M^2 and T ^ M ^ are collinear. In particular, for the random-coefficient 
model when q2 = 1 and Tz- = I, loosely speaking, the magnitude of the bias depends 
on how unbalanced the data are. However, in general, any irrelevant specification 
of oci2 leads to a bias for the parameter of interest. 

We can even compute the maximum bias in terms of the deviation of a z 2 from 
T z ä . Applying the matrix inequality Z / Y(Y / Y)" 1 Y / Z < Z'Z (Graybill, 1983) to 
(4.97), we obtain 

|| Εφ) -ßf< Σ(*ί2 - Τ<ά)'(αί2 - Tiâ) ^ t r ( R ^ ) , 

where C» = FqjM^g - A ^ B E ^ T J M ^ . To illustrate, we use the following simple 
example. 

Example . We consider a regression model with random coefficients yij = anZij + 
üi2+£ij,j = 1,..., n2, i = 1,.., A/", with a second-stage model for the slope an = ß+bn 
and no assumption on the intercept rather than α;2 = α ΐ2 + 6ΐ2, where the {α ΐ2} 
are nuisance parameters (general linear growth curve model). For all three models 
(4.92), (4.93), and (4.94), the assumption on the intercept is irrelevant, with T t = 1 

E ß 
T 
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in (4.95). We attempt to find the bias induced by imposing irrelevant specifications 
(4.92) or (4.93). For these models 

ZJZ*: jLtj zij 2-jj Zij 

JLIJ zij n i 
Mi = (ZjZOnJ+dii (ZJZ0[2J+cIi2 

( ^ Z i ) 1 2 +di2 (Z^Z^)22 +d22 

where d\2 = ά<η = 0 for model (4.92), and (Z^Zi)11
1, for instance, denotes the 

(1, l) th element of the inverse matrix. We obtain 

ΛΓ 

y i 
^ miiimi22 - m?12 

™*22 - ^ z l 2 

- m a 2 ^ α ι 
(4.98) 

where m^fc is the (j, fc)th element of matrix M^. Denoting the elements of matrix 
(4.98) as Zn,Zi2, and Z22, and Δ = Z11Z22 - 1̂2? t n e bias from (4.98) can be written 
as 

1 γ-Λ {mn2l22 - milll12)(ai2 - a) 
Ε(β)-β=-Σ 

The maximum bias, as follows from the Cauchy inequality, is 

max 
| | o ! i2 -a | |=$ 

*0>-Ί-Σΐ/Σ(ϋ ™>ii2h2 - mnih2 
iimi22 - rn%12 

(4.99) 

Surprisingly, simulations reported in Stukel and Demidenko (1997a) demonstrated 
that when a standard GLS estimator in the form (4.95) is applied to the general 
growth curve with unknown variance parameters, the bias becomes negligible. This 
can be explained in the following way. Letting 0Z12 = 0, we obtain 

M : 1 = -
φ 

h<22i + ^22 —hui 
—h>i2i hm + du 

where hku = (Z^Z^)^1, and κ is the determinant of matrix (Z^Z*) x, and φ 
d22(hm + dn) + (dnhi22 + ^) . Putting d22 —► 00, we obtain 

M - 1 ((ZJZOû'+dii)-1 0 
0 0 

i = l,...,iV, 

so that the estimators β from (4.96) and (4.95) coincide, cov(/3,r) = ( J ^ M i
 1 ) ~ 1 

but var(/3) is inflated. Therefore, in this example, if the true intercepts were ex-
tremely variable (̂ 22 is large) but we assumed a population mean model (4.93) 
or (4.94) for the intercept, one could still obtain nearly unbiased estimates of β 
but with inflated variances. This observation has the following general implication. 
When a part of the second-stage model is misspecified, the variances of correspond-
ing random effects become inflated (in terms of our example, GÏ22 —> 00). As a result 
of weighting by the inverse of the variances, the contribution of the parameters 
that are misspecified becomes negligible, and the estimates of parameters that are 
specified correctly become almost unbiased. 
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Underspecification 

Now it is assumed that the true second-stage model is (4.91), in conjunction with 
one of (4.92), (4.93), or (4.94), but we use only (4.91) to estimate ß by the GLSC 
estimator (4.63). It is straightforward to show that this estimator remains unbiased 
with a possible loss of efficiency. The unbiasedness of the GLSC estimator follows 
directly after taking the expectation of (4.96), 

(V ^ Ï_1
 (T ^ 1̂ = 3 

\ ^ ( Z & t f + d n ; \^i (Z^ZOn1 + du ) P' 
because from (4.91) we have E(an) = qiß. However, generally, there is some loss 
of efficiency, which is illustrated by the following example. 

Example (continued). The variance of the GLSC estimator is σ 2 / ^ m ä i · 
Denoting Δ^ = mmmi22 — 7n?12, the determinant of M^, the variance of β from the 
standard linear growth curve model is 

varOS) = ( ^ m ^ A r i - ^ m ^ A - V ^ m a i A - 1 ) - 1 ) " 1 

= (Σ^ηι+νγ1 <™(ß), (4-100) 

since 

0 < « = X ; m ? 1 2 m r 1
1 A - 1 - ( X ; m i l 2 A r 1 ) 2 ( X ; m i l l A r 1 ) - 1 

< ^ m f ^ m - ^ A - 1 . (4.101) 

The left-hand side of this inequality follows from the Cauchy inequality, and the 
right-hand side is obvious. Based on (4.100) and (4.101), there is no loss in efficiency 
if and only if for some λ, mn2 = Am^2 for all i = 1,..., AT, which again is true for 
balanced data. Maximum loss occurs when mn2 = 0, which is true when the columns 
of matrix Z^ are orthogonal and the random effects are uncorrelated, so that we 
come to estimate (4.96). 

Problems for Section 4.2 

1. Modify example (4.48) assuming that the intercept depends on the gender as 
well. 

2. Is it true that the classic asymptotic theory does not apply to the general linear 
growth curve model because the number of parameters grow with the number of 
clusters (iV)? 

3. Modify function calcium to reproduce Figure 4.2. First, fit an individual 
TBBMD pattern using the linear model of time, and second, use densi ty for the 
intercept and slope. 

4. Prove (4.67). 
5. Provide the link between estimator (4.68) and the results from Section 2.3. 

Can (4.68) be derived from the results of that section? 
6. Derive Fisher information matrix for model (4.69), including α^ parameters. 
7*. Write an R function for maximization of the log-likelihood (4.72) using algo-

rithm (4.75) and compare its performance against general LME model estimation 
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lmeFS. Employ your code for the model specified by equations (4.51) and (4.52) 
using ca lc ium. tx t data. Are there any advantages of using specialized software for 
general linear growth curve model ML estimation? 

8*. Similar to the previous problem, write two R functions for the log-likelihood 
maximization using the Newton-Raphson algorithm (4.81) and Fixed-Point algo-
rithm (4.82). Compare their performance via simulations. Use these codes to esti-
mate the calcium supplementation model with calc ium.txt data. 

9. Prove that the limit point of {b*s} defined by (4.86) satisfies the score equation 
(4.85). 

10*. Prove that matrix J defined by equation (4.89) is positive definite. Prove 
that (4.89) collapses to (4.31) and (4.88) collapses to (4.30) when C = I and all the 
7ii have full rank. 

11. Based on the results of Section 4.2.7, describe in a few words whether over-
specification is more harmful than underspecification (you may rely on conclusions 
from the example). 

4.3 Linear model with linear covariance structure 

A characteristic feature of all mixed models considered earlier is that the covariance 
matrix of the random term ηί, in the notation (2.11), can be expressed as a linear 
combination of fixed symmetric matrices with unknown coefficients/parameters. 
For example, let the linear mixed effects model be defined by (2.5). We notice that 
the rii x rii matrix Z;DZ^ can be expressed as a linear combination of k(k + l ) /2 
symmetric matrices with coefficients as unique elements of matrix D, namely, 

k 

Ζ,ΌΖ; = ^ ^ ν ^ , (4.102) 
j<q 

where V ^ · = Z ^ Z ^ · , Vijq = Ζ ^ Ζ - ^ + Ζ ^ Ζ · ^ · for j ^ q and Zit.j denotes the 
jib. column of the matrix Z^ (Stram and Lee, 1994). Representation (4.102) gives 
a hint to a more general class of Linear Model with Linear Covariance Structure 
(LMLCS). The LMLCS is defined precisely as 

Q 

yi = Χφ + τ^, Efa) = 0, cov(ifc) = Σ W « > (4·1 0 3) 

where the {0q} are unknown variance/covariance components, the {V^} are rii x 
rii fixed known symmetric matrices, and Θ = (0o,0i, —»0Q) ' is the vector of the 
variance parameters. Further, we shall assume that V^o = I, the rii x n>i identity 
matrix, and θο > 0. In this notation the LME model takes the form (4.103), where 
#o = er2? (öi, . . . , 0 Q ) =vech(D*), and Q = 1 + k(k -f l ) /2 . To avoid deficiency, we 
shall assume that matrix ^ Χ ^ Χ ^ is nonsingular and matrices {V^} are linearly 
independent. More precisely, the latter assumption is defined as follows. Let V be 
the Ση? x (1 + Q) matrix with columns comprised of stacked vectors {vec(V^)}. 
Then it is assumed that the matrix V has full rank. An important consequence 
of this condition is that the (1 + Q) x (1 + Q) matrix of traces {^ t r (V^Vi p ) , 
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p,q = 0,1,...,Q} is invertible, because it is equal to V 'V, due to the identity 
tr(AB) =vec/(A)vec(B) for any matrices A and B of the same size. One may or 
may not assume that the error term ηί has a normal distribution. If f]i is normally 
distributed ML estimation gives asymptotically efficient estimates, see Section 4.3.1. 
If the distribution is not normal, a noniterative estimate such as variance least 
squares may be used, see Section 4.3.2. 

A linear model with linear covariance structure was introduced by Anderson 
(1969, 1971) and was studied extensively by Rao and Kleffé (1988) in the framework 
of the general variance components model. However, unlike the previous authors, 
we assume that N independent subjects/clusters are observed (repeated measure-
ments, so loosely speaking we have N independent Anderson models. Maximum 
likelihood estimation of linear model (4.103) has been discussed by Jennrich and 
Schluchter (1986). The linear model with linear covariance structure is very flexible 
and may accommodate the analysis of different types of data, including multilevel, 
multidimensional, and longitudinal autocorrelated data, which cannot be covered 
by the basic LME model (2.5). For example, although the LME model (2.5) is often 
referred to as an adequate model for longitudinal data, it does not reflect the major 
assumption of the time series analysis, autocorrelation. Indeed, the major feature 
of longitudinal data is the presence of autocorrelation in serial observations. But 
as follows from model (2.5), observations are uncorrelated in time. To make the 
LME model adequate for the analysis of longitudinal data, the covariance structure 
σ2Ι -I- Z^D*Z^ has to be augmented by a term that would reflect the time series 
dependence. In particular, we shall show that model (4.103) is well suited for such 
time series analysis. 

We demonstrate below that many mixed models may be described and analyzed 
under the umbrella of a linear model with linear covariance structure (4.103). A 
matter of particular attention is the development of special cases of LMLCS as 
an extension of the LME model (2.5). This includes the analysis of longitudinal 
correlated and multidimensional data. 

4-3.1 Method of maximum likelihood 
If r]i are independent and normally distributed, the log-likelihood function for model 
(4.103) takes the form 

1 * 

W>θ) = -Ö Σ tln lV*l + (* - X ^ / V t a - *iß)] , (4.104) 

where V* = 2 j L 0 Qq^iq is the n* x Ui covariance matrix of y$, the {Viq} are fixed 
symmetric matrices, and V;o = I with 0Q > 0. In many instances the parameter 
space for ( 0 I , . . . , 0 Q ) can be well defined based on the specificity of the problem; 
see the special cases of the LMLCS below. For example, if 0χ is the correlation 
coefficient, we impose the restriction — 1 < 0χ < 1. The largest parameter space, as 
the domain of (4.104), is where all matrices {V^} are positive definite. However, as 
we know from Section 2.15.2, this definition may lead to numerical complications. 



4.3 Linear model with linear covariance structure 221 

The restricted log-likelihood function takes the form 

1 N 

lR(ß, *) = - - £ [In |Vi| + ( y i - Χφ)'ν-\Υί - Χφ)] + In 
i = l 

N 

Σχ;γ*Γΐχ< 
i = l 

(4.105) 
If Θ is known, the GLS estimator for the beta coefficients is given by 

ßGLS = ( Σ ΧίνΓ1χ<) ( Σ X^rVi) , (4.106) 

which maximizes I and IR when Θ is held. If 6q = 0 for all q > 0, we come to the OLS 
estimate (2.29). Unfortunately, we cannot use the dimension-reduction formulas to 
invert V» with general \%q. However, as the reader could see, for the special cases 
considered below, the log-likelihood function can be simplified substantially. 

Fisher scoring algorithm 

As discussed in Chapter 2, we prefer the Fisher scoring algorithm because it is robust 
to the starting point of the iteration process. Indeed, since the log-likelihood function 
is not concave the Hessian matrix H in the Newton-Raphson (NR) algorithm may 
not be nonnegative definite, which could lead to algorithm failure. The chances of 
not getting a matrix that is not nonnegative definite increases when the starting 
parameter value is far from the ML estimate. Contrary to the NR algorithm, the 
inverted matrix in the FS algorithm is always positive definite because it is the 
information matrix. In any case, the information matrix is needed to compute the 
variances of the ML estimates. Remarkably, the information matrix is even simpler 
to obtain for the LMLCS than for the LME model (Section 3.3). 

We start with the first derivatives with respect to the variance parameters 

1 N 

= - Ô Σ N V r ' V i g ) - e J V r ^ V r 1 * ] (4.107) _m_ 
d6q 2 . 

for q — 0,..., Q, where throughout this section 

ei = y; - Xiß (4.108) 

denotes the r i j X l residual vector. For the restricted log-likelihood we have 

din 
θθα = ~\ J E Kvr 1 ^) - «Vv^vr1*] 

Ki=l 

-tr (T-1 Σ XiV-1 VigVriXi j I , (4.109) 

where T = ^ X ^ V ^ " 1 X j . The second derivatives are 

ΘΗ 
θθ9δθρ 2 

1 N 
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for p, q = 0,..., Q. The information matrix is the negative of the expectation of the 
second derivative matrix. Using the formula E(efAe) =tr(AV), we obtain 

1 = \ I Σ trCV-1 V^Vr1 Vip), p,q = 0,1,....Q1, (4.110) 

the Q x Q information matrix for Θ. It is easy to see that X is nonsingular if the {V^} 
are linearly independent. Since the information matrix for (/3, Θ) is block diagonal, 
we can maximize I separately over ß and Θ. Thus, to compute the ML estimates, we 
proceed as follows: Given starting values 0o, #i,..., 0Q, w e compute ß using formula 
(4.106) and residuals (4.108). Then we find the next approximation for Θ using the 
generic formula (2.103). At the second iteration, we compute the next approximation 
for the beta coefficients and continue in this fashion until convergence. A good 
starting value is the OLS, θο = &OLS, θ\ = 0, . . . , #Q = 0. Alternatively, one can use 
the VLS estimate for Θ derived below. 

It is straightforward to show that ML = RML asymptotically; that is, the in-
formation matrices for the two methods coincide, similar to the case of the LME 
model of Section 2.14. Therefore, we can use matrix (4.110) with derivatives (4.109) 
to find the restricted ML estimate. 

4-3.2 Variance least squares 
In this section we apply the method of variance least squares (Section 3.12) to 
obtain a noniterative distribution-free unbiased estimator for Θ. According to this 
method, we find öo,öi, . . . ,ÖQ, which minimize the quadratic function 

N 

Σ tr (βίβί - θ0νί0 - 0 iVa - ... - eQViQf , 
2 = 1 

where ê; is the OLS residual vector. Differentiating with respect to 0g, we come to 
a system of linear equations with the solution 

dvLS = M"1!!!, (4.111) 

where the elements of the (Q + 1) x (Q + 1) matrix M and the (Q + 1) x 1 vector 
m are defined as 

N N 

Mv<i = 5Z tr(VipViq), ™>q = Σ eiv«/e<> 
z = l i=l 

p,q = 0,1, ...,Q. It is easy to see that in a manner analogous to the LME model, 
the VLS estimate is obtained at the first iteration of log-likelihood maximization 
starting from the OLS estimate (Section 3.12.4). 

The Variance Least Squares (VLS) estimator (4.111) is biased. To make it unbi-
ased, we take the expectation of m and solve for Θ. Denoting, as in Section 3.12.1, 
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and using Ε(η'Αη) =tr(AV) we obtain 

E(mq) 

Γ N N 

= E J2(m - Χ,Ν Σ X'jVj)'Viq(Vi - X*N Σ X'jVj) 
N 

i=l 3=1 j=l 

N N N N 

= Σ trCViVi,) - 2 Σ EWitPiK) + E Σ ^ X i N X i V ^ X i N X j ^ ) 
i=l i=l i=l j=l 

N N N 

= Σ trÇViViç) - 2 Σ t r (ViV^Pi) + ^ tr(V<X<NGgNX;) 
i = l i = l i=l 

Q 

= / ßqTyqi 
p=0 

where 

7*pg — tr 

ΛΓ 

/ j \ ip* iq ^V^pV^çlr^ 

Li=l 

+ t r (NG g NG p ) . (4.112) 

Let R be the (Q +1) x (Q +1) matrix with the (p, g)th element defined by (4.112). 
Then an unbiased quadratic estimator of 0, called the Unbiased VLS (UVLS) esti-
mator, is given by 

OUVLS = R _ 1 m . (4.113) 

When N -* oo, the terms Y,tr{yipViqVi) and t r (NG g NG p ) vanish in (4.112) and 
matrices M and R converge. This means that UVLS is asymptotically equivalent 
to VLS. It is possible to obtain the MINQUE estimator for Θ following the line of 
Section 3.10.3. However, our simulations of Section 3.14 suggest that MINQUE and 
UVLS are similar in performance. 

4-3.3 Statistical properties 

After the ML/RML iterations converge, we estimate the covariance matrices as 

œv(3 ML) = (J2 XiV^Xi) _ 1 , COV(ÖML) =T-\ 

The diagonal elements of these matrices may be used to test statistical hypotheses 
by the Wald test. However, if the null hypothesis is on the boundary of the variance 
parameter space, we expect the real significance level to be twice as small as the 
nominal; see Section 3.5 for details. Since the ML/RML estimate of Θ is a symmetric 
function of ηί1 the estimates for the beta coefficients are unbiased in a small sample 
(Section 3.6.1). The asymptotic properties of a linear model with linear covariance 
structure were studied by Anderson (1973). In that paper he assumed that N = 1, 
with the number of observations n\ going to infinity. On the contrary, we assume 
that N —> oo with rii bounded. However, the principal result is the same: Since 
the estimated GLS is consistent and efficient, / 3 ^ L 1S consistent and asymptotically 
efficient with any consistent estimator of 0, see Section 3.15. 
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4.3.4 LME model for longitudinal autocorrelated data 

Several authors observed that the covariance matrix for autocorrelated longitudinal 
data may be well represented by a linear combination of fixed matrices, e.g., Vonesh 
and Chinchilli (1997). Indeed, we make the following two adequate assumptions 
when modeling autocorrelated data: 

• The correlation has maximum lag q] namely, errors St and ε# correlate if 
\t — t'\ < q but they do not correlate if \t — t'\ > q. 

• The stochastic process {ε*} is stationary in the wide sense (Anderson, 1971); 
namely, the correlation et between et> is only a function of \t — t'\. 

In the theory of time series, it is shown that the process with these properties can 
be generated by the Moving Average (MA), si = Σ]=ί_„^ζ^, where {^} are iid 
random variables with zero mean and Cj are fixed coefficients, denoted as MA(q). 
For example, MA(1) has a one-lag correlation, meaning that cor(st,£t+i) = p but 
cor(et,St+k) = 0 for fe > 1. To simplify the notation, we omit the subscript % in the 
following development. 

MA(1) model 

If y is a vector of longitudinal observations, the combination of the random effect 
Zb and the MA(1) model for residuals leads to a linear covariance structure, 

V = a 2 ( I+pTi + ZDZ'), (4.114) 

where Τχ is an elementary Toeplitz matrix of the first order, which has 1 at the two 
parallel subdiagonals and zero elsewhere. Model MA(2) accommodates autocorre-
lation of the second order with a covariance matrix of the form 

V = σ2(Ι+ρ!Τι + p 2 T 2 + ZDZ'). 

For example, the 6 x 6 matrices Τχ and T 2 are 

0 1 0 0 0 0 
1 0 1 0 0 0 
0 1 0 1 0 0 
0 0 1 0 1 0 
0 0 0 1 0 1 
0 0 0 0 1 0 

To = 

0 0 1 0 0 0 
0 0 0 1 0 0 
1 0 0 0 1 0 
0 1 0 0 0 1 
0 0 1 0 0 0 
0 0 0 1 0 0 

(4.115) 

Since matrix V can be expressed as a linear combination of fixed matrices, the 
theory of LMLCS applies readily. In particular, we can obtain unbiased estimates 
for p and D using unbiased variance least squares (4.113). 

For the simplest and most important case of the MA(1), the log-likelihood func-
tion can be simplified by applying the following dimension-reduction formulas. For 
the determinant, 

|C + ZDZ'] = |C| |I + D Z ' C T ^ I , (4.116) 

and for the inverse matrix, 

(c + ZDZ7)-1 = C"1 - c-1z(D_1 + z ' c -^z^z ' c r (4.117) 
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For growth curves another useful formula exists: 

Z'(C + ZDZ ; ) _ 1 Z = ÎD + ( Z ' C ^ Z ) - 1 ) 
- 1 

(4.118) 

For C = I we obtain formulas (2.22), (2.21), and (2.25), respectively. For the MA(1) 
model, the nxn correlation matrix takes the form C = Ι+ρΤχ with the determinant 

n 
|C| = n l + 2p 

The ( j , k)ih element of matrix C x is given by 

k=l 

1 : 

)COS 
kn 

n + 1 

_ (1 _ ftgni-2j+2)(y+fc+l _ ftfc-j+1) 

ρ ( 1 - δ 2 ) ( 1 - 6 2 ^ + 2 ) 

where b = \p L/l - Ap2 - l\ for j < k and 0 k = Cki (Graybill, 1983). 

We shall use a similar autocorrelation structure for a generalized linear mixed 
model in Section 7.9. 

AR(1) model 

Another popular statistical model of a time series is autoregression (Fuller, 1995). 
The simplest is the first-order autoregression model, denoted AR(1), and it has the 
form St = pst-i + Ct with the correlation matrix 

C = 

9 
1 P 

1 

P 

P 
P 
1 

0n-l 

Λ η-2 

9 n - 3 

1 

Matrix C cannot be represented as a linear combination of fixed matrices, so the 
resulting mixed model does not belong to the class of LMLCS, although the in-
verse matrix can be represented as a sum of three fixed matrices, (4.119). Chi and 
Reinsel (1989) consider estimation of the LME model with AR(1) errors in detail; 
particularly, they develop the score test for the hypothesis p = 0. 

Here we develop a special log-likelihood parameterization based on the dimension-
reduction formulas (4.116) and (4.117). We note the advantage of the fact that the 
inverse and the determinant of matrix C take simple forms: 

c-J = 

1 
-p 

0 
0 

-p 
1 + p2 

-p 
0 

0 
-p 

1 + p2 

-p 

0 ·· 
0 ·· 

-p ■■ 

1 + p2 ·· 

• 0 
• 0 
• 0 
• 0 

-p i 



226 4. Growth Curve Model and Generalizations 

and 
|C| = l - p 2 

Hence, denoting I2 an n x n matrix which has 1 on the main diagonal from position 
2 to n — 1 and zero elsewhere, we can write the inverse compactly as a linear 
combination of three fixed elementary matrices, 

€-' = 
l-p-

;U, 

where 
U = I + p 2 l 2 - p T ! . (4.119) 

The covariance matrix of η takes the form a 2 V = a 2 (C + ZDZ'). First, we simplify 
the determinant of V using formula (4.116): 

IC + ZDZ'I = i - P 2 

D 
D + Z ' U Z 1 - P 2 

D 
D + M 0 + p 2Mi - pM2 

where 

D = ( l - p 2 ) D - \ 

M 0 = Z'Z, M i = Z'I2Z, M 2 = Z 'TiZ. 

Second, we simplify the inverse matrix using formula (4.117): 

(4.120) 

(C + Z D Z ' ) - 1 = y — j [U - UZ(D + Z 'UZ) _ 1 Z 'U | , 

which can be expressed in terms of matrices (4.120). This finally leads to the 
precision-matrix parameterization, which is analogous to (2.43), 

Zp03,p,D) = - \ {in [ ^ ( θ ί ϋ Λ - rJ(D + ZjUiZO"1^)] 

+ ^ l n |D + ZjUiZil -N\n |D| - (NT - 7V)ln(l - p2)} , 

where r̂  = Z ^ U ^ and matrix U» is defined by (4.119). 
Now we consider a very special case, a linear model with random intercepts and 

AR(1) errors, as a generalization of the LME model of Section 2.4. 

Linear model with random intercepts and autocorrelated residuals 

In this subsection we simplify the log-likelihood function derived earlier for the 
linear random-intercept model with first-order autocorrelated residuals, which may 
be considered as an extension of the LME model of Section 2.4 when p = 0. For 
this model, Z^ = 1̂  and 

Jp(/3,p, d) = - - \ NT In ί 50 + p2sx - ps2 - Ç r f / & 1 

+ ] T l n # - N lnd - {NT - N) ln(l - p2) I , (4.121) 
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where d = (1 — p2)/d and 

gi = d + rii + p2(rii - 2) - 2p(rii - 1), 

rii rii — 1 I ni — l \ 

Ti = Y^eij + P2 Σ eiJ ~ 2P I 2 Σ ) eiJ + e i l + e*'n* ) > 
i = i i=2 \ j=2 / 
rii rii — 1 n< — 1 

j = i j = 2 j = i 

Example; growth curve analysis, Potthoff and Roy (1964) data. This is classical 
dental growth curve data (see Figure 4.3). As the reader can see, each person has 
his/her own intercept. Also, boys have a greater distance, which should be taken 
into account when building the growth model for the combined data. It would 
be reasonable to accept that there is autocorrelation since we are dealing with 
time series observations. Since measurements were made at the same time, we have 
balanced data. An adequate model for these data would be 

yij = a + ^sexi + 72tj + 6< 4- eio, i = 1,..., 27, j = 1,2,3,4, (4.122) 

h = 8, Î2 — 10, ts = 12, £4 = 14, where the variance of the random intercept is 
var(&i) = a2d and the errors follow an AR(1) model, ε^ = psij-i + Cij· To find 
the maximum likelihood estimate, we can use either expression (4.121) or standard 
software, such as R/S+ or SAS (procedure mixed). 

Girls Boys 

T 1 1 1 1 1 r-1 H 1 1 1 1 1 r 

8 9 10 11 12 13 14 8 9 10 11 12 13 14 
Age (years) 

FIGURE 4.3. Distance from the center of the pituitary to the pteryomaxillary fissure for 
girls and boys (dental growth). Apparently, each person has his/her own intercept and boys 
are higher. The individual slopes look similar. (Data are from Potthoff and Roy, 1964; see 
the file PRdistance.txt.) 
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Below we show the R function that estimates the relationship between the distance 
and kid's age adjusted for sex using the lme function with correlation structure 
AR(1). 

PRdistance=function() 

{ 

dumpO'PRdistance**, "c:\\MixedModels\\Chapter04\\PRdistance.rn) 
l ibrary(nlme) 
da=read.csv(f ile="c:\\MixedModels\\Chapter04\\PRdistance.txt") 

oAR<-lme(f ixed=y~ti+sex,random=~ 11id, correlation=corARl () , 

data=da,method="ML") 

summary(oAR) 

} 

There are other co r r e l a t i on options listed in the c o r d a s s e s function. 

Table 4.1. Estimation of model (4.122) by maximum likelihood with and without 
autocorrelation 

Model 
ML 
SE 
ML AR(1) 
SE 

Intercept 
15.39 
0.89 

15.39 
0.90 

Slope 
0.66 
0.06 
0.66 
0.06 

Sex 
2.32 
0.74 
2.32 
0.74 

~^~ 
2.02 
0.22 
2.07 
0.24 

d 
1.48 

1.43 

P 
0 

0.044 
0.18 

^max 

-217.43 

-217.39 

In Table 4.1 we present the results of estimation by maximum likelihood assuming 
that p = 0 (standard ML) and AR(1) with estimated p. As the reader can see, the 
LME model with autocorrelated residuals does not improve substantially because 
the autocorrelation parameter is not statistically significant. Since the standard 
LME model is a submodel (nested) of LME AR(1), we can apply the likelihood 
ratio test (anova) which gives the p-value 0.796. Thus, there is no indication that 
the growth data are autocorrelated. 

The advantage of the profile log-likelihood function (4.121) is that it allows us 
to construct profile confidence intervals and regions, Section 3.4. For instance, the 
(1 — a) confidence region for (p, d) is the set 

< p,d e R2 : Ip(pjd) > /m a x - -£ι_α,χ2(2) ϊ , 

where lp(p,d) is (4.121) with β replaced by the GLS estimate given p, d, and 
Qi-a,x2(2) is the (1 — a)th quantile of the %2-distribution with 2 d.f. The 95% 
confidence region for p and d is shown in Figure 4.4, where <?ο.95,χ2(2) = 5.99. This 
region goes beyond positive values of the variance of the random effect/intercept 
term, but only the positive part is shown. 
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Q. 

t £ CM 
Φ 
Έ 
E q. 
o CM 

c 
2 
0 ">. 

0 
Ü 
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CO 

o 
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"Ί 
-0.2 -0.1 0.0 

P 
0.1 

FIGURE 4.4. Ninety-five and 99% profile-likelihood confidence regions for (p, d) in a linear 
growth curve model with random intercept and AR(1) autocorrelated errors (the confidence 
region is shown for d > 0). 

4.3.5 Multidimensional LME model 

Sometimes we have data on several correlated dependent variables,and each of them 
follows the linear mixed effects model (2.5). Certainly, we can estimate/analyze 
these models individually, but it becomes problematic if they share fixed effects 
coefficients. Even if, in terms of parameters, the models seem to be independent, 
it would be difficult to accept that the dependent variables or random effects are 
independent when data come from the same subject/individual/cluster. Although 
separate estimation would lead to unbiased estimates, the efficiency, generally, would 
be lost. We prove the relevant statistical result of the advantage of multivariate 
pooling and illustrate the loss in Section 5.3, where the multivariate meta-analysis 
model is developed. 

To fix the idea, we take our example with Weight and Height of Section 2.1. In 
addition to the height and weight of each family member, we have the shoe size: 

F H (inches) 
1 61 
1 64 
1 66 
1 71 
1 63 
1 68 
1 72 

W (pounds) 
120 
155 
165 
227 
145 
220 
178 

S (shoe size) 
8.5 
8.5 
9.0 
11.0 
9.5 
10.0 
10.5 
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F H (inches) W (pounds) S (shoe size) 

19 
19 
19 
19 

66 
71 
66 
68 

120 
220 
134 
130 

10.0 
10.5 
9.5 
10.00 

Then it is reasonable to assume that we have two random-intercept models: 

W» = a i+ iSxHi + b i i + e i i , 

Si = a2 + ß2Hi + &*2 + ε*2, 

where % — 1,..., 19 counts family; W^, H;, and Si are η^ χ 1 vectors of weight, 
height and shoe size of the ith family; and bu ~ Λ/"(0,σ2<ίι), bi2 ~ Λί(0,σ2ά2), 
£n ~ Λ/"(0,σ2Ι), and ε&, ~ jV(0,a2I). As we did earlier, we assume that pairs 
&ii,£ii and bi2,Ei2 within a family are independent. Several assumptions on the 
dependence of the random terms from the two models may be made. 

1. The simplest assumption is that the two LME models are independent. In 
other words, all four random terms are independent. Intuition says that the 
two models can be analyzed/estimated separately without efficiency loss. 

2. Εχ\ and Si2 are correlated but bu and 6̂ 2 are not. We can assume that for each 
family the correlation between the deviation from weight and foot size is the 
same. If we combine by stacking 

e» = 
£%i 

ε%2 
(4.123) 

into a 2rii x 1 vector, we can write cov(si) = Ω 0 1 , where 

n = ωΐ2 
ωΐ2 
^22 ρσισ2 

ρσισ2 

specifies the covariance matrix for the pair (weight, shoe size) and I is the 
rii x rii identity matrix. 

3. en and Si2 are correlated but bu and bi2 are correlated as well. Then in 
addition to the distribution specification for Si the pair (bn,bi2)

f has the two-
dimensional normal distribution Λ/^Ο,ϋ*), where 0 is the 2 x 1 null vector 
and 

d*n d*i2 
d*12 ^*22 

D = 

Now we combine the two LME models into one, following the stacking rule (4.123): 

Z, = 

Wi 1 
Si J î -^M — 

1 0 
0 1 > b» = 

1 H 
0 0 

Γ bu 
1 bi2 

U 0 0 
1 Hi ,ß = 

' Oil ' 

ßl 
OL2 

Ji J 
(4.124) 
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The combined LME model can be written in the familiar form yi = Xi/3 + Zibi + 6i 
with a two-dimensional random effect b^ ~ jV(0,D#). Thus·, we see that the only 
discrepancy from the standard LME model is the fact that e; has a special covariance 
structure; namely, οον(ε^) = Ω 0 I. In fact, we can combine any number of LME 
models, stacking the observations as in (4.124). The combined LME models may 
have common fixed coefficients, matrices X^ and Z$ may be arbitrary, and the vector 
of random effects b^ may have correlated components. A special case matrix D* has 
a block diagonal form, as in case 2 above. 

We showed that after stacking observation vectors, the multidimensional LME 
(MLME) model can be reduced to the model 

y i = Xi/3 + îï<, ^ " Λ / χ θ , Ω Θ ΐ + Ζ,Ό,Ζί) , ί = 1,...,ΛΓ, (4.125) 

with the log-likelihood function 

Z(/3, Ω, D J = - i ^ [ l n |Ω ® I + Z ^ Z j | + Θ^(Ω ®1 + Z ^ D * ^ ) " 1 ^ ] , 

where e* = y* — Xi/3. Clearly, the Laird and Ware LME model (2.5) is a special 
case of (4.125) when Ω =σ2Ι . 

Now we show that given Ω, the MLME model may be reduced to a standard 
LME model. Indeed, model (4.125) can be rewritten as y^ = Xi/3 + Zibi + ei, where 
hi ~ Λ/*(0, D*) and Si ~ Λ/"(0, Ω 0 I). Let T be the Cholesky decomposition of 
matrix Ω - 1 , i.e., T ' T = Ω - 1 . Multiplying both sides by (T®I) and introducing new 
variables yTi = (T®I)yÄ, XT< = (T0 l )X f , ZTi = (Τ®Ι)Ζ·, and eTi = (T®I)ei5 we 
come to the standard LME model, yxi = Χτΐ/3 + ZTib^ + ετί, where ετ% ~ Λ/Χθ,1) 
because Τ Ω Τ ' = I. Consequently, if an estimate for Ω is available we could estimate 
the MLME model by standard software. Such an estimate is developed below in a 
special case when all individual LME models have the same matrix of random 
effects. 

The dimension-reduction formulas (4.116) and (4.117) apply, leading to the fol-
lowing likelihood simplification. Indeed, since |Ω 0 1 | = |Ω| , we obtain 

in ® i + Z«D.ZÎ| = |Ω| |i + Dz^n-1 ® i)z;| = \— ΒΖ*(Ω_1 ®I)z*' 
|Ω - ! | 

and 

(Ω ® I + Z i D , Z i ) - 1 = Ω- 1 ®Ι- (Ω~ 1 ®Ι)Ζ ί (DJ 1 + Ζ ^ Ω " 1 ® Ι)Ζ<) _ 1 Zj (Ω_1®1). 

Since both the determinant and the inverse matrix can be expressed in terms of 
the precision matrix Ω - 1 , we may use reparameterization Ω* = Ω - 1 . Then the 
log-likelihood function for the MLME model takes the form 

1 f N 

ltf,n.,O.) = --i-Nln\n,\ + jyn\l + OZ'i(nm®l)Z'i\ 

+β<[ΩΦ ® I - (Ω. ® I)Z< ( D ; 1 + Ζ^(Ω* ® I J Z , ) - 1 Ζ'4(Ω. ® I)]e4} . 
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Furthermore, we can derive the precision matrix parameterization as in Section 
2.2.4, 

1 ί N 

Z(/3,D_,ttJ = - - l -ΛΠη|Ω*| - 7 V l n | D _ | + ]Γ[1η |Ό_+Ζ^(Ω* ®I)z; | 

+e< [Ω, ® I - (Ω* ® I)Z. (D_ + Ζ^(Ω* ® I )Z . ) _ 1 Ζ^(Ω* ® I)]e·} . 

where D_ = D " 1 . 
To illustrate, we consider the important special case when P models with the same 

random effects design matrix are combined into the MLME model (4.125). Then 
Z^ = I ® Zf, where I is a P x P identity matrix and^Z^ is an rii x k common random 
effect design matrix and Ζ^(Ω* ® I)Z i = Ω* ® (Z^Z;). Doing reparameterization 
D = (Ω" 1 ® I )D_, we obtain 

Ό_+Ζ ,
ί(Ω*®Ι)Ζ^ = (Ω*®Ι) (Ό+Ι®(Ζ ,

ί Ζ0) , l n |D_ | = 1η|Ω*| + ln D 

and therefore as with the variance-profile parameterization, the log-likelihood func-
tion can be written as 

i f I~ I
 N i 

Zp(/3, D, Ω J = - - \ -Nln |Ω*| - Nln D + V [ l n D + I ® Z^Z* 
k i=l 

+ej[n„ ® i - % (D+I ® (ziz<))_1 Ζ;]ΘΛ . 

Now we find the maximum of this function assuming that matrix D and the riiP x 1 
residual vectors {e^} are known. Then the maximization problem is equivalent to 
minimization of — ΛΠη|Ω*| + t r ^ * S ) , where S = ^ E ^ E ^ and E^ is the rii x V 
matrix with the pth column as the n ^ x l residual vector from the pth LME model. 
Differentiating with respect to Ω*, we come to Ω* = N~1S~1. Thus, alternating 
between estimation of the standard LME model and this estimator for Ω*, we 
estimate the MLME model by maximum likelihood. 

Problems for Section 4.3 

1. Write down matrices V ^ for a linear mixed model yij = a* + biXij 4- ε^ 
with independent random intercept and slope, α* ~ Λ/^α, σ^) and bi ~ Αί(β,σΙ), 
j = l ,2, . . . ,ni , i = l,2...,iV. 

2. Show that ML and RML are asymptotically equivalent by demonstrating that 
the In term in (4.105) is o(N) when N —» oo. 

3. Prove that the information matrix (4.110) is positive definite if all the V ^ are 
positive definite, θς > 0, and the {V^} are linearly independent. 

4. Do the log-likelihood functions (4.104) and (4.105) go to - c o when for at least 
one i we have |Vi| —> 0? 

5*. Write an R function for maximization of log-likelihood functions (4.104) and 
(4.105) using the Fisher scoring algorithm by adopting lmeFS, discussed in Section 
2.16. Test your code with model (2.142); the two functions should produce the same 
result. 
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6*. Write an R function that implements the variance least squares (biased and 
unbiased versions). 

7*. Prove that VLS and UVLS from Section 4.3.2 are equivalent for LME to VLS 
and UVLS, respectively, from Sections 3.12. 

8. Check the determinant and inverse of matrix C = I+pTi using straightforward 
calculations for n = 3. Do the same for matrix C with AR(1) model. 

9*. Write an R function that implements FS algorithm to maximize the log-
likelihood given by equation (4.121). Alternate between ß estimation via GLS and 
maximization of (4.121) with fixed e^·. Test this code with model (4.122) using 
d is tance data. 

10. Specify conditions under which the multidimensional LME model collapses to 
separate LME model estimation. 

11*. Write an R function that maximizes the log-likelihood function in the preci-
sion matrix parametrization. Test the code through simulations. 

4.4 Robust linear mixed effects model 

Why the normal distribution? First, this distribution is computationally conve-
nient because for the linear regression model, it leads to sum of squares minimiza-
tion with a solution to a system of linear equations. Second, the Central Limit 
Theorem applies if the number of independent factors is large and no factor is 
dominant. Third, if the density of the error term, / = f(u), has a maximum at 
zero, (1η/)ό = 0 and (ln/)o < 0, and expanding I n / around zero, one obtains 
I n / ~ ln/(0) + u(\nf)'0 + §t*2(ln/)(f = ln/(0) + | t i 2 ( ln / )g . So I n / may be ap-
proximated by a quadratic function that leads to the normal distribution. Thus, the 
normal distribution may be viewed as a second-order approximation to the original 
distribution. 

However, in a small sample, there may be outliers with a profound effect on the 
estimate. Then why should the convenience of computation be the main argument, 
especially when computer power is increasing constantly? Clearly, robust estimation 
that assumes a non-Gaussian distribution with heavier tails can be an option. 

A vast literature exists on robust statistics, the book by Huber (1981) arguably 
being the earliest classic reference. An easy introduction to robust regression may be 
found in the books by Montgomery and Peck (1992) and Birkes and Dodge (1993). 

The easiest way to introduce robust statistics is through the problem of estimation 
of the location parameter. Let yi, 3/2? —> Vn be a random sample (iid) from a general 
population with the density f(y — 0), where Θ is unknown. If / is the normal density, 
f(u) = e~u / 2/Λ/2ΤΓ, the standard answer is the average: A well-established theory 
says that y is the efficient unbiased estimator of Θ (Lehmann and Casella, 1998). 
Generally, the maximum likelihood estimator for Θ is found as a solution to the 
equation 

n 

]>>(< /* -0 ) = O, (4.126) 

where ψ = / ' . If / is not known, we can use equation (4.126) to define implicitly the 
estimate for Θ via the function φ. Such an estimator is called the M-estimator, basic 
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FIGURE 4.5. Huber's p function with c = 1.5. In the interval (—c,c) this is a quadratic 
function; outside this interval, this is a linear function. The Huber function is smooth, i.e. 
the first derivative exists and is continuous. 

asymptotic results of M-estimation are given in Appendix 13.1.4. Many functions 
ψ have been suggested to produce a robust estimate. The main idea is to choose 
ψ = ψ(η) in such a way that for a small \u\ function, ψ is close to \u\, but for large 
\u\ function ψ is relatively small (the order is smaller than \u\). In particular, one 
of the first functions was suggested by Huber (c > 0), 

{ u if \u\ < c 
cifu>c . (4.127) 

—c if u < c 
Equation (4.126) is equivalent to minimization of 

n 

Σρ(ν*-Θ), (4.128) 
2 = 1 

where the function p is defined as 

( v f \u2 if \u\ < c iA n o n , 
p(u) = < , ? i 2 J Γι ^ · (4.129) 
r v J \ c\u\ - ±cz if \u\ > c v J 

This function is called the Huber p-function with c > 0 as a parameter; see Figure 
4.5. When c —> co, the M-estimator approaches y. When c —> 0, the M-estimator 
approaches the median, a well known robust estimator of the location parameter. 
This statement comes from a well known result that the minimum of ^ \yi — θ\ is 
attained at the median. Thus, the M-estimator with an intermediate c might be a 
good compromise: in a neighborhood of zero it treats observations as if they come 
from a normal distribution and outside median-wise. 

Equation (4.126) is usually solved by iteratively reweighted least squares (IRLS); 
see Green (1984) for an overview in the broader contest of generalized linear models. 
The idea of IRLS is to represent ^{yi — θ) = (yi — 6)wi, where Wi = ψ^ΐ — θ)/^ — θ). 
If yi — Θ = 0, we set Wi = ψ'(0). Then Wi plays the role of the weight, and the 



4.4 Robust linear mixed effects model 235 

iterations take the form 

0a+1 = ^lViWi>a, 3 = 0 , 1 , . . . , (4.130) 

where the weight Wi,s changes from iteration to iteration. For the Huber function, 
Wi,s = 1 if \yi — θ\ < c and cj \yi — θ\ elsewhere. Since p is a convex function (4.128) 
is also a convex function and thus there is a unique solution to (4.126). As a word 
of caution, equation (4.126) does not have a unique solution for all ψ. Demidenko 
(2000) develops criteria when a local solution that has been found is the global 
solution. 

In the previous literature the threshold c was assumed fixed and known. Clearly, 
c is the key parameter of robust estimation. In particular, if c is large, we come to 
the standard normal theory. Although there are ways to come up with an ad hoc 
choice of c (Demidenko, 1981), a desirable solution would be to estimate c from 
the data. Also, a scale parameter σ should be part of the estimation method, as in 
standard normal distribution theory. We implement these ideas in the next section. 

4-4-1 Robust estimation of the location parameter with estimated σ 
and c 

We estimate c and the scale parameter σ, along with 0, by the maximum likelihood 
(ML) method. Usually, σ is assessed before IRLS. For example, Montgomery and 
Peck (1992) use σ = Λ1 |ei — ΛΊ|/0.6745, where M indicates the median. The 
problem with this approach is that the OLS residuals ê  may contain outliers, so 
that ideally, σ should be a part of the iterative estimation procedure. 

Our aim is to find a distribution for which the maximum likelihood estimate for 
Θ is defined as the minimizer of (4.128), where p is the Huber function (4.129). 
Clearly, the density must have the form f(u) = e~p^/A(c), where the coefficient 
A = A(c) = J^ e~p(u\ This integral is elementary to find 

-oo 

poo 

/

OO Γ pC /»' 

e-p^du = 2 / e~iu2du+ \ 
-oo L/0 Jc 

= 2v^ß(c) + 0(c)/c-l/2], 

e-cu+lc*du 

where φ and Φ are the density and the cdf of the standard normal variable. This 
gives 

A = 2Λ/2^ [Φ(Ο) 4- (ß(c)/c - 1/2]. (4.131) 

The distribution function is given by 

r IeH2u+c) i f n < _ c 

F(u) = - I \e-i°
2 + >/27Γ[Φ(ϋ) - *( -c) ] if |u| < c (4.132) 

[ 4 _ Ieèc(-2u+c) i f î i > c # 

We write X ~ H(c) if random variable X has this (Huber) distribution. Note that 
this distribution has heavy tails because when u —> oo, the density approaches zero 
with the order e~CM, whereas the normal density has the order e~u /2. Apparently, 
when c goes to infinity this distribution converges to normal. The formula for the 
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distribution function of H is useful for simulations because if U is uniformly distrib-
uted on (0,1), the random variable F_1(C7) has W, Huber distribution. The variance 
of the Huber distribution is 

uze~*u du + s: (4.133) 
,o j c / έ(2αΦ + 2φ-οΥ 

where in the rest of this section we let Φ = Φ(ο) and φ = 0(c), to shorten the 
notation. Note that variance is a decreasing function of c, and when c —» oo, the 
variance approaches 1. When c is fixed, the maximum likelihood estimator for Θ is 
found from minimization of (4.128). Now we treat c as an unknown parameter and 
find it by ML. The model for robust estimation of the location parameter is 

yi = θ + σει, (4.134) 

where σ is an unknown scale parameter and the density of iid e% is specified by 
(4.131), or Si ~ H(c). In the rest of this section we discuss computational issues of 
log-likelihood maximization. 

The log-likelihood function is defined by 

(4.135) 

= - <η1ησ + η1η[Φ(β) + φ{ο)/ο - 0.5] + ^ Ρ 
Ι 2=1 

yi~es 

When c and σ are held, we find Θ via iterations (4.130). Now we find the Fisher 
information matrix and develop the Fisher scoring algorithm to find the MLEs for 
Θ and σ. Letting Ui — {yi — 0)/σ, the standardized residual, we obtain 

dl ηφ 
d~c = 

0 2 φ + 0φ _ o.5c2 
\Ui\>C 

c), (4.136) 

da σ σ 
|^ i |<c |ui |>c 

(4.137) 

where to shorten the notation we use φ = φ{6) and Φ = Φ^). After some algebra 
we obtain the Fisher information, 

40 (2οΦ + φ - c) 

c2 (2οΦ + 2φ - c) 2 ' ■Lea — 

2^(1 + (?) 
(2οΦ + 2φ- c)ca ' 

J-σ — 9 

Information about Θ is 

1 -
(l + c2)0 

2οΦ + 2φ - c 
(4.138) 

/* = - ^ P r ( | t i | < c ) = - ^ 1 -
2φ 

2Φο + 2φ-ο 
(4.139) 

Combining all quantities, we come to 3 x 3 information matrix for (0, c, σ) : 

1 = 

c 2Φ-1 
σ2 2Φο+20-ο 

0 

0 

0 
4φ(2σΦ+φ-ο) 

β2(2οΦ+20-ο)2 

2</>(l+c2) 
(2οΦ+2<£-ο)οσ * [ 

0 
2φ{1+ο2) 

{2αΦ+2φ-ο)οσ 
1 _ _(i+c2)</> 

2οΦ+2φ-ο 

(4.140) 
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As the reader can see, the MLE for 0 and (c, σ) are independent. Similar to the 
LME model, we can infer that (a) any consistent estimates of c and σ would lead 
to an asymptotically efficient estimate of 0, and (b) the likelihood may be maxi-
mized separately over 0 and (c, σ). According to the general maximum likelihood 
theory, the distribution of the MLE is asymptotically normal with covariance ma-
trix n _ 1 J - 1 . It is easy to prove that 1$ is an increasing function of c with ΙΘ(0) = 0. 
Indeed, if we denote Φ = Φ — 1/2 (Ψ = 0), then 1Q is proportional to Φ/(Φ + φ/c) 
with derivative 

(M 0(Φ + φ/c) -φ(φ-φ- φ/c2) _ 0(φ + φ/c) + νφ/c2 

de ~ (Φ + 0/c)2 ~ (Φ + 0/c)2 > ' 

Also, when c —► oo, we have Φ —> 1/2 and φ/c —► 0, so that IQ —» l /σ 2 . It means 
that when c is large, we come to the normal distribution with the variance for the 
mean as σ 2 /η , the standard result. However, for c > 0 we lose precision, which 
may be interpreted as a trade-off with robustness. The asymptotic variance for the 
robust M-estimator of 0 is 

var ( 0 M L ) = —r = ~ 
nie n 

1 + . 2 # c ) 
ο(2Φ(ο)-1)] 

(4.141) 

Note that when c —► oo we have Φ(ό) —> 1 and φ(ο)/ο —»· 0, so that var(0ML) —> 

σ 2 /η , which was expected because when c —► oo, the distribution approaches nor-
mal. 

W7&2/ robust statistics? 

Robust statistics copes with outliers. But how exactly do outliers affect estimation? 
Why does the MLE under the normal assumption deteriorate when the true dis-
tribution, in fact, is not normal and has heavy tails? We can illustrate the point 
by the location parameter model (4.126) with Huber distribution; see also Section 
8.12. Indeed, if we assume that the {ε^} are normally distributed, the estimate for 0 
would be the least squares estimate (LSE), 9LS = V, with the variance a2var(e)/n. 
If the true distribution function is (4.126), as follows from (4.133), we have the 
representation 

var(0L5) 
σ2 

n 

2(c2 + 2)0(c) 
ο2(2οΦ(ο) + 20(c) - c ) 

(4.142) 

We compare this variance to the variance of the robust M-estimate, (4.141). Note 
that (4.142) is the exact variance of the LSE while (4.141) is the asymptotic variance. 
It is possible to prove that var(0£s) >var(0ML)· We plot the two variances in 
Figure 4.6. The lower the c the less variance the M-estimate has relative to the least 
squares estimate. However, when c > 2, robust estimation does not improve the 
least squares. 

Computational issues 

To find the MLE, we use separate maximization of the log-likelihood function for 
0 and (c, σ). When c and σ are held, we can use either IRLS (4.130) or the FS 
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Variance of LSE and MLE Efficiency of LSE 
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FIGURE 4.6. Comparison of least squares and the robust M-estimate of Θ via asymptotic 
variances (4.142) and (4.141) assuming that σ2 = 1 and n = 1. A heavy tail distribution 
such as Ή makes the LSE less efficient. For example, if c = 1, the standard error of the 
robust estimate is 86% of the standard error of the LSE. However, when c is sufficiently 
large (c > 2), the two estimators perform almost equally well. 

algorithm with total information UIQ. When Θ is held, we use the FS algorithm: 

n - i 
c 
σ s + l 

+ AS 
n J-co 

xca 
M. t 

I da 1 

(4.143) 

where s = 0 ,1 , . . . is the iteration index and 0 < As < 1 is the step length. The step 
length should provide positiveness of c and σ and the log-likelihood increase from 
iteration to iteration. A good starting point is to let σο = Co = σ, where σ is the 
median estimate presented at the beginning of the section. Only several iterations 
(two or three) may be sufficient, because we alternate the maximization over Θ and 
(c, σ) until convergence. 

4-4-% Robust linear regression with estimated threshold 

We can readily extend the location parameter model (4.134) to the linear regression 
model 

yi=ß'*i + aei, (4.144) 

where n vectors {χ^,ζ = l , . . . ,n} have full rank and iid Si ~ H(c). The IRLS 
algorithm to estimate ß when the threshold, c and SD, σ are held fixed takes the 
form 

ß. s+l Σ Wi sX-i^-i Σ yiWi,s 

where Wi^s = 1 if \yi — /3'sXi| < ac and acj \yi — /3^Xi| otherwise (as before, we set 
Wi,s = 1 if yi = β'ρίι). The derivatives (4.136) and (4.137) and the information 
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matrices (4.138) do not change. As follows from (4.139), 

/ „ \ - 1 

cov(3M L) = σ2 

in a large sample. Further computational detail on robust regression with known c 
is given by Huber (1981). 

44.3 Robust LME model 

Several authors have attempted to develop a robust theory for a mixed effects model. 
For example, Lange et al. (1989), and Pinheiro et al. (2001) take the ^-distribution 
with few degrees of freedom as a distribution with heavy tails. The problem with 
this approach is that one needs to know the degrees of freedom, the key parameter, 
because if the degree-of-freedom value is large, the ί-distribution is very close to 
normal. Gill (2000) uses the Huber function with known c. Huggins (1993) uses 
Tukey's bisquare function, which is constant outside a predefined interval. The 
problem with this approach is that one needs to know c. In our approach outlined 
below, the robustness parameter is estimated along with the parameters of interest. 

We can write the LME model (2.5) as 

yi = Xiß + ZiO
1'2bi + aei, i = 1,2, . . . ,# , (4.145) 

so that the components of the n ^ x l vector 

σ 

are iid with the distribution H(c). Let Uij denote the j t h component of vector 
(I + Z iDZi)"1 / 2 (y i - Xiß). Then the model (4.145) is rewritten as 

Z(/V,D,c) = -Ντ{]η[Φ(ο) + φ(ό)/ο-1/2]+\ησ} 

When c —> 00 we obtain the standard log-likelihood function (2.15). A separate 
maximization over (/3, D) and (σ, c) may be used. When σ and c are held constant, 
we maximize I using the FS or IRLS algorithm, as indicated by Gill (2000). When 
β and D are held constant, we use the FS algorithm, similar to (4.143). 

4-4-4 Alternative robust functions 

Several alternatives to the Huber p function can be considered. Unfortunately, they 
require a numerical quadrature solution. If y has a symmetric distribution around 
zero, it makes sense to consider symmetric robust functions as well. For, example, 
instead of (4.129), one can take \u2/{\ + c\u\) or \u2/{I + cu2), where c > 0 
(Demidenko, 2000). Like p, this function is close to quadratic when \u\ is small, but 
for large \u\ the function is proportional to \u\. Parameter c controls how close this 

1 + 2φ 
Ç(2*-1 ) J Σχ^ 

l A — 1 
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function is to quadratic. Robust functions of different kinds have asymptotes when 
\u\ goes to infinity. For example, Tukey's bisquare function considered by Huggins 
(1993) in the framework of the LME model is given by 

Pb=S 
-b2 (i-(f)T 1 if Id < b 

b2 elsewhere 

where b is a positive parameter. The censoring for robust functions with asymptotes 
is stronger because observations with an absolute value of residuals greater than b 
are not involved at all in the estimation procedure, as follows from the estimating 
equation. 

4-4-5 Robust random effect model 

In the work cited above, no distinction has been made between the distribution 
of the random effect b ; and the error term ε^. In fact, in many applications it is 
more probable to expect a cluster outlier rather than an outlier within a cluster. To 
address this phenomenon, we model the distribution of the error term as Gaussian 
and the distribution of the random effect as Huber. Then the problem of modeling 
of robust random effect reduces to the convolution of the Huber distribution H and 
the normal distribution ΛΛ More precisely, given positive scale coefficients σ\ and 
σ2, we want to find the density of the random variable Z = σ\Χ + σ2Υ, where 
X ~ Λ/*(0,1) and Y ~H{c) are independent. It is well known that the density of Z 
is the convolution of densities of σ\Χ and σ2Υ and is given by J^ fi(y)f2(x — y)dy 
(Rice, 1995). Since the density of σ2Υ is given by f2(z) = (Ασ2)~

1 exp(-z2 / (2σ2)) 
if \z\ < ca2 and by (Ασ2)~

ι exp(—c\z\ /σ2 + c2/2) otherwise, the convolution is 
proportional to 

l ( y2" i ( y - * ) 2 A r y c\y-x\ ■ i 
2 W + Ί )dv+ I e~%i~ ^ +'2" dy f e-^+^)dy+[ 

_ c\y-x\ 

-x\>a2C 

with the coefficient reciprocal of Aaia2y/2n. It is possible to express this integral 
via functions Φ and φ to obtain the log-likelihood function for the robust MLE, 
although we do not pursue this approach here. 

Problems for Section 4.4 

1. Prove that the IRLS algorithm converges to the median in a simple model 
Vi—Θ ~ / (y) , where / is the density of the double-exponential (Laplace) distribution. 

2*. Write an R function that estimates a linear model using Huber loss function 
(4.129) with c as a parameter. Test your code using simulations. Compare prop-
erties of the robust estimation versus LS estimation, estimating the probability 
Pr(Lö — β < δ) as a function of δ using simulations. 

3*. Write an R function that finds the MLE of Θ for model (4.134) when c is fixed. 
4*. Write an R function that finds the MLE of Θ for model (4.134) using the FS 

algorithm, when c is unknown and is subject to estimation. 
5*. Using the Fisher information matrix, compare asymptotic variances of 6ML 

when c is fixed and known versus when c is estimated. Plot these variances as a 
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function of c (reproduce Figure 4.6). Prove that the variance is larger when c is 
unknown. 

6. How can separate log-likelihood maximization for Θ and (c, σ) be justified? 
7*. Write an R function that estimates a robust linear regression (4.144) with the 

Huber function by modifying the code in problem 4. 
8*. Write an R function that estimates a robust LME model by maximizing the 

log-likelihood function (4.146) using algorithm alternation as suggested. Test the 
properties of robust estimation via simulation for a sequence of c. 

9*. Develop robust random effect model estimation as discussed in the last section. 

4.5 Appendix: derivation of the MM estimator 

The aim of this section is to derive the Method of Moments (MM) estimator for 
matrix B* = C D * C in the general linear growth curve model of Section 4.2.5. The 
proof follows that of a paper by Demidenko and Stukel (2002). 

Following the general idea of Henderson (1953), we find an estimator for the 
variance parameter by equating the empirical sum of squares to its expectation. Let 
Ui = Cat-—Aiß = C(Z,

iZi)~1Z,
iCi, where ß is the true parameter vector and ζ{ 

is an ni x 1 random vector with zero mean and covariance matrix σ2Ι + Z^D*Z^. 
Then the {u;} are independent and cov(u^) = σ 2 Ρ ;+Β*, where P ; = C(Z^Zi) - 1C/ . 
Matrix (4.87) can be rewritten as 

Ei "i< - Ei MHi u$Aj)HAi - Σ* A J H C J A » ' , 
+ Ei AiHiE,· A$Uj-)(Ei u$ Α,·)ΗΑί, 

r1. 
independent for i φ j , we obtain 

where H =(]jr}AJAi) . Our aim is to find its expectation. Since u^ and Uj are 

£ Ε ^ " ί = ^Β,+σ 2 ΣΡί , 
£(E* MEj «ί Α,)ΗΑί) = JS(Ei u*ui AiHAi) = σ2 Ei PiQi+B* E Qi, 

E(Ei ΑίΗ(Ε,· A; .U J -K) = σ2 Ei QiPi+ E QiB*, 
E(Zi ΑίΗ(Ε,· Α>,·)(Ε,· uJA^HAj) = £ ( £ . A i H A ^ A i H A O 

= a2EQiPiQi + EQiB*Qi. 

By definition, B* is the solution to the matrix equation 

iVB* - B* ^ Q i - Σ Q i B * + ΣQiB*Qi = L, (4.147) 

where σ2 is replaced by the pooled variance (4.23) and is denoted L = So—&MM [P»— 

PjQi —QjPi + QiPiQi]· To solve (4.147) for B , we employ the vec operator and the 
formula vec(ABF) = (F' <g> A)vec(B), which yields (4.88). To be valid, we need to 
show that the matrix J in (4.88) is nonsingular. We show that this is true if 2r < N. 
Indeed, let U be any r x r matrix. Without loss of generality we can assume that 
it is normalized, i.e., t r(U'U) = 1 . It suffices to show that 

vec'(U) 
1 N 

Ir>-^J2(Qi®'ir+Ir®Qi-Cli®Q'i) 
N ■ ! z = l 

vec(U) >0. (4.148) 
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Using the formula vec/(U)(A(8)B)vec(U) =t r (UAU / B / ) and applying the inequality 
tr(AB) <tr(A)tr(B) for any nonnegative definite matrices A and B, one obtains 

^(vec'(U) ( £ \ Qi ® I) vec(U) =^(vec ' (U) ( ^ Q* ® I) vec(U) 
=4 Σ* triUQiU') = i Ei tr(QiU'U) < ^ Σ , tr(Q4) 

= i l X A i H A j ) ^ Σ ί Μ Η Σ Α ^ ) = $. 
Since vec /(U)(Q i 0 Q;)vec(U) > 0, the left-hand side of the inequality (4.148) is 
greater than 1 — 2r/N. Therefore, if 2r < N, the matrix J is nonsingular. 

4.6 Summary points 

• The linear growth curve model is a special case of the standard Laird and 
Ware LME model where the matrix of fixed effects can be represented as a 
linear combination of the columns of the matrix of random effects. A special 
case of the linear growth curve model is the random-coefficient model. All 
numerical algorithms and statistical properties of the LME model discussed 
in Chapters 2 and 3 apply to the linear growth curve model. 

• The general least squares estimator for the linear growth curve model may 
be computed in two steps: In the first step, individual data are processed 
separately to obtain ordinary least squares estimates; in the second step, the 
weighted least squares is applied to the OLS estimates from the first step. 

• The log-likelihood function for the growth curve model may be simplified using 
dimension-reduction formulas. One can apply the Newton-Raphson or Fisher 
scoring algorithms to maximize the function. 

• The MINQU estimator of σ2 developed for the LME model in Chapter 3 
coincides with the method of moments (MM) estimator for the linear growth 
curve model, the pooled variance estimator. 

• Two method of moments unbiased estimators for the covariance matrix of 
random effects are developed with regard to two extreme cases of matrix 
D, the scaled covariance matrix of random effects. The first one uses the 
least squares estimator applied to all data (D = 0), and the second uses the 
least squares applied to the second-stage model (D = oo), as in the fixed 
effects approach. A simplified version of the MM estimator has a clear variance 
decomposition interpretation. 

• In some special growth curve models the estimates are simplified. We call a 
growth curve rectangular if all coefficients in the second stage are expressed 
via the same set of covariates, so the second-stage model may be written in 
a matrix (rectangular) form. It is shown that for a rectangular growth curve 
the fixed effects approach estimator coincides with the estimator suggested by 
Reinsel (1985). 

• The balanced growth curve model is the rectangular growth curve with the 
same matrix in the first-stage model. Then generalized and ordinary least 
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squares estimators coincide. For this model, the method of moments and re-
stricted maximum likelihood estimates coincide. 

• Likelihood-based and two-stage estimators for beta coefficients are unbiased 
in small samples and are asymptotically equivalent in large samples: when the 
number of people tends to infinity and the number of observations per person 
remains bounded. 

• Often only some of the growth curve coefficients or, generally, some linear 
combinations of coefficients are of interest. A standard setting of the linear 
growth curve model forces us to model all coefficients. On the contrary, the 
general growth curve model does not require specification of all parameters 
and leaves the unspecified parameters free. 

• The general growth curve model may be estimated by the maximum likeli-
hood method. Two versions of log-likelihood are available: full and second 
stage maximum likelihood. For the second-stage maximization, one can use 
the Newton-Raphson or fixed-point algorithm. The method of moments is 
generalized to the general linear growth curve model. 

• The general growth curve model is robust to misspecification of the second-
stage model. The standard linear growth curve model does not include this 
feature. In particular, population parameters are systematically biased when 
the second-stage model is misspecified. Models under the general growth curve 
setting lose some efficiency but retain parameter unbiasedness. 

• Many covariance structures may be well specified by a linear combination of 
fixed matrices with coefficients as parameters (to be estimated from the data). 
This class of linear models was developed by T. W. Anderson. For example, the 
covariance matrix in the LME model may be represented as a linear combina-
tion with coefficients as unique elements of matrix D. The Hessian matrix for 
variance/covariance parameters takes a simple form with elements as traces of 
certain matrices. Thus, implementation of the Fisher scoring algorithm seems 
relevant. 

• Variance and unbiased variance least squares is extended to LMLCS. The esti-
mates for beta coefficients are unbiased because the estimate of the covariance 
matrix is an even function of the error term. 

• Although many authors suggest the standard LME model (2.5) for longitudi-
nal data analysis, this requires one to account for serial correlation to model 
the data adequately. The covariance matrix generated by the moving average 
can be represented by a linear covariance structure, and therefore the analysis 
of longitudinal data can be performed under the umbrella of linear models 
with linear covariance structure. The log-likelihood function for the autore-
gression error term in the LME model can be well simplified and allows fast 
profile confidence region/interval construction. 

• Another example of LMLCS is the multidimensional mixed model when sev-
eral correlated dependent variables are available and each of them follows the 
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LME model. Each model can be studied/estimated separately, but simulta-
neous estimation gains efficiency. If each model has the same set of random 
effects covariates, maximum likelihood estimation of multidimensional LME 
can be accomplished with standard LME software. 

• A compromise between the least squares estimate (average) and the median 
can be achieved using the Huber p-function, which is quadratic within the 
interval {—c,c) and linear elsewhere. In previous work the threshold c, the 
key parameter of robust estimation, was assumed known. We estimate c by 
maximum likelihood along with the location (Θ) and scale (σ) parameters 
introducing a distribution W, which yields the standard estimate of Θ when c 
is fixed. The robust regression techniques may be extended to mixed models. 
We estimate parameters of the model along with the threshold c by maximum 
likelihood. In many applications one may expect cluster outliers that may be 
modeled via a convolution of the Huber and normal distribution. 



5 
Meta-analysis Model 

The meta-analysis model is probably the simplest random effects model, yet it has 
important applications for pooling studies, especially in medicine and epidemiology. 
Thus, to be specific, we talk about the common treatment effect that synthesizes 
the results of several studies. There exist an enormous number of papers on ap-
plication of the meta-analysis model. However, fewer papers cover statistical issues 
of the model; DerSimonian and Laird (1986), Whitehead and Whitehead (1991), 
Berkey et al. (1995), Hardy and Thompson (1998), Aitken (1999), and Brockwell 
and Gordon (2001). The strength of the meta-analysis model is that we do not 
care how the estimate of the study-specific treatment effect in each study has been 
obtained unless the estimate and its variance are available. For example, in one 
study, Cox logistic regression may be used, in another study the characteristic of 
interest might be adjusted for the patient's age, etc. Usually, the sample size in each 
study is fairly large, so the Central Limit Theorem applies. Thus, the estimate from 
each study should have a distribution close to normal. However, the distribution of 
the random effect may not be normal and. particularly, may have heavy tails. We 
develop a theory for robust/median meta-analysis assuming that the random effect 
has double-exponential (Laplace) distribution. 

The key parameter of the meta-analysis model is the variance of the random 
effect σ2, which reflects the variation between studies. Fortunately, a homogeneity 
test is available with an exact confidence level, the Q-test. Generally, there are two 
approaches to estimating σ2: maximum likelihood, which assumes normal distribu-
tion, and quadratic unbiased estimation. 

This chapter comprises three sections. In the first section a simple meta-analysis 
model is considered where likelihood and quadratic unbiased estimation methods are 
described at length. In the second section we consider the meta-analysis model with 
study-specific covariates to adjust the common treatment effect. In the third section 
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a general multivariate meta-analysis model is introduced. Some efficiency may be 
gained if the treatment effect is observed along with other, correlated estimates. 

5.1 Simple meta-analysis model 

In the meta-analysis model it is assumed that each study i = l , . . . ,n provides a 
value (estimate) of the characteristic of interest yi along with its variance σ\. For 
example, a new surgical operation has been tested in n hospitals on a different 
number of patients and the treatment effect yi\ for example, as the coefficient of a 
logistic regression model. How can we combine studies and come up with an overall 
(common) treatment effect? A naive approach would be to take simple average y but 
then we do not take into account that in different studies yi has different precision 
(SE) because of the difference in the number of patients involved. A better approach 
is to take a weighted average with weights equal to the reciprocal of the variances. 
However, a risk is that if the variance in one study is close to zero, the resulting 
estimate will be determined only by that study. The meta-analysis model based on 
the random effect approach provides something of a compromise assuming that the 
studies are heterogeneous, i.e., there is a random effect. 

In the meta-analysis model, yi is treated as an observation and the within-study 
variance σ2 is treated as a fixed (given) number. Following the line of the random 
effect approach, it is assumed that besides the variation within the study, there 
exists a variation between studies, and this variation is represented by the random 
effect hi with an unknown variance σ2. Clearly, without variation between studies 
the best estimator would be the weighted average, (Σνι/σ<ϊ)/(Σ Ver?)· Since σ2 is 
unknown, we need to estimate it first and then apply the weighted average. A hypo-
thetical situation with and without extra variation between studies (heterogeneity) 
is depicted in Figure 5.1. Characteristically, if σ2 is considerable, there is little or 
no overlap among the 95% confidence intervals. 

The simplest meta-analysis model has no covariates and is written as 

yi=ß + bi + eu (5.1) 

where bi is a random effect with unknown variance σ2 and Si is an error term with 
known positive variance σ2. In the next section we consider a more general model 
where in addition to the intercept term, there are explanatory variables/covariates. 
The random terms have zero means and are independent across studies i = 1, ...,n. 
If bi and Si have normal distribution, the meta-analysis model (5.1) can be written 
as 

^ ~ ^ ( / 3 , σ 2 + σ2), i = l,. . . ,n. (5.2) 

Strictly speaking, the meta-analysis model (5.1) is not a special case of the lin-
ear mixed effects model (2.5) because the {σ2} are known. However, as we shall 
learn, the model (5.1) shares many properties with the LME model, and we will 
consistently refer the reader to our previous theory. 

To be specific, hereafter the yi will be called study-specific treatments, ß will be 
called the common treatment effect, and the variance of the random effect σ2 will be 
called the heterogeneity (variance) parameter. The flexibility of the meta-analysis 
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FIGURE 5.1. Two hypothetical situations in the meta-analysis model. Left: There is no 
random effect (studies are homogeneous) and the 95% CI overlap. Right: Studies are hetero-
geneous because there is an extra variation among studies and the CI do not overlap—the 
meta-analysis model is valid. 

model comes from the fact that we do not specify how yi and its variance σ2 have 
been calculated. In particular, different study-specific statistical models could be 
used, with different (study-specific) adjustments, confounders, and so on. 

The heterogeneity variance is the key parameter in the meta-analysis model. 
Indeed, as follows from the Gauss-Markov theorem, if the variance of the random 
effect were known, the weighted average 

3 Σ Ι Ι ι ^ + σ ? ) - 1 

p
 Σ Τ - Ι ^ + Γ ? ) - 1 

(5.3) 

would be unbiased with minimum variance among all linear unbiased estimators, 

1 
var(/3) = 

Σ ? = ι ( * 2 + σ2) ■?W 
(5.4) 

Also, we know that if the {yi} had normal distribution, β would have the minimum 
variance among all (linear and nonlinear) unbiased estimators, as follows from the 
Cramér-Rao inequality (Rao, 1973; Bickel and Doksum, 2001). It is interesting to 
note that for any σ2, the weighted least squares estimate (5.3) lies in the range 
(min yi, max yi). In practice we never know σ2, so that (5.3) will be used with σ2 

in place of σ2. Then we call that estimator the estimated weighted least squares 
estimator. 

Two extreme cases of σ2 are important in formula (5.3). When σ2 = 0 we come 
to the weighted least squares estimator, 

ßo = ß 
σ 2 =0 

(5.5) 
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When the variance of the random effect becomes large, we approach the simple 
average, 

ßoLS = 31 = lim ψ,^+βΐ]1 = lΣ» = y- (5·6) 
Ισ2=οο σ2—>οο Ζ^\σ * σί) η 

In the balanced case, when all within-study variances are the same (σ2 =const), 
the estimator (5.3) does not depend on σ2 and collapses to the simple average y. 
A similar phenomenon was observed earlier for the balanced growth curve model, 
see Section 4.1.5. It is easy to see that both estimators are unbiased regardless of 
σ2. In the rest of the chapter we deal with the meta-analysis model under unknown 
heterogeneity variance σ2. 

5.1.1 Estimation of random effects 

The random effects or better stated the cluster-specific deviations can be 'estimated' 
in the framework of a mixed model. In Section 3.7, we provide the general theory 
and respective formulas. In this section we apply that theory to the meta-analysis 
model with the goal to estimate random effects fy. The difference with the general 
linear mixed model is that the yi are heterogeneous even in the absence of the 
random effect (due to presence of σ2) but this fact changes the theory just slightly. 

In the notation of Section 3.7 we have X^ = Zf = 1 and D =σ2 , so that the 
penalized sum of squares, as the counterpart of (3.54), takes the form 

s = ±<-y-f-^ + L2±^ (5.7) 
i = l % i=l 

where b{ is the estimate of the random effect sought for study i. It is easv to verify 
that minimization of S over μ and {6χ, . . . ,6η}5 with fixed σ2, leads to β given by 
(5.3) and random effects estimates given by 

2 

^ = ^ 2 ^ 2 (Vi-ß) (5-8) 

with the minimum 

minS = V % ^ Ç . (5.9) 

When the heterogeneity variance, σ2, is large, the random effects estimates are 
close to the deviation of the data from the mean; when σ1 is close to zero, the 
estimates, 6̂ , are close to zero as well. We employ these estimates in Section 5.1.6 for 
the random effect coefficient of determination and illustrate them with an example. 

5.1.2 Maximum likelihood estimation 

Here it is assumed that random variables have a normal distribution, so that the 
model under consideration is (5.2) with the log-likelihood function (up to a constant 
term) 

Κβ^) = -\Σ 
2 , = i 

1η(σ2+σ|) + iVi-ß) 21 

σ'+ai 
(5.10) 
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For a balanced model, σ\ — σ\ =const, the maximum of this log-likelihood function 
admits a closed-form solution 

0=i> *2=ι-Σ^-ν)2-°1 (5.11) 

If σ2 is known, I attains a maximum at (5.3); and if σ2 ^const, we have to use an 
iterative algorithm to find the maximum of L To maximize this function, we need 
the first and second derivatives: 

dl Vi-ß UL _ y—Λ yi — p dl _ 1 γ ^ 

Έβ ~ ^ σ 2 + σ? ' ~d^~~2^ 
i=l 

(m-ß) 2 1 

σ2 + σ2 ( σ 2 + σ 2 ) 2 ] ' 

dH 
dß2 

da-

rt 1 

z = l % 

d2l Σ- Vi-ß 

I = i f 
4 o L i = l 

2(Vi-ß)2' 
(σ2 + σ 2 ) 2 (σ2 + σ 2 ) 3 

The Hessian matrix for I is the 2 x 2 matrix 

H = - r2+*2i 
Vi-ß 

^ ™ Vi-μ i V n [ 2(vi-ß)' Σ: 
n | 2 ( i / i 
■i=l [ (σ2 Η +σ?)3 (σ2+σ?> 2 \ 2 

As we see, the log-likelihood function (5.10) is not a concave function of (β,σ2) 
because the (2,2)th element of matrix H may be positive. This means that the 
Newton-Raphson algorithm may fail if the starting point is far from the maximum. 
As a word of caution, the log-likelihood function (5.10) may have several local 
maxima. Indeed, substituting (5.3) into dl/θσ2 = 0, we come to an equivalent 
equation for σ2. Getting rid of the denominators, one can show that the latter 
equation is equivalent to a polynomial of σ2, which may have several roots. 

Another comment pertains to the domain of maximization. Following the idea of 
Section 2.15.2, we could maximize I over its entire domain, which is σ2 > — mina2, 
and then after maximization is complete, take max(0,a2), where σ2 is the point of 
its absolute maximum, but this does not work for function (5.10). Indeed, without 
loss of generality (after re-indexing) we can assume that σ\ < σ\ < ... < σ2. Let 
σ\ — mina2 < σ| , so that the domain of I is {/? G R1} x {σ2 > - σ 2 } . Then, letting 
σ2 —> — σ\ and β = yi, we find that I —> +oo, and therefore the maximum cannot 
be achieved. Thus, during the maximization procedure, one has to be sure that at 
each iteration σ2 stays nonnegative. 

The negative expected Hessian matrix for the log-likelihood function, called the 
information matrix, is given by 

-E(H) = 
0 

n l 
t = l σ2+σ? 

o 1 
1 spn i 
2 Z-W=l ( σ 2 + σ 2 ) 2 

Unlike the Hessian matrix H, the information matrix, X is always positive definite, 
and therefore the Fisher scoring (FS) algorithm is more reliable than the Newton-
Raphson algorithm. 



250 5. Meta-analysis Model 

By inverting the information matrix X, we obtain an asymptotic covariance matrix 
with a large-sample approximation to the variance of the heterogeneity parameter, 

v a r ( g 2
M L ) = 2 ^ ( t 7 2 +

1
a ? ) 2 ^ . (5.12) 

We notice that for the meta-analysis model, as for the LME model, the expected 
value of the cross-derivative is zero, and therefore the MLEs for ß and σ2 are 
asymptotically independent for large n. As follows from the general theory presented 
in Chapter 3, there are two consequences of this fact: 

1. Maximization of the log-likelihood function may be accomplished separately 
for β and σ2. 

2. All consistent estimators of σ2 lead to an asymptotically equivalent and effi-
cient estimation for /?, as the weighted average, 

Σ η / ^ 2 , 2 \ — 1 

= ,-ittfr +*i)\ (5.13) 

Σ Ι Ι ι ^ + σ?)-1 

Another property of the MLE is that ß-ML 1S unbiased, even in small samples, 
following the outline of Section 3.6, an apparently overlooked fact. Indeed, the 
unbiasedness of the MLE follows from the observation that a2

ML is a symmetric 
function of Vi = bi + e% and therefore that 

3 a ELlTIitâtL+oî)-1 

has zero mean. 
As follows from the information matrix, the lower Cramér-Rao bound for an 

unbiased β is 1/Σ)™=1(σ"2 + of)""1· Although we are not able to prove that esti-
mates considered below reach this bound, there is empirical evidence that β is quite 
efficient (see Section 5.1.4). 

Algorithms of log-likelihood maximization 

Now we discuss computational issues of the log-likelihood maximization. As men-
tioned above, since the information matrix is block diagonal, the FS algorithm leads 
to separate maximization over β and σ2 : 

, t = i ^ + < 7 i / ΤΞ[σ8+< 
- 1 

^ 2 ^ 2 
σ*+1 = 

s2-+^WT^j Σ 
i=l 

(Vi-ßs)2 

(σΐ+σ^ σ* + σ! 

(5.15) 
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where s is the iteration index. Equation (5.14) can be rewritten as 

- 1 

ß. s+l 

t'*l + °V 
(5.16) 

which takes the form of the weighted average (5.3) for σ2 = σ3. Equation (5.15) 
takes the form 

' s + l 

= Σ ;κ+<Ί)2, 

Σ 
2 = 1 

n 

Σ 
i = l 

dl 
+ 

{yi-ßs? 
Ψΐ + σΙΥ (Κ + σ^ σΐ + σϊ 

(yi-ßs)2-*! 
(σΐ + σ2)2 

(5.17) 

with a good start σ0 = 0. Iterations (5.15) and (5.17) may use the updated value 
ßs+1 instead. 

It is easy to prove that function I attains its maximum at ß G R1, σ2 > 0 if and 
only if yi ^const, in compliance with Theorem 4 in Section 2.5. However, a positive 
solution for σ2 may not exist. Below we formulate a sufficient condition that the 
MLE for σ2 is positive. It is similar to Theorem 5 in Section 2.6. 

Theorem 28 The MLE for σ2 in a meta-analysis model (5.2) is positive if 

(yj-ßo)2 . y - i Σ (5.18) 

Proof. Following the line of the proof of Theorem 5, we notice that the MLE is 
positive if the derivative dl/da2 is positive at σ2 = 0, that is, when (5.18) holds. 
Since the minimum of I at σ2 = 0 is attained at β = /30, there exists a σ\ > 0 
that makes the log-likelihood function greater than that at σ2 = 0. Therefore, the 
maximum of I is attained at an inner point of the set {β G (—oo, oo), σ2 G [0, oo)}, 
i.e., a2

ML is positive. 
■ 

One of the first methods used to maximize function (5.10), suggested by Pockock 
et al. (1981), has the fixed-point form (2.122), 

2 _^Yri=M + °s)-2(yi-ßs) 
°S+l = σ 

ΣΙΙι(^ + σ2)-ι 
5 = 0 , 1 , . . , (5.19) 

where ßs is recalculated by formula (5.16). Berkey and Laird (1986) showed that 
this algorithm can be derived via the EM algorithm. If we denote Α(σ2) as the 
right-hand side of equation (5.19), we can see that R(0) = 0, and using (5.6), we 
obtain l?(oo) = n~x ΣΓ=ι(2/* ~V)2- Hence, in view of Section 2.12.1, for the Pockock 
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algorithm (5.19) it is reasonable to start from σ% = Σ{ν% — y)2/n. Note that we 
cannot start from zero in (5.19) as in the FS algorithm (5.15), because zero is a 
fixed point of R. As follows from Chapter 2, the Pockock algorithm converges slowly 
if the MLE for the random effect variance is close to zero. For this reason, we prefer 
the FS algorithm (5.17). 

The R code below computes the ML estimates for β and σ2 using Fisher scoring 
iterations (5.17); array y contains values yi and array sigma2i contains values σ2. 
It does not restrict the variance to be positive. Of course, if the output sigma2ML 
is negative, we set the estimate to zero. 

metaMLFS=function(y, sigma2i,maxiter=10,eps=10~-7) 

{ 
#Fisher scoring algorithm for simple meta-analysis model 

n = length(y) 

w <- l/sigma2i 

sw <- sum(w) 

betaO <- sum(y * w)/sw 

sigma2ML <- 0 

for(iter in l:maxiter) 

{ 

w <- l/(sigma2i + sigma2ML) 

sw <- sum(w) 

sw2 <- sum(w~2) 

betaML <- sum(y * w)/sw 

sigma2ML.new <- sum(((y - betaML)~2 - sigma2ML) * w~2)/sw2 

if(abs(sigma2ML - sigma2ML.new) < eps) break 

sigma2ML=sigma2ML.new 

} 

return(c(betaML, sigma2ML)) 

Restricted maximum likelihood 

As follows from Section 2.2.6 for the RML estimation the augmented term has the 
general form —0.5 In |X / V~ 1 X| , which for the meta-analysis model takes the specific 
form — 0 .5 In^(σ 2 + σ2)~λ. Thus, the log-likelihood function for the restricted ML 
is 

Ιϋ(β,σ2) I n ^ + ^ + .fo-fl3 

σ2 + σί 
+ 1ηΣ(σ2 + σ?Γ1 

i=l 

(5.20) 

For the balanced model (σ2 = σ\ =const), we again have β = y-and 
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Characteristically, the RML estimator of the variance parameter in the balanced 
model is unbiased, unlike the ML estimator (5.11). However, in the unbalanced 
model, RML is biased. We will prove that for the balanced model the estimator 
(5.21) coincides with the method of moments and MINQUE. 

To maximize function (5.20), we need its derivatives, 

dl Ü — _I v^ 
3σ2 " 2 f-, 

2 = 1 

σ 2 + σ2 ( σ 2 + σ 2 ) 2 

(ν«-0)21+Ι_Σ>2 + *?)"2 

2Σ(^2 + ^ ) 2 \ - 1 · 

Since the information matrices for ML and RML coincide, the FS algorithm takes 
the form 

, Η ' ( 5 · 2 2 ) 

Σ(?.+σ*) 

with a good start, σ0 = 0. 
To derive a fixed-point version of the solution to 5Ζ#/οσ2 = 0, we rewrite this 

equation as 

f>2 + *rl - i £ ^ P = Σο* - « V + *?Γ2· 
Multiplying by σ2, we come to the following fixed-point iteration: 

5 + 1 " V - ίσ2 Ι σ 2 ^ Σ ( ^ + σ ? ) ^ ' * - 0 , l , . . . (5.23) 

The iterations always lead to a positive solution because the denominator is positive 
(yi T^const). Again, we cannot start iterations from zero; a good start is σ0 = i?(oo), 
where R is the right-hand side of (5.23) as a function of σ2. It is trivial to show that 
iî(oo) = Y^=i(yi — y)2/(n — 1)· Repeating the arguments of the proof in Theorem 
28, we come to a sufficient condition on the existence of positive $2

RML. 

Theorem 29 The RML estimate for σ2 in meta-analysis model (5.2) is positive if 

n n γ-νη - 4 

£^%-3ο)2>ΣσΓ2-φ£^%· 
i = i *=i 2 ^ i = i σ% 

Since the number of studies is usually small, we prefer RML over ML estimation. 

5.1.3 Quadratic unbiased estimation for σ2 

In this section we consider several quadratic unbiased estimations of the random 
effect variance. Estimation of σ2 plays the central role in the meta-analysis model 
because once σ is available, we apply the weighted least squares estimator (5.13). A 
characteristic property of the quadratic unbiased estimation is that it is distribution-
free: a very attractive property, especially for a small number of studies. 
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Further, it will be easier to handle the meta-analysis model by rewriting it in 
vector notation as 

y = / 3 l + 77, Ε(η) = 0, cov(r/) =σ21 + Λ = V, (5.24) 

where Λ =diag(a2,..., σ2 ) and 1 = (1, . . . , 1)'. 

Variance least squares estimator 

The VLS estimator, introduced in Section 3.12, is perhaps the easiest way to es-
timate variance parameters, particularly the heterogeneity parameter in the meta-
analysis model. Following the outline of that method, we estimate β by (5.5) or 
(5.6) and find residuals e2- = yi — β. The empirical variance is e2 and the theoretical 
variance is σ 2 +σ 2 . Therefore, to find σ2 we minimize the sum of squares of residuals 
between empirical and theoretical values, the same as ia the ordinary least squares 
approach but applied to variances using squared residuals. Hence, according to this 
method, σ2 minimizes the sum of squares X^(e2 — σ2 — σ2)2 , which leads to 

-VLS=l-±4-l-±al (5.25) 
i=l i=l 

This estimator is a quadratic function of yi but a biased estimator of σ2. Unbiased 
estimation is described below. 

Method of moments 

Following the line of the method of moments (MM) estimation theory, earlier applied 
to the LME model in Chapter 3, we proceed as follows: 

1. Take an unbiased estimator, β0 or /31? as the weighted or unweighted MM 
estimator, respectively. 

2. Construct the sum of squares of residuals. 

3. Take the expectation of the sum from step 2. 

4. Solve for σ2, equating the empirical sum to its expected value. 

It is important that we not assume a distribution of the error term since we deal 
only with the first two moments. We start with the unweighted version of MM and 
take the simple average estimator y = βλ = Σ™=1 Vi/n with the empirical sum of 
squares J2(yi — y)2· It is easy to see that in matrix notation 

Now we calculate the expected value of this sum of squares using the formula for 
the expected value of the quadratic form (Graybill, 1983; Schott, 1997), Ε(η'Αη) = 
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tr(Acov(/7)). We have 

= Ey' ( ΐ - ^ ΐ ΐ ' ) Y =E [(ßl + v)' ( i - n ^ l l ' ) {βΐ + η)} 

= Εη' ( l - n - 1 l l ' ) η =t r [ ( l - n - 1 l l ' ) cov(t/)] 

= trcov{ri)— η~1ΐ'οον(η)1 =ησ2 + Ύ2σί ~η~1(ησ2 + /]σ%) 

= (Ι-η-^ησΐ + Σ*2)· 

Next, we equate the empirical sum to its expected value, 

and solve for σ2, which yields the Unweighted MM (UMM) unbiased estimator of 
the random effect variance, 

aUMM 
n 

- n i n 

(5.26) 

The UMM estimator is close to the VLS estimator with β = y, but the former is 
unbiased, unlike the latter, because n — 1 is used in the denominator. 

Now we^derive the weighted MM estimator based on the weighted least squares 
estimator β0. The weighted sum of squared residuals is 

ΕσΓ2(^-Α>)2, (5.27) 
i = l 

where β0 is defined in (5.5). We can write (5.27) in matrix form by denoting 
w = (σ^2, . . . ,σ~2)'; then β0 = w ' y / w ' l and 

E-T\m-ßo? = y' ( i -^wi ' ) A-* ( i - ^ i w ) y. 

Since ( I — ^ j l w r ) 1 = 0, the expectation of (5.27) becomes 

E{ßl + „)' ( i - i l w - ) A"1 ( i - ^ . Ι ' ) (βΐ + η) 

KI-»A1I-îrrt>] 
;(I-^WI')A-(I-^W)V] 

σ2 + σ2 1 ν ^ q-j + σ2 

= (η-1) + σ2(Έσ: 

= Ε 

= tr 

= Σ 

Σ* 
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Equating it to the empirical sum of squares, we come to the weighted MM unbiased 
estimator, 

WMM * y » _Ύ-2 Σ Γ . , " ^ ' ( 5 ' 2 8 ) 

as derived by DerSimonian and Laird (1986) and later used by Berlin et al. (1989) 
and Hardy and Thompson (1998), among others. The denominator is always positive 
for positive σ2, as follows from the elementary inequality (]ζ α^)2 > ]Γ a2 for positive 
{Oi}. 

M IN QUE 

The Minimum Norm Quadratic Unbiased Estimation (MINQUE) theory was ap-
plied to the LME model in Chapter 3 to estimate variance parameters. We can 
apply this theory to the meta-analysis model. Thus, we seek an unbiased quadratic 
estimator for σ2 in the form 

σ2 = y ' A y - c , (5.29) 

where the nxn symmetric matrix A and scalar c are found to make this estimator 
unbiased, with matrix A having minimum norm. We start with the calculation of 
the expectation, 

£ (y 'Ay) = E [{βΐ + η)Ά(β1 + η)] = β2ΐ'Α1+ϋ{Αοον(η)) 
η η 

= β2 Σ Αίό+σΗτ{Α)+Υ^Αασ}. 

After matrix A is found, we set 
n 

ο = Υ^Αί{σΙ (5.30) 
i = l 

To make σ unbiased, we need to chose matrix A such that 

n 

tr(A) =1 , ] T Ai:j = 0. (5.31) 

Following the outline of the MINQUE theory, we find an A that minimizes the norm 
of the matrix, tr(A2) = min. To solve this optimization problem, we introduce the 
Lagrange function as we did in Section 3.10, 

C{A,hM) = ^tr(A2) - Zi(tr(A) - 1) - fcl'Al, 

where l\ and I2 are Lagrange multipliers. The first-order condition for the minimum 
is 

-^ = A-hl-hlï = 0, 

which gives 
A =ZiI+I 2 l l ' . (5.32) 
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The first condition of (5.31) gives a linear equation 

tr(ZiI+Z2ll') = hn + l2n = 1. 

The second condition of (5.31) gives l\n-\-l2n2 = 0. Solving the system of two linear 
equations for l\ and l2 yields l\ = l / (n — 1) and I2 = —l/(n(n — 1)). Substituting 
these values back into (5.32) finally gives the MINQUE matrix, 

n—l\ n ) 

Noting that for this matrix An = 1/n, we finally find the MINQUE for the variance 
of the random effect, 

i—1 i—\ 

As the reader can see, the MINQUE coincides with the unweighted MM estimator, 
(5.26). 

There is a general problem with estimation of variance components—the esti-
mates may be negative; e.g., Searle et al. (1992). When using maximum likelihood 
we set σ2 = 0 if an iteration leads to a negative number. We do the same with 
quadratic estimation truncating as 

GUMM — niax(0, συΜΜ), crWMM = max(0, &WMM). (5.33) 

The problem with these estimators is that they lose unbiasedness! Indeed, they 
become slightly positively biased; in particular, this bias is seen for small σ2 (see 
the simulations below). 

Variance estimation comparison 

Which MM estimator of σ2, unweighted or weighted, is better? Unfortunately, it is 
impossible to answer this question categorically because there is no estimator that 
is uniformly better, in terms of the MSE, over the entire range of σ2 even if the 
distribution is known (normal). In particular, as shown in this section, the WMM 
estimator is preferable for minor heterogeneity and the UMM estimator is better 
when studies vary significantly. To compare the estimators it is convenient to specify 
the distribution; namely, it is assumed that the distribution of yi is normal. 

First, we compare the Mean Square Error (MSE) of the two quadratic unbiased 
estimators (5.26) and (5.28). Since these estimators are unbiased, the MSE is equal 
to the variance. We use the following fact on the variance of the quadratic form 
(Graybill 1983, p. 367): If y ~ΛΓ(μ, V) then 

varfr'Ay) =2ir(AV)2 + 4μ 'ΑνΑμ. (5.34) 

For model (5.2) μ =/31, V =σ 2 Ι + Λ, and 

AUMM = ^ 3 ^ (l--ll,j , AWMM = C (A"1 - ^ w w ' J , (5.35) 
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ω o c 
Co 

1 

Weighted MM estimator 
Unweighted MM estimator 

Heterogeneity parameter 

FIGURE 5.2. Variances of the weighted and unweighted MM estimators of the hetero-
geneity parameter σ2 in a typical meta-analysis model. As we see, the WMM is better 
for small σ2; however, for large σ2, the unweighted version outperforms. The estimators 
peform equally around σ2 = 2 in this particular example. 

where 

c-fa?-
- 1 

Σ*Γ 
Σ*Γ 

It is easy to see tha t ( Σ σ Γ 2 ) 2 > £ ] σ ^ 4 for any positive {ai}. Since for bo th 
estimators A l = 0, the second term in (5.34) vanishes so tha t the variance is a 
quadrat ic function of the heterogeneity parameter, 

i v a r ( y ' A y ) = tr [ ( Α Λ + σ 2 Α ) ( Α Λ + σ 2 Α ) ] 

= t r ( A A A A ) + 2 a 2 t r ( A 2 A ) + a 4 t r ( A 2 ) 

= q0 + 2<?ισ2 + q2a
4. 

Straightforward algebra gives 

,2 

Qo 

Q2 

n — 2 ^ 2 1 /γ^ 2y 

η(η-1)2^σ< + n2(n-l)2 U ^ V 

3ηΣσ*' n(n — 1) 

1 

n - 1 ' 
(5.36) 
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FIGURE 5.3. Comparison of four estimators for σ2 via Monte Carlo (100,000 simulations). 
RML and WMM are very close. The slight positive bias for small heterogeneity parameter, 
σ2 is due to the restriction σ2 > 0. For relatively large heterogeneity the bias vanishes. 
Interestingly, ML MSE is less despite the bias. 

for the UMM estimator, and 

q0 = C 2 ( n - 1 ) , 

for the WMM estimator. In Figure 5.2 the variances of WMM and UMM estima-
tors are shown as functions of the heterogeneity parameter σ2. The graph confirms 
MINQUE theory: For large σ2, the unweighted version is better, but for small σ2 

the estimator &WMM outperforms συΜΜ. Since we do not expect that studies are 
very heterogeneous (otherwise, pooling would be quite questionable), we prefer the 
weighted version. 

Second, we compare quadratic against maximum likelihood estimation. Since 
there are no closed-form formulas for the variance of MLEs in a small sample, we 
need to use simulation. In Figure 5.3 one can see the comparison of four estimators 
of the heterogeneity parameter σ2 (the number of studies is n = 10, and σ2 are in 
the range (0,1)). As was mentioned above, the MLE is generally negatively biased. 
A slight positive bias for small σ2 is due to the censoring procedure (5.33); this is 
also true for ML (we force σ2 to stay nonnegative during likelihood maximization). 
Also, we notice that RML and WMM estimators are very close. Our choice is to 
estimate the variance of the random effect by weighted MM because it is close to 
RML for normal distribution and probably would perform well for a nonnormal 
distribution as well (it is at least unbiased or slightly biased for small σ2 if the 
censored version is used). 



260 5. Meta-analysis Model 

5.I.4 Statistical inference 

There are two major statistical questions in the framework of the meta-analysis 
model: 

• Are studies homogeneous, σ2 = 0? 

• Is the common treatment effect statistically significant, β = 0? 

If the {ε^} are normally distributed, there is a test for σ2 = 0 with the exact 
significance level suggested by DerSimonian and Laird (1986). If random terms are 
not normally distributed, we use kurtosis to provided a test for homogeneity when 
the number of studies is relatively large. To test β = 0 and construct aj:onfidence 
interval with the confidence level specified, calculation of the variance for β is crucial. 

Exact normal 
Approximate normal 
Uniform 
Double-exponential 

0 m 

S 

— 1 

6 

Number of studies, n 

"~Γ" 
10 

FIGURE 5.4. Four critical values versus number of studies, n in the meta-analysis model. 
Normal asymptotic approximation is fairly good. The higher the kurtosis, the greater the 
critical value. The highest critical values have the double-exponential distribution, which 
is not surprising because it has heavier tails. Approximately, conservative critical values 
are 50% higher than for the DerSimonian and Laird test. 

Test for homogeneity 

The importance of this test is obvious: If studies are homogeneous (σ2 = 0), there 
is no statistical problem in estimating β because (5.5) would be the best estimator. 



5.1 Simple meta-analysis model 261 

The x2-test is based on the observation that if σ2 = 0, then, under model (5.2), 
V% ~ J V ( / 3 , σ2) and, consequently, 

Q = f > r 2 ( w - β0γ ~ χ\η - 1), (5.38) 

where β0 is the weighted mean, (5.5). This test, based on the Q-statistic (5.38), was 
suggested by DerSimonian and Laird (1986). Indeed, under the null hypothesis, 
HQ : σ2 = 0, we can rewrite the meta-analysis model as z ~ Ν(βχι,1), where 
zi = yia^1 and X{ = aj1. Therefore, statistic (5.38) can be represented as 

Q = f > - ß0Xi)2 = ε' ( i - J - « / ) ε, (5.39) 
i = i v l | X | 1 J 

where β0 is the OLS in regression z on x, ε ~Λ/"(0,Ι) and χ =(χ ι , ...,χη)'· It is a 
standard result of regression theory that the quadratic form Q has %2-distribution 
with n — 1 degrees of freedom, e.g., Searle (1971a). If there is a random effect, the 
value of the sum will be greater than the critical value of the %2-distribution and 
we reject the hypothesis H0 : σ2 = 0. Thus, the %2-test works as follows: If χ2_α 

is the (1 — a)th quantile of the %2-distribution with n — 1 degrees of freedom, one 
rejects HQ if Q > χ2_α, where a is the significance level, e.g., a = 0.05. There 
are two merits of this test. First, it has the exact probability of the type I error 
(size), a. Second, it does not depend on the distribution of the random effect-an 
attractive feature, keeping in mind that the number of studies (n) is usually not 
large. However, as indicated by Hardy and Thompson (1998), this test may have low 
power. Several other tests on homogeneity have been compared by Takkouche et al. 
(1999), but it was concluded that (5.38) is the overall best choice if the underlying 
distribution is normal. Biggerstaff and Tweedie (1997) compute the variance of Q 
and approximate it with gamma distribution. 

Now we investigate the distribution of the Q-statistic when the distribution of 
yi is not normal, which may happen when the sample size in each study is not 
big enough to apply the Central Limit Theorem (CLT). We derive the asymptotic 
distribution assuming that the number of studies is large. Assuming that the {si} 
are iid with common distribution and have kurtosis κ for large n, we have 

Q - j V ( n , ( t t - l ) n ) . (5.40) 

Recall that the kurtosis of a random variable X is defined as E(X4)/vai2(X). For 
example, for normal distribution kurtosis it is 3, for uniform distribution kurtosis it 
is 1.8 and for double-exponential distribution kurtosis it is 6. The kurtosis for sym-
metric distribution characterizes how sharp the density is around zero. The sharper 
the density at zero, the heavier the tails are. Thus, using (5.40) and providing tt, one 
rejects HQ : σ2 = 0 if Q is greater than the (1 — a)th quantile of the normal distrib-
ution λί(η, (κ — l)n). To see how the critical value depends on the kurtosis, we plot 
it versus the number of studies in Figure 5.4. The first critical value is for Q-test 
(5.38), χ2_α, assuming that the {ε*} have normal distribution. The rest is based 
on the distribution approximation (5.40); the second critical value is the (1 — a)th 
quantile of Λ/*(0,1); the third and fourth critical values are for uniform and double-
exponential distributions with kurtosis 1.8 and 6, respectively. As follows from this 
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graph, the critical value for Q may be 50% higher for a nonnormal distribution. 
Hence one may infer that, conservatively, if the value Q is greater than 1.5χι_α in 
test (5.38), the studies are heterogeneous even for distribution with heavy tails. 

Exact confidence interval for σ2 

The exact CI for σ2 can be found using the pivotal quantity, Shao (2010, p. 471), 

n^^t^S1, (MD 
z = l % 

where β = β{σ2) is given by (5.3). A function of the data and the true parameter is 
called pivotal if its distribution does not depend on the true parameter. The exact 
confidence interval is obtained as the quantile inverse. 

As follows from the previous considerations, Ρ(σ2) ~ χ 2 (η — 1) for the true σ2, 
i.e. does not depend on σ2. Thus, the interval (0,au) will cover the true σ2 with 
probability 1 — a, where σ2 is the solution to the equation Ρ{σ2) = χ2 (η — 1), 
the 100a% quantile of the chi-distribution with n — 1 d.f. We set σ2 = 0 if P(0) < 
X2 (n — 1). The latter equation can be solved iteratively using the Newton algorithm 
starting from σ2 = 0. Usually, the convergency is fast and requires 3-4 iterations. 

Below we display the R code for computation of the upper bound d2
u as the 

solution to the equation Ρ(σ2) = χ2 (η — 1) using Newton's algorithm. In this code, 
y contains array yi and s2i contains array σ2. The exact double-sided CI for σ2 is 
found from equations Ρ{σ2) = xl_a/2(

n ~ 1) a n d P(&2) = χ2 ,2(n — 1); the same R 
code ups2 can be used for this purpose. 

ups2=function(y,s2i,alpha=0.05,maxit=10,eps=0.0001) 
{ 
m0=sum(y/s2i)/sum(l/s2i) # 3(0) 
cffO=sum((y-mO)A2/s2i) # P(0) 
n=length(s2i) 
qc=qchisq(alpha,df=n-l) #χ 2 (η —1) 
if(cff0<=qc) return(O) 
TL=0 

f o r ( i t e r in l :maxit) 

{ 
mut=sum(y/(TL+s2i))/sum(l/(TL+s2i)) # β(σ2) 
dbdl=-l/sum(l/(TL+s2i))*sum(y/(TL+s2i)A2) 
dbd2=sum(y/(TL+s2i))*sum(l/(TL+s2i)A2)/sum(l/(TL+s2i))A2 

dbd=dbdl+dbd2 # derivative 3 
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pl=-2*dbd*sum((y-mut)/(TL+s2i))-sum((y-mut)A2/(TL+s2i)A2) 

# de r iva t ive Ρ'(σ2) 

PS2=sum((y-mutr2/(TL+s2i)) # Ρ(σ2) 

TLL=TL-(PS2-qc)/pl # Newton's i t e r a t i o n 

if (abs(TLL-TL)<eps) break 

TL=TLL 

} 
r e tu rn (TL) # d2

u 

Efficiency and estimation of the variance of β 

As mentioned before, the ML, RML, or MM estimators of the heterogeneity vari-
ance, σ2, lead to unbiased estimation of the common treatment effect, 

β~ ΣΪ-χ^ + ^ ) - 1 ~ß+ Σ Γ ^ ^ + σΙ)-1 ' ( } 

Indeed, since these estimators of σ2 are symmetric functions of η = (η^ ..., ηη)', we 
deduce that the second term in (5.42) has zero mean, and therefore β is an unbiased 
estimator of β for any n. Is β efficient; that is, does its variance reach the Cramér-
Rao bound 1 / Σ ( σ 2 + σ 2 ) - 1 ? We are not able to prove or disprove the efficiency, 
but the following simulations demonstrate that the efficiency is quite high. In Figure 
5.5 we show the results of 100,000 simulations with real-life data from Berkey et 
al. (1995) on skin cancer, n = 13. For each value of the heterogeneity variance σ2, 
we generated 100,000 data with 13 points {yi,i = 1,2, ...,13}, where β — —0.74 
and σ\ ranges from 0.004 to 0.54. For each data set, we computed σ ^ Μ Μ and 
β. The theoretical value/variance is the Cramér-Rao bound 1/Χ^(σ2 4- σ"2)-1, the 
empirical value is the sample variance of β, and the estimated value is the average 
of l/]C(cr2 + ^WMM)-1- AS follows from the left-hand graph, the variances are 
almost indistinguishable. On the right-hand graph we show the percent difference 
from 1/ ΣΧ<τ2 + σ 2 ) - 1 . As we see, the empirical variance is slightly higher and the 
estimated variance is slightly lower than those of the Cramér-Rao bound, within 
±3%. 

Theorem 30 Let σ be any unbiased estimate of the heterogeneity variance σ2 in 
the meta-analysis model (5.2). Then 1/]ζ(σ2 + σ 2 ) - 1 underestimates the Cramér-
Rao lower bound l / Σ Χ σ 2 + ^ 2 ) - 1 if ^1 ^const. 

Proof. We need to show that 

We shall show that Φ(σ2) = 1 /Σ" = 1 (σ 2 + σ 2 ) - 1 is a concave function of σ2, i.e., 
the second derivative is negative. It is elementary to take the second derivative, 

<22Φ 2 
d°2 Œ>*)3 (Σ-?) -(Σ«.)(Σ«0 (5.43) 
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FIGURE 5.5. Estimation of the variance of ß based on the weighted MM estimator for the 
heterogeneity parameter/variance σ2 for Berkey et al. (1995) data (the number of simu-
lations is 100,000). The empirical variance is slightly higher than the theoretical variance 
(Cramér-Rao bound). 

where Wi = 1/(σ? + ^ 2 ) - 1 ? i = 1,2, ...,n. But the right-hand side of (5.43) is 
nonnegative due to the Cauchy inequality, 

(Σ-*2)2 = (E^V3/2)2 * (Σ«0 (Σ«0 · 
We note that the equality takes place if and only if Wi =const, i.e., when σ\ =const. 
Then, by the Jensen inequality for a concave function, 

1 1 1 

Ë Ï L x F T ^ F < T^iiES* + σ?)-ι " Σ ^ ι ί ^ + σ ? ) - 1 ' 

which proves our statement. 
■ 

Our simulations confirm the underestimation of the Cramér-Rao bound; see the 
right-hand graph in Figure 5.5, where the dashed curve is below the zero line. 

Hypothesis testing for the common effect, β 

We aim to test the hypothesis HQ : β = 0 and construct the confidence interval for 
β. The situation with this statistical inference is more complex. Assuming that n is 
large, we use the Wald test and take the ratio 

Z = JL = Σ Κ ^ + Ο - 1
 Ä m i). (5.44) 

The Z-test works as follows: if \Z\ > Ζι_α/25 where Zi_a/2 is the (1 — a/2)th 
quantile of standard normal distribution, HQ : β = 0 is rejected with significance 

Theoretical 
Empirical 
Estimated 

0.6 0.8 1.0 

Heterogeneity parameter 
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Q-Q plot of Z-statistic 

FIGURE 5.6. Distribution of Z-statistic in a meta-analysis model with real-life data 
(Berkey et al., 1995). n = 13; based on 100,000 simulations; weighted method of moments 
(WMM) as the estimator of σ2. The distribution is close to normal. 

level a. In particular, an approximate 95% CI for β is (β — 1.96^,/? + 1.96-y/ï;), 
where 

1 
v = 

Σ ^ + '?)"1 

is the estimated variance of ß. Note that the Z-test may be applied with any es-
timator of σ2, such as RMLE or WMM. A natural question is whether Z has a 
normal distribution. In Figure 5.6 we plot the estimated and Λ/*(0,1) density with 
the Q-Q plot for the Berkey et al. (1995) data from 100,000 simulations. As we see, 
the normal approximation is quite accurate. 

The power function for testing the beta-parameter is reported in the paper by 
Jackson (2006). 

Profile-likelihood confidence intervals 

Several authors have demonstrated that a profile-likelihood confidence interval (CI) 
performs better than the Wald CI: Its coverage probability is closer to the nominal 
and its CI is more narrow, e.g., a profile-likelihood CI in nonlinear regression was 
used by Bates and Watts (1988). The reader is referred to Section 3.4 for a general 
discussion of the profile-likelihood CI construction. We can easily adopt a profile-
likelihood CI to meta-analysis by considering the profile log-likelihood, 

ιΡ(β) = -ΐΣ 
i=l L 

1η(σ2(/?) + σ2) + (m-ß? 
σ2(β) + σΙ 
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where σ2(β) maximizes the log-likelihood (5.10) holding β constant (Hardy and 
Thompson, 1996; Brockwell and Gordon, 2001). Then the left and right bounds 
for the (1 — a) 100% CI are the pair of solutions to the equation lp(ß) = /max — 
0·5χι_α(1), where χ2_α(1) is the (1 — a)th quantile of the chi-squared distribution 
with 1 degree of freedom. Simulations reported by Brockwell and Gordon (2001) 
show that profile-likelihood CIs are closer to nominal probabilities, although for 
small n and large σ2 it may be a few percent off. 

Asymptotic equivalence 

We know that for the LME model all GLS estimates are asymptotically equivalent 
and efficient if a consistent estimator for the covariance matrix of random effects is 
used, see Section 3.15. The same holds for the meta-analysis model: All consistent 
estimators of σ2 in place of σ2 in (5.13) lead to the same asymptotic distribution, 

βη^λί(β η / 2 + { 7 2 N - I J I n->oo, (5.45) 

where the subscript n is used to emphasize its dependence on the number of studies. 
It is assumed that for the meta-analysis model (5.1), {si} and {bi} are iid (they 
may have different distribution). Probably the easiest way to prove (5.45) is to 
employ the Slutsky theorem, see Appendix 13.1.2. Under the deterministic scheme 
of Section 3.6.2, we assume the following conditions on {σ2}: (a) there are two 
positive constants a < A such that a < σ2 < A for alH = 1,2,... and (b) for any 
nonnegative σ2 there exists a limit l i m n - 1 Σ™=1(σ2 + σ 2 ) - 1 = Τ(σ2). Then, since 
ηί are independent from the CLT Theorem (see Appendix 13.1.1), it follows that 
for any fixed nonnegative σ2, 

Thus, using any consistent estimator ση will lead to the same distribution. Under 
the stochastic scheme we assume that σ2 are random, then the asymptotic properties 
follow from the M-estimation theory. 

5.1.5 Robust/median meta-analysis 

There is a controversy as to what studies can or cannot be included in meta-analysis 
(Davey-Smith, 2001). This is partly explained by the fact that some studies may 
be so different from the bulk that an outlier effect can happen. Indeed, when the 
number of studies (n) is fairly small, one or two outliers may dramatically change 
the outcome of the meta-analysis. Although random effect accounts for heterogene-
ity, in the presence of an outlier the estimate σ becomes inflated and statistical 
significance drops. In this section we develop a robust meta-analysis that copes 
with outliers. The theme of robust estimation for a linear mixed effect model was 
discussed in Section 4.4. Here we take a more specific approach, which leads to 
convolution of the double-exponential and normal distributions. 

The motivation of the robust/median meta-analysis is as follows. In many situa-
tions, individual studies are accomplished based on a large sample, and therefore we 
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FIGURE 5.7. Left tail of the normal and Laplace-normal distributions with the same 
variance. The latter has a heavier tail. For instance, the difference on the x-axis is more 
than 1 for the density value 0.0025. Thus, the Laplace-normal distribution is more robust 
to outlier studies. 

can expect normal distribution for the Si in model (5.1), due to the CLT. However, 
there is no indication that random effect bi also has normal distribution (this is 
just a convenient assumption). In particular, the distribution of the random effect 
may have heavy tails. A well known distribution with heavy tails is the double-
exponential, or Laplace distribution with density 0.bue~^x~^. Also, it is known 
that the maximum likelihood estimate of μ in Laplace distribution is the median, 
a robust estimate of the location parameter (Huber, 1981; Lehmann and Casella, 
1998). Thus, a reasonable distribution for the random term in the meta-analysis 
model is the convolution of the normal and Laplace distributions. This distribu-
tion, called Laplace-normal, has heavier tails and therefore, will be less sensitive to 
outlier studies. In Figure 5.7 we depict the left tail of two distributions with the 
same variance (since the Laplace-normal distribution is symmetric, it is sufficient 
to depict only the left tail). The Laplace-normal distribution has a heavier tail and 
the difference on the x-axis is greater than 1 for the density value 0.0025 (horizontal 
line). 

Now we specify the Laplace-normal distribution density. As discussed above, it 
is assumed that the study-specific error term Si has normal distribution and the 
random effect bi has Laplace (double-exponential) distribution, 

ε^-Λ^Ο,σ,2), &<~£(0,ι/), 
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where the latter means that the density of bi is ue~l'^/2 with variance 2/v2. It 
is assumed that the random effect and study-specific errors are independent, and 
therefore the density of the sum 77̂  = εζ + bi is the convolution, 

f00 v 
Pr>i (X) = / Pbi (u)Pei (X - U)du = = (h + J2), 

J-oo AGiy ΔΈ 

where 

h=L·exp {vu " {±w~)du' h=Lexp {~vu " i £ ^r) d u -
After some algebra we arrive at the following density for the combined error term 

(5.46) v,M) = Yha>* rtl^+e-^^— 
<Π 

where Φ denotes the cdf of JV(0, 1). Notice that this density is symmetric around 
zero and has continuous first and second derivatives, unlike the Laplace density, 
with the variance σ\ + 2/z/2. The log-likelihood function for model (5.1) with the 
error term bi + Si distributed as (5.46) takes the form 

- n n 

Wu) = η1ηΙ/+-ι/253<τ? + 5^1η{^««-«Φ[_ Ι /σ._σΓΐ( ΐ,<-^)] 
2 = 1 2 = 1 

+β- | /^-«Φ[σΓ1(ΐ/< -β)~ ι/σ<]}. (5.47) 

To maximize this function, we need first derivatives. To shorten the notation, we 
introduce 

Ei = e"<"-« , Gi = E&il+Er1<l>i2 

Φ<ι = Φ[-ι/σί-σ^1(νί-β)1 Φί2 = Φ[σ~1(νί-β)-νσί], 

so that the log-likelihood (5.47) can be rewritten as 

i n n 

i(/3, i/) = ralni/ + -*/2 ] £ σ ? + ] T l n ( ^ Φ α + £ ? r ^ i 2 ) . (5.48) 
2 = 1 2 = 1 

It is easy to derive 

w = " " * ■ ^ = < * - « * · ■ 

9Φί2 _ ι , 9Φί2 , 
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where φ is the density of the standard normal variable. The first derivatives are 

i=l 

+„β-"<»»-0Φ,2 - ar14>t2e-v(*-n]Gr1, (5.49) 
r\, n n 

j£ = ^ + ^σ^-Υ/[σίΕίφα-(νί-β)ΕίΦα 

+(yi - ß)E~^i2 + aE- ValGT1· (5-50) 

Principally, the log-likelihood function (5.48) can be maximized by any algorithm 
described in Chapter 2. We will use the Empirical Fisher scoring (EFS) algorithm 
where the information matrix is approximated by the sum of first-order derivatives 
(see also Appendix 13.3.4), 

' ß' 
1 v 

β+1 

' β' 
V . + λ ' ( 

Γ ai Ί 

L dv J 

Γ àl 1 

L dv J y Γ & 1 

% 
L dv J 

The derivatives are evaluated at (/3S, i/s) and λ5 is chosen such that the log-likelihood 
function increases at each iteration, s = 0,1,2,.... A good starting point for μ is the 
median and VQ = -s/2/σ, where σ is an estimate from the standard meta-analysis 
model. 

The robust/median maximum likelihood "maximization algorithm described above 
is realized in R as function 

RobustMedianML(b,y,si,nu,maxiter=100,eps=0.0001) 

The arguments of this function are: b is the initial value of the beta-estimate (can 
be taken as the regular ML estimate), y is the array of yi values, s i is the array of 
Gi values, and nu is the initial value for v (can be taken as VQ). Use 

source("c:\\MixedModels\\Chapter05\\RobustMedianML.r") 

to download the function. 

Tuberculosis example 

We use the data from Berkey et al. (1995) on the efficacy of the BCG vaccine for 
the prevention of tuberculosis from 13 studies, see Figure 5.8. The data are in the 
file BerkeyMeta.txt; use the command 

read.table("c:\ \MixedModels\ \Chapter05\\BerkeyMeta.txt") 

to open the file (it contains 13 values of yi as the LOG odds ratios and σ;). As one 
can see from this graph, studies are quite heterogeneous, and thus the robust/median 
approach may be appropriate. These data will also be used in the next section to 
illustrate the meta-analysis model with covariates. The results of ML estimation of 
the robust/median meta-analysis model and restricted ML are presented in Table 
5.1. RMLE is obtained by applying iterations (5.22). 
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Table 5.1. Results of estimation of the meta-analysis model by the restricted ML 
and robust/median method using the data on the efficacy of the BCG vaccine for 
the prevention of tuberculosis (Berkey et al., 1995). 

RML Robust/Median 
μ v 2/u2 

Parameter 
SE 
Z-statistic 

-0.716 
0.180 
3.978 

0.314 
0.159 
1.976 

-0.679 
0.150 
4.527 

2.321 
1.594 
1.456 

0.186 

As follows from Table 5.1, the robust/median meta-analysis model gives a slightly 
higher value for the common treatment effect (μ). However, the Z-statistic, as the 
ratio of the estimate to its standard error, is higher for the robust/median model. 
Parameter 2/v2 gives an estimate of the variance of the random effect. One could 
explain the relatively better precision of the estimation in the robust/median meta-
analysis model by the fact that this model substantially reduces the random effect, 
0.186 versus 0.314. We speculate that this might be a common feature of the two 
models: When studies are heterogeneous, the standard meta-analysis model, which 
assumes a normal distribution for the random effect, inflates the variance of the ran-
dom effect, whereas the robust/median model, which accounts for possible outliers 
and heavy tails, estimates the variance moderately. This results in more efficient 
estimation of the common treatment effect, μ. 
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FIGURE 5.8. Data on efficacy of a vaccine from Berkey et al. (1995), 13 studies. 
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5.1.6 Random effect coefficient of determination 

The heterogeneity of the studies is reflected in the variance σ2. Unfortunately, this 
quantity cannot be used to compare different meta-analyses because it depends on 
the unit of measurements. Moreover, it is difficult to judge on the strength of studies 
heterogeneity because σ2 does not have the upper limit. In regression analysis, 
the coefficient of determination is a widely popular goodness-of-fit measure as the 
proportion of the variance of the dependent variable explained by the independent 
variable. An important property of the coefficient of determination is that its values 
are in the interval [0,1]. The aim of this section is to develop a measure for the 
meta-analysis model which takes zero value when σ2 = 0 and is closed to 1 when 
σ2 is large. The discussion in this section follows recent paper by Demidenko et al. 
(2012). 

The basis for construction of the measure for studies heterogeneity is the minimum 
of the sum of squares (5.9) as a function of σ2. When σ2 = 0 we have 

Q = E 
{Vi-ßof 

z = l 

the Q-statistic (5.38), and when σ2 —► oo we have min S —» 0. Therefore, the random 
effect coefficient of determination can be defined as 

Βξ = 1 - ^ ψ , (5.51) 

where 5min is the minimum sum of squares with the estimated heterogeneity vari-
ance, σ ; in other words, (5.9) evaluated at σ2 = σ .As the standard coefficient of 
determination, Ä2 refers to the sum of squares comparison with the values in the 
interval [0,1]. Indeed, the inequality Ä2 < 1 follows from the fact that the sum of 
squares is non-negative. To prove that i?2 > 0 it suffices to prove that 5ππη(σ2) 
defined by (5.9) is a decreasing function. Applying the chain rule for the derivative 
we obtain 

dSmia(a
2) = y (Vi - ß? γ ^ Vi - ß dß_ 

da2 ^ (σ2 + σ?)2 ^ σ2 + σ\ da2 ' 

But the second term vanishes due to (5.3), which implies that Sm[n(a
2) is a decreas-

ing function of σ2. We interpret Ä2 as the proportion of the variance of y explained 
by the heterogeneity of studies reflected in the random effect. When studies are 
homogeneous (the heterogeneity variance is zero), Ä2 = 0. When studies are highly 
heterogeneous, i?2 is close to 1. This coefficient can be used to compare the hetero-
geneity of different meta-analysis studies. 

Tuberculosis example (continued) 

We continue with the meta-analysis for tuberculosis vaccine studies reported by 
Berkey et al. (1995). The treatment effect with the 95% confidence intervals (hori-
zontal segments) is shown in Figure 5.9; note that the study index is on the y-axis 
compared to Figure 5.8. We start with resting the homogeneity of the studies using 
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the Q-statistic (5.38). In our case Q = 152 with the critical value 22 from the chi-
square distribution with 12 degrees of freedom; the p-value = 0. There is a strong 
indication of the presence of random effects. 

Now we turn our attention to computation of the random effect coefficient of 
determination. The original data (y = log OR) for each study are depicted in Figure 
5.9 by a circle, ancHhe data adjusted by the random effect are depicted by a cross, 
computed as y% — bi, an 'estimate' of ε .̂ The maximum likelihood estimate of the 
overall vaccine effect is β = —0.71 (OR = e - 0 , 7 1 = 0.49) with the heterogeneity 
variance a2

ML = 0.28 (ŒML = SE = 0.53) and 5min = 13.7 that yields R% = 
0.91. The 95% confidence band for the overall vaccine effect is shown as a shaded 
rectangle. We conclude that studies are quite heterogeneous because 91% of the 
variance of log OR can be explained by the random effect. The strong presence of 
a random effect is also seen from the figure—the LOG OR adjusted for the random 
effect substantially moves toward ero. This means that the deviation of studies from 
the mean is explained primarily by the studies' heterogeneity. 
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FIGURE 5.9. Log odds ratios from 13 studies of the tuberculosis vaccine effect with esti-
mation of the overall effect using the meta-analysis model. The studies are highly hetero-
geneous because R% = 0.91. 

Problems for Section 5.1 

1. Under what conditions on {of,i = Ι,.,. ,η} does not the estimator β depend 
on the heterogeneity variance, σ2? 

2. Find the ML estimator for σ2 when σ\ =const. 
3. Plot contours of the log-likelihood function (5.10) for several n using the 

contour function in R (generate σ\ using the chi-square distribution and compute 
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the log-likelihood function values on the grid of ß and σ2). Display the points with 
the true parameter value (/3,σ2) and the ML estimates where the log-likelihood 
function takes the maximum. 

4*. Reduce the ML estimation to finding roots of a polynomial, as suggested in 
Section 5.1. Find conditions under which the ML score equation has multiple solu-
tions. Using simulations, assess the chance to get multiple solutions as a function 
of n and σ2 (use the chi-square distribution to generate σ2). Compare the crite-
rion (5.18) with the exact computation of the number of different real roots of the 
polynomial. 

5. Does the reverse statement (5.18) hold, namely, if ^ M L > 0, does (5.18) hold? 
6. Assess the probability of (5.18) either analytically or via simulations for several 

n as a function of σ2. 
7. Which algorithm, the FS iterations (5.17) or Pockock (5.19), is better in terms 

of time to converge? Use simulated values for yi to write an R program for the 
comparison. 

8*. Is it true that the RML estimator of σ2 is always unbiased, i.e. is unbiased for 
unequal σ2 as well? Is it true that the RML estimator for σ2 is less biased than the 
ML estimator? Use simulations if this question is difficult to answer analytically. 

9*. Reduce the RML estimation to finding roots of a polynomial. Find conditions 
under which the RML score equation has multiple solutions. Using simulations, 
assess the chance to get multiple solutions as a function of n and σ2 (use the chi-
square distribution to generate σ2). Compare the criterion in Theorem (29) with 
the exact computation of the number of real roots of the polynomial (polyroot). 

10. Derive (5.37) in analogy with (5.36). 
11*. Compare the weighted and unweighted estimators of σ2 in terms of their 

variances assuming that the σ2 belong to a chi-square distribution. Compute or 
estimate via simulations the expected values for <Zo>(Zi> and q<i in (5.36) and (5.37). 

12. Reproduce Figure 5.3 via simulations (use the chi-square distribution to gen-
erate σ2). 

13. Reproduce Figure 5.5 via simulations. 
14*. Write an R function that computes the profile CI for β based on lp(ß) us-

ing Newton's iterations. Compute the derivative of σ2(β) as an implicit function. 
Start iterations with the Wald CL Is the profile-likelihood CI better than the usual 
one based on the Z-score? Compare the coverage probability and the width using 
simulations. 

15. Reproduce Table 5.1 using the function RobustMedianML. Use contour to 
verify that the values returned by this function are the ML estimates. 

5.2 Meta-analysis model with covariates 

Sometimes we want to make study-specific adjustments. For example, if one deals 
with epidemiology of skin cancer and several studies have been conducted at differ-
ent sites, the number of sunny days per year Zi (covariate) may play an important 
role as a general cause of cancer. Therefore, in combining those studies, an adequate 
meta-analysis model would be yi = ßo + ß i ^ i + &* + £*· Berkey et al. (1995) consider 
an example of the meta-analysis model where the latitude of the study site is taken 
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into account, see Figure 5.10. As the reader can learn from this plot the presence 
of a covariate may change the common treatment effect considerably. 

The goal of this section is to extend the results of the previous section to the 
meta-analysis model with covariates, namely, 

Vi = ß0 + ß[zi + bi + ε», i = 1,..., n 

where β0 is interpreted as the common treatment effect, βχ is the m x l vector 
of adjusted coefficients, z$ is the mxl vector of study-specific covariates, bi is the 
random effect with unknown variance σ2, and e% is an error term with known study-
specific variance σ\. According to this setting, we are interested in parameter /30, 
and vector βλ may be treated as a nuisance parameter. To shorten the notation, 
we combine β0 and β1 into one (ra 4-1) x 1 vector β and do the same with 1 and 
Zi to obtain the (ra + 1) x 1 vector x^ = (l,z^)'· Thus, the meta-analysis model we 
study in this section takes the form 

Vi ß'yii + bi +ε<, i = l , . . . ,n. (5.52) 

Further it is assumed that the system of vectors {x^} has full rank. Assuming that 
the distribution of the random terms is normal, we can write compactly 

^~Λ/" ( / 3 ' χ , , σ 2 +σ 2 ) . 

If σ2 is known, we apply weighted least squares with 

(5.53) 

ß = Σ^+σ?)-1*^ 
1=1 

Ϋ^{σ2 + σ2)-χχ^ 
i=i 

Letting σ2 = 0, we obtain the weighted LS estimator, and for large σ we come 
to the OLS estimator, 

ßo = 

n 

Σ σ Γ 2 χ < χ ί 
_i=l 

- 1 n 

Σ °i2*iyi 
_i=l 

?OLS 

n 

Σ^χί 
_i=l 

- 1 n 

Y^XiVi 
J=l 

(5.54) 

Matrices in these formulas are invertible because the x^ have full rank. 
Model (5.53) may be viewed as the weighted regression where the yi come from 

other studies with known variance σ2. The reader can learn more about weighted 
regression from the book by Carroll and Ruppert (1988). 

5.2.1 Maximum likelihood estimation 

The log-likelihood function for model (5.53) is 

m*2)=-\i: 
i = l 

In(^+o?) + fc^ (5.55) 

Only for balanced data (σ | = σ\ =const) does the MLE have a closed-form solution, 

1 _"_ 

i = l 
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ID 

8 
2 

-40 -20 0 

Distance from the latitude 33.46 

FIGURE 5.10. Meta-analysis model for the efficacy of the BCG vaccine adjusted for the 
lattitude, Berkey et al. (1995). The horizontal line corresponds to a simple meta-analysis 
model and the line with negative slope corresponds to a meta-analysis model with latitude 
as a covariate. As we see, the effect of latitude is significant. In particular, the vaccine 
effect becomes zero if the latitude is about —60°. 

otherwise, one needs to use an iterative algorithm. For this purpose we need the 
derivatives of (5.55), 

i=l σ' + σΐ θβ 

d2l 
dß2 ~ Ua2+ai 
&n_ i ^ r I 

di = _ i A 
θσ2 

i-1 
σ2+σϊ 

(Vi-ß'xi)2 

(σ2 + σ2)2 

= -Σ; 2 X-vX-i ? 
d2l 

n ni 

E
Vi-ßx-i 

2(yi-ß'xi)
2-

^ 2^[{σ2 + σ2)2 {σ2 + σ2Υ J ' 

The information matrix is the negative of the expected Hessian matrix, 

2_^=i σ 2 + σ 2Χ ίΧ ΐ 
1 = 

0 

0 2 Z ^ i = l (σ2+σ2 

Interestingly, the asymptotic variance of the heterogeneity parameter is not affected 
by the presence of covariates and is defined by the expression (5.12). 

The generalization of the FS and FP algorithms defined byjecursive equations 
(5.17) and (5.19) is straightforward: instead of β8, one uses x^/3s, where 

ßs = 
n 1 

V - 2 X i X i 

n j 

Ξί σ* + σί 
-,Χ-iVi 

. » = 1 
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the weighted least squares estimate at iteration s. Analogously, one reformulates 
the criterion for positiveness of aML. 

Restricted MLE maximizes the function 

Uß^) = -\\± 
,i=l 

! 'νΛ2 
1η(σ + a j + σ2 + σ2 + ln 

n 1 

L· σ2+ „2Χ*Χί z = l σ2 + σ; 

The derivative with respect to /3 is the same as for standard ML, but with respect 
to σ2 we obtain 

81 
da2 Σ 1 ( w - /3'x;) ! 'νΛ2 

σ 2 + σ 2 ( σ 2 + σ 2 ) 2 
G(a2) 

where 

Therefore, the FS algorithm is 

^2) = ̂ ίΣ^^) _ 1 ίΣ7^ (σ2 + σ 2 ) 2 Χ ί Χ ί 

^ χ - Σ (52+σ?)2 Σ (Vi - ßs*i)2 - A 

tâ+°î)2 + G{d2
s) 

where again we may start with σ0 = 0. The FP algorithm is derived from the 
following equation, which is equivalent to dlR/da2 = 0 : 

V s 1 _ r(n2\ _ V^ fa - ß'^j)2 

^ σ 2 + σ ? ^ σ >- λ . (σ2 + σ 2 ) 2 · 

Multiplying it by σ2, we come to the recursive formula, 

~2 -,2ΣΓ=ι(^ + ^)-2(^-3ΐχ»)2 

s+1 — s v-^n / o , ^ 2 \ _ i sit^2\ 
IXM+^-Gfö) 

To start, we set 

~2 _ ^=l(yi-ß0LSXi)2 

0 n _ ( m + i) 

where limi72_,00 G(a2)a2 = m + 1 is the number of columns of matrix X. Theorem 
29 reformulates as follows: if 

Σ > Γ % - ßoLS*i? > Σ>Γ 2 - G(0), 
i=l i=l 

then aRML > 0, where 

G(0) = tr / V a 7 2 - 2 χ ^ ) _ 1 ( ^ σ - 4 χ ^ ) ] . (5.56) 

Again, we prefer RML over ML, particularly if the number of studies is small. 
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5.2.2 Quadratic unbiased estimation for σ2 

In matrix notation, the meta-analysis model (5.52) is written as 

y = X/3 + rj, Ε(η)=0, covfa) =σ 2 Ι + Λ = V, 

where X is an n x (m + 1) matrix with vector rows {χ^,ζ = 1, ...,n} and as before 
A =diag(af, ...,σ^). The VLS estimator remains the same, (5.25), where e* = yi — 
x'iß is the ith residual and ß is estimated as in (5.54). 

Method of moments 

We start from unweighted MM with a sum of squares: 

Σ ^ - &)2 = Σ ( » - 3'oL5xi)2 = y(i - xcx'xj-'xOy-
Using previous formulas, we obtain 

£][>i-&)2 

= £ Ϊ / ( Ι - Χ ( Χ ' Χ ) _ 1 Χ ' ) Ϊ ? = t r [(I - Χ ί Χ ' Χ ^ Χ ' Χ σ 2 ! + A)l 

- σ2(η - m) + ^ σ? - t r ( (X , X)- 1 X 'AX) 

= σ2(η - m) + J ] σ2 - tr [ (Χ'Χ) - 1 (Χ'ΛΧ)] . 

Thus, the UMM unbiased estimator is 

ZIMM = ^ {Σ,ι* - y*)2 - Σ σ 2 + t r [(χ'χ)_1(χ'Λχ)]}. 

The expectation of the weighted sum of squares is 

^ΣσΓ2(» - 3U)2 = E {y' (Λ-1-Λ-1Χ(Χ'Λ-1Χ)-1Χ'Λ-1) y} 

= tr [ ( Λ - 1 - Λ - 1 Χ ( Χ ' Λ - 1 Χ ) _ 1 Χ , Λ - 1 ) (σ2Ι + A)] 

= a2tr ( Λ - 1 - Λ - 1 Χ ( Χ ' Λ - 1 Χ ) " 1 Χ ' Λ ~ 1 ) +n-m 

= σ
2 ] Γ σ - 2 - ο ( 0 ) + ( η - ™ ) . 

Thus, the weighted MM unbiased estimator has the form 

°WMM = ^ -2 ^/nx IT]<r72(Vi - 3 o x 0 2 - iji - m)\ , (5.57) 
Σ,<τ% ~ G ( ° ) L J 

where G(0) is as defined in (5.56). This estimator in the case of a single covariate 
was derived by Thompson and Sharp (1999). 

MIN QUE 

We are looking for quadratic estimator of σ2 in the form (5.29), where now 

£(y 'Ay) = E [(X/3 + η)Ά{Χβ + η)] = β'Χ'ΑΧβ+Κ{Αοον{η)) 

= /3'X'AX/3+a2tr(A)+tr(AA). 
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To make σ unbiased, we let c = tr(AA) and X'AX = 0, tr(A) =1 . According to 
MINQUE, matrix A has to have a minimal norm, so that the Lagrange function is 

£(A,/!,Z2) = ^tr(A2) - Zi(tr(A) - 1) + tr(X'AXL'2), 

where L2 is an (ra+1) x (m +1) matrix. The first-order condition for the minimum 
is 

| £ = A - i i I + XL2X' = 0. 
ÖA 

Prom condition X'AX = 0, we obtain L2 = Zi(X /X)~1 and ^MJNQUE
 = συΜΜ a s 

before. 

5.2.3 Hypothesis testing 

The analog for the Q-statistic (5.38) is 

n 

i=l 

and under Ho : σ2 = 0, we have yi ~ Λ/Χ/3'xi, af). Then 

y^-A/Xa'K1^),!), 

and thus under the null hypothesis, using a standard technique, it follows that 

Q ~ X 2 ( n - m - l ) , (5.58) 

where m is the number of covariates in the meta-analysis model. If the num-
ber of studies is large and the Si are iid with kurtosis ft, we approximate Q ~ 
Λ/"(η, (ft — l)n). Hypothesis testing regarding the coefficient and the intercept (com-
mon treatment effect) can be done using a standard linear regression technique. 

Problems for Section 5.2 

1. Write an R code for the log-likelihood maximization as an adoptation of the 
code metaMLFS. 

2. Derive an expression for G(0) defined by equation (5.56) for the case when 
there is only one x (m = 2). 

3*. Derive the profile CI for the coefficient at x in case m = 2. 
4*. Compare the performance οΐσυΜΜ and vWMM using simulations. Compare 

the bias and the standard error of the beta-coefficient using these variance estima-
tors. 

5.3 Multivariate meta-analysis model 

Sometimes, in addition to the main characteristic of interest, such as treatment ef-
fect, one can collect several other characteristics with a complete covariance matrix 
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from each study. Certainly, one can ignore the auxiliary data and estimate the com-
mon treatment effect using a (univariate) meta-analysis model. Another approach 
is to estimate the entire vector of characteristics using a multivariate meta-analysis 
model and then take the component of interest from the estimated vector. We shall 
demonstrate that the univariate approach is, in fact, efficient if the precision of 
the estimation in each study is the same (covariance matrices are the same) or if 
the characteristic of interest is independent of others (the covariance matrix has a 
block diagonal form). The results of this section may be applied to the multiresponse 
weighted regression model. The reader is referred to a recent paper by Jackson et 
al. (2011) to learn more about application of the multivariate meta-analysis model. 

To illustrate the point we start with the following simplified statistical problem. 
Let yi be the p x l vector derived from the ith. study. It is assumed that it has an 
unknown mean μ and known covariance matrix VV We are interested in estimating 
the first component of vector μ (treatment effect); the data on components 2,3, ...,p 
are auxiliary. Also, we shall assume that the distribution of yi is normal (y^ are 
iid). If the rest of the observations are ignored (i.e., one deals with the standard 
univariate model), the unbiased estimator for μλ is 

2^=1 -11 VH1 

where Vm is the (1, l) th element of matrix V;. Can we beat this estimator by 
considering the entire vector of observations? Since the V» are known, the best 
estimator for μ minimizes the sum of squares 

i=l 

Taking the derivative with respect to μ, we come to a multivariate weighted least 
squares, 

^(ΣΧ1) (fx1*)· (5-6°) 
with covariance matrix 

οον(μ) = ( Î X 1 ) · 

Interestingly, if all V2- are the same, then μ = Σ™=1Υί/η and μλ = yl5 the same 
as if we had ignored the rest of the y components. Now, to answer the question of 
whether the estimator (5.59) is better than the first component of vector (5.60), we 
compare univariate and multivariate variances, 

Varv = n , VarM 

- 1 

Σν 
S, 2 = 1 

(5.61) 

11 

It is easy to see that the two quantities are the same when V; = V (it also follows 
from the fact that the two estimators coincide). Another case in which univariate 
and multivariate meta-analysis models have the same precision is when the first 
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component of vector y is independent of the others. In other words, when the first 
row/column of matrices V$ except the first element, is zero. Otherwise, Varjj > 
VCLTM- For the sake of simplicity we consider the case p — 2. If 

Vi = 
CLi bi 

bi Ci 

then 

and 

r - i d/Ai -bi/Ai 
-h/Ai ail Ai 

Ai = cbiCi 

EV = 
i = l 

Σθί/Ai - Σ > / Δ ί 

with the (1, l)th element of the inverted matrix as 

Σ ^ / Δ ; 

( Σ * / Δ ί ) ( Σ * / Δ < ) - 0 > / Δ ί ) 2 ' 

We need to prove that \jVarjj < 1/VarM, that is, 

Œ > / A i ) Œ > / A i ) - Œ > / A i ) 2 

We rewrite the left-hand side of this inequality as 

> Σ1/^· 

(Σ<*/Δί )0>/Δί ) - (ΣνΔί) 2 _ν- /Λ (EVAi)2 

Σ β ί / Δ < -Σ^-^2 /Ai 

(5.62) 

and apply the Cauchy inequality (J2xiVi)2 ^ (Σ χ 2 ) (Σ2/ 2 )> letting Xi -
and 2/i = bi/y/äi\. Then finally, 

= ^ ( a * Q - bf)/(a,iAi) = Σ 1/<H> 

which we intended to prove. As follows from the Cauchy inequality, the inequality 
(5.62) turns into an equality when bi = 0 or a* = Xbi for alH = 1, ...,n. 

■ 
In Figure 5.11 we simulated Vm with values in the range 1 to 3 and took V^2 = 2, 

Vn2 = pVmVi22, where i = l, . . . ,n = 10. As the reader can see, the multivariate 
estimate beats the univariate on the entire range of the correlation coefficient, p. 
Particularly, VÜTM decreases dramatically when p approaches 1. Variance com-
parison of the multivariate and univariate approaches in a more general setting is 
discussed in a paper by Ritz et al. (2008). 

5.3.1 The model 

The data in multivariate meta-analysis models comprise n multidimensional vectors 
vi>y2> - J n with covariance matrices Ci , C2,..., C n . Vectors y^ may have a differ-
ent dimension ρι,Ρ2> ••·>Ρη· For example, treatment effect yi may be estimated in n 
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Multivariate model 
Univariate model 
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P 

FIGURE 5.11. Variances Varu and VarM are the functions of the correlation coefficient p 
between the first and second components of vector y. The number of studies n = 10, and 
the dimension of y is 2; the variance of the first component of y varies from 1 to 3 and the 
variance of the second component is constant, 2. The variance of the multivariate estimate 
decreases when p approaches 1. Thus, the multivariate estimation is more efficient when 
there is a positive correlation between components. 

studies along with other estimates, such as smoking status, Si and age, a*. We postu-
late that for the first study one may have only ^ ; for the second study the treatment 
effect might be adjusted for smoking status so that we have in our possession a pair 
of estimates (y*, S{) with their 2 x 2 covariance matrix, for the third study one might 
have (yi,5i,ai), etc. The following multivariate meta-analysis model accommodates 
study-specific covariates and the possibility of estimating the main characteristic 
along with augmented correlated estimates: 

y i = Xi/3 + b i-f-e i , i = l,. . . ,n, (5.63) 

where 

£7(b<) = 0, jE?(e<) = 0, cov(b<) = Η^ΩΗ^, covfe) = Q . (5.64) 

In model (5.63), y* is a pi x 1 vector of study outcomes, including the treatment 
effect or other characteristics of interest (without loss of generality, we can assume 
that the characteristic of interest is the first component of the vector); X* is a pi x m 
matrix of study-specific covariates; β is an m x 1 vector of coefficients; b^ is a vector 
of random effects, where matrices H^ are given design matrices pi x k with full rank 
Pi < &; Ω is an unknown k x k covariance matrix; the positive definite matrix C» 
comes from study i and represents the study-specific covariance matrix of y* with 
the total Cf + ΗίΩΗ^. We call Ω the heterogeneity matrix. 
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We illustrate this model with three studies (pi = 1, p<i = 2, p$ = 3): 

y i = 2 / i , Y2 = 
V2 
52 

Y3 = 

2/3 

S3 

a 3 

For this model, 

H i = (1 ,0 ,0) , H 2 = 
1 0 0 
0 1 0 

H a = 
1 0 0 
0 1 0 
0 0 1 

and 

var(ei) = C i , n , cov(s2) = C 2 = 

cov(e3) = C 3 = 
C3. l l ^3,12 Ci3,13 
Ci3,12 ^3,22 ^3,23 
C 3 , i 3 C3,23 C3>33 

C2,H C2,12 

ί?2,12 ^2,22 

Then it is easy to see 

r(2/i) = ( 7 ι , ι ι + Ω ι ι , cov(y2) = 

C3, l l ^3,12 C3,13 
n n n 

var( + 

cov(y3) = C3,12 C3?22 C3,23 

C3,13 C3 j23 C 3 ) 3 3 

Ci,\\ C2,12 
C2,12 ^2,22 

Ωιι Ω12 Ωχ3 

+ I Ω12 Ω22 Ω23 

Ωι 3 Ω23 Ω3 3 

Ωιι Ωΐ2 
Ωΐ2 Ω22 J ' 

If the dimension of y ; is the same, we set H z = I; if there are no covariates X ; = 1 
and β is one-dimensional. 

If Ω was known, the best estimator would be the Weighted Least Squares (WLS) 
estimator, 

ß = 
-1 r 

LYi (5.65) 

u = i J U=i J 

where to shorten the notation we denoted V* = Cz- + Η 2 ΩΗ^. TWO extreme cases in 
formula (5.65) are important . If there are no random effects, Ω = 0 and we obtain 

3o = 
- 1 

.i=l J Li=l 
(5.66) 

If Ω becomes large, β converges to 

ßoLS — 

n 1 Γ n 

.2=1 J Li=l 
(5.67) 

noting tha t H^H^ is nonsingular. Thus, the WLS estimator is somewhat in between. 
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5.3.2 Maximum likelihood estimation 

In this section we assume that y* has normal distribution; then the multivariate 
meta-analysis model can be simplified to 

y i ~ λί(Χφ, C4 + ΗίΩΗ^). (5.68) 

The log-likelihood function for model (5.68) takes the form 

Ι(β,Ω) = - ^ { I n l C i + HiOHil (5.69) 
2 = 1 

+ ( y i - Xi/3) '(Q + lUim'i)'^ - Xi/3)}. 

The MLE maximizes I over ß ER™ and kxk nonnegative definite matrix Ω. Holding 
Ω constant, the log-likelihood maximizes at the WLS estimator (5.65). We use 
the previously developed theory for the LME model from Chapter 2 to derive the 
Newton-Raphson (NR) algorithm for (5.69). Using familiar matrix formulas, we 
obtain the estimating (score) equation for heterogeneity matrix Ω : 

31 

ΘΩ 2 . 
2 = 1 

\ Σ [H^V-1^ - Η ' , ν Γ ^ ν ^ Η , ] = 0. (5.70) 

Only when all C^ and Hz are the same can this equation be solved explicitly via 
{e^}. Indeed, if C2 = C and Hz = I, then 

2 = 1 

Otherwise, one needs to apply some iterative procedure to find the solution to 
(5.70). We solve this equation using perturbation formula (2.106). Let Δ denote 
the kxk adjustment matrix for Ω, and let V2- be the current matrix. Then using 
the perturbation formula, one obtains the first-order approximation for the inverse 
as 

V."™ = (V< + Η ί Δ Η θ " 1 =* V - 1 - ν ^ Η , Δ Η ' , ν - 1 . 

Replacing V^"1 with V ^ e w in (5.70) and leaving only adjustments of the first order, 
we come to a linear matrix equation for adjustments Δ : 

dl 1 n 

2 = 1 

(5.71) 
Ω=Ω« 

where r2 = H^Vz~
1ei and Rz = H ^ V ^ H ; . We notice that the matrix Δ appears 

between matrices and generally cannot be expressed explicitly from (5.71). There-
fore, we apply the vec operator to (5.71) as we did in Section 2.10 to extract vec(fi). 
Hence, recalling the formula vec(ABC) = (C' ® A)vec(B) and denoting 

H s = - ] T [ r ^ ® Ri + R< ® r ^ - R; ® R J (5.72) 
Ω=Ω3 
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the NR algorithm for (5.69) takes the form 

vec(O s+i) = vec(tts) -I- AgH^vec , 5 = 0,1, . . . (5.73) 
Ω=Ω» / 

where Xs is the step length. We start with Xs = 1 and halve it until Zs+i > ls, 
provided that the gradient is not zero. As in the univariate case, we can start the 
iterative process (5.73) with zero approximation, Ωο = 0. The next approximation 
to / 3 M L is found from formula (5.65) with V^ = C^ + H^O s+iH^, continuing in 
this fashion until convergence. Following the line of arguments in Section 2.10, we 
can show that (5.72) is the Hessian of I with respect to νβο(Ω). The disadvantage 
of the NR algorithm was discussed earlier: it may fail because matrix H s may not 
be positive definite and therefore there does not exist a positive step length that 
maximizes the log-likelihood function. 

We derive the Fisher scoring (FS) algorithm if the expected value of matrix H s 

is used. Since E,(rir^) = H ^ V " 1 ^ = R^, equation (5.71) simplifies to 

i A n A „ di 

2 = 1 

and therefore the FS algorithm takes the form 

vec(n s + i ) = vec(Os) + 2λ5 ( ^ R ; s ® R; 

Ω=Ω5 

, (5-74) 
Ω = Ω 3 / 

where R ÎS means that R^ computed at iteration s. There is another way to derive 
the FS algorithm based on a fixed-point approach from Section 2.12. In this case, we 
derive the algorithm directly from the score equation (5.70). The idea is to express 
Ω in linear form. Indeed, for the first term, we can write 

Substituting this into (5.70), we come to a matrix equation 

n n 

i = l i=l 

which is again solved using the vec operator, 

vec(O s+i) = i ^ R i s 0 R i s ) (5.75) 

<vec ^ H i V r ^ e i - C ^ V ^ H ; 
i=l Ω=Ω3 

It is straightforward to show that (5.74) with λ/- = 1 and (5.75) are equivalent. Also, 
it is a good exercise to check that for the one-dimensional meta-analysis model, 
(5.75) collapses to (5.17). 
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The advantage of the FS over the NR algorithm is that the inverted matrix is 
always positive definite. 

Analogously to the LME model, the expected cross-derivative of I is zero, and 
therefore any consistent estimator of Ω in (5.65) leads to an asymptotically efficient 
estimator. 

Restricted MLE 

For restricted MLE the log-likelihood function is augmented by the term 

> Σχ^1χ< 
i=l 

with derivative analogous to (2.129), 

an 2. , 

where G = ΣΓ=ι - ^ ^ xXi. Algorithms of IR maximization are straightforward to 
generalize. Our favorite FS algorithm can be written as 

vec(tts+1) = ( Σ ^is ® Ri* j (5.76) 
v , i = l 

xvec ^ ( H i V r ^ e i e J - Q - V A G - ^ V O V : 1 ^ 
i = l Ω=Ω3> 

As usual, we start with Ωο = 0, compute ßQ by formula (5.65), and recalculate 
Ω to find i l i , proceeding in this manner until there is convergence. 

An important issue of the likelihood maximization is to ensure that the hetero-
geneity matrix remains nonnegative definite at any iteration. The reader is referred 
to Section 2.15, where this problem is discussed at length. In particular, one has to 
be sure that the stopping criteria hold and the Kuhn-Tucker condition is fulfilled. 
Anyway, if iteration produces a singular Ω, it is a good practice to repeat iterations 
from another starting value to see that iterations converge to the same i l . Several 
starting values for NR and FS are given in the next section. 

5.3.3 Quadratic estimation of the heterogeneity matrix 

Estimation of variances and covariances of random effects in a linear model is the 
key because then we apply weighted least squares to estimate the beta coefficients 
(fixed effects). The use of likelihood methods assumes normal distribution. Since the 
meta-analysis model is a linear model, we may apply quadratic estimation for Ω as 
we did for the linear mixed effects model in earlier chapters. Those estimators do not 
require a distribution assumption and therefore are distribution-free. The problem 
with quadratic estimation is that the estimate may not be a nonnegative definite 
matrix. Then we take its projection on the set of all nonnegative matrices, which 
may be viewed as a generalization of the censoring procedure in the one-dimensional 
case (5.33). For a discussion at length, see Section 2.15. 



286 5. Meta-analysis Model 

Variance least squares estimation 

Let ß be estimated by either (5.66) or (5.67), and let e$ denote the vector of residuals 
for study i\ precisely, ê  = y^ — X;/3. The empirical covariance matrix is e ^ , and 
it should be close to the theoretical C^ + Η^ΩΗ .̂ Thus, it is logical to find Ω 
that minimizes the sum of squares of residuals between empirical and theoretical 
matrices. This leads to VLS estimation, 

Σ tr ( e ^ - d - Η;ΩΗ^)2 => min. 
i=l 

Differentiating with respect to Ω, we come to a linear matrix (estimating) equation 

n 

Σ W, ( e ^ - C« - M i l ; ) Hi = 0, (5.77) 

with the solution 

i=l 

vec(Q) ^ ( H j H i î O Î H Î H i ) 
,i=l 

vec ^ H ^ e ^ - C O H , 
U = l 

(5.78) 

If vectors the y, in each study have the same length (Hj = I), from (5.77) we obtain 

Ω 
1 n 1 n 

n f-f n t -f 
(5.79) 

i=l " i=l 

an obvious analog of the one-dimensional model (5.25). 

Unweighted Method of Moments 

Let e* be the residual vector as above using the estimator ßoLS-> i-e-> ei = Ύί ~ 
X-ißoLS- We create the empirical k x k matrix Σ H^e^H^ and compute its expec-
tation. It turns out that the expectation is a linear function of Ω so that we find 
the Unweighted Method of Moments (UMM) estimator by equating the empirical 
matrix to its expected value (the reader should be prepared for some fairly heavy 
matrix algebra). First, we need the expectation 

= ^ H ^ C , + M H ^ H ; - ^ H ^ X i C o v ^ o ^ X i H i . 

Denoting Qc/= ΣΓ=ι ^ O ^ H ^ ^ X ^ , we can write 

n 

3=1 
where 

A j / - Qü1 

3=1 

Qï1; 
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we use the subscript u to indicate that the unweighted MM is used (below we con-
sider the weighted version using the subscript w)· Second, we split the expectation 
above into two pieces; one doesn't contain the heterogeneity matrix, and the other 
does. This leads us to the following equation for the heterogeneity matrix: 

n 

^ H & e j H i = ] T H i ( Q - Χ*Αί,Χί)Ηί 
2 = 1 

n n 

+ Σ Η ^ Ω Η ^ - 53 ΗίΧίΤ^ΩΤ^ΧίΗ,, (5.80) 

where we denoted TjV = Qu1X'j(1ij'H.'j)-
1Hj. Finally, we solve equation (5.80) for 

Ω by applying the vec operator, 

r " i _ 1 

n n 

vec(ÙUMM) = J2 Ufa ® HjH« - £ Η ^ Ί > ® H^Tju 

xvec {5^Hi(e<ei - Q + Χ , Α ^ Χ ^ Η ί } , (5.81) 

the UMM estimator for the heterogeneity matrix. 
It is instructive to derive the UMM estimator for the special case when there are 

no covariates (X* = I), and in all studies outcome characteristics have the same 
dimension (H$ = I). Then, Qj/=nl , TJU = n _ 1 I , Au=n~2 Σ™=ι C j , and equation 
(5.80) is rewritten as 

*,3 

which leads to the familiar unbiased estimator 
.j n - n 

&UMM = ; — j - 2(y< - y)(y» - y)' - - Σ Ci' 
i=l «=1 

Notice the difference with the VLS estimator (5.79): n — 1 appears instead of n in 
the denominator, which adjusts for degrees of freedom to make ftuMM unbiased. 

Weighted method of moments 

For the weighted version, we take ßQ with residual vector ei=yi— X;/30 and com-
pute the weighted sum ^ H i C ^ " eiei^7 HJ, where Ĉ ~ / is the square root 
matrix of C*. Taking the expectation of this sum and denoting 

Aw= ( ^ X ^ C [ " XiJ , Tjvi^ = Av^XjCj H j , 

one can show that the WMM estimator for the heterogeneity matrix is the solution 
to the following matrix equation: 

n n 

F = £ SiilSl- Σ GyOGj,·, (5.82) 
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where 

Si = H^C; Η^, Gij = H^C^ X.iTjW. 

Taking the vec operator of both sides, we finally obtain 

( n n \ 

vec(F). (5.83) 
We illustrate this estimator by the previous example with H^ = X^ = I. Then 

Aw = J 1 , TjW = J^CJ1, Si = C~ 1 / 2 , and Gy = Cr1/2J'1Cj1/2
i where we 

denoted J = ^ 0 ^ . Hence, according to (5.82), the WMM estimator for Ω is the 
solution to the matrix equation 

Σ cr1/2[(yi - yw)(yi - YwY - Q + J - 1 ] ^ 1 7 2 

= Σ cr1/2ncr1/2 - Ei;j c-^j-ic-^oc-^j-ic-1/2, 

where the weighted average is yw = J _ 1 (X] C~1yi). As we see, even for this simple 
model the solution cannot be expressed without the vec operator and is provided 
by (5.83). It is a good exercise to check that for the one-dimensional case, this 
estimator collapses to (5.57). 

What if the estimate is not a nonnegative definite matrix? 

Unfortunately, there is no guarantee that the quadratic estimator of the hetero-
geneity matrix is nonnegative definite (it should be because it is an estimate of the 
covariance matrix). In the one-dimensional case we set the estimate to zero, (5.33). 
How can we generalize this procedure to the multivariate case? As a word of caution, 
it is not sufficient to check the nonnegativeness of the diagonal elements of matrix 
Ω because it does not apply nonnegative definiteness of the matrix. A symmetric 
matrix is nonnegative definite if and only if all eigenvalues are nonnegative. When 
some eigenvalues of Ω are negative, we advocate for taking a projection on the set 
of all nonnegative definite matrix Β+, as we did in Section 2.15.2. Thus, if Ω is not 
a nonnegative definite matrix, we set Ω = ΡΛ+Ρ 7 , where P is the k x k matrix of 
eigenvectors and Λ+ is the diagonal matrix of max(0, λ^), where λ̂  is the eigenvalue 
of matrix Ω. As shown in Section 2.15.2, matrix Ω is the closest to Ω̂  among all 
nonnegative definite matrices. However, the reader should realize that Ω receives a 
slight positive bias. 

5.3.4 Test for homogeneity 

It is fairly straightforward to generalize Q-tests (5.38) and (5.58) to the multivariate 
meta-analysis model (5.68). Indeed, under the hypothesis 

H0 : Ω = 0, (5.84) 

the model becomes y^ ~ A/"(Xi/3, C J , which is equivalent to C~xyi ~ A/'(C~1Xi/3,1). 
This implies (e.g., Searle, 1971) that, under the null (5.84), the weighted sum of 
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squares has %2-distribution, namely, 

n n 

Q = Σ (* - xÂyc-^yi - xJo) ~ x\Y,Pi - m). 
i = l i=l 

Here Σ™—ι Pi is the total number of observations and m is the dimension of beta 
coefficients. 

Is the Q-test robust to the normality assumption? Here we derive the asymptotic 
distribution of the Q-statistic when n —» oo, assuming that (a) components of vector 
C~ ' £i are independent and have identical symmetrical distributions with kurtosis 
«, and (b) there exist positive a and A such that al < Ci<AI for alH = 1,2, ...n —> 
oo. Then, as follows from Appendix 13.1.4, Q — Λί(Σ™=ιΡΰ (κ — 1) Σ Γ = ι ^ ) w n e n 

n —► oo. The reader is referred to Figure 5.4, where critical values of the Q-statistic 
are shown for different values of kurtosis. 

Problems for Section 5.3 

1. Find the limit of the variance as a function of p in Figure 5.11 when p —> 1. 
2. Prove that β converges to (5.65) when Ω —» oo. Define the latter limit for 

Ω =?7D, where D is an arbitrary positive definite matrix and η —► oo. 
3*. Derive a sufficient condition for positive definiteness of the ML estimate for 

matrix Ω similar to that for condition (5.18). 
4. Derive the FS algorithms (5.75) and (5.76) for a special case when the mul-

tivariate model reduces to the univariate meta-analysis model and compare the 
formulas with (5.17) and (5.22), respectively. 

5*. Write an R code for FS algorithms (5.75) and (5.76), and test them via simu-
lations. 

6. Prove that the multivariate meta-analysis formulas for the weighted and un-
weighted method of moments coincide with the estimators for the univariate meta-
analysis model derived previously. 
^ 7*. Compare the performance of ML, RML, and MM estimators of Ω and implied 
β using simulations. Is any of the methods superior to others in terms of beta 
estimation? 

5.4 Summary points 

• The meta-analysis model is perhaps the simplest random effects model de-
signed to combine studies, provided that the outcome characteristic (such 
as treatment effect) and its variance are known from each study. Although 
strictly speaking, the meta-analysis model is not a special case of the lin-
ear mixed effects model because study-specific variances are known, it shares 
many properties. 

• The key parameter in the meta-analysis model is the heterogeneity variance 
(parameter) σ2. If studies estimate the treatment effect with the same preci-
sion (study-specific variances are the same) or studies are very heterogeneous 
(σ2 is large), the best estimate is a simple average. If heterogeneity is small, the 
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weighted average is better. The meta-analysis model (with a random effect) 
provides a compromise between those extreme estimates. 

• One can use standard or restricted maximum likelihood estimation for σ2 if it 
is believed that error terms have a normal distribution. Otherwise, distribution-
free unbiased quadratic estimation can be used. It is shown that MINQUE for 
σ2 is equivalent to the weighted method of moments estimator. It is assumed 
that the {^} are normally distributed. We suggest the use of the restricted 
MLE if the number of studies is relatively small (say, n < 20). 

• The estimator of the treatment effect is unbiased for any number of stud-
ies if an estimate of the heterogeneity variance is used, such as weighted or 
unweighted MM, ML, or RML. However, the distribution of the estimator is 
neither normal nor t. Although simulation studies confirm that the variance of 
the estimator is assessed fairly well, in a very small samples, say n < 10, one 
may find a better variance assessment that leads to a more precise coverage 
probability for confidence intervals and the significance level for hypothesis 
testing. 

• The Q-test for homogeneity suggested by DerSimonian and Laird (1986) pre-
forms well. This test is modified for nonnormal distributions, with a relatively 
large number of studies, using kurtosis. The homogeneity test is generalized 
to the multivariate meta-analysis model. 

• The robust/median meta-analysis model assumes that the random effect has 
Laplace distribution with heavy tails. This model may be useful when studies 
are heterogeneous or in the presence of out lier (s). One may expect that this 
model increases the efficiency of estimation of the common treatment effect. 

• The common treatment effect may be adjusted for study-specific covariates 
such as study latitude. This should be done with care because covariates can 
easily "eat up" the common treatment effect. 

• The multivariate meta-analysis model may be applied when additional infor-
mation on other characteristics with a complete covariance matrix for each 
study is available. If the characteristic of interest has considerable correla-
tion with others and studies have different precision, some efficiency may be 
gained. 



6 
Nonlinear Marginal Model 

In this chapter we generalize the linear mixed effects model to a nonlinear mixed 
model in which random effects enter the model in a linear fashion. This type of 
mixed model will be called marginal. Zeger et al. (1988) call such a model population-
averaged. In a nonlinear marginal model, the mean and covariance matrix of the 
dependent variable are expressed explicitly through the parameter vector. Thus, 
unlike the nonlinear mixed effects model considered in the later chapters, estimation 
of the marginal model does not require integration. 

A marginal model is suitable for a continuous dependent variable with the normal 
distribution as an obvious candidate. The marginal model may emerge in two situ-
ations: (a) when linear coefficients in a nonlinear model are random or (b) after an 
originally nonlinear random effects model is linearized (see the following chapters 
for detail). A marginal model can be viewed as a multivariate generalization of a 
regression model with heteroscedastic errors and a parametrically defined variance-
covariance function, as described by Goldfeld and Quandt (1972), Davidian and 
Carroll (1987), Gallant (1987), and Carroll and Ruppert (1988). We distinguish 
two important types of nonlinear marginal models: (a) the matrix of random ef-
fects, Zi is constant (does not depend on /3), and (b) the matrix Z^ is a function of 
ß. For the former model, any consistent estimator of the variance-covariance matrix 
of random effects produces an asymptotically efficient estimator of ß. For the latter 
model, however, this statement is not true, and only the straightforward maximum 
likelihood is efficient. Particularly in case (b), when the distribution is normal, iter-
atively reweighted nonlinear least squares, also known as extended generalized least 
squares, is less efficient than MLE. On the other hand, some authors have cautioned 
that MLE is not robust to a distribution misspecification—arguably a common ob-
jection against maximum likelihood. We compute the efficiency of the iteratively 
reweighted nonlinear least squares in logistic and Gompertz growth curve models 
with random parameters. 
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In this chapter we assume that the components of the error term, e», are inde-
pendent and have the same variance. First, it is quite straightforward to generalize 
the analysis to the case when components correlate (Section 4.3). Second, we cau-
tion the reader against overcomplication in the framework of nonlinear statistical 
models, especially in the presence of random effects. 

Three types of nonlinear marginal models of increasing complexity are studied: 
the matrix of random effects is constant (type I), the matrix of random effects is 
parameter dependent (type II), and the most general case, the mean and covariance 
matrix are functions of the parameter vector (type III). At the end of the chapter 
we consider the total generalized estimating equations approach, which may be 
especially useful for estimation of the type III model. 

6.1 Fixed matrix of random effects 

A straightforward generalization of the linear mixed effects (LME) model in the 
Laird and Ware (1982) formulation, as defined by equation (2.5), would be to assume 
that the fixed effects are nonlinear functions of the population parameter ß\ namely, 

Yi = fi(/3) + Z.b, + eu i = 1 , . . , TV, (6.1) 

where fi(/3) is an rii x 1 nonlinear vector function. As in the LME model, we as-
sume that the k x 1 vector of random effects, b i ? has a zero mean and a k x k 
covariance matrix, D* = σ2Ό, and that the error term Si has a zero mean and 
a covariance matrix proportional to the ni x rii identity matrix, cov(ei) = σ2Ι. 
As before, we call σ2 and D variance parameters. Note that for this model, the 
ni x k matrix Z^ does not depend on parameter β and is fixed. In practice, ex-
planatory variables/covariates, combined in matrix X^, are involved in the function 
f, so we let f%(ß) = f(X^,/3)—a conventional notation of the nonlinear regression 
model (Gallant, 1987; Bates and Watts, 1988; Seber and Wild, 1989). Estimation of 
a nonlinear regression with variance components, which is a special case of model 
(6.1), was studied by Gumpertz and Pantula (1992). Clearly, the mixed model (6.1) 
collapses to (2.5) when fi(/3) = X^/3. We require model (6.1) to be mean identifiable: 
f.(/3x) = f .(/32) for all z = 1,..., N implies that βλ=β2· The LME is identifiable if 
the matrix composed of {X*} has full rank. 

The key characteristic of model (6.1) is that the random effects enter the model in 
a linear fashion. This model is called marginal because the marginal expected value 
of the response variable, y; can be expressed in closed-form as a function of the pop-
ulation parameter /3, namely, E{yi) = U(ß)- Consequently, even a straightforward 
Nonlinear Least Squares (NLS), which minimizes the sum of squares 

produces a consistent estimator of ß when N —> oo and {n^} are bounded. This 
follows from the fact that the corresponding estimating equation is unbiased, 

E [Σ (dti/dß)' (yi - fi(ß))] = E W/dß)' E(Yi - U{ß)) = 0; 
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see Appendix 13.1.4 for detail. 
In view of Section 3.6.2, we can take either a deterministic or a stochastic approach 

to the study of the asymptotic properties of mixed models. In the latter approach, 
we assume that Xi,Zi,and n* are random and identically distributed, so that the 
marginal model is written in conditional form as y^|(Xi, Z^, b^) = f (Xi5 ß) + Ζ ^ + 
Si. The advantage of the stochastic approach is that we can refer to the standard 
theory of maximum likelihood, or M-estimation, and thus we do not have to prove 
that the estimates are consistent and asymptotically normally distributed. See detail 
in Section 3.6.2. 

We apply marginal model (6.1) to data with a continuous dependent variable, y^, 
where the normal distribution of b^ and e^, possibly after an appropriate transfor-
mation such as log, is a good candidate. Although the normal assumption is not 
necessary, estimates that are found from the weighted NLS would have optimal sta-
tistical properties (at least asymptotically) if the {y;} have a normal distribution. 

6.1.1 Log-likelihood function 
If Si and hi are normally distributed, the marginal model (6.1) can be written 
compactly as 

y ^ j V f t O ^ i l + ZiDZi)) , i = l,...,N (6.3) 

with the log-likelihood function, up to a constant term —(Νχ/2) 1η(2π), 

i ( N 

1(θ) = --ΐΝτΙησ2 + ] Γ [ln|I + Z ^ 
I i=l 

+ σ " 2 ( Υ ί - fi(ß))'(I + Ζ ί ϋ Ζ ί ) - 1 ^ - ii(ß))]} , (6.4) 

where, similar to (2.15), Θ = (/3, a2,vech(D)) is the complete vector of parameters. 
The information matrix for the nonlinear model (6.3) for Θ has a block diagonal 
form, 

Ef=1(i)V(§) o 
0 H 

where the (1 + k(k + l)/2) x (1 + fc(fc + l)/2) matrix, 

«4Σ 
N r ma'4 a-2vec'(Ri)V+' 

2 i - i 
ff-2P+vec(Ri) V+ (R< <g> Rj) V+' 

(6.5) 

is the expected Hessian (information) matrix for variance parameters, and the 
dimension-reduction formulas of Section 2.2.3 apply: 

Vi = I + ZiDZ^, Y~1 = l-1i{O-l+Z'iZi)-
1'L'i, 

R, = Z ^ I + Z i D Z ^ Z ^ ^ Z ^ + D ) - 1 . 

Note that the right-hand sides are valid if the matrices D and Z^Z* are invertible. 
The asymptotic covariance matrix for Θ is the inverse of X. 

One may obtain a variance-profile likelihood, as in Section 2.2.4, 

Ιρ(β,Ό) = -0.5{iVTln^(yi - tiiflWVT1^ ~ W)) + ElnlV*l> (6·6) 
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because when ß and D are held fixed, the log-likelihood maximum is attained at 
cr2 = (Ντ)~λ Σ(Υζ ~~ ii(/5))/Vz~

1(yi — fz(/3)). Since the information matrix, J , has 
a block diagonal form, we may maximize I over β and the variance parameters 
separately (at least in a large sample the cross-derivatives of I are close to zero). 
Thus, the maximum likelihood estimate can be found using the following algorithm: 

1. Set DQ = 0 and apply nonlinear least squares, (6.2), to find β0 and compute 
the residuals e* = y^ — f;(/30)· 

2. Find estimates for σ2 and D by iterating until convergence, 

dl/θσ2 ] 
vech(<9//<9D) J ' 

where s is the iteration index and Xs is a positive step length (typically Xs = 1). 
Matrix H is defined by (6.5), and the derivatives of I with respect to the 
variance parameters are given by 

1 ; ν τ σ - 2 + 1 σ - 4 £ β , ν Γ ι β ί ) (6.7) 

\ Σ ^ ν ^ Ζ , - a - ^ V - ^ V r i Z ; ] (6.8) 

for ê  = êi, as in Section 2.9. 

3. Find the weighted NLS solution, /3 l 5 to 

N 

5 > < - f,(/3))'(I + Ζ , Ό Ζ ί Γ Η * - U{ß)) =ngn (6.9) 

where D = D from step 2. Compute ê  = y^ — UCß\)-

4. Return to step 2 if the convergence criterion is not met. 

We make several comments. First, we may start not from zero (Do = 0) but from 
some other reasonable estimate of D, such as the method of moments or variance 
least squares estimate of D, considered in the next section. Second, we may try 
several step lengths, As, to ensure that the log-likelihood function increases from 
iteration to iteration. We know that if the gradient is not zero, a positive λ exists 
that increases the log-likelihood function value since matrix H - 1 is positive definite 
(Ortega and Rheinboldt, 1970). Third, the weighted nonlinear least squares, (6.9), 
may be reduced to standard nonlinear least squares by replacing yi = R ^ and 
ΰ(β) = ΈΙβίίβ), where R^ is the rii x Ui Cholesky decomposition matrix, R^R^ = 
(I + Z^DsZ^) -1. Fourth, step 2 may be accomplished using standard LME software, 
i.e., Ime with zero fixed effects. Finally, the MLE may be obtained by calling the R 
function nlme because it uses the Laplace approximation, which is exact for linear 
random effects with a fixed matrix Z^. See detail in Section 8.8. We discuss the 
maximum likelihood estimation within a more general framework of total GEE in 
Section 6.4. 

" σ2 

vech(D) sA-\ 

σ2 

vech(D) + Λ.Η71 

S 

dl 
θσ2 

ÖD 
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6.1.2 nls function in R 

In this section we describe how to run nonlinear regression using the n l s function 
in R. The purpose of the code below is to illustrate how the weighted NLS problem 
can be reduced to the regular NLS problem and how to keep running R in the case 
on an error returned by the n l s function. 

We are concerned with estimation of the Michaelis-Menten nonlinear regression 
problem (Bates and Watts, 1988), 

- . . - hXi
 + e < > i = l ,2, . . . ,n (6.10) 

" ß2 + *i 

where the Si have zero mean and constant variance. As we know, the choice of 
the starting values for parameters may be crucial. For model (6.10), we can derive 
starting values by multiplying both sides of the equation by ß2 + x% and dividing 
by χι to reduce the heterogeneity. Specifically, the starting values for ßx and ß2 are 
found from the linear least squares by regressing yi on —yi/xi with the estimate of 
ß1 as the intercept and the estimate of ß2 as the slope. 

The function nlsMM runs nExp simulations with the starting values specified 
above; the true parameter values are b l=l and b2. It is assumed that errors are 
correlated with the n x n covariance matrix W = 1+011', where 1 is the n x l 
vector of ones. The criterion to minimize with respect to ßx and ß2 is the weighted 
nonlinear least squares, 

where 0 is a fixed parameter (0 + 1/n > 0). The function returns a matrix of 
estimates with nExp rows and two columns. When iterations do not converge, the 
row is NA. The condition on the lack of convergency is extracted via a t t r to the 
output of the n l s call. 

nlsMM=function(bl=l,b2=2,n=10,sigma=.5,theta=.3,nExp=1000) 
{ 

dumpCnlsMM", "c:\\MixedModels\\Chapter06\\nlsMM.rn) 
MMw=function(x,al,a2,chW) # weighted Michaelis-Menten model 
{ 

fx=al*x/(a2+x) 
r e tu rn (chWe/,*°/,fx) 

} 
x=l :n ; un=rep(l ,n) 
W=diag (rep ( 1, n) , n, n) +theta*une/e*

e/et (un) 
iW=solve(W); chW=chol(W) # Cholesky decomposition 
apar=matrix(ncol=2,nrow=nExp) 
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for ( iexp in l:nExp) 

{ 

y=bl*x/(b2+x)+rnorm(n,mean=0,sd=sigma) 
z=-y/x 
olm=lm(y~z) # starting values 

yc=chW°/o*yoy # transform y vector 

onls <- try(nls(yc~MMw(x=x,bl,b2,chW=chW), 

start=list(bl=coef (olm)[1],b2=coef(olm)[2]), 

control = list(maxiter = 500))) 

if(attr(onls,"class")!="try-error") 

apar[iexp,]=summary(onls)$coefficients[,1] 

} 

return(apar) 

} 

The n l s function has several parameters to control. In this particular exam-
ple, only the maximum number of iterations is specified; other parameters for 
controls are the tolerance criterion, t o i , and minFactor which specifies the min-
imum reduction step length in the Gauss-Newton algorithm, λ5, in the equation 
below. The key to the weighted nonlinear least squares is factorization of matrix 
(1+011') - 1 via the product of two triangular matrices using Cholesky decomposi-
tion, (1+011') - 1 = C'C, where C is the upper triangular matrix (the function 
chol). Indeed, criterion (6.11) can be rewritten as the regular sum of squares 

Y - f ( / 3 i , / y | f , where y = Cy and f ^ , ^ ) = Ct{ß^ß2). 

6.1.3 Computational issues of nonlinear least squares 

Unweighted (6.2) or weighted (6.9) nonlinear least squares may lead to a difficult 
numerical problem. In this subsection we discuss briefly possible complications that 
may be encountered in practice. 

The main minimization algorithm for (6.9) takes the form 

where Xs is the step length, μ3 is a positive regularization parameter, J s is a positive 
definite regularization matrix, and F^ = dfi/dß is the riiXm matrix of derivatives. 
When Xs = 1 and μ8 = 0, we come to the popular Gauss-Newton algorithm (Seber 
and Wild, 1989). Sometimes the unit step does not reduce the sum of squares and a 
lesser value should be tried. A popular procedure is to halve the step length until the 
sum of squares becomes less than at the previous iteration, as discussed in Section 
2.8. Hartley (1961) suggested using a quadratic interpolation to find λ. Due to mul-
ticollinearity, the optimization problem may become ill-conditioned and the matrix 
5^F^V^"1Fi may become deficient. To avoid the ill-conditioned matrix inversion 
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Levenberg (1944) and Marquardt (1963) suggested a positive regularization para-
meter, μ8. Levenberg takes J s = I, and Marquardt takes J s =diagQTF£V^1Fi). 
According to Marquardt, the regularization parameter should approach zero as the 
iterations converge. 

Two major problems may emerge in nonlinear least squares and, generally, in 
nonquadratic optimization: 

• Nonexistence of the minimum. The absolute minimum may not be attainable 
if the optimization problem has no solution. The necessary and sufficient con-
dition for the existence of the MLE in the LME model is developed in Section 
2.5 and for the binary model in Section 7.10. Demidenko (1989, 1996) pro-
vided a general approach for the construction of sufficient criteria for the least 
squares estimate in a nonlinear regression model that may also be applied to 
NLS, (6.2), or weighted NLS, (6.9). 

• Many local minima. Nonlinear least squares may find only one local minimum 
among several. To construct a criterion that would determine whether the min-
imum found is the global one is a difficult mathematical problem. Demidenko 
(2000) outlined several approaches to this problem. Good practical advice is 
to start iterations from a different value to see whether they converge to the 
same solution. 

See Appendix 13.3 for a general discussion of the optimization problem, including 
criteria for convergence. 

6J.4 Distribution-free estimation 

Here we generalize the method of moments (MM) of Section 3.11 and the variance 
least squares of Section 3.12 to the nonlinear marginal model (6.1). Recall that MM 
does not require the normal assumption. 

Pooled variance estimator for σ2 

Since for model (6.1) U{ß) plays the role of Xi/3, to generalize the pooled variance 
estimator/MINQUE (3.81), we find the minimum, 

N 

sm i n = mm ΣII* - W> - Z ^ H 2 > (6·12) 
^ = l 

treating { 7 ^ as nuisance parameters, as in the fixed effects approach. See Section 
2.2.3 for details. This minimum may be reduced to a standard nonlinear regression 
problem after the residual transformation 

Yi = (I - Z<Z+)yi> U(ß) = (I - ZiZ+)fi(/3), 

where Zf is the general matrix inverse to Z^. If Zi has full rank, then Zf = 
( Z ^ ) ~ Z£. Then, in terms of residuals, 

(6.13) mm urn — min 
Θ 

y-Hß) 
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where y = (yi,...,yjv)' and f = (fi, ...,fjv)'. Now we need to find the degrees of 
freedom (d.f.), the denominator of (3.79). There is no unique way to do this for a 
nonlinear model. First, we may set d.f. = Νψ—m—rank(Z), where the NrxNk block 
diagonal matrix Z is defined as in (2.9), and in the previous notation Ντ = Σ ί = ι η*> 
the total number of observations. Second, we may set d.f. = Ντ~rank(W), where 
the matrix X is replaced by di/dß evaluated at ß0 or where Sm{n is attained, and 
the matrix W is defined as in (2.34). Finally, the pooled variance for model (6.1) is 
given by 

σ2 = ^ . (6.14) 
d.i. 

Obviously, this estimator is not unbiased for a nonlinear model. However, it collapses 
to its linear prototype if the {f^} are linear functions. 

Method of moments for D 

Now we generalize the method of moments of Section 3.11 to the nonlinear marginal 
model (6.1). We use the asymptotic MM (AMM) estimator (3.104) because the 
unbiased MM estimator essentially requires linearity of fi.As before, we start with 
the nonlinear least squares (6.2) and residuals ê; = y — ΐ{(β0). Then we "estimate" 
the random effects as b^ = Z^e^, and using the estimator (6.14), we arrive at 

1 N~~ 1 N 

Ό*ΑΜΜ=-Σ*Μ - ^ Σ(Ζ^)-1. (6.15) 
i=l i—1 

Under mild assumptions it is possible to prove that this estimator is consistent and 
asymptotically normally distributed. Vonesh and Carter (1992) used a special MM 
estimator of matrix D for model (6.1) in the form (4.40). 

Variance least squares for D 

It is straightforward to apply the variance least squares (VLS) of Section 3.12 to 
a nonlinear model. Indeed, if ê  is the residual vector, we use the same formula, 
(3.108), which gives an estimate for σ2 and vec(D*). 

6.1.5 Testing for the presence of random effects 

This essential type of testing translates into the statistical hypothesis Ho : D = 0. 
In Section 3.5 an exact F-test based on statistic (3.42) was developed for the linear 
mixed effects model. Although we cannot generalize that result to the nonlinear 
model (6.1), we may compute analogs of SOLS and Sm[n and apply (3.42), where r 
may be set to either m—rank(Z) or rank(W), as in Section 6.1.4. For model (6.1), 
SOLS is the minimum of (6.2), and 5min is given by (6.12) or (6.13). Apparently, 
the test should work well if the £j are not too nonlinear. We illustrate this test in 
Section 6.1.7. 

6.1.6 Asymptotic properties 

Unlike in the LME model, /3-estimates of model (6.1) are biased in small samples 
even if matrix D is known due to the nonlinearity of the £j. However, they are 
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asymptotically unbiased, and the bias vanishes when the sample size increases to 
infinity. Furthermore, the asymptotic properties of the nonlinear marginal mixed 
effects model with a fixed matrix of random effects, (6.1), are similar to those of 
the LME model (2.5): 

• Nonlinear least squares, which minimizes (6.2), leads to a consistent and as-
ymptotically normally distributed estimate. 

• Any weighted nonlinear least squares estimate (6.9), with a fixed matrix D, 
is consistent and asymptotically normally distributed. 

• The MM and VLS estimators of matrix D in the weightejd least squares esti-
mate, (6.9), both produce an asymptotic distribution of ß equivalent to that 
produced using the true matrix D. 

In addition, if Si and b^ are normally distributed: 

• The maximum likelihood estimates of ß and the variance parameters are as-
ymptotically independent because the information matrix has a block diagonal 
form. 

• Use of MM or VLS estimates of matrix D in (6.9) leads to ß estimates as-
ymptotically equivalent to the MLE. 

Again, these properties are particularly easy to prove under the stochastic scheme 
because then the {y^} are iid and we can use M-estimation theory. Asymptotic 
study of ß under the deterministic scheme, when rii is bounded and N —> oo, was 
conducted by Vonesh and Carter (1992). 

6.1.7 Example: log-Gompertz growth curve 

In this subsection we illustrate estimation of the nonlinear marginal model with a 
fixed matrix of random effects by the Gompertz growth curve, Y(t) — Ae~e , 
where t denotes time and Y is the growth characteristic, such as height or volume. 
With a Gompertzian growth curve, the growth is limited (with exponential growth 
there is no such limitation). Parameter A is the maximum limit of Y(t) when t 
increases to infinity. Parameter b determines the value of Y at t = 0, namely, 
F(0) = Ae~e , and parameter c determines the rate at which Y(t) approaches A. 

There is a well-established theory of monotonie growth modeled via growth 
curves, such as exponential, logistic, or Gompertz. For a complete review of growth 
curves in a statistical framework, the reader is referred to Seber and Wild (1989). 
For numerous mathematical derivations based on differential equation theory, the 
reader is referred to Banks (1994). Specifically, in this section, we are concerned with 
the modeling of tumor growth. Many studies indicate that the Gompertz curve in-
troduced in 1825 is an adequate model for tumor size/volume growth of untreated 
tumors in vitro and in vivo (Norton and Simon, 1977; Heitjan, 1991; Bassukas, 
1994; Bajzer and Vuk-Pavlovic, 1997; Ferrante et al., 2000). Note, in Chapter 10 
we develop a theory of regrowth for treated tumors that describes nonmonotonic 
growth. 
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FIGURE 6.1. Growth trajectories of 12 polyclonal unperturbed multicellular tumor spher-
oids, Chignola et al. (1999). Apparently, each spheroid has its own growth pattern. Clearly, 
the tumor volume limit is a tumor-specific parameter. Thus, the log-Gompertz random in-
tercept model would be appropriate. The bold curve is derived from maximum likelihood; 
the three vertical dotted lines correspond to three critical points of Gompertzian growth. 

We use data on the growth of multicellular tumor spheroids (MTSs) that comprise 
three-dimensional aggregates of cancer cells, that have been grown under controlled 
conditions, as described by Chignola et al. (1999). See Figure 6.1. MTS represent 
a tumor model with an intermediate complexity between standard two-dimensional 
monolayer cultures in vitro and tumors in vivo. They approximate many biological 
characteristics of micrometastasis regions of larger cancer tumors. In previous work, 
the parameters of the Gompertzian curve were estimated by nonlinear least squares, 
either applied to individual growth data, as in Chignola et al. (1999), or averaged 
over individuals. In the former case, it is hard to come to a conclusive decision 
because the number of estimates is equal to the number of individual tumors. In 
the latter case one implicitly assumes that all tumors have the same parameters. 
A mixed effects model, where some parameters may be tumor-specific (random), 
seems to be a good compromise between these two approaches. 

To set up a statistical model for the Gompertz curve, we use equivalent parame-
terization in the form Y(t) = e^1"^26 3 , where A = e^1,^ = m/32 and c = ßs. 
It is reasonable to assume that the accuracy of the tumor volume measurements 
is proportional to the value of the tumor volume. Therefore, a multiplicative error 
leads to the statistical model y = ßx — ß2e~^zt -f- ε, where y = InY and ε is the 
error term. As shown in Figure 6.1, spheroids have different volume limits, so it is 
adequate to assume that parameter βλ is tumor-specific but that β2 > 0 and β3 > 0 
are constant across spheroids (population-averaged parameters). These assumptions 

Φ 
E 
j3 
o > 
o 
E 

o 
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lead to the log-Gompertz random intercept growth curve model, 

Vij = (ßi + &*) -ß2t~~ßzUa +e*i, 3 = l , . . . ,ni, (6.16) 

where the {e%j} are iid normally distributed random variables with zero mean and 
constant variance σ2, and the {bi} are iid normally distributed random effects with 
zero mean and variance d* = a2d, i = 1,..., N. In this model β1 + bi corresponds 
to the individual tumor volume limit, βχ + bi — β2 corresponds to the ith spheroid 
initial tumor volume (at time zero, on the log scale), and β3 is the rate at which 
tumor volume approaches its limit. Denoting t^ = (tii,ti2, ...,Uni)', model (6.16) 
takes the form (6.1) with β = (βχ, j82,/33)', fi(ß) = ß1 - ß2e~ßsti, and Z» = 1*, so 
that cov(yi) = a2( I+dl i l4) . It is of great interest to test whether other parameters 
do not change from spheroid to spheroid (population-averaged) due to genetic inher-
itance. In Section 6.4.5, we continue this example with a more complicated model 
that involves a subject-specific/random coefficient at e-^3*^ without assuming that 
the distribution is normal. 

i 1 1 1 1 1 1 1 i 1 1 1 1 1 1 1 

-5 0 5 10 15 20 25 30 -5 0 5 10 15 20 25 30 

Days after treatment 

FIGURE 6.2. Three critical points on the Gompertz curve for tumor spheroids. The Gom-
pertz curve on the original scale is S-shaped and has a regular increasing-concave character 
on the logarithmic scale. By day 3, when the tumor volume is 7.3% of the maximum, the 
tumor vasculature is completed and the tumor starts growing rapidly with the maximum 
rate at 37% of the maximum volume. When the tumor reaches 68%, the growth slows 
down. 

In the R function that floows we show the R function logG, which reads the data 
on 12 tumor spheroids and runs nlme using a log-Gompertz curve with random 
intercept (6.16). This function requires two libraries: nlme and l a t t i c e . The former 
is needed for nonlinear mixed effects model estimation, and the latter, for individual 
log tumor volume spheroid plots. 
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logG=funct ion() 

{ 

dump("logG","c:\\MixedModels\\Chapter06\\logG. r " ) 

library(nlme);library(lattice) 

dat=read.csv("c:\\MixedModels\\Chapter06\\TUMspher.txt") 

xyplot(lntumvol~day|id,type=nbn ,data=dat) 

out. nlme<-nlme (lntumvol~al-a2*exp(-a3*day) , f ixed=al+a2+a3~ 1, 

random=al~11id, data=dat,start=c(6,5,0.07)) 

summary(out.nlme) 

} 

This function is used in one of the problems at the end of this section. 

Three critical points on the Gompertz curve 

Three critical time points on the Gompertz curve and corresponding growth phases 
of the tumor growth in vivo may be distinguished: (a) tumor development/slow 
growth that covers the period from when the first clonogenic cell divides until the 
tumor vasculature is completed, To; (b) aggressive tumor growth, TQ\ and (c) slowed 
growth due to the limited supply of oxygen, nutrients, and space, Ts (see Figure 
6.2). Below, we define these three time points mathematically via derivatives. 

Derivation of Tp, TG, and Τ#. The time of maximum growth occurs when the 
first derivative, dY/dt, attains its maximum, i.e., when the second derivative van-
ishes. Since d2Y/dt2 = Ac2eb~ct~e ° (eb~ct - 1), we find that the second derivative 
turns zero when b — et = 0, which means that the maximum rate of growth occurs at 
time TQ = b/c. Evaluating Y^TQ)·» we infer that the maximum growth occurs when 
the tumor reaches 37% of its maximum limit, A, because Y(b/c) = A/e = 0.37A. 
The times when slow growth changes to rapid growth and when rapid growth 
changes back to slow growth correspond to time points where the third derivative 
of the Gompertz curve vanishes. Since 

^ = Ac3eb-ct-eb-c\l - 3e6- c t + e^b~c\ 

denoting z = eb~ct, we conclude that the third derivative turns zero (inflection point) 
when the quadratic equation 1 — 3z + z2 = 0 . Thus we obtain £1,2 = (3 ± \/5)/2. 
Solving for t, we infer that d3Y/dts = 0 when TD = (b - ln[(3 + \/5)/2])/c = 
(b — 0.962)/c, which occurs when the tumor volume reaches Y(TD) = 0.073A, and 
Ts = (b- ln[(3 - Vb)/2])/c = (b + 0.962)/c when the tumor volume reaches 0.68A 

The tumor grows relatively slowly before reaching about 7.3% of its maximum 
limit, A. From day To to day Ts = {b + 0.962)/c, the Gompertzian tumor grows 
rapidly before reaching 68% of its maximum, which corresponds to the second in-
flection point of the growth. Maximum growth occurs at day TQ = b/c when the 
tumor reaches 37% of its maximum, which corresponds mathematically to the in-
flection point of the tumor volume (second derivative is zero). These three critical 
time points of Gompertzian growth (especially T D ) may provide a guideline for 
treatment timing. Modeling of a post-treatment tumor is covered in Chapter 10. 
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Starting values for the Gompertz curve 

Every iterative nonlinear optimization problem requires a starting value. A bad 
starting value may lead to computer overflow and failure to converge. Here we 
provide a three-point solution to the log-Gompertz curve Vt — ß\— /32e-/33t, t = 
1,2,..., n. We divide the observation period into three equal-length intervals so that 
p is the average time point of the first interval, p + a is the average time point 
of the second interval, and p + 2a is the average time point of the third interval, 
where a = n/S is the length of each interval. Then we compute y-averages within 
each interval, 27ι,2/2>2/3· We find rough estimates of the beta parameters from the 
condition that the log-Gompertz curve passes through three points (p + ka,yk+1), 
k = 0,1,2. Solving these three equations yields 

a 2/3-2/2 e~^3P - e-^ate+a) 1 _ e-ßza 

If all observation points fall on a log-Gompertz curve, these formulas give the exact 
solution. Otherwise, these starting values may fail, e.g., one may get a negative 
value under the logarithm or negative parameters, and these starting values do not 
guarantee convergence. These starting values, applied to the average growth, yt 

are presented in Table 6.1. The maximum likelihood estimation by the expected 
Newton-Raphson algorithm is described in Section 6.4.5. 

Method of moments 

We start computing the pooled variance estimate by finding the minimum, (6.13). 
Since Z< = l i , we have y< = y* - ft and % = %(ß2i ßs) = β2(Σ%ι z~ß*Uu ~ e~^u). 
Applying nonlinear least squares to these data, we obtain 5min = 93.56. We use 
the second way to compute the degrees of freedom, which gives σ2 = 0.16. The 
AMM estimate for d* is defined by formula (6.15), where for the log-Gompertz 
random-intercept model, b^ = n^1 Υ^ι

=1β^ and Z^Z^ = n^. Knowing that d = 
d*/d2, we apply the weighted nonlinear least squares (6.9) with the weight matrix 
(I+dlil J)"1 = I-d/( l + Μ ) ΐ α · . 

Variance least squares 

Let êi be the nonlinear least squares residuals. Then according to (3.108), the esti-
mates for σ2 and d* are the solution to 

Σ,Πί Σ,η: 2 
σ2 |2 ΣΙ. .. 

Statistical testing of the random effect 

For our example, the left-hand side of (3.42) is 93, and the critical value of the 
F-statistic with a = 5%, and 14 — 3 = 11 and 590 — 14 = 576 degrees of freedom 
is 2.28 < 93. Thus, there is statistical evidence that the maximum tumor volume is 
spheroid-specific (d > 0). 
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Table 6.1. Estimation results for the log-Gompertz random-intercept model with 
tumor spheroids data from Chignola et al. (1999). 

Estimation method 
Starting values 
Nonlinear least squares 

(SE) 
Method of moments 

(SE) 
Variance least squares 

(SE) 
Maximum likelihood 

(SE) 

ßl 
5.24 
6.03 

(0.045) 
5.94 

(0.182) 
5.94 

(0.139) 
5.94 

(0.184) 

ß2 
6.84 
4.83 

(0.141) 
4.75 

(0.087) 
4.75 

(0.101) 
4.75 

(0.088) 

ßz 
0.081 
0.082 

(0.0044) 
0.085 

(0.0028) 
0.085 

(0.0033) 
0.085 

(0.0029) 

σ2 

0.19 

0.16 

0.22 

0.16 

d 

0 

2.43 

1.00 

2.45 

Estimation methods comparison 

Estimates of the beta coefficients are quite close except for the nonlinear least 
squares, Table 6.1. This means that the presence of the random effect/intercept for 
these data is important. This is because for model (6.1), the information matrix for 
beta and the variance parameters is block diagonal, and therefore the asymptotic 
efficiency of the beta estimates is not affected by estimates of matrix D. However, the 
efficiency for D is different for different methods, and the most efficient estimation 
method is maximum likelihood. The MM estimator is very close to the MLE, which 
is not surprising, as follows from our simulation study for the linear model of Section 
3.14. 

Three critical time points 

We compute the three critical time points of tumor spheroid growth as defined 
above. Principally, any estimate may be used to compute To, T<3, and T5; we use 
the MLE of Table 6.1. We obtain TG = ln/32//33 ~ 18, TD = (ln/32 -0.962)//33 ~ 3, 
Ts = (ln/32 + 0.962)//33 ~ 30 days. Thus, until day 3, spheroids grow relatively 
slowly; at day 18 they have the maximum rate of growth; and after day 30 the 
growth slows down, see Figure 6.1. One can obtain approximate standard errors of 
these quantities by the delta-method (Rao, 1973; Rice, 1995). 

Problems for Section 6.1 

1. Suppose that repeated measurements follow the model y^ = f(xi\ β) +r]j 4-ε^·, 
where i = 1,2, ...,iV and j = 1,2, ...,η^ is the index for measurement repeti-
tions (for each x^ several repeated measurements, η*, are available). Assume that 
77̂  ~ Λί(0,σ$) and Sij ~ Λ/"(0,σ2), where the variances σ\ and σ2 are subject to 
estimation. Express this model in the form (6.3). Find YJ1 and H in closed form. 
Simplify algorithm 1-4 on page 294 (reduce matrix D to scalar). 

2. Prove that the NLS estimate does not exist for the nonlinear regression model 
Vi ~ Λ/"(β_/5%σ2) with a positive probability. (Hint: Prove that the estimate does 
not exist when yi < 0 for all i = 1,2, ...,n and then prove that this probability is 
not zero; express the probability as a function of Φ.) Plot the probability against n 
for different σ and β. 
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3*. Estimate the probability that the normal equation for the NLS estimation has 
multiple solutions for the model yi ~ Af(e~ßl,a2). Simulate 2/1,...,yn and express 
the normal equation as a polynomial with the argument x = e~@. Use function 
polyroot to find all roots including complex roots. Then find only positive real 
roots. 

4. Modify the function nlsMM to estimate the probability that the n l s function 
does not converge, starting from the linear least squares values specified in Section 
6.1.2. Compute and plot this probability for several σ. 

5*. Write R code that implements algorithm 1-4 for maximization of function 
(6.4). Modify the function nlsMM to solve minimization problem (6.9). Test the 
code through simulations using Michaelis-Menten regression function. 

6*. Write and R function that estimates σ2 and D by method of moments as 
in Section 6.1.4. Compare the properties of the beta-estimates using maximum 
likelihood from problem 5 with nonlinear least squares which uses distribution-free 
estimates of σ2 and D via simulations (use the log-Gompertz growth curve and the 
data from logG to specify the true parameters). Demonstrate that the log-likelihood 
(6.4) maximization yields the same results as nlme from the function logG. 

7. Estimate the variances of three critical points on the Gompertz curve using 
the delta-method assuming that the beta-estimates and their covariance matrix are 
known. 

6.2 Varied matrix of random effects 

A straightforward generalization of model (6.1) is to assume that the matrix of the 
random effects, Z^, depends on the population parameter β. This leads to a mixed 
model: 

y i = ft08) + Zi09)b4 + ei , i = l,...,N. (6.17) 

Other assumptions of Section 6.1 remain the same. Although models (6.1) and (6.17) 
seem similar, they have quite different statistical properties. The major difference is 
that for model (6.1), any consistent estimator of matrix D in the reweighted nonlin-
ear least squares, formula (6.9) produces an asymptotically efficient and normally 
distributed estimator of /3, asymptotically equivalent to the maximum likelihood 
estimate. On the contrary, in model (6.17), one loses efficiency compared to maxi-
mum likelihood, if the least squares, formula (6.9) is applied, even if the true matrix 
D is known. In particular, under the normal assumption, the iteratively reweighted 
nonlinear least squares based on (6.17) with estimated matrix Z* = Z;(/3) leads 
to an asymptotically normal, but less efficient, β estimate. We illustrate the effi-
ciency loss in this section with an example; in the following section, we provide 
comprehensive theoretical development. We shall arrive at model (6.17) taking the 
first-order approximation of the original nonlinear mixed effects model (see Section 
8.6 for details). 

6.2.1 Maximum likelihood estimation 

In this subsection we consider the maximum likelihood estimation of mixed model 
(6.17) assuming that b ; and e$ are normally distributed. We find the information 
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matrix and develop a computational algorithm. The information matrix will be used 
later for an efficiency comparison. 

The log-likelihood function, up to a constant term, takes the form 

1(β,σ2,Ό) = - \ j j V l n a 2 + f ; [lnlViCS)! +a-2ei(/3)V i-
1(/3)e i03)] 1 , (6.18) 

where 
ViCS) = I + ZiGSJDZjOS), e,(/3) = y< - U{ß)· 

Since the MLE is asymptotically efficient (when N —> oo), we start by computing 
the information matrix as the benchmark to compare the efficiency of different 
estimation methods. Also, the information matrix may be used for computational 
purposes in the Fisher scoring algorithm. The derivatives of (6.18) with respect to 
σ2 and D are the same as before, (6.7) and (6.8), and therefore the respective block 
of the information matrix does not change, (6.5). To compute the blocks with /3, we 
need the derivatives of the log-likelihood function. To shorten the notation, we omit 
z, as in Section 3.3, where the information matrix for the LME model was derived. 
Let the Zth component of vector β be fixed; then f/ = df/dßl denotes an n x 1 
vector and Zj denotes an n x k matrix dZ/dßh I = l,...,ra. Using the standard 
chain rule for the ith cluster/log-likelihood contribution, we obtain 

W = - ^ { - ^ " ^ V - W t r l V - H Z / D Z ' + ZDz!) 

- a - V V - ^ Z z D Z ' + Z D Z ^ V ^ e } . (6.19) 

To compute the covariance matrix of this vector, we use the following fact. 

Lemma 31 If e ~ΛΓ(0,σ2ν), then 

covfc'e + e'Ae, b 'e + e'Be) = a V V b + 2 a 4 t r ( AVBV) 

for any fixed vectors a, b and matrices A, B of appropriate size. 

Proof. We have 

cov(a'e + e'Ae, b 'e + e'Be) 

= cov(a'e, b /e)+cov(a /e, e'Be) -f-cov (e'Ae, b'e)+cov(e'Ae, e'Be). 

For the first term, cov(a'e, b'e) =£(e ' ab 'e ) =a2 t r (Vab') = a 2 a 'Vb . The second 
and third terms vanish because the third moment is zero; for the fourth term, we 
apply the result from Graybill (1983, p. 367). 

■ 
Denoting Gj = ZjDZ' + ZDZj in the notation of Lemma 31, we let 

a = σ -^ν - 1 * , , A = i a " 2 V - 1 G i V - 1 , 

b = a - 2 V - 1 f h l B = i a - 2 V - 1 G f t V - 1 , 
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yielding 

» < ! ; · | ; )=*~! ί ; ν~^+ ï t r ( v~'G'v~'G k ) · 
Note that if matrix Z does not depend on ß, the second term vanishes. Let vector 
dl/dO be multiplied by any kxl vectors q' and w. Then, as follows from (6.8), we 
obtain 

dl , dl 
cov I ^τ^ ,α - ^ r w 

Ößt dvec(D) 
_ 1 

J = - ^ c o v ( q / Z ' V - 1 e e ' V - 1 Z w , e ' V - 1 G , V - 1 e ) 

cov ( e ' V ^ Z w q ' Z ' V - V e ' V ^ G i V ^ e ) 

Again, applying Lemma 31 with a = b = 0 and 

A = V ^ Z w q ' Z ' V - 1 , B = V ^ G i V - 1 , 

we obtain 
dl dl \ 1 

I —- —i 
COV 

<9/Vdvech(D)y 2 
v e c h i Z ' V ^ G i V ^ Z ) . 

Analogously, 

Combining the results, we come to the information matrix for Θ: 

*« νβ,σ* Γ ■β 

1/3,σ2 *σ* xa2,vech(D) 

I/3,vech(D) Ia2,vech(D) Ivech(D) 

/3,vech(D) 

r (6.20) 

where the m x m, m x 1, and ra x (k(k + l)/2) information matrix blocks are 

^ = E J ^ f i v r ' f i f c + l t r i V ^ G a V ^ G ^ I , 

JV 

w» = «^E^ivr'G«)}. 
i = l 

1 N 

I^,vech(D) = - ^ { v e c h ^ V r ^ V - 1 ^ ) } . 

(6.21) 

(6.22) 

(6.23) 
2 = 1 

Here Z,/i = 1,2, ...,ra, and the (l + fc(fc + l)/2) x (H-fc(fc + l)/2) information matrix 
for (a2,vech(D)), 

H = 
τ' 
•V2,vech(D) 

L Ia2,vech(D) Ivech(D) 

is defined by (6.5). 

Comments. First, the matrix block Iß defines the information matrix when vari-
ance parameters are known. Consequently, if σ2 and D were known, the asymptotic 
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covariance matrix of the beta-MLE would be Iß . Second, if the matrix Z{ does 

not depend on the population-averaged parameter /3, we have Z/ = 0 and G/ = 0. 
Then, the information matrix becomes block diagonal and the information matrix 
reduces to that of the previous section. Otherwise, matrix X is not block diagonal, 
meaning that the MLE for ß and the variance parameters are correlated, even in a 
large sample. This property makes the mixed model with varied matrix Z; different 
from the mixed model with fixed matrix Z^. 

Two algorithms for ML computation 

We consider two algorithms for maximization of the log-likelihood function (6.18). 
First, Fisher scoring (FS) can be readily applied since the information matrix and 

first derivatives are available; see Section 2.8 for a general discussion. The advantages 
of this algorithm are that (a) the matrix is always invertible if the model is well 
specified (the relevant conditions for the LME model are provided in Section 3.3), 
and (b) all parameters are adjusted simultaneously, and therefore fast convergence 
may be expected. 

Second, since for fixed ß the optimization problem reduces to the LME model 
with zero fixed effects, one may use standard software to estimate the variance 
parameters by standard or restricted maximum likelihood. Thus, one needs only to 
have an algorithm for (6.18) optimization over ß when σ2 and D are held. Again, 
we can use the information matrix to generate beta iterations as follows: 

/Vi=/3s + ̂ M £ f | ] , s = 0,1,..., (6.24) 

where Iß is the mxm information block for ß and dk/dßl is given by (6.17). When 
Xs = 1 and σ2 is relatively small, iterations (6.24) are reduced to the well known 
Gauss-Newton algorithm. See Section 6.1.3 for a general discussion. 

6.2.2 Distribution-free variance parameter estimation 

Instead of applying maximum likelihood to estimate the variance parameters when 
β is held, we may apply the distribution-free noniterative estimate of Section 6.1.4. 
Indeed, let ß be an estimate, the limit point of iterations (6.24). We compute resid-
uals ei = yi — U{ß) and 7*i = Z;(/3). Then the pooled variance estimate of σ2 is 
defined as 

z = l 

The AMM estimator for matrix D* is defined by (6.15) with Ζ^ = Ζ^. The variance 
least squares estimation is readily applicable as well. After the estimate of D is 
computed, we return to iterations (6.24). Note that the distribution-free estimation 
of variance parameters does not produce estimates asymptotically equivalent to the 
MLE. 
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6.2.3 GEE and iteratively reweighted least squares 

A popular method to estimate (6.17) is to reduce the model to (6.1) by replacing 
Zi(ß) with Zi(/3), where ß is derived from the weighted NLS. More precisely, we 
start with nonlinear least squares (6.2) and compute Zi 0 = %i(ßo) after convergence. 
Replace model (6.17) with y* = fi(/3) + Zi0bi + ε^ and treating Zi 0 as fixed and 
using the algorithm of Section 6.1, to find the next estimate, βλ. Then compute 
Zu = %i(ßi) and estimate the model y* = f;(/3) + Zabi + e*, iterating in such a 
fashion until convergence. Clearly, this method of estimation is equivalent to solving 
m nonlinear estimating equations for /3, 

N 

£F^ ( /3 ) [ I + ZiWOZÜß)]'1^ - *i(ß)) = 0, (6.25) 
t = l 

where F* = F^(/3) is a n n ^ x m matrix of first derivatives, F^ = {f j , I = 1,..., m}, and 
D is a consistent estimate of D. This estimate may be found by solving the score 
equations (6.7) and (6.8) or by using distribution-free estimation based on variance 
least squares. Equations (6.25) are called generalized estimating equations (GEEs) 
because an estimate of D is used. General information on GEE is presented in 
Appendix 13.1.5. The algorithm to solve (6.25) is widely used and has several names. 
Perhaps the most common name is Iteratively Reweighted Least Squares (IRLS). 
Carroll and Ruppert (1988) call this algorithm extended nonlinear least squares 
within the framework of nonlinear regression and with heteroscedastic errors defined 
by a variance function. In Chapter 8, we show that IRLS, with variance parameters 
derived from score equations (6.7) and (6.8), is equivalent to the Lindstrom-Bates 
procedure (1990) and therefore may be obtained in R using the function nlme. 

Asymptotic properties and efficiency considerations 

Either a deterministic or a stochastic scheme may be chosen to study asymptotic 
properties, Section 3.6.2. Typically, the deterministic scheme is taken in the liter-
ature although the stochastic scheme is easier to handle because it reduces to the 
iid case. To prove the consistency of the GEE (6.25), under the stochastic scheme 
the standard Slutsky theorem can be used. Under the deterministic scheme, the 
generalized Slutsky theorem can be used, as shown in Appendix 13.1.2. As follows 
from the general theory of GEE, Appendix 13.1.5, use of a consistent estimate in 
(6.25) does not increase the asymptotic variance of β because the expectation of 
the derivative of an estimating equations with respect to D is zero. 

Since equations (6.19) and (6.25) differ, the GEE is less efficient than the ML. 
Our current aim is to find the asymptotic covariance matrix for GEE using the 
sandwich formula of Appendix 13.1.4. As follows from the previous comment, we 
can assume that the variance parameters are known. To shorten the notation, we 
omit the subscript i; the estimating equation for β takes the form 

F'[I + Z(^)DZ'(/3)]-1(y - f (/?)) = 0. (6.26) 

This equation can be represented as Φ(/3) = 0, where Φ is the left-hand side of 
(6.26). We want to find the expected value of the derivative of Φ with respect to β. 
Since E(y — f (β)) = 0, we obtain that an estimating equation that is unbiased and 
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therefore the GEE is consistent and asymptotically normally distributed. Further, 
since cov(y) =σ2Υ =σ 2(Ι + Z(/3)DZ'(/3)), it is easy to see that 

E ( ^ ! J = - F ' V ^ F , E (ΦΦ') = F ' V ^ F . 

Therefore, in a large sample, 

coHßiRLs) = σ2 ( ^ F j V r 1 ^ ) " 1 · (6.27) 

As follows from (6.21), the covariance matrix of the MLE is represented as the sum 
of two matrices, 

cov(ßML)=a2 (Σ Fj V^F, + \σ2 £ T<) , (6.28) 

where the (/, h)th element of matrix T^ is tr(V2~1Gi/V^1Gi/ l). Comparing the two 
matrices, we infer that under the normal assumption, the GEE is less efßcient than 
the ML estimator. However, for small σ2, there is not much gain in relative efficiency 
(the second term in (6.28) is small). Again, one cannot expect much efficiency gain 
when the matrices Z; are not highly nonlinear in β because then the matrices 
Ti are small. When the variance of random effects is zero, ML = GEE. Thus, 
one can speculate that the difference between the two estimation methods may be 
considerable for large random effects. 

The GEE and ML methods are consistent, even if the distribution is misspecified. 
Moreover, unlike maximum likelihood, GEE produces consistent and asymptotically 
normal estimates, even if the covariance matrix is misspecified. Rigorous analysis is 
deferred to the next section. 

6.2.4 Example: logistic curve with random asymptote 

One of the first examples of a nonlinear random effects model was considered by 
Lindstrom and Bates (1990). The same model has since been studied by Pinheiro 
and Bates (1995). The data consist of the trunk circumference (in millimeters) of five 
orange trees as a function of time, where measurements are taken on the same day 
for each tree. Days are counted from January 1, 1969 so that the data are balanced; 
the data are given in Draper and Smith (1998, p. 524), see Figure 6.3. Here yij 
denotes the trunk circumference of the zth tree, i = 1,2,3,4,5 = N (the number of 
trees) at the j th measurement, j = 1,..., 7 = n (the number of measurements). By 
the assumption, the trunk circumference grows according to a logistic curve with 
the random effect in the numerator, 

Vij = 1 - L
 ß)tbi

 R + , + en, (6.29) 
l + exp(/? 2- /3 3^) 

where ε^ ~ Λ/*(0, σ2) with the random effect bi ~ Λ/"(0, σ2ά)\ all random terms 
are independent. Using our conventional notation, d* = a2d denotes the variance 
of the random effect and d denotes the scaled variance (as the proportion of σ2). 
In this mixed model only the asymptote βλ + bi, the trunk circumference of the 
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FIGURE 6.3. Trunk circumference of five orange trees (N = 5, n = 7). It is assumed that 
only the circumference of the adult tree (asymptote) is tree-specific (random). All other 
parameters of the logistic curve are the same for all trees (population averaged). The line 
shows the individual NLS fit (see Table 5.2 for parameter values). 

adult tree, is random and tree-specific. Parameters β2 and /33 are common to all 
five trees (fixed and unknown). Model (6.29) can be called logistic regression with a 
random asymptote. Lindstrom and Bates (1990) applied their procedure to estimate 
parameters and the scaled variance of the random effect d, see Chapter 8. In this 
section we provide a comprehensive estimation analysis and efficiency comparison 
for model (6.29) . 

Table 6.2. Individual and mean logistic growth curves for the tree data (SE), 
separate nonlinear least squares fit, see Figure 6.3. 

Tree ßi ß2 SS 
1 
2 
3 
4 
5 

154.3 (6.10) 
219.0 (14.3) 
158.8 (15.1) 
226.8 (15.6) 
207.3 (22.2) 

1.80 (.14) 
2.11 (.23) 
1.83 (.19) 
2.30 (.29) 
2.26 (.22) 

.0029 (.00031) 

.0030 (.00048) 

.0025 (.00046) 

.0032 (.00056) 

.0026 (.00047) 

63.1 
290.7 
156.7 
407.7 
259.7 

Mean 192.77 (13.6) 2.07 (.21) .0028 (.00044) 202.5 

SD/mean 15.9% 10.2% 9.3% 

We start our analysis with an individual (separate) Nonlinear Least Squares 
(NLS) fit applied to each tree and the mean group data in Table 6.2. As the reader 
can see, individual fits are quite satisfactory and the estimates are highly significant 
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(Mean estimates are derived from the fit to the mean group data). The last row of 
the table indicates the relative variability of the estimates around the mean estimate 
and is calculated as the ratio of the empirical deviation of individual estimates from 
the mean to the mean group. These computations show that the asymptote is the 
most variable parameter, and therefore model (6.29) seems adequate. 

Next, we notice that since the random effect is in the numerator, measurement 
yij is also normally distributed with the marginal expectation 

Ε{ν*)=1+*Μβ\-β^γ i = h..,N,j = l,...,n, 

so that the mean circumference, y · = Ν~λ $^i=i Viù-> follows the logistic curve, 

EW-1 + eJß\.ß,tiy '-'.-- («°> 
Consequently, parameters of the logistic curve may be estimated consistently (for 
large n) by NLS applied to the mean data in Table 6.2. However, the presence 
of the random effect induces tree heterogeneity and a correlation between serial 
measurements of the circumference. Indeed, as is easy to see, 

v a r ( ^ ) = σ2(1 + dh*), cov(^ ,y i k ) = a2dhjhk, j φ k, 

where hj = (1 + e^2~^3 t j)_ 1 . If adult trees were of the same thickness (d = 0), we 
would come to the standard nonlinear regression problem because var(y^) =const 
and cov(yij1yik) = 0. Then the best way to estimate the parameters (at least 
asymptotically) would be nonlinear least squares, which minimizes the total sum of 
squares, 

Now we show that minimization of (6.31) is equivalent to the nonlinear regression 
fit to the mean data/tree thickness. Indeed, after elementary algebra, we obtain 

ij ij j 

Thus, the minimization of the total sum of squares (6.31) is equivalent to the mini-
mization of ^j{Vj — ß\hj)2 because the first term in expression (6.32) is parameter 
independent. Note that this feature is a consequence of the fact that the data are 
balanced because the thickness of each tree has been measured at the same time 
points. Although the logistic regression applied to the mean group data produces 
consistent estimates, (a) more efficient parameter estimates can be obtained by max-
imum likelihood, and (b) we need an estimate of d to provide satisfactory standard 
errors for the parameters. Our analysis for the linear mixed effects model of Section 
3.9 suggests that the standard errors of Table 6.2 underestimate the true standard 
errors. 

In the following R function we read the data on five orange trees and plot individ-
ual trunk circumferences versus days of growth. As in the previous function, logG, 
two libraries are required. 
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log t ree=func t ion0 

{ 
dumpO'logtree","c: \ \MixedModels\ \Chapter06\\ logtree.r") 
l i b r a r y ( n l m e ) ; l i b r a r y ( l a t t i c e ) 
dat=read.csv("c: \ \MixedModels \ \Chapter06\ \ t runktree . tx t") 
xyplot( t runk~day| id,data=dat , type=l ,bn) 
out . nlme<-nlme ( t runk~al / ( 1+exp (a2-a3*day) ) , f ixed=al+a2+a3~ 1, 

random=al~l|id, da ta=dat , s ta r t=c(200 ,2 ,0 .003) ) 
summary(out.nlme) 

} 

Maximum likelihood estimation 

Now we estimate the parameters of the logistic curve by maximum likelihood. 
Importantly, it does not involve the integration problem, as in the general non-
linear mixed effects model of Chapter 8, because model (6.29) is marginal. De-
note ß = ( /3 i , /32 , /y , t = (£i,*2,...,*?)'> Yi = (2/ϋ,2/ί2,...,2/ί7);, and h = h(/?2,/33) 
=(/ii,...,/i7)/. Then, in vector notation, we can rewrite statistical model (6.29) as 
Yi = ßih+bih 4- ei with normally distributed bi and e*, or compactly, 

y< - λί (/3xh, a 2 ( I+dhh ' ) ) , % = 1,..., N = 5. (6.33) 

This model is a special case of a nonlinear marginal model with a varied matrix of 
random effects (6.17). The log-likelihood function for this model is 

Ζ(/3,σ2,<2) = -^{ iVln l l+dhh ' l + ΝηΙησ2 

1 N 

+^ Σ > * - ^^'(H-dhhO-^yi - ^h )} . (6.34) 

We can eliminate σ2 and come to the variance-profile log-likelihood function. Also, 
applying decomposition (6.32), we can reduce the above sum to y. Further apply-
ing the dimension-reduction formulas |l+Gfhh'| = 1 + d||h||2 and ( I + d h h ' ) - 1 = 
I—dhhr/(l -h d ||h|| ), we can simplify the log-likelihood function substantially, es-
pecially when the number of observations in each cluster is large. 

Iteratively reweighted least squares 

The initial step is to fit standard nonlinear regression (no weighting, d = 0), then 
estimate the variance parameters σ2 and d based on the NLS residuals and apply 
weighted NLS, iterating in such a manner until convergence. Below we provide some 
technical details. 

1. Since the tree data are balanced, as follows from (6.32), NLS applied to all 
the data is equivalent to NLS applied to the mean data, y, which produce ßQ. 

2. There are several ways to estimate σ2 and d given residuals ê  = y^ — fj(/30)· 
First, we can solve the ML equations (6.7) and (6.8) when {e^} are held. 
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Second, we can use the distribution-free estimate of Section 6.2.2. Third, we 
can apply the variance least squares of Section 3.12. We illustrate the latter 
approach. Thus, treating {e^} and h as fixed, we want to minimize the sum 
of squares between empirical and theoretical squared values 

n 

T(a2,d) = ] T t r ( e ^ - a 2 I -d*hh ' ) 2 , 

where d* = a2d. Taking the derivative with respect to σ2 and d and solving 
the system of linear equations, we come to the variance least squares solution, 

d2 = Ν12ΣΙΜΙ2-Σ(^)2 £ = ^Z(^h)2-i|hH2El|edl2 

7V(n- l ) | | h | | 2 ' * AT(n- l ) | |h | | 4 

We observe that σ > 0 because by the Cauchy inequality, XXe^h) < 
^ | | e ^ | 2 ||h||2 = ||h||2 Σ \\ei\\ · On the other hand, d* may be negative, al-
though we may expect it to be positive for a large n (if of* < 0, we set d* = 0 ) ; 
then d = d*/a2. 

3. When V = I+cZhh' is held, we apply the weighted nonlinear least squares 
(y — f(/3)) /V~1(y — f(/3)) to obtain the next approximation of (3. Then we 
recompute residuals and h and return to the variance least squares, iterating 
until convergence. 

This method produced beta estimates close to the mean NLS with &IRLS = 56.96 
and diRLS = 17.18. As mentioned before, the IRLS estimates with the MLE for 
variance parameters can be obtained via the R (or S+) function nlme; it yields 
&ML ~ 56.96 and (1ML = 16.97. Recall that these estimates are obtained from 
maximum likelihood estimation of the LME model with zero fixed effects. 

Efficiency comparison 

Here we compare the efficiency of IRLS and ML using formulas (6.27) and (6.28). 
Since the tree data are balanced, we ignore index i. Also we assume that variance 
parameters are known; we set σ = 7.5 and compute the asymptotic variances of 
/31,/32, and β3 for d in the range 0 to 20. In our computations we assume that the 
true values are βλ = 193, β2 = 2, and β3 = 0.003. As follows from formula (6.27), 

2 

c o v / ß L 5 = ^ ( F , V - 1 F ) - 1 , 

where F = (df/dßvdf/dß2, df/dß3) is an n x 3 matrix of derivatives of the logistic 
growth curve model. To compute the covariance matrix for the ML, we introduce the 
notation h2 = dh/dß2 and h 3 = dh/.dß3. Then the nxn matrix G/ = (h /h '+hh^d 
for I = 2,3 and Gi = 0, in the notation of formula (6.21). The (/i, Z)th element of 
matrix T for 2 < ft, I < 3 is 

Tin = tiÇV^GiV^Gh) = dhr ( V ^ h / h ' + hhßV-^hhti + hWh)) 

= dhr ( v - H h / h ' + hb!l)V'1(hhh' + hh{j) 

= 2d 2 (h , V- 1 h z h , V- 1 h / l + h^V^h ih /V" 1 ! ! ) , 
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FIGURE 6.4. Relative efficiency comparison for ML versus IRLS in logistic regression with 
a random asymptote (orange tree example). The two methods produce the same variance 
for the ßx estimate, which increases linearly with the variance of the random effect, D. 
The variances of β2 and β3 of IRLS are invariant with respect to D, but the variances of 
the MLE drop slightly, so that one may expect the MLE to be more efficient by 3%. 

so that 

COVML = Ç ( F ' V ^ F + ^ T ) \ 

Clearly, COVML ^COVJ^LS, which implies that the MLE has equal or lesser variances 
than the IRLS estimates. We investigate how these asymptotic variances behave as 
a function of the scaled variance of the random effect, d in Figure 6.4. When d = 0, 
MLE = IRLS = NLS and therefore the variances of all parameters as functions of d 
start from the same point. In this figure, we show the relative variance of the esti-
mates as var(d)/var(0), which means that all curves start from (0,1). Interestingly, 
the variance of the trunk circumference of the adult tree (βλ) increases linearly with 
d, whereas the variance for the other two parameters does not.JSince d is around 
17, we conclude that the tree variation increases the variance of βχ by a factor of 8. 
Basically, IRLS and ML are very close due to the fact that the data are balanced 
(recall that ML = GLS = OLS for the balanced random-coefficient LME model de-
scribed in Section 2.3). The variance of the ML is just slightly less than the variance 
of IRLS (by less than 3%). 

Problems for Section 6.2 

1*. Modify the function log t ree to compute the ML estimates that maximize 
the function I given by (6.34), following the dimension-reduction formula. Write an 
R code for iteratively reweigted least squares using suggestions 1 to 3. 

2. Prove that COVML <COVIRLS> Under what conditions does the inequality turn 
into an equality? 

3*. Carry out a relative efficiency comparison as in Figure 6.4 for a Michaelis-
Menten model; namely, y^ = (βλ + bi)xj/(ß2 + Xj) + ε^·, where bi ~ Λ/*(0, σ2ά). 

4*. Develop the ML estimation for a special varied matrix random effects model 
Vij = (7 + bi)hj(ß) + Sij, where bi ~ Λ/"(0, d*), as a generalization of logistic growth 
curve model with random asymptote (6.29). Derive the information matrix (6.20) 
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and simplify the distribution-free estimation of σ2 and d*. Write an R code to test 
your derivations and estimation algorithm against nlme. Use Michaelis-Menten and 
the logistic growth curve model in the test examples. 

6.3 Three types of nonlinear marginal models 

So far, we have considered two types of nonlinear marginal models for repeated 
measurements. In both models, random effects are linear, but in model (6.1) the 
matrix of the random effects is fixed, and in model (6.17) this matrix depends 
on the beta parameters. In other words, for model (6.1), the mean, E(y) = f, 
and the covariance matrix, cov(y) = a 2 V, do not share parameters, but in model 
(6.17), matrix V depends on parameters from f. However, there is an important, 
more general class of nonlinear marginal models when f and V share parameters, 
particularly when some variance parameters enter the mean function f. To illustrate 
this possibility, we recall the log-Gompertz model, (6.16), but now assuming that 
the rate parameter is also subject-specific. Then the log-Gompertz model takes 
the form y^ = (βλ + bi) - ß2e~^3+5i^ + ε^·, where δι ~ Λ/*(0,σ|). The marginal 
expectation for y^ can be expressed in closed form as E(yij) = βλ —ß2e~^3tij+-5cTstiJ, 
and therefore, as we see, the mean depends on the variance σ\. 

To facilitate the study of nonlinear marginal models, we define the following 
three generic nonlinear models. These models can be viewed as a generalization of 
the nonlinear regression model, y = f(/3) + η, where y =(yi, ...,2/NY is a vector of 
observations of the dependent variable, β = (/3l7 ...,/3m)' is a vector of unknown 
parameters, f =( / i , . . . , /jv):i2m —► RN is an N x 1 vector function of the vector ar-
gument /3, and η =(η1,...,ηΝ) is a, vector of errors. Computational issues associated 
with the use of nonlinear least squares are well covered in books by Bard (1974), 
Nash and Walker-Smith (1987), Gallant (1987), Bates and Watts (1988), Seber and 
Wild (1989), and Demidenko (1981, 1989). Although some authors have attempted 
to study the small-sample properties of the Nonlinear Least Squares (NLS) estimate 
(Beale, 1960; Gallant, 1975), asymptotic study is fairly general and widely used in 
the framework of nonlinear estimation. It is especially easy to study the asymptotic 
properties under the stochastic scheme, discussed in Section 3.6.2, assuming that 
fi(ß) = / ( /3 ;xJ , so that the nonlinear regression model is written in a hierarchical 
fashion as yi\^i = / ( /3 ;xJ + η^ where the {x^} are iid random vectors. Then the 
{yi} are iid random variables, and application of the estimating equations theory 
becomes straightforward. See Appendix 13.1.4. 

We require the nonlinear models to be identifiable, meaning that if the mean 
and variance coincide, the parameters coincide as well. For instance, for standard 
nonlinear regression, the model is identifiable if f(/31) = f(/32) implies that β1 = β2. 

The common feature of the following three models is that they define the first two 
moments via nonlinear functions of unknown parameters. To complete the specifi-
cation, the distribution is required. For a continuous response variable, the normal 
distribution is a good candidate, although these models may be helpful for modeling 
discrete data as well. 

The three general nonlinear models differ by the degree to which the mean and 
the variance/covariance share their parameters: 
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1. Type I nonlinear marginal model: 

y = f(/3) + t|, covfa) = V(7). (6.35) 

A characteristic feature of this model is that the regression and variance pa-
rameters do not overlap; in other words, vectors ß and 7 have different com-
ponents. VARCOMP model (1.8) and LME model (2.5) are special cases, as 
can be seen after combining data as in (2.9), where 7 =(a2,vech(D)) and 
V =σ 2 (Ι + ZDZ'). The LME model with the linear covariance structure of 
Section 4.3 and autocorrelated errors of Section 4.3.4 are also special cases 
of (6.35). The nonlinear marginal model (6.1) belongs to this type with co-
variance matrix V. Model (6.35) is identifiable if f (/3X) = f (β2) implies that 
βχ — β2 and V(71) = V(72) implies that 7X= 7 2 . Also, it is assumed that 
matrices F = di/dß and V have full rank for all ß and 7. 

2. Type II nonlinear marginal model: 

y = f(/3) + T7, cov(r/)=V(/3,7)· (6-36) 

In this model, parameters of the mean are part of the covariance matrix. Model 
(6.17) is of this type, with V =σ 2 (Ι + Z(/3)DZ'(/3)). This model is identifiable 
if {(βχ) = f(/32) and V O S ^ i ) = V(j32,72) imply βλ = β2 and 7 ι = 7 2 · 
Note that for this model, it may be that f (/3X) = f (β2) for βχ φ β2 but that 
the model is still identifiable. We call the type II model mean-identifiable if 
f (βλ) = f(/32) implies that β1=β2. 

3. Type III nonlinear marginal model: 

y = f(0) + 7j, cov(r / )=V(0) . (6.37) 

For this model, the mean and variance parameters are common and generally 
indistinguishable. This is the most general nonlinear model, and models types 
I and II are special cases of (6.37). This model is identifiable if f (0X) = f (02) 
and V(0X) = V(02) imply that 0 i = 02· We call this model mean-identifiable 
if f (0X) = f (02) implies that 0 i = 02. 

Below we apply maximum likelihood for each model to estimate parameters, 
assuming normal distribution. We derive the Fisher information matrix for further 
efficiency analysis to compare with Iteratively Reweighted Least Squares (IRLS). 

6.3.1 Type I nonlinear marginal model 

As mentioned before, one trivial example of this type of model is the LME model, 
(2.5). The log-Gompertz growth curve with random intercept of Section 6.1.7 is 
another example. 

Assuming that y ~A/"(f(/3), V(7)), the log-likelihood function, up to a constant 
term, takes the form Z(/3,7) = — ̂ (ln |V| + (y — f) 'V- : L(y — f)). We derive the score 
equations for β and 7 and the Fisher information matrix using the Kronecker prod-
uct and matrix differentiation formulas of Appendix 13.2. We have 

3 ( y - f ) ' V - * ( y - f ) = -G'(v-^V-)[(y-f)^y-f)] 

= -G'fV-^y-f^V-^y-f)] 
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and ôln |V( 7 ) | /Ô7 = G' (V" 1 ® i)vec(I) = G ' v e c i V 1 ) , where F =df /dß and 
G =9vec(V)/Ô7 are n x m and n2 x p matrices, respectively (the dimension of 7 
is p). The first derivatives of the log-likelihood function are 

g = F ' V - ^ y - f ) , (6.38) 

^ = i G ' f V - H y - f J e V - H y - f J - v e c i V " 1 ) ] . (6.39) 

The maximum likelihood estimate solves the m + p score (estimating) equations 
dl/dß = 0 and dl/dj = 0 for (/3,7). Now we find the information matrix, following 
the outline in Section 3.3. The complete (m-\-p) x (ra+p) Fisher information matrix 
takes the form 

Γ F ' V ^ F 0 
1 ~ l 0' ^ ' ( V - ^ V - ^ G 

where the (ft, Z)th element of the second-block matrix is 0 .5 t r (V^V _ 1 V/V _ 1 ) and 
Vft = dY/dr)h is the n x n derivative matrix (ft,/ = 1,2, ...,p). For instance, as 
follows from (6.40), cov(3M L) = ( F ' V ^ F ) " 1 . 

Notice that the estimates for ß and 7 are asymptotically independent because 
the information matrix has a block diagonal structure. This implies that if ß are 
obtained from dl/dß = 0, where instead of solving (6.39), one uses a 0(l/y/N)-
consistent estimate 7, the resulting estimate for ß will still be consistent with the 
covariance matrix (F /V~ 1F)~ . This estimator is called pseudo-MLE; see Appendix 
13.1.3. The pseudo-MLE for this type of model is asymptotically equivalent to 
MLE. For the linear model, this result was discussed in Section 3.15 and the same 
result holds for model (6.1). The MM estimator for D, in generalized/weighted least 
squares, leads to an estimator asymptotically equivalent to the MLE. 

Another feature of model (6.35) is that any fixed matrix Vo produces a consistent 
and asymptotically normally distributed estimate in the weighted least squares, 
(y — f)'Vo(y — f) =min. In particular, it is instructive to show that the ordinary 
LS (V0 = I) is less efficient than maximum likelihood. 

Proof. We use the sandwich formula of Appendix 13.1.4 to show that asymp-
totically var^s >varjvfL· Indeed, for the ordinary LS, the estimating equation is 
F ;(y - f) = 0 , and therefore, in the notation of Appendix 13.1.4, Φ = F ;(y — f) 
with Ε(δΨ/θβ) = - F ' F and £7(ΦΦ;) = F 'VF , where V =cov(y). Thus, the as-
ymptotic covariance matrix of the LSE is (F / F)" 1 (F / VF)(F / F)~ 1 . We need to 
prove that ( F ' V ^ F ) " 1 < (F / F)" 1 (F / VF)(F / F)" 1 , the difference between the 
right- and left-hand sides, is a nonnegative definite matrix. To prove this inequal-
ity, we note that it is equivalent to F ' V ^ F >(F / F)(F / VF)" 1 (F / F) . We prove the 
latter matrix inequality using Q(Q Q)~ Q' < I for any matrix Q of full rank, Rao 
(1973), Graybill (1983). Indeed, let x be any m x 1 vector and y = V " 1 / 2 F x . Then 
x ' F ' V ^ F x = ||y||2 , and denoting Q = V 1 / 2 F , we obtain x , (F / F)(F / VF)" 1 (F / F)x 

= y / Q(Q , Q)" 1 Q , y . 

(6.40) 
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6.3.2 Type II nonlinear marginal model 

An example of this model is the logistic curve with a random asymptote of Section 
6.2.4. For this model, y ~ A/"(f(/3), V(/3,7)) and the score equation is dl/dO = 0, 
where Θ = ()9/,7,)/ a n d dl/θθ takes the form 

F ' V ^ y - f) + 0.5 { G j ^ V - ^ y - f) ® V ^ y - f)) - v e ^ V 1 ) ] } 

-O.ÖG^V-Hy - f) ® V ^ y - f J - v e c i V 1 ) ] = 0, (6.41) 

where 
_ _<9vec(V) _ övec(V) 
Gß~~dß~' °Ί~~^Γ 

are n2 xm and n2 xp matrices. Now we find the information matrix with estimating 
equations (6.41) by obtaining 

cov {§})= i c o v ( G ^ ( v ~ 1 ( y -f) ® v"1(y -f))) 

= I G ^ V " 1 / 2 ® V-1'2) x cov((y - f) ® (y - ^ ( V " 1 ' 2 ® V~^2)Gy 

= iG;(v-1«»v-1)G,. 

Finally, the complete Fisher information matrix is given by 

i=\ ;«,«;_,·ir£v,;~ *" y~p ?"?>;,_,rXl!?571. (6.42) F ' V ^ F + ^ ( V - 1 <g> V - ^ G p j G ^ V - 1 ® V - ^ G y 
iGLCV-1 ® V - ^ G ^ i G ^ V - 1 ® V - ^ G , 

We can derive (6.40) from (6.42) because for the type I model, G 7 = G and Gß = 0. 
If model (6.36) is mean-identifiable, we can apply IRLS: (a) to find an estimate 

of β by minimizing (y — f(/3))/V^"1(y — f(/3)), where Vo is fixed; (b) having an 
estimate of /3, we can find an estimate of 7, iterating until convergence. In Section 
6.2.3, we showed that even when 7 is known, IRLS leads to an estimate with co-
variance matrix (F , V~ 1 F)~ , while the MLE produces estimates with covariance 
matrix [ F / V - 1 F + | G ^ ( V _ 1 ® V - ^ G ^ ] " 1 . We see that the two matrices coincide 
if and only if Gß = 0, which means that matrix V is beta independent. 

6.3.3 Type III nonlinear marginal model 

An example of this model is the exponential model with a random rate, yij = 
exp(a+biXij)+6ij, where the rate bi is subject-specific and random or more precisely 
b{ ~ Λί(β, σ2). Then, if the error term is also normally distributed, E(yij) = exp(a+ 
ßxij + \β2ν}0σΙ) and cov(y;) = σ2Ι+6σ*(εσ* - 1)1.15, w h e r e Ύχ = (Vii^-iVim)' 
and li is the rii x 1 vector of l's. Since the marginal mean depends on σ^, this 
is a type III model. However, this model can be reduced to a type I model by 
reparameterizing 7 = \β2σ\ so that E{yij) = exp(a -f ßxij + 72^)· After 7 and σ& 
are obtained, one derives an estimate of β as ^/2^/ab. 

For the type III model, y ~ A/"(f(0), V(0)) and the score equation dl/θθ = 0 
takes the form 

F ' V - ^ y - f) + i G ' K V ^ y - f) ® V ^ y - f)) - veciV"1)] = 0, (6.43) 



320 6. Nonlinear Marginal Model 

where F = dî/δθ and G = <9vec(V)/90. The Fisher information matrix is given by 

X = F ' V ^ F -1- ^ ' ( V " 1 ® V _ 1 ) G . (6.44) 

The type III model is the most general nonlinear marginal model, and the estimat-
ing equations and information matrices obtained previously may be derived from 
(6.43) and (6.44). Strictly speaking, we cannot apply IRLS to this type of model 
because the mean and variance parameters are indistinguishable. A new method of 
estimation, as a generalization of IRLS and MLE, is considered in Section 6.4. 

6.3.4 Asymptotic properties under distribution misspecification 

When the distribution is normal, the solution to the score/estimating equations 
leads to the ML estimator. Therefore, when N —► 00, it is consistent, asymptot-
ically normally distributed, and efficient with a covariance matrix equal to the 
inverse of the Fisher information matrix, X. Now we investigate what happens if 
the same estimating equations are used but the distribution of y is, in fact, not 
normal. The estimator will still be consistent because the estimating equations for 
all three types are unbiased. Indeed, for the type I model, as follows from (6.38), 
E(dl/dß) = F V~1E'(y — f ) = 0. The estimating equation for 7 is also unbiased 
because, as follows from (6.39), 

i G ' ß t V - ^ y - f J e V - H y - f t t - v e c t V - 1 ) ] 

l-G' [ (V- 1 ® V - 1 ) ^ {(y - f) ® (y - f)} -vecCV-1)] 

\G' [ (V- 1 ® V _ 1 )vec(V)-vec(V - 1 ) ] = 0. 

See Appendix 13.2 for relevant formulas. The same proof is valid for estimating 
equations (6.41) and (6.43). 

However, when the distribution is not normal, the MLE estimating equations will 
not lead to efficient estimators. In the next section we develop a general method 
that can also be applied to non-Gaussian distributions, particularly for distributions 
with long tails. 

Problems for Section 6.3 

1. Prove that the linear mixed model belongs to the type I nonlinear marginal 
model. 

2. Prove that the logistic regresion with random asympote belongs to the type II 
nonlinear marginal model. 

3. Check that the (2,2) block of the Fisher information matrix (6.40) reduces to 
(3.17) for the linear mixed effect model. 

4. Prove that IRLS converges to the score equations (to be rigorous, each limit 
point of the IRLS sequence is the solution to the score equation). 

5. Prove that the information matrix (6.42) is nonegative definite. Specify condi-
tions under which the matrix is positive definite. 

"£ ■ 
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6. Consider an exponential model with random intercept, yij = e-xc>(ai-\-ßxij)+Sij, 
where α̂  ~ λί(β, σ^). To what type of nonlinear marginal model does it belong to? 
Find the information matrix. 

7. Consider an exponential model with random intercept and slope, y^· = exp(a^ + 
bi%ij) + £ij, where a* ~ Αί(β, σ\) and bi ~ Λ/*(/3, σ^) are independent. To what type 
of nonlinear marginal model does it belong? Find the information matrix. 

8. For what type of nonlinear marginal model is the ML estimator not consistent, 
when in fact the distribution is not normal but the first two moments are the same 
as in the normal distribution? 

6.4 Total generalized estimating equations approach 

As shown above, if the mean and variance functions do not share parameters, the 
IRLS is asymptotically equivalent to the MLE. If the mean and variance do share 
parameters, the IRLS is easier to implement but less efficient. On the other hand, 
the IRLS is robust to the distribution misspecification but the MLE is not. As a 
word of caution, IRLS cannot be applied to a type III model when the mean and 
variance parameters are indistinguishable. The goal of this section is to combine the 
IRLS and MLE under one umbrella, with one control parameter, which specifies a 
distribution-free estimation method. 

We concentrate our attention on the most general estimating equations, (6.43). 
The key observation for our approach, called the total generalized estimating equa-
tions approach, is that the estimating equations will stay unbiased if factor \ is 
replaced by any positive coefficient (we will provide an interpretation for that co-
efficient later). Thus, we come to the total generalized estimating equations (Total 
GEE or TGEE) approach, which gives estimates for Θ as the solution to the vector 
equation 

F'V^y - î)+vG'\y-\y - f) (8) V ^ y - f J-veciV"1)] = 0, (6.45) 

where v is a positive constant. The left-hand side of (6.45) is called the estimating 
function and, following the notation of Appendix 13.1.4, is denoted Φ = Ψ(0). 
This estimating equation may be viewed as a linear combination of two estimating 
equations, one for the mean and another for the variance. Parameter v may be 
viewed as the weight coefficient of the variance part. If y is normally distributed 
and v = ^, we come to maximum likelihood. Thus, maximum likelihood is a special 
case of TGEE. For a type I marginal model, Total GEE collapses to dl/dß = 0 
and dl/d*y = 0 defined by (6.38) and (6.39), and v does not matter. For a type II 
marginal model (6.45) collapses to (6.41). However, now we do not assume that y 
is normally distributed. 

One comment on the terminology. The estimating equations (EE) approach is a 
general method to obtain an estimate by solving the vector equation Σ,Ζ=ι *(y*> 7) = 

0, where 7 is the m-dimensional parameter and \£ is the ra-dimensional vector func-
tion; see Appendix 13.1.4. The Generalized estimating equations (GEE) approach 
is a special case of EE when the estimating equation is expressed in terms of the 
mean and variance of y^, particularly for the generalized linear model (Zeger and 
Liang, 1986; Liang and Zeger, 1986). Since (6.45) is expressed in terms of the first 
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two moments, we call it TGEE. The GEE approach, applied to binary and count 
data, is considered in the next chapter. 

In the next theorem, we formulate the general properties of the TGEE approach. 
For model (6.37), we introduce the normalized vector ζ = V _ 1 ' 2 ( y —f). Notice that 
all components of this vector ζ ΐ5..., ζΝ have zero mean and unit variance. Then we 
have var(£?) = Ε(ζ*) — 1 = κ — 1, where κ is the kurtosis; see Section 5.1.4. For 
a normally distributed 77, the kurtosis is 3. A greater kurtosis indicates a flatter 
distribution around the mean; typically, distributions with large kurtosis have long 
tails. 

Now we formulate the main result. 

Theorem 32 The TGEE estimator OTGEE, CLS the solution to estimating equations 
(6.45), is consistent and asymptotically normally distributed for any positive v. If 
the third moment of ζ{ is zero, then 

Ο,ΟΥΦΤΟΕΕ) = (P + ^ Q ) _ 1 ( P + V2(K - 1)Q)(P + ^ Q ) - \ (6.46) 

where the p x p matrices P and Q are defined as 

p = F ' V ^ F , Q = G ^ V " 1 ® V ^ G . (6.47) 

Furthermore: (a) The covariance matrix (6.4.6) attains its minimum at v = 1/(κ — 
1). (b)Ify is normally distributed, then v = \ produces an MLE with COV(OTGEE) 

=cov{eML) = (P + Q) . (c) For any distribution o /y , there exists a sufficiently 
small positive v that COV(0TGEE) < P - 1 . 

Proof. First, we see that the estimating equation (6.45) is unbiased because 
E(y - f) = 0 and E [ V - ^ y - f ) ® V ' ^ y - f)] = V 1 W " 1 = V " 1 , so that the 
expected value of the second term of (6.45) is zero. Second, we use the sandwich 
formula of Appendix 13.1.4 to obtain the asymptotic covariance matrix of OTGEE-

For this we need to find the expected value of the derivative of (6.45) with respect 
to Θ. The expected value of the first term is —G /V~1G /. For the second term, we 
use formula (13.31), which yields 

F v-Hy - f) ® v - 1 (y - f) = F
v e c [v-1(y - f)(y - f )/v~1] 

ΘΘ dd 

= -E{ [V-\y - f)(y - f)' ® I] (V" 1 ® V ^ G 

+ [I ® V - ^ y - f)(y - f)'] ( V - 1 ® V - ^ G } = - 2 ( ν ~ 1 ® V ^ G . 

Thus we obtain 

c,aG,[v-1(y-f)®V"1(y - O-veciv-1)] E m 
= G' [ - 2 ( ν _ 1 ® V _ 1 ) G + ( V _ 1 (S V _ 1 ) G ] = - Q , 

and we finally obtain Ε(ΘΦ/ΘΘ) = — (P + vQ), where Φ is the left-hand side of 
(6.45). If Ε(ζί) = 0, the expectation between the first and second terms of (6.45) 
is zero and Ε(ΦΦ') = Ρ+ν2(κ — 1)Q. Formula (6.46) is proved. Now we prove 
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statement (a) that the minimum of COV(0TGEE) is attained at v = 1/(κ — 1). 
Denoting R = Q~ 1 / 2 PQ~ 1 / 2 , we obtain 

Q 1 / 2 cov(0 T Gi^)Q 1 / 2 = (R+^I) _ 1 (R+^ 2 ( / i - l J I X R + i / i r 1 . (6.48) 

Taking the spectral decomposition of matrix R = ^ KPiPi, where {A;} are positive 
eigenvalues and the {p;} are eigenvectors, we may write (R+z/E)~ = Σ(λ* + 
i/)_1PipJ, R+Z/2(K; — 1)1 =]C(^i + ^2(tt — l))PzPi s o that the right-hand side of 
(6.48) can be written as L(i/) = ^2(Xi + ν2(κ - 1))(λ» + ^)~2P*PÎ· Let c be any 
nonzero vector. Then function Lc{y) = c'L(i/)c = Σ(λ* -f V2(K — 1))(λί + ι/)"2/ι2, 
where h% = p^c, takes the minimum where dLc/dK = 0. But dLc/dv = 2(ν(κ — 1) — 
1)Σ}λί/ι2(λί + ^ ) " 3 , which becomes zero if and only if v — l / (« — 1). Thus the 
minimum of T'COV^TGEE)* for any vector r takes its minimum at v = l / (« — 1). 
Statement (a) is proved. For 0 < v < l/(/c — 1) we have dLc/dv < 0 for all c φ 0 
regardless of y distribution; this proves (c) because if the derivative is negative, we 
can find u0 such that Lc(0) > LC(VQ). Statement (b) follows from the fact that for 
the normal distribution, κ, — 1 = 2 and (κ — l)2u = κ — 1. 

6.4-1 Robust feature of total GEE 

Total GEE is controlled by parameter v. For the Gaussian distribution, the optimal 
v — 1/2; for a distribution with kurtosis «, the optimal parameter is v = 1/(κ — 1). 
For example, for the Laplace (double-exponential) distribution, κ = 6, and therefore 
the optimal v = 1/5. Since a larger kurtosis typically implies a heavier tail, we 
conclude that a smaller coefficient v in the estimating equation (6.45) leads to a 
more robust estimate. In Table 6.3 we show kurtosis and the respective optimal v for 
several symmetric distributions with heavy tails. (The positive coefficient C is such 
that the area under the curve is 1.) As follows from this table, v = 1/5 or smaller 
may be a good choice if a distribution with a heavy tail is suspected. Estimation 
with several v (including v = 1/2) may shed light on how sensitive the estimates 
are to the normal distribution assumption (see the example in Section 6.4.5). 

Table 6.3. Optimal values for v for different distributions 
Distribution of η{ Density Kurtosis κ Optimal v 

Ε(Χ*)/σ* 1/(18-1) 
Normal 
Normal x Power2 
Normal x Power 10 
Laplace 

t-distr. with k d.f. 

Ce~* 1** 
C(l+x6)e~4x2 

C(l + x20)e-10x2 

<7e-AM 

cfi + fl"**1 

3 
3.76 
5.39 

6 

3(fc-2) 
fc-4 

0.50 
0.36 
0.23 
0.20 

fc-4 
2(fc+2) 

6.^.2 Expected Newton-Raphson algorithm for total GEE 

To solve the estimating equation (6.45), we may use the linear approximation, 
as in the Newton algorithm. If θ$ is the initial approximation to the solution of 
Φ(0) = 0 after linearization, Φ(0) ~ Φ 0 + (<9Φ/<90)Ο(0 - 0O), we come to the next 
approximation, 0X = 0O - (ΟΦ/00)^"1ΦΟ, where Φ 0 = Φ(0Ο) and (ΟΦ/90)Ο = 
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d\l/(0 = 0o)/<90. Now we observe that instead of (9Ψ/90)Ο , one may use any other 
number fairly close to (9Ψ/90)Ο , so that we may take the expectation of 9Φ/90 , 
which is — (P s + i/Qs). This leads to iterations 

0 S + 1 = 0S + (P a + i/Qs)"1**, (6.49) 

where s is the iteration index, Φ5 is the estimating function, and P s and Q s are ma-
trices defined in (6.47), all computed at 0 = 0S. We call this algorithm the Expected 
Newton-Raphson (ENR) algorithm. The word expected comes from the fact that 
—(Ps + vQs) is the expected value of the Jacobian used in the standard Newton-
Raphson algorithm. Below we show that for the linear mixed effects model, this 
algorithm is Fisher scoring. 

6.4-3 Total GEE for the mixed effects model 

It is straightforward to apply the formulas for the mixed model with repeated mea-
surements in the form y$ = fi(0) + V^ where c o v ^ ) = V^(0) and i = l,2,...,iV 
denotes cluster/subject. (It merely requires the subindex i.) As always, we assume 
that observations between clusters are independent. Due to this independence, the 
estimating equation takes the form of the sum over all clusters, 

N 

Σ {F iVfo- fO+i /GJ tVr^y i - f i ) ® vr^yi-fO-veciVr 1 ) ]} = 0. (6.50) 
i=l 

To solve this equation, we use the ENR algorithm (6.49), where Ψ is the left-hand 
side of the estimating equation above and 

N N 

P = £ PJ Vrip«, Q = £ GJ (Vf1 ® Vr 1 )^ . (6.51) 
i = l i=l 

As follows from (6.49), if iterations converge, the limit is the solution to (6.50) 
because then l im s_ o o (0 s + i — 0S) = 0, and multiplying by P s -f uQs we obtain 
lims_>oo Φ θ = 0. Below we illustrate TGEE by two examples. Also, we shall apply 
this approach to the Poisson model with random effects, where the covariance matrix 
can be computed exactly, Section 7.5. 

6.44 Total GEE for the LME model 

To illustrate, we apply Total GEE to the LME model (2.14). Since the parame-
ters of the mean and covariance matrix do not overlap, we conclude that model 
(2.14) is a type I marginal model. For this model, TGEE (6.45) collapses to two 
separate equations, for β and (σ2 ,Ό*), defined by (6.38) and (6.39), respectively, 
where the covariance matrix of the zth cluster is V» = σ2Ι + Ζ^Ό*Ζ£. Note here that 
we use matrix D* as the parameter matrix (in the previous notation, D*=a 2 D). 
The estimating equation for β is given by (6.38) and leads to the GLS estima-
tor, (X^X^V~ 1 Xi)^X^V~ 1 yi . Now we derive the estimating equation for the 
variance parameters using (6.39). In particular, our current aim is to obtain an 
explicit expression for the derivative matrix G. Using the properties of the matrix 
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FIGURE 6.5. Six parameter estimates of the log-Gompertz curve with two random ef-
fects/parameters, as a function of v in total GEE. When v = 1/2, all curves start from 
MLE assuming normal distribution. The most sensitive parameter to the distribution spec-
ification is ß3. However, when the kurtosis of the distribution is 1/0.1 + 1 = 11 (very flat), 
this parameter changes from the MLE by only 8%. Thus, the MLE for these data and 
model is robust to the distribution specification. 

Kronecker product (see Appendix 13.2.3), we have vec(V) =vec(a2I + Z;D*Z^) = 
a2vec(I) 4- (Z^ ® Zi)vec(D*), and therefore G = [vec(I), Z{ 0 Z»]. Hence, the esti-
mating equation (6.39) can be rewritten as 

N 

i=l 

vec'(I) [ V r V i - X i j S ) ® V r ^ - X ^ - v e c C V T 1 ) ] 
[ (ZÎOZJ) [ V r ^ - X ^ V - ^ - X ^ - v e c t V " 1 ) ] 

0. 

Using further properties of the Kronecker product, we find that this system is equiv-
alent to 

^ [ ( y . - X ^ ' V r ^ y . - X ^ - t r C V r 1 ) ] = 0, 

^ [ Z i V r ' i y i - X i / î K y i - X i ^ V r ' Z i - Z S V r ' Z i ] = 0, (6.52) 

where ß = ( S X i V 2 ~ 1 X i ) _ 1 ( J ] X ^ V ^ 1 y i ) . These are the score equations for the 
log-likelihood function under parameterization (a2,D*), see Section 2.2.4. 

6.4-5 Example (continued): log-Gompertz curve 

We illustrate the TGEE approach by the log-Gompertz-growth curve (6.16) stud-
ied in Section 6.1.7. This model is a type I nonlinear model because the mean 
and the covariance matrix depend on different parameters. Now we provide for-
mulas for the maximum likelihood estimation by the ENR algorithm based on 
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(6.49). In the notation of the TGEE approach, V* = a2l4-d*lil4 and G ^ = 
dvec(Vi)/dß = 0 because V* does not contain components of the ß vector. Further, 
G^7 = <9vec(Vi)/<97 =[vec(I), 1̂  ® 1*], where 7 = (σ2, d*) is the variance parameter 
vector, so that G^ = [0,vec(I),lf <8> 1*]. The total parameter vector of dimension 
3 + 2 = 5 is Θ = (/3,7). The n* x 5 matrix of the first derivatives of the mean is 
Fi= dfi/dO = [lf,— e^,/32(tiei),0,0], where e* = e_ / 3 s t i , and ( t ^ ) is an n* x 1 
vector with the j t h component t^e"^***'. Now, application of the ENR algorithm 
defined by (6.49), where matrices P and Q are given by (6.51), is straightforward. 
One can even yield closed forms for matrices P and Q using the matrix inverse 
formula (2.69). The ENR algorithm required three or four iterations to converge to 
the MLE regardless of the initial value of the parameters. 

Next we complicate the model by assuming that the second parameter of the log-
Gompertz curve is also spheroid-specific and random, namely, yij — (ßx +bi) — (/?2 + 
8i)e~^ztij + Sij. In addition to the previous assumptions, we assume that the {Si} 
are iid with zero mean and unknown variance r 2 . However, unlike the previous log-
Gompertz model, we do not assume that the distribution is normal, but symmetric 
with kurtosis κ,. To simplify, we assume that bi and δι are uncorrelated. The matrix 
Vi = a2I-hd*lil4 + T2e^e^ is the Π{ χ rii covariance matrix of y^. This model is of 
type II and belongs to the family of marginal mixed models with a varied matrix 
of random effects, (6.17). Since the mean function does not depend on the variance 
parameter 7 =(a2 ,d*,T2) ' , we have F ; = [1^, —ei,ß2(tiei)]0] where 0 is an rii x 3 
zero matrix. Noting that in vector form vec(Vi) = a2vec(I)+d*(li<8)li)+T2(ei(g)ei), 
we find that 

Giß = V 6 ^ *' = [0,0, - r 2 (e ; 0 (t<e<) + ( t ^ ) 0 e<)], 

dvecCVi) 
G;7 = — - — — = [vec(I), 1 · (g> I*, e* <g> e»]. 

The combined matrix of the derivatives is G^ = [G^,G^7] . We apply the ENR 
algorithm to find estimates with different v (it required a few iterations to converge). 
The results are displayed graphically in Figure 6.5. v = 0.5 produces the MLE under 
a normal distribution; v = 0.1 is optimal if the kurtosis of the distribution is 1/0.1 + 
1 = 11 (very flat). Parameter ß3 is the most sensitive to deviation from the normal 
distribution, although the difference is small (maximum 8%). One may conclude 
that for these data (parameter values) and this model, the normal assumption is 
fairly adequate. 

6.4-6 Photodynamic tumor therapy 

In this section we present the data for an application of the total GEE aproach to 
model the mouse response to tumor treatment (Demidenko, 2006a). PhotoDynamic 
Therapy (PDT) is an alternative to the standard radiation tumor treatment (Pogue 
et al., 2003). An advantage of PDT over the traditional gamma-ray therapy is that 
the light is less harmful to normal tissue, although penetration is limited. The data 
are in the file phototumdat. csv and the R function below reads and plots the data 
using the xyplot function from the library l a t t i c e (see Figure 6.6) and estimates 
the tumor response by the nlme function using the LINEXP tumor regrowth model. 
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FIGURE 6.6. Post-PDT tumor volume growth in 31 mice on the log scale. 

phot ot um=f une t i on ( ) { 
l i b r a r y ( l a t t i c e ) ; l i b r a r y ( n l m e ) 
dumpCphototum", "c : \\MixedModelsWChapter06Wphototum.r11) 

datpt=read.csv("c:\\MixedModels\\Chapter06\\phototumdat.csvM) 
xyplot( lntv~day| id , type=l lb , l ,data=datpt) 
outnlme<-nlme (lntv~alpha+gamma*day+beta* (exp(-del ta*day)-1) , 

fixed=alpha+gamma+beta+delta~l, random=pdDiag(alpha+beta~l), 
g roups=~id ,da ta=da tp t , s t a r t=c (5 ,0 .5 ,2 .7 ,0 .23) ) 

summary(outnlme) 

> 

We model the response of mouse tumor to PDT using the following nonmonotonic 
function of time on the log scale: 

y(t) = a + 7* + ß(e~dt - 1), t> 0, (6.53) 

where y(t) = lnV(t), the logarithm of the tumor volume. This function, called the 
LINEXP function (Demidenko, 2006a), has easily interprétable parameters: para-
meter a determines the initial log tumor volume, parameter 7 is the rate of growth 
of the untreated tumor volume, parameter δ is the rate at which killed cells are 
washing out from the tumor, and e~ß is the fraction of cancer cells surviving treat-
ment. A statistical model that describes the tumor dynamics after PDT takes the 
form 

Vij = CLi+ jUj + bi(e~6ti' - 1) + Si - ÎJ5 
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where i = 1,2,..., N = 31 is the number of mice and j = 1,2,..., Ui are indices of ob-
servations within the mouse. We assume that 7 and δ are fixed unknown parameters 
and that α̂  and bi are mouse-specific and random. To make the statistical model 
easier, we shall assume that α̂  and bi are independent. This assumption has been 
confirmed empirically—the correlation coefficient was -0.11 with the p-value=0.45. 
Moreover, the results of the estimation with an unstructured covariance matrix for 
ai and bi using the nlme function were practically identical to the results based on 
the independence assumption. 

Of course, the normal assumption is questionable and we ask you to apply the 
total GEE with different v to these data in the Problem 4 below. 

Problems for Section 6.4 

1*. Apply TGEE and the results of the theorem to regression with a symmetric 
but not normal distribution, {yi — ß'^/a = ηί ~ / , as in Table 6.3. Use simulations 
to confirm the superiority of TGEE compared to the linear least squares. Apply the 
ENR algorithm for estimate computation. 

2. Develop an algorithm to solve the (1 + fc2) score equations (6.52) for σ2 and D*. 
Rewrite V; = V;o + (σ2 — a^)! + Zi(D*— D*0)Z^ and use approximation (2.108) to 
obtain adjustments for σ2 and D*. Write an R function that estimates a linear mixed 
model using the GEE approach. Run simulations with normally distributed errors 
to test the code. Run simulations with nonnormal errors, such as those presented 
in Table 6.3, and compare with the maximum likelihood estimation (use lme or our 
own lmeFS). 

3. Reproduce the efficiency computation in Figure 6.5 for the log-Gompertz curve 
using TUMspher. t x t data. 

4*. Apply the total GEE approach to the phototumdat. csv data set using the 
LINEXP model described above. Use the ENR algorithm and construct the deriva-
tive matrices similar to those in Section 6.4.5. Plot all seven parameters as a function 
of v in the range 0.2 to 0.5. Consult Demidenko (2006a). 

6.5 Summary points 

• In this chapter, nonlinear marginal mixed models are considered in which the 
mean and variance/covariance functions are explicit functions of the population-
averaged parameters. Models in which the regression function/marginal mean 
cannot be expressed in closed form, therefore requiring integration, are stud-
ied in the subsequent chapters. A marginal model is suitable for a continuous 
dependent variable where the normal distribution (perhaps after taking the 
log transformation) is a good candidate. 

• A straightforward generalization of the linear mixed effects model is the model 
in which fixed effects/mean is a nonlinear function of the population-averaged 
parameter ß with a fixed matrix of random effects, (6.1). Two kinds of es-
timation methods can be applied: maximum likelihood and distribution-free. 
In the latter we borrow estimates for the variance parameters from the linear 
model. A characteristic property of this model is that one comes to an asymp-
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totically efficient estimate for ß if any consistent estimate for the matrix of 
random effects, D, is used in the weighted nonlinear least squares. 

• Estimation of a nonlinear regression and a nonlinear mixed model may lead 
to difficult optimization problems that involve the absence of a solution (min-
imum of sum of squares), nonuniqueness (several local minima), and noncon-
vergence of the iterative minimization procedure. At least two initial points 
for iterations should be tried to ensure that iterations converge to the same 
value. 

• The next generalization of the linear mixed effects model is to assume that the 
variance/covariance function is a nonlinear function and contains parameters 
of the mean, (6.17). The model with a varied matrix of random effects prin-
cipally differs from the model with a fixed matrix of random effects in that 
use of a consistent matrix D no longer leads to asymptotically efficient esti-
mates for ß. Particularly, a popular iterated reweighted least squares (IRLS) 
method yields consistent but less efficient estimates for ß. The maximum like-
lihood estimator is more efficient but loses consistency if the distribution is 
misspecified. On the contrary, IRLS remains consistent even if the distribution 
is misspecified. If the data are balanced, the advantage of the MLE over IRLS 
may be slim even if the distribution is normal. 

• Generally, three types of nonlinear models of increasing complexity, as a gener-
alization of the regression model with variance function, can be considered. In 
the type I model, the mean/regression and variance parameters are different. 
In the type II model, the variance function depends on the mean parameters. 
Finally, in the type III model, the mean and variance share parameters. Thus, 
the marginal model with a fixed matrix of random effects, (6.1), belongs to 
type I, and with a varied matrix of random effects, (6.17), to type II. 

• For a type I nonlinear model, any consistent estimate of the variance pa-
rameters leads to an asymptotically efficient estimate of ß. For the mean-
identifiable type II model, IRLS leads to a consistent estimate of ß regardless 
of distribution. If the distribution is normal, MLE is more efficient, but it loses 
its consistency if the distribution is misspecified. Strictly speaking, IRLS can-
not be applied to a type III model because variance parameters are involved. 

• The Total Generalized Estimating Equations (TGEE) approach combines the 
MLE and IRLS under one umbrella. The estimating equation is a linear com-
bination of the estimating equation for the mean and variance with the weight 
coefficient z/, assuming that the distribution has a zero third moment (true 
for symmetric distribution). For a type I model, TGEE reduces to maximum 
likelihood; for a type II model, v = 0 corresponds to IRLS and v = 1/2 to the 
ML. 

• A smaller v gives a more robust estimation that is less efficient if the dis-
tribution is normal. For example, if the distribution is double-exponential 
(Laplace), the optimal v — 1/5. Computation of the TGEE estimates with 
several v (including v = 1/2) may shed light on how sensitive estimates are 
to the normal distribution assumption. 
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• The expected Newton-Raphson algorithm is developed to solve TGEE. For 
a linear mixed effects model, this algorithm collapses to Fisher scoring and 
usually requires a few iterations to converge, provided that there is a good 
initial value/starting point. 

• The three types of nonlinear models require gradually increasing complexity 
of methods of estimation. For a type I model, GEE and MLE for ß are as-
ymptotically equivalent. For a type II model, GEE/IRLS is consistent and 
asymptotically distributed with variances larger then MLE. Use of any con-
sistent estimate of the variance parameters 7 in the estimating equation for ß 
leads to the same distribution as that when the true variance parameters are 
used. For type III model, no distinction between parameters (such as model 
coefficients ß and the variance parameters 7) can be made to facilitate the 
estimation. Parameters may be estimated by either TGEE or maximum like-
lihood. 



7 
Generalized Linear Mixed Models 

In this chapter we continue studying nonlinear mixed models. In the preceding 
chapter we dealt with marginal mixed models where the dependent variable is the 
sum of nonlinear fixed effects and linear random effects. Starting with this chapter, 
random effects are nonlinear as well. Consequently, we cannot express the marginal 
mean of y in closed form, and integration is required. The Generalized Linear Mixed 
Model (GLMM) is an extension of the generalized linear model (GLM) complicated 
by random effects. The marginal mixed model of Chapter 6 plays an important role 
in nonlinear random effects methodology because, after approximation, the latter 
model is reduced to the former. GLMM takes an intermediate position between the 
marginal model and the nonlinear mixed effects model. In recent years it has gained 
significant popularity in modeling binary/count clustered and longitudinal data. 

Usually, the GLMM is introduced in general terms via an exponential distribu-
tion family. Then special cases of GLMM, such as logistic or Poisson regressions, 
are deduced as specific forms of the link function. We take an alternative, inductive 
route. First we discuss in detail the most important special cases, such as logistic 
and probit regression for binary data and Poisson regression for count data. Second, 
we illustrate how GLMM, generally, may be derived from the exponential family 
convoluted with random effects. Although an inductive approach may seem repeti-
tive (the models have common features), it is more powerful because the specificity 
of the model is taken into account. We consider in detail special generalized linear 
mixed models. For example, for binomial observations with beta distribution for 
the probability, probit, and Poisson regression models with normally distributed 
random effects admit an elegant solution that avoids integration. 

First, we study an important special case: clustered/panel data with a cluster-
specific intercept. Intercepts may be fixed or random, and we develop estimation 
methods under both assumptions. The advantage of the model with a random inter-
cept (one random effect) is that the ideas can be presented in a concise way, so that 
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further generalization to several random effects becomes straightforward. Second, 
we generalize the GLM by allowing several correlated random effects. At the end 
of the chapter we discuss limitations of the generalized estimating equations (GEE) 
approach. 

Usually, estimation of the nonlinear mixed effects model is computationally in-
tensive and requires advanced numerical procedures. Thus, discussion of the appro-
priate algorithms constitutes a substantial part of the chapter. 

Several excellent texts are available on the topic. The book by McCullagh and 
Neider (1989) is a classic reference for GLM. A broad discussion of GLMM may be 
found in books by McCulloch and Searle (2001), Fahrmeir and Tutz (2001), and 
Agresti (2002). 

7.1 Regression models for binary data 

In this section, we briefly review statistical modeling with a binary dependent vari-
able. A binary regression model (more precisely, a logistic regression model) is a 
special case of GLM. Classic reference books on the subject are those of Cox and 
Snell (1989) and McCullagh and Neider (1989). The binary regression model can be 
specified as follows. Let yi be a binary dependent variable and x^ the corresponding 
m x 1 vector of covariates (explanatory variables or predictors), i = l , . . . ,n. It is 
assumed that the number of observations is equal to or greater than the number of 
covariates (n > m) and that n vectors {x^} have full rank, 

rank(xi, . . . ,xn) = m. (7.1) 

The probability of the event yi = 1 in the binary model is specified via a strictly 
increasing function μ = μ(-δ), the inverse link function in the language of GLM, 
namely, 

Pr(y i = l) = M(/3'xi), < = 1,...,η, (7.2) 

where β is the m x 1 vector of parameters to be estimated using the data (yi, x;). It 
is assumed that the n random binary variables, yi,..., yn, are independent. Also, it is 
assumed that μ is a continuous, twice-differentiable strictly increasing function. The 
inverse function, η = μ_ 1 , is called the link function. We prefer the term probability 
function for μ because it models the probability of y. Typically, the first component 
of vector x^ is 1, so that the first component of vector β is the intercept term. Model 
(7.2) may be rewritten as E(yi\xi) = μ(/3'χΐ), and it is therefore called a regression 
model for binary data. Equivalently, in terms of the link function, η(Ε(^ΐ)) = ß'xi. 
For binary data, 

var(y<) = Pr(y, = 1) Prfo = 0) = μ(β?χ*)(1 - μ(β'χΐ)). 

The following properties usually hold for the probability function μ: 

1. The function μ = //(s) is defined for all 5 G (—oo, oo). 

2. 0 < μ(β) < 1, lime_>_oo μ(β) = 0, l i m ^ o ^ s ) = 1. 

3. άμ/ds = μ' = μ > 0. 
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4. d2 (In μ)/άδ2 < 0. 

5. Many probability functions are symmetric, 

μ(β) = 1 - μ ( - β ) . (7.3) 

The symmetry holds if μ' is an even function. 

The second property complies with the fact that μ models the probability. The 
probability function is a strictly increasing function, as follows from the third prop-
erty. The fourth property ensures that the log-likelihood is a concave function of 
parameters, see Section 7.1.4. This property, in conjunction with (7.3), implies that 
ln/i and ln(l — μ) are concave functions. Indeed, the concavity of Ιημ follows di-
rectly from it. The concavity of ln(l — μ) under (7.3) follows from the fact that 
ln(l - μ(δ)) = l n ^ ( - s ) and d 2 ( h ^ ( - s ) ) / d s 2 = d2 (\χι μ^)) / ds2 < 0. The concavity 
is needed for uniqueness of the maximum likelihood estimate, see Section 7.1.4 for 
details. 

The popular choices of probability function μ and respective regressions have 
their own names: 

/i(s) = e s / ( l + es), logistic regression. 
μ(β) = Φ(δ) = (1/\/2π) J^ e - 0 ·5* dt, probit regression. 

μ(β) = 1 — e~&s, complementary log-log regression. 
Each of the three binary models has its domain of applications (see Figure 7.1 

with these functions). Formally, any cumulative distribution function may be used 
as μ. 

Logistic regression. All five properties hold for this regression. The second 
property is easy to see. The third and fourth properties follow readily from 

αμ es ά2\ημ es 

ds (1 + e*)2 ' ds2 (1 + e*)2 

Symmetry (7.3) is also easy to check, 

e~s 1 es 

μ(—δ) = - = = 1 — = 1 — u(s). 
^K J 1 + e~s 1 + es 1 + es P W 

Logistic regression is popular in epidemiological and biomédical studies where the 
strength of association between the dependent variable and covariate (exposure or 
risk factor) is measured by e^, the odds ratio. For example, if y codes the occur-
rence of cancer and x codes the smoking status (x = 1 for smoker and x = 0 for 
nonsmoker), e& is the ratio of two odds. The first odd is the ratio of probabilities 
of cancer to noncancer within the smoker group, 

Pr(!/i = l |* = l) a+e 

^ Pr(i« = 0|a: = 1) 

The second odd is the ratio of probabilities of cancer to noncancer within the non-
smoker group, 

Pr fa = l\x = 0) 
Uo P r fa = 0|x = 0) · 
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Then the odds ratio (OR) is 

9i-eß 

This relationship does not hold for the probit or complementary log-log function. 
The fact that the odds ratio in logistic regression is expressed easily through coef-
ficients is the major reason for using this binary model in epidemiology. 

logit 
probit 
c. log-log 

FIGURE 7.1. Three probability functions μ = μ(δ) to model binary data. The logit and 
probit functions are symmetric and take value 1/2 at s = 0. The complementary log-log 
link, μ(δ) = 1 — e~e , is not symmetric. Generally, any distribution function may be used 
to model binary data. 

Probit regression. All five properties hold for this probability function. The 
third and fourth properties follow from the inequalities 

άΦ _ 
ds ~ ^/2n 

1 i2 Λ ώ21ηΦ 
e~2s > 0 , 

ds2 -(*Φ(*) + 0(*))<Ο, 

where Φ is the cumulative distribution function (cdf) of the standard normal variable 
JV(0, 1) and φ = Φ' is the density. The second inequality is given by Feller (1966). 
The probit model is popular in engineering and econometric studies. For example, 
let Zi be a continuous measure related to a set of explanatory variables x^ via the 
standard linear regression model 

Zi = / 3 0 + / 3 / χ ΐ + ε ί , (7.4) 

where ε% ~Λ/*(0,σ2). However, let the z% be unobservable (latent variable); instead 
we observe a binary variable 

Vi 
0 if Zi < c 
1 if Zi > c 

(7.5) 
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where c is a cut-off point/threshold (McCulloch and Searle, 2001). Then, an appro-
priate binary model for the binary yi is the probit regression because 

P r ( î / j = l) = -L= Γβ-^ζ-βο-β'^άζ 
v 2πσ2 Je 

= ι-φ^-^-^)=Φ(^ + / 3 ; Χ ί ) , 

where β* = (β0 — c)/a and /3* = β/σ. In a dose-response framework, xn may 
be ppison/drug concentration (or radioactive dose) and Xi2 may be age or gender. 
For example, let Zi be a continuous measure of the health damage due to poison-
ing. Then we may assume that if poison concentration exceeds a certain threshold, 
c, death occurs (yi == 1). The question is whether the coefficients βλ and β2 can 
be determined by observing a binary event, in our case, death. Unfortunately, we 
cannot identify the coefficients of the original model (7.4) having binary truncation 
observations (7.5). However, we can identify the ratio of the coefficients. For ex-
ample, if we are interested in the relative strength of the association in the linear 
regression model Zi = ß0 + ßiXn Λ-ß2x%2 + £*? which can be expressed as ß\jß2, we 
can estimate this ratio using binary data (7.5) with the probit model because the 
common factor σ _ 1 is eliminated, namely, 

ßu = ßi/* = ßi 
ß2* ßil* / V 

To identify ß and σ, one has to have repeated measurements for the binary y and 
has to apply a random effects methodology, a mixed model. 

Complementary log-log regression. For this regression 

άμ = . ά2\ημ = . 1 - e e* - e 
ds ' ds2 ( i _ . e - e · ) > 0 , ^ ^ = e - a \ C _;2 < 0 . (7.6) 

To prove the second inequality, we notice that e~x > 1 — x for x φ 0 and therefore 
e~&a > 1 — es for all 5, implying that the numerator of the second inequality (7.6) 
is negative. The log-log function is not symmetric, μ(β) φ 1 — μ{—8). The name 
of this regression comes from the fact that the inverse link contains two logs: η = 
1η( -1η(1-μ) ) . 

The log-log link function emerges in connection with Poisson regression. If a ran-
dom variable, ζ^ takes nonnegative values 0,1,2,... and has a Poisson distribution, 

Pr(zi = jfc) = i e * ^ ' x ' ) - e f l , x <
) (7.7) 

then E(zi) = e^X i . Now, we are interested in modeling Pr(zi > 0) as a function 
of x^. Some authors apply logistic regression to the binary (or truncated) count 
variable 

. ( v Γ 0 if Zi = 0 (Ρ7ςΛ 

Vi = wm(zi, 1) = | li£z,^n · (7-8) > 0 

But it is easy to see that Poisson regression (7.7) implies the log-log probability 
because 

Pr( y i = 1) = 1 - Pr( y i = 0) = 1 - ^eW**)-?** = j _ e-e^. 
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Summing up, if the original count variable, z, follows a Poisson distribution: (a) ap-
plying logistic regression to the binary variable (7.8) leads to a misspecified model 
with a systematic bias, and (b) the complementary log-log regression with the prob-
ability function 1 — e~e° is an adequate model. 

The three probability functions are shown in Figure 7.1. The logit and probit 
are symmetric and pass the point (0,1/2). The probit function approaches the zero 
asymptote with a quadratic exponential rate, 0{e~x / 2 ) , and the logit with an 
exponential rate, 0(e~x). Thus, one may conclude that the probit is less affected 
by outliers in the covariate space. This phenomenon was confirmed empirically by 
McCullagh and Neider (1989). 

Probability functions Deviation from logit 

T 1 1 1 1 1 1 — — i 1 1 1 1 1 r 

- 6 - 4 - 2 0 2 4 6 - 6 - 4 - 2 0 2 4 6 
S S 

FIGURE 7.2. Logit approximation by probit(s). One-probit approximation (7.9) uses 
c = 1.6 and c = 1.7. The latter c gives an absolute error of approximation of less than 
0.01. The two-probit approximation (7.11) yields an absolute error of 0.000526. 

7.1.1 Approximate relationship between logit and probit 

The phenomenon of the close relationship between logit and probit was discovered 
in early work: Chambers and Cox (1967), Finney (1971), and Cox and Snell (1989). 
In particular, Chambers and Cox came to the conclusion that a sample of over 1000 
observations is necessary to distinguish the two functions by statistical means. Cox 
and Snell (pp. 20-23) noticed that logit can be well approximated by stretching pro-
bit, that is, with the appropriate scale transformation on the s-axis. Liang and Liu 
(1991) used the relationship between the two probability functions to demonstrate 
the attenuation in the logistic model with covariate measurement error. The fact 
behind the idea of approximating logit by probit is that the expectation of probit 
over a normally distributed argument is again a probit that eliminates the inte-
gration problem in logistic regression with normally distributed measurement error 
(the proof is given in the next subsection). This fact is well known in the literature 
on measurement error, and several authors have made use of it (Carroll et al., 1984, 
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1995; Burr, 1988; Tosteson et al., 1989). Zeger et al. (1988) used this approximation 
to demonstrate the impact of the random effect in logistic regression. We will also 
use this approximation for logistic regression with random effects. In this section 
we consider one- and two-probit approximations. 

There are several approaches to approximate logit by Φ. Following the idea of 
stretching, we look for a coefficient, c > 1, such that uniformly over s, 

MLOO - Φ (I) > (7.9) 

where ßL(s) = e s / ( l + es) is the probability function. This approximation will be 
called the one-probit approximation. Perhaps the easiest way to obtain coefficient c 
is to approximate μΙ^ by Φ in the neighborhood of zero. Notice that for all c the left-
and right-hand sides of (7.9) equal 1/2 at s = 0. Thus, we can find c that makes 
the first derivatives equal. To realize this idea, we compute 

dßL 

s = 0 

1 
4 ' 

άΦ(β) 
ds 

Φ(0) 
s=0 V2ÏF' 

Therefore, to make the first derivatives equal, we take c = y/8/π ~ 1.6, as suggested 
by Amemiya (1981), see Figure 7.2. 

Another one-probit approximation seeks c such that the maximum absolute dif-
ference between inverse logit and probit is minimum (minimax criterion), 

max 
-oo<s<oo l + es Φ œ mm. 

Using numerical computation, one can show that c = 16\/3/(15π) ~ 1.7 gives the 
accuracy 

max 
—oo<s<oo 1 + e* -•(ό) = 0.00946 < 0.01; 

Johnson and Kotz (1970, p. 6) and Carroll et al. (1995, p. 64). 
Now we consider a two-probit approximation as a linear combination of two pro-

bits with the sum of the coefficients equal to 1. Thus, we want to approximate 

M*W-i*(£) + (i-ri*(£), 
where 0 < p < 1 and positive c\ and c^ are to be found based on some criteria 
of discrepancy between the left- and right-hand sides. In the case of two or more 
probits, from a computational point of view, it is more convenient to use the integral 
quadratic error, 

2 

£ ("*<"-'·(£) + ( 1 - ρ ) Φ ) ) ■ ds mm . 
P,Ci,C2 

(7.10) 

The advantage of this criterion is that the left-hand side of (7.10) is a differentiable 
function of p, ci, and C2, and consequently, its minimum can be found by a standard 
optimization technique, such as the Newton-Raphson algorithm. The solution to 
optimization problem (7.10) leads to the two-probit approximation 

Μ , ( 5 ) ^ 0 . 4 3 5 3 Φ ( ^ ) + 0 . 5 6 4 7 Φ ( Ι ^ ) (7.11) 
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This approximation works very well—the maximum absolute error is as little as 
0.000526. Three approximations with c= 1.6, c = 1.7, and the two-probit approxi-
mation (7.11) are shown in Figure 7.2. 

We illustrate numerical integration in R using the function in t eg ra te . First, we 
need to specify the integrand, 

SSlogprob=function(s ,p,cl ,c2) 

{ 
muL=l/(l+exp(-s)) 
appr=p*pnorm(s/cl)+(l-p)*pnorm(s/c2) 
return((muL-appr)~2) 

} 

Second, we call i n t e g r a t e with specific values of p,ci , and C2, 

integrate(f=SSlogprob,lower=-Inf,upper=Inf,p=.43,cl=2.3,c2=l.3) 

This call produces the output 4.54087e-06 with absolute e r ro r < 4.4e-06. 
More accurate approximations, based on a linear combination of an arbitrary 

number of probits, were suggested by Monahan and Stefanski (1991). However, 
they did not impose the restriction that the sum of the coefficients at Φ be 1. Ap-
proximation (7.11) has the advantage that the right-hand side is again a distribution 
function. 

ΊΑ.2 Computation of the logistic-normal integral 

The logistic-normal integral plays an important role in statistics. In particular, this 
integral is central to logistic regression with a normally distributed covariate mea-
surement error, see the literature cited in the previous subsection. Also, we encounter 
this integral in the framework of logistic regression with a normally distributed 
random effects and, as a special case, with a normally distributed intercept term. 
Approximations discussed in this section are used later for the generalized linear 
mixed model and nonlinear mixed effects model of the next chapter. For example, 
the link-approximation will give rise to new methods of estimation for probit and 
logistic regression with normally distributed random effects, VARLINK; see Section 
7.3.5. 

The logistic-normal integral is an improper integral defined as 
1 /»OO x 

I = 7(5,σ2) = -±= / - ^ - e - s M * - ) dx. (7.12) 

After a change of variable, we can represent this integral as 

/ = - 7 = / + e-*xdx. (7.13) 

The logistic-normal integral can be interpreted as the expected value of the proba-
bility function contaminated with a normally distributed error, 

es+au 

' = ^ W ( o , i ) Î T ^ : · (7-14) 
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We find the first approximation to i* via Φ using the following important fact 

£η~ΛΓ(0,σ2)Φ(* + U) = Φ ( j L - Λ . (7.15) 

Proof. As follows from its definition, 

Eu~Af(o,a*)®(s + u) = —j=- / Φ(5 + u)e~^u du 
y/ζπσ J-oo 

1 f°° fS+U 1 2 1 2 
= - i - / / e-i* ~^u dzdu. 

2πσ 7 . ^ J_00 

The two-dimensional integral may be viewed as the probability that the difference 
between two independent normally distributed random variables, w and n, is less 
than s, where u ~ Λ/"(0,σ2) and w ~ Λ/*(0,1). But w - u ~ ΛΑ(0,1 + σ2), and 
therefore 

Εη~Αί(ρ,σ2)Φ(8 + u) = Fr(w - u < s) = Φ ( S
 2 J , 

and formula (7.15) is established. 

Probit approximation 

Now we apply formula (7.15) to approximate the logistic-normal integral (7.12) 
using the one-probit approximation (7.9). We have 

( Q I /ΎΊΙ \ 

— - — J = £?Μ^^(0,σ2/ο2)Φ (c^s + u) 

- *(m)=*hëw)· <716) 

where we used c = 1.7. Employing the two-probit approximation (7.11), we obtain 

Ι(β,σ2) ~ 0.4353Φ ( . * =) + 0.5647Φ f , * =] . (7.17) V y V\/2.29672 + a 2 y VVl.30172+ σ 2 / V y 

Since the integrand of I is positive and less than 1, the maximum absolute error of 
the integral approximation (7.17) is about 0.000526, uniformly over the range of 5 
and σ. 

Link- approximation 

In this section we consider another approximation to the logistic-normal integral 
(7.12), or equivalently (7.14). The idea is to approximate the link function and then 
apply the back transformation. Thus, instead of approximating integral (7.14) we ap-
proximate the corresponding link function; therefore, we call this link-approximation. 
Since the link function is \η[μΣ/(1—μΣ)], where /i£,(s) = e s / ( l+e s ) is the probability 
function, we introduce a function of σ, 

= l n " ΐ+β ·+" = lnE e _ ln 1 
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where Eu indicates the expectation over u ~ Λ/χθ, 1). It is easy to see that R(0) = s. 
Now we find the first two derivatives of R at zero. The first derivative is 

A. 
da 

R(a) [E" 1 + es+au ) + { E u l + es+cu ) Eu 
0s+au 

|_(l + es+<7U)2 

But E(u) = 0, which implies that the second factor on the right-hand side is zero 
and -^Κ(σ)\σ=0 = 0. Next we find the second derivative at σ = 0, 

da2 R(a) 
σ=0 

l + es 

es 

l + es 

+ l + es 

e-fi-eVj 

e s ( l - e s ) _ 1 - e 
(1 + e s)3 1 + es ' 

since E(u2) = 1. This means that if σ2 were treated as an argument of R, we would 
have 

d 

ά(ση 
R(a) 

11 

7 2 = 0 2 1 + e* 
(7.19) 

Next, inspired by the relationship for the probit model, (7.15), we seek an approxi-
mation of the form R(&2) ~ 5(σ2), where S(a2) = s/\/l + Ασ2 with the coefficient 
A to be determined. We find coefficient A such that for small σ2, functions R(cr2) 
and 5(σ2) are close meaning that the first derivatives at σ2 = 0 are equal. Hence, 
from (7.19) one finds that 

es - 1 

A =4-, V (7.20) 
5(1 + es) v ; 

Since lims_,o(es — l ) / s = 1 we set A — 1/2 when s = 0. It is elementary to 
prove that A is always positive and attains its maximum 1/2 at s = 0. After back 
transformation, we finally arrive at the link-approximation of the logistic-normal 
integral, 

exp 
7(5, σ2) ~ 

(K^^)-2)"172) 
1 + β χ ρ(5(ΐ + _ ^ σ 2 ) -1/2 

(7.21) 

An advantage of this link-approximation over the two-probit approximation is that 
for σ2 = 0, (7.21) gives the exact value, although the two-probit approximation has 
a uniform error of 0.000526. We compare this to other methods at the end of this 
section. 

Another link-approximation (tanh approximation) was suggested by McCullagh 
and Neider (1989, p. 452): 

7 ( 5 , σ
2 ) ^ 

exp (s - \ tanh [s(l + 2e~^l2)l^\ \ 

1 + exp (5 - \ tanh [5(1 + 2ε"σ2/2)/6]) ' 

where tanh(x) = (ex — e~x)/(ex + e~x). 

(7.22) 
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First-order approximation 

Perhaps the easiest way to approximate the logistic-normal integral is to apply the 
Taylor series expansion. Here we consider the first- and second-order approxima-
tions. The accuracy of the first-order approximation is not satisfactory; we present 
it only for instructive purposes. 

We write es+ax/(l + e
s+CTX) as el&, where l(x) = s + ax- ln(l + e

s+ax) and find 
the first-order approximation to l(x) at x = 0 as l(x) ~ s — ln(l + es) + χσ/(1 H-es). 
Then using the identity 

we have 

1 fc 

y/2nJ-< y/2b 

l + es 
_ e 2( l+e*)2 # 

(7.23) 

(7.24) 

This approximation should be accurate for small σ. 

Second-order approximation 

Here we use the same idea but expand the function l{x) in a Taylor series up to the 
second order, 

l(x) ~ s - ln(l + es) + x 

Again using the identity (7.23), we obtain 

I(s,a2) 

a V 
l + e* — x 

l + ei 

V i + (1+e-)2 

2(1 + e s ) 2 ' 

; β 2 ( ( 1 + β β ) 2 + σ 2 β β ) ^ 

(7.25) 

(7.26) 

An improvement in the quadratic approximation is the following Laplace approxi-
mation. 

Laplace approximation 

This is the major approximation for the nonlinear mixed effects models and will 
be used extensively later. Here we apply this method to the approximation of the 
logistic-normal integral. The idea of the Laplace approximation (LA) is again to use 
a quadratic approximation, but at the point where the integrand takes its maximum. 
Indeed, since the integral can be interpreted as the area under the curve, the best 
coverage will be in the neighborhood of the maximum. Thus, instead of taking x = 0 
as in the quadratic approximation above, we approximate 

h(x) = l{x) -\x2 = s + ax- ln(l + es+ax) - \x2 

Δ Δ 
(7.27) 

around xmax, the maximum point of h(x). Generally, if we want to approximate 
the integral J^e^^dx, we first need to find max/i(a;). Since the first derivative 
of h(x) at a;max vanishes, we come to the second-order approximation, 

h(x) ~ hn 
1, 

Ϋ (7.28) 
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Hence, applying the identity (7.23), we arrive at the Laplace approximation, 

\ - 1 / 2 

F 
J — c 

eh^da 2nehm&x (7.29) 

It is assumed that the second derivative of h at the maximum is negative. In fact, 
one can guarantee that this derivative is at least nonpositive because xm a x gives 
the maximum of h. This approximation requires finding the maximum, which usu-
ally involves some iterative process. The LA, (7.29), is general and applies to any 
function /i(x), not necessarily defined by (7.27). Approximation (7.29) turns into 
an equality when h(x) is a quadratic function. A multivariate version of the LA is 
considered in Section 7.7.1. 

FIGURE 7.3. The function h(x) = -0.5rr(x + l) + 21n |x| has two local maxima (the dotted 
lines are quadratic approximations). If LA is based on the first local maximum, the integral 
is 3.06. If LA is based on the second local maximum, the integral is 0.62. The improved 
LA yields 3.67; the exact value is 3.55. 

Improved Laplace approximation 

An implicit assumption of the Laplace approximation is that the function h(x) is 
unimodal, i.e., its maximum is attained at one point. For example, if function h 
has two maxima, approximation (7.29) may be poor whichever maximum point is 
taken, especially if the maximum values are close. One can improve the Laplace 
approximation by splitting the domain (—00,00) into two intervals. Specifically, let 
h{x) have two maximum points, X\ and #2? and let c be any point between X\ and 
X2 (a good choice is to let c be the point of local minimum). Then we split (—00,00) 
into (—00, c) and (c, 00), so that 

/

OO pc /»OO 

eh^dx = / eHxUx + / eh^dx. 
-00 J—00 Jc 
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Applying quadratic approximation (7.28) at x\ and #2> we obtain an integral ap-
proximation expressed through the standard normal cdf: 

/

oo 

-oo 
eh{x)dx ~ V2^ M $(v^(c-xi)) ph2 1-*>{V1Z(C-X2)) 

(7.30) 

where Dj = - fê and hj is the maximum value, j — 1,2. 
''3 

Example. We illustrate approximation (7.30) by approximating the integral 
I^°oox2e~^X +xdx for which h(x) = — \x{x + 1) + 21n|x|, see Figure 7.3. This 
function has two local maxima, x\ = —1.686 and x^ — 1.186 with h\ — 0.4664, 
/i2 = —.9551 (for this integral it is natural to chose c = 0). If the standard LA is 
based on the first maximum, the integral is 3.06. If the LA is based on the second 
local maximum, the integral is 0.62. The improved LA yields 3.67; the exact value 
is 3.55. 

Another application of the improved LA is an approximation for a nonpositive 
integrand. For example, to approximate the integral f^xe^^dx, we represent 

/

oo /»0 /*oo 

XfM*)dx = - e
ft

(*)+M-*)dx + / eKx)+Mx)dx 
-oo J—oo JO 

and apply the quadratic approximation to h(x) + ln(—x) and h(x) + ln(x) at the 
respective maximum points. Generalization of the improved LA with several local 
maxima is straightforward. 

Approximation of some other integrals 
Laplace approximation can easily be generalized to approximate integrals of the 

form J^°oog(x)eh^dx, assuming that the maximum point of h is known. Indeed, 
using the Taylor series expansion of the second order, we approximate 

Q\X) — ^V^maxj i v*̂  %ma.x)9 V^maxJ "Γ ~ \X ^maxj 9 (^maxj· 

Hence, 

Γ g{x)e^dx * v ^ * ~ (g(xm!iX) + ^ ^ ) ■ y-~ J- Bl-X
 v ~2hLax J 

This approximation is especially useful when the ratio of the integrals is sought, as 
follows: 

!-^{X)e^dx ^ w ) 

In the special case g(x) = x2, we find that 

JZo^eHx)dx 2 1 

JZ.e^dx ^ X r a a x + ^ ^ · ( 7 · 3 1 ) 

These kinds of approximations will be used in the next section for estimation of 
logistic regression with random effects. 
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Laplace approximation for the logistic-normal integral 

Now we apply LA to the logistic-normal integral, rewriting (7.12) as 

/»OO 

γ 2 π J-oo 

where h is as defined by (7.27). It is elementary to prove that h —► - c o when x —> oo 
or x —» - c o for any s, σ > 0, and thus the maximum of h exists. The first and 
second derivatives are 

dh σ drh 
-x, dx l + e8*™ ' dx2 

G2es+ax 

(1 + es+ax)2 + 1 (7.32) 

Since the second derivative is negative, the function h is concave. The Newton 
algorithm 

[σ - x(l + es+aXs)](l + β8+σχ°) 
X s + 1 - Xs + a2es+axs + (1 + es+axsy ' S ~ ° ' X ' 2 ' -

quickly converges to the maximum point from #o = 0 (see Appendix 13.3). Let xmax 
be the limit point of the iterations, then due to the LA, (7.29), 

I(s, σ2) ~ = . (7.33) 
x / ( j 2 e s + a x m a x _|_ Π + e s + < 7 X m a x ) 2 

Practice shows that the first iteration, 

a 2e s + (l + e s ) 2 ' v ; 

already provides a good approximation to the maximum, xmax. Hence, using χχ 
instead of xmax, we obtain Laplace approximation 1 (LAI): 

pS+axi — ^x-^ 
7(5, σ2) - , . (7.35) 

ν/σ
2ββ+σα;ι + ( l + e s + ^ i ) 2 

Approximation comparison 

We divide the approximations to the logistic-normal integral into two groups. The 
first four approximations are shown in Figure 7.4; the first-order approximation 
(7.24) is not shown because of its poor quality. The approximations are compared 
with the exact value (computed with precision 10~8) for s in the interval (0,4) for 
small (0.5) and large (1.5) values of σ. The link-approximation is the best in this 
group with an absolute error of less than 0.01, even for large σ. The second group 
involves more sophisticated approximations, with the link-approximation among 
them, see Figure 7.5. When σ becomes large, the approximations deteriorate, except 
the two-probit approximation. This is easy to explain because the maximum error of 
this approximation is 0.000526 regardless of σ. Thus, this approximation is robust. 
Interestingly, the link-approximation is better than the LA. Also, LAI is very close 
to the original LA. 
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FIGURE 7.4. Three approximations to the logistic-normal integral for two values of σ: 
the link-approximation, LinkAp (7.21); the one-probit approximation, Prl (7.16), and the 
second-order approximation, SOA (7.26). The error of the approximation is the difference 
between the approximate and true values. The link-approximation is the best in this group 
and will be considered in the second group of approximations (see Figure 7.5). 

Numerical integration 

It is well known that a proper integral (over a finite interval) can be approximated 
by a finite sum with any predefined precision ε > 0, 

/

OO nB K 

f(x)dx ~ / f(x)dx ~ Σ w*f(x*) = Sx, (7.36) 
■°° J A k=i 

where A — x\ < x2 < ... < XR = B are the nodes (knots or abscissas) and Wk 
are the positive weights. A and B are called the lower and upper limits of the 
integration. For a general introduction to the methods of numerical quadrature, 
we refer the reader to a book by Evans and Swartz (2000), which has plenty of 
statistical applications. There is a great deal of choice in A and 2?, nodes and 
weights. A comprehensive treatment of the logistic-normal integral based on the 
Gaussian quadrature is given by Crouch and Spiegelman (1990). 

In the Gauss-Hermite (GH) quadrature, nodes and weights are available for the 
case when function / is proportional to e~x , Abramowitz and Stegun (1972). The 
closer / is to e~x , the better the precision of the Gauss-Hermite quadrature. Ab-
scissas and weights, {xk,Wk,k = Ι,.,.,Α"}, are given by Abramowitz and Stegun 
(1972, p. 924) up to K = 20 as a part of Gauss-Hermite quadrature for evaluating 
an integral of the form f^ f(x) e~x dx (sometimes this type of integral is called 
an intergral with a Gaussian kernel). After (xk,Wk) are determined, the integral is 
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approximated as a simple sum, 

/

oo K 

f(x)e~x2dx = ^2wkf(xx). 

(7.37) 

The GH method of integral approximation is especially useful for normally distrib-
uted random effects. We illustrate this method with computation of the logistic-
normal integral below. 

An algorithm to compute the abscissas and weights for any K is given by Press 
et al. (1992, p. 154). In Table 7.1, we show {xk,wk} for K = 11 and K = 13 (an 
odd K gives the first abscissa at zero). 

σ = 0.5 σ=1.5 

Q . 
Q . 
CÜ 

FIGURE 7.5. Four best approximations to the logistic-normal integral: two-probit approx-
imation Pr2, (7.17); the link-approximation LinkAp (7.21); the LA ( 7.33); and the LAI 
(7.35). 

Table 7.1. Abscissas and weights for the Gauss-Hermite quadrature with 11 and 
13 nodes 

K = 
X 

0 
±0.6568095669 
±1.326557084 
±2.025948016 
±2.783290100 
±3.668470847 

11 
w 

0.6547592869 
0.4293597524 
0.1172278752 
0.0119113954 
0.0003468195 
0.0000014396 

K = 
X 

0 
±0.6057638792 
±1.220055037 
±1.853107652 
±2.519735686 
±3.246608978 
±4.101337596 

13 
w 

0.6043931879 
0.4216162969 
0.1403233207 
0.0208627753 
0.0012074600 
0.0000204304 
0.0000000483 
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We make several comments. First, the farther the value is from zero, the lower the 
weight. Second, abscissas are symmetrical around zero and have the same weight. 
Third, the number of abscissas greater than 13 is unlikely to improve the precision 
because the weights approach zero rapidly with K —> oo. 

Our R function gauher computes the x coordinates and respective weights w 
based on the algorithm presented by Press et al. (1992). It is called 

gauher(K,EPS=3e-014,PIM4=0.75112554446494295,MAXIT=100) 

For example, gauher (K= 13) returns 
x w 

[1,] 4.101338e+00 4.825732e-08 

[2,] 3.246609e+00 2.043036e-05 

[3,] 2.519736e+00 1.207460e-03 

[4,] 1.853108e+00 2.086278e-02 

[5,] 1.220055e+00 1.403233e-01 

[6,] 6.057639e-01 4.216163e-01 

[7,] -1.972152e-31 6.043932e-01 

[8,] -6.057639e-01 4.216163e-01 

[9,] -1.220055e+00 1.403233e-01 
[10,] -1.853108e+00 2.086278e-02 
[11,] -2.519736e+00 1.207460e-03 
[12,] -3.246609e+00 2.043036e-05 
[13,] -4.101338e+00 4.825732e-08 

We compare computation of the logistic-normal integral using the built-in func-
tion i n t e g r a t e with GH quadrature. Representing (7.13) as 

_I_ Γ -
VW-oo 1 

çS+νϊσχ 2 

~~X dx, 
_i_ gS+>/2ax 

we obtain 

ϋ^ es+V2axk 

-T- -Wk y/π ^ 1 -f es+V2axk 

where (xk,Wk) are computed using gauher. Below we show the R function. 

LNGHint=function(K==13) 
{ 
dumpCLNGHint" , Mc : \\MixedModels\\Chapter07\\LNGHint .rM) 

LNint=function(x,s,sigma) 

{ 

exl=exp(~(x-s)Ä2/2/sigmaA2) 

ex2=l/sigma/sqrt(2*pi)*exp(x)/(1+exp(x)) 

return(exl*ex2) 

} 
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xw=gauher(K) 

out=as.data.frame(matrix(ncol=4,nrow=6)) 

names(out)=c("s","sigma","GH quadrature","integrate") 

j=o 

for(s in c(-l,0,l)) 

for(sigma in c(l,2)) 

{ 

ex=exp(s+sqrt(2)*sigma*xw[,1]) 
out [j , 1] =s ; out [j , 2] =sigma 
out [ j ,3 ]=sum(ex/ ( l+ex)*xw[ ,2] ) / sqr t (p i ) 
out[j,4]=integrate(f=LNint,s=s,sigma=sigma,low=s-5*sigma, 

up=s+5*sigma)$value 

} 

print(paste("K =",K)) 

return(out) 

} 

This function can be downloaded to the R session as 

source("c:\\MixedModels\\Chapter07\\\\LNGHint.r") 

The results of integrate and GH quadrature are basically identical. Note that 
low=-Inf ,up=Inf in the function i n t eg ra t e does not work in this case, so we need 
to specify the lower and upper limits of integration manually; ±σ works satisfactory. 
The GH quadrature can be easily generalized to multidimensional integrals, see 
Section 7.1.3. 

In the adaptive integral approximation/evaluation the Gauss-Hermite quadra-
ture is carried out around the maximum value of the integrand, as in the Laplace 
approximation (Liu and Pierce, 1994; Pinheiro and Bates, 1995). Thus, if xm a x is 
the maximum point of /i(x), then in Gauss-Hermite quadrature, we approximate 

/ oo K 

eh{x)dx ~ V2dh Σ wk exp x\ + h(xm^ + V2dhxk) , (7.38) 
■°° k=i 

where 

Obviously, one has to assume that the second derivative at the maximum is negative. 
When the function h(x) is bimodal, we need to approximate the integral with two 
sums around each maximum (as in the improved LA). For example, we apply the 
Gauss-Hermite quadrature to logistic regression with random effects in Section 
7.3.1. 

We make several comments regarding numerical integration: 
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• It is important not only to approximate an integral but to know the error of 
the approximation. The error of approximation requires an estimate of the 
upper bound of the absolute value of the second derivative of the integrand. 

• Complicated numerical integration rules and quadratures take more time for 
integral evaluation; thus, simpler integration rules may be preferable. 

• There does not exist a universal numerical integration method for all inte-
grands over the entire range of parameters; thus, a separate study is required. 

• Gauss-Hermite quadrature with 11 or 13 nodes is satisfactory for the logistic-
normal integral over a wide range of parameters. 

Keeping these guidelines in mind, one may prefer simple integration rules with 
the approximation error under control. In particular, below we provide such an 
approximation based on the trapezoid rule, with any predefined accuracy e > 0. 

In the trapezoid rule, nodes are equally spaced, Xk = A + (fc — l)/i, where k = 
1,2,..., if with the step h = (B — A) j{K — 1) and the integration sum 

\lf(A)+Y/f(xk) + \f(B)\ 
k=2 

This rule has the absolute error of approximation 

SK = h (7.39) 

L 
B 

f(x)dx - SK < ( B
1 2 K f 2 m a x { l / > ) | , A < x < B}. (7.40) 

To apply the trapezoid rule to the logistic-normal integral in the form (7.13), we 
need to solve two problems: (a) approximate the improper integral by a proper 
integral, and (b) find an upper bound for the second derivative of the integrand to 
determine the K that gives the integration approximation with accuracy 0 < e < 1. 

To solve problem (a), we find A < B such that 

rA «4 
_L/" _4__e-*V2d a : + _ L = / _ i _ _ e - * V 2 d ! r < 
/2π J-c 

1 f°° es^x _ 2 / 9 ϊ ε 

It suffices to find A and B such the first and second integrals are less than ε/4. 
Using the inequality es+ax/(l + es+<TX) < es+ora;, we find the lower and upper limits, 

A = σ + φ -^Ο^δεε -* - 0 · 5 ^ ) , B = σ + φ- χ (1 - 0.25ee-s-°-5cr2). (7.41) 

A more general result is formulated in Lemma 35 of Section 7.3.1. To solve the second 
problem, we find an upper bound for the absolute value of the second derivative, 
eh(x) =E-F, where 

1 + 9 V! + 9 / ' V (l + i ) V 1 + 9 ' 

and q = es+ax. Since for positive E and F we have \E — F\ < max(.E, F), it suffices 
to find the upper bound for each term separately. Applying elementary inequalities, 
we obtain 

VË < a-jJL= + max (χβ^'Λ < ^Vz + V2e~i 
J(l + q)3 V / 9 



350 7. Generalized Linear Mixed Models 

and 
^ qe-*2/2 a V e - * 2 / 2 1 4 

Combing all inequalities, we finally obtain the upper bound for the second derivative 
in (7.40), 

irwis^(4^+vs.-·)'. 
Thus, if the number of nodes in the trapezoid rule (7.39) is greater that or equal to 

K = -$-1(0-25£e- s-°-5-T 2)(2aV3/9+ yßfe) ^ 

\/3πε 

the difference between SK and (7.12) in absolute value is less than e. Although 
the number of nodes computed by this formula may be very large, it requires less 
time to evaluate the logistic-normal integral than some sophisticated algorithms of 
numerical integration for the same accuracy. For example, to evaluate 500 logistic-
normal integrals using the adaptive 15-point Gauss-Kronrod quadrature with e = 
10 - 7 , S-Plus 6 requires 33 seconds; for the trapezoid rule with the same accuracy 
and the number of nodes chosen by formula (7.42), 12 seconds is required. 

As a final comment, despite tremendous effort and the extensive literature on 
numerical quadrature, the integrals in statistical applications cannot be evaluated 
exactly. Only integrals in closed form are exact; otherwise, we want to approximate 
the integral with a predefined, small enough tolerance e. One faces two major prob-
lems when controlling for quadrature error: (a) replacing an improper integral with 
the proper one, and (b) controlling for error over the entire range of parameters in-
volved (such as σ in the logistic-normal integral). Although some general guidance 
from numerical mathematics is available, one needs to provide a detailed analytical 
investigation of the integrand on a case-by-case basis to control for the error in 
numerical integration. 

7.1.3 Gauss-Hermite numerical quadrature for multidimensional 
integrals in R 

The GH quadrature for two-dimensional (double) integrals with the Gaussian kernel 
takes the form 

K K 

/

CO /»CO ■"· J Y 

/ f(x1y)e~x2-y2dxdy ~ ^ ] T wkwkff{xk,yk>), (7.43) 
where wk, wk> and xk,yk> are the same as before. This method of integral approx-
imation can be used for estimation of the generalized linear and nonlinear mixed 
models studied in this and following chapters. In particular, it will be used for the 
fixed sample likelihood approximation method in Section 7.3.2. 

The R code that follow illustrates numerical quadrature (7.43) to compute 

/

CO /»CO 

/ (x2+y2)e-x2-y2dxdy. (7.44) 
-co J — co 
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twoint=function (K=13) 

{ 

dumpC'twoint","c:\\MixedModels\\Chapter07\\twoint.r") 
xw=gauher(K) 
x=rep(xw[, 1],times=K) 
y=rep(xw[, 1],each=K) 
wx=rep(xw[, 2],times=K) 
wy=rep(xw[, 2],each=K) 
INT=sum((x~2+y~2)*wx*wy) 
INT 
} 

It is elementary to show that integral (7.44) is π; the function twointO returns 
3.141593 exactly as p i . 

It is straightforward to generalize the GH quadrature to multidimensional inte-
grals. For example, for a three-dimensional integral with Gaussian kernel, we have 

/

OO pOO /ΌΟ K K K 

I I f(x,y,z)e~x2~y2~z2dxdy ~ Σ Σ Σ wk™k'Wk''f{xk,yk',Zk")' 
-oo J-oo J-oo k=1 k,=1 k„=l 

The R function below approximates the integral 

/

OO /»OO 

/ (χ2+2/2 + 2 2 ) 6 -
-oo J—oo 

dxdydz. 

three in t=funct ion (K=13) 
Γ 

i 
dumpC'twoint'»,' 
xw=gauher(K) 
x=rep(rep(xw[, 
y=rep(rep(xw[, 
z=rep(rep(xw[, 
wx=rep(rep(xw[: 

wy=rep(rep(xw[s 

wz=rep(rep(xw[s 

INT=sum((xA2+y' 
INT 

} 

' c : \ \MixedModels \ \Chapter07\ \ threeint . r") 

1],times=K),times=K) 
1],each=K),times=K) 
1],each=K),each=K) 

, 2],times=K),times=K) 
, 2],each=K),times=K) 
, 2],each=K),each=K) 
*2+z Ä 2)*wx*wy*wz) 

It is possible to show that the exact integral is (3/2)π3/2 = 8.352492. The function 
t h r e e i n t returns the same number. We draw the readers' attention to how x,y, 
and z (and respective weights) are constructed from original values produced by 
gauher. Shortly, we use permutations of the options times and each in the rep 
function. With this rule, one can proceed to integrals with fourth, fifth, and higher 
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dimensions. Of course, it should be remembered that summation requires 
KM 

terms 
for the integral of dimension M. 

The GH quadrature is very convenient for numerical integration when the domain 
is specified by another function g(x,y), say, 

/ f(x,y)e-x2-y2dxdy 
Jg(x,y)>h 

where h is a constant. Then, using approximation (7.43), we obtain 

Jg\ 
f(x,y)e x ydxdy~ ^ wkwk>f{xk,yk>). 

9(x>y>h (k,k>):g(xk,yk,)>h 

In short, the summation is over indices where the function g takes values greater 
than h. In R, this means that the summation operator in the code above should be 
replaced by INT=sum(((x~2+y's2)*wx*wy) [g (x ,y )>h] ) , where g(x,y) is a user-
defined function. Additional examples of using this method of numerical integration 
appear in Section 8.9. 

7J.4 Log-likelihood and its numerical properties 

The log-likelihood function for the binary model with probability function μ is given 
by 

1(β) = Υ^\ημ{β%)+Υ^\η{1-μ{β'^)) 
2/i=l 2/i=0 

n 

= £ [Vi 1ημ(/3'χέ) + (1 - Vi) ln(l - μψ·*<))] . (7.45) 
i=l 

Assuming that μ satisfies the conditions formulated at the beginning of this section, 
it is easy to prove that the log-likelihood function is nonpositive, l(ß) <0. To prove 
this, we use the fact that In is a concave function so that y In A + (1 — y) In B < 
In [yA + (1 — y)B] for any y G [0,1] and positive A and B. Using this inequality 
with y = yi, A = μ(β'χΐ), and B = 1 — μ(/3'χί), we obtain 

n n 

l(ß) < £ l n [yMß'xi) + (1 - Vi)(l - μ(/3'χ*))] = ^ l n 1 = 0. 
i=l 2=1 

Thus, zero is the absolute upper bound of the log-likelihood function for any binary 
model. This absolute maximum is attained when μ{β'·κί) -» 1 for y±, = 1 and when 
μ(/3'χ;) -> 0 for Vi = 0. 

The Maximum Likelihood Estimate (MLE) is found as the solution to the system 
of nonlinear (score) equations 
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where μέ denotes the derivative of μ evaluated at /3'XJ. The Hessian matrix of the 
log-likelihood function is given by 

Θβ2 ■Σ 
i=l 

i 2 + 0--VÙ 
( i - ^ ) 2 X;X,· 

The information matrix is the negative expected Hessian, 

H = E(9H -Σ 
. 2 

ßi 

fr[ Mi(l - Mi) 
X 2 X i · 

(7.47) 

(7.48) 

The Hessian is a negative definite matrix and the log-likelihood function is strictly 
concave (Π-shaped) because the functions Ιημ and ln(l — μ) are concave. This state-
ment follows from a well known fact of optimization theory: a nonnegative linear 
combination of concave functions is a concave function, Ortega and Rheinboldt 
(1970). This property of (7.45) implies that the MLE is unique, if it exists, Haber-
man (1974, p. 309). Note that for linear regression, condition (7.1) is sufficient for 
the existence of the ML/OLS estimate. Binary model (7.2) is a nonlinear statisti-
cal model and therefore special criteria are needed to establish the MLE existence, 
Demidenko (2000). Several authors have addressed the problem of the MLE exis-
tence with logit and probit links: Weddenburn (1976), Haberman (1979), Silvapulle 
(1981), Albert and Anderson (1984), Lesaffre and Kaufmann (1992). It has been 
found that the MLE exists if and only if the two sets of points {x^} with y = 1 and 
y = 0 can be separated by a plane. In Section 7.10 we suggest some constructive 
criteria to determine if such a plane exists. 

Two algorithms can be used to maximize the log-likelihood function, (7.45), the 
Newton-Raphson (NR) and Fisher scoring (FS) in generic form 

3s+i = ßs+i + λ «Η 5
 Χ ( -QQ (7.49) 

ß=ßsj 

where 0 < \ s < 1 is a step length to provide a decrease of I. For the NR algorithm, 
H is the negative Hessian, for the FS H is the expected negative Hessian. At the 
final iteration, H _ 1 gives the asymptotic covariance matrix of the MLE. For this 
purpose, we prefer the expected Hessian over the observed one, (7.47). It is possible 
to rewrite the FS algorithm in iterated reweighted least squares (IRLS, Section 6.2.3) 
fashion, Green (1984). Indeed, taking the linear approximation of μ{ = μ(χ^/3) at 

ßs, we obtain μί ~ μ| + μ*(β—ßs)'x-i> Next replacing μί in (7.46), we solve for β 
and get the FS algorithm, in other words, FS=IRLS. Computational issues of the 
probit model are discussed in Demidenko (2001). 

A general discussion of optimization problems in statistics, including criteria for 
convergence, is given in Appendix 13.3. 

7.1.5 Unit step algorithm 

In both the NR and FS algorithms, it may require several trials to find a step length 
(λ) that increases the likelihood value. Here we describe a unit step algorithm, 
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introduced by Demidenko (2001), that increases the log-likelihood function from 
iteration to iteration and needs only one matrix inverse. 

The key point of the algorithm is the observation that for popular binary models 
such as logistic or probit, the scalar coefficient in (7.47) for each i admits an upper 
bound. Indeed, for μ(δ) = e s / ( l + es), this scalar takes the form e s / ( l + e s)2 , 
and it is elementary to prove that es/(l + es)2 < 1/4. For probit regression, it is 
possible to prove that this scalar is less than 1. This follows from the two inequalities 
s$(s) + φ(β) > 0 and 0(s) - 5(1 - Φ(*)) > 0 (Feller, 1957). Thus, it is assumed 
that there exists a positive constant r that d2l/dß2 > —τΧ'Χ (r = 1/4 for the 
logistic model and r = 1 for the probit regression model). Iterations in the unit step 
algorithm take the form 

's+1 ^ , + τ - ^ Χ ' Χ ) - 1 ^ , (7.50) 

where g s denotes the gradient of I evaluated at β =β8. Hence one may interpret 
(7.50) as a maximization algorithm with a fixed step, λ = 1/r. Matrix X 'X can be 
inverted once before iterations begin (it is nonsingular due to (7.1)). 

The properties of the unit step algorithm are formulated below. 

Theorem 33 Iterations (7.50) decrease the log-likelihood function (7.45) from it-
eration to iteration, where τ > 0 is such that d2l/dß2 > —rX'X. If the MLE exists, 
the unit step algorithm converges to it from any starting point. 

Proof. If ls = l(ßs), by the Taylor theorem there exists ß* such that 

) (ßs+1-ßs) Kßs+i)-is = Φβ+ι-β.)Έ. + τΦ.+ι-β.)'\τζί 
ß=ß. 

> (ßs+l-ßs)'8. - l<ß.+l-ßa)'fr'X)(ß.+l-ß.) 

= i g ^ X ' X ) - ^ > 0, 
T 

assuming that at iteration s we did not reach the maximum^and g s is not zero. 
Further, since l(ß) —> — oo when \\ß\\ —> oo, the sequence {ßs} is bounded and 
therefore there exists at least one limit point. At the limit point /3*, the gradient 
vanishes because /3# = /3# + r _ 1 ( X / X ) ~ g* implies that g* = 0. Since the log-
likelihood is a strictly concave function, there is only one point, the MLE, where 
the gradient is zero. Hence, {ßs} converges to the MLE regardless of the starting 
point, 30 . 

Problems for Section 7.1 

1. Reproduce Figure 7.1. 
2*. Use the Gauss-Newton algorithm for the minimization of (7.10) to arrive at an 

approximation of logit with two probits based on the integral quadratic criterion. 
Use the i n t eg ra t e function in R with low=-Inf and upper=Inf to compute the 
left-hand side of (7.10). 

3. Derive the exact absolute error of approximation for (7.17) on the array of 
values for s and σ2. For example, you may choose sseq=rep(seq(from=-10,to=10, 
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length=1000) ,1000) and ssigma2=rep(seq(from=0,to=10,length=1000) ,each= 
1000) and then compute the absolute difference between the left- and the right-hand 
sides. 

4. Use i n t e g r a t e command to plot (7.13) and (7.17) on one graph for a sequence 
of s with σ held at a specific value. 

5. Similar to the previous problem, compare other logistic-normal integral ap-
proximations. 

6. Using abscissas and weights from Table 7.1, compare the Gauss-Hermite quadra-
ture with other logistic-normal integral approximations, plotting them on the same 
graph against s. Use the gauher program with larger K to determine whether there 
is a substantial improvement (use K = 300 or i n t eg ra t e as the gold standard). 

7. Evaluate how precisely the minimum number of nodes given by formula (7.42) 
yields the absolute error ε. 

8*. Write an R function that maximizes the log-likelihood (7.45) using the FS 
algorithm (7.49) with \ s = 1. The function μ, along with its derivative, should be 
user-defined. Apply your algorithm to the probit and logistic regressions to verify if 
they produce the same result as the glm function in R. Compare the FS algorithm 
with the unit step algorithm defined by formula (7.50) through simulations. 

9. Find the MLE of ß in logistic regression when Xi is a binary variable. 

7.2 Binary model with subject-specific intercept 

The simplest linear mixed effects model is the model with random intercepts consid-
ered in Section 2.4. This model imposes an exchangeable (compound symmetry) cor-
relation structure. Similarly, the binary model with varied (subject/cluster/stratum 
specific) intercepts is the simplest and perhaps the most important generalized lin-
ear mixed model. To motivate this model, we continue our example on the rela-
tionship between cancer occurrence (e.g., lung cancer) and smoking status as one 
of the prominent risk factors. Let us assume that the sample consists of N subsam-
ples/surveys conducted in different parts of the country (states) or even worldwide; 
to be concrete we shall assume states. Let i code the state and j code the person. 
Then the binary variable yij codes the presence or absence of cancer (y^· = 1, can-
cer; yij = 0, cancer-free) and Xij codes the smoking status of the j t h person in 
the ith state (x^ = 1, smoker; x^ — 0, nonsmoker). Let ni denote the number of 
people surveyed in the zth state. Standard logistic regression applied to {yij,Xij} 
implicitly assumes that the lung cancer incidence (the probability for nonsmokers 
to get cancer) is constant across states. Clearly, this assumption may be wrong be-
cause states may have different environmental conditions, antismoking campaigns, 
traditions, health policy, population age, etc. These factors can lead to different 
cancer incidences in different states. Therefore, assuming that this incidence is the 
same would lead to improper conclusions regarding the effect of smoking (see Sec-
tion 7.2.1 for the statistical consequence of ignoring a random effect). It is better to 
assume that intercepts differ from state to state, so an appropriate model would be 

?r{yij = l) = ß{ai+ß,*ij), (7.51) 

where x^· is the m x 1 covariate vector, which along with smoking status may 
include other relevant risk factors, such as age and gender, with the coefficient at 
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the smoking status variable of interest. Since α̂  is the intercept term, we assume 
in this section that x^· does not have a constant component. In fact, the intercept 
term also may be a parameter of interest if we are interested in comparing cancer 
occurrence across the states, adjusted by risk factors. 

In model (7.51), there is no room for cluster-specific covariates such as in the 
model Pr{yij = 1) = μ(α^ + 7'z^ + ß'x-ij). More precisely, the latter model is not 
identifiable because the cluster-specific intercept, α̂  consumes all variation due to 
the presence of cluster-specific covariates, z^. 

Another example in which intercepts vary from stratum to stratum is the case-
control study of Breslow and Day (1980). Indeed, if an epidemiologist wants to 
exclude the effect of age, he/she would collect data within an age group (frequency 
matched study) assuming that there is an age-specific incidence rate reflected in the 
intercept α .̂ Then, yij codes the presence of disease for the j t h person in the zth 
age group. 

Regarding intercept term α ,̂ similar to the LME model, we may take one of two 
assumptions, leading to two different statistical models: 

1. Fixed effects model/fixed intercepts: {a*} are fixed unknown parameters to be 
estimated along with β. Sometimes parameters {a*} are called nuisance or 
incidental parameters, after a pioneering work by Neyman and Scott (1948). 

2. Random effects model/random intercepts: {α{\ are random, α̂  = a+Ui, where 
{ui} are iid random variables with zero mean and variance σ2 and a is the 
population-averaged parameter. It is assumed that {yij} are independent con-
ditional on Ui. 

These models have both advantages and disadvantages. The fixed effects model 
leads to increasing the number of additional parameters equal to the number of 
states in our example. The advantage of this model is that it does not require spe-
cial methods of estimation because the introduction of dummy variables (equal to 
the number of states) reduces the model to standard logistic regression. However, 
if the number of clusters/strata is large, one faces the problem of a large number of 
nuisance intercepts. An elegant solution, bypassing a large number of dummy vari-
ables, is suggested in Section 7.2.3. In contrast, the random effects model has only 
two parameters (a and σ2) in addition to /3, however, standard logistic regression is 
not applicable and more complicated methods should be applied (the consequences 
of ignoring the random effect are considered in the next subsection). 

The advantage of the random effects model is that it is more flexible and includes 
the fixed effects model as an extreme case when the variance of the random effect, 
σ2, goes to infinity. This was proved for the LME model in Section 2.2.3 using the 
closed form for the fixed effects estimator (2.31). Now we demonstrate it for model 
(7.51) with a normally distributed random intercept, α̂  ~ Λ/"(α, σ2). Let σ2 be 
fixed and known. We want to show that when σ2 goes to infinity, the MLE for β 
approaches the MLE of the fixed effects model assuming that the α̂  are fixed and 
unknown. Indeed, the MLE of the random effects model maximizes the function 

l{a,ß) = -^f^ + f:k{a,ß), (7.52) 
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where the individual log-likelihood is 

k(a,ß) = l n / exp<k(ai,ß) - γ-ξ^ - <*)2 > dai (7.53) 

and k is the conditional log-likelihood function (assuming that ai is fixed), 

h(ahß) = ^ 1ημ(α^ +/3 /x i j ) + ] Γ ln[l - μ(θί +/3 'χ#)] . 

Since σ2 is known the first term in (7.53) may be omitted. When σ2 —> oo, the term 
(ai — α)2/(2σ2) in (7.53) vanishes and we come to the maximization of the log-
likelihood Σ%=ι h(ai,ß), which corresponds to the fixed effects model. This result 
is true for a linear model with random intercepts, Section 2.4. 

Criteria for MLE existence 

The absolute upper bound of the joint log-likelihood function (7.52) is zero. Indeed, 
in Section 7.1.4 we proved that Ιι(αι,β) <0, which implies that 

N 1 F°° 2 
! ( a , / 3 ) < J ] l n - p j e - > " e » do* = 0. 

As follows from Section 7.10, the MLE does not exist if there exists a vector (α,/3') 
that separates Σπ{ vectors (l,x^·) into two groups, corresponding to y^ = 1 and 
yij = 0, or symbolically, 

a + tfxij < 0 if 0 ^ = 0 , (7.54) 

a + ß'xij > 0 if yij = l. 

If (7.54) holds, then, technically, the MLE = oo and iterations of any maximization 
algorithm diverge. Some algorithms to check (7.54) are described in Section 7.10. 

Ί.2Α Consequences of ignoring a random effect 

As noted in Section 3.9, ignoring a random effect in a linear model and applying 
ordinary least squares leaves the estimate unbiased. The aim of this subsection is 
to demonstrate that this is not true for a binary model. Generally, ignoring random 
effects in a nonlinear mixed model leads to attenuation and inconsistent estimation, 
Zeger et al. (1988). We illustrate the systematic bias for the probit model with a 
normally distributed intercept using the identity (7.15). If the random effect is 
ignored, the estimated model is E{yij) = Φ (a* + ß'^x-ij), but the true model is 

E(yij) = Ε^^ο,^Φ (a + /3'xy + Ui) = Φ ( ^ = = ) · (7-55) 

Thus, by ignoring the random effect, Ui, one obtains estimates of a* and β^ that 
converge to the true values a and β attenuated by 1/Vl + cr2. The phenomenon 
of attenuation, or bias toward the null, is well known in the measurement error 
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literature and is associated with the fact that the measurement error flattens out 
the regression, Carroll et al. (1995). To assess the attenuation for logistic regression, 
we can use logit link approximation, discussed in Section 7.1. For example, using 
(7.15) and (7.9) with c = 1.7, we find that ignoring the randomness of the intercept 
in logistic regression would attenuate the coefficients by the factor l / \ / l + 1.72σ2, 
Breslow and Clayton (1993). Coming back to our example with smoking, we infer 
that ignoring the state-specific cancer incidence rate diminishes the estimated effect 
of smoking by \/1 + 2 89σ2. 

7.2.2 ML logistic regression with a fixed subject-specific intercept 

The model is (7.51), where all {yij,i = l,...,N,j = l,..,n^} are independent and 
μ(δ) = e s / ( l + es). The intercepts {a;} are assumed fixed and unknown. Sometimes 
we call this model the fixed effects model. If the number of observations per cluster 
(rii) is fairly large (the data are not sparse), this approach may work well. Then the 
log-likelihood function takes the form 

N 

l(ai,...,aN,ß) = J N £ ( o i + / 5 ' x y ) - Ç h ( l + ee i + / 3 'X y) 

N N m 

= ^ u + ^ O i - Ç g l n i l + e ^ + ^ O , (7.56) 
i = l z = l j — 1 

where u = Σζ=ι Σνι·=ι χ ϋ an(^ Pi = Σ£=ι Vij- The N + m estimating equations 
for the MLE are: 

dl Ä ea<+/3 'Xi ' 
Λ m V -^τ— = 0, i = 1,..., N (7.57) 

91 Α ^ Λ e"i+ß'*v 

öß = " - Σ Σ 1 + 6 ^ Γ ° · (7·58) 
^ ι = 1 j = l 

As mentioned above, this system may be solved using standard logistic regression 
software by introducing N dummy variables. However, if N is large, one can alter-
nate between (7.57) and (7.58) to avoid a large matrix inverse, zindeed, denoting 
Bij = exp(ß'xij) and hi = exp(—a*), equation (7.57) can be rewritten as 

Bii (7.59) 
. .hi + 1 

To solve (7.59) safely, Newton's iterations should start from 

h. - Mm/iH -1) ._1 N 
Ή — y-^m , / D > C~ l , . . . , i V . 

This approximation provides a monotonie convergence of the Newton algorithm 
because, by harmonic-mean inequality, Y^LX Bij/(hi+Bij) > ^f/(τΐΐ+Σ?=ι V-^ü) ' 
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Ortega and Rheinboldt (1970). If pi = 0, we set hi = oo, and if pi = 77̂ , we set 
hi = 0. After making a few Newton steps to approximate the solution to (7.59), 
we come to u = ^ · e@ *ij/(hi + e& *ij) for /3, which is also easy to solve by the 
Newton algorithm. 

When N is fixed and Ui goes to infinity, the MLE holds all its optimal properties. 
However, if N goes to infinity and the {n^} are uniformly bounded, the logistic 
regression model with fixed intercepts suffers from inconsistency. The problem with 
a large number of nuisance parameters has been encountered in the general linear 
growth curve model of Section 4.2, where we proved that the MLE is consistent. 
Neyman and Scott (1948) call this problem an incidental-parameter problem. While 
the MLE is consistent for the linear model with fixed intercepts studied in Section 
2.4, it is inconsistent for logistic regression. In particular, Andersen (1970, 1980) 
proved that when Ui = 2 and Xij is binary PML converges to 2/3. The proof can also 
be found in Hsiao (2003). To eliminate nuisance intercepts, a conditional likelihood 
approach has been suggested. We shall apply a generalization of this model to an 
ensemble of gray images in Section 12.6.1. 

7.2.3 Conditional logistic regression 

There is an elegant solution to the problem of the large number of nuisance inter-
cepts in logistic regression based on conditional likelihood (this approach does not 
work for other link functions, such as probit). Originally the conditional likelihood 
approach was suggested by Cox (1972), Cox and Snell (1989) within the framework 
of proportional hazards model in survival analysis. The trick is that conditional 
likelihood eliminates nuisance intercepts, Prentice (1988). Although here we treat 
{ai} as fixed, one can apply this approach for random intercepts as well (see the 
next section). 

Let index i be fixed, so it will be omitted for awhile to simplify the notation. The 
idea of conditional logistic regression is to consider the probability of obtaining bi-
nary outcomes 2/1,2/2, •••,2/n conditioned by the number of "successes," the sufficient 
statistic for α ,̂ k = Σ ? = 1 y y More precisely, let yj be a binary variable such that 
Pr(i/j = 1) = pj, assuming that observations {yj,j = l , . . . ,n} are independent. If 
zi, Z2, ···> zn is a sequence of 0's or l's such that ^ j = i zj ~ k"> t n e probability 

n 

Pr(yi = *i, ...,2/n = zn) = Π P? (1 - PjY~Zj. (7.60) 
i= i 

The conditional probability of y\ = z\, ...,yn = zn under Σ?= ι ζό — ^ is the ratio 
of (7.60) to the sum of all possible probabilities to obtain Χ}7·_ι yj = k, 

— J ^ , (7.61) 

Σ.βϊΠΐ'ΐ'σ-«)1-*' 

where z =(ζι, ζ^,..., zn) is a vector with binary components 0 or 1 such that Σ zj — 
k and Z£ is a set of all possible n-dimensional vectors z with the sum of elements 
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k. Apparently, Z£ contains (£) elements (the number of ways to pick k elements 
out of n (the number of combinations of n distinct objects taken A: at a time). 
For example, if n = 3 and k = 2, the set ZJJ contains three elements as three-
dimensional binary vectors, Z£ = {(1,1,0), (1,0,1), (0,1,1)}. For logistic regression, 
Pj = ea + / 3 3S/(l + e a + / 3 x 0 , so that the probability (7.60) takes the form 

βζό{α+β'κό) 

L1 (ΐ + βα+^ ,χο n 0<*k+ß'i:%i*i*3 

3 = 1 

because Y^Zj = k. Substituting this quantity into (7.61), one finds that TT(1 + 

ea+ß χ^ a n ( j eak c a n c e i o u t s o that the conditional probability (7.61) simplifies to 

cak+ß'Y^^Xjyj eß'T,?=i*jyj 

as a function of ß only. In the denominator Zj are components of vector z such 
that Σ™=χ Zj — Σ™=ι Vj = k. Putting back the subindex i, we obtain the joint 
conditional log-likelihood function as a function of β only, 

N ( 
Z c ( / 3 ) = / 3 ' r - ^ l n 

2=1 
Σ pß X/j = l yii3z3 (7.62) 

in which the vector r = Σ ί = ι Σ?=ι ^jVij *s fixed (notice that fcz- varies with i be-
cause it is equal to the sum of the y's in cluster Ϊ). The conditional MLE, ßcML-> 
maximizes (7.62). Andersen (1970) proved that the conditional ML estimator of ß 
is consistent under mild assumptions, when N goes to infinity and the {rii} are 
bounded. Moreover, he proved that the minus inverse Hessian of lc is a consis-
tent estimator of the asymptotic covariance matrix of ßcMLi s e e a^ so Chamberlain 
(1980). 

Now we discuss some computational issues of lc maximization. To find the condi-
tional MLE, we apply the Newton-Raphson algorithm, / 3 S + 1 = ßs + H7 1 g s . Here s 
is the iteration index, and H s and g s are the minus Hessian matrix and the gradient 
evaluated at ß =ß3, 

N 1 N 1 

2=1 2=1 

N i 

i=,sr 
where 

Si= Σ e * 3 ' ^ * ^ , t , = £ efVZwwi, W i = f>^, 

«ez:· 3=1 
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The variance-covariance matrix of the conditional MLE is estimated as the inverse 
of H at the final iteration. When the number of observations per cluster is large, the 
number of elements in the set Z ^ may be large as well and computation may slow 
down. There exists, however, an efficient way to enumerate possible combinations 
with Y^=i Vij = h (Krailo and Pike, 1984). With that programming trick, the time 
of computation is comparable to that of standard logistic regression. 

Now we prove that function lc is concave, or more specifically, the minus Hessian 
matrix is nonnegative definite. 

Lemma 34 Let a, u l 5 u 2 , . . . ,uK be m x 1 vectors and bk > 0 for k = 1,2, ...,K. 
Then the negative Hessian of the function a!ß — In Σ&=ι bke@ Ufc, as a function of 
/3, is a nonnegative definite matrix for all ß eRm. 

Proof. We use the following matrix form of the Cauchy inequality. Let {u^, k = 
1,..., K} be 77i x 1 vectors and qk positive numbers; then 

(J2 QkUk) (Σ q k U k ) - Σ q k Σ UfcU'fc' (7 · 6 3) 
meaning that the difference between the right- and left-hand sides is a nonnegative 
definite matrix (Rao, 1973). Twice differentiating the function g(ß) = siß— In X^fc=1 

bke& Ufc, we obtain the Hessian, 

( Σ ukbkek) ( Σ Ukbkek)' _ £)ufcufcfrfcefc 
(Ehek)

2 Ehek ' 

where ek = e@ Uk to shorten the notation. Then the lemma follows from (7.63), 
letting qk = bkek > 0. ■ 

The method of conditional logistic regression is realized in the R code l og r i c (it 
can be downloaded as source("c: \ \MixedModels \ \Chapter07\ \ logric . r") . The 
call to this function has the form 

logric(dat,maxiter=20,eps=le-005,silent=l) 

where the dat matrix contains the data (the first column is cluster id, the second 
column is yi, and the remaining columns are x^); maxi t e r specifies the maximum 
number of iterations, and s i l e n t is the flag variable (0=print iterations, l=no 
print). The output is a list with three components: (1) the beta estimate, (2) the 
covariance of the beta-estimate (H _ 1 ) , and (3) the number of iterations done. The 
l og r i c function can be used when the number of observations in each cluster is 
small; say, rii < 15. 

Problems for Section 7.2 

1. Does the MLE exist with the log-likelihood function (7.52) when all yi = 0? 
Does the answer depend on the choice of μ? Does the MLE for the binary model 
with m-dimensional x exist if the number of observations with yi = 0 is less than 
m? 

2. Illustrate the effect of the cluster-specific intercept on the slope estimate by 
plotting the individual (cluster-specific) probabilities as functions of x and the 
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population-averaged probability function defined by (7.55). What conclusion can 
you draw? 

3*. Maximize the log-likelihood function (7.56) by reducing the estimation prob-
lem to N dummy variables, and subsequently use glm. Write an R function that 
solves equations (7.59) by Newton's algorithm. Check if the two approaches pro-
duce the same solutions. Generate data with N clusters and random intercepts 
with variance σ2 and estimate the slope using the fixed subject-specific intercept 
approach to show that the slope estimates converge when σ2 becomes large. Explain 
the result. 

4*. Generate N clusters as in the previous problem with ni < 15 and estimate 
the beta-coefficients using conditional regression (modify the function asN). Repeat 
the calculations nExp times and assess the bias and the variance produced by H _ 1 . 
Make conclusions regarding the performance of this method. 

5*. Estimate the cluster-specific intercept separately for each i after the slope 
coefficients are obtained from conditional logistic regression. Derive a closed-form 
expression. 

7.3 Logistic regression with random intercept 

Several methods of estimation for logistic regression with a normally distributed 
random intercept are considered in this section. The model remains the same, (7.51), 
but now it is assumed that the {ai} are iid random variables, α̂  ~ Af(a, σ2), where 
the population-averaged intercept a and the intercept variance σ2 are unknown and 
subject to estimation. Denoting 6; = a* — a ~ Λ/^Ο,σ2), the model with random 
intercept can be rewritten as a conditional probability, Pr(y^· = l\bi) = μ ^ + β ' χ ^ ) , 
where the first component of the m x 1 vector x^· is 1 and the first component 
of the ra x 1 vector β is the population-averaged intercept. This model implies 
that observations yij and yik are dependent within a cluster. If the number of 
observations per cluster (rii) is not large, one can apply the conditional logistic 
regression that eliminates random a*. An advantage of this approach is that it does 
not involve specification of the distribution, bi. However, if rii is fairly large, this 
approach is prohibitive because for each cluster i it involves rii\/[ki\(ni — ki)\] terms, 
where ki = Y^L\ Vij- For example, if rii — 20 and ki = 10, this number is 184,756. 

Three approaches to estimation are considered in this section. First, we discuss 
maximum likelihood estimation, involving several computations of one-dimensional 
integration for each cluster. Second, likelihood approximation, such as the quadratic 
of the Laplace, avoid integration. Third, the link approximations of Section 7.1.2 
may be applied, also avoiding integration with the variance of the random intercepts 
estimated from individual logistic regressions (VARLINK). 

7.3.1 Maximum likelihood 

In this section we consider the maximum likelihood estimation that involves one-
dimensional integration. The log-likelihood function takes the form 

AT N /»OO 

1{β,σ2) = -— 1η(2πσ2) + / 3 ' r + ] T m / ehi^'^d% (7.64) 
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where 

hi(ß;u) = k i U - ^ - £ l n ( l + eP'*^)- (7.65) 

where ki = Y^L\ Vij a n d r = Σ ί = ι Σ ^ ΐ ι 2/ϋχϋ a r e a ^ΧΘ^ s c a l a r a n d an m x 1 
vector. It is assumed that the first component of vector x^· is 1. We observe that 
sufficient statistics are r and {ki}. 

We are concerned with maximization of (7.64) over β and σ2. The first derivatives 
are 

ËL= _vîiâ dl N l V7*2 

dß Γ f - Ί α ' οσ2 2 σ 2 Η " 2 σ 4 ^ / α ' 

with the three integrals defined as 

/

OO ΛΟΟ 

ehi^du, Ii2= / uWW^du, 
-oo J—oo 

(7.66) 

' « - /_ 

OO 

oo 

z ^ x ^ ' i 
i = i 

0hi{ß;u) du, (7.67) 

where the latter is an m x 1 vector. The information matrix for ß can be approxi-
mated as 

-E (0)=—t(i-^"A 
where 

1*4 = Γ 
J — c 

7 . x Û x i 7 ' 

eß'x.ij+u 
Qhi(ß,u) 

' ( l + e0'xii+ti)2 

is an m x m matrix. To maximize (7.64), we may iterate as 

<#u 

(7.68) 

(7.69) 

3 , + ^ 3 , + λ,Η-1 

dß ß=ßs. 

1 N Τ 

NUT* 
(7.70) 

assuming that H and {/$&, fc = 1,2,3,4; i = 1,2,..., iV} are computed at the current 
values, ß = ßs and σ = as. One can avoid computation of the integral matrix 1^ by 
applying the unit step algorithm of Section 7.1.5. Indeed, since for all —oo < 5 < oo 
we have es/(l+es)2 < 1/4, it is elementary to show that H < | Y^Li x i j x i j = K, a 
constant matrix. Thus, instead of H in (7.70), we can use K, which can be computed 
once at the beginning of the iteration procedure. Using Lemma 34, one can prove 
that matrix H is positive definite if the vectors {xzi, •••)Xmi} have full rank at least 
for one i. 

Another, simpler way to maximize the log-likelihood function is to use the Empir-
ical Fisher scoring (EFS) algorithm, where the (m-fl) x (ra + l) information matrix 
for θ =(/3/,σ2)/ is estimated as the sum of cross-product derivatives, H = ]Tdid^, 
where 

d; = 
-0.5σ~2 + Ο.δσ"4/^1 J, 22 
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is the derivative of the ith log-likelihood function (i = l,...,iV). Then iterations 
0 S + 1 = θ8 + Xs (^d^d^)~ Y^di approximate ß and σ2 simultaneously. An advan-
tage of the EFS algorithm is that H _ 1 , evaluated at the final iteration, provides a 
consistent estimate for the asymptotic covariance matrix of Θ. Usually, Xs = 1 leads 
to an increase in I from iteration to iteration, but sometimes we need to decrease 
the step length to avoid divergence. 

The expectation of the cross-derivative vector, d2l/dßda2, is not zero, unlike the 
linear mixed effects model or the marginal model with a fixed matrix of random 
effects of Section 6.1. This means that we cannot use any estimate of σ2 and still gain 
100% efficiency—only maximum likelihood is asymptotically efficient. In particular, 
an asymptotically biased σ will yield an asymptotically biased β. 

We refer the reader to Section 2.15.5, where criteria for convergence were dis-
cussed, and to Appendix 13.3 for general facts on optimization. Below we discuss 
how to evaluate the integrals involved. 

Integrals approximation 

We notice that to find the MLE using iterations (7.70), we actually do not need 
to compute the value of the log-likelihood function unless the length step \ s is 
different from 1. Also, we do not need the exact information matrix and associated 
integrals, such as 1̂ 4, because EFS may be used. However, the derivatives (7.66) 
that involve integrals (7.67) should be computed as precisely as possible to be sure 
that maximum likelihood estimates are obtained, because the MLE is the solution 
to the score equations, dl/ß = 0 and dl/σ2 = 0. 

The main problem of the deterministic integral approximation is finding where 
the integrand values are sampled (Evans and Swartz, 2000). In the adaptive/Laplace 
approximation approach, values are sampled in the neighborhood where the inte-
grand has its maximum (Liu and Pierce, 1994; Pinheiro and Bates, 1996). In the 
sum approach, we sample in the interval where the integrand is greater than a pre-
defined small number. In the Monte Carlo approach, we rely on a random sample. 
Each of these three approaches has advantages and disadvantages, which we discuss 
later. 

Adaptive Gauss-Hermite quadrature for integrals (7.67). Prom Section 7.1.2, it 
follows that one achieves better precision when the integral is approximated around 
the point where the integrand attains its maximum. 

We start with an approximation/evaluation of In, requiring us to find the mini-
mum of the function 

n 

h(u) = -ku + u2/(2a2) + ] T ln(l + B0e
u), (7.71) 

where the subindex i is omitted, and we let Bj = e& ^ . To find its minimum we 
need the derivatives, 

du ' ^ 1 + J37-e
tt du2 ' f-f (1 + Βήε

η)2 

First, since the second derivative is positive, this function has a unique mini-
mum. Second, since h —> oo when u —» ±oo, the minimum of h on (—00,00) 
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exists. To solve dh/du — 0, we apply the Newton-Raphson algorithm, us+i = 
us — (dh/du) (d2h/du2)~ , starting from zero. Then, if u* is the limiting point of 
the iterations, we approximate In by (7.38). 

To approximate integral 7^? we need to apply the improved Laplace approxima-
tion because the integrand is not a unimodal function. A typical integrand function 
u2ehi(ß-,u) is shown i n Figure 7.6. Standard adaptive quadrature may fail because 
the function is bimodal, so the integration should be carried out with care. Accord-
ing to the improved Laplace approximation, the integral should be split into two 
intervals: (—oo,0) and (0, oo). 

FIGURE 7.6. Typical integrand function for the integral 7*2. Since the function is bimodal, 
the integration should be carried out with care. 

Ο . δ σ ^ η - k)2a2 + 8 - (n - Λ)σ], and for the 
k)a\. Similarly, one can obtain 

Referring to Section 7.1.2, we set the threshold c = 0, as in the example. Hence, 
we first need to minimize functions h(u) — 2 In u for u > 0 and h(u) — 21n(—u) 
for u < 0. Again, the minimum can be found by the Newton algorithm. For the 
positive part, we start with u$ 
negative part, UQ = — 0.5a[y/(n — k)2a2 + 8 + (n 
the maximum of the integrand for 1^. 

. Integral approximation by sum. In Section 7.1.2 we argued that numerical inte-
gration should not be too complex because the time of computation is important 
and one might achieve the same precision by a simple sum with a large enough 
number of terms. In particular, it was suggested that we approximate the logistic-
normal integral by a simple sum on the interval where the proper and improper 
integrals differ by a small ε/2. The same idea can be applied to approximate inte-
grals Iik,k = 1,2,3,4. The main task is to find A < B so that the proper integral 
approximates the improper one with a given, small enough precision. We illustrate 
this approach by evaluating Ιχ, where the subindex i is omitted for simplicity of 
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notation. Since the negative function h is bounded from below by a quadratic func-
tion, —h > u2/(2a2)+nu + ß' ]Cj=i x j · Following the outline of the logistic-normal 
integral, we can find A and B such that the improper integral can be replaced by 
a proper one with any given precision. The lower and upper limits are given in the 
following lemma. 

Lemma 35 Let function h(u) be defined on (—oo, co) and for some σ, D, and E 
have a quadratic lower bound, h(u) < —u2/{2a2) + Du + E. Let ε be any posi-
tive sufficiently small number. Then for A = aC + a2D and B = —aC + σ2Ό, 
where C = ^~1{ee~E~CT D /2/(σ^/8π)), the difference between the improper and 
proper integrals of eh^ on (A,B) is less than ε, or more precisely, J^° eh^du — 

S*eh^du<e. 

Proof. Since -u2 / (2σ2) + Du + E = -(η-σ2Ό)2/(2σ2) + (a2D2/2 + E) for any 
A < B we have 

/

oo nB pA /»oo 

eh^u)du - I eh{u)du = / eh(u)du + / eh{u)du 
-oo JA J —oo JB 

e~^u+Du+Edu+ / 
-oo JE 

= σ λ / 2 ^ > 2 ί , 2 / 2 + £ ) 

rA Λ /·οο 

e-^u*+Du+Edu 

IB 

Ά-σ2Ό\ / Β-σ2Ό Φ + Φ 

The lower and upper limits are found by equating the first and second terms in the 
last expression to e/2. 

m 
Clearly, a sufficiently small number ε means that εβ~Ε~σ D /2/(aVS^) < 1/2, 

so that C < 0. 
We illustrate this lemma by computing A and B such that the proper integral 

JA eh^du differs from the improper integral J^^e^^du by ε, where h = ku — 
u2/(2a2) - £ ln(l + eß'^+u). First, we use a trivial inequality ln(l + eß'**+u) > 0, 
which in the notation of Lemma 35 means that D = k and E = 0, implying that 
A = a2k + aC and B = a2k-aC, where C = φ-^εε"^^/ 2 / {ay / tor) ) . Second, the 
inequality ln(l + eß'xj+u) >u + /3'XJ means that D = — (n - A;) and E = β'Σ^, 
with the appropriate limits A and B. Apparently, one can take the maximum of 
^4's and the minimum of JB'S. After A and B are determined, we approximate 
JZo eh(u)du by the sum £ f = 1 eh<<Uk\B - A)/K, where uk=A + k(B- A)/K. 

To replace the improper integral f^° u2eh^du = J^° eh^u^2ln^du, we use 
inequality In \u\ < \u\ — 1, so that we find A < 0 and B > 0 using Lemma 35 such 
that 

/

OO / rO pB ^ 

u2eh^du- / u2eh^du+ / u2eh^du 
-oo \J A JO j 

<ε. 

T h e n the improper integral is approximated by two sums with uk = A(l — (k—l)/K) 
and Uk = kB/K. 

Monte Carlo simulations. The integrals involved can be evaluated by statistical 
simulations. We refer the reader to books by Robert and Casella (1999) and Evans 
and Swartz (2000) for detail. The advantage of this approach is that it is quite 
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general and easy to implement. The disadvantage is that it may require very large K 
to achieve a satisfactory approximation. Also, when using statistical simulations, one 
should remember that with any precision there is an assigned probability to achieve 
the integral precision. For example, to approximate integral 1^, one generates a 
presumably large number (say, K = 1000) normally distributed Uk ~Λ/"(0,σ2) and 
then approximates Ι α ~ r V v ^ f E f c L i eki«h-I%L1Mi+eP'Xi'+Uh). Typically, the 
number of simulations are picked out of convenience and are rarely justified. A 
better way to do simulations involves three steps: (1) estimate SD with a relatively 
small number of simulations, (2) compute the number of simulations, K, to make 
SE smaller than, say, 10~4, which implies that 10"4 =SD/y/K or K =SD xlO8; 
and (3) do K simulations, see Problem 4. 

Discussion of the integral approximation techniques 

Most numerical methods approximate the integral J^ f(x)dx by a sum, J2k=i wk 
f(xx). Specifically, we discuss advantages and disadvantages of several integration 
techniques when the integrand takes the form f(x) = g(x)e~x ^2σ \ where the 
function g is nonnegative. Three integration parameters are involved: (a) the number 
of nodes, K\ (b) the specific nodes, {#&, k = 1,2,..., K} and (c) the weights, {wk, k = 
1,2, . . . ,*}. 

Generally, the higher the value of K, the better the approximation. It is not 
necessary to keep K constant during iterations. Actually, K should increase with 
convergence/number of iterations. Neither Gauss-Hermite nor Monte Carlo provide 
accuracy analysis and appropriate choice of K. When integrals are approximated by 
a sum (say, using the trapezoid rule), a more sophisticated analysis of the second 
derivative of the integrand should be carried out to yield the number of nodes 
required to approximate the integral with a specified precision. Such an analysis 
was done for the logistic-normal integral in Section 7.1.2. A big advantage of this 
approach is that the precision of integration is under control. However, it involves 
(a) finding A and B such that the improper integral can be replaced with the proper 
one with the specified epsilon, and (b) assessing the upper bound for the second 
derivative of the integrand. 

In order to choose nodes we need to determine the neighborhood/interval from 
which the integrand values are sampled. There are at least three ways to chose 
{xk} and the corresponding positive weights {wfc}· The easiest way to choose {#&} 
is to sample randomly from Λ/"(0, σ2), and then the integral is approximated by 
the empirical mean with Wk = 1/K. This is the Monte Carlo method or statistical 
simulation. Although this method is quite general and easy to realize, it gives a poor 
approximation when the maximum of g is far from zero. For example, Monte Carlo 
may give poor integral approximation for J^ because the integrand is sampled in 
the neighborhood of zero where the integrand is zero. This problem with the Monte 
Carlo technique is well known and there is an improved technique, called importance 
sampling, discussed thoroughly by Robert and Casella (1999). The idea of this 
technique is to sample the integrand from an "important" neighborhood, where 
the integrand takes maximum values. This means that before statistical simulation, 
we need to find the maximum point of f(x) and compute its second derivative, 
as in adaptive Gauss-Hermite quadrature. If x* is the point of maximum and σ 
is the square root of the reciprocal of the second derivative, we represent f(x) = 
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g(x)e~^x~x^ /(2 σ \ where g(x) = f(x)e^x~x^ ^2* \ Hence, if {xk} is a sample 
from Λ/"(χ*,σ ), we estimate f^° f(x)dx as dy/2n times the empirical mean of g. 
Particularly, this technique would require approximating Ji2 by two samples. 

Implementation in R 

Two maximum likelihood estimation functions can be found in the directory " c : \ \ 
MixedModels\\Chapter07\\". The first R function, logMLEl uses the built-in func-
tion i n t eg ra t e for integral evaluation, and the second function, logMLgh, uses the 
Gauss-Hermite quadrature with the user-defined number of nodes based on the 
gauher function presented above. The calls to the two function are: 

logMLEl(dat,b, 

logMLEgh(dat,b 

s2, 

,s2 

maxiter= 

,maxiter: 
=20, 

=20 

,eps= 

,ngh= 

le-

=13 

-010, 

,eps= 

silent= 

=le-010 

=1) 

,si lent= =1) 

The data are supplied via the argument dat; this matrix has the same format as 
in the l og r i c function above. The starting values for the beta-coefficients are in 
array b; s2 passes the starting value for σ2. The starting values can be obtained 
using the fixed subject-specific intercept approach discussed in the previous section 
(s2 is the variance of the intercepts). The parameter ngh passes the number of 
Gauss-Hermite nodes. It is a great deal of research to find out what ngh value is 
optimal: a small value will result in the large error of the integral approximation, 
and a large value will prolong computation. Examples of calls to these functions 
can be found in function logs im, which compares several methods and algorithms 
for logistic regression with random intercept. 

In the following subsections we consider several estimators that avoid integration. 
They are all derived via approximation of the original log-likelihood function (7.64). 

7.3.2 Fixed sample likelihood approximation 

We have noticed before that the majority of integral approximations have the generic 
form ^2s=iWsf(xs), where xs is the abscissa and ws is the weight. For example, 
by the trapezoid rule the integral JA f(x)dx is approximated by the sum with 
xs = A + (s - l)h and wi = ws = h/2, ws = h = {B - A)/(S - 1) for 1 < 5 < 5, 
see (7.39). In Gauss-Hermite quadrature, given the number of nodes 5, the pairs 
{xs,ws} are defined, for example, as in Table 7.1. We deliberately use notation 
s for nodes, rather than fc, because in this section {xs} will be given a different 
interpretation as a sample at which the integrand values are computed. In Monte 
Carlo, the integral J f(x)(f)(x)dx = ^Χ^Λ/Γ(Ο,Ι) / (Χ) ^ a S a m approximated by the sum 
Σ3ζ=ι Wsf(xs), where the xs are randomly chosen from Λ/"(0,1) and the weights are 
ws = 1/5. 

A different sort of observation is that up to a constant term, the likelihood (7.64) 
can be parameterized as 

Ζ(/3,σ) = J > / βΆι«ν>σ>β-»2'2άη, (7.72) 
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where 

lij(ß, σ) =yij \ημ(β'χ^ + au) + (1 - yia) ln(l - μ(/3'χ^· + σ^)) 

and μ is the logit probability function. Notice that we express the log-likelihood 
in terms of a general probability function μ that facilitates application with other 
probability functions, such as probit. An advantage of (7.72) parameterization is 
that the kernel of the integration, e~u /2, is a fixed function and σ acts as a pa-
rameter. In Fixed Sample Likelihood (FSL) approximation we couple the previous 
idea of approximating the integral as a sum with parameterization (7.72). So let S 
pairs be given {us,ws}. We combine β with σ into an (ra-h 1) x 1 vector θ = (β , σ)' 
and construct the respective (m + 1) x 1 data vector g^ s = (x^,i6s)'. Then the 
log-likelihood (7.72) can be approximated as 

N S 

IFSLV) = £ In j > e e » ' « · < · > , (7.73) 
i=l s = l 

where 
kjs{0) = yij 1ημ(0^ · β ) + (1 - yij) ln(l - /i(0'gi j s)). 

Now we treat (7.73) as a new log-likelihood function and find the Θ value that 
maximizes IFSL- The derivatives needed are 

91FSL 
N 

Σ ^s Σ wee<eq<e, (7·74) 
2=1 Z^s= l Wseis s = i 

N 

« = Σ 
2 = 1 (Ef=i^e<-)2 

(7.75) 

where H = —d2l/d62 is the negative Hessian, and 

The first and second derivatives of the log-likelihood are similar to what was given 
before in Section 7.1.4; namely, 

"ijs 
kjs — {yij ßijs) /-, _ 

H'ijsK1' rij 
.2 .. .2 

Mijs V-1- Pi jsJ 

Then the NR algorithm has the form 

enew = e+XH-1^^, (7.77) 



370 7. Generalized Linear Mixed Models 

where λ is a positive step length (typically, λ = 1). 
We emphasize that the difference between FSL and exact ML is that in the 

latter we use numerical integration for each integral (7.67) and (7.70) whereas in 
the FSL approach we approximate only the integral of the log-likelihood function. 
The FSL approach covers Gauss-Hermite quadrature and Monte Carlo under one 
methodological umbrella. 

An important advantage of FSL approximation is that it produces the joint co-
variance matrix of β and σ. For LME and nonlinear marginal models with the fixed 
matrix of random effects, the ML estimates do not correlate. But for a nonlinear 
mixed model, including logistic regression with random intercepts, the estimates 
correlate asymptotically. This means that the variance of β computed under the 
assumption that σ is known would have a systematic bias (one may expect a nega-
tive bias, i.e., variances will be underestimated). Also, one can test the hypothesis 
HQ : σ = 0, treating σ as just one of the coefficients using the one-tailed test with 
the alternative HA : σ > 0. It is straightforward to generalize this method to mul-
tivariate random effects in GLMM (Section 7.8.3) and the nonlinear mixed effects 
model of the next chapter. 

Implementation in R 

The calls to two R functions that implement the fixed sample likelihood approxima-
tion method are 

logFS(dat,nSim=100,bsigma,maxiter=20,eps=0.001,silent =1) 
logFSL(dat,xwFSL=gauher(13),bsigma,maxiter=20,eps=0.001,silent=l) 

The parameter nSim specifies the sample size, S. The (ra +1) array bsigma speci-
fies the starting values for (β,σ). In the first function, the sample is generated within 
the function, and in the second function it is generated outside the function and is 
passed through the argument xwFSL; a good choice is to take the Gauss-Hermite 
nodes from gauher. The second function can be viewed as a fast version of the 
first. In both cases the output is a list with four components: (1) b=ß estimate, (2) 
sigma~2=a2 estimate, (3) iH=the (ra + 1) x (ra+1) information matrix inverse (co-
variance matrix for 0), and (4) i ter=number of iterations done (if i ter=maxiter 
then the number of iterations reached maximum without convergence). In short, 
logFS uses random and logFSL used Gauss-Hermite nodes. Also we offer two sim-
plified versions of the functions, logFSl and logFSLl that use λ = 1 (it was noticed 
that for many iterations λ = 1 lead to a log-likelihood function increase). Note that 
in these functions matrix H is not computed by formula (7.75) but approximated 
using the cross-derivatives: namely, 

TT v ^ (dliFSL\ Î91JFSL\ 

έίν » i l » ) ' 
where the derivative of UFSL is the ith term in expression (7.74). 
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7.3.3 Quadratic approximation 

We note that the main obstacle in obtaining the exact integral in (7.64) is the 
nonlinear function Σ ? 1 ι m ( l "+" e^ X i J + u ) . However, we can take the exact integral 
after approximating this function by a quadratic function around zero after Taylor's 
series expansion, Σ ? 1 ι m ( ! + ê '***'4"14) ~ C0 + C\u + 0.5C2u2, where 

ß'*n ii* eß'*n 

j = i j = i ^ i = i v ; 

The fact that the function is approximated around zero is important. In fact, one 
may expect a satisfactory approximation if the deviation of the subject-specific in-
tercept from the population-based intercept is not large. In the next section we 
approximate the function around the subject-specific intercept. This approxima-
tion also follows from the Laplace approximation. Early authors considered a first-
order (linear) approximation around zero (Goldstein 1991; Rodriguez and Goldman, 
1995), but we will not discuss it here, due to poor performance. 

Using the formula 

J — < 
e-Au*/2-Bu-Cdu = e x p ( 0 - 5 ß 2 / i 4 _ C ) ^βφ. 

> 

for positive A, we approximate f™ ehi^,u^du as 

e-i^-2+c2)u
2-(c1-ki)u-Codu 

> 

= v ^ e x p ( i ( C i - ki)2(a-2 + Ca)"1 - Co) /Va~2 + C2. 

This leads to the approximated log-likelihood function (7.64), up to a constant term, 

12(β,σ2) = ô +ßr 

ί 
J — C 

+ \ Σ ( τ ^ -2 Σ l n ( ! + ^ - l n ( ^ + σ _ 2 ) } > 
where to shorten the notation we let e ·̂ = e^ x^' and Li = Y^Li e u ( l + eij)~2· The 
subscript 2 indicates quadratic approximation. We need to maximize I2 over β and 
σ2 to obtain an approximation to the MLE. The first (and second) derivatives of 
I2 are straightforward to obtain; then we apply either the empirical FS or Newton-
Raphson algorithm to maximize Z2· 

7.3.4 Laplace approximation to the likelihood 

In Subsections 7.1.2 and 7.3.1 we applied the Laplace approximation to evaluate in-
tegrals around the maximum point of the integrand. One can also apply the Laplace 
approximation to the likelihood and maximize the resulting function to obtain an 
approximation to the MLE that avoids integration. 
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Let u*i be the maximum of hi(ß;u), assuming that ß is fixed, say at the value of 
the previous iteration (algorithms to find this maximum were discussed in the pre-
vious subsection). Applying the Laplace approximation (7.29) to (7.64), we obtain, 
up to a constant term, an approximated log-likelihood function 

N N m 

lLA(ß, σ2) = ß'r-^i Σ ^ - Σ Σ 1η(! + e^ ' + - ) 
2=1 2=1 j = l 

ΐ Λ , / l Ä e^'x«+ u" \ . ΛΠησ2 ,„ „ολ 

~2 2 > \ ^ + L· {1 + eß'Xij+u.i)2 - ~Y— (7 ·78) 

Note that we omitted the terms that do not depend on /3 or σ2; namely, Ν\η(2π) 
/2 + ̂  kiU*i. Now we treat this function as a log-likelihood-function, expecting that 
the maximum point will be close to the MLE as the maximum point of the original 
function (7.64). Maximization of IL A involves finding individual u*i when β and σ2 

are held constant, for i = 1,2,..., N. To maximize II A , we need the first derivatives, 

Λ7 N m 1 N s^m „ . . o Y . . 

~W = "SS^^'äii^ + ax^· (7J9) 

Ô/LA N 1 Λ / 2 _ _ J _ _ _ \ 

where ê · = ê  χ^+η*^ and 

^zj ^2j &ij v J· ^iji / 
9 y i _ ï + V ^'2"(i + eiJ)2' *«3- (i + e i i · )

3 ' 

Equating dlLA/da2 = 0 and applying the fixed-point algorithm of Chapter 2, we 
obtain a recursive formula for the variance, 

2 = 1 
^ - 2 , ν-^Πΐ 

The estimate of σ2 will be greater than the "sample variance" of the estimated 
random effects. The right-hand side of (7.81), as a function of σ8, is an increasing 
function with positive values at zero and infinity. Thus, as follows from Appendix 
13.3.4, the FP iterations converge for any {it*z,%-2}· For β we use the Newton-
Raphson algorithm, which requires the second-order derivative H =d2lLA/dß = 
- Σ ί = ι Η * » where 

w _ V ^ / 1 2^j=l qijlXjjXjj lκL·j=lQ^33^^j){L·j=lQ^jS^^j) 
Η , - ^ ί % · 2 Χ ^ . + - σ _ 2 + Σ „ 1 ι ^ 2 - (σ-2 + Σ η 1 ι % . 2 )2 

and gij4 = {e^ — 4efj + β^·)/(1 + e^·)4. Numerically, the alternation between maxi-
mization of hi(ß\u) and (7.78) is equivalent to simultaneous maximization of (7.78) 
over (/3,ΐ£ι, ...,MJV) when σ2 is fixed. 
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Penalized quasi-likelihood 

Breslow and Clayton (1993) omit the last term in (7.78). The resulting method is 
called Penalized Quasi-Likelihood (PQL). We justify the omission by an observation 
that when N and ni approach infinity, the contribution of the last term vanishes. 
To simplify, we let ni = n and 1ίπΐ;ν-κχ> N/n = p, a finite positive number. Dividing 
L·A by Nn, we see that the first term has the order 0(η~λ), the second term has 
the order 0(1), the third term has the order 0(n_1), and the fourth term has the 
order 0(1). For the last term, Σ"ζ

=1 ei
B'*i*+u*i(l + eß'*i*+u*i)-2 ~ An, where A is a 

positive constant. But elementary calculus shows that limn_>oo n _ 1 1η(σ - 2 +Αη) = 0 
because by L'Hospital's rule, this limit is equal to limn_>oo Α{σ~2Λ-Αη)~1 = 0. Thus 
the last term has the order 0(N~1). This means that only the second and fourth 
terms of (Nn)~llLA do not vanish; in particular, the last term may be omitted if 
minrii goes to infinity when N —» oo. After omitting the last term in (7.78), we 
arrive at the PQL function 

N m AT 1 N 

2a2 ^ 
i = l j=l i=l 

lPQL(ß,a*) = / 3 ' Γ - ^ ^ 1 η ( 1 + β ^ + - 0 - γ 1 η 2 π σ 2 - - ^ Σ ^ 

< ï N 

i—1 L 

1η2πσ2, (7.82) 
Δ 

where U is the individual (subject-specific) log-likelihood function. The expression 
in brackets is interpreted as a penalized log-likelihood where the penalty has the 
form of the squared distance of subject-specific intercepts from the population-
based intercept (ui = ai — a), adjusted by their variance. Moreover, since u*i is 
the maximum point of li(ß,Ui) — u2/(2a2), maximization of IPQL is equivalent to 
maximization of 

N 1 N N 
lpQL(ß,uu...,uN,a2) = J2li(ß,Ui) - — J ^ * - - 1η2πσ2. (7.83) 

However, the maximum of this function occurs at Ui = 0 and σ2 = 0, and β is the 
standard MLE (fixed parameters). Indeed, differentiating with respect to σ2, we find 
that the optimum σ2 = Y^u2/N. Substituting this back into (7.83), we come to an 
equivalent function to maximize, Y^h(ß,Ui) — 0.bNlnJ2u2. But this function takes 
a maximum +oo when Ui —► 0 for alH = 1,..., N. To avoid such a degeneration, we 
suggest updating σ2 by formula (7.81). Thus, in the PQL method for fixed σ2, we 
maximize the penalized log-likelihood function 

N 1 N 

2 < j 2 ■ 1 

2 = 1 %—\ 

updating σ2 at each iteration as 

N 

σ2 = i- Y ( uli + — - - | . (7.85) 
i=l 
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This is equivalent to omitting the third term in estimating equation (7.79) and 
leaving (7.80) the same. If N is relatively small, one can update ß and Ui from 
IpQL by solving N + m equations simultaneously. 

Log-likelihood (7.84) has a clear "penalized" interpretation: the first term is 
the standard log-likelihood assuming that {ui} are fixed as in Section 7.2.2 and 
— (2σ 2 ) - 1 Ση1 1S t n e penalty term. The penalized log-likelihood function is a char-
acteristic feature of the mixed effects methodology. 

Variance update formulas (7.81) and (7.85) have a nice interpretation as a Laplace 
approximation of the maximum likelihood update formula (7.70). Indeed, applying 
formula (7.31) to (7.70), we come to (7.81): 

-2 = i f v ιΛΠο^^& i f 
σ*+ι ΝΪ-ίΙα Ν^ f°° ehi(Mdu ~ N ^ 2 = 1 iX i=l J-oo i=l 

uli + 
1 

+ Σ™=1 Qij2 
(7.86) 

This interpretation, along with the penalized log-likelihood (7.84), will be general-
ized to generalized linear mixed models in the following sections and to nonlinear 
mixed models in the next chapter. The u*i computed at the final iteration may 
serve as an estimate of the random effect, the deviation of the subject-specific from 
the population-averaged intercept. 

glmmPQL function from library MASS 

The library MASS offers the glmmPQL function , which a estimates GLM mixed model 
with random effects; it has the same syntax as lme. This function is very flexible 
and handles different links, as in the glm function, and multiple random effects as 
in lme. For example, to run a logistic regression with two covariates and a random 
intercept, you have to issue 

glmmPQL (y~xl+x2, random=~ 11 id , f amily=binomial, data=da, verbose=F) 

See an example of the call to this function in our logs im function. 

7.3.5 VARLINK estimation 

In this section we develop a simplified method for estimation of a logistic regression 
with a random intercept, VARLINK. This method can be applied to any link where 
the marginal binary model admits a closed-form solution or has a satisfactory ap-
proximation. The key to this estimation method is the link approximation developed 
in Section 7.1.2, which approximates marginal probability and thus avoids integra-
tion. VARLINK alternates between estimation of the subject-specific regression co-
efficients, holding the population-averaged parameters constant, and estimation of 
a binary model using link approximation. The idea of such two-stage estimation 
was originally suggested by Stiratelli et al. (1984) and described at length by Da-
vidian and Giltinan (1995). The authors, however, assumed that each coefficient 
of the logistic regression is subject-specific, with the mean specified in the second-
stage model (4.2) of Section 4.1. More details on the two-stage estimation in the 
framework of a more general nonlinear mixed model may be found in Section 8.5. 
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However, often the model contains population-averaged parameters that must be 
estimated jointly. Then, even knowing the variance parameters of random effects, 
one cannot eliminate an integration problem, and therefore the two-stage method 
cannot be applied. Thus, VARLINK may be viewed as a generalization of the two-
stage method to situations when population-averaged parameters are present. We 
call this procedure VARLINK because it consists of two steps, variance estimation 
and link approximation. As any two-stage procedure, it requires a sufficient number 
of observations per cluster to estimate the subject-specific parameters satisfactorily. 
It is particularly easy to estimate the probit regression with a normally distributed 
random intercept because the marginal model is again a probit regression with 
attenuated coefficients, see the next section. 

The VARLINK estimation procedure for logistic regression with random inter-
cepts consists of two alternating steps. 

1. Estimation of the subject-specific intercept and its variance. We want to es-
timate the deviation of the subject-specific intercept from the population-
averaged intercept, ui assuming that ß is held constant for each cluster i = 
l,...,iV. As before, it is assumed that the first component of vector ß is 
the intercept. Omitting i and letting Bj = exp(/3/xJ) and k = Y^=iVj, 
the individual maximum likelihood reduces to maximization of the function 
ku — Σ?= ι In(l4-Bjeu). Equivalently, we need to solve the equation Σ ^ = 1 ( 1 + 
Bjw)~l = n — k for positive w = eu. Note that if k = 0 or k = n, there is no 
solution for u, so we take only clusters where 0 < k < n. The latter equation 
has a unique positive solution, which can be obtained by Newton's iterations 
w8+i =ws + E î = i ( l + fyw)-1 - (n - fc)]/E?=i Bj(l + BjW)~2. A good 
start can be obtained from the inequality Σ ( 1 + Bjw)"1 >n2/(n + wJ2Bj)i 
which gives w$ = {Y^Bj)~1nk/{n — 1). Then the sequence {ws} is increasing 
and converges to a positive w*. At the final iteration we let Ui = In w*. After 
the subject-specific {ui} are obtained, we estimate σ2. If ui were estimated 
exactly then an estimator for σ2 would be the mean of {u2}. But since the 
{ui} are estimated from an individual logistic regression fit, it has the variance 
Vi = E j i i - B i j ( l + Bij)"2]-1. Thus, generalizing (4.32), we obtain an esti-
mate σ2 = iV- 1 J2i=i(u2 —Vi). Unfortunately, it can produce negative values 
(then we let σ2 = 0), a common drawback of noniterative variance estimation. 
This type of estimator for the random effect variance will be used for general 
nonlinear mixed effects model in the next chapter. 

2. Estimation of the binary model using link approximation. After σ2 is estimated 
from the preceding step, we can use several logit approximations with the 
normally distributed intercept derived in Section 7.1.2. If μ = μ(δ,σ2) denotes 
an approximation to Ε η ^^(ο ,σ 2 )^ + θ / (1 + e u + s ) , as a function of s and σ2, we 
come to a log-likelihood function similar to that one we considered in Section 
7.1.4, 

N m 
l(ß) = Σ Σ fotf 1ηΜ*ΰ) + (1 - Vij) Ml - Ksij))}, 

i = l j=l 

where Sij = ß'x-ij and μ = μ(δ) is the right-hand side of the marginal link ap-
proximations, such as (7.17) or (7.21), with σ2 estimated from step 1. Clearly, 



376 7. Generalized Linear Mixed Models 

{yij} are treated as independent random variables and the FS/IRLS algorithm 
of Section 7.1.4 yields an update formula 

ßa+l = ßs + λ5 j Y^WijrfjXijX'ij J I Y^WijiVij - ßi^ßijKij J , 

where μ^ = άμ/ds evaluated at Sij and Xs is the step length (typically, Xs = 1 
suffices). After convergence, we return to step 1. 

As mentioned above, this procedure is especially appealing for probit regression 
with normally distributed random effects because then the marginal model admits 
a closed-form solution (see Section 7.4). 

The VARLINK method is implemented in the function 

logVARLINKl(dat,b,s2,maxiter=20,eps=0.001,silent =1) 

This function has the same arguments and output as in our previous R functions. 

7.3.6 Beta- binomial model 

The combination of the binomial distribution with probability distributed as the 
beta distribution leads again to the beta distribution. This fact was observed more 
than 50 years ago, and many authors suggested a beta-binomial model to describe 
the binomial data with overdispersion avoiding integration. Concise coverage of the 
beta-binomial model without covariates is found in the book by McCulloch and 
Searle (2001, pp. 57-64). It is worthwhile to remember that in the beta-binomial 
model, the values of the dependent variable are nonnegative integers (counts), not 0 
or 1 as in logistic regression, considered earlier. Equivalently, one may assume that 
the covariates, {x^}, are only cluster-, not subject-specific. 

For each cluster i = 1,2, ...,iV, we observe count data yi = ]C?ii2/u'> where 
the {yij} are the iid binary data with probability pi. We do not observe pi, but 
instead assume that pi is also a random variable with beta distribution on (0,1) 
with parameters a and ß. The beta distribution is quite flexible and may produce 
uniform, bell-shaped, or even delta-function/constant pi distribution. Thus, the 
beta-binomial model is specified as a hierarchical model, 

yi\pi ~ Binomial(rc<,pi), Pi ~ B(a,ß). (7.87) 

The beta distribution for pi is given by pf_1(l — Pi)^~1/B(a^ß), where B(a,ß) = 
JQ xa-1{l-x)ß-1dx is the beta function. Recall that B(α, β) = Γ(α+/3)/[Γ(α)Γ(/?)], 
where Γ is the gamma function (many software packages have a built-in In Γ). The 
key observation is that the hierarchical model (7.87) implies the marginal distribu-
tion of yi also like a beta distribution, specifically omitting the constant coefficient, 
JoPVi1 - Pi)n i"y <P?_ 1( l - ViY~Xdpi = B(a + yuß + m- Vi). The binomial co-
efficient can be expressed as Q) = n\/(y\(n — y)\). Allowing a or ß to vary across 
clusters after reparameterization μί = a/(a + β) and r = l / ( a + ß) =const> 0, we 
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come to the log-likelihood up to a constant term, 

J(AT) 
N 

- Σ 
2 = 1 

Vi-1 rii-yi-1 

J2Mhr + ßi)+ Σ 1η(/ιτ + ( 1 - Μ ί ) ) - ^ 1 η ( 1 + Μ 
h=0 h=0 

rii — 1 

Σ 
h=0 

For example, in the case of a logit link, we let μ{ = μ^/3) =e^ Xi/(l H- e^ X i ) , where 
x,· is the m x l cluster covariate. The derivatives are 

dl_ 

dß 

N 

= Σ 
2 = 1 

AT 

v<-i 

2 = 1 
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h=0 
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Σ 

hr + ßi 
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Σ 
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hr + ßi Σ 

1 
Λτ + (1 - /0_ 

ft 
ftr + (1 - Mi) 

M i x 2 ) 

r i i - 1 , 1 

έί1+Η 
The (m + 1) x (ra + 1) information matrix for (/3,r) is given by 

1 = 
xß Kß 
Χτβ Χτ 

where the blocks are 

N 

% = Σ 
2 = 1 

AT 

^ = Σ 
2 = 1 
N 

* - Σ 

ni—k—1 

2 = 1 

rii fk—\ i m—k—1 7 > 

n i /k-1 , 2 n i - f c - 1 , 2 ' 

MzX2Xi 

M t * i 

and 
Pr/q/ M Λ*Λ g(/*i/r + ft, ni + (1 - iQ/r - h) 

The log-likelihood can be maximized by the FS algorithm since the derivatives and 
the information matrix are available. X~l at the final iteration gives an asymptotic 
covariance matrix for (/3,τ). It is easy to check that, marginally, 

E(y%) = η»μί7 

vax(î/<) = ηίμί(1-μί) + 
2(1 + r ) 

ri i (?i i - 1 ) ^ ( 1 - μ , ) , 

and cor(yij^yik) =const= r / ( l + r ) . The latter means that the beta-binomial model 
implies the intracluster equi correlation structure, and 0.5r / ( l + τ)ηι(ηι — 1)μ^(1 — 
μ )̂ is the overdispersion. Although standard logistic regression or GEE (Moore and 
Tsiatis, 1991) would lead to consistent estimates, the described likelihood approach 
is asymptotically efficient. 
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7.3.7 Statistical test of homogeneity 

The question of homogeneity of the intercepts is essential. For the linear mixed 
model we have developed an exact F-test for HQ : D = 0, see Section 3.5. For the 
meta-analysis model the homogeneity test, σ2 = 0, is based on the Q-statistic, 
see Section (5.1.4). In Section 6.1.5, we applied the F-test to a nonlinear mixed 
model with normally distributed random effects. In this section we want to test the 
homogeneity of the intercepts: whether the intercepts are constant HQ : σ2 = 0. 
Two tests will be considered: the first is a straightforward generalization of the 
F-test (3.42), and the second is the score test developed in the framework of the 
generalized linear mixed model (Breslow and Lin, 1995; Lin, 1997). An important 
feature of these tests is that they do not require estimation of the random effects. 
At the end of this subsection we present a small simulation study. 

F-test 

It is well known that the deviance, twice the negative log-likelihood function, be-
haves asymptotically as the sum of squares (McCullagh and Neider, 1989). Thus, 
we just mimic the test statistic (3.42), replacing S by —21 to get 

i^0^^FlN-m,NT.N). „88) 

Here /o is the maximum value of the log-likelihood function from the ordinary logistic 
regression and lm[n is the maximum value of the log-likelihood function assuming 
fixed intercepts, see Section 7.2.2. The hypothesis H0 : σ2 = 0 is rejected if the left-
hand side of (7.88) is greater than the critical value of the F-statistic with N — m 
and NT — N degrees of freedom. 

Score test 

Generally, the score test statistic has the form (dl/θθ) I - 1(dZ/90), where I is the 
information matrix for the fc-dimensional parameter Θ. Then, under the null, this 
quantity can be approximated by a x2(k) distribution. We argue that when the al-
ternative is one-sided, as in the homogeneity test, an adequate test statistic would 
be proportional to dl/θθ, not (dl/θθ)2. The score test for the LME model is devel-
oped in Verbeke and Molenberghs (2003). The score test for logistic regression with 
random intercepts is developed below. 

One may expect that the random effect exists (σ2 > 0) if the derivative of the log-
likelihood function with respect to σ2, evaluated at the ordinary MLE, is positive. 
Indeed, if dl/da2 > 0, there exists a\ > 0 that the value of the log-likelihood 
function will be greater than at zero. We refer the reader to Section 2.6, where a 
numerical test on the positiveness of the variance of the random effect is developed. 
In fact, even if σ2 = 0, this derivative may be positive but takes small values. Thus, 
we need to find a positive threshold for dl/da2 at which the null hypothesis is 
rejected. To do this, we need to obtain the derivative dl/da2 at the null (σ2 = 0) 
and find its asymptotic distribution as N —> oo. 
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To find the derivative at zero, it is more convenient to write the log-likelihood 
function as a function of σ, not σ2, in a slightly different form, namely, 

Ζ(/3,σ) = ^ 1 η / eli(j)(u)du, 
•=1 J-oo 

(7.89) 

where u ~ Λ/*(0,1) and φ(-) is the standard normal density. The ith. log-likelihood 
function takes the familiar form 

Ui 

k = h(ß,u;a)=auJ2M + ΣWl*** ' " Σ ^ 1 + e™+/3'x« )· 
j=l j=l j=l 

Notice that 1(β;σ = 0) is the joint log-likelihood function of the ordinary lo-
gistic regression assuming that all {yij} are independent. Further, noting that 
ίΤ^Φ^άη = Eu~M(o,i)(eli), we simplify (7.89) as I = Y,\nEu(e

li). The first 
derivative is dl/da = Y^Eu{eliV^)/Eu{eli)^ where 

dl „ση+β'-Κί-

_|_ gCU+ß'-X-ij 

The expected value of the first derivative is zero, symbolically E(li(u; σ = 0)) = 0, 
because E(u) = 0. Take the second derivative, 

d2l _ v 

da2 ~ ^ 
Eu[el*{l?+l'l)] El(el%) 

Eué' E}.th 
(7.90) 

where l'( = -u2
 £ P ; J ( 1 ~Pij) and Vij = e^ ' x « / ( l + e?***). Since Eu(l'J = 0, the 

second term in (7.90) vanishes and we obtain 

d2l 
da2 

N N / n \ N m 

= ΣΕη{ΐ>2+ΐ'>) = Σ [Σίνα-ρο)) - Σ Σ ^ 1 - ^ · ) · 
σ = 0 2=1 i=l \j=l I i=l 3=1 

Now, observing that dl/d(a2) — 2d2l/da2, we infer that the sign of d2l/da2 is 
determined by the statistic 

N 

*=Σ 
i=l 

Σ(w-Pa)) -Σpat1 ~ρ )̂ (7.91) 

where%3- = e13 x <*/(1+e^ x^') is the predicted probability from the ordinary logistic 
regression. Statistic S has a nice interpretation. The first term measures the variance 
from the data, and the second term measures the variance from the model. If there is 
an overdispersion, S should be positive. To find the positive threshold above which 
the homogeneity is rejected, we need to find the asymptotic distribution of S under 
the null. Under mild assumptions, plimjv->oo S/N = 0; if there is no overdispersion, 
the variance from data and model should be the same. To yield the variance of 5, 
the following fact is used; the proof is similar to that given by Graybill (1969, p. 
362). 
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Lemma 36 Let zi,Z2,...,zn be independent random variables with zero mean and 
E(zf) = vu E(zf) = hi. Then 

var $> =E*+2 Σ* -3Σ^2 
\i=l 2 = 1 Ki=l 2 = 1 

Denoting z^· = yi<7- - p ^ · , we find that v» = p^ ( l - p t j ) and Λ* = p^· - 4 ^ · + 6p^· 
3p^·, and finally, 

AT 

var (*)*Σ 
2 = 1 

2 [ £ p y (1 - ft,·) + £ ( p y - (Spf,· + 12p« - 6pl) 
.3 = 1 / j = l 

Thus, by the score test we reject H0 : σ2 = 0 if D > y/vZi-a, where Ζχ-α is the 
(1 — a)th quantile of the normal distribution and a is the size, say 5%. 
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FIGURE 7.7. Empirical power of F and score tests for intercept homogeneity in logistic 
regression. The true values are β0 = — 1 and βλ =0.1, the nominal size 5%, and N — 100. 

Test comparison by statistical simulation 

We present a small simulation study to compare the F and score tests. The true 
value for the intercept β0 = — 1 and the slope βλ = 0 . 1 with Xij = j for j = 1,2,..., n, 
where n = 7 or n = 14 and i = 1,2,..., N = 100. The power function is estimated as 
the proportion of runs at which the hypothesis σ = 0 is rejected for σ = 0, ...,0.4. 
At σ = 0 the probability should be close to the nominal size, a = 0.05, see Figure 
7.7. The two tests are close in terms of the empirical versus nominal significance 
level and power. 
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7.3.8 Asymptotic properties 
In cluster or tabular data, there are three interpretations of "large sample" : (a) N 
is fixed and minn* —> oo, (b) N —> oo and {r^} are bounded/finite, and (c) N —> oo 
and minr^ —> oo. See further discussion of asymptotics in Chapter 8. In the first 
case, the fixed intercepts model is adequate (say, when the number of observations 
per cluster is greater than the number of clusters). In case (a), the asymptotic theory 
does take place and one deals with finite sample properties. We refer the reader to 
Section 3.6.2 for a general discussion. 

In case (b) or (c) the MLE is asymptotically unbiased and consistent, asymptot-
ically normal, and efficient. It is especially easy to prove these properties using the 
stochastic approach of Section 3.6.2. Then we assume that n* is a random number 
picked from a discrete distribution defined by Pr(n = k) = Pk- Apparently, the 
bounded case, (b), is when pk = 0 after k > K. Conditional logistic regression 
also leads to the same asymptotic properties under (b), but with a slight efficiency 
loss. However, when the {rii} are large, this method becomes computationally pro-
hibitive. Our practice shows that when {n^} are relatively small (n < 15), condi-
tional likelihood gives estimates very close to the MLE. 

There is a price for approximations—all those estimation methods require both 
N and minn^ to be large, to provide an asymptotically unbiased estimation. More 
details on the asymptotic properties of the Laplace and PQL approximation meth-
ods are given in Chapter 8. Some efficiency comparisons for the logistic regression 
model with random intercepts are discussed by Neuhaus and Lesperance (1996). 

P rob lems for Section 7.3 

1. Prove that all four integrals Ιχ, ..., J4 from Section 7.3.1 exist. 
2. Why is (7.68) true? 
3. Assess how precise the upper error bound from Lemma 35 is by comparing the 

approximate integral with the 'exact' value using the i n t eg ra t e function in R. 
4*. Estimate the number of experiments in Monte Carlo logistic-normal integral 

approximation using the rule described on page 367: First, use a small number of 
experiments to estimate SD and then use a large/estimated number of experiments. 
Test your algorithm via simulations with the exact integral computed using the 
i n t e g r a t e function. Generalize your experience to other integral approximations. 

5. Investigate how the number of nodes in the Gauss-Hermite quadrature af-
fects the performance of the logMLEgh algorithm (use function the logs im). Use 
s i l en t=0 to see the iterations printout. 

6. Derive the FSL algorithm for logistic and probit regressions (find the derivatives 
of μ). Write an R function and test it. 

7. Using simulations, investigate how the number of simulated values and the 
number of nodes in gauher affect the performance of logFS and logFSL (modify 
the function logsim). 

8*. Write R programs that implement Quadratic and Laplace algorithms. Compare 
their performance via simulations with glmmPQL (modify the function logsim). 

9*. Write an R program that implements the beta-binomial model estimation. 
Test your program via simulations (generate the overdispersed data and run your 
program). 

10. Reproduce Figure 7.7. 
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11*. Use simulations to illustrate the three cases of asymptotics. Is there a method 
that outperforms others for each case? 

7.4 Probit model with random intercept 

The binary model is defined as P r ( ^ · = l\ui) = Φ {ui + ß'^ij), where {ui,i = 
1,..., N} are independent and normally distributed random variables with zero mean 
and unknown variance σ2, and Φ is the cdf λί(0,1). It is assumed that the first com-
ponent of vector x^· is 1, so that the first component of vector β is the population-
averaged intercept. The subject-specific (conditional on Ui) log-likelihood is given 
by 

Ui 

h(ß,Ui) = Σ {yij ΙηΦ (m + β'*α) + (1 - yij) ln[l - Φ (Ui + /3'x^)]} . (7.92) 
j = i 

If N is small and {η{\ are relatively large, one can assume that {ui} are fixed 
and unknown (nuisance parameters). Then, by maximizing the joint log-likelihood 
function, Σί=ι h(ß^i), we estimate ß and {ui} simultaneously. If N is large and 
{rii} are relatively small, the model with random intercept is more appropriate, 
m ~ Λ/"(0,1). ML leads to maximization of the function with the intercept integrated 
out, 

ΛΓ Ν Γ°° 
l(ß) = - - 1η2πσ2 + ]Tln / ehi^du, (7.93) 

where hi(ß\u) =k(ß,Ui) — ΐ/2/(2σ2), using notation similar to (7.64). The formulas 
and results of Section 7.3.1 are readily modified. 

7.4.I Laplace and PQL approximations 

The Laplace and PQL approximations applied previously to logistic regression can 
be easily modified for the probit model. First, we need to find the maximum of 
the penalized subject-specific log-likelihood function, li(ß,u)—u2 /(2σ2). Assuming 
that β and σ2 are being held constant (the subscript i is omitted to shorten the 
notation), we find Ui by the FS algorithm: 

, Σ ΐ = ι ( % - *i)0jWj - Us/σ2 

us+i = us + 2 — — , s = 0,1, . . . , 

where Φ̂  = Φ(ζζθ+/3'χ^·), φ is the density of the normal cdf, and Wj = l/fèj(l—<frj)) 
is the weight, starting from zero (t̂ o = 0). Second, if u*i is the limit point from 
previous iterations, the Laplace approximation to (7.93) gives 

z (a 2N ΛΠησ2 1 A 2 ΐΣΑψ,σ) = — ^ u ^ 
i—l 

N ( m 

+ $ N h(ß,u*i) -0.51η[σ"2 + ^ # ; ( / 3 , ^ ) ] 
<=ι I 3=1 
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where Hi is the negative second derivative of k, namely, 

ni ni 

Hi{ß,u*i) =ΣΦν™ν + Σ(»ν " ΦνΜ^Λ'ί1 - φ<;) + Φαί1 ~ 2 φ ν Κ ' 

Sij = u*i+ß'yiij and Φ ·̂ = Φ(«#)> φ^ = φ(β^). We come to the PQL log-likelihood 
(7.84), ignoring the second term in the brakets as we did for logistic regression. The 
updated variance is computed via the recursive relation 

<^ = i f („a . + — L ^ ) . (7.94) 

Another variant of this formula can be obtained by replacing Hi with its expected 
value, Y%L^%Wia. 

74.2 VARLINK estimation 

The advantage of this method is that due to (7.15), if σ2 were known, we could 
estimate β from ordinary probit regression. It suffices to run the probit regression 
only once because for any σ2, the joint probit model gives β = / 3 0 v l + σ , where 
β0 is the MLE from the ordinary probit model, Pr(y^· = 1) = Φ(/3'χ^·). Thus, 
as in Section 7.3.5, we alternate between (a) estimating Ui by the FS algorithm, 
us+i = us + E ( Î / J - $ j )0 jWj]E0jWj] - 1 , with ß held, and (b) updating the 
variance, σ2

+ 1 = N~x J2i=i(uli ~ vi)i where Vi is the variance estimate of u*i from 
the individual probit model, Vi = (Σ£=ι Φ^ό)'1- When computing an estimate for 
σ2, only successful iterations from (a) are used. 

7.4-3 Heckman method for the probit model 

As mentioned above, we can consistently estimate the probit model coefficients as 
/30\/l + σ2, if σ2 is known. Heckman (1981) suggested plugging this estimate back 
into the log-likelihood function and maximizing it over σ2. The resulting estimate 
for σ2 can be called pseudo-MLE because it is derived from the log-likelihood after 
substituting the true beta parameter by its consistent estimate, see Appendix 13.1.3. 
To facilitate the maximization, we write the log-likelihood as 

N 
l^2) = Σ1ΐίΕη~λί(0Α) 

<=1 

exp Y^[yij ΙηΦ^· + (1 - yia) ln(l - Φ^·)] 
u = i 

, (7.95) 

where Φ^ = Φ(ση -f- z^Vl + σ2) and Zij = /30
xü ^s fixed- The maximum of this 

function may be found by standard optimization techniques such as quadratic in-
terpolation or golden search (Press et al., 1992). Although this method still requires 
quadrature problem solving, it may be less time consuming because it requires only 
one integral for each i. 
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7.4-4 Generalized estimating equations approach 

The presence of the random intercept makes observations stochastically dependent 
within cluster. In the method described above, parameter ß was estimated assuming 
that the {yij}, with the marginal probability Φ(/3;χ^· /y/1 + σ2), are independent. 
Although this assumption leaves the estimation equation unbiased, one may expect 
better efficiency when the intracluster correlation is addressed. To account for this 
correlation, we need to assess the covariance matrix of {yn, ...,yini}. A method to 
estimate parameters of the generalized linear model with cluster-dependent data 
by the generalized estimating equations (GEE) approach was suggested by Liang 
and Zeger (1986) and Zeger and Liang (1986). This method is discussed in depth 
in Section 7.9. Here we apply this method to a specific problem for the estimation 
of probit regression with a random intercept. An advantage of applying GEE to 
the probit model with normally distributed random intercepts is that the marginal 
mean admits a closed-form solution. 

To compute the variance and covariance of the contaminated probit model, we 
use the following formulas, frequently mentioned in the framework of random effects 
models. 

Let F be a random variable (RV) as a function of another random variable u 
(Y may depend on other RVs, too). For example, Y might be an estimator that 
depends on the parameter 0, and u is an estimator for Θ. Apparently, an estimator 
for Θ would be Y(u). We are concerned with the marginal variance of Y expressed 
in terms of u. The following general formula provides that variance, 

var(y) = var [E(Y\u)] + Evar(Y\u). (7.96) 

We make several remarks. First, E(Y\u) is a conditional expectation (a function 
of u), so var in the first term is the variance of this function over the distribution 
of u. In the second term, the conditional variance vax(Y\u) is the variance of Y 
when u is fixed. Thus, var(F|t^) is also a function of u and the second term is the 
expectation of this function. Second, formula (7.96) may be viewed as the variance-
decomposition formula. Indeed, in linear regression Y = a + bX + ε, where x and ε 
are independent random variables. Applying this formula, one obtains the familiar 
variance decomposition var(F) = a 2+var(y) , where σ2 =var(e) and Y = a + bX. 
In the following example, we apply formula (7.96) to a less trivial situation. 

Example 1. Calculate the variance of the binary RV F as a function of u ~ 
Λ/"(0, σ2) defined by the conditional probability, P r (F = l\u) = Φ(δ H- u), where s 
is a fixed number. 

Since for binary RV, probability = mean, we have E(Y\u) = Φ(« + u). From 
(7.15) we know that E{Y) = E(E(Y\u)) = Φ ^ / Λ / Γ + ^ 2 ) , SO 

var [E(Y\u)) = E [E2(Y\u)] - E2[E(Y\u)] = E^2(s + u) - Φ ^ / ^ Ι + σ2). 

For binary RV, var(y|îx) = Φ(β + u)[l - Φ(θ + u)], and finally, 

var(F) 

= Eu$
2{s + u)- Φ 2 ( 5 / \ / ΐ + σ2) + Φ(*/λΛ + *2) - EuEu$

2{s + u) 

= Φ(5/ \ / ΐ + σ2)[1 - Φ ^ / ν Ί + σ2)]. 
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This formula is not surprising because for the marginal probability, P r (y = 1) = 
Φ^/νΤΤ"^2). 

■ 
There is a vector generalization of formula (7.96). Let Y be a vector RV dependent 

on scalar RV u. Then 

cov(Y) = cov [E(Y\u)} + Ecov(Y\u). (7.97) 

Example 2. Calculate the covariance between two binary RVs, Y\ and Y ĵ as 
functions of u ~ Λ/"(0,σ2), defined by conditional probabilities, PT(YJ = l\u) = 
$(sj + u), assuming that Y\ and Y<i are conditionally independent (j = 1,2). For 
the first term of (7.97), we have 

οον[Φ($ι + u), Φ(52 + u)} = £"[Φ(5ι + ^)Φ(δ2 + u)] 

- Φ ^ Ι / Λ / Ι + σ2)Φ(θ2/ \ / ΐ + σ2). (7.98) 

For the second term of (7.97), since Y\ and Y2 are conditionally independent, 
Ecov(Y\u) = 0, so the covariance between Υί and Y2 is given by (7.98). Unfor-
tunately, we do not know whether the first term can be written in closed form. 

■ 
Now using these examples, we approximate the riiXrii marginal covariance matrix, 

Vi of γι = (yii,...,yiniy, as 

, v x f Φ(^/>/Γ+^)[ΐ - Φ ( ^ / ν Τ + ^ ) ] if j = fc 
1 z M I ^ - Φ(^ /Λ/ΓΤ^)Φ(^ /νΓΤ^) if j ^ * 

where s^ = /3'xi/c and Α^ = E[<&(sik + u)<&(sij + it)] or its approximate value 
(j, k = l,...,rii). Two approximations can be suggested. First, letting Φ ^ · Η-ιχ) ^ 
Φ(θ^), we obtain, up to the first order, Aijk — 0.5[Φ(5^/\/1 + σ2) χΦ(θ^) + 
Φ(5^)Φ(θ^·/\/1 + σ2)]. Second, assuming without generality that Sij < s^, we 
approximate A ^ ~ Φ ^ / Λ / Ι + σ2) — Φ ^ ) + Φ(5^·)Φ(5^)· Then the estimating 
equation for /3 is 

5^ΧίΦίνΓ1(γ*-ΦΟ = 0> (7.99) 

where Φ^ is an n* x 1 vector (^(sa/y/l + σ2),..., Φ(δίη./\/1 H- er2))' and <^ is an 
η^ x n* diagonal matrix with φ(β'χ.^) on the diagonal. System (7.99) can be solved 
by the FS/IRLS algorithm as ( N \~λΝ 

^ X j ^ V r ^ X i ^ X ^ . V - H y i - ^ i ) · (7.100) 

An attractive feature of (7.99) is that it is robust to matrix V^ approximation 
because it does not change the unbiasedness of the estimating equation. The pa-
rameter σ2 may be estimated from the variance least squares. More detail on the 
GEE approach are given in Section 7.9. 
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7.4-5 Implementation in R 

As mentioned above, glmmPQL estimates the probit regression with random intercept 
using the option f amily=binomilal( l ink=probit) . The reader can easilily modify 
the codes for logistic regression to estimate the probit regression with random in-
tercepts including log FS and logFSL. However, a conditional regression approach 
cannot be implemented for probit regression. 

Prob lems for Section 7.4 

1*. Develop the MLE algorithm for log-likelihood function (7.93), similar to that 
presented in Section 7.3.1. Write an R function and test it via simulations. Compare 
the performance with the glmmPQL algorithm. 

2*. Write R functions that implement VARLINK and Heckman methods and test 
them with simulations. Compare the performance with the glmmPQL algorithm. 

3. The compound symmetry correlation structure for mixed model with random 
intercepts is typically suggested as the working correlation structure in the GEE 
approach (see Section 7.9 for a discussion). Is it true that the correlation between 
binary observations within the same cluster is constant, assuming the probit model 
with a random intercept? 

4*. Write an R function that implements the GEE for the probit model with 
random intercepts using iterations (7.100) and test it via simulations. Compare the 
performance with the glmmPQL algorithm. 

5*. Apply the FSL algorithm described in Section 7.3.2 to the probit model. Write 
an R program and test it via simulations. Compare its performance with glmmPQL. 

7.5 Poisson model with random intercept 

In this section we discuss a clustered Poisson regression model following the line of 
discussion for logistic regression. We review the standard Poisson regression model 
briefly and then turn our attention to panel/clustered count data. A characteristic 
property of the Poisson distribution is that mean equals variance. In many appli-
cations, though, the count data do not exactly follow the Poisson distribution. For 
example, there might be omitted variables, counts might be measured with error, 
etc. There is no problem for linear regression if the error has zero mean and constant 
variance, but it does present a problem for logistic and Poisson regression, or any 
generalized linear model with a nonidentity link. Specifically, the convoluted count 
data implies overdispersion for Poisson regression when the variance is greater that 
the mean. This happens particularly for clustered data when intercepts are cluster-
specific. 

When the number of clusters is small and the number of observations per cluster 
is relatively large, the model with fixed intercepts may be reasonable, and we pro-
vide an efficient algorithm for the maximum likelihood estimation that eliminates 
nuisance intercepts. Otherwise, the model with random intercepts should be used. 
For this model, maximum likelihood leads to a one-dimensional integration. Several 
methods may be suggested to avoid integration, such as replacing the Poisson distri-
bution with negative binomial, Laplace approximation, penalized quasi-likelihood, 
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or VARLINK. These methods are straightforward generalizations of the logistic and 
probit regression models considered above. 

Several methods for Poisson regression with random intercept are compared in 
asymptotic setting by Demidenko (2007a). Not surprisingly, MLE is the most effi-
cient. Next to MLE stands the GEE approach with exact covariance matrix, called 
Exact GEE—we refer the reader to that paper for more detail. 

7.5.1 Poisson regression for count data 

In this section we model count/discrete data. Let random variable Y take nonneg-
ative integer value k with probability pk > 0, k = 0,1,2,3,.. . , so that Y^kLi Pk = 1-
Y may be the number of visits to a doctor, photon counts in optical imaging, tele-
phone calls within a specific time interval, etc. A flexible way to specify probabilities 
Pk is via the Poisson distribution, where probabilities are defined as 

P r (y = k) = ^e-xXk, k = 0,1, . . . , (7.101) 

parameterized by a positive λ. The Poisson distribution arises in many, mostly 
engineering applications, and the interested reader is referred to classical books 
such as Feller (1966) or Ross (1993). See also a book by Cameron and Trivedi 
(1998), which covers the Poisson regression in depth. A peculiar property of the 
Poisson distribution is that the expectation and the variance are the same and are 
equal to λ. Actually, one may view this property as a restriction because real count 
data often exhibit overdispersion. In most cases, one can expect that the variance 
is greater than the mean. We shall see that this is always true for clustered data. 

The Poisson distribution is closely related to the binomial distribution. Namely, 
the limit of the binomial probability, when the number of trials (n) goes to infinity 
and the probability (p) goes to zero keeping up = λ =const is given by (7.101); 
see Rice (1995, p. 41). One may say that the Poisson distribution has the same 
importance for count data as the normal (Gaussian) distribution has for continuous 
data. 

Poisson regression emerges when the mean is expressed as a linear combination 
of explanatory variables. Since parameter λ is positive it is convenient to express 
this parameter via an exponential function, E(yi) = λ2· = e^3**, where β is an 
m x 1 vector of regression parameters and xz- is an m x 1 vector of explanatory 
variables/covariates, i = l ,2,. . . ,n. In the framework of generalized linear models, 
we say that Poisson regression has a log link because In E(yi) = ß'x-i. Usually, we 
assume that the first component of x^ is 1, so that βλ is the intercept. For example, 
if yi denotes the number of doctor visits per year, xi2 may be gender, 2^3 age, and 
so on. Then e^1 is the average number of annual doctor visits adjusted for gender 
and age. 

To avoid degeneration, it is assumed that (7.1) holds. The log-likelihood function 
for the Poisson regression model, up to a constant term, takes the form 

n n 

m = Σ ( w ^ - eß'Xi) = P'V- Σ eß'Xi > (7·102) 
2 = 1 Z = l 

where vector r = Σ?=ι yi*i is fixed. It is easy to prove that function (7.102) is con-
cave since the negative matrix of the second derivatives (the Hessian), Σ7=ι ^ 3 ^ ^ Xi > 
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is positive definite. This implies that I has a unique maximum on i?m if the supre-
mum is attained, similar to the logistic regression of Section 7.1.4. The MLE is the 
solution to the score vector equation, r— X^ = 1 x^e^ Xi = 0 , or in an equivalent and 
compact form, 

X ' ( y - e ) = 0, (7.103) 

where y =(yi,.. . , Vn)'-, e = exp(X/3), and X is an n x m matrix with the zth row x^. 
The FS algorithm for (7.102) takes the form 

0s+i = ßs + fex*x^,sXi) ( r - Σ Χ ^ Χ Ί > (7·104) 

where s is the iteration index. A good starting point can be obtained by linear 
regression of l n ^ on {x^}, excluding zero observations. 

7.5.2 Clustered count data 

Now we turn our attention to clustered data with counts in a tabular/panel form, 
{yij,i = 1,..., iV, j = 1, ...,η^}. Here i indicates the ith cluster/subject and j indi-
cates the j t h observation within subject i. For example, y^· may count the annual 
number of doctor visits of person j in county i. 

If we assume that the coefficients at x^· do not change from cluster to cluster 
but intercepts do, we come to the subject (or cluster)-specific intercept Poisson 
regression model, 

P r ( ^ · = k\Ui) = 1 exp (k{Ui + /3'x^·) - e ^ ' x - ) . (7.105) 

Similarly to logistic regression, we make one of two assumptions on the intercepts: 
they are fixed or random. If the first component of x^· is 1, Ui is interpreted as the 
deviation of the subject-specific intercept from the population-averaged intercept. 
If the {ui} are random, we shall assume that they are iid, and therefore we need to 
specify their common distribution for completeness. 

A peculiar feature of the Poisson regression with random intercepts is that the 
ordinary Poisson regression (applied to the entire data set, ignoring clustering) yields 
consistent and asymptotically normally distributed estimates of slope coefficients. 
Indeed, if the first component of vector x^· is 1, we write ß'x-ij = βχ Λ-β^^, where 
hij is the vector of covariates. Then, if the {ui} have common distribution F, we 
find that the marginal mean differs from the conditional mean by a factor 

E(yij) = Eu^F[E(yij\u)} = (Eu„Feu)eß'^ = Ceß'^ = e ^ + ^ (7.1O6) 

where /3#1 = InC + ßx and C = Eu~Feu. This means that clustering has little 
effect on the slope coefficients for Poisson regression, unlike the logistic and pro-
bit regressions. The Poisson clustered model somewhat resembles the linear mixed 
model, where ordinary least squares also produces consistent but less efficient esti-
mates. Similarly, the ordinary Poisson regression does not yield efficient estimators 
of slopes unless the data are balanced. Again, we draw a parallel to the linear model 
where OLS is efficient for balanced data, Section 2.3. The aim of this section is to 
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discuss more efficient methods, including maximum likelihood and its approxima-
tions, which account for the intracluster correlation. Although the ordinary Poisson 
regression for clustered data leaves the slopes consistent, their variances will be at-
tenuated due to overdispersion. Providing the corrected variances for the slopes is 
perhaps the major purpose of the clustered Poisson regression. 

A unique property of the Poisson regression with random intercepts is that the 
covariance matrix of y^ can be derived in closed form. We shall employ this property 
to estimate the slopes by the GEE approach. 

7.5.3 Fixed intercepts 
When the number of clusters (N) is small and the number of observations per 
cluster (n*) is relatively large, say minr^ > iV, one may assume that the intercept 
di = ß1-\-v>i is fixed and unknown (i = 1,..., iV), as for logistic regression in Section 
7.2.2. The advantage of this assumption for the Poisson regression model is that 
intercepts can then be eliminated easily. 

The Poisson model with fixed intercepts is written as 

P r ( ^ · = k) = ^ exp (k(oi + ß'xij) - e ^ ' ^ ) , k = 0 ,1 ,2 , . . , (7.107) 

where it is assumed that x^· does not have the unit component because α̂  represents 
the intercept. Observations {y%j} are independent within and between clusters. The 
log-likelihood takes the form 

N N m 

l(ai,...,aN,ß) = ß'r+J2aiki-Y^eaiY2eß'XiJ > 
2=1 i=l j=l 

where ki = Y^Lxy%j and r = Σ ί = ι Z)j=iVij^ij- The estimating equation for the 
ith intercept is dl/dai = ki — eai Σ™=1 e? XiJ = 0, which yields the closed-form 
solution 

ru 
ai = In ki - In ^ eP'***. (7.108) 

i=i 
Letting e ·̂ = e@ XiJ for convenience of notation, the estimating equation for β with 
eliminated intercepts becomes 

N Tni x - e · · 

' - Σ Ä fc = °· (7·1 0 9) 
The Newton-Raphson algorithm leads to the iterations 

ft = ft 4- I V Σ^=1 XtjXjjgtj _ zljLl *ijeij z2jLl *ijeij 
P s + 1 Ps "Γ" I Z ^ I V ^ i „ fsrni o \2 

Z^j=1^3 \ 2-^j=1 ^ij ) 

- 1 

xir-E%^V (7-110) 



390 7. Generalized Linear Mixed Models 

Following the line of proof of Lemma 34, one can show that the inverse matrix is 
positive definite. Iterations (7.110) are an economical version of maximum likelihood 
because intercepts are eliminated. Although standard Poisson regression software 
might be applied to maximize Z, the update formula (7.110) reduces the original (ra+ 
TV)-dimensional optimization problem to an m-dimensional problem. The inverse 
matrix at the final iteration is the covariance matrix of / 3 ^ L · 

7.5.4 Conditional Poisson regression 

In this section we assume, for simplicity, that the intercepts {a*} are fixed and 
vary across clusters, as in the previous section. Conditional Poisson regression is a 
straightforward generalization of the conditional logistic regression of Section 7.2.3. 
We shall show that similar to logistic regression, conditional Poisson likelihood 
eliminates intercepts. The cluster index i will be omitted for awhile to shorten the 
notation. 

Our plan is to derive the conditional likelihood of independent yi,...,2/n condi-
tioning on Y^=1Vj = fc, a sufficient statistic for a. Let zi, Z2,..., zn be a sequence 
of nonnegative integers such that Σ ^ = 1

 zj = k is fixed. Then, in a way similar to 
(7.60), we obtain 

, N ΤΓ-Γ 1 -e
a+ß XJ ( a + 0 xj)zj 

Pr(2/i =zi,...,yn = Zn) = [[—. e e 
3=1 Zj' 

j=iZjl 

The probability to get Σ ? = 1 Vj = k is 

3=1 3=1 

^ ■ € Z J e 1 1 Zj\
e ^ z € Z - 1 1 Zj\

e 

3=1 3=1 

where z = (z±, ...,zn) and ZjJ denotes the set of all vectors of z with the sum of 
nonnegative integer elements k = J2Vj- Restoring the cluster index i, we arrive at 
the joint conditional log-likelihood function, up to a constant term, 

lc(ß) = ß'r - f > ( Σ e^^^^-inpW ] , ( 7 . m ) 
i=l \ , € z î* 

where p(z) = X)™l1max(l,2j). Index sets {Z^} and vectors {Y^L^ijZj} do not 
change during the maximization procedure and can be computed beforehand. As 
follows from Andersen's theory, the conditional ML estimator is consistent and nor-
mally distributed for large N and bounded rti under mild conditions. The gradient 
and the Hessian matrix for (7.111) are easy to obtain, similar to Section 7.2.3. 
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Prom Lemma 34, it follows that lc is a concave function (the negative Hessian ma-
trix is nonnegative definite). The inverse negative Hessian is an estimator for the 
covariance matrix of the ß estimates. 

Clearly, conditional Poisson regression may be used with random intercepts as 
well. Remarkably, we are not required to specify the distribution. 

7.5.5 Negative binomial regression 

Typically, the marginal mean of the dependent variable in nonlinear mixed mod-
els involves an integral. However, in some special cases, like the probit model with 
normally distributed intercepts, one can obtain a marginal mean of yij without inte-
gration. Then, pretending that the {y%j} are independent, the maximum likelihood 
with the marginal mean still yields consistent estimates when N goes to infinity and 
the {rii} are bounded because the estimating equation is unbiased. The Poisson re-
gression model with intercepts distributed as log-Gamma also yields the marginal 
distribution of the {yij} in closed form. This leads to a negative-binomial (NB) 
regression. Below we apply the NB regression to clustered count data taking into 
account overdispersion but assuming that the observations within each cluster are 
independent. 

The gamma distribution is defined by two positive parameters, a and 0, and has 
the density f(u\ α, Θ) = uOL~1e~ule/(θαΓ(α)) for u > 0. For a positive integer a, we 
have Γ(α) = (a — 1)! The following fact is central to negative binomial regression: 
if Y takes discrete values with the conditional Poisson distribution Pr(Y = k\X) = 
e~xX /k\, where λ > 0 has a gamma distribution, the marginal distribution of Y 
is negative binomial. Indeed, the marginal probability, Pr(Y = fc), is obtained by 
integrating out λ : 

ί°° ί°° 1 1 

1 r e - A ( i + i / . ) A f c + Q - i d A = r ( a + fc) Θ 
(a)k\J0 T(a)k\ (l + i 

(7.112) 

6k 

eaT(a)k\ J0 * " " ' v ~ r(a)fc! (l + 0)fe+* 

k + a-V 
k ) Vl + 0/ Vl + 0 

where the binomial coefficient is computed as 

fk + a - 1 \ _ (fc + a - l)(fc + a - 2)...a (k + a - 1)! 
k ) k\ fc!(a-l)! ' 

The distribution at the right-hand side of (7.112) is called a negative binomial. 
Symbolically, 

Poisson + gamma = negative binomial. 

For the negative binomial distribution, E(Y) = αθ and var(Y) = αθ(1 + Θ). For 
Poisson distribution the mean and variance are equal, but for the NB distribution 
the variance is greater than the mean by αθ2. Also, the Poisson distribution is 
specified by one parameter, but the NB distribution is specified by two parameters. 
After some calculus one can show that the Poisson distribution is a special case of 
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the NB distribution when a —> oo and Θ —► 0 such that the product, αθ = λ, is kept 
constant. The parameter a = l / a is associated with the "extra-Poisson" variation 
because var(F) = λ + αλ2. This interpretation justifies a (λ, a)-parameterization of 
the NB distribution as 

P r (y = Λ;λ,α) 
fc + l / a - l \ / αΛ 

fc / V 1 + α λ 

1 
1 + αλ 

l / a 

(7.113) 

Then E(Y) = X and var(y) = λ + αλ2, and a = 0 leads to the Poisson distribution. 
This parameterization is convenient for specifying the NB regression and for testing 
overdispersion as HQ : a = 0 (Lawless, 1987). 

Now we apply the NB distribution to clustered data assuming that exp(i^) in 
model (7.105) has a gamma distribution. Then we say that Ui has the log-gamma 
distribution. Starting from this section, we assume that the first component of x^· 
is 1, so that the first component of β represents the population-averaged intercept. 
Since for Poisson regression λ^· = e^*^', applying (7.113) and assuming that the 
{yij} are all independent, we obtain the log-likelihood function, up to a constant 
term, 

N m 

1(β,α)=β'ν+ΣΣ 
i=l j=l 

'2/Ü-1 

Σ ln(l + ak) - ( ^ + l /a) ln(l + ae?'***) 
k=0 

(7.114) 

When a = 0, we set the second term in brackets to be e@ ^ because, by L'Hospital's 
rule, 

limfoy + l /a) ln(l + aB) = lim l n ( 1 + ^ 
a->0 

= B, 

where B = e@ *-ij. When y^ 
derivatives of I are 

a—>o a 

0, we let the first term of / be zero. The first 

ÊL 
dß 

da 

N ni 
(ακ,· + 1)β* / χ*. N ru 

2 = 1 j=l i=l j=l 

N m 

- ΣΣ V k + a2 lnf 1 + oe"'*»' ) - ^ii±lMeß'^i 
2^ l + ak+a [ + a e ' 1 + aeP'*« 

. k=0 

The estimates turn the first derivatives to zero. Following Lawless (1987), the in-
formation matrix blocks are 

= Σϊ 
ι>3 

pß'xij 

X-i 7 2*·*' 
+ ae^'x« υ ij 

Ia = a-4£ 
1,3 

^ ( l / a + / c ) - 2 P r ( F ^ > A : ) -
./c=0 

aeß *ij 

l / a + e£'x*: 

Taking the derivative of dl/dß with respect to a we see that the cross-derivative 
is zero, Xßa = 0. Remember that the same situation happens in the framework of 
the linear mixed effects model and nonlinear mixed model with a fixed matrix of 
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random effects, Section 6.1. There are two consequences of the fact that the expected 
cross-derivative is zero, numerical and statistical: (a) function I can be maximized 
separately over ß and a, and (b) any consistent estimator of a in the score equation 
dl/dß = 0 leads to an efficient (asymptotically equivalent to the ML) estimation. 
However, the reader should be aware that the latter statement is true when the {yij} 
are independent and follow the NB distribution. For our original clustered Poisson 
data, one loses the efficiency because the intracluster correlation is not taken into 
account. 

Several comments on numerical issues of I maximization: The separate application 
of the FS for ß and a is straightforward. Computation of Pr(Yij > k) may be time 
expensive, so we seek an approximation by the normal distribution. Using the fact 
that E(Xij) = eß'^ and var(F^) = ββ'*** + ae2ß'^, one obtains Pr(l^· > k) ~ 
§[{eß'*ij - k)/Veß,x^ +αβ2£ / χ«] . 

As was mentioned above, any consistent estimate of a would yield an efficient 
estimate of β for the NB regression. Advantages to using a consistent estimator of 
a, rather than the MLE, are that it is easier to compute and it may be robust to 
distribution misspecification. Specifically, Breslow (1984) suggested using a method 
of moments estimator for a, similar to our variance least squares of Section 3.12. 
His rather heuristic reasoning is as follows. Let us consider a linear model with 
heteroscedastic errors, yj = ß'x.j + Sj, where Sj ~ Λ/*(0,τ^) and r | are known. Let 
β be the m x 1 weighted least squares estimator, then the ^expected value of the 
weighted sum of squares ]C?=i(2/i — Xj)2/^] is n — ra, where λ^ = /3'xj. Pretending 

that the Poisson model is linear and that r\ — Xj(l + a\j) and λ^ = eß Xj' are 
known, he finds a from the equation Y™=1(yj — Aj)2 /r | = n — m. Adapting this 
method to the clustered Poisson regression, we solve the system 

^ xy = 0, (7.115) ΣΣ? . Λ . Λ ^ + aeß,Xi3 
2 = 1 J = l 

ΣΣ > / / Λ = E^-- (7.116) 

for ß and a. A good start is from the standard Poisson regression on the {yij}. First, 
we solve the second equation for a using Newton's algorithm. If the left-hand side of 
the second equation at a = 0 is less than the right-hand side, we let a = 0 meaning 
that no overdispersion is detected. After a is determined, we solve the first equation 
by the FS algorithm. As we mentioned above, this procedure generates estimates 
for ß and a that are consistent for a large number of clusters and a finite number 
of observations per cluster. Also, one may iterate between ß and a computation. 

Exact GEE: accounting for correlation 

The previous estimating equation (7.115) leads to consistent estimates because the 
estimating equation is unbiased, but we may gain some efficiency if the intraclus-
ter correlation were taken into account as we did for the probit model in Section 
7.4.4. Thus, in this subsection we generalize (7.115) by applying the generalized es-
timating equations approach to clustered count data. For this we need to have the 
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covariance matrix of yi = (yn, . . . , ? / ^ ) ' . Fortunately, the log-Gamma distribution 
makes computation of the covariance matrix easy. Using the previous notation, one 
can show that 

V i = E< + ae<ei, (7.117) 

where ê  = eX i^ = E(yi) is an rii x 1 vector and E^ =diag(e^) is an ni x n* matrix. 
The estimating equation for β is 

N 

Y^Xf
iEiV-1(yi-ei) = 0. (7.118) 

We call this approach exact GEE because the exact covariance matrix is used. 
The term exact is used to distinguish this from the traditional GEE where an 
approximate covariance matrix, based on the working correlation matrix, is used 
(see Section 7.9 for details). 

Following the line of the Breslow argumentation, similar to (7.116), we come to 
the estimating equation for a: 

Σ*&ϊ1η = Σ,η*-ηι> (7 ·1 1 9) 
where r* = yi — ê  is an Π{ χ 1 residual vector. Holding a, we solve the first equation 
iteratively, 

ß.+i =ßs+(j2 XjEiVr^Xi) _ 1 Σ XÎEi Vf 1 , , . (7.120) 

When ß is held fixed constant, equation (7.119) may be solved by Newton's algo-
rithm with the derivative computed as d(rf

iy~1ri)/da — — ( r^V" 1 ^) . 
Another option is to estimate parameter a by variance least squares (VLS), Sec-

tions 3.12 and 6.1.4. When ß is held, we find a, which minimizes ]£] i=1 t r ( r ^ — 
E—ae^e^)2, with the solution 

Έζ=ΐ\\^\\ 

One can alternate between solutions to (7.118) and (7.121) until convergence. The 
covariance matrix of the GEE estimate is given by 

c o v ( 3 G ^ ) = f f ^ X ^ E i V r 1 E i X i j . (7.122) 

More discussion is given in Section 7.5.7, where exactly the same GEE approach is 
applied to a general, unspecified distribution. 

7.5.6 Normally distributed intercepts 

In this subsection we assume that random intercepts are iid and normally distrib-
uted, ui rsj Λ/"(0,σ2). The log-likelihood function takes generic form (7.64), where 
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following the notation of Section 7.3.1 for the Poisson model, 

rii 

hi(ß\u) = hu - η2/(2σ2) ~euJ^ eß'*ij (7 ·1 2 3) 

and ki = Y^LiVij- The score equations and derivatives have the same form as 
(7.66), where for Poisson regression, 

ni ni 

J = l j=l 

and Ji = f^° ehi^'^+udu. We notice that the integrals are similar to logistic 
regression, except that u is presented in the exponential function. The MLE may 
be found by either method discussed in Section 7.3.1. The EFS algorithm is easier 
to implement because it requires only first derivatives. 

To evaluate the integrals, one needs to replace an improper integral with a proper 
one finding the lower and upper limits such that the integrals differ by a small 
predefined number e > 0. We can again use Lemma 35 for this purpose. For example, 
to compute the limits of integration for J^, we use the inequalities eu > 1 + u + u2 /2 
for u > 0 and eu > 1 + u for u < 0. To compute J<^>

oQu2ehi^'^J('udu^ we use the 
inequality In \u\ < \u\ — 1 for the positive and negative parts. 

PQL 

The penalized quasi-likelihood approach, (7.84), can readily be applied to Pois-
son regression with normally distributed intercepts, resulting in the function to be 
maximized, assuming that σ2 is fixed, 

N ( ru \ N 
IpQLißvu ...,ti*) = / 3 ; r + £ Uiki-eUiY^e^- - ^ £ > ? . (7.125) 

z=i \ j=i J σ i=i 

This function may be viewed as the log-likelihood function with the fixed subject-
specific intercepts penalized by the term Σν%/(2σ2). To find the maximum over 
β and Ui, we can use Newton's algorithm; see Section 7.4.1. Specifically, let β be 
held. Letting Bi = Σ™=1 e^ XiJ, we want to solve the equation Ψ(ι^) = fe, where 
^(ui) = BieUi +Ui/a2. This equation has a unique solution u*i for each i = 1,..., N. 
Then the Newton iterations yield the update formula 

_ Bjeu^ + uSij/a
2 - kj _ n i 0 

us+hi - ua,i B^Usi + 1/σ2 , s - u, i, z,..., 

starting from ifc0,i = (h — Bi)(Bi + l / σ 2 ) - 1 . One can prove that these iterations 
converge monotonically to the solution, see Section 7.2.2. When the {ui} are held, 
the maximization over β can be accomplished by the standard FS algorithm treating 
u*i as an offset parameter. The Laplace approximation for the variance yields update 
formula (7.94). Since in the previous notation, Hi = Bieu*% this update formula 
simplifies to 

1 N ( 1 \ 
5*+i = TV Σ K + ~ - 2 4 p u . · (7.126) 
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As in the case of logistic regression, we start with σο = oo. Then, alternating 
iterations involve maximization of IPQL and update formula (7.126). 

Exact GEE: accounting for correlation 

The beauty of the Poisson model with a normally distributed random intercept is 
that the marginal mean is easy to obtain using the fact that Eeu+& = e^+<J /2 , 
where u ~ JV(0, σ2). This means that if the first component of x^· is 1, only the 
intercept term is affected, namely, it increases by σ2 /2. Precisely for model (7.105) 
with normally distributed Ui, using (7.96) and (7.97), we obtain E(yi) = e$ and 

2 2 

Vi = Ei + a e ^ , where a = ea (ea — 1). Therefore, we come to the same first 
moments for intercepts with a log-Gamma distribution. In the next section, we 
develop the exact GEE approach for a general, unspecified intercept distribution. 

7.5.7 Exact GEE for any distribution 

Two distributions for the intercepts were considered above—the log-Gamma and 
normal distributions—and it was found that they lead to the same estimating equa-
tions approach. In this section we summarize the findings merely assuming that 
Ui ~ F. Prom derivation (7.106) it follows that the marginal link is again the log-
link with a modified population-averaged intercept. Furthermore, applying formula 
(7.97), we obtain the marginal covariance matrix, 

Vi = cov(y;) = E< + v a r ( e n ) e ^ = E< + a e ^ , (7.127) 

where ê  = exp(X*/3) and a is the overdispersion parameter. Thus, we infer that 
regardless of the distribution of the intercept, the exact covariance matrix of the 
Poisson clustered data {y^} is given by (7.127). The exact GEE for β is the same, 
(7.118). We call it exact because the covariance matrix is exact. 

Parameter a reflects the presence of the random intercept and there is a one-to-
one relationship between the variance of the F distribution and a. For example, if 
F = λί, we have a = l—e~a . If a = 0 all intercepts are the same (no random effect); 
if a > 0 the intercepts vary from cluster to cluster. The overdispersion parameter, 
a may be estimated either from equation (7.119) or by VLS (7.121). Conversely, 
given a, regression estimates are obtained from iterations (7.120). 

Assuming that a is known, one can estimate the covariance matrix of ßcEE from 

the sandwich formula, which produces the asymptotic covariance matrix (7.122). 
Applying the dimension-reduction formula and noticing that Έ^1θΐ= 1^, E ^ = e^, 

we simplify: 
v - i _ E - i 5 M ' 

where 1{ is the n ^ x l vector of Is. Hence, the asymptotic covariance matrix can be 
rewritten as 

C°V0GEE) Σ^ΕΑ-ΪΤ^^)^)'). 
-1 

(7.128) 

Below we consider the special case of balanced data, ηι = η and X^ = X. 
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7.5.8 Exact GEE for balanced count data 

We know from Subsections 2.4.1 and 2.4.2 that in a linear model with random 
intercepts and balanced data, neither the slopes nor their variances are affected by 
the random effect. The aim of this section is to prove that the same holds for the 
Poisson model with balanced count data if exact GEE is used. As before, we say 
that the data are balanced if ni = n and X^ = X. 

First, we prove that the covariance matrix of slopes does not depend on a, the 
overdispersion parameter. To prove this, it suffices to demonstrate that the (m—l) x 
(m — 1) submatrix of matrix (7.128) does not depend on a. Following the notation 
of Section 2.4.1, we represent X =[1,U]. For balanced data we have 

™v(ßGEE) = — x'EX-ïrbï(x'e)(x'e)' 1 + ae 

Let the matrix to the inverse be partitioned as 

X ' E X - — ^ — (X'e)(X'e) ' = l + a e ' l v A J 

The matrix blocks can be found after some algebra: 

m n m'21 

m 2 i M22 

[^'^•"i-ïrbï f u' 
l ' e 

'e 
l ' e 
U'e 

l 'e 
1+ae'l 

U'e 
1+ae'l 

e'U 
1+ae'l 

U' (E- ï^ee ' ) U J ' 

Thus, we have 

! ' e U 'e __. __. / a Λ ___ 
m n = T——77, m2i = M 2 2 = U ; E - — - — - e e ' U. 

l + ae ' l l + ae ' l \ 1 + ae ' l ) 

Using the well known formula, we find that the (m — 1) x (m — 1) inverted matrix 
is (M22 - m 2 i m 2 1 / m n ) ~ 1 . But 

M 2 2 m 2 im 2 1 = U / ( E - 1 ^ . e e ; ) 
m n \ 1 + ae ' l / 

ee; U-
e'l(l + ae'l) 

U'ee 'U 

= U ' E U — - U ' e e ' U . 
e ' l 

This means that an (m — l) x (ra — 1) matrix of coy(ßGEE), the covariance matrix 
of slopes, does not depend on a. 

Second, we prove that the exact GEE estimates of slopes also do not depend 
on the overdispersion parameter. Precisely, we shall show that estimating equation 
(7.118) for balanced data collapses to standard Poisson regression. For balanced 
data, (7.118) simplifies to X ' E V _ 1 ( y - e) = 0, where y = Σ*=1 y»/JV. Further, we 
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have 

X 'EV - 1 X'E E 

X' 

1 + ae ' l* 
11 ' = X7 - a - X ' E l l ' 

1 + ae ' l 

1 + ae ' l 

1 _ °(e/1) 1 V 
1 1+ae'l x 

Μ-Μ-γ^Μ** 

υ' 1+ae' 
-—el'l 
aG/1 J J 

u ; 

1 + ae' 

1+ae'l x 

1+ae' 
£ e l ; 

ae'l*3"1-

so the estimating equations simplify to l ' (y — e) =0 and U'(y — e) = 0, or com-
bining, 

X ' ( y - e ) = 0. (7.129) 

But this is the score equation of the standard Poisson regression (7.103) applied to 
averaged data. 

In summary, neither the slopes nor their variances depend on the overdispersion 
parameter if count data are balanced. The optimal method of estimation is the 
standard Poisson regression. 

7.5.9 Heckman method for the Poisson model 

Since standard Poisson regression gives consistent estimates of slopes and the in-
tercept augmented by σ2 /2, we can estimate Y^Li eiB Xij a s e~a ^ 2 ^ where Bi = 

Σ ? 1 ι e^o*^. Then, plugging this into the function (7.123), the original multivariate 
maximization problem will be reduced to a univariate one as we did for the probit 
model of Section 7.4.3. This reduction leads to the profile log-likelihood function, 

Ζ(σ
2) = _ ! 1η2πσ2 - \σ2 + ^ 1 η / , ( σ 2 ) , 

where k = J ^ i h and Ι^σ2) = J^ eh^u'^du with tn(u\ σ2) = k{u - u2/(2a2) -

eu-a /2ßim One can find the maximum of this function by standard univariate op-
timization methods, as mentioned in Section 7.4.3. 

Here we suggest a fixed-point approach. Taking the derivative of I with respect 
to σ2, the score equation becomes 

! _ _ * + J _ v ^ + 1P-2/2y-MiËi -n 
1σ2 2

 + 2 σ 4 ^ J, + 2 β 2^ L - U ' 2Νσ2 

where 
/

OO /»OO 

u2ehi{u'"2)du, Mi= ehi{u-'c)+udu. 
OO J — OO 

Solving the equation above for σ2, we come to the recursive formula, 

rr2 — 
σΗ-ι -

1 - ν ΐ - 4 Α ( σ 2 ) ( 7 ( σ 2 ) 

2Α(σ2) 

where functions A and C axe defined as follows: 

(7.130) 
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FIGURE 7.8. Fixed-point iterations (7.130) for Poisson regression with random intercepts 
using the Heckman method. Initial (starting) values for σ2 are shown as empty squares. If 
the initial value is to the left of the fixed-point, iterations produce an increasing sequence; 
otherwise, the sequence is decreasing. 

The right-hand side of (7.130) as a function of σ2 takes zero at zero and approaches a 
constant when σ2 —> oo. Indeed, dividing, we see that Κι{σ2) —> 0 and U(a2) -» eBi 

when σ2 —> 0. When σ2 —» oo, the term u/(2a2) vanishes and therefore we have 

Ki(a
2) _JZo^kiU-eUBidu 

Ä o Ii(a2) J^ekiu-eoBifa ' 

and analogously for Mi/Ii. Further, applying the standard limit techniques we find 
that the right-hand side of (7.130) approaches a constant when σ2 —> oo. Impor-
tantly, since the limit at infinity exists, a large starting value, σ%, may be used to 
start the fixed-point iterations (it is a bad idea to start with σ§ = 0 because 0 is 
the fixed point). A typical function F = F(a2), as the right-hand side of (7.130), 
is shown in Figure 7.8. The pseudo-MLE for σ2 is derived from the intersection of 
F(a2) with the 45° line. Initial values either to the left or to the right of the solution 
yield fixed-point convergence. 

After σ is determined, we can estimate the true intercept as β0—σ /2 and the co-
variance matrix cov(/3) — ( Σ X ^ V ~ 1 X i ) ~ 1 , where V* =diag(e^) +ea (ea — 1 ) β ^ . 
Some additional details on the Fixed-Point algorithm are provided in Appendix 
13.3.4. 

7.5.10 Tests for overdispersion 

It is straightforward to generalize the homogeneity tests developed in Section 7.3.7 to 
the Poisson regression with random intercepts. The F-test has the same form, (7.88). 
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An advantage of the Poisson model is that since the subject-specific intercepts admit 
a closed-form solution, (7.108), after some simplifications we get 

/min = 3 W Σ I ln ki - ln Σ ^*** - l I **' 

where ß is the limiting point of iterations (7.110). 
Now we obtain the score test for HQ : σ2 = 0 in the Poisson model with nor-

mally distributed intercepts. Following the line of argumentation of Section 7.3.7, 
we obtain l\ = u^iVij ~ eaue^ X<J) and I" = —u2eaue^ x<*, so that the derivative 
at σ = 0 is proportional to the statistic 

N ( ru \ N m 

where 3 is the standard MLE. Applying Lemma 36, we find that the variance of 
statistic S is 

N 

« - Σ 
2 = 1 

Finally, we reject overdispersion if 5 > Zi-ay/v. 

7.5.11 Implementation in R 

Most algorithms discussed in this section are implemented as R functions. Poisson 
regression with random intercepts can be estimated by the PQL method using 
the previously discussed function glmmPQL with the option f amily=poisson. The 
following R functions can be downloaded from "c:\\MixedModels\\Chapter07\\M: 
poissf ix, poissGEEl, poissGEE, poissHeck, and poissMLE. The calls to these 
functions are similar to the logistic and probit regression functions discussed earlier. 
The reader is welcome to modify and improve these functions. 

Prob lems for Section 7.5 

1. Write an R function for estimation of the Poisson regression using iterations 
(7.104) with an offset, InE(yi) = fc+ /3'xi, where fa is given offset. Prove that the 
Hessian of the log-likelihood is a positive definite matrix if the {x^} have at least 
m < n linearly independent vectors. 

2*. Write an R function to implement the conditional Poisson regression model. 
Modify the l og r i c function for this purpose. Test the function via simulations. 
Devise a method to estimate the variance of the random intercepts. 

3. Demonstrate by simulations that the slope estimates in the Poisson model with 
random intercepts converge to the standard Poisson regression if the data become 
more balanced. Use var(n^) to characterize the balance. 

4*. Conduct a simulation study for comparison of the methods for Poisson regres-
sion with random intercepts. What method would you recommend based on these 
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simulations? Take into account the number of simulations when the algorithm did 
not converge. 

5*. Evaluate the accuracy of the overdispersion test via simulations. Compute 
and plot the power function. 

6*. The file psdat . r contains data on 9866 colon cancer patients; use source ( " c : 
\ \MixedModels\ \Chapter07\\psdat .r") . This dataframe has eight variables: hrr , 
v i s i t i n , v i s i t o u t , v i s i t t o t , black, agelO, female, daysfu, where v i s i t t o t 
is the number of visits to see a doctor after surgery and h r r codes the HRR hospital 
area. It is possible that hospital regions have geographic differences that lead to a 
Poisson model with a random intercept. The call 

glmmPQL(fixed=visittot' , 'black+female+I(agelO-8)+I((agelO-8)Ä2), 
random=~ 1 |hr r , data=psdat , f amily=poisson) 

estimates the number of visits as a function of race, gender, and age using the 
PQL approach (this function requires l i b r a r y (MASS)). Plot the estimates of ran-
dom intercepts. Use the test for overdispersion to conclude that the geographic 
differences are statistically significant. 

7.6 Random intercept model: overview 

The random intercept model is the simplest mixed model to use to address cluster 
heterogeneity and intracluster correlation. When the number of observations per 
cluster (rii) is small (sparse data), conditional likelihood offers an efficient way 
to avoid integration in logistic or Poisson regression. This approach may be used 
when intercepts are fixed or random with little efficiency loss. An advantage of 
the conditional likelihood approach is that it does not require specification of the 
intercept distribution. Unfortunately, the conditional likelihood does not work for 
the probit model. Also, it is prohibitive when ni is large; say, rii > 20. 

If ni is relatively large, say rii > N, the model with fixed subject-specific intercepts 
may be adequate. For the Poisson model, the intercepts may be eliminated with a 
closed-form formula. 

The random intercept model takes a somewhat intermediate position and should 
be used when N and {rii} are relatively large. As follows from standard theory, 
maximum likelihood produces asymptotically unbiased (consistent) and efficient 
estimates when the number of clusters goes to infinity and the number of observa-
tions per cluster is bounded. Although the integrals involved are one-dimensional, 
the integration problem should not be underestimated, especially in the presence of 
outliers. 

There are a variety of methods for approximate estimation of random effects 
models, as alternatives to ML. For example, if the marginal expectation were known, 
one could obtain consistent estimates simply by assuming that observations are 
independent. However, we gain efficiency if the within-cluster correlation structure 
is taken into account. There is no closed-form solution for the marginal expectation 
in logistic regression, but normally distributed intercepts do not change the link 
of probit or Poisson regression. These facts are the basis for the exact generalized 
estimating equations approach which avoids integration. Moreover, if the count 
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data are balanced—the {y%j} have tabular form with no missing values—standard 
Poisson regression is efficient for slope coefficients. 

The variance of the random intercept, σ2, has different effects in different mod-
els: For the probit model, σ2 attenuates all regression coefficients. For the Poisson 
model, it affects only the population-averaged intercept. Generally, introduction of 
the random effect has a different impact for different members of the generalized 
linear models family. In the model with fixed intercepts, they are treated as nuisance 
parameters. When intercepts are random, we can generalize the approach for the 
linear mixed effects model of Section 3.7 based on minimization (3.54). Since the 
counterpart of the first term is — 2Z, we estimate random effects {ui} that maximize 
function (7.84), assuming that σ2 is known. Thus, the penalized quasi-likelihood 
function is a natural extension of the LME model to estimate random effect. Alter-
natively, one can use the original Laplace approximation log-likelihood (7.78). The 
difference between (7.78) and the PQL approach is that the last term is dropped. 
Principally, the same methods for {ui} estimation can be used for probit and Poisson 
models. 

7.7 Mixed models with multiple random effects 

The model with random intercepts can easily be generalized to a mixed model 
with multiple linear random effects. For example, the binary model with multiple 
linear random effects takes the form Pr(y^· = l|bi) = μ(/3'χί>7· + tyz^·), where 
the {zij} are k x 1 fixed vectors and b^ is the fc-dimensional random effect. In 
this section we assume that the random effects are iid normally distributed, b^ ~ 
Λ/"(0,Ό#), where the covariance matrix D* is subject to estimation along with the 
beta coefficients. In this book the subscript * indicates that the covariance matrix 
is not scaled, D*=a 2 D, where D is the scaled covariance matrix, following the 
line of our previous notation. The advantage of the normally distributed random 
effects is that b^z^· is also normally distributed as Λ/"(0,ζ^·ϋ*ζ^·). The maximum 
likelihood leads to a fc-dimensional integral. Although a mixed model rarely has a 
large number of random effects (typically, k = 2 or 3), multidimensionality may 
substantially increase computation time, in addition to being a generally difficult 
problem of numerical quadrature for an improper integral; we refer the reader to 
the discussion at the end of Section 7.3.1. On the other hand, in image analysis we 
face estimation of GLMM with 255 random effects, Section 12.6. 

Four types of algorithms and methods for the generalized linear mixed model 
(GLMM) are discussed: (a) maximum likelihood with numerical quadrature, (b) 
penalized quasi-likelihood (PQL), (c) specific methods in conjunction with Laplace 
approximation or the GEE approach, and (d) Monte Carlo methods for integral 
or log-likelihood approximation. We pay particular attention to special methods 
because they use specific properties of the link function, as in the case of probit or 
Poisson regression. We present a small simulation study to investigate the numerical 
and statistical properties of the algorithms discussed. 
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7.7.1 Multivariate Laplace approximation 

To avoid integration, we approximate the multidimensional integral at the maximum 
point of the integrand, as in the one-dimensional case of Section 7.1.2. Omitting 
trivial algebra, we obtain a multivariate version of the Laplace approximation, 

I - 1 /2 

dx2 (7.131) 

The right-hand side involves computation of function h = /ι(χ) and its Hessian 
matrix (determinant) at the maximum point, x = xmax. Since the Hessian is eval-
uated at the maximum, it is at least nonnegative definite. Moreover, it is assumed 
that it is positive definite for the right-hand-side expression to exist. An implicit 
assumption is that function /i(x) is unimodal; it has one local minimum. Otherwise, 
approximation (7.131) may be imprecise. 

We shall use a multivariate version of (7.31), 

fRk x x ' e ^ d x 
JRk eMx)dx 

- 1 

| . (7.132) 

This formula will be used to update the covariance matrix of random effects when 
the likelihood is approximated based on (7.131). 

7.7.2 Logistic regression 

We consider three methods for parameter estimation in logistic regression with nor-
mally distributed random effects. Maximum likelihood requires fc-dimensional inte-
gration. If the integration is exact, the estimates are consistent and asymptotically 
unbiased when the number of clusters (N) increases to infinity, even if the number 
of observations per cluster is bounded. The other two methods avoid integration 
but are approximations to the likelihood. Therefore, one may expect a systematic 
bias, especially when the variances of the random effects are large. Penalized quasi-
likelihood is a straightforward generalization of the random intercept. Two-probit 
approximation uses the facts that (a) the logit probability function may be uni-
formly approximated by a linear combination of probits with the absolute error 
0.000526, and (b) the marginal mean of a probit with normally distributed random 
effects is again a probit. 

Maximum likelihood 

Estimation by maximum likelihood follows the line of logistic regression with ran-
dom intercepts, Section 7.3.1. With multivariate random effects, it is more conve-
nient to use the precision matrix parameterization. Recall that we used this para-
meterization for a linear mixed effects model in Section 2.2.4. 

We want to express the log-likelihood function in terms of the precision matrix, 
D_ = D " 1 . The log-likelihood function takes the form 

Nk N N Γ 
1(β,Ό_) = -ί^1η(2π) + £ ln |D_ | + ß'*+ Σ1η / β*<*»>Αι, (7.133) 

1 Ζ ;=ι JRk 
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where 
rii 

hi(ß; u) = k^u-0.5u'D_u- ] T l n ( l + e
ß'x^+u'z^) 

and kj = Σ ? ί ι VijZij is a fc x 1 vector. The first-order derivatives are: 

N -r „ , , / N 

W « - — -v — Σ £ mz'ki^-^l· (7·134) 

where 

Ia = [ e ^ u W , li2 = [ uu'eÄ<<*u>du, 
JRk JRk 

- L 1*3 
lR* 

* e / 3 ' x i 3 . + u ^ ^ 

Z—• ^ 1 _|_ cß'Xij+ll'Zij 

The MLE for /3 and D_ is the solution to the score equations, dl/dß = 0 and 
dl/ΘΌ- = 0. Now the reader appreciates the precision matrix parameterization 
because the derivative dl/ΘΌ- is easy to compute. The score equations may be 
solved iteratively by the EFS algorithm. Alternatively, one can apply the Fixed-
Point algorithm for the precision matrix, D_ = N Q ^ I ^ i " ^ 1 ) - 1 . An advantage of 
the latter algorithm is that matrix D_ is always positive definite. The ML requires 
evaluation of 1 + m + k(k + l ) /2 fc-dimensional integrals at each iteration. 

Laplace approximation and penalized quasi-likelihood 

To avoid integration, one can apply the Laplace approximation (7.131) and treat 
the new function as a new likelihood function. Thus, assuming that ß and D_ are 
held, we find N estimates of the random effects as the maximizers of the individual 
penalized log-likelihood functions 

i<(/3, u j - -u'iD-Ui =» max, (7.135) 

where the individual log-likelihood function is given by 

Σ / ^ + ^ ί ί ^ - ^ 1 
In £7 —; h > In 37 — - , — 

Vij=l Vij=0 

= r ^ + u ^ - ^ l n ( l + e ^ x ^ + u ^ ) . (7-136) 

ri = Σ ? ΐ ι X-ijVij a n ( l k* = Σ ? ΐ ι zijVij a r e fixed m x 1 and k x 1 vectors. Let the 
solution to (7.135) be u*i, i = l,...,iV. Then, applying the multivariate Laplace 



7.7 Mixed models with multiple random effects 405 

approximation, we obtain 

N 

lLA{ß,T>-) = r'ß-Y, 
i=l 

53ln(l + ββ'χ«+<'Ζίη + 0.5<D_u* 

+τ1ηΙ°-Ι-οΣ1η 
i = l 7 = 1 V ' 

(7.137) 

where r = ^ \ = 1 r^. Clearly, this is an obvious generalization of the univariate case 
(7.78). We make several comments on how to maximize this function over β and 
D _ . Let us start with D_ , assuming that β is fixed. Denoting 

7 = 1 v ' 

(7.138) 

we come to a minimization of ^ ( u ^ D - U ^ + In |D_ + G*|) — Nln |D_ | with the 
estimating equation 

D I 1 - AT"1 ̂ ( D _ + Gi)-1 = U, (7.139) 

where JJ=N~1 Σ u*iu*i- Several algorithms can be suggested to solve matrix equa-
tion (7.139). First, we can solve it using the FP iterations in conjunction with 
(7.132), which yields the recursive relation 

D_ = 
N 

υ + ̂ Σ^+Η*)"1 
i=l 

- 1 

(7.140) 

Second, we can solve (7.139) by the Newton-Raphson algorithm, applying the per-
turbation formula (2.106). Then, if Δ Ό _ is the adjustment for D_ , the inverse 
to the current matrix can be approximated as D I 1 — D I 1 ( A D _ ) D I 1 and thus 
(D_ + H i ) " 1 - (D_ + G i ) " 1 (AD_)(D_ + Gi )" 1 . Plugging this approximation 
back into (7.139), we come to a linear matrix equation for Δ Ό _ with the solution 

i - l 
Δ Ό _ = [ i V - 1 ^ ( D _ + H i ) - 1 O ( D _ - | - H i ) - 1 - D : 1 0 D : 1 ] ' 

xvec ( ü - D I 1 + AT1 J ^ ( D _ + H*)"1) . (7.141) 

The maximization of II A over ß requires computation of the first and second deriv-
atives. 

The multivariate penalized quasi-likelihood is a straightforward generalization of 
(7.84) and (7.85): 

N 1 N 

(7.142) 
z = l i=l 

where k is the individual log-likelihood function (7.136). To obtain an update for 
D_ we use the fixed-point algorithm where {u*;} and ß are derived from the max-
imization of (7.142). Now we discuss how to maximize IPQL when D_ is fixed. One 
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could maximize this function simultaneously over m+Nk arguments but the inverse 
matrix will be large. Thus, we suggest alternating between ß and {u^} maximiza-
tion. When ß is fixed, we augment u; by 

D- +Σ (1̂ 7)1 V«) ( h - ^ - t î î ^ ) · (7143) 

When the {u^} are fixed, we augment ß by 

x - i . 
N rii \ I N rii 

ei 

where we denote e ·̂ = exp(/3/x^· + u^z^·) to shorten the notation. While iterations 
for {ui} should be carried out until convergence, it usually suffices to make one 
iteration for β at each cycle. 

Combining the steps, the PQL algorithm is as follows: 

1. Compute standard logistic regression estimate β0 regressing {yij} on {xi?}, 
5 = 0. Choose a starting point Do and compute D_ = DJJ"1. 

2. Holding ß =ßs constant, compute u*i using iterations (7.143) for each i = 
1,...,JV. 

3. Update D_ by formula (7.140). 

4. Make one step (7.144) to obtain the next approximation, /3 s + i , and return to 

I3.+1-3. step 2 (s = s + 1) if > e. Otherwise, stop. 

At least two starting values for Do should be tried to ensure that the iteration 
process converges to the same value. Possible initial values are DQ = 0 and DQ = dl, 
where d is a large positive number. 

Two-probit approximation 

We can apply the two-probit approximation to the logit probability function (7.17), 
as we did for the logistic-normal integral. Then we use the fact that the expectation 
of the probit probability with a normally distributed random effect is an attenuated 
probit probability. Letting v = 0.4353, n = 2.29672, and r 2 = 1.30172, we obtain 

E e x p ^ ' x ^ + u'zij) 

1 + exp(ß'xij + u'Zij) 

c μίά(β) = νφ( . ß'*ij | + ( 1 - ^ ) φ 1 ^ 
^yJn+z'ijO+ZijJ \ ^ / T 2 + Z ^ D * Z ^ 

Denoting si^· = Xij/Jri + z^D*z^· and s2ij = Xij/Jr2 + z^D^z^·, we come to 

the approximate log-likelihood, 

N rii 

w) = Σ Σ [»« lnM£) + ^~ »«)ln^ - ̂ -03))] · 
i = l j=l 
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Thus, instead of iterations (7.144), we make the FS steps ßnew = β0χά + H - 1 J | , 
where 

dß 

flij v Φ(β'*1ϋ) + ( 1 _ v) Φ(β'*2ν) 

φι + t'iP^ij yjr2 + *iP**ij 

N ni hi H_SS^(i!^)x^" 
The inverse to matrix H may serve as an estimate of the covariance matrix for β. 

7 7 3 Probit regression 

It is straightforward to generalize maximum likelihood estimation and likelihood 
approximations developed earlier for the random intercept model to the multivariate 
random effects probit model. Here, we discuss in more detail a combination of PQL 
and Laplace approximation for matrix D in conjunction with the fact that for the 
probit model with normally distributed random effects, 

Pr(!fc = 1) = Φ 
Pxij 

The following algorithm is somewhat similar to the preceding one. 

(7.145) 

1. Estimate the ordinary probit model; let β = β0. Choose a starting point, a 
positive definite matrix Do, and compute D_ = D^"1. 

2. Maximize N penalized log-likelihoods by the FS algorithm to obtain an esti-
mate u*7 : 

lpQL,i(u) = ^ ( u ) - 2 u / D ~ U ' (7.146) 

where 

^ ( u ) = Y^iViJ 1 η φ ( # ϋ + u ' z ü ) + (1 - Vij) H1 - &(9ij + u'z^·))], 

treating gij = ß x^· as fixed offsets. 

3. Update the precision matrix as 

D_ = < 
1 N 

2 = 1 

/ 
U*iU'· + 

J'=l 

- 1 

where 
h,, = Φ (9ij + <jgtf) 
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4. Compute D* = D l 1 and run the ordinary probit regression with probability 

function Φ(/3^^·), where q^· = χ^-Λ / l + z^-D^z^·, to obtain the next 3 

approximation. Return to step 2 if the convergence criteria are not met. 

As earlier, we recommend starting from several Do to ensure that iterations con-
verge to the same value. One of the choices is dl, where d is a large positive number. 

7.7.4 Poisson regression 

Poisson regression with linear random effects is defined via conditional probability, 

Fr(yij = h\bi) = ± exp [(/3'x^· + h'^h - e?*"+w™ h = 0,1,2,... 

In a special case when the number of random effects k = 1 and Zij = 1, this 
model collapses to the random intercept model (7.105). Counts {yij,j = 1,..., η^, ζ = 
1,..., N} are independent between clusters and conditionally independent within a 
cluster. 

Maximum likelihood estimation is a slight modification of logistic regression. The 
log-likelihood function has the same form (7.133), but now 

i= i 

The score equations are (7.134), with 1^ and 1̂ 4 defined by (7.124), where for 
Poisson regression, Ji = fRke

hί(f3>u)~l·uΌ-udu. The EFS or fixed-point algorithm 
can be applied to maximize Z. 

Exact GEE 

We again take advantage of the fact that for the Poisson regression with normally 
distributed random effects, the first two moments can be computed exactly. This 
allows us to apply exact GEE. Indeed, if z^· ~ jV(0,D*), the marginal mean is 
given by 

E(yij) = eß'*is+o.s*iJv.*ij m (7.147) 

Letting 

Vi = e^'Xij + e /3 /(x ij+x i i)+( z ij+Zii) /D1 ) t(z i j- |-z i i)/2 

_e/3 ,(x i i+x iZ)+z-,DJt<z i :,/2+z ,
iZDJttz i i/2 

for j , I = 1,2,..., n*, the marginal covariance is given by 

%=cov(^) = {eß'xi+7i*l= l ■ (7 ·1 4 8) 
For the random intercept model, standard Poisson regression yields consistent esti-
mates of slope coefficients. Generally, this does not hold for the Poisson model with 
multiple random effects. Thus, estimation of matrix D* becomes essential. 
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Estimation by exact GEE alternates between solving estimating equation (7.118) 
for ß and estimating matrix D*, where elements of vector e; are defined by (7.147) 
and Vi is the n2- x n; matrix, with the (j, Z)th element defined by (7.148). Note 
that now we use the original intercept, not augmented by σ2/2. One may ob-
tain some consistent estimates of β and D by ordinary Poisson regression us-
ing (7.147) and expressing z^-D*z^· as a linear function of D*. Indeed, rewriting 
z'ijO+Zij = J2PjqD^pqzijpZijq and augmenting {x^·} by {zijpZijq} after possible 
term rearrangement, one arrives at ordinary Poisson regression, as suggested by 
Grömping (1996). 

Example . In a univariate Poisson regression, let only the slope be random. Then 
Zij = Xij and E(yij) = exp(/?! +ß2Xij +0.5x^D*), so that the variance of the slope 
may be estimated consistently from ordinary Poisson regression. 

Estimation by variance least squares 

To estimate matrix D*, when ß is held fixed, we employ Variance Least Squares 
(VLS). This general method was introduced for the linear mixed model in Section 
3.12 and was then applied to the nonlinear marginal mixed model. The VLS method 
may be viewed as a multivariate version of the method of moments frequently used 
in the framework of the GEE approach; see Section 7.9. Let ß be an estimate and 
êi the rii x 1 residual vector from the ith. cluster. For the Poisson model, we have 
ê  = yi — e@ XiJ. At each VLS iteration, we treat ez as the observation vector so 
that the empirical covariance matrix e ^ would have mean V* if ß were the true 
vector. VLS finds D* such that the sum of the squares of the differences between 
the empirical and theoretical quantity is the minimum, or mathematically, 

N 

S(D.) = V tr ( e ^ - V i ( D J ) 2 => min. (7.149) 
z = l 

After elementary algebra, we can represent the sum as a function of v$ = v ^ d j 
=vec(Vi(d#)) as follows 

S(d.) = jr INI2 - jh [2(e, ® eiYvi - INI2] , 
2=1 i=l 

where d* =vech(D*) is a k(k + l ) /2 x 1 vector of distinct elements of matrix D*. 
Denote K* = dv^/öd* =vec{dT4/z/dd*, j , I = 1,..., m}, the n2 x k(k + l ) /2 matrix, 
then dS/dd* = - 2 £ KJ[(e< ® e.) - v j and 

I©+e^/(x*i+x*')+(»*i+»*«)/D.(.y+.«)/2(z.i + Zii) Θ ( z . . + Z i i ) 

- ip+e^/(^+x*')+-iiD-»*i/2+»«D-»«/2[zi j . ® zio - zu ® Z i l ] , 

where V+ is a duplication matrix, vech(D*) = £>+vec(D*). The Gauss-Newton 
(GN) iterations are 

d*,s+i = d*s + ( ^ K ^ K i ) " 1 YjK!i[(Bi®ei)-wi\. (7.150) 

öd» 
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This update does not guarantee that the covariance matrix D* will be positive 
definite at each iteration. To make it nonnegative definite, one can apply the pro-
jection operator as for the linear mixed effects model in Section 2.15.2. We let 
D* = Ρ Λ + Ρ ' , where P is the k x k matrix of eigenvectors and Λ + is the diagonal 
matrix of eigenvalues with the negative values replaced by zero. The estimation 
procedure involves alternation between estimating equation (7.118) and iterations 
(7.150). 

Total GEE 

Since for Poisson regression with normally distributed random effects, the marginal 
mean and covariance can be computed exactly we may use total GEE, Section 6.4. 
We notice that the Poisson model with normally distributed effects is a type III 
nonlinear marginal model (6.37), where Θ is the (m + k(k + l)/2)-dimensional pa-
rameter, which includes the beta coefficients and unique elements of matrix D*. In 
total GEE, beta coefficients and matrix D are found simultaneously. Since observa-
tions between clusters are independent, the estimating equation for Θ = (/3,vec(D*)) 
takes the form (6.50). Here, in the previous notation, 

. _ Γ a^. δ&_ 1 n _ Γ avi JC 1 
i — [ dß öd* J ' ^*i — [ dß *^1 \ 

are the rii x (ra+k2) and nf x (ra+fc2) matrices, where fi = {e? Xij+Vijj, j = 1,..., m} 
is the marginal mean, an n^ x 1 vector. It is easy to find that 

The solution to total GEE is found iteratively in (6.49), where matrices P and Q 
are defined by (6.51). 

7.7.5 Homogeneity tests 

The homogeneity tests developed earlier for models with random intercepts can 
easily be generalized to mixed models with multivariate random effects. The F-test 
(3.42) for HQ : D = 0, after replacing sum of squares S by —2/, transforms into 

(imax -lo)/(r-m) 
lm^/(NT - r) 

~ F(r — πι,Ντ — r), 

where r is the rank of matrix (2.34), IQ is the maximum of the standard log-
likelihood, and Zmax is the maximum of the log-likelihood, treating b^· as fixed 
parameters. For example, if m = k and x^· = z^·, we have r = Nm. Theoretically, 
one may apply this test to an individual random effect HQ : Du = 0 with the lin-
ear predictor xf-ß-^buZiji, but this would not imply positive definiteness of matrix 
D in the multivariate random effect model. Bonferroni adjustment can be used to 
account for multiple comparisons. 

Alternatively, we can apply the score test. Particularly useful is its application 
to individual test Du = 0. The respective generalization of the random intercept 
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model is straightforward. For example, for logistic regression, we have 

2 
N 

* = Σ 
i = l 

Σ Zij (yij - Pij) - Y^Piji1 - Pij)zïj 

with the asymptotic variance 

N 

Σ 
2 = 1 

It is straightforward to generalize this test to probit or Poisson regression. 

Problems for Section 7.7 

1. Derive approximation (7.131) using the fact that fRk exp(—x'Ax)<ix = (2π) ' 

x Λ/ÎÂÎÎ where A is a k x k positive definite matrix. 
2. Derive approximation (7.132). 
3. Prove that integrals and matrices of integrals, Ja , 1*2, and lis from Section 

7.7.2 exist. 
4*. Prove that matrix Σ 1*2Ja1 is positive definite, so that matrix D_ is pos-

itive definite. Develop a matrix FP algorithm, D_ = NÇ^^I^1)"1 for logistic 
regression. Consult Section 13.3.4. 

5. Prove that matrix G^ given by formula (7.138) is nonnegative definite. Prove 
that G; is positive definite if matrix Z$ has full rank. 

6*. Analyze convergency properties of the FP algorithm (7.140): Prove that iter-
ations converge for k = 1 and provide some evidence that they converge for k > 1 
(consult Section 13.3.4). 

7*. Write an R function that implements the penalized quasi-likelihood algorithm 
for logistic regression with multiple random effects by means of iterations (7.143) 
and (7.144). Compare its performance with that of glmmPQL. 

8*. Write an R function that implements the two-probit approximation for logistic 
regression with multiple random effects and compare it with glmmPQL. 

9*. Use simulations to test whether D* can be estimated consistently by the 
standard Poisson regression if only the slope is random as in the example in Section 
7.7.4. Compute the MSE with increasing N. Generalize this idea when both intercept 
and slope are random. 

10*. Write an R function to estimate the Poisson model with multiple random 
effects using a GEE approach with exact covariance matrix (exact GEE). Test this 
code via simulations. 

11*. Generalize the score homogeneity test for probit and Poisson GLMMs with 
multiple random effects. Estimate the power of the test via simulations. 

12*. Approximate the power of the homogeneity test from Section 7.7.5 based on 
the noncentral chi-square distribution. 
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7.8 GLMM and simulation methods 

In this section we introduce the generalized linear mixed model (GLMM) via the 
exponential family distribution, as authors typically do. Although such a description 
unifies the logistic and Poisson models under one umbrella, the specificity of the 
models is lost. As we have demonstrated in this chapter, dealing with these models 
separately allows us to construct more efficient algorithms for statistical estimation 
and inference. Also, some important models, such as probit, are not members of the 
exponential family and require separate treatment anyway. 

In this section we focus on approximations to maximum likelihood by statistical 
simulations (Monte Carlo). First, we introduce the GLMM via the exponential fam-
ily distribution. Second, we briefly overview familiar Monte Carlo methods. Third, 
a novel and simple fixed simulation approach is introduced. 

7.8.1 General form of GLMM via the exponential family 

The logistic and Poisson models discussed in this chapter, and many others, can be 
derived from an exponential family distribution of the form 

f(y\ θ, φ) = exp e y ~ m - c M ) 
Φ 

(7.151) 

where Θ and φ are parameters. McCullagh and Neider (1989) use (7.151) to con-
sistently treat different members of this distribution family and respective GLM. 
Bickel and Doksum (2001) use this distribution as a platform for general statistical 
inference. Distribution (7.151) is very flexible and can specify continuous, binary, or 
count data. The first derivative of function b is the mean, b'(ß) = μ, and the second 
derivative is the variance, b"{6) =var. Parameter Θ is called the linear predictor and 
φ the scale parameter. In most cases of the generalized linear model, the variance 
is a simple function of the mean. For example, for binary data, var= μ(1 — μ) and 
for count Poisson data, var= μ. For these models, φ = 1 and distribution (7.151) 
simplifies to /(y;0) = e9y~b^~c^y\ For example, for logistic regression, θ = βχ, 
b(9) = ln(l -f- eö), and c = 0. For Poisson regression, Θ = ßx, b(9) = e*9, and 
c — — lny!. The GLM with independent {yi} is specified by (7.151) with θ{ = β'χ^. 

For cluster data {yij}, assuming that yij\\ii are independent and following the 
exponential family distribution with the unit scale, where u^ is a normally distrib-
uted fc-dimensional random effect, u^A/^O, D#) , the log-likelihood for the GLMM 
takes the form 

N 

Z(/3,DJ = _ ^ ΐ η ( 2 π ) - ζ ln|D*| + V i n / eZ i^ u)- i u 'D*~ l udu, (7.152) 
2 2 è i jRk 

where 
H; 

Zi(/3, U) = Σ [{ß'x-ij + u'zij)yij - Kß'*i3 + U 'Zù)] 

is the ith conditional log-likelihood (the term c(y) is omitted because it does not 
affect the likelihood maximization). It follows from GLM theory that conditionally, 
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E(yi\u) =6/(/3/Xij + u'zij) and var(yi|u) =b"(ß'-Xij + u'z^·). It is easy to see that 
(7.133) is a special case of (7.152) after the precision matrix reparameterization 
D _ = D " 1 . 

It is straightforward to derive maximum likelihood, Laplace, and penalized quasi-
likelihood methods of estimation for (7.152). However, since the most popular types 
of models, such as logit, probit, and Poisson, have already been covered, we skip 
this exercise. 

7.8.2 Monte Carlo for ML 

Only maximum likelihood is consistent when the number of clusters, iV, goes to 
infinity and the number of observations per cluster, n;, is finite. Unfortunately, the 
majority of approximate methods, such as Laplace or quasi-likelihood, require that 
both N and rii go to infinity. This amplifies the need for ML despite its required inte-
gration. Another important argument in favor of ML is that it generates an estimate 
of the complete (beta coefficients plus variance parameters) asymptotic covariance 
matrix as the inverse of the information matrix. Methods of numerical integra-
tion for ML were discussed previously in Section 7.3.1; here we just provide some 
references to a well-developed area of the likelihood approximation via statistical 
simulations. There is extensive literature on the application of Monte Carlo meth-
ods to GLMM estimation. Simulation methods can work in conjunction with any 
optimization algorithm, such as Newton-Raphson, Fisher scoring or Expectation-
Maximization (EM), although the latter is more popular, McCulloch (1997). Con-
cise introductions have been provided by Fahrmeir and Tutz (2001), Agresti (2002), 
and McCulloch and Searle (2001). Markov Chain Monte Carlo (MCMC) methods 
of statistical simulation have become especially popular (Robert and Casella, 1999). 
Below we suggest a simulation method in which the sample does not change over 
maximization. 

7.8.3 Fixed sample likelihood approach 

In this section we generalize the approach of maximum likelihood approximation 
developed in Section 7.3.2 for binary models with random intercepts to multivari-
ate random effects. The Fixed Sample Likelihood (FSL) approach combines Monte 
Carlo simulation and numerical integration under one scheme. The idea is to replace 
the integral with a weighted sum at fixed sampled values of the random effects and 
then treat that sum as a new likelihood function. The basis for this approximation 
is the observation that (a) all algorithms of numerical integration and Monte Carlo 
simulation attempt approximating the integral via a sum of the integrand computed 
at certain values with certain weights, and (b) beta coefficients and variance parame-
ters can be combined into one parameter vector. Several authors applied technique 
similar to Gauss-Hermite quadrature. For example, Pinheiro and Bates (1995) ap-
plied this approach to the general nonlinear mixed effects model and Hedeker (2003) 
applied it to multinomial logistic regression with random effects. The FSL approach 
combines Gauss-Hermite quadrature and Monte Carlo under one methodological 
umbrella. For traditional approximations in the framework of GLMM estimation, 
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such as Laplace approximation or Gauss-Hermite quadrature, we refer the reader 
to books by Vonesh (1997, 2012), Pinhero and Bates (2000). 

We start by reparameterizing the log-likelihood function (7.152) in a slightly 
different manner as 

m O c ) = ̂ ln-^jRke^Ui(ß'^<^)e-i\M
2
du, (7.153) 

where D c is the kxk upper-triangular Cholesky decomposition factor (all elements 
of D c below diagonal are zero), such that D^DC = D* and u ~Λ/"(0,Ι). (Some au-
thors assume D c to be a lower-triangular matrix, then DCD^ = D*.) The advantage 
of (7.153) is that u does not depend on D and has fixed distribution. Furthermore, 
we represent the quantity z^D^u = Σΐ'>ι Ddi'ZijiUi' m s u c n a waY that Dcn> can be 
treated as a coefficient at variable Zijiuy. Then the vector β and nonzero elements 
of matrix D c can be combined into one parameter vector. Specifically, let δ be the 
k{k +1) /2 x 1 vector of nonzero elements of D c and t^· be the k(k +1) /2 x 1 vector 
with components {zijiui'}. Then introducing a vector of parameters θ = (β',δ')' 
and variables g^· = (x^-,t^·)', we express the fixed and random parts as a linear 
combination, ß'^ij + (DcZij)'u = 0'gzj. Thus, (7.153) simplifies to 

^0) = E l n ( ^ / f l f c
e E ; â l K e ' s y ) ^ è l H | 2 ^ (7·154) 

where the (m + k(k + l)/2)-dimensional vector g^· does not contain unknown pa-
rameters. 

Now we obtain a discretized version of (7.154), assuming that there exists a 
representative sample {ui,U2, . . . ,us} with weights {wi,W2, ...,ius}. For example, if 
a statistical simulation is used, u s is drawn randomly from JV(0,1) and the weight 
is ws = 1/5. After replacing the integral in (7.154) by the weighted sum, we arrive 
at the discretized version of the log-likelihood function, 

N S 

IFSLV) = £ l n £ t i ; e e Ä ' « ' < * > , (7.155) 

where g^ s = ( x ^ , t ^ s ) ' and t ^ s is the k{k + l ) /2 x 1 vector with components 
{zijiui's, I' >l}. Importantly, values {uifs} do not change with i or during iterations, 
so vectors {gijs} remain fixed. We treat IFSL as a log-likelihood function. The 
formulas for the first derivatives (7.74) and the negative Hessian (7.75) remain 
unchanged and the Newton-Raphson algorithm has the same form, (7.77). Empirical 
FS algorithm is readily applied—this algorithm was used by Hedeker (2003). During 
maximization, we do not impose any restrictions on matrix D c and the respective 
vector Θ. After iterations are done, we estimate the covariance matrix as D* = 
D^DC, which is a nonnegative definite matrix. We can test the presence of the 
random effects via the hypothesis HQ : Dcu = 0 by the one-sided Wald test. 
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Table 7.2. Simulation results for logistic regression with random intercepts 

Method 
ML 
FSL MC500 
FSL GH11 

%Bias 

ß2 
-0.09 
-0.74 
-0.77 

%RMSE 
= - 1 

0.083 
0.083 
0.083 

%Bias 
σ2 

-0.52 
1.12 
1.05 

%RMSE 
= 1 

32.2 
32.2 
31.2 

Computation 
time, seconds 

755 
50 
33 

Now we discuss how to use the Gauss-Hermite (GH) abscissas and weights 
in the framework of the FSL approach. Let K be the number of abscissas cho-
sen, say K = 11 (see Table 7.1 in Section 7.1.2). First, one needs to rescale 
the abscissas and weights, multiplying them by y/2 and π - 1 / 2 , respectively. Let 
{^i, U2,..., UK} be the set of resulting abscissas. We construct /.-dimensional vectors 
u s = (i£Sl,i£S2, ...,uSkY by choosing the number of all possible samples from the in-

k 
dex set {1,2,..., K}. The associated weight is the product of weights, ws = fj wSh. 

h=l 

Clearly, the number of all vectors u s is S = Kk. For example, if the number of 
random effects is three, then S = 113 = 1331. Although S increases exponentially 
with the number of random effects, practically, the number of random effects rarely 
exceeds five, so that modern computers can handle the computations. One may 
suggest an economical version of multivariate GH procedure by eliminating points 
where ws is greater than a small number. For example, S decreases from 1331 to 
425 if we take points where ws > 10~6. 

The FSL approach can be applied to any link function and even nonnormal errors. 
For example, a robust GLMM model can be estimated assuming that random ef-
fects follow a double-exponential distribution, see Section 4.4 and Section 5.1.5. We 
illustrate this feature by logistic regression with random intercepts. If u has density 
g - M / v ^ y ^ t j i e n β(^ή — Q a n ( j v a r (^ ) = i. Generating {us} from this distribution 
and maximizing (7.155) would be equivalent to assuming that intercepts follow a 
double-exponential distribution that allows outliers (large intercepts). 

We show simulation results in Table 7.2 and Figure 7.9, where FSL is compared 
to ML for logistic regression with random intercepts (number of experiments = 
100). The true beta parameters were βλ = 1 (population-averaged intercept) and 
β2 = - 1 (slope) with SD intercept σ = 1. The statistical model has the form 
logit(yil^) = (β1 + Ui) + /32x; with the covariate vector x; = (1,2, .. . ,n;) ' and 
h ~ Λ/"(0, σ2). The number of clusters is N = 200, with the number of observations 
per cluster, r^, ranging from 5 to 15. Maximum likelihood (ML) used the R function 
i n t e g r a t e to evaluate integrals (7.67) with the machine epsilon precision based 
on the adaptive 15-point Gauss-Kronrod quadrature algorithm. To maximize the 
log-likelihood function, the empirical FS algorithm was used, Section 7.3.1. The 
FSL Monte Carlo used S = 100 and S = 500. In Table 7.2 three methods are 
compared in terms of the quality of slope and variance estimation. FSL GH11 uses 
Gauss-Hermite sample with 11 abscissas. All three algorithms gave close results, and 
estimates of β and σ2 were practically unbiased. Root MSE assesses the standard 
error of estimates in 100 experiments. Notice that while the slope is estimated 
very well, the estimates of σ2 vary substantially, but in terms of methods there 
is almost no difference. However, in terms of the time of computation, methods 
differ substantially. Not surprisingly, Gauss-Hermite requires less time because the 
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Slope SD intercept 

LU 
_ l 

FSL Monte Carlo 

FIGURE 7.9. Scatter plot MLE versus FSL Monte Carlo (S = 100 and S = 500) for 
logistic regression with random intercepts. 

sample size is 11 versus 500: Estimation by the straightforward ML is very slow 
because at each iteration it evaluates 200 x 4 = 800 integrals. It was more than 20 
times slower than the FSL Gauss-Hermite algorithm. As the reader can see from 
the scatter plot, the correlation between FSL and ML is very high, especially for 
the slope. 

The random effects can be estimated either after Laplace approximation from the 
penalized log-likelihood (7.135) or using the FSL/integration technique, see Section 
8.15 for details. We shall apply the FSL approach to the general nonlinear mixed 
model in Section 8.14 as well. 

Problems for Section 7.8 

1. Derive log-likelihoods for the logistic and Poisson models with random inter-
cepts as special cases using the general expression (7.153). 

2. Estimate the log-likelihood function value (7.153) for a linear model by Monte 
Carlo methods by replacing the integral with the mean over simulated {u s , s = 
1,..., S}. Plot the result versus the number of simulations (5) and compare with the 
exact value (plot as a horizontal line). Can you see the convergence? 

3*. Repeat the comparison as displayed in Figure 7.9 for the probit link (you have 
to use the FSL code in Problem 5 of Section 7.4). 

7.9 GEE for clustered marginal GLM 

There are two ways to model clustered data: conditional and marginal. The condi-
tional approach based on random effects was discussed in great detail previously. 
To obtain the marginal mean, random effects should be integrated out. Here we 
discuss application of the marginal approach to model discrete (binary or count) 
data in the framework of the generalized linear model (GLM). In this approach, the 
GLM for clustered data is defined directly through its marginal mean, so no integra-
tion is required. Besides the mean, the within-cluster covariance structure should 
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be specified (note that in the conditional approach, it is derived from the model). 
However, specification of the covariance structure for clustered data in the marginal 
approach is of secondary importance because it does not affect the unbiasedness of 
the estimating equation. Marginal models for continuous data were studied in the 
previous chapter; thus, some techniques and methods may be borrowed. 

The centerpiece of the marginal GLM is the Generalized Estimating Equations 
(GEE) approach. Let us have clustered observations {yij,i = 1,..., N, j = 1, ...,rii} 
with the first two moments defined as E{yij) = μ(/3'χ^·) and var(y^) = ^(β'χ^·), 
where μ and v are known functions. The marginal mean of y^ is specified explicitly 
in the GEE approach. In many instances, repeated measurements (indexed by j) are 
associated with time—then we have longitudinal data. For a GLM, v is a function 
of μ. For example, for a binary model, v = μ(1 — μ), and for a Poisson model, 
v = μ. It is assumed that observations between clusters are independent, but within 
clusters are dependent, so one speaks of intracluster correlation. Indeed, we may 
ignore the intracluster correlation and still obtain consistent and asymptotically 
normally distributed estimates of β using the ordinary estimating equation 

EDw-A = 0 (7Λ5β) 
z = l j = l Vi* 

as a straightforward generalization of (9.34). The consistency comes from the fact 
that E(yij — μ^) = 0, and therefore (7.156) is an unbiased estimating equation, see 
Appendix 13.1.4. Here "asymptotic" means increasing N to infinity while {rii} may 
stay bounded. 

However, to improve efficiency, one needs to account for intracluster correlation 
and therefore to specify the covariance matrix of (yn, ...,2/ίηί) for each cluster i = 
l,...,iV. Zeger and Liang (1986) and Liang and Zeger (1986) suggested specifying 
the covariance matrix via a working correlation matrix, the central concept of GEE 
for clustered data. Since then, this approach has gained much popularity, due to its 
convenience and algorithmic simplicity. If R^ is an ni x rii correlation matrix, V^ = 
Ό/ R i o / is the covariance matrix for the rii x 1 vector y^ = (yn,..., yimY, where 
D^ = Τ>ι{β) is a known function of/3, the diagonal matrix, diag(^i, . . . , i^n i) . The 
elements of matrices R^ are usually connected through a low-dimension parameter 
vector, because otherwise, the number of unknown elements would be Σηί(ηί ~ 
l ) /2 . More precisely, let us assume that the elements of R^ are known functions of 
a p-dimensional parameter 7. For example, in a popular exchangeable (compound 
symmetry) correlation structure, all elements except the diagonal are 7 =const. 
Finally, in vector notation, the clustered marginal GLM can be written as 

E(yi) = μ(Χ./3), cov(yi) ~ V, = D , 1 / 2 R i ( 7 )D j / 2 , (7.157) 

where X^ is an rii x m matrix with a jth row x^·. We use "~" to indicate that 
this is an approximation to the covariance matrix because R* may not be the exact 
correlation matrix. Unlike the conditional/random effects model considered above, 
the distribution of y^ is unspecified. Moreover, the true covariance matrix of y^ 
may be different from what is assumed at the right-hand side of (7.157). An obvi-
ous modification of the estimating equation (7.156) to account for the intracluster 
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correlation is 
N 

Υ/Χ'ίμίν^(γί-μί)=0, (7.158) 
2 = 1 

where /i^ is an rii x rii diagonal matrix with μ{β'^) on the diagonal. Clearly, 
(7.158) takes the form (7.156) under independence, R; = I;. In fact, we have used 
a special form of this estimating equation for the probit (7.99) and Poisson (7.118) 
mixed models. A distinctive feature of the GEE approach is that (a) no distribution 
is specified, and (b) the correlation matrix need not coincide with the true one. 
Therefore, sometimes (7.158) is viewed as a quasi-likelihood approach where a com-
plete data distribution/statistical model is not specified. For a general discussion of 
the estimating equations approach, we refer the reader to Appendix 13.1.4. 

According to our classification of nonlinear marginal models of Chapter 6, assum-
ing that matrix V; is a correct covariance matrix, model (7.157) is a type II nonlinear 
marginal model (6.36). As follows from Section 6.2.3, iteratively reweighted least 
squares (IRLS) leads to consistent and asymptotically normally distributed esti-
mates. More precisely, from the sandwich formula, the GEE estimator from (7.158) 
is consistent and asymptotically normally distributed with the covariance matrix 

cov(ßGEE) = M " 1 Î ^ X ^ V ^ V r i V r V i X i ) M - 1 , 

where M = Σί=1 X ^ V ^ / ^ X ; and VTÎ =cov(y^) is the true covariance matrix. 
If Hi is guessed correctly, GEE produces asymptotically efficient estimates. In a 
robust or empirical version, the true covariance matrix is approximated by VTÎ — 
(yi~Ui)(Yi~ fii)'· See Appendix 13.1.5 for a general discussion of the GEE approach. 

The estimation algorithm alternates between β estimation from GEE (7.158) and 
7 estimation. When 7 is held fixed, we iterate 

( N \ _ 1 JV 

^x^vrViXi ^ X ^ V - ^ - A O . (7·159) 
2=1 / i=l 

Methods of 7 estimation when β is held fixed are discussed below. The criteria for 
convergence are discussed in Appendix 13.3.5. 

7.9.1 Variance least squares 

To estimate variance parameters 7, we suggest using Variance Least Squares (VLS). 
This method was introduced in the framework of the linear mixed effects model in 
Section 3.12 and is used in this chapter to estimate the overdispersion parameter for 
clustered Poisson regression with random intercepts and for general random effects 
(7.149). Following the idea of VLS in model (7.157), at each iteration we compute 
the rii; x 1 residual vector e2- = yz- — μ(Χ^/3) and the ni x nz- diagonal variance matrix 
D^. Then we minimize the total sum of squared differences between the empirical 
and theoretical matrices, 

N 2 

Σΐν^-Ό^τΐ^ΌΥ2) . (7.160) 
i = l 
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Denoting r; =vec(R*), an nf x 1 vector and Gz = δτι/δη, an n\ x p matrix, the 
estimating equation for 7 in matrix form can be written as 

jl· G j ( 7 ) ( D j / 2 ® D^2)vec ( e # - D ^ R ^ D * ' 2 ) = 0, (7.161) 
2 = 1 

with the Gauss-Newton iterations 

N - 1 

7s+i = 7.+ (EG^(Dî/2®Dî/2)G*-J 

x Σ GL(D2
1/2 0 D ^ v e c ( e ^ - D ^ R ^ 2 ) 

(7.162) 

2 = 1 

where R l s = R ; ^ ) and GÏS = G^(7S). Obviously, if R* is a linear function of 7, 
iterations (7.162) converge at the first iteration. The advantage of VLS and iterative 
formula (7.162) is that they may be applied to any correlation structure Rz(7) such 
as MA(1) or AR(1), see below and Section 4.3.4. We illustrate the VLS approach 
with some popular correlation structures. 

There are alternative methods of 7 estimation. For example, Chaganty (1997) 
used quasi-least squares; a detailed analysis of different methods of estimation is 
presented by Wang and Carey (2003). Although quasi-least squares is similar to 
variance least squares, it works with standardized residuals, D ~̂ / ê*. We assert that 
such standardization may be a source of instability (see a more detailed explanation 
below). 

Exchangeable correlation structure 

For this structure, it is assumed that the correlation between observations of the 
same cluster is constant, p. Then the correlation matrix can be expressed as R; = 
(1 — p)Ii-j-plil^ where Iz is the nz- x rii identity matrix and 12 is the n2 x 1 unit 
vector. Then letting Sij = yjDijj, the estimating equation (7.161) takes the form 

5 > [ ( e « - D^2R,Dj/2)D^(ia^ - I,)Dj/2] 
= Σ ι ( Σ ^ ) -Σ%4] -^Σ[(Σ4) - Σ 4 

which results in 

si=l 

P = 
[/sj=l eiJSij) ^j=l eijSij 

Z^i=i [TljLi sijj z2jLi sij 

Alternatively, Liang and Zeger (1986) suggested a moment estimator, 

(7.163) 

Σ»=ι Ej>ifêj /S i j ) fêj /S i j ) 
^Ν 0 . 5 £ i = = 1 n i ( n i - l ) - m 

(7.164) 
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These two estimators are closely related. First, the adjustment for the number of 
covariates, ra, has little effect because typically, 0.5 Σί=1 n^n* — 1) is much greater 
than m. Second, since the numerator of (7.163) is 2 ^ ^ _ ^ ^ ^ ( e ^ s ^ ^ i / s ^ ) , the 
two estimators differ by weights: In (7.163) the weights are {s^·}, and in (7.164) 
the weights are {l/s^·}, so the {ê%j/sij} are standardized residuals. However, we 
assert that (7.163) is more robust to outliers. Indeed, if sij is very small but ê^· 
is not that small estimator (7.164) produces an unstable estimate. For example, in 
logistic regression, this situation may occur when Xij takes a large negative value 
and ß > 0, so that s{j = eßil*+ß*iil*/(i + eßi+ß^ij) [s s m a n but yia = 1 and 
êij ~ 1. In summary, standardized residuals may lead to unstable estimation of the 
correlation coefficient. 

Linear correlation structure 

In Section 4.3 we considered the covariance matrix as a linear combination of fixed 
symmetric matrices with constant unknown coefficients. Such structures are very 
flexible and may describe many correlation models. A particularly parsimonious 
covariance is generated based on the MA(1) process using Toeplitz matrices of the 
form (4.115), R^= Ii+p1Tii+p2Tsi, where i indicates the dimension of the matrices. 
Obviously, p2 = 0 gives an exchangeable correlation structure. One may derive 
estimates of px and p2 directly from minimization of the sum of squares (7.160), as 
we did for the exchangeable correlation structure, or using general formula (7.162); 
again it converges after the first iteration. 

7.9.2 Limitations of the GEE approach 

The core of the GEE approach (Liang and Zeger, 1986) is the concept of the working 
correlation matrix. The most frequently used correlation structure for binary clus-
tered data is the exchangeable correlation structure (compound symmetry), which 
takes roots from the random intercepts model y^ = ß'^ij + δι + ε^, where 8i is the 
deviation of the cluster-specific intercept from the population-averaged mean and ε^ 
is the iid error term. Under normal assumptions, ε^ ~ Λ/*(0, σ2) and Si ~ Λ/*(0, σ2ά), 
so that the intracluster correlation coefficient p = d/(l + d) =const. Use of GEE for 
a linear model with a continuous dependent random variable is difficult to justify 
because it may be studied more productively in the framework of linear mixed ef-
fects. So we concentrate on application of the GEE approach to discrete data and, 
specifically, to binary data modeled via logistic regression. 

The aim of this section is to demonstrate that use of the Pearson correlation 
coefficient (p) for binary data is inadequate and troublesome. It is worthwhile to 
mention that originally, p was suggested to measure the association between con-
tinuous random variables. Moreover, major properties of the Pearson correlation 
coefficient, such as invariance to shifting and scaling, hold only for normally distrib-
uted random variables (Kendall and Stuart, 1961; Kagan et al., 1973). Perhaps, it is 
this property that makes the Pearson correlation coefficient so convenient and im-
portant. When the Pearson correlation coefficient is applied to nonnormal random 
variables, such as Bernoulli or Poisson distribution, it loses this principal property. 
As such, the entire idea of projecting the theory of multivariate normal distribu-



7.9 GEE for clustered marginal GLM 421 

tion to discrete or binary variables through the working correlation matrix seems 
problematic. 

Previous authors also reported limitations of the working correlation matrix ap-
proach. For example, Crowder (1995), Sutradhar and Das (1999), and Wang and 
Carey (2003) studied the impact of the wrong correlation matrix when the intr-
acluster correlation is estimated by the method of moments. It was found that a 
wrong correlation structure may lead to breakdown of the estimation procedure 
and substantial loss of efficiency. In particular, if the true correlation structure is 
exchangeable but the working correlation matrix is AR(1), the method of moments 
may produce a correlation coefficient estimate outside the interval (—1,1). In the 
next subsection we show that the Pearson correlation coefficient between two bi-
nary random variables satisfies intrinsic bounds and therefore cannot be modeled 
separate from the mean as in the GEE approach. 

Admissible interval for the Pearson correlation coefficient 

We emphasize that the Pearson correlation coefficient between two binary random 
variables cannot take an arbitrary number from [—1,1] but lies within certain admis-
sible bounds that depend on the probabilities. Let y\ and y2 be two binary random 
variables and Pr(yj = 1) = pj for j = 1,2. The Pearson correlation coefficient be-
tween yx and y2 is given by p = [Pr(yj = l,yk = 1) ~PjPk]/y/pi(l - P i W l - P 2 ) . 
Using the fact that 0 < Pr(?/j = !,?/£ = 1) < min{pj,pfc}, it is easy to see that 

PlP2 < p < min J 4 ^ 4 , J ^ ^ 4 \ · (7.165) 
(1 - Pi)(l -V2) \ y P2(l - Pi) y P i i 1 ~ P*), 

Now we turn our attention to clustered binary data modeled via logistic regression 
with an exchangeable correlation structure. The response variable is binary {y^·, i = 
1,..., N,j = 1,..., ni}, where i indexes the cluster and j the observation (subject) in 
cluster i, with the probability Prfjjij = 1) = exp(a + / 3 ' X ; J ) / ( 1 + exp(a + /3'χ^·)). 
Letting px = exp(a + /3 'x^)/( l + exp(a + ß'xij)) and p2 = exp(a + /3'xifc)/(l + 
exp(a -t- ß'^ik)) from (7.165) and with the general restriction p > — l/(n — 1), we 
obtain an admissible interval for p : 

_ m i n | _ l _ ? e - + 0 . 5 ( x i j + x i f c ) ^ | < p 

< min j e 0 · 5 ^ - * « * ) ^ , e-oM*ij-*ihYß\ ? (7.166) 

where the minimum is taken over i = 1,..., N and j , k = 1,..., η^. A similar but less 
precise upper bound for p is given by Oman and Zucker (2001). 

An example of admissible values for the Pearson correlation coefficient as a func-
tion of ß defined by inequalities (7.166) is shown in Figure 7.10, where ni = 10 
and Xi rsj JV(0, 1) with zero intercept, a = 0. We emphasize that the upper bound 
depends on ß and x and therefore cannot be constant as in the exchangeable cor-
relation structure. When the total number of observations increases to infinity, the 
admissible region shrinks to zero because — l / (n — 1) —> 0 and mine±0,5^J_a : fc^ —► 0. 
Consequently, for large cluster size, the only valid exchangeable correlation structure 
is independent (p = 0). 
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Pros and cons of GEE 

Positive features of GEE: (a) GEE applies to any GLM, and more generally, any 
regression model; (b) GEE is robust to specification of the correlation matrix and 
always produces consistent and asymptotically normally distributed estimates even 
if the number of observations per cluster is finite; (c) there exists a rich choice of 
correlation matrices, e.g., to reflect random intercepts or autocorrelation statistical 
phenomena; (d) the sandwich formula consistently estimates the variances of GEE 
estimates; and (e) estimation is simple and carried out by IRLS. 

Negative features of GEE: (a) this is an estimation method for an unknown 
statistical model; in particular, there is a problem of generating binary data with 
specified parameters, covariates and correlation matrix; (b) there is no guarantee 
that there exists a statistical model that exactly obeys a given specification, and 
consequently, the correlation matrix can never be guessed correctly. 

FIGURE 7.10. Admissible values for the Pearson correlation coefficient, p, assuming an 
exchangeable correlation structure with n = 10, as defined by inequalities (7.166). The 
bold horizontal line shows the lower limit — l/(n — 1). It is assumed that Xi ~ Λ/^α, 1), 
and each curve is defined by exp(0.5/3(xi — Xj)) and exp(0.5ß(xj — Xi)) for i,j = 1, ...,n. 
For example, if β = 0.5, p lies roughly in the interval (—1/9,0.4). Importantly, p cannot 
be constant, as it is a function of β. 

7.9.3 Marginal or conditional model? 

Marginal or conditional model? It is impossible to determine analytically which 
statistical model is more appropriate. Here, we summarize the properties of the two 
types of models and draw comparisons from a statistical point of view. 
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The marginal approach specifies the model in general form as 

data — model + error. (7.167) 

On the other hand, the conditional model is defined as 

data = model{error). (7.168) 

Model (7.167) has obvious roots from the linear/nonlinear regression model, while 
(7.168) is somewhat new to traditional regression analysis. If the model is linear, 
then model(error) = model + error, so the marginal and conditional approaches 
coincide. Otherwise, the two approaches are not equivalent. Although the marginal 
model is more familiar and and easier to handle, it is inadequate for modeling binary 
or discrete data. Indeed, if data are binary and the error distribution is modeled 
separately from the mean, the sum cannot produce 0 and 1 for any parameter 
value as the data dictate. In the conditional approach, error is intrinsic and usually 
requires integration to estimate parameters consistently. The marginal model is 
integration-free, and estimation is carried out by GEE. 

Table 7.3. Relationship between marginal and conditional parameters for different 
GLM models with subject-specific intercepts 

GLM Relationship 

Linear Pmarginal = /^conditional 

Logist ic Pmarginal — / i + ^ / i ™ ^conditional 

r^rODlt Pmarginal ^/\+σι Pconditional 

Poisson/slope /3 m a r g i n a l 
Pconditional 

In Table 7.3 we show the asymptotic relationship between (population-averaged) 
parameters of the two models. Precisely, a GLM with normally distributed random 
intercepts is assumed and β is the slope. Marginal and conditional approaches co-
incide for linear and Poisson models. GEE for logistic or probit regression produces 
attenuated population-averaged slopes—a larger variance of intercepts yields more 
attenuation. This attenuation cannot be compensated by the correlation matrix. 

7.9.4 Implementation in R 

Package gee contains a function gee that estimates the clustered marginal model 
with various assumptions as to the working correlation structure. For example, using 
the data on the number of visits to a doctor as a function of race, gender, and age 
from Problem 6 of Section 7.5, the call is 

gee(vis i t tot~black+female+I(agelO-8)+I((agelO-8)~2) , id=hrr , 
data=psdat,family=poisson,corstr="exchangeable") 

We use the option "exchangeable" for the correlation structure, as implied by 
the random intercept in the case of normally distributed data. 
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Problems for Section 7.9 

1. Can iterations (7.159) be reduced to GLM estimation (glm call)? 
2. Find a parallel between (7.160) and VLS for LME model as presented in Section 

3.12. 
3. Check if solution (7.163) can be derived from iterations (7.162) starting from 

any p0. 
4. Derive the closed-form expression for p in matrix R^ = Ri(p), which is an 

identity matrix except that all elements on the main subdiagonal are p (only the 
neighboring elements of the residual vector correlate). 

5. Find the VLS estimators of ρλ and p2 when R^= li+p-^Tu + p2Tsi-
6. Write an R program that reproduces Figure 7.10. Run this program with a 

larger n to demonstrate that the admissible area shrinks to zero. 
7*. Explain why the working correlation matrix R; can never be "guessed right" 

for GLM, so that GEE can never be efficient. Start with an LME model. Describe 
an LME model for which R^ can be "guessed right." 

8. Explain rigorously the relationship in Table 7.3. Can the relationship between 
marginal and conditional approaches for the logistic regression model be expressed 
in a closed form exactly as in other cases? 

7.10 Criteria for MLE existence for a binary model 

There is quite a popular point of view that one does not need criteria for MLE 
existence. Let the algorithm for the log-likelihood function maximization run; if it 
finds the solution, MLE exists; if it fails, MLE does not exist. Such a pragmatic 
approach relies completely on the efficiency of the algorithm. However, what if 
the algorithm fails due to multicollinearity or the presence of an outlier and the 
inability to compute μ, e.g., Φ or 1 — Φ in the probit model? Vice versa, what if the 
algorithm returns a maximum log-likelihood value close to zero (absolute maximum 
at infinity)? Does the final iteration give the true MLE, or does it indicate that MLE, 
in fact, simply does not exist? In any event, the success or failure of an algorithm 
cannot substitute for a criterion for MLE existence. Moreover, most software fails 
to recognize MLE nonexistence (Agresti, 2002, p. 195). 

Weddenburn (1976) and Haberman (1979) formulated the condition for MLE 
existence for the probit and logistic models in terms of a separation plane. Silvapulle 
(1981) and Albert and Anderson (1984) did it for the logistic, and Lesaffre and 
Kaufmann (1992) for the probit model. That necessary and sufficient criterion is 
formulated in terms of separation of the data points in covariate space. However, 
a question remains: Does the separation plane exist? The goal of this section is to 
provide constructive criteria for MLE existence in a binary model with function μ, 
which satisfies properties 1 through 4 of Section 7.1. More general criteria for the 
existence of MLE are discussed by Demidenko (1981, 1989, 2000), and Nakamura 
and Lee (1993). 

In this section we study the existence of the MLE with the log-likelihood function 
specified by equation (7.45). It is assumed that vectors {x^, % — 1,..., n} are not zero 
and have full rank. 
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Necessary and sufficient criteria for MLE existence in a binary model. The MLE 
for the binary model exists if and only if there is no ß such that 

ß'*i > 0 for alH : y< = 0 and ß'xi < 0 for a l i i : j/» = 1. (7.169) 

This condition is referred to as the separation condition. Shortly, the separation 
condition may be rewritten as 

(1 - 2yi)ßfiLi > 0, i = 1, ...,n. (7.170) 

If there exists a nonzero vector ß such that (7.170) is true, the MLE does not exist— 
there is perfect discrimination. Geometrically, the separation condition is illustrated 
in Figure 7.11. 

MLE exists 

o 

0 

1 0 

£. 
x i 

FIGURE 7.11. At the left, the separation line (bold) exists and divides observations in the 
covariate space (xa,Xi2) into two groups. The first group corresponds to yi = 1, and the 
second group corresponds to yi = 0; the MLE does not exist. At the right, there is no line 
that separates observations, and therefore the MLE exists. 

To prove that (7.170) implies nonexistence, let us assume that it holds for β^ 
(clearly, β* φϋ). Then letting β =\β* and λ —> —oo, we obtain 

Clearly, it implies that 1(λβ*) —>· 0, where I is given by (7.45), and therefore the 
absolute upper bound of the log-likelihood function goes to infinity. Thus, the MLE 
does not exist. 

Geometrically, the MLE does not exist if and only if there is a plane that separates 
points {xi,i = 1, ...,n} into two groups according to the occurrence/nonoccurrence 
event y. Following Albert and Anderson (1984), points {χ^,ζ = Ι,. , . ,η} are called 
overlapped if there is no separation plane. If (7.169) is not true for any /3, then 
l(ß) —> —oo if || β ||—► oo. Otherwise, 1ιπΐλ->+οο l(Xß'0x.i) = 0, where ß0 G Rk is 
such that β'ςρίι > 0 for i e S0 and ß'0Xi < 0 for i G Si, β φ 0. 

We illustrate the separation condition by a one-covariate binary model: P r ( ^ = 
1) = μ(β1+β2Χΐ), see Figure 7.12. For this regression m = 2 and x^ = (1, Xi)' G R2. 

MLE does not exist 
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MLE does not exist MLE exists 

FIGURE 7.12. Due to the presence of the intercept term, all vectors x lie on the ver-
tical line x\ = 1. The separation condition may be expressed in terms of Xi2. At the 
left, the MLE does not exist because mmyi=oXi2 > maxyi=iXi2. At the right, neither 
mo < mi < Mo nor mo < Mi < Mo holds, and therefore the MLE exists. 

We introduce the following quantities: 

MQ = maxxj, mo = mincer, Mi = maxa^, mi = minx^. 
2/i=0 3/i=0 y » = l yi—l 

Vectors {χ^,ζ = l , . . . ,n} can be separated by a line if and only if the intervals 
(mo, MQ) and (mi, Mi) do not overlap, which occurs when Mo < mi or Mi < mo-
Therefore, the MLE exists if and only if 

m0 < mi < M0 or m0 < Μλ < M0. (7.171) 

In particular, there should be at least one data point with y = 0 or y = 1 for the 
MLE to exist. The MLE does not exist if all yi = 0 (or yi = 1), i = 1, ...,n. 

The condition of separation is difficult to verify for a higher dimension (m > 
2). We aim to construct sufficient criteria for the MLE existence for an arbitrary 
parameter dimension. We introduce the following index sets: 

So = {i : Vi = 0}, S1 = {i:yi = 1}. 

Clearly, the union of So and Si is {Ι,. , . ,η} and the intersection is empty. Our 
criteria are expressed in terms of the vectors 

v i = ( l - 2 » i ) x i = { _ X ^ f Hsl , < = l,. . . ,n. (7.172) 

The statements of the following theorem can be viewed as reformulations of the 
separation condition (7.169). Equivalently, they can be expressed in terms of the 
existence of the solution of a system of homogeneous inequalities. The last statement 
is the well known Gordan theorem (1873). See also Cottle et al. (1992) for a modern 
formulation and further detail. 



7.10 Criteria for MLE existence for a binary model 427 

Theorem 37 The following statements are equivalent: 
(i) The MLE for a binary model exists. 
(ii) There are no β φ 0 such that ß'vi > 0 for all i = 1,..., n. 
(Hi) For any β Φ 0 there is vector Vj from {v;, i = 1, ...,n} such that ß'\j < 0. 
(iv) The system of homogeneous linear inequalities ß'vi > 0 for ß has no solution, 
(v) There exist ηλ > 0, . . . ,7 n > 0 not all equal to zero such that Σ2=ι 7iVi = *̂ 

Consequently, if a vector Vj is a linear combination of other vectors {v^} with 
nonnegative coefficients, it can be removed from MLE existence consideration be-
cause it does not affect the existence of a solution to a system of homogeneous 
inequalities. 

A simple sufficient criterion is formulated below. Before formulating the criterion, 
let us make some comments on the geometry of the Euclidean space Rm. We define 
an axis-vector as a vector with zero elements except one that may be either 1 or 
—1. Then the space can be divided into 2 m octants. An open octant can be defined 
as an open cone spanned by m neighboring axis vectors. We call m axis vectors 
neighboring if none of the remaining axis vectors can be expressed as a positive 
linear combination of them. Note that components of two vectors from the same 
open octant have the same sign, particularly if their scalar product is positive. 

Theorem 38 (Sufficient Criterion I). The MLE for binary model exists if every 
open octant of R™ contains a vector from {v^, i = Ι , . , . ,η} . 

Proof. We prove that for any vector β φ 0, there exists a vector Vj from {v^, i = 
1, ...,n} such that ß\j > 0, using (iii) of Theorem 37. Indeed, let ß ^ 0 be given 
and belong to an octant O of Rm. By the condition of the Theorem we can find a 
vector Vj from system {v^} in the same octant O. Then the scalar product ß'vj is 
positive. 

■ 
This criterion is simple but quite restrictive. For instance, for a one-covariate 

model with the intercept term, it works only if x takes positive values for y = 0 
and negative values for y = 1. Notice that it does not work for data in the right-
hand graph of Figure 7.12 because none of the vectors {v^} belongs to the second 
octant. A better sufficient criterion is formulated below. To simplify the notation, 
the vectors x^ are supplied with the superindex 0 or 1. Thus, x? corresponds to the 
covariate vector with yi = 0, and xj corresponds to yj = 1. Also, x° are supplied 
with the subindex i, and x1 are supplied with the subindex j . As follows from 
(7.169), the MLE does not exist if and only if sets {x°} and {x]} can be separated 
by a plane. With certain ambiguity, by positive linear combination we understand 
linear combination with positive coefficients. 

Theorem 39 (Sufficient Criterion II). The MLE exists if there exists x£ which can 
be represented as a positive linear combination of vectors {xj} or there exists x^, 
which can be represented as a positive linear combination of vectors { X J } . 

Proof. Let vector x£ be represented as a positive linear combination, X^Ajx], 
where Xj > 0. We use (iv) of Theorem 37 to prove that the MLE exists. On the 
contrary, if ß exists such that /37x] > 0 and /3'x° < 0, then for vector x£ we have 
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a contradiction. Analogously, we prove the MLE existence if x* can be expressed 
as a positive linear combination of vectors x^. 

■ 
By this criterion the MLE for the right-hand graph of Figure 7.12 exists because 

the vector corresponding to y = 1 can be represented as a positive linear com-
bination of two extreme vectors with y = 0 (loosely speaking, we may say that 
one observation with y = 1 is between observations with y = 0). The following 
algorithm, based on this theorem, determines if the MLE exists. 

Algorithm 1 (sufficient) 

1. Pick a vector x£ from {x^}. 

2. Pick m linearly independent vectors from {xj}· 

3. Express x^ as a linear combination of m vectors from step 2 solving the accord-
ing system of linear equations. If all coefficients of the solution are positive, 
the MLE exists, and quit. Otherwise, return to step 2 until all m linearly 
independent vectors from {xj} are exhausted. 

4. Return to step 1 to pick another vector. 

The necessary and sufficient criterion for the MLE existence is formulated next. 

Theorem 40 (Necessary and Sufficient Criterion). The MLE does not exist if and 
only if there are m — 1 vectors Wi, W2,..., w m _ i among {ν^,ζ = 1, ...,n} for which 
all n determinants, 

Di = det 

Vil 

wn 

_ Wm-1,1 

Vi2 

W12 

Wm-1,2 ' 

Vim 

Wim 

^ m — l , 7 7 i 

i = 1,2, ...,n (7.173) 

have the same sign. 

Proof. Let the MLE not exist. Then there exists β φ 0 as the solution to n 
homogeneous inequalities ß'wi > 0, i = 1, ...,n. It is well known that the solutions 
to the system of homogeneous inequalities is a polyhedral cone C + conjugate to the 
cone C spanned by the vectors {ν^,ζ = 1, . . . ,n}, see, for example, Hoffman (1999). 
Each edge of C+ is orthogonal to at least m — 1 vectors of {v^, i = 1,..., n} . Hence, 
it is possible to pick a β* ^ 0 and m — 1 vectors wi, . . . , w m _ i among {v^} such that 
ß'*Vi > 0 for all 2 = 1, ...,n and ß*Wj — 0 for j = 1, ...,ra — 1. Thus, in searching 
for a plane that separates {x^} and {xj}, without loss of generality, we can restrict 
ourselves to planes which go through m — 1 points from {v^}. Further, it is well 
known that the position of vector v = (vi, ...,vmy about the plane defined by m 
points (0, w1?..., w m _i ) is determined by the sign of (7.173). Therefore, the MLE 
does not exist if and only if all Di have the same sign for all v^ and certain group 
of m — 1 vectors from {v^}. 



7.11 Summary points 429 

The following algorithm verifies whether the MLE exists. 
Algorithm 2 (necessary and sufficient) 

1. Pick any m — 1 different vectors wi , . . . ,w m _i from {vi,i = l , . . . , n} . There 
are ( ^ J ways to pick m - 1 different vectors wi, . . . , w m _ i . 

2. Compute n determinants (7.173), skipping when v; coincides with one of 
wi, . . . , w m _ i . If all determinants have the same sign, the MLE does not exist, 
and quit. Otherwise, go to step 1 and pick another group of m — 1 vectors. 

This algorithm may be time consuming because it has an exhaustive nature. 

Problems for Section 7.10 

1*. Is it true that when MLE does not exist, the maximum of the log-likelihood 
is zero? Does the reverse statement hold? 

2*. Write an R program that implements Algorithm 2. Select (yi,Xi) such that 
the MLE does not exist using (7.171). Verify that your program confirms that MLE 
does not exist, and finally, run glm. Explain the result. 

3*. Derive sufficient criteria for the existence of the MLE with the Poisson regres-
sion model. Extend these results to the Poisson model with random intercepts. 

4*. Generalize the results of this section to the GEE approach. 
5*. Generalize the results of this section to the binary mixed model with random 

intercept. 

7.11 Summary points 

• Typically, the study of generalized linear mixed models is carried out in a de-
ductive fashion under the umbrella of the exponential distribution family. We 
argue that the inductive approach, when logistic, probit, and Poisson models 
are studied separately, is more effective. Practically, only these three models 
are used. Theoretically, each model allows a specific approach that simplifies 
statistical inference significantly. For example, binomial data with a beta dis-
tribution for probability leads to the beta-binomial model; probit regression 
with normally distributed random effects lead again to a probit regression; 
Poisson regression with normally distributed random effects is again a Pois-
son regression. 

• Several probability functions/links can be used to model binary outcomes. 
The logit link (logistic regression) is popular in epidemiology because the 
coefficients have a clear interpretation via the odds ratio. Probit regression is 
widely used in econometrics and dose-response studies, where only thresholds 
of a normally distributed latent variable are observable. The complementary 
log-log link function is adequate when the original count Poisson data are 
reduced to binary. 

• There exists a close relationship between logit and probit probability func-
tions. The logit function can be approximated by one- or two-probit functions 
with increasing precision. For example, the probit function with argument 
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divided by 1.7 approximates the logit probability function with the absolute 
error less than 0.01. A linear combination of two probits approximates the 
logit probability function with the absolute error 0.0005. These approxima-
tions are useful for estimating logistic regression with normally distributed 
random effects. 

• The logistic-normal integral is often encountered in the framework of the mea-
surement error problem. This integral also emerges in logistic regression with 
normally distributed random effects. There are several methods to approxi-
mate this integral using one- or two-probit approximations, link approxima-
tion, first and second approximation, and Laplace approximation. The link 
and two-probit approximations are most robust and are fairly precise. 

• Laplace approximation assumes that there exists a unique maximum of the 
integrand. Otherwise, the approximation may be poor. We introduce an im-
proved Laplace approximation expressed in terms of two standard normal 
cumulative distribution functions. 

• Numerical integration/quadrature can evaluate integrals with any given pre-
cision. However, a proper solution to the quadrature problem would involve 
an assessment of the error of approximation, usually a step missing in max-
imum likelihood estimation. First, we need to replace an improper integral 
with the proper one, and find the lower and the upper limits of integration 
such that the difference between two integrals is sufficiently small. Second, an 
appropriate number of nodes should be chosen to provide the needed accuracy. 
Sometimes simpler methods, such as summation with a sufficient number of 
terms, outperform complicated methods of integral approximation in terms of 
time of computation. 

• There is no exact integral evaluation unless the integral can be expressed in 
a closed-form. Thus, one needs to think in terms of the integral approxima-
tion and the error of approximation. A proper error analysis would involve 
an analytical investigation of the integrand and its high-order derivatives in 
the entire range of the parameters involved. Often, such an analysis is absent, 
so we do not know the error of approximation. Therefore, strictly speaking, 
maximum likelihood can be viewed as just another approximate method of 
estimation. Due to the error uncertainty, use of at least two different start-
ing points is recommended to ensure that iterations converge to the same 
parameter value and are not affected by, for example, the number of nodes. 

• Although the log-likelihood function for the generalized linear model without 
random effects is concave, it does not guarantee the existence of the MLE. 
For example, the maximum likelihood estimate for a binary model approaches 
infinity if there is a plane that separates observations with y = 0 and y = 1. 
Several algorithms are available to detect whether such a separation plane 
exists. Unfortunately, commercial software does not check the existence of the 
MLE and may report an estimate where the solution, in fact, does not exist. 

• The most important model for clustered data is a model with cluster/subject-
specific intercepts. When the number of clusters (N) is small and the number 
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of observations per cluster (n^) is large, say rii > iV, the model with fixed 
random intercepts is adequate. When ni is small, conditional likelihood for 
logit and Poisson models is almost as efficient as maximum likelihood but does 
not require distribution specification. Otherwise, the random effects model 
should be used. 

• Ignoring random effects attenuates the coefficients of the logit and probit 
models but does not change the slope coefficients of the Poisson model. In this 
respect, the Poisson model resembles the linear mixed effects model, where 
ignoring random effect leaves the estimates unbiased. Different members of 
GLM react differently to introduction of the random effect. 

• Only maximum likelihood is consistent when N goes to infinity and the {rii} 
are bounded for binary data; all approximate methods of estimation require ni 
to be large as well. Two general approximate methods of GLMM estimation 
are Laplace and penalized quasi-likelihood. These methods differ by a term 
that vanishes when η* —» oo. There are several specific approximate methods 
for members of the GLM family that can outperform general methods. 

• The Poisson model with normally distributed random effects is the easiest 
among GLMM because the first two moments admit a closed-form solution. 
This is the only GLM model for which the PA and SS slope coefficients co-
incide. The ordinary Poisson regression for balanced data with random in-
tercepts yields an efficient estimate of slopes. Exact or Total GEE produces 
highly efficient estimates for the Poisson model with multiple random effects. 

• An important part of GLMM analysis is the homogeneity test that random 
effects are zero. Two tests are available: the F-test, as a generalization of 
LME test, and the score test. These tests can be applied to simultaneous or 
individual random effects. In the former case, Bonferroni adjustment for the 
significance level may be used. 

• The generalized estimating equation (GEE) approach estimates parameters 
of an unknown statistical model. In particular, there is a problem of generat-
ing data that comply with the GEE specification. If the covariate is normally 
distributed, the only valid GEE model with logit link is the model with zero 
intracluster correlation when N goes to infinity. The concept of a "working 
correlation matrix," based on the Pearson correlation coefficient, is appropri-
ate for continuous but not binary data. 

• The generalized linear model for cluster/longitudinal data may be studied in 
a conditional or marginal setting. The conditional setting assumes random 
effects that describe subject-specific intercepts or coefficients. In the marginal 
setting, the cluster nature of data is addressed through the correlation matrix. 
Although GEE is straightforward, the statistical validity of a marginal model 
for binary or discrete data may be questionable. A conditional/mixed model 
is a valid statistical model, but it may be computationally intensive. 

• We prefer the conditional model with random effects because it implies a 
valid statistical model. The drawback usually mentioned, which is associated 
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with difficulties of estimation and numerical integration, can be facilitated by 
the Fixed Sample Likelihood (FSL) approach, which combines Monte Carlo 
and Gauss-Hermite schema in a general framework. In the FSL approach the 
likelihood integral is approximated by a sum and treated as a new likelihood 
with combined beta and variance parameters. Our practice showed that this 
approach outperforms many approximate estimation techniques and produces 
estimates very close to MLE and about 10 times faster. Unlike many approxi-
mate methods it provides the joint covariance matrix for population-averaged 
coefficients and variance parameters. It is quite rare that GLMM has more 
than five random effects, so modern computers can handle the FSL computa-
tion. 



8 
Nonlinear Mixed Effects Model 

8.1 Introduction 

The nonlinear mixed effects (NLME) model is a further generalization of the mar-
ginal mixed effects model considered in Chapter 6 and the generalized linear mixed 
model of Chapter 7. As in Chapter 6, we shall assume that we deal with continuous 
data. Modeling of binary and count data was discussed in the previous chapter. 
Unlike the marginal model, the likelihood function for the general NLME model 
does not admit a closed-form solution because the random effects enter the model 
in a nonlinear fashion. Consequently, to obtain the marginal distribution of the de-
pendent variable, a formidable integration problem emerges, especially when the 
number of random effects is large. A special nonlinear mixed effects model, the gen-
eralized linear mixed model (GLMM), was considered in Chapter 7. As we learned 
from Section 7.3.1, even one random effect may create challenges to the quadrature 
problem when the maximum likelihood (ML) applies. 

Early authors attempted to avoid integration by using simplified, approximate so-
lutions. For instance, Pockock et al. (1981) and Berkey and Laird (1986) suggested 
an intuitively appealing two-stage estimator when all parameters of the growth curve 
are random (subject-specific). Another approach, based on a first-order approxima-
tion around the population-averaged mean, extracting the random effects from the 
nonlinear regression function, was proposed by Sheiner and Beal (1980) and devel-
oped further by Vonesh and Carter (1992). An alternative method, which uses the 
first-order approximation, was suggested by Lindstrom and Bates (1990); however, 
they approximate the nonlinear function around the subject-specific means. Later 
it was found that their original algorithm can be derived through the Laplace ap-
proximation to the likelihood function (Wolfinger, 1993; Pinheiro and Bates, 1995; 
Vonesh, 1996; Vonesh et al., 2002). Many approximation methods aim to reduce the 
NLME model to the marginal mixed model studied in Chapter 6. Therefore, the 
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techniques developed in that chapter can be very useful, particularly GEE and total 
GEE. However, it is worthwhile to remember that unlike in Chapter 6, the marginal 
models obtained in this chapter are approximations to the original nonlinear mixed 
effects models. Therefore, the maximum likelihood estimation may be inadequate 
because it is sensitive to distribution misspecification. 

After introducing the NLME model in general terms, an example of modeling 
the height of girls and boys is considered. Four methods of estimation are dis-
cussed in this chapter: maximum likelihood, two-stage, first-order approximation, 
and Laplace approximation. In fact, these methods were applied to generalized lin-
ear mixed models in Chapter 7, so in this chapter we extend them to the general 
nonlinear mixed effects model. The asymptotic properties of the estimators are il-
lustrated by a simple one-parameter exponential model, where the estimate admits 
a closed-form solution and allows exact calculation of the asymptotic bias. The re-
sult, the asymptotic equivalence of three estimators, is presented in Section 8.10. 
The bias-corrected version of the two-stage estimator is suggested in Section 8.11. 
The effect of distribution misspecification is discussed in Section 8.12. Finally, we 
discuss the integration problem and the FSL approach as a generalization of that 
for the generalized linear mixed models. 

8.2 The model 

The NLME model is a straightforward generalization of the marginal mixed effects 
model and is written in two stages (Sheiner and Beal, 1985; Lindstrom and Bates, 
1990; Davidian and Giltinan, 1995; Vonesh and Chinchilli, 1997). The first stage 
of the NLME model consists of N nonlinear regression models with some random 
(subject-specific) parameters, 

y i = fi(7,fi0 + e<, i = l,...,W, (8.1) 

where γι is an ni x 1 vector of the dependent variable; f̂  is a nonlinear n* x 1 vector 
function, 

fih,*i) = ( / (7 ) a i ; xa ) , / (7 5 a i ; x i 2 ) , . . . , / (7 5 a i ; x i ,n i ) ) / ; 

Xij is a vector of covariates; 7 is a q x 1 vector of unknown (deterministic) para-
meters; €i is an ni x 1 error vector with Ε{βι) = 0 and cov(ei) = σ2Ι; and â  is a 
A; x 1 vector of unobservable subject-specific random parameters with the unknown 
k x k covariance matrix 

cov(a^) = D* = σ2Ό. 

Following the line of our notation, we call D the scaled covariance matrix. Some-
times σ2 is called the within-subject variance. Sometimes, to shorten the notation, 
we combine the variance parameters into a (k(k + l ) /2 + l)-dimensional vector 0, 
as we did for the linear mixed effects model. Index i refers to the ith subject (clus-
ter/individual/experimental unit), and ni denotes the number of observations for 
the ith subject. The total number of observations is ΑΓΤ = Σί=ι ni- Although the 
assumption that the components of the error vector are independent seems restric-
tive, conceptually little changes if one, for example, assumes that σ2(Ι + Ω;(τ)), 
where Ω^ is an ni x ni matrix dependent on unknown parameter r . See Section 
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4.3.4, where Ω^ accounts for autocorrelation. To be exact, equation (8.1) should be 
written in conditional form y^a^ since â  is random. 

The second stage of the NLME model is the same as for the linear growth curve 
model (Section 4.1) and has the form 

ai = Aiß + bi, (8.2) 

where A^ is a k x m design matrix, ß is an m x 1 vector of population-averaged 
parameters, and b^ is a k x 1 vector of random effects, E(b{) = 0, cov(b^) = 
σ2Ό. Random effects b^ and error terms e$ are assumed mutually independent 
and independent across subjects. Also, it is assumed that matrix Σ ^4 A^ n a s full 
rank, σ2 > 0 and matrix D is nonnegative definite. The combined vector Θ = 
(a2,vech'(D))' is called the variance parameter. Sometimes the mixed model is called 
the repeated measurements model, where the repeated measurements are indexed 
by j = 1, ...,71». Often, the repeated measurements/data are longitudinal, as in the 
example in Section 8.3. 

In a special case when the vector parameter 7 is absent, the NLME model (8.1) 
is a nonlinear generalization of the growth curve model considered in Chapter 4. 
Such a model will be called a nonlinear growth curve model. It is specified by the 
following pair of equations: 

Yi = f;(a·) + €<, a* = Aiß + hi. (8.3) 

In this model all growth curve parameters are subject-specific. This nonlinear growth 
curve model is somewhat simpler than (8.1) because, for example, we can separately 
estimate each â  by nonlinear least squares and then apply a weighting procedure 
to estimate ß (see the two-stage method of estimation, Section 8.5). 

The NLME model, specified by equations (8.1) and (8.2), can be rewritten as 
Y% = fi(7? A^iß + t>J + Si so that parameters 7 and ß can be combined into one 
population-averaged parameter χ = (7 ,/3')'. We prefer the current specification, 
however, because it indicates that 7 is fixed and that random effects b^ are associ-
ated with β. 

Naturally, one may ask an essential question: Why do we need random effects? 
Why is it adequate to assume that parameters of the growth curve are random? 
In Chapter 1 we explained why random effects are useful for repeated or cluster 
measurements. Now we illustrate the point in the framework of a nonlinear model 
of male height, see Figure 8.1. Let i index the person and j index the year his height 
is measured, so that yij is the height of person i at time tj. The logistic growth 
curve (or its generalization) is an appropriate model for the height (we consider the 
modeling of children's height at length in the next section). The standard nonlinear 
regression model (zero random effects) assumes that all individuals have the same 
parameters, including adult height. Moreover, since there is only one source of error, 
the generated time series data may not be increasing, which is unacceptable. If the 
growth curve with random parameters is used (nonzero random effects) it would 
assume that everyone has his/her own growth curves parameters, including adult 
height. It is less likely that the random effects model produces a nonmonotonic time 
series. Consequently, the growth curve with random parameters is better for growth 
data. 

The NLME model is different from the marginal mixed model because random 
parameters, a ,̂ are "inside" a nonlinear function. This means that generally the 
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Zero Random Effects Non-zero Random Effects 

FIGURE 8.1. Simulated male height using a logistic growth curve. At the left it is assumed 
that there are no random effects. That is, parameters of the growth curve are the same 
for everyone and the only source of variation is the error term. We notice that height, 
generated by this model, may go up and down; that is absolutely unacceptable. At the 
right it is assumed that each person has his own parameter of growth, including adult 
height (the asymptote). There are two sources of variation: one is modeled via the usual 
error term and another via random effects, as the deviation of the subject-specific from 
population-averaged parameters. The nonzero random effects model is more accurate. 

marginal expectation of the dependent variable cannot be expressed in terms of 
population-averaged parameters in closed terms: namely, 

E(yi) = Ebi {tii^Aiß + bJ} φ fi(7,Aiß)-

This is a characteristic property of the NLME model. Consequently, it is very dif-
ficult to establish statistical properties of estimators in the NLME model in finite 
samples even when the variance parameters are known, a common difficulty with all 
nonlinear statistical models. Therefore, asymptotic consideration (when the number 
of observations goes to infinity/large sample) is useful. 

In a repeated measurements model, the following three asymptotic situations may 
be considered: 

1. The number of subjects, TV, goes to infinity, but the number of observations 
per subject rii remains finite (uniformly bounded). 

2. The number of subjects, TV, is fixed, but the number of observations per sub-
ject ni goes to infinity. 

3. The number of subjects, iV, goes to infinity along with the minimum number 
of observations per subject, minn^. 

For linear mixed effects models, the first condition is sufficient to guarantee consis-
tency, asymptotic normality, and efficiency. As we shall learn later, for the NLME 
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model this is true only for maximum likelihood estimation, and all approximate 
methods require both N and ni to go to infinity. The asymptotic properties of the 
NLME model in these three situations are considered in Sections 8.9 and 8.10. 

Problems for Section 8.2 
1*. Is it correct to say that the NLME model is a nonlinear regression model 

with random parameters? Prove that the latter model, yi = fi(ai) + ε ,̂ where 
cti = β + bi, with normally and independently distributed errors is not identifiable 
(i = 1,2,..., N). What makes the NLME model identifiable? 

2. Describe the three asymptotic situations using the stochastic scheme from 
Section 3.6.2; use the representation fi = f(xi). 

8.3 Example: height of girls and boys 

Before advancing to estimation methods, we consider the following motivational 
example of the NLME model. 

The data are from the Longitudinal Studies of Child Health Development, ini-
tiated in 1929 at the Harvard School of Public Health (the full description of the 
project is given by Stuart and Reed, 1929) and consist of the heights of 67 girls 
and 67 boys aged from 7 to 18, see Figure 8.2. The growth curve analysis for the 
preschool children was carried out previously by Berkey and Laird (1986); thus, we 
focus on the modeling of school-aged children. 

Boy Girl 

Acceleration at 9.9 years old 

Logistic 
QLoyislic 

Acceleration at 9.1 years old 

Age, years 

FIGURE 8.2. Height of 67 girls and 67 boys. Nonlinear growth is evident, particularly as 
the height approaches an asymptote. 

The data, as an R object/dataframe, is downloaded to the R session as source 
("ciWMixedModelsWChapterOSWheight.dat"). It has 1404 observations with 
sex=l corresponding to girl and sex=0 corresponding to boy. 

Clearly, the linear growth model is not appropriate for these data because the 
growth has an evident asymptote, and therefore some type of nonlinear growth 
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would be appropriate. The choice of a suitable nonlinear model is critical to re-
gression analysis, and to the mixed model especially, due to its complexity. The 
wrong model may lead to computational difficulties, such as lack of convergence, 
negative variances of random effects, computer program overflow, etc. A good start 
is to compute the mean height, which eliminates the variation among children, see 
Figure 8.2. The mean height data facilitate the choice of the model. As follows from 
this figure, until age 12, girls and boys grow at a closely similar rate; however, after 
12, boys continue growing while girls slow down. We may expect the mean adult 
height for males to be a little less than 180 cm and the adult height for females to 
be about 160 cm. 

Table 8.1. Nonlinear regression fit of height with two logistic growth curves 
a\ ü2 03 04 σ Accel. 

Girls 
0.904 0.251 6.97 
(0.093) (0.014) 
-2.15 -0.425 0.0386 6.79 9.1 
(0.043) (0.009) (0.006) 

Boys 
Logistic 213.7 0.626 0.128 7.65 
(SE) (6.73) (0.026) (0.010) 
QLogistic 182.3 -1.001 -0.161 0.0177 7.53 9.9 
(SE) (1.917) (0.331) (0.067) (0.0037) 

There is plenty of literature on growth curve models. All growth curves can be 
derived as the solution to the respective differential equation, the interested reader 
is referred to Banks (1994) and to a chapter in Seber and Wild (1989). The most 
popular growth curve with an asymptote is the three-parameter logistic curve, 

Λ(αΐ, 02,03) = 1+"a2-a3t'
 l = i ' - '™· (8·4) 

As the reader can verify, the logistic curve, (8.4), satisfies the differential equation 
df/dt = 03/(01 — / ) . Parameter οχ is the asymptote, and 03 is the rate at which 
/ approaches a\. However, it is well documented that teenagers grow very rapidly 
between 9 and 11, and the transition time to adult height is much shorter than 
can be modeled using a logistic curve (8.4). Hence, to describe a faster/accelerated 
growth, we suggest a quadratic-logistic growth curve (QLogistic): 

/t(fli, 02,03, fl4)= 1 + ea2
a!a3t-a4t2, t = l , . . . , n . (8.5) 

Parameter 04 may be interpreted as the acceleration parameter. Results of fit-
ting to the growth data using the n l s function are presented in Table 8.1. It is 
elementary to show that the fastest growth occurs at the time when the second 
derivative of ft with respect to t vanishes, which yields taccei = (λ/2θ4 — θ3)/(2θ4) 
displayed in the last column of the table. The R function heightlog, which pro-
duces Figure 8.2 and estimates the logistic growth with n l s , can be downloaded 
as source ( " c : \ \MixedModels\\Chapter08\\heightlog. r" ). Remember that the 
data frame height .dat should be downloaded first in order to run height log. 

Logistic 171.0 
(SE) (1.24) 
QLogistic 164.7 
(SE) (0.32) 
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As follows from Table 8.1, the quadratic-logistic growth curve gives better results 
then the standard logistic regression: (a) the regression SD (σ) is smaller; (b) the 
adult height for males is more realistic; (c) standard errors for most parameters 
are smaller; (d) the quadratic term is statistically significant; (e) girls accelerate 
with twofold speed; and (f) as follows from this model, girls accelerate at about 
9 and boys accelerate at about 10. As follows from QLogistic fit, the height of 
adult males is about 182 cm and adult females 165 cm, on average. Notice that the 
estimate of the adult male is overestimated using the standard Logistic curve-this 
is a drawback of using the average data—we obtain a more reliable estimate using 
the nonlinear mixed effects approach in Section 8.16. To apply the quadratic logistic 
growth curve model (8.5) to individual data, we assume that some parameters are 
subject-specific. In mixed modeling a large part of the decision has to do with what 
parameters are random (subject-specific) and what parameters are common to all 
subjects (population-averaged). The asymptote (adult height, αχ) should be subject-
specific. Also, the initial height (the height at age 7) is probably also subject-specific, 
leading us to the assumption that a<i is subject-specific as well. The decision on the 
randomness of as and a± can be checked empirically by fitting the NLME model 
and examining the covariance matrix of the random effects. For example, for girls, 
assuming that all four parameters are subject-specific, the NLME model is 

ai + bu 
Vij ~ 1 + e(a2+6i2)-(a3+6«)*iJ-(a4+6i4)t?i

 + ^ ' ' ^ * 0 ' 

where i = l , . . . ,67,j = l,...,n<, and ε^ ~ Λ/*(0,σ2), b* = (6»ι,6<2,&»3>δ<4)/ ~ 
ΛΓ(0,σ2Ό). It is interesting to determine what growth parameters are gender spe-
cific, leading to the question of whether the data on boys and girls can be combined 
under one model. Notice that if only the adult height is subject-specific, the model 
becomes marginal, see Section 6.2.4. 

Problems for Section 8.3 

1*. Modify height log code to fit Logistic and QLogistic curves to the mean data 
(average height for each age=7,8,...,18). Compare the results with Table 8.1. Why 
are the results different? When would be the results the same? What fit is more 
efficient? 

2. Derive the formula for the acceleration time for the quadratic-logistic model. 
Does acceleration time exist for the standard logistic model? 

3. Explain why the sign of as is different for Logistic and QLogistic models. 

8.4 Maximum likelihood estimation 

If the random terms ê  and b* are normally distributed, the NLME model can be 
rewritten compactly as 

y< | επ-Μ^,^,σ2!), (8.7) 

ai ~ JV (A;/3,a2D) (8.8) 
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with the log-likelihood function, up to a constant term —(Ντ + Nk) In \/27r, 

Κι,β,θ) 
î Γ N N r 1 

= - - i V l n l D I + y V n i + Ä O l n ^ + V l n / 9 i ( 7 , a , /3 ,ö )da 

where 

Si(7,a,/3,0) = e x p | - ^ 2 [II Yi - f*(7,a) ||2 + ( a - A ^ ' D ^ a - Ai/3)]} . 

It is elementary to show that (8.9) gives (4.14) if the NLME model is linear, f̂  = Z^a. 
In this case (8.7) and (8.8) can be written compactly as (4.5). As the reader can 
see, the likelihood function involves an improper integral, which does not have a 
closed-form solution unless the model is linear. The presence of the integral is the 
major issue in NLME model estimation. The integral in (8.9) makes the maximum 
likelihood procedure cumbersome, especially for multidimensional random effects. 
Several estimators of β are considered in detail in subsequent sections. They all 
coincide for a linear mixed effects model when the variance parameters are known. 
However, they all are different and have quite different statistical properties for the 
general NLME model. 

As follows from the maximum likelihood theory, the MLE is consistent, asymp-
totically normally distributed, and efficient when N goes to infinity and and {n^} 
are bounded, see Section 8.2. The asymptotic variance based on the information 
matrix is crucial for efficiency comparisons. However, calculation of the information 
matrix for the NLME model again leads to an integration problem. Below we derive 
an absolute lower bound for the covariance matrix of beta coefficients. 

We use the following lemma, which provides an upper bound for the information 
matrix in a model with two random vector variables Y and A, where A is unobserv-
able. It is well known that the information based on Y is less than the information 
based on A if Y is a function of A (Schervish, 1995). We generalize this result to 
the case when Y depends on A stochastically. 

Lemma 41 Let Y and A be two random vector variables, A is unobservable with 
marginal density /2 (a ; r ) , where τ is the parameter vector. Variable Y is observ-
able, the conditional density of Y \ A is / i (y , a ) , and the marginal density / ( y ; r ) 
= J 7 i (y> a ) /2 (a; r)da. Then 

ΤΎ<ΤΑ\ (8.10) 

that is, matrix 2 A — 2 γ is nonnegative definite, where 2 γ is the Fisher information 
about T from Y and J A is the information from A. 

Proof. We use the following vector analog of the Cauchy inequality (Rao, 1973): 
if άμ(χ.) is a measure, u(x) is an integrable vector, and / (x) is an integrable scalar 
function, then 

( | ι ι ( χ ) / ( χ ) φ ( χ ) ) ( | ι ι ( χ ) / ( χ ) < ί μ ( χ ) ) 

< ( | / 2 ( χ ) φ ( χ ) ^ | Β ( χ ) υ ' ( χ ) ( ί / χ ( χ ) ) . (8.11) 
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Omitting, for simplicity of notation, arguments of functions, we obtain 

so that the marginal information matrix becomes 

W{(/*§H(/*§H'(/^ 
- 1 ' 

dy. (8.12) 

But by inequality (8.11), 

Λ § | - ) a*** y 
MfW)-

< imm'fAu^r (8.13) 

Substituting this into (8.12), we come to the desired inequality 

2V < i[im( 
da. = J A > 

because f f\dy =1 for any a. 

Now we apply this lemma to the model defined by (8.7) and (8.8). Information 
2 γ is determined from the marginal distribution, and information J A is determined 
from the second-stage model (8.8). Prom the properties of the multivariate normal 
distribution, it follows that J A = Σ ; = ι Α£(σ2Ό)_ 1Αί. Thus, the absolute lower 
bound for the covariance matrix for the NLME model is given by 

N 

cov(ßML)>a2 ^ A ^ D - 1 ^ (8.14) 
\i=l 

We notice that this inequality is true whether or not 7 and Θ are known. This 
inequality may be viewed as the Cramér-Rao bound for the NLME model assuming 
normal distribution of a^. Interestingly, the lower bound depends neither on the 
first-stage model nor on the number of observations per subject, n^. As follows 
from Section 8.10, if 7 is not presented, this inequality turns into an equality when 
N —> 00 and minn^ —* 00. In a special random parameters case, A^ = I, the lower 
covariance bound is Ώ*/Ν. 

Inequality (8.14) has an interesting interpretation: it turns into equality under a 
hypothetical situation when the {a^} are observable. Indeed, in that case the best 
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estimator, as follows from (8.8), would be the generalized least squares estimator 
with the covariance matrix coinciding with the right-hand side of (8.14). In fact, 
the condition min rti —> oo means that â  can be estimated with infinite precision. 

Problems for Section 8.4 

1. Prove that the log-likelihood function (8.9) reduces to (4.14) if fj are linear 
functions as for the LME model. 

2. Justify the consistency and asymptotic normality of MLE for the NLME model 
using a stochastic scheme (Section 3.6.2). Use representation fj = f ( x j and think 
of rti as a random sample from a meta-distribution. 

3. Prove Lemma 41 for the case when Y is a function of A (the Schervish result). 
4*. Derive inequality (8.14) for the LME model directly using the results of Chap-

ter 4. Does inequality (8.14) turn into an equality for the LME model? Under what 
conditions does this inequality become an equality? 

8.5 Two-stage estimator 

This estimation method was one of the first suggested in the literature and seems 
natural in the framework of the nonlinear growth curve model (8.3); see Swamy 
(1971), Pocock et al. (1981), Beal and Sheiner (1982), Steimer et al. (1984), and 
Berkey and Laird (1986). Importantly, it is assumed that subjects do not share 
fixed parameters (no 7). Thus, such a model can be called an all-random parameter 
model. Although we generalize the two-stage (TS) estimator to the model with fixed 
shared parameters as well (see the end of this section), it becomes less attractive 
due to the increased computational burden. 

The idea is to use the subject-specific (individual) nonlinear least squares esti-
mates of the regression parameters in the second-stage model applying the Gen-
eralized Least Squares (GLS) method. This two-stage method of estimation is a 
straightforward generalization of its analog for linear models discussed in Section 
4.1. Indeed, after individual estimates are obtained, estimation procedures for the 
second-stage model become very similar. More precisely, the two-stage procedure 
to estimate the vector of population parameters ß in model (8.3) is as follows: 

1. Estimate a ,̂ along with its covariance matrix, individually by nonlinear least 
squares. 

2. Substitute the estimates of a* into the second-stage model (8.2) and apply 
GLS using the estimate of the covariance matrix of individual parameters 
from the first step. 

At the first step, N individual nonlinear regression problems are solved using 
standard techniques, such as Gauss-Newton or Levenberg-Marquardt, as described 
by Bard (1974), Nash and Walker-Smith (1987), Bates and Watts (1988), Seber and 
Wild (1989), and Demidenko (1989), 

|| y < - f , K ) | | 2 => min, i = 1 , . . , N (8.15) 
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to obtain a?. We refer the reader to Section 6.1.3 for the computational detail and to 
Appendix 13.3 for a general discussion of optimization techniques. The conditional 
(asymptotic, when ni —> oo) covariance matrix of a?, as follows from the standard 
theory of nonlinear regression, is 

cov(a* |b<|) ~ T; = 5 2 ( R i R i ) - \ (8.16) 

where R2 is the riiXk derivative matrix of f$ at a?. Analogously to the LME model, 
the estimator of σ2 is the pooled variance, namely, 

g2 = ^ 1
1 . ^ i ; i l y i " W ) l l 2 - (8·17) Σ(^ - k) 2 = 1 

Again, as in the linear model, the following variance/covariance decomposition holds 
(see also Section 7.4.4): 

cov(a?) = cov(a?|bi) + cov(b;) ~ T» + D*. (8.18) 

There are two options in proceeding toward β estimation given individual estimates 
a? and matrices T^. First, similar to the linear growth curve model of Section 4.1, 
we can apply the maximum likelihood procedure to the second-stage model, assum-
ing that the {a?} have a normal distribution; see Davidian and Giltinan (1995), 
Stukel and Demidenko (1997b). Second, we can estimate matrix D by the method 
of moments and then apply GLS. 

The R function heightlog2S below plots and estimates individual growth data 
using the n l s function. 

heightlog2S=function(sex=0) 
{ 

dump("heightlog2S","c:\\MixedModels\\Chapter08\\heightlog2S.rM) 

|

gender=c("Boy","Girl") 
i f (sex==l) a0=c(165,-2 .2 , -0 .42,0 .039) e l se a0=c(182,-1,-0.16,0.018) 

# s t a r t 

|

da=height.dat[height.dat$sex==sex,] #extract gender set 

nkids=nrow(da) 

id=da$id 

xx=seq(from=7,to=18,by=.l) #values to plot the curve 

uid=unique(id);nud=length(uid) 

par4cov=matrix(nrow=nud,ncol=4+4A2) #matrix of all fits 

par(mfrow=c(7,10),mar=c(2,2,1,1)) 

Scov=matrix(0,4,4) 

Sa=rep(0,4) 

SSres=0;dfpool=0 
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f o r ( i in l:nud) 

{ 
x=da$year[id==uid[i]] ;y=da$height[id==uid[i]] 
y=y [order(x)];x=x [order(x)] # order to make l i n e s 
plot(x,y, type="o",xlab="M ,ylab=M M ,main=paste(gender[sex+1],uid[i])) 
o i=t ry(nls (y~al / ( l+exp(a2-a3*x-a4*x~2)) , s ta r t= 

l is t (a l=aO[1] ,a2=a0[2] ,a3=a0[3] ,a4=a0[4]) 
,n ls .control (maxi ter=200))) # prevent from stop 

i f ( a t t r ( o i , " c l a s s " ) ! = " t r y - e r r o r " ) 

{ 
a=coef(oi) 
pa r4cov[ i , l :4 ]=a 
yp=a[1]/(1+exp(a[2]-a[3]*xx-a[4]*xx~2)) 
l ines(xx,yp,col=2,lwd=3) 
covpar=summary(oi)$cov.unsealed # cov matrix/sigma2i 

par4cov[i,5:20]=as.vector(covpar) 

SSres=SSres+sum((y-predict(oi))~2) 

dfpool=dfpool+length(y)-4 

i.covpar=solve(covpar) 

Sa=Sa+i. covpar°/0*7oa 
Scov=Scov+i.covpar 

} 

} 

s2pool=SSres/dfpool # pooled variance 

print(gender[sex+1]) 

meanpar=as.data.frame(matrix(ncol=2,nrow=4)) 

names(meanpar)=c("Mean","Weighted Mean") 

row.names(meanpar)=c("al","a2","a3","a4") 

f o r ( i in 1:4) meanpar[i , l]=mean(par4cov[,i] ,na.rm=T) 
meanpar[,2] =solve(Scov)7o*7oSa #weighted mean 

print(meanpar) 

par4cov[,5:20]=par4cov[,5:20]*s2pool # matrices Ti 
# par4cov.heightO=heightlog2S(sex=0) 

return(par4cov) # return all ind fits for further analysis 

> 

We make several comments regarding this code: (1) the argument sex specifies 
which growth data to analyze; by default, boys' growth is analyzed; (2) array aO is 
used as the start values for n l s ; these values are taken from Table 8.1; (3) array 
par4cov contains four parameters and their covariance matrix for each person, this 
information will be used for computation of the weighted mean, an example of saving 
this matrix is shown at the end of the code; (4) the 4 x 4 matrix Scov is the sum 
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of inversed covariance matrices and the 4 x 1 array Sa is the weighted parameter 
vector; (5) the command t r y prevents the code from stopping when iterations do 
not converge; the maximum number of iterations is controlled by n l s . control ; we 
increase it to 200 because the default number 50 may not be sufficient; (6) the 
first four columns of matrix par4cov are the n l s parameters themselves and the 
remaining 16 columns contain the covariance matrix divided by di and stored as a 
vector; (7) the dataframe meanpar contains parameter averages as the first column 
and the vector of the weighted mean as the second column, the weighted mean is 
computed as 

where a* is the NLS estimate and P* = (R^R^)- 1 is the 'unsealed' covariance 
matrix. A more efficient way to compute the weighted parameter mean is discussed 
below. 

8.5.1 Maximum likelihood estimation 

Based on (8.18), it is reasonable to approximate 

a° ~ ΛΓ(Α;/3, T , + D*), i = 1, . . , TV, (8.19) 

treating a°, Tj , and σ as given but parameters β and D* as subject to estimation. 
Then the Two-Stage Maximum Likelihood (TSML) estimator maximizes the log-
likelihood function, 

1 N 

hiß, D J = - - £ { l n | T< + D, | +(a? - A ^ T « + D , ) " 1 « - Α,/3)}. 
1 »=i 

In the restricted version of MLE, the function to maximize takes the form 

1 N 

M / 3 . D J = - - V { l n | T i + D . |+ ln | A ^ T ^ D , ) - 1 ^ | 
1 i = i 

+(a? - AißYiTi + D * ) - 1 « - Mß)}. 

These two functions are the same as for the linear mixed effects model considered 
in Chapter 4, so the reader is referred to that chapter. The maximization can be 
accomplished by either of three algorithms: (1) Newton-Raphson, (2) Fisher scor-
ing, or (3) EM (fixed-point). Davidian and Giltiman (1995) called this method the 
"global TS" estimation method. 

8.5.2 Method of moments 

An alternative way is to estimate matrix D* by the Method of Moments (MM), 
analogously to the linear growth curve model, and then apply GLS to model (8.19). 
Therefore, based on decomposition (8.18), assuming that T^ is fixed, we estimate 
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D* = ( Σ α ^ — Ti)/iV, where d^is the OLS residual vector of the second-stage 
model, 

di = a?-Aiff;A;Ai) £ > # . (8.20) 

Sometimes matrix D* may not be nonnegative definite; then we modify the estimate 
as 

0* = ί^Σα^-4ΣΤ- (8.21) 
where λ is the minimum eigenvalue of matrix ( T ' ) - 1 / 2 ^ d ^ d ^ T - 1 / 2 . It is elemen-
tary to prove that (8.21) is then a nonnegative definite matrix. A similar procedure 
was suggested by Vonesh and Carter (1992). The GLS estimator applied to (8.19) 
yields the Two-Stage MM (TSMM) estimator, 

ßrs = [ ^ Α ^ Τ , + Ό , ) - 1 ^ ] " 1 [ ^ A J i T i + D,)-1!!?] . (8.22) 

The TSML and TSMM estimators have the same form as the GLS estimator and 
differ only by the choice of the estimator for matrix D*. The covariance matrix for 
the two estimators is given by 

[ ^ A j i T i + D , ) - 1 ^ ] " 1 , (8.23) 

where for TSML, D* is the MLE from l2 or l2R, and for TSMM it is (8.21). 

8.5.3 Disadvantage of two-stage estimation 

The disadvantage of TS estimation is that individual estimation may fail, especially 
when the number of observations per subject, n^, is small. Thus, the condition that 
the number of observations per subject/cluster is large is not only a theoretical but 
a practical requirement. Perhaps the simplest way to treat failed cases is just not 
to include them in the second stage. See Section 8.9, where we study the properties 
of the TS estimator for a simple exponential model. There is another pitfall of TS 
estimation: Since the decision on nonconvergence is always nonformal, the inclusion 
of a poor individual estimate in the second-stage model may lead to severe bias in the 
final beta estimator. To make the TS estimate more robust, Davidian and Giltinan 
(1995) suggest using absolute rather than squared residuals when minimizing l2 or 
hü- Fortunately, the individual outliers are often accompanied by large covariance 
matrices T^, reducing the effect of poor estimation at the second stage. Clearly, the 
number of successful individual regressions must be large enough to allow inversion 
of the matrix in (8.22) or to find the maximum of the log-likelihood function. We 
refer the reader to a paper by Yeap and Davidian (2001), where the robust TS 
method for nonlinear mixed models is explored further. 

8.5.4 Further discussion 

Now let us discuss the case when the second-stage model is the rectangular growth 
curve model of Section 4.1.5. Then all components of the subject-specific parameters 
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have the same set of explanatory variables, A» = I® qj, where I is the kxk identity 
matrix and q̂  is a p x 1 vector of common explanatory variables (vector ß has 
dimension m = pk). If, in addition, the first-stage model is balanced, the growth 
curve is called double balanced and the GLS collapses to the OLS estimator (we 
again refer the reader to Section 4.1.5). This does not remain true for the nonlinear 
growth curve model. Specifically, if in model (8.3) we have £j = f, rii = n, and 
A* = I ® q£, GLS and OLS produce different estimates. This stems from the fact 
that in the nonlinear model, R^ ^const since derivatives are evaluated at different 
points a?, and consequently, T^ are not the same, unlike the double-balanced linear 
growth curve model. 

As shown in Chapter 4, the two-stage estimator for the linear mixed effects model 
is consistent, asymptotically normally distributed, and efficient when N —> oo and 
{rii} are fixed. Later in the chapter it will be shown that the TS estimator is 
consistent for a nonlinear mixed model when both the number of subjects and the 
number of observations per subject increase to infinity. One can see from (8.16) that 
when rii goes to infinity, R^R« = 0(rii) and matrix Τ^ vanishes. This means that 
as follows from (8.23), the covariance matrix approaches (Σ A^D"1 A^1)"1, where 
D is the scaled covariance matrix. But as follows from (8.14), this*matrix coincides 
with the absolute lower bound for /3, meaning that when N —* oo and ni are large, 
the TS estimator is efficient. 

8.5.5 Two-stage method in the presence of a common parameter 

Ordinarily, the two-stage method of estimation assumes that there is no common 
parameter 7. However, one may generalize the TS to model (8.1) by minimization 
of the total sum of squares, 

Σ ΐ | * - ί ί ( 7 , α , ) | | 2 . (8-24) 
i=l 

Obviously, in the absence of 7, this minimization collapses to N separate nonlinear 
least squares. In the presence of 7, problem (8.24) does not collapse into separate 
minimizations. To facilitate the computational burden, one may apply a modifi-
cation of the Gauss-Newton algorithm described in Section 8.7.3. Prom (8.24) we 
obtain estimates a? and its covariance matrix and proceed to estimation of the 
second-stage model. 

Problems for Section 8.4 

1. The code heightlog2S computes the weighted mean using matrices P* = 
(R^Ri)"1. Show that the estimate ä does not change if P^ is replaced by the co-
variance matrix of a*: namely, Τ^ = σ2Ρ; . 

2. Run heightlog2S for girls and boys and compare the results with Table 8.1. 
What estimate is more reliable based on the prediction of the adult height? 

3*. Derive the Newton-Raphson algorithm for maximization of ^(β,Ό^) and 
faiiiß, D*) following the line of derivation in Section 2.10. Use the matrix derivative 
9In I Ti + D* I /dD* = ( Ί \ -I- D * ) - 1 and inverse matrix approximation (T^ -f 
D**)-1 - R r 1 - R ^ A R r 1 where R* = T< + D* and Δ = D** - D*. Obtain the 
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score equation for D* and solve it using the vec operator. Derive the MLE for ß 
and D* when the data are balanced, Ί \ = T. Write an R function that implements 
this algorithm. Test whether your function converges to the analytic solution in the 
case of balanced data. Apply this algorithm for the height data. 

4. Simplify the MM for the all-random parameter model as coded in the function 
heightlog2S. Derive a simple expression for (8.20) and compute (8.21) and (8.22) 
for the height of boys and girls. 

5. Compare (8.23) with (8.14) derived previously inequality. Does the former 
comply with the latter? When does (8.14) turn into an equality, or better stated, 
when is the left-hand side close to the right-hand side? 

6. Write an R program that models the height data with the QLogist model 
assuming that only adult height (αχ) varies from person to person. Reduce the 
estimation problem to n l s alternating between an estimation of 67 individual an 
and fixed α2,α3, and a±. 

8.6 First-order approximation 

To circumvent the integration problem, several authors have suggested replacing the 
original nonlinear regression function with its linear analog using the first-order ap-
proximation (FOA), see Sheiner and Beal (1980), Beal and Sheiner (1982,1992), and 
Vonesh and Carter (1992). The advantage of this approach is that in the linearized 
model the random effects become linear and therefore we arrive at the marginal 
mixed model, studied in Chapter 6. 

Thus, replacing ^ ( 7 , Aiß + b j with its linear counterpart around Efa) = A^/3, 
one obtains a pseudo-model 

y< = fi(7 , A./3) + Ziiß)^ + e<, (8.25) 

where Z^ = dfi/da.i and b^ ~ Λ/Γ(0,σ2Ό). We use the term pseudo to emphasize 
that the model (8.25) is not the same as the original model. It is worthwhile to 
remember that this approximation is done around the population-averaged mean; 
later, we consider an approximation around the subject-specific mean. The key to 
the first-order approximation is that it turns the original model into a marginal 
model with the varied matrix of random effects (6.17) of Section 6.2. The reader 
should remember that the original and pseudo-models are not equivalent. To esti-
mate (8.25), one could simply follow the recipes of Section 6.2. For completeness, 
we review several schemes to estimate the pseudo-model (8.25). 

8.6.1 GEE and MLE 
As mentioned earlier in Section 6.2, the marginal model with a varied matrix of ran-
dom effects may be estimated by either MLE or GEE using iteratively reweighted 
least squares (IRLS) to update β and 7, see Section 6.2.3 for details. Under the 
normal assumption, the former method is more efficient, but it is not robust to dis-
tribution and model specification. Since (8.25) is an approximate model, estimating 
by GEE is well justified. Following the line of Sections 6.1 and 6.2, 7, /3, and the 
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variance parameters, σ2 and D, may be estimated by the ML with the log-likelihood 
function 

Z ( 7 , / V , D ) = - \ {Ντϊησ2 + £ > | V, | + σ " 2 ( Υ ί - ü / V ^ f o - ft)]} (8.26) 

where 
£ = £ ( 7 , ^ / 3 ) , Vi = Vi(O) = l + ZiOZ'i. (8.27) 

Notice that we deliberately indicate in (8.27) that matrices V* and Z$ are not 
functions of 7 and β but functions of D only, so that the estimating equation for 
X = (Υ,/3')' is E ^ V r H y - f J = ° w h e r e R * = dÎi/dX- A f t e r t h e maximum of 
I is found, we update Z$ and V; and restart the maximization process, iterating 
in such a manner until convergence. We can eliminate σ2 and obtain a profile log-
likelihood such as (6.6). Below we consider another method to estimate the variance 
parameters. 

8.6.2 Method of moments and VLS 

Instead of the likelihood-based variance parameters estimation, one can use a Method 
of Moments (MM) estimator as in the two-stage method discussed above or as dis-
cussed in Section 6.1.4. In particular, in the case when A* has the form (I 0 q£), 
Vonesh and Carter (1992) proposed a MM estimator for the covariance matrix of 
random effects, 

T< (8.28) 

where T^ and d^ are as defined in (8.16) and (8.20). Scalar λ provides the nonnega-
tive definiteness of matrix D* and can be chosen as for the TS estimator described 
above. In the general case, we use the MM estimator (8.21). Vonesh and Carter 
proved that for pseudo-model (8.25), the FOA estimator is asymptotically equiva-
lent to the MLE when both N —► 00 and minn^ —» 00. However, it is important 
to note that model (8.25) does not coincide with the original model (8.1, 8.2), and 
consequently, the properties of this estimator do not necessarily remain true for 
the original model. Moreover, as shown in Section 8.9, the FOA estimator is not 
consistent for model (8.1) in either of two asymptotic situations. 

By analogy with a linear mixed effects model, variance parameters σ2 and D can 
be estimated based on residuals e» = y* — ft (7, Α^/30) and matrix R^ using the 
Variance Least Squares (VLS) estimator, see Section 3.12 and Section 6.1.4. 

Problems for Section 8.6 

1. Describe the NLME model for which the pseudo-model (8.25) is equivalent to 
the original model. Provide an example. 

2. Following the nomenclature of Section 6.3, to what type of nonlinear marginal 
model does the pseudo-model (8.25) belong. 

3. Obtain a closed-form solution of MLE for D given β using function (8.26) when 
Z< = Z. 

D* 
N -m Σ^-^Σρ-^ΐΣ^)'1* 
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4*. Consider the exponential model with random intercept, yij = exp(a + ßxij + 
bi)+Sij, where bj is the random effect (a + bi is the random intercept) and the error 
term are independent and normally distributed with zero mean and variances σ\ and 
σ2 respectively, j = 1,2,..., n; i = 1,2,..., N. Find a consistent estimator of the slope 
using standard nonlinear least squares assuming that nN —> oo. Estimate β using 
maximization of the log-likelihood function (8.26); make necessary simplifications. 
Write an R program to investigate the small-sample properties of the two estimators 
as a function of n and N (assume that Xij = i). Is the FOA estimator consistent 
when N —► oo and n is fixed, say, n = 2. Support your analytical derivation with 
simulations. 

5. The conditions are same as Problem 4 but the slope is also random, y^ = 
exp(a + (β + 5i)Xij + 6») + ε^. 

8.7 Lindstrom-Bates estimator 

Lindstrom and Bates (1990) suggested approximating the nonlinear function fj not 
around the population means E(s^) = Aiß, as in the first-order approximation 
method, but around the subject-specific means E(ai)+bi, where b^ is an "estimate" 
of b; . The iterative procedure consists of two steps (originally, there were no 7): 

1. Penalized nonlinear least squares (PLS). When D is being held, the following 
minimization problem is solved: 

N 

VOly i - f i ÎT .A i / î + T O f + r j D - V i ] ^ min . (8.29) 

The solution to (8.29) is denoted as 7, β, and {τι ,Τ2, . . . ,TJV}· 

2. Linear mixed effects (LME). Given estimates of the random effects τι and 
population-averaged parameters 7 and β from step 1, apply the linear mixed effects 
maximum likelihood estimation procedure based on the model 

Wi~N (RiA</3, σ2(Ι + RiDR^)) (8.30) 

with the pseudo-observation w^: 

w» = yi - fi(7, Aiß + 9i) + Hi(Ti + A<3), Hi= -^l 

Next find estimates for /3, σ , and D (the regular or restricted ML estimation 
procedure can be applied) and return to step 1, iterating until convergence. The 
resulting estimator is called the LB estimator. 

It is instructive to see what the LB estimator turns into for a linear growth curve 
model, y^ = Ζ ^ + ε^, where â  = Aiß + b i 5 see Section 4.1. Then fi(7,a) = Z^a 
and Hi = Zi. The pseudo-observation takes the form 

w< = yi - Zi(Aiß + Ti) - Zi(Ti + Αφ) = y<, 

so that model (8.30) turns into linear growth curve model (4.5), and consequently, 
LB = ML. For this model, PLS is not required. 
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A question arises as to the numerical consistency of the two steps arises because 
parameter ß is estimated on different grounds: in PLS, it is the solution to (8.29), 
and in LME, it is the estimate of fixed effects. We show that these two estimates 
coincide at convergence (both procedures produce the same /3-estimate). To prove 
this, it suffices to show that if ßx minimizes 

N 

Σ [II Yi - f*(7, Aiß + n) ||2 WiD-'ri] (8.31) 
2 = 1 

and ß2 minimizes 

Σ [(w< - RiAü9);(I + RiDHiJ-Hwi - Η<Α</3)] , (8.32) 

assuming that 7 and D are fixed, where 

du 
Wi = y< - fi(7, Aiß! + Ti) + KiTi + R ^ A ^ , R; = 

8Li=Aiß1+Ti 

then βλ = β2. Indeed, the first-order conditions for β and Ti from (8.31) can be 
written, respectively, as 

Σ A,
iR!iei = 0, D R ^ + n = 0, (8.33) 

where e* = y* — ^ ( 7 , A^/3 + τ*). The first-order condition for /3 from the linear 
mixed effects problem is written as 

£ AiRi(I + RiDRjJ-^Wi - RiAiß2) = 0. (8.34) 

We aim to show that (8.33) and (8.34) imply that ßx — ß2- Indeed, applying the 
dimension-reduction formula (2.21), we rewrite (8.34) as 

0 = ^ A i R i f l + R i D R ^ B i f e + R i T i ) 

+ (J2 AÎRJ(I + RiDR^)-1^^) {βλ - β2). (8.35) 

But for the first term, using (8.33), we obtain after some algebra 

J2 AjRi(I + RiDRi)-1!^! - D R ^ ) * = 0, 

so that the first term in (8.35) vanishes, implying that βλ = β2. 
m 

One can use this fact to simplify the computations in the LB procedure. First, we 
can take β from the PLS. Thus, let 7 = 7 and ß —ß in (8.29) be held fixed, so that 
ai = Aiß is fixed. Then the optimization problem (8.29) collapses into N separate 
optimization problems, 

|| yi - fi(âi + r ) ||2 + r / D " 1 T = » min, i = 1,..., N. 
T 

They can be solved by the Gauss-Newton algorithm, 

TS+I =TS + XsiR'iRi + D " 1 ) - 1 ^ « - fi(7,âi + τ,)), 



452 8. Nonlinear Mixed Effects Model 

where R* is the derivative of U calculated at â  + rs and 0 < Xs < 1 is the step 
length to guarantee the drop in the sum of squares at each iteration s = 0 ,1, . . . 

The second way to simplify the LB procedure is to solve (8.29) for 7, /3, τχ,..., TN 
but to use the linear mixed effects model without fixed effects to obtain estimates 
for the variance parameters, namely, 

Yi - f4(7, Αφ + Ti) + H A - N (0, σ2(Ι + R*DR^)). 

Computational aspects of simultaneous minimization over all parameters in PLS 
are discussed below in the Section 8.7.3. 

The relationship between the LB method and Laplace approximation is studied in 
Section 8.8.2. We shall show that LB is equivalent to the penalized quasi-likelihood 
method. 

8.7.1 What if matrix D is not positive definite? 

An implicit assumption of penalized nonlinear least squares is that during iterations, 
matrix D remains positive definite. Although we can assume that D is nonnegative 
definite, because it is the outcome of the ML solution, it is possible to get det(D) =0 
at some iteration. A naive solution to take a generalized inverse of matrix D in 
(8.29) is unsatisfactory. To illustrate this comment, let us assume that there are 
two uncorrelated random effects: matrix D is 2 x 2 and D12 — D21 — 0. Let 
Ό22 — 0 and let the first diagonal element be positive. The generalized inverse 
of D =diag(Z}n,0) is diag(l/ JDn,0). This implies that the second component of 
vector Ti becomes unrestricted in the penalized least squares. To the contrary, 
since var(r^) = 0, this component must be zero. 

An appropriate way to cope with situations in which D becomes singular is as 
follows. For singular D, using eigenvalue decomposition, we represent 

D = i P i , P o 
0 0 
0 Λ 

Pi 
P'2 

(8.36) 

where Λ is the diagonal matrix of nonzero eigenvalues. Let D + = P 2 Ä _ 1 P 2 be the 
generalized inverse of matrix D. Then the penalized nonlinear least squares takes 
the form 

N 

Σ [II Yi - f*(7, Α,/3 + n) ||2 +T'iD+Ti] => min . 
PfÈr-^Ti—U i=l 

In other words, we replace the original PLS by the restricted PLS, Ρ^τ^ = 0> 
i = l ,2, . . . ,N. 

8.7.2 Relation to the two-stage estimator 

The TS and LB estimates are closely related. Let δ be any positive scalar and let 
β(δ) be the solution to the PLS 

N 

Σ [II y i - fi(7> Aiß + T<) ||2 +ôr'iD-1Ti] . (8.37) 
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Clearly, (8.37) is equivalent to (8.29) for δ = 1. We aim to show that when δ 
approaches zero, the LB estimate converges to the TS estimate, namely, 

timß(o)=ß, (8.38) 

where ß is the TS estimate, defined as 

3 = φ A J D " 1 ^ φ A p ^ a A , (8.39) 

where the {a?} minimize the total sum of squares (8.24). To prove this, we denote 
OLi = Aiß + Ti and rewrite (8.37) as 

Σ [II Yi - fi(7,c0 II2 +«5(ai-Ai/3)'D-1(ai-Ai/3)] . (8.40) 

The first-order conditions for minimization for on are 

| ^ ( y , - f , ( 7 , a j ) + 5D- 1 (a , -A , /3 ) = 0, i = l,...,iV (8.41) 

and the first-order condition for ß is 

A p " 1 ( a , - A i / 3 ) = 0. (8.42) 

Since 5 —> 0, equations (8.41) become equivalent to ^:{y% — fi(c*i)) = 0, leading 
to the individual least squares solution, oti = a?. Substituting them into (8.42), we 
come to (8.39)—the limit (8.38) is proved. In fact, (8.37) may define a new family 
of estimators as a function of δ G (0,1]. When δ = 1, we obtain the LB estimator; 
when δ —► 0, we come to the TS estimator. 

The close relationship between the two methods of estimation explains their sta-
tistical equivalence when min 77̂  —» 00, see details in Section 8.10. Referring to 
(8.40), the LB estimator can be viewed as an adjusted version of the TS estimator. 
The penalty term, (oti—Aiß)/O~1(cii—A^/3), can be interpreted as a tentative re-
striction on the dispersion of individual estimates. Several authors have pointed out 
the connection between the LB estimator and MLE via the Laplace approximation 
to the log-likelihood function. The relevant discussion is given in Section 8.8. 

8.7.3 Computational aspects of penalized least squares 
Simultaneous minimization of the criterion function (8.29) involves a large number 
of parameters, q -h Nk + m. Consequently, a straightforward application of the 
Gauss-Newton algorithm or any of its modifications would require a (q 4- Nk + 
m)x(q + Nk + m) matrix inverse. As already mentioned, a characteristic feature of 
(8.29) is that holding ß, one comes to N separate optimization problems. This kind 
of problem was called a "loosely coupled" nonlinear least squares problem by Soo 
and Bates (1992). They made use of this peculiar property and proposed a special 
algorithm avoiding the large matrix inverse based on orthogonal-triangular matrix 
decomposition. Here we suggest an alternative way to solve (8.29) in the framework 
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of the Gauss-Newton algorithm and provide an explicit solution for the parameter 
increments. 

L e t Inew = 7 + Δ 7 , ßnew = ß + Aß, and n,new = η+Ατι where 7, β, and n 
are values from the previous iteration. The idea is to find the increments Δ 7 , Aß 
and Ari by linearization of the nonlinear regression functions in (8.29). Denoting 
the residuals from the previous iteration as e$ = y$ — ̂ ( 7 , A^/3 + τ^), the criterion 
function can be approximated by a quadratic function as follows: 

N 

Σ [II ei - EiAu - RiAn) ||2 +(n + ΑηΥΌ-^η + An)], (8.43) 

where v is the combined parameter vector, 

" 7 " 
. / 3 . > E^ — ' duh ' 

RiAi 

If Δ/3 is held, the minimization of (8.43) falls into N separate quadratic problems 
for Ατι with the solution 

An = (R-Ri + D- 1 ) - 1 (R^e i - Ό^η-ΈΪ^Αν), i = 1,..,N. 

Substituting Δτ* back into (8.43), the profile criterion function takes the form of 
a regular sum of squares, ]Γ || ν^ — QiAv ||2, where 

v< = e< - Ri(R-Ri + D - ^ - ^ R j e * - D _ 1 Ti) , 

Qi = E^ — R^(R^Ri + D ) R^E^, 

with the solution Au = (X)QiQi)~ ( S Q i v * ) · Finally, the Gauss-Newton itera-
tions have the form 

"new = ΙΖ+λΔΐ / , Titnew = Ti + λ Δ τ * 

where 0 < λ < 1 is the step length, to ensure a decrease in the original criterion 
function at each iteration. 

If there is no common parameter 7 in the nonlinear growth curve model, we can 
apply TV separate penalized nonlinear least squares to find τι, and we can find β 
from LME (8.30). 

8.7.4 Implementation in R: the function nlme 
The Lindstrom-Bates estimation procedure is implemented in the function nlme 
from the library of the same name; we have used this function before in Section 
6.4.6. Three components should be specified in the nlme call: (1) the nonlinear 
function fj as a function of fixed and random parameters (the syntax is the same as 
in the n l s function); (2) fixed effects parameters; and (3) random effects parameters. 
When specifying random effects,we use the same syntax as in lme. Also as in lme 
we can specify the structure of the covariance matrix of random effects, cov(b^) = 
D*.Recall that random=pdDiag(alpha+beta~l) in function phototum means that 
parameters alpha and beta are random and do not correlate, i.e. matrix D* is 
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diagonal; random=alpha+beta~l would mean that there is no restriction on matrix 
D*, i.e. the off-diagonal is not zero and subject to estimation. As in the case of 
n l s , the user should specify the starting values for the fixed parameters; they can 
be obtained from the n l s fit. Function fj can be specified as a formula in the nlme 
call or can exist as a stand-alone function in the R session (it cannot be specified 
locally). 

We illustrate the nlme function with the QLogist model applied to the height 
data. The function QLogist must exist in the R session: 

QLogist=function(al, 

{ 
dene=a2-a3*x-a4*x~2 

y=al/(1+exp(dene)) 

return(y) 

} 

a2 ,a3 a4 x) 

The function height log . nlme contains several nlme calls; one of them is as fol-
lows: 

outnlmeOnlme(height'"QLogist ( a l , a2, a3 , a4,x=year) , 
f ixed=al+a2+a3+a4~1,random=al+a2+a4~1,groups=~ id , 
data=da,s tar t=c(al=aO[1],a2=a0[2] ,a3=a0[3] ,a4=a0[4])) 

Alternatively, one can call 

outnlme<-nlme (he igh t~a l / ( 1+exp(a2-a3*year-a4*year~2)), 
f ixed=al+a2+a3+a4~1,random=al+a2+a4~1,groups=~ id , 
data=da,s tar t=c(al=aO[1],a2=a0[2] ,a3=a0[3] ,a4=a0[4])) 

The latter call is efficient when the model is given by a short formula; otherwise 
it should be defined as a stand-alone function, such as QLogist. In the calls above, 
parameters αι,α2, and a^ are assumed random with unstructured covariance ma-
trix. The function height log . nlme plots the individual height data together with 
the modeled growth assuming that only adult height (parameter αχ) is random 
and subject-specific. The function nlme is quite flexible and allows autocorrelation 
within the cluster and nonconstant variance. However, it may fail to converge when 
the matrix D tends not to be positive definite during iteration, as happens with the 
function lme (see details in Section 2.16). 

P rob lems for Section 8.7 

1. Relate (8.29) with the results of Section 3.7, particularly equation (3.54). Pro-
vide an interpretation of the PLS. 

2. What is the difference between (8.30) and the FAO approach? Is there a dif-
ference if îi is a linear function? 

3. Using spectral matrix decomposition (8.36) prove that D + = Ρ 2 Λ _ 1 Ρ 2 is the 
generalized matrix inverse. See sections 2.2.3 and 13.2.2 for examples. Use function 
g inverse . sym to verify this formula by a numerical example. 
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4. Show that the LB estimate converges to the TS estimate for linear model when 
5 —> 0 directly using closed-form formulas. 

5. Apply the algorithm from Section 8.7.3 to a linear model, and verify that it 
needs one iteration to converge. 

8.8 Likelihood approximations 

Laplace approximation to the likelihood is the major approximation in the frame-
work of nonlinear mixed models. We used this approximation extensively for GLMM 
in the previous chapter. Several authors, including Wolfinger (1993), Pinheiro and 
Bates (1995), and Vonesh (1996), pointed out a close relationship between the 
Laplace approximation, penalized quasi-likelihood, and the Lindstrom-Bates es-
timator. In this section we overview the relevant results; we refer the reader to 
Sections 7.7.1 and 7.7.2. 

Let Z(yi|tv, 7, /3,σ2) be the conditional log-likelihood function or the log-likelihood 
function of the first-stage model (8.1), 

1{Ύί\\>ί]Ί,β,σ2) (8.44) 

= -0 .5 {ni 1η(2π)+ ruina2 + σ~2 || y i - £ (7 , A ^ + b J | | 2 } . 

The marginal log-likelihood function for yi is obtained after integrating out the 
random effects, 

Z(y<; 7, β,σ2) = In j ez<*lb™**2 >#b; D)db, (8.45) 

where φ is the density of the normally distributed random effects bkxl, 

</>(b;D) = (2τΓ)-*/2(σ2Γ* /2 |Ε>|_1/2exp f-^b'O^b) . (8.46) 

As the reader can see, log (8.45) is just (8.9) with b as the integration variable 
instead of a .̂ Integral (8.45) generally does not admit a closed-form solution, so an 
approximation is sought. 

8.8.1 Linear approximation of the likelihood at zero 

It is instructive to start with the first-order approximation of function f̂  in (8.44) 
to derive an approximation of the likelihood. We show that the FOA model, derived 
in Section 8.6, can be obtained as an approximation of the log-likelihood, Wolfinger 
and Lin (1997). 

Since E(bi) = 0, function ^ ( 7 , A^/3 + b j may be approximated at zero by a 
linear function as 

S(7, Α,/3 + b j cz ί ; (7 , Α,/3) + R.bi , (8.47) 

where 

R i Ob 
(8.48) 

b=0 
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is the Ui xk matrix of derivatives calculated at b^= 0. Having (8.47), we approximate 
the log-likelihood function (8.44) by 

-0 .5 [m 1η(2π) + m Ιησ2 + σ"2 || ei-Rfa ||2] , (8.49) 

where e* = y* — fi(7, A^/3) is the n ^ x l residual vector. As a result of this approx-
imation, the exponent in (8.45) becomes a quadratic function of b , and therefore 
the integral admits a closed-form solution. However, instead of doing a straight-
forward multivariate integral calculation we interpret (8.49) as the log-likelihood 
function of the model e^|bi^j\T(Ribi,a2I) and couple this with the model for ran-
dom effects, bi~A/"(0,a2D). Then integration (8.45) gives the marginal model for 
ei, namely, θ;~Λ/"(0,σ2(Ι + R^DR^)). Finally, in terms of y^, the likelihood approx-
imation (8.47) yields the approximate model 

yi~Af ($(7, Α,/3),σ2(Ι + R ^ D R j ( 0 ) ) ) , (8.50) 

which yields a previously derived first-order approximation (8.25) with the joint 
log-likelihood function (8.26). Thus, approximation of the mean function of Section 
8.6 and the likelihood approximation leads to a nonlinear marginal model with a 
varied matrix of random effects (6.17) or the pseudo-model (8.25) previously studied 
in Section 6.2. 

8.8.2 Laplace and PQL approximations 
The aim of the log-likelihood approximation is to eliminate the integral. According 
to the Laplace approximation, one approximates the integral where the integrand 
(8.45), as a function of b, takes maximum value, see Subsections 7.1.2, 7.3.4 and 
7.7.1. Let 7,/3, and D be fixed; then maximization leads to N penalized nonlinear 
least squares, 

|| y< - ft(7, Αφ + bt) ||2 + b £ r 1 b i =► min. (8.51) 
Di 

Denote the solutions/maximizers {b*^,z = l,...,iV}. Assuming that b** are being 
held fixed, the multivariate Laplace approximation (7.131) gives the following ap-
proximation to the joint log-likelihood, up to a constant, 

ILA(X^2,O) =-0.5[7ντ1η(2πσ2) + ]ν ΐη |Ό| (8.52) 
N N 

+ ]Tln ID"1 + R'̂ R*, + BUI + σ"2 ]Γ(|| y, - Μχ) ||2 +Ι4ϋ"11>*)], 
ΐ = 1 2 = 1 

where ϊ*ΐ(χ) = U{l·, ^iß + k*J is an η^ χ 1 vector of the mean/regression functions, 
R*2 is an n; x m matrix of the first derivatives of f̂  and 

H.i = Ê(»i-^)W ( 8 · 5 3 ) 

is the mx m matrix evaluated at 7, A^/3-f-b^. Notice that we use the notation 
X = {l\ß')' f°r the entire vector of population-averaged parameters. The reader 
can see an obvious parallel to the LA method (7.137) for logistic regression with 
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random effects. Both LA and FOA use linear approximation, but in the latter we 
approximate around zero and in the former we approximate around an estimate of 
the random effect as the solution to (8.51). 

The estimation process based on (8.51) and (8.52) consists of two alternating 
steps: (a) solving N penalized least squares (8.51) assuming that r and D are being 
held fixed, (b) maximizing function (8.52) over parameters τ ,σ2 , and D assuming 
that {b*i} are being held. Numerical details are discussed in the next subsection. 

In penalized quasi-likelihood, the term with second derivatives, H*i, is ignored, 
see Chapter 7. One can justify this by observing that Ε(Ή^) ~ 0 because E(yij — 
f*ij) ~ 0. Thus, we have 

IPQL(X^2, D) = -0.5[ΛΓτ1η(2πσ2) + ΛΠη|Ό| (8.54) 

+*~2 E d i y< - f*(x) il2 +b:<D-ib*<) + Σ l n lD_1+R*iR-l)]> 

as derived by Vonesh (1996). The difference between LA and PQL approximations 
should be small when rii is large. Wolfinger and Lin (1997) showed that PQL = LB, 
or in other words, penalized quasi-likelihood is equivalent to the Lindstrom-Bates 
method. It suffices to show that 

| |e^ | |2 + b ' ^ D ^ b * ; + In |I + DR^R*^ (8.55) 

= (e*< + R ^ b ^ ' V " 1 ^ + R^b**) -|- ln |V<|, 

where V^ = I + R*;DR^ and b*; comprise the solution to PLS; they satisfy the 
equation R^e*^ = D~1b5|e^. Using the dimension-reduction formula (2.22), we see 
that the log determinant at the left- and right-hand sides are equal. Next, substi-
tuting b*; = DR^e** into the left-hand sides of (8.55), we obtain e^V^e^. Substi-
tuting the same at the right-hand side, we obtain e ^ V i V ^ V ^ e ^ = e^V^e**, and 
equality (8.55) is established. 

It is instructive to show that for the LME and the nonlinear marginal model with 
a fixed (6.1) or varied (6.17) matrix of random effects, LA (8.52) and PQL (8.54) 
yield the ordinary log-likelihood function (6.18). Apparently, since for these models, 
random effects are linear, H*i = 0 and IL A = IPQL- Further, as follows from Section 
3.7, the solution to PLS (8.51) is b ; = D Z ^ I + P i ) " 1 ^ , where e4 = y» - f; and 
Pi = Z^DZ^. The minimum is a quadratic form of ê  with the matrix 

[I - P,(I + ΡίΓΜΚΐ-Ρ + PiJ-'Pil+il + Pi)_1Pi(I + P<)_1. (8-56) 

It is elementary to show that (8.56) simplifies to V " 1 = (I + P i ) - 1 . Also, for a 
mixed model with linear random effects, R; = Z» and H^ = 0. Hence, using formula 
(2.22), we finally infer that IL A coincides with (6.18). 

P rob lems for Section 8.8 

1. Derive the marginal log-likelihood function (8.45) for problem 4 of Section 8.7. 
Derive the linear approximation of the likelihood at zero. 

2*. Write an R function that estimates the exponential model from Problem 4 of 
Section 8.7 by maximum likelihood. Use i n t eg ra t e to compute (8.45) and other 
integrals needed for function maximization that emerge in the score equation. Use 
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the Empirical Fisher scoring algorithm for iterations, see Section 7.3.1 and Appendix 
13.3.4. 

3. Show how estimation of model (8.50) can be reduced to alternation between 
the weighted nonlinear least squares and LME. 

4*. Derive an iterative algorithm for maximization of function (8.54) alternating 
between n l s and lme. Write an R function that implements it; compare with nlme 
on simulated data using problem 4 of Section 8.7. 

8.9 One-parameter exponential model 

In this section a simple example of a nonlinear mixed effect model is considered, a 
one-random parameter exponential model. The simplicity of this model allows us 
to find a closed-form solution to estimate the population-averaged parameter and 
to calculate the bias directly, or at least to find a good approximation to the bias 
for all four estimators considered in the previous section. Remarkably, this model 
reflects all features of more complicated real-life nonlinear mixed effects models, 
such as bias or possible nonexistence of nonlinear least squares estimates sometimes 
experienced in practice (Demidenko, 1989, 1996). Based on this model, we show 
that all estimators considered above, except the MLE, are inconsistent when {rii} 
are finite and N —> oo. In the next section this model is used to illustrate the 
asymptotic mean square error (MSE) calculation and efficiency comparison. 

The following one-parameter balanced exponential model is considered to illus-
trate estimation methods, 

Vij = eai+ei:j, dj ~Λ/"(0,σ2), i = 1,..., AT, j = Ι , . , . ,η (8.57) 

with the second-stage model 

cn = β + bh bi ~ iV(0, σ2ω2), (8.58) 

where the e ·̂ and bi are independent. This is a balanced model because the number 
of observations in each cluster is the same, n. The assumptions imply that ŷ  = 
J2yij/n, i = 1,..., iV, are independent and identically distributed (iid). To simplify, 
only /3, the parameter of interest, is assumed to be unknown in this section, i.e., 
the parameters σ2 > 0 and ω2 > 0 are known. Sometimes, ω is referred to as the 
relative SD of the random effect. In this section we determine the asymptotic bias, 
as a function of n, for three estimators when N —> oo. It should be noted that for 
finite n, some estimators may not exist with a nonzero probability even for infinitely 
large N. Therefore, we have to take this into account when comparing estimators. 

8.9.1 Maximum likelihood estimator 

The likelihood function for the zth subject/cluster, as follows from the model defined 
by the pair of equations (8.57) and (8.58), is given by 

/

+oo 

-OO 
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where C = (2πσ2ω2) χΙ2. The Fisher information (scalar) for the zth cluster is 

f (dl/dß)\ 
Iß = -Ί dyi'"dyn 

Jw 

° ω JR" 92{2^1 V3) 

4-tE,m\ _ vf_ r mexp(_^ |Λ,(8.59) 
σ4ω4 y\92(y)J (2π)3/2σ7α;6 7_c ~ '~λ ι ο_2 ι 

where the functions pi, p2 and p are defined as 

/

+ 0 0 Λ + ΟΟ 

(a - /3)p(a, s)da, g2(s) = / p(a, s)da 
-oo J—oo 

2 e ° s - e 2 a ( a - / ? ) 2 > p(a, s) = exp n 
2σ2 2ω2σ2 

The asymptotic variance v8ia3(y/NßML) = X71 > σ2ω2, as follows from (8.14). 
There is no closed-form solution to the MLE, even for this simple model. From 
maximum likelihood theory it follows that PML 1S consistent and asymptotically 
normally distributed when iV —> oo and n is fixed. As will be shown later, the 
asymptotic variance of the MLE approaches its absolute lower bound σ2ω2 when 
n —> oo. We shall use the formula for Iß in Section 8.10 when comparing the MSE 
of different estimates. 

8.9.2 First-order approximation 
Following the idea of the first-order approximation (FOA), we replace the original 
model, defined by equations (8.57) and (8.58), with the marginal model, the so-
called pseudo-model, 

where ηίά = eßbi + e^. Letting η{ = (ηα,ηί2,·»,ηχη)' a n d 1 = (1,1,. . . , 1)', the 
covariance matrix for the random vector term r]i can be written as cov(r7j = 
a2V(/?), where V = V(/3) = 1+β2(3ω21ϊ'. Let an initial estimate of β be given, 
/?*. Then the FOA estimator is the solution to the following nonlinear regression 
problem with the weight matrix V* = V(/3#) : 

N 

i=l ß 

Clearly, the solution is 

?^=>n(2^f). (8.61) 

The special structure of V* allows us to find the explicit form for its inverse, 

-11 ' . (8.62) 
eW-ω2 

1 + e2P*uj2n 
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Then substituting (8.62) back into (8.61), we obtain 

l 'Vr1! = n-
β2β*ω2 9 n 

n2 = 
1 + ε2Ρ.ω2η l + e^.u/V 

n 

1 V * y* - l i i + eW.cjtn) 2-!yij " 1 + β ^ . Λ ^ y i j ' 

Hence, the FOA estimator simplifies to 

l n ( ^ | > ) 

It is interesting to notice that for this model the FOA estimator does not depend 
on the initial estimate /?*, or even matrix V. We encountered a similar situation 
before: for the double-balanced LME model GLS = OLS, Section 4.1.5. 

Now we calculate the asymptotic limit of (8.63). We have 

But eß+bi has the lognormal distribution, which implies that E(eß+bi) = eß+a ω /2, 
Rao (1973). Thus, E(yia) = E (eß+bi + €<,·) = e ^ 2 " 2 / 2 , and by the law of large 
numbers, 

lim 1 y eß+bi = e^+-2-2/2 l i m _±_ y = o 

for any n. Combining these two limits, we finally obtain 

lim ßFOA = In e?+°2"2'2 = β + \σ2ω2. (8.64) 

Thus, we conclude that the FOA estimator is inconsistent and has a systematic 
positive bias even if n goes to infinity along with N. 

Also, the FOA estimator may not exist for finite N and n because Y^y%j can 
be nonpositive. However, the probability that the FOA estimator exists goes to 1 
when N —» oo, regardless of n, because Y^Vij/Nn converges to eß+cr ω I2 > 0 with 
probability 1. 

8.9.3 Two-stage estimator 

The individual least squares estimation of (8.57) leads to the subject-specific es-
timator, ai = \nyi. Given an estimate of a*, one can apply GLS and obtain the 



462 8. Nonlinear Mixed Effects Model 

TS estimator, which in our balanced model collapses to a simple average of the 
individual estimates, 

1 N 

Τ̂5 = ^ Σ 1 η ^ · (8·65) 
2 = 1 

Now we study its asymptotic properties when N —> oo. Again, by the law of large 
numbers 

lim ßTS = .Ein(ft) = £7In (eß+bl + ει) , (8.66) 
N-+00 

with probability 1, where ëi = n - 1 Σ™=1 e\j ~ N (θ,σ2 /η) and b\ ~ Ν(0,σ2ω2); 
b\ and ëi are independent. 

The TS estimator has a systematic negative bias for fixed n even for infinitely 
large N. This follows from the elementary inequality ln(a + x) < ln(a) + x/a for 
x Φ 0, a > 0, a + x > 0, and the fact that b\ and ei are independent. Specifically, 

lim ßTS = E l n ( e ^ + 6 l + ë i ) < E (\neß+bl+8^-^+^) 
iV—>oo \ / 

= ß + E ( e ie"^ + 6 l >) = /3 + J5(ei)jBe-^+bl) - /?. 

Expectation (8.66) can be calculated exactly as a two-dimensional integral or ap-
proximated as 

1 d2r 
Er(u,v) ~ r(0,0) + -var(u) ^ -^ 

1 , N ö2r 
+ 2 v a r ( v ) ^ 

η=0,υ=0 Z a V 

(8.67) 
u=0,v=0 

where r = r(u,v) is any function of independent random variables u and v with 
zero means. To apply (8.67) to (8.66), we let u = &i, v = ëi, and r(w, f ) = e^+ n + v. 
Remarkably, the second derivative with respect to the random effect is zero; that is, 
the second term in the approximation disappears (as we shall learn later, this is true 
for any NLME model, see Section 8.11). Since var(bi) = σ2ω2 and var(ëi) = σ 2 /η , 
the asymptotic bias for fixed n can be approximated as 

lim ßTS-ß~-?-e-W. (8.68) 

As we see, the bias is negative and has the order of 1/n. Also, the bias does not 
depend on the variance of the random effect, ω2. Consequently, if σ2 is close to 
zero, one can expect unbiased estimation by the two-stage method. This statement 
applies to general NLME models: the two-stage estimation will work well if the 
within-subject variance (σ2) is relatively small and the individual fits are good. 

In Section 8.5 we mentioned a serious drawback of the TS estimator: it may 
not exist when n is small (in practice one faces a failure to estimate by nonlinear 
least squares). We illustrate this phenomenon by model (8.57). Indeed, for this 
exponential model, formula (8.65) fails when yi < 0. Since yi is a continuous variable 
with the range (-co, oo) and all {y{} are iid, P r ( ^ > 0) = Pr(yj > 0) = qn < 1, so 
that 

Pr(/3T£ does not exist) = 1 — q% —> 1, N —> oo, 

because qn is constant for fixed n. Therefore, the TS estimator does not exist with 
probability 1 for fixed n and N —> oo. In fact, it may not exist even if n —> oo. To 
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obtain the existence with probability 1, the following must hold: Nlnqn -* 0. Since 
qn —> 0 when n —> oo it means that n must be large enough to satisfy the condition 
above. 

However, there is a remedy: if yi < 0, we simply do not include the corresponding 
term in sum (8.65). Then the corrected TS estimator becomes 

PTS #(Vi>0ti = l,...,N) Nqn ' 

which exists now with probability 1. The approximate formula for the bias (8.68) 
works for ßTS as well. Now we can prove the consistency of the corrected TS esti-
mator when n —» oo : 

lim lim ßTq = lim -h— V^ In ( lim (y, I |L > 0 ) 
HVi>0 

= hm -±- f > l n ( e ^ + lim ± Y > y | e ^ + - Υ>,· > 0 ) 
* i=l \ 3=1 3=1 ) 

i=l i—l 

where | yi > 0 means "under condition y{ > 0." 
As follows from (8.66), the asymptotic bias for the corrected TS estimator when 

N -» oo can be calculated exactly through two two-dimensional integrals 

E(ßTS)-ß = ^ - ß , (8.69) 
Qn 

where 

and 

q- = ^ I L,+y>0 exp (-2^b*2 - 2 > 2 ) d ^ 
is the probability of the existence of the corrected TS estimator. 

Summing up, the two-stage estimate may not exist for some i. However, if we 
omit those, the TS estimator remains valid. 

8.9.4 Lindstrom-Bates estimator 

Since σ2 and ω2 are known, we implement only the penalized nonlinear least squares 
step. The Lindstrom-Bates (LB) estimator, ßLB, is the solution to the following 
(N + l)-dimensional optimization problem: 

5t(;g<w-^)' + ; ^ ) *,„■*.· 
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The estimating equations for the nuisance parameters, τ ι , . . . , τ# (which can be 
interpreted as estimates of the random effects), and ßLB are 

eW+Ti) _ eß+Tiy + " = o, z = l,...,iV, (8.71) 
ηωζ 

^ ( e ^ ' ) - ^ S j ) = 0. (8.72) 
i=l 

Summing equations (8.71) over i and substituting the result into (8.72) leads to the 
estimating equation for the LB estimator: 

1 N 

-J2?(ß,Vi)=0, (8.73) 
2 = 1 

where τζ· = r(/3, y j is the solution to (8.71) as a function of ß and y^ 
The LB estimator is inconsistent when n =const and N —> oo. To determine 

the systematic bias, the following fact will be used. Let î/1,^2, ...,UN be iid ran-
dom variables with a distribution dependent on parameter ß\ the true parameter 
is denoted by ßQ. Let the estimating equation for ßN be TV-1 Σ ΐ = 1 S(uuß) = 0· 
Then lim^v^oo^S^ = β^ with probability 1, where β* is the unique solution to the 
equation S(ß,ß0) = EßQS(ui\ß) = 0, see Appendix 13.1.4. 

Based on this fact, to compute the bias for ßLB we introduce the function 
S(ß,ß0) = EßQr(ß,y), where r(ß,y) is the solution to the nonlinear equation 

e2(/3+r) _ e / 3 + r - + τ/^ρω2^ = Q (g J 4 ) 

This equation can be solved by Newton's iterations 

' 5+1 
2e2(/3+r)_e/3+r^+1/(na;2) 

starting from TO = In y — β. 
The asymptotic limit of ßLB when N —> 00 and n is fixed is the root of the 

equation S(ß,ß0) = 0, where the function S is computed as a two-dimensional 
integral: 

^.A)-££w«*+, + »)«»(-5S?-e)**· 
where r is the root of the nonlinear equation (8.74). To find the root of this equation, 
we again use Newton's algorithm, 

s (A A) 
where S (ßkl ß0) is the derivative of 5 with respect to ß. The derivative of r , as the 
root of equation (8.74), with respect to ß is found from differentiation of equation 
(8.74), 

2(1 + r ')e2^+ T> - (1 + r')eß+Ty + τ'/(ηω2) = 0, 
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-i 1 1 1 ι 1 r 
2 4 6 8 10 12 14 

Sample Size, n 

FIGURE 8.3. Relative asymptotic bias of two estimators for the one-parameter balanced 
exponential model (ß = 0.5, σ = 0.3, ω = 2) for N = oo and different n. The percent 
relative bias of FOA estimator is 40% (not shown). 

which yields 
β/?+τ _ 2e2(/?+T) 

The functions S and S are computed via the GH quadrature after expressing 

Οσ2ω poo poo 

S(ß, ß0) = —- / ?(ß, e"o+V5— + ^ ) e - , 2 - v 2
à ( i ! / . 

V n J-oo J-oo 

These computations coded in the R function INT.ch08 are depicted in Figure 8.3, 
where we compare the relative asymptotic bias (ß — ß0)/ßo ' 100% of two estimators 
with σ = 0.3, ω = 2, β0 = 0.5 when N —> oo and n is fixed. The FOA estimator 
is not shown since its bias, 0.5σ2ω2 = 0.28, does not depend on n (the relative bias 
is 40%). As we can see, the approximation formula for the TS estimator bias (8.68) 
works fairly well. The probability of the nonexistence of the TS estimator is low: 
for n = 1 we have 1 - q = 0.0182, which drops to 0.0003 for n = 15. It is interesting 
to observe that the bias of the LB estimator for this model is positive and larger in 
absolute value than that of the TS estimator. 

We compare the MSE in the next section. 

Problems for Section 8.9 

1*. The function onexpML located at c : \\MixedModels\\Chapter08\\ computes 
the log-likelihood ]T)i=i m ^ ( ß ) 5 where k is defined through the integral in Section 
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(8.9.1), and its maximum is on the grid of beta values. Modify this function to 
investigate the sample properties of PML assuming that σ2 and ω2 are known. 
Compute the derivative d(lnli)/dß PML a s a n integral and use Empirical FS to find 
ßML via iterations. Plot the MSE as a function of N with fixed n to demonstrate 
the MLE consistency. Store the PML values and use densi ty to demonstrate the 
asymptotic normality for large N. 

2*. Using the Central Limit Theorem, estimate the probability that ßFOA given 
by formula (8.63) does not exists . Use simulations to verify your analytical result. 
Estimate E(ßFOA) via simulations and plot it against increasing TV. Confirm that 
it approaches the right-hand side of (8.64). 

3. Compute the probability that ßTS does not exist by evaluating 1—qn = Pr(^ : < 
0) using the GH quadrature discussed in Section 7.1.3. Plot this probability as a 
function of n for different σ\ Use INT. ch08 for reference. 

4*. Compute the bias of ßTS given by formula (8.69) through integration of Gn 

and gn, see Section 7.1.3. Reduce the double integral to integration of the normal 
cdf Φ. 

5. The function onexpSIM does the following: (1) simulates yij for given n, N, σ, α;, 
and /?; (2) estimates β by nlme (σ and ω are estimated as well), and (3) returns 
the mean of all β when nlme converged. Modify this function to see how the bias is 
affected by TV and n when all other parameters are fixed. 

6*. Compare three methods of estimation via simulations: FOA, TS, and LB 
(nlme) using MSE as a figure of merit for different n, TV, σ, and ω. 

8.10 Asymptotic equivalence of the TS and LB 
estimators 

The FOA estimator is dropped from consideration because it is not consistent even 
when min 77̂  —> oo, as shown in the previous section. The aim of this section is 
to show that the Two-Stage (TS) and Lindstrom-Bates (LB) estimators are as-
ymptotically equivalent. Basically, this result comes from the observation that the 
contribution of the penalty term δ = 0 ( l / n j in PLS vanishes when Ui —> oo, see 
Section 8.7.2; see also Vonesh et al. (2002). 

Theorem 42 Under mild asymptotic conditions, the maximum likelihood, two-stage 
and Lindstrom-Bates estimators have the same limiting normal distribution with the 
covariance matrix 

^ ( ^ A i D - 1 ^ ) - 1 (8.75) 

when the number of subjects and the number of observations per subject go to in-
finity. That is, these estimators are asymptotically equivalent when N —> oo and 
min n; —> oo. 

These mild conditions and the proof are given in Section 8.18. As follows from the 
proof, all three estimators ML, LB, and TS are equivalent to the following simplified 
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TS estimator 
N N 

3= ΣΑΪΌΓ1* Σ Α ^ Γ ^ (8.76) 
\i=l Ki=l 

where Di is defined by (8.21). This estimator follows directly from (8.22) because 
T; —> 0 and D 2 —> 0 with probability 1 when minn; —> oo. As follows from 
this theorem, when the number of observations per subject goes to infinity, the 
covariances matrix of the estimators achieve their absolute lower bound (8.14). 

To assess the quality of the ML and TS estimators for fixed Ui = n, we compute 
the asymptotic MSE for the univariate balanced exponential model (8.57), (8.58). 
The LB estimator is dropped from the analysis because it is equivalent to the TS 
estimator. Note that the absolute lower bound for the MSE is σ2ω2. The asymptotic 
MSE for the TS estimator is calculated as a two-dimensional integral, 

MSETS = 
\fn IL qn 2πωσ2 J Jeß+x+y>o 

G(x,y)dxdy, (8.77) 

where 

G(x,y) = (/? - Heß+X + y))'exp ( - ^ * 2 - ^ 2 ) 

and qn is as given in Section 8.9.3. The MSE for the MLE is equal to Iß *, where 
Iß is defined by (8.59). 

Sample size, n 

FIGURE 8.4. Asymptotic MSE of the MLE and two-stage estimators for the one-parameter 
balanced exponential model when N —» oo and n is fixed. The Absolute Lower Bound (bold 
horizontal line) for the asymptotic variance of any estimator is σ2ω2 = 0.56. 

In Figure 8.4, the asymptotic MSE is shown for different values of n and para-
meters defined as in Figure 8.3. The MSE of the MLE is less than that of the TS 
estimator, as one could expect from the maximum likelihood theory. When n —> oo, 
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the MSEs of both estimators approach the absolute lower bound derived in Section 
8.9.1. 

Problems for Section 8.10 

1. Demonstrate Theorem 42 by simulations using the one-exponential model 
(8.57). Modify the code onexpSIM for this purpose: run simulations and compute 
MSE with increasing N and n. Show that the MSEs for both methods converge to 
(8.75). 

2. Reconstruct the MSEs in Figure 8.4. Compute TS MSE by formula (8.77) and 
ML MSE by formula (8.59) using the GH quadrature discussed in Section 7.1.3. 

3*. Study the small-sample properties of TS, FOA, and LB estimators via sim-
ulations using the exponential model from Problem 4 of Section 8.7. Use nlme to 
compute the LB estimator. 

8.11 Bias-corrected two-stage estimator 

As follows from the proof of Theorem 42, the bias of the TS estimator is due to 
the fact that individual least squares (LS) estimates {a?,z = 1,..., N} are biased for 
finite Π{. Therefore, to find a bias correction to the TS estimator (8.22), we have to 
evaluate the bias in a?, conditional on random effects. This is the objective of this 
section. 

Omitting i, the normal equation for the individual LS estimator in the nonlinear 
regression y = f (α) + ε can be written as R(a)(y — f (a)) = 0, or in terms of ε and 
b as 

R ( a ) (f (A/3 + b) + ε - f (a)) = 0. (8.78) 

The solution to (8.78), a?, is an implicit function of ε and b. We aim to evaluate 
the bias using the second-order approximation to a? in the neighborhood of ε = 0 
and b = 0, as an implicit function of b and ε. One can expect that such an approx-
imation would work well for small σ2 and D. The approximation can be viewed as 
a generalization of (8.68). Since ε and b are independent, the cross-derivative term 
vanishes in the second-order approximation, so we only need to find 

d2a? 
δε2 and 

e=o,b=o dh2 
(8.79) 

e =0 ,b=0 

Notice that for ε = 0 and b = 0, we have a? = A/3. 
As we learned from the exponential model of Section 8.9, the second derivative 

of the TS estimator with respect to the random effect is zero. We shall show that 
this holds for any nonlinear model. First, let us consider the univariate case when 
a and b are scalars. Then (8.78) can be rewritten as 

(f ( 7 + b) + ε - f (a)) ' f (a) = 0, (8.80) 

where 7 = A/3 and f is an n x 1 vector of the first derivatives. Differentiating (8.80) 
with respect to 6, we obtain 

( f (7 + 6)- f ( a ) ^ y f (a) + (f (7 + b) + e - f (a))·' f ( a ) ^ = 0. (8.81) 
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At e = 0 and b = 0, we find that 

dal 
db 

= 1. (8.82) 
e =0 ,6=0 

To find the second derivatives at e = 0 and b = 0, we observe that we do not need 
to differentiate the second factors of the two terms in (8.81) because the first factors 
vanish at ε = 0 and 6 = 0. Therefore, differentiating the first factors in (8.81) with 
respect to 6, one obtains 

(i(7+*)-ïw(^)2-f(«)^)fW 

+ ( i ( 7 + 6 ) - i («) | ) ' f („) | = o 

at ε = 0 and 6 = 0. Calculating the last expression at ε = 0 and 6 = 0, we obtain 

( f ( 7 ) - f ( 7 ) ( ^ ) 2 - f ( 7 ) ^ ) f ( 7 ) = 0. 

Finally, using (8.82), we obtain that the second derivative is zero, 

db2 = 0. 
e=O,6=0 

In the multivariate case, we repeat the steps above for every component of vectors 
b and a . Thus, we conclude that the individual LS estimate depends linearly on 
the random effects in the neighborhood of zero, and consequently, E(a$\hi) ~ 0. 

To find the bias of a? due to e$, we adopt the theory on the bias in nonlinear 
estimation based on the second-order approximation developed by Box (1971). Box's 
formula for the bias is 

2 

a ? - £ a ? ~ - ^ - ( R ' R ) - 1 R ' d , (8.83) 

where d is an n x 1 vector with the j t h element, 

dj = tr ((R/R)"1!! , · ) , where H , = - ^ - , j = 1,..., n. 

Since E(a.°\bi) ~ 0, the only bias is (8.83), so that finally the bias-corrected version 
of the TS estimator (8.22) has the form 

ßTS = ßTS+ [ ^ A ^ ( T i + D ) - 1 A i ] " 1 ^ A K T i + D ) - 1 c i , (8.84) 

where ßTS is the ordinary TS estimator and c* = 0.5<7?(R^Ri)-1R^d. Here d^ is 

an ni x 1 vector with the j t h element tr MR^Ri)~1H^· j , where H^· = d2 fa /dec2 

is the matrix of second derivatives and σ,· is the residual variance. 
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Problems for Section 8.11 

1. Apply Box's formula for the bias (8.83) to nonlinear regression yi = ea + ε ,̂ 
where Si ~ Λ/*(0, σ2). Use simulations to assess how precise the bias is. Take care of 
simulations when the NLS estimate does not exist. Does the bias correction improve 
MSE? 

2. Apply the formula for the bias (8.83) to model (8.57). 

8.12 Distribution misspecification 

The assumption of a normal distribution of random variables in the NLME model is 
practically unverifiable. What is the implication of a distribution misspecification? 
What happens if the distribution, in fact, is not normal but we use maximum 
likelihood for parameter estimation? To illustrate, we start with ordinary nonlinear 
regression. 

Example: Distribution misspecification in nonlinear regression. Ordinary non-
linear regression has the form yi = /(x^;/3) + σε;, where x* is the design (fixed) 
vector and {ε^, % — l,...,iV} are iid random variables with zero mean and unit 
variance. To simplify, the variance σ2 is assumed known. Denote the density of Si 
as p(·), so that 

E(si) = / tp(t)dt = 0, var(ei) = / t2p(t)dt = 1. (8.85) 

It is assumed that the limit 

N 

z = l x 7 x 7 

exists and that Q = Q(/3) is a nonsingular matrix for all ß. Also, it is assumed that 
all other standard conditions required for consistency and asymptotic normality of 
the least squares (LS) estimator and the MLE hold (Jennrich, 1969; Wu, 1981). In 
the absence of misspecification LS = ML. Otherwise, we obtain an LS estimator ßLS 

that differs from ß^L- Despite the distribution misspecification, the LS estimator 
is consistent and asymptotically normally distributed as 

VN0LS - β)-AfiO^Q-1), ΛΓ^οο. 

The MLE, ßML, as the solution to the score equation 

1 ^ ^ I dlnp(t) | 

N ^ \ dt 

is also consistent and asymptotically normally distributed as 

T2 

VN0ML -ß)^f (o.^Q-1) . (8-87) 
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where 

We prove that η2 > 1. Indeed, from integration by parts 

Elt dt 

and by the Cauchy inequality, 

2 

because from (8.85) we have E(t2) = 1. ■ 
Prom (8.87) it follows that the asymptotic variance of the MLE is less than or 

equal to the variance of the LS estimator. Also, from Cauchy inequality, it follows 
that the LS estimator does not lose efficiency if and only if dlnp(t)/dt is propor-
tional to t, which holds only for normal distribution. For example, if Si had heavier 
tails, as for the Laplace (double-exponential) distribution p(t) = (2À)~1e~ltl/A, the 
assumption of the normal distribution would lead to the least squares estimator 
while the true MLE would lead to the median estimator. It is easy( to compute the 
efficiency loss when the true distribution is, in fact, exponential: 7 = 2, the standard 
deviation of the LS estimator would be two times larger than that for the median. 
Note that we could derive the variance of the estimators under a misspecified dis-
tribution using the sandwich formula of Appendix 13.1.4. 

Summing up, when the distribution in a nonlinear regression model is misspeci-
fied, we still obtain consistent but less efficient estimates. However, as follows from 
the example below, the implication of the misspecification in the random effects for 
the NLME model is much more severe—one loses consistency! 

To assess the asymptotic bias for infinitely large N and fixed n under distribution 
misspecification in the NLME model, we again consider the one-random parame-
ter exponential model (8.57, 8.58). The true distribution of the random effect is 
assumed to be Laplace/double-exponential with parameter λ = 2σ2ω2, meaning 
that var(ö) = σ2ω2 but ε^ remains normally distributed. Parameter β is estimated 
based on the incorrect assumption that b ~ Λ/"(0, σ2ω2). The asymptotic bias, when 
N —> oo and n is fixed, is calculated from the two-dimensional integral. The method 
of the bias calculation is the same as in Section 8.9.4. The reader is also referred 
to Appendix 13.1.4. The expected value of the estimating equation is given by the 
two-dimensional integral 

Sn(ß,ßo) 
- ίίίf(a-ß)Qn(aW,ß,ßo)da ( \x\ _ ny\ , , Ί 
" 7 7 1 jQn(a^ y; ß, ß0)da β Χ Ρ V 2σ2ω2 2σ2 ) ^ J 

where 

~nea(2(ePo+x+y)-ea) (q - β)2 

Qn(a,x,y;/3,/30) = exp 
2σ2 2σ2ω2 — c 
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FIGURE 8.5. Relative asymptotic bias under misspeciiication of the distribution of the 
random effect in the one-parameter exponential model (β0=0.7, σ=0.5) for infinitely large 
N and relative SD of the random effect, ω. The true distribution of the random effect b is 
double exponential; however, β is estimated by ML assuming normal distribution. 

and c = 2σ _ 2η(ε^ 0 + χ +y ) 2 , the normalizing constant (integration is over the entire 
space R2). Given /30, the true value, the misspecified estimator converges to the 
root of the equation Sn(ß,ß0) = 0. We find the root by Newton's algorithm, 

ßs+l — ßs ~ =7" 
Sn(ßs,ßo) 

Sn(ßs,ßo) 
5 = 0,1, . . . , 

where Sn(ßs,ß0) is the derivative of Sn(ß,ß0) with respect to ß. The relative as-
ymptotic bias for different relative SDs of the random effects (ω) is shown in Figure 
8.5. As we see, the absolute bias decreases with n; however, it is negative for w = 0.5 
and positive for w = 1 and w = 1.5. 

In summary, misspeciiication of the distribution of random effects is disastrous to 
maximum likelihood estimation: the MLE becomes systematically biased even for an 
infinitely large number of subjects. However, the bias vanishes when the number of 
observations per subject increases along with the number of subjects. Interestingly, 
misspeciiication of the distribution of ε^ is not so harmful because it leaves the 
estimator consistent but with some loss of efficiency. An analysis of misspecified 
assumptions based on a simulation study was conducted by Hartford and Davidian 
(2000). It was found that the LA method of estimation is more precise than FOA 
in case of the normality misspeciiication but has a slower convergence rate. 

Problems for Section 8.12 

1*. Develop the asymptotic efficiency comparison for the median against the mean 
when the data have heavy tails but the mean is used to estimate the center of the 
distribution. More specifically, assume that yi = β + σε^ where iid ε^ have Laplace 
distribution with the density ~j^^~ ^ · Prove that the MLE of ß in this model is the 
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median. Use simulations to generate the data from Laplace distribution and estimate 
ß using the mean (LS). Use inverse cdf to generate random numbers from Laplace 
distribution. Plot the ratio of two empirical MSE for the mean and the median as 
a function of increasing N and display the theoretical ratio as a horizontal line. 

2*. Reproduce Figure 8.5. Use the GH quadrature for double integration to com-
pute function 5n(/3, /30), see Section 7.1.3. Then use Newton's iterations to compute 
ß for given n. Use the function INT.ch08. 

8.13 Partially nonlinear marginal mixed model 

In many applications a nonlinear statistical model has only a few intrinsically non-
linear parameters, while other parameters are linear. Such a model is called partial 
nonlinear regression. For example, in the log-Gompertz curve of Section 6.1.7, de-
fined by the equation βλ — ß2e~/33t, there is only one intrinsically nonlinear para-
meter, /33, and parameters βλ and β2 are linear. Estimation of nonlinear regression 
with partially linear parameters is well studied in the literature (sometimes it is 
related to separable nonlinear least squares). The idea is to reduce the parameter 
space by eliminating linear parameters, Golub and Pereyra (1973). A recent review 
of the topic, with a large number of applications in different fields, is given by Golub 
and Pereyra (2003). For example, if nonlinear regression with linear parameters has 
the form y = X(/3)7 + e, where X is an n x m matrix function of a p x 1 parameter 
vector β and 7 is an m x 1 linear parameter vector, we can eliminate 7 using least 
squares as 7 = (X'(/3)X(/3))~ X'(/3)y. Then, plugging it in back into the original 
regression we reduce the dimension from p -f- m to p parameters, y = K(/3)y + ε, 
where K(/3) =(X'(/3)X(/3))~ X'(/3) is an idempotent matrix. It is easy to show that 
the least squares for the new regression is equivalent to maximization of y'K(/3)y. 
This reduction is especially effective when p is small (say, 1 or 2) and m is large. 
Also, it was found that this reduction improves statistical inference on /3, such as 
confidence intervals (Macaskill, 1993). 

It is straightforward to generalize the partial nonlinear regression model to a 
mixed model with random parameters, 

γι = Xi(b<)g< + Si, i = 1,..., N, j = 1,..., nu (8.88) 

where yi is the rii x 1 vector of the dependent variable, X; is the rii x m matrix 
function of the p-dimensional random intrinsically nonlinear parameter b^, ĝ  is 
the ra-dimensional linear vector parameter and Si is the rii x 1 vector of iid errors. 
We assume that bi ,gi , and Si are normally distributed and that Si ~ ΛΓ(0,σ2Ι) is 
independent of (b;, g^). Instead of specifying the joint normal distribution of random 
parameters, we specify b ; ~ J\f(ß,Oi) and the conditional normal distribution 
gi|bi ~ A/*(7+rbi, D2), where 7 is an m x 1 vector and Γ is an m x p matrix. Then 
model (8.88) can be written as 

yi\bi ~Af(Xi(bi)(7 + Tb, ) , I + Xi(b i )D2X^(b,)) . (8.89) 

Thus, the original mixed model with m + p random parameters is reduced to p 
random parameters. Again, this reduction is especially effective when p is small 
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and m is large. Although we do not eliminate linear parameters, as in nonlinear 
regression, the dimension of the integral is reduced. The joint log-likelihood is 

Z(/3,7,r ,D 1 ,D 2) = f ; / e i W ^ r v ^ ) ^ 

where U is the twice-negative log-likelihood function of the it h subject defined as 

1η|Ι + Χ < ( ^ ) 0 2 Χ ί ( ^ ) | + 1 η | ϋ ι | 

+e^[I + XiibODaXiflx)]"1* + (b< - / ^ ' D ^ b ; ~ )9), 

where e» = y» - X;(b;)(7 + T b J . 
To illustrate, we again consider the log-Gompertz growth curve (6.16) but now 

assuming that all three parameters are random, yi\(bn,bi2, hs) = (βλ +bn) — (β2 + 
bi2)e~(ßz+bi3>)ti + Si, where t$ is an Ui x 1 vector. In the previous notation, p = 1 
and m = 2, so that D\ is a scalar, with X*(6) = [1, — e~bti]. Thus, the original 
three-dimensional integral is reduced to a one-dimensional integral. 

Problems for Section 8.13 

1. Reduce the estimation of a three-random-parameter log-Gompertz model to 
a one-random parameter model. Write an R function that estimates this NLME 
model using the GH quadrature for integral approximation. Apply this function for 
estimation of the growth of spheroids with the data in the file TUMspher. t x t (see 
Section 6.1.7). Compare your results with nlme. 

8.14 Fixed sample likelihood approach 

We can easily generalize the Fixed Sample Likelihood (FSL) approach of Section 
7.8.3 to the NLME model. As mentioned earlier, the FSL approach combines the 
Gauss-Hermite quadrature with Monte Carlo integral approximation. The difference 
between those is how the integration nodes are computed: the former uses prede-
fined formulas (the gauher function in R) and in the latter the nodes are sample 
values from the normal distribution. The interested reader can learn more about 
application of the GH quadrature to generalized linear and nonlinear mixed models 
from Liu and Pierce (1994), Pinheiro and Bates (1995), Pinheiro and Bates (2000, 
pp. 319-322), and Vonesh (2012, pp. 276-279). An attractive idea for using the FSL 
approach is that the covariance matrix for random effects (actually its Cholesky fac-
tor) can be combined with the fixed effects coefficients and therefore treated under 
one scheme of estimation. 

Let D*c be the Cholesky factor of matrix D* = σ2Ό. Then the model (8.7), (8.8) 
can be parameterized as 

y i | u i ~ A ^ ( f i ( 7 , A ^ + D; c u i ) , a 2 I ) 

with the log-likelihood 

l = -^ih^l +f^ln J e-My^>A^™'*M\2e-\M2
du+c, 
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where c = iVln Λ/2 — ΝΤ In y/2n, a constant. The presence of the constant is required 
to compare different likelihood approximations. Note that in the parametrization 
the integration kernel is e~HuH for convenience of the Gauss-Hermite quadrature, 
see Section 7.1.3. If {us} and weights {ws} are derived using the gauher function, 
the discrete version of the log-likelihood function takes the form of a sum, 

i=l s=l 

where U s is a k x (k(k + l)/2) matrix and δ is a (k(k + l)/2) x 1 vector of nonzero 
elements of matrix D*c. Specifically, let U s = V^(^s 0 Ifc)̂ fc> where Vk is the 
k2 x (k(k 4-1)/2) duplication matrix. Then as follows from the representation 

D'*ciis = vec(D'*cus) =vec(IfcD'*cus) = (u's ® I ^ v e c p ^ ) 

= (u's ® Ifc)©fcvech(D!;c) = (u's ® lk)VkS. 

Introducing an n» x 1 nonlinear function, h^s(r) = ^ ( 7 , A^ß- f -U^) , where τ is 
the combined parameter vector 7, /3, and <5, we come to the function maximization 
over r , 

ΑΓτ1ησ2 Ν 

- -t-W r ) = - ^ ^ + ^ l n ^ ^ e - * ^ - h - W H 2 + c . (8.90) 

Several algorithms can be suggested, perhaps the simplest of which is Empirical 
Fisher scoring (EFS), see Section 7.3.1 and Appendix 13.3.4. The required deriva-
tives are 

dhsL = NT 1 ^ESs=i^seis\\yi-his(T)\\2 

do2 2o* + 2o*£< El^sets 

91FSL = 1 y ^ Yfs=i WaeiaH'iaiyi - his(r)) 

where eis = e - ^ ^ ^ 8 ^ and His = dhis/dr. Thus, letting 

-& + 2 ^ (E f= i ™*eie) ( E f = i ^ββίβ ||y< - h i s ( r ) | | 2 ) 

•31 ( E L I ™ ^ S ) ( E L I wee<aHie(yi - his(r))) 
d* = 

by the EFS algorithm, we iterate as rnew — T - I - À ^ d ^ d ; ) - 1 ^ ^ , where λ is a 
positive step length to ensure that IFSL increases (usually λ = 1). 

Use source(l lc:\\MixedModels\\Chapter08\\callnlmeFSL.r l , ) to download a 
version of FSL (nlmeFSL) applied to the Qlogist function with he igh t log .da t 
data. 

8.14.I Example: one-parameter exponential model 

We use the one-parameter exponential model specified by equations (8.57) and 
(8.58) to illustrate the FSL approach. The log-likelihood function after slight sim-
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plification takes the form 

N K 
ΝηΙτισ2 

= 1 fc=l 
iFSL(ß,*W) = -^ψ- + Y,^^-Msi+n{Vi-eß+Uk")2) +c-

where s? = ||y^|| , ί/& = V%Xk, and Xk and Wk are the abscissa and the weight of the 
Gauss-Hermite quadrature (the output of gauher function). Denote r 2 x l = (β,ω)' 
and h £ x l = lfcfc(r), where hk(r) = e^u^ = e^T and g2

k
xl = (1,E4)'· T h e n t h e 

log-likelihood function takes the form (8.90) with derivatives 

^F5L _ n y ^ Σ*=ι WkeikhkiVj - eß+UkUJ) 

dlpsL = n ν ^ Σ Γ = ι « ^ / * ( % - eP+u>u)Uk 

where e t t = e - * W + - ^ - ' + l " - ) a ) . 
This method is programmed in function onexpFSL. Two versions for the choice 

of Uk are available: if method="gauher" Xk and Wk are chosen as in Gauss-Hermite 
quadrature; otherwise, Wk = 1/K and Xk is a sample from a normal distribution 
with zero mean and SD=\/2· The function onexpSIM does simulations and computes 
MSE for nlme and onexpFSL. Both functions are downloaded into the R session as 
source("c:\\MixedModels\\Chapter08\\onexpSIMFSL.r"). 

Problems for Section 8.14 

1. Write an R function that estimates the height of girls using the Qlogist function 
with only adult height being random (parameter αχ), see Section 8.3. Modify the 
function onexpSIM. Compare the results of estimation with nlme. 

2*. Write an R function that estimates the height of girls using Qlogist function 
with all four parameters being random. Compare the results of estimation with 
nlme. 

8.15 Estimation of random effects and hypothesis testing 

8.15.1 Estimation of the random effects 

There are two approaches to estimating the random effects, b^, after estimates for all 
parameters 7, /3,σ2, and D are available: approximate and exact. In the approximate 
approach, after applying Laplace approximation, we come to N penalized least 
squares (PLS), 

II y< - $ (7 , Aß + n) ||2 + r ' i D - 1 T i , (8.91) 
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which mimics the PLS for the linear mixed model (3.54). Since 7,/3, and D are 
fixed, the total PLS (8.29) collapses to N separate PLSs (8.91). Then the estimate 
of the random effect b^ is the minimizer τ^. Hence, if the NLME model is estimated 
by LB or LA, the estimate of the random effect is obtained as a by-product of the 
estimation procedure. 

In the exact approach, we recall that for the LME model the PLS is equivalent to 
the posterior/conditional mean of the random effect, see Section 3.7. This gives rise 
to exact estimation of the random effect as the conditional mean in NLME model. To 
find the conditional mean of b given data y, we express the posterior distribution of 
the random effect as / (b |y ) = / ( y | b ) / ( b ) / / ( y ) . Thus, using the notation of Section 
8.8, we obtain 

g < = Jbe '^^^(b;p)db 
J e Ky; |b ;7^ 2 )0 (b ;D)db 

where Z(yi|bi;7,/3,<r2) is the conditional log density of y* defined by equation (8.44). 
Moreover, one may find the posterior/conditional covariance matrix of the random 
effects by computing (8.92), where instead of b one has the matrix (b—b^)(b—hi)'. 
The exact approach requires integral evaluation and therefore is convenient when 
ML or FSL is used. Obviously, for a linear model the approximate and exact ap-
proaches are the same, Ti = b^. 

8.15.2 Hypothesis testing for the NLME model 

Two kinds of hypothesis testing can be distinguished in the framework of a nonlinear 
mixed effects model: hypothesis testing regarding (a) population-averaged parame-
ters 7 and /3, and (b) the variance parameters of random effects (elements of matrix 
D). To test (a), such as the significance of a component of 7 or /3, the Wald test 
may be applied based on the covariance matrix of the population-averaged parame-
ters. The likelihood ratio test also can be applied, but it requires double estimation, 
under the null hypothesis (restricted) and unrestricted estimation. For nonlinear 
models profile-likelihood confidence intervals may be better than standard Wald 
confidence intervals, see Section 3.4. 

To test the presence of the random effects, H0 : D = 0, neither the Wald nor the 
likelihood ratio test is valid because the null hypothesis belongs to the boundary 
of the parameter set. We have developed an exact F-test for the LME model in 
Section 3.5 and generalized it to the nonlinear marginal mixed model in Section 
6.1.5. Now we further generalize it to the NLME model. The idea is to compare 
two sums of squares: First, assume that there are no random effects (b; = 0); and 
second, give the random effects complete freedom, i.e., assume that b* are fixed 
unknown parameters. The two SSs are 

SOLS = m i n ] T | | y i - 1 ^ ( 7 , Α;/3)||2, 5 m i n = min V ||y* - f ^ b j f . 

(8.93) 
Note that in the second minimization, we ignore the term Αιβ because it is con-
sumed by b^. Letting r = m + Nk, we compute the statistic (3.42) and proceed as 
in the F-test. When fj is linear, this test gives the exact type I error. 
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As a final comment, various types of testing require a joint covariance matrix 
of fixed and random effects. For the LME model, this matrix has a block diagonal 
form, and therefore one can ignore the precision of the variance parameters. This 
does not hold for the general NLME model, and therefore the entire covariance 
matrix is needed to carry out an asymptotically valid statistical testing. Unfortu-
nately, the approximate methods do not produce the entire covariance matrix; only 
the maximum likelihood (or FSL) does. This is a strong point in favor of maximum 
likelihood estimation because statistical inference usually does not end with estima-
tion and requires covariance matrix assessment as well. Alternatively, AIC or HAIC 
can be used for the model selection, see Section 1.6. 

Apparently, there is no satisfactory test for variance-covariance matrix D and 
much work has to be done, especially when the number of clusters is small. 

Problems for Section 8.15 

1*. Write down the equation for estimation of the random effect (8.91) for the one-
parameter exponential model (8.57). Derive the Newton's algorithm to iteratively 
solve N equations for bi starting from zero. Generate data and run nlme to obtain 
estimates for ß and random effects, bi. Then use your algorithm to compute bi. 
Compare the results. 

2*. Let matrix D be known. Derive estimates for 7,/3, and τ$ as minimizers 
of Σ?=ι (II Yi - f*(7> Aiß + Ti) ||2 + T J D - 1 T < ) . To what method of NLME model 
estimation does it relate? Compare with the LME model. Develop a method for 
minimization and apply it to the one-parameter exponential model. Use simulations 
to study its sample properties. 

3*. Develop the Wald and likelihood ratio tests for the one-parameter exponential 
model, see Section 8.9. Use simulations to compare the power functions for testing 
Ho : ß = 0.5. Do the two tests yield the specified type I error (a = 0.05)? Modify 
the function onexpSIM to write the simulation program. 

4*. Use the Wald, likelihood ratio, and F-test based on computation of sum of 
squares (8.93) to test that the variance of the random effect is zero. Use simulations 
to compare the power functions for testing Ho : ω = 0. What test do you prefer? Is 
there an overall champion? 

8.16 Example (continued) 

In this section we illustrate the methods of NLME model estimation with the height 
example of Section 8.3 assuming model (8.6). Thus, all parameters are random. This 
data set may be a rather nontrivial example to compare approximation methods; as 
we shall see later, different methods give quite different estimation results, and some 
of them fail. Having four random effects creates challenges for maximum likelihood 
estimation as well. 

The parameter estimates obtained for average data may serve as good starting 
points for more complicated procedures. Since all parameters are assumed random, 
one can obtain individual estimates for each girl or boy. The densities of the indi-
vidual estimates are displayed in Figure 8.6. As the reader can see, some individual 
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a1 a2 a3 a4 

FIGURE 8.6. Densities of individual nonlinear least squares estimates for girls' and boys' 
heights. The vertical line indicates the TS estimate. Notice the long tails of the estimate 
densities. This means that some individual estimates have large values or possibly diverge. 

estimates are not stable, which is reflected in the long density tails—a common 
situation with small sample sizes. 

The results of estimation with different methods are presented in Table 8.2. Func-
tion callnlmeFSL, located in the directory c:\\MixedModels\\Chapter08\\, esti-
mates the model using the FSL approach. Two options for choosing U s and ws 

are available: (1) method="gauher" produces abscissas and weights as suggested 
by the GH quadrature (function gauher), (2) otherwise, a random sample from a 
four-dimensional normal distribution is used with weights=l/SS where SS is the 
sample size. This function is not optimized in terms of computation and requires a 
long time (perhaps overnight). 

Notice that all methods indicate a relatively small standard error for all para-
meters, the acceleration year is shown in the last column. As noted earlier, girls 
accelerate a year earlier and approach their adult height before boys do. 

The corrected and uncorrected two-stage methods for girls yield the same result; 
however, for boys the correction is significant. Interestingly, after the correction, the 
Two-Stage and First-Order approximation methods become closer. 

As a general comment, since boys keep growing after 18, it would be desirable to 
have data on height for at least three more years. The absence of these data makes 
the estimation results somewhat unstable with an overestimated male adult height. 
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Table 8.2. Fitting the height with the QLogistic growth curve 
(all four parameters are subject-specific) 

TS 
TSC 
FOA 
FSL (1000) 
FSL (GH:11) 
nlme 

TS 
TSC 
FOA 
FSL (1000) 
FSL (GH:11) 
nlme 

ai 

165.2 (.799) 
165.2 (.799) 
173.2 (.672) 
165.5 (.20) 

167.2 (.093) 
165.2 (.079) 

179.2 (.838) 
178.9 (.838) 
183.5 (.710) 
185.4 (.609) 
184.2 (.474) 
185.5 (1.03) 

0.2 

Girls 
-3.17 (.254) 
-3.17 (.254) 
-1.21 (.078) 

-2.92 (.16) 
-2.18 (.126) 
-2.40 (.109) 

Boys 
-2.03 (.244) 
-1.36 (.244) 
-.887 (.077) 
-1.144(.112) 

-1.276 (.102) 
-.855 (.082) 

« 3 

-.646 (.057) 
-.646 (.057) 
-.193 (.017) 
-.601 (.034) 
-.567 (.029) 
-.471 (.023) 

-.038 (.062) 
-.263 (.062) 
-.126 (.016) 
-.197 (.023) 
-.230 (.021) 
-.131 (.016) 

θ 4 

.0502 (.0032) 

.0502 (.0032) 

.0214 (.0014) 
.048 (.0018) 

.0452 (.0016) 
.040 (.0014) 

.0301 (.0041) 

.0234 (.0041) 

.0154 (.0017) 

.0188 (.0012) 

.0210 (.0011) 

.0155 (.0009) 

Ace. 

9.6 
9.6 
9.3 
9.5 
9.6 
9.3 

10.4 
10.3 
9.8 

11.2 
10.4 
9.9 

TS=Two-Stage, TSC=Two-Stage Corrected, FOA=First-Order Approximation, 
FSL=Fixed Sample Likelihood (callnlmeFSL); the number in the parentheses for 
FSLindicates the sample size 

Problems for Section 8.16 

1*. Reproduce the results of Table 8.2: write your own R functions (for this pur-
pose, modify functions heightlog.nlme, callnlmeFSL, and nlmeFSL). Create a 
similar table with matrix D estimates. 

2*. Test the hypothesis that the only the adult height is subject-specific (random). 
Use three tests: Wald, likelihood ratio, and F. Do they concur? 

3. Optimize function nlmeFSL by replacing the loop over SS with matrix multi-
plication. 

8.17 Practical recommendations 

Estimation of nonlinear statistical modes, with random effects particularly, may be 
a complex business. Indeed, even estimation of a LME model can be problematic 
when the covariance matrix of random effects becomes deficient during the log-
likelihood maximization. 

In estimating nonlinear models, we urge the reader to follow the principle from 
simple to complex. Start by estimating the model without random effects using 
standard nonlinear regression techniques. To see whether the model is adequate, 
fitting the average data may help, as we did in Section 8.3. Choice of the model is 
more important than choice of the estimation method, so the effort should be spent 
accordingly. A good nonlinear model should have a sound justification, requiring 
a detailed understanding of the modeling subject. Examples of choosing the right 
nonlinear model for tumor regrowth after cancer treatment may be found in Chapter 
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10. In fact, we spent more time on the model than on its estimation. Computation 
of the post-estimation model characteristics, such as maximum growth or inflection 
point (where the rate of growth is maximum), may be insightful. 

Add one random effect at a time. It is a bad practice to start with the assumption 
that all parameters are subject-specific (random), even if you are using commercial 
software and fitting seems easy. Pay attention to the standard errors (SEs) of the 
estimated parameters and the magnitude of the variances of the random effects. 
If the random effect becomes irrelevant, the quality of the statistical models drops 
or the estimation procedure just fails. For statistical testing of the presence of the 
random effects, the results of Section 8.15 may be used. 

For sound statistical inference, besides the estimate itself, one needs to have a sat-
isfactory standard error. A major drawback of approximate methods of estimation, 
such as LB or LA, is that they usually underestimate the SE. For example, if the SE 
comes from the LME step, (8.30), it implicitly assumes that the random effects {r^} 
are perfectly estimated and that the population-averaged and variance parameters 
are uncorrelated. To the contrary, FSL provides consistent SE assessment because it 
takes this correlation into account by inverting the joint Fisher information matrix. 

8.18 Appendix: Proof of theorem on equivalence 

The plan of the proof is as follows (N —> oo is assumed): 
1. The LB and TS estimators are equivalent when minn* —► oo and σ2 and D are 

fixed. 
2. The TS estimator is consistent and normally distributed with the covariance 

matrix equal to the lower bound (8.14). 
3. The LB and TS estimators produce consistent estimators of σ2 and D. 
4. The TS estimator is equivalent to the MLE when minn; —> oo and D is 

substituted for by a consistent estimator. 
The "mild" asymptotic conditions are: (a) the probability that the individual 

LS estimator for (8.15) exists is positive and bounded from below; (b) elements of 
matrices {A^} are bounded and the limit matrix, 

N 

lim AT1 V A ' D 1 Ai = M, 
i=l 

is nonsingular, and (c) standard asymptotic assumptions for the ith. nonlinear re-
gression of (8.1), conditionally on a;, are fulfilled (e.g., Gallant, 1989 or Wu, 1981). 
The latter implies that the individual nonlinear least squares estimators a? are 
consistent for a», are asymptotically normally distributed, and are efficient when 
Ui —> OO. 

1. The asymptotic equivalence between LB and TS estimators follows from Sec-
tion 8.7.2. Based on this result, we prove that the LB estimator is asymptotically 
equivalent to (8.76) with probability 1. Since D is fixed in the LB procedure, we 
have to consider only the penalized nonlinear least squares step: 

N 

Σ 
i=l 

ri'1 || y« - fi(Aiß + hi) f +-b'iD-1bi 
Tit 

mm 
/3,bi,. . . ,b;v 
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To apply (8.38), we show that there exists a constant A such that, with probability 

1, 
n r 1 || y< - ft(A,/3 + b j ||2> A > 0, i = 1,..., N - oo (8.94) 

when minr^ —» oo. In fact, letting p^ = A^/3 + b^, conditionally on the random 
variables a ,̂ we have 

lim n " 1 || y4 - ft(p*) | |2= lim n " 1 || y{ - ft (a») ||2 

n̂ —►oo η^—»oo 

+2 lim n - 1 ( y i - f i ( a i ) ) ' ( f i ( a i ) - f i ( p ) ) + lim n " 1 || %(*) - Çfo) ||2 . 
rii—>οο rij—»oo 

However, by standard arguments of nonlinear regression theory, conditionally on a ,̂ 
with probability 1 uniformly for % — 1,..., N, we have 

lim nr1 || y< - ft(ai) | |2= σ2, lim n " 1 ^ - ft (a,)'(ft (a,) - ft(p,)) = 0, 
m—>·οο τΐχ—»oo 

lim n r 1 | | f t ( a < ) - ^ ( p i ) | | 2 > 0 . 
Ui —»-CO 

Therefore, in (8.94) we can set A = σ2. Denoting 5 = 1/n^ and applying (8.38), we 
prove that the LB estimator is asymptotically equivalent to (8.76) when minn* —> 
oo. 

Now we show that the TS estimator (8.22) is equivalent to (8.76). As mentioned 
above, from the standard theory of nonlinear regression, conditionally on a ,̂ we 
have 

lim a° = a*, yfcfâ-a*) ~ΛΤ(θ,σ2^1) , (8.95) 
ni—»oo v ' 

where 

dfidi-x.) 
T<= EXi [ R ^ x ^ a ^ R ^ X z ; ^ ) ! a;] , R^x^a^) = v ^ *; 

Thus, T . = O ^ " 1 ) and D 2 -> 0, so for given σ2 and D, the TS estimator (8.22) is 
asymptotically equivalent to (8.76). 

2. Starting from this point, we can deal only with the second-stage model (8.2), 
assuming that instead of observations â  we have a? with properties (8.95). Letting 
Si = a.i — a?, we have \fN{ß — ß) = sN + UJV, where 

SN = ( j V - i ^ A i D - ^ ' ^ J V - V ^ A i D ^ b , ) , 

UN = ( i V - ^ A p ^ A ^ ^ i V - ^ ^ A p - 1 ^ ) . 

Obviously, ŝ v — N ( θ ,σ 2 Μ - 1 ) . Also, since cov(^) = 0( l /n^) , we have UJV —* 0 
with probability 1. That proves that the estimator (8.76) is asymptotically normally 

distributed as y/N (β - β) ~ λί ( θ ^ Μ " 1 ) . 

3. First, we prove that in (8.21) D —> D. It follows from part 1 that D 2 —► 0, 
so we have to show that Di —> D. We decompose the matrix estimator into four 
parts: 

Di = D n + D 1 2 + D'12 -1- D 2 2 , (8.96) 
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where 

D u = W - 1 Ç ( a ? - A i / 3 ) ( a i ° - A i / 3 ) \ 
i 

D12 = J V - ^ ^ - A ^ ^ - ^ Z ^ A ^ - ^ ^ Z ^ a f ) ) ' ^ , 

D22 = Ν-^Α^β-^ΖΑ,Γ^Ζ.ψ)) 

"(/»-(Σ^Γ'ίΣ^))'^ 
and i,j = l,...,iV. As follows from (8.95), when calculating the asymptotic lim-
its of these matrices, we can replace a? with a ,̂ which implies immediately that 
p l i m D n = D. Now we show that the other three components in (8.96) converge 
to zero in probability. Indeed, ID 12 is equivalent to 

-M'1 Ç b ^ Z ^ Z.A,·)-1 A; - N-1 Σbi{ £ ^ Ζ , · ) ( Σ Z.A,)"1 A<. (8.97) 

But 

E (N-1 Ç b i b i Z ^ E z ^ ) - 1 ^ = Α Γ - ^ ^ Ζ , ^ Ζ ^ Α , · ) - 1 ^ - 0 

because 

tr fez.^Z^A,)-1^ = J > ( z , £ V A ^ A j ) 

= tr ( ^ ( Ζ Λ ^ - ^ ί Ζ A,)) = m. (8.98) 

The second term in (8.97) has zero expectation because b^ and bj are independent 
for i φ. j . Let c be any unit vector c'c =1 . We will prove that 

var (^c'Eb'biz<(Ez-A;-rlAic) -> °- (8.99) 

Since var(u'Au) =2ir(AD) for u ~7V(0, D) we find that the left-hand side of 
(8.99) is bounded from above, 

2σ^ 

JV2 Σ ( c ' D Z i ( £ Z ^ ) - x A i c ) a < f £ (c'D £ Z i ( £ Z ^ A ^ A j c ) , 

which approaches null when N —> oo, as follows from (8.98). This implies that 
the second term in (8.97) vanishes when min 77̂  —> 00. Similarly, we prove that 
plim£>22 = 0· This all proves that D is a consistent estimator of D when minn^ —> 
00. 

Now we shall show that the Lindstrom and Bates procedure, based on linear 
mixed effects, provides a consistent estimator of D, too. As follows from part 1, 
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Aiß + hi ~ a? ~ a ,̂ where ~ indicates asymptotic equivalence with probability 
1. To prove that the linear mixed effects model provides a consistent estimator for 
σ2 and D based on (8.30), it suffices to show that E(wi) = Hi Aiß and cov(w^) = 
σ2(Ι + R^DR^) when Aiß + bj = â  and ß = ß. Indeed, for a linear mixed effects 
model, w» = y» - fi(a») + R;(a* - Aiß{) + Κ»Α»)9, and we have 

E(wi) = E {E{yi - fife) + Ri(a* - A ^ J + R;A;/3|a;)) = R*A;/3, 

cov(w^) = Ecov(wi\aLi) + cov(£(w;|ai)) = Ecov(wi\a.i) — σ2(Ι + R-DR·) , 

as we set out to prove. 
4. As follows from parts 1 to 3, when N —> oo and min 77̂  —► oo, the NLME 

model is asymptotically equivalent to the linear model, â  ^ Λ/"(Α^/3,σ2ϋ). But 
in the linear model, the information matrix for β and (a 2 ,D) is block diagonal; 
consequently, pseudo MLE is equivalent to the full MLE, Section 2.11 and Appendix 
13.1.3. In other words, one obtains an asymptotically efficient estimator for β by 
substituting a consistent estimator for D in the generalized least squares estimator. 
This implies that the LB and TS estimators are equivalent to (8.76) when D is 
replaced with its consistent estimator, or more precisely, 

y/N(ßLB - β) ~λί (Ο,σ 2 !^- 1 ) , VN(ßTS - β) ~Λί ( θ ^ Μ " 1 ) . 

Finally, this means that the covariances of the LB and TS estimators attain the 
lower bound (8.14). Therefore, all the estimators are asymptotically equivalent, and 
the theorem is proved. 

8.19 Summary points 

• The nonlinear mixed effects (NLME) model is a straightforward generalization 
of LME and the linear growth curve model and is written in a hierarchical 
fashion. The first-stage model consists of a set of individual or subject-specific 
nonlinear regressions with random parameters. The second-stage model is 
a linear model with population parameters to estimate. The difference be-
tween the NLME and the marginal mixed model is that in the former model 
the expected value of the dependent variable is not a closed-form function 
of population-averaged parameters, so an integration problem emerges. The 
NLME model can be viewed as a generalization of GLMM since the latter can 
be expressed in generic form as fi(ß) = μ(/3;χ^), where μ is an inverse link 
function. 

• Maximum likelihood estimation of the NLME model involves, generally, a mul-
tidimensional integral because the subject-specific parameters are unobserv-
able and therefore must be integrated out. To avoid the integration problem 
several approximation methods for the NLME model estimation have been 
proposed. 

• The approximation methods for estimation of the NLME model can be divided 
into two groups. In the Two-Stage (TS) methods, subject-specific parameters 
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are estimated by nonlinear least squares individually from the first-stage model 
and are then treated as observations for the second-stage model. The TS es-
timator works well when the within-cluster variance (σ2) is relatively small 
and the number of observations per cluster is large enough to fit the individ-
ual models well. The TS method allows bias correction using the nonlinear 
regression technique suggested by Box (1971). This bias correction requires 
second-order derivatives of the nonlinear regression model. 

• In the second group, the NLME function is approximated by a linear function, 
so the model is reduced to a nonlinear marginal mixed model. If the function 
is approximated at zero random effects, we obtain the FOA, which can be 
treated further as the nonlinear marginal mixed model with varied matrix 
of random effects, Section 6.2. According to Laplace, a better approximation 
can be derived if the function is approximated at an estimate of the random 
effects from the PLS. 

• Penalized least squares naturally emerges to estimate population-averaged 
and subject-specific (random effects) parameters via an approximation to the 
likelihood, assuming that the variance parameters are known. The penalty 
term is the reciprocal of the scaled covariance matrix of the random effect: if 
the random effects have large variances, the penalty is small; otherwise, it is 
large. Thus, a satisfactory estimation of variance parameters is crucial. 

• Laplace approximation of the integral involves second derivatives. Since the 
expectation of the term with the second derivatives is zero, one can ignore it 
and we come to the penalized quasi-likelihood, as we did for GLMM. It turns 
out that LB = PQL, so the Lindstrom-Bates and penalized quasi-likelihood 
approaches are equivalent. 

• When the number of clusters (N) and the number of observations per clus-
ter (rii) goes to infinity, the TS, LB/PQL and ML methods of NLME model 
estimation become equivalent. Namely, they converge to the same normal 
distribution with the covariance matrix as the lower limit. Indeed, as rii in-
creases, the contribution of the penalty term in PLS vanishes, so PLS collapses 
to individual nonlinear least squares. FOA has a systematic bias even when 
rii —► oo. 

• Unfortunately, there is a price for approximate methods of estimation: to yield 
consistent estimates, they require not only a large number of subjects/clusters 
but also a large number of observations per cluster. Maximum Likelihood (ML) 
requires only a large number of clusters; consistent estimates can be derived 
even with a small number of observations per cluster. 

• The MLE loses it consistency if the distribution of the random effect is mis-
specified. However, it regains its asymptotic properties when the number of 
observations per cluster goes to infinity along with the number of clusters. 

• The difficulties with maximum likelihood estimation are sometimes overstated. 
In practice, it is quite rare to need more than five random effects (producing 
a five-dimensional integral). The advantages of ML are that (a) it does not 
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require a large number of observations per cluster to obtain consistent esti-
mates, and (b) it produces a joint covariance matrix of population-averaged 
and variance parameters, and consequently the correct standard error for all 
estimates. 

• The Fixed Simulated Likelihood (FSL) approach is a convenient way to com-
bine Gauss-Hermite quadrature and Monte Carlo under one umbrella. One 
need only provide sample values and the weights to replace the multidimen-
sional integral by a weighted sum. Several samples may be tried to ensure that 
the resulting estimates are close. 



9 
Diagnostics and Influence Analysis 

9.1 Introduction 

Influence analysis and influential observations diagnostics is a necessary part of com-
prehensive statistical analysis. The statistical analyst must be sure that there are 
no influential observations, irrelevant to the study, that affect the major statistical 
inference. Many articles and books address the problem of influential observations 
and outliers. The interested reader is referred to books by Belsley et al. (1980), Cook 
and Weisberg (1982), and Neter et al. (1990), and to seminal papers by Pregibon 
(1981), Chatterjee and Hadi (1986), and Cook (1977, 1986). Two principal types 
of influence analyses for linear models are developed. In the first, the calculation of 
leverage and standardized residuals plays a central role. The second is based on the 
influence of case deletion and is called case deletion diagnostics. 

In this book influence is understood to be the sensitivity of a statistic to a small 
(infinitesimal) perturbation of data or model, so that influence analysis might equiv-
alently be called sensitivity analysis. In fact, we make use of an old definition of 
influence formulated by Cook and Weisberg (1982, p. 101): "The basic idea in in-
fluence analysis is quite simple. We introduce a small perturbation in the problem 
formulation, and monitor how the perturbation changes the outcome of the analy-
sis." To distinguish this type of influence analysis, we call it infinitesimal (infinitely 
small), after Pregibon (1981), who introduced this influence analysis. Since we are 
interested in infinitesimal change, the derivative naturally emerges as the measure 
of influence. The idea of measuring the sensitivity of a statistic by its derivative is 
not new. Hodges and Moore (1972) were probably the first to suggest measuring 
the impact of a small change in the individual observation of the explanatory vari-
able on the Ordinary Least Squares (OLS) estimate via derivative (following our 
definition, this is an example of infinitesimal data influence). The main advantage 
of infinitesimal influence analysis is that it is easily applied to complex statistical 
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models such as nonlinear regression and linear and nonlinear mixed effects models. 
It only requires taking a derivative. 

Two types of infinitesimal influence analysis can be considered: (a) the influence 
of small change in individual observations, and (b) the influence of model assump-
tions. The first analysis is referred to as infinitesimal data influence, and the second 
analysis is referred to as infinitesimal model influence. Hampel (1974) developed 
the concept of influence function and demonstrated its application to robust sta-
tistics. Cook (1986) applied this concept to measure the model sensitivity as the 
maximum curvature of log-likelihood displacement, and called it local influence. (In 
our definition, this is an infinitesimal model influence.) In this chapter we combine 
the two approaches under one umbrella of infinitesimal influence and show how this 
approach works for many statistical characteristics in a variety of settings. For in-
stance, as shown later, the Cook and Hodges-Moore approaches are equivalent to 
the linear regression model. In fact, Cook's local influence is a special case of our 
approach because we can take the likelihood displacement as the characteristic of 
the infinitesimal analysis. 

Infinitesimal influence analysis has several advantages: 

• It has an intuitively appealing interpretation—the partial derivative indicates 
what is affected by what and with what magnitude. 

• It is easy to compute; the analysis is based on the current estimate and does 
not involve additional computation rather than taking a derivative. 

• It allows broad graphical support which is very helpful for observation diag-
nostics. 

• It is a general tool and can be applied to any statistic as the influence of data 
or model assumption perturbation. 

The goal of this chapter is to introduce infinitesimal influence analysis and il-
lustrate it by several examples of linear, nonlinear, and logistic regression models. 
We start with influence analysis for the linear regression model and its relationship 
on local influence. Then we consider influence analysis for nonlinear regression and 
binary models (we study particularly the sensitivity of misclassification in logis-
tic regression). Next, we apply the idea of model influence to correlated data and 
measurement error in the binary model. At the end of the chapter, infinitesimal 
influence analysis is applied to mixed models. 

9.2 Influence analysis for linear regression 

Traditional influence analysis for the linear regression model is concentrated around 
two major concepts: 

• Leverage, as the diagonal element of the hat matrix, and standardized resid-
uals. 

• Case deletion diagnostics and Cook's distance. 



9.2 Influence analysis for linear regression 489 

Now we provide a quick overview of these concepts. Comprehensive coverage of 
the topic may be found in books by Belsley et al. (1980), Cook and Weisberg (1982), 
and Chatterjee and Hadi (1986). 

The ordinary linear regression model is written in the form 

yi = fi*i+ei, i = l,.. . ,n, (9.1) 

where x2- is the ra x 1 vector of explanatory or independent variables (covariates) and 
ß is the m x l parameter of interest. It is assumed that εχ,..., εη are independent and 
identically distributed (iid) with zero mean and constant variance σ1. The Ordinary 
Least Squares (OLS) estimator of β is 

3 = ( X ' X ) - 1 X ' y = i e x i x H ( X > w ) ' <9·2) 

where the ith row of matrix X is x^, and it is assumed that X has full rank (matrix 
X 'X is nonsingular). The goal of influence analysis is to detect influential observa-
tion^). Such an observation might be an outlier, an incorrectly recorded result, or 
just an observation irrelevant to the study. In any event, an influential observation 
deserves a close look in terms of its correctness and adequateness in light of the 
model postulated. The core of influence analysis is the measure/characteristic of 
influence. Usually, it is not difficult to detect an influential observation(s) after a 
definition or measure of influence is given. Importantly, traditional influence analy-
sis detects influential cases, which consist of observations of the dependent and 
explanatory variables, (^,χ^). Later, we shall learn how to distinguish the influence 
with respect to dependent and explanatory variables by the means of infinitesimal 
influence analysis. 

The first step in finding an influential case is to compute the OLS residuals, 

r% = V% ~Vii where yi is the OLS predicted value, yi = β χ^. However, a large 
residual does not always point to an influential case. The traditional characteristic 
of influence is leverage, the diagonal element of the hat matrix H = X(X'X)~ X'. 
The ith diagonal element of this matrix is pi = x£(X'X)~ χ^. It is easy to prove 
that 0 < pi < 1 and Σ™=1Ρί = m. Indeed, Pi > 0 because matrix ( X ' X ) - 1 is 
positive definite. The latter identity follows from elementary matrix algebra, 

Σ> = X^x'x)-1* = f > [x^x'xr1*] = χ > [(x'x)-1*^ 
2 = 1 

= t r [ (X , X)" 1 (X , X)] 

Cases with high leverage are called influential. Characteristically, in the tradi-
tional approach there are no further details as to what is influential. We shall learn 
later that the infinitesimal approach provides such an interpretation; leverage re-
flects how the predicted value is influential in the observation of the dependent 
variable (Rao and Toutenburg, 1999). 

2 = 1 2 = 1 

trf;[(X,X)-1
Xixi]=tr 

2 = 1 

tr(I) =m. 

2 = 1 

( Χ ' Χ Γ ^ χ ^ 
2 = 1 
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A better indicator of influential cases, in terms of their departure from the fitted 
model, is the standardized residual, ri/{sy/\ — Pi), where s2 = Σ,ν?/(η — m) is the 
estimated variance. 

Another measure of influence comes from the idea of case deletion. A case is 
called influential if the OLS estimate changes significantly after deleting this case 
from the data. Fortunately, it is not necessary to recalculate the regression after 
case deletion. Beckman and Trussel (1974) and Miller (1974) proved that if β^ 
denotes the OLS estimate after the ith case was deleted (leave-one-out), it may be 
derived as 

3W=3-T^(X'X)" 1x i · (9.3) 
-l- Pi 

Proof. The following matrix formula is used: 

where A is a positive definite matrix and b is a vector column of appropriate 
length. If X ^ denotes a matrix X with the ith row deleted, applying this formula, 
one obtains 

( X f o X w ) - 1 * = (X'X - XixJ ) - 1 * 

= (X 'X) - 1 x i + ( X ' X ) - 1 - : _ ^ - - I - ( X ' X ) - 1 x i (9.4) 

= i1+1 X^t~!-Xi ) (χ/χ>~1χ*=τΛτ(χ'χ)~1χ*· 
y î-x^x'X) Xi y ! — p* 

Therefore, using formulas (9.3) and (9.4), we obtain 

3(i) = (x^)xw)-1x/
(i)yw = (x/

wxw)-1(x,y-xi»i) 
= (x/

(i)x(i))-
1xV-(x,(,)X(z))-1Xi^ 

= 3 + (x'x)"1 ,x*x* x ± β - —ί- ( x ' x ) - 1 ^ 
l - x ^ X ' X ) - 1 ^ 1-Pi 

= ß-yi~^(χ'χ)-1^ = ß- -^-(x'xy1*. 
1 - Pi 1 - Pi 

m 
An alternative way to assess the influence of the ith case is to calculate the 

difference in the predicted values after case deletion. As follows from linear regression 
theory, the (1 — a)th confidence ellipsoid is defined as 

E = {ß: (ß-ß)'X'X(ß-ß) < m 5
2 Fx_ a } , (9.5) 

where Fi-a is the (1 — a)th quantile of the F-distribution with (m, n — m) degrees 
of freedom. Thus, according to Cook (1977), the ith case is influential if 

Di = άΦ*)-0) , χ , χΦο-0) > Fl— (9·6) 
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The quantity Di is called Cook's distance. Equivalently, it may be represented via 
the n x 1 predicted vector y(;) after the zth case was deleted, D\ =| | y — y(i) Il2 

/(ms2). With the implication of formula (4.97), it is possible to express Di via 
complete data: 

2 
Α = ^ 2 ( 1 - Κ ) 2 ' ( 9 ' 7 ) 

This influence measure is computed in the statistical package SAS (procedure df-
beta). There are some other measures of influence for linear regression. The inter-
ested reader is referred to the literature cited above; a concise discussion of the topic 
appears in the books by Rao and Toutenburg (1999). 

P rob lems for Section 9.2 

1. Derive formula ßu\ for a simple average model, yi = ß + Si. Express the leave-
one-out analysis in terms of ymin and ymax-

2. Is it true that the average of β^ is the OLS estimate? When is it true? 
3. Derive Cook's distance formula (9.7). 
4*. Investigate the ability of Cook's distance measure to identify an outlier via 

simulations. Simulate n observations using the linear regression model yi = a + 
ßxi + Si. Then simulate an outlier as the (n + l)th observation using the model 
y n + i = a + β*χη+ι + ε η + ι , where β% φ β, and add it to the sample. Count the 
proportion of cases when max Di corresponds to the last observation. Display the 
results as a function of \β — ßj\. Another way to simulate an outlier is to use 
var(sn +i) > σ2. 

9.3 The idea of infinitesimal influence 

As mentioned in the Introduction, we distinguish two types of influences: the influ-
ence of an individual observation (data influence) and the influence of the underlying 
assumptions (model influence). This distinction is quite ambiguous, and sometimes 
we treat model perturbation via data influence, e.g., misclassification of the binary 
data. See Sections 9.4.3 and 9.6.4 for details. 

The aim of this section is to show how the idea of using the derivative as the mea-
sure of infinitesimal influence works for many statistics in many statistical models 
and settings. At the end of this chapter we apply this analysis to linear and nonlinear 
mixed effects models. For brevity, infinitesimal influence is referred to as /-influence. 

9.3.1 Data influence 

Let D be a data vector comprised of individual observations of dependent and 
independent variables and t = t(D) be any statistic or characteristic of interest. 
For instance, t might be an estimate itself, the vector of predicted values, a test 
statistic, etc. /-influence analysis suggests a measure of how a slight perturbation 
in an observation affects the statistic. Thus, if Di is the zth element of the data, the 
change AD leads to a change in the statistic, t (D + ADei) — t (D), where e* is the 
Kronecker vector, consisting of zeros except for the ith element, which is 1. Then 
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the infinitesimal change in statistic t due to the data perturbation can be defined 
as 

tÇD + A ^ - t Ç D ) 
AD^O AD v ; 

Observations with high values of limit (9.8) are called influential. The reader has 
probably already realized that the quantity (9.8) is just the partial derivative of t 
with respect to Di, namely, 

* $ ■ 

The influence analysis based on the derivative (9.9) is referred to as infinitesi-
mal data influence analysis. The fcth element of vector (9.9) indicates how a small 
perturbation in the ith element of data affects the fcth element of the statistic t. 
When statistic t does not admit a closed-form solution, (9.9) is computed as the 
derivative of the implicit function. Importantly, the partial derivative is evaluated 
at the current data, so no reestimation is required. 

9.3.2 Model influence 

Let 1(θ) be the log-likelihood of the postulated model subject to influence analysis. 
We nest this model into a more general model that is dependent on an additional 
parameter ω\ we shall call it the parent model. The log-likelihood of the parent 
model is denoted as 1(θ \ ω). Mathematically, the nesting property, without loss of 
generality, can be written as 1(θ \ ω = 0) =Z(0), which means that the postulated 
model is just a specific case of the parent model at ω = 0. Let t(u;) be any statistic or 
characteristic of interest as a function of a;, e.g., the Maximum Likelihood Estimate 
(MLE), which maximizes the log-likelihood 1(θ\ω) assuming that ω is known. Then 
the influence of t with respect to a possible departure from the postulated model is 
measured as 

dt 
θω 

(9.10) 
u>=0 

Influence analysis based on the derivative (9.10) is called infinitesimal model influ-
ence analysis. It is worth mentioning that analogously to data influence, we do not 
need to re-estimate the postulated model; all calculations of (9.10) are carried out 
at the current estimate. 

The difference between this and Cook's local influence is that he took the likeli-
hood displacement, the difference of the log-likelihood function, as the measure of 
the model departure. In contrast, in our approach the model departure is expressed 
in terms of the characteristic of interest, t. Consequently, (9.10) has a clearer inter-
pretation. The two analyses are closely related. For instance, as we show in Section 
9.4.2, the influence of an individual observation of the explanatory variable on the 
OLS coefficient in a linear model based on Cook's local influence approach is equiv-
alent to the /-influence based on the partial derivative as obtained by Hodges and 
Moore (1972). Model influence can be viewed as the analysis of model misspecifica-
tion. 

We make a few comments on how to calculate (9.9) or (9.10) when t does not 
admit a closed-form solution. For example, we illustrate how to calculate (9.10) when 
t is the MLE. By definition, t is the solution to the score equation 31(θ \ ω)/3θ = 0 
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and the needed derivative, as follows from the formula for the derivative of an 
implicit function, is given as 

ôti / dH(t\u>)\ y V a ^ t i u ; ) ! \ 

It is interesting to note that the inverse matrix is the asymptotic covariance of the 
MLE, so that (9.11) can be rewritten as 

at I , „ / Λ ( ΐ Μ | \ 

As a general result, we find that a poorly estimated parameter vector is more likely 
to be sensitive to the model perturbation because then the covariance matrix is 
large. 

Obviously, if in /-influence analysis we take t to be the likelihood displacement, 
we come to Cook's local influence approach. Therefore, the /-influence is a more 
general approach and covers local influence as a special case. 

Problems for Section 9.3 

1*. The effect of the quadratic term in linear regression is investigated via the 
model influence. Using the expression for dt/θω, investigate the dependence of the 
OLS estimate of the slope coefficient ß on the quadratic term coefficient 7 in the 
linear regression yi = a-\- ßx% + 7#f + e%. 

9.4 Linear regression model 

/-influence analysis for linear regression model (9.1) is well developed, although it 
has not been considered on a systematic basis. The aim of this section is to review 
relevant formulas and illustrate the approach graphically for several examples. In-
finitesimal influence analyses for nonlinear regression and binary data are developed 
in Section 9.5 and Section 9.6. 

In this section, an ordinary linear regression model in the form (9.1) is consid-
ered. To be specific, index i is referred to as the ith individual. Since y = Hy 
and dyi/dyi = pi, we infer that from the /-influence point of view, leverage mea-
sures the influence of observation yi on the predicted value, &. Although leverage 
is an important characteristic of influence analysis, one should remember that it 
measures the influence of the individual observation of the dependent variable on 
the predicted value for the same individual. However, we argue that the estimate 
itself is of interest, not the predicted value, unless the only purpose of the model is 
to predict the ith. individual. Therefore, the question we pose is: How is the OLS 
estimate affected by an individual observation of the dependent or explanatory vari-
able? Thus, unlike traditional influence analysis, we distinguish the influence of the 
dependent and independent variables. The influence with respect to the dependent 
variable is called the Y-influence, and the influence with respect to the explanatory 
variable is called the X-influence. These types of influence reveal the cause of the 
influence—the dependent or independent variable—and which independent variable 
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Y-influence X-influence 

FIGURE 9.1. Y- and X-influences. Original (solid) and perturbed regression line (bold) 
after an individual observation changed (circle on the top). Left: Y-influence, the depen-
dent variable changes. Right: X-influence, the explanatory variable changes. The same 
magnitude of perturbation in y and x leads to different changes in the regression slope. 
Apparently, for this example the slope is more influenced by a change in the explanatory 
variable. 

is most influential. The difference between these two types of influences is illustrated 
in Figure 9.1. For the Y-influence we change an observation of the dependent vari-
able and seek how the regression line changes (the empty circle moves to a filled 
one). In particular, for this example the slope does not change much and the major 
change is in the intercept term. On the contrary, for X-influence we seek how a 
change of an explanatory observation changes the regression line. For this example 
we conclude that the Y-influence is less significant than the X-influence because in 
the latter case the slope changes more significantly. 

9.4-1 Influence of the dependent variable 

The /-influence of the zth observation of the dependent variable on the OLS estimate 
is measured as the ra-dimensional derivative vector, 

^ = (X 'X)- 1 x i , i = l,...,n. (9.12) 

The fcth element of vector (9.12) is interpreted as the rate of change in the estimate 
of the kih regression coefficient due to a small change in yi. High absolute values of 
the derivative are associated with influential observations of y. We shall learn later 
that vector (X'X)~ x^ is an important quantity of the influence analysis. It may be 
large when two conditions hold: (a) the length of x^ is relatively large, i.e., x$ lies 
outside the bulk of data {x^}; (b) x* lies in the direction where the scatter plot is 
squeezed rather than stretched out. Thus, (9.12) reflects outstanding observations 
x^ and multicollinearity as well (Cook and Weisberg, 1982, p. 13). 
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9.1^.2 Influence of the continuous explanatory variable 

We revive the idea of measuring the influence of individual observations of explana-
tory variable xik on the OLS estimate via a derivative, as suggested by Hodges and 
Moore (1972). Thus, the question we pose is: How is the OLS estimate affected 
by a small perturbation in the ith observation of the fcth covariate, χ^Ί To make 
the infinitesimal approach work, we assume here that Xik is continuous (in the next 
subsection, an approach is developed for the binary explanatory variable). Following 
the line of the /-influence, the sensitivity of β to small change in Xik is measured 
via a partial derivative: 

9/3 1 < i < n, 1 < fc < m. (9.13) 
dXik' 

Thus, the jih element of this vector is interpreted as the rate of departure from the 
jth OLS coefficient under a small perturbation in the ith case of the fcth covariate. 
To derive the expression for (9.13), we write 

(^χ^)_1(Χ^χ^) dxik 

= -I*'*»-1 (sb Σ«ί) 3+(χ'χ)-1 ( £ Σ-«) 
= - ( X ' X ) - 1 (Xie'fc + efcxj) 3 + (X'Xy^kyi 

= (X 'X)" 1 (ek(yi - xj3) - Xi(e'fcj8)) = (X'X)"1(efcr i - *$k), 

(9.14) 

^/ ^ where Ti is the zth OLS residual, yi — β χ^, ßk is the fcth OLS coefficient, and e& 
is the m x 1 Kronecker vector. Thus, the influence of observation xik on the OLS 
estimate can be measured as (Hodges and Moore, 1972) 

^ = ( Χ ' Χ ) - 1 ^ ^ - Xißk), l<i<n, l<k<m. (9.15) 
dxik 

This influence measure is easy to interpret: one unit change of x^ leads to the ß 
change specified by (9.15). Certainly, the influence analysis based on this formula 
does not make sense for certain explanatory variables, e.g., gender or intercept term. 
As we see, perturbation in the fcth covariate implies changes in other coefficients 
unless covariates are orthogonal. The influence of Xik on the estimate, as follows 
from (9.15), has two components. The first component, r ^ X ' X ) - e^, is associated 
with a large residual, and the second component, /3fc(X

/X)~1Xi, is the coefficient 
times the vector of the y-influence. 

It is interesting to note that (9.15) is equivalent to that derived by Cook (1986) 
using his approach of local influence, assuming that the distribution of ε is normal. 
He suggested measuring the influence of xik on ßk as Ti — ßkq%, where qi is the it h 
residual in regression of xk on the remainder of the explanatory variables. 

Now we will show that Ti — ßkqi is proportional to the fcth component of vector 
(9.15), meaning that the /-influence and the local influence are equivalent. Without 
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loss of generality we can assume that fc = 1. Let X be partitioned as [xx;X2], so 
that 

~ a b ' ( X ' X ) - 1 = 
b A 

where a is a scalar, b is a (ra — 1) x 1 vector, and A is a (ra — 1) x (ra — 1) symmetric 
matrix. As follows from the formula for the inverse of a partitioned matrix, 

+ T~t ΤΟΧίΜχ1> X 2 b = 1 M x l > x ix i (xixi) 2 ' X'IXI 

where 

M = H + - 1-—— H X I X ; H , 
ΧχΧχ — x^Hxi 

and H = X2(X2X2)_ 1X2 is an n x n projection matrix. After some algebra one 
obtains a = (χ'χΧχ — χ'χΗχχ) - 1 . Next we find that 

x ' l M x i = x ^ H + ^ . ^ H x ^ H J x , 

x7 H x (x iHxi) 2
 = χ'χΧχ · χ'χΗχχ 

1 x'iXi — χ'χΗχχ χ'χΧχ — χ'χΐϊχχ 

and 

Mxi = ( H + — —-—Ηχχχ'Ί H ) χχ 
V x ix i - x iHx i ) 

x lHx i T_ / χίχχ \ __ 
= H x + - 1 / Ηχχ= * , „ Ηχχ. 

ΧχΧχ — X^HXi \X1X1 ~ ΧχΗΧχ J 

Then, the first column of matrix X(X X)~ can be represented as 

αχχ + X 2 b 

= ( l i \ l x i X l ' χ ί Η χ ι j I χ χ χ ι Η \ 
\χ'χΧχ (χ'χΧχ)2 ΧχΧχ — ΧχΗχχ ΧχΧχ χ'χΧχ — ΧχϊϊΧχ J 

1 1 x'iHx! _ _ J L _ _ _ H L 
x'jXi x'jXi x'jXi — χ^Ηχι XjXi — x'jHxi ' 

^ΧχΧχ — Χ^Ηχχ ΧχΧχ — ΧχΗχχ / ΧχΧΐ — ΧχΙΪΧχ 

where q =(Ι — Η)χ1 , the residual vector in regression χχ on X2. Finally, returning 
to formula (9.15) in vector form 

g = ( X ' X ^ r - f t ( Χ ( Χ ' Χ ) - 1 ) Λ = a ( r - ^ q ) , 

where .χ indicates the first column. Hence, the {r* — /3χ(&} are proportional to 
{dßjdxn} with the factor a = (X 'X)" 1 . 

■ 
Formula (9.15) is even more general than the Cook's local influence formula be-

cause it is distribution-free and allows assessing the influence of the fcth explanatory 
variable on the j t h OLS coefficient when fc φ j . 
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9.4-3 Influence of the binary explanatory variable 

In some cases the explanatory variable is not continuous; for example, it may take 
either the value 0 or 1 (dichotomous variable). We can still apply the /-influence, 
employing the idea of misclassification. Following our definition in Section 9.3, this 
is an example of infinitesimal model influence analysis. The idea of misclassification 
is developed further for the logistic regression model in Section 9.6. 

If Xik is binary and observed, we can interpret it as an outcome of a classification 
procedure; without loss of generality we can assume that k = m. The sensitivity 
of the OLS coefficient to the binary variable is understood as the sensitivity to 
the probability of misclassification. To set the model up with misclassification, we 
shall assume that the regression model is given as E(y\z) = a + ßmz, where z is 
the true unobserved binary explanatory variable misclassified with the probability 
q and a = βλχ\ + ... + ßrn_1Xm-i- However, we do not observe z but observe x m 

such that Pr(z = l\xm = 0) = Pr(z = 0\xm = 1) = q\ a symmetric misclassification 
is assumed. Then, in terms of observed data, the regression conditioned on xm = 1 
can be rewritten as 

E(y\xm = l) = E{y\z = lixm = 0)Pi(z = l\xm = l) 

+E(y\z = 0,xrn = 0)Pr(z = 0\xrn = l). 

Also, we shall assume that the misclassification does not depend on the regression, 
or more precisely, Pr(y|xm,z) = T?r(y\z). Hence, it is easy to see that E(y\xm) = 
a + βγ^Χγη + (1 — 2xm)q). Therefore, assuming that x^m is binary, in the notations 
of (9.15), the impact of misclassification on the OLS estimate can be measured as 

= (1 - 2^ m )(X , X)- 1 (e f e r i - xrfk). (9.16) 

Interestingly, the misclassification becomes asymptotically negligible when a^m takes 
zero and 1 with equal probability because then E{\ — 2xirn) = 1 — 2 Pr(xim = 1) = 
0. As we see, this formula very closely resembles (9.15), and they have the same 
absolute value. 

9.4-4 Influence on the predicted value 

As mentioned in Section 9.4, the diagonal element of the hat matrix measures the 
influence of the dependent variable on its predicted value. Of no less importance 
is how the predicted value is affected by the explanatory variable. Omitting fairly 
simple algebra and using (9.15), one obtains 

Ä = ßk(l -Pi) +x!i(X!X)-1ekri 1 < % < n, 1 < k < m, (9.17) 

where pi is the leverage. 

We make a few comments on how to calculate derivatives when there are repli-
cates, the regression is curvilinear, or the explanatory variables are functionally 

dß 
dqi 
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related. In the case of replicates—when several observations of the dependent vari-
able yi are available for the same value of x^—formula (9.15) is written as 

^ = (X'X)-1(efe Σ Γ , - Χ ^ ) . 

In the case of curvilinear regression—when x; enters the regression model as 5q = 
gfei), where g(-) is a known function—formula (9.15) is written as 

dx ik 
( X ' x r W i i / t e * ) - îiiSfc), (9-18) 

where g' denotes the derivative of g\ see Section 9.4.9, where g(s) = ln(s + 1). 
Also, it is easy to obtain the expression for the derivative in the case when some 
explanatory variables are functionally related, as in quadratic regression. 

9.4-5 Case or group deletion 

The theory of case deletion, particularly infinitesimal deletion based on weights, has 
been developed by Belsley et al. (1980), Pregibon (1981), and Cook and Weisberg 
(1982). We briefly review the theory for further extension to nonlinear and logistic 
regressions. 

We introduce weight Wi for case i and assume that all other cases have weight 1. 
Then, the weighted normal equation for the least squares estimate is written as 

J2(Vj - ß'*j)*j + w(Vi - &Xi)*i = 0. (9.19) 
ύφΐ 

The solution to this equation is the weighted LS estimate, ß=ß(wi). In the infini-
tesimal deletion approach, one assesses how a small departure Wi from affects the 
regression estimate. The rate of this change is measured as the derivative of the es-
timate with respect to Wi. Two types of infinitesimal deletion may be distinguished 
according to the point at which the derivative is evaluated. When the derivative 
is evaluated at Wi = 1, we call it the I-influence of deletion at inclusion. If the 
derivative is evaluated at Wi = 0 we call it the I-influence of deletion at exclusion. 
The formula for the derivative at inclusion has been derived by Belsley et al. (1980): 

dß_ 
dwi 

= r<(X'X) -1Xj, (9.20) 
u > i = l 

where, as before, ri is the OLS residual. This formula can be derived from (9.19) 
by differentiating with respect to Wi. As mentioned above, another option is to 
calculate the derivative at the point where the ith case is excluded (wi = 0). We 
will prove that 

dß 
dwi „ ( 1 - P i ) 2 

Wi=0 

( X ' X ) - 1 * . (9.21) 
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Proof. Indeed, using (9.3), one obtains 

dß_ 
dwi 

Wi=0 

_d_ 
dwq 

(X'X-WiXiX·) 1(X,y-wixiyi) 
Wi=0 

(X'(i)X(*)) 1 χ * Χ ί ( Χ (*) Χ (*)) 1χ(ί)Υ(<) - ( X ( i ) X ( i ) ) ^iVi 

7 - ^ - 1 5 ( X / X ) - 1 x i x i ( X / X ) - 1 ( X / y - XitfO - - i - i X ' X ) " 1 ^ » 
(l-Vi) I-Pi 

ViVi - Vi Vi 

Χΐ-Vi)2 I-Pi 

Formula (9.21) is proved. 

(X'X) - 1 

(I-Pi)2 
( X ' X ) " 1 * . 

All three measures (9.3), (9.20), and (9.21) look alike. Moreover, we want to show 
that the former is approximately the average of the latter two. Indeed, half of the 
sum of (9.20) and (9.21), assuming that p2 ~ 0, is 

2 r * ( 1 + ( l - f t ) ' 
(X'X)- 1:; (9.22) 

1 
= 2Vi + 

Pi 

I-Pi (I-Pi)2 
(x 'x ) - 1 * - - ^ ( χ ' χ ) - 1 ^ . 

I-Pi 

There is an important feature of the influence measure (9.20): it can be used to 
study the influence of the group deletion. Indeed, this follows from the fact that the 
derivative of a sum is the sum of the derivatives. Let a group of cases X (suspected 
of being influential) be chosen, and we want to find how the deletion of this entire 
group affects the OLS estimate. Introducing weights w = wi,i G X, we come to an 
estimating equation similar to (9.19): 

Y^(Vi - /3;Xi)xi + w Y^{yi - j9;Xt)xt = 0. 
i£l ieT 

Then the influence of the entire group X deletion on the OLS estimate is measured 
as ( X ' X ) - X^rr^Xi j which is the sum of individual deletion measures. In other 
words, by identifying a group of observations with large values from (9.20), we 
actually identify a group of influential cases. It is worthwhile to note that this 
property does not hold for the standard case deletion diagnostic. 

Derivatives (9.20) and (9.21) can be used to predict the effect of case deletion 
on the OLS estimates. Indeed, using the classic calculus formula f(x) — f(xo) — 
f'(xo)(x - X Q ) , we can approximate the OLS estimate upon deletion at inclusion as 

3-3 ( i ) ~ ( i -o) 
dß(Wi) 

dwi riiX'xpxi. 
Wi=l 

Similarly, deletion at exclusion yields 

dß(wi) 
/ 3 w - / 3 ~ ( 0 - l ) x 

dwi 
Wi=0 ( l - P i ) Λ2 ( X ' X ) " 1 * . 
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Note that the exact difference between β^ and β is given by (9.3). These approx-
imations are computed in Section 9.4.8. We benefit from the /-influence of case 
deletion, especially in nonlinear models where no closed-form solution exists for the 
estimate upon case deletion. 

Ί 1 1 Γ 
5 10 15 20 

Case deleted 

FIGURE 9.2. Women's body fat influence analysis. This plot is created by the R function 
call wbfO.The solid line depicts the % coefficient change upon case deletion and the 
dashed line depicts the approximation using the I-influence computed by formula (9.20). 

9.4-6 R code 

Below we provide a sample of an R code that computes two beta coefficients for 
each case deletion and compares that with the /-influence of deletion at exclusion 
using formula (9.20). The data and other relevant influence analyses are discussed 
in Section 9.4.8. We make a few comments on the code below. The dump command 
saves the code as a text file (the code is restored using the source command). The 
option weights is used to delete the zth case from the data when computing the 
OLS estimate by lm. First, we compute the OLS beta coefficients, residuals, and 
quantities (9.20) for the entire data set, and then we compute the beta coefficients 
with the case deleted. iXtX°/0*°/ot(ri*X) is a compact way to compute (9.20). Note 
that ri*X is an equivalent but economical version for d i a g ( r i ,n,n)°/0*7oX. The result 
of this code is displayed in Figure 9.2. As can be seen from this plot, approximation 
(9.20) is a fair assessment of case deletion, especially for the coefficient at thigh, 
although the percent change is small in large samples. This /-influence analysis 
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would be especially useful for large data sets when the case-by-case deletion is time 
consuming. 

wbf=function() 

{ 
dump(,,wbf","c:\\MixedModels\\Chapter09\\wbf.r") # save the code 

#Influence analysis for Chapter 9 

#Example 1: Women's body fat, data in WomenBF.dat 

dat=read.table("c:\\MixedModels\\Chapter09\\WomenBF.dat") 

n=nrow(dat) 

outlm=lm(Fat~Triceps+Thigh,data=dat) 

betaALL=coef(outlm)[2:3] 
ri=outlm$residuals 

betai=matrix(nrow=n,ncol=2) 

dbdwl=dbdwO=matrix(nrow=n,ncol=2) 

X=as.matrix(cbind(rep(1,n),dat[,2:3])) 

iXtX=solve (t (X) °/e*°/oX) 

dbdwl=iXtX7o*°/0t (ri*X) 
f o r ( i in l :n) 
{ 

w=rep(1,n); w[i]=0 
outi=lm(Fat~Triceps+Thigh,data=dat,weights=w) 

b e t a i [ i , ] = (coef(outi)[2:3]-betaALL)/betaALL*100 
} 
matplot(1 :n,betai,lty=l,type="b",xlab="Case deleted", 

ylab=,,e/o beta change") 

lines(l:n,-100*dbdwl[2,],lty=2) 

lines(l:n,-100*dbdwl[3,],lty=2,col=2) 

legend(12,2,c("l=Triceps case deletion","2=Thigh case deletion", 

"Triceps db/dw=l","Thigh db/dw=l"), 

lty=c(l,l,2,2),col=c(l,2,l,2)) 

P.^.7 Influence on regression characteristics 

Sometimes, besides regression coefficients themselves, we are interested in regression 
characteristics as a part of influence analysis. For instance, in investigating the 
effect of a new treatment, the key characteristic might be the ί-statistic of the OLS 
estimate at the treatment effect variable (1 = new treatment, 0 = old treatment), 
where y is the treatment outcome and the set of other covariates may include 
age, gender, etc. No influence analysis is available for regression characteristics, 
such as the ^-statistic or the coefficient of determination in traditional regression 
diagnostics. As mentioned above, one of the advantages of the /-influence approach 
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is that it can be applied to any statistic as a function of data. In this section we 
illustrate this feature by the /-influence analysis for the coefficient of determination 
and ^-statistic. Following the line of the previous discussion, we distinguish two 
types of influences: the influence of the dependent (y-influence) and independent 
(X-influence) variables. 

Y-influence 

Coefficient of determination. We start the analysis with the Residual Sum of Squares 
(RSS). The influence of the observation of the dependent variable yi on the RSS is 
measured as the partial derivative of the RSS with respect to y .̂ Then, if ri denotes 
the ith OLS residual, the F-influence of the RSS is measured as 

^ = é ί > - χ ί 3 ) 2 = 2r, - 2 è r ^ X ' X ) - ^ = 2r„ (9.23) 

since J2rjxj = 0· Thus, the rate of change of RSS with respect to a small change 
in the dependent variable, y^ is proportional to the OLS residual. Omitting some 
algebra, we obtain the formula for the F-influence of the coefficient of determination, 
R2: 

wm^wl{1-R2){K-~y)-r-]- (9-24) 
As follows from equation (9.24), the y-influence for the coefficient of determination 
consists of two parts: the first part is associated with the y-residual about the mean, 
and the second part is associated with the OLS residual. 

t-statistic. Let D =diag((X'X)~ ) denote an m x m diagonal matrix of the inverse 
to X'X; then the vector of ί-statistics can be written as t = s - 1 D - 1 / 2 / 3 , where 
s2 = RSS/(n — m). Omitting some algebra and using previously derived formulas 
(9.15) and (9.23), one obtains 

p- = ID-^X'X)-! 
oyi s RSS 

Hence, plotting these derivatives against z, one can identify influential observations 
of the dependent variable in terms of the sensitivity of ί-statistics to small changes 
in observation of the dependent variable. (See the next section for an example.) 

X-influence 

The influence of an independent variable on the RSS is trivial. It easy to show 
that the derivative of RSS and R2 with respect to Xik is proportional to the OLS 
residual. The X-influence of the ί-statistic is measured as the partial derivative, 

dt _ ßkUi t + I D - i / 2 ( x / x ) - i ( e f c U i _ x.ßk) + I p i (9.26) 
dxik RSS s K ' v K l %^K' s 

where p is the m x 1 vector with the j t h component, 

m 

1=1 

This influence analysis will be especially useful for correlated explanatory variables; 
then it can identify influential observations that cause low i-statistics values. 
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FIGURE 9.3. Cross-influence plot for the women's body fat example. The length of the 
vertical bar of the cross is proportional to the influence of the respective body fat obser-
vation on the predicted value, leverage. The length of the horizontal bar is proportional 
to the influence of the respective independent variable on the predicted value of fat. For 
example, observation 3 has little X-influence but a large Y-influence. 

9.4-8 Example 1: Women's body fat 

To illustrate the /-influence approach, we consider the regression of Body Fat (y^) 
on Triceps skinfold thickness (xn) and Thigh circumference (x^) for 20 women 
from Neter et al. (1990). The estimated multivariate regression is % = 0.2224a; χ + 
0.6594^2 — 19.174. R code with case deletion analysis is presented in Section 9.4.6 
and depicted in Figure 9.2. Here we continue the influence analysis using other 
measures. 

The standard technique in visualizing influential cases is to use a proportional 
influence plot, a scatter plot where the zth observation point is represented by a 
circle of radius proportional to the leverage, p^. Larger circles in the plot identify-
more influential cases. Such a plot is implemented in the statistical package STATA. 
However, we can make this graph more informative, displaying the influence of both 
the dependent and independent variables, where the latter is calculated by formula 
(9.17). Such a graph is called a cross influence plot. Since our example has two 
continuous variables, it is relevant to study the influence of an individual observation 
of triceps and thigh on the predicted value of body fat, see Figure 9.3. Each case is 
represented by a cross. The length of the vertical bar is proportional to the leverage, 
Pi, and is equal to the diameter of the circle in the standard proportional influence 
graph. The length of the horizontal bar is proportional to (9.17). As we see, the 
longest vertical bar corresponds to case 3. On the other hand, the horizontal bar 
for this case is relatively small, especially for triceps-influence. It means that the 
predicted value for case 3 is sensitive to perturbation of the dependent variable and 
not sensitive to perturbation in the explanatory variables. 

The star influence plot shows the influence of individual observations on the OLS 
coefficient, see Figure 9.4. To compare the magnitude of the influence, the percent 
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FIGURE 9.4. Star influence plot for women's body fat example based on formula (9.15). 
As follows from the fat-influence analysis, an increase of the third observation of fat by one 
unit leads an approximate 35% in increase the intercept and an 8% decrease in the second 
slope. The arrows in the right graph lie closely to a line because of multicollinearity. 

change in beta coefficient is displayed. Coefficient ßx = 0.2224 is more sensitive 
to perturbation and its rate lies in the range -20 to 35%. Our interpretation is 
as follows: if the third observation of fat increases by 1 then the first OLS, the βλ 

coefficient would increase by 35% and would become 0.2224+0.35 x 0.2224 = 0.3. At 
the same time, the second coefficient would become 0.6594 — 0.08 x 0.6594 = 0.6067. 
Similarly, we can compute the effect of a perturbation of triceps on the second OLS 
slope, β2. 

A bar influence plot is shown in Figure 9.5 and displays relative changes in the 
beta coefficients in a different manner. 

This graph should be read from right to left. In the right-hand graph, one can 
identify maximum influence located at the end-points. By projecting the bars on 
the left graph it is easy to locate the influential cases. Bar influence plots are useful 
for detecting groups of influential observations and for the comparison of influence 
for different regression coefficients. As we see, βχ is slightly more sensitive to per-
turbation in both dependent and independent variables. For the dependent variable 
it ranges from -20 to 30%, whereas β2 only ranges from -10 to 7%. 

The influence of case deletion is illustrated in Figure 9.6, where relative changes 
in beta coefficients are shown. Three bars, according to formulas (9.20), (4.97), and 
(9.21) for three regression coefficients, are displayed. As noted in Section 9.4.5, the 
influence of deletion is equal to approximately half the sum of the two others. The 
most influential case is 3; deletion of this case would lead to an increase of 100% in 
the OLS coefficient. Looking at Figure 9.5, we see that this is due to the observations 
of body fat and triceps. Bar influence in combination with deletion influence plots 
can help identify which individual observation of what variable is influential. Notice 
that the standard deletion diagnostics do not allow one to identify which variable 
makes the case influential. 
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FIGURE 9.5. Bar influence plot for the women's body fat example. In the graphs at the 
right, the influence is ordered so that influential observations are located at the left and 
right. The influential case number can be found on the left-hand graph by projecting 
the influence bar from right to left. This type of graph is convenient for group influence 
detection. For instance, we can identify four observations of triceps that are influential on 
βλ — they are located at the right side. 
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FIGURE 9.6. Case deletion influence plot for the women's body fat example as a percentage 
of change in the OLS estimate. For each case the left bar corresponds to infinitesimal 
deletion at inclusion, the middle bar corresponds to full case deletion, and the third bar 
corresponds to deletion at exclusion. The length of the influence bar is proportional to the 
change in the beta coefficient after the zth case is deleted. Obviously, the three measures 
of influence are highly correlated. Moreover, 'deletion' is the half-sum of 'inclusion' and 
'exclusion', see expression (9.22). 
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FIGURE 9.7. /-influence on ^-statistics. The bottom graph on the left reveals that an 
increase by 1 in the 13th observation of the thigh variable would increase the t-statistic 
by 30%. 

In Figure 9.7 we show how i-statistics depend on an infinitesimal change in the 
independent variables triceps and thigh computed by formula (9.26). For example, 
a unit increase in the thigh variable in the eight observation would lead to a drop 
of 30% in the t-statistic. 

9.4-9 Example 2: gypsy moth study 
In this section we illustrate how /-influence analysis can be applied to curvilinear 
regression (linear in parameters but nonlinear in covariates). We use burlap data 
from a gypsy moth study (Buonaccorsi, 1994) to illustrate the /-influence in curvi-
linear regression. The objective, as formulated by Buonaccorsi, was "to see how well 
counts of gypsy moth egg mass found under burlap bands on trees can be used to 
predict the egg mass density for a large area." The data consist of 51 measurements 
of egg mass, denoted as megg, in the area and egg mass under burlap, denoted as 
mburlap. Due to the objective of prediction, we look for relationship of megg on 
mburlap, the left-hand plot in Figure 9.8. 

As we see from that graph, there is a cluster of observations in the neighborhood of 
zero with small values. Unlike Bounaccorsi, who studied the relationship of mburlap 
on megg, we suggest: (1) using the reverse relationship, i.e., megg on mburlap, and 
(2) taking logarithms of variables plus 1. There is an interesting property of this 
transformation: for large mburlap and megg, we obtain a power relationship, and 
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FIGURE 9.8. Gypsy moth study, burlap data. The left-hand graph: scatter plot of original 
data. The right-hand graph: scatter plot of log plus 1 megg (lmegg) with the regression 
line. The transformation makes the scatter plot more informative. 

for small values of mburlap it is linear. In fact, if ln(y + 1) = a + bln(x -I-1), then 
y = c(x + l)b — 1, where c = exp(a), and we have limy/x6 ~ c for large x. If x ~ 0, 
we can approximate (x + l ) 6 ̂  1 + bx and then y c± (c — 1) + (cb)x. Therefore, the 
regression model we suggest is curvilinear, 

lmegg; = a + b · Imburlap^ + ε ,̂ 

where lmegg; = ln(megg;+l) and lmburlap^ = ln(mburlap2+l). The transformation 
makes the scatter plot more informative; compare the two graphs in Figure 9.8. 

We show only the star influence plot for this example. It shows how a small 
perturbation in megg and mburlap affects the OLS estimate for the intercept and 
slope, Figure 9.9. The derivatives are calculated similar to formula (9.18), where 
#(s) = ln(s +1) . The left-hand plot shows the impact of small changes in megg, and 
the right-hand plot shows the impact of mburlap. The star influence plot helps us to 
view directions of data influence in the parameter space. Clearly, case 7 is influential. 
However, the seventh observation of megg is not influential on the slope and has a 
positive outstanding influence on the intercept. The seventh observation of mburlap 
is influential on both slope and intercept. Therefore, one can infer that the 7th case 
is influential because of an incorrect measurement of mburlap, not megg. We notice 
that we could not detect the impact of mburlap using standard techniques based on 
leverage or case deletion diagnostics because the influence would then be associated 
with the case as a whole. 

Problems for Section 9.4 
1. Derive the influence measure (9.12) explicitly for a simple linear regression 

yi = a + ßxi + Si. Is it correct to say that this quantity measures how far Xi is from 
the bulk of x-data? 

2. Derive the influence measure (9.15) explicitly for a simple linear regression, as 
in the previous problem. 
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FIGURE 9.9. Star influence plot, burlap data. Case 7 is influential. An increase of mburlap 
by 1 would increase the slope by 10%. 

3. Consider the linear regression on the log scale: y% — a + /3 In;&»,+£$, meaning 
that Xi = InZi. Is it correct to say that (9.15) measures the relative change of the 
beta estimate? 

4. Develop the /-influence of continuous explanatory variable on the coefficient 
of determination. 

5. Adopt the R code from Section 9.4.6 to the leave-one-out analysis for the gypsy 
mothdatainfileGypsyM.dat. 

6*. Conduct a simulation study to investigate how satisfactory the /-influence of 
deletion measures (9.20) and (9.21) identify influential cases (outliers). Use a linear 
regression with two independent variables yi = a+ßiXn+ ß2Xi2+£i to generate the 
data for i = 1,2,..., n. Use yn+i = α* + β\χη+\,\ + β2χη-^ι,2 + ^η+ι to generate the 
(n + l) th observation/outlier. Compute the proportion of simulations that produce 
extreme values for (9.20) and (9.21) which indicate that the last observation is 
influential for a grid of values β\ (and/or β2) starting from the true value βλ. You 
can use your own values for x\ and x2 or let x\ = 1,2, ...,n and x2 = x\ as in 
quadratic regression. 

7*. Develop the /-influence of case deletion on the ^-statistic. Test your analytical 
derivations via simulations as in the previous problem, adopt the R code from Section 
9.4.6. 

8*. The data coloncancer.dat contains Medicare reimbursements for 10,109 
colon cancer patients over a 10 period of times (tl,t2,t3,...,tl0); the total number 
of observations is 101,090 (use r e a d . t a b l e to read the file, see also problem 3 of 
Section 9.9). Other covariates include gender (female=l, male=0), stage2, stage3, 
and Charlson (morbidity) index. As was suggested by Demidenko and Stukel (2005), 
one of the model to describe the total cost for colon cancer treatment (y) takes the 
form of a linear regression \n(y + 100) = a + ßi x female + ß2 x stage2 + ß2 x 
staged+/34 x Charlson + ß5 χ ί ΐ + ε . Compute and display the /-influence measures 
(9.20) and (9.21). Compute and display /-influence of y on i-statistics (9.25). 
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9.5 Nonlinear regression model 

/-influence analysis is especially useful in complex statistical models such as nonlin-
ear regression, where case deletion diagnostics would lead to time expensive regres-
sion recalculations. The nonlinear regression model is written as y* = /i(/3; x*) + e*, 
where x; is the vector of explanatory variables subject to influence analysis. The 
Least Squares (LS) estimate, /3, satisfies the vector normal equation 

X>-/ i ( /3;xi ) ) 
2 = 1 

dß o. (9.27) 

Apparently, ß can be viewed as a function of yi and x^. How is ß affected by 
an individual observation of the dependent or explanatory variable? Following the 
approach of /-influence analysis, this influence is measured as dß/dyi and dß/dxik, 
respectively. There is no closed-form solution to the LS estimate (LSE) in nonlinear 
regression, so we need to find the derivatives above by treating ß as an implicit 
function of yi and x^. 

9.5.1 Influence of the dependent variable on the LSE 

The necessary derivative can be found either by direct differentiation of (9.27) or 
by applying the formula for the derivative of an implicit function that leads to 

where 

Η=Σ 
J = l 

dß xdfi 
dyi dß' 

~dß) \dß) -{vj ' h) dß2 

(9.28) 

is the half-Hessian of the sum of squares and all derivatives are calculated at ß =ß. 
Following Bates and Watts (1988), the matrix H may be approximated by G'G, 
where G = δΐ/dß is the n x m matrix of first derivatives of {fi}. 

9.5.2 Influence of the explanatory variable on the LSE 

Again, to find dß/dxik, we can either differentiate the normal equation (9.27) or 
apply the formula for the derivative of an implicit function, 

dß 
dx. 

= H - 1 

ik 

d2fi dfi dfi 
1 dßdxik dxik dß 

(9.29) 

It is not difficult to obtain the formula for influence in the case when the explanatory 
variable is binary by employing the idea of misclassification as was done for the linear 
model in Section 9.4.3. 
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9.5.3 Influence on the predicted value 

Following the /^influence approach, we measure the influence of an individual obser-
vation yi on f (/3) = (/i(/3; xx), . . . , fn{ß\ x n ) ) ' as 9f(ß)/dyi. The use of this deriva-
tive for influence analysis in nonlinear regression was suggested by Emerson et al. 
(1984) and later generalized by Laurent and Cook (1992, 1993). To find <9f(3)/%, 
we use formula (9.28) and apply the chain rule: 

M = W)|3=G|3=GH-xM. (9.30) 
% dß dyi dyi dß 

Laurent and Cook called the matrix consisting of vectors (9.30) the Jacobian lever-
age. For a linear regression model, the ith component of vector (9.30) is the usual 
leverage, pV 

9.5.4 Influence of case deletion 

The influence of case deletion on parameter estimates in nonlinear regression has 
been studied by Cook and Weisberg (1982) and by Ross (1987). A straightforward 
implementation of case deletion would lead to regression reestimation. To avoid this, 
one can use a one-step approximation, as suggested by Pregibon (1981) and Preisser 
and Qaqish (1996) for the generalized linear model. Analogously to the linear model, 
two kinds of /-influence of case deletion can be considered: the influence at inclusion 
and exclusion. In the first type of influence the derivative is evaluated at Wi = 1, 
and in the second, at Wi = 0. Omitting a fairly simple algebra, the influence at 
inclusion and at exclusion is 

dß_ 
dwi 

= r . H - ^ ÊÊ. 
1 dß' dwi 

Wi=l 

Vi (G'G)-1^, (9.31) 
n

_ ( l - f t ) 2 V ' dß 
Wi=0 

respectively, where ri is the zth LS residual and 

- ( i ) '<G'G>-( i 
is an analog of the leverage (it is easy to see that pi is the standard leverage if fi 
is a linear function). These influence measures are called exclusion 1. We can use 
another definition of leverage based on (9.30): 

dß_ 
dwi (1-PÎ)2 dß' 

H _ 1 H , (9.32) 

where 
'dfi Ά'κ-ifdfA Pi ydß 

This measure is called exclusion 2. Notice that all derivatives are evaluated at the 
LS estimate, so we do not need to reestimate the regression. The three measures 
are compared in the following example. 
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9.5.5 Example 3: logistic growth curve model 

We take an example that Laurent and Cook (1993) borrowed from Bates and Watts 
(1988). The dependent variable y, radioactivity counts in rat heart tissue, is related 
to molar concentration of nifedipene (NIF), x = log10(concentration NIF) via a 
logistic growth curve model 

mxi) = 0i+1 + J4
2

{xi_e3y i = l,...,16. (9.33) 

The R code that computes the theta parameters upon case deletion is shown 
below. 

nlsnif=funct ion() 

{ 

dump("nlsnif" ,"c: \ \MixedModels\ \Chapter09\ \nlsnif . r") 
dat=read.table("c:\\MixedModels\\Chapter09\\NLSNIF.dat") 
n=nrow(dat) 
thetaDEL=matrix(ncol=4,nrow=n) 

outnls=nls(y~thetal+theta2/(1+exp(theta4*(x-theta3))), 

start=c(thetal=2000,theta2=3200,theta3=-8.3,theta4=l.3) 

,data=dat) 

thetaALL=coef(outnls) 

for(i in l:n) 

{ 

w=rep ( 1, n) ; w [i] =0 

outn l s i=n ls (y~the ta l+ the ta2 / (1+exp( the ta4*(x- the ta3) ) ) , 
we igh ts=w,s ta r t= l i s t ( the ta l= the taALL[ l ] , 
theta2=thetaALL[2],theta3=thetaALL[3], 
theta4=thetaALL[4]),data=dat, 
control=l is t (maxi ter=500)) 

thetaDEL[i , ]=coef(outnls i ) 
} 

return(thetaDEL) 

To compute theta parameters with the zth case deleted, we use the same method 
as in the case of linear regression by setting the weights vector component to 0 
for the deleted case and 1 for other components. The default maximum number 
of iterations in n l s is 50; we have to increase it to 500 to get convergence for all 
deleted cases. 

An interesting feature of these data is that for the first two observations (i = 1,2), 
the concentration is zero, formally x = — oo and / (0 ;# i ) = / (0 ; #2) = #i + #2· The 
observation points with the fitted curve are shown in Figure 9.10. Apparently, the 
real concentration should be positive, so that one might admit that the measurement 
tool is just not precise enough to detect a tiny concentration. Therefore, as a part 
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of influence analysis, it is of interest to assess the influence of these points. Also, 
since the sample size is fairly small, one can expect that each case is influential to a 
certain degree. To display points we arbitrarily set x\ = X2 = —27, as Laurent and 
Cook did. The nonlinear least squares estimates with t-statistics inj;he parentheses 
are: ?i = 1923.52 (5.2), ?2 = 3194.92 (6.7), ? 3 = -8.3214 (21), and ?4 = 1.269 (2.2). 
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o 
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o 

Molar concentration, x 

FIGURE 9.10. Observation points and the fitted curve for the logistic nonlinear regression 
model. For each molar concentration, there is a pair of total counts. We set the x-value of 
the first pair of observations (x = — oo) to —27 as the original authors did. 

We begin our influence analysis by assessing how a small perturbation in an indi-
vidual observation of the dependent or independent variable affects the LS estimate 
using formulas (9.28) and (9.29); see Figure 9.11 (influence plots for the second and 
third theta parameters are not shown). 

Since x is controllable in this example, the influence analysis with respect to x 
may answer the question of how well the experiment is designed and what should 
be done to improve it. First, we observe that θχ is more sensitive than Ö4; probably 
because θχ is less significant, the fact is likely to be general. Second, parameters 
are much more sensitive to ^-observations than to x-observations. This fact could 
not be revealed using standard case deletion diagnostics because the influence of 
the dependent and independent variables are not separated. As we also see, the 
two left-hand endpoints have little effect on parameters. On the other hand, the 
right-hand endpoints have maximum influence on the first and fourth parameters. 
A close look at Figure 9.11 clarifies the reason for this: Parameter Ö4 corresponds 
to the rate of y change with respect to x, and the two right-hand x-observations 
bring substantial information for the estimation parameter Ö4. Hence, in order to 
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FIGURE 9.11. Bar influence plot for logistic growth curve model (9.33). The twelveth 
observation of total counts affects θ± (the increase in yi2 by 1000 increases θ\ by approxi-
mately 12%, top-right graph). To the contrary, y\2 does not affect #4- On the other hand, 
04 is affected by the seventh observation of counts—see the bottom-right graph. 

get more precise estimates of the rate parameter, the researcher should add design 
points with x > — 5. 

Now, let us consider the influence of case deletion on parameter estimation, Figure 
9.12 (first and fourth parameters).Five measures of case deletion are computed as 
the relative changes to the LS estimate. The first three measures are calculated 
by formulas (9.31, 9.32); the fourth measure, deletion, corresponds to precise case 
deletion and regression recalculation. As we see, the influence of case deletion in a 
certain way accumulates the influences driven by the dependent and independent 
variables considered above. Case 15 is influential for all parameters, this part of 
influence inference coincides with the conclusion of Laurent and Cook (1993) based 
on the Jacobian leverage (9.30). However, in contrast to their analysis, case 16 is 
not influential, which can be verified by looking at Figure 9.11. For this example, 
all five measures behave quite differently for some cases; however, generally, they 
are correlated. 

Problems for Section 9.5 

1. Derive the influence at inclusion and exclusion measures computed by formula 
(9.31) for linear regression, fi(ß) = x^/3. Find the respective counterpart formulas 
in the previous section. Are the influences at exclusion measures given by (9.31) 
and (9.32) different for linear regression? 

2. Reproduce Figure 9.12 by adopting the R code. 
3*. Write an R code to compare the influence measures (9.31) and (9.32) with 

the exact leave-one-out computations for model (9.33) by adopting the R code. 
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FIGURE 9.12. Case deletion diagnostics for a logistic nonlinear regression model (9.33). 
Four measures correlate, although the brute-force deletion is closest to the inclusion for-
mula (9.31). 

Plot measures (9.31) and (9.32) together with Θ — θ^ for i = 1,2, ...,n for all four 
parameters. Which parameter is most sensitive to case deletion? For each parameter, 
identify which case deletion is most influential. 

9.6 Logistic regression for binary outcome 

In this section we deal with the binary dependent variable. Thus, let yi code the 
occurrence of a certain event: yt = l means that the event took place, y* = 0 means 
that it did not. For instance, yi = 1 may mean that individual i has the disease, 
and yi = 0 means individual i is disease-free. As before, the m x 1 vector x^ denotes 
the correspondent vector of explanatory variables (covariates), such as age, weight, 
and smoking status. In logistic regression, the occurrence of the event yi given x^ is 
modeled via probability, defined as 

Pr(w = 1) 
Pß'*i 

l + e^ X i ' 
i = l , . . . ,n, (9.34) 

where the m x 1 vector ß is the parameter of interest. Commonly, logistic regression 
(9.34) is estimated by maximum likelihood. The log-likelihood function for data 
(yi, Xi) has the form β' Συ.=ι Xi - ΣΓ=ι ln(l + e^'Xi), and the MLE β is determined 
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from the score (estimating) equation, 

i = l yi=0 

We refer the reader to Section 7.1 for detail. The aim of this section is to describe 
techniques of detecting an influential observation in logistic regression. In other 
words, we answer the question of how an individual observation, yi or x^, affects 
the MLE or another statistic, such as predicted probability. In a pioneering paper, 
Pregibon (1981) introduced the infinitesimal influence analysis and applied it to 
case deletion diagnostics for logistic regression. Here we extend his approach to the 
influence analysis of individual observations and misclassification of the dependent 
variable. Following our approach, we measure the infinitesimal influence via the 
derivative of β with respect to individual observation of either the dependent or the 
independent variable. 

P. 6.1 Influence of the covariate on the MLE 

The influence of an individual observation x^ on the MLE is measured as dß/dxik · 
We find the derivative differentiating (9.35) with respect to x^ , 

- ^ - - H " 1 ekn - , — - x i ß k , (9.36) 
dxik y (i + e3xi)2 

where τι = yi — e@ Xi/(l + eP Xi) is the ith residual of the logistic regression and 
the negative Hessian (information) matrix is defined as 

H = E ( 1 +
e e ^ ) 2 x ^ · (9-37) 

As the reader can see, formula (9.36) resembles its linear analog (9.15). Formula 
(9.36) has a simple interpretation: increasing x^ by 1 would change the MLE by 
the value (9.36). 

9.6.2 Influence on the predicted probability 

In some instances we may be interested in the predicted probabilities, Johnson 
(1985). Then the characteristic of interest is pi = e@ X i / (1 + e^ X i ) , which may be 
analyzed with respect to the influence of misclassification of the binary variable, in-
dividual observation of covariate, or case deletion. We find the derivative of % based 
on the derivative of the MLE by applying the chain rule. We start by calculating 
the influence of pi with respect to Xik based on formula (9.36). Hence, applying the 
chain rule, we obtain 

dxik \dßj \dxikl (i + e ^ x 0 2 * \ (l + e^'x*)2 
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Now we find how % is sensitive to misclassification qi. Again, using the chain rule, 
one obtains 

(9.38) 
dqi \dßj \d% 

Recall that in the linear model, the influence of the dependent variable on the pre-
dicted value is measured via the diagonal element of the hat matrix, the leverage. 
Therefore, (9.38) can be viewed as a generalization of the leverage for logistic re-
gression. It is interesting to note that the quadratic form x^H_1Xi is similar to the 
linear model; however, the scalar factor in (9.38) is specific to the logistic regression 
and reflects the binary nature of the dependent variable. This influence is minimal 
when yi is equally likely to take the value zero or 1 (the numerator is zero). 

9.6.3 Influence of the case deletion on the MLE 

The theory of /-influence for the case deletion in logistic regression was developed 
by Pregibon (1981). Following Pregibon, let i be fixed and Wi be the weight of the 
zth case (other cases do not change). Then the MLE becomes a function of Wi and 
we aim to find dß/dwi. If ^ = 1, the score equation takes the form 

3φτ> 

1 
+ eP'** 

■Xi + 
Wi 

1+ <£'*' -Σ<χ* = °· 
Vi=0 

It is easy to write a similar score equation if yi = 0. Differentiation with respect to 
Wi leads to two formulas, corresponding to deletion at inclusion and exclusion, 

dß_ 
dwi ηΐί-

Wi=l 

dß_ 
dwi (I-Pi)2 

H" 

where Ti is the ith residual defined above. It is easy to calculate the derivative for 
the predicted probability based on the chain rule. For example, as follows from the 
first formula, if ß is the MLE for all data, the estimate after the zth case is deleted 
would be ß + r ^ H - ^ . The influence of the case deletion by omitting the ith case 
and recomputing the regression has been discussed by Fay (2002). 

9.6.4 Sensitivity to misclassification 

In some applications the assignment 0/1 to the response variable may be under 
question and not trivial. Consequently, one may ask how sensitive our statistical 
inference is to flipping 0/1 in an observation of the dependent variable. Since yi 
takes values 0 and 1, a straightforward solution would be to recalculate the logistic 
regression replacing yi = 1 with yi = 0, and vice versa, which would involve a 
number of reestimations equal to the number of observations. However, it is possible 
to avoid such massive calculation, employing the idea of misclassification, similar 
to what we did in Section 9.4.3. 

Indeed, let us fix i and assume that the observed event yi is symmetrically mis-
classified with probability <&, assuming that other observations are well classified 
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(qj = 0 for j φ %). It is assumed that the true, "well-classified" binary event Zi 
is not observable with probability modeled via logistic regression as Pr(zi = 1) = 
eß

 x*/(i -f eß
 χ ΐ) . Th e condition on misclassification can be written as 

Pr(2/< = l\zi = 0) = Prfoi = 0 |* = 1) = ft, (9.39) 

where qi is assumed known. Then, using standard formulas of the theory of proba-
bility, we find the marginal probability of the observed event yi = 1 as 

Pr(y* = l) 
= Pr(y; = l,zi = l) + Pr(yi = 1, * = 0) 

= Pr(y< = 1 |* = 1) P r ( * = 1) + Prfo = l\Zi = 0) Ρ φ ; = 0) 

= ( 1 - * ) r T ^ + < ? i î T ^ r = ^ ^ ^ . (9.40) 

We notice that in special cases, when misclassification is absent (qi = 0), probability 
(9.40) collapses to (9.34). Conversely, qi = I corresponds to the reverse coding. The 
idea of introducing a misclassification parameter into the logistic regression model 
belongs to Copas (1988). However, he assumed that q% = q and all observations were 
misclassified. We, in contrast, are looking for the influence of individual observations, 
and therefore, qj = 0 for j φ i. Also unlike Copas, we do not compute the MLE 
under misclassification but characterize the influence by the rate at which the MLE 
changes upon a small misclassification of yi. 

Now we assess how sensitive the MLE is to a low probability of misclassification 
qi using formula (9.40). For convenience of notation, we use vector probabilities 
{QJIJ — I? •••>n}> where qj = 0 if j φ i and qi > 0. Then, the log-likelihood function 
of the logistic regression under misclassification (9.40) is given as 

'09) = Σ , ( l - f t Q e ^ + f t · , <Λ x, Oje?** + {1 - g) Vi In — — H 7 + (1 — Vi) In — ^ — (9.41) 

We notice that the MLE ß = ß(qi), as the solution to the score equation 

ji\<X-*)*'*>+* +
qje^+(l-qj) l + eß'^p ^ 

is a function of <fc. Therefore, the derivative dß/dqi calculated at ^ = 0 can be 
interpreted as an influence measure of yi on the MLE. Differentiating the score 
equation (9.42) with respect to q^ after some algebra we come to the derivative 
desired, 

dß\ 
dqi 

= (1 - 2yi)e^-2y^ß ^ Η 1 ^ , (9.43) 

where H is the information matrix defined by (9.37). As follows from (9.43), the 

coefficient at H - 1 x^ is exp(/3 x^) if yi = 0, and — exp(—β χ^) if yi = 1. We interpret 
(9.43) as by how much the MLE changes upon flipping 0/1 in the ith observation. 
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The reader is referred to the top-left graph in Figure 9.13 as an example, where 
the MLE under misclassification, as the solution to the score equation (9.42), is 
plotted against the probability of misclassification for the fourth observation of the 
response variable, q^ (Finney data; see the example below). The straight line has a 
slope equal to the derivative of the MLE at zero calculated by formula (9.43). 

In applications to clinical studies, where the response variable codes the occur-
rence of a disease, the misclassification may not be symmetric. For example, if y 
denotes the presence of cancer, the doctor usually does not make a mistake when 
there is no cancer: namely, Pr(y = l\z = 0) = 0. On the other hand, the doctor may 
overlook the cancer, which translates mathematically into Pr(y = 0\z = 1) = q > 0. 
This leads to an asymmetrical misclassification 

Prfoi = l\zi = 0) = 0, Pr(y< = 0 |* = 1) = qu 

with the marginal probability Pr(yi = 1) = (1 — qi)eß X i / (1 + e/3 Xi)· ^ 1S Quite 
straightforward to apply the influence analysis above to this asymmetrical misclas-
sification. 

MLE Variance 

0.02 0.04 0.06 0.08 0.10 

t-statistic 

0.0 0.02 0.04 0.06 0.08 0.10 

Predicted probability 

0.02 0.04 0.06 0.08 0.10 0.0 0.02 0.04 0.06 0.08 0.10 

Probability of misclassification 

FIGURE 9.13. Percent change of the MLE of ß2 and other quantities under misclassifica-
tion of the fourth observation in the response variable (Finney data). Bold: %MLE change 
as the solution to the score equation for different probabilities of misclassification, ςτ». The 
slope of the straight line is the derivative evaluated at zero {qi = 0). A nonlinear relation-
ship of the characteristics as a function of qi is evident, especially for larger probability 
values. 
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Sensitivity of the variance and significance testing 

Often, we are interested not only in the odds ratio (exponent of the beta coefficient, 
see the detail in Section 7.1) per se, but also in significance testing. Does the new 
drug statistically significantly decrease the post-treatment disease recurrence? Does 
the exposure or a risk factor have a statistically significant effect on the incidence 
rate? Clearly, misclassification may jeopardize our statistical testing. The aim of 
this section is to provide a sensitivity analysis of the MLE variance and i-statistic 
to misclassification, as a generalization of Section 9.4.7. 

We start with the sensitivity of the MLE variance to misclassification described 
by model (9.40). The MLE variance of the kth logistic regression coefficient, σ\, 
under misclassification is calculated as the (&, &)th diagonal element of the inverse 
information matrix, defined as the negative derivative of the score equation (9.42). 
Therefore, differentiating (9.42) with respect to /3, the MLE variance of the /cth 
beta regression coefficient is the (&, fc)th element of the matrix inverse to 

Σ yj 
qj(i-qj)êj 

(l + e,·)2 "'((l-fcfè+fc)2 ( l - V i ) (qjêj + (1 - qj))2 x J x j 

where êj — exp(/3 x^), and β is the MLE under misclassification of the zth response 
variable with probability ĝ . Then the MLE variance of the fcth regression coefficient 
is e'kG~1ek, where e^ is the Kronecker vector. Therefore, the sensitivity of the MLE 
variance to misclassification is given by 

dqi 
= - e iH- 1 ^ 

qi=0 
H-^fc, (9.44) 

9i=0> 

where 

dG 

dqi 

N 

-Σ 
e3\^ ej) „ __/,../ 

(l + e,)3 
Qi=0) 

- ( y t ê T ^ i l - î / O e O x i X · . (9.45) 

The derivative dß/dqi is defined by (9.43), and the matrix H is defined by (9.37). 
Now we define a measure of sensitivity for the i-statistic. Following the line of 

our approach, we measure this sensitivity as the derivative of the ί-statistic to the 
probability of misclassification at zero. Since the ί-statistic is the ratio of the MLE 
to the square root of the variance, the desired derivative is 

dQi \Pk % 2σ\ dqi 
ifcj (9.46) 

where the derivative of the MLE is defined by (9.43), and the derivative of the 
variance σ\ is defined by (9.44). Note that all quantities are computed at qi = 
0, and σ\ and tk are the MLE variance and ί-statistic of the standard logistic 
regression. The reader is referred to Figure 9.13 (the top-right and bottom-left 
graphs), where the variance and the t-statistic are plotted against the probability of 
misclassification with the derivative at zero calculated by formulas (9.44) and (9.46), 
respectively. Plotting these derivatives against i can identify influential observations 
of the response variable in terms of the sensitivity of the variance or the i-statistic 
to a small misclassification of the response variable. 
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FIGURE 9.14. 3D plot of logistic regression model (Finney data). Observations are shown 
by the filled circles. Notice that case 32 stands apart from the bulk of the data. 

Sensitivity to the predicted probability 

Sometimes we are interested in the prediction of probabilities (Johnson, 1985). Then 

the characteristic of interest is pi = e^ X i / ( l + e/3 X i ) , which may also be analyzed in 
terms of its sensitivity to the misclassification. Following our approach, we measure 
the sensitivity as the derivative of Pi with respect to misclassification probability, 
qi, calculated at qi = 0. Applying the chain rule and formula (9.43), we find that 

fi .(SI Y(*| U ^ f î i ^ - H - V ,9.47, 

Measure (9.47) may be considered as a generalization of leverage in linear regression. 
Recall that for the linear regression model, the leverage is the derivative of the 
predicted value % with respect to the value of the response variable, 

| = * ; H - V (9.48) 

Our formula (9.47) is similar to (9.48), with the scalar factor pertinent to logis-
tic regression, where, instead of y^ it is the probability of misclassification under 
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consideration. Thus, derivative (9.47) can be called the logistic regression lever-
age. Derivative (9.47) has a clear interpretation: flipping 0/1 in the ith observation 
would lead to a change in the predicted probability by amount (9.47). The reader 
is referred to Figure 9.13 (right-bottom graph), where the predicted probability 
is plotted against the probability of misclassification, with the derivative at zero 
calculated by formula (9.47). 
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FIGURE 9.15. Pregibon's coefficient sensitivity to case deletion. Cases 4 and 18 are influ-
ential because their deletion from the data changes the regression coefficients substantially 
(downwards). 

9.6.5 Example: Finney data 

To illustrate influence analysis for logistic regression, we take an example from 
Pregibon (1981) based on Finney data. The dependent variable y indicates the 
occurrence (1) or nonoccurrence (0) of vasoconstriction in the skin of the digits; 
x\ and X2 are the logs of the Volume and Rate of air inspired on a transient 
vasoconstriction; number of cases n = 40. The logistic regression has the form 
logit(y) = βχ ln(Volume) + /?2 ln(Rate) + β 3 with the MLE β± = 5.18 and 3 2 = 4.56; 
the 3D plot is depicted in Figure 9.14. 

The analysis of case deletion and infinitesimal deletion was conducted by Pregi-
bon. As shown in Figure 9.15, cases 4 and 18 are influential because their deletion 
significantly affects the MLE (the derivatives were computed by formulas from Sec-
tion 9.6.3). 

Below we show the R code to compute the logistic regression and to run the leave-
one-out analysis. The /-influence measures depicted in Figure 9.15 should correlated 
with the exact deletion results (Problem 1). 
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finney=function() 

{ 

dump ( "f inney" , " c : \\MixedModels\\Chapter09\\f inney. rlf ) 

dat=read.table("c:\\MixedModels\\Chapter09\\Finney.dat") 

n=nrow(dat) 

lnv=log(dat$Volume) 

lnr=log(dat$Rate) 

dat=cbind(dat,lnv,lnr) 

outL=glm(y~lnv+lnr,data=dat,family=binomial) 

betalOUT=matrix(nrow=n,ncol=2) 

for(i in l:n) 

{ 

w=rep ( 1, n) ; w [i] =0 

outLi=glm(y~lnv+lnr, weights=w, data=dat, f amily=binomial) 

betalOUT[i,]=coef(outLi)[2:3] 
} 

betalOUT 

} 

Now we concentrate on the /-influence of misclassification and individual obser-
vations of Volume and Rate based on formulas (9.36) and (9.43). Notice that the 
former formula should be modified because the covariates enter regression in loga-
rithms. The influence of Volume and Rate on the MLE is depicted in Figure 9.16, 
where (dßj/dx)/ßj x 100% is displayed for each beta coefficient (j = 1,2). As one 
can see, both estimates are very sensitive to observation change; a 1 unit change 
in the 4th or 18th observation of Volume would lead to a decrease in βλ to ap-
proximately -150% (the top-left graph). Interestingly, these observations of Volume 
do not affect β2 as much. Now we investigate the effect of misclassification using 
formula (9.43). Both βλ and β2 are highly sensitive to misclassification of the 4th 
and 18th observations of y. This finding is confirmed by the 3D plot in Figure 9.14: 
observations 4 and 18 are surrounded by observations with y = 0 and seem to ap-
pear in the "wrong" place; therefore, replacing y4 = 1 and yi$ = 1 with y± — 0 
and yis = 0 would change the MLE coefficients dramatically. Possible misclassifi-
cation of the response variable in cases 4 and 18 also has a considerable effect on 
^-statistics. 

Summing up, sensitivity to misclassification may explain further why deletion of 
a specific case is influential. 

Problems for Section 9.6 

1. Adopt the R code above to show the exact values of the beta-coefficient change 
and their infinitesimal change on the same plot, as in Figure 9.15. 

2. Write an R code to reproduce Figure 9.13. 
3*. Develop /-influence measures for probit regression. 
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FIGURE 9.16. Bar influence plot for logistic regression (Finney data). Individual change 
in obervation of Volume and/or Rate may significantly affect the MLEs. 

9.7 Influence of correlation structure 

One assumption of ordinary regression is that the errors are uncorrelated. What is 
the influence of this assumption on the OLS estimate? What are the consequences 
of a possibly missing correlation structure? In particular, this question might be 
reasonable when regression analysis is applied to time series data as follows. 

We write the standard linear regression model as yt = /3 ;xt+ε*, where t = 1,..., T 
denotes the time index. Let us assume that the correlation structure is induced by 
the first-order autoregression, et = pet +Vt, where ηι are iid random variables with 
zero mean and variance σ2. The (z, j ) th element of the T x T correlation matrix 
Ω = fi(p) for ei, . . . ,€T is equal to p'2-·7 ' , and the weighted least squares estimator 
has the form 

β{ρ) = (x 'n-^x^x 'n-^y , 
where Ω(0) = I. Clearly, a small departure of p from zero changes the estimate at 
the rate 

dß(p) I 

dp 
- (X 'X^X 'u , (9.49) 

p=0 

where u ' = (r2, T\ +Γ3,..., τ γ - ι ) and rt is the tth OLS residual. A similar formula can 
be obtained for nonlinear regression. Thus, one can assess the influence of a possible 
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missing correlation structure on the beta coefficients by examining the components 
of vector (9.49) prior to p estimation, as a part of preliminary data analysis. 

Problems for Section 9.7 

1. Prove that the correlation coefficient between yi and yj is p^~^. 
2. Find the expected value of the rate vector (9.49). Find X for which this expected 

value is zero (use the fact that X ' r = 0). 

9.8 Influence of measurement error 

Covariates often contain measurement errors. There is a well-established theory of 
errors-in-variables (Fuller, 1987; Carroll et al., 1995). Generally, if there is measure-
ment error in a covariate (independent or explanatory variable), parameters of the 
model are not identifiable unless additional information is provided. In particular, 
the MLE exists if the variance of measurement error, σ2, is known. In practice, a 
calibration or validation study might be undertaken to obtain an estimate of that 
variance (Spiegelman et al., 2000). However, since such studies are usually expen-
sive, it might be very useful to assess the effect of measurement error on parameter 
estimates prior to the validation study. It is well known that in simple linear re-
gression with errors-in-variables, the OLS slope is attenuated (bias toward null). 
In multivariate linear regression, due to correlation among covariates, the effect of 
measurement error may not be mitigated so easily. The effect of measurement error 
becomes more complicated in nonlinear models, such as generalized linear models 
or nonlinear regressions. The aim of this section is to show how to assess the effect 
of measurement error on the MLE via the /-influence approach without knowing 
σ2. Our plan is as follows: 

• Set up the model with a known error variance σ2. 

• Calculate άβ(σ2 = 0)/cfcr2, where β is the MLE, as a function of σ2. 

Then the derivative vector would indicate how the MLE is sensitive to small mea-
surement error. In fact, by computing this derivative, we obtain the first-order ap-
proximation to the MLE in the neighborhood of small variance: β ~ β0+σ2άβ(σ2 = 
0)/οίσ2, where ß0 is the MLE assuming no measurement error (naive estimate). This 
method provides (a) information on what coefficients are most sensitive to measure-
ment error, (b) the direction of change in the naive ML estimate, and (c) the crude 
coefficient estimate given the value of the error variance. Following the line of I-
influence approach, we do not require estimation of σ2 because the derivative is 
evaluated at the naive MLE. 

Let the set of covariates consist of a fixed vector u^ measured without error and 
an unobserved scalar covariate x\ measured with an error/surrogate. To simplify, we 
shall assume the Berkson measurement error model (Berkson, 1950; Fuller, 1987): 
%i = Zi + asi where Zi is the design variable and si is the standardized measurement 
error with zero mean and unit variance. Thus, the variance of the measurement 
error is σ2. We do not specify the distribution of the measurement error, so our 
analysis is distribution-free. The true regression model is expressed in terms of X{ 
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and to derive the log-likelihood function for available observations (yi,Zi), we have 
to integrate out the measurement error s. 

The binary model is defined via conditional probability: Pr(y^ = 1 | xi) = 
H^'ui + TXi), where H is the probability function and β = (7 / , τ ) / is the vec-
tor of the model coefficients. If H = exp / ( l -j-exp), we come to logistic regression; if 
H = Φ, where Φ(·) is the normal distribution function, we come to probit regression 
(see Section 7.1). The observed model can be written as 

Pr(yi = 1 | Zi) = EsH(jfUi + TZi + στβ)), (9.50) 

where Es means expectation over s; for a special case, s ~ Λ/"(0,1). As shown 
in Section 9.10, the derivative of the MLE with respect to the variance of the 
measurement error, in a large sample, can be approximated as 

dß 
da2 

σ2=0 
2 [^Hiil-Hi Zi 

(9.51) 

where Hi and its derivatives (H" and H[) are evaluated at 7 u^ -\-TZi. The MLE 7 
and r are naive estimates (no measurement error), and the information matrix H 
is defined as 

n n't r ,, 
H = V l 

Z^Hi{l-Hi) [ Zi 

Ui 
Zi 

(9.52) 

We illustrate measure (9.51) by the probit model (H = Φ) with a normally 
distributed measurement error. This choice means that the observed model (9.50) 
is again probit; see the discussion around formula (7.15). More precisely, in our 
notation, 

Pr(y< = 1 I Zi) = Φ 
j'Uj + TZj 

νΤΤσ' 2^2 

meaning that the (naive) MLE ignoring measurement error will be attenuated by 
the factor (1 + σ 2 τ 2 ) - 1 / 2 . This implies that the MLE as a function of σ2 in large 
samples can be expressed via the naive MLE as 

7 M L 
7o 

v^ 
TML 

TO 

v ^ 
(9.53) 

σ'τη 

where 7 0 and TQ are the MLE at zero variance, i.e., based on the model Φ(^'Μ^ΤΖ^. 

In particular, sensitivity of the MLE r to the variance of measurement error can be 
assessed as 

drfML 
da2 

1 

r2=0 
'0> (9.54) 

the derivative of TML with respect to σ2 evaluated at zero, as is easy to see from 
(9.53). It is instructive to verify that our approximation formula (9.51) gives the 
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FIGURE 9.17. Impact of a small measurement error (m.e.) in ln(Volume) and ln(Rate) 
on the MLE for a logistic regression model, Finney data. The MLE is more sensitive to 
measurement error in Volume. Approximately 10% m.e. in Volume would lead to a 5% 
increase in beta coefficients. 

same result for the probit model Hi = Φ̂  = φί and H" = —(7'iii + τζι)φ^ so that 

(
n Tjtl Tjl 

- Σ Φΐ 
ί*<(ΐ-Φ0 Zi Zi 

- 1 

Zi 

Ί 
T 

7 
r 

which leads to the exact derivative using the relationship (9.53). 
For logistic regression, we have 

dß 
da2 

i n 

σ 2 =0 

Ui 

^i 
(9.55) 

where H is the information matrix for the naive MLE defined by (9.37), and e* = 
exp(7 \ii+TZi). Interestingly, measurement error will have little effect for symmetric 
data, ei ~ 1, or equivalently, ^ u » + rzi ~ 0. 

We illustrate the sensitivity analysis for the logistic regression model to measure-
ment error (m.e.) by Pregibon's example of Section 9.6.5. Multiplicative error is 
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assumed (additive error on the log scale). Figure 9.17 shows that the relative bias is 
close to a quadratic function of σ. Interestingly, the MLE is more sensitive to m.e. 
in Volume; a 10% m.e. would lead to a 4.5% increase in the MLE. 

There is an indication that the approximation based on (9.51) is fairly good 
for other real-life data. We refer the reader to the graphs on pp. 91 and 93 in 
the book by Carroll et al. (1995), where the ML estimates of a logistic regression 
model are displayed as functions of the variance of measurement error (Pramingham 
Heart Study data). Those functions look quite linear in the neighborhood of zero, 
and therefore a linear approximation based on (9.51) should be pretty accurate. 
Again, formula (9.51) does not require recalculation, knowledge of the variance of 
measurement error, or simulations. 

Problems for Section 9.8 

1. Set up the Berkson measurement error scheme for a linear model, 7;u^ + τζ{. 
Does the OLS estimator imply bias for 7 and r? Do the results hold for a quadratic 
regression 7;u^ + τζι + φζ^Ί 

2. Find/approximate the expected sensitivity (9.55). 
3*. The data a l ck id .da t contains information on underage alcohol drinking for 

5,469 U.S. teenagers. The variables are: yn=l if ever drunk (0=never), agen=age-
10, sensn=l if a sensation seeker (0 otherwise), frn=number of friends who drinks, 
alcmov= exposure to alcohol scenes in movies on the log scale. The R code below 
reads the data and runs the logistic regression model. To get started: 

alckid=function() 

{ 

dump(Malckid , , ,nc:\\MixedModels\\Chapter09\\alckid.rM) 

dat=read.csv("c: \ \MixedModels\ \Chapter09\\alckid.dat") 

outL=glm(yn~agen+sensn+frn+alcmov,family=binomial,data=dat) 

summary(outL) 

} 

An interested reader can get more insights on the association between adoles-
cent drinking and movie watching from recent papers by Sargent et al. (2012) and 
Demidenko et al. (2012). The information on drinking was self-recorded and un-
derstandably subject to underreporting ('misclassification,' in our language). Use 
results of Section 9.6.4 to study the influence of misclassification. 

4*. Write an R code to test (9.55) through simulations. Compute the average ML 
as a function of σ2, as in Figure 9.17, and plot the tangent line with the expected 
slope (9.55). Use Finney data in the file Finney. dat on the log scale for Volume and 
Rate (use r e a d . t a b l e to read the file). Use probit regression and the relationship 
between probit and logit for the approximation (9.55). 

9.9 Influence analysis for the LME model 

In this section we develop /-influence analysis for the Linear Mixed Effects (LME) 
model in formulation (2.5). The influence analysis for the LME model based on the 
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local influence approach has been discussed extensively in two books by Verbeke and 
Molenberghs (2000) and Pan and Fang (2002). The application of local influence 
analysis to a nonlinear mixed effects model has been discussed recently by Lee and 
Xu (2003); Turkan and Toktamis (2012) discuss the local influence approach to the 
linear mixed model. The discussion below follows a paper by Demidenko and Stukel 
(2005). 

Recall that the local influence approach measures the sensitivity by the maxi-
mum curvature of the log-likelihood function. The flexibility of the /-influence is 
that it allows examination of the impact in a small change of a single observation or 
individual (cluster) on any statistic or parameter of interest, regardless of the distri-
bution. For example, one can consider the /-influence of the dependent/independent 
variable or case deletion on the MLE, variance estimate, predicted value, estimates 
of random effects, etc. The attractive feature of the /-influence is that it specifies 
what influences what and with what magnitude. To be concrete, we assume model 
(2.14) with parameters estimated by maximum likelihood. Since the information 
matrix for ß and the variance parameters (σ2,Ό) is block diagonal, we may treat 
variance parameters as fixed when examining the influence of the MLE. 

We start by constructing an analog of leverage for the LME model. As mentioned 
earlier, the leverage in a standard linear model can be viewed as an infinitesimal 
influence of a small change in the observation of the dependent variable on the 
predicted value, or symbolically, pi = dyi/dyi. Analogously for the LME model, we 
define the leverage matrix as 

P -?î± 
dyi 

where y* = X^/3 is the predicted value, and 

3 = H^s 

is the MLE, where 

N N 

H = ^ X j V r 1 X r 1 , s ^ X j V r V i , V ^ I + ZiDZj. 
i=l i = l 

Then, as is easy to see, the leverage matrix is 

Pi = X i H ^ X j V r 1 , i = 1,..., TV. (9.56) 

The sum of the traces of the leverage matrices is equal to the dimension of vector 

ß, 
/ N \ N N 

*ΜΣΡ*) = Σ^-Σ^11-1*^«-1*) 
i=l i=l 

tr ( H " 1 ^ X j V ^ X i ] = t r l m = m. 

\i=l / i=l i=l 
/ N 

i=l 

Thus, the average value of { t r P j is ra/iV, and a value of trP^ much higher than 
the average points to an influential cluster. 
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Now we determine how the beta coefficients are sensitive to small changes in the 
dependent or independent variable. The /-influence of y^ and X; on the MLE is 
defined by 

Μ = Η-.χ;νΓ., (9.57) 

and similar to the derivation of (9.14), 

dß 
dx. 

= - H - M ^ H - ' e + H - i ■* 
ijk 

= H - 1 ( E ^ V r V i - [ E ^ V - 1 ^ + X' iV-1E i j f e]3) 

= H - ^ E ^ V r ^ i - X j V r 1 ^ - ^ ) , (9.58) 

where Ê -fc is the riiXm matrix of zeros except the (j, k)th element, which is 1, and 
r̂  = y^ — ~Kiß is an ni x 1 residual vector, j = 1,..., η^, k = 1,..., m. 
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FIGURE 9.18. Leverage {trPi} versus family number. The dotted horizontal line repre-
sents the average leverage, 2/N. Families 1 and 4 seem influential. 

Now we develop cluster deletion diagnostics analogously to case deletion in the 
standard linear model^Thus, after picking cluster z, we want to know how deletion 
of this cluster^affects β. A straightforward and time-consuming solution would be 
recalculating β after cluster deletion. However, it is possible to derive an update 
formula similar to (9.3) that avoids massive reestimation. Following the line of 
previous notation, we denote ßu\ as the MLE with the zth cluster deleted, namely, 

3(i) = [H - X ^ X r M s - Χ',ν-Vi], i = 1, ..·, N. 

Using the matrix formula 

(H - X i V r 1 ^ ) " 1 = H " 1 + H ^ X i i V i - X i H ^ X O ^ X i H - 1 , 

(9.59) 
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we obtain 

[ H - X ^ X r ' X i V - 1 

= [H" 1 + H ^ X j i V , - Χ ί Η ^ Χ θ ^ Χ , Η " 1 ] X^V- 1 

= H ^ X j V r 1 + H - ^ C V i - X i H - ^ J - ^ H - ^ V r 1 

= H^XiCVi - Χ , Η - 1 ^ ) " 1 ^ - XiH^X'JV-1 + X i H - ^ V r 1 ] 

= H ^ X i C V i - X i H " 1 ^ ) - 1 . 

Applying this formula to (9.59), yields 

= β + H ^ X J i V i - X i H " 1 ^ ) - 1 ^ ^ - H - ^ i V i - X i H - 1 ^ ) " 1 ^ 
= / î - H ^ X i V r ' f l - X i H - ' X Î V : - 1 ) - 1 * 

=. i S - H - ^ V r ^ I - P i ) - 1 ^ , 

where P» is the leverage matrix given by (9.56). Thus, the analog of (9.3) for the 
LME model is 

β - ßw = H - ^ V r ^ I - Ρ < ) - ι Γ < . (9.60) 

Ignoring the fact that we used an estimate of D, the (1 — a) 100% ellipsoid for beta 
coefficients is defined as 

{ß eRm: (β-β)Ή(β-β) < roa2*i_a}, 

where σ2 is the MLE of σ2 and Fi-a is the (1—a) 100% quantile of the F-distribution 
with (m, Σ ni — rn) degrees of freedom. Thus, if 

Di = - ^ ( 1 - P i J - ^ r i X i H - ^ V r ^ I - P , ) " 1 ^ > F i - a , (9.61) 
ma 

we say that cluster i is influential because its deletion changes the MLE significantly. 
The reader can notice an obvious similarity between the left-hand side of the in-
equality (9.61) and Cook's distance (9.6). Formula (9.60) was derived previously by 
Banerjee and Frees (1997). Practically, it is more informative to report and/or plot 
the p-values associated with Di. See the next example. 

To apply the /-analysis to case deletion, we consider the MLE as a function of 
the weight for the ith cluster, 

ß(i)(w) = p - t o X i V X d - V w X i V r V i ] , (9.62) 

where w is the weight. Current MLE means that w = 0, and w = 1 corresponds 
to deletion of the zth cluster. In /-influence analysis, we determine how a small 
departure of w from zero affects the estimate by computing the rate of change, 

ffi(»)M 
dw = H - ^ V r ' X i H - ^ - H - ^ V r V i 

= - H ^ X i V r V (9.63) 

This formula differs from the change 3(^(0) —/3^)(1), determined by (9.60), by ma-
trix factor (I — P i ) - 1 because (9.60) determines the exact, and (9.63) an approxi-
mate, change upon cluster deletion. These measures of influence are illustrated in 
the following example. 
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FIGURE 9.19. Influence on the slope of a small change in Weight (Y-influence) and Height 
(X-influence) individual observations. No apparent influential observations are seen. 

9.9.1 Example: Weight versus height 

In this section we illustrate the measures of influence for the linear mixed effects 
model by familial data, Weight versus Height, see the motivating example in Sec-
tion 2.1. We start with the leverage matrix (9.56) and plot {trPi,z = 1,..., 19} 
versus family number, Figure 9.18. According to this plot, the leverage values of 
families 1 and 4 are obviously above the average, 2/19. The influence of individual 
observations of Weight and Height on the slope using formulas (9.57) and (9.58) is 
displayed in Figure 9.19. It shows that the slope is not sensitive to small individual 
changes in either Weight or Height. Figure 9.20 displays the effect of cluster dele-
tion. In the upper plot, the probability of (9.61) is plotted against family number, 
and in the bottom plot we plot the percent slope change upon deletion of the ith 
family using formulas (9.62) and (9.63). As follows from the A probability plot, 
families 4 and 15 are influential; their deletion from the data would affect the MLE. 
Interestingly, family 1 is not as influential to the MLE but is influential in terms of 
the predicted value as follows from previous analysis. Instead, family 15 comes into 
play; indeed, one member of this family seems to be an outlier. The bottom plot 
reveals that exclusion of the 15th family would decrease the estimate of slope by 
10%. Interestingly, the membership test, developed in Section 3.8.1, pointed to the 
same family. 

P rob lems for Section 9.9 

1*. Develop an infinitesimal cluster deletion diagnostic for ^-statistics. 
2*. Apply the dimension-reduction formulas from Section 2.2.3 to (9.60) and 

(9.61). 
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FIGURE 9.20. Family (cluster) deletion diagnostic for the LME model (bars are computed 
using the infinitesimal deletion diagnostic formula, and points are computed using the exact 
formula). Families 4 and 15 are fairly influential as can be seen from the Di probabilities 
plot. Removal of the 4th family from the data would increase the slope by 5%, and removal 
of the 15th family would decrease the slope by 10%. The length of the bar in the bottom 
plot is proportional to infinitesimal deletion, and the symbol on the bar indicates true 
deletion. 

3*. Compute a cluster deletion diagnostic measures (9.60) and (9.61) for a linear 
mixed model using Medicare data coloncancer.dat also used in Problem 8 of 
Section 9.4. The R code below reads the data and runs the lme function (the cluster 
is the individual): 

coloncancer=function() 

l ibrary(nlme) 
dump("coloncancer","c:\\MixedModels\\Chapter09\\coloncancer.r") 
dat=read. table("c: \ \MixedModels\ \Chapter09\ \coloncancer .dat") 

out.lme=lme(LNtotexpplusl~female+black+age+stage2+stage3+xchrlson 
+t 1, r andom=~l | i d , dat a=dat ) 

summary (out . lme) 

The reader can use other covariates, such as t2, t3, etc., but it is important to 
know that most expenses are made in the first six months after cancer diagnosis 
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( t l ) . A multilevel/nested model also can be used with the cluster h r r (hospital 
region); see Demidenko and Stukel (2005). 

9.10 Appendix: MLE derivative with respect to σ1 

Here we derive formula (9.51). The score equation for the MLE under fixed σ is 

dL(ß;a) = 

where 

ht, Hi ht, 1~Hi 
(9.64) 

3/i=0 

UiEsHi 

Es((Zi + as)Hl) 
and Hi = H(~f'ui + rfe + as), where ' denotes the derivative of H. We aim to find 
the derivative of β with respect to a2, as the solution to the score equation (9.64), 
and evaluate the derivative at a2 = 0. We first calculate 

d2L(ß;a) 

dßd< 

where 
(9.65) 

W i 

Then, as is easy to see, 

TUiEtaH'i' 

[Es{Ts{Zi + as)HÏ + sHÏÏ 

d2L(ß;a) l d3L(ß;a) 

dßd(a2) 2 dßdada ' 

so again we need to differentiate (9.65) with respect to a. First, let us consider cases 
with yi = 1. We have 

da\H 

TEsSW 
-w,: 

&Wi 1 1 dHi r2Ess
2H" 

Wi —= 2-V,; Hf V οσ Ai JÏ? θσ 
TESSH' dwi 

H? 
inTE,8HldHi ^ _ 

Then we evaluate the derivative at zero, 

da 
σ=0 

= T EssH'(-y'ui + r{zi + σ β ) ) | σ = 0 = rE^H'^'m + rzj 

= TH'(-r'ui + TZi)E(s)=0 

because E(s) = 0. Further, because E(s2) = 1, we have 

da 
= Es 

σ=0 

T2UiS2Hi" 

rs2H'l + T2s2(Zi + as)H? + TS2H? 
σ=0 

r2UiHi" 

2rH? + T2ZiHi" 
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Moreover, 

da 
= ES 

σ = 0 

TUisH? 
[ 8Ηΐ + τ8(ζί + σ8)Ηί' J 

= 0. 
σ = 0 

Combining the results, we obtain 

Pii 
d τΕ,βΗ! 

θσ \HiWi Hf 

Hi 

r2UiHl" 

2rHV + riziHV' 

σ=0 

H? Zi 

Analogously, 

d 
POi - -KZ 

I-Hi Zi 

0σ\ΐ-ΗΓι (1-HiY y\ 

1 [ r2UiHi" 

^ 2THi' + T2ZiHi" 

Finally, using the formula for the derivative of an implicit function we obtain 

1 

σ=0 

r2Hj'Hl 

(I-Hi? 

dß 
da2 

σ 2 =0 

ay1 
Σ p i * - Σpoi ) ' 

where 

en ^HiH^-Hi 
dß2 ^ 

-Σ 
2/i=0 

(l-Hi)Hl' + H? u» 
S i 

When n is large, — n 1d2L/dß2 ~ H where matrix H is defined in (9.52). Also, 
when n —> oo, by the Law of Large Numbers, 

n ( Σ Pl< " Σ Poi ) - " Σ (^Ρ" " t1 " ̂ )ΡοΟ 
^ i = l » i=0 

n / rr// Tjl ττ/f rrf 

S i 

which finally gives (9.51). 

9.11 Summary points 

• An important part of statistical analysis and parameter estimation is the 
analysis of influential observations, or more broadly, the influence on pos-
tulated model assumptions. We make use of infinitesimal (infinitely small) 
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influence analysis that measures the sensitivity of an estimate, or any other 
statistic, to a small perturbation in data or model via the partial derivative, 
Pregibon (1981). For instance, the /-influence on the OLS estimate of a small 
change in continuous individual observation of the explanatory variable is 
measured by a partial derivative of the estimate with respect to that obser-
vation. The /-influence approach is especially useful for complex statistical 
models such as nonlinear or logistic regression. 

• The /-influence approach may be used to measure the sensitivity to data 
or model assumptions following the line of the local influence approach pro-
posed by Cook (1986). /-influence analysis has a clear interpretation because 
it measures the influence directly on the parameter of interest, unlike local 
influence, where the measure of influence is the log-likelihood displacement. 
An advantage of /-influence analysis is that it does not require a distribution 
assumption. 

• Two types of data influence may be distinguished: the influence of the depen-
dent variable and the influence of the explanatory variable (standard influence 
analysis based mostly on case-deletion diagnostics does not distinguish these 
types of influence). We prove that Cooks's local influence of the explanatory 
variable in linear regression can be viewed as a special case of /-influence. 

• /-influence analysis is graphically supported. Several types of influence graphs 
are introduced: F-and X-influences, and star and bar /-influence plots. Each 
has a clear interpretation: For example, the influence of an observation of the 
independent variable, measured as a partial derivative, indicates change in the 
LS estimate by a 1-unit change of the variable. 

• An influence analysis based on the idea of misclassiflcation is proposed for 
a binary explanatory variable and dependent variable in the logistic regres-
sion model. Examples demonstrate that misclassiflcation analysis may provide 
more detail on why a specific case is influential. 

• The concept of /-influence is generalized to the nonlinear regression model. 
Several measures of influence can be considered: influence of the dependent or 
independent variable on the least squares estimate or predicted value, influence 
of infinitesimal case deletion on regression parameters, etc. In particular, the 
/-influence of the dependent variable on the predicted value can be viewed as 
a generalization of leverage. 

• /-influence analysis may be applied to study how an estimate is sensitive 
to model assumptions. We demonstrated this technique by the influence of 
residual correlation and the influence of measurement error in the covariate 
of the binary model. Again, the advantage of this analysis is that it does 
not require parameter re-estimation because the derivative is evaluated at the 
postulated model. This analysis is a fairly easy to accomplish and is especially 
useful at the stage of model formulation. 

• /-influence analysis can be generalized to the linear mixed effects model. We 
may study the influence of an individual observation or an entire cluster. 
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Cook's distance is generalized to the LME model; one may use either infini-
tesimal or exact deletion diagnostics. 

• Since /-influence analysis requires merely derivative computation, it may eas-
ily be extended to nonlinear mixed effects models. When the characteristic of 
interest does not admit a closed-form expression, the chain rule or an implicit 
differentiation can be carried out. 





10 
Itomor Regrowth Curves 

Growth curve theory is a well-established topic and has a long history in biomath-
ematics and biostatistics. A fairly complete account of available growth curves and 
their statistical estimation by nonlinear least squares is given in the book by Seber 
and Wild (1989). Banks (1994) describes many examples of growth curves and their 
applications from differential equation theory. However, while growth curves are 
helpful for modeling an untreated tumor, they cannot be applied to a treated tumor 
since the tumor may shrink and regrow after such treatment as radiation. In this 
chapter we develop a new theory of nonmonotonic growth as a function of time and 
dose, such as radiation dose, and apply the mixed model approach to longitudinal 
data to estimate parameters of the regrowth curve. In particular, our methodology 
enables us: 

• To assess a radiosensitivity parameter in vivo, a milestone characteristic of 
the radiation treatment. 

• To assess the fraction of surviving/killed cells at the time of treatment using 
longitudinal measurements of tumor volume. 

• To evaluate the synergistic (supra-additive) effect, whether a combination of 
treatments is more effective than both treatments applied separately. 

Statistical modeling of tumor response to treatment can be used in many ways 
and its potential application is well recognized (Steel, 1977; Wheldon, 1988; Heit-
jan, 1991; Norton and Day, 1991; Heitjan et al., 1993; Bajzer and Vuk-Pavlovic, 
1997). First, a statistical model can be the basis for comparisons of different radio-
therapy outcomes, such as doubling time and tumor growth delay. Second, math-
ematical modeling may provide objective evidence for nonconventional choices of 
radiotherapy regimens to optimize such treatment outcomes as tumor growth de-
lay or damage to normal tissue. Third, regrowth curves may define a better model 
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for tumor control probability in fractionated radiotherapy because they adequately 
describe tumor regrowth between irradiations. Fourth, they create an opportunity 
for a better prediction of tumor response to treatment by accounting for individual 
characteristics, such as age or tumor stage, that are critical in clinical oncology. 

Modeling of treated tumors is a long-standing problem in mathematical biology 
and biostatistics. There are a few attempts to model post-irradiated tumor regrowth. 
For example, Looney et al. (1975) used a linear combination of two exponential 
curves. Norton and Simon (1977) proposed a complicated version of the Gompertz 
curve. Durrleman and Simon (1989) used polynomial splines for nonparametric 
smoothing. However, those models, perhaps useful for data interpolation, have no 
biological interpretation and cannot predict tumor response given the radiation 
dose. Heitjan (1991) suggested a model for prostate tumor reaction to androgen 
withdrawal by castration, but this model assumes that the tumor vanishes after 
treatment. Rygaardt and Spang-Thomsen (1997) used exponential and Gompertz 
curves after the tumor starts regrowing, with the time to regrowth determined 
subjectively. To the best of our knowledge, there are no tumor regrowth statistical 
models/curves that describe tumor shrinkage and regrowth that depends explicitly 
on radiation dose. 

On the other hand, there is an extensive literature on the use of mathemati-
cal modeling to describe post-irradiated tumor growth and regrowth quantitatively 
based on a cell kinetics approach. Several theoretical settings for optimal radiation 
treatment have been developed based on this theory and many of them emerged in 
the late 1970s (Aherne et al., 1977; Steel, 1977; Eisen, 1979; Goldie and Coldman, 
1979; Day, 1986a, 1986b; Knolle, 1988; Wheldon, 1988; Martin and Teo, 1994). At-
tempts have been made to use these models to establish optimal fractionation dose 
and time schedules through clinical trials and studies (Tubiana et al., 1990; Perez 
and Brady, 1992). Several studies used mathematical approaches designed to find 
the optimal schedule for fractionated radiation based on the theory of optimiza-
tion (Sachs et al., 1996; Shahine et al., 1997; Yakovlev et al., 1997). A number of 
other authors tried to resolve the dilemma between the repair of normal tissue and 
tumor regrowth using stochastic models (Yakovlev and Zorin, 1988; Yakovlev and 
Tsodikov, 1995; Afenya, 1996). There are several obstacles in applying those models 
to post-irradiated tumor regrowth data: all those models require, as specific input, 
values for radiobiological parameters and other information, such as the proportion 
of cells actively cycling, cell-cycle time, and the alpha/beta ratio in the survival 
curve, to name a few. In many instances these values are taken arbitrarily or based 
on sparse radiobiological experiment (Martin and Teo, 1994; Mao and Wheldon, 
1996). No statistical testing of those models has been performed to determine their 
adequacy and validity to describe actual experimental data. Generally, the parame-
ters of stochastic models for cell population growth could not be estimated properly 
due to the large number of cell kinetics parameters involved. 

Thus, there is a striking gap between theoretical cell kinetics modeling and sta-
tistical models of post-irradiated tumor regrowth based on serial experimental mea-
surements of such tumor growth characteristics as tumor volume. Probably, this 
gap is responsible for the failure of many theoretical models to fit existing cancer 
data and their failure to apply in clinical settings (Norton and Day, 1991). A new 
approach to the modeling of growth dynamics is needed to describe parsimoniously 
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how tumors respond to treatment. We combine the following existing theories to 
create new biologically based statistical models of treated tumor: 

1. Classical growth curve models, such as exponential or Gompertz curves used 
to describe unperturbed tumor growth. 

2. Cell kinetics modeling that describes major biological processes of growth on 
the cellular level in terms of differential equations. 

3. Survival curve theory that describes the proportion of cells surviving treat-
ment/irradiation. 

Our regrowth curve theory is a product of combining two existing theories: tra-
ditional growth curve theory and survival curve theory. To model the dynamics of 
tumor after treatment, we use the traditional growth curve to describe the further 
growth of surviving cells, and we use the survival curve to model the proportion of 
cells killed by the treatment. So, symbolically, our regrowth curve has the form 

Regrowth curve = Growth curve x Survival curve. (10.1) 

Thus, one may use any combination of growth and survival curves to create a new 
parsimonious regrowth curve that describes the post-treatment dynamics of the 
tumor. 

We pay special attention to a proper estimation of our regrowth curves using the 
mixed effects approach. Statistical analysis of animal and human data is compli-
cated by a broad (sometimes wild) range of response to treatment. Tumor and cell 
heterogeneity is well recognized in modern cancer research and several recent papers 
address this phenomenon. See for example, Heitjan et al. (1993) and Hill and Skars-
gard (1999). The mixed effects methodology is well suited to address heterogeneity, 
and in several papers it was proven to be an adequate statistical model for tumor 
growth and regrowth, e.g., O'Hara et al. (2001), Pogue et al. (2003), Sundaram 
et al. (2003). We demonstrated the application of the mixed model technique in 
Section 6.1.7, where cellular spheroid volume was modeled via the log-Gompertz 
curve with random parameters. Following this approach, some parameters of the 
regrowth curve are allowed to be subject/human-specific, reflecting differences in 
microenvironment and treatment/drug delivery. On the contrary, cell-specific pa-
rameters, such as rate of growth, are less likely to be subject-specific and may be 
addressed via statistical hypothesis testing. Determining what parameters of growth 
or regrowth are fixed/genetically driven and what parameters are environmentally 
dependent is a fundamental biological question. Several recent papers of mine deal 
with tumor regrowth theory and estimation via mixed model (Demidenko, 2006a, 
2010). 

10.1 Survival curves 

The Survival Curve (SC), a major component of the tumor regrowth model, is 
fundamental to radiobiology and it understood as an idealized relationship between 
the fraction of cells surviving radiation against the dose given (Casarett, 1968; 
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Elkind, 1988; Tubiana et al., 1990; Hall, 2000). Several papers address the problem 
of survival curve parameter estimation (Thames et al., 1986; Roberts and Hendry, 
1993, 1998). The survival curve may be viewed as a dose-response relationship in 
a cellular context. Estimation of dose-response relationships has a long history in 
biostatistics with a vast literature. In our approach we estimate the parameters of 
the survival curve indirectly using longitudinal tumor volume data. Mathematically, 
SC can be represented as a decreasing function of dose, S = S(D), where D is 
the radiation dose and S is the fraction of tumor cells surviving the radiation. 
Following this relationship, if there is no irradiation (D = 0), the tumor remains 
unchanged; for a large amount of radiation, the tumor is killed completely (at least 
hypothetically). Mathematically, this can be written as 5(0) = 1 and 5(oo) = 0. 

0 5 10 15 20 

Radiation Dose (Gy) 

FIGURE 10.1. Three survival curves on a semilogarithmic scale (LQ = linear quadratic, 
1H3T = one-hit-three-target). LQ and 1H3T curves have a characteristic shoulder for 
small radiation doses. It is expected that these curves are better suited for modeling in 
vivo data. 

Several mathematical models have been suggested for cell survival. The simplest 
is of exponential type, has been confirmed empirically for viruses, bacteria, and 
haploid yeasts, and has the form S = e~aD, where a > 0 is the radio sensitivity 
parameter, the rate at which cells are killed by radiation. Often, SC is displayed on 
a semilogarithmic scale, see Figure 10.1. However, it was discovered that survival 
curves for most mammalian cells differ from those of most bacterial cells by having 
a "shoulder" in the low-dose region (DeVita et al., 1995). The shoulder indicates a 
reduced efficiency of cell killing which may be explained by a resistance to low doses 
and repair, or to the inability to deliver ionization electrons to the tumor site due to 
dispersion. The simplest SC that accounts for this effect is called Linear-Quadratic 
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(LQ), S(D) = e~
aD~ßD , and is widely used in clinical oncology (DeVita et al., 

1995). A special case of the LQ survival curve is e~@D , and we shall find that this 
SC sometimes gives a better fit. Several models for survival curves with shoulders 
in the low-dose region have been developed based on the target theory. The central 
assumption of this theory is that to kill a cell, several hits or cell targets may be 
required, due to cell repair, Casarett (1968), Hall (2000), Hanin et al. (1993). For 
instance, if the lethal event happens in a one-hit-multi-target (1HMT) model, the 
SC has the form S = 1 - (1 - e~ 7 D ) n , where n is the number of targets needed 
to achieve the lethal event of the cell. To derive this SC, we assume that to kill a 
cell, one needs to hit n targets, each with probability 1 — e~7jD, where e~lD is the 
probability of missing (target survival). Second, we assume that probabilities are 
independent. Third, it is assumed that the cell is killed if all n targets are hit. Then 
the probability of hitting all n targets is (1 — e~lD)n and the probability of survival 
is 1 — (1 — e~lD)n. It is expected that LQ and target theory SC are better suited 
to modeling in vivo data. 

It is worth noting that existing approaches of experimental biology to estimate 
parameters of survival curves are based on in vitro data, with direct counts of 
surviving/killed cells using histology methods. Incorporating SC into the regrowth 
curve facilitates the recovery of in vivo parameters having only fairly simply derived 
longitudinal observations of tumor volume. 

Problems for Section 10.1 

1. Is the 1HMT survival curve concave (the second derivative is negative) for any 
n? 

2. Does the survival curve S(D) = (l — (1 — e ~ 7 D ) n ) m meet your expectation of 
being a multi-hit-multi-target dose-response relationship? Does the probability of 
surviving decrease with ml Plot several SC curves for different n and m. 

3. Many dose-response relationships are defined on the log scale of dose, such as 
Φ(/31η£>) or exp(/31n.D)/(l + exp(ßlnD)). Redefine survival curves introduced in 
this section, as functions of ln.D, and interpret the parameters as a percent decrease 
in survival per a 1% increase in D. 

10.2 Double-exponential regrowth curve 

Now we derive our first regrowth curve in a series of models to describe the dynamics 
of post-irradiated tumors based on the two-compartment model for cell proliferation. 
This regrowth curve may adequately describe the regrowth of radiosensitive fast-
growing tumors because after some time, the tumor regains exponential growth. 

Since proliferating cells are the most sensitive to radiation, we distinguish two 
population compartments: proliferating (clonogenic), P, and quiescent (nonprolifer-
ating or resting), Q. Two fundamental and opposite processes occur in any living 
organism: birth and death. Three hypotheses generate the two-compartment model: 
(i) proliferating cells divide at a constant rate, z/, (ii) quiescent cells die at a con-
stant rate, φ (cell loss), and (iii) a portion of proliferating cells become quiescent at 
rate r (Eisen, 1979; Baserga, 1981). The first hypothesis leads to a simple differen-
tial equation dP/dt = vP, implying exponential growth of proliferating cells. The 



544 10. Tumor Regrowth Curves 

LOG Tumor Volume 
4̂  

..-•vt 
Uncontrolled growth 

αΕΗ-vt 
Tumor Growth Delay 

Time (day) 

Time to regrowth/nadir 

V y 

B à'% Double Exponential Regrowth Curve 
Growth of Surviving Cells 
Uncontrolled Growth 

FIGURE 10.2. Double-Exponential (DE) regrowth curve on a logarithmic scale. Uncon-
trolled cell growth has rate z/, and on a log scale it is a straight (dotted) line because the 
growth is exponential. After treatment (e.g., radiation) the proportion of surviving cells 
is 0, so the length of the segment AB = - LOG Surviving Fraction = -log 0 = a.D. It is 
assumed that after treatment the surviving cells proliferate at the same rate v (dashed 
bold line with slope v). The double-exponential regrowth curve is the sum of surviving 
cells and doomed (quiescent) cells that leave the tumor following a decay law. The DE 
curve decreases from the initial tumor volume to time to regrowth/nadir, due to delayed 
death and washout of cells affected by the treatment. It may take several cell cycles before 
damaged cells leave the tumor. According to the DE regrowth curve, after a period of 
time, the tumor regrows at the same rate v and the DE curve approaches the dashed line 
—OLD + vt. The relationship Tumor Growth Delay = -LOG Surviving Fraction/*/ follows 
from triangle ABC with slope v. 
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second and third hypotheses lead to the differential equation dQ/dt = rP - $Q. 
Combining these equations leads to the following simple yet fundamental pair of dif-
ferential equations (Codington and Levinson, 1955; Knolle, 1988; Wheldon, 1988): 

£-·*·· fl·"·-«· <10·2> 
This simple system of differential equations represents the main features of tumor 
growth as the sum of proliferating and quiescent cells. This system will be gener-
alized later for a more adequate tumor regrowth model for slow growing tumors. 
Prom the first equation, we deduce that proliferating (clonogenic, malignant) cells 
grow exponentially according to P(t) = P§evt, where v is the rate of growth and Po 
reprsents the number of proliferating cells at the initial time (t = 0). Substituting 
this solution into the second equation, we find that the total number of cells at time 
t is the sum N(t) = P(t) + Q(t) with the closed-form solution, 

N(t) = N0 (6evt + (1 - θ)β~4Λ), t > 0, (10.3) 

where Θ is the proportion of proliferating cells. Formula (10.3) can model nonincreas-
ing growth when the initial number of proliferating cells is small so that during a 
certain period of time the total number of cells will decrease due to dying quiescent 
cells. However, with time, the number of proliferating cells will increase and the 
total number of cells will, eventually, grow exponentially. This model has been used 
by Looney et al. (1975), but we suggest a special interpretation for parameter Θ as 
a fraction of surviving cells modeled via the survival curve, as described below. 

To introduce radiation dose as a factor of regrowth, we employ the notion of the 
survival curve, which describes the proportion of cells surviving the radiation. Since 
in our model Θ is the proportion of surviving cells, it is natural to set Θ = S(D), 
where S is a survival curve as a function of dose D, as described in the previous 
subsection. This leads to a regrowth curve, 

N(t) = N0 (S(D)eut + (1 - S{D))e-^). (10.4) 

The fraction of cells killed by dose D is 1 — S{D). In particular, taking the simplest 
exponential survival curve, we arrive at the Double-Exponential (DE) regrowth 
curve: 

N(t) = No (e-
aD+ut + (1 - e " a D ) e - ^ ) . (10.5) 

This model describes two cell compartments, see Figure 10.2 for a geometrical il-
lustration. The first compartment is defined by equation Noe~OLDeut and represents 
cells not affected by radiation—it continues growing exponentially after treatment. 
The second compartment, iV0(l — e~°iD)e~(f>t

1 represents cells affected by radiation 
(doomed cells) and decreases following a decay law with the rate φ. When there 
is no irradiation (D = 0), the tumor continues growing exponentially because the 
second term in (10.5) vanishes. It is worth mentioning that model (10.4) is suitable 
for fast-growing tumors when the treatment effect occurs immediately after t = 0. 
Later, we generalize regrowth curve to allow the tumor to grow after treatment and 
then to shrink and regrow. 

As follows from Figure 10.2, three fundamental radiobiological concepts are re-
lated through 

T W Growth Delay = I f ^ i v i n g PVaction) 
Rate of Growth (v) 
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Remarkably, in texts on radiobiology such as Kallman (1987), Tubiana et al. (1990) 
and Hall (2000) one cannot find relationship (10.6). Moreover, in such fundamental 
papers as that of Rofstadt (1981), the three quantities have been analyzed sepa-
rately. 

Assuming that the total number of tumor cells (N) is proportional to tumor 
volume (V), we can estimate such tumor growth parameters as the rate of death (φ) 
and the radiosensitivity parameter (a) from post-irradiated in vivo tumor-volume 
data. A statistical model is formulated below, and we shall see how the assumption 
on the proportion of total number of cells and tumor volume may be eased. However, 
before addressing estimation issues, we show how several important radiobiological 
treatment outcomes (e.g., Begg, 1983) may be expressed in terms of the DE regrowth 
model. The following treatment end-points admit a closed-form solution for the DE 
regrowth curve. For more complicated curves an iterative solution must be applied. 

DE regrowth curves Three treatment outcomes 

5-

8 -

o _ 
CM 

O _ 

O -

/ · ' ' * ' .....···'" 

Time to Regrowth 
Doubling Time 
Time to reach 2.5 cubic cm 

Post-treatment time, days Radiation Dose, Gy 

FIGURE 10.3. Double exponential regrowth curves with three radiotherapy treatment 
outcomes as functions of a single radiation dose. Left: tumor volume as a function of time 
with initial volume 1.5 cm3. Right: Time to regrowth, Doubling time, and Time to reach 
2.5 cm3 as functions of radiation dose. As we see, the tumor shrinks when the dose exceeds 
13 Gy. Doubling time and Time to reach 2.5 cm3 as functions of D are close to straight 
lines. 

10.2.1 Time to regrowth, TR 

The advantage of the DE regrowth curve is that such an important radiobiological 
treatment outcome as time to regrowth can be expressed explicitly in terms of the 
regrowth curve parameters. See Figure 10.3 for an illustration. Indeed, to find the 
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minimum of the DE curve, we differentiate (10.3) with respect to t and equate the 
derivative to zero, leading to the formula for the time to regrowth (or nadir): 

As follows from this formula, the tumor shrinks (TR > 0) when the proportion of 
surviving cells is less than φ/(ν + φ). For a simple exponential survival curve, 0 = 
e~aD, we can easily find the minimum radiation dose to achieve tumor shrinkage, 
Do = a - 1 ln[0-1(z/ 4- φ)]. For a dose greater than Do, the tumor shrinks; for a dose 
less than Do, the tumor growth slows down but does not shrink. 

10.2.2 Time to reach specific tumor volume, T* 

When comparing the outcomes of different treatment groups, researchers may be in-
terested in the time T* to reach a specific tumor volume Λ/*, assuming that N* > NQ. 
To compute this time using the DE regrowth curve, we need to solve the following 
equation for t = T* : 

JV0 (0evt + (1 - θ)β~φι) = iV*. (10.8) 

This is a transcendental equation, so we solve it iteratively applying Newton's al-
gorithm (here it is assumed that 0 < 0 < 1 and v > 0, φ > 0). We show that 
iterations 

ts+1~ts
 νθε^-φ{1-θ)β-Φ*° ' β - ° ' 1 ' · " ' (10·9) 

starting from £0 = ^ _ 1 ln[iV*(0iVo)-1], converge to the solution of (10.8). Moreover, 
the sequence is descending, £s+i < ts. To see this, we notice that the function 
Qevt + (1 — 0)e - (^ is a convex and increasing function of t for t > T*. To justify 
the starting point to, we notice that 6eut + (1 — 0)e~^* > 6eut, and therefore the 
equation Qevt = N*/NQ leads to to > T*. 

10.2.3 Doubling time, TD 

Tumor volume doubling time is a popular measure to characterize treatment out-
come in experimental biology. It may be viewed as a special case of (10.8) for 
iV* = 2iVo. Thus, we are interested in the time required to double the initial volume. 
Doubling time is somewhat more objective because it eliminates NQ and therefore 
may be useful when comparing treatment outcomes for animals with different initial 
tumor volumes. By the definition, tumor volume doubling time, t = Τ#, is the solu-
tion to the equation 9eut + (1 - θ)β~φι = 2, and therefore procedure (10.9) is valid 
with N*/No = 2. In radiobiology, potential doubling time, Tpot = 1η2/ι/, means the 
time to double the initial tumor volume of un untreated tumor. Thus, to describe 
the effect of treatment, the ratio Tp/Tpot may be of interest and it may be plotted 
against dose D (Steel, 1977). 

The R function that follows solves the equation eA+l,t + eB~xt = 1 for t using 
Newton's algorithm (10.9). Besides the solution itself, it computes its variance (it is 
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assumed that both A and B are negative). This variance is computed via the delta-
method based on the 4 x 4 covariance matrix of the parameter estimates obtained 
from nlme. 

decE < - function(A, nu, B, l a , Cmat, maxiter=10, eps=10~-8) 
{ 
# Cmat i s the 4x4 covariance matrix for A, nu, B, l a 

tO < A/nu 
for(iter in l:maxiter) { 

expl <- exp(A + nu * tO) 

exp2 <- exp(B - la * tO) 

tl <- tO - (expl + exp2 - l)/(nu * expl - la * exp2) 

if(abs(expl + exp2 - 1) < eps) break 

tO <- tl 

} 

dFdA < - expl 
dFdB < - exp2 
dFdnu < - t l * expl 
dFdla < - exp2 * t l 
dFdt < - nu * expl - exp2 * l a 
h < c(dFdA, dFdnu, dFdB, dFdla)/dFdt #der iva t ive vector 
va r l < - as .numeric( t (h) °/0*°/o Cmat 70*°/0 h) # delta-method 
r e t u r n ( c ( t l , v a r l ) ) 

For example, to compute the time to regrowth as the solution to (10.8) we set 
A = In N0 + ln0 - In iV* and B = In N0 + ln(l - Θ) - IniV*. For the doubling time 
A = In2 + ln0 and B = In2 + ln(l - Θ). 

IO.2.4 Statistical model for regrowth 

In this section we describe how the Double-exponential regrowth curve is estimated 
using mixed effects methodology when longitudinal tumor measurement data are 
available for different subjects/animals. To simplify, we assume that the data com-
prise serial measurements of individual tumor volumes from one treatment group. 
More specifically, let there be N mice treated at day 0. Let Y^ denote the tumor 
volume of animal i at time Uj and y^ = In Y^·, i = 1,2,..., N, and j = 1,2,..., η^. If 
the parameters of the DE regrowth curve do not change across animals (no hetero-
geneity), assuming multiplicative error as in Section 6.1.7, we come to a nonlinear 
regression model, 

Vij = y0 + In [θβ"ν + (1 - θ)β~φ^} + εφ (10.10) 

where yo denotes the logarithm of the initial tumor volume. In this model ε^ is 
the independent error term with zero mean and constant variance. We can estimate 
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nonlinear regression (10.10), combining data into one pool (numerical issues are dis-
cussed later). Notice that model (10.10) assumes that tumor volume is proportional 
to the total number of cells, a common simplifying assumption. However, we may 
ease this assumption by assuming that Υ^ is related to the total number of cells 
through a power function, Υ^ = τΝ^ that would lead to relationship (10.10) with 
an additional coefficient 7. It is well known in radiobiology that the relationship 
between the number of tumor cells and tumor volume may be quite complex (e.g., 
tumor volume may involve a tumor bed), so accommodating the power relationship 
into (10.10) may be adequate (Kallman, 1987). 

Having estimates for the parameters from nonlinear regression model (10.10), one 
can explore the possibility of incorporating random effects by assuming that some 
parameters of the regrowth are random (see earlier chapters). The simplest random 
effects model would account for a mouse-specific initial tumor volume, yoi = yo + £*: 

Vij = y0 + In [0e1**' + (1 - θ)β~φ^] + Si + eih (10.11) 

where E(Sj) = 0 and var(^) = a2d. Clearly, model (10.11) is a nonlinear-marginal 
model with a fixed matrix of random effects, Section 6.1. As follows from this model, 
animals do not correlate, but longitudinal observations within the same animal have 
a constant correlation d/(l + d). One may further complicate this model by allowing 
other parameters to be animal-specific (random), but then we arrive at the nonlinear 
mixed effects model of Chapter 8. Following the line of arguments of Section 6.1.7, 
we may assume that parameters v and φ reflect tumor cell type and are constant 
across animals. If it is believed that treatment alters the regrowth curve parameters, 
one should estimate the parameters of the DE regrowth curve separately for each 
group. See our example on chemotherapy in Section 10.2.7. 

If parameter Θ is related to the survival curve via dose D we can simultaneously 
estimate regrowth curve parameters using data from all treatment groups. Thus, 
if Z = 1,2,...,L counts, the number of treatment groups irradiated with dose D^ 
assuming that Θ = e~aDl, we come to the three-level cluster mixed model: 

yiß = y0 + In [ e ^ - " D < + (1 - e - a D | ) e " ^ y l ] + «< + m + eijh 

Clearly, this model assumes that parameters yo , z/ and φ are constant across treat-
ment groups. There are many variants to ease this assumption by incorporating 
random effects. For example, one may assume that the radiosensitivity parameter 
is treatment-specific, ai = a + CJJ, where ωι is thé random effect. 

10.2.5 Variance estimation for tumor regrowth outcomes 

In order to use the regrowth curve characteristics TR (time to regrowth), T* (time 
to reach a specific tumor volume), and TD (doubling time) for statistical inference, 
one needs to assess their variances. We use the delta-method, which provides an 
estimate of the variance based on the linear approximation around its mean (Rao, 
1973; Bickel and Doksum, 2001). According to this method, if a random variable 
F is a nonlinear function f of p random variables X = (XL, ...,XP)' with a known 
covariance matrix, then 

var(y) ~ ( | Q ' c o v ( X ) ( ^ ) . (10.12) 
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Since all these characteristics are functions of regrowth curve parameters with the 
covariance matrix derived from an estimation procedure, it suffices to obtain partial 
derivatives with respect to the parameters. To illustrate, we start with the time 
to regrowth (10.7), where the proportion of surviving cells is modeled via simple 
exponential SC, as in (10.5). Thus, if p =(S,P, </>)' is the vector of estimates from 
model (10.10) or (10.11), an estimate of the time to regrowth is 

- l n ( e S D - l ) + l n $ - l n P 
TR = —=5 · 

ν + φ 
From this estimate the variance is computed by formula (10.12), where 9 / / 9 X is 
the vector of partial derivatives of TR with respect to p and cov(X) is the covariance 
matrix of p (the calculation of partial derivatives for TR is straightforward). To use 
the delta-method for doubling time, we use the formula for the derivative of an 
implicit function. Indeed, since T& is the solution to equation (10.8), we have 

dTp___ d (9evt + (1 - θ)β'^) /δθ 

~df ~~ o(0e"* + ( l - 0 ) e - * * ) / 0 i 

oyTD _ e-<f>TD 

t=TD 
QvçyTD - (l - Θ)φβ-Φτ» 

Similarly, one finds partial derivatives with respect to other parameters. We emon-
strate these calculations in a chemotherapy example in Section 10.2.7. 

10.2.6 Starting values 

The choice of starting values for parameters is crucial for nonlinear estimation be-
cause poor initial values often lead to a poor fit. Here we suggest a procedure to 
obtain rough estimates for parameters yoj^j^? a n d Θ of the DE regrowth curve 
(10.10): 

1. Obtain an estimate for the rate of untreated tumor growth υ and initial 
ln(Tumor Volume), yo. Since the DE curve assumes that the untreated tumor grows 
exponentially, we apply linear regression y = j 1 + 72£ + ε, where y is the ln(Tumor 
Volume), to combined data for control group and other groups before treatment. 
Then we set UQ = 72 and yo = 7i . 

2. Obtain an estimate of the cell loss rate φ by regressing y on t for treatment 
group data before the tumor regrows, y = ηλ + Ί)<£ + ε, and set φ = rj2 (another 
option is to set ηλ = yo and to estimate a one-parameter regression). 

3. Obtain an estimate for the radiosensitivity parameter a. There are at least two 
ways. The first way is to rewrite (10.10), provided estimates v and 0, as 

eVij-yo _ e~4>Uj — e-aDj /çVtij _ e-4>Uj\ 

and apply LS (least squares) to a one-parameter linear regression, z = ηΌ -h ε, 
where 

eyij-yo — β-Φί 
z = In — — , 

ppt ρ — φί 

and then set a = —7. Another way is to use the fact that after regrowth cells 
proliferate with the rate v and, for post-treatment tumor, y^· = —OLDJ + vt%ji as 
illustrated in Figure 10.2. 
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Clearly, all estimates must be positive, and negative values would indicate a failure 
of the procedure. 

10.2.7 Example: chemotherapy treatment comparison 

We consider an example of the DE regrowth curve estimation and its application 
to compare tumor treatment outcomes. We illustrate how the data can be analyzed 
by different mixed models and show how treatment outcomes can be compared by 
three cancer treatment end-points. 

The data comprise longitudinal measurements of tumor volume Yij in four groups 
of mice, i = 1,2,3,4 = N (Table 10.1). The first group is untreated (control group), 
and the other three groups are treated with the chemotherapeutic drug cisplatin. See 
Figure 10.4. In groups 2 and 3, the tumor was treated with 10 mg/kg, and in group 
4 with 25 mg/kg cisplatin. Two methods of drug delivery are compared: intratumor 
(ITu, groups 3 and 4) and intravenous (IV, group 2). In the former method, cisplatin 
was injected directly into tumor, and in the latter it was injected into the tail of 
the mouse. In all groups cisplatin slowed tumor growth. The question is whether 
the treatment effect is statistically significantly different. First, we notice that the 
tumor grows fairly rapidly and the treatment effect occurs as early as the next day 
after drug delivery. This means that the DE regrowth curve may be adequate to 
model tumor shrinkage and regrowth. Since the mechanisms of venous and tumor 
drug delivery are quite different, we may expect that the parameters of the regrowth 
curve will not be the same in different treatment groups. Therefore, we apply the DE 
regrowth curve to each group separately. As mentioned above, the aim of the study 
is to compare treatment groups using three cancer treatment end-points: time to 
regrowth/nadir ( ϊ τ ) , time to reach 1 cm3 (Τχ), and doubling time (Τ#). In Figure 
10.4, T\ is the time when the tumor regrowth curve intersects the zero horizontal 
line. 

Table 10.1. Results of the DE regrowth curve estimation in four groups of mice 

ßl 
ßl 
ßs 
/?4 
σ& 
ση 

Ρ 
σ 
%SF 
TR 

Γι 
TD 

Group 1 
Exponential1 

-1.47 (0.0545) 
0.325 (0.0085) 

100 

3.5 (0.20) 
2.1 (0.06) 

Group 2 Group 3 Group 4 
Double-exponential Regrowth Curve2 

-8.105 (0.36) 
0.323 (0.015) 

-0.839 (0.094) 
0.2033 (0.012) 

0.79 
0.37 
0.83 
0.34 

0.12 (0.038) 
11.8 (0.34) 
23.1 (0.60) 

23.8 (2.9) 

-5.48 (0.44) 
0.244 (0.018) 

-0.688 (0.076) 
0.122 (0.013) 

0.9 
0.32 
0.38 
0.26 

1.02 (0.45) 
10.3 (0.7) 

20.8 (0.98) 
21.3 (4.4) 

-6.72 (0.34) 
0.241 (0.011) 

-0.813 (0.051) 
0.111 (0.007) 

0.71 
0.22 

-0.69 
0.24 

0.35 (0.12) 
13.8 (0.67) 
26.0 (0.9) 
26.9 (3.5) 

1 Reduced to a random intercept LME model (Section 2.4). 
2 Estimated by the Lindstrom-Bates method using the R function nlme (Section 

.7). 



10. Tumor Regrowth Curves 

Untreated Tumor (1) 10mg/kgCisPlat, IV(2) 

CD 

E 

o 
> 
o 
E 
I -
(D 
O 

-10 10 20 30 -10 10 20 30 

10 mg/kg CisPlat, ITu (3) 25mg/kg CisPlat, ITu (4) 

20 30 -10 0 

Day Post Treatment 

10 20 30 

FIGURE 10.4. Chemotherapeutic treatment in three groups of mice (groups 2 to 4). In 
the control group (1) tumor was not treated, and its volume increases rapidly with time 
following the linear model for LOG Tumor volume. In the other three groups, the tumor 
was treated at day 0 with the chemotherapeutic drug cisplatin. Tumor volume drops the 
next day, comes to its minimum, and then regrows. We fit the data with a DE regrowth 
curve (bold) in each group separately. One of the characteristics of treatment is the time 
to reach 1 cm3, which corresponds to the point where the regrowth curve hits the zero line 
(dashed). The vertical dotted line shows the estimated time to regrowth. 
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Control group. Assuming multiplicative error, the statistical model for exponential 
growth is Yij = e^1"^2^'4"6^'. This model is equivalent to the linear model y^ = 
ßi + ßi^ij + £rp where i indicates the mouse and y^ indicates ln(tumor volume) 
measured at time Uj. Clearly, ßx estimates ln(initial volume) at time zero, and 
ß2 estimates the rate of uncontrolled growth (in previous notation, v). One may 
address animal heterogeneity by assuming that βλ and/or β2 are random (mouse-
specific). Here we assume that the intercept is mouse-specific but the rate β2 is the 
same across mice, leading to a linear mixed effects model with random intercepts, 
Section 2.4. The doubling time for exponential growth is denoted by Tpot, and it 
is determined from the equation e^1"^2* = 2 e ^ , which yields Tpot = 1η2//32· The 

variance of Tpot is estimated by the delta-method, var(Tpoi) ~var(/32)(ln2)2//?2· 
The time to reach 1 cm3 is found from the equation ßx + ß2t = 0 which gives 
T\ = —ßi/ß2. Again using the delta-method (10.12), we obtain 

var(Ti) ~ varCÖx)/^ - ^β,οονφΜ/^^ν^τφ^/βΙ 

In the R code below we show how to read/plot the data for untreated mice and 
compute Doubling Time (Τρ) with its standard error (file untr lme.r ) . 

l i b r a r y (nlme) # see Figure 10.5 
dat = read.table("c:\ \MixedModels\\Chapter10\\DEregrowth.dat", 

stringsAsFactor=F) 
names(dat)=c("TreatmentGroup","MicelD","TumorVolume","Day") 
u t rgr=unique(dat [ ,1] ) 
p lo t ( l , l ,x l im=c( -10 ,30) ,y l im=c( -5 ,1) ,main=ut rgr [1] , type="n") 
xd=seq(from=-10,to=30,by=.1) 
daUNTR=dat[dat$TreatmentGroup==utrgr[l] | dat$Day<=0,] 
y=log(daUNTR$TumorVolume); day=daUNTR$Day 
id=daUNTR$MiceID; uid=unique(id) ; nid=length(uid) 
f o r ( j in l :n id ) { 

yi=y[id==uid[j]] ;xi=day[id==uid[j] ] 
l i n e s ( x i , y i ) ; p o i n t s ( x i , y i , p c h = 1 6 ) 

} 
o=lme(fixed=y~day,random=~l|id) ; print(summary(o)) 
aUNTR=as.vector(o$coefficients$fixed) 
lines(xd,aUNTR[1]+aUNTR[2]*xd,col=2,lwd=3) 
segments(0,-6,0,2,col=3) 
covpar < - o$varFix 
DT < - log(2)/aUNTR[2] 
lines(c(-12,DT,DT),c(aUNTR[l]+log(2),aUNTR[l]+log(2),-6),col=3) 
SE.TD < - DT/aUNTR[2] * sqr t (covpar [2 , 2]) 
tex t (10 , -4 ,pas te ("Doubl ing Time =", round(DT,l) , "\nSE =", 

round(SE.TD,2)),adj=0,cex=l.25) 
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We make several remarks on the code: (1) the data for all four treatment groups 
are in the file DEregrowth.dat; the data on untreated mice are composed of a 
control group plus the data from three other groups prior to treatment (Day<=0); 
(2) since the multiplicative error scheme is assumed the exponential growth for 
untreated mice reduces to a linear function estimated by lme; (3) the standard 
error for the doubling time is estimated using the delta-method (matrix o$varFix 
contains the variance-covariance of the fixed effects parameters, intercept and slope); 
and (4) the difference in SE for Tp in Table 10.1 and Figure 10.5 is because the R 
code uses data for all untreated mice, but in Table 10.1 only Control/Group 1 data 
are used. 

CONTROL ETEX, ITu 

FIGURE 10.5. Tumor volume on the log scale for untreated mice estimated with lme. 

Treatment groups. Using the DE regrowth curve with multiplicative error, we first 
fit the data in each treatment group using a statistical model, 

Vij = l n ( e ^ + / ^ · + e"3-/M*i) + £ φ 

assuming that mice have the same parameters, ε^ ~ Λ/*(0,σ2). Since parameters 
are fixed, this model reduces to nonlinear regression (starting values are derived as 
outlined in Section 10.2.6). 

There are several ways to address heterogeneity of response to treatment. First, 
one can assume that parameters βχ and β3 are random but that β2 and β4 are 
fixed, leading to the following nonlinear mixed effects model: 

Y = (g^l+ZMij+^i -L. eß3-ß4tij+Vi\eSij (10.13) 

where random terms are normally distributed as δι ~ Λ/χθ,σ^) and ηί ~ Λ/*(0, σ^) 
with correlation coefficient p. Several methods may be used to estimate the mixed 
model (10.13). After taking the natural log, one arrives at the nonlinear mixed 
effects model, 

Vij = In {eßi+ß*u+*i + «A-ZMii+ii) + ε..^ (10.14) 
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studied in the previous chapter. In particular, model (10.14) may be estimated 
using such standard software as statistical packages nlme (R) or proc mixed (SAS). 
Second, one can use the fact that Yij has a lognormal distribution with the first 
moment E{Yio) = β

Τι+β^ + er2~ß^, where n = βχ + (σ2 + σ2
δ)/2 and τ 2 = 

ßs + (σ<2 + ση)/2- Further, one can find the exact covariance matrix and apply the 
IRLS or total GEE approach, as we did for the log-Gompertz curve of Section 6.4.5. 

The R code below reads and plots the data for the three groups of treated mice 
shown in Figure 10.4 and estimates the response to treatment using the DE re-
growth curve according to model (10.14) via the nlme function (Lindtsrom and Bates 
method). Use source(nc: \ \MixedModels\ \ChapterlO\\ trnlme.rn) to download 
the R function. Only data starting on day 1 after treatment are used. Days to re-
growth is TR, and the standard error (SETR) is estimated via the delta method, where 
the 4 x 4 covariance matrix is extracted from the output of nlme as o$varFix. 

dat = read. table("c: \ \k luwer\ \DEregrowth.dat" ,s t r ingsAsFactor=F) 
names(dat)=c("TreatmentGroup","MicelD","TumorVolume","Day") 
xd=seq(from=l,to=30,by=.1) 
u t rgr=unique(da t [ ,1 ] ) 
par(mfrow=c(1,3)) 
f o r ( i g in 2:4) 

{ 
p r i n t ( u t r g r [ i g ] ) 
p lo t ( l , l , x l im=c(0 ,30 ) ,y l im=c( -5 , l ) ,ma in=u t rg r [ ig ] , t ype="n" , 

x lab="\ylab= , M·) 
daUNTR=dat[dat$TreatmentGroup==utrgr[ig] & dat$Day>0, ] 
y=log(daUNTR$TumorVolume); day=daUNTR$Day 

id=daUNTR$MiceID; uid=unique(id); nid=length(uid) 

for(j in l:nid) 

{ 

yi=y[id==uid[j]];xi=day[id==uid[j]] 

lines(xi,yi);points(xi,yi,pch=16) 

} 

o <- nlme(model=y~log(exp(al+a2*day)+exp(a3-a4*day)), 

f ixed=list(al~1,a2~1,a3~1,a4~1), random=al+a3~11id, 

start=c(-7.,0.2,-0.8,0.2)) 

print(summary(o)) 

a <- as.vector(o$coefficients[[l]]) 

yfit=log(exp(a[l]+a[2]*xd)+exp(a[3]-a[4]*xd)) 

l ines (xd ,yf i t ,col=2,lwd=3) 
TR < - ( l o g ( a [ 4 ] / a [ 2 ] ) - a [ l ] + a [ 3 ] ) / ( a [ 4 ] + a [ 2 ] ) 
y t r <-log(exp(a[l]+a[2]*TR)+exp(a[3]-a[4]*TR)) 
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segments(-1, 0, 30, 0, col=3,l ty=2) 
segments(TR, y t r , TR, - 7 , col=3) 
dl < - - l / ( a [ 2 ] + a [ 4 ] ) ; d2 < - - d l ; a l < - log (a [4] /a [2] ) 
d3 < - ( - a [2 ]*a l+a [2 ]* (a [ l ] - a [33 ) -a [2 ] - a [4 ] ) / ( a [2 ]+a [4 ] ) A 2 /a [2 ] 
d4 < - ( -a [4 ]*a l+a[4]*(a [ l ] -a [3 ] )+a[2]+a[4] ) / (a [2 ]+a[4] ) A 2/a [4] 
dd < - c ( d l , d3, d2, d4) 
SETR < - s q r t ( t ( d d ) °/0*°/o o$varFix '/.*% dd) 
text(20,-4,paste(nTR=M ,round(TR,l),M\nSE=M ,round(SETR,l) 

,sep="") ,adj=0,cex=2) 
} 

mtext(side=l,"Days Post Treatment" ,outer=T,cex=1.5, l ine=-l .5) 
mtext(side=2,"LOG Tumor Volume",outer=T,cex=l.5, l ine=-l .5) 

There is a slight difference of time to regrowth estimates compared to the Table 
10.1 values, due to difference in the data sets. We do not provide code for com-
putation of other treatment outcome parameters since it is fairly straightforward. 
The computation of time to reach 1 cm3 (Τχ) and doubling time (TD) requires the 
function decE shown above. 

Table 10.2. p-values for group comparisons. 

Group Comparison TR T\ TD 
2 versus 3 0.064 0.027 0.648 
2 versus 4 0.0065 0.0016 0.536 
3 versus 4 0.0003 <0.0001 0.348 

The results of estimation by the Lindstrom-Bates method (Section 8.7) are shown 
in Table 10.1. All estimates have a small standard error and are statistically sig-
nificant. This is a very rapidly growing tumor; for the control group, it takes only 
2.1 days to double the tumor volume. Clearly, treatment has a profound effect-the 
doubling time increases from 2 days in the control group to more than 20 days in 
the treatment groups. Based on model (10.14), we can assess the Surviving Fraction 
(SF) as e^1/(e^1 + e^3), the proportion of clonogenic cells at t = 0. The estima-
tion results reveal different treatment effects in the three groups. In Group 2 the 
surviving fraction is the smallest, however, the kill effect has the shortest dura-
tion since the rate of the post-treatment growth is the highest, 32.3% a day, just 
slightly less than that of untreated tumor. In Group 3 the same dose of cisplatin is 
used, but the effect of treatment is prolonged, with a rate of growth of 24.4% a day. 
Group 4 has a slightly lower rate of post-treatment growth than that of the previous 
group and a smaller surviving fraction. This analysis suggests that an equivalent 
concentration of intratumor cisplatin injection leads to slower tumor regrowth: the 
2.5-fold increase in cisplatin concentration (Group 4) has almost the same rate of 
regrowth but is much more toxic. This conclusion is confirmed by the tumor growth 
delay characteristics, such as time to regrowth (TR) , time to reach 1 cm3 (Τ\), and 
doubling time (TD)· In Table 10.2, p-values are shown for group comparison. Inter-
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estingly, treatment affects doubling time less, so the time to reach 1 cm3 contrasts 
the groups better than does the time to regrowth. 

Problems for Section 10.2 

1. Check that equation (10.3) satisfies the system (10.2). 
2. Solve the ODE dQ/dt = rCeut — (j)Q(t), where C is a positive constant. 
3. Prove that the DE as a function of D is convex (the second derivative is 

positive). 
4. Derive the time to regrowth formula (10.7). 
5. Prove that iterations (10.9) produce a descending sequence. 
6. Using the derivation of implicit function, prove that doubling time is a decreas-

ing function of v and an increasing function of φ. 
7. Adopt the code on page 548 to compute T\ and T& with SE for each treatment 

group. 
8*. Derive a formula for maximum tumor volume reduction as the expected tu-

mor volume at TR and its standard error using the delta-method. Write an R code 
for computation and apply it to DEregrowth.dat data set. Append Table 10.2 to 
compare the tumor volume reduction across the groups. 

10.3 Exponential growth with fixed regrowth time 

Sometimes, nonlinear estimation fails and one needs simpler, more reliable statistical 
models. Here we suggest a simplified approach that reduces to a linear model after 
making the following assumptions on regrowth: (a) growth of untreated and treated 
tumors, after a certain time T*, is exponential with the same rate, and (b) the 
regrowth time T* is known. In particular, this approach was used in a recent paper 
by Demidenko (2010). 

The idea of fixed regrowth time is illustrated in Figure 10.2: the uncontrolled 
growth (untreated/control group) and the growth of the treated group, after time 
T* = C, is exponential with the rate v. The key point of this approach is that on the 
log scale the intercept (say, h) measures the logarithm surviving fraction, which can 
be used to contrast treatments. When several treatment groups are studied and the 
post-treatment growth rate is the same, which often is the case, we can combine the 
data and estimate intercepts/SF simultaneously using a linear mixed effects model. 
Then the question of the relative efficacy of the treatments translates into a linear 
statistical hypothesis. A convenient way to pool group data is to use the method of 
dummy variables/intercepts (Draper and Smith, 1998). To be specific, let us assume 
that in two treatment groups (A and B) at day £* after treatment at day t = 0, 
tumor regains its exponential growth rate v. Let the surviving fraction in treatment 
groups A and B be h\ and h<i, respectively. We combine observations from the three 
groups (the first group is a control) by introducing two dummy binary variables 
di\ and dii, such that du = 1 if and only if the it h animal belongs to treatment 
group A and zero otherwise. Analogously, d^ = 1 codes treatment group B. Then 
the unified model for the three groups takes the form 

Vijt = ho + hidn + Ji2di2 + vtij + ε^ί, (10.15) 
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where y^t is the tumor volume logarithm of the ith animal at time tij from group 
j = 1,2,3 (if measurements are taken at the same time, we have a balanced model). 
We include all observations from the control group, but for the treatment groups, 
we take only those for which t > T*. Note that if relative volume is used, ho = 0. 
As follows from this model, if animal i belongs to the control group, y^t — ho + 
vti\ + em, where ho is the ln(tumor volume) of the control group. For animals 
from treatment group A, the equation is y^t = ho + hi + vti2 + ε^*, where h\ is 
the In volume of surviving cells in group A. Then the logarithm surviving fraction 
is equal to h\ — ho for group A and h<i — ho for group B. Model (10.15) is the 
multivariate regression model because all observations are independent and have 
the same variance. A more adequate assumption is that the intercepts are animal-
and treatment group-specific, leading us to a two-level linear mixed effects model: 

Vijt = ho + hidn + /l2^2 + Vtij + Si + Tj + Sijt, (10.16) 

where Si ~Λί(0,σ%), TJ ~Λ/*(0,σ^), and e^t ~ Λ/χθ,σ^) are independent. Further, 
this model can be reduced to the LME model studied in Chapters 2 and 3, and one 
can incorporate serial autocorrelation using methods described in Section 4.3.4. 

10.3.1 Statistical hypothesis testing 

After tumor regrowth models (10.15) or (10.16) are estimated, we can compute 
several treatment end-points as functions of the model parameters and test various 
statistical hypotheses. For example, to answer the question of whether group A is 
statistically significantly different from the control, we test the linear hypothesis 
HQ : hi = 0. To test whether groups A and B are different, we test HQ : hi = /i2-
The doubling time for group A is estimated as (In 2 — h{)jv and for group B as 
(In 2—h^jv. To contrast treatment groups by l b , we take the difference {h2—hi)/v. 

10.3.2 Synergistic or supra-additive effect 

Often, new cancer treatments are sought as a combination of existing treatments. 
A major problem is to prove that a combination of treatments leads to a greater 
therapeutic effect than treatments applied separately. If there exists such a special 
effect, we call it a synergistic or supra-additive effect. Below we provide a definition 
of the synergistic effect in terms of the surviving fraction and show how to test it 
using linear hypotheses in the framework of models (10.15) or (10.16). 

Let A and B be two treatments aimed at killing cancer cells. After treatment A, 
let the fraction of surviving cells be SFi, and after treatment B, let the fraction 
be SF2, assuming that they are applied alone. Now if treatment B is applied after 
A, we expect the fraction of surviving cells to be the product SF1XSF2 because 
treatment B only affects cells surviving treatment A. We obtain the same answer 
when treatment B comes first because SFixSF 2 =SF2xSFi. 

Definition 43 We say that two treatments in combination have a synergistic effect 
if the surviving fraction of the combined treatment is less than the product of the 
surviving fractions when the treatments are applied alone. 
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We emphasize that we take the product of the surviving fractions, which translates 
into the sum on the log scale. 

Now let C be the treatment group with combined treatments A and B, and let 
all three groups be described by a model similar to (10.15) or (10.16) with three 
intercepts, hj, j = 1,2,3, where the third group is C. Since the logarithm of the SF 
of the third group is /13, we see that there is a synergistic effect if /13 < hi + h^. 
If there is no supra-additive effect, then /i3 = hi + /12. Hence, the presence of the 
synergistic effect may be tested by the linear hypothesis H0 : /13 = hi + /i2- One 
can define the Relative Synergistic Effect (RSE) as 

RSE = ^ § ^ l l 0 0 % , (10.17) 

where SFi, SF2, and SF3 are surviving fractions in groups A, B, and C. RSAE 
is close to 100% when the combined treatment kills the tumor almost completely 
(SF3 = 1). Vice versa, RSE=0% when the combined treatment plan has the same 
effect as if treatments were applied separately. If RSE is negative, the combined 
treatment is worse than separate. 

Original Data Data on LN Scale 

• 0 

□ 
0 

Control 
IDN5109 60 mg/kg 
AS-PKA110 mg/kg 
ZD1839 150 mg/kg 
IDN5109+ZD1839 
AS-PKAI+IDN5109 
AS-PKAI+ZD1839 
AS-PKAI+IDN5109 
+ZD1839 

3 4 5 

Weeks 

FIGURE 10.6. GEO tumor colon cancer xenograft growth delay data (Tortora et al., 2001) 
shown on two scales (mean values). Although the original scale helps to judge the relative 
tumor volume value, the logarithmic scale is more informative for analysis of the tumor 
growth rate in different treatment groups. In fact, it is possible to show the original scale 
at the right, see the next figure. Particularly, as follows from the right-hand graph (a) 
post-treatment tumors regain exponential growth at week 2 after treatment, and (b) all 
treatments introduce a tumor growth delay, but after week 2, tumors grow at the rate of 
the control group (the lines are parallel). 

10.3.3 Example: combination of treatments 

Tortora et al. (2001) describe a study designed to verify that combined oral ad-
ministration of three novel agents that block multiple cancer cells signaling path-
ways reduces tumor growth significantly in nude mice bearing GEO colon cancer 
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xenografts. Although a combination of new drugs seemed to affect the tumor growth 
in seven treatment groups, no statistical analysis was presented by the authors. We 
apply our approach to contrast treatment groups via traditional tumor growth time 
delay and doubling time using the exponential tumor regrowth model assuming that 
the time after which tumors regain exponential growth is defined. Our particular in-
terest is in assessing the percent cancer cell kill in each treatment group and testing 
the significance of the synergistic effect. 

Exponential growth 

Control 
IDN5109 60mg/kg 
AS-PKAI10mg/kg 
ZD1839150 mg/kg 
IDN5109+ZD1839 
AS-PKAI+IDN5109 
AS-PKAI+ZD1839 
AS-PKAI+IDN5109+ZD1839 
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FIGURE 10.7. Linear mixed effects model fit to Tortora et al. (2001) data on the logarith-
mic scale. It is assumed that after week 2, tumors in all treatment groups regain exponential 
growth of the control group (46% volume increase per week). Since the data are ln(relative 
tumor volume), the control group starts from zero. The intercept, ln(Surviving Fraction), 
is determined by back projection of the treatment group line onto the y-axis. SF is a 
minimum for the last group when all three treatments are combined. 

Seven treatment groups are considered, with approximately eight mice in each 
group. Groups received three types of inhibitors targeting the respective kinases 
as different doses in mg/kg, alone and in combination. The mean group data are 
shown on two scales in Figure 10.6. At the left the relative mean tumor volume is 
plotted against time in the way that it was presented in the original work. Although 
it is easy to judge the value of the relative volume when the data are plotted on 
the original scale, the logarithmic scale reveals two important features of the data: 
(a) after a period of time, i.e., after week 2, tumors regain exponential growth 
(the growth curves are almost straight lines) (b) the rate of growth of the post-
treatment tumors is the same as that in the control (sham-treated) group of mice. 
These two observations give rise to the following assumption: After week 2 the 
natural logarithm of the relative volume in each mouse group is a linear function 
of time with a common slope v but a different intercept pertinent to the treatment 
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group. Generating seven dummy variables dii,di2,—,di7, where i codes mouse so 
that dij = 1 if mouse i belongs to the j t h treatment group and zero otherwise, we 
come to a linear mixed effects model, 

Uijt = hidn + /i2^i2 + hsdis + h,4di4 4- h^d^ + hßdiQ + Ηγάιγ 

Λ-vtij + Si + Tj + ε^ί) 

with eight coefficients to estimate; yijt is the natural logarithm of the relative tumor 
volume after week 2, v is the common growth rate, e^t is the error term, and Tj and 
5i are treatment- and mouse-specific random effects (there is no common intercept 
term because data are in relative volume format). As follows from this model, the 
relative tumor volume in the control group grows exponentially as evt\ the tumor 
volume in the group IDN5109 60 mg/kg grows according to ehl+vt\ in the group 
AS-PKAI 10 mg/kg, tumors grow according to e^2+I/i; and so on. 

The results of the estimation are illustrated in Figure 10.7 and presented in 
Table 10.3. The exponential growth rate, v — 0.456, means that the volume of 
the untreated tumors and post-treatment tumors after week 2 increases by 45.6% 
each week. Since data are presented as the natural logarithm of the relative tumor 
volume, the intercept for the control group is zero. Doubling time (DT) for the 
control group is calculated as Tpot = ln2/z/ = 1.5 weeks, with SE = 1η2/ι/2 χ SEV. 
Tumor growth delay (TGD) is calculated as the difference between DT and Tpot. 
All treatment outcomes are statistically significant. 

Treatment group comparison 

We can compare treatment groups by two end-points, cell kill/surviving fraction 
and doubling time. However, since tumors in all treatment groups grow with the 
same rate one may expect that the results will be similar. As follows from Table 
10.4 only groups (3,4), (5,6), and (6,7) failed to show contrast; the other pairs differ 
significantly in terms of surviving fraction and doubling time. 

Table 10.3. Estimation results with three treatment end-points (common growth 
rate v = 0.456) 

Treat. 
Group 

1 
2 
3 
4 
2+3 
2+4 
3+4 
2+3+4 

Intercept, 
InSF, 

h, (SE) 
0 

-0.26 (0.16) 
-1.32 (0.15) 
-1.24 (0.15) 
-1.94 (0.15) 
-2.15 (0.15) 
-2.34 (0.15) 
-4.69 (0.15) 

Surviving 
Fraction 

lOOe^ 
100% 
76.8% 
26.7% 
29.0% 
14.4% 
11.7% 
9.6% 
0.9% 

Cell 
Kill 

0% 
23.2% 
73.3% 
71.0% 
86.6% 
88.3% 
90.4% 
99.1% 

Doubling 
Time (SE) 

weeks 
1.50 (0.06) 
2.10 (0.40) 
4.42 (0.45) 
4.23 (0.45) 
5.77 (0.52) 
6.23 (0.54) 
6.66 (0.55) 
11.80 (0.75) 

Tumor 
Growth 
Delay 

0 
0.60 (0.34) 
2.90 (0.27) 
2.71 (0.27) 
4.25 (0.23) 
4.71 (0.23) 
5.13 (0.23) 
10.28 (0.20) 

Treatment groups: 1-Control, 2. IDN5109 60 mg/kg, 3. AS-PKAI 10 mg/kg, 4. 
ZD1839 150 mg/kg. 
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Table 10.4. Treatment group pairwise comparison (difference) for logarithm 
surviving fraction and doubling time 

Group 
2 1nSF 

DT 
3 1nSF 

DT 
4 1nSF 

DT 
5 1nSF 

DT 
6 1nSF 

DT 
71nSF 

DT 

3 
1.06* 
-2.32* 

4 
0.97* 
-2.13* 
-0.08 
0.19 

5 
1.67* 
-3.67* 
0.61* 
-1.35* 
0.70* 
-1.53* 

6 
1.89* 
-4.13* 
0.82* 
-1.81* 
0.91* 
-1.99* 
0.21 
-0.46 

7 
2.08* 
-4.56* 
1.02* 
-2.24* 
1.10* 
-2.42* 
0.41* 
-0.89* 
0.19 
-0.43 

8 
4.42* 
-9.70* 
3.36* 
-7.38* 
3.45* 
-7.56* 
2.75* 
-6.03* 
2.54* 
-5.58* 
2.34* 
-5.14* 

Note. The asterisk indicates that the p-value is less than or equal to 0.01. 

Testing the synergistic effect 

The results of statistical testing of the synergistic effect are presented in Table 10.5. 
The goal of this testing is to determine whether the combination of drugs leads to 
a greater cell kill than that of the individual drugs. As follows from the preceding 
section, the synergistic hypothesis is reduced to conventional statistical hypothesis 
testing on the intercepts in the linear model. As follows from Table 10.5, the com-
binations of inhibitors IDN5109 with AS-PKAI and AS-PKAI with ZD1839 do not 
have much of an effect compared to the case when administered separately. However, 
the combinations of IDN5109 with ZD1839 and all three inhibitors have a dramatic 
synergistic effect. For example, the percent surviving fraction when IDN5109 and 
ZD1839 used separately, would be 92% higher than when these drugs are used in 
combination. Interestingly, this combination of drugs has a greater relative effect 
than when the three drugs are combined (85%). 

Table 10.5. Statistical testing of the synergistic effect of combined treatments 

Treatm. 
group 
2+3 
2+4 
3+4 
2+3 
+4 

Separate 
effect 

hi + h2 = -1.58 
hi + h3 =-1.50 
h2 + hz =-2.56 
hi + hi + hz 

=-2.82 

Combined 
Effect 

hA =-1.94 
h5 =-2.15 
h6 =-2.34 
h7 =-4.69 

Difference 
SAE (SE) 
0.36 (0.22) 
0.65 (0.22) 
-0.22 (0.21) 
1.87 (0.28) 

p-
Value 
0.118 
0.005 
0.302 

<0.001 

RSE 
% 
30 
48 
-24 
85 

Problems for Section 10.3 
1. Use the delta method to derive formulas for SE for estimates of T\ and Tp 

from a linear mixed model. 
2. Use the delta method to compute the SE for RSE. 
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3*. Use the fixed regrowth time to estimate T± and TD with their SE for the data 
set DEregrowth. da t . 

4*. The file \\MixedModels\\ChapetrlO\\tumdat. csv contains another data on 
tumor regrowth in four groups of mice with 0 (control), 3, 5, and 10 Gy of radiation. 
The R code is in the file R.growth.r and a detailed description of the data with the 
output is in file Regrowth.pdf. Use the DE regrowth model estimated with nlme 
for treated groups and compare the result with the fixed regrowth time approach 
implemented in the function R.growth. Compare the results. Which approach is 
better? Justify. 

10.4 General regrowth curve 

We can generalize the DE regrowth curve taking any growth curve G and survival 
curve S by the rule 

R(t) = S(D) x G(t) + G(0) x (1 - S(D))e^\ t > 0, (10.18) 

where R(t) is a regrowth curve, S(D) is a survival curve with treatment dose D 
and G(t) is a growth curve. Here G(0) is the value of the growth curve at time 
0 and it is assumed that doomed cells wash out from the tumor with exponential 
rate φ > 0. It is easy to see that DE curve (10.5) is a special case of (10.18) when 
G(t) = e

lnN°+vt and S(D) = e~aD. Combining the Gompertz growth curve with 
exponential SC, we arrive at the Gompertz regrowth curve, which can be written 
as 

R(t) = A [e-«D-e~ut + (1 - β-«Ό)β-φί\ . 

Here A = i?(0) is the initial tumor volume and Ae~aD is the maximum tumor 
volume after treatment with dose D. As follows from formula (10.18), 

Ä(0) = S(D)G(0) + G(0)(1 - S(D)) = G(0). 

That is, the regrowth curve is a continuous function of time for any dose D. It is 
worthwhile to note that the regrowth curve (10.18) can model tumor dynamics only 
if the tumor shrinks immediately after treatment in a way that can be expressed 
mathematically as 

Ä'(O) = S(D) x G'(0) - φΟ(0) x (1 - S(D)) < G;(0). 

In other words, (10.18) is not a smooth function at t = 0. This kind of model can be 
used for very responsive tumors. To describe the dynamics of smoothly regrowing 
tumors (less responsive), a more complicated model is required. This is our aim in 
the next section. 

Problems for Section 10.4 

1*. Apply the Gompertz regrowth curve to the data set DEregrowth.dat. Do 
you see any advantage of this curve compared with the DE regrowth curve? 
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GUP 
FIGURE 10.8. Smooth regrowth curves are built to model less responsive tumors. They 
originate from the cell-cycle model, well accepted in tumor biology. Four cell-cycle phases, 
corresponding to four model compartments, are distinguished: Phases Go and G\ are 
combined to constitute the first compartment, Q. Cells from this compartment either 
move to the DNA synthetic phase S at rate 7 or die at rate λ. Cells from compartment 
S move to the next compartment, G at rate J, and from G to mitotic compartment M 
at rate μ. After mitosis, cells enter compartment Q at rate r. This scheme is represented 
mathematically via a system of four differential equations of the first order, (10.19). 

10.5 Double-exponential transient regrowth curve 

The aim of this section is to generalize the DE regrowth curve to account for pos-
sible (transient) growth immediately after treatment based on the textbook four-
compartment cell cycle model, see Figure 10.8. It is well known that the cell cycle 
comprises four phases, e.g., Murray and Hunt (1993): 

• The G\ phase represents the DNA presynthetic phase. 

• The S phase represents the phase during which the DNA synthesis happens; 
this phase is an intermediate step between the G\ and G2 phases. 

• The G2 phase represents cells between the S phase and mitosis or cell division 
(the post-synthetic phase). 

• The M phase represents actual cell division where the mother cell divides into 
two daughter cells. 

I addition to these four cell groups/phases there is another relatively large portion 
of quiescent cells that are not involved in the cell cycle but enter G\ after receiving 
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a signal for cell division. In particular, these cells play the role of recruiters after 
treatment/irradiation. The first compartment constitutes quiescent cells (Go) and 
cells from phase G\ denoted by Q. The second compartment constitutes cells from 
phase 5, compartment G holds cells from phase G2, and M denotes mitotic cells. 
We want to describe the dynamics of compartments and how cells from one com-
partment move to another compartment in time. To derive a parsimonious model, 
we have to describe the most important part of cell promotion in the manner of the 
simplest birth/death model (10.2). We start from the first compartment: the num-
ber of cells increases by newborn cells from compartment M at rate r and decreases 
as cells die at rate λ. Further, it is assumed that cells from compartment Q move 
to compartment S at rate 7, cells from compartment S move on to compartment 
G at the rate <5, and finally to the mitotic compartment at the rate μ. In mathe-
matical terms the interactions among the four compartments of the cell cycle may 
be written via a system of differential equations: 

dQ ΛΑ- Λ ^ d S ΓΛ d G ÎO d M ^ Λ Ι Λ Ι Π Ν 

- = T M - \ Q , - = 7 Q , - = * 5 , — = μ σ . (10.19) 

After subsequent differentiation and substitution, we can reduce this system to one 
Ordinary Differential Equation (ODE) of the fourth order, 

£-*-*£. (-0, 
where ft = δημτ. To find a solution to this ODE, we must solve the characteristic 
(polynomial) equation C(z) = ft, where C(z) = z4 + Xz3 (Codington and Levinson, 
1955; Bartlett and Hiorus, 1973). See Figure 10.9 for a geometrical illustration. 

Proposition 44 The fourth-order algebraic equation z4 + Xz3 = ft, where constants 
X and ft are positive, has two real roots, one positive (v) and one negative (—φ), 
and a couple of conjugate complex roots with a negative real part, —ζάζωί. 

Proof. First, we prove that the function C(z) = z4 + Xz3 is strictly increasing 
for positive z. This follows from the fact that the derivative is positive, dC/dz = 
Az3 + 3Xz2 > 0 for z > 0. Since G(0) = 0, it follows that C(z) = ft has a unique 
positive root. Second, we prove that the equation C(z) = ft has a unique negative 
root. Indeed, the function C(z) attains its minimum at zmin — —3Λ/4 which gives 

- 3 3 λ 4 / 4 4 < 0. In the interval ( —oo,zmin), the function C(z) is decreasing 
and G(—00) = +00. This implies that C(z) = ft has a unique negative root. It is 
known that the equation z4 + Xz3 = ft has four roots in the complex domain; since 
it has only two real roots, it must have two conjugate complex roots, — ζ ± ωι. 

m 
As follows from ODE theory, the solution to (10.20) can be written as 

Q(t) = Cxe
vt + G2 (e-* + T(t)), (10.21) 

where T(t), called the transient function, is defined as T(t) = Ge~^sin(o;i). Con-
stants C\ and G2 specify the number of surviving and damaged cells, respectively, at 
time zero. Interestingly, equation (10.21) contains an oscillation part associated with 
period 2π/α;. The oscillation of the surviving cells is a well-documented phenomenon 
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FIGURE 10.9. Characteristic equation C(z) = κ with κ = 0.0007 and λ = 0.02 where 
C(z) = z4 + Xz3. This algebraic equation of the fourth order has four roots: two real 
roots (one of each is positive and another is negative, dots) and a couple of conjugate 
complex roots. The positive root (i/) is the rate of growth rate of clonogenic/cancer cells, 
the negative root (—φ) is that rate at which doomed cells leave the tumor. Complex roots 
correspond to an oscillating pattern of doomed tumor cells. 

in vitro and in vivo (Brown, 1975; Chignola et al., 1999). It is easy to show that the 
total number of cells in the four compartments, N(t) = Q(t) + S(t) + G(t) + M(t), 
follows an equation similar to (10.21): 

N(t) = devt + C2 (β~φι + T(t)) . (10.22) 

This growth curve contains three parts. The first part, C\evt describes the expo-
nential growth of proliferating cells; C^e-^* describes the fraction of doomed cells 
that leave the tumor with constant rate φ\ and the third part corresponds to the 
transient function, T(t) which reflects mitotic death. 

Now we apply this growth curve to model tumor dynamics after a single dose 
D. If iVo is the total number of cells at the time of treatment (t = 0), then, as 
follows from equation (10.22), CI/NQ represents the fraction of surviving cells and 
C2/N0 represents the fraction of killed cells washing out from the tumor according 
to exponential law at a negative rate. Following the line of our general approach, the 
surviving fraction is modeled via survival curve S = S(D), and therefore equation 
(10.22) takes the form (t > 0) 

N(t) = N0 [S(D)eut + (1 - S(D)) (e"** + Ce~^ sm{uot))} . (10.23) 

Note that if D = 0, no treatment, cells continue growing exponentially, N(t) = 
Noeut. At the time of treatment 

N(0) = N0 [S(D) + (1 - S(D)) (1 + Csin(0))] = N0, 
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FIGURE 10.10. Principal idea of the Double-Exponential Transient regrowth curve. The 
fraction of surviving cells is modeled via a survival (dose-response) relationship, S = S(D). 
It is assumed that the unaffected fraction of cells continues growing at the rate of the 
control group (filled squares). Cells immediately affected by the irradiation wash out from 
the tumor (group B). According to the DE regrowth curve the total number of cells drops 
right after the time of radiation (empty triangles). A more comprehensive DET regrowth 
curve (bold) has a smooth character: it is assumed that cells may go through a few cell 
cycles before dying and eventually washing out from the tumor (apoptosis). A characteristic 
property of a transient curve is that it has a local maximum and a minimum and that the 
rate of growth at time zero is a continuous function of time. 



568 10. Tumor Regrowth Curves 

so that N(t) is a continuous function, assuming that for t < 0, cells grew according 
to Noeut. To make the function (10.23) smooth at t = 0, we equate the rate of 
exponential growth for t < 0 to the rate at t = 0, 

d(N0e l/t\ 

dt 

d(N(t)) 

t=o dt 
(10.24) 

t=o 

for all doses D. This leads to the condition v = —φ + Οω. Expressing constant C in 
terms of rates v and φ, we finally arrive at the regrowth curve for the total number 
of post-treatment tumor cells 

N(t) = N0 S{D)evt + (1 - S(D)) (e φι + v±±e^t sin(cji) (10.25) 

This regrowth curve is smooth at t = 0 because the rate of growth at time zero 
is equal to the rate of uncontrolled exponential growth (t < 0), as follows from 
condition (10.24). This function is called the General Double-Exponential Tran-
sient (GDET) regrowth curve. Function (10.25) defines a family of regrowth curves 
dependent on the choice of survival curve S. For example, taking the simplest expo-
nential survival curve S(D) = e~aD, we arrive at the Double-Exponential Transient 
(DET), 

N(t) = N0 
-OLD „Vt + (1 - e-«u) e-* + ν + φ <t sin(u;i) (10.26) 

The DET regrowth curve (10.26) comprises three groups corresponding to cells not 
affected by the irradiation (A), doomed cells (B) and lethally damaged/apoptotic 
cells (C); namely N(t) = P(t) + K(t) + A(t). A geometrical illustration of the DET 
regrowth curve is presented in Figure 10.10. More precisely, the three groups are 
specified as follows: 

A Cells not affected by irradiation retain the ability to proliferate exponentially 
with the rate v. The number of cells at time t is P(i) = N0e~ 0—aD„vt 

B Cells killed by irradiation wash out from the tumor almost immediately following 
a decay law, K{t) = 7V0(1 - e - a D ) e " ^ . 

C Apoptotic cells lethally damaged by irradiation may not die immediately. They 
may go through a few cell cycles before dying and washing out from the tumor, 
A(t) = N0(l — e~ocD)e~^t sm(ujt){v + φ)/ω, a damped sine. This group con-
tains cells with damaged DNA and apoptotic cells, Tubiana et al. (1990), Hall 
(2000). Several radiobiological studies have confirmed an oscillating pattern of 
apoptotic cells (Rockwell and Kallman, 1974; Higashikubo et al., 1996). Also, 
oscillation may be due to a profound tumor bed effect in vivo (Begg, 1983; 
Kallman, 1987). 

The parameters of the DET curve have biological interpretations: 

• a is the radiosensitivity parameter pertinent to the specified tumor cell type, 
and e~aD is the surviving fraction after single dose D. 
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FIGURE 10.11. Double-Exponential Transient (DET) regrowth curve as a function of 
different radiation doses. The control group (untreated tumor) grows exponentially, treated 
tumors slow down after radiation and then regrow. A characteristic property of the DET 
curve is that it can model tumors that do not shrink immediately after irradiation but can 
grow awhile and then shrink. At the right, the same curves are displayed on a logarithmic 
scale. This scale illuminates the concept of tumor growth time delay. For example, a single 
dose of 5 Gy at day 0 leads to a 2-day delay, and 20 Gy leads to an 8.5-day delay. These 
regrowth curves closely resemble hand drawings of the desirable shape of regrowth curves 
as depicted in classical radiobiological texts, such as those of Kallman (1987), Tubiana et 
al. (1990), and Hall (2000). 

• (1 - e~aD) is the fraction of cells lethally damaged by the treatment. 

• ζ is the rate at which damaged cells wash out from the tumor, ζ < φ. 

• ω is proportional to the frequency of damaged cell oscillation; namely, at 
π/(2ω) after irradiation, the population of lethally damaged cells reaches its 
maximum. It then goes down, reaching its minimum at 1.5π/α;. We may not 
see the oscillation pattern in tumor growth delay data because it damps at 
the rate ζ. 

Figure 10.11 displays different patterns of post-irradiated tumor regrowth as a 
response to different radiation doses using our DET model (10.26), with the ra-
diosensitivity parameter a corresponding to the RUC-2 malignant cell line (Tubiana 
et al., 1990). As follows from this graph, a bigger radiation dose kills more cells and 
delays tumor growth. For example, tumors treated with 15 and 20 Gy radiation 
doses begin shrinking and then regrow. When tumor receives a single 5 Gy radia-
tion dose, the time delay is about 2 days, and the delay is about 8.5 days for 20 
Gy. Remarkably, these graphs are similar to hand-drawings that illustrate tumor re-
sponse to radiation in many radiobiological texts, such as those of Kallman (1987), 
Tubiana et al. (1990), and Hall (2000). 
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FIGURE 10.12. Double Exponential Transient (DET) regrowth curve (10.27) for Carlsson 
and Yuhas (1984) data (LAN-1 neuroblastoma spheroids) estimated by the nlme function 
of S-Plus. This type of malignant cell is very responsive to radiation, and therefore we use 
a quadratic SC. Notice the excellent fit in all groups. 

10.5.1 Example: treatment of cellular spheroids 

In this subsection, we fit the DET regrowth curve to the volume of human LAN-
1 neuroblastoma spheroids treated with six graded radiation doses (cesium-137 
gamma rays), as described by Carlsson and Yuhas (1984); see Figure 10.12. The 
cellular spheroid is an important 3D model in tumor biology because of its inter-
mediate status between in vitro and in vivo; see Acker et al. (1984). In particular, 
spheroids suit our modeling well because volume/total number of cells is measured 
fairly precisely. As follows from Figure 10.12, some spheroids continue growing after 
irradiation and, therefore a DE regrowth curve of the form (10.25) seems adequate. 
We found that a normalizing factor should be included, reflecting the fact that the 
number of cells is not proportional to the tumor volume (nonuniform cell density). 
According to Carlsson and Yuhas, this type of cancer cell is responsive to radiation 
treatment. Mathematically, this means that the Linear-Quadratic (LQ) survival 
curve of Section 10.1 might be a good candidate. We found that coefficient a is 
close to zero, and therefore in (10.25), we use S(D) = e~ßD . The statistical model 
for the seven radiation dose groups takes the form 

yij = (Α + δά)]ϋ[β-αΌ*+ν1 

+( l -e - a ^)(e" W j + 

(10.27) 

aD?) ( e-*t„ . " + Φ e ^ ' 8 Ϊ η ( ω ί # ) ) ] + ε ^ , 

where Uj represents the day when spheroid volume was measured; j = 1,2, ...,7 
is the treatment group with a single radiation dose D: 0, 3, 5, 7, 9, 11, 13 Gy at 
day 0. As follows from model (10.27), all parameters but the normalizing factor 
are assumed fixed across treatment groups. This model was estimated by the nlme 
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function, and the estimation results are presented in Table 10.6. Notice that all 
parameters are highly significant. 

Table 10.6. Estimation of the DET regrowth curve for cellular spheroids (Carlsson 
and Yuhas, 1984). 

Parameter 
Rate of uncontrolled growth, v 
Rate of loss, killed cells, φ 
Rate of loss, damaged cells, ζ 
Frequency of oscillation, ω 
Radiosensitivity parameter, a 
Normalizing factor, A 

Estimate 
0.216 
0.185 
0.126 
0.508 
2.661 
1.219 

SE 
0.022 
0.023 
0.023 
0.010 
0.29 
0.14 

Z-statistic 
9.61 
7.99 
5.46 
49.9 
9.15 
8.57 

Using the estimate of the radiosensitivity parameter, one can predict that 20 Gy 
radiation would kill the tumor almost completely because β~2·6 6 1 χ 2° ~ 0 (however, 
at least theoretically, it suffices to have one cell to develop a tumor). We notice that 
the damaged cells leave the tumor at a lower rate, 0.126, than that of killed cells, 
0.185. The period of oscillation, according to this model, is (2π)/0.508 = 12.4 days. 
A small dose of radiation for this tumor has almost no effect because the derivative 
of S with respect to D is zero at D = 0. 

Problems for Section 10.5 

1. Plot several DET curves (10.26) as a function of time t for several 0, £, D, and 
ω, e.g. as shown in Figure 10.11. Plot three groups of cells, A, B, and C. Provide 
an explanation. 

2. Using parameter values from Table 10.6, compute the nadir and minimum 
tumor volume for D = 20 Gy. Plot the curve and display your answer as the point 
on the curve. 

3*. Develop the Newton algorithm for computation of the time delay, as shown 
in the right-hand plot of Figure 10.11. Write an R code. 

10.6 Gompertz transient regrowth curve 

Many studies demonstrate that the Gompertz curve is an adequate model for unper-
turbed tumor with limited growth. Statistical issues of Gompertz curve estimation 
are discussed in Section 6.1.7. We can easily modify our cell cycle model (10.19) to 
account for limited growth. Indeed, as a differential equation, the Gompertz curve 
is written as dN/dt = uN(hi-NQQ - In iV), where NQO is the tumor size limit and 
N = N(t) is the tumor size at time t. Thus, instead of the term τΜ, which implies 
exponential growth, we use i/M (In M^ - I n M ) to account for limited growth, where 
Moo is the maximum size of the mitotic compartment. Unfortunately, this system 
of differential equations will not have a closed-form solution, so that we use the 
simplified approach of modifying (10.26) directly. Since the Gompertz curve has the 
equivalent form exp ( n ^ - (n«, - n0)e~"*), where n ^ = lniVOo and n0 = IniVo are 
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the logarithm maximum and initial tumor size/volume, respectively (Section 6.1.7), 
the Gompertz Transient (GT) regrowth curve takes the form (t > 0) 

N(t) _ enoo-(noo-n0)e~ut-aD _|_ en0 M _ e~
aD\ 

x ( e - * + y ( ^ - J * ) + V c * a i n ( a r t ) 

It is straightforward to show that this regrowth curve: (a) collapses to a traditional 
Gompertz growth curve when D = 0, (b) is continuous at t = 0, and (c) is smooth 
at t = 0 (continuous first derivative) for any dose D. The GT regrowth curve is 
adequate to model the behavior of large post-treated tumors. It is obvious how 
to modify the GT regrowth curve using more complicated survival curves, as in 
(10.25). 

10.6.1 Example: tumor treated in mice 

We apply the Gompertz Transient regrowth curve to in vivo data from Rygaardt and 
Spang-Thomsen (1997), with the kind permission of the authors. The experiment 
consisted of four groups of immune-deficient mice with human tumor xenografts 
implanted at day 14 prior to the irradiation. On day 0, three groups of mice received 
a single radiation dose of 3, 5, or 10 Gy, respectively. The authors used the Gompertz 
curve to fit the control group, and the regrowth data in radiation groups were fit 
by an exponential function with a subjectively chosen day of regrowth. 

We start by fitting the logarithmic Gompertz curve to the control group and with 
mice from the other three radiation groups prior to radiation using a nonlinear mixed 
effects approach, assuming that maximum and initial tumor size is mouse-specific, 
namely, 

Vij = njoo - (njoo - nj0)e
 vti> + ε, ij) (10.28) 

where i = 1,..., nj is the number of longitudinal measurements of tumor volume, and 
£ij ~ Λ/*(0, σ2) (see section 6.1.7 for more detail on this Gompertz curve estimation). 
Since maximum and initial tumor size is mouse-specific, we may assume that 

n 'JOO 

nj0 

>λί 
no 

^οοθ 

0"ooO 
(10.29) 

Model (10.28) belongs to the type II nonlinear mixed models (varied matrix of 
random effects); Section 6.2. The estimated model is 

Vij = 9.29 - (9.29 - 4.89) e " 0 · 0 2 7 ^ , 

with estimated covariance matrix 

(10.30) 

^οοθ 

ΟΌοΟ 
^ 2 

0.9992 0.5 x 0.838 x 0.999 
0.5 x 0.838 x 0.999 0.8382 

As follows from (10.30), the untreated tumor may grow up to 9.29 mm3. The rate 
at which the tumor approaches this limit is 2.7% a day. 



10.6 Gompertz transient regrowth curve 573 

Table 10.7. Estimation of the GT regrowth curve for tumor volume in mice, 
Rygaardt and Spang-Thomsen (1997) 

Parameter Estimate SE Z-statistic 
Rate of uncontrolled growth, v 
Rate of loss, killed cells, φ 
Rate of loss, damaged cells, ζ 
Frequency of oscillation, ω 
Radiosensitivity parameter, a 
In initial tumor volume, no 
In maximum tumor volume, n ^ 

Now we apply the GT regrowth curve with mouse-specific n ^ and no to the 
treated tumors, 

0.024 
0.0507 
0.0892 
0.5306 
0.203 
4.898 
10.38 

0.0025 
0.0133 
0.0294 
0.028 

0.0194 
0.0819 
0.387 

9.6 
3.8 
3.1 
18.6 
10.4 
59.8 
26.7 

Vij = In [encx3~(nJ'oo~nJ°)e ut~aD 4_ enj0(l — e~aD) 

x I e"0 t + y ( w ^ " ^ o ) + Vc* B in(ca t ) J + eio, (10.31) 

where random n ^ and n^o have joint distribution (10.29 ). The estimation results 
are presented in Table 10.7 and the fit to individual growth data is presented in 
Figure 10.13. First, we notice that all parameters are well estimated and the GT 
curve goes close to all data points. Second, the radiosensitivity to 1 Gy is 0.23 
G y - \ implying that 10 Gy kills 100(1 - e~2-3)% ~ 90% of the cancer cells. Third, 
parameters n^oo and n^o are close to the control group. Fourth, the oscillation 
parameter is very close to what we obtained for spheroid data (period = 2π/0.5 ~ 12 
days). Whether or not this is a coincidence is a matter for future investigation. 

A fragment of an R code is shown below (the code is incomplete due to the 
lack of space; the data may be found in the file Gompertz.dat). The mouse-specific 
regrowth curves plotted in Figure 10.13 use the matrix of ar coefficients (the number 
of rows equal to the number of mice, N — 46). 

rstGTO 

{ 

da=read. table ( "C : \\MixedModels \\Chapter 10\\Gompertz. dat " ) 

daO <- da[da$day>=0, ] # only data after radiation are used 

o<-nlme(L0GTV~log(exp(al-a2*Dose-exp(-a3*day)*(al-a4))+exp(a4)* 

(1-exp(-a2*Dose))*(exp(-a5*day)+(a5+a3*(al-a4))/a7*exp(-a6* 

day)*sin(a7*day))),fixed=al+a2+a3+a4+a5+a6+a7~l, 

random=al+a4Ä'l|id,data=da0,start=c(ll,0.19,0.02,5,0.06,0.09,0.55)) 

print(summary(o)) 

a <-as.vector(o$coefficients[[l]]) # fixed effects parameters 

ar <-(o$coefficients[[2]])$id # mouse-specific parameters 

} 
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FIGURE 10.13. Individual predictions of 46 tumor volumes in mice in four radiation groups 
from day 0 to day 43 by a GT regrowth curve, assuming that initial and maximum tumor 
volumes are mouse-specific (random). 

Problems for Section 10.6 

1. Why isn't the DE transient curve appropriate for Gompertz.dat data? Provide 
a justification. 

2. Add lines nessesary to code in the function rstGT to reproduce Table 10.7 and 
Figure 10.13. 

3*. Derive formulas for doubling time, time to reach a specific volume, and time 
to regrowth for GT curve along with SEs estimated by the delta method. Write the 
R code and compute these quantities using Gompertz. dat data. 

4*. Explore more complicated structures for random effects in GT mixed model. 
Do mouse-specific z/, φ, and ω produce reasonable results? 

10.7 Summary points 

• Existing growth curve models, such as exponential, logistic, and Gompertz, 
cannot be used to model the post-treatment tumor volume dynamics because 
they are monotonie functions of time, but tumor growth delay data may not 
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be monotonie. In particular, tumors after treatment may shrink in volume, 
reach nadir, and then regrow. 

• Elaborated cell kinetics models cannot be used to model tumor growth delay 
data because they contain large numbers of unknown parameters impossible 
to estimate from limited longitudinal tumor regrowth data. 

• We build our parsimonious tumor regrowth models combining classical growth 
curve models with a survival curve that models the proportion of surviv-
ing cells as a function of treatment dose, such as radiation. For example, 
the Double-exponential (DE) regrowth curve for radiotherapy data with fast-
growing, responsive tumors is specified by three parameters: rate of growth 
of clonogenic cells, rate at which doomed cells wash out from the tumor, and 
radiosensitivity, which determines how cancer cells are affected by radiation. 
Fitting this curve to tumor growth delay data enables assessment of the ra-
diosensitivity in vivo. Important endpoints of radiotherapy, such as time to 
regrowth/nadir and tumor growth delay, can be defined in the framework of 
the DE regrowth curve. 

• Exponential and Gompertz transient curves are designed for less responsive 
tumors that respond to radiation not immediately but with some delay de-
scribed by the transient function. We derive this curve from a system of dif-
ferential equations that describe the cell cycle with four phases. We show that 
this system is equivalent to an ordinary differential equation of the fourth 
order and provide a closed-form solution that involves a sine component. 

• Parameters of our regrowth curves have biological interpretations such as ra-
diosensitivity, the growth rate of clonogenic cells, and frequency of oscillation 
of apoptotic cells. Direct assessment of these parameters is very expensive 
even in vitro, and almost impossible in vivo. 

• There exists a simple relationship between three fundamental variables of 
cancer treatment: tumor growth delay is equal to the ratio of the logarithm 

K of the surviving fraction to the rate of growth of clonogenic cells. · 

• Mixed model methodology is well suited to analyzing longitudinal tumor 
growth delay data. Parameters of regrowth curves may be population-based 
(genetically driven) or subject-specific. 

• If, after a certain time T*, treated tumors regain the exponential growth of 
untreated tumors, and T* is known, the regrowth data may be analyzed by a 
linear model. Then the intercept measures the logarithm of the surviving frac-
tion, and the question of treatment efficacy can be reduced to linear statistical 
hypothesis testing. 

• Sometimes, new treatment drugs are combinations of old ones. A question 
arises as to whether the combined drug has a stronger killing effect than that 
of separate administration. We define this synergistic (supra-additive) effect 
in terms of a dose-response (survival) curve and show how it can be verified 
by statistical testing in the framework of the regrowth curve. 





11 
Statistical Analysis of Shape 

11.1 Introduction 

An impetus for the application of mixed models to the statistical analysis of shape is 
the fact that, on one hand, shapes come from the same population but, on the other 
hand, shapes vary and are subject-specific. Thus, the mixed model methodology 
may be useful in describing shape variation. In the language of a mixed model, 
mean shape is specified by population-averaged parameters (or fixed effects), and 
subject-specific variation is specified by random effects. 

A characteristic property of a shape is that it is invariant in translation, rotation 
and size transformations. For example, we say that all equilateral triangles have 
the same shape because after size elimination, they become congruent. Eliminating 
irrelevant features associated with those transformations is the major issue in shape 
analysis. 

Statistical shape analysis is widely employed in many fields and disciplines of 
science and engineering. We do not provide a complete coverage of the applica-
tions but just to name a few. For example, Lu (1965) analyzed human faces via 
a combination of Fourier series and ANOVA modeling. Wang et al. (2003) used a 
Procrustes shape model for gait recognition in surveillance systems. Shape analysis 
is used to characterize brain asymmetry and to detect schizophrenia or Alzheimer's 
disease (Wang et al., 2001). In geology, shape analysis is used to study particles and 
particularly sand grain variation (Bowman et al., 2001). In dentistry, shape analy-
sis has been used to compare teeth (Ferrario et al., 1999). Shape analysis is widely 
used in biology to study specimen shapes that belong to the same population; this 
discipline is called morphology, see the review Rohlf (1990), and Lestrel (1997). For 
example, Horgan (2001) studied the shape of carrots of a specific type, Rohlf and 
Archie (1984) studied the wings of mosquitoes and Ferson et al. (1985) studied the 
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shape of shells. A review on the topic and a methods comparison may be found in 
papers by McLellan, and Endler (1998) and Rohlf (2003). 

Geometrical issues of shape, especially three-dimensional shape, are discussed 
comprehensively by Kendall et al. (1999). However, we consider only planar, or 
two-dimensional, shapes. The basis for statistical analysis is the fact that shapes 
can be quantified and therefore represented as a set of numbers. There are two ways 
to quantify shape; by landmarks and via digital image processing. An adequate 
set of landmarks determines the shape configuration, and digital image processing 
techniques specify the digital shape, the outline. For obvious reasons, earlier authors 
concentrated on the first approach. Technical aspects of extracting the shape from 
a digital image are discussed by Costa and Cesar (2001). Extracting a shape as an 
outline or outer contour of an image is not a difficult problem for modern photo-
processing software such as PaintShop Pro (Jasc Software, Inc.). The two techniques 
imply different statistical analyses. In landmark analysis, the order of points is 
known, but the size and angle of rotation may be different. Several methods to deal 
with landmark data are available. First, one can use the raw data, the coordinates of 
the landmarks. If the orientation and variation in size are substantial a Procrustes 
model can be applied, Small (1996). Second, one can compute the relative distances 
between landmark points or angles (Bookstein, 1986, 1991; Kendall, 1989; Kendall 
et al., 1999; Lele and Richtsmeier, 2001). An obvious advantage of this approach 
is that the orientation of the shape, sometimes arbitrary, is eliminated. To analyze 
digital shapes, more complicated methods such as Fourier descriptor analysis are 
applied. 

Several tasks are pursued in the statistical theory of shape: 

• To estimate/reconstruct the true unknown shape μ, assuming that the shape 
samples are given up to rotation, translation, and scaling. 

• To compare two samples of shape and test that they came from the same 
general population. 

• To test whether the (N + l)th shape belongs to N given shapes, the member-
ship test. 

Specifically, we confine our consideration to two-dimensional shape, or more pre-
cisely to polygons. Since a polygon is defined by n points, the data take the form 
of n x 2 matrices, ui,U2, ...,UJV· We assume that the shapes are independent and 
identically distributed. The latter means that there exists an n x 2 matrix (shape) 
μ such that after translation, rotation and scaling the mean of U; is μ, which is 
called the mean shape. 

We start the shape analysis with the simplest shape problem—triangular shapes 
or random triangles—and illustrate how the membership test can be used for human 
face identification. Next, we discuss how a linear mixed model can be applied to 
landmark analysis and how to model the correlation between neighboring landmarks 
via the Toeplitz covariance structure of Section 4.3.4. To eliminate shape orientation 
and size, a Procrustes model is used. First, we apply the Fourier descriptor analysis 
to round shapes and then to arbitrary shapes, where the random effects reflect the 
shape variation. The results of a balanced growth curve model apply. We illustrate 
the Fourier descriptor analysis by leaf analysis. 
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11.2 Statistical analysis of random triangles 

We start with the simplest two-dimensional (planar) shape, the triangle. We deal 
with random triangles, so that the length of the side is a random variable. It is 
assumed that the triangles are independent and identically distributed (iid). Since 
the triangular shape is uniquely specified by the lengths of its sides, we reduce the 
statistical analysis to an analysis of n iid triples. The triples are independent and 
belong to the same general population. Statistical analysis of triangles is a relatively 
old shape problem and has been considered by a number of authors, Watson (1986), 
Mardia (1989), and Goodall and Lange (1989), to name a few. However, unlike 
previous studies, we assume that the triangles come just slightly rotated and scaled 
so that we know the order of the sides (shape reconstruction of planar figures that 
may be rigidly transformed is considered later). In fact, in many applied problems 
we know the tops and bases of the triangles, so the order of the sides is known. For 
instance, this assumption will hold later for our face identification problem. 

In particular, we solve the following membership problem: given a sequence of N 
iid triangles, determine whether the (N + l) th triangle belongs to the same general 
population. We refer the reader to Section 3.8, where the membership problem is 
described in terms of a linear statistical model. 

Thus, let us have N iid random triangles with the lengths of the sides specified 
by the triangle model 

Si=zß + £i, i = l,..., AT, (11.1) 

where s* = (sa ? 5*2? s^)1 denotes the vector of the lengths of the three sides and the 
vector μ = (μ1? μ2> ßsY is unknown. The error vector Si — (ε^, £i2> £isY ~ ·Λ/*(0, Ω), 
where Ω is the 3 x 3 covariance matrix. The vector μ specifies the mean triangular 
shape and the matrix Ω specifies the covariance matrix of the error vector, both 
unknown and to be estimated (unstructured parameterization). The correlation 
between sides may reflect the fact that the sides were computed from random vertex 
coordinates. If the randomness of the length of the sides is due to measurement error, 
one may assume that all {ε^·} have the same variance, leading to a more compact 
parameterization, Ω = a 2 R , where the correlation matrix is given by 

R = 

1 Pl2 PlS 
Pl2 1 P2S 
Pl3 P23 1 

(11.2) 

An alternative (isotropic) parameterization would be to assume that all three 
sides correlate at the same magnitude, p12 = p1 3 = p23

 = P· This model has a nice 
interpretation as a model to account for intra-cluster (intra-triangle) correlation. 
Indeed, let us assume that the length is subject to a pure measurement error but 
that the triangles differ in size. This can be captured by the model Sij = μ^+^+ε^, 
where ε^ ~ ΛΓ(0, τ2) is associated with the measurement error and bi ~ Af(0,r2d) 
reflects the difference in size (d is the scaled variance). It is elementary to check that 
in the previous notation, σ2 = r 2 ( l + d) and p = d/(l + d). The theory of linear 
mixed effects and the balanced growth curve model of Section 4.1 are particularly 
applicable. 



580 11. Statistical Analysis of Shape 

A problem may emerge with the model (11.1) when the measurements are very 
imprecise because the sum of two sides may be less than the value of the other side. 
However, we ignore this possibility. 

One hundred random triangles are shown in Figure 11.1. The question we pose 
is: Assuming that the first 99 triangles are iid and following the model (11.1), does 
the last triangle (bold) belong to the same general population? We will use the 
membership test from Section 3.8.1 to answer this question. A simplified version of 
the test based on the chi-squared distribution will be used. 

< ^7 v <J <7 <7 ^ <7 <J ^ 

^j<J <] <\ < ^ <l ^7 < <j 

^7<7<!^<]<]<\<7<]<1 

< <7 ^7 <J <J <7 < <S <7 <J 

</ -<j<J V <7 <7 7̂ <J ^7 v 

X7 ^7 ^7 <7 <7 <J <7 ^7 V <J 

<] V <} <J ^ </ < <3 ^7 <J 

FIGURE 11.1. The first 99 independent triangles belong to the same general population. 
Does the 100th triangle (bold) belong to the same population? 

We start by estimating of μ and Ω using the data given {s{,i = 1,..., N}. The 
log-likelihood function for model (11.1) is 

Ζ(μ,Ω) = - ^ | ^ 1 η | η | + ^ ( 8 < - μ ) , η - 1 ( 8 < - μ ) 1 . 
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The maximum of this function admits a closed-form solution under unstructured 
parameterization because model (11.1) is balanced (no missing measurements), 

1 N - 1 N 

S = Jj J T ^ , nML = Jj Σ(βζ - S)(S< - s)'. 
i=l z = l 

Also, we can use an unbiased method of moments estimator for Ω, 

1 N 

ΩΜΜ = ^ — j ^ ( s * - s)(si - s)' . (11.3) 
2 = 1 

When matrix Ω is defined as σ2Κ, where matrix R is parameterized by three 
parameters (11.2), there is no closed-form solution to the MLE. However we can 
use the method of moments and estimate pjfc as the correlation coefficient between 

Sij and Sik. Finally, σ2 = ^(s» - s) /R~1(s i - s)/(3iV). 
Now we turn our attention to the membership problem: if an M = N + 1 triangle 

(triple) is given, does that triangle belong to the same triangle population? We 
assume that s^v+i = μ* 4- £JV+I, where ejv+i ~ ·Λ/"(0, Ω). In other words, the sides 
of the triangle may be different but the covariance matrix is the same. We rephrase 
the membership problem in terms of statistical hypothesis testing Ho : μ^= μ with 
the alternative that for at least one j we have μ#· φ μ^ (j = 1,2,3). Under the 
null (the last triangle belongs to the population), s — sjv+i ~ Af (θ,^η^Ω) , and 
replacing Ω with Ω, we obtain, approximately, 

S = ^ - ( S - 8N+1yn-\s - sN+1) ~ χ2(3), (11.4) 

the chi-squared distribution with 3 degrees of freedom. Thus, if the test statistic S 
takes a value greater than qi-a, the (1—a)th quantile of the chi-squared distribution, 
HQ is rejected. 

In Figure 11.1, the first 99 random triangles are generated with μ = (2.5, 2.5,3)' 
and fin = 0.2, Ü12 = 0.05, Ωι3 = 0.07, Ω22 = Ω33 = 0.1, and Ω23 = 0.03 and 
the 100th triangle was generated with μ* = (1.5,2.0,3.0), so it does not belong to 
the same population (all triangles are slightly rotated). The chi-squared test (11.4) 
rejects Ho for the sample depicted in Figure 11.1 at a = 0.05 with the p-value 0.036. 
The last triangle is different. 

In the R code that follows, the function rand t r generates 16 random polygons 
with m vertices (the default shape is triangle). The average distance from 0 is 1 
with roeps as the deviation from 1 for each vertex. Two types of distributions can 
be used: unifrom and normal. The rotation is accomplished via the 2 x 2 matrix 

p _ Γ cos Θ — sin Θ 1 
[ sin0 cos0 J ' 

where Θ is the (counterwise) random rotation angle uniformly distributed on [0,2π]. 
This model is different from (11.1) and makes it possible to generate random poly-
gons with an arbitrary number of vertices (this shape model is used later in Section 
11.6). 
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randtr(roeps=.2,distr="run",m=3) 

{ 

par(mfrow=c(4,4),mar=c(1,1,1,1)) 

ang=(2*pi)/m*(0:(m-1)) # angles for vertices 

Prot=matrix(ncol=2,nrow=2) 

for(itr in 1:16) 

{ 

plot(c(-1.5,1.5),c(-1.5,1.5),type=MnM,xlab=,,M,ylab=,M,,axes=F) 

if(distr=="run") leng=runif(n=m,min=l-roeps,max=l+roeps) 

else leng=rnorm(n=m,mean=l,sd=roeps) #rotation distribution 

x=leng*cos(ang);y=leng*sin(ang) 

theta=runif(n=l,min=0,max=2*pi) #rotation angle 

Pro t [1 ,1 ]=cos ( the t a ) ;P ro t [1 ,2 ]= - s in ( the t a ) # ro ta t ion matrix 
Prot [2 ,1 ]=s in ( the ta ) ;P ro t [2 ,2 ]=cos ( the ta ) 
xtr=Prot°/o*7ot ( cbind (x, y ) ) 
x t r = c b i n d ( x t r , x t r [ , l ] ) # connect ivi ty 
p o l y g o n ( x t r [ l , ] , x t r [ 2 , ] , c o l = 2 ) 
l i n e s ( x t r [ l , ] , x t r [ 2 , ] , l w d = 4 ) 

} 
} 

Problems for Section 11.2 

1*. Modify the function rand t r to plot random triangles using model (11.1). 
2. List advantages and disadvantages of the two random triangle models. 

11.3 Face recognition 

Face recognition and identification comprse a classic problem of pattern recognition. 
Much literature exists on the topic, and many scientific conferences and meetings 
are devoted to the subject, mostly in engineering and computer science circles. For a 
recent review, the interested reader is referred to a collection of papers of the Third 
International Conference on person authentication that includes face, speech, and 
fingerprint image processing and recognition (Bigun and Smeraldi, 2001). Surveys 
of methods on face recognition may be found in Samal and lyengar (1992) and 
Chellappa et al. (1995). Numerous methods and algorithms have been suggested. 

The basis for our approach is the observation that regardless of the facial expres-
sion, the distance between the eyes and the tip of the nose does not change; thus, 
our triangle model (11.1) can be applied. Particularly, we want to solve the follow-
ing membership problem: given a sequence of photos of one person with possibly 
different facial expressions, is the next photo of the same person? 

We use the Yale face database, which contains 165 gray images of 15 people at 

http://cvc.yale.edu/projects/yalefaces/yalefaces.html 
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There are 11 facial expression per person. For illustrative purposes we consider only 
11 photos of the first person and one photo of the second person, Figure 11.2. Since 
the lower part of the face moves with different facial expressions, we choose the 
following landmark triangle to quantify the image: right eye (left on the photo), left 
eye, and tip of the nose. This triangle is specified by the lengths of its sides. Thus, 
s n is the distance between the eyes in the first photo in Figure 11.2; si2 is the 
distance between the left eye and the nose; and S13 is the distance between the nose 
and the right eye of the "centerlight" photo. The landmark points are identified 
manually and therefore are subject to measurement error. Below we show the mean 
distances for the first person (i = 1,..., 11), the vector of distances of the second 
person (i = 12), standard errors of the mean, and the correlation matrix. 

Mil 

SE(fin) 

56.57 
41.65 
41.94 

0.43 1 
0.43 
0.71 J 

\ , S12 = 

, cor(£n; 

53.08 
42.80 

_ 45.00 

) = 0 
_ 0 

1 0.19 0.29 
0.19 1 -0.01 
0.29 -0.01 1 

We use an unbiased MM estimator (11.3) for matrix Ω with N = 11. We decide that 
the last photo is of the same person if vector s 12 is within the "normal" range of 
μη. More precisely, we compute statistic (11.4) and base our decision on its value. 
Since under the assumption that the last photo is of the same person, statistic S 
has the chi-squared distribution with 3 degrees of freedom, and the threshold value 
is 7.81 with significance level a = 0.05 (the error of rejecting the face when it is 
really of the same person). Our data give S = 10.1, and therefore we reject the null 
hypothesis with the p-value 0.018. 

Several modifications can be made to improve this face model. First, we can 
assume that the distance between the eyes and the nose is the same, μ2 = μ3. 
Second, we can use other facial features such as the width of the face. Third, we 
can use a structured model for the covariance matrix (11.2), especially useful when 
the number of landmark points is large. 

11.4 Scale-irrelevant shape model 

In this section we consider a generalization of the triangle model (11.1), where 
size does not matter. Thus, triangles follow the linear model (11.1) but may be of 
different sizes. We are still interested in whether the 100th triangle in Figure 11.1 
belongs to the population of the previous 99 triangles. When size does not matter, 
instead of the side length we can consider the angle; the model (11.1) remains the 
same, but ŝ  is the two-element vector of angles (we ignore the third angle because 
the sum of the angles is π). 

When the shape is defined by n > 3 numbers, the statistical model for a scale-
irrelevant shape can be defined as 

^ μ + ε^, i = 1,...,JV, (11.5) 
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centerhght glasses 

ft Φ 
noglasses normal 

happy lettnght m 
sad 

face #2 

FIGURE 11.2. Twelve faces from the Yale face database. The first 11 photos are of the 
same person with different facial expressions. The last photo is of a different person. We 
apply the triangle membership test of Section 11.2 to show that the last photo is of a 
different person. This test seems adequate because facial expressions do not change the 
distance between the eyes and the tip of the nose. 

where Si = (su,...., Sin)' is the n x 1 vector of shape observations, μ = (μΐ5 . . . ,μη) ' 
defines the true unknown shape, c* is a positive scale coefficient associated with 
size, and ει is the n x l random error term. For example, a quadrangle (a polygon 
with four sides) can be defined by the length of four sides plus one diagonal, n = 5 
(this representation is called triangulation, see Small 1996). Again, we assume that 
the order of sides is known. For clarity of presentation, we shall assume that the 
components of the error term are independent and normally distributed random 
variables with zero mean and variance σ2. If Q = 1 and n = 3, we come to the 
triangle model (11.1) with Ω =σ 2 Ι . Regarding the scale coefficients { Q } we assume 
that they are fixed and unknown and we treat them as nuisance parameters (below 
we also consider a model where sizes are random). Since they are unknown, we have 
to restrict the length of the vector μ because otherwise μ would be nonidentifiable. 
Thus, it is assumed that ||μ|| = 1. The log-likelihood function for model (11.5) takes 
the form 

if 1 N 2] 
Ζ(μ,σ2,θι,...,θΛτ) = - - < ηΑΠησ2 + - ^ ])Γ ||s{ - ο»μ||2 >, 

(11.6) 

Maximization over Q gives ct =5^μ, and after some algebra, we express the sum of 
squares as 

] T H* - c^H2 = Σ IIs* - w*'8*!!2 = t r [(J - MM')2 Σ 8 * 8 «] 
= tr [(I - μμ')2Μ] = tr [(I - μμ')Μ] = trM - μ'Μμ, 
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where M = Σί=1 s ^ , a fixed matrix. Hence, the maximum likelihood estimate of 
the true shape, / i M L , is the dominant eigenvector of matrix M, and 

a2
ML = (trM - JÏMLMiiML)l{Nn). 

This model can be used for further statistical inference. For example, the member-
ship test to test whether the (N + l)th shape belongs to the same size-irrelevant 
family of shapes. 

Model (11.5) has a large number of nuisance parameters, { Q } , which increases 
with the sample size (shapes). Consequently, we cannot use standard maximum 
likelihood theory because the {s^} are not identically distributed. Also, parameter 
Ci cannot be estimated consistently when N goes to infinity with a fixed n. Since 
our primary interest is μ, a question arises as to whether the mean shape j î M L is 
consistent. The answer is positive. Indeed, let us assume that the { |Q|} are bounded 
and limiv-^oo Ν~λ Σ ϋ ι c2 = A > 0. Then with probability 1 from the law of large 
numbers, AT-1 M —> σ2Ι+Αμμ'. The dominant eigenvector of the latter matrix 
is unique and equal to μ because (σ21+Αμμ')μ = (σ2 + Α)μ. Since the unique 
dominant eigenvector is a continuous function of the matrix, we find that JIML ~~* M 
with probability 1. It is easy to show that d2

ML is consistent as well. 
The scale-irrelevant shape model may be modified to account for correlation 

between neighboring points, as in the triangle model. Thus, let us assume that 
cov(s^) = Ω. Now, instead of μ'μ = 1, using a normalizing restriction μ'ίϊ~1μ =1 , 
we obtain that fi>ML = Ω 1 / 2 τ , where r is the dominant eigenvector vector of matrix 
Ω - ^ Μ Ω - 1 / 2 . If all elements of matrix Ω are unknown, a large number of shapes 
are required because the total number of unknown parameters is N+η+η(η+1)/2. 
For example, a parsimonious specification would be to assume that the correlation 
between neighboring points is the same. Later we discuss how to avoid estimating 
a large parameter further when considering the Procrustes shape model. 

11.4-1 Random effects scale-irrelevant shape model 

We argue that the scale coefficients Q , under certain sample designs, may be mean-
ingful and be a part of the population feature. For example, if in the face identifi-
cation problem, the distance from the camera to the face is held fixed and faces are 
of adults, size Q may represent the subject-specific size and one can talk about a 
distribution of face sizes. On the other hand, if the camera position varies or if the 
sample of faces contains faces of children, we cannot assume that the { Q } belong 
to the same population. If the shapes are drawn from the same population and the 
size is a part of the subject-specific shape variation, we may assume that the { Q } 
are random and iid so that they have the same mean. This leads to the random 
effects scale-irrelevant shape model. As with many random/mixed effects models, 
this model can be written in a hierarchical manner: The first-stage model has the 
conditional form Si\ci ~ Αί(^μ,σ2) and the second-level model is c* ~ Λ/"(1,σ2). 
Note that we assume that E(ci) = 1 because otherwise the model becomes noniden-
tifiable since μ is unknown. Denoting the scaled variance as d = σ2/σ2 , we obtain 
the marginal model s* = μ-\-ηί, where s$ ~ Λί(μ,σ2(1+άμμ')), i = 1,2, ...,A/\ 
Clearly, if shapes are of the same size (no shape-specific size), we have d = 0. The 
latter model is not the LME model of the form (2.5) because the covariance matrix 
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depends on μ. This is a peculiar case of the marginal mixed model considered in 
Chapter 6. Two approaches may be taken to estimate the true shape, μ and the 
variance parameters, σ2 and d: a distribution-free approach using Variance Least 
Squares (VLS) of Section 3.12 and maximum likelihood based on the normal as-
sumption. 

Since E(si) = μ, we can unbiasedly estimate the true shape as μ = s = 
Ν~τ Σί=ι si- T R e VLS estimates for σ2 and σ2 are found such that the difference 
between the empirical and theoretical covariance matrices is a minimum, 

N 

tr ( e ^ — a l - ( 7 c s s J = mm, 
2 = 1 

where e* = sz- — s. Differentiating with respect to σ2 and σ2, we come to a sys-
tem of linear equations σ2η + σ2 ||s|| = iV - 1 Σ ||sz- — s|| and σ2 ||s|| + σ2 ||s|| = 
^ - ^ ( ( S i - I ) ' ! ) 2 . 

Alternatively, we assume that the distribution is normal and apply the maximum 
likelihood approach. The twice-negative log-likelihood function takes the form 

1 N 

ηΝΙησ2 + Ν\η \Ι+άμμ'\ + - j ]T(s i - μ)' {Ι+άμμ') * (s» - μ). 
2 = 1 

Similar to the random intercepts model of Section 2.4, using the dimension-reduction 
formulas \1+άμμ'\ = 1 + ά\\μ\\ and (Ι+άμμ')"1 = I—άμμ/(1 + ί2||μ||2), the ex-
pression above can be simplified to 

1 N 

ηΝλτισ2 + ΛΠη(1 + d \\μ\\2) + — ^ 
2 = 1 

Differentiating with respect to μ, we obtain the MLE of the true shape, μ =As. 
Plugging this expression back into the log-likelihood, one can find λ and the variance 
parameters that maximize the log-likelihood function. 

11.4-2 Scale-irrelevant shape model on the log scale 

One may expect that the larger the shape, the larger the deviation from the true 
shape. This assumption leads to a multiplicative error model, sz- = ο^μβεί (Rao and 
Suryawanshi, 1996). The advantage of this model is that after taking a logarithm, 
this model transforms into an additive scale-irrelevant model, 

ti = v+hi+^, (11.7) 

where tz- = lns^, ι /=1ημ , hi = lnc^, and ηί ~ Λί(0,σ2Τ). Clearly, this model 
assumes that the components of vector μ are positive, such as when μ is the distance 
between vertices of a polygon. Model (11.7) is a special case of the random intercepts 
model of Section 2.4. If the {hi} are treated as fixed, we can eliminate them by taking 
the differences, {Uj —ti, i = 1,..., N,j = 1,..., n} . If the {hi} are treated as random, 
namely, hi ~ Af(0,a2d)) the results of Section 2.4 and Section 4.1.5 apply. 

| 8 < _ μ | | 2 _ , ( Μ ' ( ^ - μ ) ) 2 

i + dNI 
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We can also account for correlation between components of vector t^ that would 
lead to a correlation matrix similar to (11.2) with p12 = p23- A more general way 
to account for correlation is to model the covariance matrix via a Toeplitz matrix 
as covfo) = a 2 V, where V = I + X ^ L i ök^k, see Section 4.3.4 for detail. Then 
the variance component θ\ determines the correlation between points j and j + 1; 
Θ2 determines the correlation between points j and j + 2, etc. Assuming normal 
distribution, we come to a linear mixed effects (LME) model t* ~ Af(i/,a2(ll'+V)). 
This is a balanced LME model, and as follows from the results of Section 2.3, the 
MLE estimate of the true shape is a simple arithmetic mean, t . Although a complex 
covariance structure does not affect computation of the true mean, it does affect 
the shape comparison and the membership test. 

II.4.3 Fixed or random size? 

The choice of how to treat size {ci} in shape analysis, random or fixed, is similar 
to the choice of random or fixed effects in a mixed model. Two issues should be 
taken into account. If size is a population feature, such as leaves from the same 
tree or skulls of the same type of adult animal, then {ci} can be assumed random 
with a well-interpreted mean. In particular, we may be interested in the variance 
of the size. Under a fixed-size design, the { Q } do not have an interpretation as a 
population feature. For example, we come to the fixed-size model when the shape 
is derived from digital pictures taken at different distances. However, it is worth-
while to remember that although the random size design seems more restrictive, it 
is statistically more attractive because it does not lead to a large number of nui-
sance parameters. Random size leads to a random effects model and is preferable. 
Consequently, if shapes are derived from digital images they should be taken at the 
same camera position. In summary, the choice of fixed or random size should be 
driven by the sampling design, not by the preference or expertise of the analyst. 

Problems for Section 11.4 

1. Prove that the'ML estimator of μ with the log-likelihood function (11.6) is the 
maximum (dominant) eigenvector of matrix M. 

2. Write an R function that generates a random quadrangle defined by five sides 
of two triangles. 

3*. Modify the code from the previous problem to incorporate a correlation be-
tween sides. Visually compare quadrangles with independent and correlated sides. 

4*. Find the ML estimator of λ in the random effect scale-irrelevant shape model. 

11.5 Gorilla vertebrae analysis 

We illustrate use of the random effects model to shape analysis by vertebrae data. 
The key is to distinguish two sources of variation: the variation within a shape 
and the variation between the shapes in each group. In a recent paper, Albert 
et al. (2003) analyzed the configuration of landmarks of the cervical vertebrae of 
10 species of Gorilla gorilla gorilla (GGG) and seven species of Gorilla gorilla 
berengei (GGB), see Figure 11.3. In particular, the question is whether the data 
can distinguish between the two gorilla groups. 
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FIGURE 11.3. Landmarks of the vertebrae of 10 species of gorillas GGG and seven species 
of GGB. The names of the landmark veterbrae are indicated. 

Table 11.1. Results of estimation of the LME model for the two gorilla groups (on 
a log scale) 

Landmark 
PVBy 
DVBx 
DVBy 
ASPy 
PSPy 
ATx 
ATy 
PTx 
PTy 
SDe 
SD6 

£ G G G 
7.22 
6.86 
6.53 
8.04 
9.15 
7.50 
6.53 
7.93 
7.18 

0.088 
0.077 

£ G G B 
7.24 
6.83 
6.55 
8.02 
9.06 
7.54 
6.70 
7.91 
7.34 

0.064 
0.031 

St. Diff. 
0.436 
0.717 
0.436 
0.479 

2.10 
0.690 
-3.81 
0.573 
-3.59 

Several linear mixed effects models for the landmark analysis can be suggested. We 
found that the multiplicative/relative error model works better (see detail in Section 
11.4.2), so we take the logarithm of the nonzero coordinates. An indication that the 
relative error is better can be seen from Figure 11.3: the larger the absolute value of 
the landmark, the larger the variation. Thus, if z^ represents the log of a nonzero 
coordinate of the ith gorilla of the j t h landmark, then Zij = μ3,-\-bi Η-ε^-, where μ · is 
the true coordinate, bi is the random effect/size and ε^ is the error term. Assuming 
that b{ and ε^ are independent and normally distributed random variables, we 
come to the VARCOMP model. A variance of ε^ represents the variation within 
vertebrae shape, and the variance of bi represents the variation between vertebrae 
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shapes. Estimations for two linear mixed models are presented in Table 11.1. Since 
the data are balanced (no missing values), the estimate of the landmark mean is 
the geometric mean. In the third column, we show the standardized difference, 
(V>GGG ~ VOGB)/VYa,r(ßGGG) + var(MGGß)· The ^as t t w o r o w s °f the table are 
estimates of the standard deviations of the error term (variation within shape) 
and the standard error of the random effect (variation among shapes). Although 
the variation within shape is larger, the random effect is significant. 

As follows from the last column, the vertebrae of the two gorilla groups differ in 
height, particularly for landmarks PSPy, ATy, and PTy. This can also be seen in 
Figure 11.3. Also, as follows from the last row of the table, the landmark variation for 
GGB is half that of GGG. A simple chi-squared test confirms that the two gorilla 
groups have significantly different cervical vertebrae (the authors of the original 
article came to the same conclusion using a more sophisticated statistical technique). 

11.6 Procrustes estimation of the mean shape 

Shapes may come in different sizes and be rotated arbitrarily. To eliminate these 
irrelevant shape features the Procrustes1 model has been suggested; see Mardia and 
Dryden (1989), Goodall (1991), Dryden et al. (1997). 

Let there be N shapes defined by n points, Uij = (xij^VijY G i?2, where i — 
l,...,iV and j = l , . . . ,n. Let μ^ be the j t h (x,y) coordinate of an unknown vec-
tor, which defines the true shape. We want to reconstruct an n-dimensional shape 
configuration using data on N shapes, {ua, . . . , u ; n } . Let t^ G i?2, Ti > 0 and θι be 
the unknown shape-specific translation vector, scale coefficient, and rotation angle. 
Then the Procrustes statistical model for shape is given by 

(jiij - ti)riR(öi) = μό H- eih (11.8) 

where R is the 2 x 2 rotation matrix, 

R(6>) = 
cos Θ — sin Θ 
sin Θ cos Θ 

and Sij is the two-dimensional error vector with zero mean and constant variance. 
We do not restrict Ti to be positive, so reflection is allowed. Although it seems that 
the Procrustes model for n = 3 is equivalent to the triangle model (11.1), in fact, it 
is more general because we do not know the order of the triangle sides. 

The Procrustes model (11.8) leads to a peculiar estimation problem because the 
number of nuisance parameters increases with the sample size, N. Additionally, 
one cannot assert optimal properties of the maximum likelihood theory because the 
{u;i,..., Uin} are not iid. Moreover, as demonstrated by Neyman and Scott (1948), a 
statistical problem with an increasing number of unknown nuisance parameters may 
be inconsistent. We have encountered a problem with a large number of parameters 

1 Procrustes ("The Stretcher"), in Greek mythology a robber who tortured his victims by cutting 
them down to fit his bed (Procrustes' bed) if they were too tall, or hammering and stretching them, 
if they were too short, was captured by the Greek hero Theseus, who inflicted upon Procrustes 
the same kind of torture that he had imposed upon his victims. 
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in the general linear growth curve model of Section 4.2. As was shown by Lele (1993) 
and later by Kent and Mardia (1997), if the {ε^} are normally distributed with 
an unstructured covariance matrix, / i M L is inconsistent. However, if the {ε^} are 
iid with Ω =σ 2 Ι , the MLE is consistent. A similar situation occurs in the errors-
in-variables structural model (Kendall and Stuart, 1961). Therefore, we assume 
that the error term in (11.8) has uncorrelated components with the same variance, 
£ij ~Λ/"(0,σ2Ϊ2). In the shape literature, such errors are called isotropic. 

Next we derive the maximum likelihood estimator of μ. Given 2nN observations, 
we want to estimate AN + n + 1 unknown parameters. The two-element vectors 
{ßjij = 1,..., n} are the parameters of interest and the rest are treated as nuisance 
parameters. Since the size is unspecified, we have to restrict the length of μ to make 
statistical estimation identifiable, so we let \\μ\\ = 1. 

First, we notice that since Vi and 0* are unknown, we can define new parameters 
as pi = Vi cos 9i and qi = Ti sin 0; so that the elements of matrix R become linear 
functions. Second, we eliminate the translation parameter t* by putting a linear 
restriction on vectors μ^ as n - 1 ]Cj=i Pj — 0· To comply with this restriction, we 
centerize Uij so that we set ti = n _ 1 Σ™=1 u^·. Third, we stack all observations into 
a (2n) x 1 vector; the first n elements are x-coordinates and the last n elements 
are y-coordinates, u ;= (xn,Xi2, ~">xiniyniyi2, • ••>2/m)/· Also, we introduce a (2n) x 
1 vector v* = ( - y a , - y i 2 , · · · , - ^ η , ^ α , ζ ^ , •••5£m,)'· Then, the Procrustes model 
(11.8) can be rewritten compactly as 

PiUi-\-qiVi = μ + ε^ i = l,...,iV, (11.9) 

where ε ~ Λ/"(0,σ2ΐ2η)5 and pi and qi are unknown (nuisance) parameters. The 
log-likelihood function takes a familiar form, 

l = -\l 2ΛΓη1η(2πσ2)+^ Σ ^ + *v* - μ\\2 1 . (11.10) 

The maximum likelihood estimates for pi and qi when μ is being held are given by 
Pi = A^fcui - CM)'μ and % = ΔΓ1(α ίν ί - Q U ^ V , where 

(H = \\uif , bi = \\vi\\2 , a = u-Vi, Δ< = aibi - cf. 

Substituting the estimates for pi and qi back into L we reduce the likelihood maxi-
mization to minimization of the quadratic form ]T)i==1 μ'^Ο,ΐμ, where 

Qi = Δ^1 (billig - Cillai - chilli + a^v·) - I, (H-H) 

the (2n) x (2n) matrix. Finally, the MLE of the true shape is the dominant eigen-
vector: 

The MLE for the variance of the error term is aML = Amax/(2iVn) and Zmax = 
—Nnln(2neaML). This maximum may be used for statistical testing by the likeli-
hood ratio test. 
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Now we derive the Procrustes solution under a different parameterization. Indeed, 
since the size of the true shape can be taken to be arbitrary, we suggest fixing the 
last component of vector μ. To obtain a closed-form solution for μ, we use the 
following simple fact: the minimum of i /Ai/ , where v — (ν'νο)' and c is a fixed 
number, is attained at v\ — — cAjf^ani, where A n is the first (n — 1) x (n — 1) 
submatrix of matrix A and a n i is the ( n - l ) x l vector column at the nth position. 
Since the sum of the elements of vector μ must be zero, we finally obtain the MLE 
of the true shape: 

( N \ _ 1 / N \ 2n-l 

Σ Q*Q* ) ( Σ Q*Q* ) ' ^2n,ML = - Σ $li,ML- (1L13) 

The closed-form formula (11.13) is useful for studying statistical properties and 
gives the same shape as the dominant eigenvector solution (11.12). 

The R function below plots the true regular hexagon and 15 random irregular 
hexagons with sigma as the parameter that controls the magnitude of the irregu-
larity. 

shapeh=function(sigma=.01, N=15) 
{ 
dump("shapeh","c:\\MixedModels\\Chapter11\\shapeh.r") 
angtrue=(2*pi)*(0:5) /6 # t rue shape 
mutrue=cbind(cos(angtrue) ,s in(angtrue)) #regular hexagon 
par(mfrow=c(4,4),mar=c(0,0,0,0)) 

p lo t (c ( -1 .25 ,1 .25) , c ( -1 .25 ,1 .25) , t ype="n \axes=F ,x l ab= n \y l ab= , , n ) 
l i ne s ( c (mut rue [ , l ] ,mu t rue [ l , l ] ) , c (mu t rue [ ,2 ] ,mu t rue [ l , 2 ] ) , lwd=4) 
t ex t (0 ,0 , "True shape",cex=1.5) 
u6=rep(l,6);R=matrix(ncol=2,nrow=2) # random rotation matrix 

for(i in 1:15) 

{ 

mur=mutrue+matrix(sigma*rnorm(2*6),ncol=2,nrow=6) 

ti=rnorm(2,mean=0,sd=.l) #random shift 

ri=runif(l,min=.9,max=l.1) # random size 

theta=runif(l,min=0,max=2*pi) #random angle 

R [ l , l ] —cos(theta)jR[l,2]——sin(theta)\ 
R[2, l ] —sin(theta)jR[2,2]—cos(theta) 
ui=u6°/,*°/ot(ti)+mur7o*7ot(solve(R))/ri # get u [ i , j ] from eqn 11.8 
p lo t (c ( -1 .25 ,1 .25) ,c ( -1 .25 ,1 .25) , type="n" ,axes=F,x lab="" ,y lab="") 
p o l y g o n ( c ( u i [ , 1 ] , u i [ 1 , 1 ] ) , c ( u i [ , 2 ] , u i [ 1 , 2 ] ) , c o l = 3 ) 
l i n e s ( c ( u i [ , l ] , u i [ l , l ] ) , c ( u i [ , 2 ] , u i [ l , 2 ] ) , l w d = 4 ) 
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11.6.1 Polygon estimation 

To illustrate the Procrustes model, we took six points on the plane as vertices 
of a (true) convex hexagon, see Figure 11.4. Then we added normal noise to the 
coordinates of the six vertices, and randomly rotated and resized the polygon to 
produce 28 random hexagons. Basically, the same function shape6 was used but 
with mut rue, which defines an irregular hexagon. The mean hexagon, as an estimate 
of the true hexagon, is computed by (11.13). As we see, the estimate is satisfactory 
(one needs visually to rotate the mean by roughly 60° clockwise to overlap with the 
true hexagon). 

FIGURE 11.4. Mean shape estimation from 28 iid random hexagons. The last hexagon 
was randomly rotated, scaled, and shifted to produce 28 polygon shapes. The shape esti-
mate/mean was computed by formulas (11.13). 

11.6.2 Generalized Procrustes model 

The Procrustes model, (11.8) or equivalently (11.9), is useful when the number of 
landmark points is not large and they are uncorrelated. When the shape is ob-
tained as an outline of a digital image, the shape is fairly smooth, and therefore 
the neighboring points become highly correlated. It is straightforward to generalize 
the Procrustes model assuming that the (2n) x 1 vectors Si in (11.9) are correlated, 
or more specifically, cov(s^) = W = I2 0 Ω, where I2 is the 2 x 2 identity matrix. 

s
True
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Then the log-likelihood function, up to the constant — iVn 1η(2π), takes the form 

I = ~ |2ΛΠη|Ω|+μ' I f^QjW1^ J μ 1, 

where W _ 1 =Ι2<8)Ω"1. The (2n) x (2n) matrix Q; is defined as previously, (11.11), 
where a; = u ^ W - 1 ^ , bi = v ^ W - 1 ^ , and Ci = u ^ W - 1 ^ . Following the line of the 
isotropic case, we come to the Generalized Procrustes (GP) solution, 

V-ML = / W [Σ,QiW"1^J , (11.14) 

assuming that matrix Ω is being held fixed. Now we discuss how to parameterize 
matrix Ω. When the number of landmarks is large, the estimation of an unrestricted 
matrix Ω leads to an ill-identified problem because it requires estimation of n(n + 
l ) /2 elements. A parsimonious covariance parameterization would assume that: (a) 
all elements of Si have the same variance, and (b) the correlation between elements 
en and Sji is a function of \i — j \ . Recall that we encountered the same covariance 
parameterization problem for the time series linear mixed effects model of Section 
4.3.4. Therefore, we define matrix Ω as a linear combination of elementary Toeplitz 
matrices with unknown coefficients, namely, 

K 

n=5^flfcTfc. (11.15) 
fc=0 

Here T 0 is the identity matrix and T& is a symmetric elementary Toeplitz matrix 
defined as (T^)^· = 1 if \i — j \ = k and zero elsewhere. Examples of T matrices 
with k = 1 and 2 are given in (4.115). The number K determines the depth of the 
correlation of the components of the shape vector u^. To find the maximum of Z, we 
alternate between (11.14) and maximization over {Ok} until convergence. 

11.6.3 Random effects shape model 

The Procrustes model is very liberal and allows arbitrary rotation, size transfor-
mation, and translation. Although it makes the sampling design very flexible, the 
price is that the number of parameters grows with the number of shapes. In Section 
11.4.1 we suggested modeling the shape size via the random effect—this can easily 
be generalized to the Procrustes model as follows. We rewrite the Procrustes model 
in a slightly different manner as 

hi gi 
~9i hi 

ßj+ti + eij, (11.16) 

where u^· is the 2 x 1 vector of coordinates of the jih point on the ith. shape, μ 
is the 2 x 1 vector of the true unknown shape, and / i^ ,^ , t^ = (tu, fe)' are random 
variables (random effects). It is assumed that the shape observations are obtained 
as a random rotation, scale, and translation of an unknown shape μ. Assuming that 
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the distribution is normal and the error term has zero mean and constant variance 
σ2 (isotropic case), we finalize the random effects shape model (11.16) by writing 

hi 

9i 
λί 

λί 

1 
0 

" 0 " 
0 

^ 

,σ 2 

< 

. T l 2 

ahg 

T l 2 (11.17) 

Note that E(hi) = 1, which implies that the expectation of the observed shape 
coincides with the true shape. Model (11.16) allows between-shape variation, and the 
variance parameters reflect the strength of the heterogeneity. Introducing (2n) x 1 
vectors of observations u; and the true shape μ as at the beginning of this section, 
we rewrite model (11.16) in marginal form as u; ~ ΛΓ(μ,σ2ν(μ)). To express V as 
a function of μ, we introduce a 2 x 2 fixed matrix L with the elements L n = L22 = 0 
and L21 = — L12 = 1. Then the first term on the right-hand side of equation (11.16) 
can be rewritten as (/^Ϊ2η + <7z(L 0 Ιπ))μ> and hence 

ν ( μ ) = I2n+In ® Τ + σ ^ μ μ ' + σ ^ [ μ μ ' ( Ι / ® I n )+(L <g> Ιη)μμ'] 

+ σ 2 ( Ε 0 ΐ η ) μ μ , ( Ε , ® Ι η ) , 

where T =a~2cov(ti). Similar to the random size model of Section 11.4.1, we can 
estimate model (11.17) by either VLS or ML. Since the model is balanced, GLS 
is equivalent to OLS, JAQLS

 =
 POLS

 = ΰ· The variance parameters can be esti-
mated by VLS. For the maximum likelihood approach, PML Φ ΰ , and it requires 
simultaneous maximization over μ and seven variance parameters. 

Sometimes, due to the sampling design, some transformation parameters are un-
der control and can be assumed random but some are arbitrary, such as translation. 
A model similar to the general growth curve model of Section 4.2 may be applied 
with a combination of mixed and random effects to analyze such shapes. 

II.6.4 Random or fixed (Procrustes) effects model? 

Comparison of random- and fixed-size shape models applies to the more complex 
Procrustes and random effects shape models, (11.16). In the former model, the 
transform parameters are fixed, and in the latter model they are random. The 
choice between the two models should be dictated by the experimental design. 
If the size and orientation vary slightly and are part of the shape heterogeneity, 
as in landmark analysis, the random effects model is adequate. For example, the 
random effects shape model would not be adequate to describe the hexagon shapes 
in Figure 11.4. If shapes are arbitrarily rotated and obtained as an image outline 
taken at different (nonrandom) camera positions, the Procrustes model is preferred. 
For example, the Procrustes model would be needed for analyzing sand particles 
taken with different camera magnifications. 

11.6.5 Maple leaf analysis 

The R function that follows reads and plots the nine maple leaf shapes shown in 
Figure 1.6. The xy data are in the files maple#.xy, where # runs from 1 to 9. The 
point on the top may be viewed as the reference point. 
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maple=function() 

{ 

dump("maple","c:\\MixedModels\\Chapterll\\maple 

par(mfrow = c(3, 3), mar = c(0, 0, 0, 0)) 

for(i in 1:9) { 

.r") 

pf <- paste("c:\\MixedModels\\Chapterll\\maple", as 

".xy", sep = "") 

d <- matrix(scan(pf), ncol = 2) 

d <- d[!is.na(d[, 1]) & !is.na(d[, 2]), ] 

n <- nrow(d) 

dy <- min(d[, 2]) 

im <- (l:n)[d[, 2] == dy] 

plot(d[, 1], - d[, 2], type = "1", xlab = "", 

points(d[im, 1], - d[im, 2], pch = 1, cex = 1. 

polygon(x = d[, 1], y = - d[, 2], col = 3) 

lines(d[, 1], - d[, 2] ,lwd=4) 

} 

} 

ylab = 

, 5,col= 

.character( 

- II II 

> 
=2) 

axes : 

i), 

= F) 

The Procrustes shape model (11.8) can be used to estimate the average shape 
using observed μ{ as the matrix of xy coordinates, with the top point as the ref-
erence. Since the shapes need to have the same number of points, some sort of 
downsampling (or interpolation) is required. 

Problems for Section 11.6 

1. Prove that the ML estimator of μ with the log-likelihood function (11.6) is the 
maximum (dominant) eigenvector of matrix M. 

2. Write an R function that generates a random quadrangle defined by five sides 
of two adjacent triangles. 

3. Modify the shapeh function to plot random polygons with an arbitrary number 
of vertices. 

4*. Write an R function which estimates the polygon shape by maximum likelihood 
with the log-likelihood function given by (11.10). Use two parameterizations of the 
true shape, with the unit norm and the fixed last component. Carry out simulations 
to test whether the estimation code reconstructs the true shape satisfactory. 

5*. Generate random polygons using the generalized Procrustes model with rep-
resentation (11.15) for the covariance matrix. 

6*. Develop an algorithm for the maximum likelihood estimation of random 
shapes/polygons with random effects. Write an R function that implements this 
algorithm and tests it via simulations. 

7*. Estimate the average maple leaf shape using the data in function maple by 
Procrustes model (11.8). 
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11.7 Fourier descriptor analysis 

Landmark analysis is useful when the number of landmarks is relatively small. When 
the shape is derived as the outline of an image, other techniques to quantify and 
analyze the shape may be more appropriate. When shape is defined by a large num-
ber of points, it would be attractive to assume that the true mean shape is fairly 
smooth and therefore may be described by a relatively small number of parameters. 
In shape theory, such parameters are called shape descriptors or simply descrip-
tors. Since the shape is intrinsically a periodic function, Fourier series or harmonic 
decomposition naturally emerges. Then the coefficients of Fourier decomposition 
are the shape descriptors. Two types of Fourier decomposition are discussed in this 
section. First, we apply the Fourier decomposition to the radius function of a rel-
atively simple star or round (potato-like) shape (Lu, 1965; Ehrlich and Weinberg, 
1970; Hobolth et al., 2003). The second type of shape is more general and requires 
two Fourier series to specify the shape (Zahn and Roskies, 1972). For an overview 
see the paper by Lestler (1997) and many other papers on biological applications 
listed in that book. Previous authors assumed that the Fourier coefficients are fixed. 
We argue that each individual shape has its own set of harmonic coefficients, but 
a common population mean. In the language of the mixed effects model, the coeffi-
cients are shape- or subject-specific. This leads to the Random Fourier Descriptor 
(RFD) model. We apply the theory of mixed effects models developed in Chapters 
1 to 8 to estimate and study shapes with random Fourier coefficients. Although 
random descriptors were studied previously under a Bayesian approach (Grenander 
and Miller, 1994) mixed model methodology does not require complete specification 
of the prior distribution and therefore is more robust. RFD analysis is illustrated 
using a leaf example. 

11.7.1 Analysis of a star shape 

Sometimes, there is a point within the shape, called a centroid, which can be con-
nected to any other point on the shape by a segment within the shape. We call 
such a shape a star shape. For example, if the shape is specified by a sequence 
of points {(xi,yi),i = l , . . . ,n} , the centroid may be chosen as (x,y). A special 
case of a star shape is a convex shape. For a convex shape, any point within the 
shape may serve as a centroid. Let us assume that the centroid, (xo>2/o) is known. 
Then, in polar coordinates any point (x,y) on the shape can be represented as 
(r(0) cos Θ + XQ, r(9) sin Θ + yo), where Θ is the angle between the ray to (a?o, yo) and 
the x-axis, see Figure 11.5. Usually, we specify Θ by a sequence of equally spaced 
angles, for example, 6j = 2n(j — 1)/J, j = 1,2,..., J = 360. Then the shape is deter-
mined completely by the radius function r(9j). The star shape guarantees that there 
is a unique intersection of the ray with the shape; if the ray does not intersect the 
shape, one may take either the closest point on the shape or a linear interpolation 
between points. After the shape is expressed in polar coordinates, one may plot r 
as a function of the angle, 0, on the interval [0,2π) and apply further statistical 
analysis. 

Star shapes can be analyzed using two approaches. The first approach is called 
semiparametric and does not specify the model for the mean shape in the way that 
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Shape in polar coordinates Radius function, r 

Θ 

π/2 π 3π/2 2π 

FIGURE 11.5. Star-shaped representation in polar coordinates. The radius function defines 
the shape. 

we dealt with landmarks. Although this approach requires fewer assumptions, the 
number of shapes should be large. In a more complicated Fourier descriptor analysis, 
the radius function is modeled by a few harmonics. 

Semiparametric model for the star shape 

We merely assume that the mean shape is the average of the shapes after an ap-
propriate size and orientation transformation. Let 0 be the J x 1 vector of angles 
(0i,...,6j); SO that the radius data for the N shapes takes the form of.a J x N ma-
trix, R ={η(θ),ί = 1,..., N}. Similar to Section 11.4.2, we assume that the radius 
function is on the log scale, making the size additive: 

r i (0+«i l ) =hil + μ + ε^ i = 1,..., iV, (11.18) 

where hi is the size and Ki is the angle of rotation. In this section we assume that 
the angle of rotation is taken modulo 27Γ. The true radius function μ is not specified 
and is subject to estimation. Two assumptions on hi and Ki lead to two different 
models, fixed or random effects. 

In the fixed effects star-shaped model, hi and Ki are fixed and unknown. We 
get rid of the nuisance parameter hi by centerizing the data, or more precisely by 
replacing Υ%{Θ) with r^(ö)—J-1 J2j=i(^i(0j) — r) for each i = 1, ...,iV. If the Ki were 

known, the true radius function would be μ=Ν~λ Σί=ι ^ ( Θ + ^ Ι ) . Now we discuss 
how to estimate angle rotations ΚΙ,.,.,ΚΝ- First, one needs to find satisfactory initial 
values. Let the true shape be the first shape. Then for every other shape i = 2,..., N 
we can find Ki such that the ith sum of squares Si = ||ri(0) —1^(0+^1))| |2 is 
minimum (obviously, K\ = 0 ) . Then we try the second shape as the mean shape, etc. 
Among all the shapes, we find the mean shape and the initial vector {ki} that gives 
an overall minimum ^i=1Si. In fact, we can continue in this fashion computing 
μ=Ν~χ J2i=i TiiO+kil) and finding the next approximation for the angle rotation 
that minimizes Σί=1 | |μ-Γ^(0+^1)) | | 2 , iterating until convergence. Recall that 
Θ+Kil is taken modulo 2π. 
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Also, we can estimate κ simultaneously by minimizing the sum of squares, 

N 

S(«I, . . . ,«N) = Σ 
i=l 

N 

ηίθ+νϊϊ-Ν^Σπφ+κα) 
1=1 

2 

= t r (RJR ' ) , (11.19) 

where J = I—Af_1ll ' is the N x N projection matrix. The function S can be min-
imized with the Gauss-Newton algorithm as KS+I = KS — (G /G)~ 1x diag(G /RJ), 
where G is the J x N matrix of differences with the ith. row [r^(0 + ( ^ + d)l) 
—Ti(e+K,il)]/d and d is an integer (step), say d = 1. Although the Gauss-Newton 
algorithm is faster, a separate rotation may be more precise. Alternatively, one can 
use the derivative-free method (DUD) described in Section 12.7.7. 

Next we discuss briefly the random effects star-shaped model. The model is speci-
fied by the same equation (11.18), but now it is assumed that Ki and hi are random 
(again it is assumed that the radius function is on the log scale). This model is 
adequate when the shapes are from the same general population and are uniformly 
registered (e.g.,, as the top-right leaf). Then we assume that hi ~ Λ/*(0,σ\) and 
Ki ~ Λ/"(0,σ^), so that model (11.18) becomes the nonlinear mixed effects model of 
Chapter 8. 

Example: leaf analysis 

Figure 11.6 shows 29 independent and identically deformed leaves. We want to find 
the mean star shape using the semiparametric fixed effects model (11.18). Two types 
of radius functions are shown in Figure 11.7. At the left, the radius functions are 
unadjusted (no rotation). At the right, the leaves were rotated to minimize the total 
residual sum of squares. The light line determines the mean shape shown in Figure 
11.6. When shapes are widely rotated, as in this example, the arithmetic mean for 
the true shape may not be a satisfactory estimate (in our example it produces a 
circle, a constant radius function). 

Random Fourier descriptor analysis for the star shape 

The radius function is periodic on the interval 0 < θ < 2π, and therefore a discrete 
Fourier series representation of the form 

K 

r(9j) = Co + V^ (ak cosk9j + bk sinkOj) + ε^, j = 1,..., J (11.20) 
/ c = l 

can be used, where the error term Si has zero mean and constant variance σ2. 
The fcth harmonic is specified by the coefficients ak and bk- It is assumed that K 
is known—we discuss the choice of K later. It is also assumed that the number 
of unknown harmonic coefficients is less than the number of observations, 2K + 
1 < J. Coefficients with small k account for the global shape, and coefficients 
with high k account for fine detail. The Fourier representation (11.20) for vector 
r = (r(öi), . . . ,r(öj)) ; can be rewritten as a linear statistical model r = Za + ε, 
where the J x (2K + 1) design matrix is given by 

—^=,cos(l x 0),sin(l x 0),...,cos(uf x 0),sin(i ;i χ Θ) 
v 2 

(11.21) 
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and a = (co, αχ, 61, ^2,62, ···, ακ5 &#)' is the (2if + 1) x 1 total vector of coefficients. 
The matrix Z is orthogonal, Z'Z = I2KH-1· This property drastically simplifies the 
Fourier coefficients estimation. 

FIGURE 11.6. Twenty-nine independent identically deformed and rotated leaves. The last 
leaf (bold) is the estimated mean shape using a fixed effects semiparametric model. 

Now we apply discrete Fourier decomposition to a sequence or a sample of shapes 
drawn independently from the same general population, {r^,z = l,.. . ,iV}. It is 
assumed that the shapes have different shape-specific coefficients with the same 
population mean, namely, 

ri = Za;+ei, a; = /3 + bi, i = l,...,JV, (11.22) 

where β is the (2K +1) x 1 population vector of coefficients and â  is the ith shape-
specific vector of coefficients (b^ is the deviation). It is assumed that the {b^} are iid 
with zero mean and covariance matrix σ2Ό. We call model (11.22) a Random Fourier 
Descriptor (RFD) model. To motivate the RFD model, we suggest Figure 11.8. The 
true shape is defined by the radius function as rj = r(9j) = X)^r1

11[ûfcsin(fcoj) 4-
bkCos(k9j)], where 9j = 2(j — 1)π/360. The traditional Fourier descriptor model 
involves one random error term, so the generated shape is yj = rj + ε^, where 
Sj ~ Λ/Χθ,σ^). We show two generated shapes with σ = 1/10 and σ = 2/10 in the 
upper row. The RFD model assumes that the Fourier coefficients are random as 
well and the generated shape takes the form yj — Σπ:=ι1[(α* + Cfe) sin(feöj) + (bk + 
5fc)cos(fc0j)] +6j, where C/o^/o^j are normally distributed random variables. We 
show three RFD shapes with increasing shape variation in the lower row. Clearly, 
these shapes look more familiar, and therefore the RFD model is preferable. 
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Unadjusted Rotation Adjusted Rotation 

S « 

FIGURE 11.7. Radius functions for 29 leaves. At the left, the unadjusted/raw radius 
functions are shown (the horizontal line is the mean). At the right, the leaves are rotated 
properly to produce the mean shape (light line). 

The key observation is that the RFD model (11.22) is a linear mixed effects model 
or more precisely, a balanced growth curve model of Section 2.3. Thus, the theory 
on mixed models developed in earlier chapters applies to the analysis in full! 

Various hypotheses can be tested. For example, if the diagonal elements of matrix 
D are zero, the respective coefficient does not change from shape to shape. If the 
shape is symmetric along the y-axis, the sine coefficients are zero, α^ = 0. If the 
shape is circular, all Fourier coefficients are zero. The membership test can be 
applied to determine whether a specific shape belongs to another group of shapes, 
Section 3.8. 

Now we discuss issues of Fourier coefficient estimation. There are several impor-
tant consequences of the fact that the RFD model (11.22) is a balanced random-
coefficient model, as follows from Section 2.3. Estimation of Fourier coefficients of 
the true shape, β is reduced to an average, r = Ν~λ ^ i = i r^. The optimal estima-
tion of β is the ordinary least squares, regardless of the covariance matrix D, 

β = Z'r. (11.23) 

To estimate variances, we apply maximum likelihood. As follows from Theorem 2, 
the estimates admit a closed-form solution. In particular, as follows from (2.59), the 
unbiased estimator of the error term variance is given by 

N 

N(J-2K-1) 
I Z'r, 

' ) · 
(11.24) 

The estimated true radius vector is r = Z/3 = ZZ'r. We compute the (2K + 1) x 
(2K + 1) shape-specific Fourier coefficients matrix variation as 

A =ϊνττ Σ > - ®& - &' = ΛΓΓΤ Σ(Ζ'Γ* - 3)(Ζ'Γ* - 3)', 
2 = 1 2 = 1 

where â2 is the individual Fourier vector of coefficients. Then, as follows from formula 
(2.61), the unbiased estimator of the covariance matrix of Fourier coefficients is given 
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by 

DfiML = -2 A - W i - (11-25) 
σ 

Due to the dimension-reduction formula (2.25) the formula for the covariance matrix 
of Fourier coefficients simplifies to 

cov(J3)=d2A-\ (11.26) 

As follows from Section 3.52, an estimate of the Fourier coefficients of the it h radius 
shape is a* = β + b; . Plugging estimates (11.24) and (11.25) into this expression, 
we yield the BLUP estimate for an individual shape, â  = â  + σ2Α_ 1(/3 — ai). As 
the reader can see, the BLUP estimate is an adjusted ordinary individual estimate. 

True shape Error SD=.1 Error SD=.2 

Fourier coeff SD=20% Fourier coeff SD=40% Fourier coeff SD=60% oo o 
FIGURE 11.8. Two statistical models for a round shape analysis. The true shape is shown 
in the upper-left panel. Two shapes generated by a traditional model shape+error are 
shown in the upper row. Due to the independence of the error term, the generated shapes 
look ragged. In contrast, if the shape variation comes from Fourier coefficients the generated 
shapes look more familiar, as in the lower row. 

Leaf analysis (continued) 

We apply the RFD model to the analyzed previously leaf data, Figure 11.6. Several 
fitting characteristics may be used to chose the appropriate number of harmonics, 
K. First, one can rely on the Z-score of the Fourier coefficient (the ratio of the 
estimate to its standard error). Typically, after a certain K, the Z-score decreases. 
Second, one can use an F-test to identify at what K, the fit does not improve. Third, 
one can use numerous techniques of regression variable selection, including Akaiki 
information. The result of fitting with a different number of harmonics is shown in 
Figure 11.9. A detailed four-harmonic Fourier series fit is shown in Table 11.2. As 
the reader can see, four harmonics with nine parameters (1 + 2 x 4 = 9) provide a 
good fit to the mean shape data. The contribution of the fcth harmonic, yja\ -f &|, 
in Fourier decomposition (11.20) decreases quite fast. Standard errors of the esti-
mates are computed by formula (11.26). The Z-score of the estimate indicates that 
the Fourier coefficients are statistically significant up to the third harmonic. The 
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K=2 K=3 K=4 K=5 oooo 
FIGURE 11.9. Random Fourier descriptor model for reconstruction of the mean leaf shape 
using several harmonics. The five-harmonic model fits the mean shape perfectly. 

column SE RE shows the square root of the diagonal elements of matrix 5 2 D M L , 

the covariance matrix of the random effects/coefficients. The last column shows 
the relative leaf variability, SE RE/estimate xl00%. As follows from this analysis, 
maximum variability comes from the third sine harmonic. 

11.7.2 Random Fourier descriptor analysis 

Often, shapes are more complex and consequently cannot be quantified by a single 
radius function. An example of shapes where two Fourier series are needed is the 
nine-maple-leaf example from Chapter 1, shown in Figure 1.6. Several methods have 
been suggested to quantify a general shape with a large number of points (such as 
those derived from a digital image), Zahn and Roskies (1972). We focus on a method 
widely used in image processing (Gonzalez and Woods, 2002). To start the shape 
quantification, an origin point on the shape should be picked, say at the maximum 
x-coordinate. Let the origin point be (xi,yi). Then, traversing clockwise, we record 
consecutive coordinate pairs (XJ^VJ) so that the ( n + l ) t h step should yield (xo^Vo)-
Notice that x and y are periodic functions, and therefore we can represent them as 
functions on the interval [0,2π) using the mapping 9j = 2n(j — l ) /n . Hence, similar 
to the star shape of Section 11.7.1, a general shape can be quantified by a pair of 
periodic functions {x(9j),y(6j),j = 1, . . . ,n}. A generalization of the shape analysis 
is now straightforward—instead of one periodic function, the radius function for the 
star shape, we have two periodic functions. Let N shapes be indexed by i = 1,..., N 
and let ẑ  denote the n x 2 matrix of the zth shape's consecutive coordinates. Several 
statistical models may be suggested as generalizations of Section 11.4. For example, 
if shapes are of the same size and perfectly oriented, the model z$ = lh^ + μ + ε{ 

accounts for the translation, where h^ is the 2x1 translation vector and μ is the n x 2 
true shape. An easy way to eliminate translation is to centerize the coordinates. If 
translation is random, we may assume that h^ ~ Λ/*(0, Ω), leading to a linear mixed 
effects model, or more precisely, to the balanced growth curve model. One can use 
an isotropic model for the error term, assuming that there is no correlation between 
the x and y coordinates and equal variance, or generally, ε^ ~ Α/"(0,Λ), where Λ 
is the 2 x 2 unknown covariance matrix. If the shapes' orientation is arbitrary and 
translation is eliminated, model (11.18) takes the form z ^ ö + ^ l ) = μ + εν where 
&i is the nuisance rotation parameter. If estimates of {κ\) were known, the mean 
shape is the simple average, μ = iV_1 Σΐ=ι Zi(0+iSil). The rotation parameters iq 
may be chosen to minimize the total or weighted sum of squares, similar to (11.19). 
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Table 11.2. Estimation of the mean leaf shape with a RFD model using four 
harmonics (see Figures 11.6 and 11.9) 

ß Estimate yjaj + b\ SE ß Z-score SE RE RE-score, % 
c0 

ax 

h 
a2 

b2 

as 

h 
S4 

64 

-3.05 
-7.78 
12.34 

1.39 
3.34 
1.91 

0.576 
0.761 

-0.595 

14.6 

3.6 

2.0 

0.97 

0.024 
0.49 
0.39 
0.30 

0.135 
0.59 
0.42 
1.06 

0.772 

-124.8 
-15.8 
31.5 

4.7 
24.7 
3.2 
1.4 

0.71 
-0.82 

2.29 
1.07 
0.79 
0.97 
1.07 
0.77 
1.18 
0.79 
0.65 

75.5 
13.8 
6.39 
69.4 
32.1 
40.5 

298.0 
104.2 
109.4 

Estimation of the RFD model with two coordinate data is similar to (11.22): 
x* = Zi(/3X + b i i )+ea and y* = Z2(/32 + b ^ - f e ^ · Assuming that these mixed 
models do not share common parameters and that the error term is isotropic, the 
analysis is carried out separately and the previous formulas apply. 

Potato #1 Potato #2 Potato #3 

Potato #4 Potato #5 Potato #6 

FIGURE 11.10. Siz real potato grayscale images plotted with the R function potato. 
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11.7.3 Potato project 

In the function below we read and plot six data files that represent grayscale images 
of real potatoes in 8-bit format (see Figure 11.10). The intensity of each pixel is 
expressed via an integer on a scale of 0 (absolutely black) to 255 (absolutely white) 
according to the PGM format; see the next chapter for more information about 
images. The original pictures of potatoes were in JPG format and then saved in 
PGM (Portable GrayMap) format using PaintShop Pro software. 

potato=function() 

{ 
par(mfrow=c(2,3),mar=c(1,1,3,1)) 
f o r ( i in 1:6) 

{ 
potdat=scan(paste(Mc: \ \MixedModels \ \Chapter l l \ \pot" , i ," .pgm", 

sep="M),what="",quiet=T) # reading the image f i l e s 
nr=as.numeric(potdat[3]) ;nc=as.numeric(potdat[2]) 
potdat=matr ix(as .numeric(potdat[5: length(potdat)]) ,byrow=T, 

ncol=nc,nrow=nr) # the matrix image 
image(1:nr , l :nc,potdat ,xlab= , M , ,y lab="",axes=F,col=gray(0:255/255)) 

mtext(side=3, pas te("Pota to #" , i , sep="") ,cex=2 , l ine= .5) 

} 

These images give rise to the shape analysis after the shape/boundary extraction 
and are used in one of the problems below. 

Problems for Section 11.7 

1. Plot 16 different shapes with the radius function r(9) = 1 + [1 + O.2cos(20) — 
O.4sin(3#)](l + cos2(40)) using the model (11.18) with various μ,Κΐ, and hi. Use the 
same xlim and y lim. 

2. As a continuation of the previous problem, estimate μ, /^, and hi by minimizing 
the sum of squares (11.19). 

3. As a modification of problem 1, plot 16 different shapes with the radius function 
r(ö+Vi)i where r is as specified in Problem 1 and ηί ~ Af(0, π2), using model (11.18) 
with various φ^ μ, tti, and hi. 

4*. Use simulations with the true shape from the previous problem to estimate the 
true shape from n realizations. Compute and plot a BLUP estimate of the shape. 
Repeat simulations with increased n. Is the ML shape estimator consistent? 

5*. Based on the data from the function potato, extract the shape of potatoes 
and use fixed and/or random Fourier descriptor shape analysis to compute the 
mean shape. Develop the membership criterion to determine whether another potato 
belongs to this group of six potatoes. Generate a potato shape that does not belong 
to this group of shapes and verify whether the membership test rejects the null 
hypothesis. Do simulations to test the quality of the membership pest (compute the 
power function). 
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11.8 Summary points 

• Shape analysis is widely used in science and engineering. For example, mor-
phology is a part of systematic biology and examines the shapes of various 
biological subjects, vegetables, insects, animals, and humans. In engineering 
and computer science, shape analysis is typically used in the framework of 
computer vision, radar, and image recognition. 

• There are two ways to obtain shape data; using landmarks or as an outline of a 
digital image. Landmarks are chosen manually to represent some distinguished 
or important points of the shape. Usually, the number of landmarks is fairly 
small (say, <30), but a digital shape may include thousands of points. 

• A characteristic feature of shape analysis is the fact that shapes usually come 
in different sizes and are arbitrarily rotated, translated, or even reflected. 
These are irrelevant features and should be excluded from the shape analysis. 

• Two assumptions may be made when analyzing the shape: that size, rotation, 
and translation are fixed and arbitrary for each shape, or that shapes are 
just slightly and randomly transformed. The first hypothesis leads to the Pro-
crustes model, with the number of nuisance parameters increasing with the 
number of shapes. The second hypothesis leads to a random effects model. 

• The choice of a fixed- or random-transformation model should be dictated 
by the sampling design. For example, if the shape of particles is analyzed, 
the rotation and translation may be out of the experimentalist's control, and 
therefore it is better to assume a fixed model. If skull landmarks or leaves 
of mature subjects of the same type are analyzed, the experimentalist may 
record the shapes just slightly rotated—then the random model would be 
appropriate. 

• A mixed effects model is well suited for shape analysis to describe the shape 
variation across individuals within a common general population. The theory 
of mixed effects developed in earlier chapters becomes a powerful and unified 
model to analyze random iid shapes. For example, linear mixed effects, or 
more precisely, the balanced growth curve model can be applied to landmark 
analysis. A combination of a shape-specific transformation and a random effect 
such as size may be modeled by the general growth curve model of Section 
4.2. Random rotation leads to a nonlinear mixed model. 

• The Fourier descriptor model is adequate to study shape outlines obtained 
from digital images. A star shape is represented uniquely by one periodic ra-
dius function, and a general shape may be represented by two periodic func-
tions. These functions can be described parsimoniously by a few harmonics of 
Fourier series with random coefficients (Random Fourier Descriptor = RFD). 
The balanced random-coefficient model of Section 2.3, as a special case of the 
LME model, applies. Estimation and analysis of the RFD model is drastically 
simplified because the design matrix is orthogonal. 
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Statistical Image Analysis 

12.1 Introduction 

We are witnessing a tremendous development in digital imaging. Ten years ago, 
one needed special equipment to take digital images and quantify them—today it 
is a routine task. Image processing is a well-established discipline with a number of 
textbooks on the subject: Starck et al. (1998), Petrou and Bosdogianni (1999), Seul 
et al. (2000), Gonzales and Woods (2002), and Petrou and Petrou (2010). Image 
processing is concerned with picture enhancement, restoration, and segmentation 
and is a part of signal processing. However, we are concerned with image analysis, 
particularly statistical analysis of a sample of images (we prefer the word ensemble). 
We refer the reader to a book by Barrett and Myers (2004) for a complete in-depth 
discussion of image science and image reconstruction. 

Our primary assumption is that images are random. For example, if one is inter-
ested in the quality of paint finishing, one can assume that images of different parts 
of the painted object will differ up to a certain degree. One wants to know if the 
image variation is within established limits. Since images are random, the statistical 
approach becomes relevant. Typical questions of statistical analysis of images are: 
(a) are two images the same up to a random deviation, or in statistical language, do 
two images belong to the same general population? (b) are two ensembles of images 
the same, like a series of images taken before and after treatment? (c) can we gen-
eralize a i-test for images? and (d) can we compute a p-value for image comparison 
as we routinely do in statistics for sample comparison? Pattern recognition, as a 
part of signal processing, also deals with image comparison but in terms of image 
classification. Although the problems of statistical image comparison and classifica-
tion are close, they are not the same and, in particular, the latter does not address 
image-specific variation. 
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We have to admit that today, statistical image analysis and comparison are unsat-
isfactory. Perhaps the most advanced image statistics application is functional MRI 
(fMRI), where time series image frames are analyzed to detect the signal around 
the brain activation area. But image analysis should go far beyond fMRI because 
image appeal becomes commonplace in scientific research. For example, a routine 
practice in cancer research showing two microscopic tissue images before and after 
treatment as proof of a method's validity is unacceptable. Images vary considerably 
across sections and animals (or humans). Proper analysis would involve the com-
parison of dozens or hundreds of images; in our terminology, an ensemble of images. 
This is where the human eye cannot judge and statistics come into play. 

The idea of distinguishing two types of image variation, within image and between 
images, leads immediately to the mixed model as the workhorse of statistical image 
analysis. Thus, the theory developed in previous chapters becomes the key to the 
statistical analysis of digital images. For example, images of the same tissue taken at 
different locations or different time points can be viewed as repeated measurements 
and therefore may be analyzed by the relevant statistical methodology. 

It is routine to use least squares as a criterion in image processing: for example, 
for image registration. Why least squares? Why not weighted least squares? Why 
sum of squares? We suggest an elaborative statistical model for images that implies 
a justified criterion enabling statistical image analysis and comparison. 

The goal of this chapter is to lay out the foundation for statistical analysis of 
images using mixed effects modeling techniques for repeated measurements as de-
scribed in Chapters 2 through 8. Depending on the level of complexity and so-
phistication, statistical image models can lead to either linear mixed effects, or the 
generalized linear or nonlinear mixed effects models. In no way can our description 
be considered as complete; it serves only as a start for future, more sophisticated 
statistical image modeling. 

12.LI What is a digital image? 

Mathematically, a digital image is a matrix. Consequently, matrix algebra is the 
major mathematical tool in image analysis. There are two kinds of image, grayscale 
and color. A grayscale (monochrome) image is a matrix with intensity represented 
as integer values from 0 (black) to 255 (white). A grayscale image has 256 levels (0 
to 255) because the human eye can distinguish approximately this many levels, and 
because that number fits conveniently in one byte (a byte has 8 bits, 28 = 256). A 
binary image is a special case of the grayscale format; it has intensity values of only 
0 and 255, or pure black and pure white. 

Each matrix element corresponds to a pixel on the image. If an image is repre-
sented a s a P x Q matrix M, the value at each point on the image is rescaled as 
255(M — Mm in) / (Mm a x — Mmin) and rounded. In digital imaging, P and Q may 
be hundreds or even thousands, leading to very large files. For example, a file of a 
121 x 74 gray image will be 121 x 74 = 8954 bytes, although the actual size of the 
image file depends on the format used. See Section 12.5 for a discussion of image 
compression. 

Because the three primary colors (Red, Green and Blue) can be combined to 
produce other colors, a color image can be represented by three gray images—the 
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RGB format. Thus, a color image can be represented numerically by a triple oîPxQ 
matrices with integer values from 0 to 255 as color saturation values. Although to 
the human eye, color and three gray images do not seem to be equivalent, they 
are mathematically. We take this approach in this book when dealing with color 
images. Thus, instead of displaying a color image, we display three gray images. 
The original color images may be viewed on the Internet. 

Many formats are used to store images. Popular image formats include jpg, gif, 
and tiff. Gray images may be converted to a text file using the Portable Graymap 
(pgm) format, and color images may be converted to a text file using the Portable 
Pixelmap (ppm) format. Although the resulting text file will be much larger, the 
format gives the researcher full access to the image data for further processing. 
There are many photo-editing, image-processing, and file-conversion products; we 
use PaintShop Pro from Jasc Software, Inc. 

In image analysis we often treat matrix elements as a function of the indices, 
so in this chapter we use the notation M(p, q) to refer to the (p, q)th element. For 
example, we work with p and q as arguments for image alignment. Moreover, we 
shall deal with random p and q. 

12.1.2 Image arithmetic 

Like matrices, images can be added, subtracted, and even multiplied and divided. 
However, there is a substantial limitation to image arithmetic because images are 
generally not aligned. For example, if one is interested in finding the image difference 
between before and after, it is tempting to take image difference by subtracting pixel 
intensities. However, it will soon be realized that pixels on the first image do not 
exactly correspond to pixels on the second image; therefore, a simple difference does 
not make sense. Even after image alignment, it may be realized that the objects in 
the images moved slightly, and again, image difference becomes problematic. Image 
alignment and registration is an essential problem of further image analysis. 

12.1.3 Ensemble and repeated measurements 

In statistical image analysis, we usually deal with a sample of images. This is new 
to image processing, where one deals with one image at a time. A typical problem of 
statistical image analysis is that one wants to know if two sets of images, {M^i, i = 
l,...,7Vi} and {M i 2 , i = Ι , .- . ,Α^}, belong to the same general population. In this 
book we use the term ensemble to indicate sample images. Typically, ensemble 
means that the images are independent and identically distributed (iid) up to a 
transformation. Thus, the notion iid for images has a broader sense and just means 
that images are of the same object and independent. Statistical analysis of images 
is often complicated by the fact that images may have different resolution, size, 
viewpoint, position, lighting, and so on. We suggest modeling an ensemble of images 
using repeated measurements or mixed effects methodology. This methodology was 
applied to a random sample of shapes in Chapter 11 and is well suited to model 
within- and between-image variation. 
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12.1.4 Image and spatial statistics 

Statistical image analysis and spatial statistics have much in common. Both work 
with a planar distribution, and therefore an issue of spatial correlation (local depen-
dence of pixels) is central. Classic reference books for spatial statistics are those of 
Ripley (1981) and Cressie (1991). Statistical analysis of images is more complicated 
because it usually deals with an ensemble; in addition, images may be available 
up to a planar transformation. Image analysis borrows the modeling techniques of 
spatial correlation from spatial statistics, such as SAR and AR models. To model 
more general image spatial correlation, the theory of a Markov random field is used 
(Chellappa and Jain, 1993). 

12.1.5 Structured and unstructured images 

Images may be divided roughly into two groups: structured and unstructured. Ex-
amples of the first group are images of an easily recognized object, such as a human 
face, building, carrot, rug, and so on. Examples of unstructured images are micro-
scopic images, pieces of painted wall, and aerial images. The human eye is good 
at differentiating an apple from a TV set, but bad when it comes to comparing 
hundreds of unstructured images, such as medical histology images. An unstruc-
tured image may be well represented by its gray level distribution, and therefore 
it is image-content independent. An advantage of this approach is that a difficult 
problem of image alignment is eliminated. On the other hand, it may well happen 
that images of an apple an a TV set will produce the same gray distribution. Thus, 
a gray-distribution model assumes that images are of the same type of object. 

A structured or content-dependent statistical image analysis is more complex be-
cause, in addition to image alignment, it requires specification of the image content 
and spatial correlation. For example, if cells in a microscopic image are elliptical 
in shape and one wants to count cells, one has to define the cell shape. The sim-
plest structured image is texture where the pattern repeats in a stochastic manner. 
Examples of textures are wood and fabric (Cross and Jain, 1983). 

Structured images are complex, and unlike unstructured images, a multinomial 
distribution for gray levels may serve as a uniform probabilistic model. Structured 
images thus require different statistical techniques. 

12.2 Testing for uniform lighting 

Digital pictures may be taken at different exposures and lighting. In this section we 
use the F-test of Section 3.8 to test whether the lighting is uniform . Moreover, we 
estimate the direction and position of the light. 

A 662 x 621 gray image of a rug is shown in Figure 12.1. The following statistical 
model is assumed: 

M(p, q) = ß0 + ßlP + ß2q + φ , q), (12.1) 

where p = 1,...,P = 662, q = 1,...,Q = 621 are pixel coordinates, and e(p,q) is 
an error term with zero mean and constant variance. In other words, the grayscale 
level M(p, q) is considered to be a linear function of the pixel coordinates, p and q. 
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0 100 200 300 400 500 600 

q=1,2,...,621 

FIGURE 12.1. Rug image and the light direction derived from the linear regression model 
(the light comes from the bottom-right corner). 

The relation may be viewed as a planar regression where ßQ is the intercept, the 
light intensity at the lower left corner; ßx is the slope coefficient, the rate at which 
the light intensity increases or drops vertically; and ß2 is the rate at which the light 
changes horizontally. If the lighting is uniform, βλ = 0 and β2 — 0; thus, we can 
find if the light is uniform by testing the significance of these regression coefficients. 
In matrix form, (12.1), can be rewritten as 

M =ß0lPl'Q + ßxdpl'g + ß2lPd'Q + E, 

where dp = (1,2,..., P ) ' , UQ = (1,2,..., Q)', and 1 is the vector of Is of the respec-
tive dimension. Taking the vec operator of both sides, we rewrite (12.1) as a planar 
relation in vector form suitable for regression analysis, 

m =ß0lPQ + β±(άΡ ® 1Q) + β2(1Ρ ® dQ) + ε, 

where ® indicates the matrix Kronecker product and m =vec(M) is the PQ x 1 
vector. Applying least squares, we find that M = 134.4 - 0.0693p 4^0.0383g. As 
follows from this regression, the average grayscale level is minimum (M = 88) when 
p = P and q = 1, corresponding to the upper-left corner of the image (darker). In 
the lower-right corner the image is lighter (M = 158) because maximum M occurs 
at p = 1 and q = Q. To test whether the image has uniform lighting we test the 
null hypothesis: H0 : βχ — β2 = 0 using the F-test (3.57). Since the errors are 
assumed to be iid, we have V = I. The residual sum of squares under the null is 
RSSo = Σ Ρ ι ς (Μ(ρ , q) - M)2 = 9.83 x 108 and the minimal residual sum of squares 
from regression is RSS = 8.92 x 108. For this example, the number of estimated 
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FIGURE 12.2. Source light location with contours via the nonlinear regression model. The 
linear and nonlinear models yield a close light angle. The location of the light source is 
estimated at (1770, -465). 

parameters is ra = 3, the total number of observations is n = P x Q = 662 x 621, 
and q = 2. Formula (3.57) gives F = 23274, but the threshold value assuming that 
the light is uniform is about 3. Thus, the hypothesis that the light is uniformly 
distributed is rejected overwhelmingly. 

12.2.1 Estimating light direction and position 

Moreover, having coefficients βλ and /32, we may estimate where the light comes 
from. As noted above, since the first slope coefficient is negative and the second 
is positive, the light comes from the lower-right corner. Since the tangent of the 
angle is 0.0693/0.0383, we estimate that the light comes at the angle 150° from the 
g-axis (indicated by the arrow).The linear model (12.1) assumes that the source 
light is linear because the levels of the light field are straight lines. Alternatively, 
one can assume that there is one source of light, say at position (#,?/). The levels 
of the light field are concentric circles. We want to estimate x and y having the 
rug image in Figure 12.1. As follows from the basic laws of optics, when the light 
absorption is low, the light intensity is the reciprocal of the distance. To simplify, 
we take the nonlinear regression model M(p, q) = 255 — VyJ(q — x)2 + (p — y)2 + ε, 
where v is the absorption coefficient and ε is the error term. Estimating parameters 
of this model by nonlinear least squares gives v = 0.75, x = 1770, and y = —465. 
This means that the estimated location of the light is (1770, —465), see Figure 12.2. 
Interestingly, the linear and nonlinear models give a similar light angle, indicated 
by the arrow. 
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The R function that plots Figure 12.2 and estimates the coordinates of the light 
source is shown below. 

carpet=function() 

{ 
dump("carpet", "c:\\MixedModels\\Chapter12\\cai 

d <- scan("c:\\MixedModels\\Chapterl2\\carpetc 

d <- as.numeric(d[2:length(d)]) 

K <- d[l] # number of rows 

J <- d[2] # number of columns 

y=d[4:length(d)] # image data 

carp.dat <- matrix(y, nrow = K, ncol = J) 

xl=rep(1 :K,times=J);x2=rep(1 :J,each=K) 

print("Linear model:") 

o <- lm(y ~xl + x2) 

print(summary(o)) 

print("Nonlinear model:") 

o <- nls(y ~al * sqrt(((a2 - xl)~2 + (x2 - a3) 

start = c(al = sqrt(0.006), a2 = 2000, a3 

pr int(summary(o)) 

a <- coef(o) 

par(mfrow = c(l, 1), err = -1, mar = c(3, 3, 1 

imaged:J, 1:K, t(carp.dat), axes = T, xlab = 

•pet.r") 

.pgm",what="") 

~2)), 

= -500)) 

, 2)) 

"", ylab = "", 

xlim = c(0, 1800), ylim = c(-500, J),col=gray(0:255/255)) 

points(a[2], a[3], pen = 16, cex =1.5) 

N <- 30 

h <- 3000/N 

theta <- seq(from = 0, to = 8 * atan(l), by = 

for(i in 2:(N - 1)) { 

de <- h * i 

x <- dc * cos (theta) 

y <- de * sin(theta) 

lines(a[2] + x, a[3] + y, lty = 2) 

} 

arrows(a[2], a[3], J, 0) 

} 

0.01) 

We make a few remarks on this code: (1) the txt file with this code is saved 
using dump command every time the code is issued; and (2) the carpet image is 
downloaded into an R session using the scan command as an array string, the third 
and fourth elements of the array are the number of rows and columns in the image, 
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and the image itself starts from the fifth element (this is a typical representation of 
the image in the PGM format). 

Problems for Section 12.2 

1. Test the hypothesis that the distance from the light source to the bottom-
right corner of the rug is more that 2000 pixels. Approximate the squared distance 
(x — 621)2 + y2 by a normal distribution and use the delta method to estimate the 
variance. 

2*. Take a picture of an object near the window and measure the location of 
the window. Save the image in PGM format and repeat the analysis of the light 
location. Is your estimate close to the actual window location? 

12.3 Kolmogorov-Smirnov image comparison 

An essential task of image analysis is image comparison. Under the assumption 
that images are subject to random noise, we want to test if the images are the 
same. In this and the following section we say that two images are the same if they 
have the same grayscale distribution. Clearly, if two images are the same, up to a 
small noise, they should have close grayscale distributions. The reverse is not true. 
Thus, grayscale distribution analysis is helpful when images of the same content are 
compared. In this section and the next, nonparametric and parametric approaches 
are developed. 

The image histogram is a frequently used technique of image processing. However, 
in addition to the histogram, one can compute the distribution, or more specifically, 
the cumulative distribution function, as the sum of the probabilities that a pixel 
takes a grayscale level of less than g, where g = 0, ...,255. If {hg} is the image 
histogram, 

Fg = Σ V (12.2) 
g'=o 

is the empirical cumulative distribution function. As for any distribution function, 
Fg is nondecreasing within the interval [0,1]. 

One advantage of distribution analysis is that it facilitates visual image compar-
ison by plotting grayscale distribution functions on the same scale (it is difficult 
to plot several histograms on the same scale). Another advantage is that the dis-
tribution function allows the application of nonparametric statistical tests, such as 
Kolmogorov-Smirnov. 

12.3.1 Kolmogorov-Smirnov test for image comparison 

Let F^ = {F^\g = 0, ...,255} and F<2> = {FJ}2\g = 0, ...,255} be two gray level 
distributions for the Ρχ x Q\ and P<i x Qi images M\ and M<i. We compute the 

maximum, D = maxö & -F^ , the distance of one distribution from the other. 

Kolmogorov and Smirnov proved that if theoretical distributions are the same, then 
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the probability that the observed distance, D, is greater than D is 

oo 

QKS(X) = 2j2(-iy-1exp {-2j2X2), 

where XKS = D[VJ + 0.11/y/J + 0.12] and J = (P1Q1P2Q2)I(PiQi + P2Q2); 
see Hollander and Wolfe (1999) for more details. Thus, QKSW may be treated 
as the p-value of the test. The greater the distance between distributions, the less 
the probability QKS(XKS)- For example, if two images yield distance D and the 
computed probability QKS(XKS) < 0.05, we reject the hypothesis that the two 
images are the same with a 5% error. We can find XKS such that QKS(XKS) — 0.05, 
giving the threshold XKS = 1.358. 

As a word of caution, all nonparametric tests, including the Kolmogorov-Smirnov, 
have the alternative HA '> Fi(x) Φ Flip) f°r a t least one x. Thus, these tests may 
be conservative. 

Control Drug+Radiation 

• Λ leTWS *r'A«J 
FIGURE 12.3. Histology sections of untreated and treated tumors. The living cancer cells 
are the dark spots (blobs). To test statistically that the two images have the same grayscale 
distributions, the Kolmogorov-Smirnov test is used. 

12.3.2 Example: histological analysis of cancer treatment 

We illustrate the Kolmogorov-Smirnov test with a histological analysis of breast 
cancer treatment (Sundaram et al., 2003). Two 512 x 384 images of proliferative-
activity tumor tissue sections are shown in Figure 12.3. The dark blobs are cancer 
cells. In the control tumor (left), no treatment was given. In the treated tumor 
(right), a combination of drug, EB 1089, and radiation seems to have reduced the 
number of living cancer cells. We want to confirm this reduction statistically by the 
Kolmogorov-Smirnov test by computing the p-value. 
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FIGURE 12.4. Histogram and cumulative distribution functions for two histology images. 
The distribution function of the treated tumor is less (almost everywhere) than that of the 
control (the maximum difference is 0.169), which means that the control image is darker. 
The Kolmogorov-Smirnov distribution function distance is used to test the statistical 
significance. 

The grayscale histogram and the distribution functions for these images are shown 
in Figure 12.4. Clearly, it is difficult to judge the difference in the images by his-
togram. To the contrary, the distribution functions reveal the difference with the 
absolute maximum 1/10. We notice tha t the t reatment distribution function is be-
low control (for most gray levels), which means tha t the right image is lighter. For 
these images PxQi = P2Q2 = 512 x 384 = 1.9661 x 105, yielding XKS = 52.882 and 
Q(XJKS) < 0.0001, near zero. Since the p-value is very small, we infer tha t the null 
hypothesis tha t the two images are the same should be rejected. 

The R program tha t plots the two images (Figure 12.3) and computes λ (Figure 
12.4) is shown below. 

KSimage=func t ion( job=l ) 

dump( M KSimage , , , M c : \ \MixedModels \ \Chap te r l2 \ \KSimage . r " ) 

i f ( j o b = = l ) 

{ 

par(mfrow = c ( l , 2 ) , mar = c ( l , 1, 3 , 1 ) , omi = c ( 0 , 0 , 0 , 0 ) ) 

d < - s c a n ( M c : \ \ M i x e d M o d e l s \ \ C h a p t e r l 2 \ \ g r p l l . p g m , , ,what="M) 

d < - a s . n u m e r i c ( d [ 9 : l e n g t h ( d ) ] ) 

n r < - d [ l ] ;nc < - d[2] 

d <- matrix(d[4:length(d)], nrow = nr, ncol = nc) 
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imaged :nr , l : n c , d, xlab = "", ylab = "", axes = F, 
col=gray(0:255/255)) 

mtext(s ide = 3 , "Control", l i n e = 0.25, cex = 2) 
d < - scanC'c:\\MixedModels\\Chapterl2\\grp51.pgm",what="") 
d < - as .numer ic(d[9: length(d)] ) 
nr < - d [ l ] ;nc < - d[2] 
d <- matrix(d[4:length(d)] , nrow = nr, ncol = nc) 

image(l:nr, l:nc, d, xlab = "", ylab = "", axes = F, 

col=gray(0:255/255)) 

mtext(side = 3, "Drug+Radiation", line = 0.25, cex = 2) 

} 

if(job==2) 

{ 

par(mfrow = c(l, 2), mar = c(4, 4, 3, 1)) 

d < - scanC'c: \ \kluwer\\ image\\sujatha\\grp11.pgm",what="") 
d < - as .numer ic(d[9 : length(d)] ) 
nr < - d [ l ] 
nc < - d[2] 
J l < - nr * nc 
dl < - d [4 : length(d) ] 
d < - scanC'c: \ \kluwer\\ image\\sujatha\\grp51.pgm",what="") 
d < - as .numer ic(d[9 : length(d)] ) 
nr < - d [ l ] 
nc < - d[2] 
p r i n t ( c ( n r , nc)) 
J2 < - nr * nc 
d2 < - d [4 : leng th(d) ] 
h i < - f l < - h2 < - f2 < - rep(0 , 256) 
f o r ( i in 0:255) { 
h l [ i + 1] < - l eng th (d l [d l == i ] ) / l eng th (d l ) 
h2[ i + 1] < - length(d2[d2 == i ] ) / length(d2) 
} 
f o r ( i in 2:256) { 
f l [ i ] < - f l [ i - 1] + h l [ i ] 
f2 [ i ] < - f2 [ i - 1] + h2[ i ] 
} 
f l[256] < - f2[256] < - 1 
matplot(cbind(0:255, 0:255), cb ind(hl , h2) , type = " 1 " , 

col = l ,x lab="",ylab="") 
mtext(side = 2, "Probability", line =2.5, cex = 1.75) 

mtext(side = 3, "Histogram", line = 1, cex = 1.75) 
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matplot(cbind(0:255, 0:255), cbind(fl, f2), type = "1", 

col = l,xlab="",ylab="") 

lines(0:255, fl, lwd = 3) 

lines(0:255, f2, lwd = 3, lty = 2) 

mf <- max(abs(fl - f2)) 

jm <- (0:255)[abs(fl - f2) == mf] 

segments(jm, -0.25, jm, 0.6) 

text(jm+5, 0.63, paste("max=", round(mf, 3)),adj=0) 

mtext(side = 3, "Distribution function", line = 1, cex = 1.75) 

legend(0, 1, c("Control", "Treatment"), lty = 1:2, cex = 1.25, 

lwd = 3) 

mtext(side = 1, "Grayscale level, byte", line = -1, 

outer = T,cex = 1.5) 

J <- (Jl * J2)/(J1 + J2) 

lambda < - mf * ( s q r t ( J ) + 0 .11 / sq r t ( J ) + 0.12) 
j < - 1:10000 
j s < - r e p ( l , 10000) 
js[seq(from = 2, to = 10000, by = 2)] < 1 
Q < - 2 * sum(js * exp(-2 * j~2 * lambda~2)) 
cat("\nbyte.max =",jm," max.cdf.distance =",round(mf,3), 

" lambda =",round(lambda,3)," QKS =", round(Q,4) ," \n") 
} 
} 

We make several comments: (1) The two tasks correspond to job=l (Figure 12.3) 
and job=2 (Figure 12.4); (2) different software uses different préambules when sav-
ing images in PGM format, in this particular case starting from the 9th element; 
and (3) arrays h i and h2 contain histograms and f 1 and f 2 contain cdf values for 
the two images, alternatively, one can use the cumsum function to compute the cdf. 

Problems for Section 12.3 

1. Plot QKSW as a function of λ using lambda=seq(from=l,to=2,by=.01). 
Replace oo with 1000 and use matrix operation to avoid the loop: compute the 
value under the sum as a matrix with 1000 rows and length (lambda) columns. 
Then use °/0*°/o to get QKSW- Confirm that Q K 5 ( 1 . 3 5 8 ) ~ 0.05. 

2. Use a £-test (Z-score) to test that the treatment image is darker than the 
control (this is how images are compared using traditional statistics). Does this test 
confirm the KS test? What test is preferable? 

12.4 Multinomial statistical model for images 

The aim of this section is to develop a statistical model for gray images based on the 
grayscale distribution (or simply, gray distribution). As in the previous section, it is 
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assumed that the image is specified by 256 grayscale levels, and therefore our image 
analysis is content-independent. Based on this model, we shall develop parametric 
tests for image comparison. 

The gray distribution of an image {M(p,q),p = 1, ...,P,g = 1, ...,<3} is specified 
by 256 probabilities π9 = Pr(M = #), where g = 0,1,...,255 is the gray level. 
Assuming that among PQ image pixels there are ko black pixels, the k± pixels have 
gray level g = 1, &2 pixels have gray level g = 2, etc. the mutual probability can be 
modeled via the multinomial distribution, namely, 

/(*ö,fcl,.-.,*255) = feo!^255!4°^-^2§555. (12.3) 

Rao (1973), Bickel and Doksum (2001), Agresti (2002). In this formula, the sum of 
probabilities is 1, Σ9=οπ9 = >̂ an(^ Σα=ο^9 = PQ ls the total number of pixels. 
Value kg is called the frequency, so (12.3) specifies the probability that in PQ inde-
pendent experiments the random variable M takes the value 0 ko times, takes the 
value 1 k\ times, and so on. An important assumption is that these random exper-
iments are independent. For a binary image, the multinomial distribution reduces 
to the binomial distribution. Model (12.3) is called a multinomial model for gray 
images. 

The log-likelihood function for the multinomial gray level model is 

255 

Ζ(π0,...,7Γ255) = C + Y^kgIn71-0, 
g=o 

where C = ln(PQ)! — X)o=om^p'' a c o n s t an t . To estimate probabilities {π9} from 
a P x Q image by maximum likelihood, we maximize I with respect to {ττ9} under 
the restriction that Σ9=οπ9 = 1· Introducing the Lagrangian 

255 /255 \ 

£(7Γ0,...,π255,λ) = ^2kglnng-X ί ^ π ^ - 1 I , 
9=0 \g=0 ) 

and taking derivatives with respect to π9, we obtain 3£/δπ9 = kg/ng — λ = 0 which 
implies that π9 = kq/X. Hence, the ML estimate of the #th probability is 

*° = h° = PQ· ( 1 2 · 4 ) 

This is a familiar estimate of the gray level probability—the ML estimate is just 
the histogram value, hg. The variance and covariance of these probability estimates 
are 

1 1 
var(7fp) = pg7Tp(l - **), ο ο ν ^ , π ^ ) = - — π ^ π ^ . (12.5) 

To estimate the variance and covariance, we use the histogram value hg instead of 
Έ9 in formulas (12.5). As follows from (12.5), π9 is consistent because its variance 
vanishes for large images, PQ —> oo. We shall apply the multinomial model for 
image comparison and entropy computation. 
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12.4-1 Multinomial image comparison 

Using the notation of Section 12.3, let M^ and M^ be Pi x Qi and P2 x Q2 gray 
images. We want to test whether they have the same gray distribution. In other 
terms, the null hypothesis is HQ : TTQ = π^ , ...,π255 = 7Γ255. Two tests can be 
suggested, assuming that the images are independent: the χ2 and the likelihood ratio 
test. Unlike the Kolmogorov-Smirnov test, these tests are parametric because they 
assume the multinomial distribution specified by the 256 probability parameters. 

In the x2-test, we estimate 256 x 2 = 512 probabilities ng ^ = h\g and π9 ' = 
hig as the proportion of pixels with the gray level g. Assuming that images are 
independent, the variance of the difference is the sum of variances, and as follows 
from formula (12.5), var(/i^ - h2g) = hig(l - hig)/(PiQi) +h2g(l - h2g)/(P2Q2)· 
Then, under the null hypothesis, the scaled sum of squares approximately has a 
X2-distribution, 

(frig - H ) 2 

2-J /?i (1 - hlg)/(P1Q1) + h2g(l - h2g)/(P2Q2) 
χ2(255). (12.6) 

We take off one degree of freedom because the sum of probabilities is 1. This has 
little effect because the total degrees of freedom is large. If both h\g and \i2g, are 
zero, the corresponding term is dropped from the summation. One can interpret 
(12.6) as the squared scaled distance between the two histograms. Following the 
line of statistical hypothesis testing, if the value on the left-hand side of (12.6) 
is greater than the (1 — a)th quantile of the %2-distribution with 255 degrees of 
freedom, we reject the hypothesis that the two images have the same gray level 
distribution with error a. Alternatively, one can report the p-value as the %2-tail 
density. 

In (12.6) we assumed that {h\g — h2g,g = 0, ...,255} are independent, but as 
follows from (12.5), they are negatively correlated. To account for correlation, we 
remove the histogram component with the maximum value hig-\-h2g so that hi*—112* 
is the 255 x 1 vector of histogram differences with the corresponding 255 x 255 
covariance matrix Vi* + V2*. By construction, the sum of elements is less than 1 
and the covariance matrix is nonsingular. Then, in matrix form, similar to (12.6), 
we have an alternative %2-test, 

(hi* - h2*)'(Vi* + V s * ) " 1 ^ ! * - h2*) - χ2(255). (12.7) 

In the likelihood ratio test, we need to compute three log-likelihood values, an 
individual value from each image and a combined value. More precisely, the max-
imum value of the log-likelihood function from image i = 1,2 can be expressed in 
terms of frequencies {kig} as follows: 

li = In m\ - ] P In kigl + ] P kig In kig - In m ^ kig 

= (Inn»! -riilnrii) + ^ ( f c ^ l n / c ^ -\nkig\), 

where rii = PiQi is the number of pixels in the zth image. Next, we combine the 
two images into one gray level set with 77,3 = P\Q\ + P2Q2 elements yielding the 
frequencies {kzg,g = 0, ...,255} and the resulting log-likelihood maximum value 

Z3 = (Inn3! - n 3 l n n 3 ) -{-^(ksgInk3g -\nk3g\). 
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According to the likelihood ratio test, under the null hypothesis, 

2 (Zi+Z 2 - /3)~X 2 (256) . (12.8) 

Again, if the left-hand side of (12.8) is larger than the (1 — a)th quantile of the 
X2-distribution, we reject the hypothesis. 

Problems for Section 12.4 

1. Apply the χ2 and the likelihood ratio tests to the histologie images in the 
previous section. Compute the p-values for both tests. Modify the function KSimage. 
Use lgamma(k+l) to compute lnfc!. 

2*. Generate synthetic treatment images from the control image in Figure 12.3 
using the formula M'v(p,q) = [255 x (M(p,g)/255)l'J , where M(p,q) is the gray 
intensity of the (p, q)ih pixel of the original control image, v is a positive number 
(y = 1 does not change the image), and |_-J means that the number is rounded 
to the nearest smallest (R function f loor); see the function KSimageR. Parameter 
v is image-specific, e.g. it may take values according to a beta distribution with 
parameters a and β. Use this method to generate random images for computing 
the power function of image comparison for three methods: KS, chi-square, and 
log-likelihood. Make your statement regarding the efficiency of the methods. 

12.5 Image entropy 

The purpose of an image is to convey information; thus information theory can 
play an important role in image analysis. Specifically, we use the notion of entropy 
to measure the amount of image information (Resa, 1961; Kulback, 1968). In the 
image processing literature, image entropy is used in the context of image coding. 
Here, we apply this concept for optimal image reduction. In this section we show 
how image entropy can be used for optimal image reduction and enhancement. 
Although entropy, as the major concept of Shannon communication theory, has 
some application in image science (see Barrett and Myers, 2004 for a review), we 
apply it for optimal image reduction. First, we demonstrate the use of entropy for 
binary images and then for gray and color images. 

Recall that if X is a discrete random variable, which takes values {a^, i = 1,2,..., n} 
with probability {Pr(X = Xi) = pi}, the entropy is defined as £ = — Y™=lp%logpi. 
In the special case when X is binary, the entropy is E — — \plogp+(l— p) log(l— p)]. 
Usually, in communication theory, the base of the logarithm is taken to be 2, making 
interpretation of the entropy a piece of information measured in bits. For example, 
for a binary random variable with p = 0, the entropy is zero. Indeed, by L'Hospital's 
rule, 

5(0) = - l i m p l o g 2 p - ( l - 0 ) l o g 2 ( l - 0 ) 
p—»0 

= - l i m ^ = -L l imi^=0 . 
P—o p-1 ln2p->ol/p2 

Similarly, one can prove that 5(1) = 0. These results have a clear interpretation: 
when p = 0 or p = 1, the binary variable takes a constant value, and therefore there 
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is no information in the message. Maximum entropy in a binary message occurs 
when p = 1/2. Indeed, differentiating the entropy, one obtains 

S' = - 1 - log2p + log2(l - p) + 1 = log2(l -p)- log2p, 

ε" = - p - 1 - (i - p ) - 1 = - i / | jp( i - P)] < o. 

The inequality says that £ is a concave function on (0,1). Maximum 8 occurs where 
£' = 0, which yields p = 1/2. This means that maximum information contained in 
a sequence of zeros and ones is attained when they occur with equal probability. 

For example, the amount of information in a P x Q binary image with the pro-
portion of white pixels equal p is 

PQ x £ ( p ) = -PQ\p\og2p+ (1 - p ) l o g 2 (1 - p)\ bits. (12.9) 

In (12.9) it is assumed that pixel gray levels are uncorrelated. Now we apply the 
entropy notion to optimal image gray level reduction. 

Original image, EPP=7.5 Binary image, EPP=1 

4 gray scale image, EPP=2 16 gray scale image, EPP=4 

FIGURE 12.5. The original image Lena, the canon of image processing, and three optimal 
reductions with minimum information loss. The Entropy Per Pixel (EPP) of the original 
image is close to the absolute maximum, 8 bits. Information in the binary image is almost 
one-eighth of that in the original image. 
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12.5.1 Reduction of a gray image to binary 

Let M be the original P xQ gray image with distribution F = {Fg,g = 0,..., 255}. 
We want to reduce this image to a binary image by determining a threshold #* such 
that all gray levels less than g* are set to 0 and all gray levels greater than g* are 
set to 255. We want to determine a g* that reduces the original gray image with 
minimum information loss. As follows from (12.9), the entropy of a binary image 
gets maximum when the number of black and white pixels is the same, p = 1/2. 
Thus, g* is defined by the equation F9wt = 1/2, the median. In other words, an 
optimal threshold is the median of gray distribution. This choice yields minimum 
information loss. 

We illustrate the image reduction in Figure 12.5. This image, Lena, is a canon in 
the image processing community, and many works use this image as an example. 
The reduction of the original image to binary is such that the number of black and 
white points in the binary image is the same. The R function that plots Figure 12.5 
and computes EPP can be downloaded by issuing 

source("c:\\MixedModels\\Chapter12\\lena.r") 

12.5.2 Entropy of a gray image and histogram equalization 

Histogram equalization is a well known technique of image processing that helps 
improve an image. In this section we provide an information basis for this technique 
and develop a general algorithm to reduce a gray image with minimum information 
loss. 

Assuming that levels of a gray image follow a multinomial distribution (12.3), the 
entropy of a P x Q image is defined as 

255 

6 = -PQ^2nglog2ng. 
g=o 

Since the theoretical probability, π9, is estimated by the histogram value, hg, we 
come to the following. 

Definition 45 Image Entropy Per Pixel (EPP) is defined as 

255 

EPP = -^hglog2hg bits, (12.10) 
0=0 

where hg is the histogram value. 

Theorem 46 The absolute maximum of EPP is 8 bits. This maximum is attained 
when each of 256 gray levels occurs with equal probability 1/256 (i.e., when the 
histogram is flat). 

Proof. The proof is similar to the maximum likelihood estimation at the begin-
ning of this section. We want to maximize (12.10) over {hg} under the restriction 
Σ9=ο hg = 1. Introducing the Lagrangian 

255 /255 \ 

£(fto,...,Ä255jA) = y ^ hg Inhg - A I ^ P hg - 1 I 
9=0 \g=0 J 
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Gray level, g 

FIGURE 12.6. Optimal reduction of the original image, Lena to a binary and four-level 
gray image. To reduce Lena to a four-level image with minimum information loss, the 
thresholds must be 88 (first quartile), 128 (median), and 156 (third quartile). 

and taking the derivative with respect to hg, we obtain hg 

corresponds to the flat histogram. The absolute maximum is 

EPP = -256^L log2
 1 - ° 

=const= 1/256. This 

256 256 

This theorem creates a theoretical basis for histogram equalization technique: by 
modifying the gray levels to make the histogram flat, we increase the EPP to a 
maximum. 

For example, as follows from entropy theory, to reduce a gray image to an image 
with four gray levels with minimum information loss, the thresholds must be the 
quartiles of the distribution function F, see Figure 12.6. In other words, let q\ (the 
first quartile) be the gray level such that (PQ)/4 pixels of the original image have 
gray levels of less than q\. Let #2 be the median, i.e., 50% of pixels have gray levels 
of less than q<i. Finally, let #3 (the third quartile) be the gray level such that the 
number of pixels with gray levels greater than q$ is (PQ)/A. This choice of thresholds 
makes the four-level image the most informative. 

For a binary image with an equal number of black and white pixels EPP = 1 bit 
because —0.5 log2(l/2) = 1. For an image with four equal gray levels, EPP = 2 bits. 
Generally, if an image has 2 m equal gray levels, EPP = m bits (see Figure 12.5). 

Problems for Section 12.5 
1. The frequency of English letters can be downloaded as read. table("c: \ \ 

MixedModels\\Chapterl2\\EnglishLetters.txt"). Compute the entropy of the 
statement: / love statistics based on the letters frequency. 

2. Prove that the maximum enropy of a categorical random variable is attained 
at pi = 1/n, where Pi>0 and Y^=1Pi = 1. 
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3. Define a 16-bit image and compute the maximum entropy. 
4. The function h i s t g r plots the two images depicted in Figure 12.7. Apply his-

togram equalization to the original image. Compare your result with that produced 
by commercial software. 

FIGURE 12.7. Two images produced by function histgr. Histogram equalization is done 
by commercial software. Use your own histogram equalization image processing technique 
to see if the result is the same. 

12.6 Ensemble of unstructured images 

Usually, one deals with several images of the same object. Then we speak of an 
ensemble of images. Similar to a sample of shapes, we distinguish two features. On 
one hand, it is assumed that images are of the same object, or in statistical terms, 
they belong to the same general population. On the other hand, they may have 
image-specific features associated with image variation. For example, if several aerial 
pictures are taken to assess fire damage, they are all taken over the same area but 
may differ because the fire damage is not uniform. The same principle was used in 
the previous chapter, where within- and between-shape variations were recognized. 
In contrast, in classical statistics, it is assumed that a sample is drawn from one 
general population and therefore that there would be no room for image-specific 
variation. In the language of the mixed model methodology, population features 
are described by population-averaged parameters, and image-specific features are 
specified by image (or cluster, subject) -specific parameters. 

In this section we deal with a sample of independent gray images defined by the 
Pi x Qi integer (gray level) matrices M*, i = 1,2,..., N. Typical questions: (a) Are N 
images the same? (b) Are two groups of images the same? (c) Does image (N + 1) 
belong to the same group of images? A statistical test for two gray images was 
developed in Section 12.3, here we assume that N > 2. 

Original image
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There are two extreme approaches to modeling an ensemble of images. First, we 
can assume that all N images M$ have identical gray level multinomial distributions 
(12.3). Then one can pool the images and obtain estimates of the probabilities as if 
we had only one image. Clearly, if all images have the same size, the histogram and 
the distribution function are the arithmetic means of the individual histograms and 
the distribution functions. Under this assumption, a comparison of two groups of 
images reduces to a comparison of two distribution functions, and the Kolmogorov-
Smirnov test applies. 

Second, we can assume that images have different gray level multinomial dis-
tributions, and therefore estimation collapses to a separate estimation yielding N 
vectors π^. 

Perhaps the most attractive approach would be to assume that, on the one hand, 
images are from same general population, but on the other hand, they have image-
specific variation. Such an approach takes an intermediate position between the two 
extreme approaches. 

In this section we model the image through its gray level distribution, and there-
fore such analysis is content independent; usually, such images are unstructured. 
For example, using this approach one may come to the conclusion that images of 
an apple and an orange are the same because they have the same gray level distri-
bution. However, this approach may be useful when a sample of apples is analyzed. 
The model for an ensemble of structured (content dependent) images is described 
in Section 12.8. 

The volumetric or mean intensity approach, which can be expressed via histogram 
values as Y2g^o9hgi 1S u s e d traditionally to quantify gray images, especially in the 
analysis of functional MRI data. One may expect the present approach to be more 
powerful because it is based on an analysis of all 256 histogram values {hg,g = 
0,...,255}. 

Application of the theory of mixed models is crucial to the analysis of an en-
semble. Modeling hypotheses reduce image analysis to a linear mixed effects model 
(Chapters 2 to 4), a generalized linear mixed model (Chapter 7), or a nonlinear 
mixed effects model (Chapter 8). 

12.6.1 Fixed-shift model 

The fixed-shift model assumes that the ensemble of N gray images {M^, i = 1,2,... 
, AT}, have the same gray level distribution up to an image-specific gray level shift. 
This model, the fixed-shift intensity model, may be viewed as a generalization of the 
fixed subject-specific intercept model of Section 7.2.2. This is perhaps the simplest 
model for an ensemble of images; in the next section we consider a more complex 
random-shift model. One application of this model is when microscopic images of 
the same homogeneous tissue are taken at different spots and different exposures. If 
the images were taken at the same exposure, they would produce the same (up to a 
random deviation) histogram and distribution function, but a nonconstant exposure 
implies that some images are darker and some lighter. 

We assume that all 256 gray levels are modeled; however, this is not a strict 
requirement. For example, one can safely omit gray levels with zero frequency for 
all images. 
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When modeling a series of dependent images, it is more convenient to parame-
terize the multinomial distribution (12.3) in a different way, as follows: 

^ = 1 + Σ ? ι e* ' "9 = 1 + g ! e* '9 = 1' · " ' 2 5 5 ' ( 12 'n ) 

where the {pl5 ...,^255} a r e n e w parameters. Obviously, this parameterization im-
plies that all probabilities are positive and the sum is 1. One can easily express the 
new parameters in terms of the old: 

pg = In 7^ - Ιηττο, g = 1,..., 255, (12.12) 

so pg can be interpreted as the relative probability on the log scale. There are some 
advantages to working with pg rather than π9: (a) representation (12.11) guarantees 
that all probabilities are positive for any pg, and (b) there is no restriction on 

{pi-, ···) Ρ25δ}> unlike Σο=ο π9 = *̂ ̂ e ^a c t ^ a t {Pg} m a y t a ^ e a n ^ v a m e fr°m ~~ °° 
to 00 makes it possible to assume a normal distribution, substantially simplifying the 
estimation problem, see the next Section. Transformation (12.12) was used by Besag 
(1974) but without reference to the multinomial distribution. This transformation 
is the basis for reduction of a nonlinear multinomial model to a linear mixed effects 
model, Section 12.6.3. For reasons explained later, this transformation will be called 
logit. 

In this section we assume that N images have the same gray level distribution 
but differ by a constant bi. Thus, on the log scale the ith image is specified by 
{pg + bi,g = 1,..., 255}. Then, letting Bi = exp(fei), we come to the ith multinomial 
model, as a straightforward generalization of (12.11), 

πί0 = 1+m Σ Χ * ' *i9 = 1+a, ΣΚ «* 'g~1' ""255' 
Assuming that the N images are independent, the joint log-likelihood function, up 
to a constant, takes the form I = Σΐ=ι Σ#=ο ^ig m 7 r^> where kig is the frequency 
in the ith image. In terms of pg, we have 

N 

Σ 
255 

(rii - ki0) In Bi - m In I 1 + Bi ^ epa 
9=1 

255 

+Σ 
0 = 1 

where dg = Σΐ=ι kg 1S t n e total frequency of the gth gray level. Our aim is to 
obtain the maximum likelihood estimators (MLEs) for Bi and pg, as maximizers 
of I, in closed form. When the {pg} are held fixed, we find the maximizer for Bi 
exactly from the equation dl/dBi = 0, yielding 

Plugging this solution back into Z, we eliminate nuisance parameters {Bi} to obtain 
a profile log-likelihood function, up to a constant term, 

255 255 

*(Pi, - , P255) = -(NT - k0) I n Σ ePa + Σ < W (12'13) 
9=1 9=1 
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where ko = Σί=ι ko is the frequency of the background and Ντ = Σ) rii is the total 
number of pixels. Taking the derivative with respect to pg we finally come to the 
MLE, 

Pa = l n ΛΓ ^ i. > 3 = 1, ».,255. (12.14) 
NT-ko' 

As the reader can see, this solution follows from eps = dg/ Σα=ι ^s a s a simple 

estimator of the probability from the total frequency (note that J2q=i ePg — 1)· 

Consequently, the MLE for the shift is Bi = ni/koi — 1. 

> ' Λ -. «r *- ^ 

■̂5 · u*·-' ^ 

- « * s — ~ * ~ — * — · - J . 

^ ^ ί * 9~^~ 

Γ^ <> ^ ; .* 
s * > \ * ■ = - * - \ · . - -

200 400 600 800 1000 

FIGURE 12.8. Typical 1024 x 1024 gray image of the rat brain. The white bands are vessels 
filled with oxygenated blood. 

12.6.2 Random-shift model 

When the number of images (N) is large, a random-shift model may be useful. The 
similarity to the random intercept model in logistic regression is obvious, see Section 
7.2 for a discussion. 

Assuming that the random intercepts are iid with normal distribution b{ ~ 
Λ/*(0, σ2), following the line of Section 7.3, we come to a generalized linear mixed 
model with a marginal log-likelihood function to maximize 

N 255 JV r 

1 a=l i=l J -

D ( n i - f c i 0 ) i > - n i l n ( l + E 5 Ï 1 e 6 + ^ ) -
db. 
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Several approaches are available. First, one can use numerical integration to evaluate 
the integral with a given precision. Second, the FSL approach of Section 7.3.2 can 
be applied. Third, approximation methods such as methods based on Laplace ap-
proximation are straightforward to generalize, see the respective sections of Chapter 
7. 

Hypoxia BOLD MRI data analysis 

We illustrate the fixed-shift model with hypoxia BOLD MRI rat brain data, Dunn 
et al. (2002). The research was concerned with how a shortage of oxygen affects 
the brain oxygen concentration shortly after hypoxia. First, the MRI images were 
derived for eight normal rats before treatment (the control group). Next, the rats 
were shortly put in a hyperbaric chamber with a below-normal oxygen concentration 
and the MRI images were repeated right after (the hypoxia group). A typical 1024 x 
1024 gray image before treatment is shown in Figure 12.8; the white bands are 
vessels filled with oxygen. The null hypothesis is that the hypoxia group has the 
same oxygen concentration as that of the control group. In Figure 12.9 we show all 
image data for the two groups. Obviously, the animal variation is substantial and 
overshadows possible differences between groups. 

As in image analysis in general, and in this example in particular, quantification 
is an important step. How should we quantify oxygen in an image: by vessel count, 
area, length, density? There exists software, such as NIH Image, that facilitates 
image segmentation and counts the number of vessels (or, more precisely, distinct 
objects in the image) automatically. However, we should warn the reader that imag-
ing software is far from perfect, and although "automatic" sounds tempting for this 
example, it is difficult, if not impossible, to count vessels because we are dealing 
with brain sections. The vessels are cut at an angle, the same vessels are cut twice, 
and so on. Instead, we prefer to quantify oxygen by the amount of white color, or 
more precisely, by the density expressed via the gray level distribution. An advan-
tage of this approach versus vessel count is that it reflects the oxygen concentration 
in the vessel and therefore may be more representative. 

For exploratory statistical analysis, we compare the cumulative gray level distrib-
ution functions for each rat group in Figure 12.10. As the reader can see, in general, 
the images from the control group are lighter suggesting that the amount of oxygen 
in the hypoxia group is higher (note that if X and Y are two random variables 
such that X < Y, then Fx(t) > Fy(t), where F(t) is the distribution function). 
To confirm this statistically, we apply the fixed-shift model of Section 12.6.1. This 
model seems adequate because the distribution functions for each rat are similar 
up to a shift. Thus, we (a) analyze each group separately, assuming that rat gray 
distributions are the same up to a shift b^ i = 1,..., 8, (b) and compare the resulting 
^control} a n d ^hypoxiay u g i n g t h e x 2 _ d i s t r i b u t i o n ω i n Section 12.4.1. 

In Figure 12.11 we show the maximum likelihood estimates of pg computed by 
formula (12.14). Obviously, the control MR images are darker, and therefore right 
after hypoxia, oxygen flow into the brain exceeds normal. The %2-test confirmed 
this visual finding with a p-value of less than 0.001. 
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Control group Treatment group 

FIGURE 12.9. Rat brain images in two groups of animals (the R function hypoxiaRAT). 
The variation across animals is substantial and overshadows the difference between groups. 
A proper statistical model should address animal heterogeneity. The random-shift mixed 
model seems to be appropriate. 
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Below we show the R function that reads the data and plots Figure 12.9. 

hypoxiaRAT=funct ion() 

{ 

dumpO'hypoxiaRAT", "c:\\MixedModels\\Chapterl2\\hypoxiaRAT.rM) 
n < - 1024 
x < - l :n 
# we wi l l save the graph in the f i l e 
bmp(file="c:\\MixedModels\\Chapterl2\\Hypoxia\\hypoxia.bmp", 

width=500,height=1500) 
par(mfrow=c(8,2) ,mar=c(l ,1 ,1,1) ,omi=c(0,0.25,0.25,0)) 
f o r ( i in 1:8) 
f o r ( i g r in 1:2) 
{ 

i f ( ig r==l ) cc="c" e l se cc=M" 
fn=paste("c:\\MixedModels\\Chapterl2\\Hypoxia\\Group", 

ig r , " \ \_" , i , cc , "_ la_p .pgm" , sep="" ) 
d < - scan(fn,what="") 
d <- matrix(as.numeric(d[12:length(d)]), n, n) 

image(x, x, d, xlab = "", ylab = "", axes = F, 

col=gray(0:255/255)) 

if(igr==l) mtext(side=2,paste("Rat #",i,sep=""), 

line=0.25,cex=l.25) 

if(i==l & igr==l) mtext(side=3,"Control group", 

line=l,cex=l.5) 

if(i==l & igr==2) mtext(side=3,"Treatment group", 

line=l,cex=1.5) 

} 

dev.off() # saving the graph 

} 

12.6.3 Mixed model for gray images 

It is straightforward to generalize the random-shift model to a mixed model with 
a more complex statistical structure. A statistical model for an ensemble of gray 
images has a hierarchical structure. In a first-stage model, it is assumed that the 
gray distribution of each image i = 1,..., N is specified by the multinomial model 
(12.11) with random, image-specific probabilities 

1 eTi9 

π*0 = 7 — ^ 2 5 5 — - ' π*9 = 1 ^ ^ 2 5 5 r..» 9= 1,».,255. (12.15) 

In this model, { r ^ } are random and specified in the linear second-stage model. 
For example, for the random-shift model of Section 12.6.2, the second-stage model 
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takes the form τ ^ = pg + 6*, where bi is the random effect. More generally, if 
i~i = (τ^ι, ...,Τί^δδ)', the second-stage model in vector form can be expressed as 

Ti = p + b i ? i = l,...,iV, (12.16) 

where p =(p l 5 . . . , p255)' defines the population-averaged gray distribution. The error 
term b^ is the vector of the random effects and has zero mean and a 255 x 255 
covariance matrix D*, see Section 7.7. For example, for the random-shift model, we 
have hi = bil. Obviously, the covariance matrix of the random effects, D*, should be 
structured in a parsimonious way because otherwise the number of distinct elements 
would be too large to estimate, 256 x (256 + l ) /2 = 32,896. 

Rat#1 Rat #2 Rat #3 Rat #4 

150 250 0 50 

Gray level 

FIGURE 12.10. Cumulative gray-level distributions in two groups for each rat. For 
most rats the brain images are generally lighter in the control group. We apply the 
X2-distribution to test the overall difference between the groups. 

Several covariance structures for D* may be suggested: 

• Isotropie structure. Matrix D* is proportional to the identity matrix, i.e., the 
off-diagonal elements are zero and all variances are equal. 

• Heterogeneous independent structure. The off-diagonal elements are zero, but 
the diagonal elements are different and unknown. The number of unknown 
elements in D* is 255. 

• Toeplitz covariance structure, (11.15). It is assumed that K neighboring gray 
levels are dependent with K + 1 parameters to estimate. 

• Band covariance structure such that the covariance between the gth and j t h 
elements of b^ is zero if \g — j \ > p. If p = 0, we obtain the heterogeneous 
structure. If p = 1, only two neighboring gray levels correlate. 
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The second-stage model may contain explanatory variables, as did the linear 
growth curve model of Section 4.1, 

Ti = ßLip + hi, (12.17) 

where A^ is the design matrix. For example, if two ensembles are compared A^p = px 

if the image is from the first ensemble, and Aip = px + δ if the image is from the 
second ensemble. Then, the two ensembles are the same if Ho : δ = 0. Model (12.17) 
can incorporate image differences due to gender, age, etc. In functional MRI it may 
reflect the time when a stimulus occurred. 

The statistical model for gray levels specified by (12.15) and (12.17) belongs to 
the family of generalized linear mixed models studied in Chapter 7. Exact methods 
of estimation may be computationally intensive, especially when the dimension of 
the random effect is 255. 

I2.6.4 Two-stage estimation 

It is attractive to apply the two-stage estimation for an ensemble because (a) gray 
probabilities are random and image-specific, and (b) individual estimates are easy 
to obtain. The two-stage estimation approach was applied to a nonlinear mixed 
model in Section 8.5. As follows from (12.4), the individual probability estimate is 
equal to the histogram value, hig. Hence, assuming that the image background is 
black (hio prevails), we compute logits 

Ug = lnhig - ln/iio, g = 1,..., 255 (12.18) 

as individual estimates of {τι9} in model (12.15). Having estimates (12.18), we 
substitute τ$ with t$ = (t^i, ...,£1,255)' in model (12.17) and arrive at the second-
stage model t* = A^p + rji. Notice that the error term T]i differs from b^ because t$ 
is an estimate of r», and consequently, the variance of ηί is larger than that of b^. 
Since the covariance matrix of individual probability estimates has an exact form, 
(12.5), we can approximate the covariance of t^ by the delta-method, as is realized 
below. 

Proposi t ion 47 Let π be a 256 x 1 vector estimate with the variance-covariance 
matrix specified by (12.5). Let tg = Ιηπ^ — Ιηπο, g = 1,...,255 be components of 
vector t. Then 

n i i 1 \ * ί 1 + 1/πο + 1/TTQ if g = j οον(1ηπο-1ηπ0,1ηπ, · -1ηπ0) ~ -p— < / , i / · / If. v 9 ° J PQ\ 1 + 1/7Γ0 ifg^J 

or, in matrix form, 

c o v ( t ) : * p L [(1 + 7 ^ ) 1 1 ' + D r 1 ] , 

where Di =diag(Ki, ...^255). 

Proof. We use the delta-method to approximate the covariance matrix of t = 
(lnifi - 1η7Γο,...,1ηπ255 - Ιηίτο)7. Letting π ι = (πι, ...,π255)' and Di =diag(7Ti) 
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Gray level 
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FIGURE 12.11. Maximum likelihood estimates of pg for g = 1, ...,255, for the fixed-shift 
model, (12.14). Obviously, the MR images of the control group are lighter than those of 
the hypoxia group. Consequently, the damage to brain vesels by hypoxia is statistically 
significant. 

we express dt/θπ = [—TT^IJDJ" 1 ] , a 255 x 256 derivative matrix. The 256 x 256 
covariance matrix of π can be partitioned as 

πο(1 — 7Γο) —ποπ[ 
—7Γ()7Γι Di 

By the delta-method, the covariance matrix t can be approximated as 

(dt/d7r)C(dt/d7rY = [ - T T ^ 1 ! ; ^ 1 ] 
7Γο(1-7Γο) -7T07ri 

-7Γ07Γι D i 

- 1 ι / 7Γ0 1 

ϋΓ - 1 

π^2π0(1 - 7Γ0)11' + TTQ ^Tro^D^"1 + Ό^-κοΐΐ^1!1 + Df ^ i D j f 1 

= ττο Hl - 7Γ0)11' + 211' + D ^ = (1 + π ^ 1 ) ! ! ' + D ^ 1 . 

Applying this result and assuming that the {tj} have a normal distribution, we 
arrive at the linear model for logits, 

(12.19) t i ~ A / ' ( A i T , D , + T i ) , i = l,...,N, 

where matrix Tj is fixed and given by 

and rii = PiQi is the number of pixels and D^i =diag(/iü,..., ^,255) is the diagonal 
matrix of histogram values. In a special case without explanatory variables, (12.16), 
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we have A^ = I. The unknown parameters are r and D*. If D* were known, vector 
r could be estimated by Generalized Least Squares (GLS), 

N - 1 N 

T = Σ A*(D* +T*)_1A; £ A{(D, +Ti)-
1t< 

with covariance matrix 

\i=l 

cov(r) = (JT A^(D* + T i ) - 1 A i j . 

For model (12.16), we have 

/ N - 1 N 

? = Σ(°*+τ*)-1 Σ(°*+τ*)-1** 
Ki=l Ki=l 

Matrix D* may be estimated either by maximum likelihood or by the method of 
moments for the linear growth curve model of Section 4.1. For example, for model 
(12.16) in the heterogeneous case, compute s2

g = Ν~λ ^ifag ~tg)2 an(^ estimate D* 
as S—iV-1 Σί=ι Ti, where S is the diagonal matrix with the (g,g)th element s2

g. If 
matrix D* is not positive definite, we apply the projection procedure described in 
Section 2.15.2. 

FIGURE 12.12. Typical MR frame images of the amygdala-hippocampal complex of a 
schizophrenia patient. 

12.6.5 Schizophrenia MRI analysis 
Schizophrenia is a major mental disorder and is characterized by impaired think-
ing and hallucinations. It affects about 1% of the general population. Advances in 
Computerized Tomography (CT) and magnetic resonance imaging (MRI) created a 
new dimension for brain research, including for schizophrenia (Shenton, 2001). The 
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existing approaches to studying the human brain and its abnormalities using MRI 
data can be roughly classified into three groups: (1) shape, (2) asymmetry, and 
(3) volumetric analysis. Here we focus on the latter approach. In the volumetric 
approach, the organ or region of interest is quantified by one number (Godszal and 
Pham, 2000). In our approach, we analyze all nonzero gray levels, and therefore the 
analysis may be more powerful. 

In this section we analyze the temporal lobe, or more precisely the amygdala-
hippocampal complex, with the MRI data kindly provided by Dr. M. Shenton of 
Harvard Medical School. The study design description and the appropriate statisti-
cal analysis are given in the original article by Shenton et al. (1992). The MRI brain 
data consist of equidistant frames for 15 schizophrenia patients and 15 matched nor-
mal controls. In Figure 12.12 MR frame images of the amygdala-hippocampal com-
plex of the first schizophrenia patient are shown. In Figure 12.13, image frames are 
shown for the first normal control. All images have the same size, rii = PiQi =const, 
i = 1, ...,30 = TV. We want to determine whether the amygdala-hippocampal com-
plex of the schizophrenia patients and that of controls is different. 

FIGURE 12.13. Typical images of the amygdala-hippocampal complex of a normal control. 

The R function below reads 39 cases and plots the MRI frames from 41 to 61 
as a 3 x 7 panel plot (the first 15 cases are controls and the remainder belong to 
schizophrenia patients). 

schiz=function () 
{ 

dumpO'schiz", "c: \ \MixedModels\ \Chapterl2\ \schiz.r") 
cc = "c:\ \MixedModels\ \Chapterl2\\schiz\\caseM 

for ( i in 1:30) { 

par(mfrow = c (3 , 7 ) , mar = c ( l , 1, 1, 1) ,omi=c(0,0 , .25,0)) 
for (j in 1:21) { 
d = scan(pas te (cc , i , " \ \ c a s e " , i , " . 0 " , j + 50,M.pgmM, 

sep = " " ) , what = "", quiet = T) 
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dm = mat r ix (as .numer ic (d[12: length(d) ] ) , nrow = 256, ncol = 256) 

imaged:256, 1:256, dm, col = gray(0:255/255) ,xlab="M ,ylab=M,,, 

axes=F) 

mtext(s ide=3,paste("Frame", j+50) , l ine=.2,cex=.75) 

} 

mtext (s ide=3,pas te ("Case" , i ) ,ou ter=T,cex=l .25 , l ine=.25) 

} 

Each image has only eight different gray levels: 0, 95, 127, 159, 191, 212, 223, and 
255 (0 is the black background), so instead of 256 gray levels, we have 8. We start 
the analysis by computing the logits Ug = ln(hig/hio), where h is the histogram 
value and i — 1,..., 30, g = 1,..., 7. Then we plot the mean logit for each gray level 
in each group; see Figure 12.14. This plot reveals that for gray levels 95, 127, 159, 

Gray level = 95 Gray level = 127 

-2 i 
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5 10 
Gray level = 212 
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1 5 10 15 21 1 5 10 15 21 
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FIGURE 12.14. Mean logit as a function of the frame index for different gray levels in two 
groups. On average, normals have a higher logit. 

and 223 the logits for normals are higher than those for controls. This finding hints 
of the following linear statistical model for logits 

Ujfg = ßgf+0(j-l) + bijfg, (12.20) 

i = l ,2 , . . . ,15 ; j = l ,2; / = 1,2,...,21; # = 1,2,3,4. 

where i is the patient index in group j (j = 1 codes a schizophrenia patient and 
3 = 2 codes a normal control); / is the MRI frame index; and g is the gray level 
index (gray levels are: 95, 127, 159, and 223). As follows from this model, the logits 
for each gray level and frame are different, with the mean ßgf and the difference 
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between the two groups constant, δ. Assuming that the {bijfg} are iid, we can 
estimate (12.20) by simple regression analysis, yielding the OLS estimate δ = 0.129 
with the t-statistic 9.79 and p-value < 0.00001. The difference in gray levels 95, 
127, 159, and 223 for schizophrenia and controls is significant. Model (12.20) can be 
modified in many ways. For example, one may consider heterogeneous or dependent 
logits. Also, the logit model may serve as a diagnostic tool to identify schizophrenia 
using the membership test of Section 3.8.1. 

Model (12.20) is easy to apply to compare two samples of images, as a general-
ization of the standard t-test, where HQ : δ = 0. 

Problems for Section 12.6 

1. Develop a for zero-shift test, Ho : b\ = b<i — ... = b^ = 0 in the framework of 
a fixed-shift model. 

2*. Develop a maximum likelihood estimation algorithm for maximization I from 
Section 12.6.2. Write an R function that implements the GH quadrature. Apply 
Laplace approximation, as discussed in Chapter 7, to approximate the log-likelihood. 
Write an R function and compare its performance against GH quadrature MLE. 

3*. Plot logits and cumulative distribution functions for the rat hypoxia data for 
the two groups; reproduce Figure 12.10. Compute a two-stage estimate and repro-
duce the result depicted in Figure 12.11. Use the approximate covariance matrix to 
test the statistical significance of the treatment effect. 

4*. Generalize the two-stage estimation procedure for two groups with different 
logit parameter 5, the treatment effect. Generalize methods developed in the pre-
vious problem to estimate the treatment effect and apply them to the rat hypoxia 
data. Use the likelihood-ratio test and the Wald test based on the covariance matrix 
in Proposition 47. 

5. The function bio image reads 28 PGM histology image files and plots them as 
depicted in Figure 12.15. Use the mixed model for grayscale intensities from Section 
12.6.3 to compare the treatment effect (the more living cells, the darker the image, 
see Figure 12.3). Compute the pairwise p-values for image comparison. Is there a 
synergy between radiation and drug? Use formula (10.17) to estimate the synergy. 

6. Modify the function schiz to plot 30 cdfs for 15 controls and 15 schizophre-
nia patients (use the built-in function cumsum and use different colors for the two 
groups). Do the same but for the mean on the logit scale as in Figure 12.14. Ap-
ply model (12.20) to discriminate controls from patients. Develop a mixed model 
with a subject-specific intensity level. Test whether the heterogeneity variance is 
statistically significant. 

12.7 Image alignment and registration 

Earlier, we dealt with an image gray level distribution that is content-independent. 
Starting in this section, we consider content-dependent images. Before doing statis-
tical analysis or image comparison, images must be at the same scale, and conse-
quently, they must be properly aligned and rotated (registered). We use the terms 
alignment and registration as synonyms, although sometimes alignment is used when 
only translation is allowed. For example, if one wants to know the difference between 
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FIGURE 12.15. Twenty eight histology images in four cancer treatment groups ('control' 
means no treatment). This plot was created by the R function bioimage. Are the differences 
in the treatments statistically significant? 
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images (as in the before-and-after analysis), it is tempting to take a pixel-by-pixel 
difference. The problem is that usually a pixel on one image does not exactly corre-
spond to a pixel on another image. An example of slightly different images is shown 
in Figure 12.16. Before taking the difference, the images must be aligned (we de-
scribe the detail of alignment in Section 12.7.8). Remember that we faced a similar 
problem with shapes where they must be re-sized and rotated, see Section 11.6. 

Image registration is a frequently used technique, especially in medical appli-
cations, particularly in the context of brain and medical imaging. See the survey 
literature by Maintz and Viergever (1998) and a collection of papers in the book by 
Hajnal et al. (2001). Several commercial software packages for image registration 
are available, including Automated Image Registration (AIR: http://bishopw.loni. 
ucla.edu/AIR5) and Statistical Parametric Mapping (SPM: http://www.fil.ion.ucl.ac.uk/spm). 
The same methodology is also used for image coregistration, when images are of the 
same object or region but derived by different imaging techniques, such as MRI and 
PET (Kiebel et al., 1997; Ashburner and Priston, 1997). 

Source image Target image 

Difference before alignment Difference after alignment 

FIGURE 12.16. Two images taken a few seconds apart and their difference before and after 
alignment. Before computing a pixel-by-pixel difference, the source and target images must 
be aligned. The first image is 525 x 504 and the second image is 483 x 508. Points on the 
images (black dots) serve as the landmarks for the alignment. 

The purpose of this section is to introduce the problem of image registration 
and discuss several cost functions (registration criteria). To account for coordinate-
specific image transformation, random registration is introduced. We show that 
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FIGURE 12.17. Rigid transformation of the clock image (rotation by angle Θ). This figure 
was generated by the R function clockROT. 

random registration can be studied in the framework of the nonlinear mixed effects 
model of Chapter 8. To simplify, we consider only planar images. 

12.7.1 Affine image registration 

Several aspects should be taken into account when two images have to be co-
registered: (a) they may have different mean intensity; (b) they may have different 
scale intensity; (c) the registration may be linear or nonlinear; (d) rotation may be 
allowed or not allowed; (e) and the transformation may be rigid or general affine 
(linear). An important step in image registration is the choice of the criterion or 
cost function (Woods et al., 1998a,b). 

Let Mi = {Mi(p, q),p = l , . . . , i^,g = l, . . . ,Qi} be two images, i = 1,2. Some-
times, M i is referred to as the source and M2 as the target image. We want to find 
an affine (linear) transformation such that the mean sum of squares, 

5 = ιΓΤΐ Σ tMifr' «) - vM^fo+fop+fo^ fo+fop+foti - d2 ' (12·21) 
1 ' (P,Q)€M 
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is minimum. Sometimes (12.21) is referred to as the mean-squared error (MSE) 
criterion or cost function. Eight parameters are to be determined: the intensity shift 
(μ), the scale intensity (z/), and the vector of affine parameters, β = (/3l5 ...,/36)'. 
Integer indices p and q must satisfy the following restrictions: 1 < p < Pi , 1 < 
q < Qi, 1 < ßi + ß2P + ßsQ < -P2, 1 < /?4 + ß5p + /36<? < Q2. Apparently, indices 
for the target image must be rounded to the nearest integer unless the values are 
interpolated. The set of pairs (p, q) that satisfy these restrictions constitutes the 
set .M, so the summation in (12.21) is over all pairs (p, q) G Ai. Since the number 
of terms in the sum depends on the affine parameters, we normalize it dividing by 
the number of elements in the set, \M\ . Therefore, S is the mean-squared error 
(MSE) criterion . An implicit assumption of (12.21) is that the variance is constant, 
otherwise a weighted MSE criterion should be used. Parameters β2 and β6 control 
image zooming or shrinkage; parameters β3 and β5 control rotation; parameters βχ 

and β4 control image translation (shift). An advantage of affine transformation is 
that no restrictions are imposed on β. If one wants to allow only translation and 
rigid transformation (rotation and resizing), six parameters are reduced to four by 
letting ß2 = ße and ß3 = — ß5. If the sizes of the source and target images are 
the same, we come to a nonlinear problem because the coordinates of the target 
image are βλ + p cos Θ + q sin Θ and β4 — p sin Θ + q cos 0, where Θ is the (clockwise) 
rotation angle, see Figure 12.17 for an illustration. As with shapes, the choice of 
transformation should be dictated by the way in which images are sampled. If images 
have the same or close intensity distribution (histogram), we may assume that v = 1 
and μ = 0, which leads to a simpler MSE. 

As is easy to see, criterion S is roughly equivalent to maximization of the correla-
tion coefficient between the two images. Indeed, assuming that the affine parameters 
are fixed, the minimum of (12.21) in a vector form is attained at the least squares 
solution for v and μ, or more precisely, 

mm in y^(mi t - vrn2i - μ)2 = (1 - r2) ^ ( m i i - mi)2 

E(m H - m i ) K - m2)f_ 
Σ(τη2ί - m2)2 

where r2 is the squared correlation coefficient. This identity implies that instead of 
5, one can maximize (12.22), with μ and v eliminated and with mu substituted for 
by Mi(p, q) and m2i substituted for by Μ2{βλ + β2ρ + /33g,β4 + β5ρ + ß§q). How-
ever, unlike the MSE, (12.22) is not a quadratic function of parameters even after 
linearization. To avoid this nonlinearity, one can alternate between the MSE mini-
mization and v and μ estimation by ordinary least squares. A statistical model-based 
approach to image registration allows the testing of various hypotheses regarding 
the type of registration, e.g. whether images are statistically indifferent up to a rigid 
transformation, see more details in a recent paper by Demidenko (2009). 

12.7.2 Weighted sum of squares 

From a statistical point of view, registration criterion (12.21) implicitly assumes 
that the variance of the difference between the two images is the same (gray level 
independent). Consequently, white will dominate because it has magnitude around 
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255, and black, 0. We can modify the unweighted criterion, S, by adjusting for the 
gray level variance, (12.5). Let hg be the image histogram so that the variance of 
M is proportional to /&M(1 — ^ M ) · Assuming that the two images are independent, 
we arrive at the weighted criterion: 

&w — 
1 

\M\ Σ 
(p,q)eM 

[Mi(p, q) - uM2(ß1 + ß2p + ß3q, ß4 + ß5p-l· ß6q) - μ]2 

w(p, q) 

(12.23) 
with the weight w(p,q) = ΛΜΙ(1 — ^ M J + ΛΜ 2 (1 ~~ ^ M 2 ) as the variance of the 
difference, Μχ — M2. This weight is parameter independent and can be computed 
beforehand. 

In an alternative approach, we assume that the gray values follow the Poisson dis-
tribution, see Section 7.5.1. Since for this distribution the mean equals th evariance, 
we come to the weight w(p, q) = Mi(p, q) + M2(p, q). 

12.7.3 Nonlinear transformations 

Affine transformation may be extended to nonlinear transformation: for example, 
to account for individual variation. Perhaps the easiest nonlinear transformation is 
a quadratic transformation of the form ηχ + j2P + 73<7 + Ί4Ρ2 + 7s<?2 + lePQ- An 
advantage of this transformation is that it is still linear in parameters. Polynomials 
of a higher order can be employed, such as in the package AIR mentioned above. 

I2.7.4 Random registration 

The image registrations discussed so far are rigid because the coordinate system 
of the target image is expressed as a function of the coordinates of the source 
image. In real image comparison and registration, the coordinate system may be 
randomly deformed, as illustrated in Figure 12.18. The aim of this section is to show 
how random registration can be described in the framework of the nonlinear mixed 
effects model studied in Chapter 8. 
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FIGURE 12.18. Regular (rigid) and random registration mapping. The strength of the 
coordinate system deformation (p+6p, q+bq) depends on the standard deviation of random 
bp and bq. 
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In random registration, we assume that the affine vector ß is random and location-
specific. The statistical model for random registration is written in a hierarchical 
fashion. To simplify, we shall assume that the identity for the scale intensity, v — 1, 
and the intensity shift, μ = 0. In the first-stage model, we express the source through 
the target image with random coordinates as 

Mi(p,tf) = M2(ßlM+ß2Mp^ß3pqq,ß4pq+ß5pqp + ßGpqq)+e{piq), (12.24) 

where ßpq = {ßlwß2vvßZwß±wßhvq,ß§vq)' is a six-dimensional random vector 
and ε is a random variable with zero mean. It is assumed that the random affine 
vector ßpq and the error term ε(ρ, q) are independent. In the second-stage model, 
we specify the affine vector as a random vector with unknown means, 

ßpq = ß + bpq, p = l , . . . , P , 9 = l , . . . ,Q, (12.25) 

where bpq is a vector of random effects with zero mean. Following the line of mixed 
model terminology, ßpq is local coordinate-specific and ß is a global or population-
averaged vector of affine parameters. Several assumptions can be made regarding the 
covariance structure. For example, to address spatial correlation, one may assume 
that neighboring elements correlate following the planar autoregression or Markov 
random field scheme 

J K 
hh,pq = 5 Z Σ a3kbh,p+j,q+k + Vh,pq> ^ = 1, 2, ..., 6. (12.26) 

j=-Jk=-K 

This model can be approximated parsimoniously with a Toeplitz covariance matrix 
as in Section 4.3.4; see more details in Section 12.9.1. 

In matrix form, we combine the models (12.24) and (12.25) into one as 

M ! = M 2 ( / 3 + b ) + s . (12.27) 

This is a nonlinear mixed effects model where Μχ is treated as data and M2 as 
a nonlinear function. Although M2 is a discrete function (matrix), we can assume 
that the size of this matrix is large enough to treat it as a continuous function of 
coordinates. To meet this assumption, interpolation methods may be applied. As 
follows from Sections 8.7 and 8.8.2, assuming normal distribution for the error term 
and random effects, Laplace approximation leads to minimization of the penalized 
sum of squares 

| | M i - M 2 ( / 3 + b)| |2 + b / V - 1 b = * m i n , (12.28) 

where cov(b) =σ2Υ and cov(e) =σ 2 Ι . Several approximate methods to estimate 
affine global parameters and covariance matrix V are suggested in Chapter 8. 

12.7.5 Linear image interpolation 

So far, we have assumed that the target image is evaluated at the rounded values 
ßi + ßiP + ßzQ. a n d ß± + ßsP + ß^q- A more precise evaluation is based on im-
age interpolation. Several methods exist, including B-splines (Gonzalez and Woods, 
2002). Here we consider the simplest one—linear interpolation. 
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Mathematically, the problem is formulated as follows. Let a grayscale image be 
given by the matrix M ={M(p,q),p = 1, ...,P,<? = 1, . . . ,Q}. We want to approxi-
mate M(p + a,q + ß) using the M-values at four neighboring points {M{p + 5, q + 
s), s = 0,1, t = 0,1}, where, without loss of generality, a and ß are positive and less 
than 1. To interpolate, we split the unit square into two triangles and then use the 
linear interpolation on each of them (sometimes this process is called triangulation). 
The are two ways to split the square into two triangles—dividing by the diagonal 
(0,1)-(1,0) or (0,0)-(l,l); to be specific, we take the latter. It is elementary to find 
that the triangular interpolation formula is given by 

M(p + a,q + ß) = M(p, q) (12.29) 

f [M(p + 1, (z + 1) - M(p, g + l ) ] a+ [M(p , g+1)-Μ(ρ,ς [ ) ] /3 if i8> a 
+ \ [M(p + l,q)-M(p,q)]a+[M(p + l,q + l)-M(p + l,q)]ßiiß<a 

It is elementary to check that this interpolation is continuous and consists of two 
planes, with the edge at the main diagonal. An example of the triangular interpo-
lation is shown in Figure 12.19 (see the function imageLl). Image interpolation is 
useful when several images of different size are aligned simultaneously, as in Section 
12.8.1. To indicate that an image is linearly interpolated, we use a tilde,~. 

Original 4 x 4 image Linearly interpolated 16x16 image 

FIGURE 12.19. The original 4x4 image and 16 x 16 image linearly interpolated by formula 
(12.29). 

12.7.6 Computational aspects 

Two issues complicate the minimization of the unweighted or weighted sum of 
squares of residuals: (a) we deal with discrete minimization (indices are integers), 
and (b) the function S may have several local minima. If images have different 
sizes, an interpolation may be applied to reduce the discrete nature (Gonzalez and 
Woods, 2002). To exclude false minima, several starting points should be used to see 
whether the minimization converges to the same minimum, see Appendix 13.3 for 
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a general discussion. Below we discuss how to minimize the sum of squares without 
derivatives. 

12.7.7 Derivative-free algorithm for image registration 

In the continuous optimization problem JF(X), where x is a vector with contin-
uous elements, the derivative plays the central role. Indeed, many maximization 
algorithms can be expressed via the update formula x s + i = x s + A sH~1g s , where 
H s is a positive definite matrix, g s = <9F(x = xs)/<9x is the derivative, Xs is the 
step length (typically, Xs = 1), and s = 0,1, . . . . Sometimes, computation of the 
derivative is very complex or even not feasible. Furthermore, in some instances, the 
derivative does not exist. For those who code in FORTRAN, there is a program-
ming technique that generates a subroutine for derivative computation, ADIFOR 
(Bischof et al., 1992). 

Now we discuss a derivative-free optimization technique, or more specifically, a 
derivative-free approach to the sum of squares minimization in nonlinear regression 
suggested originally by Ortega and Rheinboldt (1970). Later, Ralston and Jennrich 
(1978) reinvented the algorithm and called it DUD. This algorithm may be use-
ful when the argument is not continuous but takes integer values as in the image 
registration criteria discussed above. An important by-product result is that this 
algorithm generates the covariance matrix for the registration parameters so that 
various statistical hypotheses may be tested; for example, if the transformation 
is rigid. Parameters v and μ may be eliminated, but then the criterion function 
becomes nonsquare, (12.22). Otherwise, one can alternate between S and Sw min-
imization, when v and μ are held, finding v and μ from linear least squares after 
the transformation parameters are determined. 

The derivative-free algorithm DUD is described as follows. We want to minimize 
the sum of squares (SS) of residuals, 

n 

S(ß)=Y/(yi-fi(ß))2, (12.30) 
i=l 

where ß is the m-dimensional parameter vector and fi — f%{ß) is the regression 
function; some computational detail was discussed in Section 6.1. For example, for 
image registration (12.21), y is the gray level, Μχ, and / is the gray level, M2. 

The Gauss-Newton algorithm usually works well and has the form 

ß,+i =ßs + ( G ' . O ^ G ' . i y - f.), (12.31) 

where G s = di/dß is an n x m matrix evaluated at ß = ßs and f = (/i,..., f n ) ' , 
y — (2/1 ? ••·ΐ2/π)/· Can we avoid derivative computation, or, more specifically, can we 
approximate matrix G by computing values of function / ? Indeed, a finite-difference 
approach does just that using the approximation dfi/dß « (fi(ß+Aßi)—fi(ß))/Aß, 
where 1 is the m x 1 vector of l's and Aß is a scalar. When the components of ß are 
integers, the finite-difference approach is, perhaps, the only way to assess the deriv-
ative, or, more precisely, the relative change (because the derivative is not defined). 
The DUD algorithm suggests an economical way to approximate the derivatives 
based on previous computations of f. Indeed, let the values of the regression vector 
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function be known at P + 1 points, /30, βλ,..., βΡ, and we want to approximate ma-
trix G at ßQ. It is assumed that P >m and the P-f-1 vectors in the m-dimensional 
space are in general position, meaning that vectors {ßp — ß0,p = 1,..., P } have rank 
m. Prom the definition of the derivative, we have 

f p - f 0 ~ G ( / 3 p - / 3 0 ) , (12.32) 

where ΐρ = f (/3 ), for p = 1,..., P. The linear system (12.32) for G has nm unknowns 
and nP equations. If P = m, this system may be solved exactly for G. Otherwise, it 
is overspecified, so, generally, we find G using the weighted sum of squares criterion, 

t r (GA - F) ' (GA - F ) « " 1 =ï min, (12.33) 
G 

where A is an m x P matrix with the pih column ßp — ß0, and F is an n x P matrix 
with the pth column fp — f0. The P x P weight matrix Ω - 1 is positive definite. 
For example, Ω may be a diagonal matrix with the pth diagonal element equal to 
11 fp — fo|| . Then points closer to fo will have more influence on the derivative ap-
proximation. Solving this quadratic optimization problem, we find the LS estimate 
for the derivative of the regression function based on P + 1 function values: 

G = Ρ Ω - 1 Α / ( Α Ω - 1 Α / ) " 1 . (12.34) 

Matrix A has full rank, and therefore matrix AA' is nonsingular. In fact, formula 
(12.34) is quite general and may be applied for derivative approximation of any 
nonlinear function, not necessarily in the nonlinear regression framework. In a spe-
cial case, when P = m, matrix A is square and then G = F A - 1 . This formula has 
a clear finite-difference flavor, just expressed in a matrix form. Thus, for P = m, 
weighting is irrelevant. 

Now, coming back to the SS minimization, substituting (12.34) into the Gauss-
Newton update formula (12.31), we finally obtain the DUD algorithm, 

ßs+1 =ßs + (Α β Ω- 1 Α; ) (Α β Ω- 1 Ρ / ,Ρ .Ω- 1 Α ' β ) - 1 Α.Ω- 1 Ρ /
β (γ - f r t ) . 

Several variations of the DUD algorithm exist. First, one can incorporate the step 
length to provide that the value of the SS drop from iteration to iteration. Second, 
one may use all previous iteration points or just P, closest to the current beta 
vector. Third, for a special case, when P = m and Ω = I, matrix A becomes an 
m x m nonsingular matrix and the derivative matrix (12.34) is approximated as 
G ~ FA" 1 . Then formula (12.34) simplifies to 

/ 3 S + 1 = ßs + A ^ F ^ F ' ^ y - fs0). 

Clearly, G, approximated by (12.34), may be treated as its continuous counterpart, 
and therefore, s2(G'G)~ serves as a covariance matrix estimate for /3, where s2 is 
the minimum SS divided by the degrees of freedom, n — m. 

12.7.8 Example: clock alignment 

In image registration, the choice of the starting point for the affine parameters, /30, 
is very important. It is a good idea to determine this vector from the respective 
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landmarks on both images. We illustrate this technique on clock registration; see 
Figure 12.16. Aligning two 2D figures requires at least three landmarks, assuming 
that all six parameters are unknown. If only a rigid transformation is allowed (ß2 = 
ß6 and ß3 = —/?5), two landmarks would be enough. Generally, more landmarks 
are better. If there are K landmarks on the first and second images, {(xk,yk), k = 
1,..., K} and {(vk, Uk), k = 1,..., K}, we approximate 2K equations, 

xk ~ /?! + ß2vk + ß3uk, yk~ß4 + ß5vk + ß6uk, 

by least squares (if K = 3, this system can be solved exactly). When the target and 
source images are not aligned, the SE = 32.7, and after landmark alignment, SE = 
10.7. 

The R function that plots four clock images in Figure 12.16 and uses landmarks 
for image alignment is shown below. The function matR provides image reflection 
about the y-axis for correct display. Landmark point coordinates for the original 
and target images are in arrays cLl and cL2, respectively. The affine transformation 
parameters are found from the linear least squares that minimizes the Euclidean 
norm between the landmarks on the original and target images. The indices should 
be rounded to avoid image display issues. 

clockFIG=function() 

< 
dumpO'clockFIG", Mc:\\MixedModels\\Chapterl2\\clockFIG.r") 

matR=function(M) #matrix reflection about y-axis 

{ 

nr=nrow(M);nc=ncol(M) 

MR=M 

for(i in l:nc) MR[,nc-i+l]=M[,i] 

return(MR) 

} 

cl <- scan(Mc:\\MixedModels\\Chapterl2\\clockl.pgmM ,what=,,M) 

nrl <- as. numeric (cl [2] ) ; ncl <- as. numeric (cl [3] ) 

Ml <- matrix(as.numeric(cl[5:length(cl)]), nrow = nrl, ncol = ncl) 

c2 <- scan(Mc:\\MixedModels\\Chapterl2\\clock2.pgmM ,what=,,M) 

nr2 <- as.numeric(c2[2]); nc2 <- as.numeric(c2[3]) 

M2 <- matrix(as.numeric(c2[5:length(c2)]),nrow=nr2,ncol=nc2) 

cLl <- matrix(c(327, 148, 376, 256, 269, 344, 128, 

280, 191, 101, 252, 111), nrow = 2) 

cL2 <- matrix(c(302, 154, 349, 258, 245, 343, 108, 

283, 169, 108, 228, 116), nrow = 2) 

cLl <- cLl[, 1:5]; cL2 <- cL2[, 1:5] 

nLcl <- ncol(cLl) 
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for ( i in l:nLcl) { 
i l < - 1 + 2 * ( i - 1) 
i2 < - 2 * i 
X [ i l , 1] < - 1 
X[ i l , 2:3] < - cL l [ l :2 , i ] 
X[i2, 4] < - 1 
X[i2, 5:6] < - cL l [ l :2 , i ] 
} 
xx < - t(X) 7,*°/, X 
xy < - t(X) °/o*°/o as.vector(cL2) 
beta < - b < - solve (xx) 0/0*

0/0 xy 
par(mfrow = c(2 , 2 ) , mar = c ( l , 1, 3 , 1)) 
image(l:nrl, l :nc l , matR(Ml), xlab = "", ylab = "", axes = F, 

col=gray(0:255/255)) 
mtext(side = 3, "Source image", l ine = 0.25, cex = 1.25) 
for ( i in l:nLcl) 
po ints (cLl [ l+2*( i - l ) ] , nc l -cLl [2*i ]+ l , pch = 16, cex = 1.25) 
imaged:nr2, l :nc2, matR(M2), xlab = "", ylab = "", axes = F, 

col=gray(0:255/255)) 
mtext(side = 3, "Target image", l ine = 0.25, cex = 1.25) 
for ( i in l:nLcl) 
po in t s (cL2[ l+2*( i - l ) ] , ncl-cL2[2*i]+l , pch = 16, cex = 1.25) 
del < - matrix(nrow = nrl , ncol = ncl) 
r l < - min(nrl, nr2) 
r2 < - min (ncl , nc2) 

image(l:rl , l :nc l , matR(Ml[1:rl,1:r2]-M2[l:r1,1:r2]),xlab ="", 
ylab = "", axes = F,col=gray(0:255/255)) 

mtext(side = 3, "Difference before alignment",line=0.25,cex=l.25) 
for ( i in l :nr l ) 
for(j in l :nc l ) { 
pi < - round(b[l] + b[2] * i + b[3] * j ) 
ql < - round(b[4] + b[5] * i + b[6] * j ) 
i f (ql > 0 & ql <= nc2 & pi > 0 & pi <= nr2) 
d e l [ i , j ] < - Ml[i, j ] - M2[pl, ql] 
} 
image(l:nrl, l : n c l , matR(del), xlab = "", ylab = "", axes = F, 

col=gray(0:255/255)) 

mtext(side=3, "Difference after alignment",line=0.25,cex=l.25) 
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Problems for Section 12.7 

1. Pick the center of the clock as an additional landmark and redo the image 
alignment (use the clock program). Does it improve the image alignment? 

2. Apply linear interpolation to the image used in the function h i s t g r from 
Section 12.5 (modify the function imageLI for this purpose). Do linear interpolation 
and histogram equalization commute? (Is the order of operation important?) 

3. See the effect of a slight quadratic alignment transformation by modifying the 
function clockROT. 

4*. Write an R function which implements the DUD algorithm. Test your function 
against n l s . 

5. Prove that matrix (12.34) is the solution of minimization problem (12.33). 

12.8 Ensemble of structured images 

Now we develop a statistical model for an ensemble of structured images following 
the line of the shape model developed in the previous chapter. Thus, the issue of 
image registration becomes central. It is assumed that the ensemble consists of N 
independent images {Μ^,ζ = 1, ...,iV} of the same object(s), subject(s), scene, etc. 
It is allowed to have partial images (showing only part of the scene), but the majority 
of images should have commonality. Images may have different size, magnification, 
and viewpoint, so that they are registered up to an affine transformation. Our goal 
is to reconstruct the true object(s), subject(s), scene, or the true image. 

Two kinds of assumptions on image-specific transformations may be taken, fixed 
and random. The first assumption leads to a generalization of the Procrustes model 
described in Section 11.6, and the second assumption leads to a nonlinear mixed 
effects model as a generalization of the shape model of Section 11.6.3. To start, we 
assume that images have the same mean and scale intensity; at the end we relax 
this assumption. 

12.8.1 Fixed affine transformations 

Assuming that the images, up to an unknown fixed transformation, differ from the 
true image by a random error with constant variance, we come to the statistical 
model, 

Mitfn + ßi2p + ßi3q, ßi4 + ßi5p + ßi6q) = M(p, q) + φ , q). (12.35) 

Since images may have different sizes we use the interpolated images indicated by 
a tilde; see Section 12.7.5. Also, in (12.35), we let 

p = 1,..., P = max{P<}, q = 1,..., Q = max{Q<}. (12.36) 

In this model, we treat ßi = {ßn^-^ßi^Y a s a n unknown affine image-specific 
parameter vector subject to estimation. 
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The task is to recover the true image M. If errors {ε} are normally distributed, the 
minimization of the mean-squared error (MSE) is equivalent to maximum likelihood, 

N 

| Χ 7 ί έ Σ [Mi(ßii+ßi2P + ß*q,ßiA + ßi& + ßMq)-M(p,q)] , (12.37) 

where M is the index set such that the sum of squares is well defined: 

M = {(p, q) : 1 < βα + ßi2p + ßi3q < Ph 1 < ßi4 + ßibp + ßi6q < Qi} 

for all i = Ι,.,.,ΑΓ, where (p,q) are from (12.36) and \M\ denotes the number 
of elements in the set. Apparently, the images must have a common intersection 
because otherwise the set Λ4 is null. Obviously, if the affine parameters are fixed, 
the mean image is simply equal to the ensemble average, 

— 1 N ~ 
M(p, ?) = ^ Σ Mi(ßiX + ßi2p + ßi3q, ßiA + ßi5p + ßi6q). (12.38) 

There are two ways to minimize (12.37): (1) alternate between N separate MSE 
minimizations over ßi and then substitute M with the mean (12.38), or (2) minimize 
(12.37) over 6N parameters simultaneously with M in place of M. 

12.8.2 Random affine transformations 

If, due to sampling design, images are taken at random angles and have a random 
size, a model with random affine parameters may be adequate, 

ß^ß + bu b i ~ A f ( / 3 , a 2 D ) , i = l,...iV, (12.39) 

where ß is a known vector, say ß = (0,1,0,0,0,1);. Matrix D is the scaled covariance 
matrix of the random effects b^ and determines how "free" ßi are. The complete 
model is written in hierarchical fashion: the first-stage model is the same, (12.35), 
and the second-stage model is (12.39). Combining these into one model and using 
matrix notation, we obtain a nonlinear mixed effects (NLME) model, 

M<(i9 + b i) = M + e<. (12.40) 

Following the line of argumentation for the random effects shape model of Sec-
tion 11.6.3, model (12.40) requires a large number of images with a relatively small 
matrix D. For example, if images are rotated up to 2π, the model with fixed trans-
formations may be more adequate. 

Several methods of NLME models are discussed in Chapter 8. Laplace approxi-
mation minimizes the penalized MSE, 

1 N ( 2 

7TTT Σ \ Σ ! [Mi (bii+bi2p+bisq>bi4+bi5p+bi6q>> ~ ^ ( P ' 2)] 

+ ( b , - / 3 ) , D - 1 ( b i - / 3 / } . (12.41) 



652 12. Statistical Image Analysis 

If D —> 0, the second term dominates in (12.41), resulting in b^ = ß: All images 
are the same up to a random error ε. If D becomes large, the second term vanishes 
and we arrive at a model with fixed affine parameters, (12.37) and (12.38). 

If images have different scale intensity, independent of transformation, we can 
assume that Vi ~ Λ/^Ι,σ^) and incorporate it into (12.40). The mean intensity 
parameter is unneeded because M is unknown. 

Problems for Section 12.8 

1. Does the fixed affine image transformation reduce to image alignment from the 
previous section when N = 1? 

2*. Develop statistical models for fixed and random rigid transformation of images 
of different size. 

3*. Develop a maximum likelihood estimation of the average true image with 
images observed up to a random rigid transformation. 

12.9 Modeling spatial correlation 

So far we have assumed that components of the error term ε in the image models, 
such as (12.27) or (12.39), are independent. Clearly, this is a very simplifying as-
sumption because in real images neighboring pixels usually correlate. Much research 
has been done in the area of statistics to address spatial correlation (Ripley, 1981; 
Cressie, 1991). Two dominant statistical models for spatial correlation are simul-
taneous and conditional spatial autocorrelation (SAR and CAR). In imaging, the 
stochastic distribution on the plane is called a random field, and the most popular 
stochastic model is called a Markov Random Field (MRF). The latter is a variation 
of spatial autoregression and, similarly to (12.26), can be defined as 

J K 

ε(ρ,θ)= Σ Σ aJke(P^J^ + k)+v(P,Q)^ (12.42) 
j=-Jk=-K 

where {η(ρ, q)} are iid uncorrelated random variables with zero mean, and {otjk,j = 
- J, - J + 1,..., J, k = -K, -K + 1,..., K} are (2 J + l)(2K -f 1) fixed parameters. 
We refer the reader to a collection of papers edited by Chellappa and Jain (1993) 
with various applications of the MRF theory to image models. 

An important observation is that one can express ε through η from (12.42) via 
a linear operator. Consequently, if {η(ρ, q)} has normal distribution, components 
of matrix ε also have joint multivariâte normal distributions with the covariance 
matrix defined by {otjk}· Hence, instead of modeling (12.42), one can model the 
covariance matrix of e. This approach may be more computationally attractive for 
the estimation of spatial correlation parameters, such as a in (12.42). The desir-
able correlation structure is simple enough to derive an estimation procedure and 
complex enough to describe a variety of possible spatial correlations. 

A convenient way to generate a normally distributed random (field) matrix with 
correlated entries is to pre- and postmultiply a matrix with iid elements by fixed 
matrices. Indeed, let η = {ry(p, q),p = 1,..., P, q = 1,..., Q} be a P x Q matrix with 
iid normally distributed elements with zero mean and variance σ2. Let V^ and 
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V # be P x P and Q x Q fixed matrices dependent on some parameter vector, Θ. 
Define 

e = VLVVR, (12.43) 

a P x Q random matrix. The elements of this matrix have zero mean and correlate. 
Matrices V^ and VR should fulfill the following requirements: (1) matrices V # V # 
and V L V ^ are invertible, (2) at Θ = 0 these matrices turn into identity matrices. 
The first assumption excludes matrix deficiency and will be justified later. The 
second assumption means that {ε} become iid as a special case of (12.43). Now we 
derive the distribution and the covariance matrix implied by (12.43) expressed in 
terms of the (PQ) x 1 vector, vec(e). Using the properties of the Kronecker product, 
we obtain 

vec(s) =vec(VL77Vß) = ( V ^ ® Vi,)vec(T7). 

But vec(r7) ~ff (0,a2IpQ), so we find that 

vec(e) ~M (0^ 2 (V ;
Ä V Ä ® V L V' L ) ) . (12.44) 

Now it is clear why the first requirement guarantees that matrix e has a nondegen-
erate distribution. 

Having found the observation matrix ε as the difference between the image data 
and estimated mean, we estimate the parameters of matrices V^ and V# by maxi-
mum likelihood. Since the distribution is normal, the log-likelihood, up to a constant, 
takes the form 

I = -0 .5 {(PQ) In σ2 + In | V ' Ä V ß ® V L V ^ | 

+a- 2 vec , (e ) (V ,
ß V ß ® V L Vt)" 1 vec(e)} . 

Using properties of the Kronecker product, we simplify 

ln\V'RVR®VLV'L\ = l n | V k V Ä | + H V L V i J , 

( V ' . V ^ V ^ ) - 1 = (V'RVR)-1 ® (VLV'L)-1 

and 

vec'(e)(V'ÄVß ® V L Vi) - 1 vec(e) 

Thus, function I can be written as 

I = -0 .5 {ηΐησ2 + In |Q Ä | + In |Q L | + a'hiiQ^e'Qj^e)} , (12.45) 

where n = PQ is the number of image pixels, and 

QR = V'RVR, Q L = V L V ^ . 

One can easily express σ2 through QR and QL as 

σ2 = n - 1 t r (Q^ 1 e / Q^ 1 e ) . (12.46) 
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As is seen from (12.45), the likelihood is easy to express in terms of the PxP and 
Q x Q matrices Q L and Q#, so we can model those, not the original V L and V R . One 
can interpret Q L and QR as standard deviations and V L and V# as variances. The 
log-likelihood function (12.45) is in general form and it requires further specification 
for matrices Q L and QR to estimate parameters of the covariance spatial matrix. 
Several covariance models can be suggested for Q L and QR. Below we develop an 
idea based on the Toeplitz structure used before to model time series in Section 
4.3.4 and shape analysis in Section 11.6.3. 

12.9.1 Toeplitz correlation structure 

A parsimonious way to model matrices Q L and QR is to assume that they have 
a Toeplitz structure, meaning that the elements on the diagonal parallel to the 
main diagonal are the same. In terms of the elementary Toeplitz matrix, Q can be 
expressed as a linear combination with the coefficients subject to estimation: 

K 

Q = I + ^ 0 f e T f c , . (12.47) 
fc=l 

To model various correlation lags, we use the index function kl = k'{k). For instance, 
if the first and the third lags are used, we have Q = I+Ö1T1+Ö2T3, so that fc'(l) = 1 
and fc'(2) = 3. In (12.47), TV is the fc'th elementary Px P Toeplitz matrix, {9k} are 
unknown parameters, and K is the correlation depth. Examples of the elementary 
Toeplitz matrix are (4.115). Several isotropic random fields (Q = Q L = QR) with 
Toeplitz spatial correlation (12.47) for different depth, K, and 9k = 0.9fe, k' = k, 
are shown in Figure 12.20. 

Vertically dependent random fields 

To illustrate, we consider the vertically dependent random fields, that is when the 
columns of matrix ε are independent (ε = VLV a n d V# = I), but the rows correlate 
according to a Toeplitz structure (12.47). If Si denotes the zth column of matrix 
e, we have iid e* ~ jV(0,a2Q), where Q is defined by (12.47), i = l , . . . ,Q. Two 
methods of estimation for {0/-, k = 1,..., K} are suggested below. 

Variance least squares 

According to this method, we estimate the variance parameters σ2 and Θ by min-
imizing the sum of squares of the difference between the empirical and theoretical 
covariance matrices, Section 3.12. Since the empirical covariance matrix is ε ^ and 
the theoretical matrix is σ2(Ι+ Σ öfcTfc/), the variance least squares (VLS) estimate 
minimizes the function 

Q / K 

5 ( σ 2 , η , . . , τ κ ) = Σ * Γ ( Siéi - a2lp-^2rkTk/ 

i = l \ k=l 

where rk = &26k. Differentiating S with respect to σ2 and noticing that tr(T^/) = 0, 
we obtain σ2 = tr(eef)/n. Differentiating with respect to rk, we obtain K linear 
equations which can be solved for τχ, . . . ,τχ as in Section 4.3. 
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K = 1 K = 2 K = 3 K = 4 

FIGURE 12.20. Random isotropic fields with Toeplitz spatial correlations for different 
depth, K, and 9k = 0.9fc. 

T r u e r a n d o m f ie ld V a r i a n c e l eas t s q u a r e s M a x i m u m l i ke l i hood 

FIGURE 12.21. Three vertically dependent random fields. The first is the true random 
field with the left Toeplitz correlation structure. The second and third are generated using 
the variance least squares (VLS) and maximum likelihood (ML) estimates. 
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Maximum likelihood 

Since {ε^, i = 1,..., Q} are normally distributed and uncorrelated, the log-likelihood 
function, up to a constant term, takes the form 

I i | n l n a 2 + Q l n | l + ^ Ö f c T ^ | + ^ ^ ^ ( l + ^ Ö f c T f c , ) ' ε Λ 

Differentiating with respect to σ2, we obtain σ2 = tr(eQ 1ε')/η. The derivatives 
with respect to 6k are 

^ - = -0.b{Qtr(Q-1Tkf)-a-hv(s,Q-1TkfQ-1ei)}, fc = 1, . . . ,# , 

and the second derivatives (j = 1, ...,K) are 

<92/ 

^ Ä = -o.5{-g ir(Q-%'Q-1T,) 
+a- 2 t r ( e / Q- 1 T J /Q- 1 T f c /Q- 1 e ) + a - 2 t r ( s / Q - 1 T f e , Q - 1 T j / Q - 1

£ ) } . (12.48) 

If H is the KxK matrix with the elements {—d2l/d9kd6j}1 the Newton's iterations 
yield 

Ο , + ^ θ , + λ , Η " 1 ^ ) , 5 = 0,1, . . . , 

where Xs is the step length to ensure that the I value increases from iteration to iter-
ation. Matrix H - 1 is the asymptotic covariance matrix for Θ with the variances on 
the diagonal. The value Zk = 6k/SE{ßk) is a characteristic of statistical significance 
and serves as guidance for the choice of the right correlation structure. 

Example 

The two methods of estimation are applied to a vertically dependent random field 
generated with K = 5 and 0k = 0.35 - 0.05/c and σ2 = 0.5, see Figure 12.21. The 
true values, VLS and ML estimates, are shown in Figure 12.22. As the reader can 
see, maximum likelihood yields better estimates; also, the random field generated 
in Figure 12.21 looks closer to the true random field. 

12.9.2 Simultaneous estimation of variance and transform 
parameters 

Spatial correlation modifies previous models for image registration and ensemble of 
images. In particular, the MSE criterion (12.21) or (12.37) will be replaced by the 
weighted MSE. 

To illustrate, we simply assume that we have a uniform image M(p, ς)=μ +ε(ρ, q) 
or in matrix form, M = / X 1 P 1 Q + £ , where ε is the random field defined by (12.43). 
The parameter of interest is the intensity μ. The log-likelihood function for this 
image model is given by (12.45) with e replaced by M—μΐρΐ^ . Let us assume that 
the matrices Qi, and QR are known. Then the MLE for μ minimizes 

S(p) = ^[(^(Μ-μΙρϊςΥθϊϊΜ-μΙρϊο)]. 
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FIGURE 12.22. Estimation by variance least squares (VLS) and maximum likelihood 
(ML). For this example, the ML estimate is closer to the true Θ. 

Taking the derivative of S with respect to μ, we find the solution as the generalized 
least squares estimator, 

VML — 
1 ' P Q ^ M Q ^ I Q EtQ^MQ^1) 

pq 

(l'pQZ'ipXi'gQ^ig) E Î Q Z ' Î W E Î Q A V 
(12.49) 

Notice that even a simple model for intensity level leads to a weighted mean. For 
a proper estimation, matrices Q L and Q# must be estimated previously and then 
formula (12.49) applied. In the maximum likelihood approach, μ and these matrices 
are estimated simultaneously. Consequently, if two images are aligned, the MSE 
criterion should be replaced by the weighted MSE of the form (12.23), where w(p, q) 
is the (p, #)th element of the inverse covariance matrix. 

Problems for Section 12.9 

1. Does the log-likelihood function (12.45) have a maximum; that is, is model 
(12.43) specified correctly? Does this model turn into a correctly specified model 
with additional restriction tr(Q#) = tr(Qi,) = 1? Maximize Z, given by equation 
(12.45), over Q# and Q L under these rectrictions. 

2. The R function randmat plots 36 simulated images with various spatial correla-
tion structure. Identify what correlation structure is used. What correlation model 
described in this section was used to create those images? 

3. Find the information matrix for the log-likelihood by taking the expectation 
of the Hessian (12.48). 

4*. There are three PGM images of the pine bark in the directory Mc : \\MixedModels 
\ \Chap te r l2 \ \ba rk \ \ . Write an R function that plots the images. Do they look like 
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vertically dependent random fields in Figure 12.21? Can these images be modeled 
via the left Toeplitz correlation structure? Compute correlation coefficients between 
rows and pick those that produce maximum values. These values may be used to 
construct adequate Toeplitz matrices. 

12.10 Summary points 

• Mathematically, a gray image is a P x Q matrix with integer entries that take 
values from 0 (black) to 255 (white). A color image in the RGB format can 
be equivalently represented as three grayscale images: Red, Green and Blue. 

• Image processing is a well-established discipline with a variety of techniques 
to enhance and restore one image at a time. However, statistical aspects of 
image estimation and testing are underdeveloped. For example, least squares 
is used as a criterion of image discrepancy but not as a statistical method 
of estimation of a statistical model. Consequently, the least squares estimate 
(LSE) is rarely accompanied by its standard error as a characteristic of how 
the LSE is sensitive to the data. Statistical hypothesis testing for images is 
not developed either. For example, there is no analogy of a ί-test for images 
when two sample images are compared. 

• Classic statistics deals with numbers; statistical image analysis deals with ma-
trices of numbers. The revolution in digital imaging poses challenging prob-
lems to statistical science. A marriage of image processing and statistics cre-
ates a new discipline, Statistical Image Analysis. This chapter lays out the 
foundation of this discipline using a model-based approach. In the process, 
many techniques of image processing receive a theoretical justification, such 
as histogram equalization and the Karhunen-Loeve transformation. 

• We classify images into two groups: structured and unstructured. Structured 
are images of an object (objects) or easy-to-recognize scene. Unstructured 
are images without content, such as fabric (textures) or microscopic images. 
Consequently, for structured images, image registration typically occurs when 
objects on the first images are aligned with the same objects on the second 
image. Unstructured images are analyzed using gray level distributions and 
histograms. Thus, we say that two unstructured images are the same if they 
have the same gray level distribution. 

• The histogram is a standard tool of image processing and is typically used 
for image enhancement. We apply the cumulative distribution function to 
compare unstructured images. An advantage of the distribution function is 
that several distribution functions can be plotted on one graph—a convenient 
graphical tool for image comparison. A nonparametric Kolmogorov-Smirnov 
criterion was used to test whether two images are the same. 

• We have developed a multinomial distribution for grayscale image. The max-
imum likelihood estimate for the probability that the gray level of a pixel 
takes value g is the histogram value hg,g = 0,1, . . . , 255. Two %2-tests and one 
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likelihood ratio parametric test were developed to test whether two images 
have the same gray level distribution. 

• Entropy is a milestone of information theory. The entropy of a binary message, 
as a sequence of Is and 0s, is zero if the sequence contains only 0 (or 1). The 
entropy is maximum if the probability of 1 appearing is \. Based on the 
multinomial distribution, we have introduced the notion of image entropy. If 
pixels have the same gray level (blank image), the image entropy is zero. 

• We have introduced Entropy Per Pixel (EPP) as a unit for image information, 
EPP = ~Y^hg log2 hg bits. The absolute maximum of EPP is 8 bits and 
it is attained when each gray level has the same probability of occurrence, 
1/256. Hence, a popular image enhancement technique known as histogram 
equalization maximizes EPP. Another application of the EPP concept is used 
to reduce a gray image to a four-gray level image—the thresholds must be 
quartiles of the distribution function. 

• Typically, we deal with an ensemble of unstructured images. Two statistical 
models based on the multinomial distribution were developed in the frame-
work of mixed model methodology: fixed- and random-shift models. These 
are analogs of the fixed and random intercept models studied in Sections 2.4 
and 7.2, respectively. Logit transformation reduces a nonlinear model to the 
linear mixed model extensively studied in Chapters 2 through 4. Especially 
effective is a two-stage estimation method to analyze an ensemble of images. 
In particular, we have demonstrated how to use this method to compare two 
samples of images as a generalization of the standard i-test. 

• Image alignment and registration is essential for content-dependent image 
comparison; for example, when a pixel-by-pixel difference is to be taken. Four 
types of model registration may be suggested: landmark-based, affine, nonlin-
ear, and random (stochastic). In the landmark model, images are aligned such 
that the landmark points from two images coincide or are as close as can be 
solved by least squares. 

• The affine registration model is the easiest and reduces to the mean squared 
error minimization over six affine coefficients (parameters) for a 2D image. 
If the transformation is rigid, it reduces to four parameters. If only rotation 
is required and the size remains the same, we come to a minimization under 
a quadratic constraint. Nonlinear registration is typically used a polynomial 
of a low degree and again reduces to the unconstrained MSE minimization. 
Random registration is the most complicated and can be accomplished via the 
nonlinear mixed effects model estimation of Chapter 8. 

• A precise image registration requires image interpolation. The easiest is the 
linear interpolation, although some more elaborate methods, such as B-splines, 
exist. The derivative-free algorithm for MSE minimization may be preferable 
because we deal with a discrete function and the derivatives do not exist. 
The theory of linear statistical hypothesis testing may be applied to affine 
parameters; for example, to test whether the transformation is rigid. 
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• If several images of the same object or scene are available, the images must be 
aligned first to derive the mean image. Two statistical models for the affine 
parameters can be suggested: fixed and random. The former model assumes 
that the parameters are fixed and unknown and therefore can be found from 
individual MSE minimization. The latter model is more complex and assumes 
that the affine parameters are random with population-averaged values. This 
model leads to a nonlinear mixed effects model, studied extensively in Chapter 
8. In particular, after Laplace approximation, the parameters are found from 
a penalized MSE. 

• A realistic assumption in content-dependent image analysis is to assume spa-
tial correlation that implies treating an image as a random field. Several mod-
els for spatial correlation may be suggested. A parsimonious model uses a 
Toeplitz matrix and can describe complex statistical intra-image dependen-
cies. Methods of estimation developed in the earlier chapters, such as variance 
least squares or maximum likelihood, apply readily. Spatial correlation com-
plicates image alignment and registration because the variance and transform 
parameters must be estimated simultaneously. In particular, instead of the 
mean squared error, one should use the weighted mean-squared error. 

• Statistics should play a more important role in image science—from image 
processing to image reconstruction. For example, little work has been done 
in applying powerful statistical hypothesis testing to image comparison. To-
day, image analysis is method-driven. To make further advances, it should be 
model-driven. A good example of a model-driven image reconstruction is the 
PET model based on the Poisson distribution. Statistical image modeling not 
only yields an efficient fitting method but also generates the covariance matrix 
and/or the likelihood value needed for statistical significance testing, model 
selection, and verification. We strongly believe that a statistical model-based 
image analysis will bring image science to the next level. 
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Appendix: Useful Facts and Formulas 

13.1 Basic facts of asymptotic theory 

13.1.1 Central Limit Theorem 

Let {α^,ζ = 1,2,...} be nonzero numbers and {ε^,ζ = 1,2,...} be independent and 
identically distributed (iid) random variables with zero mean and variance σ2. If 
(a) {ai} are uniformly bounded, i.e., there exists a constant A such that a? < A for 
all i = 1,2,... and (b) there exists a limit limjv->oo -A/"-1

 Σ Ϊ = Ι a? = V > 0, then the 
average 

N 
1 1 
- ] Γ α Α ^ 0 , (13.1) 

N ■ i 

1 V a ^ - ^ a V ) , N->oo. (13.2) 

with probability 1 (almost sure, a.s.), and 

N 

Equation (13.1) is referred to as the Law of Large Numbers (LLN) and (13.2) 
as the Central Limit Theorem (CLT). Convergence with probability 1 (or strong 
convergence) implies convergence in probability (weak convergence), that is, for any 
δ > 0, we have Pr(|ëjv| > δ) —> 0, or symbolically, plirn/v-*oo ëjv = 0. In a special 
case when α̂  = 1, we come to a standard formulation. Under formulated conditions, 
the quadratic convergence also takes place, lim./v->oovar(ëjv) = 0. Equation (13.2) 
means that for any a < 6, the probability that the random variable at the left 

belongs to the interval (a, b) converges to (2nV)~1^2 fa e~%vdx. Sometimes we say 
that the left-hand side of (13.2) is asymptotically normally distributed with zero 
mean and variance V. 

Multivariate formulation: Let {A^,i = 1,2,....} be m x k matrices and {ε^,ζ = 
1,2,...} iid k x 1 random vectors with zero mean and covariance matrix σ2!^. If 
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(a) matrices {A*} are uniformly bounded, i.e., there exists a constant A such that 
tr(A^Ai) <A for all i = 1,2,... and (b) there exists a matrix limit lim;v_>00 iV

_1 J2i=i 
AiA'i = V, where the mxm matrix V is positive definite, then the average vector 
is asymptotically normally distributed, 

1 N 

Λ/ΛΓ 
2 = 1 

as N —> oo, Eicker (1966). We use symbol ~ to indicate the asymptotic distribu-
tion. The multivariate CLT follows from the Lindeberg-Feller conditions (Gnedenko, 
1962; Feller, 1966; Rao, 1973). Often, the multivariate CLT is used in combination 
with the following fact: If w;v is asymptotically normally distributed with zero mean 
and covariance matr ix V , WJV — A/*(0, V ) and R/v are fixed matrices with uniformly 
bounded elements such tha t limjv—oo R;v = R , then R^w^v — Λ/*(0, RVR' ) . 

As an example, we prove tha t if in linear regression yi = /3'χ2· + ε^, the er-
ror terms {si} are iid with zero mean and variance σ 2 and the x2- are m x 1 

fixed vectors, then the OLS estimator, ßoLS — (Σί=ιχίχ-ί)~1(Σί=ι:}ζ:ίνί)ι *s a s " 
ymptotically normally distributed. To apply (13.3), we assume tha t there exists 
a constant A such tha t ||x2 | | < A and l i m i V - 1 Σ^= 1ΧζΧ^ = V , where V is a 
positive definite matrix. Then using the multivariate CLT with k = 1, we obtain 
^(ßoLS ~ß) = (N-1 Zti Χ ; Χ · ) _ 1 ( ^ " 1 / 2 Σ ϋ ι Xi£i)· With certain ambiguity, 
we usually write ßOLS ~ λί(β,σ2(Σ?=1 x^x·)"1)· 

13.1.2 Generalized Slutsky theorem 

Let g(0) be a continuous vector-valued function of the vector argument Θ. The 
Slutsky (1925) theorem says that pl img(0n) = g(plim0n) , or in other words, plim 
and g are interchangeable. In many applications, the function varies with n, so 
we deal with g n (0 n ) . So the question is: Under what conditions are the functions 
and limit interchangeable? Usually, the respective result is formulated in terms of 
uniform convergence. In the theorem below, we show that it suffices for functions 
gn to have uniformly bounded first derivatives, which is easier to check. 

Theorem 48 (Generalized Slutsky Theorem). Let {gn(0), n — 1,2,...} be a se-
quence of continuous functions such that limgn(0) = g(0) for all Θ. Let gn(#) 
have the first derivative, and for any ε > 0 and 0*, let there exist a constant 
A = Α(ε,θ*) that ||<9gn(0*)/d0|| < A for all \\θ — 0*|| < ε and uniformly over 
n — 1,2,.... Let θη be a consistent estimator of #o, namely, plimn_»oo0n = #o> 
then plimn^oo gn(0n) = g(0o). 

Proof. Let ε be any positive number. Using the triangle inequality, it is easy to 
see that 

P r { | g n ( 0 n ) - g ( 0 O ) | | > £} < P r { | g n ( Ö n ) - g n ( 0 O ) | | > ε/2} 

+ P r { | | g n ( 0 o ) - g ( Ö o ) | | > e / 2 } . 

The second term goes to zero when n —> oo. Thus, it suffices to prove that the 
first term vanishes. Using the fact that for any events A and B we have Ρτ(Α) = 
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Pr(A Π B) + Pr(A Π Bc) < Pr(A ΓιΒ) + Pr (£ c ) , we obtain 

Pr{||gn(Ön)-gn(0O)|>£/2} 

< Pr{| |gn(0n)-gn(0o)| >ε /2π | |β η -βο | | <ή (13.4) 

+ Pr{||ön-0o| >ε}. 

Prom multivariate calculus, if ö n — ÖQ < ε, we have 

gn(0n) - g(0o) < 11A max | |dgn/00| | χ 0 n - 0O , (13.5) 
11 \\θη-θ0 \\<ε ·' " 

so that probability (13.4) can be bounded from above by P r { 0 n — 0o > ε/(2Α)}, 

and therefore 

P r { | | g n ( 0 n ) - g ( 0 o ) | > e / 2 } < P r { | | e n - e 0 | > e / ( 2 i 4 ) } 

+ Pr \\\θη-θο > ε }■ 
vanishes when n —> oo. 

This theorem can be generalized to the case when {gn} are stochastic by apply-
ing the Markov and Cauchy inequality to the right-hand side of (13.5). Then we 
need to have £(||dgn(0*)/<90||2) < A for all | | 0 - 0 * | | < e uniformly over n and 

II"" II2 

limn_^00 E 0 n — 0o = 0 . 
We illustrate the generalized Slutsky theorem by proving tha t an estimated GLS 

for LME model (2.28), where the t rue D is replaced with its consistent estimate D , 
is consistent. See also Section 3.6.2, where some issues of the asymptotic theory are 
discussed. In a somewhat tedious but straightforward proof below, we assume the 
deterministic scheme, tha t is, matrices X^ and Z^ are fixed, and matr ix ^ X^X* is 
positive definite. 

Let the elements of matrices {Χ^,Ζΐ} be uniformly bounded when N —» oo, 
and for every nonnegative definite matr ix D , let the positive definite matr ix limit, 
]imN^00N-1Y^^1X^(I + ZiOZ!i)-

1Xi = M(D), exist. Note that we do not re-
quire the number of observations per cluster {r^, i = 1,..., N} to be bounded or go 
to infinity with N. Since under our assumption 

cov(3N) = σ2 ( £ X J ( I + Z i D Z j ) - 1 ^ ) " 1 - 0 

II" II2 

for every D, we have limjv->oo E \\βΝ — β\\ = 0. Let ε be positive and D* positive 
definite. Then, according to the generalized Slutsky theorem, we need to prove that 
the expected value of the norm of the derivative is uniformly bounded in the e-
neighborhood of D*. Let Dpq be an element of D. We want to find A such that 

II " II2 

E \\dß/dDpq\\ < A for all ||D — D*|| < ε and iV, assuming that D is a nonnegative 
definite matrix. Since {X^Z^} are uniformly bounded, the elements of matrices 
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Vi = I + ZiOZ[ and V^ 1 are uniformly bounded as well. Using the chain rule, we 
find that 

dß 
dD. pq 

T-1 ̂ χ^ν-^^ν-^ , τ - 1
 ΣΦΪ1* 

-T-^xivr^ipz^vrVi, 
where T =]Γ)Χί(Ι + ZiDZ;) - 1 X;, and zip and ziq are the pth and qth. columns 
of matrix Z^, respectively. It is elementary to show that under our assumptions 
the elements of matrix T _ 1 are bounded, and since cov(y^) = V$, the quantity 

E dß/dD, pq is uniformly bounded as well. 

13.1.3 Pseudo-maximum likelihood 

Let yi,y2,...,yjv be iid vectors of observations with the common density / = 
/ (y ; /3 , Θ) dependent on a pair of vector parameters (β,θ). It is assumed that the 
parameter of interest is β, and Θ is treated as a nuisance parameter, or the para-
meter of minor interest. For example, in a mixed model, β is the vector of model 
coefficients and Θ is the variance parameter. The joint information matrix is 

X = T 
2)96 
Τθ 

(13.6) 

where 

= _ R ( ^ ) ' 
XR = -E Ίβθ = —E 

d2l \ 
dßde) Te Ε(9Η 

and I = Σ In / is the joint log-likelihood function. Under regular conditions, MLE 

7 = (β ,θ ) , which is the solution to the score equations dl/dß — 0 and dl/δθ = 0, 
is normally distributed as N —► oo, namely, 

7 - 7 = 
ß-ß 
Θ-Θ 

-^(ο,χ- 1 ) . (13.7) 

We admit a certain ambiguity in (13.7) because X is proportional to N, due to the 
iid condition, and therefore X~x —> 0. However, we prefer a more general expres-
sion (13.7) because the results, under appropriate restrictions, remain true when 
observations are not identically distributed. Since we are interested in /3, we may 
explicitly find the asymptotic covariance as 

coy(β) = (Ιβ-Ιβθ1θ Χ'βο) =Χβ +Ιβ ΧβθΟ^ΧβθΙβ , (13.8) 

where 

Cg cov Φ) = (le ΖβθΖβ Ζβθ) 

is the asymptotic covariance matrix of the MLE Θ. If Θ were known, the asymptotic 
covariance matrix of β would be ΤΓ1. This would also be true if Χββ = 0, that 
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is, if the ML estimates ß and Θ were asymptotically independent. An example of 
this situation is the LME model, where the estimates of the model coefficients and 
variance parameters are independent. One can interpret this as saying that the 
estimated GLS is equivalent to the theoretical GLS (2.28); see more discussion in 
Section 3.6.2. 

Pseudo-maximum likelihood is the name for the situation where, in the score 
equation, dl/dß = 0, a consistent and asymptotically normal estimate, 0, rather 
than the MLE, is used (Gong and Samaniego, 1981). The pseudo-MLE, /3, is also 
consistent and asymptotically normally distributed but with a variance larger than 
the MLE variance because the MLE is asymptotically efficient. Parke (1986) derived 
the formula for the asymptotic covariance matrix of the pseudo-MLE, 

cov03) = Iß1 +Iß1IßeCdI'ßeIß\ (13.9) 

where C^ =cov(0) is the asymptotic covariance matrix of Θ. Notice its resem-
blance to formula (13.8). Since the MLE is efficient, C^ > Cg and therefore 

cov(/3) >cov(/3). If the information matrix (13.6) is block diagonal, any consistent 
estimator of Θ will produce a pseudo-MLE asymptotically equivalent to MLE. 

13.1.4 Estimating equations approach and the sandwich formula 

Maximum likelihood yields asymptotically minimal variances if the distribution is 
known. The estimating equations approach is very useful for a nonmaximum likeli-
hood estimation, where an estimator is defined as the solution to a system of non-
linear equations. The core of this approach is the estimating function. Historically, 
the estimating equations approach emerged as a robust technique and is referred to 
as M-estimation and the corresponding M-estimator (Huber, 1967, 1981). We rec-
ommend a recently published paper by Stefanski and Boos (2002) for a transparent 
introduction to M-estimation and a book by Schervish (1995) or a collection of pa-
pers in Matyas (1999) for a rigorous discussion. Maximum likelihood is a special 
case of the estimating equations approach, with the estimating equation equal to 
the score equation. It is not our goal to provide complete coverage of the estimat-
ing equations approach, particularly in the presence of nuisance parameters; the 
interested reader is referred to a paper by Yuan and Jennrich (2000). Instead, we 
would like to draw a big picture and present the key results while putting technical 
details aside. The sandwich formula plays the central role because it computes the 
asymptotic variance-covariance matrix of the M-estimator. 

Theorem 49 Let yi , . . . , y AT be iidnxl random vectors with a common distribution 
dependent on an unknownm-dimensionalparameter7. Let Ψ = Φ(γ ,7 ) be anmxl 
vector function defined on Rn x Rm, the estimating function. It is assumed that Φ 
is a continuous function with a piecewise derivative such that 

£ 7 * ( y , 7 ) = 0. (13.10) 

Also, it is assumed that ΕΊΦ(γ, 7 J = 0 implies that 7* = 7. Let 7 ^ be the solution 
to the estimating equation 

N 

Σ φ ( * . 7 ) = 0 . (13.11) 
i=l 

Then, when N —> 00: 
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1. 7JY is a consistent estimator 0 /7 . 

2. 7JV has an asymptotic multivariate normal distribution, 

VN(7N - 7) * M (0, A ^ B A ' " 1 ) , (13.12) 

where 

X=K,{^j, Β = β 7 ( Φ Φ ' ) , (13.13) 

assuming that the expectations exist and matrix A is invertible. 

The major condition for an estimating function to produce a consistent and as-
ymptotically normally distributed estimate is to have zero expectation, £"Φ = 0. 
Thus, sometimes we speak of unbiased estimating equations. 

Notice that the theorem is formulated under the iid assumption. Often, the esti-
mating function depends on covariates/explanatory variables {x^}· We assume that 
{x^} are iid, as in the stochastic scheme of Section 3.6.2 with the common distribu-
tion not dependent on parameter 7. Then we have Φ^ = Φ(γ ,7 ; χ ΐ ) , and condition 
(13.10) is rewritten as Ε(Φί) = E"(\I>(y,7;xJ|xi) = 0. Thus, although yi|xi are not 
iid, {y^} are iid and Theorem 49 applies. The theorem can be reformulated for the 
deterministic scheme, but it would require more technical detail, such as the exis-
tence of lim^^oo N - 1 Σ ί = ι ^ί' However, the major condition on the unbiasedness 
of the estimating functions, ΚγΦ* = 0 for all z, remains. 

Remarks 

• In the expectation ΕΊΦ(γ, 7*), it is assumed that the true parameter is 7, and 
7* is any other vector from the parameter space. From the implicit function 
theorem of calculus, it follows that if matrix A is nonsingular, then in a 
neighborhood of 7* the solution of £77Φ(γ,7#) = 0 is 7* = 7. 

• In words, an M-estimator is consistent if the expected value of the estimating 
function is zero. If the expected value of the estimating function is not zero, 
the M-estimation produces a biased estimator (sometimes it is called a biased 
estimating equations-, Carroll et al., 1995). Specifically, the M-estimator con-
verges to 7* which is the solution to the vector equation, £?7Φ(γ,7, | ί) = 0. A 
biased estimating equation produces a systematically biased estimate. If 7 is 
the true parameter and Ε"Φ φ 0, the EE estimates from (13.11) converge to 
7* as the solution to a nonlinear equation ΕΊΦ(γ,Ύ^)= 0. We applied this 
fact to find the bias of the Lindstrom-Bates estimator for a mixed exponential 
model of Section 8.9.4. Thus, to find an asymptotic bias, one needs to solve 
a nonlinear equation for 7*. Approximately, 7* = 7 — A - 1 i £ ^ ( y , 7) , where 
matrix A is defined in (13.13). 

Sandwich formula refers to the asymptotic covariance matrix of the M-estimator, 

-v (7„) - ( f^) ( Σ ^ Φ ^ ) ) ( Σ ^ ) · (IS·") 



13.1 Basic facts of asymptotic theory 667 

It is called "sandwich" because matrix B is between two matrices (Stefanski 
and Boos, 2002 call matrix A "bread" and matrix B "meat"). A robust (or 
empirical) version of the sandwich formula is 

»,«<Ë§f(Ë.*)(Ë§f. « 
where Φί = *(yj,7jv)· This formula can be justified by the fact that due to 
the law of large numbers, N'1 £ £ i Φ ^ and iV"1 £ Ü i ΟΨ«/ d'y converge 
to Ε(ΦΦ') and £7(9Φ/07). The advantage of the robust formula is that no 
expectation is taken and therefore no distribution assumption is involved. 

13.1.5 Generalized estimating equations approach 

Often, we are interested only in parameter /3, which is a part of the total vector 
parameter 7 = (/3, 0). For example, following our notation, β is the vector of mixed 
model coefficients (major interest) and Θ is the random effects variance parame-
ter (minor interest, or nuisance parameter). If there exists a (perhaps simplified) 
estimator Θ and β is estimated by maximum likelihood, the pseudo-MLE may be 
employed. In this section we move farther from ML by assuming that parameters 
are estimated using an estimating function as the solution to an equation. 

The generalized estimating equations (GEE) approach is applied to the situation 
when there are two groups of parameters, β and Θ. Parameter β is viewed as the 
primary parameter and parameter Θ as minor interest, β is estimated from an 
estimating equation where Θ is replaced by a consistent estimate 0, namely, 

N 

Χ > ( ν , , / 3 , β ) = 0. (13.16) 
i=l 

Thus, GEE can be viewed as a generalization of pseudo-MLE, where instead of the 
score equation, we use a different equation as an estimation device for the primary 
parameter. Generally, substitution of 0 with 0 should cause estimation of β to 
deteriorate, but in some special cases the asymptotic covariance matrix of GEE is 
the same as if the true 0 were used. Recall that for pseudo-MLE it was found that 
pseudo-MLE=MLE when Xße = 0. A similar condition requires that for the GEE 
approach, 

Ε^θ=°· (1 3·1 7) 

Namely, under (13.17), the substitution of a consistent estimator 0 in an estimating 
equation for parameter of interest β is equivalent to using the true 0. We illustrate 
GEE and condition (13.17) with a type II nonlinear marginal model of Section 6.3. 

The Iteratively Reweighted Least Squares (IRLS) is a special case of GEE with 
the estimating equation 

N 

^ K K i 9 , Ö ) ( y i - f i ( / 3 ) ) = 0; (13.18) 
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see Section 6.2.3 for more detail. The estimating equation (13.18) is unbiased be-
cause 

E go ΘΘ E{Yi ~fi{ß)) - °' 
assuming that (a) the matrix K^ does not depend on observations y^, and (b) the 
model mean, ΐ%{β) does not depend on Θ. Liang and Zeger (1986) effectively applied 
the GEE approach to a generalized linear model with repeated measurements (see 
Section 7.9). 

13.2 Some formulas of matrix algebra 

There are many excellent books on matrix algebra with a statistical emphasis: Sear le 
(1982), Graybill (1983), Lancaster and Tismenetsky (1985), Fuller (1987), Magnus 
(1988), Harville (1997, 2001), Schott (1997), and Turkington (2002). 

13.2.1 Some matrix identities 

Throughout the book, several matrix identities are used. One of the advantages of 
those matrix formulas is the dimension-reduction feature, as in Section 2.2.3. The 
following set of formulas is borrowed from Smith (1973) and scattered through the 
books on matrix algebra mentioned above: 

(D + A B ) " 1 = D " 1 - D-^AQE + B D " 1 A ) ~ 1 B D - 1 , 

(D + E F E ' ) - 1 = D " 1 - D ^ E ' D ^ E + F ^ ^ E ' D " 1 , 

(D + B ) - 1 = D " 1 - D ^ D " 1 + B " 1 ) - ^ " 1 , 

(D + B ) _ 1 B = I - (D + B ) _ 1 D . 

For example, formula (2.21) follows from the second formula after letting D = I, 
E = Z, and F = D. 

13.2.2 Formulas for generalized matrix inverse 

Generalized matrix inverse is a generalization of the standard matrix inverse to 
singular/deficient and rectangular matrices. Several books cover the topic in depth, 
Albert (1972) and Rao (1973), amomg others. In this section we present some less 
known results on the computation of generalized matrix inverse and matrix func-
tions. We have used generalized matrix inverse extensively in Chapters 2 and 3. 

Let Z be any n x k matrix. We call a k x n matrix Z~ the generalized matrix 
inverse if ZZ~Z = Z. A matrix with this property is not unique. For example, if 
Z = z is a vector column, then z~ is any vector-row such that z~z = 1. Generalized 
inverse has a direct connection to the solution of an underspecified system of linear 
equations. If Zx = y is a system of linear equations, where x is an unknown k-vector 
and y is a known n-vector, then x = Z~y is a solution. 

The Moore-Penrose inverse defines a unique generalized matrix inverse, Z + , with 
the following properties: (a) ZZ + Z = Z, (b) Z + Z Z + = Z + , (c) matrix Z Z + is sym-
metric, and (d) matrix Z + Z is symmetric. Since in this book we use only the Moore-
Penrose generalized inverse, we call Z + the generalized inverse, for brevity. The 
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generalized inverse may be represented as a limit, Z + = limp_>o (Z 'Z+pI ) - 71. In 
two special cases, the generalized inverse reduces to the standard matrix inverse. 
First, if k = n and matrix Z is nonsingular (|Z| Φ 0), then Z+ = Z _ 1 . Second, if 
k < n and matrix Z has full rank k, then Z + = (Z'Z)~ Z'. In particular, if Z = z, 
a vector, then z + = z ' / ||z|| . Another distinctive property of the Moore-Penrose 
generalized inverse is that x = Z + y is a solution of Zx = y with minimal length for 
x. 

Now we consider computation of the generalized inverse. First, let Z be a k x k 
symmetric matrix and |Z| = 0. To fix the idea, we first assume that Z is diago-
nal, Z =diag(zi, 22,..., Zk), possibly with some zero elements on the diagonal. Then 
Z + =diag(,ui,iÄ2,.--,^fc), where Uj = 1/ZJ if Zj Φ 0 and Uj = 0 otherwise. Now 
let Z be any symmetric matrix. Then from eigenvalue decomposition, we can rep-
resent Z = P A P ' , where P is the orthogonal matrix and A is the diagonal matrix 
with eigenvalues of Z on the diagonal. Then Z + = P A + P ' ; the proof is elemen-
tary. Second, let Z be any n x k matrix with k < n. Then it is easy to prove that 
Z+ = (Z'Z)+Z' . 

Eigenvalue decomposition allows us to find a matrix function such as the ma-
trix square root. Indeed, let M be a (symmetric) nonnegative definite matrix. The 
square root, N, is a nonnegative definite matrix such that N 2 = M. Using the nota-
tion N = M 1 / 2 , it is easy to see that M 1 / 2 = P A 1 / 2 P ' , where A1/2 is the diagonal 
matrix with square roots on the diagonal. Compare this with the Cholesky decom-
position M = D 'D, where D is an upper triangular matrix (zero elements under 
the diagonal). The square root definition can be generalized to find other matrix 
functions using the rule / ( M ) = P / ( A ) P . 

13.2.3 Vec and vech functions; duplication matrix 

The vec operator/function is used to represent matrix M as a vector by stack-
ing its vector columns. Thus, if M is a k x m matrix, vec(M) = (Mu, M21,..., 
-Wfci» M12,..., Mkm)' is a km x 1 vector. The vech operator/function is applied to a 
symmetric kxk matrix M by stacking elements of the matrix starting with the main 
diagonal, thus vech contains unique matrix elements, vech(A) = (An, A21,..., A^i, 
A22,..., Afcjfe)'»the k{k-\-1)/2 x 1 vector. These two functions are related via a linear 
operator that can be represented through the k2 x k(k + l ) /2 duplication matrix 
T>k'. for any symmetric kxk matrix we have vec(M) =Dfcvech(M), as discussed in 
Section 3.3. An explicit formula for D& is given by Magnus (1988): let 1̂  be the 
kxl unit vector with zero components except the zth, which is 1, and let u^· (i > j) 
be the k(k + l ) /2 x 1 unit vector with one at position (j — l)fe + i — j(j — l ) /2 . 
Create matrix E^· = 1̂ 1̂ · and define the kxk matrix T^· = Ε# + Eji if i Φ j 
and Tu = Έα if % — j . Then T>k = X^>jVec(Tij)u^·. We have used the duplication 
matrix throughout the book, starting with Section 3.3, where matrix T>£ was intro-
duced: for any symmetric matrix M, we have vech(M) =Z>£vec(M). Many matrix 
operations, such as differentiation, are carried out through the vec function. How-
ever, when it comes to computing the covariance matrix, one needs to deal with 
unique elements of the matrix, and then the vech function is applied. The simplest 
formula using vec is associated with the trace function: 

tr(AB) =vec'(A)vec(B). (13.19) 



670 13. Appendix: Useful Facts and Formulas 

The Kronecker product of an n x m and a / c x p matrix A and B, is denoted by 
A ® B. This is an (nk) x {rap) matrix with the (z,j) block A^B, where i = 1, ...,n 
and j = 1,..., m. We can represent the vec of the matrix product via the Kronecker 
product as 

vec(ABC) = (C' ® A)vec(B). (13.20) 

Sometimes we use a corollary of this formula: vec(AB) =vec(ABI) =(I® A)vec(B) 
or vec(AB) =vec(IAB) = ( B ' ® I)vec(A). It is easy to show that 

ab ' = b ' ® a = a ® b ' , vec(ab') = b ® a (13.21) 

for vectors a and b. The trace of four matrices is linked with the vec operator and 
Kronecker product through the formula 

t r (ABCD) =vec'(D)(A ® C')vec(B'). (13.22) 

We use the following properties of the Kronecker product: 

(A Θ B) ' = 

(A<g)B)_1 = 

( A ® B ) ( C ® D ) = 

tr(A Θ B) = 

| A ® B | = 

= A ' ® B ' , 

= Α ^ Θ Β " 1 , 

= AC <g> BD, 

= tr(A)tr(B), 

= |A | f e |B | p , 

(13.23) 

(13.24) 

(13.25) 

(13.26) 

(13.27) 

where matrices are properly defined. In particular, in the last identity it is assumed 
that matrix A is k x k and matrix B is p x p. 

As an illustration of the vec and vech operators, we solve the Lyapunov equation 
XA + AX = B, where all matrices are square and we want to solve for X. Applying 
the vec operator to an equivalent equation IXA + AXI = B and using identity 
(13.20), we obtain the linear equation 

(Α' (8) I)vec(X) + (I ® A)vec(X) =vec(B). 

Solving this equation, we obtain vec(X) = (Α' ® I + I® A)~ vec(B). If matrices A 
and B are symmetric, then matrix X is symmetric as well. Using the same method, 
the vec operation transforms an equation ]Γ Α^ΧΑ^ = B to a linear equation for 
vec(X). We solved a similar equation in Section 3.11 when the Method of Moments 
(MM) estimator was considered. 

The commutation matrix K n is defined as an n2 x n2 matrix such that Knvec(M) 
=vec(M ;) for every nxn matrix M. Magnus (1988) provides an explicit expression 
K n = J2ij Hij ® H^·, where H^· is the nxn matrix with 1 in the (z, j)th position 
and zeros elsewhere. For the commutation matrix, K n ( A ® B ) = (B® A)K n , where 
A and B have the same size, which justifies the name of this matrix. We have used 
the commutation matrix in Sections 3.3 and 3.10.3. 

13.2.4 Matrix differentiation 
An easy introduction to matrix differentiation with statistical applications is given 
in a paper by Wand (2002). 
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If the matrix M = M(p) is a function of a scalar, the matrix derivative is sim-
ply dM./dp = {dMij/dp,i = l , . . . , ra , j = l , . . . , n} . For example, using the for-
mula dMa/dp = aMa~1(dM/dp), we can prove that f(p) = a/(A-hpI)~1a is 
a decreasing function, where A is a positive definite matrix. Indeed, df /dp = 
- a ' ( A + p I ) ~ 2 a <0 for a φ 0. 

To define matrix differentiation with respect to a vector or matrix, we represent 
the matrix as a vector using the vec function. Let A and B be any arbitrary mxn 
and k x p matrices assuming that A is a function of B; then we define 

dA _ <9vec(A) 
AB = övec(B) ' 

an mn x kp matrix. Let C be an n x g matrix function; then, using formula (13.20) 
the chain rule for matrix differentiation takes the form 

^ - ^ • w ) S ' <ΐ3·28) 
where I is an identity matrix of the appropriate size. As an application of the chain 
rule formula, we find that 

a(I + ZDZ-) = ^ec(ZDZQ = 

<9D <9vec(D) v ; 

Using formula (13.19), we obtain the chain rule for trace, 

M|Q _ f^iyvec(c)+ («yveC(A). 
dB \dvec(B)J v ; ydvecÇB)) v ; 

Another application of the chain rule applies to the formula for the derivative of 
the inverse: 

^ M M " 1 ) , „ , , xXdvec(M) ,T „ . ô v e c i M " 1 ) 

- ( Μ - » Ι ) + ( Ι β Μ ) ^ ^ , (13.30) 

which finally yields <9vec(M_1)/ôvec(M) = —M/_1 0 M _ 1 . Analogously, we can 
derive 

2=2p__Or.ev^, (1,31) 
where Θ is a vector. If M = M(0) is a symmetric matrix as a function of vector 
argument Θ, then <9trM_1/c?0 = (9vec(M)/<90)'vec(M~2). Another application of 
(13.28) in conjunction with (13.30) gives 

0(1 + Z D Z ' ) - 1 , , 

ΘΌ 

where V = I + ZDZ'. 

ΘΌ 
Λ-1-ζ 

= -z'v_1z ® z'v_1z, 
dZ'(l + ZDZ')-iZ _ , ^ ^ ^ ! 
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We use several formulas for determinant differentiation. A general formula has 
the form 

^ = ( H i ) - < A - > · <»*> 
In a special case when A = A(6), where b is a scalar, we have 

d ln |A | ,fdA\ x f x-idA 

vec — vec(A 1) = tr I A — db \ db ) \ db 

For example, as follows from (13.29), 

m n | l ^ D
Z D Z / | = (Z' ® ZOvecCV"1) = vecCZ'V^Z). 

We use matrix differentiation extensively in Chapter 7, where the Total GEE is 
introduced. 

13.3 Basic facts of optimization theory 

Optimization is an important part of statistics. Nonlinear least squares and max-
imum likelihood estimation are the most common examples of optimization sta-
tistical problems. Knowing the basics of optimization theory is a must for a deep 
understanding of how algorithms work and the reasons for their failure. Typically, 
optimization theory is overlooked in statistical courses. The aim of this section is to 
provide basic facts on optimization with a statistical emphasis. More information 
on optimization theory may be obtained from the books by Ortega and Rheinboldt 
(1970), Polak (1971), and Dennis and Schnabel (1983). 

Optimization problems can be classified by two features: domain of optimization 
(continuous or integer) and constrained/unconstrained optimization. Paradoxically, 
integer optimization is usually more difficult than continuous optimization. This 
is because the solution to an integer optimization problem often requires straight-
forward enumeration, whereas continuous optimization may be solved iteratively. 
For example, minimization (or maximization) of a linear function under linear con-
straints is called linear programming. Here we discuss only continuous optimization 
problems. First we discuss the unconstrained problem, and then we touch briefly 
on the unconstrained optimization. 

Let F = JF(U) be a continuous function of u eR™. Maximization and minimiza-
tion are equivalent optimization problems because maximization of F(u) is equiva-
lent to minimization of — F(u). Thus, without loss of generality, it will be assumed 
that we want to find a minimum of F on Rm. Classical minimization theory is de-
veloped for convex function F. We say that F is strongly convex (U-shaped) if for 
any ui φ u 2 £ # m , we have F(Xu1 + (1 - λ)ιι2) < XF(ui) + (1 - X)F(u2) for all 
0 < λ < 1. We say that F is strongly concave (Π-shaped) if F(Xui + (1 — λ)ιι2) > 
AF(ui) + (l — A)F(u2). To shorten, we omit the word strongly. An important feature 
of a convex function is that it has a unique minimum. Similarly, a concave function 
has a unique maximum. An example of a concave function is the log-likelihood func-
tion of a logistic or Poisson regression if the vectors of covariates have full rank, see 
Section 7.1. On the other hand, the log-likelihood function of the probit regression is 
not concave. There is a useful constructive criterion to check if a function is convex: 
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the Hessian (matrix of second derivatives), d2F/du2 should be positive definite at 
any u eR71. Therefore, if the Hessian is positive definite, the minimum is unique; if 
the negative Hessian is positive definite, the maximum is unique. 

Unfortunately, it is quite rare that the optimized function is convex or concave. 
Even a log-likelihood function for an ordinary linear regression y = X/3 + ε, where 
ε ~Λ/"(0,σ2Ι) and matrix X is of full rank, is not concave. Indeed, the log-likelihood 
function is 1(θ) = -Ο.δηΐησ2 - ||y - X/3||2 jo2 with the (ra +1) x (m+1) negative 
Hessian, 

σ 4 Χ'Χ - a 2 X ' ( y - X / 3 ) 
-a2X'(y - X/3) ||y - X/3||2 - 0.5σ2η 

(13.33) 

(Throughout the book, we use the notation H for the negative Hessian, H = 
—d2l/d92.) Obviously, matrix H is not always positive definite because, for exam-
ple, the last element may be negative. This means that the log-likelihood function 
is not concave everywhere, although I has a unique maximum (MLE). However, I is 
concave on "average" in large samples. By this we mean that the expected matrix 
H is positive definite. Indeed, since E ||y — X/3|| = ησ2 and E(y — X/3) = 0, we 
have 

' 74X'X 0 E(H) ,Ο' \σ2η 

a positive definite matrix. The reader probably realizes that Ε(Ή) is the Fisher 
information matrix, which is always nonnegative definite. 

13.3.1 Criteria for unimodality 

Using the standard approach to prove that a function has a unique minimum (is 
unimodal), one shows that the Hessian matrix is positive definite. As indicated 
above, the function may have a unique minimum and yet not have a positive definite 
Hessian. The following result of optimization theory is fundamental yet not well 
known (Demidenko, 1989, 2000). 

Theo rem 50 (Criterion of unimodality). Let F = F(u) be a twice-differentiate 
function ofue i?m such that || u ||—> co implies that F(u) —► oo. / / at each point 
where the gradient is zero, the Hessian is positive definite, then F has a unique 
minimum on Rm (i.e., the function is unimodal). 

Principally, this theorem says that to check whether the function has a unique 
minimum (maximum), one needs to show that the (negative) Hessian is positive 
definite only on stationary points (dF/du = 0), not everywhere, as the standard 
theory suggests. The condition that F approach infinity when the argument goes 
to infinity can be facilitated. 

To illustrate the criterion of unimodality, we apply it to the log-likelihood function 
of the ordinary linear regression considered in the previous subsection. We noticed 
that the negative Hessian (13.33) is not always positive definite, so I is not concave 
everywhere. However, using the criterion of unimodality, we now prove that I has 
a a unique maximum. For this we need to show that H is positive definite where 
dl/dß = 0 and dl/da2=0. The former equation implies that X'(y - X/3) = 0, so 
that the off-diagonal block of H is zero. The latter equation implies that ||y — X/3||2 = 
σ2η, so that the last element is σ2η/2 > 0. Thus, H is positive definite where the 
gradient is zero, and therefore I is unimodal. 
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13.3.2 Criteria for global optimum 
The theory of minimization (maximization) is built on an idealistic assumption 
that the function is convex (concave). This assumption rarely holds in practice, 
particularly in statistics. Indeed, as was shown at the beginning of this section, 
even the log-likelihood function of the ordinary linear regression model is not a 
concave function. On the other hand, the log-likelihood function of the generalized 
linear model is concave, Section 7.1.4. If the maximized function is not concave, it 
may have several maxima. Consequently, all algorithms considered in this book can 
find only a local maximum. Thus, a criterion which verifies that the maximum found 
is, indeed, the global one is very important. As shown by Demidenko (1989, 2000), 
there always exists a positive probability that the sum of squares in any nonlinear 
regression has at least two local minima. The problem of constructing a criterion for 
the global optimum is a difficult mathematical problem. Some ideas for constructing 
such criteria for a nonlinear regression, based on the concept of local convexity, have 
been developed by Demidenko (2000, 2006a, 2008). More curvature of the nonlinear 
regression increases the chance of encountering several local minima of the sum of 
squares (linear regression has zero curvature). The unimodality criterion in general 
form can be formulated as follows: if the value of the sum of squares is less than 
the minimum squared radius of the regression curvature, the local minimum that 
is found is the global one. Sear le et al. (1992) warn that multiextremality of the 
log-likelihood function may emerge even in the simple variance components model. 
The problem of developing relevant criteria for mixed effects models awaits solution. 

Since the existence of several minima (maxima) is a reality, good practical advice 
is to start the iterations from several different parameter values to confirm that 
they converge to the same point. As a word of caution, do not hurry to assert that 
the optimization problem has several local minima (maxima) if iterations stop at 
different locations. Usually, it merely means that the optimization algorithm failed. 
The gradient and angular criteria (see below) may clarify that the points found are 
not the local optima but just where the algorithm is stocked. 

13.3.3 Criteria for minimum existence 

Sometimes, an optimization problem does not have a solution. For example, if in 
logistic regression there exists ß such that /3'x^ > 0 for yi = 1 and /3'xi < 0 for 
Hi = 0, the MLE goes to infinity despite the fact that the log-likelihood is concave. 
In this case, we say that a separation plane exists; constructive criteria to test 
whether such a plane exists are given in Section 7.10. Criteria for the existence of 
the optimum are essential and should be checked before launching an optimization 
process. 

To be specific, let us discuss the minimization problem of -F(u), where u eD. 
Typically, F is a continuous function with continuous derivatives, and the domain 
of minimization, D C i î m , is a convex set. Minimization of F seeks a point u* on 
D such that 

F(u*) = inf F(u) . (13.34) 
u£D 

If D is a compact set (closed and bounded), then u* exists, or more precisely, the 
infimum is attained. However, in statistics, D is seldom a compact set. For example, 
the domain of optimization often coincides with the entire space. To develop criteria 
for existence when D = Rm, Demidenko (1981, 1989, 2000) and Nakamura (1984) 



13.3 Basic facts of optimization theory 675 

introduced the notion of the existence level, 

FE = lim inf F(u) . (13.35) 
r—oo||u||>r 

Since the function under the limit is a nondecreasing function of r, the limit always 
exists (it may be +oo; then FE = oo). Having the existence level, it is_easy to 
verify the existence of the minimum: if there exists uo such that Uo < FE, the 
minimization problem has a solution and u* exists. Moreover, if an iteration process 
starts from uo, the sequence generated by a descending minimization algorithm, 
F(u s +i ) < F(us), has at least_one limiting point. In particular, if the function F 
approaches infinity at infinity (FE = oo), any starting point would be successful in 
this sense. Examples of computation of the existence level for the sum of squares 
of nonlinear regressions of exponential types are given by Demidenko (1996). The 
criterion for the existence of the MLE in the linear mixed effects model is developed 
in Section 2.5. Generalization of the existence level to any convex set D may be 
found in Demidenko (1989). 

13.3.4 Optimization algorithms in statistics 

Since minimization of — F is equivalent to maximization of F, without loss of gener-
ality, we discuss maximization algorithms. We also refer the reader to Section 2.8, 
where the algorithms are discussed in the framework of the log-likelihood maxi-
mization for the linear mixed effects model. To simplify, we shall assume that the 
domain of maximization is the entire space i2m, unconstrained optimization. At the 
end of this section we briefly discuss constrained optimization. 

We classify the optimization algorithms in five categories: (1) Newton-Raphson 
(NR), (2) Fisher scoring (FS), (3) Empirical Fisher scoring (EFS), (4) Fixed-Point 
(FP), and (5) Expectation-Maximization (EM). The first three groups iterate as 

ι ι 5 + ι = ι ι 5 + λ 5 Η Γ ^ , (13.36) 

where s is the iteration index, H s is a positive definite matrix, gs is the gradient 
of F, namely, gs = dF(u = u s ) / 9 u evaluated at u = us; and Xs is a positive 
scalar, the step length, 0 < Xs < 1 used to ensure that at each iteration J F ( U S + I ) > 
F(us). Usually, we start from Xs = 1 and halve it until the function value becomes 
greater than at the preceding iteration. As follows from multivariate calculus, for 
any positive definite matrix H s there exists a positive Xs that increases F if gs 7̂  0. 
The last two algorithms have the recurrence form 

u s + 1 = R ( u s ) . (13.37) 

The distinction between (13.36) and (13.37) is somewhat ambiguous because (13.37) 
can be rewritten in the form (13.36) as u s + i = u s + <JS, letting Ss = R(u s ) — us . 
As follows from (13.36), if iterations converge, they converge to a stationary point, 
i.e., where the gradient vanishes. Indeed, taking the limit of (13.36) as s —* 00, we 
obtain u* = u* + λ*Η~^* , which implies that g* = g ( u j , where lims—oo u s = u*. 
The algorithms mentioned may also be used for an iterative solution of the system 
of nonlinear equations g(u) = 0, e.g., estimating equations discussed in Sections 
7.9. The algorithms are supposed to increase the function value from iteration to 
iteration (ascending algorithms), which ensures that iterations do not diverge. In 
fact, if the starting point UQ is such that the level set {u : F(u) >F(UQ)} is compact 
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(bounded), sequence {u s} generated by (13.36) or (13.37) has at least one limit 
point. A characteristic feature of the EM algorithm is that it ensures an increase in 
the likelihood function value so that the step length is redundant. 

Below, we consider these algorithms and their modifications in some detail and 
indicate where we have applied them. 

Newton-Raphson (NR). For this algorithm H = — 9g/<9u = —d F/du2, assuming 
that this matrix is positive definite. In fact, it is quite rare that this is true for all 
u (then F would be concave). However, one can expect positive definiteness in the 
neighborhood of a maximum. The condition that H must be positive definite is 
a major limitation of this algorithm. Several remedies have been suggested. For 
example, following Marquardt (1963), one may replace H with Η+μΙ , where μ 
is a positive number decreasing to zero as the algorithm progresses (Dennis and 
Schnabel, 1983). In fact, any approximation of H may work if the approximate 
matrix is positive definite. The NR algorithm is especially efficient for concave 
maximization or in the close neighborhood of the maximum. To illustrate, we apply 
this algorithm to an iterative solution of the uni variât e nonlinear equation g(u) = 0 
on (—00, oo). We assume that the first derivative of the function is positive and the 
second derivative is negative (the function g is concave, Π-shaped). Also, we assume 
that limu-too g(u) > 0 and limn^_oo g(u) < 0, provided that the existence of the 
solution u* : g(u*) = 0. Since g is an increasing function, the solution is unique. Let 
h(u) be another function such that h(u) > g(u) and the equation h(u) = 0 is easy 
to solve. Let UQ be the solution to the latter equation. Then, Newton's iterations 
us+i = us + g(us)/g'(us) converge monotonically, us | ÎZ*, S — 0 ,1, . . . In fact, one 
may prove that iterations us+\ = us + g{us)/K converge monotonically, too, where 
constant K is an upper bound of —g'(u), namely, K > —g'(u). We have applied this 
algorithm to VARLINK estimation of the logistic regression with random intercepts 
in Section 7.3.5. One can generalize this method to multivariate u by finding an 
upper bound matrix for H. Thus, if there exists a positive definite matrix K such 
that H < K, then (13.36) transforms into u s + i = u s + A s K _ 1 g s . An advantage of 
this algorithm is that it does not require computation of second derivatives at each 
iteration; moreover, matrix K can be inverted just once. We applied this idea to 
the probit model of Section 7.1.5; the algorithm was called unit step. Although the 
NR algorithm has a fast convergence in a close neighborhood of the maximum, it 
requires computation of second derivatives and may fail when the starting point is 
far from the maximum, so that H is not positive definite. 

Fisher scoring (FS). As mentioned above, the requirement for matrix H is to 
be positive definite. If the maximized function is the log-likelihood, one may take 
matrix H to be the expected negative Hessian or information matrix. This gives 
the FS algorithm. Therefore, the FS algorithm may be viewed as the expected 
NR algorithm, or symbolically, FS = E'(NR). There are two major advantages 
of this algorithm: (a) matrix H is always positive definite, and (b) H _ 1 at the 
final iteration gives the asymptotic covariance matrix of estimated parameters. 
The FS algorithm for nonlinear regression coincides with the Gauss-Newton al-
gorithm and Iteratively Reweighted Least Squares (IRLS) for the Generalized Lin-
ear Model (GLM). See Section 2.11, where this algorithm was applied to the lin-
ear mixed effects model; Section 6.2.3, where the nonlinear marginal mixed model 
was estimated; Section 7.1.4, where the log-likelihood function for GLM was maxi-
mized; and Section 7.9, where GEE was applied to clustered GLM. To illustrate the 
equivalence between IRLS and FS, we consider the problem of estimating parame-
ters of the weighted linear regression using the estimating equation ΣΓ=ιχ*(2/* — 
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xJ/3)iUi(/3) =0, where Wi is the weight. Since E(yi - x£/3) =0, the FS algorithm is 
ßa+i = ßs + ( X ' W s X ) _ 1 X ' W s ( y - X/3J, where W s is the n x n diagonal matrix 
with Wu(ß) =Wi(ß). After some algebra, we see that these iterations can be rewrit-
ten as ß8+1 = ( X / W e X ) " 1 X / W e y . But this is IRLS, which at the 5th iteration 
uses the least squares estimate with the weights from the previous iteration. We 
prefer this algorithm over other algorithms for the log-likelihood maximization or 
estimating equation solution. It is almost as fast as NR but more reliable because 
matrix H is always positive definite. 

Empirical Fisher scoring (EFS). From standard asymptotic theory, it follows that 
-Ε(δ21/δθ2) = E(dl/d0)(dl/dey. Thus, instead of taking the expectation, we can 
estimate the information matrix empirically using only first derivatives. If φ denotes 
the vector of first derivatives of the log-likelihood, iterations (13.36) take the form 
u s + i = u s +À s (X)did£)~ Z]di , or in matrix notation, u s + i = u s +À s (D'D)~ D ' l , 
where D is the n x m matrix with the ith row d£. We applied this algorithm for 
maximum likelihood maximization of logistic regression with random intercepts in 
Section 7.3.1 and the Fixed Sample Likelihood (FSL) approach of Section 7.8.3. The 
advantage of the EFS maximization algorithm is that we do not need to compute 
the second derivatives, and when the sample size is relatively large (say, > 30) this 
algorithm works as efficiently as the exact version does. 

Fixed-Point (FP). This algorithm solves a system of nonlinear equations g(u) = 0 
by recurrence formula (13.37). For a general discussion of this algorithm and, par-
ticularly, the contraction-mapping theorem we refer the reader to a classic book by 
Ortega and Rheinboldt (1970). There are many ways to represent g(u) = 0 equiva-
lently as u = R(u) . The solution is the fixed point of the mapping R : Rm —» i2m, 
which explains the name of the algorithm. The following fact for the univariate 
case may serve as a guideline for finding a successful fixed-point representation of 
the original equation. Let R(u) be an increasing function such that R(0) > 0 and 
limu_^oo R(u) = i?* exists. Then the equation u = R(u) has a unique solution u* 
in the interval (0, i?*). If the starting point is zero, UQ = 0, the fixed-point itera-
tions its+i = R(us) converge to u* from below, us ] u*. If uo = i?*, then us | u* 
as s —> oo. Note that a necessary condition for R to be an increasing function is 
Ä(0) < Ä(oo). 

To illustrate the FP algorithm, we show how to iteratively find a positive solution, 
u, to a quadratic equation u2 + pu = q, where p and q are positive constants. Let 
t be any number such that t > q/p. Then, letting R(u) = (q + tu) /(p + t + ix), we 
see that the equation u = R(u) is equivalent to the original equation. Also, it is 
elementary to check that letting t = q/p, we obtain R(0) = q/(p -f t) > 0, R' > 0 
and lim-u-,οο R(u) = t > R(0). If we start from u$ = 0, the FP iterations produce 
an increasing sequence; if we start from uo = t, the sequence is decreasing. We can 
obtain function R by rewriting the original quadratic equation as UQU + (p + t)u = 
q + tuo and solving for u. 

In a simpler example, we want to iteratively find the square root of a positive 
number, u2 — q. Let t be a positive number, then the equation can be rewritten as 
u = R(u), where 

R(u) = . 
v ; t + u 

The function R is increasing if and only if R(0) = q/t < R(oo) = t. Thus, constant 
t should be chosen such that t2 > #, to ensure convergence of the FP iterations. 
This method is used below to solve a matrix quadratic equation. 
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Let Q be a symmetric positive definite matrix and we want to find a symmetric 
positive definite matrix U such that U 2 = Q, the matrix square root. Higham (1986) 
developed Newton's iterations to solve the matrix quadratic equation U 2 = Q with-
out assuming that Q is symmetric. A noniterative solution based on the eigenvalue 
decomposition was mentioned in Section 13.2.2. Here we suggest FP iterations with-
out the eigenvalue solution. Letting T = >/tr(Q)I, we represent the original equation 
as U = R(U), where 

R(U) = (TU + Q)(T + U ) - 1 , 

suitable for FP iterations. This choice of T guarantees that R(0) = QT~ < R(oo) = 
T and all U have the same eigenvectors as matrix Q. This method can be gener-
alized to solve more complicated matrix equations. We used the FP algorithm for 
the LME model in Section 2.12 and for the Poisson model with random intercepts 
in Section 7.5.9. 

Expectation-Maximization (EM) algorithm is suitable for the likelihood maxi-
mization of a hierarchical model. The algorithm was originally introduced by Demp-
ster et al. (1977) on a systematic basis, although particular applications had been 
known before. See McLachlan and Krishnan (1996) for various extensions and mod-
ifications. In particular, we refer the reader to a review paper by Hunter and Lange 
(2004) where the EM algorithm is viewed in a more general framework of the MM 
(Minorization-Maximization or Majorization-Minimization) algorithm. The EM al-
gorithm gained much popularity in problems with missing data (Little, 2002). The 
advantage of the EM algorithm is that it generates parameter values with increasing 
log-likelihood values. Disadvantages are: (a) that it can be applied only to prob-
lems where the expectation is obtained exactly (in closed-form), and (b) that it 
does not automatically produce an estimate of the asymptotic covariance matrix, 
so additional computations are required. 

13.3.5 Necessary condition for optimization and criteria for 
convergence 

If function F(u), u£Rm has a local minimum or maximum at uo, the first derivative 
vanishes at UQ. Sometimes this is called a first-order condition and uo is called a 
stationary point. If the derivative, g =dF/du is zero at UQ but the function value 
is neither maximum nor minimum, the point is called a saddle point. Since the 
majority of optimization algorithms have the form (13.36), one may stock at a 
stationary point; however, the chance is slim (it is possible to show that, excluding 
pathological cases, the probability of stocking at a saddle point is zero). A good 
check is to compute the Hessian d2F/du2 = — H: If uo is a stationary point and 
H is positive definite, a maximum is attained; if UQ is a point of minimum, H is 
negative definite. It is important to remember that the first-order condition holds 
only for unconstrained optimization. For example, if the function F(u) = 1 — u2 is 
maximized on D = {u : u > 1}, the point u = 1 is maximum but the derivative 
is not zero. However, if the maximum is attained at an open point of D, the first-
order condition works again. If the maximum lies on the boundary, the first-order 
condition should be replaced by the Kuhn-Tucker condition, see Section 2.15.5. 

Next we briefly discuss convergence or stopping criteria. Typically, iterations con-
verge when the change, |Δχ | , is small. What is small? It is better to express the 
convergence in terms of the relative change, |Δχ| / (1+|χ | ) . Indeed, if \x\ close to zero, 
the change is \Ax\ ; if \x\ is large, the change is relative to the absolute value of x. 
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The relative change criterion can be applied to the argument, function value, or gra-
dient. Let ε = 10_ί>, where, say, p = 5. If s and 5 + 1 are two consecutive iterations, 
then in terms of the function value, convergence holds if |Fs+i — Fs\ / ( l + \FS\) < e. 
If l^s+ij —usj\/(l + \usj\) < ε for j = l , . . . ,m, we say that convergence holds 
in terms of the argument or parameter. The value p is interpreted as the number 
of coinciding digits at the two consecutive iterations, so letting p = 5 would mean 
that the first five digits for all parameter values are the same. The same relative 
criterion can be applied to the gradient, 

lllfe+ill-llfelll . . 
1 + lle.ll 

Note that if the log-likelihood function of a mixed model is maximized, the gradient 
involves all parameters, including the variance parameters of the mixed model. 

When the minimization function is the sum of squares, there is an angular cri-
terion for convergence with a clear geometrical interpretation (Bates and Watts, 
1988; Demidenko, 1989). Geometrically, if the sum of squares, S(ß) = ||y — f (/3)|| , 
attains its minimum at /3, the residual vector, e = y — f(/3), is orthogonal to the 
tangent plane specified by the matrix of first derivatives, F = df/dß. Symbolically, 
we write e J_ F^·, where F j is the jth vector column of matrix F. For a better 
interpretation we can compute the cosine angle between e and F j as 

Due to the fact that sin a ~ a for small a, we interpret qj as the deviation from 
the right angle. 

We can adapt this approach to the marginal model of Chapter 6 with the estimat-
ing equation F / V~ 1 (y — f(0)) = 0. Letting K = V _ 1 F , the equation is rewritten 
as K'(y — f (0)) = 0 with the total angular criterion 

where m is the dimension of the parameter vector Θ and e = y — f(0). We prove 
that q < 1 using the inequality tr(AB) < v / t r (A 2 )y / t r (B 2 ) and tr(AB) =tr(BA) 
for any symmetric matrices A and B of appropriate size. Indeed, 

e T i i K ' K ^ K ^ M ï i e ' K Î K ' K J ^ K ' e j M T Î K Î K ' K ^ K W ) 

<-y/ t r (K(K'K)- 1 K'K(K'K)- 1 K' ) V
/ t r (ee 'ee ' ) 

= ^ / t r O K C K ' K ^ K O V f i 1 = Vt^n) \\ef = φ^ ||e||2 . 

Thus, if q < ε , we claim that Θ is the solution to the estimating equation. The total 
angular criterion can be applied to the generalized linear mixed model of Chapter 
7 and to some extent to the general nonlinear mixed effects model of Chapter 8. 
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FP (Fixed-Point) algorithm, 92, 95, 

96, 192, 212, 275, 372, 405, 
675 

frequentist, 2, 7, 38 
FS (Fisher Scoring) algorithm, 28, 79, 

85-87, 93, 95, 115, 221, 239, 
250, 276, 284, 308, 353, 382, 
395, 675, 676 

FSL (Fixed Simulated Likelihood) ap-
proximation, 369, 414, 474, 
486, 629 

full-profile likelihood, 55, 190 

gamma distribution, 8, 261, 377 
Gauss-Hermite quadrature, 345, 368, 

413, 486 
GDET (General Double-Exponential 

Transient) regrowth curve, 568 
GEE (Generalized Estimating Equa-

tions) approach, 309, 321, 384, 
417, 420, 423, 431, 448, 667 

gee library, 423 
GLGC (General Linear Growth Curve) 

model, 201 
GLM (Generalized Linear Model), 332, 

412, 417 
GLMM (Generalized Linear Mixed Model), 

26, 39, 331, 332, 416, 422, 
431, 456, 626, 633 

glmmPQL, 374, 381, 386, 400, 401, 
411 

global minimum, 106, 674 
GLS (Generalized Least Squares), 50, 

55, 57, 61, 65, 71, 442, 446, 
447, 452, 453, 461, 462, 465, 
466, 468, 479, 481, 594, 635, 
663 

GN (Gauss-Newton) algorithm, 308, 
409, 419, 442, 451, 598, 646, 
676 

Gompertz curve, 299 
gradient, 79, 673, 678 
gray image, 582, 608, 610, 618, 623, 

625, 631, 658 
grayscale format, 608, 611, 618 

group deletion, 499 
GT (Gompertz Transient) regrowth curve, 

572 

HAIC (Healthy Akaike Information Cri-
terion), 11 

Heckman method, 383, 398 
Hessian, 11, 79, 80, 82, 84, 85, 140, 

221, 249, 275, 284, 293, 353, 
360, 361, 369, 388, 391, 403, 
414, 510, 516, 673, 678 

heterogeneity, 1, 32, 246, 250, 259, 283, 
285, 289, 312, 401, 541, 554, 
594 

hierarchical model, 1, 4, 7, 21, 38,186, 
316, 376, 484, 585, 631, 644, 
678 

histogram equalization, 623, 624, 658 
homogeneity test, 246, 261, 278, 290 
Huber function, 234, 239 
hyperparameter, 7, 38 

idempotent matrix, 136, 167, 211, 473 
identifiability, 117, 119 
iid (independent and identically dis-

tributed), 2, 61,140, 233, 239, 
326, 362, 376, 459, 462, 579, 
599, 628, 652, 661, 662, 664 

ill-posed problem, 2, 9, 10, 20, 39 
image histogram, 614, 619, 621 
image processing, 608 
image reconstruction, 2, 20, 22, 23, 27, 

39, 607 
improved Laplace approximation, 342, 

365, 430 
in vitro, 299, 543, 565, 575 
in vivo, 299, 302, 539, 543, 566, 570, 

572, 575 
infinitesimal influence (I-influence), 487, 

492, 493, 497, 502, 510, 511, 
525, 529, 536 

influence analysis, 154, 488, 489, 494, 
495, 510, 516, 529, 536 

influential observation, 487, 494, 502, 
516, 536 

information matrix, 79, 84, 85, 293, 
440 

integrate, 338, 347, 348, 354, 355, 368, 
458 

inverse link function, 332 
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inverse problem, 20, 21 
IRLS (Iteratively Reweighted LS) al-

gorithm, 235, 238, 239, 309, 
422, 449, 676 

isotropic shape, 589 

Knonecker product, 46, 84, 86, 124, 
162, 232, 406, 593, 612, 653, 
670 

Kolmogorov-Smirnov test, 614 
Kuhn-Tucker condition, 106, 285, 678 
Kullback-Leibler information, 11 

LA (Laplace Approximation), 10, 342, 
343, 371, 404, 456, 458, 477 

Lagrange function, 147, 159, 205, 257 
landmark, 578, 583, 587, 592, 593, 596, 

605, 648, 659 
large-sample properties, 142, 180 
lattice, 301 
LB (Lindstrom-Bates) method, 450, 

453, 463, 485 
leaf analysis, 29, 601 
Levenberg-Marquardt algorithm, 296, 

442 
leverage, 487, 489, 497, 508, 511, 516, 

521, 529, 532, 536 
LGC (Linear Growth Curve) model, 

185, 189 
likelihood displacement, 488, 493, 536 
likelihood ratio test, 134, 621 
linear image interpolation, 644 
link function, 332 
link-approximation, 338, 339 
lme, 44, 108 
LME (Linear Mixed Effects) model, 4, 

6, 15, 16, 45, 64, 72, 75, 117, 
185, 239, 450, 528, 587 

lme R function, 44, 59, 107, 110, 133, 
148, 228 

lme S-Plus function , 133 
lme4 R function, 111 
lme4 R package, 111, 116 
lmeFS, 107 
lmer, 111 
LMLCS (Linear Model with Linear Co-

variance Structure), 219, 243 
local influence, 488, 492, 495, 529, 536 
location parameter, 233, 235, 267 
log-Gamma distribution, 391, 394 

log-Gompertz curve, 301, 304, 316, 326, 
473, 541 

logistic growth curve, 310, 312, 438 
logistic regression, 66, 246, 333, 335, 

336, 338, 355, 356 
logistic-normal integral, 338 
logit, 336, 353, 369, 377, 429, 627, 659 
longitudinal data, 1, 4, 65, 185, 186, 

220, 224, 243, 331, 417, 431, 
435, 539, 543, 551, 575 

LS (least squares), 24, 26, 470, 498, 
510, 513, 550, 647 

M-estimation, 181, 233, 266, 293, 665 
MA (Moving Average), 224 
MAP (Maximum A Posteriori) esti-

mator, 21, 22 
marginal model, 291-293, 313, 316, 329 
MASS library, 374, 401 
matrix derivative, 317, 671 
maximum absolute error, 337 
mean shape, 578, 585, 589, 596, 597, 

602 
measurement error, 118, 525 
membership test, 151, 581, 585, 600, 

638 
meta-analysis, 6, 87, 211, 212, 245, 247, 

253, 261, 266, 270, 274, 281, 
289, 378 

MINQUE (Minimum Norm Quadratic 
Unbiased Estimator), 93,157 

misclassification, 488, 491, 497, 510, 
516, 518, 521, 536 

misspecification, 215, 243, 291, 393, 
434, 472 

ML (Maximum Likelihood), 9, 10, 22, 
27, 41, 48, 72, 189, 208, 236, 
274, 283, 306, 358, 445, 619, 
629, 651, 656 

MM (Method of Moments), 139, 167, 
170, 174, 178, 192, 193, 195, 
213, 241, 255, 288, 298, 318, 
445, 581, 670 

MMFE (Method of Moments Fixed 
Effects) estimator, 195, 214 

model influence, 488, 492, 497 
Moore-Penrose generalized matrix in-

verse, 51, 52, 77, 122, 195, 
297, 668 

morphology, 577 
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MRF (Markov Random Field), 652 
MRI (Magnetic Resonance Imaging), 

608, 629, 635 
MSE (Mean Squared Error), 177, 257, 

459, 465, 641, 652, 656, 657, 
660 

multidimensionality, 19 
multilevel mixed model, 1, 22, 32, 39, 

88, 220 
multinomial distribution, 619 
multivariate meta-analysis, 229, 245, 

283, 289, 290 

ND parameter space, 48 
negative binomial regression, 391 
nested model, 11, 65, 88, 228 
NLME (Nonlinear Mixed Effects Model), 

434, 439, 440, 477, 484 
nlme package, 43, 48, 107, 116, 149, 

150, 228, 301, 309, 313, 327, 
454, 466, 533 

nlme R function, 294, 302, 305, 309, 
313, 314, 316, 326-328, 454, 
455, 466, 474, 476, 478, 480, 
551, 555, 563 

NLS (Nonlinear Least Squares), 292, 
297,316,442,450,454 

nonlinear regression, 20, 36, 85, 106, 
265, 292, 297, 312, 316, 329, 
434, 442, 454, 468, 470, 481, 
510, 548, 612, 646, 674 

nonnegative definite matrix, 46, 96 
nonstandard hypothesis testing, 133 
NR (Newton-Raphson ) algorithm, 28, 

79, 81, 82,106,115,191, 209, 
243, 249, 283, 324, 337, 353, 
360, 372, 389, 405, 675, 676 

nuisance parameters, 51, 52, 66, 114, 
119, 202, 204, 216, 297, 356, 
359, 382, 402, 464, 584, 587, 
589, 590, 605, 627, 664 

numerical quadrature, 240, 345, 402 

odds ratio, 334 
OLS (Ordinary Least Squares), 13,42, 

50, 248, 274, 315, 353, 388, 
446, 487, 489, 493, 495, 498, 
524, 536, 594, 638, 662 

one-probit approximation, 337 
oscillation, 571, 573 

overdispersion, 376, 377, 379, 386, 391, 
396, 400, 418 

overspecification, 102, 215 

panel data, 1, 6, 37, 65, 114, 331, 386 
parent model, 492 
parsimonious model, 540 
penalized least squares, 17, 20, 23, 25, 

182, 450, 454, 458, 476, 485 
penalized likelihood, 2, 10, 12, 13, 16, 

19, 22, 29, 38, 374, 387, 405, 
416, 431 

perturbation formula, 81,190, 283, 405 
PET (Positron Emission Tomography), 

26, 39, 640, 660 
PGM, 604, 614 
Poisson regression, 27, 39, 67, 335, 387, 

388, 391, 395, 408, 412, 431 
polygon shape, 592, 593 
pooled variance, 161, 211, 242, 297, 

308, 443 
population-averaged, 3, 11, 31, 37, 43, 

291, 308, 328, 362, 375, 396, 
433, 435, 477, 484, 577, 632, 
644, 660 

positive definite matrix, 41, 46 
PQL (Penalized Quasi-Likelihood), 373, 

382, 395, 407, 457, 485 
precision matrix, 54, 226, 231, 403, 

407, 413 
probit model, 333, 334, 382, 383, 407, 

526 
Procrustes shape model, 589, 592, 594 
profile-likelihood confidence interval, 

131, 228 
projection, 23, 27, 39, 63, 101, 136, 

176, 285, 496, 598 
pseudo-MLE, 318, 383, 665, 667 
pseudo-model, 448, 457, 460 

Q-test, 245, 262, 278, 288-290 
quadratic-logistic growth curve, 438 
quiescent cells, 543 

radiation dose, 542, 545, 569 
radiosensitivity parameter, 542, 546, 

549, 568, 573 
radius function, 599 
random affine transformation, 651 
random effects model, 5, 38, 52, 245, 

289, 291, 401, 431, 587, 605 
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random Fourier descriptor, 30, 599, 602, 
605 

random registration, 643 
random shape, 585, 587, 594, 597 
random triangles, 579 
random-coefficient model, 60,119,169, 

185, 217, 301, 605 
random-intercept model, 29, 43, 64, 

128, 155, 165, 170, 174, 355, 
362, 382, 386, 394 

random-intercept model, 226 
random-shift model, 628 
random-size shape, 585, 587 
registration, 640 
regularization parameter, 296 
repeated measurements, 1, 4, 22, 32, 

36, 39, 220, 316, 324, 335, 
417, 435, 608, 609 

RGB (Red-Green-Blue) format, 609, 
658 

rigid transformation, 642 
RK parameter space, 48 
RLGC (Rectangular Linear Growth Curve) 

model, 196 
RML (Restricted Maximum Likelihood), 

56, 62, 70, 72, 96, 129, 139, 
144, 161, 175, 182, 200, 252, 
290, 600 

robust, 233, 235, 239, 243, 266, 270, 
290, 323, 329, 415, 420, 667 

rotation, 31, 577, 589, 593, 597, 602, 
605, 641, 659 

S-Plus, 133, 154, 309, 314, 350, 416 
saddle point, 678 
SAS, 36, 80, 227, 491, 555 
SC (Survival Curve), 541, 545, 572 
scale-irrelevant shape, 586 
scaled covariance matrix, 46, 201, 402, 

434, 447, 485, 651 
scaled variance, 9, 26, 158, 311, 315, 

579, 586 
schizophrenia, 635 
score equation, 27, 62, 86, 191, 213, 

284, 309, 319, 364, 395, 470, 
492, 517, 520, 664 

score test, 134, 225, 378, 380, 400, 431 
second-stage model, 186,188,196, 201, 

206, 207, 211, 212, 216, 242, 

374, 441-443, 445, 447, 485, 
631, 633, 651 

semiparametric statistics, 16 
sensitivity to measurement error, 525 
sensitivity to misclassification, 520 
separation plane, 424, 430, 674 
singular matrix, 97, 102, 141, 176 
Slutsky theorem, 181, 266, 309, 662 
small-sample properties, 135, 137, 316 
smoothing, 16 
source of variation, 4, 42, 246, 586 
spatial aut or egression, 652 
spatial correlation, 652 
star influence, 503, 508 
star shape, 596, 599, 605 
star-influence, 536 
starting point, 72, 93, 94, 103, 115, 

183, 238, 330, 406, 645, 675 
stationary point, 673 
step length, 675 
stochastic asymptotics, 142, 143, 182, 

200, 266, 293, 309, 381 
stopping criteria, 106, 116, 285, 678 
structured image, 650 
subject-specific, 8, 30, 66, 145, 196, 

206, 319, 355, 358, 373-375, 
382, 388, 423, 430, 434, 442, 
450, 484, 541, 577, 596, 626 

synergistic, 558, 562, 575 

tangent plane, 679 
target theory, 543 
TGEE (Total GEE), 321, 324, 410, 

431, 672 
Tikhonov regularization, 10, 20, 25, 

39 
time to regrowth (nadir), 546 
time-series, 6, 47, 220, 224, 435, 524, 

593 
Toeplitz matrix, 32, 224, 587, 593, 632, 

654, 660 
translation, 577, 589, 593, 602, 605, 

638 
triangulation, 584 
TS (Two-Stage) estimator, 442, 452, 

466, 468, 485 
tumor growth delay, 539, 546, 561, 575 
two-probit approximation, 338, 339, 

406 
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type I-III nonlinear marginal model, 
316, 329, 410, 418, 572, 667 

UMM (Unweighted Method of Moments), 
255, 286 

unconstrained optimization, 672, 675 
underspecification, 218 
US (Unit Step) algorithm, 28, 353, 676 
UVLS (Unbiased Variance Least Squares), 

173, 222 

VARCOMP (VARiance COMPonents), 
4, 37, 52, 65, 72, 97, 98, 121, 
134, 135, 162, 167, 169, 176, 
214, 220, 674 

variance components, 4, 52, 56, 65, 72, 
97, 121, 125, 160, 220, 257, 
674 

variance parameters, 22, 41, 46, 62, 
77, 115, 120, 129, 139, 157, 
176, 181, 192, 204, 213, 243, 
254, 292, 294, 314, 321, 329, 
413, 449, 485, 586, 654 

variance-profile likelihood, 9, 53, 65, 
87, 115, 190, 209, 232, 293 

VARLINK estimation, 374, 383, 676 
vec function, 48, 83, 86, 94, 121, 162, 

193, 212, 283, 611, 653, 669 
vech function, 48, 101, 121, 122, 195, 

409, 669 
VLS (Variance Least Squares), 6, 171, 

174, 222, 255, 286, 394, 409, 
418, 449, 586, 654 

weighted NLS, 293 
Western blot, 31 
within (intra)-cluster variance, 1, 37, 

186, 434 
WMM (Weighted Method of Moments), 

255, 287 
working correlation matrix, 394, 417, 

420, 421, 431 

X-infmence, 493, 502, 536 
xyplot, 302, 313, 326 

Y-influence, 493, 495, 502, 536 
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