


Exploring Data Science with  
R and the Tidyverse

This book introduces the reader to data science using R and the tidyverse. No prerequisite 
knowledge is needed in college-level programming or mathematics (e.g., calculus or statistics). 
The book is self-contained so readers can immediately begin building data science workflows 
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the reader. 
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what is being represented

An accompanying R package “edsdata” contains synthetic and real datasets used by the text-
book and is meant to be used for further practice. An exercise set is made available and designed 
for compatibility with automated grading tools for instructor use.
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1
Data Types

Data scientists work with different kinds of data. We have already seen two different types
in the previous chapters: numerical data (e.g., 14 or 1.5) and text data (e.g., "you found
yourself in a wide, low, straggling entry with old-fashioned wainscots").
These different representations of data are often referred to as data types. In this chapter
we will learn about four fundamental data types in R and how the tidyverse can be used
for working with them. They are:
• a whole number, which we call the integer type
• a real number, which we call the double type
• a truth value representing TRUE or FALSE, which R calls the logical type. These are

also often called the boolean type, especially in other programming languages
• a character sequence, which R calls the character type. These are commonly referred to

as the string type.
We will also study two important structures for storing data known as the vector and the
list.

1.1 Integers and Doubles

In this section, we turn to our first two principal data types: the integer and the double.

1.1.1 A primer in computer architecture

The vacuum tubes we mentioned earlier as one of the principal ideas in the early modern
computers had the role of regulating flow of electricity. The architects of the machines used
two conditions, the existence of current and the non-existence of current, for information
coding.
We used the word bit to present the dichotomy, 1 for having the current and 0 for not having
the current. All the computer models that followed used the principle.
An integer type consists of some fixed number of (e.g., 32) bits. In its simplest representation,
one of the bits is used to represent the sign (1 for negative numbers and 0 for non-negative
numbers) and the rest are to represent the absolute value of the number with the power-of-2
denominations.
The power-of-2 denominations consist of the powers of 2 in increasing order starting from
the 0th power (which is equal to 0): 20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 16,….
We call this the binary representation as opposed to the decimal representation as we write
numbers in our daily life.
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For example,

0⋯011101
in the representation is to represent by reading the bits from right to left,

1 ⋅ 20 + 0 ⋅ 21 + 1 ⋅ 22 + 1 ⋅ 23 + 1 ⋅ 24

which is equal to 1 + 4 + 8 + 16 = 29.
This implies that there is a limit to how large a positive whole number or how small
a negative whole number R can accurately represent. If a number should go out of the
range of accurately presentable whole numbers, R switches to a double number using some
approximation.
To represent a double number, computers split the number of bits it can use into three
parts: the sign (1 bit), the significand, and the exponent. How R uses the significand and
exponents in representing a real number is beyond the scope of this text.

(sign) (number significand represents) ⋅ (base)number exponent represents

The representation in the significand part uses the inverse powers of 2: 1/2, 1/4, 1/8, …,
down to a certain value 1/2𝑚, where 𝑚 is the length of the significand part.
By combining these fractional quantities, we can obtain an approximation for a number
between 1 and 2. Like integer, the double type thus has a range of numbers it can record
an approximation.
If you are interested in learning more about digital representations of numbers, sign up for
a course in computer organization and architecture!

1.1.2 Specifying integers and doubles in R

Our brief dive into how integers and doubles are represented boils down to two basic ideas:
• Integers are called integer values in R. They can only represent whole numbers (e.g.,

positive, negative, or zero).
• Real numbers are called double values in R. They can represent whole numbers and

fractions, but there are limitations by how well it approximates some values.
Here are some examples of double values.

1.2

## [1] 1.2

3.0

## [1] 3

1.5 + 2.2

## [1] 3.7
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We can confirm these are doubles using the typeof function.

typeof(3.0)

## [1] "double"

However, for numbers without a decimal point, i.e., integers, R will still treat them as
double.

3 # here is a value that looks like an integer

## [1] 3

typeof(3) # ..but is actually a double!

## [1] "double"

Hence, to create an integer, we must specify this explicitly by placing an L directly after
the number. Here are some examples.

# Some integer values
2L

## [1] 2

1L + 3L

## [1] 4

-123456789L

## [1] -123456789

We can confirm these are integers using the typeof function.

typeof(-123456789L)

## [1] "integer"

Check out what happens when we try placing an L after a decimal value!

3.2L

## [1] 3.2

When a mathematical expression contains a double and an integer, the result is always a
double. The third expression 4L + 1 adds an integer 4 and a double together and so is
double. In the fourth one, 1 is also an integer, and so the result is an integer.

3.5 + 1.2
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## [1] 4.7

3L + 1.3

## [1] 4.3

4L + 1

## [1] 5

4L + 1L

## [1] 5

We can confirm the types using typeof().

typeof(3.5 + 1.2)

## [1] "double"

typeof(3L + 1.3)

## [1] "double"

typeof(4L + 1)

## [1] "double"

typeof(4L + 1L)

## [1] "integer"

1.1.3 Finding the size limit

How big numbers (or negative with big absolute value) can a double represent? To specify
a double number with a large absolute value, we can use the e expression. If you type a
literal that goes beyond the range, R gives you Inf or -Inf to mean that the number is out
of range.
Let’s start with e1000.

-1.0e1000

## [1] -Inf

1.0e1000

## [1] Inf
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So, using whether the result is Inf or not, we can explore around where between the bound-
ary between presentable numbers and non-presentable numbers:

1.0e500

## [1] Inf

1.0e400

## [1] Inf

1.0e300

## [1] 1e+300

1.0e310

## [1] Inf

1.0e305

## [1] 1e+305

1.0e306

## [1] 1e+306

1.0e307

## [1] 1e+307

1.5e308

## [1] 1.5e+308

1.6e308

## [1] 1.6e+308

1.7e308

## [1] 1.7e+308

1.8e308

## [1] Inf
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1.790e308

## [1] 1.79e+308

So, around 1.79e308 is the limit. The quantity is large enough so as to accommodate the
computation we will do in this text.
How about integers? We can do the same exploration, this time appending the character L
at the end of each number literal. We leave this as an exercise for the reader. Keep in mind
that if you supply an integer that is too big, R will present a warning that the value must
be converted to a double.

1.2 Strings

A string is a sequence of characters, which takes its place as our third principal data type.
Formally, R calls such sequences character vectors, where the word “vector” should seem
like gibberish jargon at this point. In this section, we examine the string type.

1.2.1 Prerequisite

There is a variety of operations that are available in base R for manipulating strings. A
part of the tidyverse super-library is the stringr library. We will use a few functions from
stringr here, so let us load this package.

1.2.2 Strings in R

We use a matching pair of double quotations or a matching pair of single quotation marks
(a matching pair of apostrophes) to mark the start and the end of the character sequence
we specify as its contents. An advantage of using the double quotation marks is that single
quotation marks can appear in the character sequence.
Here are some examples of strings.

"This is my first string."

## [1] "This is my first string."

"We love R!"

## [1] "We love R!"

'"Data Science" is a lot of fun :-)'

## [1] "\"Data Science\" is a lot of fun :-)"

Notice that the R substituted the single quotation marks we used for the last literal with
double quotation marks. We can inspect these types as well.
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typeof("We love R!")

## [1] "character"

1.2.3 Conversions to and from numbers

First of all, characters are not compatible with numbers. You cannot apply mathematical
operations to strings even if their character contents are interpretable as numbers.
In other words, "4786" is not the number 4786, but a character sequence with the four
characters, "4", "7", "8", and "6". Knowing that the string can mean the number, we can
generate an integer representing the number using the function as.integer.

as.integer("4786")

## [1] 4786

The as functions are useful also when you want to interpret a string as a double and when
you want to interpret a number as a string.
The functions as.double and as.character convert a string to a double number and a
number to a string, respectively.

as.double("3.14")

## [1] 3.14

as.double("456")

## [1] 456

as.character(3.14159265)

## [1] "3.14159265"

as.character(-465)

## [1] "-465"

1.2.4 Length of strings

If you know the contents of the string, you can count the characters in the sequence to
obtain its length. However, if you do not know or if the string is very long, you can rely on
R to do the counting for you using str_length from the stringr package.

str_length("310A Ungar, 1365 Memorial Drive, Coral Gables, Florida")

## [1] 54
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1.2.5 Substrings

A string is a sequence of characters. Each character composing a string receives a unique
position. Let us consider the following string.

my_string <- "song"

The positioning starts from the left end of the sequence.
• The first position has value 1.
• The four characters of the string, "s", "o", "n", and "g", have positions 1, 2, 3, and 4,

respectively.
• You can specify a string and two positions and obtain a new string consisting of the

characters between the two positions.
For example, the substring from position 2 to position 3 of the string “song” is “on”. We
can use the function str_sub from stringr to retrieve substrings.

str_sub("song", 2, 3)

## [1] "on"

The syntax is str_sub(some_string, start, end) where some_string from which we will
build a substring, start is the staring position, and end is the ending position.
You can omit the ending position if it is the last position of the string.

str_sub("song", 2)

## [1] "ong"

You can also retrieve substrings by searching from the right. If the starting number is less
than -1, R looks at the index starting from the right. For instance, the following extracts
the substring from the third-to-last to last position.

str_sub("song", -3, -1)

## [1] "ong"

If the ending position is smaller than the starting position, the substring is empty.

str_sub("song", 2, 0)

## [1] ""

1.2.6 String concatenation

We may want to combine multiple strings into a single string. We call such action concate-
nation.
Let us consider three strings.
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str1 <- "data"
str2 <- "science"
str3 <- "rocks"

There are two types of concatenation. One type connects strings with no gap, and the other
connects strings with one white space inserted in between. We can perform these actions
using the str_c function from stringr.
Below, we think of concatenating three strings "data", "science", and "rocks" with the two
functions individually.

str_c(str1, str2, str3)

## [1] "datasciencerocks"

str_c(str1, str2, str3, sep = " ")

## [1] "data science rocks"

In the second, we provide a whitespace character " " to the argument sep. The effect
obtained is that each individual word is separated by a space.

1.3 Logical Data

As we stated before, boolean is the data type for logical values, true and false. TRUE is the
value representing true, and FALSE is the one representing false. When you use a number
where R is expecting to see a boolean, it interprets 0 as FALSE and any non-zero as TRUE.
Here are the two values.

TRUE

## [1] TRUE

FALSE

## [1] FALSE

1.3.1 Comparisons

While we can specify a boolean value with a boolean literal, we can use comparisons to gener-
ate boolean values. In the case of numbers, we can compare the values of two mathematical
expressions. Here is an example.

1 + 4 > 7 - 4

## [1] TRUE
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This asks if the value of 1 + 4 is strictly greater than the value of 7 - 4. The former is 5
and the latter is 3, and so the answer to the comparison is in the affirmative. Therefore, the
value of the comparison expression is TRUE.
They represent “is equal to”, “is not equal to”, “is greater than”, “is greater than or equal
to”, “is smaller”, and “is smaller than or equal to”.
There are six possible types of comparisons. We will define these in the following table
using an example with the numbers 6 and 3. Before looking, can you try to guess them all?
Compare your guesses against the table.

Operator Meaning True example False example
< Smaller than 3 < 6 6 < 3
> Greater

than
6 > 3 3 > 3

<= Smaller than
or equal to

3 <= 3 6 <= 3

>= Greater
than or
equal to

6 >= 6 3 >= 6

== Equal to 3 == 3 6 == 3
!= Not equal to 6 != 3 3 != 3

An expression can chain together multiple comparisons with the AND operator &, and they
all must hold in order for the whole expression to be True.
For example, we can express that 1+1 is between 1 and 3 using the following expression.

1 < (1 + 1) & (1 + 1) < 3

## [1] TRUE

You may recall the functions max and min for obtaining the maximum and the minimum from
a group of numbers, respectively. One thing to remember is that the minimum is greater
than or equal to the average, and the maximum is greater than or equal to the average. The
equality holds when the two numbers in the group are all identical. Let us set some numbers
to variables x and y and see what the maximum and the minimum functions produce.

x <- 12
y <- 5
min(x, y) <= (x + y)/2

## [1] TRUE

max(x, y) >= (x + y)/2

## [1] TRUE

How about the equality? Assuming that we have executed the previous section of the code,
we can reuse x and y in the following computation.
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x <- 17
y <- 17
min(x, y) == (x + y)/2

## [1] TRUE

max(x, y) == (x + y)/2

## [1] TRUE

1.3.2 Boolean operations

There are three fundamental boolean operations. They are negation, disjunction, and con-
junction. Negation flips the value of a boolean. Disjunction tests if at least one of boolean
values appearing on a list is true, and conjunction tests if all values appearing on a list
are. R uses symbols !, |, and & for them. Here are some examples of using the boolean
operations.

a <- TRUE
b <- FALSE
c <- TRUE
!a

## [1] FALSE

a | b | c

## [1] TRUE

a & b & c

## [1] FALSE

The roles these operations play are analogous to the roles −, +, and ∗ play in the numbers.

1.3.3 Comparing strings

R can compare strings for equality and non-equality using == and !=. R can also compare two
to see if one is greater than the other and if one is smaller than the other. To compare two
strings, R compares their characters position-wise, starting from the beginning. The position-
wise comparison continues until it reaches a position where no comparison is possible because
either at least one string has no characters remaining or the two strings showing non-
identical pair of characters.
• In the first case, if R has run out of characters on both sides, it asserts that the two

strings are equal to each other; otherwise, the one that has just run out of characters is
smaller than the other.

• In the second case, R examines the character code of the two characters.
R (and any programming language) uses a table of characters where each character has a
unique number. The result of comparing two characters is that if the two characters are not
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equal to each other, then the character with a lower position than the other is smaller than
the other as character.

print("Bach" > "Back")

## [1] FALSE

print("Darth Vader" > "Dark Chocolate")

## [1] TRUE

print("09:00 AM" > "Nine in the morning")

## [1] FALSE

print("data science" > "Data Science")

## [1] FALSE

print("abc" > "ABC" )

## [1] FALSE

The examples below show how R interprets numbers to boolean values.

3.0 == TRUE

## [1] FALSE

-5 == FALSE

## [1] FALSE

0 == TRUE

## [1] FALSE

0 == FALSE

## [1] TRUE

1.4 Vectors

You might have been wondering about the meaning of the [1] that appears when you inquire
about the value of an expression. The square brackets [] in R means the position in a series
of distinct elements known as a vector.
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1.4.1 Sequences

The [1] indicates that the value that follows is the first element of a sequence that contains
the value. Meaning, the value is not a standalone value “per se” but appears as an element
in a sequence. Encompassing a value in a sequence is a distinctive feature of R. In more
technical terms, R uses vectorization to put objects in vectors. Let us see an example of this
in action.
Suppose we have assigned a value of 10 to an object my_vec.

my_vec <- 10

Then a is a vector containing one element, whose value is 10.

my_vec

## [1] 10

The [1] 10 appearing as the output states exactly that. Visually, this looks like:

The way we access an element of a vector is to state the position of the element in the
sequence comprising the vector inside square brackets and attach it after the name of the
vector. So, let us see what my_vec[1] returns. The expression means to refer to the first
element of my_vec, which we know to be 10.

my_vec[1]

## [1] 10

Wait a second, it still says [1] 10! Because a vector is the most primitive information
structure that R uses, there is no smaller structure. This means that you can apply [1] as
many times you want to a.

my_vec[1][1]

## [1] 10

my_vec[1][1][1]

## [1] 10

my_vec[1][1][1][1]

## [1] 10
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my_vec[1][1][1][1][1]

## [1] 10

Since the number inside the brackets specifies a position, you can try a number other than
1. It is only that in the case of a, positions other than 1 do not exist.

my_vec[2]

## [1] NA

my_vec[0]

## numeric(0)

What are these? NA is short-hard for “not available” and means that there is no such thing.
numeric(0) means that it is a vector with no elements. Once you get to length 0, [1] becomes
NA but [0] produces numeric(0).
numeric(N) with N produces a sequence having length N where each element is 0. Here is an
example which creates a vector of six 0s.

my_vec2 <- numeric(5)

We can examine its contents and even change the values. Below we change the values of
my_vec2 at positions 2 and 4 to 2 and 4, respectively.

my_vec2[2] <- 2
my_vec2[4] <- 4
my_vec2

## [1] 0 2 0 4 0

Here is a visualization of the situation.

Let’s play with these vectors a bit more. In addition to specify a single position, you can give
a range of positions, “from here to there”. The syntax for a range specification is FROM:TO
where FROM is the starting position and TO is the ending position.
The code below changes the values for the five positions of series_n and then provides
examples of some range indexing.

my_vec2[1] <- 1
my_vec2[3] <- 3
my_vec2[5] <- 5
my_vec2[1:5]



1.4 Vectors 17

## [1] 1 2 3 4 5

my_vec2[2:4]

## [1] 2 3 4

my_vec2[2:2]

## [1] 2

If the END value is smaller than the START value, the elements appear in the reverse order.

my_vec2[4:1]

## [1] 4 3 2 1

You can use the negative sign in the range and position specification. The - sign means “all
positions other than”. If the negative sign appears with the FROM or the TO index, then the
other index must have the negative sign. In the case of a negative range, the order between
FROM and TO does not matter.

my_vec2

## [1] 1 2 3 4 5

my_vec2[-3]

## [1] 1 2 4 5

my_vec2[-2:-4]

## [1] 1 5

my_vec2[-4:-2]

## [1] 1 5

1.4.2 The combine function

We can create sequences with element specification. The creation of this uses the function
c, which means to “combine”.
The syntax is quite simple. Within the parentheses following the initial c, state the elements
of the series with a comma in between.

c(6, 2, 3)

## [1] 6 2 3



18 1 Data Types

c("data", "science", "rocks", "my", "socks")

## [1] "data" "science" "rocks" "my" "socks"

c(3.0, 4.0, 2.0, 2.2, -4.5, -25.7)

## [1] 3.0 4.0 2.0 2.2 -4.5 -25.7

Using the c construction, you can obtain a subseries of a mother sequence with specific
positions.

my_vec2[c(1,3,4)]

## [1] 1 3 4

my_vec2[c(4,4,3,3,5,3,5,3)]

## [1] 4 4 3 3 5 3 5 3

R retrieves the elements individually, and whether the numbers repeat or whether the
numbers are in order do not matter.

1.4.3 Element-wise operations

Let us look at the combine function more closely. We can define two sequences having the
same lengths using the combine function.

a <- c(2, 3, 4, 5, 1, 6)
b <- c(9, 8, 7, 1, 2, 1)

A very common and useful set of operations when working with vectors is known as element-
wise operations, which work on each element of a vector. Here is an example with element-
wise addition.

a + 1/2

## [1] 2.5 3.5 4.5 5.5 1.5 6.5

To explain what happened, here is a visualization.



1.4 Vectors 19

We can also apply element-wise subtraction, multiplication, division, and remainder.

a - 7

## [1] -5 -4 -3 -2 -6 -1

a * 3

## [1] 6 9 12 15 3 18

b / 2

## [1] 4.5 4.0 3.5 0.5 1.0 0.5

b %% 3

## [1] 0 2 1 1 2 1

These element-wise operations can be applied to two sequences that have the same length.

a + b

## [1] 11 11 11 6 3 7

a - b

## [1] -7 -5 -3 4 -1 5

a * b

## [1] 18 24 28 5 2 6

a / b

## [1] 0.2222222 0.3750000 0.5714286 5.0000000 0.5000000
## [6] 6.0000000
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a %% b

## [1] 2 3 4 0 1 0

You can access some properties of the vector. length, max, and min provide the length of a
vector, the maximum among the elements in a vector, and the minimum among the elements
in it, respectively.

length(a)

## [1] 6

max(a)

## [1] 6

min(a)

## [1] 1

In the case of numbers, the summation of all elements is possible.

sum(a)

## [1] 21

Another important feature of the function c is you can connect two vectors with c. Here
we recall the vectors a and b from earlier and then present the difference between the
component-wise addition a + b and the sequence connection c(a, b).

c(a, b)

## [1] 2 3 4 5 1 6 9 8 7 1 2 1

Since a single value is a vector, connecting a vector with a conspicuously single value are
actually vector concatenation.

c(a, 10)

## [1] 2 3 4 5 1 6 10

c(78, a)

## [1] 78 2 3 4 5 1 6

You can connect more than two elements.

c(79, a, 17)

## [1] 79 2 3 4 5 1 6 17
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1.4.4 Booleans and element-wise operations

Not only can we apply mathematical operations, but also, we can apply comparisons.

a > b

## [1] FALSE FALSE FALSE TRUE FALSE TRUE

a >= 3

## [1] FALSE TRUE TRUE TRUE FALSE TRUE

Once you have a sequence of boolean whose length is equal to the vector at hand, you can
use that boolean sequence (or vector) to select elements to generate subvectors.

a[a > b]

## [1] 5 6

a[a >= 3]

## [1] 3 4 5 6

We can also use element-wise comparisons to count the number of occurrences of a certain
element in a vector. For instance, consider this vector of greetings.

greetings <- c("hello", "goodbye", "hello", "hello", "goodbye")

We can count the number of hello’s that occur as follows.

greetings == "hello"

## [1] TRUE FALSE TRUE TRUE FALSE

sum(greetings == "hello")

## [1] 3

1.4.5 Functions on vectors

R provides programmers with convenient and powerful functions for creating and manipu-
lating vectors.
The mean of a collection of numbers is its average value: the sum divided by the length. Each
of the examples below performs a computation on the vector called temps.

temps <- c(87.5, 87.5, 66.5, 90.0, 65.5, 71.0)
length(temps)

## [1] 6
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sum(temps)

## [1] 468

mean(temps)

## [1] 78

The diff function computes the difference between each adjacent pair of elements in an
array. The first element of the diff is the second element minus the first.

diff(temps)

## [1] 0.0 -21.0 23.5 -24.5 5.5

Following are some more commonly used functions that work over vectors. The list includes
many functions that we have not gone over yet, especially those that work on character
vectors. Learning this vocabulary is an important part of learning R, so refer to this list
often as you work through examples and problems.
Please note: you do NOT need to memorize these!
Each of these functions takes some vector x as an argument and returns a single value.

Function Description
sum(x) Add elements together
prod(x) Multiply elements together
all(x) Test whether all elements are true values
any(x) Test whether any elements are true values
sum(x != 0) Number of non-zero elements

Each of these functions takes some vector x as an argument and returns a vector of values.

Function Description
diff(x) Difference between adjacent elements
round(x) Round each number to nearest integer
cumprod(x) For each element, multiply all elements so far (cumulative product)
cumsum(x) For each element, add all elements so far (cumulative sum)
exp(x) Computes the exponential function
log(x) Computes the natural logarithm of each element
sqrt(x) Computes the square root of each element
sort(x) Sort the elements

The stringr package from the tidyverse provides us a collection of useful functions for
working with character vectors. A full cheat sheet can be found here1, but listed here are

1https://evoldyn.gitlab.io/evomics-2018/ref-sheets/R_strings.pdf

https://evoldyn.gitlab.io
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some of the commonly used ones. Following are functions that take a character vector x as
an argument and return a vector.

Function Description
str_to_lower(x) Lowercase each element
str_to_upper(x) Uppercase each element
str_trim(x) Remove spaces at the beginning and/or end of each element

The following function takes a character vector x with additional arguments but also returns
a vector.

Function Description
str_sub(x, start, end) Extracts a substring from x given by start position and end

position
str_detect(x,
"[:alpha:]")

Whether each element is only letters (no numbers or symbols)

str_detect(x,
"[:digit:]")

Whether each element is only numeric (no letters)

The following functions take both a character vector x and a pattern string to search for.
Pattern strings can be more general like "[:alpha:]" or "[:digit:]" from the above list
(these are also called regular expressions2 or regexp for short, which we won’t cover in detail
:-). Each of these functions returns a vector.

Function Description
str_count(x, pattern) Count the number of times a pattern appears among the

elements of an array
str_which(x, pattern) The indexes of vector x where the pattern is found
str_replace_all(x,
pattern)

Replace all matched patterns in each string

str_detect(x, ^pattern) Whether each element starts with the pattern

The following function also takes a vector x of strings and a pattern string. However, unlike
the above table, this function returns a list. We will cover lists in the next section.

Function Description
str_locate_all(x, pattern) The positions within each element that a pattern is found

The following function is a helpful diagnostic tool to view matched patterns.

2https://github.com/rstudio/cheatsheets/blob/main/regex.pdf

https://github.com
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Function Description
str_view_all(x, pattern) Visualizes all pattern matches in vector x

1.5 Lists

Like vectors, lists also group values together. However, unlike vectors, lists can hold values
that are of different types. For instance:

mixed <- list("apple", 1.5, 2L, TRUE)
mixed

## [[1]]
## [1] "apple"
##
## [[2]]
## [1] 1.5
##
## [[3]]
## [1] 2
##
## [[4]]
## [1] TRUE

It can be helpful to examine the structure inside the list. We use str for this.

str(mixed)

## List of 4
## $ : chr "apple"
## $ : num 1.5
## $ : int 2
## $ : logi TRUE

Lists hold just about anything; they can even contain vectors…

mixed2 <- list(c("asparagus", "arrowroot", "tomato"),
c("mango", "kumquat"),
3.14159)

str(mixed2)

## List of 3
## $ : chr [1:3] "asparagus" "arrowroot" "tomato"
## $ : chr [1:2] "mango" "kumquat"
## $ : num 3.14

…or more lists!
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omg <- list(list(1,1), list(2,2,2), "hello world")
str(omg)

## List of 3
## $ :List of 2
## ..$ : num 1
## ..$ : num 1
## $ :List of 3
## ..$ : num 2
## ..$ : num 2
## ..$ : num 2
## $ : chr "hello world"

1.5.1 Working with lists

Let’s examine the mixed2 list more closely.

mixed2

## [[1]]
## [1] "asparagus" "arrowroot" "tomato"
##
## [[2]]
## [1] "mango" "kumquat"
##
## [[3]]
## [1] 3.14159

[ extracts a sub-list. The result is always a list.

str(mixed2[2])

## List of 1
## $ : chr [1:2] "mango" "kumquat"

We can also subset a list the same way we do with vectors. Remember that the result is still
a list.

str(mixed2[1:2])

## List of 2
## $ : chr [1:3] "asparagus" "arrowroot" "tomato"
## $ : chr [1:2] "mango" "kumquat"

If we wish to extract the vector inside mixed2[2], we must use [[. This extracts a single
component from a list. We can use it to retrieve, for example, the vector of fruits:

mixed2[[2]]

## [1] "mango" "kumquat"
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What if we only wanted the mango?

mixed2[[2]][1]

## [1] "mango"

Yum!

1.5.2 Visualizing lists

The difference between [ and [[ is important, but too easy to confuse. The following visual
will clarify the point.
Suppose that we have the following list a.

a <- list("A big cat", c(1,2,3), 3.14159)

Then we can imagine operations on a as the following:

• a is a list
• a[2] is also a list, this time containing a single element
• a[[2]] is the second component of the list, a vector
• a[[2]][1] is the first element of that vector

Groovy! The “pepper shaker photos” in R for Data Science3 provides another nice visual-
ization of the different ways we can extract pieces from a list.

1.6 stringr Operations

As we mentioned earlier, tidyverse is a collection of packages. One of the packages tidyverse
contains is stringr, which offers a variety of methods for manipulating strings. Like numbers,
a string is a vector of strings with just one string. So, applying a function to a string is the
same as applying a function to a string vector.
Depending on what we are interested in doing, we can classify the functions in stringr into
the following categories:

3https://r4ds.had.co.nz/vectors.html#lists-of-condiments

https://r4ds.had.co.nz
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• Detect Matches: Finding and locating matches of a pattern in each string in a string
vector

• Subset Strings: Extracting subtrings and subvectors from a string vector matching a
pattern

• Manage Lengths: Inquiring about the lengths and padding/trimming the strings
• Mutate Strings: Mutating the strings appearing in a string vector
• Join and Split: Changing the structure of a vector
• Order Strings: Sorting

Be sure to bookmark the stringr cheatsheet4.

1.6.1 Prerequisites

To set up, let us load the tidyverse.

library(tidyverse)

1.6.2 Regular expressions

The pattern matching functions of stringr accept regular expressions.
A regular expression is a string that specifies a collection of strings in a possibly compact
manner. Here are some examples of regular expressions and how one of the stringr functions
str_detect uses it find patterns in string vector c("May 17, 2019", "Certified mail", "FL
33333", "Oppa Locka", "to Mr. Haan", "arrived"). The function str_detect receives two
arguments. The first is a string (or a string vector) and the second is the pattern. The
function returns for each element in the vector, whether the pattern appears. Let us first
define a string vector with the five elements.

s <- c("May 17, 2019", "Certified mail", "FL 33333",
"Oppa Locka", "to Mr. Haan", "arrived")

s

## [1] "May 17, 2019" "Certified mail" "FL 33333"
## [4] "Oppa Locka" "to Mr. Haan" "arrived"

Now you see a bracket with a number other than 1. The [5] states that “to Mr. Haan” is
the fifth element of the vector.
The pattern strings appearing in the following have the following meaning

pattern meaning
"a" any appearance of “a”
"a[iy]" any “a” then one of “i” or “y”
"a$" “a” at the end of string
"^a" “a” at the start of string
"^a.*d$" “a” at the start, any string, and then a “d” at the end

4https://github.com/rstudio/cheatsheets/blob/master/strings.pdf

https://github.com
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pattern meaning
"ppa" “ppa”
"3{4}" “3” repeated four times in sequence
"[aeiou].[aeiou]" one from “aeiou”, some character, and one from “aeiou”

s

## [1] "May 17, 2019" "Certified mail" "FL 33333"
## [4] "Oppa Locka" "to Mr. Haan" "arrived"

str_detect(s, "a")

## [1] TRUE TRUE FALSE TRUE TRUE TRUE

str_detect(s, "a[iy]")

## [1] TRUE TRUE FALSE FALSE FALSE FALSE

str_detect(s, "a$")

## [1] FALSE FALSE FALSE TRUE FALSE FALSE

str_detect(s, "^a")

## [1] FALSE FALSE FALSE FALSE FALSE TRUE

str_detect(s, "^a.*d$")

## [1] FALSE FALSE FALSE FALSE FALSE TRUE

str_detect(s, "ppa")

## [1] FALSE FALSE FALSE TRUE FALSE FALSE

str_detect(s, "3{4}")

## [1] FALSE FALSE TRUE FALSE FALSE FALSE

str_detect(s, "[aeiou].[aeiou]")

## [1] FALSE TRUE FALSE FALSE FALSE TRUE

So, the syntax is:
• use the square brackets to specify a list of characters
• use the curly brackets to specify the number of repetitions
• use the period to specify any character
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• use the caret "\^" and the dollar sign to specify the start and the end of string, respec-
tively

• use \* to specify any number of repetitions, including 0 repetitions.
A useful diagnostic tool to visualize matches against a pattern is the function str_view_all,
which highlights any matches hit by the regular expression. For instance:

str_view_all(s, "[aeiou].[aeiou]", html = TRUE)

In the square brackets you can specify a range using a dash and the caret to mean “not”.
By putting a pair of numbers inside a pair of curly brackets, you can specify a permissible
range of the number of repetitions.
The patterns below mean the following:

pattern meaning
"[a-z]" “a” through “z” at least one
"[A-Z]{2,5}" “A” through “Z” between 2 and 5 times
"[^a-zA-Z]" a non-alphabet
"[0-9]" a numeral

s

## [1] "May 17, 2019" "Certified mail" "FL 33333"
## [4] "Oppa Locka" "to Mr. Haan" "arrived"

str_detect(s, "[a-z]")

## [1] TRUE TRUE FALSE TRUE TRUE TRUE

str_detect(s, "[A-Z]{2,5}")

## [1] FALSE FALSE TRUE FALSE FALSE FALSE
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str_detect(s, "[^a-zA-Z]")

## [1] TRUE TRUE TRUE TRUE TRUE FALSE

str_detect(s, "[0-9]")

## [1] TRUE FALSE TRUE FALSE FALSE FALSE

1.6.3 Detect matches

There are functions in this category.
• str_detect(STRING, PATTERN): As we have seen previously, the function returns a vector

of boolean representing whether the elements of STRING matching PATTERN.
• str_which(STRING, PATTERN): The function works like str_detect but instead of boolean

vector, returns the indexes at which the pattern appears; in other words, at which
indexes, the value of str_detect(STRING, PATTERN) is true.

• str_count(STRING, PATTERN): The function returns for each element of STRING, at how
many different positions the pattern aligns.

• str_locate(STRING, PATTERN): The function finds for each element of STRING, the first
(or the closest to the start of string) match of the pattern and provides the start and
end character positions of the first match as a pair of integers (that is, a length-2 vector
of integers). If there are no matches for an element of STRING, the function returns a
pair of NA.

Let us recall s.

s

## [1] "May 17, 2019" "Certified mail" "FL 33333"
## [4] "Oppa Locka" "to Mr. Haan" "arrived"

Here is the result of finding “[0-9]” in the strings.

str_which(s, "[0-9]")

## [1] 1 3

Here is finding one of “aeiou” and any alphabet and counting the occurrences. Note that in
“to Mr. Haan” there are two places that match the pattern "[aeiou][A-Za-z]", that is “aa”
and “an”. The pattern counting goes by repeating the action of finding the first match and
then asserting the characters leading to the end of the match unusable for finding matches.
With the feature, after finding the first, “aa”, the prefix “to Mr. Haa” is no longer available,
and so “an” does not qualify as a match.

str_count(s, "[aeiou][A-Za-z]")

## [1] 1 4 0 1 1 3

So, if we find three numerals in sequence with no gap, the elements 1 and 3 have exactly
one match each, though there are multiple possibilities for aligning the pattern.
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str_count(s, "[0-9]{3}")

## [1] 1 0 1 0 0 0

1.6.4 Subset strings

Here are the functions in this category.
• str_sub(STRING, START, END): Creates a new vector consisting of the substrings of the

elements of STRING with START and END as the starting and ending positions, respectively.
• str_subset(STRING, pattern): Creates a new vector keeping only those elements in s

matching the pattern.
• str_extract(STRING, pattern): The same as str_subset concerning what to find, but

the function returns a table not a one-dimensional vector. See the examples below to
examine the differences among str_subset, str_extract, and str_match.

str_sub(s, 4, 7)

## [1] " 17," "tifi" "3333" "a Lo" "Mr. " "ived"

str_subset(s, "[a-zA-Z][^a-zA-Z]+[a-zA-Z]")

## [1] "Certified mail" "Oppa Locka" "to Mr. Haan"

str_extract(s, "[a-zA-Z][^a-zA-Z]+[a-zA-Z]")

## [1] NA "d m" NA "a L" "o M" NA

str_match(s, "[a-zA-Z][^a-zA-Z]+[a-zA-Z]")

## [,1]
## [1,] NA
## [2,] "d m"
## [3,] NA
## [4,] "a L"
## [5,] "o M"
## [6,] NA

Both str_extract and str_match have their version for “apply to all matches”, like
str_locate_all. Their names are str_extract_all and str_match_all.

1.6.5 Manage lengths

The following functions belong to this category.
• str_length(STRING): Returns the length of each element.
• str_pad(STRING, WIDTH, side=OPTION, pad=X):Appends the string X to both or either

side of each element of STRING as many times as necessary so as to inflate the length of
element to at least WIDTH. The OPTION is one of "left", "right", and "both" to indicate
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where the padding should occur. They respectively represent “the left side only”, “the
right side only”, and “both sides so as to center the original”. If the original has length
greater than or equal to WIDTH no padding occurs. In the case of “both”, if the number
of necessary padding is an odd number to make the length equal to WIDTH, the right side
receives one more than the left side. The padding sTring X must be a single character.
You may omit the specification part pad= in pad=X.

• str_trunc(STRING, WIDTH, side=OPTION, ellipsis=E): This is in some sense at the
opposite of str_pad. The function shrinks each string to length WIDTH with the single-
character string E for replacement. The side= specification states where the replacement
occurs and should be one of "left", "right", and "center". You may omit the ellipsis=
prefix.

• str_trim(STRING, side=OPTION): Trims the white space at the end. The option value is
one of "left", "right", and "both", which correspond to “the left side only”, “the right
side only”, and “both sides”.

str_length(s)

## [1] 12 14 8 10 11 7

str_pad(s, 11, side="both", pad=".")

## [1] "May 17, 2019" "Certified mail" ".FL 33333.."
## [4] "Oppa Locka." "to Mr. Haan" "..arrived.."

str_pad(s, 10, side="left", ".")

## [1] "May 17, 2019" "Certified mail" "..FL 33333"
## [4] "Oppa Locka" "to Mr. Haan" "...arrived"

str_trunc(s, 3, side="right", ellipsis="_")

## [1] "Ma_" "Ce_" "FL_" "Op_" "to_" "ar_"

str_trunc(s, 5, side="center", "#")

## [1] "Ma#19" "Ce#il" "FL#33" "Op#ka" "to#an" "ar#ed"

str_trim(" abc ", side="right")

## [1] " abc"

str_trim(" abc ", side="both")

## [1] "abc"

1.6.6 Mutate strings

The first three functions execute substitutions to parts of each string.
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• str_sub() <- VALUE: Here the str_sub() part follows the syntax of the method we earlier
discussed - the substrings with specific range of indexes inside strings. After this action,
each substring will become VALUE.

s <- c("5/17/2019", "Certified mail", "FL 33333",
"Oppa Locka", "to Mr. Haan", "arrived")

Since the str_sub() <- VALUE modifies the original, let us copy s to scopy and then
execute the action on the copy, not the original. In that manner, we can preserve the
original. Note the use of 0 and 0 in the second instance, the position range of 0 through
0 corresponds to the part before the start of the string.

scopy <- s
str_sub(scopy, 1, 3) <- "I am "
scopy

## [1] "I am 7/2019" "I am tified mail"
## [3] "I am 33333" "I am a Locka"
## [5] "I am Mr. Haan" "I am ived"

scopy <- s
str_sub(scopy, 0, 0) <- "I am "
scopy

## [1] "I am 5/17/2019" "I am Certified mail"
## [3] "I am FL 33333" "I am Oppa Locka"
## [5] "I am to Mr. Haan" "I am arrived"

s

## [1] "5/17/2019" "Certified mail" "FL 33333"
## [4] "Oppa Locka" "to Mr. Haan" "arrived"

• str_replace(STRING, PATTERN, REPLACEMENT): Replaces the first occurrence of PATTERN
with REPLACEMENT.

• str_replace_all(STRING, PATTERN, REPLACEMENT): Replaces all occurrences of PATTERN
with REPLACEMENT. Like str_locate_all the function finds a set of non-overlapping oc-
currences and then replaces all the occurrences it has identified.
Both functions return the vector resulting from their action. The original remains intact.

t <- s
str_replace(t, "a", "oo")

## [1] "5/17/2019" "Certified mooil" "FL 33333"
## [4] "Oppoo Locka" "to Mr. Hooan" "oorrived"

t <- s
str_replace_all(s, "a", "oo")
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## [1] "5/17/2019" "Certified mooil" "FL 33333"
## [4] "Oppoo Lockoo" "to Mr. Hoooon" "oorrived"

t <- s
str_replace_all(s,"[0-9][0-9]", "##")

## [1] "5/##/####" "Certified mail" "FL ####3"
## [4] "Oppa Locka" "to Mr. Haan" "arrived"

There are three more string mutation functions.
• str_to_lower(STRING): This converts each uppercase letter to its corresponding lower-

case letter.
• str_to_upper(STRING): This converts each lowercase letter to its corresponding upper-

case letter.
• str_to_title(STRING): This converts each string to a title-like format.

Each of the three methods returns a new vector.

t <- s
str_to_lower(s)

## [1] "5/17/2019" "certified mail" "fl 33333"
## [4] "oppa locka" "to mr. haan" "arrived"

t <- s
str_to_upper(s)

## [1] "5/17/2019" "CERTIFIED MAIL" "FL 33333"
## [4] "OPPA LOCKA" "TO MR. HAAN" "ARRIVED"

t <- s
str_to_title(s)

## [1] "5/17/2019" "Certified Mail" "Fl 33333"
## [4] "Oppa Locka" "To Mr. Haan" "Arrived"

1.6.7 Join and split

We only show two functions in this category.
• str_dup(STRING, TIMES): Create from a vector STRING, a new vector where each element

appears consecutively, without a gap, TIMES times.
• str_c(STRING): Collapse the elements column-wise into a single dimensional vector.
• str_c(STRING, collapse=X): Concatenate the elements column-wise with X in between

and then concatenate the elements row-wise with X in between, thereby generating a
single-element vector.

Below are examples.
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t <- s
str_dup(t, 3)

## [1] "5/17/20195/17/20195/17/2019"
## [2] "Certified mailCertified mailCertified mail"
## [3] "FL 33333FL 33333FL 33333"
## [4] "Oppa LockaOppa LockaOppa Locka"
## [5] "to Mr. Haanto Mr. Haanto Mr. Haan"
## [6] "arrivedarrivedarrived"

str_c(t)

## [1] "5/17/2019" "Certified mail" "FL 33333"
## [4] "Oppa Locka" "to Mr. Haan" "arrived"

str_c(t, collapse=":")

## [1] "5/17/2019:Certified mail:FL 33333:Oppa Locka:to Mr. Haan:arrived"

1.6.8 Sorting

There are two functions.
• str_sort(STRING,decreasing=X,na_last=Y,numeric=Z): Sorts the elements as the string.

The arguments after the first one are optional. X, Y, and Z are boolean. With decreas-
ing=TRUE the ordering is reverse. The na_last=FALSE, all NA move to the start. With
numeric=TRUE, the function treats numerical sequences as numbers; otherwise, it treats
them as character sequences.

• str_order(...): The same arguments as str_sort, but instead of actually sorting, re-
turns the sequence of indexes such that ordering the elements according to the index
list produces the same result as str_sort.

u <- str_c(t)
str_sort(u)

## [1] "5/17/2019" "arrived" "Certified mail"
## [4] "FL 33333" "Oppa Locka" "to Mr. Haan"

u <- str_c(t)
str_sort(u, decreasing=TRUE)

## [1] "to Mr. Haan" "Oppa Locka" "FL 33333"
## [4] "Certified mail" "arrived" "5/17/2019"

u <- str_c(t)
str_order(u, decreasing=TRUE)

## [1] 5 4 3 2 6 1
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1.6.9 An example: stringr and lists

We end this section with an educational example of when you might need to work with the
stringr package.
Recall that str_locate_all is a method for working with strings; it returns the positions
within each element that a pattern string is found as a list. Let’s try to use what we know
to extract common bird names.

birds <- c("Black-crowned Night-Heron-Nycticorax",
"Little-egret-Egretta garzetta")

The common names are Black-crowned Night-Heron and Little-egret. We can extract this
by looking for the last occurrence of the dash (-). Here they are:

str_view_all(birds, "-", html=TRUE)

The str_locate_all function can tell us the starting and ending positions of all occurrences
of the dash.

dash_positions <- str_locate_all(birds, "-")
dash_positions

## [[1]]
## start end
## [1,] 6 6
## [2,] 20 20
## [3,] 26 26
##
## [[2]]
## start end
## [1,] 7 7
## [2,] 13 13

As expected, we have a list.
Let’s first examine the results for the Night Heron, which are stored at index 1 of this list.
We now know that to pluck out these results we must use [[.

dash_positions[[1]]

## start end
## [1,] 6 6
## [2,] 20 20
## [3,] 26 26
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Congrats – we’re out of the list! What we have now is three vectors sandwiched together
into one, one for each occurrence of the dash. We are only interested in the last one.
tail is a handy function for extracting the last value of a vector.

tail(dash_positions[[1]], n=1) # why n = 1? why not 2?

## start end
## [3,] 26 26

Technically, we only care about the ending position of the dash (at index 2) but either value
will do.

last_dash <- tail(dash_positions[[1]], n=1)[1]
last_dash

## [1] 26

We’re almost done: we now know that the common name occurs between positions 1 and
25 (why not 26?). We can use str_sub to extract the substring.

str_sub(birds[1], end = last_dash - 1)

## [1] "Black-crowned Night-Heron"

Here is everything together:

dash_positions <- str_locate_all(birds, "-")
last_dash <- tail(dash_positions[[1]], n=1)[1]
str_sub(birds[1], end = last_dash - 1)

## [1] "Black-crowned Night-Heron"

What would the answer be for extracting Little-egret? Try it out!

1.7 Exercises

Be sure to install and load the following packages into your R environment before beginning
this exercise set.

library(tidyverse)
library(edsdata)
library(gapminder)

Question 1. Let us explore the limit of the double data type. According to the textbook,
the largest double value is greater than or equal to 1.79e+308. Can you find the largest digit
𝑑 (d must be one of {0..9}) such that 1.79de+308 is not Inf? Let us do this with a simple
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trial. Type 1.79de+308 with the d substituted with the values 0, 1, 2, 3, ... in this order, and
stop when the value presented after pressing the return key becomes Inf.
After examining the values, store in a variable the_digit the value of d you have found.
Question 2. Let us learn how to convert data types. Recall as.character, as.double, and
as.integer convert a given value to a string, a double, and an integer, respectively. We can
also test to see if a value is a certain data type by replacing as with is. Recall also that
to specify a string with its character sequence we can use either a matching pair of double
quotation marks or a matching pair of single quotation marks sandwiching the sequence.
Following is a string called a_happy_string and a double named double_trouble:

a_happy_string <- "-4.5"
double_trouble <- 81.9

Here are some findings based on the above functions. Which of the following statements are
TRUE?

1. as.double(a_happy_string) produces an error because we cannot
covert a string to a double.

2. as.integer(a_happy_string) returns the value −4.5.
3. as.character(double_trouble) returns the value "81.9".
4. is.integer(1) returns TRUE.

Question 3. Let us extract some information from strings. Following are three strings
stored in three separate names.

str1 <- "State"
str2 <- "Department"
str3 <- "Office"

Do the following three tasks with these three strings:
• Inquire the length of each string, and store the three length values to l1, l2, and l3,

respectively.
• Connect the three strings in the order of str1, str2, and str3 using str_c and str_c

with sep = " ", and store the two results in join1 and join2.
• Obtain the substrings of join1 between position pairs (4, 10), (−7,−1), and (8, 8). Store

the substrings in sub1, sub2, and sub3, respectively.
Question 4. Let us execute some operations to generate Boolean values. Use two variables
val1 and val2 and assign them to the values 12.3 and 45.6, respectively. Then put the two
values in the six comparisons “equals”, “not equals”, “greater than”, “greater than or equal
to”, “less than”, and “less than or equal to”. Store the six results in the variables test1,
test2, test3, test4, test5, and test6, respectively.
Question 5. Let us play with Boolean operations. Let str4 be a string variable. Assign
the value of hammerhead to str4. Then create three Boolean variables check1, check2, and
check3 and assign, to these variables, the results of testing if the length of str4 is equal to
10, if the length of str4 is less than 5, and if the substring of str4 from positions 10 to 10 is
equal to "a". Print the three Boolean value, and then compute the “or” of the three values
and the “and” of the three values, and store these results in the names the_OR and the_AND,
respectively.
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Question 6. Suppose we have three Boolean names tf1, tf2, and tf3. Suppose we assign
the following eight value pairs to them.
• FALSE, FALSE, and FALSE
• FALSE, FALSE, and TRUE
• FALSE, TRUE, and FALSE
• FALSE, TRUE, and TRUE
• TRUE, FALSE, and FALSE
• TRUE, FALSE, and TRUE
• TRUE, TRUE, and FALSE
• TRUE, TRUE, and TRUE

Answer the value of tf1 | !tf2 & tf3 in the four combinations, and store them in eight
names bool1, bool2, …, bool8.
Question 7. Following are three Boolean expressions that evaluate to either TRUE or FALSE.
Explain every step in the evaluation process before TRUE or FALSE is ultimately returned.

(2 - 1) == ((TRUE == TRUE) != FALSE)
(10 - (FALSE/2 + max(TRUE, FALSE))) >= (TRUE + 1)
(Inf > 5) == ((Inf > Inf) | (Inf >= Inf))

Question 8. A student is diligently studying Boolean data types and is stumped by the
following:

I don’t understand why "Zoo" > "Napping" is TRUE when “Napping” has more
characters than “Zoo”. But when I do "ZZZ" > "ZZZping", it returns FALSE
which makes sense because “ZZZping” has more characters than “ZZZ”. So
shouldn’t the first expression evaluate to FALSE as well for the same reason 2
> 5 is FALSE?

What would you tell this student? Should we file a bug report to the R maintainers?
Question 9. Suppose we have four names s1, s2, s3, and s4 that are defined as follows:

s1 <- "Fine"
s2 <- "Dine"
s3 <- "Sine"
s4 <- "Wine"

We then apply the following function and store the result in the name snew:

snew <- str_c(s1, s2, s3, s4, sep = " ")
snew

## [1] "Fine Dine Sine Wine"
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• Question 9.1 What is the length of snew? Do not compute this manually! Use an R
function. Store your answer in the name snewlen.

• Question 9.2 How many times does "in" appear in snew? You may find this manually
or by using an R function. Assign your answer to the name intimes.

• Question 9.3 Recall str_sub( snew, a, b) from stringr produces the substring of
snew from position a to position b. Answer the combination of a and b that produces
"in" such that a is the largest. This is also sometimes called a “right find” because the
search is done from the right rather than the left. Store the combination of a and b you
found in the names a and b.

Question 10: Vector manipulations. In this exercise we practice some basic construction
and manipulation of vector data types.
• Question 10.1. Form a vector that contains the numbers 3, 𝜋, 4, 9, and 𝑒 (Euler’s

constant), in that order. Your solution should reference the constants 𝜋 and 𝑒 without
having to define them explicitly. Assign it to the name vec1.

• Question 10.2. Form a vector that contains the nine strings "Dear", "string", ",",
"this", "is", "much", "ado", "about", and " ". Note that the last element is a string
containing a single whitespace. Name this vec2.

• Question 10.3. Form a vector that appends vec2 after vec1. Call it vec3. What is the
data type of this new vector vec3? Use an R function to determine this and assign that
answer to the name vec3_type. Then observe the difference in data types between vec1,
vec2, and vec3.

Question 11: Sequences. This exercise explores the use of vectors to form various se-
quences using the seq() function. Each of these questions should require only one line of
code to compute the answer.
• Question 11.1 Form a vector that generates a sequence of numbers from 0 to 20 in

steps of 2, e.g., 0, 2, 4, 6, 8, …, 20. Assign this vector to the name steps2.
• Question 11.2 Form a vector that generates a sequence containing multiples of 11 from

0 up to and including 1221. Assign this vector to the name mult11.
• Question 11.3 Form a vector that generates a sequence containing the first 20 powers

of 4, e.g., 40 = 1, 41 = 4, 42 = 16, etc. Assign your answer to the name powers4.
Question 12: Element-wise operations. A benefit of working with vectors is that we can
use vectors to accomplish element-wise operations, that is, some operation that is applied
to every element of a vector. What makes element-wise operations attractive to use is that
they can be applied with a single line of code. This exercise explores some element-wise
operations.
• Question 12.1 Let us compute the interest on several loans at once.

– Question 12.1.1 The vector bank_loans from the package edsdata contains
100,000 different loans. Assuming an annual simple interest rate of 4%, compute
the amount each borrower would owe after one year if no payments were made
during that time toward the loan. That means we can multiply the loan amount
by 1.04 to get the amount owed after one year. Compute the amount owed for each
loan in bank_loans after one year. Assign your answer to the name amount_owed.

– Question 12.1.2 What is the total amount of interest collected by the bank from
all these loans after one year? Assign your answer to total_interest_amount.



1.7 Exercises 41

• Question 12.2 Suppose the population of Datatopia is growing steadily at 3% annually.
On 1/1/2021, Datatopia had 1,821,411,277 people. Calculate the expected population
of the country for the next 20 years.

– Question 12.2.1 Compute the expected population for the next 20 years as a
20-element vector, and store it in p. You can do this by first creating a sequence of
20 values 1..20, powering 1.03 with the 20 values, and multiplying it by the initial
population.

– Question 12.2.2 Set pop_2025 and pop_2040 to the population estimates for 2025
and 2040, respectively. Then set pop_2025_to_2040 to a vector containing the esti-
mates from 2025 to 2040 (the years 2025 and 2040 are both inclusive).

– Question 12.2.3 What happens when you try to access the following element in
the vector pop_2025_to_2040?

pop_2025_to_2040[17]

Are you surprised by the result? Should you expect an error when trying this? Why
or why not?

– Question 12.2.4 Set pop_2025_to_2040_reverse to a vector containing the popu-
lations in pop_2025_to_2040, but in reverse order. That is, starting first from 2040
and ending with 2025. To do this, use an index sequence.

– Question 12.2.5 Suppose that our population estimates for the years 2033 and
2034 are too unreliable to be useful and we would like to raise this error some-
how. Flag this error in pop_2025_to_2040 by setting the appropriate indices in
pop_2025_to_2040 to NA. NA is a special name that stands for “not a number”.

– Question 12.2.6 The numbers in pop_2025_to_2040 are large, which can some-
times be hard to interpret. Report the figures as numbers in billions instead. Ac-
complish this work using element-wise operation using a single line of R code and
assign your answer to the name pop_2025_to_2040_billions.

– Question 12.2.7 How many years had a population exceeding 3 billion? Use your
vector pop_2025_to_2040_billions to answer this. You will need to use another
element-wise operation. Assign the number to the name more_than_3_bill. If your
answer is coming out as NA, be sure to read the help and look at any arguments
you can use.

Question 13: Exploring stringr. We have already learned how to do basic tasks with
strings like inquiring about the number of characters in the string and finding substrings.
But data science work often involves doing much more advanced tasks, e.g., splitting strings,
replacing certain characters that match some pattern, etc. The stringr package from the
tidyverse brings a suite of modern tools to use for working with strings in data science. Let’s
explore some of them in this second part. Be sure to bookmark its cheatsheet for reference5.
bands is a character vector in the package edsdata that contains some band names.
• Question 13.1 Obtain two copies of bands, one with every character in uppercase (e.g.,

LIKE THIS) and another with every character in lowercase (e.g., like this). Store the
results in upper and lower, respectively. Use a stringr function.

5https://github.com/rstudio/cheatsheets/blob/master/strings.pdf

https://github.com
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• Question 13.2 Here is another character vector, bird_in_a_hand , that looks a bit
different from bands. Even though both are seen as character vectors in R, what is the
difference between bird_in_a_hand and bands?

bird_in_a_hand <- c("b","i","r","d",
"","i","n","","a","",
"h","a","n","d")

bird_in_a_hand

## [1] "b" "i" "r" "d" "" "i" "n" "" "a" "" "h" "a" "n"
## [14] "d"

• Question 13.3 Repeat Question 13.1, but for bird_in_a_hand. Assign your answers
to the names upper_bird and lower_bird, respectively.

• Question 13.4 The stringr function str_remove_all() can be used to remove matched
patterns in a string. For instance, we could remove all lowercase a’s and b’s from the
character vector bird_in_a_hand as follows:

str_remove_all(bird_in_a_hand, "[ab]")

Now take bands and modify it by removing each occurrence of a vowel in lowercase ('a',
'e', 'i', 'o', 'u'). Store the result in devoweled.

Question 14: Lists. This exercise gives practice with the list data type.
• Question 14.1 Using the function list create a list courses whose elements are

"MTH118", "GEG2490", "CSC160", "CSC353", "ACC419", "PSC356", and "BIL155". Then:
– Sort the list using the function str_sort() and store the result in courses_sorted.
– Apply str_sub from position 4 to position 6 to the elements of courses and apply

str_sort to the result. Store it in numbers_sorted.
• Question 14.2 The name fruits is a character vector with some fruits.

fruits <- c(
"apples and oranges and pears and bananas",
"pineapples and mangos and guavas"

)

– Question 14.2.1 Accomplish the following tasks:
∗ Create a list fruits_list from fruits using the list function.
∗ Create a vector fruits_unlisted by applying unlist to fruits_list.
∗ Try executing:

str_split(fruits, "[and]")
str_split(fruits_list, "[and]")
str_split(fruits_unlisted, "and")

The middle one presents a warning message. Store the last result in
split_fruits.
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∗ Print split_fruits.
– Question 14.2.2 Let’s recap what just happened:

∗ What is the difference between fruits, fruits_list, fruits_unlisted, and
split_fruits? Note the data type stored in each of these names (e.g., list,
character vector, integer, etc.).

∗ Why did you get a warning when trying str_split(fruits_list, "[and]")?
Read the help for str_split to help you answer this.

∗ Why does the word “and” no longer appear in the elements inside
split_fruits?

Question 15: More stringr. Let’s return to stringr again, this time looking at a few
more functions that work with regular expressions. We actually saw one already when we
worked on “devoweling” band names. Be sure you have read the textbook section on stringr
before continuing with this part.
As a real-world example, the name band_of_the_hour is a string about the “Band of the
Hour”6 at the University of Miami. The string is available in the edsdata package.
• Question 15.1 The function str_match( s, p ) finds the first occurrence of the pattern

p in the string s. Find the following patterns in band_of_the_hour using str_match and
store the results in variables m1, …, m3:
1. any uppercase alphabet "[A-Z]",
2. any series of lowercase alphabetical characters "[a-z]+",
3. any numeral "[0-9]".

• Question 15.2 Now use str_match_all() to find the occurrences of the following two
patterns and store them in ma1 and ma2: (a) any series of numerals and (b) any word
that begins with an uppercase letter (e.g., “Fiesta”, “Band”, “University”, etc.). Verify
your answer by examining the contents of ma1 and ma2.

• Question 15.3 Now use str_count() to count the occurrences of "Arrow" and store in
arrow_count and then use str_split() to split band_of_the_hour at each white space
and store it in band_of_the_hour_split.

• Question 15.4 The stringr function str_subset() keeps strings that match a pattern.
For example:

str_subset(c("x", "y", "xx", "yy"), "x")

Now answer how you might obtain the elements in the list band_of_the_hour_split that
have a "0" in it. Store the result in zero_elements.

Question 16. Suppose we have a vector of course IDs:

badly_formed_ids <- c("CSC_100", "BIO 111", "MTH161H",
"ECO--220", "MUS..160A")

badly_formed_ids

The school codes their IDs as follows:
• An ID starts with three uppercase letters.
• An ID has three numerals after the uppercase letters.

6https://en.wikipedia.org/wiki/Band_of_the_Hour

https://en.wikipedia.org
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• Between the letters and the numerals, an ID may contain symbols that are neither letters
nor numerals.

• An ID may have an additional alphabet character at the end.
Unfortunately, this format is not very good for data science. While it allows for a wide
range of possible IDs, the flexibility is an obstacle to any analysis using R, e.g., how to
tell which courses are offered through Computer Science (CSC)? How to find how many
200-level courses the school offers?
Let us “standardize” these course IDs into a uniform format consisting solely of the initial
three letters followed by three numerals. After application of the function, the above IDs
should look like:

c("CSC100", "BIO111", "MTH161", "ECO220", "MUS160")

Answer how you might obtain this with a single line of R code using a single stringr
function.



2
Data Transformation

The work of data science begins with a dataset. These datasets can be so large that any
manual inspection or review of them, say using editing software like TextEdit or Notepad++,
becomes totally infeasible. To overcome this, data scientists rely on computational tools like
R for working with datasets. Learning how to use these tools well lies at the heart of data
science and what data scientists do daily at their desks.
A part of what makes these tools so powerful is that we often need to apply a series of actions
to a dataset. Data scientists talk a lot about the importance of data cleaning, stating that
without data cleaning no data analysis results are meaningful. Some go further to say that
the most important step in the data science life cycle is data cleaning because, from their
point of view, the analysis process following data cleaning is a routine to a great degree. As
such, another important aspect of working with datasets is transforming data, i.e., rendering
data suitable for analysis. When data is made into an analysis-ready form, we call such data
tidy data. Transforming data to become tidy data is the focus of this chapter.
The tools we will cover in this chapter to accomplish this goal are also key members of
the tidyverse. One is called tibble, which is a data structure for managing datasets, and
another is called dplyr, which provides a grammar of data manipulation for acting upon
datasets stored as tibbles. We will also learn about a third called purrr to help with the
data manipulations, e.g., say when a column of data is in the wrong units.

2.1 Datasets and Tidy Data

Data scientists prefer working with data that is tidy because it facilitates data analysis. In
this section we will introduce a vocabulary for working with datasets and describe what
tidy data looks like.

2.1.1 Prerequisites

As before, let us load tidyverse.

library(tidyverse)

The tidyverse package comes with scores of datasets. By typing data() you can see a list
of data sets available in the RStudio environment you are in. Quite a few data come with
tidyverse. If your session has not yet loaded tidyverse, the list can be short.

DOI: 10.1201/9781003320845-2 45
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2.1.2 A “hello world!” dataset

A dataset is a collection of values, which can be either a number or string. Let us begin
by looking at our first dataset. We will examine the Motor Trend Car Road Test dataset
which is made available through tidyverse. It was extracted from the 1974 Motor Trend
US magazine, and contains data about fuel consumption and aspects of automobile design
for 32 car models.
We can inspect it simply by typing its name.

mtcars

## mpg cyl disp hp drat wt qsec vs am
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1
## gear carb
## Mazda RX4 4 4
## Mazda RX4 Wag 4 4
## Datsun 710 4 1

Only the first few rows are shown here. You can pull up more information about the dataset
by typing the name of it with a single question mark in front of it.

?mtcars

Datasets like these are often called rectangular tables. In a rectangular table, the rows have
an identical number of cells and the columns have an identical number of cells, thus allowing
access to any cell by specifying a row and a column together.
A conventional structure of rectangular data is as follows:
• The rows represent individual objects, whose information is available in the data set.

We often call these observations.
• The columns represent properties of the observations. We often call these properties

variables or attributes.
• The columns have unique names. We call them variables names or attribute names.
• Every value in the table belongs to some observation and some variable.

This dataset contains 352 values representing 11 variables and 32 observations. Note how it
explicitly tells us the definition of an observation: a “car model” observation is defined as a
combination of the variables that are present above, e.g., mpg, cyl, disp, etc.

2.1.3 In pursuit of tidy data

We are now ready to provide a definition of tidy data. We defer to Hadley Wickham (2014)1

for a definition. We say that data is “tidy” when it satisfies four conditions:
1. Each variable forms a column.
2. Each observation forms a row.
3. Each value must have its own cell.
4. Each type of observational unit forms a table.

1https://vita.had.co.nz/papers/tidy-data.pdf

https://vita.had.co.nz
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Data that exists in any other arrangement is, consequently, messy. A critical aspect in
distinguishing between tidy and messy data forms is defining the observational unit.
This can look different depending on the statistical question being asked. In fact, defining
the observational unit is so important because data that is “tidy” in one application can be
“messy” in another.
The goal of this chapter is to learn about methods for transforming “messy” data into “tidy”
data, with some help from R and the tidyverse.
With respect to the mtcars dataset, we can glean the observational unit from its help page:

Fuel consumption and 10 aspects of automobile design and performance for
32 automobiles (1973–74 models).

Therefore, we expect each row to correspond to exactly one of the 32 different car models.
With one small exception that we will return to later, the mtcars dataset fulfills the prop-
erties of tidy data. Let us look at other examples of datasets that fulfill or violate these
properties.

2.1.4 Example: is it tidy?

Suppose that you are keeping track of weekly sales of three different kinds of cookies at a
local Miami bakery in 2021. By instinct, you decide to keep track of the data in the following
table.

bakery1

## # A tibble: 4 x 4
## week gingerbread `chocolate peppermint` `macadamia nut`
## <dbl> <dbl> <dbl> <dbl>
## 1 1 10 23 12
## 2 2 16 21 16
## 3 3 25 20 24
## 4 4 12 18 20

Alternatively, you may decide to encode the information as follows.

bakery2

## # A tibble: 3 x 5
## week `1` `2` `3` `4`
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 gingerbread 10 16 25 12
## 2 chocolate peppermint 23 21 20 18
## 3 macadamia nut 12 16 24 20

Do either of these tables fulfill the properties of tidy data?
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First, we define the observational unit as follows:

A weekly sale for one of three different kinds of cookies sold at a Miami bakery
in 2021. Three variables are measured per unit: the week it was sold, the kind
of cookie, and the number of sales.

In bakery1, the variable we are trying to measure – sales – is actually split across three
different columns and multiple observations appear in each row. In bakery2, the situation
remains bad: both the cookie type and sales variables appear in each column and, still,
multiple observations appear in each row. Therefore, neither of these datasets are tidy.
A tidy version of the dataset appears as follows. Compare this with the tables from bakery1
and bakery2. Do not worry about the syntax and the functions used; we will learn about
what these mean and how to use them in a later section.

bakery_tidy <- bakery1 |>
pivot_longer(gingerbread:`macadamia nut`,

names_to = "type", values_to = "sales")
bakery_tidy

## # A tibble: 12 x 3
## week type sales
## <dbl> <chr> <dbl>
## 1 1 gingerbread 10
## 2 1 chocolate peppermint 23
## 3 1 macadamia nut 12
## 4 2 gingerbread 16
## 5 2 chocolate peppermint 21
## 6 2 macadamia nut 16
## 7 3 gingerbread 25
## 8 3 chocolate peppermint 20
## 9 3 macadamia nut 24
## 10 4 gingerbread 12
## 11 4 chocolate peppermint 18
## 12 4 macadamia nut 20

When a dataset is expressed in this manner, we say that it is in long format because the
number of rows is comparatively larger compared to bakery1 and bakery2. Admittedly, this
form can make it harder to identify patterns or trends in the data by eye. However, tidy
data opens the door to more efficient data science so that you can rely on existing tools
to proceed with next steps. Without a standardized means of representing data, such tools
would need to be developed from scratch each time you begin work on a new dataset.
Observe how this dataset fulfills the four properties of tidy data. The fourth property is
fulfilled because the observational unit we are measuring is a weekly cookie sale, and we are
measuring three variables – week, type, and sales – per observational unit. The detail of the
observational unit description is important: these variables do not refer to measurements
on some sale or bakery store; they refer specifically to measurements on a given weekly
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cookie sale for one of three kinds of cookies (“gingerbread”, “chocolate peppermint”, and
“macadamia nut”) sold at a local Miami bakery in 2021. If this dataset were to contain sales
for a different year or cookie type not specified in our observational unit statement, then
said observations would need to be sorted out into a different table.
A possible scenario in violation the third property might look like the following: the bakery
decides to record sale ranges instead of a single estimate, e.g., in the case of making a
forecast on future sales.
## # A tibble: 3 x 2
## week forecast
## <dbl> <chr>
## 1 1 200-300
## 2 2 300-400
## 3 3 200-500

In the next section we turn to the main data structures in R we will use for performing
data transformations on datasets.

2.2 Working with Datasets

In this section we dive deeper into datasets and learn how to do basic tasks with datasets
and query information from them.

2.2.1 Prerequisites

As before, let us load tidyverse.

library(tidyverse)

2.2.2 The data frame

Let us recall the mtcars dataset we visited in the last section.

mtcars

## mpg cyl disp hp drat wt qsec vs am
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1
## gear carb
## Mazda RX4 4 4
## Mazda RX4 Wag 4 4
## Datsun 710 4 1

Data frame is a term R uses to refer to data formats like the mtcars data set. In its simplest
form, a data frame consists of vectors lined up together where each vector has a name.
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How do we know how many rows and columns in the data as well as the names of the
variables? The following functions answer those questions, respectively.

nrow(mtcars) # how many rows in the dataset?

## [1] 32

ncol(mtcars) # how many columns?

## [1] 11

colnames(mtcars) # what are the names of the columns?

## [1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec"
## [8] "vs" "am" "gear" "carb"

We noted earlier that this dataset is tidy with one exception. Observe that the leftmost
column in the table does not have the column header or the type designation. The strings
appearing there are what we call row names; we learn of the existence of row names when
we see that R prints the data without a column name for the row names.
The problem with row names is that a variable, here the name of the car model, is treated as
a special attribute. The objective of tidy data is to store data consistently and this special
treatment is, according to tidyverse, a violation of the principle.

2.2.3 Tibbles

An alternative to the data frame is the tibble which upholds best practices for working with
data frames. It does not store row names as special columns like data frames do and the
presentation of the table can be visually nicer to inspect than data frames when examining
a dataset at the console.
To transform the mtcars data frame to a tibble is easy. We simply call the function tibble.

mtcars_tibble <- tibble(mtcars)
mtcars_tibble

## # A tibble: 32 x 11
## mpg cyl disp hp drat wt qsec vs am
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 21 6 160 110 3.9 2.62 16.5 0 1
## 2 21 6 160 110 3.9 2.88 17.0 0 1
## 3 22.8 4 108 93 3.85 2.32 18.6 1 1
## 4 21.4 6 258 110 3.08 3.22 19.4 1 0
## 5 18.7 8 360 175 3.15 3.44 17.0 0 0
## 6 18.1 6 225 105 2.76 3.46 20.2 1 0
## 7 14.3 8 360 245 3.21 3.57 15.8 0 0
## 8 24.4 4 147. 62 3.69 3.19 20 1 0
## 9 22.8 4 141. 95 3.92 3.15 22.9 1 0
## 10 19.2 6 168. 123 3.92 3.44 18.3 1 0
## # ... with 22 more rows, and 2 more variables:
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## # gear <dbl>, carb <dbl>

The designation <dbl> appearing next to the columns indicates that the column has only
double values. Observe that the names of the car models are no longer present. However,
we may wish to keep the names of the models as it can bring useful information. tibble has
thought of a solution to this problem for us: we can add a new column with the row name
information. The required function is rownames_to_column.

mtcars_tibble <- tibble(rownames_to_column(mtcars, var = "model_name"))
mtcars_tibble

## # A tibble: 32 x 12
## model~1 mpg cyl disp hp drat wt qsec vs
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Mazda ~ 21 6 160 110 3.9 2.62 16.5 0
## 2 Mazda ~ 21 6 160 110 3.9 2.88 17.0 0
## 3 Datsun~ 22.8 4 108 93 3.85 2.32 18.6 1
## 4 Hornet~ 21.4 6 258 110 3.08 3.22 19.4 1
## 5 Hornet~ 18.7 8 360 175 3.15 3.44 17.0 0
## 6 Valiant 18.1 6 225 105 2.76 3.46 20.2 1
## 7 Duster~ 14.3 8 360 245 3.21 3.57 15.8 0
## 8 Merc 2~ 24.4 4 147. 62 3.69 3.19 20 1
## 9 Merc 2~ 22.8 4 141. 95 3.92 3.15 22.9 1
## 10 Merc 2~ 19.2 6 168. 123 3.92 3.44 18.3 1
## # ... with 22 more rows, 3 more variables: am <dbl>,
## # gear <dbl>, carb <dbl>, and abbreviated variable name
## # 1: model_name

Throughout the text, we will store data using the tibble construct. However, because
tibbles and data frames are close siblings, we may use the terms tibble and data frame
interchangeably when talking about data that is stored in a rectangular format.

2.2.4 Accessing columns and rows

You can access an individual column in two ways: (1) by attaching the dollar sign to the
name of the data frame and then the attribute name, and (2) using the function pull. We
prefer to use the latter because of the |> operator which we will see later. Here are some
example usages.

mtcars_tibble$cyl

## [1] 6 6 4 6 8 6 8 4 4 6 6 8 8 8 8 8 8 4 4 4 4 8 8 8 8 4 4
## [28] 4 8 6 8 4

pull(mtcars_tibble, cyl)

## [1] 6 6 4 6 8 6 8 4 4 6 6 8 8 8 8 8 8 4 4 4 4 8 8 8 8 4 4
## [28] 4 8 6 8 4

The result returned is the entire sequence for the column cyl.
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If you know the position of a column in the dataset, you can use the function select() to
get to the vector. The cyl is at position 3 of the data, so we obtain the following.

select(mtcars_tibble, 3)

## # A tibble: 32 x 1
## cyl
## <dbl>
## 1 6
## 2 6
## 3 4
## 4 6
## 5 8
## 6 6
## 7 8
## 8 4
## 9 4
## 10 6
## # ... with 22 more rows

Similarly, if we know the position of a row in the dataset, we can use slice(). The following
will return all the associated information for the second row of the dataset.

slice(mtcars_tibble, 2)

## # A tibble: 1 x 12
## model_~1 mpg cyl disp hp drat wt qsec vs
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Mazda R~ 21 6 160 110 3.9 2.88 17.0 0
## # ... with 3 more variables: am <dbl>, gear <dbl>,
## # carb <dbl>, and abbreviated variable name
## # 1: model_name

2.2.5 Extracting basic information from a tibble

You can use the function unique to obtain unique values in a column. Let us see the possible
values for the number of cylinders.

unique(pull(mtcars_tibble, cyl))

## [1] 6 4 8

We find that there are three possibilities: 4, 6, and 8 cylinders.
We already know how to inquire about the maximum, minimum, and other properties of a
vector. Let us check out the mpg attribute (miles per gallon) in terms of the maximum, the
minimum, and sorting the values in the increasing order.

max(pull(mtcars_tibble, mpg))

## [1] 33.9
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min(pull(mtcars_tibble, mpg))

## [1] 10.4

sort(pull(mtcars_tibble, mpg))

## [1] 10.4 10.4 13.3 14.3 14.7 15.0 15.2 15.2 15.5 15.8
## [11] 16.4 17.3 17.8 18.1 18.7 19.2 19.2 19.7 21.0 21.0
## [21] 21.4 21.4 21.5 22.8 22.8 24.4 26.0 27.3 30.4 30.4
## [31] 32.4 33.9

2.2.6 Creating tibbles

Before moving on to dplyr, let us see how we can create a dataset. The package tibble
offers some useful tools when you are creating data.
Suppose you have tests scores in Chemistry and Spanish for four students, Gail, Henry, Irwin,
and Joan. You can create three vectors, names, Chemistry, and Spanish each representing
the names, the scores in Chemistry, and the scores in Spanish.

students <- c("Gail", "Henry", "Irwin", "Joan")
chemistry <- c( 99, 98, 80, 92 )
spanish <- c(87, 85, 90, 88)

We can assemble them into a tibble using the function tibble. The function takes a series
of columns, expressed as vectors, as arguments.

class <- tibble(students = students,
chemistry_grades = chemistry,
spanish_grades = spanish)

class

## # A tibble: 4 x 3
## students chemistry_grades spanish_grades
## <chr> <dbl> <dbl>
## 1 Gail 99 87
## 2 Henry 98 85
## 3 Irwin 80 90
## 4 Joan 92 88

The data type designation <chr> means “character” and so indicates that the column consists
of strings.
Pop quiz: is the tibble class we just created an example of tidy data? Why or why not?
If you are unsure, revisit the examples from the previous section and compare this tibble
with those.
Let us see how we can query some basic information from this tibble.
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pull(class, chemistry_grades) # all grades in chemistry

## [1] 99 98 80 92

min(pull(class, chemistry_grades)) # minimum chemistry score

## [1] 80

For small tables of data, we can also create a tibble using an easy row-by-row layout.

class <- tribble(~student,~chemistry_grades,~spanish_grades,
"Gail", 99, 87,
"Henry", 98, 85,
"Irwin", 80, 90,
"Joan", 92, 88)

class

## # A tibble: 4 x 3
## student chemistry_grades spanish_grades
## <chr> <dbl> <dbl>
## 1 Gail 99 87
## 2 Henry 98 85
## 3 Irwin 80 90
## 4 Joan 92 88

We can also form tibbles using sequences as follows.

tibble(x=1:5,
y=x*x,
z = 1.5*x - 0.2)

## # A tibble: 5 x 3
## x y z
## <int> <int> <dbl>
## 1 1 1 1.3
## 2 2 4 2.8
## 3 3 9 4.3
## 4 4 16 5.8
## 5 5 25 7.3

The seq that is native of R allows us to create a sequence. The syntax is seq(START,END,GAP),
where the sequence starts from START and then adds GAP to the sequence until the value
exceeds END. We can create the sequence with the name “x”, and then add three other
columns based on the value of “x”.
Here is another example.

tibble(x = seq(1,4,0.5),
y = sin(x),
z = cos(x),
w = x^3 - 10*x^2 + x - 2)
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## # A tibble: 7 x 4
## x y z w
## <dbl> <dbl> <dbl> <dbl>
## 1 1 0.841 0.540 -10
## 2 1.5 0.997 0.0707 -19.6
## 3 2 0.909 -0.416 -32
## 4 2.5 0.598 -0.801 -46.4
## 5 3 0.141 -0.990 -62
## 6 3.5 -0.351 -0.936 -78.1
## 7 4 -0.757 -0.654 -94

2.2.7 Loading data from an external source

Usually data scientists need to load data from files. The package readr of tidyverse offers
ways for that. With the package readr you can read from, among others, comma-separated
files (CSV files) and tab-separated files (TSV files).
To read files, we specify a string the location of the file and then use the function for reading
the file, read_csv if it is a CSV file and read_tab if it is a TSV file. If you have a file that
uses another delimiter, a more general read_delim function exists as well.
Here is an example of reading a CSV file from a URL available on the internet.

path <- str_c("https://data.bloomington.in.gov/",
"dataset/117733fb-31cb-480a-8b30-fbf425a690cd/",
"resource/2b2a4280-964c-4845-b397-3105e227a1ae/",
"download/pedestrian-and-bicyclist-counts.csv")

bloom <- read_csv(path)

The data set shows the traffic in the city of Bloomington, the hometown of the Indiana
University at Bloomington, Indiana.
We can inspect the first few rows of the tibble using the function slice_head.

slice_head(bloom, n = 3)

## # A tibble: 3 x 11
## Date 7th a~1 7th u~2 7th u~3 7th u~4 Bline~5 Pedes~6
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Wed, Fe~ 186 221 155 66 688 490
## 2 Thu, Fe~ 194 166 98 68 676 450
## 3 Fri, Fe~ 147 200 142 58 603 399
## # ... with 4 more variables: Cyclists <dbl>,
## # `Jordan and 7th` <dbl>, `N College and RR` <dbl>,
## # `S Walnut and Wylie` <dbl>, and abbreviated variable
## # names 1: `7th and Park Campus`, 2: `7th underpass`,
## # 3: `7th underpass Pedestrians`,
## # 4: `7th underpass Cyclists`,
## # 5: `Bline Convention Cntr`, 6: Pedestrians
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Note that some columns have spaces in them. To access the column corresponding to the
attribute, we cannot simply type the column because of the white space. To access these
columns, we surround the attribute with backticks (‘).

pull(bloom, `N College and RR`)

2.2.8 Writing results to a file

Saving a tibble to file is easy. You use write_csv(DATA_NAME,PATH) where DATA_NAME is the
name of the data frame to save and PATH is the “path name” of the file.
Below, the action is to store the tibble bloom as “bloom.csv” in the current working directory.

write_csv(bloom, "bloom.csv")

2.3 dplyr Verbs

The past section showed two basic data structures – data frames and tibbles – that can be
used for loading, creating, and saving datasets. We also saw how to query basic information
from these structures. In this section we turn to the topic of data transformation, that is,
actions we can apply to a dataset to transform it into a new, and hopefully more useful,
dataset. Recall that data transformation is the essence of achieving tidy data.
The dplyr packages provides a suite of functions for providing such transformations. Put
another way, dplyr provides a grammar of data manipulation where each function can be
thought of as the verbs that act upon the subject, the dataset (in tibble form). In this
section we study the main dplyr verbs.

2.3.1 Prerequisites

As before, let us load tidyverse.

library(tidyverse)

Let us load mtcars as before and call it mtcars_tibble and then, as before, convert the row
names to a column. Call the new attribute “model_name”.

mtcars_tibble <- tibble(rownames_to_column(mtcars, "model_name"))
mtcars_tibble

## # A tibble: 32 x 12
## model~1 mpg cyl disp hp drat wt qsec vs
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Mazda ~ 21 6 160 110 3.9 2.62 16.5 0
## 2 Mazda ~ 21 6 160 110 3.9 2.88 17.0 0
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## 3 Datsun~ 22.8 4 108 93 3.85 2.32 18.6 1
## 4 Hornet~ 21.4 6 258 110 3.08 3.22 19.4 1
## 5 Hornet~ 18.7 8 360 175 3.15 3.44 17.0 0
## 6 Valiant 18.1 6 225 105 2.76 3.46 20.2 1
## 7 Duster~ 14.3 8 360 245 3.21 3.57 15.8 0
## 8 Merc 2~ 24.4 4 147. 62 3.69 3.19 20 1
## 9 Merc 2~ 22.8 4 141. 95 3.92 3.15 22.9 1
## 10 Merc 2~ 19.2 6 168. 123 3.92 3.44 18.3 1
## # ... with 22 more rows, 3 more variables: am <dbl>,
## # gear <dbl>, carb <dbl>, and abbreviated variable name
## # 1: model_name

2.3.2 A fast overview of the verbs

The main important verbs from dplyr that we will cover are shown in the following figure.

This section will cover the following:
• select, for selecting or deselecting columns
• filter, for filtering rows
• arrange, for reordering rows
• slice, for selecting rows with criteria or by row numbers
• rename, for renaming attributes
• relocate, for adjusting the order of the columns
• mutate and transmute, for adding new columns
• group_by and summarize, for grouping rows together and summarizing information about

the group
We will also discuss the |> operator to coordinate multiple actions seamlessly.
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Be sure to bookmark the dplyr cheatsheet2 which will come in handy and useful for exploring
more verbs available.

2.3.3 Selecting columns with select

The selection of attributes occurs when you want to focus on a subset of the attributes of
a dataset at hand. The function select allows the selection in multiple possible ways.
In the simplest form of select, we list the attributes we wish to include in the data with a
comma in between. For instance, we may only want to focus on the model name, miles per
gallon, the number of cylinders, and the engine design.

select(mtcars_tibble, model_name, mpg, cyl, vs)

## # A tibble: 32 x 4
## model_name mpg cyl vs
## <chr> <dbl> <dbl> <dbl>
## 1 Mazda RX4 21 6 0
## 2 Mazda RX4 Wag 21 6 0
## 3 Datsun 710 22.8 4 1
## 4 Hornet 4 Drive 21.4 6 1
## 5 Hornet Sportabout 18.7 8 0
## 6 Valiant 18.1 6 1
## 7 Duster 360 14.3 8 0
## 8 Merc 240D 24.4 4 1
## 9 Merc 230 22.8 4 1
## 10 Merc 280 19.2 6 1
## # ... with 22 more rows

Alternatively, we may want the model name and all the columns that appear between mpg
and wt.

select(mtcars_tibble, model_name, mpg:wt)

## # A tibble: 32 x 7
## model_name mpg cyl disp hp drat wt
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Mazda RX4 21 6 160 110 3.9 2.62
## 2 Mazda RX4 Wag 21 6 160 110 3.9 2.88
## 3 Datsun 710 22.8 4 108 93 3.85 2.32
## 4 Hornet 4 Drive 21.4 6 258 110 3.08 3.22
## 5 Hornet Sportabout 18.7 8 360 175 3.15 3.44
## 6 Valiant 18.1 6 225 105 2.76 3.46
## 7 Duster 360 14.3 8 360 245 3.21 3.57
## 8 Merc 240D 24.4 4 147. 62 3.69 3.19
## 9 Merc 230 22.8 4 141. 95 3.92 3.15
## 10 Merc 280 19.2 6 168. 123 3.92 3.44
## # ... with 22 more rows

2https://rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf

https://rstudio.com


2.3 dplyr Verbs 59

We can also provide something more complex. select can receive attribute matching options
like starts_with, ends_with, and contains. The following example demonstrates the use of
some of these.

select(mtcars_tibble, cyl | !starts_with("m") & contains("a"))

## # A tibble: 32 x 5
## cyl drat am gear carb
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 6 3.9 1 4 4
## 2 6 3.9 1 4 4
## 3 4 3.85 1 4 1
## 4 6 3.08 0 3 1
## 5 8 3.15 0 3 2
## 6 6 2.76 0 3 1
## 7 8 3.21 0 3 4
## 8 4 3.69 0 4 2
## 9 4 3.92 0 4 2
## 10 6 3.92 0 4 4
## # ... with 22 more rows

The criterion for selection here: in addition to mpg and cyl, any attribute whose name starts
with some character other than “m” and contains “a” somewhere.
Going one step further, we can also supply a regular expression to do the matching. Recall
that ^ and $ are the start and end of a string, respectively, and [a-z]{3,5} means any
lowercase alphabet sequence having length between 3 and 5. Have a look at the following
example.

select(mtcars_tibble, matches("^[a-z]{3,5}$"))

## # A tibble: 32 x 7
## mpg cyl disp drat qsec gear carb
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 21 6 160 3.9 16.5 4 4
## 2 21 6 160 3.9 17.0 4 4
## 3 22.8 4 108 3.85 18.6 4 1
## 4 21.4 6 258 3.08 19.4 3 1
## 5 18.7 8 360 3.15 17.0 3 2
## 6 18.1 6 225 2.76 20.2 3 1
## 7 14.3 8 360 3.21 15.8 3 4
## 8 24.4 4 147. 3.69 20 4 2
## 9 22.8 4 141. 3.92 22.9 4 2
## 10 19.2 6 168. 3.92 18.3 4 4
## # ... with 22 more rows

The regular expression here means return any columns that have “lowercase name with
length between 3 and 5”.
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2.3.4 Filtering rows with filter

Let us turn our attention now to the rows. The function filter allows us to select rows using
some criteria. The syntax is to provide a Boolean expression for what should be included
in the filtered dataset.
We can select all car models with 8 cylinders. Note how cyl == 8 is an expression that
evaluates to either TRUE or FALSE depending on whether the the attribute cyl of the row has
a value of 8.

filter(mtcars_tibble, cyl == 8)

## # A tibble: 14 x 12
## model~1 mpg cyl disp hp drat wt qsec vs
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Hornet~ 18.7 8 360 175 3.15 3.44 17.0 0
## 2 Duster~ 14.3 8 360 245 3.21 3.57 15.8 0
## 3 Merc 4~ 16.4 8 276. 180 3.07 4.07 17.4 0
## 4 Merc 4~ 17.3 8 276. 180 3.07 3.73 17.6 0
## 5 Merc 4~ 15.2 8 276. 180 3.07 3.78 18 0
## 6 Cadill~ 10.4 8 472 205 2.93 5.25 18.0 0
## 7 Lincol~ 10.4 8 460 215 3 5.42 17.8 0
## 8 Chrysl~ 14.7 8 440 230 3.23 5.34 17.4 0
## 9 Dodge ~ 15.5 8 318 150 2.76 3.52 16.9 0
## 10 AMC Ja~ 15.2 8 304 150 3.15 3.44 17.3 0
## 11 Camaro~ 13.3 8 350 245 3.73 3.84 15.4 0
## 12 Pontia~ 19.2 8 400 175 3.08 3.84 17.0 0
## 13 Ford P~ 15.8 8 351 264 4.22 3.17 14.5 0
## 14 Masera~ 15 8 301 335 3.54 3.57 14.6 0
## # ... with 3 more variables: am <dbl>, gear <dbl>,
## # carb <dbl>, and abbreviated variable name
## # 1: model_name

We could be more picky and refine our search by including more attributes to filter by.

filter(mtcars_tibble, cyl == 8, am == 1, hp > 300)

## # A tibble: 1 x 12
## model_~1 mpg cyl disp hp drat wt qsec vs
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Maserat~ 15 8 301 335 3.54 3.57 14.6 0
## # ... with 3 more variables: am <dbl>, gear <dbl>,
## # carb <dbl>, and abbreviated variable name
## # 1: model_name

Here, we requested a new tibble that contains rows with 8 cylinders, a manual transmission,
and a gross horsepower over 300.
We may be interested in fetching a particular row in the dataset, say, the information
associated with the car model “Datsun 710”. We can also use filter to achieve this task.
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filter(mtcars_tibble, model_name == "Datsun 710")

## # A tibble: 1 x 12
## model_~1 mpg cyl disp hp drat wt qsec vs
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Datsun ~ 22.8 4 108 93 3.85 2.32 18.6 1
## # ... with 3 more variables: am <dbl>, gear <dbl>,
## # carb <dbl>, and abbreviated variable name
## # 1: model_name

2.3.5 Re-arranging rows with arrange

It may be necessary to rearrange the order of the rows to aid our understanding of the
meaning of the dataset. The function arrange allows us to do just that.
To arrange rows, we state a list of attributes in the order we want to use for re-arranging.
For instance, we can rearrange the rows by gross horsepower (hp).

arrange(mtcars_tibble, hp)

## # A tibble: 32 x 12
## model~1 mpg cyl disp hp drat wt qsec vs
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Honda ~ 30.4 4 75.7 52 4.93 1.62 18.5 1
## 2 Merc 2~ 24.4 4 147. 62 3.69 3.19 20 1
## 3 Toyota~ 33.9 4 71.1 65 4.22 1.84 19.9 1
## 4 Fiat 1~ 32.4 4 78.7 66 4.08 2.2 19.5 1
## 5 Fiat X~ 27.3 4 79 66 4.08 1.94 18.9 1
## 6 Porsch~ 26 4 120. 91 4.43 2.14 16.7 0
## 7 Datsun~ 22.8 4 108 93 3.85 2.32 18.6 1
## 8 Merc 2~ 22.8 4 141. 95 3.92 3.15 22.9 1
## 9 Toyota~ 21.5 4 120. 97 3.7 2.46 20.0 1
## 10 Valiant 18.1 6 225 105 2.76 3.46 20.2 1
## # ... with 22 more rows, 3 more variables: am <dbl>,
## # gear <dbl>, carb <dbl>, and abbreviated variable name
## # 1: model_name

By default, arrange will reorder in ascending order. If we wish to reorder in descending
order, we put the attribute in a desc function call. While we are at it, let us break ties in
hp and order by miles per gallon (mpg).

arrange(mtcars_tibble, desc(hp), mpg)

## # A tibble: 32 x 12
## model~1 mpg cyl disp hp drat wt qsec vs
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Masera~ 15 8 301 335 3.54 3.57 14.6 0
## 2 Ford P~ 15.8 8 351 264 4.22 3.17 14.5 0
## 3 Camaro~ 13.3 8 350 245 3.73 3.84 15.4 0
## 4 Duster~ 14.3 8 360 245 3.21 3.57 15.8 0
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## 5 Chrysl~ 14.7 8 440 230 3.23 5.34 17.4 0
## 6 Lincol~ 10.4 8 460 215 3 5.42 17.8 0
## 7 Cadill~ 10.4 8 472 205 2.93 5.25 18.0 0
## 8 Merc 4~ 15.2 8 276. 180 3.07 3.78 18 0
## 9 Merc 4~ 16.4 8 276. 180 3.07 4.07 17.4 0
## 10 Merc 4~ 17.3 8 276. 180 3.07 3.73 17.6 0
## # ... with 22 more rows, 3 more variables: am <dbl>,
## # gear <dbl>, carb <dbl>, and abbreviated variable name
## # 1: model_name

2.3.6 Selecting rows with slice

The function is for selecting rows by specifying the rows position. You can specify one
row with its row number, a range of rows with a number pair A:B where you can have an
expression involving the function n to specify the number of rows in the data.
The following use of slice() uses the range (n()-10):(n()-2) is the range starting from
the tenth row from the last and ending at the second to last row.

slice(mtcars_tibble, (n()-10) : (n()-2))

## # A tibble: 9 x 12
## model_~1 mpg cyl disp hp drat wt qsec vs
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Dodge C~ 15.5 8 318 150 2.76 3.52 16.9 0
## 2 AMC Jav~ 15.2 8 304 150 3.15 3.44 17.3 0
## 3 Camaro ~ 13.3 8 350 245 3.73 3.84 15.4 0
## 4 Pontiac~ 19.2 8 400 175 3.08 3.84 17.0 0
## 5 Fiat X1~ 27.3 4 79 66 4.08 1.94 18.9 1
## 6 Porsche~ 26 4 120. 91 4.43 2.14 16.7 0
## 7 Lotus E~ 30.4 4 95.1 113 3.77 1.51 16.9 1
## 8 Ford Pa~ 15.8 8 351 264 4.22 3.17 14.5 0
## 9 Ferrari~ 19.7 6 145 175 3.62 2.77 15.5 0
## # ... with 3 more variables: am <dbl>, gear <dbl>,
## # carb <dbl>, and abbreviated variable name
## # 1: model_name

We can also use slice_head(n = NUMBER) and slice_tail(n = NUMBER) to select the top
NUMBER rows and the last NUMBER rows, respectively.

slice_head(mtcars_tibble, n = 2)

## # A tibble: 2 x 12
## model_~1 mpg cyl disp hp drat wt qsec vs
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Mazda R~ 21 6 160 110 3.9 2.62 16.5 0
## 2 Mazda R~ 21 6 160 110 3.9 2.88 17.0 0
## # ... with 3 more variables: am <dbl>, gear <dbl>,
## # carb <dbl>, and abbreviated variable name
## # 1: model_name
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slice_tail(mtcars_tibble, n = 2)

## # A tibble: 2 x 12
## model_~1 mpg cyl disp hp drat wt qsec vs
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Maserat~ 15 8 301 335 3.54 3.57 14.6 0
## 2 Volvo 1~ 21.4 4 121 109 4.11 2.78 18.6 1
## # ... with 3 more variables: am <dbl>, gear <dbl>,
## # carb <dbl>, and abbreviated variable name
## # 1: model_name

If we are interested in some particular row, we can use slice for that as well.

slice(mtcars_tibble, 3)

## # A tibble: 1 x 12
## model_~1 mpg cyl disp hp drat wt qsec vs
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Datsun ~ 22.8 4 108 93 3.85 2.32 18.6 1
## # ... with 3 more variables: am <dbl>, gear <dbl>,
## # carb <dbl>, and abbreviated variable name
## # 1: model_name

We can also select a random row by using slice_sample. In this example, each row has an
equal chance of being selected.

slice_sample(mtcars_tibble)

## # A tibble: 1 x 12
## model_~1 mpg cyl disp hp drat wt qsec vs
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 AMC Jav~ 15.2 8 304 150 3.15 3.44 17.3 0
## # ... with 3 more variables: am <dbl>, gear <dbl>,
## # carb <dbl>, and abbreviated variable name
## # 1: model_name

2.3.7 Renaming columns with rename

This function allows you to rename a specific column. The syntax is NEW_NAME = OLD_NAME.
Below, we replace the name wt with weight amd cyl with cylinder.

rename(mtcars_tibble, weight = wt, cylinder = cyl)

## # A tibble: 32 x 12
## model_name mpg cylin~1 disp hp drat weight qsec
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Mazda RX4 21 6 160 110 3.9 2.62 16.5
## 2 Mazda RX4~ 21 6 160 110 3.9 2.88 17.0
## 3 Datsun 710 22.8 4 108 93 3.85 2.32 18.6
## 4 Hornet 4 ~ 21.4 6 258 110 3.08 3.22 19.4
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## 5 Hornet Sp~ 18.7 8 360 175 3.15 3.44 17.0
## 6 Valiant 18.1 6 225 105 2.76 3.46 20.2
## 7 Duster 360 14.3 8 360 245 3.21 3.57 15.8
## 8 Merc 240D 24.4 4 147. 62 3.69 3.19 20
## 9 Merc 230 22.8 4 141. 95 3.92 3.15 22.9
## 10 Merc 280 19.2 6 168. 123 3.92 3.44 18.3
## # ... with 22 more rows, 4 more variables: vs <dbl>,
## # am <dbl>, gear <dbl>, carb <dbl>, and abbreviated
## # variable name 1: cylinder

2.3.8 Relocating column positions with relocate

Sometimes you may want to change the order of columns by moving a column
from the present location to another. We can relocate a column using the relo-
cate function by specifying which column should go where. The syntax is relo-
cate(DATA_NAME,ATTRIBUTE,NEW_LOCATION).
The specification for the new location is either by .before=NAME or by .after=NAME, where
NAME is the name of a column.

relocate(mtcars_tibble, am, .before = mpg)

## # A tibble: 32 x 12
## model~1 am mpg cyl disp hp drat wt qsec
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Mazda ~ 1 21 6 160 110 3.9 2.62 16.5
## 2 Mazda ~ 1 21 6 160 110 3.9 2.88 17.0
## 3 Datsun~ 1 22.8 4 108 93 3.85 2.32 18.6
## 4 Hornet~ 0 21.4 6 258 110 3.08 3.22 19.4
## 5 Hornet~ 0 18.7 8 360 175 3.15 3.44 17.0
## 6 Valiant 0 18.1 6 225 105 2.76 3.46 20.2
## 7 Duster~ 0 14.3 8 360 245 3.21 3.57 15.8
## 8 Merc 2~ 0 24.4 4 147. 62 3.69 3.19 20
## 9 Merc 2~ 0 22.8 4 141. 95 3.92 3.15 22.9
## 10 Merc 2~ 0 19.2 6 168. 123 3.92 3.44 18.3
## # ... with 22 more rows, 3 more variables: vs <dbl>,
## # gear <dbl>, carb <dbl>, and abbreviated variable name
## # 1: model_name

Here we moved the column am to the front, just before mpg.

2.3.9 Adding new columns using mutate

The function mutate can be used for modification or creation of a new column using some
function of the values of existing columns. Let us see an example before getting into the
details.
Suppose we are interested in calculating the ratio between the numbers of cylinders and
forward gears for each car model. We can do this by appending a new column with the
calculated ratios using mutate.
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mtcars_with_ratio <- mutate(mtcars_tibble,
cyl_gear_ratio = cyl / gear)

mtcars_with_ratio

## # A tibble: 32 x 13
## model~1 mpg cyl disp hp drat wt qsec vs
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Mazda ~ 21 6 160 110 3.9 2.62 16.5 0
## 2 Mazda ~ 21 6 160 110 3.9 2.88 17.0 0
## 3 Datsun~ 22.8 4 108 93 3.85 2.32 18.6 1
## 4 Hornet~ 21.4 6 258 110 3.08 3.22 19.4 1
## 5 Hornet~ 18.7 8 360 175 3.15 3.44 17.0 0
## 6 Valiant 18.1 6 225 105 2.76 3.46 20.2 1
## 7 Duster~ 14.3 8 360 245 3.21 3.57 15.8 0
## 8 Merc 2~ 24.4 4 147. 62 3.69 3.19 20 1
## 9 Merc 2~ 22.8 4 141. 95 3.92 3.15 22.9 1
## 10 Merc 2~ 19.2 6 168. 123 3.92 3.44 18.3 1
## # ... with 22 more rows, 4 more variables: am <dbl>,
## # gear <dbl>, carb <dbl>, cyl_gear_ratio <dbl>, and
## # abbreviated variable name 1: model_name

Unfortunately, the new column appears at the very end which may not be desirable. We
can fix this with the following adjustment.

mtcars_with_ratio <- mutate(mtcars_tibble,
cyl_gear_ratio = cyl / gear,
.before = mpg)

mtcars_with_ratio

## # A tibble: 32 x 13
## model_name cyl_g~1 mpg cyl disp hp drat wt
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Mazda RX4 1.5 21 6 160 110 3.9 2.62
## 2 Mazda RX4 ~ 1.5 21 6 160 110 3.9 2.88
## 3 Datsun 710 1 22.8 4 108 93 3.85 2.32
## 4 Hornet 4 D~ 2 21.4 6 258 110 3.08 3.22
## 5 Hornet Spo~ 2.67 18.7 8 360 175 3.15 3.44
## 6 Valiant 2 18.1 6 225 105 2.76 3.46
## 7 Duster 360 2.67 14.3 8 360 245 3.21 3.57
## 8 Merc 240D 1 24.4 4 147. 62 3.69 3.19
## 9 Merc 230 1 22.8 4 141. 95 3.92 3.15
## 10 Merc 280 1.5 19.2 6 168. 123 3.92 3.44
## # ... with 22 more rows, 5 more variables: qsec <dbl>,
## # vs <dbl>, am <dbl>, gear <dbl>, carb <dbl>, and
## # abbreviated variable name 1: cyl_gear_ratio

By specifying an additional .before argument with the value mpg, we inform dplyr that the
new column cyl_gear_ratio should appear before the column mpg, which is the first column
in the dataset.



66 2 Data Transformation

Generally speaking, the syntax for mutate is:

mutate(DATA_SET_NAME, NEW_NAME = EXPRESSION, OPTION)

where:
• The NEW_NAME = EXPRESSION specifies the name of the new attribute and how to compute

it, and OPTION is an option to specify the location of the new attribute relative to the
existing attributes.

• The position option is either of the form .before=VALUE or of the form .after=VALUE with
VALUE specifying the name of the column where the new column will appear before or
after; it can also receive a number indicating the position for the newly inserted column.

• The EXPRESSION can be either a mathematical expression or a function call.
Let us see another example. In addition to calculating the ratio from before, we will create
another column containing the make of the car. We will do this by extracting the first word
from model_name using a regular expression. Let us amend our mutate code from before to
include the changes.

mtcars_mutated <- mutate(mtcars_tibble,
cyl_gear_ratio = cyl / gear,
make = str_replace(model_name, " .*", ""),
.before = mpg)

mtcars_mutated

## # A tibble: 32 x 14
## model_name cyl_g~1 make mpg cyl disp hp drat
## <chr> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Mazda RX4 1.5 Mazda 21 6 160 110 3.9
## 2 Mazda RX4 ~ 1.5 Mazda 21 6 160 110 3.9
## 3 Datsun 710 1 Dats~ 22.8 4 108 93 3.85
## 4 Hornet 4 D~ 2 Horn~ 21.4 6 258 110 3.08
## 5 Hornet Spo~ 2.67 Horn~ 18.7 8 360 175 3.15
## 6 Valiant 2 Vali~ 18.1 6 225 105 2.76
## 7 Duster 360 2.67 Dust~ 14.3 8 360 245 3.21
## 8 Merc 240D 1 Merc 24.4 4 147. 62 3.69
## 9 Merc 230 1 Merc 22.8 4 141. 95 3.92
## 10 Merc 280 1.5 Merc 19.2 6 168. 123 3.92
## # ... with 22 more rows, 6 more variables: wt <dbl>,
## # qsec <dbl>, vs <dbl>, am <dbl>, gear <dbl>,
## # carb <dbl>, and abbreviated variable name
## # 1: cyl_gear_ratio

To form the make column, we use the function str_replace; we look for substrings that
match the pattern " .*" (one white space and then any number of characters following
it) and replace it with an empty string "", leaving only the first word, as desired. String
operations are applicable to strings, which is what appears in the column make.
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Note that the original dataset, before mutation, remains unchanged in mtcars_tibble.

mtcars_tibble

## # A tibble: 32 x 12
## model~1 mpg cyl disp hp drat wt qsec vs
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Mazda ~ 21 6 160 110 3.9 2.62 16.5 0
## 2 Mazda ~ 21 6 160 110 3.9 2.88 17.0 0
## 3 Datsun~ 22.8 4 108 93 3.85 2.32 18.6 1
## 4 Hornet~ 21.4 6 258 110 3.08 3.22 19.4 1
## 5 Hornet~ 18.7 8 360 175 3.15 3.44 17.0 0
## 6 Valiant 18.1 6 225 105 2.76 3.46 20.2 1
## 7 Duster~ 14.3 8 360 245 3.21 3.57 15.8 0
## 8 Merc 2~ 24.4 4 147. 62 3.69 3.19 20 1
## 9 Merc 2~ 22.8 4 141. 95 3.92 3.15 22.9 1
## 10 Merc 2~ 19.2 6 168. 123 3.92 3.44 18.3 1
## # ... with 22 more rows, 3 more variables: am <dbl>,
## # gear <dbl>, carb <dbl>, and abbreviated variable name
## # 1: model_name

How many different makes are there? We can use unique for removing duplicates to find
out.

unique(pull(mtcars_mutated, make))

## [1] "Mazda" "Datsun" "Hornet" "Valiant"
## [5] "Duster" "Merc" "Cadillac" "Lincoln"
## [9] "Chrysler" "Fiat" "Honda" "Toyota"
## [13] "Dodge" "AMC" "Camaro" "Pontiac"
## [17] "Porsche" "Lotus" "Ford" "Ferrari"
## [21] "Maserati" "Volvo"

When an existing column is given in the specification, no new column is created, and the
existing column is modified instead. For instance, the following rounds wt to the nearest
integer value.

mutate(mtcars_tibble, wt = round(wt))

## # A tibble: 32 x 12
## model~1 mpg cyl disp hp drat wt qsec vs
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Mazda ~ 21 6 160 110 3.9 3 16.5 0
## 2 Mazda ~ 21 6 160 110 3.9 3 17.0 0
## 3 Datsun~ 22.8 4 108 93 3.85 2 18.6 1
## 4 Hornet~ 21.4 6 258 110 3.08 3 19.4 1
## 5 Hornet~ 18.7 8 360 175 3.15 3 17.0 0
## 6 Valiant 18.1 6 225 105 2.76 3 20.2 1
## 7 Duster~ 14.3 8 360 245 3.21 4 15.8 0
## 8 Merc 2~ 24.4 4 147. 62 3.69 3 20 1
## 9 Merc 2~ 22.8 4 141. 95 3.92 3 22.9 1
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## 10 Merc 2~ 19.2 6 168. 123 3.92 3 18.3 1
## # ... with 22 more rows, 3 more variables: am <dbl>,
## # gear <dbl>, carb <dbl>, and abbreviated variable name
## # 1: model_name

We can also modify multiple columns in a single pass, say, wt, mpg, and qsec should all be
rounded to the nearest integer. We can accomplish this using a combination of mutate with
the helper dplyr verb across.

mutate(mtcars_tibble,
across(c(mpg, wt, qsec), round))

## # A tibble: 32 x 12
## model~1 mpg cyl disp hp drat wt qsec vs
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Mazda ~ 21 6 160 110 3.9 3 16 0
## 2 Mazda ~ 21 6 160 110 3.9 3 17 0
## 3 Datsun~ 23 4 108 93 3.85 2 19 1
## 4 Hornet~ 21 6 258 110 3.08 3 19 1
## 5 Hornet~ 19 8 360 175 3.15 3 17 0
## 6 Valiant 18 6 225 105 2.76 3 20 1
## 7 Duster~ 14 8 360 245 3.21 4 16 0
## 8 Merc 2~ 24 4 147. 62 3.69 3 20 1
## 9 Merc 2~ 23 4 141. 95 3.92 3 23 1
## 10 Merc 2~ 19 6 168. 123 3.92 3 18 1
## # ... with 22 more rows, 3 more variables: am <dbl>,
## # gear <dbl>, carb <dbl>, and abbreviated variable name
## # 1: model_name

2.3.10 The function transmute

The function transmute is a variant of mutate where we keep only the new columns generated.

only_the_new_stuff <- transmute(mtcars_tibble,
cyl_gear_ratio = cyl / gear,
make = str_replace(model_name, " .*", ""))

only_the_new_stuff

## # A tibble: 32 x 2
## cyl_gear_ratio make
## <dbl> <chr>
## 1 1.5 Mazda
## 2 1.5 Mazda
## 3 1 Datsun
## 4 2 Hornet
## 5 2.67 Hornet
## 6 2 Valiant
## 7 2.67 Duster
## 8 1 Merc
## 9 1 Merc
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## 10 1.5 Merc
## # ... with 22 more rows

2.3.11 The pair group_by and summarize

Suppose you are interested in exploring the relationship between the number of cylinders
in a car model and the miles per gallon it has. One way to examine this is to look at some
summary statistic, say the average, of the miles per gallon for car models with 6 cylinders,
car models with 7 cylinders, and car models with 8 cylinders.
When thinking about the problem in this way, we have effectively divided up all of the rows
in the dataset into three groups, where the group a car model will belong to is determined
by the number of cylinders it has.
dplyr accomplishes this using the function group_by(). The syntax for group_by() is simple:
simply list the attributes with which you want to build groups. Let us give an example on
how to use it.

grouped_by_cl <- group_by(mtcars_tibble, cyl)
slice_head(grouped_by_cl, n=2) # show 2 rows per group

## # A tibble: 6 x 12
## # Groups: cyl [3]
## model_~1 mpg cyl disp hp drat wt qsec vs
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Datsun ~ 22.8 4 108 93 3.85 2.32 18.6 1
## 2 Merc 24~ 24.4 4 147. 62 3.69 3.19 20 1
## 3 Mazda R~ 21 6 160 110 3.9 2.62 16.5 0
## 4 Mazda R~ 21 6 160 110 3.9 2.88 17.0 0
## 5 Hornet ~ 18.7 8 360 175 3.15 3.44 17.0 0
## 6 Duster ~ 14.3 8 360 245 3.21 3.57 15.8 0
## # ... with 3 more variables: am <dbl>, gear <dbl>,
## # carb <dbl>, and abbreviated variable name
## # 1: model_name

We can spot two rows shown per each cyl group. group_by() alone is often not useful. To
make something out of this, we need to summarize some piece of information using these
groups, e.g. the average mpg per group as is needed for our task.
The summary function is called summarize(). Let us amend our above grouping code to
include the summary.

grouped_by_cl <- group_by(mtcars_tibble, cyl)
summarized <- summarize(grouped_by_cl,

count = n(),
avg_mpg = mean(mpg))

summarized

## # A tibble: 3 x 3
## cyl count avg_mpg
## <dbl> <int> <dbl>
## 1 4 11 26.7
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## 2 6 7 19.7
## 3 8 14 15.1

This table looks more like what we would expect. Our summary calculates two summaries,
each reflected in a column in the above table:
• count, the number of car models belonging to the group
• avg_mpg, the average miles per gallon of car models in the group

The summary results make sense. More cylinders translates to more power, but it also means
more moving parts which can hurt efficiency. Therefore, it seems an association exists where
the more cylinders a car has, the lower its miles per gallon.
These functions come handy when you want to examine data by grouping rows and sum-
marize some information with respect to each group.

2.3.12 Coordinating multiple actions using |>

Let us revise a bit our previous study. Curious about the joint effect of the numbers of
cylinders and the transmission of the car, you decide to group by both cyl and am. After
summarizing the groups, you calculate the counts in each group and the average mpg. Finally,
after the summary is done, you would like to remove any groups from the summary that
have less than 2 cars.
Your analysis pipeline, then, would be composed of three steps:

1. Group rows by cyl and am, the number of cylinders.
2. Summarize to calculate the average miles per gallon per group.
3. Filter out rows that are below the average miles per gallon.

A first solution for this task might look like the following.

# step 1
grouped_by_cl <- group_by(mtcars_tibble, cyl, am)
# step 2
summarized <- summarize(grouped_by_cl,

count = n(),
avg_mpg = mean(mpg))

# step 3
avg_mpg_counts <- filter(summarized, count > 2)
avg_mpg_counts

## # A tibble: 5 x 4
## # Groups: cyl [3]
## cyl am count avg_mpg
## <dbl> <dbl> <int> <dbl>
## 1 4 0 3 22.9
## 2 4 1 8 28.1
## 3 6 0 4 19.1
## 4 6 1 3 20.6
## 5 8 0 12 15.0
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Observe how the code we have just written is quite cumbersome. It introduces several inter-
mediate products that we do not need, namely, the names grouped_by_cl and summarized.
It can also be difficult to come up with descriptive names.
Conveniently, there is a construct from base R called the “pipe” which allows us to pass the
results from one function as input to another. The way to use piping is simple.
• You start by stating the initial dataset.
• For each operation to form, you append |> and then the operation, where you omit the

dataset name part.
• If you need to save the result in a data set, you use the assignment operator <- at the

beginning as usual.
Thus, we can rewrite our first solution as follows.

avg_mpg_counts <- mtcars |>
group_by(cyl, am) |>
summarize(count = n(),

avg_mpg = mean(mpg)) |>
filter(count > 2)

This solution is much easier to read than our first; we can clearly identify the transformations
being performed on the data. It is good to read |> as “then”.
Note that there is not much mystery with |>. All the pipe operator does is place an object
into the first argument of a function. So, when we say mtcars |> group_by(cyl, am), the
pipe changes this to group_by(mtcars, cyl, am). Or, more generally, if we have x |> func(y),
this is changed to func(x, y).
Here is another use of the pipe, using our mtcars_mutated tibble from earlier.

mtcars_mutated |>
pull(make) |>
unique()

## [1] "Mazda" "Datsun" "Hornet" "Valiant"
## [5] "Duster" "Merc" "Cadillac" "Lincoln"
## [9] "Chrysler" "Fiat" "Honda" "Toyota"
## [13] "Dodge" "AMC" "Camaro" "Pontiac"
## [17] "Porsche" "Lotus" "Ford" "Ferrari"
## [21] "Maserati" "Volvo"

Neat! This one demonstrates some of the usefulness of pull over the traditional $ for ac-
cessing column data.

2.3.13 Practice makes perfect!

This section has covered a lot of dplyr functions for transforming datasets and, despite our
best efforts, understanding what these functions are doing can quickly become overwhelming.
The only way to truly understand these functions – and which ones should be used when
confronted with a situation – is to practice using them.
Begin with the mtcars dataset from this section and run through each of the functions and
the examples discussed here on your own. Observe what the dataset looks like before and
after the transformation and try to understand what the transformation is.



72 2 Data Transformation

Once you develop enough familiarity with these functions, try making small changes to our
examples and coming up with your own transformations to apply. Be sure to include the |>
operator whenever possible.
You may also wish to look at some of the datasets available to you when running the
command data().

2.4 Tidy Transformations

In this section we turn to transformation techniques that are essential for achieving tidy
data.

2.4.1 Prerequisites

As before, let us load tidyverse.

library(tidyverse)

2.4.2 Uniting and separating columns

The third tidy data guideline states that each value must have its own cell. Sometimes this
value may be split across multiple columns or merged in a single column.
In the case of the Miami bakery example, we saw that when the bakery records sale forecasts,
the lower and upper bounds of the range are fused in a single cell. This makes extraction
and analysis of these values difficult, especially when R treats the forecast column as a
character sequence.

forecast_sales <- tibble(
week = c(1, 2, 3),
forecast = c("200-300", "300-400", "200-500")

)
forecast_sales

## # A tibble: 3 x 2
## week forecast
## <dbl> <chr>
## 1 1 200-300
## 2 2 300-400
## 3 3 200-500

A solution would be to split forecast into multiple columns, one giving the lower bound
and the other the upper bound. The tidyr function separate accomplishes the work.

forecast_sales |>
separate(forecast, c("low", "high"), "-", convert = TRUE)
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## # A tibble: 3 x 3
## week low high
## <dbl> <int> <int>
## 1 1 200 300
## 2 2 300 400
## 3 3 200 500

We separate the columns based on the presence of the "-" character. The convert argument
is set so that the lower and upper values can be treated as proper integers.
The tibble table5 displays the number of TB cases documented by the World Health Orga-
nization in Afghanistan, Brazil, and China between 1999 and 2000. The “year”, however, is
a single value that has been split across a century and year column.

table5

## # A tibble: 6 x 4
## country century year rate
## * <chr> <chr> <chr> <chr>
## 1 Afghanistan 19 99 745/19987071
## 2 Afghanistan 20 00 2666/20595360
## 3 Brazil 19 99 37737/172006362
## 4 Brazil 20 00 80488/174504898
## 5 China 19 99 212258/1272915272
## 6 China 20 00 213766/1280428583

The unite function can be used to merge a split value. Its functionality is similar to separate.

table5 |>
unite("year", century:year, sep="")

## # A tibble: 6 x 3
## country year rate
## <chr> <chr> <chr>
## 1 Afghanistan 1999 745/19987071
## 2 Afghanistan 2000 2666/20595360
## 3 Brazil 1999 37737/172006362
## 4 Brazil 2000 80488/174504898
## 5 China 1999 212258/1272915272
## 6 China 2000 213766/1280428583

We specify an empty string ("") in the sep argument to indicate no character delimiter
should be used when merging the values.
Note also that the rate column needs tidying. We leave the tidying of this column as an
exercise for the reader.

2.4.3 Pulling data from multiple sources

The fourth principle of tidy data stated that an observational unit should form a table.
However, often times the observational unit we are measuring is split across multiple tables.
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Let us suppose we are measuring student assessments in a class. The data is given to us
in the form of two tables, one for exams and the other for assignments. We load the scores
into our R environment with tibble.

exams <- tibble(name = c("Adriana", "Beth", "Candy", "Emily"),
midterm = c(90, 80, 95, 87),
final = c(99, 50, 70, 78))

assignments <- tibble(name = c("Adriana", "Beth", "Candy", "Florence"),
assign1 = c(80, 88, 93, 88),
assign2 = c(91, 61, 73, 83))

exams

## # A tibble: 4 x 3
## name midterm final
## <chr> <dbl> <dbl>
## 1 Adriana 90 99
## 2 Beth 80 50
## 3 Candy 95 70
## 4 Emily 87 78

assignments

## # A tibble: 4 x 3
## name assign1 assign2
## <chr> <dbl> <dbl>
## 1 Adriana 80 91
## 2 Beth 88 61
## 3 Candy 93 73
## 4 Florence 88 83

If the observational unit is an assessment result, then some assessments are in one table
and some assessments are in another. Therefore, according to this definition, the current
arrangement of the data is not tidy. The data should be kept together in a single table.
You can combine two tibbles using a common attribute as the key for combining; that is,
finding values appearing in both tibbles and then connecting rows having the names in
common. In general, if there are multiple matches between the two tibbles concerning the
attribute, each possible row matches will appear.
The construct for stitching together two tibbles together in this manner is called the join.
The general syntax is:

JOIN_METHOD_NAME(DATA1, DATA2, by="NAME").

Here DATA1 and DATA2 are the names of the tibbles and NAME is the name of the key attributes.
There are four types of join functions. The differences among them are in how they treat
non-matching values.
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• left_join: Exclude any rows in DATA2 with no matching values in DATA1.
• right_join; Exclude any rows in DATA1 with no matching values in DATA2.
• inner_join: Exclude any rows in DATA2 and DATA1 with no matching values in the other

data frame.
• full_join: No exclusions.

The example below shows the results of four join operations.

scores_left <- left_join(assignments, exams, by="name")
scores_left

## # A tibble: 4 x 5
## name assign1 assign2 midterm final
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 Adriana 80 91 90 99
## 2 Beth 88 61 80 50
## 3 Candy 93 73 95 70
## 4 Florence 88 83 NA NA

scores_right <- right_join(assignments, exams, by="name")
scores_right

## # A tibble: 4 x 5
## name assign1 assign2 midterm final
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 Adriana 80 91 90 99
## 2 Beth 88 61 80 50
## 3 Candy 93 73 95 70
## 4 Emily NA NA 87 78

scores_inner <- inner_join(assignments, exams, by = "name")
scores_inner

## # A tibble: 3 x 5
## name assign1 assign2 midterm final
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 Adriana 80 91 90 99
## 2 Beth 88 61 80 50
## 3 Candy 93 73 95 70

scores_full <- full_join(assignments, exams, by="name")
scores_full

## # A tibble: 5 x 5
## name assign1 assign2 midterm final
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 Adriana 80 91 90 99
## 2 Beth 88 61 80 50
## 3 Candy 93 73 95 70
## 4 Florence 88 83 NA NA
## 5 Emily NA NA 87 78
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The results of the join reveal some anomalies in our data. Namely, we see that Emily does
not have any assignment scores nor does Florence have any exam scores. Hence, in the left,
right, and full joins, we see values labeled NA appear where they would have those values.
We call these missing values, which can be thought of as “holes” in the data. We will return
to missing values in a later section.
An alternative to the join is to stack up the rows using bind_rows.

bind_rows(assignments, exams)

## # A tibble: 8 x 5
## name assign1 assign2 midterm final
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 Adriana 80 91 NA NA
## 2 Beth 88 61 NA NA
## 3 Candy 93 73 NA NA
## 4 Florence 88 83 NA NA
## 5 Adriana NA NA 90 99
## 6 Beth NA NA 80 50
## 7 Candy NA NA 95 70
## 8 Emily NA NA 87 78

Observe how this one does not join values where possible, and so there is redundancy in
the rows that appear, e.g., Adriana appears twice. As a result, many missing values appear
in the resulting table.

2.4.4 Pivoting

Let us return to the resulting table after the inner join.

scores_inner

## # A tibble: 3 x 5
## name assign1 assign2 midterm final
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 Adriana 80 91 90 99
## 2 Beth 88 61 80 50
## 3 Candy 93 73 95 70

The third property of tidy data is fulfilled now that the observational unit forms a single
table. However, the joined table is still messy. The grades are split across four different
columns and, therefore, multiple observations occur at each row.
To remedy this, we use pivot and, in terms of R, the function pivot_longer from the tidyr
package. The syntax for pivot_longer can be complex, and so we do not go over it in detail.
Here is how we can use it.

scores_long <- scores_inner |>
pivot_longer(c(assign1, assign2, midterm, final),

names_to = "assessment", values_to = "score")
scores_long
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## # A tibble: 12 x 3
## name assessment score
## <chr> <chr> <dbl>
## 1 Adriana assign1 80
## 2 Adriana assign2 91
## 3 Adriana midterm 90
## 4 Adriana final 99
## 5 Beth assign1 88
## 6 Beth assign2 61
## 7 Beth midterm 80
## 8 Beth final 50
## 9 Candy assign1 93
## 10 Candy assign2 73
## 11 Candy midterm 95
## 12 Candy final 70

The usage above takes scores_inner, merges all the assessment columns, creates a new
column with name assessment, and presents the corresponding values under the column
score. Graphically, this is what a pivot longer transformation computes.

Observe how we can easily read off the three variables from this table: name, assessment,
and score. We can be confident in knowing that this is tidy data.
If we wish to go in the other direction, we can use pivot_wider. The function pivot_wider
grabs a pair of columns and spreads the pair into a series of columns. One column of the pair
serves as the source for the new column names after spreading. For each value appearing in
the source column, the function creates a new column by the name. The value appearing
opposite to the source value appears as the value for the column corresponding to the source.

scores_long |>
pivot_wider(names_from = assessment, values_from = score)

## # A tibble: 3 x 5
## name assign1 assign2 midterm final
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 Adriana 80 91 90 99
## 2 Beth 88 61 80 50
## 3 Candy 93 73 95 70
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Here is a visual demonstrating the pivot wider transformation:

Note how this simply undoes what we have done, returning us to the original scores_inner
table. We can also prefix each of the new columns with assess_.

scores_long |>
pivot_wider(names_from = assessment,

values_from = score, names_prefix = "assess_")

## # A tibble: 3 x 5
## name assess_assign1 assess_assign2 assess_m~1 asses~2
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 Adriana 80 91 90 99
## 2 Beth 88 61 80 50
## 3 Candy 93 73 95 70
## # ... with abbreviated variable names 1: assess_midterm,
## # 2: assess_final

There are two details to note when working with the pivot functions.
• pivot_wider should not be thought of as an “undo” operation. Like pivot_longer its

primary purpose is also to make data tidy. Consider the following table and observe
how each observation is scattered across two rows. The appropriate means to bring this
data into tidiness is through an application of pivot_wider.

slice_head(table2, n = 5)

## # A tibble: 5 x 4
## country year type count
## <chr> <int> <chr> <int>
## 1 Afghanistan 1999 cases 745
## 2 Afghanistan 1999 population 19987071
## 3 Afghanistan 2000 cases 2666
## 4 Afghanistan 2000 population 20595360
## 5 Brazil 1999 cases 37737

• pivot_longer and pivot_wider are not perfectly symmetrical operations. That is, there
are cases where applying pivot_wider, followed by pivot_longer, will not reproduce the
exact same dataset. Consider such an application on the following dataset. Keep in mind
the column names and how the column data types change at each pivot step.
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sales <- tibble(
year = c(2020, 2021, 2020, 2021),
quarter = c(1, 2, 1, 2),
sale = c(70, 80, 62, 100)

)

2.5 Applying Functions to Columns

Situations can arise where we need to apply some function to a column. In this section we
learn how to apply functions to columns using a construct called the map.

2.5.1 Prerequisites

As before, let us load tidyverse.

library(tidyverse)

We will use the mtcars tibble again in this section so let us prepare the tibble by migrating
the row names to a dedicated column. Note how the pipe operator can be used to help with
the work.

mtcars_tibble <- mtcars |>
rownames_to_column("model_name")

2.5.2 What is a function anyway?

We have used several times by now the word “function”. Here are some basic rules about
functions.
• A function is a block of code with a name that allows execution from other codes. This

mean that you can take any part of a working (i.e., all parentheses and brackets in the
part have matching counterparts in the same part) and specify it to be a function.

• If the function is active in the present run of R, each time a code call the function, the
code of the function runs. This means that R suspends the execution of the present code
and processes the execution of the code of the function. When it finishes running the
code of the function, it returns to the execution of the one it has suspended.

• A function may take upon the role of computing a value. You can design a function
so that it uses a special function return at the end so as to specify the value it has
computed. Note that the use of return is optional and, by default, R returns the last
line of computation performed in the function.

• If a function has the role of returning a value, the call itself represents the value it com-
putes. So, you store the value the function computes in a variable using an assignment.
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• A function may require some number of values to use in its calculation. We call them
arguments. When using a function that requires arguments, the arguments must appear
in the call.

2.5.3 A very simple function

Here is a very simple function, one_to_ten, which prints the sequence of integers from 1 to
10. The definition of the function takes the form one_ten <- function() { ... }.

one_to_ten <- function() {
print(1:10)

}

Here is what happens when you call the function.

one_to_ten()

## [1] 1 2 3 4 5 6 7 8 9 10

Note that the call stands alone, i.e., you can use it without anything else but its name and
a pair of parentheses. By replacing the code appearing inside the curly brackets, you can
define a different function with the same name one_to_ten.
Let us reverse the order in which the numbers appear.

one_to_ten <- function() {
print(10:1)

}

Here is what happens when you call the function.

one_to_ten()

## [1] 10 9 8 7 6 5 4 3 2 1

The new behavior of one_to_ten substitutes the old one, and you cannot replay the behavior
of the previous version (until, of course, you modify the function again).

2.5.4 Functions that compute a value

To make a function compute a value, you add a line return(VALUE) at the end of the code
in the brackets. The function my_family returns a list of names for persons.
Remember the c function? The function creates a vector with 19 names as strings and
returns the vector.

my_family <- function() {
c("Amy", "Billie", "Casey", "Debbie", "Eddie", "Freddie", "Gary",

"Hary", "Ivy", "Jackie", "Lily", "Mikey", "Nellie", "Odie",
"Paulie", "Quincy", "Ruby", "Stacey", "Tiffany")

}
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The call for the function produces the list that the function returns.

a <- my_family()
a

## [1] "Amy" "Billie" "Casey" "Debbie" "Eddie"
## [6] "Freddie" "Gary" "Hary" "Ivy" "Jackie"
## [11] "Lily" "Mikey" "Nellie" "Odie" "Paulie"
## [16] "Quincy" "Ruby" "Stacey" "Tiffany"

Now whenever you need the 19-name list, you can either call the function or refer to the
variable a that holds the list.

2.5.5 Functions that take arguments

To write a function that takes arguments, you determine how many arguments you need
and determine the names you want to use for the arguments during the execution of the
code for the function.
The function declaration now has the names of the arguments. You put them in the order
you want to use with a comma in between. Below, we define a function that computes the
max between 100 and the argument received. The function returns the argument so long as
it is larger than 100.

passes_100 <- function(x) {
max(100, x)

}

Here is a demonstration of how the function works.

passes_100(50) # a value smaller than 100

## [1] 100

passes_100(2021) # a value larger than 100

## [1] 2021

2.5.6 Applying functions using mutate

Let us now return to the discussion of how we can apply functions to a column. The meaning
of apply is particular. What we mean by this is that we wish to run some function (which
can receive an argument and return a value) to each row of a column. This can be useful
if, say, some column is given in the wrong units or if the values in a column should be “cut
off” at some threshold point.
Recall the tidied tibble mtcars_tibble.

mtcars_tibble



82 2 Data Transformation

## # A tibble: 32 x 11
## mpg cyl disp hp drat wt qsec vs am
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 21 6 160 110 3.9 2.62 16.5 0 1
## 2 21 6 160 110 3.9 2.88 17.0 0 1
## 3 22.8 4 108 93 3.85 2.32 18.6 1 1
## 4 21.4 6 258 110 3.08 3.22 19.4 1 0
## 5 18.7 8 360 175 3.15 3.44 17.0 0 0
## 6 18.1 6 225 105 2.76 3.46 20.2 1 0
## 7 14.3 8 360 245 3.21 3.57 15.8 0 0
## 8 24.4 4 147. 62 3.69 3.19 20 1 0
## 9 22.8 4 141. 95 3.92 3.15 22.9 1 0
## 10 19.2 6 168. 123 3.92 3.44 18.3 1 0
## # ... with 22 more rows, and 2 more variables:
## # gear <dbl>, carb <dbl>

We can spot two areas that require transformation:
• Convert the wt column from pounds to kilograms.
• Cut off the values in displ so that no car model has a value larger than 400.

We can address the first one by writing a function that multiples each value in the argument
received by the conversion factor for kilograms. Let us test it out first with a simple vector.

wt_conversion <- function(x) {
x * 0.454

}

wt_conversion(100:105)

## [1] 45.400 45.854 46.308 46.762 47.216 47.670

To incorporate this into the tibble, we make a call to mutate using our function
wt_conversion, which modifies the column wt.

mtcars_transformed <- mtcars_tibble |>
mutate(wt = wt_conversion(wt))

mtcars_transformed

## # A tibble: 32 x 11
## mpg cyl disp hp drat wt qsec vs am
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 21 6 160 110 3.9 1.19 16.5 0 1
## 2 21 6 160 110 3.9 1.31 17.0 0 1
## 3 22.8 4 108 93 3.85 1.05 18.6 1 1
## 4 21.4 6 258 110 3.08 1.46 19.4 1 0
## 5 18.7 8 360 175 3.15 1.56 17.0 0 0
## 6 18.1 6 225 105 2.76 1.57 20.2 1 0
## 7 14.3 8 360 245 3.21 1.62 15.8 0 0
## 8 24.4 4 147. 62 3.69 1.45 20 1 0
## 9 22.8 4 141. 95 3.92 1.43 22.9 1 0
## 10 19.2 6 168. 123 3.92 1.56 18.3 1 0
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## # ... with 22 more rows, and 2 more variables:
## # gear <dbl>, carb <dbl>

We have successfully applied a function we wrote to a column in a tibble!
The second task is peculiar. As with the first example, we can define a function that com-
putes the minimum between the argument and the value 400.

cutoff_400 <- function(x) {
min(400, x)

}

We could then apply the function to the column disp using a similar approach.

mtcars_transformed <- mtcars_tibble |>
mutate(disp = cutoff_400(disp))

mtcars_transformed

## # A tibble: 32 x 11
## mpg cyl disp hp drat wt qsec vs am
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 21 6 71.1 110 3.9 2.62 16.5 0 1
## 2 21 6 71.1 110 3.9 2.88 17.0 0 1
## 3 22.8 4 71.1 93 3.85 2.32 18.6 1 1
## 4 21.4 6 71.1 110 3.08 3.22 19.4 1 0
## 5 18.7 8 71.1 175 3.15 3.44 17.0 0 0
## 6 18.1 6 71.1 105 2.76 3.46 20.2 1 0
## 7 14.3 8 71.1 245 3.21 3.57 15.8 0 0
## 8 24.4 4 71.1 62 3.69 3.19 20 1 0
## 9 22.8 4 71.1 95 3.92 3.15 22.9 1 0
## 10 19.2 6 71.1 123 3.92 3.44 18.3 1 0
## # ... with 22 more rows, and 2 more variables:
## # gear <dbl>, carb <dbl>

That didn’t work out so well. The new disp column contains the same value 71.1 for every
row in the tibble! Did dplyr make a mistake? Is the function we wrote just totally wrong?
The error, actually, is not in anything we wrote per se, but in how R processes the function
cutoff_400 during the mutate call. We expect to pass one number to the function cutoff_400
so that we can compare it against 400, but our function instead receives a vector of values
when used inside a mutate verb. That is, the entire disp column of values is passed as an
argument to the function cutoff_400.
While this was no problem for the wt_conversion function, cutoff_400 is not capable of
handling a vector as an argument and returning a vector back.
To clarify the point, compare the result of these two functions after receiving the vector
395:410.

wt_conversion(399:405)
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## [1] 181.146 181.600 182.054 182.508 182.962 183.416
## [7] 183.870

cutoff_400(398:405)

## [1] 398

wt_conversion performs an element-wise operation to each element of the sequence and,
therefore, the first example works as intended. In the second, cutoff_400 computes the
minimum of the vector (398) and returns the result of just that computation; no element-
wise comparison is made.
To make cutoff_400 work as intended, we turn to a new programming construct called the
map, prepared by the package purrr3.

2.5.7 purrr maps

The main construct we will be using from purrr is called the map. A map applies a function,
say the cutoff_400 function we just wrote, to each element of a vector or list.
purrr offers many flavors of map, depending on what the output vector should look like:
• map_lgl() outputs a logical vector.
• map_int() outputs an integer vector.
• map_dbl() outputs a double vector.
• map_chr() outputs a character vector.
• map() outputs a list.

Here are some more examples of using map. Let us apply the wt_conversion to an input
vector containing a sequence of values from 95 to 105.

map_dbl(399:405, wt_conversion)

## [1] 181.146 181.600 182.054 182.508 182.962 183.416
## [7] 183.870

Observe how this resulting vector is the same one we obtained when applying wt_conversion
without a map.
We can also define functions and pass it in on the spot. We call these anonymous functions.
The following is an identity function: it simply outputs what it takes in.

map_int(1:5, function(x) x)

## [1] 1 2 3 4 5

3https://github.com/rstudio/cheatsheets/blob/master/purrr.pdf

https://github.com
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A catch here is that the code after the comma, i.e., function(x) x specifies in
place the function to apply to each element of the series preceding the comma
1:5. The function in question function(x) x specifies that the function will
receive a value named x and returns the value of x without modification. Thus,
we call it an identity function. The external function map_int states that the
result of applying the identify function thus specified with function(x) x to
each element of the sequence 1:5 will be presented as an integer.

We could write the above anonymous function more compactly.

map_int(1:5, \(x) x)

## [1] 1 2 3 4 5

The next one is perhaps more useful than the identify function. It computes the square of
each element, i.e., 𝑥2.

map_dbl(1:5, \(x) x ** 2)

## [1] 1 4 9 16 25

Why use map_dbl() instead of map_int()? By default, R treats num-
bers as doubles. While 1:5 is a vector of integers, each element is subject to
the expression x ** 2, where x is an integer and 2 is a double. To make this
operation compatible, R will “promote” x to a double, making the output of
this expression a double as well.

The next one will always return a vector of 5’s, regardless of the input. Can you see why?
Do you also see why there are six elements, unlike five elements in the previous examples?

map_dbl(1:6, \(x) 5)

## [1] 5 5 5 5 5 5

2.5.8 purrr with mutate

By now we have seen enough examples of how to use map with a vector. Let us return to
the issue of applying the function cutoff_400 to the disp variable.
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To incorporate this into a tibble, we encase our map inside a call to mutate, which modifies
the column disp.

mtcars_transformed <- mtcars_tibble |>
mutate(disp = map_dbl(disp, cutoff_400))

mtcars_transformed

## # A tibble: 32 x 11
## mpg cyl disp hp drat wt qsec vs am
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 21 6 160 110 3.9 2.62 16.5 0 1
## 2 21 6 160 110 3.9 2.88 17.0 0 1
## 3 22.8 4 108 93 3.85 2.32 18.6 1 1
## 4 21.4 6 258 110 3.08 3.22 19.4 1 0
## 5 18.7 8 360 175 3.15 3.44 17.0 0 0
## 6 18.1 6 225 105 2.76 3.46 20.2 1 0
## 7 14.3 8 360 245 3.21 3.57 15.8 0 0
## 8 24.4 4 147. 62 3.69 3.19 20 1 0
## 9 22.8 4 141. 95 3.92 3.15 22.9 1 0
## 10 19.2 6 168. 123 3.92 3.44 18.3 1 0
## # ... with 22 more rows, and 2 more variables:
## # gear <dbl>, carb <dbl>

We can inspect visually to see if there are any repeating values in disp or if any of those
values turn out larger than 400 – there shouldn’t be!
The following graphic illustrates the effect of the purrr map inside the mutate call.

Note that the use of map allows a vector to be returned by the cutoff_400 function, which
can then be used as a column in the mutate call.
Pop quiz: In our two examples of applying a function to wt and disp, the new tibble
(stored in mtcars_transformed) lost information about the values of wt and disp before the
transformation. How could we amend our examples to still preserve the old information in
case we would like to make comparisons between the before and after?
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2.6 Handling Missing Values

In the section on joining tables together we saw a special value called NA crop up when rows
did not align during the matching. We call these special quantities, as you might expect,
missing values since they are “holes” in the data. In this section we dive more into missing
values and how to address them in your datasets.

2.6.1 Prerequisites

As before, let us load the tidyverse.

library(tidyverse)

2.6.2 A dataset with missing values

The tibble trouble_temps contain temperatures from four cities across three consecutive
weeks in the summer.

trouble_temps <- tibble(city = c("Miami", "Boston",
"Seattle", "Arlington"),

week1 = c(89, 88, 87, NA),
week2 = c(91, NA, 86, 75),
week3 = c(88, 85, 88, NA))

trouble_temps

## # A tibble: 4 x 4
## city week1 week2 week3
## <chr> <dbl> <dbl> <dbl>
## 1 Miami 89 91 88
## 2 Boston 88 NA 85
## 3 Seattle 87 86 88
## 4 Arlington NA 75 NA

As you might expect, this tibble contains missing values. We can see that Boston is missing
a value from week2 and Arlington is missing values from both week1 and week3, possibly due
to some faulty equipment.

2.6.3 Eliminating rows with missing values

If you need to get rid of all rows with NA, you can use drop_na which is part of dplyr.

temps_clean <- trouble_temps |>
drop_na()

temps_clean
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## # A tibble: 2 x 4
## city week1 week2 week3
## <chr> <dbl> <dbl> <dbl>
## 1 Miami 89 91 88
## 2 Seattle 87 86 88

2.6.4 Filling values by looking at neighbors

There is a way to fill missing values by dragging the non-NA value immediately below an
NA to its position. In this manner, all NA’s after the first non-NA will acquire a value. This
works when the bottom row does not have an NA.
Let us fill the values using this setting.

trouble_temps |>
fill(week1:week3, .direction = "up")

## # A tibble: 4 x 4
## city week1 week2 week3
## <chr> <dbl> <dbl> <dbl>
## 1 Miami 89 91 88
## 2 Boston 88 86 85
## 3 Seattle 87 86 88
## 4 Arlington NA 75 NA

Note how the temperatures for Arlington remain unfilled.
In the case where the bottom row has an NA and the top row does not have an NA, you can
drag the values upwards instead.
We can also combine the two actions in a bidirectional manner, either going down and then
up or going up and then down.

trouble_temps |>
fill(week1:week3, .direction = "updown")

## # A tibble: 4 x 4
## city week1 week2 week3
## <chr> <dbl> <dbl> <dbl>
## 1 Miami 89 91 88
## 2 Boston 88 86 85
## 3 Seattle 87 86 88
## 4 Arlington 87 75 88

The directional specifications are: “up”, “down”, “updown”, and “downup”. The default
direction is “down”, and so you do not have state it.

2.6.5 Filling values according to a global constant

If you want to make an across-the-board replacement of NA with a specific value, you can
use the function replace_na from tidyr. For instance, the following replaces missing values
in week1 with the value 70.
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trouble_temps |>
mutate(week1 = replace_na(week1, 70))

## # A tibble: 4 x 4
## city week1 week2 week3
## <chr> <dbl> <dbl> <dbl>
## 1 Miami 89 91 88
## 2 Boston 88 NA 85
## 3 Seattle 87 86 88
## 4 Arlington 70 75 NA

If you wish to apply this for all columns in the dataset, we can use provide replace_na as
an anonymous function in a combination of mutate with across.

trouble_temps |>
mutate(across(week1:week3, function(x) replace_na(x, 70)))

## # A tibble: 4 x 4
## city week1 week2 week3
## <chr> <dbl> <dbl> <dbl>
## 1 Miami 89 91 88
## 2 Boston 88 70 85
## 3 Seattle 87 86 88
## 4 Arlington 70 75 70

Note that if your dataset contains a mixture of strings and numbers, then a straightforward
application like this will not work. Instead, you will need to split the process into two steps:
first handling missing values in the strings columns and then, afterwards, taking care of the
missing values in the numeric columns.
Alternatively, you can use replace_na to give an instruction on how to handle NA appearing
in specific columns.
The syntax for the instruction is simple. For each attribute you make a placement, state
its name, add an equal sign, and then add the value you want to use for replacement.
The replacement instructions must appear in a list, even if there is only one replacement
instruction.
Below, we fill any NA in week1 with 89, in week2 with 91, and in week3 with 88.

trouble_temps |>
replace_na(list(week1 = 89, week2 = 91, week3 = 88))

## # A tibble: 4 x 4
## city week1 week2 week3
## <chr> <dbl> <dbl> <dbl>
## 1 Miami 89 91 88
## 2 Boston 88 91 85
## 3 Seattle 87 86 88
## 4 Arlington 89 75 88
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2.7 Exercises

Be sure to install and load the following packages into your R environment before beginning
this exercise set.
Question 1 Recall from the textbook that data is tidy when it satisfies four conditions:

1. Each variable forms a column.
2. Each observation forms a row.
3. Each value must have its own cell.
4. Each type of observational unit forms a table.

is_it_tidy <- list(table5, table1, table3, table2)

is_it_tidy is a list containing 4 tibbles, with each dataset showing the same values of the
four variables country, year, population, and cases, but each dataset organizing the values
in a different way. All display the number of Tuberculosis (TB) cases documented by the
World Health Organization in Afghanistan, Brazil, and China between 1999 and 2000.
Table 1

is_it_tidy[[1]] # Table 1

Table 2

is_it_tidy[[2]] # Table 2

Table 3

is_it_tidy[[3]] # Table 3

Table 4

is_it_tidy[[4]] # Table 4

• Question 1.1 Have a look at each of the four tibbles. What is the observational unit
being measured?

• Question 1.2 Using the observational unit you have defined, which of these tibbles, if
any, fulfills the properties of tidy data? For this question, it is enough to state simply
whether each tibble is tidy or not.

• Question 1.3 Select one of the tibbles you found not to be tidy and explain which of
the tidy data guidelines are violated.

Question 2 Gapminder is an independent educational non-profit project that identifies
systematic misconceptions about important global trends. In this question we will explore
an excerpt of the Gapminder data on life expectancy, GDP per capita, and population by
country. This data is available in the tibble gapminder from the library gapminder.
Let us have a look at the data. We will make an explicit copy of the data called gap to
prevent any worry of modifying the original data.
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gap <- gapminder
gap

• Question 2.1 Create a new variable called gdp that gives each country’s GDP. This can
be accomplished by multiplying the figures in population (pop) with GDP per capita
(gdpPercap). Assign the resulting new tibble to the name gap.

• Question 2.2 It can be helpful to report GDP per capita relative to some benchmark.
Because the United States is the country where the authors reside, let us choose this as
the reference country.
Filter down gap to rows that pertain to United States. Extract the gdpPercap variable
from the resulting tibble as a vector and assign it to a name called usa_gdpPercap.

• Question 2.3 Obtain a tibble of unique country names that are in the variable country.
We can accomplish this using the dplyr verb distinct(). Pipe your gap tibble into this
function and store the resulting tibble into a name called countries.

• Question 2.4 Replicate usa_gdpPercap once per each unique country in the dataset
and store the resulting vector into a name called usa_gdpPercap_rep. Use the function
rep().

• Question 2.5 Add a new column to gap called gdpPercap_relative which divides gdp-
Percap by this United States figure. Store the resulting tibble into the name gap.

• Question 2.6 Relative to the United States, which country had the highest GDP per
capita? And, in what year? Assign your answers to the names highest_gdp_rel_to_us
and year, respectively. You should use a dplyr verb to help you answer this; do not
attempt to find the answer manually.

• Question 2.7 The last question made it seem that a majority of countries have a higher
GDP per capita relative to the U.S. But that is just a tiny slice of the data and intuition
may tell us otherwise. The median is a good measure for the central tendency of the
data. Find the median of the variable gdpPercap_relative and assign your answer to
the name the_median. Your answer should be a single double value.

• Question 2.8 Think about the value of the median you just found and give an inter-
pretation for it when compared to the bulk of the data. Is it true that the majority of
countries have a higher GDP per capita compared to the United States?
HINT: Remember that the median is the GDP per capita relative to the United States.
If the median value was 1, what would that mean? If it was greater than 1? How about
less than 1?

Question 3 In this question we will continue exploring the gapminder data to further
practice dplyr verbs. As before, we will keep an explicit copy of the Gapminder data in a
variable called gap.

gap <- gapminder

• Question 3.1 How many observations are there per continent? Store the resulting
tibble in a name called continent_counts with two variables: continent (the continents)
and n (the counts).

• Question 3.2 Let’s have a look at the life expectancy in the continent Africa. What
is the minimum, maximum, and average life expectancy in each year? You will need to
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use the pair group_by() and summarize() to answer this. Store the resulting tibble in a
variable called summarized_years.
The first few rows of this tibble should look like:

year min_life_exp max_life_exp avg_life_exp
1952 30.0 52.724 39.13550
1957 31.57 58.089 41.26635
… … … …

• Question 3.3 From gap, create a new variable named amount_increase which gives the
amount life expectancy increased by when compared to 1952, for each country. Select
only the variables country, year, lifeExp, and life_exp_gain. Store the resulting tibble
into a name from_1952.
HINT: Recall the grouped mutate construct discussed in the textbook: sometimes we
wish to keep the groups after a group_by() and compute within them. Moreover, don’t
forget to ungroup() when you are done. Finally, the function first() can be used to
extract the first value from something, e.g.,

first(c(10, 4, 9, 42, -2))

• Question 3.4 Which country had the highest life expectancy when compared to 1952
and in what year? Which country had the lowest and, similarly, what year did that
occur? Use a dplyr verb to help you answer this. Assign your answers to the names
highest_country, highest_year, lowest_country, and lowest_year.

Question 4 The Connecticut Department of Housing (DOH) publishes data about af-
fordable housing. We’ve obtained data on affordable housing by town from 2011-2020 and
collected this into a tibble named affordable, available in the edsdata package. Pull up the
help for information about this dataset.

affordable

## # A tibble: 1,686 x 10
## `Town Code` Town Year 2010 ~1 Gover~2 Tenan~3 Singl~4
## <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 Ando~ 2020 1317 18 1 32
## 2 2 Anso~ 2020 8148 349 764 147
## 3 3 Ashf~ 2020 1903 32 0 36
## 4 4 Avon 2020 7389 244 16 44
## 5 5 Bark~ 2020 1589 0 6 23
## 6 6 Beac~ 2020 2509 0 4 46
## 7 7 Berl~ 2020 8140 556 50 142
## 8 8 Beth~ 2020 2044 0 2 13
## 9 9 Beth~ 2020 7310 192 26 154
## 10 10 Beth~ 2020 1575 24 0 9
## # ... with 1,676 more rows, 3 more variables:
## # `Deed Restricted Units` <dbl>,
## # `Total Assisted Units` <dbl>,
## # `Percent Affordable` <dbl>, and abbreviated variable
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## # names 1: `2010 Census Units`,
## # 2: `Government Assisted`,
## # 3: `Tenant Rental Assistance`, ...

• Question 4.1 Sort the data in increasing order by percent affordable, naming the sorted
tibble by_percent. Create another tibble called by_census that is sorted in decreasing
order by number of 2010 census units instead.

• Question 4.2 Let us define “most affordable housing” as towns with housing affordabil-
ity at least 30%. Create a tibble named most_affordable that gives the most affordable
towns in the year 2020.

• Question 4.3 Create a tibble named affordable_by_year that gives the number of
towns with “most affordable housing” broken down by year. For instance, three towns
had most affordable housing in the year 2015. This tibble should contain two variables
named Year and Number of Towns.

• Question 4.4 Based on this tibble, what would you say to the statement:

“It appears that the percent of most affordable housing in Connecticut towns,
as defined as towns with housing affordability at least 30%, decreases over
time when compared to 2011.”

Is this a fair claim to make? Why or why not?
• Question 4.5 It is usually a good idea to perform “sanity” checks on your data to

make sure the data follows your intuition (or doesn’t). For instance, we expect that by
summing the variables Government Assisted, Tenant Rental Assistance, Single Family
CHFA/ USDA Mortgages, and Deed Restricted Units, and then dividing this figure by the
total number of 2010 census units, the percentage should equal the value in Percent
Affordable.
Let us create two new columns in affordable that give:

– Our own percent affordability variable named my_affordable that reports the
above figure, rounded to two decimal places.

– A variable named equal_figures that reports whether the two figures,
my_affordable and Percent Affordable are equal.

Name the resulting tibble with_my_affordable.
• Question 4.6 Do any of these figures differ? Form a tibble named is_equal using

with_my_affordable that contains one row and one variable named all_equal. The single
value in this tibble is a Boolean expressing whether there are any differences between
the percent affordability figures.

Question 5 The U.S. Department of Agriculture (USDA) Economic Research Service4

publishes data on unemployment rates in the USA. The data is available in unemp_usda
from edsdata, and gives county-level socioeconomic indicators from 2000 to 2020. We will

4https://www.ers.usda.gov/data-products/county-level-data-sets/

https://www.ers.usda.gov
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use this dataset to examine the average yearly unemployment rate in each state in the USA
during the recorded years.
• Question 5.1 Select the state (State) and county (Area_name) columns and then only

those columns that pertain to unemployment rate, that is, columns of the form Un-
employment_rate_X, where X is some year. Store the resulting tibble in the name un-
emp_usda_relevant.

• Question 5.2 If our statistical question is about the average yearly unemployment
rate in the USA from 2000 to 2020, does the data in unemp_usda_relevant fulfill the
properties of tidy data? If so, why? If not, what tidy data principles are violated? Then,
in English, describe what a tidy representation of the data would look like.

• Question 5.3 Apply a pivot transformation to unemp_usda_relevant so that the four
variables appear in the transformed table: State, Area_name (the county), year, and
unemployment_rate. Store the resulting tibble in the name unemp_usda_tidy.

• Question 5.4 The current form of the year variable in unemp_usda_tidy is awkward
because we expect “year” to be a number, but “year” is prefixed by some string; this may
be surprising to potential customers of this tibble. Tidy the column year by extracting
only the year, e.g., "2008" from "Unemployment_rate_2008". You will need to combine
a function from stringr with a dplyr verb to accomplish this. Then convert year to a
numerical column using as.double(). Store the resulting tibble in unemp_usda_tidy.
HINT: A prerequisite to answering this question is to first write stringr code that can
extract the string “2009” from the string “Unemployment_rate_2009”. Once you have
figured this sub-problem, then incorporate your stringr work into a dplyr verb.

• Question 5.5 Form a tibble named top_unemp_by_state that gives the year with the
highest unemployment rate for each state that appears in unemp_usda_tidy. This tib-
ble should contain three columns (the state, the average unemployment rate, and the
year where that unemployment rate occurred) and a single observation for each state
reporting the figure.
HINT: You will need to aggregate the county-level figures in order to compute a state-
level average unemployment rate. Moreover, if you find NA in your solution, be sure to
filter any missing values before computing the mean. Check the documentation for mean
for hints on how to accomplish this.

• Question 5.6 Based on these figures, can you say which year(s) saw the highest unem-
ployment rates? Use a dplyr verb to help you answer this.

Question 6. Let’s practice how to write and use functions.
• Question 6.1 Complete the function below that converts a proportion to a percentage.

For example, the value of to_percent(0.5) should be 50, i.e., 50%.

to_percent <- function(prop) {
scale <- 100

}

• Question 6.2 Try referring to the value of scale (1) inside the function and (2) outside
the function by printing its value. For each case, what value is shown? Is an error
produced? Why or why not?
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• Question 6.3 Consider the vowels in the English language. These are the five characters
“a”, “e”, “i”, “o”, and “u”.

– Question 6.3.1 Define a function called vowel_remover. It should take a single
string as its argument and return a copy of that string, but with all vowels removed.
You should use a stringr function to help you accomplish this.

– Question 6.3.2 Write a function called num_non_vowels. It should take a string as
its argument and return a number. The number should be the number of characters
in the argument string that are not vowels. One way to do that is to remove all
the vowels and count the size of the remaining string.

• Question 6.4 Recall that an important use of functions is that we can use it in a purrr
map. Suppose that we have the following vector of fruits:

fruit_basket <- c("lychee", "banana", "mango")

Using a call to a purrr map function with the vector fruit_basket, create a copy of
the vector fruit_basket, but with all the characters that are vowels removed from each
element. Assign your answer to the vector fruit_basket_nonvowels.

Question 7 Let us examine annual compensation data reported by New York Local Au-
thorities, available in nysalary from edsdata. Public authorities are required to regularly
report salary and compensation information. This data is published through Open Data
NY5. We have subsetted the data to include salary information for employees where the
fiscal year ended on December 31, 2020. Let us have a look at this data.

nysalary

## # A tibble: 1,676 x 19
## Authority~1 Fisca~2 Last ~3 Middl~4 First~5 Title Group
## <chr> <chr> <chr> <chr> <chr> <chr> <chr>
## 1 Albany Cou~ 12/31/~ Adding~ L Ellen Seni~ Admi~
## 2 Albany Cou~ 12/31/~ Boyea <NA> Kelly Conf~ Admi~
## 3 Albany Cou~ 12/31/~ Calder~ <NA> Philip Chie~ Exec~
## 4 Albany Cou~ 12/31/~ Cannon <NA> Matthew Gove~ Admi~
## 5 Albany Cou~ 12/31/~ Cerrone A Rima Budg~ Mana~
## 6 Albany Cou~ 12/31/~ Chadde~ M Helen Mark~ Mana~
## 7 Albany Cou~ 12/31/~ Charla~ M Elizab~ Dire~ Mana~
## 8 Albany Cou~ 12/31/~ Dickson C Sara Acco~ Admi~
## 9 Albany Cou~ 12/31/~ Finnig~ <NA> James Oper~ Admi~
## 10 Albany Cou~ 12/31/~ Greenw~ <NA> Kathryn Dire~ Mana~
## # ... with 1,666 more rows, 12 more variables:
## # Department <chr>, `Pay Type` <chr>,
## # `Exempt Indicator` <chr>,
## # `Base Annualized Salary` <chr>,
## # `Actual Salary Paid` <chr>, `Overtime Paid` <chr>,
## # `Performance Bonus` <chr>, `Extra Pay` <chr>,
## # `Other Compensation` <chr>, ...

5https://data.ny.gov/Transparency/Salary-Information-for-Local-Authorities/fx93-cifz

https://data.ny.gov
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• Question 7.1 We tried to compute the average annual compensation like this:

nysalary |>
summarize(avg_compensation = mean(`Total Compensation`))

Explain why this does not work. It may be helpful to inspect some values in the Total
Compensation column.
• Question 7.2 Extract the first value in the “Total Compensation” variable correspond-

ing to Ellen Addington’s annual compensation in the 2020 fiscal year. Call it adding-
ton_string.

• Question 7.3 Convert addington_string to a number in tens of thousands. The stringr
function str_remove_all() will be useful for removing non-numerical characters. For
example, the value of str_remove_all("$100", "[$]") is the string "100". You will also
need the function as.double(), which converts a string that looks like a number to an
actual number. Assign the result to a name addington_number.
To compute the average annual compensation, we would need to do this work for every
employee in the dataset. This would be incredibly tedious to complete for 1,676 different
employees! Instead, we can use functionals and the map construct to do the work for us.

• Question 7.4 Define a function string_to_number that converts pay strings to pay num-
bers in tens of thousands. Your function should convert a pay string like "$137,000.00
to a number of dollars in tens of thousands, i.e., 13.7.

• Question 7.5 Now apply the function string_to_number to every row in the tibble
nysalary. Using a map and a dplyr verb, make a new tibble that is a copy of nysalary
with one more variable called "Total Compensation ($)". It should be the result of
applying string_to_number to the “Total Compensation” variable. Call this new tibble
nysalary_cleaned.

• Question 7.6 Try again to compute the average annual compensation using the cleaned
dataset. Assign your answer to the name average_annual_comp.

Question 8 In 2017, the Australian Bureau of Statistics (ABS)6 published the results of
the Australian Marriage Law Postal Survey7 in response to the question: should the law be
changed to allow same-sex couples to marry? The majority of participating Australians voted
in favor of same-sex couples. The ABS released data on responses and participation broken
down by various criteria. This exercise will focus on the latter, and examine participation
by state and territory, broken down by age. Following is a snapshot of a subset of the data:

Unfortunately, as can be seen by the annotations we made, these data are not tidy; we show
three different issues with the data. This exercise will practice how to bring this dataset
into a tidy format so that it can be subject to analysis. The relevant data is available in the
tibble abs_partp2017 from the edsdata package.

6https://www.abs.gov.au/
7https://www.abs.gov.au/ausstats/abs@.nsf/mf/1800.0

https://www.abs.gov.au
https://www.abs.gov.au
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abs_partp2017

## # A tibble: 31 x 17
## ...1 ...2 18-19~1 20-24~2 25-29~3 30-34~4 35-39~5
## <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 New Sout~ Tota~ 1.09e5 2.97e5 2.95e5 3.07e5 3.12e5
## 2 <NA> Elig~ 1.42e5 4.07e5 4.09e5 4.26e5 4.29e5
## 3 <NA> Part~ 7.73e1 7.29e1 7.22e1 7.21e1 7.27e1
## 4 <NA> <NA> NA NA NA NA NA
## 5 Victoria Tota~ 8.32e4 2.50e5 2.56e5 2.66e5 2.64e5
## 6 <NA> Elig~ 1.01e5 3.25e5 3.37e5 3.50e5 3.43e5
## 7 <NA> Part~ 8.21e1 7.69e1 7.61e1 7.59e1 7.69e1
## 8 <NA> <NA> NA NA NA NA NA
## 9 Queensla~ Tota~ 6.19e4 1.75e5 1.75e5 1.83e5 1.84e5
## 10 <NA> Elig~ 8.24e4 2.59e5 2.58e5 2.60e5 2.57e5
## # ... with 21 more rows, 10 more variables:
## # `40-44 years` <dbl>, `45-49 years` <dbl>,
## # `50-54 years` <dbl>, `55-59 years` <dbl>,
## # `60-64 years` <dbl>, `65-69 years` <dbl>,
## # `70-74 years` <dbl>, `75-79 years` <dbl>,
## # `80-84 years` <dbl>, `85 years and over` <dbl>, and
## # abbreviated variable names 1: `18-19 years`, ...

• Question 8.1 If the observational unit is the 2017 participation of an Australian age
bracket in a territory and we collect 5 measurements per this unit (“Territory/State”,
“age group”, “total participants”, “eligible participants”, and “participation rate”), cite
at least 2 more violations of the tidy data guidelines. Your answer should note violations
other than the missing values caused by the issues raised in the above figure.

• Question 8.2 Let us first deal with the missing values. These steps can be followed in
order:

– The unnamed columns (...1 and ...2) should be relabeled to “Territory/State”
and “Participation Type”, respectively.

– For merged cells, missing values should be filled by looking at the first non-NA
neighbor above, e.g., the second row should take on the value “New South Wales”.

– Missing rows should be discarded. This is a reasonable strategy based on what we
know about the structure of the data.

The resulting filled-in tibble should be assigned to a name abs_partp_filled.
• Question 8.3 Apply pivot transformation(s) to bring abs_partp_filled into tidy for-

mat; the resulting tibble after this step should fulfill all tidy data guidelines. Assign this
tibble to the name abs_partp_tidy.

• Question 8.4 What proportion of results had a participation rate less than 60%?
• Question 8.5 Which territory/state had the third smallest eligible voting population

in the 18-19 age bracket?
• Question 8.6 In the different territories surveyed, what is/are the most frequent age

bracket(s) with the lowest participation rates in the survey? Your answer should be
expressed as a tibble with two variables named Age group and n.
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Question 9 This question is a continuation of Question 8. We will now analyze the 2017
Australian Marriage Law Postal Survey8 another way by looking at the response data. To
enrich the analysis, we will overlay the responses with educational qualification data from
the 2016 Australian census of population and housing9, also released through ABS. We have
prepared these data for you, available in the tibbles abs_resp2017 and abs_census2016 from
the edsdata package.

abs_resp2017

## # A tibble: 8 x 6
## `Territory/State` Yes Yes (~1 No No (%~2 Total
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 New South Wales 2.37e6 57.8 1.74e6 42.2 4.11e6
## 2 Victoria 2.15e6 64.9 1.16e6 35.1 3.31e6
## 3 Queensland 1.49e6 60.7 9.61e5 39.3 2.45e6
## 4 South Australia 5.93e5 62.5 3.56e5 37.5 9.49e5
## 5 Western Australia 8.02e5 63.7 4.56e5 36.3 1.26e6
## 6 Tasmania 1.92e5 63.6 1.10e5 36.4 3.02e5
## 7 Northern Territory 4.87e4 60.6 3.17e4 39.4 8.04e4
## 8 Australian Capital~ 1.75e5 74 6.15e4 26 2.37e5
## # ... with abbreviated variable names 1: `Yes (%)`,
## # 2: `No (%)`

abs_census2016

## # A tibble: 64 x 4
## `Education Qualification` Terri~1 Count Perce~2
## <chr> <chr> <dbl> <dbl>
## 1 Postgraduate Degree Level New So~ 344490 5.65
## 2 Postgraduate Degree Level Victor~ 260039 5.37
## 3 Postgraduate Degree Level Queens~ 134242 3.54
## 4 Postgraduate Degree Level South ~ 50993 3.69
## 5 Postgraduate Degree Level Wester~ 76660 3.84
## 6 Postgraduate Degree Level Tasman~ 13408 3.19
## 7 Postgraduate Degree Level Northe~ 6298 3.51
## 8 Postgraduate Degree Level Austra~ 34819 10.8
## 9 Graduate Diploma and Graduate C~ New So~ 103340 1.70
## 10 Graduate Diploma and Graduate C~ Victor~ 119226 2.46
## # ... with 54 more rows, and abbreviated variable names
## # 1: `Territory/State`, 2: `Percent (%)`

Note that these data are at the Territory/State level, while the participation data in Ques-
tion 8 was broken down further into age brackets.
• Question 9.1 Let us explore the relationship between education level and survey re-

sponse. Using the census data, form a tibble that gives the percentage of Australians
that hold at least a bachelor’s degree, i.e., a qualification level that is either “Bachelor
Degree Level”, “Graduate Diploma and Graduate Certificate Level”, or “Postgraduate

8https://www.abs.gov.au/ausstats/abs@.nsf/mf/1800.0
9https://www.abs.gov.au/AUSSTATS/abs@.nsf/Lookup/2071.0Main+Features100012016?OpenDoc

ument

https://www.abs.gov.au
https://www.abs.gov.au
https://www.abs.gov.au
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Degree Level.” These designations are based on the Australian Standard Classification of
Education (ASCED)10. The resulting tibble should have two variables, Territory/State
and At least Bachelor (%), and be assigned to a name bachelor_by_territory.

• Question 9.2 Annotate bachelor_by_territory with the survey response data by join-
ing bachelor_by_territory with abs_resp2017. Assign the resulting joined tibble to the
name with_response.

• Question 9.3 Note briefly the reason for selecting the join function you used. For
instance, if you used inner_join(), why not left_join() or right_join()?

• Question 9.4 Form a subset of with_response that has two rows giving the territory
with the highest and lowest support for same-sex couples. Assign this tibble to the name
highest_lowest_support.

• Question 9.5 According to your findings, does there appear to be an association be-
tween survey response and territories with larger percentages of advanced degree holders?
Why or why not?

Question 10 Consider the tibbles election and unemp_usda from the edsdata package.
These datasets give county-level results for presidential elections in the USA and the popu-
lation and unemployment rate of all counties in the US, respectively. The data in election
was made available by the MIT Election Data and Science Lab (MEDSL)11 and contains
county-level returns for presidential elections from 2000 to 2020. The data in unemp_usda
was prepared by USDA, Economic Research Service12 and gives county-level socioeconomic
indicators for unemployment rates.
An important variable in both datasets is the FIPS code. FIPS codes are numbers which
uniquely identify geographic areas. Every county has a unique five-digit FIPS code. For
instance, 12086 is the FIPS code that identifies Miami-Dade, Florida.
• Question 10.1 Select the relevant unemployment and voting returns data specifically

for 2008. The resulting unemployment tibble should contain three columns: FIPS code,
state, and the unemployment rate as of 2008. Store these tibbles in the names elec-
tion2008 and unemp2008.

• Question 10.2 Some observations in election2008 contain a missing FIPS code. Why
might that be?

• Question 10.3 Locate these rows and then filter them from your election2008. Assign
the resulting tibble back to election2008.

• Question 10.4 Suppose that we want to create a new tibble that contains both the
election results and the unemployment data. More specifically, we would like to add
unemployment information to the election data by joining election2008 with unemp2008.
Assign the resulting tibble to the name election_unemp2008.
HINT: What is the key we can use to join these two tables? Note that the column
names may be different for the key in each table. For example: we would like to join on
the key student_id but one table has a column studentID and the other student_id. In
the join function we use, we can say ???_join(tibble_a, tibble_b, by = c("studentID"
= "student_id")).

10https://www.abs.gov.au/ausstats/abs@.nsf/0/F148CC2C8F5EA951CA256AAF001FCA39?opendocu
ment

11https://doi.org/10.7910/DVN/VOQCHQ
12https://www.ers.usda.gov/data-products/county-level-data-sets/

https://www.abs.gov.au
https://www.ers.usda.gov
https://www.abs.gov.au
https://doi.org/10.7910/DVN/VOQCHQ
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• Question 10.5 Explain why the join function you selected (e.g., right join, left join,
etc.) is appropriate for this problem. Why not choose another join function instead?
Let us explore the relationship between candidate votes and unemployment rate for each
state.

• Question 10.6 Create a tibble from election_unemp2008 that contains, for each state,
only the candidate that received the most number of votes. Assign the resulting tibble
to the name state_candidate_winner2008. It should contain three variables: state, can-
didate, and votes. Here is what the first few rows of state_candidate_winner2008 looks
like:

state candidate votes
ALABAMA JOHN MCCAIN 1266546
ALASKA JOHN MCCAIN 193841
ARIZONA JOHN MCCAIN 1230111
… … …

• Question 10.7 The following tibble unemp_by_state2008 gives an average unemploy-
ment rate for each state by averaging the unemployment rate over the respective coun-
ties.

unemp_by_state2008 <- election_unemp2008 |>
group_by(state) |>
summarize(avg_unemp_rate = mean(Unemployment_rate_2008,

na.rm = TRUE))
unemp_by_state2008

Create a new tibble that contains both the candidate winner voting data and
the state-level average unemployment data. More specifically, we would like to add
the state-level average unemployment data to the winner voting data by joining
state_candidate_winner2008 with unemp_by_state2008. Assign the resulting tibble to
the name state_candidate_winner_unemp2008.

• Question 10.8 Using state_candidate_winner_unemp2008, generate a tibble that gives
the top 10 states with the highest average unemployment rate. Assign this tibble to the
name top_10.

Question 11 At the College of Pluto, the six most popular majors are Astronomy, Biology,
Chemistry, Data Science, Economics, and Finances. The applicants to the college specify
their preference for a major, and the college selects the student with some criteria. The
tibble pluto in the edsdata package gives the selection result from one year.

pluto

## # A tibble: 12 x 4
## Major Gender Applied Accepted
## <chr> <chr> <dbl> <dbl>
## 1 Astronomy Male 825 511
## 2 Astronomy Female 168 148
## 3 Biology Male 560 352
## 4 Biology Female 25 17
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## 5 Chemistry Male 325 120
## 6 Chemistry Female 593 352
## 7 Data Science Male 417 139
## 8 Data Science Female 375 298
## 9 Economics Male 191 53
## 10 Economics Female 393 240
## 11 Finances Male 373 22
## 12 Finances Female 641 563

• Question 11.1 Add a new variable Proportion that, for each gender, gives the pro-
portion of accepted applicants to some major. Assign the resulting tibble to the name
pluto_with_prop.

• Question 11.2 Which major saw the highest proportion of accepted male applicants?
How about accepted woman applicants? Use a dplyr verb to answer this. Your resulting
tibble should have two rows, one for each gender, that gives the corresponding major
with the largest proportion of accepted applicants.

• Question 11.3 Using pluto_with_prop, write dplyr code that gives the top two majors
with the largest gap in acceptance percentage between men and women. The resulting
tibble should have two variables: the major and the quantity of the difference.
HINT: The function diff() may be helpful for computing the difference within a group.

Note: The following exercises correspond to material that appears only in the accompanying
website, at: https://ds4world.cs.miami.edu/.
Question 12: Examining racial breakdown in the College Scorecard. The chapter
presented a case study of how to tidy the College Scorecard dataset. Let us play some more
with the dataset. The table is available in the name scorecard_fl from the edsdata package.

scorecard_fl

We will be using the variables appearing on relevant_cols.

relevant_cols <- c("INSTNM", "CITY", "ZIP", "UGDS",
"NPT4_PUB", "NPT4_PRIV",
"UGDS_WHITE", "UGDS_BLACK",
"UGDS_HISP", "UGDS_ASIAN", "UGDS_AIAN")

• Question 12.1 First, collect the variables appearing only in mylist and store the data
in with_race. For this action, you can use the dplyr helper function all_of together
with select.

• Question 12.2 Of the variables we have selected, UGDS represents the total number of
enrolled students (as a string). We already know what NPT4_PUB and NPT4_PRIV represent.
What do UGDS_WHITE and UGDS_AIAN refer to? Have a look at the glossary13 and data
dictionary14 to determine what these variables mean.

• Question 12.3 As in the textbook, we will remove the four-digit route number in ZIP
by replacing the part with the empty string. Call the new variable ZIP5 and insert it
after the CITY variable. Store the new data frame back in the name with_race.

13https://collegescorecard.ed.gov/data/glossary/
14https://collegescorecard.ed.gov/data/documentation/

https://ds4world.cs.miami.edu
https://collegescorecard.ed.gov
https://collegescorecard.ed.gov
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• Question 12.4 In the textbook, we looked at generating a Boolean column representing
whether or not a college is a private or public institution. We also looked at generating
from a string-valued column representing a number to a new column representing a
number using as.double.
Let’s perform the following steps:

– Create a new Boolean variable called public that indicates whether or not the
college is a public institution, to be added before ZIP5.

– The variables UGDS, UGDS_WHITE, UGDS_BLACK, UGDS_HISP, UGDS_ASIAN, and UGDS_AIAN
are currently expressed as strings. Convert these columns to proper numeric
columns using as.double. The operation can be performed in one step by using
across within the mutate call.

Store the resulting data frame in with_race.
• Question 12.5 By multiplying UGDS by each of the five ratios, you can calculate the

number of students in each of the categories. Call the number n_XYZ where XYZ represents
the category and add the five numbers you can calculate from them after UGDS. Call the
new tibble student_counts.

• Question 12.6 You may observe that the five categories do not cover the entire racial
composition. Let’s create a new variable n_others by subtracting the five numbers from
the total (UGDS). Add it after n_aian. Call the new tibble student_counts_others.

• Question 12.7 Based on what you have calculated, find out which institution has the
largest number of …

– Black students?
– Hispanic students?
– Asian students?

You can find the answer by reordering the rows in the descending order of the ethnicity.
• Question 12.8 Let us see which 5-digit ZIP code corresponds to the institutions with

the largest number of White students. Group by ZIP code and compute the total count
of n_white as total. Then form a single row that contains the ZIP code with the largest
number of White students, along with the corresponding count.

• Question 12.9 Which institution(s) correspond to the ZIP code that you found? Use
a dplyr verb to help you answer this.

• Question 12.10 Let us write a function examine_by_zip that accomplishes the task of
finding the schools with the highest number of a student group broken down by some
ethnicity (e.g., n_white) with the ZIP code aggregation.
This function:

– Receives a parameter representing a variable in student_counts_others (e.g.,
n_white), generates a summarized table, computes the total, and arranges the
rows in the descending order of the total, in the same manner as Question 12.8.

– The function then examines the first element of the ZIP5 variable and uses it to ob-
tain the schools whose ZIP matches the ZIP code, in the same manner as Question
12.9.

After writing the function, run it with examine_by_zip(n_white) to ensure that the result
matches the answer you obtained in the previous question.
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Note: Referencing the variable column_label requires a double curly-bracketing when
used within the function. This is an advanced dplyr usage that we will learn more about
later. Here is an example usage of the incantation for the purpose of this exercise:

embraced <- function(column_label) {
student_counts_others |>

summarize(mean_num =
mean({{ column_label }}, na.rm=TRUE))

}
embraced(n_white)
embraced(n_others)

examine_by_zip <- function(column_label) {

}

examine_by_zip(n_white)
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3
Data Visualization

As you develop familiarity with processing data, you learn how to develop intuition from
the data at hand by glancing at its values. Unfortunately, there is only so much you can do
with glancing at values. There is a substantial limitation to what you can obtain when the
data at hand is so large.
Visualization is a powerful tool in such cases. In this chapter we introduce another key
member of the tidyverse, the ggplot2 package, for visualization.

3.1 Introduction to ggplot2

R provides many facilities for creating visualizations. The most sophisticated of them, and
perhaps the most elegant, is ggplot2. In this section we introduce generating visualizations
using ggplot2.

3.1.1 Prerequisites

We will make use of the tidyverse in this chapter, so let’s load it in as usual.

library(tidyverse)

3.1.2 The layered grammar of graphics

The structure of visualization with ggplot2 is by way of something called the layered gram-
mar of graphics – a name that will certainly impress your friends!
The name of the package ggplot2 is a bit of a misnomer as the main function we call to
visualize the data is ggplot. As with dplyr and stringr, the ggplot2 cheatsheet1 is quite
helpful for quick referencing.
Each visualization with ggplot consists of some building blocks. We call these layers. There
are three types of layers:
• the base layer, which consists of the background and the coordinate system,
• the geom layers, which consist of individual geoms, and
• the ornament layers, which consists of titles, legends, labels, etc.

1https://github.com/rstudio/cheatsheets/blob/main/data-visualization.pdf
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We call the plot layers geom layers because each plot layer requires a call to a function with
the name starting with geom_. There are many geoms available in ggplot and you can think
of these as the buildings blocks that compose many of the diagrams you are already familiar
with. For instance, point geoms are used to create scatter plots, line geoms for line graphs,
bar geoms for bar charts, and histogram geoms for histograms – check out the cheat sheet
for many more! We will explore the main geoms in this chapter.
To specify the base layer, we use the function ggplot(). Using the function alone is rather
unimpressive.

ggplot()

All ggplot2 has done so far is set up a blank canvas. To make this plot more interesting, we
need to specify a dataset and a coordinate system to use. To build up the discussion, let us
turn to our first geom: the point geom.

3.2 Point Geoms

Let us begin our exploration with the point geom. As noted earlier, point geoms are useful
in that they can be used to construct a scatter plot.

3.2.1 Prerequisites

We will make use of the tidyverse in this chapter, so let us load it in as usual.

library(tidyverse)
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3.2.2 The mpg tibble

We will use the mpg dataset as our source for this section. This dataset is collected by the US
Environmental Protection Agency and shows information about 38 models of car between
1999 and 2008. We have visited this data in earlier sections. Use ?mpg to open its help page
for more information.
The table mpg has 234 rows and 11 columns. Use Let us have a look at a snapshot of the
data again.

mpg

## # A tibble: 234 x 11
## manuf~1 model displ year cyl trans drv cty hwy
## <chr> <chr> <dbl> <int> <int> <chr> <chr> <int> <int>
## 1 audi a4 1.8 1999 4 auto~ f 18 29
## 2 audi a4 1.8 1999 4 manu~ f 21 29
## 3 audi a4 2 2008 4 manu~ f 20 31
## 4 audi a4 2 2008 4 auto~ f 21 30
## 5 audi a4 2.8 1999 6 auto~ f 16 26
## 6 audi a4 2.8 1999 6 manu~ f 18 26
## 7 audi a4 3.1 2008 6 auto~ f 18 27
## 8 audi a4 q~ 1.8 1999 4 manu~ 4 18 26
## 9 audi a4 q~ 1.8 1999 4 auto~ 4 16 25
## 10 audi a4 q~ 2 2008 4 manu~ 4 20 28
## # ... with 224 more rows, 2 more variables: fl <chr>,
## # class <chr>, and abbreviated variable name
## # 1: manufacturer

Another way to preview the data is using glimpse.

glimpse(mpg)

3.2.3 Your first visualization

We first specify the base layer. Unlike before, this time we specify our intention to use the
mpg dataset.

ggplot(data = mpg)
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We are still presented with a profoundly useless plot. Let us amend our code a bit.

ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy))

Ta-da, our first visualization! Let us unpack what we just did.
The first line of this code specifies the base layer with the argument data =. The second
line describes the geom layer where a point geom is to be used along with some mapping
from graphical elements in a plot to variables in a dataset. More specifically, we provide
the specification for a point geom by calling the function geom_point. This geom is passed
as an argument a mapping (the value that follows mapping =) from the Cartesian x and y
coordinate locations to the variables displ and hwy. This is materialized by the aes function.
Aesthetics are visual characteristics of observations in a plot. Examples include coordinate
positions, shape, size, or color. For instance, a plot will often use Cartesian coordinates2

2https://en.wikipedia.org/wiki/Cartesian_coordinate_system

https://en.wikipedia.org
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where each axis represents a variable of a tibble and these variables are mapped on to the
x and y axes, respectively. In the case of this plot, we map displ to the x-axis and hwy to
the y-axis.
To round up the discussion, here are the key points from the code we have just written:
• There is one ggplot and one geom_point.
• The ggplot call preceded the geom_point call.
• The plus sign + connects the two calls.
• A data specification appears in the ggplot call.
• A mapping specification appears in the geom_point call.

The semantics of the code is as follows:
• Instruct ggplot to get ready for creating plots using mpg as the data.
• Instruct geom_point to create a plot where displ is mapped to the x-axis and hwy is

mapped to the y-axis, and displ and hwy are two variables from the tibble mpg.

3.2.4 Scatter plots

Our first visualization is an example of a scatter plot. A scatter plot is a plot that presents
the relation between two numerical variables.
In other words, a scatter plot of variables A and B draws data from a collection of pairs
(a,b), where each pair comes from a single observation in the data set. The number of pairs
you plot can be one or more. There is no restriction on the frequencies we observe the same
pair, the same a, and the same b.
We can use a scatter plot to visualize the relationship between the highway fuel efficiency
(hwy) and the displacement of its engine (displ).

ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy))
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Each point on the plot is the pair of values of one car model in the dataset. Note that there
are quite a few groups of points that align horizontally and quite a few groups of points
that align vertically. The former are groups that share the same (close to the same) hwy
values with each other, the latter are groups that share the same (close to the same) displ
values with each other. We can observe a graceful trend downward in the plot – lower engine
displacement is associated with more highway miles per gallon.

3.2.5 Adding color to your geoms

It appears that the points are following some downward trend. Let us examine this more
closely by using ggplot to map colors to its points.
You can specify the attribute for ggplot to use to determine the colors, for instance, the
class attribute. We make the specification in the aes of geom_point.

ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy, color = class))

This visualization allows us to make new observations about the data. Namely, it appears
that there is a cluster of points from the “2seater” class that veer off to the right and seem
to break the overall trend present in the data. Let us set aside these points to compose a
new dataset.

no_sports_cars <- filter(mpg, class != "2seater")
ggplot(data = no_sports_cars) +

geom_point(mapping = aes(x = displ, y = hwy, color = class))
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After the removal of the “2seater” class, the downward trend appears more vivid.

3.2.6 Mapping versus setting

Perhaps the most frequent mistake newcomers to ggplot make is conflating aesthetic map-
ping with aesthetic setting.
For instance, you may wish to set all points to a single color instead of coloring points
according to the “type” of car. So, you devise the following ggplot code to color all points
in the scatter blue.

ggplot(data = no_sports_cars) +
geom_point(mapping = aes(x = displ, y = hwy, color = "blue"))

This code colors all points red, not blue! Can you spot the mistake in the above code?
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When we wish to set an aesthetic to some global value (e.g., a “red” color, a “triangle”
shape, an alpha level of “0.5”), it must be excluded from the mapping specification
in the aes call.
By moving the color specification out of the aes function we can remedy the problem.

ggplot(data = no_sports_cars) +
geom_point(mapping = aes(x = displ, y = hwy),

color = "blue")

Observe how the aesthetics x and y are mapped to the variables displ and hwy, respectively,
while the aesthetic color is set to a global constant value "blue".
When an aesthetic is set, we determine a visual property of a point that is not based on the
values of a variable in the dataset. These will typically be provided as arguments to your
geom_* function call. When an aesthetic is mapped, the visual property is determined based
on the values of some variable in the dataset. This must be given within the aes function
call.

3.2.7 Categorical variables

Coloring points according to some attribute is useful when dealing with categorical variables,
that is, variables whose values come from a fixed set of categories. For instance, a variable
named ice_cream_flavor may have values that are from the categories chocolate, vanilla,
or strawberry; in terms of the mpg data, class can have values that are from the categories
compact, midsize, pickup, subcompact, or suv.
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Can we develop more insights from categorical variables?
Using the mutate function, we can create a new categorical variable japanese_make, which
is either TRUE or FALSE depending on whether the manufacturer is one of Honda, Nissan,
Subaru, or Toyota. We create a new dataset with the addition of this new variable.

no_sports_cars <- no_sports_cars |>
mutate(japanese_make =

manufacturer %in% c("honda", "nissan", "subaru", "toyota"))

Let us create a new plot using japanese_make as a coloring strategy.

ggplot(data = no_sports_cars) +
geom_point(mapping = aes(x = displ, y = hwy, color = japanese_make))

We can observe a downward trend in the data for cars with a Japanese manufacturer.
Let us try a second categorical variable: cyl.

ggplot(data = no_sports_cars) +
geom_point(mapping = aes(x = displ, y = hwy, color = cyl))
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This one has a striking difference compared to our other visualizations. Can you spot the
difference? Try to pick it out before reading on.
The legend appearing to the right of the dots looks very different. Instead of dots showing
the color specification, it uses a bar with a blue gradient. The reason is that ggplot treats
the cyl attribute as a continuous variable and needs to be able to select colors for values
that are, say, between 4 and 5 cylinders or 7 and 8 cylinders. The appropriate way to do
this is by means of a gradient.
This comes as a surprise to us – there is no such thing as 4 and three quarters of a cylinder
because cyl is a categorical variable. The only possible values are either 4, 5, 6, 7, or 8, and
nothing in between. How to inform ggplot of this fact?
The solution is to treat cyl as a factor, which is synonymous with saying that a variable is
categorical. The function to use is called as_factor(). Let us amend our original attempt
to include the call.

ggplot(data = no_sports_cars) +
geom_point(mapping = aes(x = displ, y = hwy, color = as_factor(cyl)))
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This one bears a resemblance that we are already familiar with.
Run your eyes from left to right along the horizontal axis. Observe how for a given hwy
value, say points around hwy = 20, there is a clear transition from cars with 4 cylinders (in
red) to cars with 6 cylinders (in cyan) and finally to cars with 8 cylinders (in purple). In
contrast, if we look at points at, say around disp = 2, and run our eyes along the vertical
axis, we do not observe such a transition in color – all the points still correspond to cars
with 4 cylinders (in red).
This tells us that there is a stronger association between the continuous variable displ and
the categorical variable cyl than between hwy and cyl.
Here is one more plot. Let us plot hwy against cty when coloring according to cyl. We
naturally assume that the higher a car model’s highway miles per gallon is (hwy), the higher
its city miles per gallon (cty) is as well, and vice versa.

ggplot(no_sports_cars) +
geom_point(aes(x = cty, y = hwy, color = as_factor(cyl)))
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This one reveals a positive association in the data, as opposed to the negative association
that we observed in the downward trend in the plot of hwy against displ. We can also
see a greater transition in color as we move left to right in the plot, suggesting a stronger
relationship between ctyand cyl.
Observe that there are two points that seem to be very far off to the right and one point
off to the left. We may call such data points outliers meaning that they do not appear to
conform to the associations that other observations are following. Let us isolate these points
using filter.

no_sports_cars |>
filter(cty < 10 | cty > 32.5) |>
relocate(cty, .after = year) |>
relocate(hwy, .before = cyl)

## # A tibble: 7 x 12
## manufa~1 model displ year cty hwy cyl trans drv
## <chr> <chr> <dbl> <int> <int> <int> <int> <chr> <chr>
## 1 dodge dako~ 4.7 2008 9 12 8 auto~ 4
## 2 dodge dura~ 4.7 2008 9 12 8 auto~ 4
## 3 dodge ram ~ 4.7 2008 9 12 8 auto~ 4
## 4 dodge ram ~ 4.7 2008 9 12 8 manu~ 4
## 5 jeep gran~ 4.7 2008 9 12 8 auto~ 4
## 6 volkswa~ jetta 1.9 1999 33 44 4 manu~ f
## 7 volkswa~ new ~ 1.9 1999 35 44 4 manu~ f
## # ... with 3 more variables: fl <chr>, class <chr>,
## # japanese_make <lgl>, and abbreviated variable name
## # 1: manufacturer
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We see that the four Dodges and one Jeep are the far-left points and two Volkswagens are
the far right points.

3.2.8 Continuous variables

Given what we learned when experimenting with cyl, we might be curious as to what can
be gleaned when we intend on coloring points according to a continuous variable. Let us try
it with the attribute cty, which represents the city fuel efficiency.

ggplot(data = no_sports_cars) +
geom_point(mapping = aes(x = displ, y = hwy, color = cty))

The blue gradient makes it hard to see changes in the color. Can we use a different gradient
other than blue?
Yes! The solution is to add a layer scale_color_gradient at the end with two colors names
of our choice. In the style of art deco, we pick two colors, yellow3 and blue.

ggplot(data = no_sports_cars) +
geom_point(mapping = aes(x = displ, y = hwy, color = cty)) +
scale_color_gradient(low = "yellow3", high="blue")



118 3 Data Visualization

Contrast this plot with the one we saw just before with hwy versus displ when coloring ac-
cording to cyl. The situation is reversed here: as we run our eye up and down for some value
of displ, we see a transition in color; the same is not true when moving along horizontally.
Thus, it seems that cty is associated more with hwy than displ.
By the way, where do we get those color names? There’s a cheatsheet3 for that!

3.2.9 Other articulations

3.2.9.1 Facets

Instead of using color to annotate points, we can also use something called facets which
splits the plots into several subplots, one for each category of the categorical variable. Let
us use faceting for our last visualization.

ggplot(data = no_sports_cars) +
geom_point(mapping = aes(x = displ, y = hwy)) +
facet_wrap(~ as_factor(cyl), nrow = 2)

3https://www.nceas.ucsb.edu/sites/default/files/2020-04/colorPaletteCheatsheet.pdf

https://www.nceas.ucsb.edu
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This one makes it very clear that hardly any car models in the dataset have 5 cylinders!

3.2.9.2 Shapes

You can use shapes and fill strengths to differentiate between points. The argument for the
fill strength is alpha = X where X is the attribute.

ggplot(no_sports_cars) +
geom_point(aes(x = cty, y = hwy, alpha = class))

You can specify both alpha and color, even using different variables. See an example below.

ggplot(no_sports_cars) +
geom_point(aes(x = cty, y = hwy, alpha = displ, shape = class))
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Welcome to your first 4-D visualization! Note how when we move up and down vertically
for some fixed value of cty, the shapes do not grow more transparent; this is only observed
as we move left and right at some fixed value of hwy, suggesting a stronger relationship
between cty and displ. Put another way, we can say that displ varies more with cty than
it does with hwy. We do not observe a strong effect with respect to the shapes in class.
Note that by mapping both the shape and color aesthetics to the same attribute, say, class,
the legends are collapsed into one.

ggplot(no_sports_cars) +
geom_point(aes(x = cty, y = hwy, shape = class, color = class))

Can you say whether this visualization contains more or less information than our last one?
How many dimensions are displayed here?
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3.2.10 Jittering

You may notice that even though there are 234 entries in the data set, much fewer points
(only 109 to be exact) appears in the initial (before filtering) scatter plot of mpg.
This is because many points collide on the plot. We call the phenomenon overplotting,
meaning one point appearing over another. It is possible to nudge points in a random
direction in a small quantity. By making all directions possible, we can make complete
overplotting a rare event. We call the random nudging arrangement jittering.
To jitter, we add a positional argument position = "jitter" to geom_point. Note that this
is not a part of the aesthetic specification (so is not inside aes).

ggplot(no_sports_cars) +
geom_point(mapping = aes(x = cty, y = hwy, color = class),

position = "jitter")

3.2.11 One more scatter plot

In our first visualization of this section, we plotted hwy against displ. In that plot, by
substituting cty for hwy, we obtain a similar plot of cty against displ.
What if we want to see now both hwy and cty against displ? Is it possible to merge the two
plots into one?
Yes, we can do the merge easily using pivoting. Recall that pivot_longer combines multiple
columns into one. We can create a new data frame that combines the values from hwy and
cty under the name efficiency while specifying whether the value is from hwy or from cty
under the name eff_type.



122 3 Data Visualization

no_sports_cars_pivot <- no_sports_cars |>
pivot_longer(cols = c(hwy,cty),

names_to = "eff_type",
values_to = "efficiency")

Then we can plot efficency against displ by showing eff_type using the shape and class
using the color.

ggplot(no_sports_cars_pivot) +
geom_point(aes(x = displ, y = efficiency,

alpha = eff_type, shape = class),
position = "jitter")

The “jitter” option makes the visualization quite busy. Let us take it away.

ggplot(no_sports_cars_pivot) +
geom_point(aes(x = displ, y = efficiency,

alpha = eff_type, shape = class))
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Note the pattern in the fill strength of points as dictated by eff_type – the upper region of
the plot is shaded more boldly and the lower region very lightly. We leave it as an exercise
to the reader to come up with some explanations as to why such a visible pattern emerges.

3.3 Line and Smooth Geoms

In the last section we introduced scatter plots and how to interpret them using ggplot with
the point geom. In this section we introduce two new geoms, the point and smooth geoms,
to build another (hopefully familiar) visualization: the line chart.

3.3.1 Prerequisites

We will make use of the tidyverse in this chapter, so let us load it in as usual.

library(tidyverse)

We will study a tibble called airmiles, which contains data about passenger miles on com-
mercial US airlines between 1937 and 1960.
## # A tibble: 24 x 2
## miles date
## <dbl> <dbl>
## 1 412 1937
## 2 480 1938
## 3 683 1939
## 4 1052 1940
## 5 1385 1941
## 6 1418 1942
## 7 1634 1943
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## 8 2178 1944
## 9 3362 1945
## 10 5948 1946
## # ... with 14 more rows

We will examine a toy dataset called df to use for visualization. Recall that we can create
a dataset using tibble.

df <- tibble(x = seq(-2.5, 2.5, 0.25),
f1 = 2 * x - x * x + 20,
f2 = 3 * x - 10,
f3 = -x + 50 * sin(x))

df

## # A tibble: 21 x 4
## x f1 f2 f3
## <dbl> <dbl> <dbl> <dbl>
## 1 -2.5 8.75 -17.5 -27.4
## 2 -2.25 10.4 -16.8 -36.7
## 3 -2 12 -16 -43.5
## 4 -1.75 13.4 -15.2 -47.4
## 5 -1.5 14.8 -14.5 -48.4
## 6 -1.25 15.9 -13.8 -46.2
## 7 -1 17 -13 -41.1
## 8 -0.75 17.9 -12.2 -33.3
## 9 -0.5 18.8 -11.5 -23.5
## 10 -0.25 19.4 -10.8 -12.1
## # ... with 11 more rows

3.3.2 A toy data frame

df has four variables, x, y, z, and w. The range of x is [-2.5,2.5] with 0.25 as a step width.
The functions for y, z, and w are 2𝑥 − 𝑥2 + 20, 3𝑥 − 10, and −𝑥 + sin(𝑥), respectively.
To visualize these three functions, we first need to pivot the data so that it becomes a long
table. The reason for this step should become evident in a moment.

df_long <- df |>
pivot_longer(c(f1, f2, f3), names_to = "type", values_to = "y") |>
select(x, y, type)

df_long

## # A tibble: 63 x 3
## x y type
## <dbl> <dbl> <chr>
## 1 -2.5 8.75 f1
## 2 -2.5 -17.5 f2
## 3 -2.5 -27.4 f3
## 4 -2.25 10.4 f1
## 5 -2.25 -16.8 f2
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## 6 -2.25 -36.7 f3
## 7 -2 12 f1
## 8 -2 -16 f2
## 9 -2 -43.5 f3
## 10 -1.75 13.4 f1
## # ... with 53 more rows

Note how we have two variables present, x and y, annotated by a third variable, type,
designating which function the (𝑥, 𝑦) pair belongs to.

3.3.3 The line geom

We start with visualizing y against x for each of the three functions. We can use the same
strategy as geom_point by simply substituting geom_line for geom_point. However, we will
pass an additional argument group to the aesthetic to inform ggplot which function a point
comes from.

ggplot(data = df_long) +
geom_line(mapping = aes(x = x, y = y, group = type))

This plot is quite dull-looking and it can be hard to tell the lines apart from each other. How
about we annotate each line with a color? To do this, we substitute the group argument for
color.

ggplot(data = df_long) +
geom_line(mapping = aes(x = x, y = y, color = type))
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A curious phenomenon is the variables x and y coincide with the argument names x and
y inside the aes. So the meaning of x and y are different depending on which side of the
equality sign they fall. The y appearing on the side of the plot refers to the attribute.
If we are not content with the labels on the axes, we can specify an alternative using xlab
or ylab. Moreover, we can further control how the line plot looks by specifying the shape,
width, and type of line. The resulting effect depends on whether these arguments are passed
to the aesthetic, as we did above with color and group, or to the geom_line function directly.
Here is an example.

ggplot(data = df_long) +
geom_line(mapping = aes(x = x, y = y, color = type),

size = 2, linetype = "longdash") +
xlab("x values") +
ylab("y values")
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Observe how the color is varied for each of the functions, but the size and type of the line
is the same across all of them. Can you tell why? If you think you got it, here is a follow-up
question: what would you need to change to make both the color and line type different for
each of the lines?
By the way, there are many line types offered by ggplot. Available line types are “twodash”,
“solid”, “longdash”, “dotted”, “dotdash”, “dashed”, and “blank”.

3.3.4 Combining ggplot calls with dplyr

Let us turn our attention to the function f3 and set aside the functions f1 and f2 for now.
We know how to do this using filter from dplyr.

only_f3 <- df_long |>
filter(type == "f3")

The object only_f3 keeps only those points corresponding to the function f3. We could then
generate the line plot as follows.

ggplot(data = only_f3) +
geom_line(mapping = aes(x = x, y = y))

However, we have discussed before how naming objects, and keeping track of them, can be
cumbersome. Moreover, only_f3 is only useful as input for the visualization; for anything
else, it is a useless object sitting in memory.
We have learned that the pipe operator (|>) is useful for eliminating redundancy with dplyr
operations. We can use the pipe again here, this time to “pipe in” a filtered data frame to
use as a data source for visualization. Here is the re-worked code.

df_long |>
filter(type == "f3") |>
ggplot() +
geom_line(mapping = aes(x = x, y = y))
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There is something unfortunate about this code: the pipe operator cannot be used when
specifying the ggplot layers, so we have a motley mix of |> and + symbols in the code. Keep
this in mind to keep the two straight in your head: use |> when working with dplyr and
use + when working with ggplot.
This curve bears the shape of the famous sinusoidal wave true to trigonometry. However,
upon closer inspection, you may notice that the curve is actually a concatenation of many
straight-line pieces stitched together. Here is another example using df_airmiles.

ggplot(data = df_airmiles) +
geom_line(mapping = aes(x = date, y = miles))

Is it possible to draw something smoother? For this, we turn to our next geom: the smooth
geom.



3.3 Line and Smooth Geoms 129

3.3.5 Smoothers

We observed in our last plots that while line geoms can be used to plot a line chart, the
result may not be as smooth as we would like. An alternative to a line geom is the smooth
geom, which can be used to generate a smooth line plot.
The way to use it is pretty much the same as geom_line. Here is an example using the toy
data frame, where the only change made is substituting the geom.
The argument se = FALSE we pass to geom_smooth is to disable a feature that displays
confidence ribbons around the line. While these are certainly useful, we will not study them
in this text.

ggplot(data = df_long) +
geom_smooth(aes(x = x, y = y, color = type),

se = FALSE)

Observe that the piece-wise straight line of the sine function now looks like a proper curved
line.
It is possible to mix line and smooth geoms together in a single plot.

ggplot(data = df_long) +
geom_smooth(mapping = aes(x = x, y = y, color = type), se = FALSE) +
geom_line(mapping = aes(x = x, y = y, color = type))
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Notice the slight deviations along the sine curve. The effect is more apparent when we
visualize airmiles.

ggplot(data = df_airmiles) +
geom_point(mapping = aes(x = date, y = miles)) +
geom_line(mapping = aes(x = date, y = miles)) +
geom_smooth(mapping = aes(x = date, y = miles),

se = FALSE)

The line geom creates the familiar line graph we typically think of while the smooth geom
“smooths” the line to aid the eye in seeing overall patterns; the line geom, in contrast, is
much more “ridgy”.
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geom_smooth uses statistical methods to determine the smoother. One of the methods that
can be used is linear regression, which is a topic we will see study in detail towards the end
of the text. Here is an example.

ggplot(data = df_airmiles) +
geom_point(mapping = aes(x = date, y = miles)) +
geom_line(mapping = aes(x = date, y = miles)) +
geom_smooth(mapping = aes(x = date, y = miles),

method = "lm", se = FALSE)

Let us close our discussion of line and smooth geoms using one more example of the smooth
geom.

3.3.6 Observing a negative trend

The smooth geom can be useful to confirm the negative trend we have observed in the mpg
data frame.

ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy, color = class)) +
geom_smooth(mapping = aes(x = displ, y = hwy),

se = FALSE)



132 3 Data Visualization

Here we have layered two geoms in the same graph: a point geom and a smooth geom.
Note how the outlier points have influenced the overall shape of the curve to bend upward,
muddying the claim that there is a strong negative trend present in the data.
Armed with our understanding about sports cars, we can adjust the visualization by setting
aside points with class == "2seater".

no_sports_cars <- filter(mpg, class != "2seater")
ggplot(data = no_sports_cars) +

geom_point(mapping = aes(x = displ, y = hwy, color = class)) +
geom_smooth(mapping = aes(x = displ, y = hwy),

se = FALSE)

This plot shows a much more graceful trend downward.
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3.3.7 Working with multiple geoms

Before moving to the next topic, we point out some technical concerns when working with
multiple geoms. First, in the above code we have written, observe the same mapping for x
and y was defined in two different places.
This could cause some unexpected surprises when writing code: imagine if we wanted to
change the y-axis to cty instead of hwy, but we forgot to change both occurrences of hwy.
This can be amended by moving the mapping into the ggplot function call.

no_sports_cars <- filter(mpg, class != "2seater")
ggplot(data = no_sports_cars,

mapping = aes(x = displ, y = hwy)) +
geom_point(mapping = aes(color = class)) +
geom_smooth(se = FALSE)

We can also write this more concisely by omitting some keywords as below, and the result
would be the same.

no_sports_cars <- filter(mpg, class != "2seater")
ggplot(no_sports_cars,

aes(x = displ, y = hwy)) +
geom_point(aes(color = class)) +
geom_smooth(se = FALSE)

What if we wanted a smoother for each type of car? The color aesthetic can also be moved
into the ggplot function call. While we are it, we set the smoother to use linear regression
for the smoothing.

ggplot(no_sports_cars,
aes(x = displ, y = hwy, color = class)) +

geom_point() +
geom_smooth(se = FALSE, method = "lm")
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It is also possible to specify a different dataset to use at the geom layer. We can take
advantage of this feature to give a smoother for only a subset of the data, say, the midsize
cars.

different_dataset <- mpg |>
filter(class == "midsize")

ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point(aes(color = class)) +
geom_smooth(data = different_dataset, se = FALSE, method = "lm")
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3.4 Categorical Variables

The point, line, and smooth plots are for viewing relations among numerical variables. As
you are well aware, numerical variables are not the only type of variables in a data set.
There are variables representing categories, and we call them categorical variables.
A categorical attribute has a fixed, finite number of possible values, which we call categories.
The categories of a categorical attribute are distinct from each other.
A special categorical attribute is a binary category, where there are exactly two values. A
binary category that we are probably the most familiar with is the Boolean category, which
has “true” and “false” as its values. Because of the familiarity, we often identify a binary
category as a Boolean category.
In datasets, categories in a categorical attribute are sometimes called levels and we refer
to such a categorical attribute as a factor. Sometimes, categories are whole numbers 1, 2,
…, representing indexes. Such cases may require some attention when processing with R,
because R may think of the variables as numbers.
We have seen examples of categorical variables before. The class attribute in the mpg data
set is one.

3.4.1 Prerequisites

As before, let us load tidyverse. Moreover, we will make use of datasets that are not
available in tidyverse but are available in the package faraway. So, we load the package
too.

library(tidyverse)
library(faraway)
happy <- tibble(happy)

3.4.2 The happy and diamonds data frames

The table happy contains data on 39 students in a University of Chicago MBA class.

happy

## # A tibble: 39 x 5
## happy money sex love work
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 10 36 0 3 4
## 2 8 47 1 3 1
## 3 8 53 0 3 5
## 4 8 35 1 3 3
## 5 4 88 1 1 2
## 6 9 175 1 3 4
## 7 8 175 1 3 4
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## 8 6 45 0 2 3
## 9 5 35 1 2 2
## 10 4 55 1 1 4
## # ... with 29 more rows

Armed with what we have learned about ggplot2, we can begin answering questions about
this data set using data transformation and visualization techniques. For instance, which
“happiness” scores are the most frequent among the students? Moreover, can we discover an
association between feelings of belonging and higher scores of happiness? How about family
income?
Before we inspect the happy data set any further, we will also consider another table diamonds,
which contains data on almost 54,000 diamonds.

diamonds

## # A tibble: 53,940 x 10
## carat cut color clarity depth table price x y
## <dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl>
## 1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98
## 2 0.21 Prem~ E SI1 59.8 61 326 3.89 3.84
## 3 0.23 Good E VS1 56.9 65 327 4.05 4.07
## 4 0.29 Prem~ I VS2 62.4 58 334 4.2 4.23
## 5 0.31 Good J SI2 63.3 58 335 4.34 4.35
## 6 0.24 Very~ J VVS2 62.8 57 336 3.94 3.96
## 7 0.24 Very~ I VVS1 62.3 57 336 3.95 3.98
## 8 0.26 Very~ H SI1 61.9 55 337 4.07 4.11
## 9 0.22 Fair E VS2 65.1 61 337 3.87 3.78
## 10 0.23 Very~ H VS1 59.4 61 338 4 4.05
## # ... with 53,930 more rows, and 1 more variable: z <dbl>

The values of the categorical variable cut are “fair”, “good”, “very good”, “ideal”, and
“premium”. We can look at how many diamonds are in each category by using group_by()
and summarize().

diamonds |>
group_by(cut) |>
summarize(count = n())

## # A tibble: 5 x 2
## cut count
## <ord> <int>
## 1 Fair 1610
## 2 Good 4906
## 3 Very Good 12082
## 4 Premium 13791
## 5 Ideal 21551

The table shows the number of diamonds of each cut. We call this a distribution. A distri-
bution shows all the values of a variable, along with the frequency of each one. Recall that
the summary does not persist on the diamonds data set and so the dataset remains the same
after summarization.
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3.4.3 Bar charts

The bar chart is a familiar way of visualizing categorical distributions. Each category of a
categorical attribute has a number it has an association with, and a bar chart presents the
numbers for the categories using bars, where the height of the bars represent the numbers.
Typically, the bars in a bar chart appear either all vertically or all horizontally with an
equal space in between and with the same height but expanding horizontally (that is, the
non-variable dimension of the bars).

ggplot(diamonds, aes(x = cut)) +
geom_bar()

The x-axis displays the values for the cut attribute while the y-axis says “count”. The
label “count” is the result of geom_bar() generating bars. Since the number of observations
is greater than there are categories, geom_bar() decides to count the occurrences of each
category. The word “count” says that it is the result of counting.
We often call the inner working of the geom_bar() (and other geom functions) for number
generation stat. Thus, ggplot2 transforms the raw table to a new dataset of categories with
its corresponding counts. From this new table, the bar plot is constructed by mapping cut
to the x-axis and count to the y-axis.
The default stat geom_bar() uses for counting is stat_count(), which counts the number of
cases at each x position. If the counts are already present in the dataset and we would prefer
to instead use these directly for the heights of the bars, we can set stat = "identity". For
instance, consider this table about popular pies sold at a bakery. The “count” is already
present in the sold variable.

store_pies <- tribble(
~pie, ~sold,
"Pecan", 906,
"Key Lime", 620,
"Pumpkin", 202,
"Apple", 408,
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"Mississippi mud", 551
)
ggplot(data = store_pies) +

geom_bar(mapping = aes(x = pie, y = sold),
stat = "identity")

Note how we provide both x and y aesthetics when using the identity stat.

3.4.4 Dealing with categorical variables

Let us turn to the happy data frame. We can consider the categories to be points on the
10-point scale, and the individuals the students in each interval. Let us determine this
distribution using group_by and sumarrize.
Below, we take the happy data set and execute grouping by happy. The category for the
happy value is happiness in this new dataset happy_students. We summarize in terms of
the counts n() and we state the count as an attribute number.

happy_students <- group_by(happy, happiness = happy) |>
summarize(number = n())

happy_students

## # A tibble: 9 x 2
## happiness number
## <dbl> <int>
## 1 2 1
## 2 3 1
## 3 4 4
## 4 5 5
## 5 6 2
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## 6 7 8
## 7 8 14
## 8 9 3
## 9 10 1

We can now use this table, along with the graphing skills that we acquired above, to draw
a bar chart that shows which scores are most frequent among the 39 students.

ggplot(happy_students) +
geom_bar(aes(x = happiness, y = number),

stat = "identity") +
labs(x = "Happy score",

y = "Count")

Here R treats the happy score as numerical values. That is the reason that we see 2.5, 5.0,
7.5, and 10.0 on the x-axis. Let us inform R that these are indeed categories by treating
happiness as a factor.

ggplot(happy_students) +
geom_bar(aes(x = as_factor(happiness), y = number),

stat = "identity") +
labs(x = "Happy score",

y = "Count")
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We can also reorder the bars in the descending order of number.

ggplot(happy_students) +
geom_bar(aes(x = reorder(happiness, desc(number)), y = number),

stat = "identity") +
labs(x = "Happy score",

y = "Count")

There is something unsettling about this chart. Though it does answer the question of
which “happy” scores appear most frequently among the students, it doesn’t list the scores
in chronological order.
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Let us return to the first plot.

ggplot(happy_students) +
geom_bar(aes(x = as_factor(happiness), y = number),

stat = "identity") +
labs(x = "Happy score",

y = "Count")

Now the scores are in increasing order.
We can attempt an answer to our second question: is there an association between feelings
of belonging and “happy” scores? Put another way, what relationship, if any, exists between
love and happy? For this, let us turn to positional adjustments in ggplot.

3.4.5 More on positional adjustments

With point geoms we saw the usefulness of the “jitter” position adjustment to overcome
the problem of overplotting. Bar geoms similarly benefit from positional adjustments. For
instance, we can set the color or fill of a bar plot.

ggplot(happy) +
geom_bar(aes(x = happy, color = as_factor(happy)))
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ggplot(happy) +
geom_bar(aes(x = happy, fill = as_factor(happy)))

The legend that appears says “as_factor(happy)”, because we used the value for coloring.
We can change the title with the use of labs(fill = ...) ornamentation.

ggplot(happy) +
geom_bar(aes(x = happy, color = as_factor(happy))) +
labs(color="happy")
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ggplot(happy) +
geom_bar(aes(x = happy, fill = as_factor(happy))) +
labs(fill="happy")

To make this code work, note how the parameter passed to the color and fill aesthetic is
converted to a factor, i.e., a categorical variable, via as_factor(). As discussed, the happy
variable is treated as numerical by R even though it is meant as a categorical variable in
reality. ggplot2 can only color or fill a bar chart based on a categorical variable.
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Something interesting happens when the fill aesthetic is mapped to another variable other
than happy, e.g., love.

ggplot(happy) +
geom_bar(aes(x = happy, fill = as_factor(love))) +
labs(fill = "love")

This visualization produces a “stacked” bar chart! Each bar is a composite of both happy and
love. It also reveals something else that is interesting: feelings of belonginess are associated
with higher marks on the “happy” scale. While we must maintain caution about making
any causative statements at this point, this visualization demonstrates that bar charts can
be a useful aid when exploring a dataset for possible relationships.
The stacking is performed by the position adjustment specified by the position argument.
Observe how the bar chart changes with these other options:
• position = "fill" makes each bar the same height. This way we can compare propor-

tions across groups.

ggplot(happy) +
geom_bar(aes(x = happy, fill = as_factor(love)),

position = "fill") +
labs(fill = "love")
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• position = "dodge" places the stacked bars directly beside one another. This makes it
easier to compare individual values.

ggplot(happy) +
geom_bar(aes(x = happy, fill = as_factor(love)),

position = "dodge")+
labs(fill = "love")

We can adjust the values of the x-axis to whole numbers using as_factor again. We can
also the title “relation between happiness and love”.

ggplot(happy) +
geom_bar(aes(x = as_factor(happy), fill = as_factor(love)),

position = "dodge") +
labs(x = "Happy Score",
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fill = "love",
title = "relation between happiness and love")

Bar charts are intended as visualizations of categorical variables. When the variable is
numerical, the numerical relations between its values have to be taken into account when
we create visualizations. That is the topic of the next section. Before ending the discussion
here, we turn to one more important piece of ggplot2 magic.

3.4.6 Coordinate systems

We noted earlier that one of the motifs of any ggplot2 plot is its coordinate system. In all of
the ggplot2 code we have seen so far, there has been no explicit mention as to the coordinate
system to use. Why? If no coordinate system is specified, ggplot2 will default to using the
Cartesian (i.e., horizontal and vertical) coordinate system. In Cartesian coordinates, the x
and y coordinates are used to define the location of every point in the dataset, as we have
just seen.
This is not the only coordinate system offered by ggplot2, and learning about other coordi-
nate systems that are available can help boost the overall quality of a visualization and aid
interpretation.
• coord_flip() flips the x and y axes. For instance, this can be useful when the x-axis

labels on a bar chart overlap each other.

ggplot(happy) +
geom_bar(aes(x = happy, fill = as_factor(love))) +
coord_flip()
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• coord_polar() uses polar coordinates. It is useful for plotting a Coxcomb chart. Note
the connection between this and a bar chart.

ggplot(happy) +
geom_bar(aes(x = happy, fill = as_factor(love))) +
coord_polar()

• coord_cartesian(xlim, ylim) can be passed arguments for “zooming in” the plot. For
instance, we may want to limit the height of very tall bars (and, similarly, the effect of
very small bars) in a bar chart by passing in a range of possible y-values to ylim.
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ggplot(happy) +
geom_bar(aes(x = happy, fill = as_factor(love))) +
coord_flip() +
coord_cartesian(ylim=c(1,10))

This can also be used as a trick for eliminating the (awkward) gap between the bars
and the x-axis.

• scale_x_log10() and scale_y_log10() are numeric position scales that can be used to
transform an axis on a plot. It can be very useful when you have data spread over a
large range and concentrated over a relatively smaller interval.
As an example, consider the dataset and_salamanders sourced from the package lter-
datasampler that contains measurements on Coastal giant salamanders.

library(lterdatasampler)

and_salamanders <- and_vertebrates |>
filter(species == "Coastal giant salamander")

and_salamanders

## # A tibble: 11,758 x 16
## year sitecode section reach pass unitnum unittype
## <dbl> <chr> <chr> <chr> <dbl> <dbl> <chr>
## 1 1993 MACKCC-L CC L 1 1 P
## 2 1993 MACKCC-L CC L 1 2 C
## 3 1993 MACKCC-L CC L 1 2 C
## 4 1993 MACKCC-L CC L 1 2 C
## 5 1993 MACKCC-L CC L 1 2 C
## 6 1993 MACKCC-L CC L 1 2 C
## 7 1993 MACKCC-L CC L 1 2 C
## 8 1993 MACKCC-L CC L 1 2 C
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## 9 1993 MACKCC-L CC L 1 2 C
## 10 1993 MACKCC-L CC L 1 2 C
## # ... with 11,748 more rows, and 9 more variables:
## # vert_index <dbl>, pitnumber <dbl>, species <chr>,
## # length_1_mm <dbl>, length_2_mm <dbl>, weight_g <dbl>,
## # clip <chr>, sampledate <date>, notes <chr>

We can plot the relationship between salamander mass and length.

ggplot(and_salamanders) +
geom_point(aes(x = length_1_mm, y = weight_g), alpha = 0.4)

## Warning: Removed 5429 rows containing missing values
## (`geom_point()`).

As illustrated by the alpha, we can observe most observations are concentrated where
length is in the range [19, 100] and that observations are more dispersed in the range
[100, 181]. A log transformation can help distribute the observations more evenly along
the axis. We can apply this transformation to both axes as follows.

ggplot(and_salamanders) +
geom_point(aes(x = length_1_mm, y = weight_g), alpha = 0.4) +
scale_x_log10() +
scale_y_log10()
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Observe how observations are now more evenly distributed across both axes. However,
tread carefully when applying transformations (logarithmic or other) to an axis. Moving
one unit along the log-axis does not have the same meaning as moving one unit along
the original axis!

3.5 Numerical Variables

Many of the variables that data scientists study are quantitative or numerical, like the
displacement and highway fuel efficiency, as we have seen before. Let us go back to the mpg
data set and learn how to visualize its numerical values.

3.5.1 Prerequisites

As before, let us load tidyverse. We also make use of the patchwork library in this section
to overlay multiple visualizations side-by-side.
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library(tidyverse)
library(patchwork)

3.5.2 A slice of mpg

In this section we will draw graphs of the distribution of the numerical variable in the
column hwy, which describes miles per gallon of car models on the highway. For simplicity,
let us create a subset of the data frame that includes only the information we need.

mpg_sub <- select(mpg, manufacturer, model, hwy)
mpg_sub

## # A tibble: 234 x 3
## manufacturer model hwy
## <chr> <chr> <int>
## 1 audi a4 29
## 2 audi a4 29
## 3 audi a4 31
## 4 audi a4 30
## 5 audi a4 26
## 6 audi a4 26
## 7 audi a4 27
## 8 audi a4 quattro 26
## 9 audi a4 quattro 25
## 10 audi a4 quattro 28
## # ... with 224 more rows

3.5.3 What is a histogram?

A histogram of a numerical variable looks very much like a bar chart, though it has some
important differences that we will examine in this section. First, let us just draw a histogram
of the highway miles per gallon.
The geom histogram generates a histogram of the values in a column. The histogram below
shows the distribution of hwy.

ggplot(mpg_sub, aes(x = hwy)) +
geom_histogram(fill = "darkcyan", color = "gray")
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Note that, like bar charts, the mapping for the y-axis in the aesthetic is absent. This time,
instead of internally computing a stat count, ggplot computes a stat bin called stat_bin().

3.6 Histogram Shapes and Sizes

Histograms are useful for informing where the “bulk” of the data lies and can have different
shapes. Let’s have a look at some common shapes that occur in real data.

Plotting a histogram for penguin flipper lengths from the palmerpenguins package gives rise
to a “bell-shaped” or symmetrical distribution that falls off evenly on both sides; the bulk
of the distribution is clearly centered at the middle of the histogram, at around 190 mm.
Plotting GDP per capita data from the gapminder package gives rise to a distribution where
the bulk of the countries have a GDP per capita less than $20,000 and countries with more
are more extreme, especially at very high values of GDP per capita. Because of its distinctive
appearance, distributions with this shape are called right tailed because the “mean” GDP
per capita is “dragged” to the right in the direction of the tail.
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The opposite is true for results of the men’s long jump in the London Olympics 2012 qualifier.
This histogram is generated from the longjump tibble in the edsdata package. In this case,
we call such a distribution to be left tailed as the “mean” is pulled leftward.

3.6.1 The horizontal axis and bar width

In a histogram plot, we group the amounts into groups of contiguous (and thus, non-
overlapping) intervals called bins. The histogram function of ggplot use the left-out, right-in
convention in bin creation. What this means is that the interval between a value 𝑎 and a
value 𝑏, where 𝑎 < 𝑏, includes 𝑏 but not 𝑎. The convention does not apply the smallest bin,
which has the left-end as well. Let us see an example.
Suppose we divide the interval from 0 to 100 into four bins of an equal size. The end points
of the intervals are 0, 25, 50, 75, and 100. The following diagram demonstrates the situation:

We can write these intervals more concisely using open/close interval notion as:
[0, 25], (25, 50], (50, 75], and (75, 100].
Suppose now that we are handed the following values:

{0.0, 4.7, 5.5, 25.0, 25.5, 49.9, 50.0, 70.0, 72.2, 73.1, 74.4, 75.0, 99.0}

If we filled in the bins with these values, the above diagram would look something like this:

Histograms are, in some sense, an extended version of the bar plot where the number of
bins are adjustable. The heights represent counts (or densities, which we will see soon) and
the widths are either the same or vary for each bar.
The end points of the bin-defining intervals are difficult to recognize just by looking at the
chart. It is a little harder to see exactly where the ends of the bins are situated. For example,
it is not easy to pinpoint exactly where the value 19 lies on the horizontal axis. Is it in the
interval for the bin that stands on the line 20 on the x-axis or the one immediately to the
left of it?
We can use, for a better visual assessment, a custom set of intervals as the bins. The
specification of the bin set is by way of stating breaks = BINS as an argument in the call
for geom_histogram(), where BINS is a sequence of breaking points.
Recall that we can define a numerical series from a number to another with fixed gap amount
using function seq(). Below, we create a numerical series using seq() and then specify to
use the sequence in the break points.
The sequence starts at 10 and ends at 50 with the gap of 1. Using the convention of end
points in R, the sequence produces 40 intervals, from 10 to 11, from 11 to 12, …, from 49 to
50, with the right end inclusive and the left end exclusive, except for the leftmost interval
containing 10.
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bins <- seq(10,50,1)
ggplot(mpg, aes(x = hwy)) +

geom_histogram(fill = "darkcyan", color = "gray", breaks = bins)

The tallest histogram bar is the one immediately to the right of the 25 white line on the
x-axis, so it corresponds to the bin (25, 26].
Let us try using a different step size, say 5.0.

bins <- seq(10,50,5)
ggplot(mpg, aes(x = hwy)) +

geom_histogram(fill = "darkcyan", color = "gray", breaks = bins)

We observe two tall bars at (15,20] and at (25,30].
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3.6.2 The counts in the bins

We can record the count calculation that geom_histogram carries out using the cut() function.
The function takes an attribute and the bin intervals as its arguments and generates a table
of counts.
The end point convention applies here, but in the data frame presentation, the description
does not use the left square bracket for the lowest interval - it uses the left parenthesis like
the other intervals.
Below, we create a new attribute bin that shows the bin name as its value using the cut(hwy,
breaks = bins) call, then using count compute the frequency of each bin name in the bin
attribute without dropping the empty bins in the counting result, and print the result on
the screen.

bins <- seq(10,50,1)
binned <- mpg_sub |>
mutate(bin = cut(hwy, breaks = bins)) |>
count(bin, .drop = FALSE)

binned

## # A tibble: 40 x 2
## bin n
## <fct> <int>
## 1 (10,11] 0
## 2 (11,12] 5
## 3 (12,13] 0
## 4 (13,14] 2
## 5 (14,15] 10
## 6 (15,16] 7
## 7 (16,17] 31
## 8 (17,18] 10
## 9 (18,19] 13
## 10 (19,20] 11
## # ... with 30 more rows

Note that the label for 10 to 11 (appearing at the beginning) has the left parenthesis.
If you want to ignore the empty bins, change the option of .drop = FALSE to .drop = TRUE
or take the option away.

bins <- seq(10,50,1)
binned <- mpg_sub |>
mutate(bin = cut(hwy, breaks = bins)) |>
count(bin, .drop = TRUE)

binned

## # A tibble: 27 x 2
## bin n
## <fct> <int>
## 1 (11,12] 5
## 2 (13,14] 2
## 3 (14,15] 10



156 3 Data Visualization

## 4 (15,16] 7
## 5 (16,17] 31
## 6 (17,18] 10
## 7 (18,19] 13
## 8 (19,20] 11
## 9 (20,21] 2
## 10 (21,22] 7
## # ... with 17 more rows

We can try the alternate bin sequence, whose step size is 5.

bins2 <- seq(10,50,5)
binned2 <- mpg_sub |>

mutate(bin = cut(hwy, breaks = bins2)) |>
count(bin, .drop = TRUE)

binned2

## # A tibble: 7 x 2
## bin n
## <fct> <int>
## 1 (10,15] 17
## 2 (15,20] 72
## 3 (20,25] 44
## 4 (25,30] 79
## 5 (30,35] 16
## 6 (35,40] 3
## 7 (40,45] 3

3.6.3 Density scale

So far, the height of the bar has been the count, or the number of elements that are found
in some bin. However, it can be useful to instead look at the density of points that are
contained by some bin. When we plot a histogram in this manner, we say that it is in
density scale.
In density scale, the height of each bar is the percent of elements that fall into the cor-
responding bin, relative to the width of the bin. Let us explain this using the following
calculation.
Let the bin width be 5, which we will refer to as bin_width.

bin_width <- 5

The meaning of assigning 5 to the bin width is that each bin covers 5 consecutive units of the
hwy value. Then we create a histogram with unit-size bins, divide the bars into consecutive
groups of 5, and then even out the heights of the bars in each group.
More specifically, we execute the following steps.
• Using bin_width as a parameter, we create a sequence bins of bin boundaries from 10

to 50.
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bins <- seq(10, 50, bin_width)

• Like before, when we “cut” the hwy values using bins as break points, we get the bins
and their counts under variables bin and n, respectively.

binned <- mpg_sub |>
mutate(bin = cut(hwy, breaks = bins)) |>
count(bin, .drop = TRUE)

binned

## # A tibble: 7 x 2
## bin n
## <fct> <int>
## 1 (10,15] 17
## 2 (15,20] 72
## 3 (20,25] 44
## 4 (25,30] 79
## 5 (30,35] 16
## 6 (35,40] 3
## 7 (40,45] 3

• We obtain the proportions of the counts in the entire cars appearing in the tibble mpg_sub
by dividing the counts by nrow(mpg_sub).

binned <- binned |>
mutate(proportion = n/nrow(mpg_sub))

binned

## # A tibble: 7 x 3
## bin n proportion
## <fct> <int> <dbl>
## 1 (10,15] 17 0.0726
## 2 (15,20] 72 0.308
## 3 (20,25] 44 0.188
## 4 (25,30] 79 0.338
## 5 (30,35] 16 0.0684
## 6 (35,40] 3 0.0128
## 7 (40,45] 3 0.0128

• For each bin, split the proportion in the bin among the 5 units the bin contains.

binned <- binned |>
mutate(density = proportion/bin_width)

binned

## # A tibble: 7 x 4
## bin n proportion density
## <fct> <int> <dbl> <dbl>
## 1 (10,15] 17 0.0726 0.0145
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## 2 (15,20] 72 0.308 0.0615
## 3 (20,25] 44 0.188 0.0376
## 4 (25,30] 79 0.338 0.0675
## 5 (30,35] 16 0.0684 0.0137
## 6 (35,40] 3 0.0128 0.00256
## 7 (40,45] 3 0.0128 0.00256

• Plot density against bin, and done!

ggplot(binned, aes(x = bin, y = density)) +
geom_histogram(fill = "darkcyan", color = "gray",

stat = "identity")

## Warning in geom_histogram(fill = "darkcyan", color = "gray", stat = "identity"):
Ignoring unknown parameters: `binwidth`, `bins`, and
## `pad`

That was a lot of work and, fortunately, ggplot can take care of all that for us. The following
code is a rewriting of the above where we omit the identity stat and instead map y onto
density after being subject to the function after_stat.

ggplot(mpg, aes(x = hwy)) +
geom_histogram(aes(y = after_stat(density)),

fill = "darkcyan", color = "gray", breaks = bins)
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The function call to after_stat requires some explanation. In the above code, observe that
we mapped y onto a variable density, but density is not a variable present in the mpg dataset!
Histogram geoms, like bar geoms, internally compute new variables like count and density.
By specifying density in the function call after_stat, we flag to ggplot that evaluation
of this aesthetic mapping should be deferred until after the stat transformation has been
computed.
Compare this with the density plot crafted by hand. Observe that the density values we
have calculated match the height of the bars.

3.6.4 Why bother with density scale?

There are some discrepancies to note between a histogram in density scale and a histogram
with count scale. While the count scale may be easier to digest visually than density scale,
the count scale can be misleading when using bins with different widths. The problem: the
height of each bar does not account for the difference in the widths of the bins.
Suppose the values in hwy are binned into three uneven categories.

uneven_bins <- c(10, 15, 30, 45)
ggplot(mpg, aes(x = hwy)) +

geom_histogram(aes(y = after_stat(density)),
fill = "darkcyan", color = "grey",
breaks = uneven_bins, position = "identity")
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Here are the counts in the three bins. Observe that the first and last bins have roughly the
same number of elements.

mpg_sub |>
mutate(bin = cut(hwy, breaks = uneven_bins)) |>
count(bin, .drop = FALSE)

## # A tibble: 3 x 2
## bin n
## <fct> <int>
## 1 (10,15] 17
## 2 (15,30] 195
## 3 (30,45] 22

Let us compare the following two histograms that use uneven_bins.

g1 <- ggplot(mpg, aes(x = hwy)) +
geom_histogram(fill = "darkcyan", color = "grey",

breaks = uneven_bins, position = "identity")

uneven_bins <- c(10, 15, 30, 45)

g2 <- ggplot(mpg, aes(x = hwy)) +
geom_histogram(aes(y = after_stat(density)),

fill = "darkcyan", color = "grey",
breaks = uneven_bins, position = "identity")

g1 + g2
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Note how the histogram in count scale exaggerates the height of the (30, 45] bar. The height
shown is simply the number of car models in that bin with no regard to the width of the bin.
While both the [10, 15] and (30, 45] bars may have the same number of car models in the
bin, the density of the [10, 15] bar is greater because there are more elements contained by
a smaller bin width. Put another way, the (30, 45] bar can provide more coverage because
it is so “spread out”, i.e., its bin width is much larger than that of the [10, 15] bar.
For this reason, we will prefer to plot our histograms in density scale rather than count
scale.

3.6.5 Density scale makes direct comparisons possible

Histograms in density scale allow comparisons to be made between histograms generated
from datasets of different sizes or make different bin choices. Consider the following two
subsets of car models in mpg.

first_subset <- mpg |>
filter(class %in% c("minivan", "midsize", "suv"))

second_subset <- mpg |>
filter(class %in% c("compact", "subcompact", "2seater"))

We can generate a histogram in density scale for each subset. Note that both histograms
apply the same bin choices given in the following bin_choices.

bin_choices <- c(10, 15, 20, 22, 27, 30, 45)

g1 <- ggplot(first_subset, aes(x = hwy)) +
geom_histogram(aes(y = after_stat(density)),

fill = "darkcyan",
color = "grey",
breaks = bin_choices) +

labs(title = "minivan, midsize, suv")



162 3 Data Visualization

g2 <- ggplot(second_subset, aes(x = hwy)) +
geom_histogram(aes(y = after_stat(density)),

fill = "darkcyan",
color = "grey",
breaks = bin_choices) +

labs(title = "compact, subcompact, 2seater")

g1 + g2

For instance, we can immediately tell that the density of observations in the (30, 45] bin
is greater in the second subset than in the first. We can also glean that the “bulk” of car
models in the first subset is concentrated more in the range [10, 30] than in the second
subset.
We can confirm this by overlaying a “smoothed” curve atop each of the histograms. Let us
add a new geom to our ggplot code using a density geom.

g1 <- ggplot(first_subset, aes(x = hwy)) +
geom_histogram(aes(y = after_stat(density)),

fill = "white", color = "grey",
breaks = bin_choices) +

geom_density(adjust = 3, fill = "purple", alpha = 0.3) +
labs(title = "minivan, midsize, suv")

g2 <- ggplot(second_subset, aes(x = hwy)) +
geom_histogram(aes(y = after_stat(density)),

fill = "white", color = "grey",
breaks = bin_choices) +

geom_density(adjust = 3, fill = "purple", alpha = 0.3) +
labs(title = "compact, subcompact, 2seater")

g1 + g2
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The area beneath the curve is a percentage and tells us where the “bulk” of the data is. We
can see that the top of the curve is shifted to the left for the first subset when compared to
the second subset. Overlaying a density geom over a histogram geom is possible only when
the histograms are drawn in density scale.

3.6.6 Histograms and positional adjustments

As with bar charts and scatter plots, we can use positional adjustments with histograms.
Below, we use bins of width 5 and then color the portions of the bars according to the
classes. To make the breakdown portions appear on top of each other, we use the position
= "stack" adjustment.

bins <- seq(10,50,5)
ggplot(mpg, aes(x = hwy)) +

geom_histogram(aes(fill = class), breaks = bins,
position = "stack")
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Instead of stacking, the bars can be made to appear side by side.

bins <- seq(10,50,5)
ggplot(mpg, aes(x = hwy)) +

geom_histogram(aes(fill = class), breaks = bins,
position = "dodge")

3.7 Drawing Maps

Sometimes our dataset contains information about geographical quantities, such as latitude,
longitude, or a physical area that corresponds to a “landmark” or region of interest. This
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section explores methods from ggplot2 and a new package called tigris for downloading
and working with spatial data.

3.7.1 Prerequisites

We will make use of several packages in this section.

library(tidyverse)
library(patchwork)
library(mapview)
library(tigris)

We also use tigris, patchwork, and mapview, so we load in these packages as well.

3.7.2 Simple maps with polygon geoms

ggplot2 provides functionality for drawing maps. For instance, the following dataset from
ggplot2 contains longitude and latitude points that correspond to the mainland United
States.

us <- map_data("state") |>
as_tibble() |>
select(long, lat, group, region)

us

## # A tibble: 15,537 x 4
## long lat group region
## <dbl> <dbl> <dbl> <chr>
## 1 -87.5 30.4 1 alabama
## 2 -87.5 30.4 1 alabama
## 3 -87.5 30.4 1 alabama
## 4 -87.5 30.3 1 alabama
## 5 -87.6 30.3 1 alabama
## 6 -87.6 30.3 1 alabama
## 7 -87.6 30.3 1 alabama
## 8 -87.6 30.3 1 alabama
## 9 -87.7 30.3 1 alabama
## 10 -87.8 30.3 1 alabama
## # ... with 15,527 more rows

We can plot a map of the United States using a polygon geom where the x and y aesthetics
are mapped to the longitude and latitude positions, respectively. We add a coordinate
system layer to project this portion of the earth onto a 2D coordinate plane.

us_map <- ggplot(us) +
geom_polygon(aes(x = long, y = lat, group = group),

fill = "white", color = "black") +
coord_quickmap()

us_map
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For instance, we can annotate the map with the position track of Atlantic storms in 2006
using the storms dataset provided by dplyr.

storms2006 <- storms |>
filter(year == 2006)

storms2006

## # A tibble: 190 x 13
## name year month day hour lat long status
## <chr> <dbl> <dbl> <int> <dbl> <dbl> <dbl> <chr>
## 1 Zeta 2006 1 1 0 25.6 -38.3 tropical sto~
## 2 Zeta 2006 1 1 6 25.4 -38.4 tropical sto~
## 3 Zeta 2006 1 1 12 25.2 -38.5 tropical sto~
## 4 Zeta 2006 1 1 18 25 -38.6 tropical sto~
## 5 Zeta 2006 1 2 0 24.6 -38.9 tropical sto~
## 6 Zeta 2006 1 2 6 24.3 -39.7 tropical sto~
## 7 Zeta 2006 1 2 12 23.8 -40.4 tropical sto~
## 8 Zeta 2006 1 2 18 23.6 -40.8 tropical sto~
## 9 Zeta 2006 1 3 0 23.4 -41 tropical sto~
## 10 Zeta 2006 1 3 6 23.3 -41.3 tropical sto~
## # ... with 180 more rows, and 5 more variables:
## # category <ord>, wind <int>, pressure <int>,
## # tropicalstorm_force_diameter <int>,
## # hurricane_force_diameter <int>

Observe how the storms2006 contains latitude (lat) and longitude (long) positions. We can
generate an overlaid scatter plot using these positions. Note how this dataset is given a
specification at the geom layer, which is different from the dataset used for creation of the
ggplot object in us_map.

us_map +
geom_point(data = storms2006,

aes(x = long, y = lat, color = name))
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The visualization points out three storms (Alberto, Ernesto, and Beryl) that made landfall
in the United States.

3.7.3 Shape data and simple feature geoms

tigris is a package that allows users to download TIGER/Line shape data directly from
the US Census Bureau website. For instance, we can retrieve shape data pertaining to the
United States.

states_sf <- states(cb = TRUE)

## Retrieving data for the year 2020

The function defaults to retrieving data from the most recent year available (currently,
2020). The result is a “simple feature collection” expressed as a data frame.

states_sf

## Simple feature collection with 2 features and 9 fields
## Geometry type: MULTIPOLYGON
## Dimension: XY
## Bounding box: xmin: -109.0502 ymin: 17.88328 xmax: -65.2207 ymax: 37.00023
## Geodetic CRS: NAD83
## STATEFP STATENS AFFGEOID GEOID STUSPS NAME
## 1 35 00897535 0400000US35 35 NM New Mexico
## 2 72 01779808 0400000US72 72 PR Puerto Rico
## LSAD ALAND AWATER
## 1 00 314198560935 726482115
## 2 00 8868948653 4922329963
## geometry
## 1 MULTIPOLYGON (((-109.0502 3...
## 2 MULTIPOLYGON (((-65.23805 1...

The data frame gives one row per state/territory. The shape information in the variable
geometry is a polygon corresponding to that geographical area. It is a representation of a
shape by a clockwise enumeration of the corner location. By drawing a straight line between
each pair of neighboring points in the enumeration between the last and the first, you can
draw a shape and that shape is an approximation of the region of interest.
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Despite the unfamiliar presentation, we can work with states_sf using tidyverse tools like
dplyr. For instance, we can filter the data frame to include just the information correspond-
ing to Florida.

fl_sf <- states_sf |>
filter(NAME == "Florida")

fl_sf

## Simple feature collection with 1 feature and 9 fields
## Geometry type: MULTIPOLYGON
## Dimension: XY
## Bounding box: xmin: -87.63494 ymin: 24.5231 xmax: -80.03136 ymax: 31.00089
## Geodetic CRS: NAD83
## STATEFP STATENS AFFGEOID GEOID STUSPS NAME LSAD
## 1 12 00294478 0400000US12 12 FL Florida 00
## ALAND AWATER geometry
## 1 138958484319 45975808217 MULTIPOLYGON (((-80.17628 2...

The shape data in the geometry variable can be visualized using a simple feature geom (“sf”
for short). The sf geom can automatically detect the presence of a geometry variable stored
in a data frame and draw a map accordingly.

fl_sf |>
ggplot() +
geom_sf() +
theme_void()

We can refine the granularity of the shape data to the county level. Here, we collect shape
data for all Florida counties.

fl_county_sf <- counties("FL", cb = TRUE)

The Census Bureau makes available cartographic boundary shape data, which often look
better when doing thematic mapping. We retrieve these data by setting the cb flag to TRUE.
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Here is a preview of the county-level data.

fl_county_sf

## Simple feature collection with 2 features and 12 fields
## Geometry type: MULTIPOLYGON
## Dimension: XY
## Bounding box: xmin: -82.85243 ymin: 27.82206 xmax: -80.44697 ymax: 28.79132
## Geodetic CRS: NAD83
## STATEFP COUNTYFP COUNTYNS AFFGEOID GEOID NAME
## 1 12 009 00295749 0500000US12009 12009 Brevard
## 2 12 101 00295739 0500000US12101 12101 Pasco
## NAMELSAD STUSPS STATE_NAME LSAD ALAND
## 1 Brevard County FL Florida 06 2628762626
## 2 Pasco County FL Florida 06 1933733392
## AWATER geometry
## 1 1403940953 MULTIPOLYGON (((-80.98725 2...
## 2 694477432 MULTIPOLYGON (((-82.80493 2...

This time, the data frame gives one row per Florida county. We can use the same ggplot
code to visualize the county-level shape data.

fl_county_sf |>
ggplot() +
geom_sf() +
theme_void()

3.7.4 Choropleth maps

In a choropleth map, regions on a map are colored according to some quantity associated
with that region. For instance, we can map color to the political candidate who won the
most votes in the 2020 US presidential elections in each county.
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The tibble pres_election contains county presidential election returns from 2000-2020. Let
us filter the data to the 2020 election returns in Florida and, to see how the election map
has changed over time, also collect the returns from the 2008 election.

library(edsdata)
fl_election_returns <- election |>
filter(year %in% c(2008, 2020), state_po == "FL")

fl_election_returns

## # A tibble: 536 x 12
## year state state_po county_~1 count~2 office candi~3
## <dbl> <chr> <chr> <chr> <chr> <chr> <chr>
## 1 2008 FLORIDA FL ALACHUA 12001 US PR~ BARACK~
## 2 2008 FLORIDA FL ALACHUA 12001 US PR~ JOHN M~
## 3 2008 FLORIDA FL ALACHUA 12001 US PR~ OTHER
## 4 2008 FLORIDA FL BAKER 12003 US PR~ BARACK~
## 5 2008 FLORIDA FL BAKER 12003 US PR~ JOHN M~
## 6 2008 FLORIDA FL BAKER 12003 US PR~ OTHER
## 7 2008 FLORIDA FL BAY 12005 US PR~ BARACK~
## 8 2008 FLORIDA FL BAY 12005 US PR~ JOHN M~
## 9 2008 FLORIDA FL BAY 12005 US PR~ OTHER
## 10 2008 FLORIDA FL BRADFORD 12007 US PR~ BARACK~
## # ... with 526 more rows, 5 more variables: party <chr>,
## # candidatevotes <dbl>, totalvotes <dbl>,
## # version <dbl>, mode <chr>, and abbreviated variable
## # names 1: county_name, 2: county_fips, 3: candidate

We apply some dplyr work to determine the candidate winner in each county. We convert
the candidate variable to a factor so that the colors appear consistently with respect to
political party in the following visualization.

candidates_levels <- c("DONALD J TRUMP", "JOHN MCCAIN",
"BARACK OBAMA", "JOSEPH R BIDEN JR")

fl_county_winner <- fl_election_returns |>
group_by(year, county_name) |>
slice_max(candidatevotes) |>
ungroup() |>
mutate(candidate = factor(candidate,

levels = candidates_levels))
fl_county_winner

## # A tibble: 134 x 12
## year state state_po county_~1 count~2 office candi~3
## <dbl> <chr> <chr> <chr> <chr> <chr> <fct>
## 1 2008 FLORIDA FL ALACHUA 12001 US PR~ BARACK~
## 2 2008 FLORIDA FL BAKER 12003 US PR~ JOHN M~
## 3 2008 FLORIDA FL BAY 12005 US PR~ JOHN M~
## 4 2008 FLORIDA FL BRADFORD 12007 US PR~ JOHN M~
## 5 2008 FLORIDA FL BREVARD 12009 US PR~ JOHN M~
## 6 2008 FLORIDA FL BROWARD 12011 US PR~ BARACK~
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## 7 2008 FLORIDA FL CALHOUN 12013 US PR~ JOHN M~
## 8 2008 FLORIDA FL CHARLOTTE 12015 US PR~ JOHN M~
## 9 2008 FLORIDA FL CITRUS 12017 US PR~ JOHN M~
## 10 2008 FLORIDA FL CLAY 12019 US PR~ JOHN M~
## # ... with 124 more rows, 5 more variables: party <chr>,
## # candidatevotes <dbl>, totalvotes <dbl>,
## # version <dbl>, mode <chr>, and abbreviated variable
## # names 1: county_name, 2: county_fips, 3: candidate

We can join the county shape data with the county-level election returns.

with_election <- fl_county_sf |>
mutate(NAME = str_to_upper(NAME)) |>
left_join(fl_county_winner, by = c("NAME" = "county_name"))

We can use the sf geom to plot the shape data and map the fill aesthetic to the candidate.

with_election |>
filter(year == 2020) |>
ggplot() +
theme_void() +
geom_sf(aes(fill = candidate))

How do these results compare with the 2008 presidential election? The patchwork library
allows us to panel two ggplot figures side-by-side.
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3.7.5 Interactive maps with mapview

mapview is a powerful package that can be used to generate an interactive map. We can use
it to visualize the county-level data annotated with the 2020 election returns.

with_election |>
filter(year == 2020) |>
mapview(zcol = "candidate")

Unfortunately, the default color palette used will likely be unfamiliar to users of our vi-
sualization who expect the standard colors associated with political affiliation (“red” for
Republican party and “blue” for Democratic party). We can toggle the colors used by set-
ting the the col.regions argument.

political_palette <- colorRampPalette(c('red', 'blue'))

with_election |>
filter(year == 2020) |>
mapview(zcol = "candidate", col.regions = political_palette)
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We can also zoom in on a particular county and show the results for just those areas.

with_election |>
filter(year == 2020, NAME %in% c("HILLSBOROUGH", "MANATEE")) |>
mapview(zcol = "candidate", col.regions = political_palette)

For instance, this map reveals election results for the Tampa Bay and Brandenton areas.
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3.8 Exercises

Be sure to install and load the following packages into your R environment before beginning
this exercise set.

library(tidyverse)
library(edsdata)
library(gapminder)
library(lterdatasampler)
library(palmerpenguins)

Question 1 The tibble storms from the dplyr package includes the positions and attributes
of storms from 1975 to 2020, measured every six hours during the lifetime of a storm.
Following are visualizations that show a histogram of wind speeds with color mapped to
the storm category. However, there is something wrong with each of the visualizations.
Explain what went wrong and how the ggplot2 code should be corrected.
• Figure 1

ggplot(storms) +
geom_bar(aes(x=wind,fill=category))

• Figure 2

ggplot(storms) +
geom_bar(aes(x=category,

y=wind),
stat="identity")

• Figure 3

ggplot(storms) +
geom_bar(aes(x=category,

fill=as_factor(wind)))

• Figure 4

ggplot(storms) +
geom_histogram(aes(x = as.factor(wind),

y = "Count",
fill = as.factor(category)),

stat='identity')

Question 2 The tibble penguins from the package palmerpenguins includes measurements
for penguin species, island in Palmer Archipelago, size, and sex.
• Question 2.1 Are any of these categorical variables and, if so, what kind (e.g., nomi-

nal, ordinal, or binary)? Are there any numerical variables and, if so, what kind (e.g.,
continuous, or discrete)?
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• Question 2.2 Generate a ggplot visualization that shows the number of penguins on
each island. Fill your bars according to penguin species. Do the islands contain roughly
the same proportion of each species?

• Question 2.3 By default, ggplot uses the “stack” positional adjustment. Modify your
code from Question 2.2 to use different positional adjustments. Try “dodge” and then
“identity” with an amount of alpha. Which adjustment allows you to address Question
2.2 most effectively?

Question 3 The dataset longjump from the package edsdata contains results from the
qualifier and finals in the men’s long jump event in the 2012 Summer Olympic Games.

longjump

## # A tibble: 94 x 7
## year event rank name country dista~1 status
## <dbl> <chr> <dbl> <chr> <chr> <dbl> <chr>
## 1 2012 qualifier 1 Mauro Vin~ Brazil 8.11 Q
## 2 2012 qualifier 2 Marquise ~ United~ 8.11 Q
## 3 2012 qualifier 3 Aleksandr~ Russia 8.09 q
## 4 2012 qualifier 4 Greg RUTH~ Great ~ 8.08 q
## 5 2012 qualifier 5 Christoph~ Great ~ 8.06 q
## 6 2012 qualifier 6 Michel TO~ Sweden 8.03 q
## 7 2012 qualifier 7 Godfrey K~ South ~ 8.02 q
## 8 2012 qualifier 8 Will CLAYE United~ 7.99 q
## 9 2012 qualifier 9 Mitchell ~ Austra~ 7.99 q
## 10 2012 qualifier 10 Tyrone SM~ Bermuda 7.97 q
## # ... with 84 more rows, and abbreviated variable name
## # 1: distance

• Question 3.1 Form a tibble called that contains only the results for the London 2012
Olympic Games.

• Question 3.2 Create a histogram of the distances in the qualifier event for the London
2012 Olympic Games. Fill your bars using the status variable so you can see the bands
of color corresponding to qualification status. Missing values correspond to participants
who did not qualify.

• Question 3.3 Repeat Question 3.2 but make a histogram of the distances in the final
event.

• Question 3.4 Adjust your code in Question 3.2 and Question 3.3 to include the
identity positional adjustment. You may wish to set an alpha4 as well to better distin-
guish the differences. What do you observe when including/not including this adjust-
ment?

• Question 3.5 Following are some statements about the above two distributions. Select
those that are FALSE by including its corresponding number in the following vector
jump_answers.

1. We used histograms because both of these variables are categorical.
2. Both of these distributions are skewed.

4https://ggplot2.tidyverse.org/reference/aes_colour_fill_alpha.html#alpha

https://ggplot2.tidyverse.org
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3. We observe the histogram for the qualifier event follows a left-tailed distribution.
4. We can color the different category storms using the variable status because it

is a numerical variable.

• Question 3.6 The following code visualizes a map of the world. Annotate this map with
the countries that participated in the men’s long jump event in the London 2012 Games
using a point or polygon geom (use long for x and lat for y). You will first need to join
the map data in world with longjump2012. Then extend the plot in the name world_map
by adding a new geom layer; set the data for this new layer to use the joined data.

world <- map_data("world") |>
mutate(name = region) |>
select(long, lat, group, name)

world_map <- ggplot(world) +
geom_polygon(aes(x = long, y = lat, group = group),

fill = "white", color = "grey50") +
coord_quickmap()

world_map

• Question 3.7 Which country in South America participated in the men’s long
jump in the 2012 London Games? Indicate your answer by setting the name
north_america_participant to the appropriate thing.

Question 4 In Question 7 from Chapter 2 we computed the average annual compensation
of New York local authorities. However, the average does not tell us everything about the
amounts employees are paid. It is possible that only a few employees make the bulk of the
money, even among this select group. We can use a histogram to visualize information about
a set of numbers. We have prepared a tibble nysalary_cleaned that already contains the
cleaned compensation data; recall the the Total Compensation ($) variable is in tens of
thousands of dollars.

nysalary_cleaned

## # A tibble: 1,676 x 20
## Authority~1 Fisca~2 Last ~3 Middl~4 First~5 Title Group
## <chr> <chr> <chr> <chr> <chr> <chr> <chr>
## 1 Albany Cou~ 12/31/~ Adding~ L Ellen Seni~ Admi~
## 2 Albany Cou~ 12/31/~ Boyea <NA> Kelly Conf~ Admi~
## 3 Albany Cou~ 12/31/~ Calder~ <NA> Philip Chie~ Exec~
## 4 Albany Cou~ 12/31/~ Cannon <NA> Matthew Gove~ Admi~
## 5 Albany Cou~ 12/31/~ Cerrone A Rima Budg~ Mana~
## 6 Albany Cou~ 12/31/~ Chadde~ M Helen Mark~ Mana~
## 7 Albany Cou~ 12/31/~ Charla~ M Elizab~ Dire~ Mana~
## 8 Albany Cou~ 12/31/~ Dickson C Sara Acco~ Admi~
## 9 Albany Cou~ 12/31/~ Finnig~ <NA> James Oper~ Admi~
## 10 Albany Cou~ 12/31/~ Greenw~ <NA> Kathryn Dire~ Mana~
## # ... with 1,666 more rows, 13 more variables:
## # Department <chr>, `Pay Type` <chr>,
## # `Exempt Indicator` <chr>,
## # `Base Annualized Salary` <chr>,
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## # `Actual Salary Paid` <chr>, `Overtime Paid` <chr>,
## # `Performance Bonus` <chr>, `Extra Pay` <chr>,
## # `Other Compensation` <chr>, ...

• Question 4.1 Make a histogram of the compensation of employees in nysalary_cleaned
in density scale. Use the sequence c(seq(0, 10,2), 15, 20, 40) for your bin breaks. Assign
the resulting ggplot object to a name g.
The later bins have very few individuals so the bar heights become too short to make out
visually. The following code chunk overlays your histogram with a geom text layer that
annotates each bin with the corresponding density in that bin.

g +
geom_text(stat = "bin", aes(y = stat(density),

label = round(stat(density),5)),
vjust = -0.2, size=2, breaks=c(seq(0, 10,2), 15, 20, 40))

• Question 4.2 Using the histogram, how many employees had a total compensation of
more than 100K in the 2020 fiscal year? Answer the question manually using the density
formulas presented in the textbook. You will need to do some arithmetic to find the answer;
R can be used as a calculator.

• Question 4.3 Answer the same question using dplyr code. Give your answer as a tib-
ble containing a single row and a single column named n. Store this in a tibble called
employees_more_than_100k.

• Question 4.4 Do most New York employees make around the same amount, or are there
some who make a lot more than the rest?

Question 5 The tibble gapminder from the gapminder library gives data on life expectancy,
GDP per capita, and population by country. In this exercise we will visualize the relationship
between life expectancy and GDP per capita.
• Question 5.1 Form a tibble called gapminder_relevant that contains data only for Asia

and Europe in the year 1987.
• Question 5.2 On one graph, create a scatter plot of life expectancy versus GDP per

capita. Color the points according to continent and vary the size of the points according
to population.

• Question 5.3 The textbook discussed using numeric position scales to transform an axis
in a plot. Modify your ggplot2 code from Question 5.2 to include a log transformation
on the x-axis using scale_x_log10().

• Question 5.4 Using the above two visualizations, select which of the following state-
ments can be correctly inferred by including them in the following vector gap_answers.
For those that you did not select, if any, explain why the statement cannot be made.
– We observe more populous countries in the “Europe” cluster than in the “Asia”

cluster.
– Countries with higher GDP per capita are associated with higher life expectancies,

and we can also observe that countries in Asia are more correlated with lower GDP
per capita than countries in Europe in 1987.

– Moving a unit of distance along the x-axis has the same effect in both visualizations.
– The GDP per capita for the majority of countries in Asia are practically 0 according

to the first visualization.
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• Question 5.5 The tibble gapminder contains five variables: country, continent, year,
lifeExp, and pop. Are any of these categorical variables and, if so, what kind (e.g.,
nominal, ordinal, or binary)? Are there any numerical variables and, if so, what kind
(e.g., continuous, or discrete)?

Question 6 This question is a continuation of the 2017 Australian Marriage Law Postal
Survey5 examined in Question 10 from Chapter 2.

• Question 6.1 After forming the tibble with_response, give ggplot2 code that reproduces
the following plot.

• Question 6.2 Based on this figure, how would you respond to the statement:

“Because support for same-sex couples increases in areas with higher per-
centage of holders with at least Bachelor’s degrees, we can say that if a
state/territory has a higher percentage of holders with at least a Bachelor’s
degree, then the more that state/territory will support same-sex marriage.”

Is this a fair statement? Why or why not?

5https://www.abs.gov.au/ausstats/abs@.nsf/mf/1800.0

https://www.abs.gov.au
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Question 7 The dataset ntl_icecover from the package lterdatasampler gives data on
ice freeze and thaw dates for lakes in the Madison, Wisconsin area from 1853 to 2019.
The data includes lake names, dates of freeze-up and thaw, and duration of ice cover for
Lakes Mendota and Monona. Pull up the help (?ntl_icecover) for more information on this
dataset.

• Question 7.1 The variable ice_on gives the freeze date for a given lake. Add a new
variable to the tibble ntl_icecover called days_to_freeze that gives the number of days
to the freeze date from the start of the calendar year. Assign the resulting tibble to the
name with_freeze.
HINT: The functions year and yday from the package lubridate can be helpful for
determining the year and the day of the year from a date, respectively. Also note that for
some years the freeze date may not occur until the next calendar year, e.g., the freeze date
in Lake Mendota in 1875 was January 10, 1876. Calling yday() on this date would yield
10 when the correct figure is actually 375. Adjust the expression used in your mutate()
call accordingly.

• Question 7.2 Generate line plots showing days to the freeze date versus year, one for
Lake Mendota and another for Lake Monona. The line plots should be given in a single
overlaid figure and colored accordingly. Does there appear to be an association between
the two variables?

• Question 7.3 Let us place an arbitrary marker at the year 1936, approximately the
half-way point between the year when data collection started and ended. Add a Boolean
variable to icecover_with_temp called before1936 that flags whether the year is before
1936. Then generate an overlaid histogram showing the distribution of annual mean air
temperature for the periods 1853–1936 and 1937–2019.

• Question 7.4 By comparing the “bulk” of the data in the distributions following
the periods 1853–1936 and 1937–2019, does it appear that there are more days un-
til the freezing date in recent history? Or is it more or less the same across both
periods?

Question 8 Economists John R. Lott and Carlisle E. Moody published a widely circulated
article in March 20206 on mass gun violence in the United States and the rest of the world.
Its appendix references the following figure:

6https://econjwatch.org/articles/brought-into-the-open-how-the-us-compares-to-other-countries-in-
the-rate-of-public-mass-shooters

https://econjwatch.org
https://econjwatch.org
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Read Lott and Moody’s paper7 and then the response paper8 written by economist Lankford
on potential flaws in the data, specifically regarding whether public mass shootings and
other types of attacks, e.g., acts of terrorism, can be viewed as a single form of violence. We
will try to recreate this plot as well as we can, and then address some questions about the
reasonableness of this visualization.

• Question 8.1 Use Lankford’s spreadsheet data made available here9 in his response pa-
per10. This is the Lott and Moody data annotated with additional variables by Lankford.
Load the sheets “Foreign Cases 1448” and ““US Cases_43” into a tibble using the
read_xlsx() function from the readxl package. Assign these tibbles to the names for-
eign and usa which correspond to the foreign and United States figures, respectively.

• Question 8.2 What is the observational unit in each of these datasets? Note briefly some
of the measurements corresponding to this observational unit.

• Question 8.3 Form a tibble named usa_relevant from the United States figures that gives
the year of the incident, the country, and Lankford’s two Boolean variables indicating (1) if
the perpetrator killed 4 or more victims and (2) if the attack was committed by member(s)
of a terrorist organization or genocidal group.

• Question 8.4 Repeat Question 8.3, but this time for the figures corresponding to the
rest of the world. Assign the resulting tibble to the name foreign_relevant.
Run the following code chunk. It applies some basic preprocessing necessary to complete
the following steps:

7https://econjwatch.org/articles/brought-into-the-open-how-the-us-compares-to-other-countries-in-
the-rate-of-public-mass-shooters

8https://econjwatch.org/articles/the-importance-of-analyzing-public-mass-shooters-separately-from-
other-attackers-when-estimating-the-prevalence-of-their-behavior-worldwide

9https://econjwatch.org/file_download/1131/LankfordMar2020AppendixB.xlsx
10https://econjwatch.org/articles/the-importance-of-analyzing-public-mass-shooters-separately-from-

other-attackers-when-estimating-the-prevalence-of-their-behavior-worldwide

https://econjwatch.org
https://econjwatch.org
https://econjwatch.org
https://econjwatch.org
https://econjwatch.org
https://econjwatch.org
https://econjwatch.org
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foreign_relevant <- foreign_relevant |>
drop_na(Year) |>
filter(if_any(everything(), function(x) x != "x")) |>
mutate(

Country = as.factor(Country),
across(where(is.character), as.numeric))

usa_relevant <- usa_relevant |>
drop_na(Year)

• Question 8.5 Form a tibble named full_relevant that contains both the figures cor-
responding to the United States (in usa_relevant) and the rest of the world (in for-
eign_relevant).

• Question 8.6 Lott and Moody’s visualization draws a comparison between the United
States and the rest of the world. Add a new column to full_relevant called is_usa where
each value in the column is TRUE if the country is “United States” and FALSE otherwise.
Assign the resulting tibble back to the name full_relevant.

• Question 8.7 Form a tibble named summarized_attacks that gives the number of incidents
that occurred in each year, with respect to the location of the incident (in the United States
or in the rest of the world). Three variables should be present in the resulting tibble: Year,
is_usa, and n (the count).

• Question 8.8 Finally, time to visualize! We have everything we need to recreate Lott
and Moody’s visualization. Using what you know about ggplot and the layered grammar
of graphics, recreate their plot.

• Question 8.9 Let us now bring in Lankford’s analysis. Filter the data to include (1) only
those incidents that are known to have at least one perpetrator who killed 4 or more
victims, and then (2) incidents known to have at least one perpetrator who killed 4 or
more victims, and the attack was not committed by member(s) of a terrorist organization
or genocidal group. For each case, repeat Question 8.7 and Question 8.8. What do you
observe?

• Question 8.10 From your observations, do you find Lott and Moody’s original visualiza-
tion to be reasonable? Moreover, can it be used to say, in general terms, that the United
States is a safer country when compared to the rest of the world?

Question 9 This question is a continuation of Question 10 from Chapter 2.
• Question 9.1 Using the tibble top_10, generate a bar chart that visualizes the top 10

states with the highest average unemployment rate; the bars should be presented in order
of increasing unemployment rate. Fill your bars according to the candidate winner for
that state. Consider using a position scale to avoid any overlap in text labels.

• Question 9.2 Does the bar chart reveal any possible associations between average unem-
ployment rate and the candidate that received the most votes in the top 10 states with
the highest average unemployment rates?

Note: The following exercises correspond to material that appears only in the accompanying
website, at: https://ds4world.cs.miami.edu/.
Question 10: Visualizing commutes using tidycensus. In this exercise, we will examine
the way people commute for work using the census data and visualize the result. Let us
begin by loading the libraries we need for the exercise.

https://ds4world.cs.miami.edu
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library(tidyverse)
library(viridisLite)
library(viridis)
library(tidycensus)

As before, let us load the variables available for the 2019 1-year dataset. The destination is
‘acs1vars1, as shown next.

acs1vars <- load_variables(year = 2019, dataset = "acs1")
acs1vars

• Question 10.1 Since our purpose is to explore the way people commute to work, let us
guess what is necessary to get to the data. Let us collect all the rows where the concept
contains the word “TRANSPORTATION” and store it in the nametrans0.

• Question 10.2 By using View() to open the data frame trans0, you can visually examine
the collection of all the variables related to TRANSPORTATION. By scrolling in the View
window, you see that the first group with the prefix B08006is the general population
broken down with the means of transportation and with the gender. So, let us collect all
the variables whose name starts with B08006 and store the variables in trans1. Do you
have 51 rows in trans1?

• Question 10.3 Let us further screen this by collecting those whose label ends with ":".
Let us store it in the name trans2.

• Question 10.4 Now we have a more manageable set of variables with just four in the three
(male+female, male, and female) categories. Let us use the first four of the 12 collected.
Store the four names in trans_names. You can pull the variable and take the prefix of size
4 or directly type the elements with the list construct c.

• Question 10.5 Query the census data for California at the county level with the names
in trans_names with 2019 as the year and store it in ca_trans. Specify “B08006_001” as
the summary variable.

• Question 10.6 Let us take the ratio of the four by dividing them by the summary variable.
Save the result in a name ca_trans0.

• Question 10.7 The suffix “002” is for transportation by cars. Let us generate a geo-
graphical presentation of how much of each county has workers “commuting by car”. Use
the color option “inferno” with scaled filling in a scale_fill_viridis_c layer. Add a title
“People Commuting to/from Work by Car” to the plot.

• Question 10.8 The suffix “004” is for car-pooling. Let us generate a geographical presen-
tation of how much of each county has workers commuting by car. Use the color option
“inferno” with scaled filling in scale_fill_viridis_c. Add a title “People Commuting
to/from Work by Car-pooling” to the plot.

• Question 10.9 Finally, the suffix “008” is for using public transportation. Let us generate
a geographical presentation of how much of each county has workers “commuting by car.
Use the color option”inferno” with scaled filling in scale_fill_viridis_c. Add a title
“People Commuting to/from Work by Public Transportation” to the plot.

• Question 10.10 Do your visualizations reveal any relationships between geographical
area and the census variable examined (e.g., commuting by car, public transportation,
car-pooling)?
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4
Building Simulations

The previous chapters have shown the basics of tidying, transforming, and visualizing data
using R and the tidyverse. Armed with these tools, this unit turns to how we can extract
insights from our data. Key to this investigation is statistics and inherent to that is the
notion of randomness.
We use the word random all the time on a regular basis. For instance, you may be familiar
with the concept of gachapon or loot boxes1 in PC and mobile games which gives players
a chance to obtain prized items using real-world currency. While they have recently stirred
up much controversy2, the basic idea boils down to how to leverage randomness.
We often speak of randomly picking a number between 1 and 100. If someone chooses
the number by adding the day of the month plus the minute of the hour showing on the
clock of her smart watch, her choice is not random; once you have learned what she has
chosen previously, you know what she will choose again. Therefore, anything generated by
a systematic, predetermined, and deterministic procedure is not random.
Randomness is so essential to conducting experiments in statistics because it is what al-
lows us to simulate physical processes in the real world, often thousands and hundreds-
of-thousands of times. All this at zero cost of coordinating an actual physical experiment,
which may not be feasible depending on the circumstances.
This chapter begins by exploring randomness using R. We will then leverage randomness
to build out simulations of real-life phenomena – like birthdays! – and how we may extract
insights from them.

4.1 The sample Function

We begin our study by learning how to generate random numbers using R. There are many
functions that R has which involve random selection; one of these is called sample(). It
picks one item at random from a list (i.e., vector), where the choice will likely occur at all
positions. A prime example of randomness is tossing a coin with chance of heads 50% and
chance of tails 50%.

fair_coin <- c("heads", "tails")
sample(fair_coin, size = 1)

## [1] "tails"

1https://en.wikipedia.org/wiki/Loot_box
2https://doi.org/10.1371/journal.pone.0206767
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Run the cell a few times and observe how the output changes. The unpredictable nature
makes the code, though short, stand out from all the R code we have written so far.
Note that the function has the form sample(vector_name, size), where vector_name is the
name of the vector from which we will select an item and size is how many items we want
to select from the vector.
Here is another example: a football game (“American football” for non-US readers) begins
each half by kicking a football from the 20-yard line of a team toward the goal of the
opponent. The decision of which team gets to kick the ball is through a ritual that takes
place three minutes prior to the “kick off”. In the ritual, a referee tosses a coin and the
visiting team calls “heads” or “tails”.
If the visiting team calls correctly, the team gets to decide whether the team will kick or
receive; otherwise, the home team makes the decision. Note that the ritual is somewhat
redundant.
Suppose that the referee throwing the coin is not clairvoyant and has no powers to foretell
“heads” or “tails” and that the coin is the same fair coin from our previous example. Then,
the referee can simply throw the coin and make the visiting team kick the ball if the coin
turns “heads” (or “tails”).
Thus, the action of choosing the team boils down to selecting from a two-element vector
consisting of “kick” and “receive” with chance of 50% for each.

two_groups <- c("kick", "receive")
sample(two_groups, size = 1)

## [1] "receive"

A nice feature of sample is that we can instruct it to repeat its element-choice action multiple
times in sequence without influence from the outcome from the previous runs. For instance,
we can select the kicking teams for 8 games.

sample(two_groups, size = 8, replace = TRUE)

## [1] "receive" "kick" "kick" "kick" "kick"
## [6] "kick" "kick" "kick"

Note that a third argument replace is specified here. By setting it to TRUE, we allow the
same selection (say, receive) from the two_groups vector to be made more than once. We
call this method sampling with replacement. In contrast, toggling this argument to be FALSE
would make choices from the previous executions unavailable. We call this way sampling
without replacement. R does this by default.
What happens if the size of the vector is smaller than the number of repetitions?

sample(two_groups, size = 8)

There are not enough elements to choose from!
Note that we have made an implicit interpretation of the code: we wrote the code assuming
that it will tell the role that the visiting team will play at the kick off; that is, if the value
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the code generates is kick then the visiting team will kick and if it is receive they will
receive. We must not mistake this interpretation. That is, the output the code produces is
NOT the role the home team will play; it is for selecting the action of the visiting team.
Implicit interpretations we make on the code often play an important role.
If the visiting team is very keen to start by kicking, we may choose to instead translate the
outcome as Yes when it is kick and No otherwise. If we choose such a Yes/No interpretation,
we view the random scheme producing kick as an “event” and interpret the output being
kick as the event “occurring”.

4.2 if Conditionals

Often times in programming work we need to take a certain action based on the outcome
of an event. For instance, if a coin turns up heads, a friend wins a $5 bet or a visiting team
in football is designated as the “kicker”. Such conditional statements and how to use them
in programming are the subject for this section.

4.2.1 Remember logical data types?

We saw in an earlier chapter that one of the core data types is logical data. These were
the easiest to remember of the bunch because logical data types can only have one of two
values: TRUE and FALSE. We also often call such values booleans.
A major use of logical data is to direct computation based on the value of a boolean. In
other words, we can write code that has two choices for some part of its action where which
of the two actions actually occurs depends on the value of the boolean.
If we draw the choice-inducing boolean value from random generation, say using sample, we
can randomly select among possible actions. We call such an “action selection” based on
the value of a boolean conditional execution.

4.2.2 The if statement

A program unit in a conditional execution is a conditional statement. A conditional statement
is one that allows selection of an action from multiple possibilities. In R and in many other
languages, we usually write a conditional statement as a multi-line statement. It is entirely
possible to put everything in one, but such style is confusing and prone to errors.
Conditional statements usually reside inside a function. This allows us to express alternative
behavior depending on argument values.
In R, and in many programming languages, a conditional statement begins with an if
header. What appears after the keyword is a pair of parentheses, in which a condition to
examine appears. After the condition part appears an action to perform, which is a series
of statements flanked by a pair of curly braces.
The syntax specifies that if the condition inside the pair of parentheses is true, the program
executes the statements appearing in the ensuing pair of braces. We call a statement in this
form an if statement.
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Let us see our first example of an if statement, which is a function that returns the sign of
a number.

sign <- function(x) {
if (x > 0) {

return("positive")
}

}
sign(3)

## [1] "positive"

The function sign receives a number and returns a string representing the sign of the
number. Actually, the return value of the function exists only if the number is strictly
positive; otherwise, the function does not return anything.

print(sign(-3))

## NULL

What is the boundary separating positive and nothing? We know that the condition is x
> 0 so we can say that the boundary is the point 0, but 0 falls on the side that produces no
return.
Can we make the return positive when x is equal 0? Sure can!

sign <- function(x) {
if (x >= 0) {

return("positive")
}

}
sign(0)

## [1] "positive"

sign(0.1)

## [1] "positive"

print(sign(-0.1)) # force a print

## NULL

We can put a series of conditional statements in a function. If a conditional statement
contains a return statement and R executes that statement, R skips the remainder of the
code in the function.

sign <- function(x) {
if (x > 0) {

return("positive")
}
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if (x < 0) {
return("negative")

}
}
sign(2)

## [1] "positive"

sign(-2)

## [1] "negative"

print(sign(0)) # force a print

## NULL

Instead of saying “if x is less than 0, it is negative”, it would be more natural to say
“otherwise, if x is less than 0, it is negative”. We can express “otherwise” using the keyword
else. Let’s revise the above code.

sign <- function(x) {
if (x > 0) {

return("positive")
} else if (x < 0) {

return("negative")
}

}
sign(3)

## [1] "positive"

sign(-3)

## [1] "negative"

print(sign(0)) # force a print

## NULL

What do we do about 0? By adding another else if block to the code, we can make the
function return something in the case when the number is 0.

sign <- function(x) {
if (x > 0) {

return("positive")
} else if (x < 0) {

return("negative")
} else if (x == 0) {

return("neither positive nor negative")
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}
}

sign(0)

## [1] "neither positive nor negative"

Since the condition x == 0 is exactly the condition x satisfies when the execution reaches
the second else if block, we can jettison the if and the condition. The resulting block is
what we call an else block.

sign <- function(x) {
if (x > 0) {

return("positive")
} else if (x < 0) {

return("negative")
} else {
return("neither positive nor negative")

}
}

sign(0)

## [1] "neither positive nor negative"

4.2.3 The if statement: a general description

We are now ready to present a more general form of the if statement.
if (<expression>) {

<body>
} else if (<expression>) {

<body>
} else if (<expression>) {

<body>
...
} else {

<body>
}

The keyword else means “otherwise” and the keyword else if is a combination of else
and if. We can stack up else if blocks after an initial if to define a series of alternative
options.
Following are some notes to keep in mind:
• An if-block cannot begin with an else in the series.

• There must exist one if clause.
• When a series of else if blocks appear after an if, this represents a series of alternatives.

We call this an if sequence.
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• An if without a preceding else begins a new if sequence.
• R scans all the conditions appearing in an if sequence takes an action when it finds a

condition that evaluates to TRUE. All other actions before and after the matching one
are ignored.

• The else block is optional; it takes care of everything that does not have a match.

4.2.4 One more example: comparing strings

We end this section with another example, this time comparing strings.

get_capital <- function(x) {
if (x == "Florida") {

return("Talahassee")
} else if (x == "Georgia") {

return("Atlanta")
} else if (x == "Alabama") {

return("Montgomery")
} else {
return("Oops, don't know where that is")

}
}

Here is a dataset containing some students and their state of residence.

some_students <- tibble(
name = c("Xiao", "Renji", "Timmy", "Christina"),
state = c("Florida", "Florida", "Alabama", "California")

)
some_students

## # A tibble: 4 x 2
## name state
## <chr> <chr>
## 1 Xiao Florida
## 2 Renji Florida
## 3 Timmy Alabama
## 4 Christina California

We can annotate the tibble with a new column containing the capital information for each
state using a purrr map.

some_students |>
mutate(capitol = map_chr(state, get_capital))

## # A tibble: 4 x 3
## name state capitol
## <chr> <chr> <chr>
## 1 Xiao Florida Talahassee
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## 2 Renji Florida Talahassee
## 3 Timmy Alabama Montgomery
## 4 Christina California Oops, don't know where that is

Note how Christina’s capital information defaults to the result of the else condition.

4.3 for Loops

Let us now use conditional execution to simulate a simple betting game on a coin.

4.3.1 Prerequisites

We will need some functions from the tidyverse in this section, so let us load it in.

library(tidyverse)

4.3.2 Feeling lucky

We will use the same fair coin from the kick-off we saw in the football example. However,
feeling lucky, you wager that you can make some money off this coin by betting a few dollars
on heads – can we tell if your intuition is right? Let’s find out!
We imagine a function that will receive a string argument representing the side the coin is
showing, and returns the result of the bet. If the coin shows up heads you get 2 dollars. But,
if it shows tails you lose 1 dollar.

one_flip <- function(x) {
if (x == "heads") {

return(2)
} else if (x == "tails") {

return(-1)
}

}

Let us see how the function works.

c(one_flip("heads"), one_flip("tails"))

## [1] 2 -1

To play the game based on one flip of a coin, we can use sample again.

sides <- c("heads","tails")
one_flip(sample(sides, size = 1))

## [1] -1
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We can avoid having to create a sides variable by including the vector directly as an
argument.

one_flip(sample(c("heads","tails"), size = 1))

## [1] 2

Now let us expand this and develop a multi-round betting game.

4.3.3 A multi-round betting game

Previously, we split the game into two actions: a function one_flip computing the gain/loss
and a sample call simulating one round of the game using the gain/loss function. We now
combine these two into one.

betting_one_round <- function() {
# Net gain on one bet
x <- sample(c("heads","tails"), size = 1)
if (x == "heads") {

return(2)
} else if (x == "tails") {

return(-1)
}

}

Betting on one round is easy – just call the function!

betting_one_round()

## [1] -1

Run the cell several times and observe how the value is sometimes 2 and sometimes -1. How
often do we get to see 2 and how often do we get to see -1? Will your wager come out on
top?
You could run this function multiple times and tally, of the runs you observed, how many
times you won 2 dollars and how many times you lost a dollar. You could then compare the
difference between the gains and losses. This is quite a tedious process and we still don’t
have a sense of how variable the results are. For that, we would need to run this process
thousands or millions of times. Should we grab a good pencil and get tallying? No way!
Let’s use the power of R.
We can instruct R to take care of the repetitive work by repeating some action a number
of times with specific instruction such as, “for round X, use this information”. Iteration is
the name we use in programming to refer to things that repeat. In R and in many other
languages, a keyword that leads a code in iteration is for. We also use the word loop to
refer to a process that repeats.
So a code that repeats a process with for as the header is a for-loop.
In R, the way to specify a for-loop is to say: “for each item appearing in the following
sequence, starting from the first and towards its end, do this.”
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for (hand in c("rock", "paper", "scissors")) {
print(hand)

}

## [1] "rock"
## [1] "paper"
## [1] "scissors"

for (season in c("spring", "summer", "fall", "winter")) {
print(season)

}

## [1] "spring"
## [1] "summer"
## [1] "fall"
## [1] "winter"

In the two for loops, hand and season are the names we use to refer to the elements that
the iteration picks from the lists. In other words, the first for-loop picks an item from the
three-element sequence and we use the name hand to access the item. The same is true for
the second for-loop.
Our present interest is in writing a program that repeats the betting game many times. To
repeat an action a number of times, we use a pair of numbers with a colon in between. The
expression is X:Y, where X represents the start and Y the end. The expression represents the
series of integers starting from X and ending with Y.

1:5

## [1] 1 2 3 4 5

30:20

## [1] 30 29 28 27 26 25 24 23 22 21 20

a <- 18
b <- 7
a:b

## [1] 18 17 16 15 14 13 12 11 10 9 8 7

b:a

## [1] 7 8 9 10 11 12 13 14 15 16 17 18

Wow! R is so smart that when the second number is smaller than the first number, it
decreases the number by 1, instead of increasing it by 1.
Now we can use the sequence generation to write a for-loop. This one prints 1 through 5.
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for (i in 1:5) {
print(i)

}

## [1] 1
## [1] 2
## [1] 3
## [1] 4
## [1] 5

We can apply this to the betting game.

for (i in 1:10) {
print(betting_one_round())

}

## [1] 2
## [1] -1
## [1] -1
## [1] 2
## [1] 2
## [1] -1
## [1] 2
## [1] -1
## [1] -1
## [1] 2

Note that the function better_one_round is self-contained, meaning not requiring an argu-
ment, and so the code that R runs is identical among the ten iterations. However, bet-
ting_one_round has a call to sample and that introduces randomness in the execution and,
therefore, the results we see in the ten lines are not uniform and can be different each time
we run the for loop.

4.3.4 Recording outcomes

You may have realized “the results of the ten runs disappear each time I run it; is there a
way to record them?” The answer: yes!
We create an integer vector to store the results, where the vector has the same length as
the number of times we issue a bet; each element in the vector stores the result of one bet.

rounds <- 10
outcomes <- vector("integer", rounds)
for (i in 1:rounds) {

outcomes[i] <- betting_one_round()
}

outcomes

## [1] -1 -1 -1 -1 -1 -1 -1 2 2 2
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This will do the job. The body of this for loop contains two actions: (1) run the betting
function betting_one_round(), and (2) store the result into ith slot of the outcomes vector.
Both actions are executed for each item in the sequence 1:rounds.
You may have noticed how stepping through the outcomes vector this way, individually
assigning each element the result of one bet, can be cumbersome to write. If so, you would
be in good company. The philosophy of R, and especially the tidyverse, prefers to eliminate
the need to write many common for loops. We saw one example of this already when we
used map from the purrr package to apply a function to a column of data. Here, we will
use the function replicate to repeat a simulation many times.
Here is how we can rewrite our simulation using just two lines of code.

rounds <- 10
outcomes <- replicate(n = 10, betting_one_round())

outcomes

## [1] 2 2 2 2 -1 2 -1 2 2 2

We can use sum to count the number of times money changed hands.

sum(outcomes)

## [1] 14

Looks like we made some money!
Note that while replicate eliminates the need to write for loops in common situations, R
internally must still perform a for loop, i.e., the code for replicate contains a for loop
and it is not directly visible to us as the programmer who wrote the code. Therefore, the
chief benefit of using constructs like replicate and map is not for its speed, but clarity: it
is much easier to read (and write!).
If you are still not convinced, we defer to a prominent data scientist and an authority on
tidyverse for an explanation.

Of course, someone has to write loops. It doesn’t have to be you. — Jenny
Bryan

4.3.5 Example: 1,000 tosses

Iteration using replicate is a handy technique. For example, we can see the variation in
the results of 1,000 bets by running exactly the same code for 1,000 bets instead of ten.

rounds <- 1000
outcomes <- replicate(n = rounds, betting_one_round())
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The vector outcomes contains the results of all 1000 bets.

length(outcomes)

## [1] 1000

How much money did we make?

sum(outcomes)

## [1] 545

To see how often the two different possible results appeared, we can create a tibble from
outcomes and then use ggplot2.

outcome_df <- tibble(outcomes)
ggplot(outcome_df, aes(x = outcomes)) +

geom_bar() +
coord_flip()

As we would expect, each of the two outcomes 2 and -1 appeared about 500 of the 1000
times. And, because we bet an extra dollar for every heads we get, we come out on top. Not
bad!

4.4 A Recipe for Simulation

Simulation, in data science, refers to the use of programming to imitate a physical process.
Sometimes we call it “computer simulation” to articulate that the computer is the author
of such simulation. A simulation consists of three main steps.
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4.4.1 Prerequisites

As before, let us load in the tidyverse.

library(tidyverse)

4.4.2 Step 1: Determine what to simulate

The first step is to figure out which part of the physical process we want to imitate using
computation and decide how we will represent that part numerically.

4.4.3 Step 2: Figure out how to simulate one value

The second step is to figure out how to generate values for the numerical representation
from the first step using a computer program. If some numbers require updating during the
simulation procedure, we will figure out how to update them. Randomness is often a key
ingredient in this step. This is usually the most difficult part of the simulation to complete.

4.4.4 Step 3: Run the simulation and visualize!

The fourth step is to run the simulation and develop insights from the result, often using
visualization. During this step we also must decide the number of times to simulate the
quantity from the second step. To get a sense of how variable a quantity is, we must run
step 2 a large number of times. We saw that in the previous section with simulating bet
wins/losses we ran the experiment 1,000 times. But we may need to run a simulation even
more, say hundreds of thousands or millions of times.

4.4.5 Putting the steps together in R

Note that we have followed these same steps in the betting experiment from the previous
section. We can write the steps more generally here:
• Create a “rounds” variable, that is, an integer containing the number of desired repeti-

tions.
• Create an “experiment” function to simulate one value based on the code we developed.
• Call the function replicate to replicate the experiment function a great number of

times.
– Store the results to a variable. We call this the “outcomes” vector.
– A general format takes the form: outcomes <- replicate(n = rounds, experi-

ment_func())

The outcomes vector will contain all the simulated values. A good next step would be to
visualize the distribution of the simulated values by counting the number of simulated values
that fall into some category or, perhaps more directly, by using ggplot!
We now turn to some examples.
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4.4.6 Difference in the number of heads and tails in 100 coin tosses

Let us return to the coin tosses. As we see powers of 10 as the easiest kind of numbers
to deal with, let us back down from 300 to 100. If the coin is fair, we anticipate a half of
the tosses we make is “Head”. The simulation we have written receives as the number of
repetitions, and returns a vector representing the results of the simulated coin tosses with
an added interpretation of “heads” as 1 and “tails” as -1. We can go back to the process of
flipping a coin and develop an insight as to when we flip a coin 300 times, how the number
of “heads” is likely to look.
In this example we will simulate the number of heads in 300 tosses of a coin. The histogram
of our results will give us some insight into how many heads are likely.
Let’s get started on the simulation, following the steps above.

4.4.7 Step 1: Determine what to simulate

We want to simulate the process of tossing 300 fair coins, where each coin toss generates
“heads” or “tails” as the outcome. There is only one number we are interested in the physical
process - the number of “heads”.

4.4.8 Step 2: Figure out how to simulate one value

Now we know that we want to know the number of “heads” in 100 coin tosses, we have to
figure out how to make one set of 100 tosses and count the number of heads. Let’s start by
creating a coin. We eliminate the gain/loss calculation from the previous program in the
ensuing simulation program. We start by stating the two possible outcomes of toss. What
we define is a two-element vector, as before, and we call it sides.

sides <- c("heads", "tails")

We use sample() to sample from the two-element vector. Recall that we can specify the
number of samples and if we want to replenish the vector with the item that the sample
has chosen. The code below shows how we sample from sides 8 times with replacement.

tosses <- sample(sides, size = 8, replace = TRUE)
tosses

## [1] "tails" "heads" "tails" "tails" "heads" "tails"
## [7] "heads" "heads"

We can count the number of heads by using sum() as before:

sum(tosses == "heads")

## [1] 4

Our goal is to simulate the number of heads in 100 tosses. We have only to replace the 8
with 100.
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outcomes <- sample(sides, size = 100, replace = TRUE)
num_heads <- sum(outcomes == "heads")
num_heads

## [1] 40

Play with the code a few times to see how close the number gets to the expected one half,
150.

one_trial <- function() {
outcomes <- sample(sides, size = 100, replace = TRUE)
num_heads <- sum(outcomes == "heads")
return(num_heads)

}

You can simply call this function to generate an outcome of one experiment.

one_trial()

## [1] 54

4.4.9 Step 3: Run and visualize!

Here we face a critical question, “for our goal of developing an insight about coin tosses,
how many times do we want to repeat it?” We can easily run the code 10,000 times, so let’s
choose 10,000 times.
We have programmed one_trial so that it executes 100 coin tosses and returns the number
of “Heads”. We now need a loop to repeat one_trial as many times we want.
To do that, we use the replicate construct.

# Number of repetitions
num_repetitions <- 10000

# simulate the experiment!
heads <- replicate(n = num_repetitions, one_trial())

By executing heads after this produces all elements of heads. That will be a lot of lines on
the screen, so you may not want to do it! Instead, we can ask heads how many elements it
has, using the length function we have seen before.

length(heads)

## [1] 10000
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Aha! It has the desired number of elements. We can peek at some of the elements in the
vector.

heads[1]

## [1] 50

heads[2]

## [1] 48

Using tibble we can collect the results as a table. Recall that tibble needs the index values
and the data.

results <- tibble(
repetition = 1:num_repetitions,
num_heads = heads

)

results

## # A tibble: 10,000 x 2
## repetition num_heads
## <int> <int>
## 1 1 50
## 2 2 48
## 3 3 53
## 4 4 53
## 5 5 46
## 6 6 49
## 7 7 51
## 8 8 54
## 9 9 52
## 10 10 45
## # ... with 9,990 more rows

ggplot(results) +
geom_histogram(aes(x = num_heads, y = after_stat(density)),

color = "gray", fill = "darkcyan",
breaks = seq(30.5, 69.6, 1))
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In this histogram, each bin has width 1 and we place it centered on the value. For example,
the vertical bar on 50 is the number of times the simulation generated 50 as the result. We
see that the histogram looks symmetric with 50 as the center, which is a good sign. Why?
Our expectation is that the number 50 is the ideal number of “Heads” in 100 tosses of a fair
coin. If the coin is fair, for all number 𝑑, the event that we see 50 − 𝑑 “Heads” is as likely
to happen as the event that we see 50 + 𝑑 Heads. The symmetry that we observe confirms
the hypothesis. We also see that about 8% (i.e., 0.08 on the y-axis) of the simulation results
produced 50. Furthermore, we see that very few times we see occurrences of numbers less
than 35 or greater than 65. We thus conclude from the experiment that the range of the
number is likely to reside in the range [35, 65].

4.4.10 Not-so-doubling rewards

There is a famous story of a king awarding a minister with doubling amount of grains. There
are many versions of the story, but the gist is like this: one day a king has decided to award
a minister for his great work.
• The kind asks, “Great work, what do you want from me as a reward? You name it, I

will make your wish come true.”
• The minister says, “Your Majestry, what an honor! If you are so kind as to indulge me,

may I ask to receive grains of rice on a board of chess. We will start with one grain on
a space on the board, given one day. The next day, I would like two grains on the next
space. The following day, I would like four grains on the third space. Each day, I would
like twice as many grains as you have given me on the previous day. In this manner, for
the next 64 days, you would be so generous to give me grains of rice. Would that be too
imposing to ask?”

• The king says, “You ask so little. That would be so easy to do. Of course, this great
King will grant you your request.”

The question is how many grains of rice will the minister receive at the end of the 64 day
period?
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We know the answer to the question. The daily amount doubles each day starting from 1.
He would thus receive:

1 + 2 + 4 + 8 + 16 + ⋯ = 20 + 21 + 22 + 23 + 24 +⋯+ 263

We can express this quantity more compactly as 264 − 1.
Why? Suppose he has one more grain in his pocket to add to the piles at the end of the
64th day. We have

1 + 1 + 2 + 4 + 8 + ⋯+ 263 − 1

as the same total amount. The first two occurrences of 1 are equal to 2. So, we can simplify
the sum as

2 + 2 + 4 + 8 + ⋯+ 263 − 1

We have got rid of the twos. By joining the first two 2’s, we get

4 + 4 + 8 + ⋯+ 263 − 1

At the end of calculation, we get

263 + 263 − 1

and this is equal to 264 − 1, which is, by the way, an obscenely large number.
We know the story as a fable that tells us we must think before promising something. This
story took place hundreds of years ago, where there were no computers. For the king to
provide the grains he had promised to give to the minister, he would have ordered a clerk
to do the calculation.
If the clerk is super-human, her calculation would be perfect, and so the total amount she
would provide would be exactly what we had anticipated. But, since she is human, she is
prone to error. In the process of writing down numbers, there may be various errors, such
as skipping a digit or writing a wrong digit.
If she does not notice an error, the minister would get a different number of grains at the end
of the 64 days. Suppose we want to mimic the process of her calculation using a computer,
with the chance factor in mind. This is how “randomness” comes in to play.
Let us consider two different scenarios for the source of error:
• The errors are independent. That is, the error the clerk makes on a day does not

affect the bookkeeping the next day.

• The errors are dependent. That is, the error the clerk makes affects the next day’s
counting and has a lasting effect on the bookkeeping for the remaining days.

The first scenario is easier, so we will develop a simulation scheme for this first. Also, to
simplify the number crunching, we consider the number of grains the minister receives at
the end of 10th day. We know that this number should equal 210 − 1.



204 4 Building Simulations

4.4.10.1 Step 1: Determine what to simulate

We are interested in simulating the number of grains the minister receives at the end of the
10th day, assuming independent errors in bookkeeping. We hypothesize that the number of
grains should cluster around 210 − 1 = 1023.

4.4.10.2 Step 2: Figure out how to simulate one value

We imagine the variability in the clerk’s calculation for the number of grains a minister
receives. Based on what we know from the story, three actions are possible:
• The clerk counts one less grain.
• The clerk counts the right number of grains.
• The clerk counts one extra grain.

We will assume that “getting it right” has a slightly higher chance of occurring (2/4) with
the other two actions having an equal chance of occurring (1/4). We can simulate the clerk’s
action using sample and setting the prob argument.

sample(c(-1, 0, 1), 1, prob=c(1/4, 2/4, 1/4))

## [1] 0

The following function receives a number of grains as an argument and returns the number
of grains after the clerk’s calculation. This is the amount the minister would receive after
some day.

after_clerk_calculation <- function(grains) {
grains + sample(c(-1, 0, 1), 1, prob=c(1/4, 2/4, 1/4))

}

We can try the function with some arbitrary number of grains, say, 10.

after_clerk_calculation(10)

## [1] 10

Try running this a few times to observe the different outcomes. Sometimes the clerk gets it
right (10), counts one less (9), or counts one more (11).
The expected amount the minister should receive each day follows the form 2 day number−1.
We can write the following sequence for the amounts starting at day 1 and ending after day
10.

2 ** (0:9)

## [1] 1 2 4 8 16 32 64 128 256 512

Using a purrr map, we can simulate the amounts after the clerk’s calculation by applying
the function after_clerk_calculation to each of the elements in the above sequence.

map_dbl(2 ** (0:9), after_clerk_calculation)
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## [1] 1 3 5 8 15 31 64 127 256 513

Therefore, the total number of grains the minister receives is the sum of these amounts.

map_dbl(2 ** (0:9), after_clerk_calculation) |>
sum()

## [1] 1023

We now have enough machinery to write a function for simulating one value. This functions
receives the number of days as an argument and returns the total grains received by the
minister after the given number of days is over.

total_grains_received <- function(num_days) {
map_dbl(2 ** (0:(num_days - 1)), after_clerk_calculation) |>
sum()

}

For a 10-day scheme, we call the function as follows.

total_grains_received(10)

## [1] 1021

Run the cell a few times and observe the variability in the number of grains.

4.4.10.3 Step 3: Run and visualize!

We will use 10,000 repetitions of the simulation this time to get a sense of the variability.
Each element of the grains vector stores the resulting number of grains at the end of the
10th day in each simulation of the story.

# Number of repetitions
num_repetitions <- 10000

# simulate the experiment!
grains <- replicate(n = num_repetitions, total_grains_received(10))

As before, we collect our results into a tibble.

results <- tibble(
repetition = 1:num_repetitions,
num_grains = grains

)
results

## # A tibble: 10,000 x 2
## repetition num_grains
## <int> <dbl>
## 1 1 1022
## 2 2 1023
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## 3 3 1019
## 4 4 1022
## 5 5 1021
## 6 6 1022
## 7 7 1023
## 8 8 1023
## 9 9 1021
## 10 10 1022
## # ... with 9,990 more rows

Finally, we visualize our results.

ggplot(results) +
geom_histogram(aes(x = num_grains, y = after_stat(density)),

color = "gray", fill = "darkcyan", bins = 18) +
geom_point(aes(x = 1023, y = 0), color = "salmon", size = 3)

We observe that the number of grains cluster around 1023, as expected (see the orange dot).
In general, each round after the first can create a difference of at most 1, so with 𝑁 rounds,
the difference is at most 𝑁 − 1. Our simulation confirms this fact.

4.4.11 Accumulation

We now turn to the second scenario in the doubling grains story. Because the calculation for
the next day depends on what happened the previous day, we will not be able to use the map
or replicate operations as we did when assuming the errors were independent. We need a
programming construct that allows us to update some value as we go along. We could use
the for loop construct shown in Section 4.33 to achieve this work easily, but we would like
to eliminate the need to write a loop as much as possible.

3https://ds4world.cs.miami.edu/building-simulations.html#for-loops

https://ds4world.cs.miami.edu
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purrr offers another construct called accumulate that sequentially applies a 2-argument
function to elements of a vector. A key aspect of its operation is that each application of
the function uses the result of the previous application as the first argument.
Let’s see an example. Consider the following character vector of fruits.

delicious_fruits <- c("apple", "banana", "pineapple", "mango")

We can use accumulate to implement string concatenation. Here, we provide an anonymous
function that receives two arguments acc (an accumulator) and nxt (the next element in
the input vector). The str_c function is called using the two arguments using the colon as a
separator. The effect achieved is the joining, or “concatenation”, of all strings in the vector
delicious_fruits into a single string.

accumulate(delicious_fruits, \(acc, nxt) str_c(acc, nxt, sep = ":"))

## [1] "apple"
## [2] "apple:banana"
## [3] "apple:banana:pineapple"
## [4] "apple:banana:pineapple:mango"

There is a good deal of technical detail here so let us unpack what we just did. The accu-
mulator (stored in the argument acc) stores the resulting string after concatenation with
each element in the vector delicious_fruits. The accumulation begins with the first ele-
ment, the string "apple". After concatenation with the argument nxt ( containing the string
"banana"), the resulting string is "apple:banana" and the accumulator is updated with this
value in the next step of the iteration, available in the argument acc.
The process continues until each element of the input vector has been exhausted. The result
of the accumulation at each step is shown in the vector returned by the accumulate function.
This vector has the same length as the input vector and the final result appears at the last
index (index 4), a single string containing each fruit separated by a colon.
We could discard the intermediate results and extract just the final product by applying
the function last from dplyr. Observe how this is equivalent to str_c when used with the
collapse setting.

# str_c from stringr with collapse
str_c(delicious_fruits, collapse = ":")

## [1] "apple:banana:pineapple:mango"

# using accumulate!
accumulate(delicious_fruits, \(acc, nxt) str_c(acc, nxt, sep = ":")) |>
last()

## [1] "apple:banana:pineapple:mango"

We can also set an initial value to use to begin the accumulation.

accumulate(delicious_fruits, \(acc, nxt) str_c(acc, nxt, sep = ":"),
.init = "a")



208 4 Building Simulations

## [1] "a"
## [2] "a:apple"
## [3] "a:apple:banana"
## [4] "a:apple:banana:pineapple"
## [5] "a:apple:banana:pineapple:mango"

This has the effect of extending the resulting vector length by 1.
In some cases, it is desirable to use the accumulator and ignore the elements in the input
vector given (in the argument nxt). This can be useful when you care only about the
accumulation and repeating this for some number of steps.
For instance, the following accumulate continuously adds 10 to an initial value 10. The
length of the input vector controls the number of steps taken, but the vector contents are
ignored.

accumulate(541:546, \(acc, nxt) acc + 10, .init = 10)

## [1] 10 20 30 40 50 60 70

It is also possible to terminate the accumulation early based on some condition being met us-
ing the done sentinel. This can also be useful depending on the simulation scheme. Question
4 from the exercise set explores this feature in greater depth.
Pop quiz: In the above accumulate example, would you expect the resulting vector to
change if we had used the sequence 1:6 as the input vector? Why or why not?

4.4.12 Lasting effects of errors

We can use the accumulate construct in the doubling grains simulation. Recall that, under
the second scenario, the error the clerk makes on some day affects the bookkeeping for the
remaining days. That is, the amount the clerk gives on a day after the initial day is two
times the amount she gave in the previous with a possible error of ± 1 grain.
We write a function grains_after_day that receives a single argument containing the current
number of grains. It returns the sum of the current grains and the calculated grains after
after_clerk_calculation is called. When things go right, this has the desired effect of
doubling the current number of grains.

grains_after_day <- function(current_grains) {
new_amount <- current_grains + after_clerk_calculation(current_grains)
return(max(1, new_amount))

}

The second line is added as a sanity check to ensure the resulting grain amounts do not ever
go negative.
We can use this function within an accumulate call to simulate one value in this experiment.
Here we provide an initial value 1 to begin the accumulation with and use the input vector
only to step the simulation 10 times.

accumulate(1:10, \(acc, nxt) grains_after_day(acc), .init = 1)

## [1] 1 2 3 6 11 23 47 94 188 375 749
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We rewrite the function total_grains_received to use the accumulate call and retrieve the
final value.

total_grains_received <- function(num_days) {
accumulate(1:10, \(acc, nxt) grains_after_day(acc), .init = 1) |>
last()

}

We can now call this function a large number of times, say, 10,000, to gauge the amount
of variability. Each element of the grains vector stores the resulting number of grains after
the 10th day, assuming dependent errors.

num_repetitions <- 10000
grains <- replicate(n = num_repetitions, total_grains_received(10))

Finally, we visualize the result.

grains |>
tibble() |>
ggplot() +
geom_histogram(aes(x = grains, y = after_stat(density)),

bins = 18, color = "gray", fill = "darkcyan") +
geom_point(aes(x = 1023, y = 0), color = "salmon", size = 3)

Sometimes the minister received few to no grains at the end of the 10th day and sometimes
he received much more than he asked for! Like the first scenario, we see the simulated values
cluster again around the expected amount.

4.4.13 Simulation round-up

This section discussed multiple iteration constructs for building simulations. The following
list clarifies when to use each.
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• map_*
– Arguments: (1) a sequence (2) a function that receives as an argument an element

from that sequence
– Returns: List or vector the same length as the input sequence
– When to use? Applying a function to a sequence or a tibble column

• replicate
– Arguments: (1) Number of repetitions (reps) (2) a function to repeat
– Returns: Vector of length reps that can be stored for later analysis
– When to use? Repeating a function some fixed number of times

• accumulate
– Arguments: (1) a sequence (2) a two-argument function; first argument is an accu-

mulator and the second argument an element from the sequence
– Returns: Vector the same length as the input sequence that contains the results of

the accumulation at each step (or one longer if .init argument is set)
– When to use? Applying a function where some value needs to be updated through

the duration of the simulation

4.5 The Birthday Paradox

Happy birthday! Someone in your class has a birthday today! Or, should we say happy
birthdays?
The Birthday Paradox states that if 23 students are in a class, the chances are 50/50 that
there are two students among the 23 who have the same birthday. There are 365 days in a
year. How is it possible that among just 23 students, we can find two of them that have the
same birthday?

4.5.1 Prerequisites

As before, let us load in the tidyverse.

library(tidyverse)

4.5.2 A quick theoretical exploration

We answer the question first by analysis.
Assume that we will consider only a non-leap year (no February 29 – sorry leap year babies!)
and each of the 365 birthdays are likely to occur. Since each birthday is likely to occur as
any other birthday, we can look at the question at hand by counting the number of possible
birthday combinations.
We have 23 students in the class. Each student gets to choose her birthday freely without
considering the birthdays of the other 22 students. The 23 students make their choices and
then check whether the choices fall into one of the no-duplicate selections.
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With no restriction, the number of possible choices of birthdays for the 23 students is

365 ∗ 365 ∗ 365 ∗ ⋯ ∗ 365 = 36523

These possibilities contain the cases where birthdays may be shared among the people.
In comparison, the number of possibilities for selecting 23 birthdays so that no two are
equal to each other requires a bit complicated analysis. We can view the counting problem
using the following hypothetical process.
The 23 students in the class will pick their birthdays in order so that there will be no
duplicates.
• The first student has complete freedom in her choice. She chooses one from the 365

possibilities.
• The next student has almost complete freedom. She can pick any birthday but the one

the first student has chosen. There are now 364 possibilities.
• The third student has again almost complete freedom. She can pick any birthday but

the ones the first two students have chosen. Since the first two students picked different
birthdays, there are 363 possibilities for the third student.

We can generalize the action. The 𝑘-th person has 365 − 𝑘 + 1 choices.
By combining all of these for the 23 students, we have that the number of possibilities for
choosing all-distinct birthdays is

365 ⋅ 364 ⋅ 363 ⋅ ⋯ ⋅ 353.

Thus, the chances for the 23 students to make the selections so there are no duplicates are
thus

(365 ⋅ 364 ⋅ 363 ⋅ ⋯ ⋅ 343)/36523.

Moving terms, we get that the chances are

365
365 ⋅ 364365 ⋯ 343

365 .

The quantity is approximately 0.4927. The chances we find a duplicate are 1 minus this
quantity, which is approximately 0.5073. Pretty interesting, isn’t it?

4.5.3 Simulating the paradox

The second method, an alternative to the formal mathematical analysis, is to use simula-
tion to mimic the process of selecting 23 birthdays independently from each other. This
simulation is slightly more difficult than the ones we have seen in the previous section.

4.5.4 Step 1: Determine what to simulate

In this simulation, we are interested in obtaining the chance or probability that two students
in the class have the same birthday among a group of 23 individuals.
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4.5.5 Step 2: Figure out how to simulate one value

We start by using sample to draw 23 random birthdays. The vector represented by the
sequence 1:365 contains the days in the year one can pick from.

chosen_birthdays <- sample(1:365, size=23, replace=TRUE)
chosen_birthdays

## [1] 282 51 118 33 86 197 166 289 57 193 179 271 288
## [14] 59 255 38 352 45 52 290 333 128 242

We now check how many duplicates there are in the class.

sum(duplicated(chosen_birthdays))

## [1] 0

Let’s pull these pieces together into a function we can use. The function returns TRUE if
there are any duplicates in the class; FALSE otherwise.

any_duplicates_in_class <- function() {
chosen_bdays <- sample(1:365, size=23, replace=TRUE)
num_duplicates <- sum(duplicated(chosen_bdays))
if (num_duplicates > 0) {

return(1)
} else {

return(0)
}

}

any_duplicates_in_class()

## [1] 0

We now imagine multiple classrooms that each have 23 students. We will survey each of the
classes for any birthday duplicates in the class. Luckily, we can use any_duplicates_in_class
to help us with the surveying work. Once the surveying is done, we will calculate the
proportion of duplicates among all the classrooms we surveyed. Let’s assume there are 100
classrooms in the school.

one_birthday_trial <- function() {
classrooms <- 100
num_duplicates <- replicate(n = classrooms, any_duplicates_in_class())
return(sum(num_duplicates) / classrooms)

}

We can check how we did after one survey.

one_birthday_trial()

## [1] 0.5



4.5 The Birthday Paradox 213

Run this cell a few times. Observe how this value is somewhat close to the theoretical 0.51.
We now have one trial of our simulation.

4.5.6 Step 3: Run and visualize!

We generate 10,000 simulations and store the results in a vector. Since the value
one_birthday_trial returns is a nonnegative integer, we create its simplified version, where
we reduce all positive values to 1 and retain 0 as 0.

# Number of repetitions
num_repetitions <- 10000

# simulate the experiment!
bday_proportions <- replicate(n = num_repetitions, one_birthday_trial())

# and done!

As before, we collect our results into a tibble.

results <- tibble(
repetition = 1:num_repetitions,
proportions = bday_proportions

)
results

## # A tibble: 10,000 x 2
## repetition proportions
## <int> <dbl>
## 1 1 0.46
## 2 2 0.47
## 3 3 0.47
## 4 4 0.46
## 5 5 0.53
## 6 6 0.49
## 7 7 0.44
## 8 8 0.37
## 9 9 0.49
## 10 10 0.52
## # ... with 9,990 more rows

Finally, we visualize our results.

ggplot(results) +
geom_histogram(aes(x = proportions, y = after_stat(density)),

color = "gray", fill = "darkcyan",
breaks = seq(0.35, 0.65, 0.01)) +

geom_point(aes(x = 0.51, y = 0), color = "salmon", size = 3)
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We see that the histogram looks symmetric and centered around 0.51 (see the orange dot),
as expected. Neat!

4.6 Exercises

Be sure to install and load the following packages into your R environment before beginning
this exercise set.

library(tidyverse)
library(edsdata)
library(gapminder)

Question 1. Everyday Alana, an amateur transcendentalist4 and photographer, walks by a
pond for one hour, rain or shine. During the walk she sometimes sees some animals. Notable
ones among them: jumping fish, great blue heron, and squirrels. Over the past 80 days she
has witnessed these 40 times, 40 times, and 40 times, respectively.

• Question 1.1 What are the probabilities that she witnesses jumping fish, that she wit-
nesses a blue heron, and that she witnesses a squirrel on any particular day individually?
Write down three expressions that provide these probabilities and assign them to names
wit_fish, wit_heron, and wit_squirrel respectively.
Alana is suspect that when she observes a jumping fish on a given day, she is more likely
to also encounter the other two animals on the same day. Likewise if she first sees a great
blue heron or a squirrel.
The tibble alana from the edsdata package is the actual record of Alana’s witnessing
events.

4https://en.wikipedia.org/wiki/Transcendentalism

https://en.wikipedia.org
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alana

## # A tibble: 80 x 4
## day heron fish squirrel
## <int> <dbl> <dbl> <dbl>
## 1 1 0 0 0
## 2 2 0 0 0
## 3 3 1 1 1
## 4 4 1 1 1
## 5 5 1 1 1
## 6 6 0 0 0
## 7 7 0 0 0
## 8 8 0 1 1
## 9 9 1 1 1
## 10 10 1 1 1
## # ... with 70 more rows

The rows are the 80 days and the columns are witness (1) or non-witness (0) of the three
animals.

• Question 1.2 If the observational unit is an individual observation made by Alana during
her walk, then the tidy data guidelines tell us that each row contains multiple observations.
Let us tidy the alana tibble using a tidyr function so that the three variables become
materialized: day, animal_observed, and witness. Call the resulting tibble alana_tidy.

• Question 1.3 Form a tibble called summarized_observations that gives the total number
of times that Alana saw each of the three animals during her trip (or, more technically,
the total number of 1 witnessing events for each animal). The tibble should have two
variables named animal_observed and n. Do the values match the stated counts of 40?

• Question 1.4 From your tibble alana_tidy, extract the number of days in which Alana
witnessed all three animals. Store your answer (a single double value) in the name ob-
served_witness3.

Question 2 We can now apply simulation to help address Alana’s question. That is, we
will assume that the true probability of observing any of the three animals follows what
you found in Question 1 and that the observation of one animal has no influence on the
observation of any of the other two animals (i.e., each observation is independent of the
other).
We can then simulate Alana’s 80-day trip a great number of times. More specifically, we
will simulate the number of days Alana saw all three animals during the said “artificial”
trip. If the actual record of observing all three animals is different from what our simulation
shows, we have evidence that supports Alana’s claim that the probability of observing some
animal may be dependent on the probability of first observing any of the other two. That
would be welcome news – no more waiting around for the great blue heron!
Let us approach this simulation in parts, using the same recipe for simulation we learned.
Be sure you have read and understood the examples from the textbook before proceeding.

• Question 2.1 Write a function findings_from_one_walk that takes a double day as an
argument and returns a tibble giving the results after one simulated walk in Alana’s trip.
Here is what this tibble looks like after one possible run for day 5.
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day animal_observed witness
5 heron 1
5 fish 0
5 squirrel 1

NOTE: The values in the witness column should be different every time this function is
called! How to generate these values? See the sample function we saw in class.

findings_from_one_walk(5) # an example call for a simulated "day 5"

Using your function findings_from_one_walk, we can simulate a full 80-day trip as follows:

map(1:80, findings_from_one_walk) |>
bind_rows()

• Question 2.2 Write a function one_alana_trial that takes no arguments, simulates a
full 80-day trip, and returns the number of days that all three animals were witnessed.
The result should vary each time it is run.
HINT: To complete this, you can re-use code you have already written, i.e., from Question
4 in Part I.

one_alana_trial() # an example call

The returned value from your function one_alana_trial() composes one simulated value
in our simulation.

• Question 2.3 We are now ready to put everything together and run the simulation. Set
a name num_repetitions to 1,000. Run your function one_alana_trial() num_repetitions
number of times and store the simulated values in a vector named witness3_trials.
NOTE: This may take a few seconds to run.

• Question 2.4 Construct a tibble named results by aligning num_repetitions (create
a sequence from 1 to num_repetitions) and witness3_trials with the column names
repetition and witness3_trial, respectively.

• Question 2.5 Using ggplot2, generate a histogram of witness3_trial from the tibble
results. Remember to plot in density scale; you may also wish to lower the number of
bins to a smaller value, say, 10. Your plots should label all axes appropriately and include
a title informing what is being visualized.

• Question 2.6 Compare your histogram with the value observed_witness3 computed ear-
lier. Where does it fall in this histogram? Is it close to the center where the “bulk” of the
simulated values are?

observed_witness3

• Question 2.7 Based on what you see in the above histogram and how it compares with
observed_witness3, what would you say to the following statement: “since each animal is
observed 40 out of 80, the chance of seeing all three animals after first seeing one of them
is still 50-50, about the same as the chance of heads or tails after a fair coin toss”?
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Question 3. A friend recently gave Cathy a replica dollar-coin. Cathy noticed that the coin
has a slight bias towards “Heads”. She tossed it a few times to find that the Heads/Tails
ratio is like 3 to 2; that is, if she tosses the coin five times, she would observe three Heads
and two Tails among the five outcomes. Noticing the curious behavior, Cathy asked a friend
Jodie to play the following game with her. For preparation, Cathy and Jodie each prepare
a pile of ten lollipops. Then they would repeat the following ten times.

• Jodie predicts Heads or Tails and Cathy tosses the coin. If the prediction matches the
outcome, Jodie takes one lollipop from Cathy’s pile; if the prediction does not match the
outcome, Cathy takes one lollipop from Jodie’s pile.

Let us do some analysis of the game.
• Question 3.1 We have collected the results from one round of the game in the vectors

jodie_predictions and outcomes. How many lollipops does Jodie have now?

jodie_predictions <- c("Tails", "Tails", "Heads",
"Heads", "Tails", "Tails",
"Heads", "Tails", "Tails",
"Heads")

outcomes <- c("Tails", "Heads", "Heads",
"Heads", "Heads", "Tails",
"Heads", "Heads", "Heads",
"Tails")

• Question 3.2 Suppose Jodie selects either side of the coin with equal chance, i.e., she does
not favor “Heads” anymore than she does “Tails” and vice versa. Based on the observation
that Cathy’s coin follows a “Heads”/“Tails” ratio of 3:2, after one round of the game how
many lollipops is Jodie expected to lose to Cathy?
Let us use simulation to check our analysis of the problem. We will define two functions,
simulate_cathy_coin() and simulate_jodie_prediction(), that simulates a single flip of
Cathy’s coin and Jodie’s prediction of the side a coin lands on, respectively.

simulate_jodie_prediction <- function() {
# Jodie chooses either side of a coin with equal chance.
sample(c("Heads", "Tails"), prob = c(1/2, 1/2), size = 1)

}
simulate_cathy_coin <- function() {
# Cathy's coin is known to be biased towards "Heads" in a 3:2 ratio.
sample(c("Heads", "Tails"), prob = c(3/5, 2/5), size = 1)

}

• Question 3.3 Write a function called one_flip_lollipop_wins that simulates the number
of lollipops Jodie wins after one flip of Cathy’s coin. The function receives two arguments, a
prediction function coin_flip_func and a coin flip function prediction_func; these should
be called in the duration of the function to simulate a flip of Cathy’s coin and Jodie’s
prediction of that coin. The function returns either 1 or -1. We can interpret 1 to be Jodie
winning one lollipop and -1 to be Jodie losing one lollipop.

# An example call using the functions corresponding
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# to the game Cathy and Jodie are playing.
one_flip_lollipop_wins(simulate_cathy_coin, simulate_jodie_prediction)

• Question 3.4 One round of the game Cathy and Jodie are playing consists of 10 coin flips.
Write a function named gains_after_one_round() that simulates the number of lollipops
Jodie wins after one round of the game. The function receives three arguments, flips, the
number of flips in a round, coin_flip_func, and prediction_func. The function returns
the number of lollipops Jodie wins after the round is over. Use the replicate construct
to call one_flip_lollipop_wins() a number of times.

# One round consists of 10 coin flips.
gains_after_one_round(10, simulate_cathy_coin,

simulate_jodie_prediction)

• Question 3.5 Let us now simulate the game a large number of times. Using the replicate
construct with the function gains_after_one_round(), simulate 10,000 games. Collect the
lollipops won from each simulated game in a vector named simulated_gains.
The following function hist_from_simulation() produces a histogram of the simulated
gains you generated.

hist_from_simulation <- function(simulated_results) {
wins_tibble <- tibble(
repetition = 1:length(simulated_results),
gain = simulated_results

)

g <- ggplot(wins_tibble) +
geom_histogram(aes(x = gain, y = after_stat(density)),

bins=12,
color = "gray", fill = "darkcyan")

return(g)
}

hist_from_simulation(simulated_gains)

• Question 3.6 What value does the bulk of the data center around? Does this agree with
or contradict our earlier analysis in Question 3.2?

• Question 3.7 Cathy proposes to switch roles. In other words, Jodie will toss the coin, and
Cathy will predict. Knowing about the bias of her coin, Cathy bets on predicting “Tails”
every time. Write a function simulate_cathy_prediction that receives no arguments and
simulates Cathy’s prediction under this scheme.

• Question 3.8 Repeat Question 3.5 but now using simulate_cathy_prediction(). Assign
your simulated values to the name simulated_gains_switched_roles. Then generate a
histogram of the results using hist_from_simulation().

• Question 3.9 Where is the bulk of the data centered around now? Is the prior knowledge
of the coin’s bias helpful for winning more lollipops in the long run? Or does Cathy come
out the same regardless of who is making the predictions? Explain your reasoning.
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• Question 3.10 It will be helpful to visualize the two histograms in the same plot. Using
simulated_gains and simulated_gains_switched_roles, generate an overlaid histogram
showing the simulated results when Jodie predicts the coin flip together with the results
when Cathy predicts the coin flip. Your plot should include a legend showing which his-
togram corresponds to which player making the predictions.
HINT: Before writing any ggplot2 code, you will need to develop a tibble that contains
the results from both. See the code in hist_from_simulation() for some hints on how to
accomplish this.

Question 4 This question is a continuation of Question 3.
Suppose we make a further change to the rule of the game so that the game will continue
until either player loses all their lollipops. If one round is defined as a single coin toss, how
many rounds will it take for them to complete the game? Let us compute the number of
rounds by simulation.
Suppose that Jodie and Cathy each begin with 10 lollipops in their pile. There are two
different ways the game ends.

• One is by Jodie losing all her lollipops,
• The other is by Cathy losing all her lollipops.
We have seen that the present strategy (Cathy always predicts “Tails”) slightly favors Cathy
winning. The histogram that follows this strategy clusters around a small negative value,
approximately -2. We thus use a positive round number if Jodie loses the lollipops and the
round number with the sign flipped if Cathy loses the lollipops.
We can accomplish the simulation scheme using the incantation:

gains_after_one_round(1, simulate_cathy_coin, simulate_cathy_prediction)

We can then use the accumulate construct shown in Sections 4.3 and 4.4. Recall that we
can use this to call some function repeatedly, each time using the result of the previous
application as the argument.

• Question 4.1 First, write a function total_lollipops_after_play that takes a single
argument jodie_lollipops that gives the current number of lollipops in Jodie’s pile.
This function:

– Checks if Jodie lost all her lollipops (Jodie’s pile contains 0 lollipops) or Cathy lost
all her lollipops (Jodie’s pile contains 20 lollipops). If this condition succeeds, the
game should be terminated by calling done() in a return call, i.e., return(done())

– Otherwise, simulate one round of the game as shown above. Save the result to a name
gains. The function returns the addition of gains and the argument lollipops.

total_lollipops_after_play <- function(jodie_lollipops) {

}

• Question 4.2 Write another function play_until_empty_pile that takes no arguments.
This function will:

– Simulate total_lollipops_after_play using the accumulate function. Call accumu-
late for a maximum of 1,000 rounds (e.g., using the input sequence 1:1000) using
the number of lollipops Jodie starts with as the initial value.
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– Determine how many lollipops remain in Jodie’s pile after the game is over. This can
be done by inspecting the last value in the vector returned by accumulate. Call this
num_remaining.

– If Jodie lost (how can you tell?), the function returns the number of rounds played.
– Otherwise, if Jodie won (how can you tell?), then the functions the negative of the

round number.

play_until_empty_pile <- function() {

}

The following is an example call of your function. The total number of rounds played will
be different each time the function is called. Most of the time you will observe a positive
value.

play_until_empty_pile()

• Question 4.3 Simulate the game 10,000 times and collect the results into a vector named
simulated_durations.

• Question 4.4 What are the maximum and the minimum of simulated_durations? How
about the mean? According to these results, who is the winner in the long run? Is it true
that Cathy always wins when she predicts “Tails”?

• Question 4.5 Plot a histogram of the simulated duration values. Set the number of bins
equal to 25.

• Question 4.6 What does the shape of the distribution you found tell you about who
wins in the long run? Can this histogram be used to draw such a conclusion?

Question 5: The Paradox of the Chevalier De Méré French people used to love
(maybe still do) gambling with dice. In the 17th century, Antoine Gombaud Chevalier De
Méré stated that the following two events are equally probable.

• throwing a dice four times in a row and 1 turning up at least once, and
• throwing a pair of dice 24 times in a row and two 1’s simultaneously turning up at least

once.
His logic was as follows:

• There are six faces to a dice. The chance of observing the first event is 4 ∗ (1/6) = 2/3
because there is a 1/6 probability of a 1 turning up on a single roll and the dice is rolled
4 times.

• There are six faces to each dice. The chance of observing the second event is 24∗ (1/36) =
2/3 because there is a 1/36 probability of two 1’s turning up after a single roll and the
pair is rolled 24 times.
Unfortunately, there is a flaw in his logic. Using a bit of probability analysis, we have:

• There are six faces to a dice, so the chances of observing the first event is the opposite of
seeing anything but 1 four times in a row, which is 1 − (54/64) = 0.517746....

• There are 35 outcomes that are not a double 1’s when rolling a pair of dice (out of 36
possible). Thus, the chance of observing the second event is the opposite of seeing any of
those 35 outcomes 24 times. So we have: 1 − (3524/3624) = 0.491403....
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Not only the two values are different from each other, but also they are different from 2/3.
We are lucky that the theoretical analysis here has been straightforward. That is because
we are able to take advantage of the fact that the events “at least one 1 turns up” and “no
1s turns up” are complementary. This is also sometimes called the “rule of subtraction” or
the “1 minus rule”.
However, theoretical analysis can be cumbersome and, depending on the problem, is not
always possible. Sometimes it is easier to find the answer using simulation! Let us try to
disprove the Chevalier’s estimation by means of simulation.
Following is a function simulate_dice_roll that simulates one dice roll:

simulate_dice_roll <- function() {
sample(1:6, size = 1)

}
simulate_dice_roll()

• Question 5.1 Write a function has_one_appeared that simulates whether a 1 appears after
a six-sided dice roll. The function takes no arguments and returns TRUE if the simulated
roll turns up 1 and FALSE otherwise.

has_one_appeared() # an example call

• Question 5.2 Write another function called has_double_ones_appeared that simulates
whether two 1s appear after rolling a pair of six-sided dice. The function takes no argu-
ments and returns TRUE if double 1s turn up after the simulated rolls and FALSE otherwise.

has_double_ones_appeared() # an example call

• Question 5.3 Write a function chavalier_first_event that simulates the Chavalier’s first
event. The function takes no arguments. It should execute has_one_appeared four times
and return a Boolean indicating whether a 1 has appeared.

chavalier_first_event() # example call

• Question 5.4 Write a function chavalier_second_event that simulates the Chavalier’s sec-
ond event. This function takes no arguments. It should execute has_double_ones_appeared
24 times and return a Boolean indicating whether a pair of dice both turned up 1.

• Question 5.5 Simulate each of the Chavalier’s two events 10,000 times. Store the resulting
values from each of the simulations into two vectors named simulated_values_first_event
and simulated_values_second_event, respectively.
The following code chunk puts together your results into a tibble named sim_results.

sim_results <- tibble(
first_event = simulated_values_first_event,
second_event = simulated_values_second_event)

sim_results

• Question 5.6 Tidy the tibble sim_results using a tidyr function so that each observation
in the tibble refers to the outcome of a single simulation and materializes two variables:



222 4 Building Simulations

event (referring to either the first or second event) and outcome (the outcome of that
event). The resulting tibble should contain 20,000 observations. Assign this tibble to the
name sim_results_tidy.

• Question 5.7 Generate a bar chart using sim_results_tidy. Fill your bars according to
the event in the variable event. We recommend using the “dodge” positional adjustment
so that comparisons are easier to make.
Repeat Question 5.5 through Question 5.7 to observe differences in the resulting his-
togram, if any. Then proceed to the following question:

• Question 5.8 A fellow classmate claims that the above simulation is unable to disprove
the Chavalier’s flawed reasoning. He cites two reasons for his claim:

– The “first event” and “second event” bars are too close to each other to say anything
with confidence.

– Because we repeated the simulation a large number of times, there is too much
variability in the results.

Which of his reasons, if any, are valid? Explain your reasoning.



5
Sampling

In the previous chapter we learned that we can make selections by chance using randomness
and that we can encapsulate randomness by means of simulation. In this chapter we will use
sampling more aggressively and learn to exploit random samples for drawing meaningful
conclusions from data.
Specifically, we will learn that:

• By drawing random samples, we are able to observe what an unknown distribution might
look like

• By conducting experiments using random sampling we can assess how unlikely or likely a
phenomenon is at hand.

In both cases, the number of samples we draw and the manner of sampling play an important
role.

5.1 To Sample or Not to Sample?

This chapter introduces some sampling preliminaries that we need for building our experi-
ments.

5.1.1 Prerequisites

Before starting, let’s load the tidyverse as usual.

library(tidyverse)

We will familiarize ourselves with the use of sampling from tibbles, or data frames.
In this chapter specifically, we will use the mpg data set that comes packaged with the
tidyverse. Here is a preview of it:

mpg

## # A tibble: 234 x 11
## manuf~1 model displ year cyl trans drv cty hwy
## <chr> <chr> <dbl> <int> <int> <chr> <chr> <int> <int>
## 1 audi a4 1.8 1999 4 auto~ f 18 29
## 2 audi a4 1.8 1999 4 manu~ f 21 29
## 3 audi a4 2 2008 4 manu~ f 20 31
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## 4 audi a4 2 2008 4 auto~ f 21 30
## 5 audi a4 2.8 1999 6 auto~ f 16 26
## 6 audi a4 2.8 1999 6 manu~ f 18 26
## 7 audi a4 3.1 2008 6 auto~ f 18 27
## 8 audi a4 q~ 1.8 1999 4 manu~ 4 18 26
## 9 audi a4 q~ 1.8 1999 4 auto~ 4 16 25
## 10 audi a4 q~ 2 2008 4 manu~ 4 20 28
## # ... with 224 more rows, 2 more variables: fl <chr>,
## # class <chr>, and abbreviated variable name
## # 1: manufacturer

Each row of the tibble represents an individual; in the mpg tibble, each individual is a car
model. Sampling individuals can thus be achieved by sampling the rows of a table.
The contents of a row are the values of different variables measured on the same individual.
So the contents of the sampled rows form samples of values for each of the variables.

5.1.2 The existential questions: Shakespeare ponders sampling

When we get down to the business of sampling, some critical decisions must be decided
before beginning to sample. Not unlike the famous soliloquy given by Prince Hamlet1 in
Shakespeare’s Hamlet, the questions of how to sample are not always straightforward to
answer and merit consideration. Here are the main ones to consider:

• Is the sampling to be done deterministically or probabilistically?
• Is the sampling to be done systematically or not?
• Can the same record appear more than once in the sampled data frame?
• Do the records have a equal chance of becoming a sample?

5.1.3 Deterministic samples

Recall that when working with data frames, we often anticipate the columns of the table
to represent the properties we can obtain from an individual object. A collection of the
properties representing an individual is a record or a data object. The rows of a data frame
are the data records. The row 𝑋 and column 𝑌 of the data frame is the property 𝑌 of the
data object 𝑋.
By “sampling” we mean to select rows from the data frame. If we want to select distinct
rows of the data frame, there is a convenient function slice for the action, which you may
recall. The first argument of the function call specifies the source for sampling, and the
other specifies the rows we draw using vector representation. The following generates a new
tibble with rows 3, 25, and 100 of mpg.

mpg_sub <- mpg |>
slice(c(3, 25, 100))

mpg_sub

## # A tibble: 3 x 11
## manufa~1 model displ year cyl trans drv cty hwy
## <chr> <chr> <dbl> <int> <int> <chr> <chr> <int> <int>

1https://www.poetryfoundation.org/poems/56965/speech-to-be-or-not-to-be-that-is-the-question

https://www.poetryfoundation.org
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## 1 audi a4 2 2008 4 manu~ f 20 31
## 2 chevrol~ corv~ 5.7 1999 8 auto~ r 15 23
## 3 honda civic 1.6 1999 4 manu~ f 28 33
## # ... with 2 more variables: fl <chr>, class <chr>, and
## # abbreviated variable name 1: manufacturer

Note that slice does not care if the row numbers appearing in the second argument are
all different or if the row numbers are given in non-decreasing order. For instance, we can
create a tibble containing four instances of Audi A4’s and Chevrolet Corvette’s.

mpg_sub <- mpg |>
slice(c(3, 25, 3, 25, 3, 25, 3, 25))

mpg_sub

## # A tibble: 8 x 11
## manufa~1 model displ year cyl trans drv cty hwy
## <chr> <chr> <dbl> <int> <int> <chr> <chr> <int> <int>
## 1 audi a4 2 2008 4 manu~ f 20 31
## 2 chevrol~ corv~ 5.7 1999 8 auto~ r 15 23
## 3 audi a4 2 2008 4 manu~ f 20 31
## 4 chevrol~ corv~ 5.7 1999 8 auto~ r 15 23
## 5 audi a4 2 2008 4 manu~ f 20 31
## 6 chevrol~ corv~ 5.7 1999 8 auto~ r 15 23
## 7 audi a4 2 2008 4 manu~ f 20 31
## 8 chevrol~ corv~ 5.7 1999 8 auto~ r 15 23
## # ... with 2 more variables: fl <chr>, class <chr>, and
## # abbreviated variable name 1: manufacturer

In the above examples, we knew beforehand which rows would appear in the sampled data
frame because we specified explicitly the corresponding index of rows to include (e.g., four
repeats of row 3 and row 25). We call such a sampling process with a selection vector a
deterministic sample. The determinism refers to the non-existence of chance during the
selection process.
An alternative to directly specifying the row numbers is specifying a condition on a variable
for a record to be in the sample. We have also seen this before. This is the dplyr verb
filter.

mpg_sub <- mpg |>
filter(manufacturer == "land rover")

mpg_sub

## # A tibble: 4 x 11
## manufa~1 model displ year cyl trans drv cty hwy
## <chr> <chr> <dbl> <int> <int> <chr> <chr> <int> <int>
## 1 land ro~ rang~ 4 1999 8 auto~ 4 11 15
## 2 land ro~ rang~ 4.2 2008 8 auto~ 4 12 18
## 3 land ro~ rang~ 4.4 2008 8 auto~ 4 12 18
## 4 land ro~ rang~ 4.6 1999 8 auto~ 4 11 15
## # ... with 2 more variables: fl <chr>, class <chr>, and
## # abbreviated variable name 1: manufacturer
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The condition on the variable of a record either puts it in the subset or it does not. Exactly
one of the two must occur. Like slice, filter also selects the records deterministically.
If you are not convinced, you could run through each of the 234 rows of mpg by hand and
manually check whether the manufacturer is indeed a land rover. Those that pass the check
will end up in the sample data frame and, by the end of it all, you would end up with the
same result as filter – no manual effort needed!

5.1.4 Random sampling

The antonym of “deterministic” is “non-deterministic”, which is a concept that plays an
important role in computer science. The meaning of it is quite obvious: it refers to a process
that is not deterministic. However, it is quite vague in that it does not state how to draw
the non-determinism. Data science prefers a more concrete form of non-determinism called
randomness, which we have seen before. We call the process of sampling that leverages
randomness to make its draws random sampling.
The pool of subjects from which we draw samples is called the population. There are multiple
types of populations and the determining factors of the types is its quantity and the way
the samples are generated.
When we draw a random sample, there are two questions that must be answered before
the sampling is done: (1) what is the population being measured, and (2) what is the the
chance of selection for each group in that population? If either of these points are not known
beforehand, the sample obtained is NOT a random sample! This is an important point to
emphasize because sometimes a sample can appear “random” even though it is not.
Following are some (non-comprehensive) examples of populations and how sampling might
be carried out.
• Accessible Data with Succinct Definition We want to study the choice of major at a

college. The registrar’s office can generate a complete list of all the students currently
attending the college. We could form a random sample by selecting at random a student
from the enrollment database where each student has an equal chance of appearing in
the sample. Alternatively, a deterministic sample may apply some filtering. This can be
done to narrow down the population to a specific group (e.g., the full-time sophomore
students). We can then form a random sample from just this group or we can opt to
include all the students in the group in our study.

• Continuous Population Requiring Discretization We want to study the quality of air
based on how “blue’ ’ the skies are. There is no clear definition of the population. The
geographical location of measurement equipment, the area to cover in the sky, and the
time of measurement can be factors in determining the samples. The determination
of these factors essentially discretize the continuous data. After determining all these
factors succinctly, a technician can make a measurement.

• Data with Succinct Definition Beyond Reach We want to study the relationship between
the height and weight of the people living in the United States. The population appears
to have a clear definition, but it is difficult to determine who gets to be included in
the population because the population is transient (due to babies coming to life, people
moving out of the country, etc.). By specifying at which point of time the person must
be living in the United States, the definition can be succinct. The problem is that it
is impossible to include everyone in the population. There are more than 300 million
people, and we have no way of knowing who those people are.
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• Non-existing Population Requiring Active Generation We want to examine the fairness
of a coin. Each time we throw the coin, we generate a record. Throwing the coin 𝑁
times you get a population of 𝑁 records, but you may wish to use the entire population
for the analysis.

5.1.5 To sample systematically or not?

In systematic samples, we choose samples in a systematic manner. For example, we can
select all students whose university-issued ID number has an odd number in the second-to-
last position from the population of all students in a university. Also, we could select, from
the entire population of the United States, all voters whose mailing address has a postal
code ending in 1, whose street address has a digit 2, owns a car, and whose license plate
has either the letter T or the numeral 6. Systematic samples are usually convenient to carry
out and are often called convenience samples.
Here is an example of making systematic sampling on the mpg data set using dplyr verbs.
Let’s start by preparing a version of the data frame that includes the row index for better
visual inspection.

mpg_with_index <- mpg |>
mutate(row_index = row_number()) %>%
relocate(row_index, .before = manufacturer)

mpg_with_index

## # A tibble: 234 x 12
## row_index manufac~1 model displ year cyl trans drv
## <int> <chr> <chr> <dbl> <int> <int> <chr> <chr>
## 1 1 audi a4 1.8 1999 4 auto~ f
## 2 2 audi a4 1.8 1999 4 manu~ f
## 3 3 audi a4 2 2008 4 manu~ f
## 4 4 audi a4 2 2008 4 auto~ f
## 5 5 audi a4 2.8 1999 6 auto~ f
## 6 6 audi a4 2.8 1999 6 manu~ f
## 7 7 audi a4 3.1 2008 6 auto~ f
## 8 8 audi a4 q~ 1.8 1999 4 manu~ 4
## 9 9 audi a4 q~ 1.8 1999 4 auto~ 4
## 10 10 audi a4 q~ 2 2008 4 manu~ 4
## # ... with 224 more rows, 4 more variables: cty <int>,
## # hwy <int>, fl <chr>, class <chr>, and abbreviated
## # variable name 1: manufacturer

We will now pick one of the first 10 rows at random, and then we will select every 10th row
after that.

# Pick random start among rows 0 through 9; then every 10th row.
start <- sample(1:10, size = 1)
mpg_with_index |>

slice(seq(start, n(), by = 10))
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## # A tibble: 24 x 12
## row_index manufac~1 model displ year cyl trans drv
## <int> <chr> <chr> <dbl> <int> <int> <chr> <chr>
## 1 2 audi a4 1.8 1999 4 manu~ f
## 2 12 audi a4 q~ 2.8 1999 6 auto~ 4
## 3 22 chevrolet c150~ 5.7 1999 8 auto~ r
## 4 32 chevrolet k150~ 6.5 1999 8 auto~ 4
## 5 42 dodge cara~ 3.3 2008 6 auto~ f
## 6 52 dodge dako~ 3.9 1999 6 manu~ 4
## 7 62 dodge dura~ 5.2 1999 8 auto~ 4
## 8 72 dodge ram ~ 5.2 1999 8 manu~ 4
## 9 82 ford expl~ 4.6 2008 8 auto~ 4
## 10 92 ford must~ 3.8 1999 6 auto~ r
## # ... with 14 more rows, 4 more variables: cty <int>,
## # hwy <int>, fl <chr>, class <chr>, and abbreviated
## # variable name 1: manufacturer

Run the code a few times to see how the output varies.
This attempts to be a combination of systematic sampling and random sampling. The
starting point is random and there are 10 possibilities, and we pick one from these 10
possibilities with probability 10% (i.e., one in ten chances). The selection after determining
the starting point is deterministic; we select every tenth element from the starting point.
Therefore, there are just ten different sample data sets out of the original data set.
There are many other ways of selecting one out of ten records from the dataset. We could
expand the systematic selection to assembling every 10 rows into groups and selecting
exactly one from each group. This selection would open up more possibilities.
Despite the use of the random initial point, we would not consider the resulting sample
drawn to be a random sample. The systematic selection of every 10 rows after the random
initial choice may disproportionately favor one or more groups from the population. Without
further consideration, we would label this a convenience sample. Convenience samples are
examined in greater depth in Section 5.62.
Note, also, that there exist combinations that can never be generated. For instance, in both
of the schemes we just described, it is impossible to generate a sample that contains the
very first two records. Can you see why?

5.1.6 To sample with replacement or not?

When we conduct random sampling, there are two main strategies. One is to prohibit any
record from appearing more than once in the sampled data frame. The other is, of course,
not to impose such a restriction.
We call the first strategy sampling without replacement and the second sampling with re-
placement. Most of the sampling we conduct is sampling with replacement. The reasons for
this will follow in the next section.

2https://ds4world.cs.miami.edu/sampling.html#convenience-sampling

https://ds4world.cs.miami.edu
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5.1.7 To select samples uniformly or not?

There are situations in which the population we want to observe is a mixture of several
groups, but the representation is not equal among them. For example, a university may
have a 50:50 ratio among male and female students but a dataset covering some of the
student population has a 20:80 ratio instead. We may want to sample four male students
for every female student sampled in order to remain true to the gender distribution in the
student population.

5.2 Distribution of a Sample

One of the most important applications of sampling is to obtain an approximation for a
“true” distribution, which we often do not know. Think of a question like: “what percent
of people in the United States are taller than six feet?” If we had access to a census that
contained all qualifying individuals in the population, we could compute the answer directly.
Without a census, we would need to not only define who are “the people in the United
States,” but engage in an enormous effort to collect and record all the heights – a task that
is not only tedious, but likely impossible to accomplish.
Enter sampling. Instead of trying to account for every individual in the country, we can
sample people from the population that we determine and approximate the height of people
in the United States from the sample we collect. Our hope is that any histogram we construct
from our sample will be close enough to the one we would have if we could record the heights
from the entire population. All the heights from the U.S. population follows what we call
the true distribution and those from our sampled population the sampling distribution.
Let’s examine what an sampling distribution looks like with an example of throwing die.

5.2.1 Prerequisites

As before, let’s load in the tidyverse as usual.

library(tidyverse)

5.2.2 Throwing a 6-sided die

There are six faces to a (fair) die. The outcome of throwing a die is the face that turns up.

die <- tibble(face = 1:6)
die

## # A tibble: 6 x 1
## face
## <int>
## 1 1
## 2 2
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## 3 3
## 4 4
## 5 5
## 6 6

Since the die is fair, the probability of the faces are all equal to each other and each is
exactly 1/6. The true distribution then is the probability where each of the faces is exactly
1/6. Here is what that distribution looks like. Observe that the height is equal for all bars,
at the level of 1/6.

ggplot(die) +
geom_histogram(aes(x = face, y = after_stat(density)),

bins = 6, color = "gray")

Does that mean that if you throw the die six times, you would see each of the faces exactly
once? Not at all!
Here is a quick counterargument: Assume that your intuition is correct. After throwing
the die five times you observed five different faces. You could then predict the face of the
sixth one to be the one that appears next. In fact, you could apply the same logic to each
consecutive five throws to predict the next one. What have we done here? Our observation
is leading to a realization that, after the first five throws, the remaining throws actually
become deterministic. This contradicts the randomness we are expecting from the die.
Therefore, the proportion of faces you see after throwing a die multiple times can be sub-
stantially different from the expected “1/6 for each face”.
Note that the sampling we are about to conduct is different from the example of sampling
heights from the U.S. population on three counts.
• The fair die may not exist in the real world, so we use a tibble that represents a fair die.
• The population exists only in our throwing of the die; that is, each time we throw the

die, the throw and its outcome becomes a new member of the population.
• Because we can generate a sample any number of times, the population is actually

infinite in size.
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Nevertheless, we know what the true distribution looks like. It is our histogram shown
above.

5.2.2.1 A sampling distribution

We now generate a sampling distribution using simulation. We used previously sample for
generating samples from a vector. Here we will use the dplyr function slice_sample for
sampling from a data frame. It draws at random from the rows of a data frame, with an
argument to sample with replacement. It also receives an argument n for the sample size,
and it returns a data frame consisting of the rows that were selected.
Here are the results of 10 rolls of a die.

die |>
slice_sample(n = 10, replace = TRUE)

## # A tibble: 10 x 1
## face
## <int>
## 1 2
## 2 1
## 3 2
## 4 6
## 5 2
## 6 4
## 7 6
## 8 3
## 9 2
## 10 4

Run the cell above a few times and observe how the faces selected changes.
We can adjust the sample size by changing the number given to the n argument. Let’s
generalize the call by writing a function that receives a sample size n and generates the
sampling histogram for this sample size.

sample_hist <- function(n) {
die_sample <- die |>

slice_sample(n = n, replace = TRUE)
ggplot(die_sample, aes(x = face, y = after_stat(density))) +

geom_histogram(bins = 6, color = "gray")
}

Here is a histogram of 10 rolls. Note how it does not look anything like the true distribution
from above. Run the cell a few times to see how it varies.

sample_hist(10)
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When we increase the sample size, we see that the distribution gets closer to the true
distribution.

sample_hist(100)

sample_hist(1000)
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The phenomenon we have observed - the sampling distribution growing closer and closer
to the true distribution as the sample size is increased - is an important concept in data
science. In fact, it is so important that it has a special name: we call it the Law of Averages.
A critical requirement for the Law of Averages to be applicable is that the samples come
from the same underlying distribution and do not depend on the drawing of other samples,
e.g. the rolling of a 2 does not make the rolling of a 6 more likely on the next roll. This
idea is sometimes called sampling “independently and under identical conditions”, where
the resulting distribution is “independently and identically distributed”.

5.2.3 Pop quiz: why sample with replacement?

The careful reader may have noticed that in the calls to slice_sample in this section, the
replace argument has been set to TRUE, i.e. the sampling is done with replacement. Why
not sample without?
You may have already guessed at an answer: if we sample without replacement, we would
not be able to make more than 6 draws since we would have run out of faces on the die to
choose from! Here is what happens when trying to sample 6 times without replacement.

die |>
slice_sample(n = 6, replace = FALSE)

## # A tibble: 6 x 1
## face
## <int>
## 1 6
## 2 5
## 3 2
## 4 3
## 5 4
## 6 1
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We simply get back the 6-sided die! So sampling with replacement is a requirement for the
dice roll example. But, there is another problem when sampling without replacement. Let’s
look at the true distribution again.

ggplot(die) +
geom_histogram(aes(x = face, y = after_stat(density)), bins = 6,

color = "gray")

When we sample without replacement, we are effectively removing the possibility of that
event happening from future draws. Put another way, this would be the same as somehow
erasing or “deleting” a face from the die before drawing again. For instance, let’s check the
true distribution after rolling a 2.

selected_face <- 2 # assume a 2 was rolled
slice(die, -selected_face) |>

ggplot() +
geom_histogram(aes(x = face, y = after_stat(density)), bins = 6,

color = "gray")
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If we were to sample again from this die, the probability of rolling any of the faces is no
longer the same as when we rolled the 2. For one thing, the probability of rolling the faces
1, 3, 4, 5, 6 has increased to 20% (or 1/5) and it is impossible to roll a 2. The underlying
distribution has fundamentally changed, confirmed by the above ggplot.
Recall that a prerequisite for the Law of Averages to work is that the drawing of samples
must be done “independently and under identical conditions”. Sampling without replace-
ment is a clear violation of this assumption. And yet, the story does not end there. In our
example, there were only 6 individuals to choose from – the faces of a 6-sided die. If we
were to increase the number of individuals that we could sample from, say the entire U.S.
population, then the effect observed here actually becomes negligible. Sampling without
replacement remains an important method for sampling, especially in drug studies with
treatment/control groups where it is physically not possible to sample with replacement.
Cloning people remains the imagination of science fiction, at least for now. Therefore, our
hope is that both sampling plans will generate similar results in practice.

5.3 Populations

The Law of Averages can be useful when the population from which to draw samples is very
large.
As an example, we will study a population of flight delay times. The tibble flights contains
all 336,776 flights that departed from New York City in 2013. It is drawn from the Bureau
of Transportation Statistics3 in the United States. The help page ?flights contains more
documentation about the dataset.

3https://www.transtats.bts.gov/Homepage.asp

http://www.transtats.bts.gov
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5.3.1 Prerequisites

We will continue to make use of the tidyverse in this section. Moreover, we will load the
nycflights13 package, which has the flights table we will be using.

library(tidyverse)
library(nycflights13)

There are 336,776 rows in flights, each corresponding to a flight. Note that some delay
times are negative; those flights left early.

flights

## # A tibble: 336,776 x 19
## year month day dep_time sched_dep_~1 dep_d~2 arr_t~3
## <int> <int> <int> <int> <int> <dbl> <int>
## 1 2013 1 1 517 515 2 830
## 2 2013 1 1 533 529 4 850
## 3 2013 1 1 542 540 2 923
## 4 2013 1 1 544 545 -1 1004
## 5 2013 1 1 554 600 -6 812
## 6 2013 1 1 554 558 -4 740
## 7 2013 1 1 555 600 -5 913
## 8 2013 1 1 557 600 -3 709
## 9 2013 1 1 557 600 -3 838
## 10 2013 1 1 558 600 -2 753
## # ... with 336,766 more rows, 12 more variables:
## # sched_arr_time <int>, arr_delay <dbl>, carrier <chr>,
## # flight <int>, tailnum <chr>, origin <chr>,
## # dest <chr>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>, and
## # abbreviated variable names 1: sched_dep_time,
## # 2: dep_delay, 3: arr_time

One flight departed 43 minutes early, and one was 1301 minutes late.

slice_min(flights, dep_delay)

## # A tibble: 1 x 19
## year month day dep_time sched_dep_t~1 dep_d~2 arr_t~3
## <int> <int> <int> <int> <int> <dbl> <int>
## 1 2013 12 7 2040 2123 -43 40
## # ... with 12 more variables: sched_arr_time <int>,
## # arr_delay <dbl>, carrier <chr>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>,
## # air_time <dbl>, distance <dbl>, hour <dbl>,
## # minute <dbl>, time_hour <dttm>, and abbreviated
## # variable names 1: sched_dep_time, 2: dep_delay,
## # 3: arr_time
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slice_max(flights, dep_delay)

## # A tibble: 1 x 19
## year month day dep_time sched_dep_t~1 dep_d~2 arr_t~3
## <int> <int> <int> <int> <int> <dbl> <int>
## 1 2013 1 9 641 900 1301 1242
## # ... with 12 more variables: sched_arr_time <int>,
## # arr_delay <dbl>, carrier <chr>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>,
## # air_time <dbl>, distance <dbl>, hour <dbl>,
## # minute <dbl>, time_hour <dttm>, and abbreviated
## # variable names 1: sched_dep_time, 2: dep_delay,
## # 3: arr_time

If we visualize the distribution of delay times using a histogram, we can see that they lie
almost entirely between -10 minutes and 200 minutes.

ggplot(flights, aes(x = dep_delay, y = after_stat(density))) +
geom_histogram(col="grey", breaks = seq(-50, 200, 1))

We are interested in the bulk of the data here, so we can ignore the 1.83% of flights with
delays of more than 150 minutes. We will only use the core part of the data excluding the
1.83% using the filter method as we show below. Note that the table flight still has all
the data.

nrow(filter(flights, dep_delay > 150)) / nrow(flights)

## [1] 0.0183386

delay_bins <- seq(-50, 150, 1)
ggplot(flights, aes(x = dep_delay, y = after_stat(density))) +
geom_histogram(col="grey", breaks = delay_bins)
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We group together delay values in size 10 intervals, so we can see better.

delay_bins <- seq(-50, 150, 10)
ggplot(flights, aes(x = dep_delay, y = after_stat(density))) +
geom_histogram(col="grey", breaks = delay_bins)

The tallest bar in the histogram is the (−10, 0] bar is just below 0.06, which is equal to 6%.
There are ten values of delay minutes in the bin, so we multiply this density value by 10 to
assess that the delays in the interval occupy slightly below 60% of the data. We can confirm
the visual assessment by counting rows:

nrow(filter(flights, dep_delay > -10 & dep_delay <= 0)) / nrow(flights)

## [1] 0.5571062
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5.3.2 Sampling distribution of departure delays

Let us now think of the 336,776 flights as a population, and draw random samples from it
with replacement. As we may try using various values for the number of samples, let us
define a function for sampling and plotting.
The function sample_hist takes the sample size as its argument, which we call n, and draws
a histogram of the results.

sample_hist <- function(n) {
flights_sample <- slice_sample(flights, n = n, replace = TRUE)
ggplot(flights_sample, aes(x = dep_delay, y = after_stat(density))) +
geom_histogram(breaks = delay_bins, color = "gray")

}

As we saw in the simulation for throwing a die, the more samples we have, the closer the
histogram of the sample approximates the histogram of the population.
Let us compare two sample sizes 10 and 100.

sample_hist(10)
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sample_hist(100)

We may notice various differences between the two plots. The plots may vary each time we
execute the code. Of all the differences that emerge when we execute the two codes and
compare the plots, the most notable are the number of bars and how far the bars reach to
the right without a gap. We notice that in the case of 100 samples, there are always bars
far to the right and there almost is also some presence in each bar between the tallest bar
and the farthest one.
Here is a plot with 1000 samples. We see the plot is much closer to the one with the entire
flight data.

sample_hist(1000)
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5.3.3 Summary: Histogram of the sample

From the experiments we have conducted with 10, 100, and 1000 samples, we have observed
that:
• The larger the sample gets, the closer the sampling distribution becomes to the true

distribution, which we obtain from the true population.
• At some large size, with high probability, the approximation of the true distribution we

produce through sampling becomes almost indistinguishable from the true one.
Because of the two properties, we can use random sampling in statistical inference. The
indistinguishable nature of sampling distributions is quite powerful. When the population
is large, we can turn to sampling to generate a sample data set of a reasonably large size,
which saves computation time.

5.4 The Mean and Median

There are quantitative evaluations that we commonly use in statistical analysis. For instance,
in a population of flights that departed New York City (NYC) in 2013, the median departure
delay can tell us something about the central tendency of the data – are most departure
flights delayed, on time, or are they ahead of schedule? Similarly, in baseball, the ability of
a player to produce a hit is measured by the player’s average (or mean) hit rate; the hitting
rate is the number of hits divided by the number of times the player stood in the batter
box.
The criteria median and mean are useful for understanding properties of a population.
When we calculate a quantity from a population, we call such quantities parameters of the
population. Thus, the median and mean are two useful parameters we wish to estimate
somehow. We will see how to in the next section, but for now we will study some properties
of the mean and median to develop an appreciation for its usefulness.
First some vocabulary:
• The mean or average (we will use both interchangeably) of a vector of numbers is the

sum of the elements divded by the number of elements in the vector.
• The median is the value at the middle position in the data after reordering the values.

It is also called an order statistic, which we will learn about later.

5.4.1 Prerequisites

We will make use of the tidyverse in this chapter, so let’s load it in as usual.

library(tidyverse)

5.4.2 Properties of the mean

The function mean returns the mean of a vector.
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some_numbers <- c(8, 1, 8, 7, 9)
mean(some_numbers)

## [1] 6.6

We can note some properties of the mean based on this example.
• The mean is not necessarily an element in the vector.
• The mean must be between the smallest and largest values in the vector and it need not

be exactly in the middle between these two extremes.
• If the vector is measured in some unit (e.g. 𝑓𝑡2), the mean carries the same unit.
• The mean is a “smoother”. For instance, imagine that the numbers in the vector above

are dollar amounts owned by five friends. They pool the money together and deal out
the money in even amounts among the friends. The amount each person will have is
given in the above output: $6.6.

• Proportions are means. If a vector consists of only 1s and 0s, the sum of the vector is
the number of 1s in it, and the mean is the proportion of 1s in the vector. Following is
an example:

ones_and_zeros <- c(1, 1, 0, 0)
sum(ones_and_zeros)

## [1] 2

mean(ones_and_zeros)

## [1] 0.5

Thus, the mean tells us that 50% of the values in ones_and_zeros are 1s.

5.4.3 The mean: a measure of central tendency

Let us visualize the distribution of some_numbers using a histogram.

tibble(some_numbers) |>
ggplot() +
geom_histogram(aes(x = some_numbers, y = after_stat(density)),

color = "gray", fill = "darkcyan", binwidth = 1)
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If we imagine the base of a histogram as a seesaw, then the mean is the pivot by which the
seesaw is supported by. We can denote this point visually using a triangle.

The pivot is the point at which this “seesaw” is balanced. If we nudge the point in any
direction, say toward 7.5, the seesaw tips over to the right; if it is closer to 5, the seesaw
tips to the left. That pivot is the mean. Thus,

The mean is the “pivot” or “balancing point” of the histogram.
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5.4.4 Symmetric distributions

Here is another vector called symmetric.

symmetric <- c(8, 8, 8, 7, 9)

Let us visualize this distribution. We note that it is symmetric around 3.

The mean and the median will both equal to 8.

mean(symmetric)

## [1] 8

median(symmetric)

## [1] 8

Thus, our next property:

For symmetric distributions, in general, the mean and the median will equal.

What if the distribution was not symmetric? We already have an example of one in the
numbers contained by not_symmetric. Let us overlay both on the same histogram.
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The cyan histogram shows the distribution represented by symmetric and the orange the
distribution represented by some_numbers. If we again imagine the x-axis as a seesaw, we
see that the cyan distribution balances around the pivot at 8. Both the mean and median
of the cyan distribution is equal to 8.
The orange histogram of some_numbers starts out the same as the cyan at the right end but
its left bar is at the value 1; the darker shading shows where the two histograms overlap.
The median of the orange distribution is also 8. However, in order to keep this distribution
“balanced” on the seesaw, we need to scoot the pivot to the left, to 6.6. That is the mean
of the orange histogram.

median(some_numbers)

## [1] 8

mean(some_numbers)

## [1] 6.6

5.4.5 The mean of two identical distributions is identical

We end this section with one more important property about means. We said earlier that
the mean of a vector is just the sum of its elements divided by the number of elements.
However, observe that we could have calculated it in different ways:
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mean = 8 + 1 + 8 + 7 + 9
5

= 8 ⋅ 15 + 8 ⋅ 15 + 1 ⋅ 15 + 7 ⋅ 15 + 9 ⋅ 15

= 8 ⋅ 25 + 1 ⋅ 15 + 7 ⋅ 15 + 9 ⋅ 15

This rewriting reveals an important point: each unique value in the vector is weighted by
the proportion of times it appears. For instance, we see that 8 has much more weight than
either 1 or 7 because it appears more often in the vector.
Let us consider another example.

lots_of_repetition <- c(8, 8, 8, 1, 1, 8, 7, 7, 9, 9)
mean(lots_of_repetition)

## [1] 6.6

This vector has the same mean as some_numbers. What is the point here? The mean of a
vector depends only on the distinct values and their proportions, not on the number of
elements in the vector. Put differently, the mean depends only on the distribution of values.
Thus, our final property:

If two vectors have the same distribution, their means will equal.

5.5 Simulating a Statistic

In many situations we do not know the value of a parameter of a population. Yet, it turns out
that random sampling is a reliable tool we can use to find a good estimate of a parameter.
Since large-scale sampling produces a sampling distribution that approximates the true
distribution, we hope that the value we compute from it will also be close enough to the
parameter we could obtain from the population directly when the sample size is large
enough.
Before jumping into the tidyverse, first some vocabulary:
• A parameter is some useful quantitative evaluation criteria about a population. For

instance, a parameter is the mean height of all individuals in the United States. This is
typically unknown to us.
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• A statistic is a value obtained from an sampling distribution (which we can generate).
The purpose of a statistic is to estimate a parameter. When we compute the mean or
median from an sampling distribution, we call these statistics the sample mean and
median, respectively.

5.5.1 Prerequisites

We continue to make use of the tidyverse in this section. We will first look at a toy example
to demonstrate different properties of a statistic and then simulate a statistic in practice
using flights data from nycflights13.

library(tidyverse)
library(nycflights13)

5.5.2 The variability of statistics

One thing we need to keep in mind is that the sampling distribution can look quite different
between runs. Recall the histogram of departure delays in flights.

delay_bins <- seq(-50, 150, 10)
ggplot(flights, aes(x = dep_delay, y = after_stat(density))) +
geom_histogram(col="grey", breaks = delay_bins)

Here is a sampling histogram of the delays in a random sample of 1,000 such flights.

sample_1000 <- slice_sample(flights, n = 1000, replace = TRUE)
ggplot(sample_1000, aes(x = dep_delay, y = after_stat(density))) +
geom_histogram(col="grey", breaks = delay_bins)
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Since we are assuming that the population of all departed NYC flights in 2013 is available
to us in flights, we can compute directly the value of the parameter “median flight delay.”
This is a rare luxury not usually possible using real data.
We can check the value we obtain through sampling against the value we obtain from the
entire population.

flights |>
pull(dep_delay) |>
median(na.rm = TRUE)

## [1] -2

Note the argument na.rm (read as “NaN remove”) used in this function call. An interesting
property of the flights dataset is that it has missing values, e.g., not all rows have a value
in the dep_delay column. We toggle a flag na.rm so that R knows to drop these rows before
computing the median.
The function median returns the half-way point of a column or vector after reordering the
values (the even median when the number of data is even). For flights, the returned value
means that the median delay was -2 minutes so about 50% of the flights in the population
had early departures of 2 minutes or more.

nrow(filter(flights, dep_delay <= -2)) / nrow(flights)

## [1] 0.4892332

Now let’s compute the sample median from the sampling distribution in sample_1000.

sample_1000 |>
pull(dep_delay) |>
median(na.rm = TRUE)

## [1] -1

Let us check what happens if we tried another random sample of 1,000 flights.
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slice_sample(flights, n = 1000, replace = TRUE) |>
pull(dep_delay) |>
median(na.rm = TRUE)

## [1] -2

You can run the code a few times to see that the value that appears as the result is not
consistent, but always either -1 or -2. While the two values are close, you cannot assert that
the median is -1 or -2.
Is there any way out of this? Can we say anything about how likely the median is -1 and
how likely the median is -2? We thus turn to simulation. We compute the sample median
statistic many times using sampling and then see a histogram of the numbers we obtain.

5.5.3 Simulating a statistic

Before getting down to the business of estimating the median distribution, let us set up the
steps for obtaining a distribution of a statistic.
Step 1: Select the statistic to estimate. Two questions are at hand. What statistic do
we want to estimate? How many samples do we use in each estimate?
Step 2: Write the code for estimation. We need to write the code for sampling and then
computing a statistic from the sample. Typically we encapsulate such steps in a function
that we can use in a call to the function replicate.
Step 3: Generate estimations and visualize. A question at hand is how many times do
we repeat the experiment? We may not have an answer to the question. We will write the
code for repeating experiments, collecting the results in a vector whose length is equal to the
number of repetitions, and then generating a visualization of the results we have collected
in the vector. The code we write may be a function that takes the number of repetitions as
an argument.

5.5.4 Guessing a “lucky” number

Before continuing on with the flights data, let us first see an example of simulating a
statistic using a toy problem.
Your friend invites you to a game of rolling die. He rolls a special 30-sided die (sometimes
called a “D30” die) 10 times and, after each roll, adds some “lucky” number of his choosing.
He does not say what his lucky number is or show you the dice rolls before he adds the
number to the roll.
Let us suppose his lucky number is 6. We can use sample to simulate the total rolls we get
to see. This is what one set of total rolls might look like after the game is over:

lucky_number <- 6
d30_dice <- 1:30
sample(d30_dice, size = 10, replace=TRUE) + lucky_number

## [1] 11 32 18 13 10 32 14 17 14 26

Can you figure out your friend’s lucky number knowing only these total rolls?
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5.5.5 Step 1: Select the statistic to estimate

Let us play with two different statistics:
• From the total rolls shown to you, use the smallest one as your guess. Since the minimum

value on a 30-sided die is 1, a good estimate is the smallest roll minus 1. Let us call this
the min-based estimator.

• From the total rolls shown to you, leverage the mean of the rolls as your guess. Let us
call this the mean-based estimator.

We simulate 10 rolls of a 30-sided die and add the lucky number to each roll. The following
function one_game simulates the action.

one_game <- function(lucky_number) {
sample(1:30, size = 10, replace=TRUE) + lucky_number

}
one_game(6)

## [1] 16 29 14 22 14 14 11 8 35 18

We can call one_game to generate a sample and then compute a statistic from it. This is
a process we can repeat a large number of times to simulate a large number of sample
statistics.

5.5.6 Step 2: Write code for estimation

The following function min_based implements the min-based estimator. As noted earlier, we
use the smallest total roll as our estimate and subtract 1.

min_based <- function(sample) {
min(sample) - 1

}

A mean-based estimate uses the mean total roll instead. This will look similar to our min-
based estimator. However, to guess the lucky number from the mean-based estimate, we
need to account for the average, or expected, value of a fair 30-sided dice. This can be
computed using probability theory, but simulation is often easier!
Let us simulate a 30-sided die over a big run, say, 10,000 rolls.

sample_rolls <- sample(d30_dice, size = 10000, replace = TRUE)

We then take the mean of these rolls.

d30_expected_value <- mean(sample_rolls)
d30_expected_value

## [1] 15.5154

This value we just computed has a special name: the expected value. Statisticians give it
this name because it is the number that we can expect to get in the long run, say, after
doing an arbitrarily large number of trials. For a 30-sided die, probability theory dictates
this should be 15.5. Our answer in d30_expected_value comes pretty close!
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We are now ready to implement the mean-based estimator.

mean_based <- function(sample) {
mean(sample) - d30_expected_value

}

The following function receives as an argument a functional estimator, which can be either
the min-based or mean-based estimator. The function simulates one game, computes a
statistic using the estimator function passed in, and returns the calculated value.

simulate_one_stat <- function(estimator) {
one_game(lucky_number = 6) |>
estimator()

}

Here is an example call using the min-based estimator. Run the cell a few times and observe
the variability in the result. Does it guess correctly the lucky number?

simulate_one_stat(min_based) # an example call

## [1] 7

5.5.7 Step 3: Generate estimations and visualize

We issue 10,000 repetitions of the simulation. Here is the replicate call that makes use of
the function simulate_one_stat. This is done twice, once for the mean-based estimator and
again for the min-based estimator.

reps <- 10000

mean_estimates <- replicate(n = reps, simulate_one_stat(mean_based))
min_estimates <- replicate(n = reps, simulate_one_stat(min_based))

We collect the results together into a tibble estimate_tibble. Note that a pivot transforma-
tion is applied here so that one row corresponds to exactly one simulated statistic.

estimate_tibble <- tibble(mean_est = mean_estimates,
min_est = min_estimates) %>%

pivot_longer(c(mean_est, min_est),
names_to = "estimator", values_to = "estimate")

estimate_tibble

## # A tibble: 20,000 x 2
## estimator estimate
## <chr> <dbl>
## 1 mean_est 6.28
## 2 min_est 6
## 3 mean_est 5.98
## 4 min_est 7
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## 5 mean_est 4.08
## 6 min_est 8
## 7 mean_est 0.985
## 8 min_est 9
## 9 mean_est 3.38
## 10 min_est 7
## # ... with 19,990 more rows

We can visualize the sampling distribution of the two estimators using an overlaid histogram.
We also plot the “balancing point” for each of these distributions (shown using a triangle)
by computing the mean of the corresponding simulated statistics.

bins <- seq(0, 22, 1)

dist_mean_tib <- tibble(
estimator = c("min_est", "mean_est"),
mean = c(min_estimates |> mean(),

mean_estimates |> mean()))

ggplot(estimate_tibble) +
geom_histogram(aes(x = estimate, y = after_stat(density),

fill = estimator),
position = "identity", alpha = 0.5,
color = "gray", breaks = bins) +

geom_point(data = dist_mean_tib,
aes(x = mean, y = 0, color = estimator),
shape = "triangle", size = 3) +

scale_x_continuous(breaks = bins)

Let us examine the min-based estimator. First, observe that its balancing point (in cyan)
is a number larger than the lucky number 6. Because this number is larger than the true
value (the lucky number 6), we conclude that the min-based estimator overestimates and is,
therefore, biased. This should not be surprising considering that, by design, this estimator
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can only predict a number equal to the lucky number or greater. This is the “bottoming
out” effect that we observe in the (5, 6] bin.
In contrast, the mean-based estimator appears to overestimate about as often as it under-
estimates. This gives rise to a familiar “bell-shaped” curve. We can see the effect of this
is a balancing point that is about equal to the true value. Therefore, we can say that the
estimator is unbiased.
The downside of the mean-based estimator is that it trades off bias for more variability.
This turns out to be one of the advantages of the min-based estimator: high bias but low
variability. This raises an important trade-off between variance and bias when working with
statistics.
Which estimator would you choose for this problem? Are there other situations where you
might prefer one more than the other, given the bias-variance trade-off?

5.5.8 Median flight delay in flights

Let us now return to estimating the median flight delay in the flights data frame. Recall
that, following our assumptions, we know the value of the parameter the statistic is trying
to estimate. It is the value −2.

5.5.9 Step 1: Select the statistic to estimate

We will draw random samples of size 1,000 from the population of flights and simulate the
median.

5.5.10 Step 2: Write code for estimation

We know how to generate a random sample of 1,000 flights.

sampled <- flights |>
slice_sample(n = 1000, replace = TRUE)

We also know how to compute the median of this sample.

sampled |>
pull(dep_delay) |>
median(na.rm = TRUE)

## [1] -2

Let’s wrap this up into a function we can use in a replicate call.

one_sample_median <- function() {
sample_median <- flights |>
slice_sample(n = 1000, replace = TRUE) |>
pull(dep_delay) |>
median(na.rm = TRUE)
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return(sample_median)
}

5.5.11 Step 3: Generate estimations and visualize

We will issue 5,000 repetitions of our simulation. Here is the call to replicate that makes
use of the function one_sample_median. Note that this simulation takes a bit more time to
run: we are repeating an experiment where we draw 1,000 random samples a total of 5,000
times!

num_repetitions <- 5000
medians <- replicate(n = num_repetitions, one_sample_median())

Here are what some of the sample medians look like.

medians_df <- tibble(medians)
medians_df

## # A tibble: 5,000 x 1
## medians
## <dbl>
## 1 -2
## 2 -1
## 3 -2
## 4 -1
## 5 -2
## 6 -2
## 7 -2
## 8 -2
## 9 -2
## 10 -1
## # ... with 4,990 more rows

Of course, it would be much better to visualize these results using a histogram. This his-
togram displays the sampling distribution of the statistic. As before, let us also annotate
this histogram with the balancing point of the distribution.

ggplot(medians_df) +
geom_histogram(aes(x = medians, y = after_stat(density)),

color = "gray", fill = "darkcyan", bins = 3) +
geom_point(aes(x = mean(medians), y = 0),

shape = "triangle",
color = "salmon", size = 3)



5.6 Convenience Sampling 255

The sample median is very likely to be about -2, which is exactly the value of the population
median. This is because the sampling distribution of 1,000 flight departure delays is close
to what we know about the true distribution. We can guess that in running the experiment,
each sampling distribution with 1,000 flights would have looked like the true one.
We can also observe that the balancing point of this distribution is pulled to the right of
the true value. This is likely due to the original distribution having a long right-tail. Hence,
we can say that the median statistic is biased. However, the bias in this case does not bear
much practically as the simulated statistics are so close to the population parameter. This
may be a case where we say that the result is “good enough.”
The interested reader can extend the analysis to try a mean-based estimate for this example
instead of the median-based used here. Would this estimator also be biased? How about its
variability?

5.6 Convenience Sampling

The story goes that we can derive meaningful conclusions about a population using sampling
distributions. Such distributions are formed by the application of random sampling. The
one we have used so far has been drawing random samples with (or without) replacement.
We refer to such a scheme as simple random sampling. However, simple random sampling is
not the only way to generate a sampling distribution. We briefly discussed another method
at the start of this chapter: convenience sampling. In this section, we examine convenience
sampling in greater detail and discuss its suitability for statistical analysis.

5.6.1 Prerequisites

We will continue to make use of the tidyverse in this section. Our example in this section
will be data about New York City flight delays in 2013 from the package nycflights13,
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which we have worked with before. We will also look at a sample of flights made available
in the edsdata package. Let’s load these packages.

library(tidyverse)
library(nycflights13)
library(edsdata)

Recall that the median flight delay in the true distribution of flights is −2.

median_delay <- flights |>
pull(dep_delay) |>
median(na.rm = TRUE)

median_delay

## [1] -2

5.6.2 Systematic selection

Recall that systematic selection is a kind of convenience sample. In systematic selection,
we pick some random pivot (say, the 4th row), and then select every 𝑖-th row after that.
This method of sampling is quite popular because of its sheer simplicity. For example, if we
wanted to sample a student population at a university, we could select all students based
on the digits in their university-issued ID number, e.g., selecting all students who have an
odd number in the second-to-last position of their ID.
We can explore this sampling strategy using the flights tibble. We will select a random
row in the tibble as the pivot, and then select every 100th row after that (recall that the
dataset is quite large, with ~330K rows!).

start <- sample(1:nrow(flights), size = 1)
start

## [1] 260042

Does the generated distribution mirror what we know about the true distribution?

selected_rows <- seq(start, nrow(flights), 100)

slice(flights, selected_rows) |>
ggplot(aes(x = dep_delay, y = after_stat(density))) +
geom_histogram(fill = "darkcyan", color = "gray",
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breaks = seq(-50, 150, 10)) +
ggtitle(str_c("starting row = ", start))

Looks good! The sampling distribution still looks a whole lot like the true distribution of
flight delays. However, the number of samples that appear in the tail varies greatly across
runs – why might that be? Run the cell a few times and observe the effect of the selected
start variable on the resulting distribution.
From our initial exploration, it looks like systematic sampling is a good bet. Any statistics we
compute using this sampling strategy is likely to provide a good estimate of the population
parameter in question.
Now suppose that we reorganized the flights data a bit into a tibble called mystery_flights.

mystery_flights <- mystery_flights |>
relocate(ID, .before = year)

mystery_flights

## # A tibble: 336,776 x 20
## ID year month day dep_t~1 sched~2 dep_d~3 arr_t~4
## <int> <int> <int> <int> <int> <int> <dbl> <int>
## 1 1 2013 1 1 517 515 2 830
## 2 2 2013 1 1 533 529 -6 850
## 3 3 2013 1 1 542 540 2 923
## 4 4 2013 1 1 544 545 -4 1004
## 5 5 2013 1 1 554 600 -6 812
## 6 6 2013 1 1 554 558 -3 740
## 7 7 2013 1 1 555 600 -5 913
## 8 8 2013 1 1 557 600 -6 709
## 9 9 2013 1 1 557 600 -3 838
## 10 10 2013 1 1 558 600 -2 753
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## # ... with 336,766 more rows, 12 more variables:
## # sched_arr_time <int>, arr_delay <dbl>, carrier <chr>,
## # flight <int>, tailnum <chr>, origin <chr>,
## # dest <chr>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>, and
## # abbreviated variable names 1: dep_time,
## # 2: sched_dep_time, 3: dep_delay, 4: arr_time

Notice anything problematic? Don’t worry if you can’t spot it; the problem doesn’t jump at
first glance. Let’s keep with our sampling scheme, but with one key modification. We will
assert that the randomly generated start is 2.

start <- 2

We can now perform the same systematic selection as before.

selected_rows <- seq(start, nrow(mystery_flights), 100)

slice(mystery_flights, selected_rows) |>
ggplot(aes(x = dep_delay, y = after_stat(density))) +
geom_histogram(fill = "darkcyan", color = "gray",

breaks = seq(-50, 150, 10)) +
ggtitle(str_c("starting row = ", start))

All of the sampled flights have early departures! What happened?
Let’s break down the steps we took. The first row selected is at index 2, as told by start,
and each row after increases by increments of 100. If we write out some of these indices, we
would select rows:

tibble(row_index = seq(2, nrow(mystery_flights), 100))

## # A tibble: 3,368 x 1
## row_index



5.6 Convenience Sampling 259

## <dbl>
## 1 2
## 2 102
## 3 202
## 4 302
## 5 402
## 6 502
## 7 602
## 8 702
## 9 802
## 10 902
## # ... with 3,358 more rows

There are several patterns that can be gleaned from this listing, but we will direct your
attention to one in particular: these row numbers are all even! If we pick out some of these
rows from mystery_flights, we find something revealing.

mystery_flights |>
slice(c(2, 102, 202, 302, 402))

## # A tibble: 5 x 20
## ID year month day dep_time sched~1 dep_d~2 arr_t~3
## <int> <int> <int> <int> <int> <int> <dbl> <int>
## 1 2 2013 1 1 533 529 -6 850
## 2 102 2013 1 1 754 759 -4 1039
## 3 202 2013 1 1 933 937 -3 1057
## 4 302 2013 1 1 1157 1200 -10 1452
## 5 402 2013 1 1 1418 1419 -14 1726
## # ... with 12 more variables: sched_arr_time <int>,
## # arr_delay <dbl>, carrier <chr>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>,
## # air_time <dbl>, distance <dbl>, hour <dbl>,
## # minute <dbl>, time_hour <dttm>, and abbreviated
## # variable names 1: sched_dep_time, 2: dep_delay,
## # 3: arr_time

Compare this with the rows just before these.

mystery_flights |>
slice(c(1, 101, 201, 301, 401))

## # A tibble: 5 x 20
## ID year month day dep_time sched~1 dep_d~2 arr_t~3
## <int> <int> <int> <int> <int> <int> <dbl> <int>
## 1 1 2013 1 1 517 515 2 830
## 2 101 2013 1 1 753 755 -2 1056
## 3 201 2013 1 1 932 930 2 1219
## 4 301 2013 1 1 1157 1205 -8 1342
## 5 401 2013 1 1 1416 1411 5 1603
## # ... with 12 more variables: sched_arr_time <int>,
## # arr_delay <dbl>, carrier <chr>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>,
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## # air_time <dbl>, distance <dbl>, hour <dbl>,
## # minute <dbl>, time_hour <dttm>, and abbreviated
## # variable names 1: sched_dep_time, 2: dep_delay,
## # 3: arr_time

It turns out that the flights with even row numbers all have early departures. By fixing start
to be an even value, our systematic sampling scheme was “fooled” into always choosing
flights that are ahead of schedule. Under such circumstances, we conclude that this sample
is not a random sample!

5.6.3 Beware: the presence of patterns

The mystery_flights tibble is a contrived example that required careful reorganization of
the rows to create a setup where every flight with an even row index among the approxi-
mately 330K flights present in the dataset had an early departure. While it is quite unlikely
that a real-world dataset would contain such an anomaly, the example points to valuable
lessons that can occur in practice, especially when dealing with a convenience sample.
Real-world datasets are rife with patterns. Manufacturing errors due to a particular mal-
functioning machine that assemble every 𝑛-th product; software engineering teams where
every tenth member is designated the product manager; university-issued ID’s where ID
numbers ending in 0 are reserved for faculty members. Any systematic sampling scheme
is much more prone to selecting samples that follow (unexpected) patterns than a simple
random sample would be. Not unlike like the story with mystery_flights, a biased sample
can result and lead to misleading (and likely erroneous) findings. Even more, some may be
willing to exploit such patterns for the sole possibility of increasing the significance of their
results – we would hardly call them data scientists!
Sampling strategies demand prudence on the part of the data scientist. It is for this reason
that random sampling is the most principled approach.

5.7 Exercises

Be sure to install and load the following packages into your R environment before beginning
this exercise set.

library(tidyverse)
library(edsdata)
library(gapminder)

Question 1 Following are some samples of students in a Data Science course named
“CSC100”:

1. All CSC100 students who attended office hours in the third week
of classes

2. All undergraduate freshmen in CSC100
3. Every 11th person starting with the first person in the classroom

on a random day of lecture
4. 11 students picked randomly from the course roster

Which of these samples are random samples, if any?
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Question 2. The following function twenty_sided_die_roll() simulates one roll of a 20-
sided die. Run it a few times to see how the rolls vary.

twenty_sided_die_roll <- function() {
return(sample(seq(1:20), size = 1))

}
twenty_sided_die_roll()

Let us determine the mean value of a twenty-sided die by simulation.
• Question 2.1 Create a vector sample_rolls that contains 10,000 simulated rolls of the

20-sided die. Use replicate().
• Question 2.2 Compute the mean of the vector sample_rolls you computed and assign

it to the name twenty_sided_die_expected_value.
• Question 2.3 Which of the following statements, if any, are true?

1. The value of twenty_sided_die_expected_value is an element
in sample_rolls.

2. The distribution of sample_rolls is roughly uniform and
symmetric around the mean.

3. The value of twenty_sided_die_expected_value is at the
midpoint between 1 and 20.

4. The computed mean does not carry a unit.
Question 3: Convenience sampling. The tibble sf_salary from the package edsdata
gives compensation information (names, job titles, salaries) of all employees of the City of
San Francisco from 2011 to 2014 at annual intervals. The data is sourced from the Nevada
Policy Research Institute’s Transparent California4 database and then tidied by Kaggle5.
Let us preview the data:

library(edsdata)
sf_salary

## # A tibble: 148,654 x 13
## Id Employe~1 JobTi~2 BasePay Overt~3 Other~4 Benef~5
## <dbl> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
## 1 1 NATHANIE~ GENERA~ 167411. 0 400184. NA
## 2 2 GARY JIM~ CAPTAI~ 155966. 245132. 137811. NA
## 3 3 ALBERT P~ CAPTAI~ 212739. 106088. 16453. NA
## 4 4 CHRISTOP~ WIRE R~ 77916 56121. 198307. NA
## 5 5 PATRICK ~ DEPUTY~ 134402. 9737 182235. NA
## 6 6 DAVID SU~ ASSIST~ 118602 8601 189083. NA
## 7 7 ALSON LEE BATTAL~ 92492. 89063. 134426. NA
## 8 8 DAVID KU~ DEPUTY~ 256577. 0 51322. NA
## 9 9 MICHAEL ~ BATTAL~ 176933. 86363. 40132. NA
## 10 10 JOANNE H~ CHIEF ~ 285262 0 17116. NA
## # ... with 148,644 more rows, 6 more variables:
## # TotalPay <dbl>, TotalPayBenefits <dbl>, Year <dbl>,
## # Notes <lgl>, Agency <chr>, Status <chr>, and

4https://transparentcalifornia.com/salaries/san-francisco/
5https://www.kaggle.com/datasets/kaggle/sf-salaries

https://transparentcalifornia.com
https://www.kaggle.com
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## # abbreviated variable names 1: EmployeeName,
## # 2: JobTitle, 3: OvertimePay, 4: OtherPay, 5: Benefits

Suppose we are interested in examining the mean total compensation of San Francisco
employees in 2011, where total compensation data is available in the variable TotalPay.

• Question 3.1 Apply the following three tidying steps:
– Include only those observations from the year 2011.
– Add a new variable TotalPay (10K) that contains the total compensation in amounts

of tens of thousands.
– Add a new variable dataset that contains the string "population" for all observations.

Assign the resulting tibble to the name sf_salary11.
In most statistical analyses, it is often difficult (if not impossible) to obtain data on every
individual from the underlying population. We instead prefer to draw some smaller sample
from the population and estimate parameters of the larger population using the collected
sample.

• Question 3.2 Let us treat the 36,159 employees available in sf_salary11 as the population
of San Francisco city employees in 2011. What is the annual mean salary according to this
tibble (with respect to TotalPay)? Assign your answer to the name pop_mean_salary11.

In Section 5.66 we learned that we need to be careful about the selection of observations
when sampling data. One (generally bad) plan is to sample employees that are somehow
convenient to sample. Suppose you randomly pick two letters from the English alphabet,
say “G” and “X”, and decide to form two samples: employees whose name starts with “G”
and employees whose name starts with “X”. Perhaps you are convinced that such a sample
should be “random” enough…

• Question 3.3 Explain why a sample drawn under this sampling plan would not be a
random sample.

• Question 3.4 Add a new variable to sf_salary11 named first_letter that gives the first
letter of an employee’s name (provided in EmployeeName). Assign the resulting tibble to
the name with_first_letter.

• Question 3.5 Generate a bar plot using with_first_letter that shows the number of
employees whose name begins with a given letter. For instance, the names of 2854 em-
ployees start with the letter “A”. Fill your bars according to whether the bar corresponds
to the letters “G” or “X”.
The following function plot_salary_histogram() receives a tibble as an argument and
compares the compensation distribution from the sample with the population using an
overlaid histogram. No changes are needed in the following chunk; just run the code.

# an example call using the full data
plot_salary_histogram(with_first_letter)

• Question 3.6 Write a function plot_and_compute_mean_stat() that receives a tibble as
an argument and:

– Plots an overlaid histogram of the compensation distribution with that of the popu-
lation.

– Returns the mean salary from the sample in the TotalPay (10K) variable as a double.

6https://ds4world.cs.miami.edu/sampling.html#convenience-sampling

https://ds4world.cs.miami.edu
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plot_and_compute_mean_stat(with_first_letter) # an example call

The value reported by plot_and_compute_mean_stat(with_first_letter) is the parame-
ter (because we computed it directly from the population) we hope to estimate by our
sampling plan.

• Question 3.7 Write a function filter_letter() that receives a character letter (e.g.,
“X”) and returns the data consisting of all rows whose EmployeeName starts with the up-
percase letter matching letter. Moreover, the value in the variable dataset should be
mutated to the string letter for all observations in the resulting tibble.

filter_letter("Z") # an example call

• Question 3.8 Let us now compare the convenience sample salaries with the full data
salaries by calling your function plot_compute_mean_stat(). Call this function twice, once
for the sample corresponding to “G” and another for the sample corresponding to “X”.

• Question 3.9 We have now examined two convenience samples. Do these give an accu-
rate representation of the compensation distribution of the population of San Francisco
employees? Why or why not?

• Question 3.10 As we learned, a more principled approach is to use random sampling.
Let us form a simple random sample by sampling at random without replacement. Target
1% of the observations in the population. The value in the variable dataset should be
mutated to the string "sample 1" for all observations. Assign the resulting tibble to the
name random_sample1.

• Question 3.11 Repeat Question 3.10, but now target 5% of the rows. This time, rename
the values in the variable dataset to the string "sample 2". Assign the resulting tibble to
the name random_sample2.

• Question 3.12 Call your function plot_compute_mean_stat() on the two random samples
you have formed.
You should repeat Question 3.10 through Question 3.12 a few times to get a sense of
how much the statistic changes with each random sample.

• Question 3.13 Do the statistics vary more or less in random samples that target 1% of
the observations than in samples that target 5%? Do the random samples offer a better
estimate of the mean salary value than the convenience samples we tried? Are these results
surprising or is this what you expected? Explain your answer.

Question 4 The tibble penguins from the package palmerpenguins includes measurements
for penguin species, island in Palmer Archipelago, size, and sex. Suppose you are part of a
conservation effort interested in surveying annually the population of penguins on Dream
island. You have been tasked with estimating the number of penguins currently residing on
the island.
To make the analysis easier, we will assume that each penguin has already been identified
through some attached ID chip. This identifier starts at 1 and counts up to 𝑁 , where 𝑁 is
the total number of observations. We will also examine the data only for one of the recorded
years, 2007.

• Question 4.1 Apply the following tidying steps to penguins:
– Filter the data to include only those observations from Dream island in the year

2007.
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– Create a new variable named penguin_id that assigns an identifier to the resulting
observations using the above scheme. (Hint: you can use seq()).

Assign the resulting tibble to the name dream_with_id.
• Question 4.2 In each survey you stop after observing 20 penguins and writing down

their ID. It is possible for a penguin to be observed more than once. Generate a vector
named one_sample that consists of the penguin IDs observed after one survey. Simulate
this sample from the tibble dream_with_id.

• Question 4.3 Generate a histogram in density scale of the observed IDs from the sample
you found in one_sample. We suggest using the bins seq(1,46, 1).
We will try to estimate the population of penguins on Dream island from this sample.
More specifically, we would like to estimate 𝑁 , where 𝑁 is the largest ID number (recall
this number is unknown to us!). We will try to estimate this value by trying two different
statistics: a max-based estimator and a mean-based estimator.

• Question 4.4 A max-based estimator simply returns the largest ID observed from the
sample. Write a function called max_based_estimate that receives a vector 𝑥, computes
the max-based estimate, and returns this value.

max_based_estimate(one_sample) # an example call

• Question 4.5 The mean of the observed penguin IDs is likely halfway between 1 and 𝑁 .
We have that the midpoint between any two numbers is 1+𝑁

2 . Solving this for 𝑁 yields
our mean-based estimate. Using this, write a function called mean_based_estimate that
receives a vector 𝑥, computes the mean-based estimate, and returns the computed value.

mean_based_estimate(one_sample) # an example call

• Question 4.6 Analyze several samples and histograms by repeating Question 7.2
through Question 7.5. Which estimates, if any, capture the correct value for 𝑁?

• Question 4.7 Write a function simulate_one_stat that receives two arguments, a tib-
ble tib and a function estimator (that can be either be your mean_based_estimate() or
max_based_estimate()). The function simulates a survey using tib, computes the statistic
from this sample using the function estimator, and returns the computed statistic as a
double.

simulate_one_stat(dream_with_id, mean_based_estimate) # example call

• Question 4.8 Simulate 10,000 max estimates and 10,000 mean estimates. Store the results
in the vectors max_estimates and mean_estimates, respectively.

• Question 4.9 The following code creates a tibble named stats_tibble using the estimates
you generated in Question 4.8.

stats_tibble <- tibble(max_est = max_estimates,
mean_est = mean_estimates) |>

pivot_longer(c(max_est, mean_est),
names_to = "estimator", values_to = "estimate")

stats_tibble
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Generate a histogram of the sampling distributions of both statistics. This should be a
single plot containing two histograms. You will need to use a positional adjustment to see
both distributions together.

• Question 4.10 How come the mean-based estimator has estimates larger than 46 while
the max-based estimator doesn’t?

• Question 4.11 Consider the following statements about the two estimators. For each of
these statements, state whether or not you think it is correct and explain your reasoning.

– The max-based estimator is biased, that is, it almost always underestimates.
– The max-based estimator has higher variability than the mean-based estimator.
– The mean-based estimator is unbiased, that is, it overestimates about as often as it

underestimates.
Question 5 This question is a continuation of the City of San Francisco compensation data
from Question 3 and assumes that the function filter_letter() exists and that the names
sf_salary11 and pop_mean_salary11 have already been assigned.

• Question 5.1 Let us write a function sim_random_sample() that samples size rows from
tibble tib by sampling at random with replacement. The function returns a tibble con-
taining the sample.

• Question 5.2 Write a function mean_stat_from_sample() that receives a sample tibble
tib. The function computes the mean of the variable TotalPay (10K) and returns this
value as a double.

mean_stat_from_sample(sf_salary11) # using the full data

• Question 5.3 Generate 10,000 simulated mean statistics using sim_random_sample() and
mean_stat_from_sample(). Each simulated mean statistic should be generated from the
tibble sf_salary11 using a sample size of 100.
The following code chunk puts the simulated values you found into a tibble named
stat_tibble.

stat_tibble <- tibble(rep=1:10000,
mean=mean_stats)

• Question 5.4 Generate a histogram showing the sampling distribution of these simulated
mean statistics. Then, attach, to the histogram, a square at the population mean for 2011
at 𝑦 = 0, with a size 2 square as the point.
We see that the population mean lies in the “bulk” of the simulated mean statistics.
Now that we have learned about different sampling plans, we can compare the statistics
generated by these plans with this histogram.

• Question 5.5 Compute a mean statistic called head_stat using the first 1,000 rows of
sf_salary. Then compute a mean statistic called tail_stat using the last 1,000 rows.

• Question 5.6 We saw that we can form convenience samples by partitioning the obser-
vations using the first letter of EmployeeName. Using a purrr map function, generate a list
of tibbles (each corresponding to all employees whose name starts with a given letter) by
mapping the 26 letters of the English alphabet to the function filter_letter(). Assign
the resulting list to the name by_letter.
Hint: LETTERS is a vector containing the letters of the English alphabet in uppercase.
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• Question 5.7 Use another purrr map function to map the list of tibbles by_letter to
the function mean_stat_from_sample to obtain a vector of mean statistics for each sample.
Assign the result to the name letter_group_stats.
The following code chunk organizes your results into a tibble letter_tibble.

letter_tibble <- tibble(
letter = LETTERS[1:26],
stat = letter_group_stats)

• Question 5.8 Augment your histogram from Question 5.2 with the computed statistics
you found from the head sample, tail sample, and the convenience samples. Use a point
geom for each statistic.

• Question 5.9 Do you notice that some of the averages among the 26 letter samples are
very close to the population mean while others are quite far away? How about for the
statistics generated using the tail and head samples? Why does this happen?
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Hypothesis Testing

In the previous chapters, we learned about randomness and sampling. Quite often, a data
scientist receives some data and must make some assertion about it. There are typically two
kinds of situations:
• She has one dataset and a model that the data should have followed. She needs to decide

if it is likely that the dataset indeed follows the model?
• She has two datasets. She needs to decide if it is possible to explain the two datasets

using a single model.
Here are examples of the two situations.
• A company making coins is testing the fairness of a coin. Using some machine, the

company tosses the coin 10,000 times. They record the face that turns up. By examining
the record of the 10,000 tosses, can you tell how likely it is that the coin is fair?

• Is the proportion of enrolled Asian American students at Harvard University dispropor-
tionately less than the pool of Harvard-admissible applicants? (SFFA v. Harvard)

For both situations, an important consideration to make is in terms of how to compare the
differences and figuring out how a sample at hand was generated.

6.1 Testing a Model

Suppose 10,000 tosses of a coin generate the following counts for “Heads” and “Tails”:

mystery_coin <- tibble(face = c("Heads", "Tails"),
face_counts = c(4953, 5047))

mystery_coin

## # A tibble: 2 x 2
## face face_counts
## <chr> <dbl>
## 1 Heads 4953
## 2 Tails 5047

By dividing each number by 10,000, we get the proportion of the occurrence of each face.

mystery_coin <- mystery_coin |>
mutate(face_prop = face_counts / 10000)

mystery_coin

## # A tibble: 2 x 3
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## face face_counts face_prop
## <chr> <dbl> <dbl>
## 1 Heads 4953 0.495
## 2 Tails 5047 0.505

We notice that the values are not exactly 0.5 (= 1/2). How far away is that from what we
know about the distribution of a fair coin?
We know that the probability of each face in a fair coin is 1/2. By subtracting 1/2 from
each and obtaining the absolute difference values from them by removing any negative sign
we have:

mystery_coin <- mystery_coin |>
mutate(fair_prop = 1/2,

abs_diff = abs(face_prop - fair_prop))
mystery_coin

## # A tibble: 2 x 5
## face face_counts face_prop fair_prop abs_diff
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 Heads 4953 0.495 0.5 0.00470
## 2 Tails 5047 0.505 0.5 0.00470

We then compute the sum and take one half of this value.

mystery_coin |>
summarize(tvd_value = sum(abs_diff) / 2)

## # A tibble: 1 x 1
## tvd_value
## <dbl>
## 1 0.00470

The number found by following the above steps is called the test statistic. The test statistic
is a statistic used to evaluate a hypothesis, i.e., whether a coin at hand is fair or not. When
we compute the test statistic from the data given to us, we call this the observed value of
the test statistic.
There are many possible test statistics we could have tried for this problem. This one goes
by a special name: the total variation distance (or, for short, TVD). The total variation
distance serves as the measure for the difference between two distributions, namely, the
difference between some given distribution (e.g., following the coin handed to us) and a
sampling distribution (e.g., following a fair coin).
Another possible, and perhaps straightforward, test statistic is to simply count the number
of heads that appear in the sample.

observed_heads <- mystery_coin |>
filter(face == "Heads") |>
pull(face_counts)

observed_heads

## [1] 4953
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Is 4953 heads too small to be due to chance? It is hard to tell without knowing the number
of heads we get by chance.
We can conduct some simulation to obtain a sampling distribution of the number of heads
produced by a fair coin. As mentioned earlier, the proportion that each face turns up is not
constant, even for a fair coin. So, by simulating tosses of a fair coin, we must expect to see
a range of the number of heads seen.

6.1.1 Prerequisites

Before starting, let us load the tidyverse as usual.

library(tidyverse)

6.1.2 The rmultinom function

We saw before that we can generate a sampling distribution by putting in place some
sampling strategy. Perhaps the most straightforward is simple random sampling with re-
placement. This will be the approach we continue to make use of here, as well as throughout
the rest of the text.
We also learned about two different ways to sample with replacement. sample samples items
from a vector, which we used when simulating the expected amount of grains a minister
receives after some number of days. slice_sample functions identically, but instead samples
from rows of a data frame or tibble. To generate a sampling distribution for this experiment,
we could just use sample again. But there is a quicker way, using a function called rmultinom,
which is tailored for sampling at random from categorical distributions. We introduce it here
and will use it several times this chapter.
Here is how we can use it to generate a sampling distribution of 100 tosses of a fair coin.

fair_coin <- c(1/2, 1/2)
sample_vector <- rmultinom(n = 1, size = 100, prob = fair_coin)
sample_vector

## [,1]
## [1,] 55
## [2,] 45

For generating a sampling distribution, we are more interested in the proportion of resulting
heads and tails. Thus, we should divide by the number of tosses. Note how the probability
of heads and tails is about equal.

sample_vector / 100

## [,1]
## [1,] 0.55
## [2,] 0.45

So we can just as easily simulate proportions instead of counts.
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The classic interpretation of rmultinom is that you have some marbles to put into boxes of
size size, each with some probability prob; the length of prob determines the number of
boxes. The result shows the number of marbles that end up in each box. Thus, the function
takes the following arguments:
• size, the total number of marbles that are put into the boxes.
• prob, the distribution of the categories in the population, as a vector of proportions that

add up to 1.
• n, the number of samples to draw from this distribution. We will typically leave this at

1 to make things easier to work with later on.
It returns a vector containing the number of marbles in each category in a random sample of
the given size taken from the population. Because this distribution is so special, statisticians
have given it a name: the multinomial distribution.
Let us see how we can use it to assess the model for 10,000 tosses of a coin.

6.1.3 A model for 10,000 coin tosses

We can extend our coin toss example code to incorporate the rmultinom function:

sample_tibble <- tibble(
face = c("Heads", "Tails"),
fair_probs = 1/2,
sample_counts = rmultinom(n = 1,

size = 10000,
prob = fair_probs))

sample_tibble

## # A tibble: 2 x 3
## face fair_probs sample_counts[,1]
## <chr> <dbl> <int>
## 1 Heads 0.5 5023
## 2 Tails 0.5 4977

How many heads are in this sample?

sample_heads <- sample_tibble |>
filter(face == "Heads") |>
pull(sample_counts)

sample_heads

## [,1]
## [1,] 5023

We can use this to generate a sampling distribution for the number of heads produced by
a fair coin. Let’s wrap this up into a function we can call. This will produce one simulated
test statistic under the assumption of a fair coin.

one_simulated_statistic <- function() {
sample_tibble <- tibble(
face = c("Heads", "Tails"),
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fair_probs = 1/2,
sample_counts = rmultinom(n = 1,

size = 10000,
prob = fair_probs))

sample_heads <- sample_tibble |>
filter(face == "Heads") |>
pull(sample_counts)

return(sample_heads)
}

Next, we create a vector sample_stats containing 1,000 simulated test statistics. As before,
we will use replicate to do the work.

num_repetitions <- 1000
sample_stats <- replicate(n = num_repetitions,

one_simulated_statistic())

6.1.4 Chance of the observed value of the test statistic occurring

To interpret the results of our simulation, we start by visualizing the results using a his-
togram of the samples.

ggplot(tibble(sample_stats)) +
geom_histogram(aes(x = sample_stats, y = after_stat(density)),

fill = "darkcyan", color = 'gray', bins=14) +
labs(x = "Number of heads")

Where does the observed value fall in this histogram? We can plot it easily.
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ggplot(tibble(sample_stats)) +
geom_histogram(aes(x = sample_stats, y = after_stat(density)),

fill = "darkcyan", color = 'gray', bins = 12) +
geom_point(aes(x = observed_heads, y = 0), size = 3,

color = "salmon") +
labs(x = "Number of heads")

Let us look at the proportion of the elements in the vector sample_stats that are at least
as small as the observed number of heads or more extreme, whose value we have stored in
observed_heads. We simply count the elements matching the requirement and then divide
the count by the length of the vector.

sum(sample_stats <= observed_heads) / length(sample_stats)

## [1] 0.19

The value we get is 0.19, or about 19%. We interpret this value as stating the chance the
test statistic achieves a value, under the assumption of the model, at least as extreme as
4953 heads or less. We conclude that a fair coin would yield the observed test statistic value
we found (or less) 19% of the time. This value, computed through simulation, is what we
call a p-value.
To compute a p-value, we take the following steps:

1. Establish some model that is possibly describing a
quantifiable phenomenon.

2. Run a simulation to obtain a histogram of the quantifiable
phenomenon under the model.

3. Compare the observation and examine where in the histogram
the observation stands.

More specifically, we estimate how far the observation is from the central portion of the
histogram by splitting the histogram at the point of observation. As shown in the following
figure, the portion less than or equal to the observation (in dark cyan) and the portion
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greater than or equal to the observation (in orange). Note that we can include the equality,
when the sampled value equals the observed value, on either side.

The more orange bars that are visible in the histogram, the higher the likelihood of the
observation. Conversely, the less orange bars there are, the lower the likelihood of seeing
such an observation. The area covered by the orange bars is formally called the “area in the
tail.” The area in the tail is designated a special name: the p-value.
When we compute a p-value, we have in mind two possible interpretations. We call them
the Null Hypothesis and the Alternative Hypothesis.
• Null Hypothesis (NH): The hypothesis we use to create the model for simulation.

For example, we assume that the coin we have is a fair coin, about 50% equal chance to
see either face. Any variation from what we expect is because of chance variation.

• Alternative Hypothesis (AH): The opposite, or counterpart, of the Null Hypothesis.
For example, the AH states that the coin is biased towards tails. The difference we
observed is caused by something other than randomness.

It is important that your null hypothesis acknowledges differences in the data. For example,
if the null hypothesis states that a die is fair, why did you not get any 3’s when rolling the
die 6 times?
We can provide one more definition of the p-value in the language of these hypotheses:

The chance, under the null hypothesis, of getting a test statistic equal to
the observed test statistic or more extreme in the direction of the alternative
hypothesis.
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6.2 Case Study: Entering Harvard

Harvard University is one of the most prestigious universities in the United States. A recent
lawsuit by Students for Fair Admissions (SFFA)1 led by Edward Blum against Harvard
University alleges that Harvard has used soft racial quotas to keep the numbers of Asian-
Americans low.
Put differently, the allegation claims that, from the pool of Harvard-admissible American
applicants, Harvard uses a racial discriminatory score that allows the college to choose
disproportionately less Asian-Americans. As of this writing, the lawsuit has been appealed
and is to appear before the Supreme Court.
This section examines the “Harvard model” to assess, at a basic level, the claim put forward
by the lawsuit.

6.2.1 Prerequisites

Before starting, let’s load the tidyverse as usual.

library(tidyverse)

6.2.2 Students for Fair Admissions

Harvard University publishes some statistics2 on the class of 2024. According to the data,
the proportions of the class for Whites, Blacks, Hispanics, Asians, and Others (International
and Native Americans) are respectively 46.1%, 14.7%, 12.7%, 24.4%, and 2.1%.
We do not have the data of the students admissible to enter Harvard so, in lieu of this,
we refer to student demographics enrolled in a four-year college. According to Chronicle
of Higher Education3 2020-2021 Almanac, the racial demographics of full-time students in
4-year private non-profit institutions – Harvard is one of them – in Fall 2018 are: 63.6%
White, 11.5% Black, 12.3% Hispanic, 8.1% Asian, and 4.5% Other.
Let’s compile this information into a tibble.

class_props <- tribble(~Race, ~Harvard, ~Almanac,
"White", 46.1, 63.6,
"Black", 14.7, 11.5,
"Hispanic", 12.7, 12.3,
"Asian", 24.4, 8.1,
"Other", 2.1, 4.5)

class_props

## # A tibble: 5 x 3
## Race Harvard Almanac

1https://studentsforfairadmissions.org/
2https://college.harvard.edu/admissions/admissions-statistics
3http://www.chronicle.com

https://studentsforfairadmissions.org
https://college.harvard.edu
http://www.chronicle.com
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## <chr> <dbl> <dbl>
## 1 White 46.1 63.6
## 2 Black 14.7 11.5
## 3 Hispanic 12.7 12.3
## 4 Asian 24.4 8.1
## 5 Other 2.1 4.5

The distributions may look quite different from each other. Of course, the demographics from
the Almanac includes students who did not apply to Harvard, those who might not have
got into Harvard, those applied and did not get in, and international students. Moreover,
the Almanac data covers all full-time students in 2018 but not students who entered college
in 2020.
Notwithstanding these differences, let us conduct an experiment to see how the demograph-
ics from Harvard look different from those given by the Almanac in terms of a sampling
distribution.
As we will be handling proportions, let us scale the numbers down (by dividing each element
by 100) so that they are expressed as percentages.

class_props <- class_props |>
mutate(Harvard = Harvard / 100,

Almanac = Almanac / 100)
class_props

## # A tibble: 5 x 3
## Race Harvard Almanac
## <chr> <dbl> <dbl>
## 1 White 0.461 0.636
## 2 Black 0.147 0.115
## 3 Hispanic 0.127 0.123
## 4 Asian 0.244 0.081
## 5 Other 0.021 0.045

We will also write a function that computes the total variation distance (TVD) between
two vectors.

compute_tvd <- function(x, y) {
return(sum(abs(x - y)) / 2)

}

In this study, our observed value is the TVD between the distribution of students in the
Harvard class and the Almanac.

harvard_diff <- class_props |>
summarize(compute_tvd(Harvard, Almanac)) |>
pull()

harvard_diff

## [1] 0.199

The Harvard class of 2024 has 2015 students. We can think of the process of sampling 2015
people to fill the “Harvard class” from those who “were attending” a four-year non-profit
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college in Fall 2018 and then examining their racial distribution. Of course, we cannot reach
out to those individuals specifically, but we know the distribution of the entire population
from which we want to sample. Therefore, we can simulate a large number of times what
this “Harvard class” looks like and compare it with what we know about the actual Harvard
class distribution, available in harvard_diff.
Our sampling plan can be framed as a “boxes and marbles” problem, as we saw in the
previous section. There are five “boxes” to choose from, where each corresponds to a race:
White, Black, Hispanic, Asian, and Other. The goal is to place marbles (which correspond
to students) in each of the boxes, where the probability of ending up in any of the boxes is
given by the Almanac.
This is an excellent fit for the rmultinom function. For example, here is one simulation of
the proportion of races found in a “Harvard class.”

sample_vector <- rmultinom(n=1, size=2015,
prob = pull(class_props, Almanac)) / 2015

sample_vector

## [,1]
## [1,] 0.63374690
## [2,] 0.11761787
## [3,] 0.12406948
## [4,] 0.08784119
## [5,] 0.03672457

How far is our simulated class from the Almanac? We compute the TVD to find out.

class_props |>
mutate(sample = sample_vector) |>
summarize(compute_tvd(sample, Almanac)) |>
pull()

## [1] 0.01052854

We wrap our work into a function.

one_simulated_class <- function(props) {
props |>

mutate(sample = rmultinom(n=1, size=2015, prob = Almanac) / 2015) |>
summarize(compute_tvd(sample, Almanac)) |>
pull()

}

Let us simulate what 10,000 classes could look like. This will be contained in a vector called
sample_class_tvds. Also, as before, we will use replicate to do the work.

num_repetitions <- 10000
sample_class_tvds <- replicate(n = num_repetitions,

one_simulated_class(class_props))

We can now visualize the result.
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ggplot(tibble(sample_class_tvds)) +
geom_histogram(aes(x = sample_class_tvds, y = after_stat(density)),

bins = 30, fill = "darkcyan", color = 'gray')

Where does the true Harvard class lie on this histogram? We can plot a point geom to find
out.

ggplot(tibble(sample_class_tvds)) +
geom_histogram(aes(x = sample_class_tvds, y = after_stat(density)),

bins = 70, fill = "darkcyan", color = 'gray') +
geom_point(aes(x = harvard_diff, y = 0), size = 3, color = "salmon")

The orange dot shows the distance value of the Harvard value from the Almanac value.
What we see is that the proportion of the races at Harvard is nothing like the national
proportion.
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6.2.3 Proportion of Asian American students

The prior experiment looked at the proportion of all races. However, the claim given by
the lawsuit is specifically about Harvard-admissible students who are Asian American. We
can now address this by refining our model to include only Asian American students and
non-Asian American students.

class_props_asian <- tribble(~Race, ~Harvard, ~Almanac,
"Asian", 24.4, 8.1,
"Other", 75.6, 91.9)

class_props_asian

## # A tibble: 2 x 3
## Race Harvard Almanac
## <chr> <dbl> <dbl>
## 1 Asian 24.4 8.1
## 2 Other 75.6 91.9

As before, we transform the data to be in terms of proportions.

class_props_asian <- class_props_asian |>
mutate(Harvard = Harvard / 100,

Almanac = Almanac / 100)
class_props_asian

## # A tibble: 2 x 3
## Race Harvard Almanac
## <chr> <dbl> <dbl>
## 1 Asian 0.244 0.081
## 2 Other 0.756 0.919

The proportion of Asian American in private non-profit 4-year colleges is just 8.1% while
the race occupies 24.4% of the Harvard freshman class. Let’s recompute our observed TVD
value.

harvard_diff <- class_props_asian |>
filter(Race == "Asian") |>
summarize(abs(Harvard - Almanac)) |>
pull()

harvard_diff

## [1] 0.163

Note that we took a shortcut for computing the TVD here. When dealing with two cate-
gories, the TVD is equal to the distance between the two proportions in one of the categories.
Re-running the simulation is easy. Note that instead of passing class_props as an argument
to the function one_simulated_class, we pass the new tibble class_props_asian.

num_repetitions <- 10000
sample_class_tvds <- replicate(n = num_repetitions,

one_simulated_class(class_props_asian))
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We again visualize the result.

ggplot(tibble(sample_class_tvds)) +
geom_histogram(aes(x = sample_class_tvds, y = after_stat(density)),

binwidth=0.002, fill = "darkcyan", color = 'gray')

Where does the observed value fall in this histogram?

ggplot(tibble(sample_class_tvds)) +
geom_histogram(aes(x = sample_class_tvds, y = after_stat(density)),

binwidth=0.002, fill = "darkcyan", color = 'gray') +
geom_point(aes(x = harvard_diff, y = 0), size = 3, color = "salmon")

We find that the result is the same; the Harvard proportion of Asian American students is
not at all like the national value. We can state, with great confidence, that Harvard enrolls
much more Asian students than the national average.
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Important note: The reader should be cautioned not to accept these results as direct
evidence against the suit’s case. As noted at the outset of this section, we do not know the
proportion of Harvard-admissible students and must instead rely on a national Almanac
for reference. The base population of students can be very much different which is, in fact,
something we anticipated.

6.3 Significance Levels

So far we have evaluated models by comparing some observation to a prediction made by a
model. For instance, we compared:

• Racial demographics at Harvard University with the national Almanac at four-year non-
profit private colleges.

• 10,000 tosses of an unknown coin at hand with a fair coin.
Sometimes the observed value of the test statistic ends up in the “bulk” of the predictions;
sometimes it ends up very far away. But how do we define what “close” or “far” is? And at
what point does the observed value transition from being “close” to “far”?
This section examines the significance of an observed value. To set up the discussion, we
introduce another example still on the topic of academics: midterm scores in a hypothetical
Computer Science course.

6.3.1 Prerequisites

Before starting, let’s load the tidyverse as usual. We will also use a dataset from the edsdata
package, so let us load this in as well.

library(tidyverse)
library(edsdata)

6.3.2 A midterm grumble?

A hypothetical Computer Science course had 40 enrolled students and was divided into
3 lab sections. A Teaching Assistant (TA) leads each section. After a midterm exam was
given, the students in one section noticed that their midterm scores were lower compared
to students in the other two lab sections. They complained that their performance was due
to the TA’s teaching. The professor faced a dilemma: is it the case that the TA is at fault
for poor teaching or are the students from that section more vocal about their grumbles
following a exam?
If we were to fill that lab section with randomly selected students from the class, it is possible
that their average midterm grade will look a lot like the score the grumbling students are
unhappy about. It turns out that what we have stated here is a chance model that we can
simulate.
Let’s have a look at the data from each student in the course. The following tibble csc_labs
contains midterm and final scores, and the lab section the student is enrolled in.
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csc_labs

## # A tibble: 40 x 3
## midterm final section
## <dbl> <dbl> <chr>
## 1 73 79 F
## 2 30 0 D
## 3 91 77.2 D
## 4 89 76.5 D
## 5 71 76.5 H
## 6 28 0 H
## 7 32 0 F
## 8 54 88 D
## 9 88 76 D
## 10 59 68 F
## # ... with 30 more rows

We can use the dplyr verb group_by to examine the mean midterm grade as well as the
number of students in each section.

lab_stats <- csc_labs |>
group_by(section) |>
summarize(midterm_avg = mean(midterm),

count = n())
lab_stats

## # A tibble: 3 x 3
## section midterm_avg count
## <chr> <dbl> <int>
## 1 D 70 14
## 2 F 74.3 17
## 3 H 68.6 9

Indeed, it seems that the section H students fared the worst, albeit by a small margin, among
the three sections. Our statistic then is the mean grade of students in the lab section. Thus,
our observed statistic is the mean grade from section H, which is about 68.56.

observed_statistic <- lab_stats |>
filter(section == "H") |>
pull(midterm_avg)

observed_statistic

## [1] 68.55556

We formally state our null and alternative hypothesis.
Null Hypothesis: The mean midterm grades of students in lab section H looks like the
mean grades of a “section H” that is generated by randomly sampling the same number of
students from the class.
Alternative Hypothesis: The section H midterm grades are too low.
To form a random sample, we will need to sample without replacement 9 students from the
course to fill up the theoretical “lab section H”.
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random_sample <- csc_labs |>
select(midterm) |>
slice_sample(n = 9, replace = FALSE)

random_sample

## # A tibble: 9 x 1
## midterm
## <dbl>
## 1 89
## 2 92
## 3 73
## 4 75
## 5 82
## 6 68
## 7 67
## 8 100
## 9 88

We can look at the mean midterm score for this randomly sampled section.

random_sample |>
summarize(mean(midterm)) |>
pull()

## [1] 81.55556

Now that we know how to simulate one value, we can wrap this into a function.

one_simulated_mean <- function() {
random_sample <- csc_labs |>
select(midterm) |>
slice_sample(n = 9, replace = FALSE)

random_sample |>
summarize(mean(midterm)) |>
pull()

}

We will simulate the “section H lab” 10,000 times. Let us run the simulation!

num_repetitions <- 10000
sample_means <- replicate(n = num_repetitions, one_simulated_mean())

As before, we visualize the resulting distribution of grades.

ggplot(tibble(sample_means)) +
geom_histogram(aes(x = sample_means, y = after_stat(density)),

bins = 15, fill = "darkcyan", color = 'gray')
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It seems that the grades cluster around 72. Where does the actual section H section lie?
Recall that this value is available in the variable observed_statistic. We overlay a point
geom to our above plot.

ggplot(tibble(sample_means)) +
geom_histogram(aes(x = sample_means, y = after_stat(density)),

bins = 15, fill = "darkcyan", color = 'gray') +
geom_point(aes(x = observed_statistic, y = 0),

size = 3, color = "salmon")

It seems that the observed statistic is “close” to the center of randomly sampled scores.
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6.3.3 Cut-off points

Let’s sort the sample means generated. We will examine in particular the value at 10% and
5% from the bottom. We will first turn to the value at 10%.

sorted_samples <- sort(sample_means)
sorted_samples[length(sorted_samples)*0.1]

## [1] 63.33333

We plot our sampling histogram and overlay it with a vertical line at this value.

This means that 10% of our simulated mean statistics are equal to or less than 63. Put
differently, the chance of a an average midterm score lower than 63 occurring, under the
assumption of a TA teaching in good faith, is around 10%.
The situation is not much different if we look at the value 5% from the bottom, which we
find to be about 61. We redraw the situation in on our sampling histogram.

sorted_samples[length(sorted_samples)*0.05]

## [1] 61.11111
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This time, the chance of obtaining a simulated mean midterm score at least as low as 61 is
about 5%.
We say that the threshold point 63 is at the 90% significance level and the threshold point
61 is at the 95% significance level.

6.3.4 The significance level is an error probability

The last figure shows that, although rare, a lab section with a “TA teaching in good faith”
can still produce mean midterm scores that are at least as low as 61. How often does that
occur? The figure gives the answer for that as well: it does so with about 5% chance.
Therefore, if the TA is teaching in good faith and our test uses a 95% significance level to
decide whether or not the TA is guilty, then there is about a 5% chance that the test will
wrongly conclude that the mean midterm scores are too low and, consequently, the TA is
at fault. This example points to a general fact about significance levels:

If you use a 𝑝% significance level for the p-value, and the null hypothesis
happens to be true, there is about a 1−𝑝% chance that the test will incorrectly
conclude the alternative hypothesis.

Statistical inferences, unlike logical inferences, can be wrong! But the power of statistics is
its ability to quantify how often this error will occur. In fact, we can control the chance
of wrongly convicting the TA by choosing a higher significance level. We could look at the
99% significance level or even the 99.9% and 99.99% levels; these are commonly referred to
in the area of physics which rely on enormous evidence to prove something axiomatic.
Here, too, are trade-offs. By minimizing the error of wrongly convicting a TA teaching in
good faith, we increase the chance of another kind of error occurring: our test concluding
nothing when in fact there is something unusual about the lab section’s midterm grades.
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It is important to note that these cut-off points are convention only and do not have any
strong theoretical backing. They were first established by the statistician Ronald Fisher in
his seminal work Statistical Methods for Research Workers4.
Therefore, declaring an observed statistic as being “too low” or “too high” is a judgment
call. In any statistics-based research, you should always provide the observed test statistic
and the p-value used in addition to giving your decision; this way your readers can decide
for themselves whether or not the results are indeed significant.

6.3.5 The verdict: is the TA guilty?

We can set a modest significance level at 95% for the course case study. Of course, judgment
is needed if the decision resulting from this study will cause the TA to be reprimanded – we
may tend towards a much more conservative significance level to be fully convinced, even
if this means increasing the chance of a “guilty TA” being let free.
We overlay the observed statistic on the sampling histogram. As before, the orange bars
show the 95% significance region.

We see that the point does not cross the vertical purple line. We can check numerically how
much area “is in the tail”.

4https://en.wikipedia.org/wiki/Statistical_Methods_for_Research_Workers

https://en.wikipedia.org
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sum(sample_means <= observed_statistic) / num_repetitions

## [1] 0.3192

We conclude the TA’s defense holds up pretty well: the average lab section H scores are not
any different from those generated by chance.
A note, also, on drawing conclusions from a hypothesis test. Even if there was significant
evidence to reject the null hypothesis at some conventional cut-off, caution must be exercised
in interpreting the poor performance as being directly caused by the TA’s instruction. There
could be other variables at play that we did not account for that can affect the significance,
e.g., the background of the students enrolled in this particular lab section (did they have less
prior programming experience compared to the other sections?). We call these confounding
variables, which we will examine in more depth in a later chapter.
In any case, it would be prudent to check in with the TA to get their take on the story.

6.3.6 Choosing a test statistic

By this point, we have been introduced to a few different test statistics. A common challenge
when developing a hypothesis test is to first define what a “good” test statistic is for the
problem.
Consider your alternative hypothesis and what evidence favors it over the null. If only “large
values” or “small values” of the test statistic favor the alternative, then we recommend using
the test statistic. For instance, in the midterm example, we considered only “small values”
of the sample mean statistic to determine if the lab section H scores are “too low.” In
the Harvard admissions example, we considered “large values” of the TVD test statistic to
determine if the TVD of the Harvard proportions is “too big” to have been generated by a
model under the null hypothesis.
Avoid choosing test statistics where “both big values and small values” favor the alternative.
In this case, the area that supports the alternative includes both the left and right “tails”.
Consider the following sampling histogram of the test statistic and note the tails as indicated
by the orange bars.
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We suggest modifying your test statistic so that the evidence favoring the alternative involves
only one tail.
Finally, we present a table with some common test statistics and when to use each.

Test statistic When to use?
Total Variation Distance
(TVD)

Categorical data; compare your sample with the distribution
it was drawn from. rmultinom

Number of heads,
difference in means

Numerical data; direction matters, e.g., “too few heads” or
“too many heads”

Absolute difference,
mean absolute difference

Numerical data; direction does not matter, only distance,
e.g., “number of heads seen is different from a chance flip”

6.4 Permutation Testing

In the previous section, we study the use of hypothesis testing. In this section we learn a
simple method to compare two distributions using a method we call permutation testing.
This allows us to decide if the two distributions come from the same underlying distribution.

6.4.1 Prerequisites

Let us begin by loading the tidyverse. We will also use a dataset from the edsdata package.

library(tidyverse)
library(edsdata)
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6.4.2 The effect of a tutoring program

The tibble finals from the edsdata package contains final exam grades in a hypothetical
Computer Science course for 105 students. They are divided into two groups, based on
two different offerings of the course labeled A and B. The more recent offering B featured
a tutoring program for students to receive help on assignments and exams. The course
instructor is interested in finding out if the tutoring program boosted overall performance
in the class, measured by a final exam. This could help the instructor and department decide
if the program should continue or even be expanded. Suppose that the dataset is collected
over two semesters from the same Computer Science course.
Let’s first load the dataset.

finals

## # A tibble: 102 x 2
## grade class
## <dbl> <chr>
## 1 89 A
## 2 17 A
## 3 94 A
## 4 51 A
## 5 49 A
## 6 93 A
## 7 52 A
## 8 54 A
## 9 57 A
## 10 65 A
## # ... with 92 more rows

We can examine the number of enrolled students in each of the two offerings.

finals |>
group_by(class) |>
count()

## # A tibble: 2 x 2
## # Groups: class [2]
## class n
## <chr> <int>
## 1 A 49
## 2 B 53

It appears they are about equal. Let’s now turn to a distribution of the students in the
offering that featured the tutoring program (class B) compared to those in the offering
without the program (class A). To generate an overlaid histogram, we use the positional
adjustment argument identity and set an alpha so that the bars are drawn with slight
transparency.

ggplot(finals) +
geom_histogram(aes(x = grade, y = after_stat(density), fill = class),
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bins = 10, color = "gray",
alpha = 0.7, position = "identity")

By observation alone, it seems that the final scores of students in the offering where the
tutoring program was available (B) is slightly to the right of the distribution corresponding
to scores when the program did not exist (A). Could this be chalked up to chance?
As we have done throughout this chapter, we can address this question by means of a
hypothesis test. We will state a null and alternative hypothesis that arise from the problem.
Null hypothesis: In the population, the distribution of final exam scores where the tutoring
program was available is the same as those when the service did not exist. The difference
seen in the sample is because of chance.
Alternative hypothesis: In the population, the distribution of final exam scores when the
tutoring program was available are, on average, higher than the scores when the program
was not.
According to the alternative hypothesis, the average final score in offering B should be higher
than the average final score in offering A. Therefore, a good test statistic we can use is the
difference in the mean between the two groups. That is,

test statistic = 𝜇𝐵 − 𝜇𝐴

where 𝜇 denotes the mean of the group.
First, we form two vectors finalsA and finalsB that contain final scores with respect to the
course offering.

finalsA <- finals |>
filter(class == 'A') |> pull(grade)

finalsB <- finals |>
filter(class == 'B') |> pull(grade)
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The observed value of the statistic can be computed as the following.

observed_statistic <- mean(finalsB) - mean(finalsA)
observed_statistic

## [1] 6.105506

We can write a function that computes the statistic for us. We call it mean_diff.

mean_diff <- function(a, b) {
return(mean(a) - mean(b))

}

Observe how it returns the same value for the observed statistic.

mean_diff(finalsB, finalsA)

## [1] 6.105506

To predict the statistic under the null hypothesis, we defer to an idea called the permutation
test.

6.4.3 A permutation test

Suppose that we are given the following vector of integers.

1:10

## [1] 1 2 3 4 5 6 7 8 9 10

We can interpret these numbers as indices that refer to an element inside a vector. We
imagine that the first half of indices belong to a group A, and the second half group B.
Under the assumption of the null hypothesis, there should be no difference between the two
distributions A and B with respect to the underlying population. For example, whether a
final exam score belongs to the course offering A or B should have no effect on the mean
final score. If so, there should be no consequences if we place both groups into a pot, shuffle
them around, and compute the mean difference from the result. The resulting value we get
from this process is one simulated value of the test statistic under the null hypothesis.
The first bit of machinery we need is a function that shuffles a sequence of integers. We
actually already know one: sample.

shuffled <- sample(1:10)
shuffled

## [1] 7 10 5 3 4 1 2 6 9 8

In this example, sample receives a vector of numbers 1 through 10 and returns the result
after shuffling them. We might also call the result a permutation of the original sequence –
hence, its namesake.
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If we again interpret the resulting vector as indices, we take the first half to be the indices
of the shuffled group A and the second half the shuffled group B.

shuffled[1:5] # shuffled group A

## [1] 7 10 5 3 4

shuffled[6:10] # shuffled group B

## [1] 1 2 6 9 8

The remaining work then is to compute the difference in means between the shuffled groups.
The function one_mean_difference puts everything together. It receives two vectors, a and
b, puts them together in a pot, and deals out two shuffled vectors with the same size as a
and b, respectively. The function returns the value of the simulated statistic by calling the
functional compute_statistic. For this example, we use mean_diff.

one_difference <- function(a, b, compute_statistic) {
pot <- c(a, b)
sample_indices <- sample(1 : length(pot))
shuffled_a <- pot[sample_indices[1 : length(a)]]
shuffled_b <- pot[sample_indices[(length(a) + 1) : length(pot)]]
return(compute_statistic(shuffled_a, shuffled_b))

}

We are now ready to perform a permutation test for the tutoring program example. We
would like to simulate the test statistic under the null hypothesis multiple times and collect
the values into a vector. As before, we can use replicate. We will simulate 10,000 values.

differences <- replicate(n = 10000,
one_difference(finalsA, finalsB, mean_diff))

6.4.4 Conclusion

Let’s visualize the results.

ggplot(tibble(differences)) +
geom_histogram(aes(x = differences, y = after_stat(density)),

col="grey", fill = "darkcyan", bins = 20) +
geom_point(aes(x = observed_statistic, y = 0),

color = "salmon", size = 3)
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First, observe how the distribution is centered around 0. Under the assumption of the null
hypothesis, there is no difference between the final exam averages in the two course offerings
and, therefore, the difference clusters around 0.
Also observe that the observed test statistic is quite far from the center. To get a better
sense of how far, we compute the p-value.

sum(differences >= observed_statistic) / 10000

## [1] 0.0776

This means that the chance of obtaining a mean difference at least as large as 6.10 is
around 8%. By standards of the conventional cut-off points we have discussed, we would
have enough evidence to refute the null hypothesis at a 90% significance level. Would this
be enough to convince us that the tutoring program is indeed effective? Let us consider for
a moment what it would mean if it does not.
If we were to demand a higher significance level, say 95%, our observed statistic is no longer
significant. The logical next step would be to conclude that the null hypothesis is true,
bearing the implication that the tutoring program is ineffective. This would be a statistical
fallacy! Even if our results are not significant at the desired level, we do NOT take the null
hypothesis to be true. Put another way, we fail to reject the null hypothesis. That is
a mouthful!
The problem here is a lack of evidence. A lack of evidence does not prove that something does
not exist, e.g., the tutoring program is not effective; it very well could be, but our study
missed it. Indeed, our permutation test only evaluated one criteria – that is, difference
in final exam scores – as a measure for improvement. There are other test statistics or
criteria we could have considered, like class participation, which may have benefited from
the program. It would be up to the judgment of the department on how to use these results
in deciding the merit of the tutoring program.
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6.4.5 Comparing Summer and Winter Olympic athletes

We end this section with one more example of a permutation test: comparing the weight
information of Summer and Winter Olympic athletes. The dataset is available in the name
athletes from the edsdata package.
For the sake of this analysis, we focus on Olympic games after the 2000 Summer Olympics.

my_athletes <- athletes |>
filter(Year > 2000)

We can glance at how much athletes we have in each season.

my_athletes |>
count(Season) |>
mutate(prop = n / sum(n))

## # A tibble: 2 x 3
## Season n prop
## <chr> <int> <dbl>
## 1 Summer 7964 0.792
## 2 Winter 2088 0.208

We observe that Summer athletes make up the bulk of this dataset. Before proceeding any
further, we should visualize the weight information with an overlaid histogram.

my_athletes |>
ggplot() +
geom_histogram(aes(x = Weight, y = after_stat(density),

fill = Season),
bins = 13, color = "gray",
alpha = 0.7, position = "identity")
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We give our hypothesis statements.
Null hypothesis: In the population, the distribution of weight information in the Summer
Olympics is, on average, the same as the Winter Olympics.
Alternative hypothesis: In the population, the distribution of weight information in the
Summer Olympics is, on average, different from the Winter Olympics.
Note that the alternative hypothesis, unlike the tutoring program example, does not care
whether the weight information for athletes competing in the Winter Olympics is higher
or less than that of athletes in the Summer Olympics. It only states that some difference
exists. Therefore, the absolute difference in the means would be a good test statistic to use
for this problem.

test statistic = |𝜇𝐵 − 𝜇𝐴|

Note how it does not matter which group ends up as A and likewise for B. Let’s write a
function to compute this statistic; it is a slight variation of the mean_diff we saw before.

mean_abs_diff <- function(a, b) {
return(abs(mean(a) - mean(b)))

}

6.4.6 The test

We form two vectors winter_weights and summer_weights that contain the weight informa-
tion with respect to the season.

winter_weights <- my_athletes |>
filter(Season == "Winter") |>
pull(Weight)

summer_weights <- my_athletes |>
filter(Season == "Summer") |>
pull(Weight)

The observed value of the statistic can be computed as the following.

observed_statistic <- mean_abs_diff(winter_weights, summer_weights)
observed_statistic

## [1] 1.298946

We are now ready to perform the permutation test. As before, let us simulate the test
statistic under the null hypothesis 10,000 times.

differences <- replicate(n = 10000,
one_difference(winter_weights, summer_weights, mean_abs_diff))
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6.4.7 Conclusion

We are ready to visualize the results.

ggplot(tibble(differences)) +
geom_histogram(aes(x = differences, y = after_stat(density)),

col="grey", fill = "darkcyan", bins = 15) +
geom_point(aes(x = observed_statistic, y = 0),

color = "salmon", size = 3)

The observed statistic is quite far away from the distribution of simulated test statistics.
Let’s do a numerical check.

sum(differences >= observed_statistic) / 10000

## [1] 0.001

The chance of obtaining a mean absolute difference of 1.29 is roughly 0.1%. We can safely
reject the null hypothesis at a significance level over 99%. This confirms that, assuming
our dataset is representative of the population of Olympic athletes, the weight information
between Summer and Winter Olympic players are likely, on average, to be different.

6.5 Exercises

Be sure to install and load the following packages into your R environment before beginning
this exercise set.
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library(tidyverse)
library(edsdata)
library(gapminder)

Question 1 The College of Galaxy makes available applicant acceptance information for
different ethnicities: White (“White”), American Indian or Alaska Native (“AI/AN”), Asian
(“Asian”), Black (“Black”), Hispanic (“Hispanic”), and Native Hawaiian or Other Pacific
Islander (“NH/OPI”). The tibble galaxy_acceptance gives the acceptance result from one
year.

galaxy_acceptance <- tribble(
~Ethnicity, ~Applied, ~Accepted,
"White", 925, 811,
"NH/OPI", 50, 7,
"Hispanic", 601, 348,
"Black", 331, 236,
"Asian", 237, 101,
"AI/AN", 84, 30)

galaxy_acceptance

## # A tibble: 6 x 3
## Ethnicity Applied Accepted
## <chr> <dbl> <dbl>
## 1 White 925 811
## 2 NH/OPI 50 7
## 3 Hispanic 601 348
## 4 Black 331 236
## 5 Asian 237 101
## 6 AI/AN 84 30

• Question 1.1 What proportion of total accepted applicants are of some ethnicity? Add
a new variable named prop_accepted that gives the proportion of each ethnicity with
respect to the total number of accepted candidates. Assign the resulting tibble to the
name galaxy_distribution.
Based on these observations, you may be convinced that the college is biased in favor of
enrolling White applicants. Is it justifiable?
To explore the question, you conduct a hypothesis test by comparing the ethnicity dis-
tribution at the college to that of degree-granting institutions in the United States. You
decide to test the hypothesis that the ethnicity distribution at the College of Galaxy looks
like a random sample from the population of accepted applicants in universities across the
United States. Using simulation, this is what the data would look like if the hypothesis
were true. If it doesn’t, you reject the hypothesis.
Thus, you offer the null hypothesis:

– Null hypothesis: “The distribution of ethnicities of accepted applicants at the
College of Galaxy was a random sample from the population of accepted applicants
at degree-granting institutions in the United States.”

• Question 1.2 With every null hypothesis we write down a corresponding alternative
hypothesis. What is the alternative hypothesis in this case?
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We have that there are 1533 accepted applicants at the College of Galaxy. Imagine drawing
a random sample of 1533 students from among the admitted students at universities across
the United States. This is one student admissible pool we could see if the null hypothesis
were true.
The Integrated Postsecondary Education Data System (IPEDS)5 at the National Center
for Education Statistics gives data on U.S. colleges, universities, and technical and vo-
cational institutions. As of Fall 2020, they reported the following ethnicity information
about admitted applicants at Title IV degree-granting institutions in the U.S:

ipeds2020 <- tribble(~Ethnicity, ~`2020`,
"White", 9316458,
"NH/OPI", 46144,
"Hispanic", 3538778,
"Black", 2254757,
"Asian", 1285154,
"AI/AN", 115951)

• Question 1.3 Repeat Question 1.1 for ipeds2020. Assign the resulting tibble to the
name ipeds2020_dist.
Under the null hypothesis, we can simulate one “admissible pool” from the population of
students in the U.S as follows:

total_admitted <- galaxy_distribution |> pull(Accepted) |> sum()
prop_accepted <- ipeds2020_dist |> pull(prop_accepted)
rmultinom(n = 1, size = total_admitted, prob = prop_accepted)

The first element in this vector contains the number of White students in this sample pool,
the second element the number of Native Hawaiian or Other Pacific Islander students, and
so on.

• Question 1.4 For the ethnicity distribution in our sample, we are interested in the propor-
tion of ethnicities that appear in the admissible pool. Write a function prop_from_sample()
that takes as an argument some distribution (e.g., ipeds2020_distribution) and returns
a vector containing the proportion of ethnicities that appear in the sample of 1533 people.

• Question 1.5 Call prop_from_sample() to create one vector called one_sample that rep-
resents one sample of 1533 people from among the admissible students in the United
States.
The total variation distance (TVD) is a useful test statistic when comparing two distri-
butions. This distance should be small if the null hypothesis is true because samples will
have similar proportions of ethnicities as the population from which the sample is drawn.

• Question 1.6 Write a function called compute_tvd(). It takes as an argument a vector
of proportions of ethnicities. The first element in the vector is the proportion of White
students, the second element the proportion of Native Hawaiian or Other Pacific Islander
students, and so on. The function returns the TVD between the given ethnicity distribu-
tion and that of the national population.

5https://nces.ed.gov/ipeds

https://nces.ed.gov
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compute_tvd(galaxy_distribution |> pull(prop_accepted)) # example

• Question 1.7 Write a function called one_simulated_tvd(). This function takes no argu-
ments. It generates a “sample pool” under the null hypothesis, computes the test statistic,
and then return it.

one_simulated_tvd() # an example call

• Question 1.8 Using replicate(), run the simulation 10,000 times to produce 10,000
test statistics. Assign the results to a vector called sample_tvds.
The following chunk shows your simulation augmented with an orange dot that shows the
TVD between the ethnicity distribution at College of Galaxy and that of the national
population.

ggplot(tibble(sample_tvds)) +
geom_histogram(aes(x = sample_tvds, y = after_stat(density)),

bins = 15,
fill = "darkcyan", color = 'gray') +

geom_point(aes(
x = compute_tvd(galaxy_distribution |> pull(prop_accepted)),

y = 0), size = 3, color = "salmon")

• Question 1.9 Determine whether the following conclusions can be drawn from these data.
Explain your answer.

– The ethnicity distribution of the admitted applicant pool at the College of Galaxy
does not look like that of U.S. universities.

– The ethnicity distribution of the admitted applicant pool at the College of Galaxy is
biased toward white applicants.

Question 2: A strange dice. Your friend Jerry invites you to a game of dice. He asks
you to roll a dice 10 times and says that he wins $1 each time a 3 turns up and loses $1 on
any other face. Jerry’s dice is six-sided, however, the "2" and "4" faces have been replaced
with "3"’s. The following code chunk simulates the results after one game:

weird_dice_probs <- c(1/6, 0/6, 3/6, 0/6, 1/6, 1/6)
rmultinom(n = 1, size = 10, prob = weird_dice_probs)

## [,1]
## [1,] 3
## [2,] 0
## [3,] 4
## [4,] 0
## [5,] 1
## [6,] 2

While the game seems like an obvious scam, Jerry claims that his dice is no different than
a fair dice in the long run. Can you disprove his claim using a hypothesis test?

• Question 2.1 Write a function sample_prop that receives two arguments distribution
(e.g., weird_dice_probs) and size (e.g., 10 rolls). The function simulates the game using a
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dice where the probability of each face is given by distribution and the dice is rolled size
many times. The proportion of each face that appeared after the simulation is returned.
The following code chunk simulates the result after playing one round of Jerry’s game.
You record the sample proportions of the faces that appeared in a tibble named
jerry_die_dist.

set.seed(2022)
jerry_die_dist <- tibble(

face = 1:6,
prob = sample_prop(weird_dice_probs, 10)

)
jerry_die_dist

Let us define the distribution for what we know is a fair six-sided die.

fair_die_dist <- tibble(
face = seq(1:6),
prob = rep(1/6, 6)

)
fair_die_dist

Here is what the jerry_die_dist distribution looks like when visualized:

ggplot(jerry_die_dist) +
geom_bar(aes(x = as.factor(face), y = prob), stat = "identity")

• Question 2.2 Define a null hypothesis and an alternative hypothesis for this question.
We saw in Section 5.4 that the mean is equivalent to weighing each face by the proportion
of times it appears. The mean of jerry_die_dist can be computed as follows:

jerry_die_dist |>
summarize(mean = sum(face * prob))

For reference, here is the mean of a fair six-sided dice. Observe how close this value is to
the mean of Jerry’s dice:

fair_die_dist |>
summarize(mean = sum(face * prob))

The following function mystery_test_stat1() takes a single tibble dist (e.g.,
jerry_die_dist) as its argument and computes a test statistic by comparing it to
fair_die_dist.

mystery_test_stat1 <- function(dist) {
x <- dist |>
summarize(mean = sum(face * prob)) |>
pull(mean)

y <- fair_die_dist |>
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summarize(mean = sum(face * prob)) |>
pull(mean)

return(abs(x-y))
}

• Question 2.3 What test statistic is being used in mystery_test_stat1?
• Question 2.4 Write a function called one_simulated_stat. The function receives a single

argument stat_func. The function generates sample proportions after one round of Jerry’s
game under the assumption of the null hypothesis, computes the test statistic from this
sample using the argument stat_func, and returns it.

one_simulated_stat(mystery_test_stat1) # an example call

• Question 2.5 Complete the following function called simulate_dice_experiment. The
function receives two arguments, an observed_dist (e.g., jerry_die_dist) and a stat_func.
The function computes the observed value of the test statistic using observed_dist. It then
simulates the game 10,000 times to produce 10,000 different test statistics. The function
then prints the p-value and plots a histogram of your simulated test statistics. Also shown
is where the observed value falls on this histogram (orange dot) and the cut-off for the
95% significance level.

simulate_dice_experiment <- function(observed_dist, stat_func) {

p_value_cutoff <- 0.05
print(paste("P-value: ",

(sum(test_stats >= observed_stat) / length(test_stats))))
ggplot(tibble(test_stats)) +
geom_histogram(aes(x = test_stats, y = after_stat(density)),

bins=10, color = "gray", fill='darkcyan') +
geom_vline(aes(xintercept=quantile(test_stats,

1-p_value_cutoff)),
color='red') +

geom_point(aes(x=observed_stat,y=0),size=4,color='orange')
}

• Question 2.6 Run the experiment using your function simulate_dice_experiment using
the observed distribution from jerry_die_dist and the mystery test statistic.
The evidence so far has been unsuccessful in refuting Jerry’s claim. Maybe you should
stop playing games with Jerry…
As a desperate final attempt before giving up and agreeing to play Jerry’s game, you try
using a different test statistic to simulate called mystery_test_stat2.

mystery_test_stat2 <- function(dist) {
sum(abs((dist |> pull(prob)) -

(fair_die_dist |> pull(prob))) /2)
}

mystery_test_stat2(jerry_die_dist) # an example call
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• Question 2.7 Repeat Question 2.6, this time using mystery_test_stat2 instead.
• Question 2.8 At a significance level of 95%, what do we conclude from the first experi-

ment? How about the second experiment?
• Question 2.9 Examine the difference between the test statistics in mystery_test_stat1

and mystery_test_stat2. Why is it that the conclusion of the test is different depending
on the test statistic selected?

• Question 2.10 Which of the following statements are FALSE? Indicate them by includ-
ing its number in the following vector pvalue_answers.

– The p-value printed is the probability that the die is fair.
– The p-value printed is the probability that the die is NOT fair.
– The p-value cutoff (5%) is the probability that the die is NOT fair.
– The p-value cutoff (5%) is the probability of seeing a test statistic as extreme or more

extreme than this one if the null hypothesis were true.
• Question 2.11 For the statements you selected to be FALSE, explain why they are wrong.
Question 3 This question is a continuation of Question 2. The following incomplete func-
tion experiment_rejects_null receives four arguments: a tibble describing the probability
distribution of a dice, a function to compute a test statistic, a p-value cutoff, and a number
of repetitions to use. The function simulates 10 rolls of the given dice, and tests the null
hypothesis about that dice using the test statistic given by stat_func. The function returns
a Boolean: TRUE if the experiment rejects the null hypothesis at p_value_cutoff, and FALSE
otherwise.

experiment_rejects_null <- function(die_probs,
stat_func, p_value_cutoff, num_repetitions) {

observed_dist <- tibble(
face = 1:6,
prob = sample_prop(die_probs, 10)

)

p_value <- sum(test_stats >= observed_stat) / num_repetitions
return(p_value < p_value_cutoff)

}

• Question 3.1 Read and understand the above function. Then complete the missing por-
tion that computes the observed value of the test statistic and simulates num_repetitions
many test statistics under the null hypothesis.
The following code chunk simulates the result after testing Jerry’s dice with mys-
tery_test_stat1 at the P-value cut-off of 5%. Run it a few times to get a rough sense of
the results.

• Question 3.2 Repeat the experiment experiment_rejects_null(weird_dice_probs, mys-
tery_test_stat1, 0.05, 250) 300 times using replicate. Assign experiment_results to
a vector that stores the result of each experiment.
Note: This code chunk will need some time to finish (approximately a few minutes). This
will be a little slow. 300 repetitions of the simulation should require a minute or so of
computation, and should be enough to get an answer that is roughly correct.
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• Question 3.3 Compute the proportion of times the function returned TRUE in experi-
ment_results. Assign your answer to prop_reject.

• Question 3.4 Does your answer to Question 3.3 make sense? What value did you expect
to get? Put another way, what is the probability that the null hypothesis is rejected when
the dice is actually fair?

• Question 3.5 What does it mean for the function to return TRUE when weird_dice_probs
is passed as an argument? From the perspective of finding the truth about Jerry’s
(phony) claim, is the experiment successful? What if the function returned TRUE when
fair_die_dist is passed as an argument instead?

Question 4. The United States House of Representatives in the 116th Congress (2019-2021)
had 435 members. According to the Center for American Women and Politics (CAWP)6,
101 were women and 334 men. The following tibble house gives the head counts:

house <- tribble(~gender, ~num_members,
"Female", 101,
"Male", 334)

house

## # A tibble: 2 x 2
## gender num_members
## <chr> <dbl>
## 1 Female 101
## 2 Male 334

In this question, we will examine whether women are underrepresented in the chamber.
• Question 4.1 If men and women are equally represented in the chamber, then the chance

of either gender occupying any seat should be like that of a fair coin flip. For instance, if
the chamber consisted of just 10 seats, then one “House of Representatives” might look
like:

sample(c("Female", "Male"), size = 10,
replace = TRUE, prob = c(0.5, 0.5))

Using this, write a null and alternative hypothesis for this problem.
• Question 4.2 Using Question 4.1, write a function called one_sample_house that simu-

lates one “House” under the null hypothesis. The function receives two arguments, gen-
der_prop and house_size. The function samples "Female" or "Male" house_size many
times where the chance of either gender appearing is given by gender_prop. The function
then returns a tibble with the gender head counts in the simulated sample. Following is
one possible returned tibble:

Gender num_members
Female 207
Male 228

6https://cawp.rutgers.edu/facts/levels-office/congress/history-women-us-congress

https://cawp.rutgers.edu
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one_sample_house <- function(gender_prop, house_size) {

}

total_seats <- house |> pull(num_members) |> sum()
one_sample_house(c(0.5, 0.5), total_seats) # an example call

• Question 4.3 A good test statistic for this problem is the difference in the head count of
males from the head count of females. Write a function that takes a tibble head_count_tib
as an argument (that has the format as in Question 4.2). The function computes and
returns the test statistic from this tibble.

• Question 4.4 Compute the observed value of the test statistic using your one_diff_stat().
Assign the resulting value to the name observed_value_house.

• Question 4.5 Write a function called simulate_one_stat that simulates one test statistic.
The function receives two arguments, the gender proportions prop and the total seats
(total_seats) to fill in the simulated “House”. The function simulates a sample under the
null hypothesis, and computes and returns the test statistic from the sample.

simulate_one_stat(c(0.5, 0.5), 100) # an example call

• Question 4.6 Simulate 10,000 different test statistics under the null hypothesis. Store
the results to a vector named test_stats.
The following ggplot2 code visualizes your results:

ggplot(tibble(test_stats)) +
geom_histogram(aes(x = test_stats), bins=18, color="gray") +
geom_point(aes(x = observed_value_house, y = 0),

size=2, color="red")

• Question 4.7 Based on the experiment, what can you say about the representation of
women in the House?
Let us now approach the analysis another way. Instead of assuming equal representation,
let us base the comparison by using the representation of women candidates in the pre-
ceding 2018 U.S. House Primary elections. The tibble house_primary from the edsdata
package compiles primary election results for Democratic and Republican U.S. House can-
didates running in elections from 2012 to 2018. The data is prepared by the Michael G.
Miller Dataverse7 part of the Harvard Dataverse8.

library(edsdata)
house_primary

## # A tibble: 5,716 x 25
## raceid year stcd state seat party redist fr law
## <chr> <dbl> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>

7https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/CXVMSY
8https://dataverse.harvard.edu/

https://dataverse.harvard.edu
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/CXVMSY
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## 1 20182~ 2018 2305 minn~ 2 1 0 0 0
## 2 20181~ 2018 1006 geor~ 0 1 0 2 0
## 3 20181~ 2018 1006 geor~ 0 1 0 2 0
## 4 20183~ 2018 3401 nort~ 3 0 0 0 0
## 5 20143~ 2014 3204 new ~ 2 1 0 9 1
## 6 20182~ 2018 2210 mich~ 0 1 0 1 0
## 7 20162~ 2016 2210 mich~ 3 1 0 9 0
## 8 20183~ 2018 3205 new ~ 1 1 0 0 1
## 9 20121~ 2012 1705 kent~ 0 1 1 0 1
## 10 20180~ 2018 0927 flor~ 3 0 0 9 1
## # ... with 5,706 more rows, and 16 more variables:
## # candnumber <dbl>, prez <dbl>, votep <dbl>,
## # type <dbl>, incname <chr>, candidate <chr>,
## # candvotes <dbl>, tvotes <dbl>, candpct <dbl>,
## # winner <dbl>, inc <dbl>, definc <lgl>, gender <dbl>,
## # qual <dbl>, office <dbl>, runoff <dbl>

• Question 4.8 Form a two-element vector named primary_prop that gives the proportion
of female and male candidates, respectively, in the 2018 U.S. House Primary elections.
This can be accomplished as follows:

– Filter the data to the year 2018. The data should not contain the results for any
elections that resulted in a runoff (where runoff = 1).

– Summarize and count each gender that appears in gender in the resulting tibble.
– Add a variable that computes the proportions from these counts.
– Pull the proportions as a vector and assign it to primary_prop.

• Question 4.9 Repeat Question 4.6 this time using the proportions given by pri-
mary_prop.
The following code visualizes the revised result:

ggplot(tibble(test_stats)) +
geom_histogram(aes(x = test_stats), bins=18, color="gray") +
geom_point(aes(x = observed_value_house, y = 0),

size=2, color="red")

• Question 4.10 Compute the p-value using the test_stats you generated by comparing
it with observed_value_house. Assign your answer to p_value.

• Question 4.11 Why is it that in the first histogram the simulated test statistics cluster
around 0 and in the second histogram the simulated values cluster around a value much
greater? Is the statement of the null hypothesis the same in both cases?

• Question 4.12 Now that we have analyzed the data in two ways, are women equally
represented in the House? Why or why not?

Question 5. Cathy recently received from a friend a replica dollar coin which appears to
be slightly biased towards “Heads”. Cathy tosses the coin 20 times in a row counts how
many times “Heads” turns up. She repeats this for 10 trials. Her results are summarized in
the following tibble:

cathy_heads_game <- tibble(
trial = 1:10,
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num_heads = c(12, 13, 13, 11, 17, 10, 10, 14, 9, 15),
num_tails = 20 - num_heads

)
cathy_heads_game

## # A tibble: 10 x 3
## trial num_heads num_tails
## <int> <dbl> <dbl>
## 1 1 12 8
## 2 2 13 7
## 3 3 13 7
## 4 4 11 9
## 5 5 17 3
## 6 6 10 10
## 7 7 10 10
## 8 8 14 6
## 9 9 9 11
## 10 10 15 5

• Question 5.1 What is the total heads observed? Assign your result to a double named
total_heads_observed.
Let us write an experiment and check how plausible it is for this coin to be fair.

• Question 5.2 Given the outcome of 20 trials, which of the following test statistics would
be reasonable for this hypothesis test?

– The total number of heads.
– The total number of heads minus the total number of tails.
– Whether there is at least one head.
– Whether there is at least one tail.
– The total variation distance between the probability distribution of a fair coin and

the observed distribution of heads and tails.
– The trial with the minimum number of heads.

Assign the name good_test_stats to a vector of integers corresponding to these test statis-
tics.

• Question 5.3 Let us write a code that simulates tossing a fair coin. Write a function
called one_test_stat that receives a parameter num_trials. The function simulates a fair
coin toss 20 times, records the number of heads, and repeats this procedure num_trials
many times. The function returns the total number of heads over the given number of
trials.

one_test_stat(10) # an example call after cathy's 10 trials

• Question 5.4 Repeat Cathy’s experiment 10,000 times. Store the results in to-
tal_head_stats.

• Question 5.5 Compute a p-value using total_head_stats. Assign the result to p_value.
• Question 5.6 From the experiment how plausible do you say Cathy’s coin is fair?
Question 6. A popular course in the College of Groundhog is an undergraduate program-
ming course CSC1234. In the spring semester of 2022, the course had three sections, A, B,
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and C. The sections were taught by different instructors. The course had the same textbook,
the same assignments, and the same exams. One same formula was applied to determine
the final grade. At the end of a semester, some students in Sections A and C came to their
instructors and asked if the instructors had been harsher than the instructor for Section B,
because several buddies of theirs in Section B did better in the course. Time for a hypothesis
test!
The section and score information for the semester is available in the tibble csc1234 from
the edsdata package.

library(edsdata)
csc1234

## # A tibble: 388 x 2
## Section Score
## <chr> <dbl>
## 1 A 100
## 2 A 100
## 3 A 100
## 4 A 100
## 5 A 100
## 6 A 100
## 7 A 100
## 8 A 100
## 9 A 100
## 10 A 100
## # ... with 378 more rows

We will use a permutation test to see if the scores for Sections A and C are indeed signifi-
cantly lower than the scores for Section B. That is, we will compare three groups: Section
A with B, Section A with C, and Section B with C.

• Question 6.1 Compute the group-wise mean for each section of the course. The tibble
should contain two variables: the section name and the mean of that section. Assign the
resulting tibble to the name section_means.

• Question 6.2 Visualize a histogram of the scores in csc1234. Use a facet wrap on Section
so that you can view the three distributions together separately. We suggest using 10 bins.
We can develop a chance model by hypothesizing that any section’s scores looks like a
random sample out of all of the student scores across all three sections. We can then see
the difference in mean scores for each of the three pairs of randomly drawn “sections”. This
is a specified chance model we can use to simulate and, therefore, is the null hypothesis.

• Question 6.3 Define a good alternative hypothesis for this problem.
• Question 6.4 Write a function called mean_differences that takes a tibble as its single

argument. It then summarizes this tibble by computing the average mean score (in Score)
for each section (in Section). The function returns a three-element vector of mean differ-
ences for each pair: the difference in mean scores between A and B (“A-B”), C and B
(“C-B”), and C and A (“C-A”).

• Question 6.5 Compute the observed differences in the means of the three sections using
mean_differences. Store the results in observed_differences.
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The following code chunk puts your observed values into a tibble named ob-
served_diff_tibble.

observed_diff_tibble <- tibble(
pair = c("A-B", "C-B", "C-A"),
test_stat = observed_differences

)
observed_diff_tibble

• Question 6.6 Write a function scores_permute_test that does the following:
– From csc1234 form a new variable that shuffles the values in Score using sample.

Overwrite the variable Score with the shuffled values.
– Call mean_differences on this shuffled tibble.
– Return the vector of differences.

scores_permute_test() # an example call

• Question 6.7 Use replicate on the scores_permute_test function you wrote to generate
1,000 sample differences.
The following code chunk creates a tibble named differences_tibble from the simulated
test statistics you generated above.

differences_tibble <- tibble(
`A-B` = test_stat_differences[1,],
`C-B` = test_stat_differences[2,],
`C-A` = test_stat_differences[3,])

differences_tibble

• Question 6.8 Generate three histograms using the results in differences_tibble. As
with Question 6.2, use a facet wrap on each pairing (i.e., A-B, C-B, and C-A). Then
attach a red point to each histogram indicating the observed value of the test statistic
(use observed_diff_tibble). We suggest using 20 bins for the histograms.

• Question 6.9 The bulk of the distribution in each of the three histograms is centered
around 0. Using what you know about the stated null hypothesis, why do the distributions
turn out this way?

• Question 6.10 By examining the above three histograms and where the observed value of
the test statistic falls, which difference among the three do you think is the most egregious?

• Question 6.11 Based on your answer to Question 6.10, can we say that the hypothesis
test brings enough evidence to show that the drop in student scores was deliberate and
that the instructor was unfair in grading?
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Quantifying Uncertainty

So far we have developed ways to show how to use data to decide between competing
questions about the world. For instance, does Harvard enroll proportionately less Asian
Americans than other private universities in the United States; are the exam grades in one
lab section of a course too low when compared to other lab sections; can an experimental
drug bring an improvement to patients recovering from brain trauma? We evaluated ques-
tions like these by means of an hypothesis test where we put forward two hypotheses: a null
hypothesis and an alternative hypothesis.
Often we are just interested in what a value looks like. For instance, airlines might be inter-
ested in the median flight delay of their flights to preserve customer satisfaction; political
candidates may look to the percentage of voters favoring them to gauge how aggressive
their campaigning should be.
Put in the language of statistics, we are interested in estimating some unknown parameter
about a population. If all the data have been made available to us, we could compute the
parameter directly with ease. However, we often do not have access to the full population
(as is the case with polling voters) or there may be too much data to work with that it
becomes computationally prohibitive (as is the case with flights).
We have seen before that sampling distributions can provide reliable approximations to the
true (and usually unknown) distribution and that, likewise, a statistic computed from it can
provide a reliable estimate of the parameter in question. However, the value of a statistic
can turn out differently depending on the random samples that are drawn to compose a
sampling distribution. How much can the value of a statistic vary? Could we quantify this
uncertainty?
This chapter develops a way to answer this question using an important technique in data
science called resampling. We begin by introducing order statistics and percentiles. This
will provide us the tools needed to develop the resampling method to produce distributions
from a sample, in which we apply order statistics to the generated distributions to obtain
something called the confidence interval.

7.1 Order Statistics

The minimum, maximum, and the median are part of what we call order statistics. Order
statistics are values at certain positions in numerical data after reordering the data in
ascending order.

DOI: 10.1201/9781003320845-7 309

https://doi.org/10.1201/9781003320845-7


310 7 Quantifying Uncertainty

7.1.1 Prerequisites

This section will make use of data for all flights that departed New York City in 2013. The
dataset is made available by the Bureau of Transportation Statistics1 in the United States.
Let’s also load in the tidyverse as usual.

library(tidyverse)
library(nycflights13)

7.1.2 The flights data frame

In our prior exploration of this data frame, we generated empirical distributions of departure
delays. Let’s revisit this study and visualize the departure delays again.

ggplot(flights) +
geom_histogram(aes(x = dep_delay, y = after_stat(density)),

color="grey", bins = 30)

As before, we are interested in the bulk of the data here, so we can ignore the 1.83% of
flights with delays of more than 150 minutes.

flights150 <- flights |>
filter(dep_delay <= 150)

ggplot(flights150) +
geom_histogram(aes(x = dep_delay, y = after_stat(density)),

color="grey", bins = 30)

1https://www.transtats.bts.gov/

https://www.transtats.bts.gov


7.1 Order Statistics 311

Let’s extract the departure delay column as a vector.

dep_delays <- flights150 |> pull(dep_delay)

7.1.3 median

The median is a popular order statistic that gives us a sense of the central tendency of the
data. It is the value at the middle position in the data after reordering of the values.

median(dep_delays)

## [1] -2

This tells us that half of the flights had early departures – not bad! Recall that we also used
the mean to understand the central tendency. Note that the mean (or average) is a statistic,
but it is not an order statistic. Let’s compare with the mean of departure delays.

mean(dep_delays)

## [1] 8.716037

There is quite a bit of discrepancy between the two. Observe that the histogram above has
a very long right tail; the mean is pulled upward by flights with long departure delays. In
general:

If a distribution has a long tail, the mean will be pulled away from the median
in the direction of the tail. Otherwise, if the distribution is symmetrical, the
mean and the median will equal.
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When the distribution is “skewed” like the one here, the median can be a stronger indicator
of central tendency.
There are cases, by the way, where two median exists. Such an event occurs exactly when
the number of values is an even number. If there are 10 values, the 5th and the 6th values
in the ascending order are the two medians. The one at the lower position in the order is
the odd median and the other one, i.e., the one at the higher position in the order, is the
even median. To compute the median in this case, we usually take the average of the odd
and even median.

7.1.4 min and max

What is the earliest flight that left? We can find out by looking for the minimum departed
flight delay.

min(dep_delays)

## [1] -43

The authors admit that this flight might have left a little too early for their liking. What
about the latest flight?

max(dep_delays)

## [1] 150

Recall that this maximum is actually artificial because we filtered all rows whose departure
delay was more than 150. To recover the true maximum, we need to refer to the original
flights data.

flights |>
pull(dep_delay) |>
max(na.rm = TRUE)

## [1] 1301

That is almost a 22 hour delay – better get a sleeping bag!

7.2 Percentiles

Now that we have an understanding of order statistics, we can use it to develop the notion
of a percentile. We will also explore a closely related concept called the quartile.
You are probably already familiar with the concept of percentiles from sports or standardized
testing like the SAT2. Organizations like the College Board talk so much about percentiles
– to the extent of writing full guides on how to interpret them – because they are indicators
of how students perform relative to other exam-takers. Indeed, the percentile is another

2https://collegereadiness.collegeboard.org/pdf/understanding-sat-scores.pdf

https://collegereadiness.collegeboard.org
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order statistic that tells us something about the rank of a data point after reordering the
elements in a dataset. Now that we have an understanding of order statistics, we can use it
to develop the notion of a percentile. We will also explore a closely related concept called
the quartile.

7.2.1 Prerequisites

Before starting, let’s load the tidyverse as usual.

library(tidyverse)
library(edsdata)

7.2.2 The finals tibble

In the spirit of the College Board, we will examine exam scores to develop an understanding
of percentiles. Recall that the finals data frame contains hypothetical final exam scores
from two offerings of an undergraduate computer science course. Let’s load it in.

finals

## # A tibble: 102 x 2
## grade class
## <dbl> <chr>
## 1 89 A
## 2 17 A
## 3 94 A
## 4 51 A
## 5 49 A
## 6 93 A
## 7 52 A
## 8 54 A
## 9 57 A
## 10 65 A
## # ... with 92 more rows

The dataset contains final scores from a total of 105 students.

nrow(finals)

## [1] 102

We will not concern ourselves with the individual offerings of the course this time. Since
the scores are of interest for this study, let us extract a vector of scores from the tibble.

scores <- finals |>
pull(grade)

To orient ourselves to the data, we can look at the maximum and minimum scores.
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max(scores)

## [1] 98

min(scores)

## [1] 0

We may be alarmed to see that the minimum score of 0. Some insight into the course would
reveal that there were a few students who did not appear for the final exam (don’t be one
of them!).
Finally, let us visualize the distribution of scores.

ggplot(finals) +
geom_histogram(aes(x = grade, y = after_stat(density)),

col="grey", fill = "darkcyan", bins = 10)

7.2.3 The quantile function

The percentile is an order statistic where the position of the data is not the rank but a
percentage that specifies relative position in the data. For instance, the 50th percentile is
the smallest value that is at least as large as 50% of the elements in scores; it must be a
value on the list of scores. We can compute this simply with the quantile function in R.

quantile(scores, c(0.5), type = 1)

## 50%
## 65

The value at the 50th percentile is something we already know: the median score!
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median(scores)

## [1] 65

The quantile function gives the value that cuts off the first n percent of the data values
when it is sorted in ascending order. There are many ways to compute percentiles (see the
help page for a sneak peek, with ?quantile). The one that matches the definition used here
corresponds to type = 1.
The additional argument passed in is a vector of desired percentages. These must be between
0 and 1. This is how quantile gets its name: quantiles are percentiles scaled to have a value
between 0 and 1, e.g. 0.5 rather than 50.
Let us look at some more percentile values in the vector of scores.

quantile(scores, c(0.05, 0.2, 0.9, 0.95, 0.99, 1), type = 1)

## 5% 20% 90% 95% 99% 100%
## 17 49 89 93 97 98

Let’s pick apart some of these values. We see that the value at the 5th percentile is the
lowest exam score that is at least as large as 5% of the scores. We can confirm this easily
by summing the number of scores less than 17 and dividing by the total number of scores.

sum(scores < 17) / length(scores)

## [1] 0.04901961

Moving on up, we see that the 95th and 99th percentiles are quite close together. We also
observe that the 100th percentile is 98, which corresponds to the maximum score obtained
on the final. That is, a 98 is at least as large as 100% of the scores, which is the entire class.
The 0th percentile is simply the smallest value in the dataset, as 0% of the data is at least
as large as it. In other words, there is no exam score in the class lower than a 0.

quantile(scores, c(0), type = 1)

## 0%
## 0

If the College Board says a student is in the “top 10 percentile”, this would be a misnomer.
What they really mean to say is that the student is in the 1 − top X percentile, or 90th
percentile.

7.2.4 Quartiles

In addition to the medians, common percentiles are the 1/4th and 3/4th, which we often
call the bottom quarter and the top quarter. Basically, we chop the data in quarters and
use the boundaries between the neighboring quarters. Since these percentiles partition the
data into quarters, these are given a special name: quartiles.
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quantile(scores, c(0/4, 1/4, 2/4, 3/4, 4/4), type = 1)

## 0% 25% 50% 75% 100%
## 0 52 65 77 98

Observe what happens when we omit the vector of percentages.

quantile(scores, type = 1)

## 0% 25% 50% 75% 100%
## 0 52 65 77 98

The corresponding 0th, 25th, 50th, 75th, and 100th percentiles of the vector are returned.

7.2.5 Combining two percentiles

By combining two percentiles, we can get a rough sense of the distribution. For example,
the combination of 25th and 75th percentiles represents the “middle” 50%. Similarly, the
2.5th and 97.5th percentiles represent the middle 95% of the data. That is,

quantile(scores, c(0.025, 0.975), type = 1)

## 2.5% 97.5%
## 0 95

95% of the scores is between 0 and 95. We could find this more directly by realizing that
the middle 95% corresponds to going up and down from the 50th percentile by half of that
amount, which is 47.5%.

middle_area <- 0.95
quantile(scores, 0.5 + (middle_area / 2) * c(-1, 1), type = 1)

## 2.5% 97.5%
## 0 95

As one more example, here is the middle 90% of scores.

middle_area <- 0.90
quantile(scores, 0.5 + (middle_area / 2) * c(-1, 1), type = 1)

## 5% 95%
## 17 93

7.2.6 Advantages of percentiles

Percentile is a useful concept because it eliminates the use of population size in specifying
the position; that is, the position specification does not directly take into account the size
of the data. What do we mean by that?
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Let’s return to the example of final exam scores. Suppose that one offering of the class
contained 50 students while another had 200 students. Consider the “top 10 students” in
each class.
Since top 10 is 20% of 50 students, there is a 20% chance for a student to be among the
top 10, while the chances decrease to 5% for the class of 200. That is, if we specify a top
group with its size, the significance being in the top group varies depending on the size of
the population and so we must to specify the size of the underlying group, e.g., “top 10 in a
group of 4000 students”. Percentiles are nice in that they are not sensitive to these changes.

7.3 Resampling

It is usually the case that a data scientist will receive a sample from an underlying population
to which she has no access. If she had access to the underlying population, she could calculate
the parameter value directly. Since that is impossible, is there a way for her to use the sample
at hand to generate a range of values for the statistic?
Yes! This is a technique we call resampling, which is also known as the bootstrap. In boot-
strapping, we treat the dataset at hand as the “population” and generate “new” samples
from it. But there is a catch. Each sample data set that we generate should be equal in size
to the original. This necessarily means that our sampling plan be done with replacement.
Since the samples have the same size as the original with the use of replacement, duplicates
and omissions can arise. That is, there are items that will appear multiple times as well as
items that are missing. Because randomness is involved, the discrepancy varies.

7.3.1 Prerequisites

This section will defer again to the New York City flights in 2013 from the Bureau of
Transportation Statistics3. Let’s also load in the tidyverse as usual.

library(tidyverse)
library(nycflights13)

7.3.2 Population parameter: the median time spent in the air

When studying this dataset, we have spent a lot of time examining flight departure delays.
This time we will turn our attention to another variable in the tibble which tracks the
amount of time a flight spent in air, in minutes. The variable is called air_time.

3https://www.transtats.bts.gov/

https://www.transtats.bts.gov
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Let’s visualize the distribution of air time in flights.
Recall the distribution of departure delays in flights150.

ggplot(flights) +
geom_histogram(aes(x = air_time, y = after_stat(density)),

col="grey", fill = "darkcyan", bins = 20)

As before, let’s concentrate on the bulk of the data and filter out any flights that flew for
more than 400 minutes.

flights400 <- flights |>
filter(air_time < 400) |>
drop_na()

We plot this distribution one more time.

ggplot(flights400) +
geom_histogram(aes(x = air_time, y = after_stat(density)),

col="grey", fill = "darkcyan", bins = 20)
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The parameter we will select for this study is the mean air time.

pop_mean <- flights400 |>
pull(air_time) |>
mean()

pop_mean

## [1] 149.6463

Let us see how well we can estimate this value based on a sample of the flights. We will
study two such samples: an artificial sample and a random sample.

7.3.3 First try: A mechanical sample

For our mechanical sample, we will assume that we have been given only a cross-section of
the flights data and try to estimate the population median based on this sample. Let us
suppose we have been given the flight data for only the months of September and October.

flights_sample <- flights400 |>
filter(month == 9 | month == 10)

There are 55,522 flights appearing in the subset. Let’s visualize the distribution of air time
from our sample.

ggplot(flights_sample) +
geom_histogram(aes(x = air_time, y = after_stat(density)),

col="grey", fill = "darkcyan", bins = 20)
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It appears close to the population of flights, though there are notable differences: flights that
have longer air times (between 300 and 400 minutes) appear exaggerated in this dataset.
Let’s compute the mean from this sample.

sample_mean <- flights_sample |>
pull(air_time) |>
mean()

sample_mean

## [1] 145.378

It is quite different from the population median. Nevertheless, this subset of flights will
serve as the dataset from which we will bootstrap our samples. Put another way, we will
treat this sample as if it were the population.

7.3.4 Resampling the sample mean

To perform a bootstrap, we will draw from the sample, at random with replacement, the
same number of times as the size of the sample dataset.
To simplify the work, let us extract the column of air times as a vector.

air_times <- flights_sample |>
pull(air_time)

We know already how to sample at random with replacement from a vector using sample.
Computing the sample mean is also straightforward: just pipe the returned vector into mean.

sample_mean <- air_times |>
sample(replace = TRUE) |>
mean()

sample_mean
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## [1] 145.3686

Let us move this work into a function we can call.

one_sample_mean <- function() {
sample_mean <- flights_sample |>

pull(air_time) |>
sample(replace = TRUE) |>
mean()

return(sample_mean)
}

Give it a run!

one_sample_mean()

## [1] 144.6964

This function is actually quite useful. Let’s generalize the function so that we may call it
with other datasets we will work with. The modified function will receive three parameters:
(1) a tibble to sample from, (2) the column to work on, and (3) the statistic to compute.

one_sample_value <- function(df, label, statistic) {
sample_value <- df |>
pull({{ label }}) |>
sample(replace = TRUE) |>
statistic()

return(sample_value)
}

We can now call it as follows.

one_sample_value(flights_sample, air_time, mean)

## [1] 145.398

Q: What’s the deal with those (ugly) double curly braces ({{) ? To make
R programming more enjoyable, the tidyverse allows us to write out column
names, e.g. air_time, just like we would variable names. The catch is that
when we try to use such syntax sugar from inside a function, R has no idea
what we mean. In other words, when we say pull(label) R thinks that we want
to extract a vector from a column called label, despite the fact we passed in
air_time as an argument. To lead R in the right direction, we surround label
with {{ so that R knows to interpret label as, indeed, air_time.
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7.3.5 Distribution of the sample mean

We now have all the pieces in place to perform the bootstrap. We will replicate this process
many times so that we can compose an empirical distribution of all the bootstrapped sample
means. Let’s repeat the process 10,000 times.

bstrap_means <- replicate(n = 10000,
one_sample_value(flights_sample, air_time, mean))

Let us visualize the bootstrapped sample means using a histogram.

df <- tibble(bstrap_means)
ggplot(df, aes(x = bstrap_means, y = after_stat(density))) +
geom_histogram(col="grey", fill = "darkcyan", bins = 8)

7.3.6 Did it capture the parameter?

How often does the population mean fall somewhere in the empirical histogram? Does it
reside “somewhere at the center” or at the fringes where the tails are? Let us be more specific
by what we mean when we say “somewhere at the center”: the middle 95% of bootstrapped
means containing the population mean.
We can identify the “middle 95%” using the percentiles we learned from the last section.
Here they are:

desired_area <- 0.95
middle95 <- quantile(bstrap_means,

0.5 + (desired_area / 2) * c(-1, 1), type = 1)
middle95

## 2.5% 97.5%
## 144.6075 146.1229
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Let us annotate this interval on the histogram.

df <- tibble(bstrap_means)

ggplot(df, aes(x = bstrap_means, y = after_stat(density))) +
geom_histogram(col="grey", fill = "darkcyan", bins = 8) +
geom_segment(aes(x = middle95[1], y = 0,

xend = middle95[2], yend = 0),
size = 2, color = "salmon")

pop_mean

## [1] 149.6463

Our population mean is 149.6 minutes – that is nowhere to be seen in this interval or even
in the histogram! It would seem then that in all of the 10,000 replications of the bootstrap,
not even one was able to capture the population mean. What happened?
Recall the subset selection we used: all flights in September or October. This was a very
artificial selection that is prone to bias. We learned before when we discussed sampling plans
that bias in the sample can mislead the statistic computed from it, especially when using a
convenience sample such as the one here.

7.3.7 Second try: A random sample

We will now try to estimate the population mean using a random sample of flights. Let us
select at random without replacement 10,000 flights from the data.

flights_sample <- flights400 |>
slice_sample(n = 10000, replace = FALSE)

We will visualize what our random sample looks like.
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ggplot(flights_sample) +
geom_histogram(aes(x = air_time, y = after_stat(density)),

col="grey", fill = "darkcyan", bins = 20)

Let us also compute the sample mean again.

sample_mean <- flights_sample |>
pull(air_time) |>
mean()

sample_mean

## [1] 150.7474

We observe that the sample mean is also much closer to the population mean, unlike our
mechanical selection attempt. This is confirmation of the Law of Averages (finally) at work:
when we sample at random and the sample size is large, the distribution of the sample
closely follows that of the flight population.
Let us now repeat the bootstrap. Recall that we will treat this sample as if it were the
population.

7.3.8 Distribution of the sample mean (revisited)

We have done all the hard work already in setting up the bootstrap. To redo the process,
we need only to pass in the random sample contained in flights_sample. As before, let us
repeat the process 10,000 times.

bstrap_means <- replicate(n = 10000,
one_sample_value(flights_sample, air_time, mean))

We will identify the “middle 95%”. Here is the interval:
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desired_area <- 0.95
middle95 <- quantile(bstrap_means,

0.5 + (desired_area / 2) * c(-1, 1), type = 1)
middle95

## 2.5% 97.5%
## 148.9982 152.5637

Let us annotate this interval on the histogram. We will also plot the population mean as a
red dot.

df <- tibble(bstrap_means)

ggplot(df, aes(x = bstrap_means, y = after_stat(density))) +
geom_histogram(col="grey", fill = "darkcyan", bins = 8) +
geom_segment(aes(x = middle95[1], y = 0,

xend = middle95[2], yend = 0),
size = 2, color = "salmon") +

geom_point(aes(x = pop_mean, y = 0), color = "red", size = 3)

The population mean of 149.6 minutes falls in this interval. We conclude that the “middle
95%” interval of bootstrapped means successfully captured the parameter.

7.3.9 Lucky try?

Our interval of bootstrapped means captured the parameter in the air time data. But were
we just lucky? We can test it out.
We would like to see how often the “middle 95%” interval captures the parameter. We will
need to redo the entire process many times to find an answer. More specifically, we will
follow the recipe:
• Collect a fresh sample of size 10,000 from the population. For the sampling plan, sample

at random without replacement.



326 7 Quantifying Uncertainty

• Do 10,000 replications of the bootstrap process and find the “middle 95%” interval of
bootstrapped means. We will repeat this process 100 times so that we end up with 100
intervals; we will count how many of them contain the population mean.

all_the_bootstraps <- function() {
desired_area <- 0.95

flights_sample <- flights400 |>
slice_sample(n = 10000, replace = FALSE)

bstrap_means <- replicate(n = 10000,
one_sample_value(flights_sample, air_time, mean))

middle95 <- quantile(bstrap_means,
0.5 + (desired_area / 2) * c(-1, 1), type = 1)

return(middle95)
}

intervals <- replicate(n = 100, all_the_bootstraps())

Note that this simulation will take awhile (> 20 minutes). Grab a coffee!
Let’s examine some of the intervals of bootstrapped means.

intervals[,1]

## 2.5% 97.5%
## 147.4277 151.0550

intervals[,2]

## 2.5% 97.5%
## 148.7328 152.4258

Let’s transform intervals into a tibble which will make it easier to understand and visualize
the results.

left_column <- intervals[1,]
right_column <- intervals[2,]

interval_df <- tibble(
replication = 1:100,
left = left_column,
right = right_column

)
interval_df

## # A tibble: 100 x 3
## replication left right
## <int> <dbl> <dbl>
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## 1 1 147. 151.
## 2 2 149. 152.
## 3 3 148. 152.
## 4 4 149. 152.
## 5 5 149. 153.
## 6 6 147. 150.
## 7 7 148. 151.
## 8 8 148. 151.
## 9 9 148. 152.
## 10 10 149. 152.
## # ... with 90 more rows

How many of these contain the population mean? We can count the number of intervals
where the population mean is between the left and right endpoints.

interval_df |>
filter(left <= pop_mean & right >= pop_mean) |>
nrow()

## [1] 94

We can visualize these intervals by stacking them on top of each other vertically. The
vertical red line shows where the population mean lies. Under real-life circumstances, we do
not know where it is.

ggplot(interval_df) +
geom_segment(aes(x = left, y = replication,

xend = right, yend = replication),
color = "salmon") +

geom_vline(xintercept = pop_mean, color = "red") +
labs(x = "Air time (minutes)")

We expect about 95 of the 100 intervals to cross the vertical line; meaning, it contains the
parameter. We would label such intervals as “good”. If an interval does not, oh well – that’s



328 7 Quantifying Uncertainty

the nature of chance. Fortunately, these do not occur often. In fact, they should occur
about 5 times among 100 trials, or 95%. The strength of statistics is not clairvoyance, but
the ability to quantify uncertainty.

7.3.10 Resampling round-up

Before we close this section, we end with a quick summary on how to perform a bootstrap.
Goal: To estimate some population parameter we do not know about, e.g., the mean air
time of New York City flights.
• Select a sampling plan. A safe bet is to sample at random without replacement from

the population. Be sure the sample drawn is large in size and remember that in reality
sampling is an expensive process. It is likely you will get only one chance to draw a
sample from the population.

• Bootstrap the random sample (this time, with replacement) and compute the desired
statistic from it.

• Replicate this process a great number of times to obtain many bootstrapped samples.
• Find the “middle 95%” interval of the bootstrapped samples.

7.4 Confidence Intervals

The previous section developed a way to estimate the value of a parameter we do not know.
Because chance is an inevitable part of drawing a random sample, we cannot be precise
and offer a single value for this estimate, e.g., we can determine that the mean height of
all individuals in the United States is exactly 5.3 feet. Instead, we provide an interval of
estimates by looking at a bulk of values that are “somewhere in the center”. Typically this
entails looking at the “middle 95%” interval, but we may prefer other intervals such as the
“middle 90%” or even the “middle 99%”.
Recall that knowing the value of the parameter beforehand is a rare luxury out of reach; if we
could obtain it somehow, there would be no need for statistical methods like the bootstrap.
Instead, data scientists place their confidence on intervals of estimates where the process
that generates said interval is successful in capturing the parameter some percentage of the
time.
These “intervals of estimates” are so important to statistics and data science that they are
given a special name: the confidence interval. This section will explore confidence intervals,
and their use, in greater depth.

7.4.1 Prerequisites

We will make use of the tidyverse in this chapter, so let’s load it in as usual.

library(tidyverse)

We will also bring forward the one_sample_value function we wrote in the previous section.
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one_sample_value <- function(df, label, statistic) {
sample_value <- df |>
pull({{ label }}) |>
sample(replace = TRUE) |>
statistic()

return(sample_value)
}

For the running example in this section, we turn to survey data collected by the US Na-
tional Center for Health Statistics (NCHS) on nutrition and health information. This data
is available in the tibble NHANES from the NHANES package. In accordance to the documenta-
tion (see ?NHANES), the dataset can be treated as if it were a simple random sample from
the American population. We use this dataset as an example where we do not know the
population parameter.

library(NHANES)
NHANES

## # A tibble: 10,000 x 76
## ID SurveyYr Gender Age AgeDe~1 AgeMo~2 Race1 Race3
## <int> <fct> <fct> <int> <fct> <int> <fct> <fct>
## 1 51624 2009_10 male 34 " 30-3~ 409 White <NA>
## 2 51624 2009_10 male 34 " 30-3~ 409 White <NA>
## 3 51624 2009_10 male 34 " 30-3~ 409 White <NA>
## 4 51625 2009_10 male 4 " 0-9" 49 Other <NA>
## 5 51630 2009_10 female 49 " 40-4~ 596 White <NA>
## 6 51638 2009_10 male 9 " 0-9" 115 White <NA>
## 7 51646 2009_10 male 8 " 0-9" 101 White <NA>
## 8 51647 2009_10 female 45 " 40-4~ 541 White <NA>
## 9 51647 2009_10 female 45 " 40-4~ 541 White <NA>
## 10 51647 2009_10 female 45 " 40-4~ 541 White <NA>
## # ... with 9,990 more rows, 68 more variables:
## # Education <fct>, MaritalStatus <fct>, HHIncome <fct>,
## # HHIncomeMid <int>, Poverty <dbl>, HomeRooms <int>,
## # HomeOwn <fct>, Work <fct>, Weight <dbl>,
## # Length <dbl>, HeadCirc <dbl>, Height <dbl>,
## # BMI <dbl>, BMICatUnder20yrs <fct>, BMI_WHO <fct>,
## # Pulse <int>, BPSysAve <int>, BPDiaAve <int>, ...

7.4.2 Estimating a population proportion

Let us use this dataset to estimate the proportion of healthy sleepers in the American
population. A “healthy amount of sleep” is defined by the American Academy of Sleep
Medicine4 as 7 to 9 hours per night for adults between the ages of 18 and 60.

4https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4434546/#:~:text=Adults%20should%20sleep%207
%20or,and%20increased%20risk%20of%20death

https://www.ncbi.nlm.nih.gov
https://www.ncbi.nlm.nih.gov
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With this information, we perform some basic preprocessing of the data:
• Drop any observations that contain a missing value in the column SleepHrsNight.
• Filter the data to contain observations for adults between the ages of 18 and 60.
• Create a new Boolean variable healthy_sleep that indicates whether a participant gets a

healthy amount of sleep.

# BEGIN SOLUTION
NHANES_relevant <- NHANES |>

drop_na(c(SleepHrsNight)) |>
filter(between(Age, 18, 60)) |>
mutate(healthy_sleep = between(SleepHrsNight, 7, 9)) |>
relocate(healthy_sleep, .before = SurveyYr)

NHANES_relevant

## # A tibble: 5,748 x 77
## ID healthy_sl~1 Surve~2 Gender Age AgeDe~3 AgeMo~4
## <int> <lgl> <fct> <fct> <int> <fct> <int>
## 1 51624 FALSE 2009_10 male 34 " 30-3~ 409
## 2 51624 FALSE 2009_10 male 34 " 30-3~ 409
## 3 51624 FALSE 2009_10 male 34 " 30-3~ 409
## 4 51630 TRUE 2009_10 female 49 " 40-4~ 596
## 5 51647 TRUE 2009_10 female 45 " 40-4~ 541
## 6 51647 TRUE 2009_10 female 45 " 40-4~ 541
## 7 51647 TRUE 2009_10 female 45 " 40-4~ 541
## 8 51656 FALSE 2009_10 male 58 " 50-5~ 707
## 9 51657 FALSE 2009_10 male 54 " 50-5~ 654
## 10 51666 FALSE 2009_10 female 58 " 50-5~ 700
## # ... with 5,738 more rows, 70 more variables:
## # Race1 <fct>, Race3 <fct>, Education <fct>,
## # MaritalStatus <fct>, HHIncome <fct>,
## # HHIncomeMid <int>, Poverty <dbl>, HomeRooms <int>,
## # HomeOwn <fct>, Work <fct>, Weight <dbl>,
## # Length <dbl>, HeadCirc <dbl>, Height <dbl>,
## # BMI <dbl>, BMICatUnder20yrs <fct>, BMI_WHO <fct>, ...

# END SOLUTION

We can inspect the resulting table. Note that there are 5,748 observations in the tibble.

NHANES_relevant

## # A tibble: 5,748 x 77
## ID healthy_sl~1 Surve~2 Gender Age AgeDe~3 AgeMo~4
## <int> <lgl> <fct> <fct> <int> <fct> <int>
## 1 51624 FALSE 2009_10 male 34 " 30-3~ 409
## 2 51624 FALSE 2009_10 male 34 " 30-3~ 409
## 3 51624 FALSE 2009_10 male 34 " 30-3~ 409
## 4 51630 TRUE 2009_10 female 49 " 40-4~ 596
## 5 51647 TRUE 2009_10 female 45 " 40-4~ 541
## 6 51647 TRUE 2009_10 female 45 " 40-4~ 541



7.4 Confidence Intervals 331

## 7 51647 TRUE 2009_10 female 45 " 40-4~ 541
## 8 51656 FALSE 2009_10 male 58 " 50-5~ 707
## 9 51657 FALSE 2009_10 male 54 " 50-5~ 654
## 10 51666 FALSE 2009_10 female 58 " 50-5~ 700
## # ... with 5,738 more rows, 70 more variables:
## # Race1 <fct>, Race3 <fct>, Education <fct>,
## # MaritalStatus <fct>, HHIncome <fct>,
## # HHIncomeMid <int>, Poverty <dbl>, HomeRooms <int>,
## # HomeOwn <fct>, Work <fct>, Weight <dbl>,
## # Length <dbl>, HeadCirc <dbl>, Height <dbl>,
## # BMI <dbl>, BMICatUnder20yrs <fct>, BMI_WHO <fct>, ...

We will apply bootstrapping to the NHANES_relevant tibble to estimate an unknown param-
eter: the proportion of healthy sleepers in the American population.
Let us visualize the distribution of healthy sleepers using a bar chart.

ggplot(NHANES_relevant) +
geom_bar(aes(x = healthy_sleep),

col="grey", fill = "darkcyan", bins = 20)

The proportion of healthy sleepers is the fraction of TRUE’s in the healthy_sleep column.
Recall that Boolean variables are just 1’s and 0’s. Thus, we can sum the number of TRUE’s
and divide by the total number of subjects. This is equivalent to computing the mean for
the healthy_sleep column.

NHANES_relevant |>
summarize(prop = mean(healthy_sleep))

## # A tibble: 1 x 1
## prop
## <dbl>
## 1 0.601
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We are now ready to bootstrap from this random sample. Recall that one_sample_value
will perform the bootstrap for us. We will replicate the bootstrap process a large number of
times, say 10,000, so that we can plot a sampling histogram of the bootstrapped medians.

# Do the bootstrap!
bstrap_means <- replicate(n = 10000,

one_sample_value(NHANES_relevant, healthy_sleep, mean))

As before, we will identify the 95% confidence interval. Here is the interval:

desired_area <- 0.95
middle <- quantile(bstrap_means,

0.5 + (desired_area / 2) * c(-1, 1), type = 1)
middle

## 2.5% 97.5%
## 0.5887265 0.6139527

Let us plot the sampling histogram and annotate the interval on this histogram.

df <- tibble(bstrap_means)
ggplot(df, aes(x = bstrap_means, y = after_stat(density))) +
geom_histogram(col="grey", fill = "darkcyan", bins = 13) +
geom_segment(aes(x = middle[1], y = 0, xend = middle[2], yend = 0),

size = 2, color = "salmon") +
labs(x = "Proportion of healthy sleepers")

This looks a lot like what we saw in the previous section, with one key difference: there is
no dot indicating where the parameter is! We do not know where the dot will fall or if it is
even on this interval.
Statistics does not promise clairvoyance. It is a tool for quantifying uncertainty. What we
have obtained is a 95% confidence interval of estimates. Meaning, this bootstrap process
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will be successful in capturing the parameter about 95% of the time. But that also leaves a
5% chance where we are totally off. Can we control the level of uncertainty?

7.4.3 Levels of uncertainty: 80% and 99% confidence intervals

So far we have examined the 95% confidence interval. Let us see what happens to the interval
of estimates when we increase our level of confidence. We will examine a 99% confidence
interval.

desired_area <- 0.99
middle <- quantile(bstrap_means,

0.5 + (desired_area / 2) * c(-1, 1), type = 1)
middle

## 0.5% 99.5%
## 0.5847251 0.6179541

df <- tibble(bstrap_means)
ggplot(df, aes(x = bstrap_means, y = after_stat(density))) +
geom_histogram(col="grey", fill = "darkcyan", bins = 13) +
geom_segment(aes(x = middle[1], y = 0, xend = middle[2], yend = 0),

size = 2, color = "salmon") +
labs(x = "Proportion of healthy sleepers")

The interval is much wider! The proportion of healthy sleepers in the population goes from
about 58.4% to 61.7%. This points to a trade-off: as we increase our confidence in the interval
of estimates, this is compensated by making the interval wider. That is, a confidence interval
generated by this resampling process has a chance of missing the parameter only 1% of the
time. That probability does not correspond to the specific interval we found, but to the
process that generated said interval. For the [0.584, 0.617] interval we found, the parameter
either sits on the interval or not.
Let us move in the other direction and try a 80% confidence interval.
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desired_area <- 0.80
middle <- quantile(bstrap_means,

0.5 + (desired_area / 2) * c(-1, 1), type = 1)
middle

## 10% 90%
## 0.5929019 0.6096033

df <- tibble(bstrap_means)
ggplot(df, aes(x = bstrap_means, y = after_stat(density))) +
geom_histogram(col="grey", fill = "darkcyan", bins = 13) +
geom_segment(aes(x = middle[1], y = 0, xend = middle[2], yend = 0),

size = 2, color = "salmon") +
labs(x = "Proportion of healthy sleepers")

This interval is much narrower than the 99% interval and estimates 59.3% to 60.9% healthy
sleepers in the population. This is a much tighter set of estimates, but we traded a narrower
interval for lower confidence. This interval has a chance of missing the parameter 20% of
the time.

7.4.4 Confidence intervals as a hypothesis test

Confidence intervals can be used for more than trying to estimate a population parameter.
One popular use case for the confidence interval is something we saw in the previous chapter:
the hypothesis test.
Let us reconsider the 95% confidence interval we obtained. The proportion of healthy sleep-
ers in the population goes from 58.8% to 61.4%. Suppose that a researcher is interested in
testing the following hypothesis:
Null hypothesis. The proportion of healthy sleepers in the population is 61%.
Alternative hypothesis. The proportion of healthy sleepers in the population is not 61%.
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If we were testing this hypothesis at the 95% significance level, we would fail to reject the
null hypothesis. Why?
The value supplied by the null (61%) sits on our 95% confidence interval for the population
proportion. Therefore, at this level of significance, this value is plausible.
If we were to lower our confidence (to say 90% or 80%), the conclusion could have been
different. This raises an important point about cut-offs: some fields demand a high level of
significance for a result to be accepted by its scientific community; other fields may require
much less convincing. For instance, experimental studies5 in Physics demand significance
levels at 99.9% or even 99.99%6 for a result to be even considered publishable. It is not hard
to imagine why: findings in Physics are usually axiomatic and rejecting a null hypothesis
implies the discovery of phenomena in nature. A 99.99% confidence interval would guarantee
that such a discovery is a fluke only 0.01% of the time.
The basis for using confidence intervals as a hypothesis test is rooted in statistical theory.
In practice, we simply check whether the value supplied by the null hypothesis sits on the
confidence interval or not.

7.4.5 Final remarks: resampling with care

We end this section with some points to keep in mind when applying resampling.
• Avoid introducing bias into the sample that is used as input for resampling. The sampling

plan of simple random sampling will usually work best. And, even with simple random
samples, it is possible to draw a “weird” original sample such that the confidence interval
generated using it fails to capture the parameter.

• When the size of a random sample is moderately sized enough, the chance of the boot-
strapped sample being identical to it is extremely rare. Therefore, you should aim to
work with large random samples.

• Resampling does not work well when estimating extreme values, for instance, estimating
the minimum or maximum value of a population.

• The distribution of the statistic should look roughly “bell” shaped. The histogram of
the resampled statistics will be a hint.

7.5 Exercises

Be sure to install and load the following packages into your R environment before beginning
this exercise set.
Question 1. The following vector lucky_numbers contains several numbers:

lucky_numbers <- c(5, 10, 17, 25, 31, 36, 43)
lucky_numbers

5https://arxiv.org/pdf/0706.3283.pdf
6https://journals.aps.org/prd/pdf/10.1103/PhysRevD.93.122002?casa_token=LX4dEzE

BwoEAAAAA%3ATEemb6ulsnfx89acCPP-GoEzMsjLDng26HX5YJ0CMZczkdOrPpmiHTLaFy
UR3c6jZcuDYVgJys92eRU

https://arxiv.org
https://journals.aps.org
https://journals.aps.org
https://journals.aps.org


336 7 Quantifying Uncertainty

## [1] 5 10 17 25 31 36 43

Using the function quantile as shown in the textbook, determine the lucky number that
results from the order statistics: (1) min, (2) max, and (3) median.
Question 2 The University of Lost World has conducted a staff and faculty survey regarding
their most favorite rock bands. The university received 200 votes, which are summarized as
follows:
• Pink Floyd (35%)
• Led Zeppelin (22%)
• Allman Brothers Band (20%)
• Yes (12%)
• Uncertain (11%)

In the following, we will use "P", "L", "A", "Y", and "U" to refer to the artists. The following
tibble rock_bands summarizes the information:

rock_bands <- tibble(
band_initial = c("P", "L", "A", "Y", "U"),
proportion = c(0.35, 0.22, 0.20, 0.12, 0.11),
votes = proportion * 200

)
rock_bands

## # A tibble: 5 x 3
## band_initial proportion votes
## <chr> <dbl> <dbl>
## 1 P 0.35 70
## 2 L 0.22 44
## 3 A 0.2 40
## 4 Y 0.12 24
## 5 U 0.11 22

These proportions represent just a sample of the population of University of Lost World.
We will attempt to estimate the corresponding population parameters - the proportion of
listening preference for each rock band in the population of University of Lost World staff
and faculty. We will use confidence intervals to compute a range of values that reflects the
uncertainty of our estimate.

• Question 2.1 Using rock_bands, generate a tibble votes containing 200 rows correspond-
ing to the votes. You can group by band_initial and repeat each band’s row votes number
of times by using rep(1, each = votes) within a slice() call (remember computing within
groups?). Then form a tibble with a single column named vote.
Here is what the first few rows of this tibble should look like:

vote
A
A
A
A
A
…
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We will conduct bootstrapping using the tibble votes.
• Question 2.2 Write a function one_resampled_statistic(num_resamples) that receives

the number of samples to sample with replacement (why not without?) from votes. The
function resamples from the tibble votes num_resamples number of times and then com-
putes the proportion of votes for each of the 5 rock bands. It returns the result as a tibble
in the same form as rock_bands, but containing the resampled votes and proportions from
the bootstrap.
Here is one possible tibble after running one_resampled_statistic(100). The answer will
be different each time you run this!

vote votes proportion
A 23 0.23
L 19 0.19
P 40 0.40
U 7 0.07
Y 11 0.11

one_resampled_statistic <- function(num_resamples) {

}

one_resampled_statistic(100) # a sample call

• Question 2.3 Let us set two names, num_resamples and trials, to use when conducting
the bootstrapping. trials is the desired number of resampled proportions to simulate
for each of the bands. This can be set to some large value; let us say 1,000 for this
experiment. But what value should num_resamples be set to, which will be the argument
passed to one_resampled_statistic(num_resamples) in the next step?
The following code chunk conducts the bootstrapping using your
one_resampled_statistic() function and the names trials and num_resamples you
created above. It stores the results in a vector bstrap_props_tibble.

bstrap_props_tibble <- replicate(n = trials,
one_resampled_statistic(num_resamples),
simplify = FALSE) |>

bind_rows()
bstrap_props_tibble

• Question 2.4 Generate an overlaid histogram using bstrap_props_tibble, showing the
five distributions for each band. Be sure to use a positional adjustment to avoid stacking
in the bars. You may also wish to set an alpha to see each distribution better. Use 20 for
the number of bins.
We can see significant difference in the popularity between some bands. For instance, we
see that the bootstrapped proportions for 𝑃 is significantly higher than 𝑌 ’s by virtue
of no overlap between their two distributions; conversely, 𝑈 and 𝑌 overlap each other
completely showing no significant preference for 𝑈 over 𝑌 and vice versa. Let us formalize
this intuition for these three bands using an approximate 95% confidence interval.
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• Question 2.5 Define a function cf95 that receives a vector vec and returns the approxi-
mate “middle 95%” using quantile.
Let us examine the 95% confidence intervals of the bands 𝑃 , 𝑌 , and 𝑈 , respectively.

bstrap_props_tibble |>
filter(vote %in% c("P", "Y", "U")) |>
group_by(vote) |>
summarize(ci = list(cf95(proportion))) |>
unnest_wider(ci)

• Question 2.6 By looking at the upper and lower endpoints of each interval, and the
overlap between intervals (if any), can you say whether 𝑃 is more popular than 𝑌 or 𝑈?
How about for 𝑌 , is 𝑌 more popular than 𝑈?

• Question 2.7 Suppose you computed the following approximate 95% confidence interval
for the proportion of band 𝑃 votes.

[.285, .42]

Is it true that 95% of the population of faculty lies in the range [.285, .42]? Explain your
answer.

• Question 2.8 Can we say that there is a 95% probability that the interval [.285, .42]
contains the true proportion of the population who listens to band 𝑃? Explain your
answer.

• Question 2.9 Suppose that you created 80%, 90%, and 99% confidence intervals from
one sample for the popularity of band 𝑃 , but forgot to label which confidence interval
represented which percentages. Match the following intervals to the percent of confidence
the interval represents.

– [0.265, 0.440]
– [0.305, 0.395]
– [0.285, 0.420]

Question 3. Recall the tibble penguins from the package palmerpenguins includes mea-
surements for 344 penguins in the Palmer Archipelago. Let us try using the method of
resampling to estimate using confidence intervals some useful parameters of the population.

library(palmerpenguins)
penguins

## # A tibble: 344 x 8
## species island bill_~1 bill_~2 flipp~3 body_~4 sex
## <fct> <fct> <dbl> <dbl> <int> <int> <fct>
## 1 Adelie Torgersen 39.1 18.7 181 3750 male
## 2 Adelie Torgersen 39.5 17.4 186 3800 fema~
## 3 Adelie Torgersen 40.3 18 195 3250 fema~
## 4 Adelie Torgersen NA NA NA NA <NA>
## 5 Adelie Torgersen 36.7 19.3 193 3450 fema~
## 6 Adelie Torgersen 39.3 20.6 190 3650 male
## 7 Adelie Torgersen 38.9 17.8 181 3625 fema~
## 8 Adelie Torgersen 39.2 19.6 195 4675 male
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## 9 Adelie Torgersen 34.1 18.1 193 3475 <NA>
## 10 Adelie Torgersen 42 20.2 190 4250 <NA>
## # ... with 334 more rows, 1 more variable: year <int>,
## # and abbreviated variable names 1: bill_length_mm,
## # 2: bill_depth_mm, 3: flipper_length_mm,
## # 4: body_mass_g

• Question 3.1 First, let us focus on estimating the mean body mass of the penguins, avail-
able in the variable body_mass_g. Form a tibble named penguins_pop_df that is identical
to penguins but does not contain any missing values in the variable body_mass_g.
We will imagine the 342 penguins in penguins_pop_df to be the population of penguins of
interest. Of course, direct access to the population is almost never possible in a real-world
setting. However, for the purposes of this question, we will claim clairvoyance and see how
close the method of resampling approximates some population parameter, i.e., the mean
body mass of penguins in the Palmer Archipelago.

• Question 3.2 What is the mean body mass of penguins in penguins_pop_df? Store it in
pop_mean.

• Question 3.3 Draw a sample without replacement from the population in pen-
guins_pop_df. Because samples can be expensive to collect in real settings, set the sample
size to 50.
The sample in one_sample is what we will use to resample from a large number of times.
We saw in the textbook a function that resamples from a tibble, computes a statistic from
it, and returns it. Following is the function:

one_sample_value <- function(df, label, statistic) {
sample_value <- df |>
pull({{label}}) |>
sample(replace = TRUE) |>
statistic()

return(sample_value)
}

• Question 3.4 What is the size of the resampled tibble when one_sample is passed as an
argument? Assign your answer to the name resampled_size_answer.

1. 342
2. 684
3. 50
4. 100
5. 1

• Question 3.5 Using replicate, create 1,000 resampled mean statistics from one_sample
using the variable body_mass_g. Assign your answer to the name resampled_means.

• Question 3.6 Let us combine the steps from Question 3.4 and Question 3.5 into a
function. Write a function resample_mean_procedure that takes no arguments. The func-
tion draws a sample of size 50 from the population (Question 3.4), and then generates
1,000 resampled means from it (Question 3.5) which are then returned.

• Question 3.7 Write a function get_mean_quantile that takes a single argu-
ment desired_area. The function performs the resampling procedure using
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resample_mean_procedure and returns the middle desired_area interval (e.g., 90%
or 95%) as a vector.
Here is an example call that obtains an approximate 90% confidence interval. Also shown
is the population mean. Does your computed interval capture the parameter? Try running
the cell a few times. The interval printed should be different each time you run the code
chunk.

print(get_mean_quantile(0.9))
print(pop_mean)

• Question 3.8 Repeat the get_mean_quantile procedure to obtain 100 different approxi-
mate 90% confidence intervals. Assign the intervals to the name mean_intervals.
The following code chunk organizes your results into a tibble named interval_df.

interval_df <- tibble(
replication = 1:100,
left = mean_intervals[1,],
right = mean_intervals[2,]

)
interval_df

• Question 3.9 Under an approximate 90% confidence interval, how many of the above
100 intervals do you expect captures the population mean? Use what you know about
confidence intervals to answer this; do not write any code to determine the answer.
The following code chunk visualizes your intervals with a vertical line showing the param-
eter:

ggplot(interval_df) +
geom_segment(aes(x = left, y = replication,

xend = right, yend = replication),
color = "magenta") +

geom_vline(xintercept = pop_mean, color = "red")

• Question 3.10 Now feed the tibble interval_df to a filter that keeps only those rows
whose approximate 90% confidence interval includes pop_mean. How many of those intervals
actually captured the parameter? Store the number in number_captured.

Question 4. This problem is a continuation of Question 3. We will now streamline the
previous analysis by generalizing the functions we wrote. This way we can try estimating
different parameters and compare the results.

• Question 4.1 Let us first generalize the resample_mean_procedure from Question 3.6.
Call the new function resample_procedure. The function should receive the following ar-
guments:

– pop_df, a tibble
– label, the variable under examination. Recall the use of {{ to refer to it properly.
– initial_sample_size, the sample size to use for the initial draw from the population
– n_resamples, the number of resampled statistics to generate
– stat, the statistic function

The function returns a vector containing the resampled statistics.
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resample_procedure <- function(pop_df,
label,
initial_sample_size,
n_resamples,
stat) {

}

• Question 4.2 Generalize the function get_mean_quantile from Question 3.7. Call
the new function get_quantile. This function receives the same arguments as resam-
ple_mean_procedure with the addition of one more argument, desired_area, the interval
width. The function then calls resample_procedure to obtain the resampled statistics. The
function returns the middle quantile range of these statistics according to desired_area,
e.g., the “middle 90%” if desired_area is 0.9.

get_quantile <- function(pop_df,
label,
initial_sample_size,
n_resamples,
stat,
desired_area) {

}

• Question 4.3 We can now package all the actions into one function. Call the function
conf_interval_test. The function receives the same arguments as get_quantile with one
new argument, num_intervals, the number of confidence intervals to generate. The func-
tion performs the following actions (in order):

– Compute the population parameter from pop_df (assuming access to the population
is possible in pop_df) by running the function stat_func on the variable label. Recall
the use of {{ to refer to label properly. Assign this number to the name pop_stat.

– Obtain num_intervals many confidence intervals by repeated calls to the function
get_quantile. Assign the resulting intervals to the name intervals.

– Arrange the results in intervals into a tibble named interval_df with three variables:
replication, left, and right.

– Print the number of confidence intervals that capture the parameter pop_stat.
– Visualize the intervals with a vertical red line showing where the parameter is.

NOTE: If writing this function seems daunting, don’t worry! All of the code you need
is already written. You should be able to simply copy your work from this question and
from the steps in Question 3.

conf_interval_test <- function(pop_df,
label,
init_samp_size,
n_resamples, stat_func,
desired_area, num_intervals) {

}
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Let us now try some experiments.
• Question 4.4 Run conf_interval_test on penguins_pop_df to estimate the mean body

mass in the population using the variable body_mass_g. Set the initial draw size to 50
and number of resampled statistics to 1000. Generate 100 different approximate 90%
confidence intervals.

• Question 4.5 Repeat Question 4.4, this time estimating the max body mass in the
population instead of the mean.

• Question 4.6 Repeat Question 4.4, this time increasing the initial draw size. First try
100, then 200, and 300.

• Question 4.7 For the max-based estimates, why is it that so many of the 90% confidence
intervals are unsuccessful in capturing the parameter?

• Question 4.8 For the mean-based estimates, at some point when increasing the initial
draw size from 50 to 300, all of the 100 differently generated confidence intervals capture
the parameter. Given what we know about 90% confidence intervals, how can this be
possible?

Question 5 Let’s return to the College of Groundhog CSC1234 simulation from Question
6 in Chapter 6. We evaluated the claim that the final scores of students from Section B
were significantly lower than those from Sections A and C by means of a permutation test.
Permutation analysis seeks to quantify what the null distribution looks like. For this reason,
it tries to break whatever structure may be present in the dataset and quantify the patterns
we would expect to see under a chance model.
Recall the tibble csc1234 from the edsdata package:

library(edsdata)
csc1234

## # A tibble: 388 x 2
## Section Score
## <chr> <dbl>
## 1 A 100
## 2 A 100
## 3 A 100
## 4 A 100
## 5 A 100
## 6 A 100
## 7 A 100
## 8 A 100
## 9 A 100
## 10 A 100
## # ... with 378 more rows

• Question 5.1 How many students are in each section? Form a tibble that gives an answer
and assign the resulting tibble to the name section_counts.
There is another way we can approach the analysis. We can quantify the uncertainty in the
mean score difference between two sections by estimating a confidence interval with the
resampling technique. Under this scheme, we assume that each section performs identically
and that the student scores available in each section (116 from A, 128 from B, and 144
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from C) is a sample from some larger population of student scores for the CSC1234 course,
which we do not have access to.
Thus, we will sample with replacement from each section. Then, as with the permutation
exercise, we can compute the mean difference in scores for each pair of sections (“A-B”, “C-
B”, “C-A”) using the bootstrapped sample. The interval we obtain from this process can
be used to test the hypothesis that the average score difference is different from chance.

• Question 5.2 Recall the work from Question 6 in Chapter 6. Copy over your work
for creating the function mean_differences and the observed group mean differences in
observed_differences.

• Question 5.3 Generate an overlaid histogram for Score from csc1234 showing three
distributions in the same plot, the scores for Section A, for Section B, and for Section C.
Use 10 bins and a dodge positional adjustment this time to compare the distributions.
Resampling calls for sampling with replacement. Suppose that we are to resample scores
with replacement from the “Section A” group, then likewise for the “Section B” group,
and finally, the “Section C” group. Then we compute the difference in means between the
groups (A-B, C-B, C-A). Would the bulk of this distribution be centered around 0? Let’s find
out!

• Question 5.4 State a null and alternative hypothesis for this problem.
Let us use resampling to build a confidence interval and address the hypothesis.

• Question 5.5 Write a function resample_tibble that takes a tibble as its single argument,
e.g., csc1234. The function samples Score with replacement WITHIN each group in
Section. It overwrites the variable Score with the result of the sampling. The resampled
tibble is returned.

resample_tibble(csc1234) # an example call

• Question 5.6 Write a function csc1234_one_resample that takes no arguments. The func-
tion resamples from csc1234 using the function resample_tibble. It then computes the
mean difference in scores using the mean_differences function you wrote from the permu-
tation test. The function returns a one-element list containing a vector with the computed
differences.

csc1234_one_resample() # an example call

• Question 5.7 Using replicate, generate 10,000 resampled mean differences. Store the
resulting vector in the name resampled_differences.
The following code chunk organizes your results into a tibble differences_tibble:

differences_tibble <- tibble(
`A-B` = map_dbl(resampled_differences, function(x) x[1]),
`C-B` = map_dbl(resampled_differences, function(x) x[2]),
`C-A` = map_dbl(resampled_differences, function(x) x[3])) |>

pivot_longer(`A-B`:`C-A`,
names_to = "Section Pair",
values_to = "Statistic") |>

mutate(`Section Pair` =



344 7 Quantifying Uncertainty

factor(`Section Pair`, levels=c("A-B", "C-B", "C-A")))
differences_tibble

• Question 5.8 Form a tibble named section_intervals that gives an approximate 95%
confidence interval for each pair of course sections in resampled_differences. The resulting
tibble should look like:

Section Pair left right
A-B … …
C-A … …
C-B … …

To accomplish this, use quantile to summarize a grouped tibble and then a pivot function.
Don’t forget to ungroup!
The following plots a histogram of your results for each course section pair. It then anno-
tates each histogram with the approximate 95% confidence interval you found.

print(observed_differences)
differences_tibble |>

ggplot() +
geom_histogram(aes(x = Statistic, y = after_stat(density)),

color = "gray", fill = "darkcyan", bins = 20) +
geom_segment(data = section_intervals,

aes(x = left, y = 0, xend = right, yend = 0),
size = 2, color = "salmon") +

facet_wrap(~`Section Pair`)

Note how the observed mean score differences in observed_differences fall squarely in its
respective interval (if you like, plot the points on your visualization!).

• Question 5.9 Draw the conclusion of the hypothesis test for each of the three confidence
intervals. Do we reject the null hypothesis? If not, what conclusion can we make?

• Question 5.10 Suppose that the 95% confidence interval you found for “A-B”
is [−9.35,−1.95]. Does this mean that 95% of the student scores were between
[−9.35,−1.95]? Why or why not?
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Towards Normality

We have studied several statistics in this text such as the mean and order statistics like
the median. We have also drawn sampling distributions to simulate a statistic to see if
it approximates well some parameter value of interest. For some statistics, like the total
variation distance, we saw that the distribution skewed in some direction. But the sampling
distribution for the sample mean has consistently shown something that resembles a bell
shape, regardless of the underlying population.
Recall that a goal of this text is to make inferences about data in a population for which
we know very little about. If we can extract properties of random samples that are true
regardless of the underlying population, we have at hand a powerful tool for doing inference.
The distribution of the sample mean is one such property, which we will develop more in
depth in this chapter.
When we refer to these bell-shaped curves, we are talking about a distribution called the
normal distribution. To develop an intuition for this, we will first examine a new (but
important) statistic called the standard deviation, which measures generally how much
the data points are away from the mean. It is important because the shape of a normal
distribution is completely determinable from its mean and standard deviation. We will then
learn that by taking a large number of samples from a population, where each sample has
no relation to another, the resulting distribution will look like – you guessed it – a normal
distribution.

8.1 Standard Deviation

The standard deviation (or SD for short) measures how much the data points are away from
the mean. Put another way, it is a measure of the spread in the data.

8.1.1 Prerequisites

We will continue to make use of the tidyverse in this section so let us load it in.

library(tidyverse)

8.1.2 Definition of standard deviation

Suppose we have some number, say 𝑁 , of samples and for each sample, we have its mea-
surement. Let us say 𝑥1,… , 𝑥𝑁 are the measurements. The mean of the samples is the total
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of 𝑥1,… , 𝑥𝑁 divided by the number of samples 𝑁 , that is

𝑥1 +⋯+ 𝑥𝑁
𝑁

Let 𝜇 denote the average. The variance of the samples is the average of the square amounts
of these samples from the mean.

(𝑥1 − 𝜇)2 +⋯+ (𝑥𝑁 − 𝜇)2
𝑁

We use symbol 𝜎2 to represent the variance. Because of the subtraction of the mean from
the individual values, the variance measures the spread of the data around the mean. Since
each term in the total is a square, the unit of the variance is the square of the unit of the
samples. For example, if the original measure is meters then the unit of the variance is
square meters. To make the two units comparable to each other, we take the square root of
the variance, which we denote by 𝜎.

𝜎 = √(𝑥1 − 𝜇)2 +⋯+ (𝑥𝑁 − 𝜇)2
𝑁

We call the quantity 𝜎 the standard deviation.

8.1.3 Example: exam scores

Suppose we have drawn ten sample exam scores.

sample_scores <- c(78, 89, 98, 90, 96, 90, 84, 91, 98, 76)
sample_scores

## [1] 78 89 98 90 96 90 84 91 98 76

Let us first compute the mean and the squared element-wise differences from the mean.

mu <- mean(sample_scores)
diffs_from_mu_squared <- (sample_scores - mean(sample_scores)) ** 2
mu

## [1] 89

diffs_from_mu_squared

## [1] 121 0 81 1 49 1 25 4 81 169

Computing the variance is straightforward. We need only to sum up diffs_from_mu_squared
and divide the resulting quantity by the number of scores.

variance <- sum(diffs_from_mu_squared) / length(sample_scores)
variance

## [1] 53.2
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Finding the standard deviation is easy – just take the square root!

sdev <- sqrt(variance)
sdev

## [1] 7.293833

The mean is 89 points and the standard deviation is about 7.3 points. Let us visualize the
distribution of scores.

tibble(sample_scores) |>
ggplot() +
geom_histogram(aes(x = sample_scores, y = after_stat(density)),

color = "gray", fill = "darkcyan", binwidth = 3) +
scale_x_continuous(breaks = seq(70, 100, 4))

Let us compare these scores with another group of 10 scores.

sample_scores2 <- c(88, 89, 93, 90, 86, 90, 84, 91, 93, 80)
sample_scores2

## [1] 88 89 93 90 86 90 84 91 93 80

We will repeat the above steps.

mu2 <- mean(sample_scores2)
diffs_from_mu_squared2 <- (sample_scores2 - mean(sample_scores2)) ** 2
variance2 <- sum(diffs_from_mu_squared2) / length(sample_scores2)
sdev2 <- sqrt(variance2)

Let us examine the mean and standard deviation of this group.
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mu2

## [1] 88.4

sdev2

## [1] 3.878144

Interestingly, the group has the same mean but the standard deviation is much smaller.
Notice that the sum of the squared difference values are much larger in the first vector than
in the second.

sum(diffs_from_mu_squared)

## [1] 532

sum(diffs_from_mu_squared2)

## [1] 150.4

This tells us that the grades in the second group are closer together. We can confirm our
findings with a histogram of the score distribution.

tibble(sample_scores2) |>
ggplot() +
geom_histogram(aes(x = sample_scores2, y = after_stat(density)),

color = "gray", fill = "darkcyan", binwidth = 3) +
scale_x_continuous(breaks = seq(70, 100, 4))

Observe that the scores are much closer together compared to the first histogram.
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8.1.4 Sample standard deviation

Often in the calculation of standard deviation, instead of dividing by 𝑁 , we divide by
𝑁 −1. We call the versions of 𝜎2 and 𝜎 with division by 𝑁 the population variance and the
population standard deviation, respectively. The versions that use division by 𝑁 −1 are the
sample variance and sample standard deviation.
There is a subtle consideration in why we want to use 𝑁 − 1 for the variance. To see why,
suppose you have made up your mind on the value of the mean, say it is 6, and determine
all the values in your data except for the last one. Here is an example of the situation.

𝜇 = 6 = 2 + 8 + 4 + ?
4

Once you have finished determining three out of the four values, you no longer have anymore
freedom in choosing the fourth value. This is because of a constraint composed by the mean
formula. That is, if we isolate the sum of the numbers from above…

2 + 8 + 4 + ? = 6 ∗ 4

Thus, we can figure quite easily the value of the ?.

? = 6 ∗ 4 − (2 + 8 + 4) = 10

The phenomena we observed is representative of a general fact. In the formula that involves
𝜇 and 𝑥1,… , 𝑥𝑁 , like the one for variance, there are no longer 𝑁 independent values, there
are only 𝑁 − 1 of them.
The difference in quantity by using 𝑁 −1 instead of 𝑁 may not be large, specifically, when
𝑁 is large and the differences are small. Still, for an accurate understanding of the data
spread, the choice can be highly critical. For this reason, statisticians prefer to work with
the sample standard deviation when dealing with samples. We will do so as well for the
remainder of this text.

8.1.5 The sd function

Fortunately R comes with a function sd that computes the sample standard deviation. We
compare them side-by-side with the values we computed earlier.

c(sdev,sd(sample_scores))

## [1] 7.293833 7.688375

c(sdev2,sd(sample_scores2))

## [1] 3.878144 4.087923

Because of the use of 𝑁 − 1 in place of 𝑁 , the values in the right column are greater than
those on the left.
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8.2 More on Standard Deviation

The previous section introduced the notion of standard deviation (SD) and how it is a
measure of spread in the data. We build upon our discussion of SD in this section.

8.2.1 Prerequisites

We will continue to make use of the tidyverse. To demonstrate an example of the use (as well
as misuses) of SD, we also load in two synthetically generated datasets from the package
datasauRus.

library(tidyverse)
library(datasauRus)

We retrieve the two datasets here, and will explore them shortly.

star <- datasaurus_dozen |>
filter(dataset == "star")

bullseye <- datasaurus_dozen |>
filter(dataset == "bullseye")

8.2.2 Working with SD

To see what we can glean from the SD, let us turn to a more interesting dataset. The tibble
starwars from the dplyr package contains data about all characters in the Star Wars canon.
The table records a wealth of information about each character, e.g., name, height (cm),
weight (kg), home world, etc. Pull up the help (?starwars) for more information about the
dataset.

starwars

## # A tibble: 87 x 14
## name height mass hair_~1 skin_~2 eye_c~3 birth~4
## <chr> <int> <dbl> <chr> <chr> <chr> <dbl>
## 1 Luke Skyw~ 172 77 blond fair blue 19
## 2 C-3PO 167 75 <NA> gold yellow 112
## 3 R2-D2 96 32 <NA> white,~ red 33
## 4 Darth Vad~ 202 136 none white yellow 41.9
## 5 Leia Orga~ 150 49 brown light brown 19
## 6 Owen Lars 178 120 brown,~ light blue 52
## 7 Beru Whit~ 165 75 brown light blue 47
## 8 R5-D4 97 32 <NA> white,~ red NA
## 9 Biggs Dar~ 183 84 black light brown 24
## 10 Obi-Wan K~ 182 77 auburn~ fair blue-g~ 57
## # ... with 77 more rows, 7 more variables: sex <chr>,
## # gender <chr>, homeworld <chr>, species <chr>,
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## # films <list>, vehicles <list>, starships <list>, and
## # abbreviated variable names 1: hair_color,
## # 2: skin_color, 3: eye_color, 4: birth_year

Let us focus on the characters’ heights. It turns out that the height information is missing
for some of them; let us remove these entries from the dataset.

starwars_clean <- starwars |>
drop_na(height)

Here is a histogram of the characters’ heights.

ggplot(starwars) +
geom_histogram(aes(x = height, y = after_stat(density)),

color = "gray", fill = "darkcyan", bins = 20)

The average height of Star Wars characters is just over 174 centimeters (or 5’8’‘), which is
about 1.4 centimeters shorter than the average height of men in the United States (5’9”).

mean_height <- starwars_clean |>
summarize(mean(height)) |>
pull()

mean_height

## [1] 174.358

The SD tells us how far off a character’s height is from the average, which is about 34.77
centimeters.

sd_height <- starwars_clean |>
summarize(sd(height)) |>
pull()

sd_height
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## [1] 34.77043

The shortest character in cannon is the legendary Jedi Master Yoda, registering a height of
just 66 centimeters!

starwars_clean |>
arrange(height) |>
head(1)

## # A tibble: 1 x 14
## name height mass hair_~1 skin_~2 eye_c~3 birth~4 sex
## <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr>
## 1 Yoda 66 17 white green brown 896 male
## # ... with 6 more variables: gender <chr>,
## # homeworld <chr>, species <chr>, films <list>,
## # vehicles <list>, starships <list>, and abbreviated
## # variable names 1: hair_color, 2: skin_color,
## # 3: eye_color, 4: birth_year

Yoda is about 108 centimeters shorter than the average height.

66 - mean_height

## [1] -108.358

Put another way, Yoda is about 3 SDs below the average height.

(66 - mean_height) / sd_height

## [1] -3.116384

We can repeat the same steps for the tallest character in canon: the Quermian Yarael Poof.

starwars_clean |>
arrange(desc(height)) |>
head(1)

## # A tibble: 1 x 14
## name height mass hair_~1 skin_~2 eye_c~3 birth~4 sex
## <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr>
## 1 Yara~ 264 NA none white yellow NA male
## # ... with 6 more variables: gender <chr>,
## # homeworld <chr>, species <chr>, films <list>,
## # vehicles <list>, starships <list>, and abbreviated
## # variable names 1: hair_color, 2: skin_color,
## # 3: eye_color, 4: birth_year

Yarael Poof’s height is about 2.58 SDs above the average height.

(264 - mean_height) / sd_height

## [1] 2.57811
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It seems then that the tallest and shortest characters are only a few SDs away from the
mean – no more than 3. The mean and SD is useful in this way: all the heights of Star Wars
characters can be found within 3 SDs of the mean. This gives us a good sense of the spread
in the data.

8.2.3 Standard units

The number of standard deviations a value is away from the mean can be calculated as
follows:

𝑧 = value − mean
SD

The resulting quantity 𝑧 measures standard units and is sometimes called the z-score. We
saw two such examples of standard units when studying the tallest and shortest Star Wars
characters.
R provides a function scale that converts values into standard units. Such a transformation
is called scaling. For instance, we can add a new column with all of the heights in standard
units.

starwars_clean |>
mutate(su = scale(height)) |>
select(name, height, su)

## # A tibble: 81 x 3
## name height su[,1]
## <chr> <int> <dbl>
## 1 Luke Skywalker 172 -0.0678
## 2 C-3PO 167 -0.212
## 3 R2-D2 96 -2.25
## 4 Darth Vader 202 0.795
## 5 Leia Organa 150 -0.701
## 6 Owen Lars 178 0.105
## 7 Beru Whitesun lars 165 -0.269
## 8 R5-D4 97 -2.22
## 9 Biggs Darklighter 183 0.249
## 10 Obi-Wan Kenobi 182 0.220
## # ... with 71 more rows

As before, note that the standard units are much less than 3 SDs (in general, they need not
be).
Scaling is often used in data analysis as it allows us to put data in a comparable format.
Let us visit another example to see why.

8.2.4 Example: judging a contest

Suppose three eccentric judges evaluated eight contestants at a contest. They evaluate each
contestant on the scale of 1 to 10. Enter the judges.
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• Mrs. Sweet. Her cakes are loved by everyone. She also has a reputation for giving high
scores. She has never given a score below 5.

• Mr. Coolblood. He has a reputation of being ruthless with a strong penchant for corn
dogs. He has never given a high score to anyone in the past.

• MS Hodgpodge. Her salsa dip is quite spicy. Yet she tends to spread her scores fairly.
If there are enough contestants, she gives 1 or 2 to at least one contestant and 9 or 10 to
at least one contestant.

Here are the results.

contest <- tribble(~name, ~sweet, ~coolblood, ~hodgepodge,
"Ashley", 9, 5, 9,
"Bruce", 8, 6, 4,
"Cathryn", 7, 5, 5,
"Drew", 8, 2, 1,
"Emily", 9, 7, 7,
"Frank", 6, 1, 1,
"Gail", 8, 4, 4,
"Harry", 5, 3, 3
)

contest

## # A tibble: 8 x 4
## name sweet coolblood hodgepodge
## <chr> <dbl> <dbl> <dbl>
## 1 Ashley 9 5 9
## 2 Bruce 8 6 4
## 3 Cathryn 7 5 5
## 4 Drew 8 2 1
## 5 Emily 9 7 7
## 6 Frank 6 1 1
## 7 Gail 8 4 4
## 8 Harry 5 3 3

Would it be enough to simply total their scores to determine the winner? Or should we take
into account their eccentricities and scale the scores somehow?
That is where standard units come to play. We adjust each judge’s scores by subtracting
his/her mean and then dividing it by his/her standard deviation. After adjustment, each
score represents relative to the standard deviation how much away the original score is from
the mean.
Let us compute the raw total of the three scores, and compare this with the scaled scores.

contest |> mutate(
sweet_su = scale(sweet),
hodge_su = scale(hodgepodge),
cool_su = scale(coolblood),
raw_sum = sweet + coolblood + hodgepodge,
scaled_sum = sweet_su + hodge_su + cool_su
) |>
select(name, raw_sum, scaled_sum)
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## # A tibble: 8 x 3
## name raw_sum scaled_sum[,1]
## <chr> <dbl> <dbl>
## 1 Ashley 23 3.21
## 2 Bruce 18 1.19
## 3 Cathryn 17 0.349
## 4 Drew 11 -1.87
## 5 Emily 23 3.47
## 6 Frank 8 -3.77
## 7 Gail 16 0.202
## 8 Harry 11 -2.77

Based on the raw scores, we identify a two-way tie between Ashely and Emily. The scaled
scores allow us to break the scores and we can announce, with confidence, Emily as the
winner!

8.2.5 Be careful with summary statistics!

The SD is part of what we call summary statistics as they are useful for summarizing
information about a distribution. The SD tells us about the spread of the data and where
a histogram might sit on a number line.
Indeed, SD is an important tool and we will continue our study of it in the following sections.
However, SD – as with all summary statistics – must be used with caution. We end our
discussion in this section with an instructive example as to why.
Recall that we have two datasets star and bullseye. Each contains some x and y coordinate
pairs. Let us examine some of the x coordinates in each.

star_x <- star |>
pull(x)

head(star_x)

## [1] 58.21361 58.19605 58.71823 57.27837 58.08202 57.48945

bullseye_x <- bullseye |>
pull(x)

head(bullseye_x)

## [1] 51.20389 58.97447 51.87207 48.17993 41.68320 37.89042

The values seem close, but look different enough. Let us compute the SD.

sd(star_x)

## [1] 16.76896

sd(bullseye_x)

## [1] 16.76924

How about the mean?
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mean(star_x)

## [1] 54.26734

mean(bullseye_x)

## [1] 54.26873

The result points to a clear answer: both distributions represented by star_x and bulls-
eye_x have the exact same SD and mean. We may be tempted then to conclude that both
distributions are equivalent. We would be mistaken!
Whenever in doubt, turn to visualization. We plot a histogram of the distributions overlaid
on top of each other. If the distributions are actually equal, we expect this to be reflected
in the histogram.

datasaurus_dozen |>
filter(dataset == "star" | dataset == "bullseye") |>
ggplot() +
geom_histogram(aes(x = x, y = after_stat(density), fill = dataset),

color = "gray", position = "identity",
alpha = 0.7, bins = 10) +

scale_x_continuous(breaks = seq(15, 90, 5))

The histogram confirms that, contrary to what we might expect, these distributions are
very much different – despite having the same SD and mean! Thus, the moral of this lesson:
be careful with summary statistics and always visualize your data.
The star and bullseye datasets have an additional y coordinate which we have ignored
in this study. We leave it as an exercise to the reader to determine if the distributions
represented by y are also different yet have identical summary statistics.
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8.3 The Normal Curve

The mean and SD are key pieces of information in determining the shape of some distri-
butions. The most famous of them is the normal distribution, which we turn to in this
section.

8.3.1 Prerequisites

We will continue to make use of the tidyverse so let us load it in. We will also work with
some datasets from the edsdata package so let us load that in as well.

library(tidyverse)
library(edsdata)

8.3.2 The standard normal curve

The standard normal curve has a rather complicated formula:

𝜙(𝑧) = 1√
2𝜋𝑒−1

2 𝑧2 , −∞ < 𝑧 < ∞

where 𝜋 is the constant 3.141592… and 𝑒 is Euler’s number 2.71828…. It is best to think
of this visually as in the following plot.

The values on the x-axis are in standard units (or z-scored values). We observe that the
curve is symmetric around 0 where the “bulk” of the data is close to the mean. Following
are some properties about the curve:
• The total area under the curve is 1.
• The curve is symmetric so it inherits a property we know about symmetric distributions:

the mean and median are both 0.
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• The SD is 1 which, fortunately for us, is clearly identifiable on the x-axis.
• The curve has two points of inflection at -1 and +1, which are annotated on the following

plot.

Observe how the curve looks like a salad bowl in the regions (−∞,−1), and (1,∞) and in
the region (−1, 1) the bowl is flipped upside down!

8.3.3 Area under the curve

We can find the area under the standard normal curve with the function pnorm. Let us use
this function to find the amount of area to the left of 𝑧 = −1.

pnorm(-1)

## [1] 0.1586553
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So about 15.9% of the data lies to the left of 𝑧 = −1. Recall from our properties that the
curve is symmetric and that the total area must sum to 1. We can take advantage of these
two to calculate other areas, e.g., the area to the right of -1.

1 - pnorm(-1)

## [1] 0.8413447

That’s about 84% of the data.
Here is a trickier problem: how much area is within 1 SD? Put another way, what is the
area between 𝑧 = −1 and 𝑧 = 1? That’s the orange-shaded area in the following plot.

You might be able to guess at a few ways to answer this. One way to do it is to find the
area to left of 𝑧 = −1 (shaded in dark cyan) and subtract it from the area to the left of
𝑧 = 1. This resulting subtraction is the area in orange, between 𝑧 = −1 and 𝑧 = 1.
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pnorm(1) - pnorm(-1)

## [1] 0.6826895

That’s about 68.3% of the data.
How much data is within 2 SDs?

pnorm(2) - pnorm(-2)

## [1] 0.9544997

That’s about 95% of the data. To complete the story, let’s look at the amount of data within
3 SDs.

pnorm(3) - pnorm(-3)

## [1] 0.9973002

That covers almost all the data, but mind the italics. There is still about 0.3% of the data
that lies beyond 3 SDs, which can happen.
Therefore, for a standard normal curve, we can calculate the probability of where a sample
might lie. We have:
• a sample that falls within ±1 SD is about 68%.
• a sample that falls within ±2 SDs is about 95%.
• a sample that falls between ±3 is about 99.73%.

8.3.4 Normality in real data

Normality frequently occurs in real datasets. Let us have a look at a few attributes from
the Olympic athletes dataset in athletes from the edsdata package.
We focus specifically on the heights, weights, and age variables.
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my_athletes <- athletes |>
drop_na() |>
select(c(Height, Weight, Age))

Here is the histogram of these variables.

my_athletes |>
pivot_longer(everything()) |>
ggplot(aes(x = value, y = after_stat(density), fill = name)) +
geom_histogram(bins=15, color = "gray") +
facet_wrap(~name, scales = "free") +
guides(fill = "none")

The heights most closely resemble the bell curve. We can also spot normality in the weight
and age distributions, though they appear to be somewhat “lopsided” when compared to
the heights.
Let us compute the mean and standard deviation of the athletes’ heights.

summarized <- athletes |>
summarize(mean(Height), sd(Height))

summarized

## # A tibble: 1 x 2
## `mean(Height)` `sd(Height)`
## <dbl> <dbl>
## 1 178. 10.9

height_mean <- summarized[[1]]
height_sd <- summarized[[2]]
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8.3.5 Athlete heights and the dnorm function

We can create a normal curve using the function dnorm. It takes as arguments a vector of
𝑥 values, the mean, and SD; in terms of the plot, it returns the “y coordinate” for each
corresponding 𝑥 value. Let us construct a normal curve for the Olympic athlete heights
using the mean and SD we have just obtained, and overlay it atop the histogram.

height_norm <- dnorm(athletes |> pull(Height),
mean = height_mean, sd = height_sd)

ggplot(athletes, aes(x = Height, y = after_stat(density))) +
geom_histogram(col="grey", fill = "darkcyan", bins=14) +
geom_line(mapping = aes(x = Height, y = height_norm),

color = "salmon") +
labs(x = "Height") +
ggtitle("Normal curve and the histogram")

We observe the following.
• The histogram shows strong resemblance to the normal curve.
• The tails of the normal curve extend towards infinity, but there are no athletes shorter

than 136 cm and taller than 223 cm.
How close is the curve to the histogram? Let us compare the proportion of athletes whose
height is at most 200 cm with respect to the two distributions.

pnorm(200, mean = height_mean, sd = height_sd)

## [1] 0.9796522

num_rows <- athletes |>
filter(Height <= 200) |>
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nrow()
num_rows / nrow(athletes)

## [1] 0.9812465

The normal distribution says 97.96% while the actual record is 98.12%. Pretty close.
How about 181?

pnorm(181, mean = height_mean, sd = height_sd)

## [1] 0.6207147

num_rows <- athletes |>
filter(Height <= 181) |>
nrow()

num_rows / nrow(athletes)

## [1] 0.634704

The two values are 62.07% versus 63.47%.

8.4 Central Limit Theorem

As noted at the outset of this chapter, the bell-shaped distribution has been a running
motif through most of our examples. While most of the data histograms we studied have
not turned out bell-shaped, the sampling distributions representing some simulated statistic
has reliably turned out that way.
This is no coincidence. In fact, it is the consequence of an impressive theory in statistics
called the Central Limit Theorem. We will study the theorem in this section, but let us first
see a situation where a bell-shaped distribution results to set up the context.

8.4.1 Prerequisites

We will make use of the tidyverse in this chapter, so let’s load it in as usual.

library(tidyverse)
library(gapminder)

We will also work with GDP per capita data from the gapminder package, so let us load
that in as well.
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8.4.2 Example: Net allotments from a clumsy clerk

Recall that in an earlier section, we simulated the story of a minister and the doubling
grains. In that story, the amount of grains a minister receives doubles each day; by the end
of the 64th day, he expects to receive an impressive total of 264 − 1 grains.
The king has put a clerk in charge to assign the correct amount of grains each day. However,
she is human and tabulates the grains by hand, so is prone to error: she may double count
the number of grains on some days or forget to count a day altogether. But for the most
part she gets it right.
This yields three events on a given day: the counting was as expected, it was double counted,
or the clerk forgot. We said that the probabilities for these events are 2/3, 1/3, and 1/3,
respectively. Here is the distribution.

df <- tribble(~event, ~probability,
"as expected", 2/4,
"double counted", 1/4,
"forgot", 1/4
)

ggplot(df) +
geom_bar(aes(x = event, y = probability),

stat = "identity", fill = "darkcyan")

The number of grain allotments received after 64 days is the sum of draws made at random
with replacement from this distribution.
Using sample we can see the result of the grain allotment on any given day.

allotment <- sample(c(0, 1, 2), prob = c(1/3, 2/3, 1/3),
replace = TRUE, size = 1)

allotment

## [1] 1
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If allotment turns out 1, the minister received the correct amount of grains that day; 0
indicates that no grains were received and 2 means he received double the amount. The
minister hopes that the allotments will total to be 64 and, to the king’s dismay, perhaps
even more.
We are now ready to simulate one value of the statistic. Let us put our work into a function
we can use called one_simulation.

one_simulation <- function() {
allotments <- sample(c(0, 1, 2),

prob = c(1/4, 2/4, 1/4),
replace = TRUE, size = 64)

return(sum(allotments))
}
one_simulation()

## [1] 70

The following code simulates 10,000 times the net allotments the minister received at the
end of the 64th day.

num_repetitions <- 10000
net_allotments <- replicate(n = num_repetitions, one_simulation())

results <- tibble(
repetition = 1:num_repetitions,
net_allotments = net_allotments

)
results

## # A tibble: 10,000 x 2
## repetition net_allotments
## <int> <dbl>
## 1 1 77
## 2 2 67
## 3 3 63
## 4 4 66
## 5 5 66
## 6 6 63
## 7 7 60
## 8 8 65
## 9 9 57
## 10 10 64
## # ... with 9,990 more rows

ggplot(results) +
geom_histogram(aes(x = net_allotments, y = after_stat(density)),

color = "gray", fill = "darkcyan", bins = 15)
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We observe a bell-shaped curve, even though the distribution we drew from does not look
bell-shaped. Note the the distribution is centered around 64 days, as expected. With kudos
to the clerk for a job well done, we note that accomplishing such a feat in reality would be
impossible.
To understand the spread, look for the inflection point in this histogram. That point occurs
at around 70 days, which means the SD is the distance from the center to this point – that
looks to be about 5.6 days.

results |>
pull(net_allotments) |>
sd()

## [1] 5.662408

To confirm the bell-shaped curve we are seeing, we can create a normal distribution from
this mean and SD and overlay it atop the sampling histogram. We observe that it provides
a good fit.

curve <- dnorm(net_allotments, mean = 64, sd = 5.66)

ggplot(results) +
geom_histogram(aes(x = net_allotments, y = after_stat(density)),

color = "gray", fill = "darkcyan", bins = 15) +
geom_line(mapping = aes(x = net_allotments, y = curve),

color = "salmon")
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8.4.3 Central Limit Theorem

The Central Limit Theorem is a formalization of the phenomena we observed from the
doubling grains story. Formally, it states the following.

The sum or average of a large random sample that is identically and inde-
pendently distributed will resemble a normal distribution, regardless of the
underlying distribution from which the sample is drawn.

The “identically and independently distributed” condition, often abbreviated simply as
“IID”, is a mouthful. It means that the random samples we draw must have no relation to
each other, i.e., the drawing of one sample (say, the event forgot) does not make another
event more or less likely of occcuring. Hence, we prefer a sampling plan of sampling with
replacement.
The Central Limit Theorem is a powerful concept because it becomes possible to make
inferences about unknown populations with very little knowledge. And, the larger the sample
size becomes, the stronger the resemblance.

8.4.4 Comparing average systolic blood pressure

The Central Limit Theorem says that the sum of IID samples follows a distribution that
resembles a normal distribution. Let us return to the NHANES package and compare average
systolic blood pressure for males and females. If we take a large sample of participants,
what is the sample average systolic blood pressure as given by BPSysAve? According to the
theorem, we expect the distribution to be roughly normal.
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Let us first do some basic pre-processing and remove any missing values in the BPSysAve
column.

NHANES_relevant <- NHANES |>
drop_na(BPSysAve)

Let us compare the systolic blood pressure readings for males and females using an overlaid
histogram.

NHANES_relevant |>
ggplot() +
geom_histogram(aes(x = BPSysAve, fill = Gender,

y = after_stat(density)),
color = "gray", alpha = 0.7,
position = "identity", bins=15)

Observe the skew in these data histograms, as shown by the long right-tail in each. Neither
closely resembles a normal distribution.
Let us also note the standard deviation and mean for these distributions.

summary_stats <- NHANES_relevant |>
group_by(Gender) |>
summarize(mean = mean(BPSysAve),

sd = sd(BPSysAve))
summary_stats

## # A tibble: 2 x 3
## Gender mean sd
## <fct> <dbl> <dbl>
## 1 female 116. 17.8
## 2 male 120. 16.4

Let us deal out the participants into two separate datasets according to the gender status.
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NHANES_female <- NHANES_relevant |>
filter(Gender == "female")

NHANES_male <- NHANES_relevant |>
filter(Gender == "male")

Let us simulate the average systolic blood pressure in a sample of 100 participants for both
males and females. We will write a function to simulate one value for us. Observe that the
sampling is done with replacement, in accordance to the “IID” precondition needed by the
Central Limit Theorem.

one_simulation <- function(df, label, sample_size) {
df |>

slice_sample(n = sample_size, replace = TRUE) |>
summarize(mean({{ label }})) |>
pull()

}

The function one_simulation takes as arguments the tibble df, the column label to use for
computing the statistic, and the sample size sample_size.
Here is one run of the function with the female data.

one_simulation(NHANES_female, BPSysAve, 100)

## [1] 116.2

As before, we will simulate the statistic for female data 10,000 times.

num_repetitions <- 10000
sample_means <- replicate(n = num_repetitions,

one_simulation(NHANES_female, BPSysAve, 100))

female_results <- tibble(
repetition = 1:num_repetitions,
sample_mean = sample_means,
gender = "female"

)
female_results

## # A tibble: 10,000 x 3
## repetition sample_mean gender
## <int> <dbl> <chr>
## 1 1 116. female
## 2 2 118. female
## 3 3 114. female
## 4 4 115. female
## 5 5 115. female
## 6 6 117. female
## 7 7 115. female
## 8 8 118. female
## 9 9 117. female
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## 10 10 115. female
## # ... with 9,990 more rows

Let us repeat the simulation for the male data.

sample_means <- replicate(n = num_repetitions,
one_simulation(NHANES_male, BPSysAve, 100))

male_results <- tibble(
repetition = 1:num_repetitions,
sample_mean = sample_means,
gender = "male"

)
male_results

## # A tibble: 10,000 x 3
## repetition sample_mean gender
## <int> <dbl> <chr>
## 1 1 118. male
## 2 2 120. male
## 3 3 120. male
## 4 4 120. male
## 5 5 119. male
## 6 6 122. male
## 7 7 118. male
## 8 8 119 male
## 9 9 121. male
## 10 10 118. male
## # ... with 9,990 more rows

Let us merge the two tibbles together so that we can plot the sampling distributions together.

results <- bind_rows(female_results, male_results)

We plot an overlaid histogram in density scale showing the two distributions.

ggplot(results) +
geom_histogram(aes(x = sample_mean, y = after_stat(density)),

bins = 20, color = "gray",
position = "identity", alpha = 0.8) +

facet_wrap(~gender, scales = "free")
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Indeed, we see that both distributions are approximately normal, where each centers a
different mean. To confirm the shape, we overlay a normal curve atop each histogram.

summary_stats

## # A tibble: 2 x 3
## Gender mean sd
## <fct> <dbl> <dbl>
## 1 female 116. 17.8
## 2 male 120. 16.4

Let us briefly compare the sampling histograms to the summary statistics computed earlier
in summary_stats, which gives the mean and standard deviation for this dataset, which we
are treating as the “population.” We observe that both sampling histograms are centered
at this population mean.
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The standard deviation has a curious relationship and follows the equation:

sample SD = pop SD√
sample size

For instance, the standard deviation for the sample female distribution follows:

17.81539 / sqrt(100)

## [1] 1.781539

The interested reader should confirm this visually by looking for the inflection point in the
histogram, as well as what the sample SD would be for the male distribution.
It turns out this formula is a component of the Central Limit Theorem. We will explore
this in more detail in the exercise set.

8.5 Exercises

Be sure to install and load the following packages into your R environment before beginning
this exercise set.

library(tidyverse)
library(edsdata)

Question 1 Suppose in the town of Raines, the rain falls throughout the year. A student
created a record of 30 consecutive days whether there was a precipitation of at least a
quarter inch. The observations are stored in a tibble named rain_record.

rain_record <- tibble(had_rain = c(1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1,
1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0,
0, 0, 0, 0, 1, 0))

rain_record

## # A tibble: 30 x 1
## had_rain
## <dbl>
## 1 1
## 2 0
## 3 1
## 4 0
## 5 1
## 6 0
## 7 0
## 8 1
## 9 0
## 10 1
## # ... with 20 more rows
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In the variable had_rain, 1 represents the day in which there was enough precipitation and
0 represents the day in which there was not enough precipitation.
The Central Limit Theorem (CLT) tells us that the probability distribution of the sum or
average of a large random sample drawn with replacement will look roughly normal (i.e.,
bell-shaped), regardless of the distribution of the population from which the sample is drawn.

• Question 1.1 Let us visualize the precipitation distribution in Raines (given by had_rain)
using a histogram. Plot the histogram under density scale so that the y-axis shows the
chance of the event. Use only 2 bins.
It looks like there is about a 40% chance of rain and a 60% chance of no rain, which
definitely does not look like a normal distribution. The proportion of rainy days in a
month is equal to the average number of 1s that appear, so the CLT should apply if we
compute the sample proportion of rainy days in a month many times.

• Question 1.2 Let us examine the Central Limit Theorem using rain_record. Write a
function called rainy_proportion_after_period that takes a period number of days to
simulate as input. The function simulates period number of days by sampling from the
variable had_rain in rain_record with replacement. It then returns the proportion of rainy
days (i.e., 1) in this sample as a double.

rainy_proportion_after_period(5) # an example call

• Question 1.3 Write a function rainy_experiment() that receives two arguments, days
and sample_size, where days is the number of days in Raines to simulate and sam-
ple_size is the number of times to repeat the experiment. It executes the function
rainy_proportion_after_period(days) you just wrote sample_size number of times. The
function returns a tibble with the following variables:

– iteration, for the rounds 1:sample_size
– sample_proportion, which gives the sample proportion of rainy days in each experi-

ment
• Question 1.4 Here is one example call of your function. We simulate 30 days following

the same regimen the student did in the town of Raines, and repeat the experiment for 5
times.

rainy_experiment(30, 5)

The CLT only applies when sample sizes are “sufficiently large.” Let us try a simulation to
develop a sense for how the distribution of the sample proportion changes as the sample
size is increased.
The following function draw_ggplot_for_rainy_experiment() takes a single argument sam-
ple_size. It calls your rainy_experiment() with the argument sample_size and then plots
a histogram from the sample proportions generated.

draw_ggplot_for_rainy_experiment <- function(sample_size) {
g <- rainy_experiment(30,sample_size) |>

ggplot(aes(x = sample_proportion)) +
geom_histogram(aes(y = after_stat(density)),

fill = "darkcyan",
color="gray",
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bins=50)
return(g)

}
draw_ggplot_for_rainy_experiment(10)

Play with different calls to draw_ggplot_for_rainy_experiment() by passing in different
sample size values. For what value of sample_size do you begin to observe the application
of the CLT? What does the shape of the histogram look like for the value you found?

Question 2 The CLT states that the standard deviation of a normal distribution is given
by:

SD of distribution√
sample size

Let us test that the SD of the sample mean follows the above formula using flight delays
from the tibble flights in the nycflights13 package.

nycflights_sd <- flights |>
summarize(sd = sd(dep_delay, na.rm = TRUE)) |>
pull(sd)

nycflights_sd

• Question 2.1 Write a function called theory_sd that takes a sample size sample_size as
its single argument. It returns the theoretical standard deviation of the mean for samples
of size sample_size from the flight delays according to the Central Limit Theorem.

theory_sd(10) # an example call

• Question 2.2 The following function one_sample_mean() simulates one sample mean of
size sample_size from the flights data.

one_sample_mean <- function(sample_size) {
one_sample_mean <- flights |>
slice_sample(n = sample_size, replace = FALSE) |>
summarize(mean = mean(dep_delay, na.rm = TRUE)) |>
pull(mean)

return(one_sample_mean)
}

one_sample_mean(10) # an example call

Write a function named sample_sd that receives a single argument: a sample size sam-
ple_size. The function simulates 200 samples of size sample_size from flights. The
function returns the standard deviation of the 200 sample means. This function should
make repeated use of the one_sample_mean() function above.

• Question 2.3 The chunk below puts together the theoretical and sample SDs for flight
delays for various sample sizes into a tibble called sd_tibble.



8.5 Exercises 375

sd_tibble <- tibble(
sample_size = seq(10, 100, 5),
theory_sds = map_dbl(sample_size, theory_sd),
sample_sds = map_dbl(sample_size, sample_sd)
) |>

pivot_longer(c(theory_sds,sample_sds),
names_to = "category",
values_to = "sd")

sd_tibble

Plot these theoretical and sample SD quantities from sd_tibble using either a line plot or
scatter plot with ggplot2. A line plot may be easier to spot differences between the two
quantities, but feel free to use whichever visualization makes most sense to you. Regardless,
your visualization should show both quantities in a single plot.

• Question 2.4 As the sample size increases, do the theory and sample SDs change in a
way that is consistent with what we know about the Central Limit Theorem?

Question 3. In the textbook, we examined judges’ evaluations of contestants. We have
another example here with a slightly bigger dataset. The data is from the evaluation of
applicants to a scholarship program by four judges. Each judge evaluated each applicant
on a scale of 5 points. The applicants have already gone through a tough screening process
and, in general, they are already high achievers.
To begin, let us load the data into applications from the edsdata package.

library(edsdata)
applications

## # A tibble: 22 x 5
## Last Mary Nancy Olivia Paula
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 Arnold 4.9 4.95 4.75 4
## 2 Baxter 4.05 3.55 4.35 3.6
## 3 Chromovich 4.3 3.55 4.1 3.25
## 4 Dempsey 4 3.75 4.35 3.8
## 5 Engels 3.85 4.3 3.8 3.9
## 6 Franks 4.1 4.74 3.89 4.6
## 7 Greene 4.55 4.4 3.7 4.7
## 8 Hanks 3.55 3.55 3.9 3.7
## 9 Ingels 4.35 4.35 3.95 3.5
## 10 Jules 4.7 4.6 4.4 4.5
## # ... with 12 more rows

• Question 3.1 If the observational unit is defined as the score an applicant received by
some judge, then the current presentation of the data are not tidy (why?). Apply a pivot
transformation to applications so that three variables are apparent in the dataset: Last
(last name of the student), Judge(the judge who scored the student), and Score (the score
the student received). Assign the resulting tibble to the name app_tidy.
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• Question 3.2 Use the scale function to obtain the scaled version of the scores with
respect to each judge. Add a new variable to app_tidy called Scaled that contains these
scaled scores. Assign the resulting tibble to the name with_scaled.

• Question 3.3 Which of the following statements, if any, are accurate based on the tibble
with_scaled?

– Arnold’s scaled Judge Mary score is about 1.9 standard deviations higher than the
mean score Arnold received from the four different judges.

– The score Judge Mary gave to Baxter is roughly 0.02 standard deviations below
Judge Mary’s mean score over all applicants.

– Based on the raw score alone, we can tell the score Arnold received from Judge Mary
is higher than the average score Judy Mary gave.

– The standard deviation of Judge Mary’s scaled scores is higher than the standard
deviation of Judge Olivia’s scaled scores.

• Question 3.4 Add two new variables to with_scaled, Total Raw and Total Scaled, that
gives the total raw score and total scaled score, respectively, for each applicant. Save the
resulting tibble to the name total_scores.

• Question 3.5 Sort the rows of the data in total_scores in descending order of Total Raw
and create a variable Raw Rank that gives the index of the sorted rows. Store the resulting
tibble in the name app_raw_sorted. Then use total_scores to sort the rows in descending
order of Total Scaled and, likewise, create a variable Scaled Rank that gives the index of
the row when sorted this way. Store the result in app_scaled_sorted.

• Question 3.6 Join the results from app_raw_sorted with app_scaled_sorted using an
appropriate join function. The resulting tibble should contain five variables: the applicant’s
last name, their total raw score, total scaled score, the raw “rank”, and the scaled “rank”.
Assign the resulting tibble to the name ranks_together.

• Question 3.7 Create a new variable Rank difference that gives the difference between the
raw rank and the scaled rank. Assign the resulting tibble back to the name ranks_together.

• Question 3.8 For which applicant does the first rank difference occur? For which appli-
cant does the largest rank difference occur?

• Question 3.9 Why do you think there are differences in the rankings given by the raw
and scaled scores? Does the use of scaling bring any benefit when making a decision about
which applicant should be granted admission? Which one would you choose?

• Question 3.10 How does the ranking change when removing applicants with large dis-
crepancies in ranking? Remove Baxter from the dataset and then repeat all above steps.
What differences do you observe in the ranking? Do the new findings change your answer
to Question 3.9?

Question 4. Recall that the Central Limit Theorem states that the distribution of the
average of independent and identically distributed samples gets closer to a normal distribu-
tion as we increase the number of samples. We have used the sample mean for examining
the phenomenon, but let us try a different statistic – the sample variance – and see if the
phenomenon holds. Moreover, we will compute this statistic using some quantity we will
make up that is not normally distributed, and see if the Central Limit Theorem still applies
regardless of the underlying quantity we are using.
For this exploration, we will continue our examination of departure delays in the flights
tibble from nycflights13.
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Note: Be careful when dealing with missing values for this problem! For this problem, it is
enough to simply eliminate missing values in the arr_delay and dep_delay variables.

library(nycflights13)
flights <- flights |>
drop_na()

• Question 4.1 The quantity we will examine here is the absolute difference in departure de-
lay (dep_delay) and arrive delay (arr_delay). Add a new variable called dep_arr_abs_diff
that gives this new quantity. Assign the resulting tibble to the name flights_with_diff.

• Question 4.2 Assuming that we can treat the flights_with_diff tibble as the population
of all flights that departed NYC, compute the population variance of the dep_arr_abs_diff
variable. Assign the resulting double to the name pop_var_abs_diff.

• Question 4.3 What is the max of the absolute differences in dep_arr_abs_diff? What is
the mean of them? Store the answers in the names max_diff and mean_diff, respectively.
How about the quantile values at 0.5, 0.15, 0.35, 0.50, 0.65, 0.85, 0.95, and 0.99? Store
the quantile values in quantile_values.

• Question 4.4 Plot a histogram of dep_arr_abs_diff from flights_with_diff in density
scale with 30 bins. Add to the histogram the point on the x-axis indicating the max, the
mean, the 0.5 quantile, and the 0.99 quantile. Use "black" for the 0.99 quantile and "red"
for the max. Use two other different colors for the mean and the median.

• Question 4.5 Write a function var_from_sample that receives a single argument n_sample.
The function samples n_samples from the the tibble flights_with_diff without replace-
ment, and computes the sample variance in the new variable dep_arr_abs_diff we created.
The sample variance is then returned.

# example calls
var_from_sample(10)
var_from_sample(100)
var_from_sample(1000)

• Question 4.6 Write a function called hist_for_sample that receives a single argument
sample_size. This function should accomplish the following:

– Call repeatedly the function var_from_sample with the given sample_size, say, 1,000
times.

– Generate a histogram of the simulated sample statistics under density scale.
– Annotate this histogram with (1) a vertical blue line showing where the population

parameter is (pop_var_abs_diff) and (2) a red point indicating the mean of the
generated sample statistics.

hist_for_sample <- function(sample_size) {

}

The following code calls your function with different sample sizes:

map(c(10, 20, 50, 100, 1000, 10000), hist_for_sample)
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• Question 4.7 As the sample size is increased, does the variance of the simulated statistics
increase or decrease? How can you tell?

• Question 4.8 As the sample size is increased, the red point moves closer and closer to the
vertical blue line. Is this observation a coincidence due to the data we used? If not, what
does it suggest about the mean computed from our sample and the population parameter?

• Question 4.9 Alex, Bob, and Jeffrey are grumbling about whether we can use the Central
Limit Theorem (CLT) to help think about what the histograms should look like in the
above parts.

– Alex believes we cannot use the CLT since we are looking at the sampling histogram
of the test statistic and we do not know what the probability distribution looks like.

– Bob believes the CLT does not apply because the distribution of dep_arr_abs_diff
is not normally distributed.

– Jeffrey believes that both of these concerns are invalid, and the CLT is helpful.
Who is right? Are they all wrong? Explain your reasoning.
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9
Regression

In this chapter we turn to making guesses, or predictions, about the future. There are many
examples in which you, your supervisor, or an employer would want to make claims about
the future – that are accurate! For instance:
• Can we predict the miles per gallon of a brand new car model using aspects of its design

and performance?
• Can we predict the price of suburban homes in a city using information collected from

towns in the city, e.g. crime levels, demographics, median income, and distance to closest
employment center?

• Can we predict the magnitude of an earthquake given temporal and geological charac-
teristics of the area, e.g. fault length and recurrence interval?

To answer these questions, we need a framework or model for understanding how the world
works. Fortunately, data science has offered up many such models for addressing the above
proposed questions. This chapter turns to an important one known as regression, which is
actually a family of methods designed for modeling the value of a response variable given
some number of predictor variables.
We have already seen something that resembles regression in the introduction to visualiza-
tion, where we guessed by examination the line explaining the highway mileage using what
we know about a car model’s displacement. We build upon that intuition to examine more
formally what regression is and how to use it appropriately in data science tasks.

9.1 Correlation

Linear regression is closely related to a statistic called the correlation, which refers to how
tightly clustered points are about a straight line with respect to two variables. If we observe
such clustering, we say that the two variables are correlated; otherwise, we say that there
is no correlation or, put differently, that there is no association between the variables.
In this section, we build an understanding of what correlation is.

9.1.1 Prerequisites

We will make use of the tidyverse and the edsdata package in this chapter, so let us load
these in as usual. We will also return to some datasets from the datasauRus package, so let
us load that as well.
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library(tidyverse)
library(datasauRus)
library(edsdata)

To build some intuition, we composed a tibble called corr_tibble (available in edsdata)
that contains several artificial datasets. Don’t worry about the internal details of how the
data is generated; in fact, it would be better to think of it as real data!

corr_tibble

## # A tibble: 2,166 x 3
## x y dataset
## <dbl> <dbl> <chr>
## 1 0.695 2.26 cone
## 2 0.0824 0.0426 cone
## 3 0.0254 -0.136 cone
## 4 0.898 3.44 cone
## 5 0.413 1.15 cone
## 6 -0.730 -1.57 cone
## 7 0.508 1.26 cone
## 8 -0.0462 -0.0184 cone
## 9 -0.666 -0.143 cone
## 10 -0.723 0.159 cone
## # ... with 2,156 more rows

9.1.2 Visualizing correlation with a scatter plot

Let us begin by examining the relationship between the two variables y versus x in the
dataset linear within corr_tibble. As we have done in the past, we will use a scatter plot
for such a visualization.

corr_tibble |>
filter(dataset == "linear") |>
ggplot() +
geom_point(aes(x = x, y = y), color = "darkcyan")
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We noted earlier that two variables are correlated if they appear to cluster around a straight
line. It appears that there is a strong correlation present here, but let us confirm what we
are seeing by drawing a reference line at 𝑦 = 𝑥.

corr_tibble |>
filter(dataset == "linear") |>
ggplot() +
geom_point(aes(x = x, y = y), color = "darkcyan") +
geom_line(data = data.frame(x = c(-1,1), y = c(-1,1)),

aes(x = x, y = y), color = "blue", size = 1)

Indeed, we can confirm a “strong” correlation between these two variables. We will define
how strong momentarily. Let us turn to another dataset, perf.
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corr_tibble |>
filter(dataset == "perf") |>
ggplot() +
geom_point(aes(x = x, y = y), color = "darkcyan") +
geom_line(data = tibble(x = c(-1,1), y = c(-1,1)),

aes(x = x, y = y), color = "blue", size = 1)

Neat! The points fall exactly on the line. We can confidently say that y_perf and x are
perfectly correlated.
How about in the dataset null?

corr_tibble |>
filter(dataset == "null") |>
ggplot() +
geom_point(aes(x = x, y = y), color = "darkcyan") +
geom_line(data = data.frame(x = c(-1,1), y = c(-1,1)),

aes(x = x, y = y), color = "blue", size = 1)
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This one, unlike the others, does not cluster well around the line 𝑦 = 𝑥 nor does it show a
trend whatsoever; in fact, it seems the points are drawn at random, much like static noise
on a television. We call a plot that shows such phenomena a null plot.
Let us now quantify what correlation is.

9.1.3 The correlation coefficient r

We are now ready to present a formal definition for correlation, which is usually referred to
as the correlation coefficient 𝑟.

𝑟 is the mean of the products of two variables that are scaled to standard
units.

Here are some mathematical facts about 𝑟. Proving them is beyond the scope of this text,
so we only state them as properties.
• 𝑟 can take on a value between 1 and −1.
• 𝑟 = 1 means perfect positive correlation; 𝑟 = −1 means perfect negative correlation.
• Two variables with 𝑟 = 0 means that they are not related by a line, i.e., there is no

linear association among them. However, they can be related by something else, which
we will see an example of soon.

• Because 𝑟 is scaled to standard units, it is a dimensionless quantity, i.e., it has no units.

• Association does not imply causation! Just because two variables are strongly
correlated, positively or negatively, does not mean that x causes y.
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To build some intuition for this quantity, following are four scatter plots. We labeled each
with its corresponding 𝑟.

Let us return to the linear dataset and compute the coefficient by hand. First, we append
two new columns, x_su and y_su, that puts x and y in standard units.

corr_tibble |>
filter(dataset == 'linear') |>
transmute(x = x,

y = y,
x_su = scale(x),
y_su = scale(y))

## # A tibble: 361 x 4
## x y x_su[,1] y_su[,1]
## <dbl> <dbl> <dbl> <dbl>
## 1 0.695 0.757 1.20 1.24
## 2 0.0824 0.326 0.112 0.511
## 3 0.0254 0.128 0.0114 0.175
## 4 0.898 0.708 1.56 1.16
## 5 0.413 0.0253 0.698 0.00109
## 6 -0.730 -0.505 -1.33 -0.900
## 7 0.508 0.701 0.866 1.15
## 8 -0.0462 -0.101 -0.116 -0.213
## 9 -0.666 -0.971 -1.21 -1.69
## 10 -0.723 -0.583 -1.31 -1.03
## # ... with 351 more rows

We weill modify the above code to add one more column, prod, that takes the product
of the columns x_su and y_su. We will also save the resulting tibble to a variable called
linear_df_standard.

linear_df_standard <- corr_tibble |>
filter(dataset == 'linear') |>
transmute(x = x,

y = y,
x_su = scale(x),
y_su = scale(y),
prod = x_su * y_su)

linear_df_standard
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## # A tibble: 361 x 5
## x y x_su[,1] y_su[,1] prod[,1]
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.695 0.757 1.20 1.24 1.49
## 2 0.0824 0.326 0.112 0.511 0.0574
## 3 0.0254 0.128 0.0114 0.175 0.00199
## 4 0.898 0.708 1.56 1.16 1.81
## 5 0.413 0.0253 0.698 0.00109 0.000761
## 6 -0.730 -0.505 -1.33 -0.900 1.19
## 7 0.508 0.701 0.866 1.15 0.995
## 8 -0.0462 -0.101 -0.116 -0.213 0.0246
## 9 -0.666 -0.971 -1.21 -1.69 2.05
## 10 -0.723 -0.583 -1.31 -1.03 1.36
## # ... with 351 more rows

According to the definition, we need only to calculate the mean of the products to find 𝑟.

r <- linear_df_standard |>
pull(prod) |>
mean()

r

## [1] 0.9366707

So the correlation of y and x is about 0.94 which implies a strong positive correlation, as
expected.
Thankfully, R comes with a function for computing the correlation so we need not repeat
this work every time we wish to explore the correlation between two variables. The function
is called cor and receives two vectors as input.

linear_df_standard |>
summarize(r = cor(x, y))

## # A tibble: 1 x 1
## r
## <dbl>
## 1 0.939

Note that there may be some discrepancy between the two values. This is due to the 𝑛− 1
correction that R provides when calculating quantities like sd.

9.1.4 Technical considerations

There are a few technical points to be aware of when using correlation in your analysis. We
reflect on these here.
Switching axes does not affect the correlation coefficient. Let us swap 𝑥 and 𝑦 in
the “linear” dataset in corr_tibble and then plot the result.
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Observe how this visualization is a reflection over the 𝑦 = 𝑥 line. We compute the correlation.

swapped |>
summarize(r = cor(x_new, y_new))

## # A tibble: 1 x 1
## r
## <dbl>
## 1 0.939

This value is equivalent to the value we found earlier for this dataset.
Correlation is sensitive to “outliers”. Consider the following toy dataset and its corre-
sponding scatter.
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Besides the first point, we would expect this dataset to have a near perfect negative corre-
lation between 𝑥 and 𝑦. However, computing the correlation coefficient for this dataset tells
a different story.

weird %>%
summarize(r = cor(x, y))

## # A tibble: 1 x 1
## r
## <dbl>
## 1 0

We call such points that do not follow the overall trend “outliers”. It is important to look
out for these as said observations have the potential to dramatically affect the signal in the
analysis.
𝑟 = 0 is a special case. Let us turn to the dataset curvy to see why.

curvy <- corr_tibble |>
filter(dataset == "curvy")

We can compute the correlation coefficient as before.

curvy %>%
summarize(cor(x, y))

## # A tibble: 1 x 1
## `cor(x, y)`
## <dbl>
## 1 -0.0368

The small value may suggest that there is no correlation and, therefore, the scatter diagram
should resemble a null plot. Let us visualize the data.

ggplot(curvy) +
geom_point(aes(x = x, y = y), color = "darkcyan")
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A clear pattern emerges! However, the association is very much not linear, as indicated by
the obtained 𝑟 value.
𝑟 is agnostic to units of the input variables. This is due to its calculation being based
on standard units. So, for instance, we can look at the correlation between a quantity in
miles per gallon and another quantity in liters.

9.1.5 Be careful with summary statistics! (revisited)

We saw before the danger of using summary statistics like mean and standard deviation
without first visualizing data. Correlation is another one to watch out for. Let us see why
using the same bullseye and star datasets we examined before. We will compute the cor-
relation coefficient for each dataset.

datasaurus_dozen |>
filter(dataset == "bullseye" | dataset == "star") |>
group_by(dataset) |>
summarize(r = cor(x, y))

## # A tibble: 2 x 2
## dataset r
## <chr> <dbl>
## 1 bullseye -0.0686
## 2 star -0.0630

We observe that both datasets have almost identical coefficient values so we may be suspect
that both also have seemingly identical associations as well. We may also claim there is
some evidence that suggests there is a weak negative correlation between the variables.
As before, the test of any such claim is visualization.

datasaurus_dozen |>
filter(dataset == "bullseye" | dataset == "star") |>
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ggplot() +
geom_point(aes(x = x, y = y, color = dataset)) +
facet_wrap( ~ dataset, ncol = 2)

Indeed, we would be mistaken! The variables in each dataset are not identically associated
nor do they bear any kind of linear association. The lesson here, then, remains the same:
always visualize your data!

9.2 Linear Regression

Having a better grasp of what correlation is, we are now ready to develop an understanding
of linear regression.

9.2.1 Prerequisites

We will make use of the tidyverse in this chapter, so let us load it in as usual.

library(tidyverse)

9.2.2 The trees data frame

The trees data frame contains data on the diameter, height, and volume of 31 felled black
cherry trees. Let us first convert the data to a tibble.
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trees_data <- tibble(datasets::trees)

Note that the diameter is erroneously labeled as Girth.

slice_head(trees_data, n=5)

## # A tibble: 5 x 3
## Girth Height Volume
## <dbl> <dbl> <dbl>
## 1 8.3 70 10.3
## 2 8.6 65 10.3
## 3 8.8 63 10.2
## 4 10.5 72 16.4
## 5 10.7 81 18.8

Let us visualize the relationship between Girth and Height.

ggplot(trees_data) +
geom_point(aes(x = Height, y = Girth), color = "darkcyan")

There seems to be some correlation between the two – taller trees tend to have larger
diameters. Confident in the trend we are seeing, we propose the question: can we predict
the average diameter of a black cherry tree from its height?

9.3 First Approach: Nearest Neighbors Regression

One way to make a prediction about the outcome of some individual is to first find others
who are similiar to that individual and whose outcome you do know. We can then use those
outcomes to guide the prediction.
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Say we have a new black cherry tree whose height is 65 ft. We can look at trees that are
“close” to 65 ft, say, within 1 feet. We can find these individuals using dplyr:

trees_data |>
filter(between(Height, 75 - 1, 75 + 1))

## # A tibble: 7 x 3
## Girth Height Volume
## <dbl> <dbl> <dbl>
## 1 11 75 18.2
## 2 11.2 75 19.9
## 3 11.4 76 21
## 4 11.4 76 21.4
## 5 12 75 19.1
## 6 12.9 74 22.2
## 7 14.5 74 36.3

Here is a scatter with those “close” observations annotated using the color cyan.

trees_data |>
mutate(close_to_75 = between(Height, 75 - 1, 75 + 1)) |>
ggplot() +
geom_point(aes(x = Height, y = Girth, color = close_to_75))

We can take the mean of the outcomes for those observations to obtain a prediction for the
average diameter of a black cherry tree whose height is 65 ft. Let us amend our dplyr code
to compute this value.

trees_data |>
filter(between(Height, 75 - 1, 75 + 1)) |>
summarize(prediction = mean(Girth))
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## # A tibble: 1 x 1
## prediction
## <dbl>
## 1 12.1

This method is called nearest neighbors regression because of the use of “neighbors” to make
informed predictions about individuals whose outcomes we do not know. Its procedure is
as follows:
• Define a threshold 𝑡
• Filter each 𝑥 in the dataset to contain only rows where its 𝑥 value is within 𝑥 ± 𝑡. This

defines a group, or “neighborhood”, for each 𝑥.
• Take the mean of corresponding 𝑦 values in each group
• For each 𝑥, the prediction is the average of the 𝑦 values in the corresponding group

We write a function called nn_predict to obtain a prediction for each height in the dataset.
The function is designed so that it can be used to make predictions for any dataset with a
given threshold amount.

nn_predict <- function(x, tib, x_label, y_label,
threshold) {

tib |>
filter(between({{ x_label }},

x - threshold,
x + threshold)) |>

summarize(avg = mean({{ y_label }})) |>
pull(avg)

}

We will use nearest neighbors regression to help us develop intuition for linear regression.

9.3.1 The simple linear regression model

Linear regression is a method that estimates the mean value of a response variable, say
Girth, against a collection of predictor variables (or regressors), say Height or Volume, so
that we can express the value of the response as some combination of the regressors, where
each regressor either adds to or subtracts from the response value estimation. It is customary
to represent the response as 𝑦 and the regressors as 𝑥𝑖, where 𝑖 is the index for one of the
regressors.
The linear model takes the form:

𝑦 = 𝑐0 + 𝑐1𝑥1 +…+ 𝑐𝑛𝑥𝑛

where 𝑐0 is the intercept and the other 𝑐𝑖’s are coefficients. This form is hard to digest, so
we will begin with using only one regressor. Our model, then, reduces to:

𝑦 = 𝑐0 + 𝑐1𝑥

which is the equation of a line, just as you have seen it in high school math classes. There
are some important assumptions we are making when using this model:
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• The model is of the form 𝑦 = 𝑐0 + 𝑐1𝑥, that is, the data can be modeled linearly.
• The variance of the “errors” is more or less constant. This notion is sometimes referred

to as homoskedasticity.
We will return to what “errors” mean in just a moment. For now just keep in mind that
the linear model may not, and usually will not, pass through all of the points in the dataset
and, consequently, some amount of error is produced by the predictions it makes.
You may be wondering how we can obtain the intercept (𝑐0) and slope (𝑐1) for this line. For
that, let us return to the tree data.

9.3.2 The regression line in standard units

We noted before that there exists a close relationship between correlation and linear regres-
sion. Let us see if we can distill that connection here.
We begin our analysis by noting the correlation between the two variables.

trees_data |>
summarize(r = cor(Girth, Height))

## # A tibble: 1 x 1
## r
## <dbl>
## 1 0.519

This confirms the positive linear trend we saw earlier. Recall that the correlation coefficient
is a dimensionless quantity. Let us standardize Girth and Height so that they are in standard
units and are also dimensionless.

girth_height_su <- trees_data |>
transmute(Girth_su = scale(Girth),

Height_su = scale(Height))
girth_height_su

## # A tibble: 31 x 2
## Girth_su[,1] Height_su[,1]
## <dbl> <dbl>
## 1 -1.58 -0.942
## 2 -1.48 -1.73
## 3 -1.42 -2.04
## 4 -0.876 -0.628
## 5 -0.812 0.785
## 6 -0.780 1.10
## 7 -0.716 -1.57
## 8 -0.716 -0.157
## 9 -0.685 0.628
## 10 -0.653 -0.157
## # ... with 21 more rows

Let us plot the transformed data using a scatter plot again. Note how the axes of this plot
have changed and that we can clearly identify how many SDs each point is away from the
mean along each axis.
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ggplot(girth_height_su) +
geom_point(aes(x = Height_su, y = Girth_su), color = "darkcyan")

How can we find an equation of a line that “best” passes through this collection of points?
We can start with some trial and error – say, the line 𝑦 = 𝑥.

Let us compare this with the nearest neighbors regression line. We use the function
nn_predict we developed earlier in combination with a purrr map and set the threshold
amount to ± 1 ft.

with_nn_predictions <- girth_height_su |>
mutate(prediction =

map_dbl(Height_su,
nn_predict, girth_height_su, Height_su, Girth_su, 1))

with_nn_predictions
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## # A tibble: 31 x 3
## Girth_su[,1] Height_su[,1] prediction
## <dbl> <dbl> <dbl>
## 1 -1.58 -0.942 -0.440
## 2 -1.48 -1.73 -0.767
## 3 -1.42 -2.04 -0.787
## 4 -0.876 -0.628 -0.272
## 5 -0.812 0.785 0.254
## 6 -0.780 1.10 0.535
## 7 -0.716 -1.57 -0.596
## 8 -0.716 -0.157 0.0280
## 9 -0.685 0.628 0.144
## 10 -0.653 -0.157 0.0280
## # ... with 21 more rows

The new column prediction contains the nearest neighbor predictions. Let us overlay these
atop the scatter plot.

The graph of these predictions is called a “graph of averages.” If the relationship between
the response and predictor variables is roughly linear, then points on the “graph of averages”
tend to fall on a line.
What is the equation of that line? It appears that the 𝑦 = 𝑥 overestimates observations
where Height > 0 and underestimates observations where Height < 0.
How about we try a line where the slope is the correlation coefficient, 𝑟, we found earlier?
That follows the equation:

Girth = 𝑟 ∗ Height = 0.519 ∗ Height

Let us overlay this on the scatter plot using a purple line.
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We can see that this line closely follows the “graph of averages” predicted by the nearest
neighbor regression method. It turns out that, when the variables are scaled to standard
units, the slope of the regression line equals 𝑟. We also see that the regression line
passes through the origin so its intercept equals 0.
Thus, we discover a connection:

When 𝑥 and 𝑦 are scaled to standard units, the slope of the regression of 𝑦
on 𝑥 equals the correlation coefficient 𝑟 and the line passes through the origin
(0, 0).

Let us summarize what we have learned so far about the equation of the regression line.

9.3.3 Equation of the regression line

When working in standard units, the average of 𝑥 and 𝑦 are both 0 and the standard
deviation of 𝑥 (𝑆𝐷𝑥) is 1 and the standard deviation of 𝑦 is 1 (𝑆𝐷𝑦). Using what we know,
we can recover the equation of the regression line in original units. If the slope is 𝑟 in
standard units, then moving 1 unit along the x-axis in standard units is equivalent to moving
𝑆𝐷𝑥 units along the x-axis in original units. Similarly, moving 𝑟 units along the y-axis in
standard units is equivalent to moving 𝑟∗𝑆𝐷𝑦 units along the y-axis in original units. Thus,
we have the slope of the regression line in original units:

slope = 𝑟 ∗ 𝑆𝐷𝑦
𝑆𝐷𝑥
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Furthermore, if the line passes through the origin in standard units, then the line in original
units passes through the point ( ̄𝑥, ̄𝑦) , where ̄𝑥 and ̄𝑦 is the mean of 𝑥 and 𝑦, respectively.
So if the equation of the regression line follows:

estimate of 𝑦 = slope ∗ 𝑥 + intercept

Then the intercept is:

intercept = ̄𝑦 − slope ∗ ̄𝑥

9.3.4 The line of least squares

We have shown that the “graph of averages” can be modeled using the equation of the
regression line. However, how do we know that the regression line is the best line that
passes through the collection of points? We need to be able to quantify the amount of error
at each point.
For this, we introduce the notion of a residual, which we define as the vertical distance from
the point to the line (which can be positive or negative depending on the location of the
point relative to the line). More formally, we say that a residual 𝑒𝑖 has the form:

𝑒𝑖 = 𝑦𝑖 − (𝑐0 + 𝑐1𝑥𝑖)

where plugging into 𝑐0 + 𝑐1𝑥𝑖, the equation of the line, returns the predicted value for some
observation 𝑖. We usually call this the fitted value.
We can annotate the plot with the regression line using the residual amounts.

The vertical blue lines show the residual for each point; note how some are small while
others are quite large. How do the residuals for this line compare with those for, say, the
line 𝑦 = 𝑥 or a horizontal line at 𝑦 = 0?
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If we compare these plots side-by-side, it becomes clear that the equation 𝑦 = 𝑟 ∗ 𝑥 has
smaller residuals overall than the 𝑦 = 𝑥 line and the horizontal line that passes through
𝑦 = 0. This observation is key: to get an overall sense of the error in the model, we can
sum the residuals for each point. However, there is a problem with such an approach. Some
residuals can be positive while others can be negative, so a straightforward sum of the
residuals will total to 0! Thus, we take the square of each residual and then issue the sum.
Our goal can now be phrased as follows: we would like to find the line that minimizes
the residual sum of squares. We normally refer to this quantity as 𝑅𝑆𝑆. Let us write a
function that returns the 𝑅𝑆𝑆 for a given linear model. This function receives a vector
called params where the first element is the slope and the second the intercept, and returns
the corresponding 𝑅𝑆𝑆.

line_rss <- function(params) {
slope <- params[1]
intercept <- params[2]

x <- pull(girth_height_su, Height_su)
y <- pull(girth_height_su, Girth_su)
fitted <- slope * x + intercept
return(sum((y - fitted) ** 2))

}

We can retrieve the 𝑅𝑆𝑆 for the two lines we played with above. First, for the line 𝑦 = 𝑟∗𝑥,
where 𝑟 is the correlation between Height and Girth.

params <- c(0.5192, 0)
line_rss(params)

## [1] 21.91045

Next, for the line 𝑦 = 𝑥.
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params <- c(1, 0)
line_rss(params)

## [1] 28.8432

Finally, for the horizontal line passing through 𝑦 = 0. Note how the larger 𝑅𝑆𝑆 for this
model confirms what we saw graphically when plotting the vertical distances.

params <- c(0, 0)
line_rss(params)

## [1] 30

We could continue experimenting with values until we found a configuration that seems
“good enough”. While that would hardly be acceptable to our peers, solving this rigorously
involves methods of calculus which are beyond the scope of this text. Fortunately, we can
use something called numerical optimization which allows R to do the trial-and-error work
for us, “nudging” the above line until it minimizes 𝑅𝑆𝑆.

9.3.5 Numerical optimization

The optim function can be used to accomplish the task of finding the linear model that
yields the smallest 𝑅𝑆𝑆. optim takes as arguments an initial vector of values and a function
to be minimized using an initial guess as a starting point.
Let us see an example of it by finding an input that minimizes the output given by a
quadratic curve. Consider the following quadratic equation:

my_quadratic_equation <- function(x) {
(x - 2) ** 2 + 3

}
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Geometrically, we know that the minimum occurs at the bottom of the “bowl”, so the
answer is 2.
The orange dot at 𝑥 = 1 shows our first “guess”. You can imagine the call op-
tim(initial_guess, my_quadratic_equation) nudging this point around until a minimum
is reached. Let us try it.

initial_guess <- c(1) # start with a guess at x = 1
best <- optim(initial_guess, my_quadratic_equation)

We can inspect the value found using pluck from purrr.

best |>
pluck("par")

## [1] 1.9

This value closely approximates the expected value of 2.
Let us now use the optim function to find the linear model that yields the smallest 𝑅𝑆𝑆.
Note that our initial guess now consists of two values, one for the slope and the second for
the intercept.

initial_guess <- c(1,0) # start with a guess, the y = x line
best <- optim(initial_guess, line_rss)

We can examine the minimized slope and intercept found.

best |>
pluck("par")

## [1] 0.5192362885 -0.0001084234

This means that the best linear model follows the equation:

Girth𝑠𝑢 = 0.5192 ∗ Height𝑠𝑢

where the intercept is essentially 0. This line is equivalent to the regression line. Therefore,
we find that the regression line is also the line of least squares.
Let us overlay the least squares line on our scatter plot. Compare this line with our original
guesses, shown in gray.
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Compare the line we have just found (in purple) with the line 𝑦 = 𝑥. For trees with heights
that are less than 0 𝑆𝐷s away from the mean, the regression line predicts a larger girth
than the 𝑦 = 𝑥 line. And, for trees with heights that are more than 0 𝑆𝐷 away from the
mean, the regression line predicts a smaller girth than the 𝑦 = 𝑥 line. The effect should
become clearer in the following plot.

Observe the position of the regression line relative to 𝑦 = 𝑥 at each vertical blue line. Note
how the regression line approaches the horizontal line that passes through 𝑦 = 0. The
phenomena we are observing is called “regression towards the mean”, as the regression
line prefers to predict extreme points closer to the mean. We can summarize the effect on
the data as follows:
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Shorter trees will have larger girths on average, and taller trees will have
smaller girths on average.

9.3.6 Computing a regression line using base R

Before closing this section, we show how to compute a regression line using functions from
base R. Note that you can find the regression line simply by plugging into the formulas we
derived above, but it is easier to call a function in R that takes care of the work.
That function is lm, which is the short-hand for “linear model”. Running the linear regression
function requires two parameters. One parameter is the dataset, which takes the form data
= DATA_SET_NAME. The other is the response and the regressors, which takes a formula of the
form response ~ regressor_1 + ... + regressor_k.
For a regression of Girth on Height in standard units, we have the following call.

lmod <- lm(Girth_su ~ Height_su, data = girth_height_su)

The resulting linear model is stored in a variable lmod. We can inspect it by simply typing
its name.

lmod

##
## Call:
## lm(formula = Girth_su ~ Height_su, data = girth_height_su)
##
## Coefficients:
## (Intercept) Height_su
## -6.519e-16 5.193e-01

This agrees with our calculations. Let us compute the same regression, this time in terms
of original units.

lmod_original_units <- lm(Girth ~ Height, data = trees_data)
lmod_original_units

##
## Call:
## lm(formula = Girth ~ Height, data = trees_data)
##
## Coefficients:
## (Intercept) Height
## -6.1884 0.2557

So the equation of the line follows:

Girth = 0.2557 ∗ Height − 6.1884
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Let us reflect briefly on the meaning of the intercept and the slope. First, the intercept is
measured in inches as it takes on the units of the response variable. However, its interpre-
tation is nonsensical: a tree with no height is predicted to have a negative diameter.
The slope of the line is a ratio quantity. It measures the increase in the estimated diameter
per unit increase in height. Therefore, the slope of this line is 0.2557 inches per foot.
Note that this slope does not say that the diameter of an individual black cherry tree gets
wider as it gets taller. The slope tells us the difference in the average diameters of two
groups of trees that are 1 foot apart in height.
We can also make predictions using the predict function.

my_pred <- predict(lmod_original_units,
newdata = tibble(Height = c(75)))

my_pred

## 1
## 12.99264

So a tree that is 75 feet tall is expected, on average, to have a diameter of about 12.9 inches.
An important function for doing regression analysis in R is the function summary, which we
will not cover. The function reports a wealth of useful information about the linear model,
such as significance of the intercept and slope coefficients. However, to truly appreciate and
understand what is presented requires a deeper understanding of statistics than what we
have developed so far – if this sounds at all interesting, we encourage you to take a course
in statistical analysis!
Nevertheless, for the curious reader, we include the incantation to use.

summary(lmod)

9.4 Using Linear Regression

The last section developed a theoretical foundation for understanding linear regression. We
also saw how to fit a regression model using built-in R features such as lm. This section
will involve linear regression more practically, and we will see how to run a linear regression
analysis using tools from a collection of packages called tidymodels.

9.4.1 Prerequisites

This section introduces a new meta-package called tidymodels. This package can be installed
from CRAN using install.packages. We will also make use of the tidyverse so let us load
this in as usual.

library(tidyverse)
library(tidymodels)
library(palmerpenguins)
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9.4.2 Palmer Station penguins

For the running example in this section, we appeal to the dataset penguins from the palmer-
penguins package, which contains information on different types of penguins in the Palmer
Archipelago, Antarctica. The dataset contains 344 observations and ?penguins can be used
to pull up further information. Let us perform basic preprocessing on this dataset by re-
moving any missing values that may be present.

my_penguins <- penguins |>
drop_na()

my_penguins

## # A tibble: 333 x 7
## species island bill_~1 bill_~2 flipp~3 body_~4 sex
## <fct> <fct> <dbl> <dbl> <int> <int> <fct>
## 1 Adelie Torgersen 39.1 18.7 181 3750 male
## 2 Adelie Torgersen 39.5 17.4 186 3800 fema~
## 3 Adelie Torgersen 40.3 18 195 3250 fema~
## 4 Adelie Torgersen 36.7 19.3 193 3450 fema~
## 5 Adelie Torgersen 39.3 20.6 190 3650 male
## 6 Adelie Torgersen 38.9 17.8 181 3625 fema~
## 7 Adelie Torgersen 39.2 19.6 195 4675 male
## 8 Adelie Torgersen 41.1 17.6 182 3200 fema~
## 9 Adelie Torgersen 38.6 21.2 191 3800 male
## 10 Adelie Torgersen 34.6 21.1 198 4400 male
## # ... with 323 more rows, and abbreviated variable names
## # 1: bill_length_mm, 2: bill_depth_mm,
## # 3: flipper_length_mm, 4: body_mass_g

We refer to the preprocessed data as my_penguins. Let us visualize the relationship between
bill_length_mm and bill_depth_mm.

ggplot(my_penguins) +
geom_point(aes(x = bill_length_mm, y = bill_depth_mm),

color = "darkcyan")
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How much correlation is present between the two variables?

my_penguins |>
summarize(r = cor(bill_length_mm,

bill_depth_mm))

## # A tibble: 1 x 1
## r
## <dbl>
## 1 -0.229

The negative correlation is suspicious considering that we should expect to see a positive
correlation after viewing the above the scatter plot. Plotting a histogram for each of these
variables reveals a distribution where there appears to be two modes in the data, shown
geometrically as two “humps”.

We refer to this as a bimodal distribution and here it suggests that there is something about
this dataset that we have not yet considered (i.e., the penguin species). For now, we will
proceed with the regression analysis.
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9.4.3 Tidy linear regression

Let us run linear regression, this time using tidymodels. The benefit of learning about
tidymodels is that once you have mastered how to use it for linear regression, you can then
use the same functions for trying out different models (e.g., generalized linear models) and
other learning techniques (e.g., nearest neighbor classification).
To fit a linear regression model using tidymodels, first provide a specification for it.

linear_reg()

## Linear Regression Model Specification (regression)
##
## Computational engine: lm

There are different ways to fit a linear regression model and the method is determined by
setting the model engine. For a regression line fitted using the least squares method we
learned, we use the "lm" method.

linear_reg() |>
set_engine("lm") # ordinary least squares

## Linear Regression Model Specification (regression)
##
## Computational engine: lm

We then fit the model by specifying bill_depth_mm as the response variable and
bill_length_mm as the predictor variable.

lmod_parsnip <- linear_reg() |>
set_engine("lm") |>
fit(bill_depth_mm ~ bill_length_mm, data = penguins)

lmod_parsnip

## parsnip model object
##
##
## Call:
## stats::lm(formula = bill_depth_mm ~ bill_length_mm, data = data)
##
## Coefficients:
## (Intercept) bill_length_mm
## 20.88547 -0.08502

The model output is returned as a parsnip model object. We can glean the equation of the
regression line from its output:

Bill Depth = −0.08502 ∗ Bill Length + 20.885

We can tidy the model output using the tidy function from the broom package (a member
of tidymodels). This returns the estimates as a tibble, a form we can manipulate well in the
usual ways.
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linear_reg() %>%
set_engine("lm") %>%
fit(bill_depth_mm ~ bill_length_mm, data = penguins) %>%
tidy() # broom

## # A tibble: 2 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 20.9 0.844 24.7 4.72e-78
## 2 bill_length_mm -0.0850 0.0191 -4.46 1.12e- 5

Note the estimates for the intercept and slope given in the estimate column. The p.value
column indicates the significance of each term; we will return to this shortly.
We may wish to annotate each observation in the dataset with the predicted (or fitted)
values and residual amounts. This can be accomplished by augmenting the model output.
To do this, we extract the "fit" element of the model object and then call the function
augment from the parsnip package.

lmod_augmented <- lmod_parsnip |>
pluck("fit") |>
augment()

lmod_augmented

## # A tibble: 342 x 9
## .rownames bill_~1 bill_~2 .fitted .resid .hat .sigma
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 18.7 39.1 17.6 1.14 0.00521 1.92
## 2 2 17.4 39.5 17.5 -0.127 0.00485 1.93
## 3 3 18 40.3 17.5 0.541 0.00421 1.92
## 4 5 19.3 36.7 17.8 1.53 0.00806 1.92
## 5 6 20.6 39.3 17.5 3.06 0.00503 1.92
## 6 7 17.8 38.9 17.6 0.222 0.00541 1.93
## 7 8 19.6 39.2 17.6 2.05 0.00512 1.92
## 8 9 18.1 34.1 18.0 0.114 0.0124 1.93
## 9 10 20.2 42 17.3 2.89 0.00329 1.92
## 10 11 17.1 37.8 17.7 -0.572 0.00661 1.92
## # ... with 332 more rows, 2 more variables:
## # .cooksd <dbl>, .std.resid <dbl>, and abbreviated
## # variable names 1: bill_depth_mm, 2: bill_length_mm

Augmenting model output is useful if you wish to overlay the scatter plot with the regression
line.

ggplot(lmod_augmented) +
geom_point(aes(x = bill_length_mm,

y = bill_depth_mm),
color = "darkcyan") +

geom_line(aes(x = bill_length_mm,
y = .fitted),
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color = "purple",
size = 2)

Note that we can obtain an equivalent plot using a smooth geom with the lm method.

ggplot(my_penguins,
aes(x = bill_length_mm, y = bill_depth_mm)) +

geom_point(color = "darkcyan") +
geom_smooth(method = "lm", color = "purple", se = FALSE)

9.4.4 Including multiple predictors

As hinted earlier, there appear to be issues with the regression model found. We saw a
bimodal distribution when visualizing the bill depths and bill lengths, and the negative
slope in the regression model has a dubious interpretation.
We know that the dataset is composed of three different species of penguins, yet so far we
have excluded this information from the analysis. We will now bring in species, a factor
variable, into the model.
Let us visualize the scatter again and map the color aesthetic to the species variable.

ggplot(my_penguins) +
geom_point(aes(x = bill_length_mm,

y = bill_depth_mm,
color = species))
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If we were to fit a regression line with respect to each species, we should expect to see a
positive slope. Let us try this out by modifying the linear regression specification to include
the factor variable species.

lmod_parsnip_factor <- linear_reg() |>
set_engine("lm") %>%
fit(bill_depth_mm ~ bill_length_mm + species,

data = penguins)

lmod_parsnip_factor |>
tidy()

## # A tibble: 4 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 10.6 0.683 15.5 2.43e-41
## 2 bill_length_mm 0.200 0.0175 11.4 8.66e-26
## 3 speciesChinstrap -1.93 0.224 -8.62 2.55e-16
## 4 speciesGentoo -5.11 0.191 -26.7 3.65e-85

Indeed, we find a positive estimate for the slope, as shown for the bill_length_mm term.
However, we now have three regression lines, one for each category in the variable species.
The slope of each of these lines is the same, however, the intercepts are different. We can
write the equation of this line as follows:

Depth = 0.2 ∗ Length − 1.93 ∗ Chinstrap − 5.1 ∗ Gentoo + 10.6

The variables Chinstrap and Gentoo in the equation should be treated as Boolean variables.
If we want to recover the line for “Gentoo” penguins, set Chinstrap = 0 and Gentoo = 1 to
obtain the equation Depth = 0.2 ∗ Length + 5.5. Recovering the line for “Adelie” penguins
is curious and requires setting Chinstrap = 0 and Gentoo = 0. This yields the equation
Depth = 0.2 ∗ Length + 10.6.
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We call this a one-factor model. Let us overlay the new model atop the scatter plot. First,
let us annotate the dataset with the fitted values using the augment function on the new
parsnip model.

lmod_aug_factor <- lmod_parsnip_factor |>
pluck("fit") |>
augment()

lmod_aug_factor

## # A tibble: 342 x 10
## .rowna~1 bill_~2 bill_~3 species .fitted .resid .hat
## <chr> <dbl> <dbl> <fct> <dbl> <dbl> <dbl>
## 1 1 18.7 39.1 Adelie 18.4 0.292 0.00665
## 2 2 17.4 39.5 Adelie 18.5 -1.09 0.00679
## 3 3 18 40.3 Adelie 18.6 -0.648 0.00739
## 4 5 19.3 36.7 Adelie 17.9 1.37 0.00810
## 5 6 20.6 39.3 Adelie 18.4 2.15 0.00671
## 6 7 17.8 38.9 Adelie 18.4 -0.568 0.00663
## 7 8 19.6 39.2 Adelie 18.4 1.17 0.00668
## 8 9 18.1 34.1 Adelie 17.4 0.691 0.0140
## 9 10 20.2 42 Adelie 19.0 1.21 0.0101
## 10 11 17.1 37.8 Adelie 18.1 -1.05 0.00695
## # ... with 332 more rows, 3 more variables: .sigma <dbl>,
## # .cooksd <dbl>, .std.resid <dbl>, and abbreviated
## # variable names 1: .rownames, 2: bill_depth_mm,
## # 3: bill_length_mm

We can use the .fitted column in this dataset to plot the new regression line in a line geom
layer.

ggplot(lmod_aug_factor,
aes(x = bill_length_mm)) +

geom_point(aes(y = bill_depth_mm,
color = species)) +

geom_line(aes(y = .fitted,
group = species),

color = "purple",
size = 1)
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Note how the slope of these lines are the same, but the intercepts in each are different.

9.4.5 Curse of confounding variables

Let us reflect for a moment the importance of species and the impact this variable has
when it is incorporated into the regression model. Let us first show the two models again
side-by-side.

When species is excluded from the model, we find a negative estimate for the slope. When
species is included, as in the one-factor model, the sign of the slope is flipped. This effect
is known as Simpson’s paradox.
While the inclusion of species seemed obvious for this dataset, we are often unaware of
critical variables like these that are “missing” in real-world datasets. These kinds of variables
are either neglected from the analysis or were simply not measured. Yet, when included,
they can have dramatic effects such as flipping the sign of the slope in a regression model.
We call these confounding variables because said variables implicate the relationship
between two observed variables. For instance, species is confounding in the relationship
between bill_depth_mm and bill_length_mm.



414 9 Regression

For a variable to be confounding, it must have an association with the two variables of pri-
mary interest. We can confirm this for the relationship between species and bill_depth_mm,
as well as for species and bill_length_mm. Try to think of a visualization we have used that
can demonstrate the association.
It is important to emphasize that confounding variables can occur in any analysis, not
just regression. For instance, a hypothesis test may reject a null hypothesis with very high
significance when a confounding variable is not accounted for. Yet, when included, the
hypothesis test concludes nothing.
We can summarize the effect of confounding variables as follows:
• A variable, usually unobserved, that influences the association between the variables of

primary interest.
• A predictor variable, not included in the regression, that if included changes the inter-

pretation of the regression model.
• In some cases, a confounding variable can exaggerate the association between two vari-

ables of interest (say 𝐴 and 𝐵) if, for example, there is a causal relationship between
𝐴 and 𝐵. In this way, the relationship between 𝐴 and 𝐵 also reflects the influence of
the confounding variable and the association is strengthened because of the effect the
confounding variable has on both variables 𝐴 and 𝐵.

9.5 Regression and Inference

In this section we examine important properties about the regression model. Specifically,
we look at making reliable predictions about unknown observations and how to determine
the significance of the slope estimate.

9.5.1 Prerequisites

This section will continue using tidymodels. We will also make use of the tidyverse and a
dataset from the edsdata package so let us load these in as well.

library(tidyverse)
library(tidymodels)
library(palmerpenguins)
library(edsdata)

For the running example in this section, we examine the athletes dataset from the edsdata
package. This is a historical dataset that contains bio and medal count information for
Olympic athletes from Athens 1896 to Rio 2016. The dataset is sourced from “120 years of
Olympic history: athletes and results”1 on Kaggle.
Let us focus specifically on athletes that competed in recent Summer Olympics after 2008.
We will apply some preprocessing to ensure that each row corresponds to a unique athlete

1https://www.kaggle.com/datasets/heesoo37/120-years-of-olympic-history-athletes-and-results

https://www.kaggle.com
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as the same athlete can compete in multiple events and in more than one Olympic Games.
We accomplish this using the dplyr verb distinct.

my_athletes <- athletes |>
filter(Year > 2008, Season == "Summer") |>
distinct(ID, .keep_all = TRUE)

my_athletes

## # A tibble: 3,180 x 15
## ID Name Sex Age Height Weight Team NOC Games
## <dbl> <chr> <chr> <dbl> <dbl> <dbl> <chr> <chr> <chr>
## 1 62 "Gio~ M 21 198 90 Italy ITA 2016~
## 2 65 "Pat~ F 21 165 49 Azer~ AZE 2016~
## 3 73 "Luc~ M 27 182 86 Fran~ FRA 2012~
## 4 250 "Sae~ M 26 170 80 Iran IRI 2016~
## 5 395 "Jen~ F 20 160 62 Cana~ CAN 2012~
## 6 455 "Den~ M 19 161 62 Russ~ RUS 2012~
## 7 465 "Mat~ M 30 197 92 Aust~ AUS 2016~
## 8 495 "Ala~ M 21 188 87 Egypt EGY 2012~
## 9 576 "Ale~ M 23 198 93 Spain ESP 2016~
## 10 608 "Ahm~ M 20 178 68 Jord~ JOR 2016~
## # ... with 3,170 more rows, and 6 more variables:
## # Year <dbl>, Season <chr>, City <chr>, Sport <chr>,
## # Event <chr>, Medal <chr>

The preprocessed dataset contains 3,180 Olympic athletes.
Let us visualize the relationship between their heights and weights.

ggplot(my_athletes) +
geom_point(aes(x = Height, y = Weight),

color = "darkcyan")

We also observe a strong positive correlation between the two variables.
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my_athletes |>
summarize(r = cor(Height, Weight))

## # A tibble: 1 x 1
## r
## <dbl>
## 1 0.790

9.5.2 Assumptions of the regression model

Before using inference for regression, we note briefly some assumptions of the regression
model. In a simple linear regression model, the regression model assumes that the underlying
relation between the response 𝑦 and the predictor 𝑥 is perfectly linear and follows a true
line. We cannot see this line.
The scatter plot that is shown to us is generated by taking points on this line and “pushing”
them off the line vertically by some random amount. For each observation, the process is
as follows:
• Find the corresponding point on the true line
• Make a random draw with replacement from a population of errors that follows a normal

distribution with mean 0 (i.e., rnorm(1, mean = 0))
• Draw a point on the scatter with coordinates (x, y + error)

Let us demonstrate the effect for two scatter plots with two different sample sizes. The
broken dashed line shows the “true” line that generated the scatter. The purple line is the
regression line fitted using the least squares method we learned.

We cannot see the true line, however, we hope to approximate it as closely as possible. For
a large enough sample size where the assumptions of the regression model are valid, we find
that the regression line provides a good estimate of the true line.

9.5.3 Making predictions about unknown observations

The power of a linear model lies not in its ability to provide the best fit through a collection
of points, but because we can use such a model to make predictions about observations that
do not exist in our dataset. More specifically, we can use linear regression to make predictions
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about the expected weight of an Olympic athlete using just one piece of information: their
height.
Let us first fit a regression for weight on height using the athlete data.

lmod_parsnip <- linear_reg() |>
set_engine("lm") |>
fit(Weight ~ Height, data = my_athletes)

lmod_parsnip |>
tidy()

## # A tibble: 2 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) -120. 2.69 -44.8 0
## 2 Height 1.09 0.0150 72.6 0

Making a prediction is easy: just plug into the equation of the linear model! For example,
what is the expected weight of an Olympic athlete who is 190 centimeters tall?

Weight = 1.0905 ∗ (190) − 120.402 = 86.79

So an athlete that is 190 centimeters tall has an expected weight of about 86.8 kilograms.
We can accomplish the work with tidymodels using the function predict. Note that this
function receives a dataset in the form of a data frame or tibble, and returns the prediction(s)
as a tibble.

test_data_tib <- tibble(
Height = c(190))

lmod_parsnip |>
predict(test_data_tib)

## # A tibble: 1 x 1
## .pred
## <dbl>
## 1 86.8

The prudent reader may have some suspicions about this result – that’s it? Is this something
you can take to the bank?
Indeed, there is a key element missing from the analysis so far: confidence. How confident
are we in our predictions? We learned that data scientists rarely report singular (or point-
wise) estimates because so often they are working with samples of data. The errors are
random under the regression model, so the regression line could have turned out differently
depending on the scatter plot we get to see. Consequently, the predicted value can change
as well.
To combat this, we can provide a confidence interval that quantifies the amount of un-
certainty in a prediction. We hope to capture the prediction that would be given by the
true line with this interval. We learned one way of obtaining such intervals in the previous
chapters: resampling.
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9.5.4 Resampling a confidence interval

We will use the resampling method we learned earlier to estimate a confidence interval for
the prediction we just made. To accomplish this, we will:
• Create a resampled scatter plot by resampling the samples present in my_athletes by

means of sampling with replacement.
• Fit a linear model to the bootstrapped scatter plot.
• Generate a prediction from this linear model.
• Repeat the process a large number of times, say, 1,000 times.

We could develop the bootstrap using dplyr code as we did before. However, this time we
will let tidymodels take care of the bootstrap work for us.
First, let us write a function that fits a linear model from a scatter plot and then predicts
the expected weight for an athlete who is 190 cm tall.

predict190_from_scatter <- function(tib) {
lmod_parsnip <- linear_reg() |>

set_engine("lm") |>
fit(Weight ~ Height, data = tib)

lmod_parsnip |>
predict(tibble(Height = c(190))) |>
pull()

}

We use the function specify from the infer package to specify which columns in the dataset
are the relevant response and predictor variables.

my_athletes |>
specify(Weight ~ Height) # infer package

## Response: Weight (numeric)
## Explanatory: Height (numeric)
## # A tibble: 3,180 x 2
## Weight Height
## <dbl> <dbl>
## 1 90 198
## 2 49 165
## 3 86 182
## 4 80 170
## 5 62 160
## 6 62 161
## 7 92 197
## 8 87 188
## 9 93 198
## 10 68 178
## # ... with 3,170 more rows

We form 1,000 resampled scatter plots using the function generate with the "bootstrap"
setting.
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resampled_scatter_plots <- my_athletes |>
specify(Weight ~ Height) |>
generate(reps = 1000, type = "bootstrap")

resampled_scatter_plots

## Response: Weight (numeric)
## Explanatory: Height (numeric)
## # A tibble: 3,180,000 x 3
## # Groups: replicate [1,000]
## replicate Weight Height
## <int> <dbl> <dbl>
## 1 1 81 181
## 2 1 80 188
## 3 1 78 184
## 4 1 54 162
## 5 1 64 170
## 6 1 67 178
## 7 1 83 187
## 8 1 58 168
## 9 1 67 181
## 10 1 83 190
## # ... with 3,179,990 more rows

Note that this function returns a tidy tibble with one resampled observation per row, where
the variable replicate designates which bootstrap the resampled observation belongs to.
This effectively increases the size of the original dataset by a factor of 1,000. Hence, the
returned table contains 3.1M entries.
Let us make this more compact by applying a transformation so that we have one resampled
dataset per row. This can be accomplished using the function nest which creates a nested
dataset.

resampled_scatter_plots |>
nest()

## # A tibble: 1,000 x 2
## # Groups: replicate [1,000]
## replicate data
## <int> <list>
## 1 1 <tibble [3,180 x 2]>
## 2 2 <tibble [3,180 x 2]>
## 3 3 <tibble [3,180 x 2]>
## 4 4 <tibble [3,180 x 2]>
## 5 5 <tibble [3,180 x 2]>
## 6 6 <tibble [3,180 x 2]>
## 7 7 <tibble [3,180 x 2]>
## 8 8 <tibble [3,180 x 2]>
## 9 9 <tibble [3,180 x 2]>
## 10 10 <tibble [3,180 x 2]>
## # ... with 990 more rows
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Observe how the number of rows in the nested table (1,000) equals the number of desired
bootstraps. We can create a new column that contains a resampled prediction for each scat-
ter plot using the function predict190_from_scatter we wrote earlier. We call this function
using a purrr map.

bstrap_predictions <- resampled_scatter_plots |>
nest() |>
mutate(prediction = map_dbl(data,

predict190_from_scatter))
bstrap_predictions

## # A tibble: 1,000 x 3
## # Groups: replicate [1,000]
## replicate data prediction
## <int> <list> <dbl>
## 1 1 <tibble [3,180 x 2]> 86.8
## 2 2 <tibble [3,180 x 2]> 86.9
## 3 3 <tibble [3,180 x 2]> 86.8
## 4 4 <tibble [3,180 x 2]> 87.1
## 5 5 <tibble [3,180 x 2]> 87.1
## 6 6 <tibble [3,180 x 2]> 86.8
## 7 7 <tibble [3,180 x 2]> 86.2
## 8 8 <tibble [3,180 x 2]> 86.9
## 9 9 <tibble [3,180 x 2]> 87.8
## 10 10 <tibble [3,180 x 2]> 87.0
## # ... with 990 more rows

We can identify a 95% confidence interval from the 1,000 resampled predictions. We can
use the function get_confidence_interval from the infer package as a shortcut this time.
This uses the same percentile method we learned earlier.

middle <- bstrap_predictions |>
get_confidence_interval(level = 0.95)

middle

## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 86.3 87.3

Let us plot a sampling histogram of the predictions and annotate the confidence interval on
this histogram.

ggplot(bstrap_predictions,
aes(x = prediction, y = after_stat(density))) +

geom_histogram(col="grey", fill = "darkcyan", bins = 13) +
geom_segment(aes(x = middle[1][[1]], y = 0,

xend = middle[2][[1]], yend = 0),
size = 2, color = "salmon")



9.5 Regression and Inference 421

We find that the distribution is approximately normal. Our prediction interval spans be-
tween 86.28 and 87.35 kilograms.
We can use R to give us the prediction interval by amending the call to predict.

lmod_parsnip |>
predict(test_data_tib,

type = "conf_int",
level = 0.95)

## # A tibble: 1 x 2
## .pred_lower .pred_upper
## <dbl> <dbl>
## 1 86.3 87.3

predict obtains the interval by means of statistical theory, and we can see that the result
is very close to what we found using the the bootstrap. Formally, these intervals go by a
special name: confidence intervals for the mean response. That’s a mouthful!

9.5.5 How significant is the slope?

We showed that the predictions generated by a linear model can vary depending on the
sample we have at hand. The slope of the linear model can also turn out differently for
the same reasons. This is especially important if our regression model estimates a non-zero
slope when the slope of the true line turns out to be 0.
Let us conduct a hypothesis test to evaluate this claim for the athlete data:
• Null Hypothesis: Slope of true line is equal to 0.
• Alternative Hypothesis: Slope of true line is not equal to 0.

We can use a confidence interval to test the hypothesis. In the same way we used bootstrap-
ping to estimate a confidence interval for the mean response, we can apply bootstrapping to
estimate the slope of the true line. Fortunately, we need only to make small modifications
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to the code we wrote earlier to perform this experiment. The change being that instead of
generating a prediction from the linear model, we will return its slope.
Here is the modified function we will use.

slope_from_scatter <- function(tib) {
lmod_parsnip <- linear_reg() |>

set_engine("lm") |>
fit(Weight ~ Height, data = tib)

lmod_parsnip |>
tidy() |>
pull(estimate) |>
last() # retrieve slope estimate as a vector

}

We also modify the bootstrap code to use the new function. The rest of the bootstrap code
remains the same.

bstrap_slopes <- my_athletes |>
specify(Weight ~ Height) |>
generate(reps = 1000, type = "bootstrap") |>
nest() |>
mutate(prediction = map_dbl(data, slope_from_scatter))

bstrap_slopes

## # A tibble: 1,000 x 3
## # Groups: replicate [1,000]
## replicate data prediction
## <int> <list> <dbl>
## 1 1 <tibble [3,180 x 2]> 1.10
## 2 2 <tibble [3,180 x 2]> 1.07
## 3 3 <tibble [3,180 x 2]> 1.09
## 4 4 <tibble [3,180 x 2]> 1.10
## 5 5 <tibble [3,180 x 2]> 1.07
## 6 6 <tibble [3,180 x 2]> 1.10
## 7 7 <tibble [3,180 x 2]> 1.08
## 8 8 <tibble [3,180 x 2]> 1.06
## 9 9 <tibble [3,180 x 2]> 1.11
## 10 10 <tibble [3,180 x 2]> 1.09
## # ... with 990 more rows

Here is the 95% confidence interval.

middle <- bstrap_slopes |>
get_confidence_interval(level = 0.95)

middle

## # A tibble: 1 x 2
## lower_ci upper_ci
## <dbl> <dbl>
## 1 1.06 1.12
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Following is the sampling histogram of the bootstrapped slopes with the annotated confi-
dence interval.

ggplot(bstrap_slopes,
aes(x = prediction, y = after_stat(density))) +

geom_histogram(col="grey", fill = "darkcyan", bins = 13) +
geom_segment(aes(x = middle[1][[1]], y = 0,

xend = middle[2][[1]], yend = 0),
size = 2, color = "salmon")

As before, we observe that the distribution is roughly normal. Our 95% confidence interval
ranges from about 1.06 to 1.12. According to our null hypothesis, the value 0 does not sit
on this interval. Therefore, we reject the null hypothesis at the 95% significance level and
conclude that the slope estimate obtained is non-zero. The benefit of using the confidence
interval is that we also have a range of estimates for what the true slope is.
The normality of this distribution is important since it is the basis for the statistical theory
that regression builds on. This means that our interval should be extremely close to what R
reports, which is calculated using normal theory. The function confint gives us the answer.

lmod_parsnip |>
pluck("fit") |>
confint()

## 2.5 % 97.5 %
## (Intercept) -125.670130 -115.134110
## Height 1.061099 1.120017

Indeed, they are quite close! As a bonus, we also get a confidence interval for the intercept.
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9.6 Graphical Diagnostics

An important part of using regression analysis well is understanding how to apply it. Many
situations will present itself to you as what seems a golden opportunity for applying linear
regression only to find out that the data does not meet any of the assumptions. Do not
despair – there are many transformation techniques and diagnostics available that can
render linear regression suitable. However, using any of them first requires a realization
that there is a problem at hand with the current linear model.
Detecting problems with a regression model is the job of diagnostics. We can broadly cat-
egorize them as two kinds – numerical and graphical. We find graphical diagnostics easier
to digest because they are visual and, hence, is what we will cover in this section.

9.6.1 Prerequisites

We will make use of the tidyverse and tidymodels in this chapter, so let us load these in as
usual. We will also use a dataset from the edsdata package.

library(tidyverse)
library(edsdata)

To develop the discussion, we will make use of the toy dataset we artificially created when
studying correlation. We will study three datasets contained in this tibble: linear, cone,
and quadratic.

diagnostic_examples <- corr_tibble |>
filter(dataset %in% c("linear", "cone", "quadratic"))

diagnostic_examples

## # A tibble: 1,083 x 3
## x y dataset
## <dbl> <dbl> <chr>
## 1 0.695 2.26 cone
## 2 0.0824 0.0426 cone
## 3 0.0254 -0.136 cone
## 4 0.898 3.44 cone
## 5 0.413 1.15 cone
## 6 -0.730 -1.57 cone
## 7 0.508 1.26 cone
## 8 -0.0462 -0.0184 cone
## 9 -0.666 -0.143 cone
## 10 -0.723 0.159 cone
## # ... with 1,073 more rows

9.6.2 A reminder on assumptions

To begin, let us recap on the assumptions we have made about the linear model.
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• The model is of the form 𝑦 = 𝑐0 + 𝑐1𝑥, that is, the data can be modeled linearly.
• The variance of the residuals is constant, i.e., it fulfills the property of homoskedasticity.

Recall that the regression model assumes that the scatter is derived from points that start
on a straight line and are then “nudged off” by adding random normal noise.

9.6.3 Some instructive examples

Let us now examine the relationship between y and x across three different datasets. As
always, we start with visualization.

ggplot(diagnostic_examples) +
geom_point(aes(x = x, y = y, color = dataset)) +
facet_wrap( ~ dataset, ncol = 3)

Assuming we have been tasked with performing regression on these three datasets, does it
seem like a simple linear model of y on x will get the job done? One way to tell is by using
something we have already learned: look at the correlation between the variables for each
dataset.
We use dplyr to help us accomplish the task.

diagnostic_examples |>
group_by(dataset) |>
summarize(r = cor(x, y))

## # A tibble: 3 x 2
## dataset r
## <chr> <dbl>
## 1 cone 0.888
## 2 linear 0.939
## 3 quadratic -0.0256
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Even without computing the correlation, it should be clear that something is very wrong
with the quadratic dataset. We are trying to fit a line to something that follows a curve –
a clear violation of our assumptions! The correlation coefficient also confirms that x and y
do not have a linear relationship in that dataset.
The situation with the other datasets is more complicated. The correlation coefficients are
roughly the same and signal a strong positive linear relationship in both. However, we can
see a clear difference in how the points are spread in each of the datasets. Something looks
“off” about the cone dataset.
Notwithstanding our suspicions, let us proceed with fitting a linear model for each. Let us
use tidymodels to write a function that fits a linear model from a dataset and returns the
augmented output.

augmented_from_dataset <- function(dataset_name) {
dataset <- diagnostic_examples |>
filter(dataset == dataset_name)

lmod_parsnip <- linear_reg() |>
set_engine("lm") |>
fit(y ~ x, data = dataset)

lmod_parsnip |>
pluck("fit") |>
augment()

}

augmented_cone <- augmented_from_dataset("cone")
augmented_linear <- augmented_from_dataset("linear")
augmented_quadratic <- augmented_from_dataset("quadratic")

We need a diagnostic for understanding the appropriateness of our linear model. For that,
we turn to the residual plot.

9.6.4 The residual plot

One of the main diagnostic tools we use for studying the fit of a linear model is the residual
plot. A residual plot can be drawn by plotting the residuals against the fitted values.
This can be accomplish in a straightforward manner using the augmented output. Let us
look at the residual plot for augmented_linear.

ggplot(augmented_linear) +
geom_point(aes(x = .fitted, y = .resid), color = "red") +
geom_hline(yintercept = 0, color = "gray",

lty = "dashed", size = 1)
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This residual plot tells us that the linear model has a good fit. The residuals are distributed
roughly the same around the horizontal line at 0, and the width of the plot is not wider in
some parts while narrower in others. The resulting shape is “blobbish nonsense” with no
tilt.
Thus, our first observation:

A residual plot corresponding to a good fit shows no pattern. The residuals
are distributed roughly the same around the horizontal line passing through
0.

9.6.5 Detecting lack of homoskedasticity

Let us now turn to the residual plot for augmented_cone, which we suspected had a close
resemblance to augmented_linear.

ggplot(augmented_cone) +
geom_point(aes(x = .fitted, y = .resid), color = "red") +
geom_hline(yintercept = 0, color = "gray",

lty = "dashed", size = 1)
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Observe how the residuals fan out at both ends of the residual plot. Meaning, the variance
in the size of the residuals is higher in some places while lower in others – a clear violation
of the linear model assumptions. Note how this problem would be harder to detect with the
scatter plot or correlation coefficient alone.
Thus, our second observation:

A residual plot corresponding to a fit with nonconstant variance shows uneven
variation around the horizontal line passing through 0. The resulting shape of
the residual plot usually resembles a “cone” or a “funnel”.

9.6.6 Detecting nonlinearity

Let us move onto the final model, given by augmented_quadratic.

ggplot(augmented_quadratic) +
geom_point(aes(x = .fitted, y = .resid), color = "red") +
geom_hline(yintercept = 0, color = "gray",

lty = "dashed", size = 1)
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This one shows a striking pattern, which bears the shape of a quadratic curve. That is a
clear violation of the model assumptions, and indicates that the variables likely do not have
a linear relationship. It would have been better to use a curve instead of a straight line to
estimate y using x.
Thus, our final observation:

When a residual plot presents a pattern, there may be nonlinearity between
the variables.

9.6.7 What to do from here?

The residual plot is helpful in that it is a tell-tale sign of whether a linear model is appro-
priate for the data. The next question is, of course, what comes next? If a residual plot
indicates a poor fit, data scientists will likely first look to techniques like transformation
to see if a quick fix is possible. While such methods are certainly beyond the scope of this
text, we can demonstrate what the residual plot will look like after the problem is addressed
using these methods.
Let us return to the model given by augmented_quadratic. The residual plot signaled a
problem of nonlinearity, and the shape of the plot (as well as the original scatter plot) gives
a hint that we should try a quadratic curve.
We will modify our model to include a new regressor, which contains the term 𝑥2. Our
model will then have the form:

𝑦 = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2

which is the standard form of a quadratic curve. Let us amend the parsnip model call and
re-fit the model.
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quadratic_dataset <- corr_tibble |>
filter(dataset == "quadratic")

lmod_parsnip <- linear_reg() |>
set_engine("lm") |>
fit(y ~ x + I(x^2), data = quadratic_dataset)

augmented_quad_revised <- lmod_parsnip |>
pluck("fit") |>
augment()

Let us draw again the residual plot.

ggplot(augmented_quad_revised) +
geom_point(aes(x = .fitted, y = .resid), color = "red") +
geom_hline(yintercept = 0, color = "gray",

lty = "dashed", size = 1)

The residual plot shows no pattern whatsoever and, therefore, we can be more confident in
this model.

9.7 Exercises

Be sure to install and load the following packages into your R environment before beginning
this exercise set.

library(tidyverse)
library(edsdata)
library(gapminder)
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Answering questions for this chapter can be done using the linear modeling functions already
available in base R (e.g., lm) or by using the tidymodels package as shown in the textbook.
Let us load this package. If you do not have it, then be sure to install it first.

library(tidymodels)

Question 1 You are deciding what Halloween candy to give out this year. To help make
good decisions, you defer to FiveThirtyEight’s Ultimate Halloween Candy Power Rank-
ing2 survey that collected a sample of people’s preferences for 269,000 randomly generated
matchups.
To measure popularity of candy, you try to describe the popularity of a candy in terms of
a single attribute, the amount of sugar a candy has. That way, when you are shopping at
the supermarket for treats, you can predict the popularity of a candy just by looking at the
amount of sugar it has!
We have collected the results into a tibble candy in the edsdata package. We will use this
dataset to see if we can make such predictions accurately using linear regression.
Let’s have a look at the data:

library(edsdata)
candy

## # A tibble: 85 x 13
## competi~1 choco~2 fruity caramel peanu~3 nougat crisp~4
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 100 Grand 1 0 1 0 0 1
## 2 3 Musket~ 1 0 0 0 1 0
## 3 One dime 0 0 0 0 0 0
## 4 One quar~ 0 0 0 0 0 0
## 5 Air Heads 0 1 0 0 0 0
## 6 Almond J~ 1 0 0 1 0 0
## 7 Baby Ruth 1 0 1 1 1 0
## 8 Boston B~ 0 0 0 1 0 0
## 9 Candy Co~ 0 0 0 0 0 0
## 10 Caramel ~ 0 1 1 0 0 0
## # ... with 75 more rows, 6 more variables: hard <dbl>,
## # bar <dbl>, pluribus <dbl>, sugarpercent <dbl>,
## # pricepercent <dbl>, winpercent <dbl>, and abbreviated
## # variable names 1: competitorname, 2: chocolate,
## # 3: peanutyalmondy, 4: crispedricewafer

• Question 1.1 Filter this dataset to contain only the variables winpercent and sugarper-
cent. Assign the resulting tibble to the name candy_relevant.

• Question 1.2 Have a look at the data dictionary3 given for this dataset. What does
sugarpercent and winpercent mean? What type of data are these (doubles, factors, etc.)?
Before we can use linear regression to make predictions, we must first determine if the
data are roughly linearly associated. Otherwise, our model will not work well.

2https://fivethirtyeight.com/features/the-ultimate-halloween-candy-power-ranking/
3https://github.com/fivethirtyeight/data/tree/master/candy-power-ranking

https://fivethirtyeight.com
https://github.com
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• Question 1.3 Make a scatter plot of winpercent versus sugarpercent. By convention, the
variable we will try to predict is on the vertical axis and the other variable – the predictor
– is on the horizontal axis.

• Question 1.4 Is the percentile of sugar and the overall win percentage roughly linearly
associated? Do you observe a correlation that is positive, negative, or neither? Moreover,
would you guess that correlation to be closer to 1, -1, or 0?

• Question 1.5 Create a tibble called candy_standard containing the percentile of sugar
and the overall win percentage in standard units. There should be two variables in this
tibble: winpercent_su and sugarpercent_su.

• Question 1.6 Repeat Question 1.3, but this time in standard units. Assign your ggplot
object to the name g_candy_plot.

• Question 1.7 Compute the correlation r using candy_standard. Do NOT try to shortcut
this step by using cor()! You should use the same approach as shown in Section 9.14.
Assign your answer to the name r.

• Question 1.8 Recall that the correlation is the slope of the regression line when the data
are put in standard units. Here is that regression line overlaid atop your visualization in
g_candy_plot:

g_candy_plot +
geom_smooth(aes(x = sugarpercent_su, y = winpercent_su),

method = "lm", se = FALSE)

What is the slope of the above regression line in original units? Use dplyr code and the
tibble candy to answer this. Assign your answer (a double value) to the name candy_slope.

• Question 1.9 After rearranging that equation, what is the intercept in original units?
Assign your answer (a double value) to the name candy_intercept.
Hint: Recall that the regression line passes through the point (sugarpcnt_mean, win-
pcnt_mean) and, therefore, the equation for the line follows the form (where winpcnt and
sugarpcnt are win percent and sugar percent, respectively):

winpcnt − winpcnt mean = slope× (sugarpcnt − sugarpcnt mean)

• Question 1.10 Compute the predicted win percentage for a candy whose amount of
sugar is at the 30th percentile and then for a candy whose sugar amount is at the 70th
percentile. Assign the resulting predictions to the names candy_pred10 and candy_pred70,
respectively.
The next code chunk plots the regression line and your two predictions (in purple).

ggplot(candy,
aes(x = sugarpercent, y = winpercent)) +

geom_point(color = "darkcyan") +
geom_abline(aes(slope = candy_slope,

intercept = candy_intercept),
size = 1, color = "salmon") +

geom_point(aes(x = 0.3,

4https://ds4world.cs.miami.edu/regression.html#correlation

https://ds4world.cs.miami.edu
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y = candy_pred30),
size = 3, color = "purple") +

geom_point(aes(x = 0.7,
y = candy_pred70),

size = 3, color = "purple")

• Question 1.11 Make predictions for the win percentage for each candy in the
candy_relevant tibble. Put these predictions into a new variable called prediction and
assign the resulting tibble to a name candy_predictions. This tibble should contain three
variables: winpercent, sugarpercent, and prediction (which contains the prediction for
that candy).

• Question 1.12 Compute the residual for each candy in the dataset. Add the residu-
als to candy_predictions as a new variable called residual, naming the resulting tibble
candy_residuals.

• Question 1.13 Following is a residual plot. Each point shows one candy and the over- or
under-estimation of the predicted win percentage.

ggplot(candy_residuals,
aes(x = sugarpercent, y = residual)) +

geom_point(color = "darkred")

Do you observe any pattern in the residuals? Describe what you see.
• Question 1.14 In candy_relevant, there is no candy whose sugar amount is at the 1st,

median, and 100th percentile. Under the regression line you found, what is the predicted
win percentage for a candy whose sugar amount is at these three percentiles? Assign your
answers to the names percentile_0_win, percentile_median_win, and percentile_100_win,
respectively.

• Question 1.15 Are these values, if any, reliable predictions? Explain why or why not.
Question 2 This question is a continuation of the linear regression analysis of the candy
tibble in Question 1.
Let us see if we can obtain an overall better model by including another attribute in the
analysis. After looking at the results from Question 1, you have a hunch that whether
or not a candy includes chocolate is an important aspect in determining the most popular
candy.
This time we will use functions from R and tidymodels to perform the statistical analysis,
rather than rolling our own regression model as we did in Question 1.

• Question 2.1 Convert the variable chocolate in candy to a factor variable. Then select
three variables from the dataset: winpercent, sugarpercent, and the factor chocolate.
Assign the resulting tibble to the name with_chocolate.

• Question 2.2 Use a parsnip model to fit a simple linear regression model of winpercent
on sugarpercent on the with_chocolate data. Assign the model to the name lmod_simple.
NOTE: The slope and intercept you get should be the same as the slope and intercept
you found during lab – just this time we are letting R do the work.

• Question 2.3 Using a parsnip model again, fit another regression model of winpercent
on sugarpercent, this time adding a new regressor which is the factor chocolate. Use the
with_chocolate data. Assign this model to the name lmod_with_factor.
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• Question 2.4 Using the function augment, augment the model output from
lmod_with_factor so that each candy in the dataset is given information about its
predicted (or fitted) value, residual, etc. Assign the resulting tibble to the name
lmod_augmented.
The following code chunk uses your lmod_augmented tibble to plot the data and overlays the
predicted values from lmod_with_factor in the .fitted variable – two different regression
lines! The slope of each line is actually the same. The only difference is the intercept.

lmod_augmented |>
ggplot(aes(x = sugarpercent, y = winpercent, color = chocolate)) +
geom_point() +
geom_line(aes(y = .fitted))

Is the lmod_with_factor model any better than lmod_simple? One way to check is by
computing the 𝑅𝑆𝑆 for each model and seeing which model has a lower 𝑅𝑆𝑆.

• Question 2.5 The augmented tibble has a variable .resid that contains the residual for
each candy in the dataset; this can be used to compute the 𝑅𝑆𝑆. Compute the 𝑅𝑆𝑆 for
each model and assign the result to the appropriate name below.

print(paste("simple linear regression RSS :",
lmod_simple_rss))

print(paste("linear regression with factor RSS :",
lmod_with_factor_rss))

• Question 2.6 Based on what you found, do you think the predictions produced by
lmod_with_factor would be more or less accurate than the predictions from lmod_simple?
Explain your answer.

Question 3 This question is a continuation of the linear regression analysis of the candy
tibble in Question 1.
Before we can be confident in using our linear model for the candy dataset, we would like
to know whether or not there truly exists a relationship between the popularity of a candy
and the amount of sugar the candy contains. If there is no relationship between the two,
we expect the correlation between them to be 0. Therefore, the slope of the regression line
would also be 0.
Let us use a hypothesis test to confirm the true slope of regression line. Here is the null
hypothesis statement:

The true slope of the regression line that predicts candy popularity from the
amount of sugar it contains, computed using a dataset that contains the entire
population of all candies that have ever been matched up, is 0. Any difference
we observed in the slope of our regression line is because of chance variation.
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• Question 3.1 What would be a good alternative hypothesis for this problem?
The following function slope_from_scatter is adapted from the textbook. It receives a
dataset as input, fits a regression of winpercent on sugarpercent, and returns the slope
of the fitted line:

slope_from_scatter <- function(tib) {
lmod_parsnip <- linear_reg() |>
set_engine("lm") |>
fit(winpercent ~ sugarpercent, data = tib)

lmod_parsnip |>
tidy() |>
pull(estimate) |>
last() # retrieve slope estimate as a vector

}

• Question 3.2 Using the infer package, create 1,000 resampled slopes from candy us-
ing a regression of winpercent on sugarpercent. You should make use of the function
slope_from_scatter in your code. Assign your answer to the name resampled_slopes.

• Question 3.3 Derive the approximate 95% confidence interval for the true slope using
resampled_slopes. Assign this interval to the name middle.

• Question 3.4 Based on this confidence interval, would you accept or reject the null
hypothesis that the true slope is 0? Why?

• Question 3.5 Just in time for Halloween, Reese’s Pieces released a new candy this year
called Reese’s Chunks. We are told its sugar content places the candy at the 64th percentile
of sugar within the dataset. We would like to use our linear model lmod_simple from
Question 1 to make a prediction about its popularity. However, we know that we can’t
give an exact estimate because our prediction depends on a sample of 85 different candies
being matched up!
Instead, we can provide an approximate 95% confidence interval for the prediction using
the resampling approach in Section 9.3. Recall that such an interval goes by a special
name: confidence interval for the mean response.
Suppose we find this interval to be [48.7, 55.8]. Does this interval cover around 95 percent
of the candies in candy whose sugar amount is at the 64th percentile? Why or why not?

Question 4 Linear regression may not be the best method for describing the relationship
between two variables. We would like to have techniques that can help us decide whether
or not to use a linear model to predict one variable from another.
If a regression fits a scatter plot well, then the residuals from our regression model should
show no pattern when plotted against the predictor variable. This is called the residual plot.
Section 9.45 shows how we can use ggplot to generate a residual plot from a parsnip linear
model.

library(lterdatasampler)

5https://ds4world.cs.miami.edu/regression.html#the-residual-plot

https://ds4world.cs.miami.edu
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The tibble and_vertebrates from the package lterdatasampler contains length and weight
observations for Coastal Cutthroat Trout and two salamander species (Coastal Giant Sala-
mander, and Cascade Torrent Salamander) in HJ Andrews Experimental Forest, Willamette
National Forest, Oregon. See the dataset description6 for more information.

and_vertebrates

## # A tibble: 32,209 x 16
## year sitecode section reach pass unitnum unittype
## <dbl> <chr> <chr> <chr> <dbl> <dbl> <chr>
## 1 1987 MACKCC-L CC L 1 1 R
## 2 1987 MACKCC-L CC L 1 1 R
## 3 1987 MACKCC-L CC L 1 1 R
## 4 1987 MACKCC-L CC L 1 1 R
## 5 1987 MACKCC-L CC L 1 1 R
## 6 1987 MACKCC-L CC L 1 1 R
## 7 1987 MACKCC-L CC L 1 1 R
## 8 1987 MACKCC-L CC L 1 1 R
## 9 1987 MACKCC-L CC L 1 1 R
## 10 1987 MACKCC-L CC L 1 1 R
## # ... with 32,199 more rows, and 9 more variables:
## # vert_index <dbl>, pitnumber <dbl>, species <chr>,
## # length_1_mm <dbl>, length_2_mm <dbl>, weight_g <dbl>,
## # clip <chr>, sampledate <date>, notes <chr>

Let us try to predict the weight (in grams) of Coastal Giant Salamanders based on their
snout-vent length (in millimeters).

• Question 4.1 Filter the tibble and_vertebrates to contain only those observations
that pertain to Coastal Giant Salamanders. Assign the resulting tibble to the name
and_salamanders.

• Question 4.2 Generate a scatter plot of weight_g versus length_1_mm.
• Question 4.3 Generate the residual plot for a linear regression of weight_g on

length_1_mm.
• Question 4.4 Following are some statements that can be made about the above residual

plot. For each of these statements, state whether or not the statement is correct and
explain your reasoning.

– The residuals are distributed roughly the same around the horizontal line passing
through 0. Because there is no visible pattern in the residual plot, the linear model
is a good fit.

– The residual plot shows uneven variation around the horizontal line passing through
0.

– The residual plot shows a pattern, which points to nonlinearity between the variables.
• Question 4.5 For the problem(s) you found in Question 4.3, try applying transforma-

tions as shown in Section 9.47 to see if they can be corrected. If you did not find any
problems, suggest some ways to improve the linear model.

6https://lter.github.io/lterdatasampler/articles/and_vertebrates_vignette.html
7https://ds4world.cs.miami.edu/regression.html#what-to-do-from-here

https://lter.github.io
https://ds4world.cs.miami.edu
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Question 5 The tibble mango_exams from the edsdata package contains exam scores from
four different offerings of a course taught at the University of Mango. The course contained
two midterm assessments and a final exam administered at the end of the semester. Here
is a preview of the data:

library(edsdata)
mango_exams

## # A tibble: 440 x 4
## Year Midterm1 Midterm2 Final
## <dbl> <dbl> <dbl> <dbl>
## 1 2001 80.1 90.8 96.7
## 2 2001 87.5 78.3 93.3
## 3 2001 29.4 30 46.7
## 4 2001 97.5 96.7 98.3
## 5 2001 79.4 75.5 66.7
## 6 2001 82.5 57.5 80
## 7 2001 97.2 83.8 75
## 8 2001 80 85 80
## 9 2001 38.8 60 51.7
## 10 2001 67.5 62.5 66.7
## # ... with 430 more rows

• Question 5.1 Following are some questions you would like to address about the data:
– Is there a difference in Final exam performance between the offerings in 2001 and

2002?
– How high will student scores on the Final be on average, given a Midterm 1 score of

75?
– What is the estimated range of mean Midterm 2 scores in the population of University

of Mango students who have taken the course?
Here are four techniques we have learned:

– Hypothesis test
– Bootstrapping
– Linear Regression
– Central Limit Theorem

Choose the best one to address each of the above questions. For each question, select
only one technique.

• Question 5.2 Using an appropriate geom from ggplot2, visualize the distribution of
scores in Midterm1. Then generate another visualization showing the distribution of scores
in Final. Do the distributions appear to be symmetrical and roughly normally distributed?
Explain your reasoning.

• Question 5.3 Visualize the relationship between Midterm1 and Final using an appropriate
geom with ggplot2. Then answer in English: do these variables appear to be associated?
Are they linearly related?

• Question 5.4 Fit a regression line to this scatter plot. Write down the equation of this
line. Does the intercept have a sensible interpretation? Then, augment your visualization
from Question 5.3 with this line.
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Note: it is tempting to use geom_smooth but geom_smooth computes its own linear regres-
sion; you must find another way so that the visualization shows your regression line.

• Question 5.5 Generate a residual plot for this regression. Does the association between
final and midterm scores appear linear? Or does the plot suggest problems with the
regression? Why or why not?

• Question 5.6 You want to know how students who scored a 80 on the first midterm will
perform on the final exam, on average. Assuming the regression model holds for this data,
what could plausibly be the predicted final exam score?

• Question 5.7 Following are some statements about the prediction you just generated.
Which of these are valid statements that can be made about this prediction? In English,
explain why or why not each is a valid claim.

– This is the score an individual student can expect to receive on the final exam after
scoring a 80 on the first midterm.

– A possible interpretation of this prediction is that a student who scored a 80 on the
first midterm cannot possibly score a 90 or higher on the final exam.

– This is an estimate of the height of the true line at 𝑥 = 80. Therefore, we can
confidently report this result.

– A prediction cannot be determined using a linear regression model fitted on this data.
• Question 5.8 An alternative to transformation is to set aside data that appears incon-

sistent with the rest of the dataset and apply linear regression only to the subset. For
instance, teaching style and content may change with each course offering and it can be
fruitful to focus first on those offerings that share similar characteristics (e.g., the slope
and intercept of the fitted regression line on each individual offering is similar). We may
also consider cut-offs and set aside exam scores that are too low or high.
Using dplyr and your findings so far, craft a subset of mango_exams scores that seems
appropriate for a linear regression of Final on Midterm1. Explain why your subset makes
sense. Then perform the linear regression using this subset and show ggplot2 visualizations
that demonstrate whether the model fitted on this subset is any better than the model
fitted on the full data.

Question 6 This question is a continuation of Question 7 from Chapter 3. There is
evidence suggesting8 that mean annual temperature is a primary factor for the change
observed in lake ice formation. Let us explore the role of air temperature as a confounding
variable in the relationship between year and ice cover duration. We will bring in another
data source: daily average temperature data from 1869 to 2019 in Madison, Wisconsin.
These data are available in the tibble ntl_airtemp, also sourced from the lterdatasampler
package.

• Question 6.1 Form a tibble named by_year_avg that reports the mean annual temper-
ature. According to the documentation, data prior to (and including) 1884 should be
filtered as we are told data for these dates contain biases.

• Question 6.2 Create a tibble named icecover_with_temp that contains both the ice cover
duration (from ntl_icecover) and the air temperature data (by_year_avg). The resulting
tibble should not contain any data before 1885.

• Question 6.3 Generate a scatter plot showing ice duration versus mean annual temper-
ature.
8http://hpkx.cnjournals.com/uploadfile/news_images/hpkx/2019-03-14/s41558-018-0393-56789.pdf

http://hpkx.cnjournals.com
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• Question 6.4 Generate a line plot showing mean annual air temperature versus year.
• Question 6.5 Fit a regression model for ice_duration on year. Then fit another regression

model for ice_duration on year and avg_air_temp_year. Note if the sign of the estimate
given for year changes when including the additional avg_air_temp_year regressor.

• Question 6.6 We have now visualized the relationship between mean annual air tem-
perature and year and between mean annual air temperature and ice duration. We also
generated two regression models where the only difference is inclusion of the variable
avg_air_temp_year. Based on these, which of the following conclusions can be correctly
drawn about the data? Explain which visualization and/or model gives evidence for each
statement.

– There is a positive correlation between year and mean annual temperature.
– There is a negative correlation between ice duration and mean annual temperature.
– Mean annual air temperature is a confounding variable in the relationship between

year and ice cover duration.
– The relationship between year and ice cover duration is spurious.
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A lot of the data that data scientists deal with daily tends to be quantitative, that is, data
that is numerical. We have seen many examples of this throughout the text: the miles per
gallon of car makes, the diameter of oak trees, the height and yardage of top football players,
and the number of minutes flight were delayed for departure. We also applied methods from
statistical analysis like resampling to estimate how much a value can vary and regression
to make predictions about unknown quantities. All of this has been in the context of data
that is quantitative.
Data scientists prefer quantitative data because computing and reasoning with them is
straightforward. If we wish to develop an understanding of a numerical sample at hand,
we can simply compute a statistic such as its mean or median or visualize its distribution
using a histogram. We could also go further and look at confidence intervals to quantify the
uncertainty in any statistic we may be interested in.
However, these methods are no longer useful when the data handed to us is qualitative.
Qualitative data comes in many different kinds – like speech recordings and images – but
perhaps the most notorious among them: textual data. With text data, it becomes impossible
to go straight to the statistic. For instance, can you say what the mean or median is of this
sentence: “I found queequeg’s arm thrown over me”? Probably not!
If we cannot compute anything from the text directly, how can we possibly extract any
kind of insight? The trick: transform it! This idea should not seem unfamiliar. The “Get-
ting Started” online chapter gave us a hint when we plotted word relationships in Herman
Melville’s Moby Dick. There, we transformed the text into word counts and recorded the
number of times a word occurred in each chapter which allowed us to visualize word rela-
tionships. Word counts are quantitative, which means we know how to work with it very
well.
This chapter turns to such transformations and builds up our understanding of how to deal
with and build models for text data so that we may gain some insight from it. We begin
with the idea of tidy text, an extension of tidy data, which sets us up for a study in frequency
analysis. We then turn to an advanced technique called topic modeling which is a powerful
modeling tool that gives us a sense of the “topics” that are present in a collection of text
documents.
These methods have important implications in an area known as the Digital Humanities1,
where a dominant line of its research is dedicated to the study of text by means of compu-
tation.

1https://en.wikipedia.org/wiki/Digital_humanities
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10.1 Tidy Text

We begin this chapter by studying what tidy text looks like, which is an extension of the
tidy data principles we saw earlier when working with dplyr. Recall that tidy data has four
principles:

1. Each variable forms a column.
2. Each observation forms a row.
3. Each value must have its own cell.
4. Each type of observational unit forms a table.

Much like what we saw when keeping tibbles tidy, tidy text provides a way to deal with
text data in a straightforward and consistent manner.

10.1.1 Prerequisites

We will continue making use of the tidyverse in this chapter , so let us load that in as usual.
We will also require two new packages this time:
• The tidytext package, which contains the functions we need for working with tidy text

and to make text tidy.
• The gutenbergr package, which allows us to search and download public domain works

from the Project Gutenberg2 collection.

library(tidyverse)
library(tidytext)
library(gutenbergr)

10.1.2 Downloading texts using gutenbergr

To learn about tidy text, we need a subject for study. We will return to Herman Melville’s
epic novel Moby Dick3, which we worked with briefly in the online “Getting Started” chapter.
Since this work is in the public domain, we can use the gutenbergr package to download
the text from the Project Gutenberg database and load it into R.
We can use the function gutenberg_works to confirm that Moby Dick4 is indeed in the
database and fetch its corresponding Gutenberg ID.

gutenberg_works(title == "Moby Dick")

## # A tibble: 0 x 8
## # ... with 8 variables: gutenberg_id <int>, title <chr>,
## # author <chr>, gutenberg_author_id <int>,
## # language <chr>, gutenberg_bookshelf <chr>,
## # rights <chr>, has_text <lgl>

2http://www.gutenberg.org/
3http://www.gutenberg.org/ebooks/15
4http://www.gutenberg.org/ebooks/15

http://www.gutenberg.org
http://www.gutenberg.org
http://www.gutenberg.org
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Using its ID 15, we can proceed with retrieving the text into a variable called moby_dick.
Observe how the data returned is in the form of a tibble – a format we are well familiar
with – with one row per each line of the text.

moby_dick <- gutenberg_download(gutenberg_id = 15,
mirror = "http://mirrors.xmission.com/gutenberg/")

moby_dick

## # A tibble: 22,243 x 2
## gutenberg_id text
## <int> <chr>
## 1 15 "Moby-Dick"
## 2 15 ""
## 3 15 "or,"
## 4 15 ""
## 5 15 "THE WHALE."
## 6 15 ""
## 7 15 "by Herman Melville"
## 8 15 ""
## 9 15 ""
## 10 15 "Contents"
## # ... with 22,233 more rows

The function gutenberg_download will do its best to strip any irrelevant header or footer
information from the text. However, we still see a lot of preface material like the table of
contents which is also unnecessary for analysis. To remove these, we will first split the text
into its corresponding chapters using a call to the mutate dplyr verb. While we are at it,
let us also drop the column gutenberg_id.

by_chapter <- moby_dick |>
select(-gutenberg_id) |>
mutate(document = 'Moby Dick',

linenumber = row_number(),
chapter = cumsum(str_detect(text, regex('^CHAPTER '))))

by_chapter

## # A tibble: 22,243 x 4
## text document linenumber chapter
## <chr> <chr> <int> <int>
## 1 "Moby-Dick" Moby Dick 1 0
## 2 "" Moby Dick 2 0
## 3 "or," Moby Dick 3 0
## 4 "" Moby Dick 4 0
## 5 "THE WHALE." Moby Dick 5 0
## 6 "" Moby Dick 6 0
## 7 "by Herman Melville" Moby Dick 7 0
## 8 "" Moby Dick 8 0
## 9 "" Moby Dick 9 0
## 10 "Contents" Moby Dick 10 0
## # ... with 22,233 more rows
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There is a lot going on in this mutate call. Let us unpack the important parts:
• The str_detect checks if the pattern CHAPTER occurs at the beginning of the line, which

returns TRUE if found and FALSE otherwise. This is done using the regular expression
^CHAPTER (note the white space at the end). To understand this expression, compare the
following examples and try to explain why only the first example (a proper line signaling
the start of a new chapter) yields a match.

regex <- "^CHAPTER "

str_view_all("CHAPTER CXVI. THE DYING WHALE", regex) # match

## [1] | <CHAPTER >CXVI. THE DYING WHALE

str_view_all("Beloved shipmates, clinch the last verse of the
first chapter of Jonah—", regex) # no match

## [1] | Beloved shipmates, clinch the last verse of the
## | first chapter of Jonah—

• The function cumsum is a cumulative sum over the boolean values returned by str_detect
indicating a match. The overall effect is that we can assign a row which chapter it belongs
to.

Eliminating the preface material becomes straightforward as we need only to filter any rows
pertaining to chapter 0.

by_chapter <- by_chapter |>
filter(chapter > 0)

by_chapter

## # A tibble: 21,580 x 4
## text docum~1 linen~2 chapter
## <chr> <chr> <int> <int>
## 1 "CHAPTER I. LOOMINGS" Moby D~ 664 1
## 2 "" Moby D~ 665 1
## 3 "" Moby D~ 666 1
## 4 "Call me Ishmael. Some years a~ Moby D~ 667 1
## 5 "little or no money in my purs~ Moby D~ 668 1
## 6 "on shore, I thought I would s~ Moby D~ 669 1
## 7 "of the world. It is a way I h~ Moby D~ 670 1
## 8 "regulating the circulation. W~ Moby D~ 671 1
## 9 "the mouth; whenever it is a d~ Moby D~ 672 1
## 10 "I find myself involuntarily p~ Moby D~ 673 1
## # ... with 21,570 more rows, and abbreviated variable
## # names 1: document, 2: linenumber

Looks great! We are now ready to define what tidy text is.
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10.1.3 Tokens and the principle of tidy text

The basic meaningful unit in text analysis is the token. It is usually a word, but it can be
more or less granular depending on the context, e.g., sentence units or vowel units. For us,
the token will always represent the word unit.
Tokenization is the process of splitting text into tokens. Here is an example using the first
few lines from Moby Dick.

some_moby_df <- by_chapter |>
slice(4:6)

some_moby_df

## # A tibble: 3 x 4
## text docum~1 linen~2 chapter
## <chr> <chr> <int> <int>
## 1 Call me Ishmael. Some years ago~ Moby D~ 667 1
## 2 little or no money in my purse,~ Moby D~ 668 1
## 3 on shore, I thought I would sai~ Moby D~ 669 1
## # ... with abbreviated variable names 1: document,
## # 2: linenumber

tokenized <- some_moby_df |>
pull(text) |>
str_split(" ")

tokenized

## [[1]]
## [1] "Call" "me"
## [3] "Ishmael." "Some"
## [5] "years" "ago—never"
## [7] "mind" "how"
## [9] "long" "precisely—having"
##
## [[2]]
## [1] "little" "or" "no" "money"
## [5] "in" "my" "purse," "and"
## [9] "nothing" "particular" "to" "interest"
## [13] "me"
##
## [[3]]
## [1] "on" "shore," "I" "thought" "I"
## [6] "would" "sail" "about" "a" "little"
## [11] "and" "see" "the" "watery" "part"

Note how in each line the text has been split into tokens, and we can access any of them
using list and vector notation.

tokenized[[1]][3]

## [1] "Ishmael."
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Text that is tidy is a table with one token per row. Assuming that the text is given to us
in tabular form (like text_df), we can break text into tokens and transform it to a tidy
structure in one go using the function unnest_tokens.

tidy_df <- some_moby_df |>
unnest_tokens(word, text)

tidy_df

## # A tibble: 40 x 4
## document linenumber chapter word
## <chr> <int> <int> <chr>
## 1 Moby Dick 667 1 call
## 2 Moby Dick 667 1 me
## 3 Moby Dick 667 1 ishmael
## 4 Moby Dick 667 1 some
## 5 Moby Dick 667 1 years
## 6 Moby Dick 667 1 ago
## 7 Moby Dick 667 1 never
## 8 Moby Dick 667 1 mind
## 9 Moby Dick 667 1 how
## 10 Moby Dick 667 1 long
## # ... with 30 more rows

Note how each row of this table contains just one token, unlike text_df which had a row
per line. When text is in this form, we say it follows a one-token-per-row structure and,
therefore, is tidy.

10.1.4 Stopwords

Let us return to the full by_chapter tibble and make it tidy using unnest_tokens.

tidy_moby <- by_chapter |>
unnest_tokens(word, text)

tidy_moby

## # A tibble: 212,610 x 4
## document linenumber chapter word
## <chr> <int> <int> <chr>
## 1 Moby Dick 664 1 chapter
## 2 Moby Dick 664 1 i
## 3 Moby Dick 664 1 loomings
## 4 Moby Dick 667 1 call
## 5 Moby Dick 667 1 me
## 6 Moby Dick 667 1 ishmael
## 7 Moby Dick 667 1 some
## 8 Moby Dick 667 1 years
## 9 Moby Dick 667 1 ago
## 10 Moby Dick 667 1 never
## # ... with 212,600 more rows
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With our text in this form, we can start answering some basic questions about the text. For
example: what are the most popular words in Moby Dick? We can answer this by piping
tidy_moby into the function count, which lets us count the number of times each word occurs.

tidy_moby |>
count(word, sort = TRUE)

## # A tibble: 17,450 x 2
## word n
## <chr> <int>
## 1 the 14170
## 2 of 6463
## 3 and 6327
## 4 a 4620
## 5 to 4541
## 6 in 4077
## 7 that 2934
## 8 his 2492
## 9 it 2393
## 10 i 1980
## # ... with 17,440 more rows

The result is disappointing: top-ranking words that appear are so obivous and do not clue
us as to the language used in Moby Dick. It obstructs from any kind of analysis being made.
These common words (e.g., “this”, “his”, “that”, “in”) that appear in almost every written
English sentence are known as stopwords. It is a typical preprocessing step in text analysis
studies to remove such stopwords before proceeding with the analysis.
The tibble stop_words is a table provided by tidytext that contains a list of English stop-
words.

stop_words

## # A tibble: 1,149 x 2
## word lexicon
## <chr> <chr>
## 1 a SMART
## 2 a's SMART
## 3 able SMART
## 4 about SMART
## 5 above SMART
## 6 according SMART
## 7 accordingly SMART
## 8 across SMART
## 9 actually SMART
## 10 after SMART
## # ... with 1,139 more rows

Using the function anti_join (think: the opposite of a join), we can filter any rows in
tidy_moby that match with a stopword in the tibble stop_words.
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tidy_moby_filtered <- tidy_moby |>
anti_join(stop_words)

tidy_moby_filtered

## # A tibble: 84,049 x 4
## document linenumber chapter word
## <chr> <int> <int> <chr>
## 1 Moby Dick 664 1 chapter
## 2 Moby Dick 664 1 loomings
## 3 Moby Dick 667 1 call
## 4 Moby Dick 667 1 ishmael
## 5 Moby Dick 667 1 ago
## 6 Moby Dick 667 1 mind
## 7 Moby Dick 667 1 precisely
## 8 Moby Dick 668 1 money
## 9 Moby Dick 668 1 purse
## 10 Moby Dick 669 1 shore
## # ... with 84,039 more rows

Observe how the total number of rows has decreased dramatically. Let us redo the most
popular word list again.

tidy_moby_filtered |>
count(word, sort = TRUE)

## # A tibble: 16,864 x 2
## word n
## <chr> <int>
## 1 whale 1029
## 2 sea 435
## 3 ahab 431
## 4 ship 430
## 5 ye 424
## 6 head 336
## 7 time 332
## 8 captain 306
## 9 boat 289
## 10 white 279
## # ... with 16,854 more rows

Much better! We can even visualize the spread using a bar geom in ggplot2.

tidy_moby_filtered |>
count(word, sort = TRUE) |>
filter(n > 200) |>
mutate(word = reorder(word, n)) |>
ggplot() +
geom_bar(aes(x=n, y=word), stat="identity")
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From this visualization, we can clearly see that the story has a lot to do with whales, the
sea, ships, and a character named “Ahab”. Some readers may point out that “ye” should
also be considered a stopword, which raises an important point about standard stopword
lists: they do not do well with lexical variants. For this, a custom list should be specified.

10.1.5 Tidy text and non-tidy forms

Before we end this section, let us further our understanding of tidy text by comparing it to
other non-tidy forms.
This first example should seem familiar. Does it follow the one-token-per-word structure?
If not, how is this table structured?
## # A tibble: 3 x 4
## text docum~1 linen~2 chapter
## <chr> <chr> <int> <int>
## 1 Call me Ishmael. Some years ago~ Moby D~ 667 1
## 2 little or no money in my purse,~ Moby D~ 668 1
## 3 on shore, I thought I would sai~ Moby D~ 669 1
## # ... with abbreviated variable names 1: document,
## # 2: linenumber

Here is another example:

some_moby_df |>
unnest_tokens(word, text) |>
count(document, word) |>
cast_dfm(document, word, n)
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This table is structured as one token per column, where the value shown is its frequency. This
is sometimes called a document-feature matrix (do not worry about the technical jargon).
Would this be considered tidy text?
Tidy text is useful in that it plays well with other members of the tidyverse like ggplot2, as
we just saw earlier. However, just because text may come in a form that is not tidy does not
make it useless. In fact, some machine learning and text analysis models like topic modeling
will only accept text that is in a non-tidy form. The beauty of tidy text is the ability to
move fluidly between tidy and non-tidy forms.
As an example, here is how we can convert tidy text to a format known as a document
term matrix which is how topic modeling receives its input. Don’t worry if all that seems
like nonsense jargon – the part you should care about is that we can convert tidy text to a
document term matrix with just one line!

tidy_moby_filtered |>
count(document, word) |>
cast_dtm(document, word, n)

## <<DocumentTermMatrix (documents: 1, terms: 16864)>>
## Non-/sparse entries: 16864/0
## Sparsity : 0%
## Maximal term length: 20
## Weighting : term frequency (tf)

Disclaimer: the document term matrix expects word frequencies so we actually need to pipe
into count before doing the cast_dtm.

10.2 Frequency Analysis

In this section we use tidy text principles to carry out a first study in text analysis: frequency
(or word count) analysis. While looking at word counts may seem like a simple idea, they
can be helpful in exploring text data and informing next steps in research.

10.2.1 Prerequisites

We will continue making use of the tidyverse in this chapter, so let us load that in as usual.
Let us also load in the tidytext and gutenbergr packages.

library(tidyverse)
library(tidytext)
library(gutenbergr)
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10.2.2 An oeuvre of Melville’s prose

We will study Herman Melville’s works again in this section. However, unlike before, we will
include many more texts from his oeuvre of prose. We will collect: Moby Dick, Bartleby, the
Scrivener: A Story of Wall-Street, White Jacket, and Typee: A Romance of the South Seas.

melville <- gutenberg_download(c(11231, 15, 10712, 1900),
mirror = "http://mirrors.xmission.com/gutenberg/")

We will tidy it up as before and filter the text for stopwords. We will also add one more
step to the preprocessing where we extract words that are strictly alphabetical. This is
accomplished with a mutate call using str_extract and the regular expression [a-z]+.

tidy_melville <- melville |>
unnest_tokens(word, text) |>
anti_join(stop_words) |>
mutate(word = str_extract(word, "[a-z]+"))

We will not concern ourselves this time with dividing the text into chapters and removing
preface material. But it would be helpful to add a column to tidy_melville with the title
of the work a line comes from, rather than a ID which is hard to understand.

tidy_melville <- tidy_melville |>
mutate(title = recode(gutenberg_id,

'15' = 'Moby Dick',
'11231' = 'Bartleby, the Scrivener',
'10712' = 'White Jacket',
'1900' = 'Typee: A Romance of the South Seas'))

As a quick check, let us count the number of words that appear in each of the texts.

tidy_melville |>
group_by(title) |>
count(word, sort = TRUE) |>
summarize(num_words = sum(n)) |>
arrange(desc(num_words))

## # A tibble: 4 x 2
## title num_words
## <chr> <int>
## 1 Moby Dick 86233
## 2 White Jacket 56449
## 3 Typee: A Romance of the South Seas 43060
## 4 Bartleby, the Scrivener 5025

Moby Dick is a mammoth of a book (178 pages!) so it makes sense that it would rank highest
in the list in terms of word count.
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10.2.3 Visualizing popular words

Let us find the most popular words in each of the titles.

tidy_melville <- tidy_melville |>
group_by(title) |>
count(word, sort = TRUE) |>
ungroup()

tidy_melville

## # A tibble: 42,166 x 3
## title word n
## <chr> <chr> <int>
## 1 Moby Dick whale 1243
## 2 Moby Dick ahab 520
## 3 Moby Dick ship 520
## 4 White Jacket war 481
## 5 Moby Dick sea 454
## 6 Moby Dick ye 439
## 7 White Jacket captain 413
## 8 Moby Dick head 348
## 9 White Jacket ship 345
## 10 Moby Dick boat 336
## # ... with 42,156 more rows

This lends itself well to a bar geom in ggplot. We will select out around the 10 most popular,
which correspond to words that occur over 300 times.

tidy_melville |>
filter(n > 250) |>
mutate(word = reorder(word, n)) |>
ggplot() +
geom_bar(aes(x=n, y=word, fill=title), stat="identity")
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Something is odd about this plot. These top words are mostly coming from Moby Dick!
As we just saw, Moby Dick is the most massive title in our collection so any of its popular
words would dominate the overall popular list of words in terms of word count.
Instead of looking at word counts, a better approach is to look at word proportions. Even
though the word “whale” may have over 1200 occurrences, the proportion in which it appears
may be much less when compared to other titles.
Let us add a new column containing these proportions in which a word occurs with respect
to the total number of words in the corresponding text.

tidy_melville_prop <- tidy_melville |>
group_by(title) |>
mutate(proportion = n / sum(n)) |>
ungroup()

tidy_melville_prop

## # A tibble: 42,166 x 4
## title word n proportion
## <chr> <chr> <int> <dbl>
## 1 Moby Dick whale 1243 0.0144
## 2 Moby Dick ahab 520 0.00603
## 3 Moby Dick ship 520 0.00603
## 4 White Jacket war 481 0.00852
## 5 Moby Dick sea 454 0.00526
## 6 Moby Dick ye 439 0.00509
## 7 White Jacket captain 413 0.00732
## 8 Moby Dick head 348 0.00404
## 9 White Jacket ship 345 0.00611
## 10 Moby Dick boat 336 0.00390
## # ... with 42,156 more rows

Let us redo the plot.

tidy_melville_prop |>
filter(proportion > 0.005) |>
mutate(word = reorder(word, proportion)) |>
ggplot() +
geom_bar(aes(x=proportion, y=word, fill=title),

stat="identity")
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Interesting! In terms of proportions, we see that Melville uses the word “bartleby” much
more in Bartleby, the Scrivener than he does “whale” in Moby Dick. Moreover, Moby Dick
no longer dominates the popular words list and, in fact, it turns out that Bartleby, the
Scrivener contributes the most highest-ranking words from the collection.

10.2.4 Just how popular was Moby Dick’s vocabulary?

A possible follow-up question is whether the most popular words in Moby Dick also saw
significant usage across other texts in the collection. That is, for the most popular words
that appear in Moby Dick, how often do they occur in the other titles in terms of word
proportions? This would suggest elements in those texts that are laced with some of the
major thematic components in Moby Dick.
We first extract the top 10 word proportions from Moby Dick to form a “popular words”
list.

top_moby <- tidy_melville |>
filter(title == "Moby Dick") |>
mutate(proportion = n / sum(n)) |>
arrange(desc(proportion)) |>
slice(1:10) |>
select(word)

top_moby

## # A tibble: 10 x 1
## word
## <chr>
## 1 whale
## 2 ahab
## 3 ship
## 4 sea



10.2 Frequency Analysis 455

## 5 ye
## 6 head
## 7 boat
## 8 time
## 9 captain
## 10 chapter

We compute the word proportions with respect to each of the titles and then join the
top_moby words list with tidy_melville to extract only the top Moby Dick words from the
other three texts.

top_moby_words_other_texts <- tidy_melville |>
group_by(title) |>
mutate(proportion = n / sum(n)) |>
inner_join(top_moby, by="word") |>
ungroup()

top_moby_words_other_texts

## # A tibble: 32 x 4
## title word n proportion
## <chr> <chr> <int> <dbl>
## 1 Moby Dick whale 1243 0.0144
## 2 Moby Dick ahab 520 0.00603
## 3 Moby Dick ship 520 0.00603
## 4 Moby Dick sea 454 0.00526
## 5 Moby Dick ye 439 0.00509
## 6 White Jacket captain 413 0.00732
## 7 Moby Dick head 348 0.00404
## 8 White Jacket ship 345 0.00611
## 9 Moby Dick boat 336 0.00390
## 10 Moby Dick time 334 0.00387
## # ... with 22 more rows

Now, the plot. Note that the factor in the y aesthetic mapping allows us to preserve the
order of popular words in top_moby so that we can observe an upward trend in the Moby
Dick bar heights.

ggplot(top_moby_words_other_texts) +
geom_bar(aes(x=proportion,

y=factor(word, level=pull(top_moby, word)),
fill=title),

position="dodge",stat="identity") +
labs(y="word")
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We see that most of the popular words that appear in Moby Dick are actually quite unique.
The words “whale”, “ahab”, and even dialects like “ye” appear almost exclusively in Moby
Dick. There are, however, some notable exceptions, e.g., the words “captain” and “time”
appear much more in other titles than they do in Moby Dick.

10.3 Topic Modeling

We end this chapter with a preview of an advanced technique in text analysis known as topic
modeling. In technical terms, topic modeling is an unsupervised method of classification that
allows users to find clusters (or “topics”) in a collection of documents even when it is not
clear to us how the documents should be divided. It is for this reason that we say topic
modeling is “unsupervised.” We do not say how the collection should be organized into
groups; the algorithm simply learns how to without any guidance.

10.3.1 Prerequisites

Let us load in the main packages we have been using throughout this chapter. We will also
need one more package this time, topicmodels, which has the functions we need for topic
modeling.

library(tidyverse)
library(tidytext)
library(gutenbergr)
library(topicmodels)

We will continue with our running example of Herman Melville’s Moby Dick. Let us load it
in.
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melville <- gutenberg_download(15,
mirror = "http://mirrors.xmission.com/gutenberg/")

We will tidy the text as usual and, this time, partition the text into chapters.

melville <- melville |>
select(-gutenberg_id) |>
mutate(title = 'Moby Dick',

linenumber = row_number(),
chapter = cumsum(str_detect(text, regex('^CHAPTER ')))) |>

filter(chapter > 0)

10.3.2 Melville in perspective: the American Renaissance

Scope has been a key element of this chapter’s trajectory. We began exploring tidy text
with specific attention to Herman Melville’s Moby Dick and then “zoomed out” to examine
his body of work at large by comparing four of his principal works with the purpose of
discovering elements that may be in common among the texts. We will go even more macro-
scale in this section by putting Melville in perspective with some of his contemporaries. We
will study Nathaniel Hawthorne’s The Scarlet Letter and Walt Whitman’s Leaves of Grass.
Since topic modeling is the subject of this section, let us see if we can apply this technique
to cluster documents according to the author who wrote them. The documents will be the
individual chapters in each of the books and the desired clusters the three works: Moby
Dick, The Scarlet Letter, and Leaves of Grass.
We begin as always: loading the texts, tidying them, splitting according to chapter, and
filtering out preface material. Let us start with Whitman’s Leaves of Grass.

whitman <- gutenberg_works(title == "Leaves of Grass") |>
gutenberg_download(meta_fields = "title",

mirror = "http://mirrors.xmission.com/gutenberg/")

whitman <- whitman |>
select(-gutenberg_id) |>
mutate(linenumber = row_number(),

chapter = cumsum(str_detect(text, regex('^BOOK ')))) |>
filter(chapter > 0)

Note that we have adjusted the regular expression here so that it is appropriate for the text.
On to Hawthorne’s The Scarlet Letter.

hawthorne <- gutenberg_works(title == "The Scarlet Letter") |>
gutenberg_download(meta_fields = "title",
mirror = "http://mirrors.xmission.com/gutenberg/")
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hawthorne <- hawthorne |>
select(-gutenberg_id) |>
mutate(linenumber = row_number(),

chapter = cumsum(str_detect(text, regex('^[XIV]+\\.')))) |>
filter(chapter > 0)

Now that the three texts are available in tidy form, we can merge the three tibbles into one
by stacking the rows. We call the merged tibble books.

books <- bind_rows(whitman, melville, hawthorne)
books

## # A tibble: 46,251 x 4
## text title linen~1 chapter
## <chr> <chr> <int> <int>
## 1 "BOOK I. INSCRIPTIONS" Leav~ 23 1
## 2 "" Leav~ 24 1
## 3 "" Leav~ 25 1
## 4 "" Leav~ 26 1
## 5 "" Leav~ 27 1
## 6 "One’s-Self I Sing" Leav~ 28 1
## 7 "" Leav~ 29 1
## 8 " One’s-self I sing, a simple s~ Leav~ 30 1
## 9 " Yet utter the word Democratic~ Leav~ 31 1
## 10 "" Leav~ 32 1
## # ... with 46,241 more rows, and abbreviated variable
## # name 1: linenumber

As a quick check, we can have a look at the number of chapters in each of the texts.

books |>
group_by(title) |>
summarize(num_chapters = max(chapter))

## # A tibble: 3 x 2
## title num_chapters
## <chr> <int>
## 1 Leaves of Grass 34
## 2 Moby Dick 135
## 3 The Scarlet Letter 24

10.3.3 Preparation for topic modeling

Before we can create a topic model, we need to do some more preprocessing. Namely, we
need to create the documents that will be used as input to the model.
As mentioned earlier, these documents will be every chapter in each of the books, which
we will give a name like Moby Dick_12 or Leaves of Grass_1. This information is already
available in books in the columns title and chapter, but we need to unite the two columns
together into a single column. The dplyr function unite() will do the job for us.
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chapter_documents <- books |>
unite(document, title, chapter)

We can then tokenize words in each of the documents as follows.

documents_tokenized <- chapter_documents |>
unnest_tokens(word, text)

documents_tokenized

## # A tibble: 406,056 x 3
## document linenumber word
## <chr> <int> <chr>
## 1 Leaves of Grass_1 23 book
## 2 Leaves of Grass_1 23 i
## 3 Leaves of Grass_1 23 inscriptions
## 4 Leaves of Grass_1 28 one’s
## 5 Leaves of Grass_1 28 self
## 6 Leaves of Grass_1 28 i
## 7 Leaves of Grass_1 28 sing
## 8 Leaves of Grass_1 30 one’s
## 9 Leaves of Grass_1 30 self
## 10 Leaves of Grass_1 30 i
## # ... with 406,046 more rows

We will filter stopwords as usual, and proceed with adding a column containing word counts.

document_counts <- documents_tokenized |>
anti_join(stop_words) |>
count(document, word, sort = TRUE) |>
ungroup()

document_counts

## # A tibble: 112,834 x 3
## document word n
## <chr> <chr> <int>
## 1 Moby Dick_32 whale 102
## 2 Leaves of Grass_17 pioneers 54
## 3 Leaves of Grass_31 thee 54
## 4 Leaves of Grass_31 thy 51
## 5 Moby Dick_16 captain 49
## 6 Leaves of Grass_32 thy 48
## 7 Moby Dick_36 ye 48
## 8 Moby Dick_9 jonah 48
## 9 Moby Dick_42 white 46
## 10 The Scarlet Letter_17 thou 46
## # ... with 112,824 more rows

This just about completes all the tidying we need. The final step is to convert this tidy
tibble into a document-term-matrix (DTM) object.
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chapters_dtm <- document_counts |>
cast_dtm(document, word, n)

chapters_dtm

## <<DocumentTermMatrix (documents: 193, terms: 24392)>>
## Non-/sparse entries: 112834/4594822
## Sparsity : 98%
## Maximal term length: 20
## Weighting : term frequency (tf)

10.3.4 Creating a three-topic model

We are now ready to create the topic model. Ours is a three-topic model since we expect a
topic for each of the books. We will use the function LDA() to create the topic model, where
LDA is an acronym that stands for Latent Dirichlet Allocation. LDA is one such algorithm
for creating a topic model.
The best part about this step: we can create the model in just one line!

lda_model <- LDA(chapters_dtm, k = 3, control = list(seed = 50))

Note that the k argument given is the desired number of clusters.

10.3.5 A bit of LDA vocabulary

Before we get to seeing what our model did, we need to cover some basics on LDA. While
the mathematics of this algorithm is beyond the scope of this text, learning some of its core
ideas are important for understanding its results.
LDA follows three key ideas:
• Every document is a mixture of topics, e.g., it may be 70% topic “Moby Dick”,

20% topic “The Scarlet Letter”, and 10% topic “Leaves of Grass”.
• Every topic is a mixture of words, e.g., we would expect a topic “Moby Dick” to

have words like “captain”, “sea”, and “whale”.
• LDA is a “fuzzy clustering” algorithm, that is, it is possible for a word to be

generated by multiple topics, e.g., “whale” may be generated by both the topics “Moby
Dick” and “The Scarlet Letter”.

Finally, keep in mind the following definitions:

𝛽 (or “beta”) is the probability that a word is generated by some topic 𝑁 .
These are also sometimes called per-topic-per-word probabilities.
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𝛾 (or “gamma”) is the probability that a document is generated by some topic
𝑁 . These are also sometimes called per-topic-per-document probabilities.

Generally speaking, the more words in a document that are generated by a topic gives
“weight” to the document’s 𝛾 so that the document is also generated by that same topic.
We can say then that 𝛽 and 𝛾 are associated.

10.3.6 Visualizing top per-word probabilities

Let us begin by unpacking the 𝛽 probabilities. At the moment we have an LDA object,
which needs to be transformed back into a tidy tibble so that we can begin examining it.
We can do this using the function tidy and referencing the 𝛽 matrix.

chapter_beta <- tidy(lda_model, matrix = "beta")
chapter_beta

## # A tibble: 73,176 x 3
## topic term beta
## <int> <chr> <dbl>
## 1 1 whale 1.38e- 8
## 2 2 whale 1.36e- 2
## 3 3 whale 8.07e- 5
## 4 1 pioneers 1.31e-108
## 5 2 pioneers 1.06e-119
## 6 3 pioneers 9.91e- 4
## 7 1 thee 2.99e- 3
## 8 2 thee 1.62e- 3
## 9 3 thee 4.86e- 3
## 10 1 thy 2.68e- 3
## # ... with 73,166 more rows

The format of this tidy tibble is one-topic-per-term-per-row. While the probabilities shown
are tiny, we can see that the term “whale” has the greatest probability of being generated
by topic 2 and the lowest by topic 3. “pioneers” has even tinier probabilities, but when
compared relatively we see that it is most likely to be generated by topic 1.
What are the top terms within each topic? Let us use dplyr to retrieve the top 5 terms with
the highest 𝛽 values in each topic.

top_terms <- chapter_beta |>
group_by(topic) |>
arrange(topic, -beta) |>
slice(1:5) |>
ungroup()

top_terms
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## # A tibble: 15 x 3
## topic term beta
## <int> <chr> <dbl>
## 1 1 hester 0.0109
## 2 1 thou 0.00757
## 3 1 pearl 0.00672
## 4 1 child 0.00593
## 5 1 minister 0.00469
## 6 2 whale 0.0136
## 7 2 ahab 0.00570
## 8 2 ship 0.00566
## 9 2 ye 0.00557
## 10 2 sea 0.00548
## 11 3 love 0.00507
## 12 3 life 0.00491
## 13 3 thee 0.00486
## 14 3 day 0.00478
## 15 3 soul 0.00463

It will be easier to visualize this using ggplot. Note that the function reorder_within() is
not one we have used before. It is a handy function that allows us to order the bars within
a group according to some other value, e.g., its 𝛽 value. For an explanation of how it works,
we defer to this helpful blog post5 written by Julia Silge.

top_terms |>
mutate(term = reorder_within(term, beta, topic)) |>
ggplot() +
geom_bar(aes(beta, term, fill = factor(topic)),

stat="identity", show.legend = FALSE) +
facet_wrap(~topic, scales = "free") +
scale_y_reordered()

5https://juliasilge.com/blog/reorder-within/

https://juliasilge.com
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We conclude that our model is a success! The words “love”, “life”, and “soul” correspond
closest to Whitman’s Leaves of Grass; the words “whale”, “ahab”, and “ship” with Melville’s
Moby Dick; and the words “hester”, “pearl”, and “minister” with Hawthorne’s The Scarlet
Letter.
As we noted earlier, this is quite a success for the algorithm since it is possible for some
words, say “whale”, to be in common with more than one topic.

10.3.7 Where the model goes wrong: per-document misclassifications

Each document in our model corresponds to a single chapter in a book, and each document
is associated with some topic. It would be interesting then to see how many chapters are
associated with its corresponding book, and which chapters are associated with something
else and, hence, are “misclassified.” The per-document probabilities, or 𝛾, can help address
this question.
We will transform the LDA object into a tidy tibble again, this time referencing the 𝛾
matrix.

chapters_gamma <- tidy(lda_model, matrix = "gamma")
chapters_gamma

## # A tibble: 579 x 3
## document topic gamma
## <chr> <int> <dbl>
## 1 Moby Dick_32 1 0.0000171
## 2 Leaves of Grass_17 1 0.0000253
## 3 Leaves of Grass_31 1 0.0000421
## 4 Moby Dick_16 1 0.0000173
## 5 Leaves of Grass_32 1 0.0000138
## 6 Moby Dick_36 1 0.0000284
## 7 Moby Dick_9 1 0.577
## 8 Moby Dick_42 1 0.368
## 9 The Scarlet Letter_17 1 1.00
## 10 Leaves of Grass_34 1 0.00000791
## # ... with 569 more rows

Let us separate the document “name” back into its corresponding title and chapter columns.
We will do so using the separate() dplyr verb.

chapters_gamma <- chapters_gamma |>
separate(document, c("title", "chapter"), sep = "_",

convert = TRUE)
chapters_gamma

## # A tibble: 579 x 4
## title chapter topic gamma
## <chr> <int> <int> <dbl>
## 1 Moby Dick 32 1 0.0000171
## 2 Leaves of Grass 17 1 0.0000253
## 3 Leaves of Grass 31 1 0.0000421
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## 4 Moby Dick 16 1 0.0000173
## 5 Leaves of Grass 32 1 0.0000138
## 6 Moby Dick 36 1 0.0000284
## 7 Moby Dick 9 1 0.577
## 8 Moby Dick 42 1 0.368
## 9 The Scarlet Letter 17 1 1.00
## 10 Leaves of Grass 34 1 0.00000791
## # ... with 569 more rows

We can find the topic that is most associated with each chapter by taking the topic with
the highest 𝛾 value. For instance:

chapters_gamma |>
filter(title == "The Scarlet Letter", chapter == 17)

## # A tibble: 3 x 4
## title chapter topic gamma
## <chr> <int> <int> <dbl>
## 1 The Scarlet Letter 17 1 1.00
## 2 The Scarlet Letter 17 2 0.0000287
## 3 The Scarlet Letter 17 3 0.0000287

That 𝛾 for this chapter corresponds to topic 3, so we will take this to be its “classification”
or label”.
Let us do this process for all of the chapters.

chapter_label <- chapters_gamma |>
group_by(title, chapter) |>
slice_max(gamma) |>
ungroup()

chapter_label

## # A tibble: 193 x 4
## title chapter topic gamma
## <chr> <int> <int> <dbl>
## 1 Leaves of Grass 1 3 1.00
## 2 Leaves of Grass 2 3 1.00
## 3 Leaves of Grass 3 3 1.00
## 4 Leaves of Grass 4 3 1.00
## 5 Leaves of Grass 5 3 1.00
## 6 Leaves of Grass 6 3 1.00
## 7 Leaves of Grass 7 3 1.00
## 8 Leaves of Grass 8 3 1.00
## 9 Leaves of Grass 9 3 1.00
## 10 Leaves of Grass 10 3 1.00
## # ... with 183 more rows

How were the documents labeled? The dplyr verb summarize can tell us.

labels_summarized <- chapter_label |>
group_by(title, topic) |>
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summarize(num_chapters = n()) |>
ungroup()

labels_summarized

## # A tibble: 5 x 3
## title topic num_chapters
## <chr> <int> <int>
## 1 Leaves of Grass 3 34
## 2 Moby Dick 1 12
## 3 Moby Dick 2 122
## 4 Moby Dick 3 1
## 5 The Scarlet Letter 1 24

This lends itself well to a nice bar geom with ggplot.

ggplot(labels_summarized) +
geom_bar(aes(x = num_chapters,

y = title, fill = factor(topic)),
stat = "identity") +

labs(fill = "topic")

We can see that all of the chapters in The Scarlet Letter and Leaves of Grass were sorted
out completely into its associated topic. While the same is overwhelmingly true for Moby
Dick, this title did have some chapters that were misclassified into one of the other topics.
Let us see if we can pick out which chapters these were.
To find out, we will label each book with the topic that had a majority of its chapters
classified as that topic.

book_labels <- labels_summarized |>
group_by(title) |>
slice_max(num_chapters) |>
ungroup() |>
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transmute(label = title, topic)
book_labels

## # A tibble: 3 x 2
## label topic
## <chr> <int>
## 1 Leaves of Grass 3
## 2 Moby Dick 2
## 3 The Scarlet Letter 1

We can find the misclassifications by joining book_labels with the chapter_label table and
then filtering chapters where the label does not match the title.

chapter_label |>
inner_join(book_labels, by = "topic") |>
filter(title != label)

## # A tibble: 13 x 5
## title chapter topic gamma label
## <chr> <int> <int> <dbl> <chr>
## 1 Moby Dick 7 1 0.522 The Scarlet Letter
## 2 Moby Dick 8 1 0.513 The Scarlet Letter
## 3 Moby Dick 9 1 0.577 The Scarlet Letter
## 4 Moby Dick 10 1 0.590 The Scarlet Letter
## 5 Moby Dick 11 1 0.536 The Scarlet Letter
## 6 Moby Dick 15 1 0.507 The Scarlet Letter
## 7 Moby Dick 17 1 0.514 The Scarlet Letter
## 8 Moby Dick 25 1 0.781 The Scarlet Letter
## 9 Moby Dick 82 1 0.517 The Scarlet Letter
## 10 Moby Dick 89 1 0.638 The Scarlet Letter
## 11 Moby Dick 90 1 0.546 The Scarlet Letter
## 12 Moby Dick 112 1 0.751 The Scarlet Letter
## 13 Moby Dick 116 3 0.503 Leaves of Grass

10.3.8 The glue: Digital Humanities

Sometimes “errors” when a model goes wrong can be more revealing than where it found
success. The conflation we see in some of the Moby Dick chapters with The Scarlet Letter
and Leaves of Grass points to a connection among the three authors. In fact, Melville and
Hawthorne shared such a close writing relationship6 that it was Hawthorne’s influence on
Melville that led him to evolve Moby Dick from adventure tale into a creative, philosophically
rich story. So it is interesting to see so many of the Moby Dick chapters mislabeled as The
Scarlet Letter.
This connection between data and interpretation is the impetus for a field of study known
as Digital Humanities7 (DH). While the text analysis techniques we have covered in this
chapter can produce exciting results, they are worth little without context. That context,
the authors would argue, is made possible by the work of DH scholars.

6https://scholarworks.boisestate.edu/cgi/viewcontent.cgi?article=1164&context=mcnair_journal
7https://en.wikipedia.org/wiki/Digital_humanities

https://scholarworks.boisestate.edu
https://en.wikipedia.org
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10.3.9 Further reading

This chapter has served as a preview of the analyses that are made possible by text analysis
tools. If you are interested in taking a deeper dive into any of the methods discussed here,
we suggest the following resources:
• “Text Mining with R: A Tidy Approach”8 by Julia Silge and David Robinson.

The tutorials in this book inspired most of the code examples seen in this chapter. The
text also goes into much greater depth than what we have presented here. Check it out
if you want to take your R text analysis skills to the next level!

• Distant Reading9 by Franco Moretti. This is a seminal work by Moretti, a literary
historian, which expounds on the purpose and tools for literary history. He attempts to
redefine the lessons of literature with confident reliance on computational tools. It has
been consequential in shaping the methods that form research in Digital Humanities
today.

10.4 Exercises

Answering questions for the exercises in Chapter 10 requires some additional packages
beyond the tidyverse. Let us load them. Make sure you have installed them before loading
them.

library(tidytext)
library(gutenbergr)
library(topicmodels)

Question 1. Jane Austen Letters Jane Austen (December 17, 1775 to July 18, 1817)
was an English novelist. Her well-known novels include “Pride and Prejudice” and “Sense
and Sensibility”. The Project Gutenberg has all her novels as well as a collection of her
letters. The collection, “The Letters of Jane Austen,” is from the compilation by her great
nephew “Edward Lord Bradbourne”.

gutenberg_works(author == "Austen, Jane")

The project ID for the letter collection is 42078. Using the ID, load the project text as
austen_letters.

austen_letters <- gutenberg_download(gutenberg_id = 42078,
"http://mirrors.xmission.com/gutenberg/")

austen_letters

The tibble has only two variables, gutenberg_id, which is 42078 for all rows, and text, which
is the line-by-line text.

8https://www.tidytextmining.com/index.html
9https://www.google.com/books/edition/Distant_Reading/YKMCy9I3PG4C?hl=en

https://www.tidytextmining.com
https://www.google.com
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Let us examine some rows of the tibble. First, unlike “Moby Dick,” each letter in the
collection appears with Greek numerals as the header. The sixth line of the segment below
shows the first letter with the header “I.”

(austen_letters |> pull(text))[241:250]

Next, some letters contain a footnote, which is not part of the original letter. The fifth and
the seventh lines of the segment below show the header for a footnote and a footnote with
a sequential number “[39]”

(austen_letters |> pull(text))[6445:6454]

Footnotes can appear in groups. The segment below shows two footnotes. Thus, the header
is “FOOTNOTES:” instead of “FOOTNOTE:”.

(austen_letters |> pull(text))[3216:3225]

The letter sequence concludes with the header “THE END.” as shown below.

(austen_letters |> pull(text))[8531:8540]

• Question 1.1 Suppose we have the the following vector test_vector:

test_vector <- c( "I.", " I.", "VII.",
"THE END.", "FOOTNOTE:",
"FOOTNOTES:",
"ds", " world")

Let us filter out the unwanted footnote headers from this vector. Create a regular ex-
pression regex_foot that detects any line starting with “FOOTNOTE”. Test the regular
expression on test_vector using str_detect function and ensure that your regular expres-
sion functions correctly.

• Question 1.2 Using the regular expression regex_foot, remove all lines matching the
regular expression in the tibble austen_letters. Also, remove the variable gutenberg_id.
Store the result in letters. Check out the rows 351-360 of the original and then in the
revised version.

• Question 1.3 Next, find out the location of the start line and the end line. The start line
is the one that begins with “I.”, and the end line is the one that begins with “THE END.”.
Create a regular expression regex_start for the start and a regular expression regex_end
for the end. Test the expression on test_vector.

• Question 1.4 Apply the regular expressions to the variable text of letters using the
stringr function str_which. The result of the first is the start line. The result of the
second minus 1 is the very end. Store these indices in start_no and end_no, respectively.
The following code chunk filters the text tibble to select only those lines between start_no
and end_no.
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letters_clean <- letters |>
slice(start_no:end_no)

letters_clean

• Question 1.5 Now, as with the textbook example using “Moby Dick”, accumulate the
lines that correspond to each individual letter. The following regular expression can be
used to detect a letter index.

regex_index <- regex('^[IVXLCDM]++\\.')
str_which(letters$text, regex_index)

Apply this regular expression, as we did for “Moby Dick”, to letters_clean. Add the letter
index as letter and the row_number() as linenumber. Store the result in letters_with_num.

Question 2. This is a continuation from the previous question. The previous question has
prepared us to investigate the letters in letters_with_num.

• Question 2.1 First, extract tokens from letters_with_num using unnest_tokens, and store
it in letter_tokens. Then, from letter_tokens remove stop_words using anti_join and
store it in a name letter_tokens_nostop.

• Question 2.2 Let us obtain the counts of the words in these two tibbles using count.
Store the result in letter_tokens_ranked and letter_tokens_nostop_ranked, respectively.

• Question 2.3 As in the textbook, use a lower bound of 60 to collect the words and show
a bar plot.

• Question 2.4 Now generate word counts with respect to each letter. The source is let-
ter_tokens_nostop. The counting is by executing count(letter, word, sort = TRUE).
Store the result in word_counts.

• Question 2.5 Generate, from the letter-wise word counts word_counts, a document-term
matrix letters_dtm.

• Question 2.6 From the document-term matrix, generate an LDA model with 2 classes.
Store it in lda_model.

• Question 2.7 Transform the model output into a tibble. Use the function tidy() and set
the variable “beta” using the matrix entries.

• Question 2.8 Select the top 15 terms from each topic as we did for “Moby Dick”. Store
it in top_terms.

• Question 2.9 Now plot the top terms as we did in the textbook.
Question 3. The previous attempt to create topic models may not have worked well,
possibly because of the existence of frequent non-stop-words that may dominate the term-
frequency matrix. Here we attempt to revise the analysis after removing such non-stop-
words.

• Question 3.1 We generated a ranked tibble of words, letter_tokens_nostop_ranked.

letter_tokens_nostop_ranked
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The first few words on the list appear generic, so let us remove these words from considera-
tion. Let us form a character vector named add_stop that captures the first 10 words that
appear in the tibble letter_tokens_nostop_ranked. You can use the slice() and pull()
dplyr verbs to accomplish this.

• Question 3.2 Let us remove the rows of word_counts where the word is one of the words
in add_stop. Store it in word_counts_revised.

• Question 3.3 Generate, from the letter-wise word counts word_counts_revised, a
document-term matrix letters_dtm_revised.

• Question 3.4 From this document-term matrix, generate an LDA model with 2 classes.
Store it in lda_model_revised.

• Question 3.5 Transform the model output back into a tibble. Use the function tidy()
and set the variable “beta” using the matrix entries.

• Question 3.6 Select the top 15 terms and store it in top_terms_revised.
• Question 3.7 Now plot the top terms of the two classes. Also, show the plot without

excluding the common words. In that matter, we should be able to compare the two topic
models side by side.

• Question 3.8 What differences do you observe between the two topics in the bar plot
for top_terms_revised? Are these differences more or less apparent (or about the same)
when comparing the differences in the original bar plot for top_terms?

Question 4. Chesterton Essays G. K. Chesterton (May 29, 1874 – June 14, 1936) was
a British writer, who is the best known for his “Father Brown” works. The Gutenbrerg
Project ID 8092 is a collection of his essays “Tremendous Trifles”.

• Question 4.1 Load the work in trifles. Then remove the unwanted variable and store
the result in trifles0.

• Question 4.2 Each essay in the collection has a Greek number header. As we did before,
using the Greek number header to capture the start of an essay and add that index as
the variable letter. Store the mutated table in tifles1.

• Question 4.3 First, extract tokens from trifles1 using unnest_tokens, and store it in
trifles_tokens. Then, from trifles_tokens remove stop_words using anti_join and store
it in trifles_tokens_nostop.

• Question 4.4 Let us obtain the counts of the words in the two token lists using count.
Store the result in trifles_tokens_ranked and trifles_tokens_nostop_ranked, respec-
tively.

• Question 4.5 Use a lower bound of 35 to collect the words and show a bar plot.
• Question 4.6 Now generate word counts letter-wise. The source is tri-

fles_tokens_nostop. The counting is by executing count(letter, word, sort =
TRUE). Store the result in trifles_word_counts.

• Question 4.7 Generate, from the letter-wise word counts trifles_word_counts, a
document-term matrix trifles_dtm.

• Question 4.8 From the document-term matrix, generate an LDA model with 4 classes.
Store it in trifles_lda_model.

• Question 4.9 Take the model and turn it into a data frame. Use the function tidy() and
set the variable “beta” using the matrix entries.



10.4 Exercises 471

• Question 4.10 If you run the top-term map, you notice that the words are much similar
among the four classes. So, let us skip the first 5 and select the words that are ranked 6th
to the 15th. Select the top 10 terms from each topic and store it in trifles_top_terms.

• Question 4.11 Now plot the top terms.
• Question 4.12 What differences do you observe, if any, among the above four topics?
Question 5 In this question, we explore the relationship between the Chesterton essays
and the Jane Austen letter collection. This question assumes you have already formed the
tibbles word_counts_revised and trifles_word_counts.

• Question 5.1 Using bind_rows, merge the datasets word_counts_revised and tri-
fles_word_counts. However, before merging, discard the letter variable present in each
tibble and create a new column author that gives the author name together with each
word count. Assign the resulting tibble to the name merged_frequencies.

• Question 5.2 The current word counts given in merged_frequencies are with respect to
each letter/essay, but we would like to obtain these counts with respect to each author. Us-
ing group_by and summarize from dplyr, obtain updated counts for each word by summing
the counts over its respective texts. The resulting tibble should contain three variables:
author, word, and n (the updated word count).

• Question 5.3 Instead of reporting word counts, we would like to report word proportions
so that we can make comparisons between the two authors. Create a new variable prop
that, with respect to each author, reports the proportion of times a word appears over the
total count of words for that author. The resulting tibble should contain three variables:
author, word, and prop. Assign the resulting tibble to the name freq_by_author_prop.

• Question 5.4 Apply a pivot transformation so that three variables materialize in the
freq_by_author_prop tibble: word, G. K. Chesterton (giving the word proportion for
Chesterton essays), and Jane Austen (giving the word proportion for Jane Austen let-
ters). Drop any resulting missing values after the transformation. Assign the resulting
tibble to the name freq_by_author_prop_long.

• Question 5.5 Using freq_by_author_prop_long, fit a linear regression model of the G. K.
Chesterton proportions on the Jane Austen proportions.

• Question 5.6 How significant is the estimated slope of the regression line you found? Use
confint() with the linear model you developed.

• Question 5.7 The following scatter plot shows the Chesterton word proportions against
the Jane Austen word proportions; the color shown is the absolute difference between the
two. Also given is a dashed line that follows 𝑦 = 𝑥.
Amend this ggplot visualization by adding another geom layer that visualizes the equation
of the linear model you found.

ggplot(freq_by_author_prop_long,
aes(x = `Jane Austen`, y = `G. K. Chesterton`,

color = abs(`G. K. Chesterton` - `Jane Austen`))) +
geom_abline(color = "gray", lty = 2) +
geom_text(aes(label = word), check_overlap = TRUE) +
theme(legend.position="none")

• Question 5.8 What does it mean for words to be close to the 𝑦 = 𝑥 line? Also, briefly
comment on the relationship between the regression line you found and the 𝑦 = 𝑥 line –
what does it mean that the slope of your line is relatively smaller?
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