
Generalized Additive Models:
an introduction with R

COPYRIGHT CRC DO NOT DISTRIBUTE

Simon N. Wood

Contents

Preface xi

1 Linear Models 1

1.1 A simple linear model 2

Simple least squares estimation 3

1.1.1 Sampling properties of β̂ 3

1.1.2 So how old is the universe? 5

1.1.3 Adding a distributional assumption 7

Testing hypotheses about β 7

Confidence intervals 9

1.2 Linear models in general 10

1.3 The theory of linear models 12

1.3.1 Least squares estimation of β 12

1.3.2 The distribution of β̂ 13

1.3.3 (β̂i − βi)/σ̂β̂i
∼ tn−p 14

1.3.4 F-ratio results 15

1.3.5 The influence matrix 16

1.3.6 The residuals, ε̂, and fitted values, µ̂ 16

1.3.7 Results in terms of X 17

1.3.8 The Gauss Markov Theorem: what’s special about least

squares? 17

1.4 The geometry of linear modelling 18

1.4.1 Least squares 19

1.4.2 Fitting by orthogonal decompositions 20

iii

iv CONTENTS

1.4.3 Comparison of nested models 21

1.5 Practical linear models 22

1.5.1 Model fitting and model checking 23

1.5.2 Model summary 28

1.5.3 Model selection 30

1.5.4 Another model selection example 31

A follow up 34

1.5.5 Confidence intervals 35

1.5.6 Prediction 36

1.6 Practical modelling with factors 36

1.6.1 Identifiability 37

1.6.2 Multiple factors 39

1.6.3 ‘Interactions’ of factors 40

1.6.4 Using factor variables in R 41

1.7 General linear model specification in R 44

1.8 Further linear modelling theory 45

1.8.1 Constraints I: general linear constraints 45

1.8.2 Constraints II: ‘contrasts’ and factor variables 46

1.8.3 Likelihood 48

1.8.4 Non-independent data with variable variance 49

1.8.5 AIC and Mallow’s statistic, 50

1.8.6 Non-linear least squares 52

1.8.7 Further reading 54

1.9 Exercises 55

2 Generalized Linear Models 59

2.1 The theory of GLMs 60

2.1.1 The exponential family of distributions 62

2.1.2 Fitting Generalized Linear Models 63

2.1.3 The IRLS objective is a quadratic approximation to the

log-likelihood 66

CONTENTS v

2.1.4 AIC for GLMs 67

2.1.5 Large sample distribution of β̂ 68

2.1.6 Comparing models by hypothesis testing 68

Deviance 69

Model comparison with unknown φ 70

2.1.7 φ̂ and Pearson’s statistic 70

2.1.8 Canonical link functions 71

2.1.9 Residuals 72

Pearson Residuals 72

Deviance Residuals 73

2.1.10 Quasi-likelihood 73

2.2 Geometry of GLMs 75

2.2.1 The geometry of IRLS 76

2.2.2 Geometry and IRLS convergence 79

2.3 GLMs with R 80

2.3.1 Binomial models and heart disease 80

2.3.2 A Poisson regression epidemic model 87

2.3.3 Log-linear models for categorical data 92

2.3.4 Sole eggs in the Bristol channel 96

2.4 Likelihood 101

2.4.1 Invariance 102

2.4.2 Properties of the expected log-likelihood 102

2.4.3 Consistency 105

2.4.4 Large sample distribution of θ̂ 107

2.4.5 The generalized likelihood ratio test (GLRT) 107

2.4.6 Derivation of 2λ ∼ χ2
r under H0 108

2.4.7 AIC in general 110

2.4.8 Quasi-likelihood results 112

2.5 Exercises 114

vi CONTENTS

3 Introducing GAMs 119

3.1 Introduction 119

3.2 Univariate smooth functions 120

3.2.1 Representing a smooth function: regression splines 120

A very simple example: a polynomial basis 120

Another example: a cubic spline basis 122

Using the cubic spline basis 124

3.2.2 Controlling the degree of smoothing with penalized regres-

sion splines 126

3.2.3 Choosing the smoothing parameter, λ: cross validation 128

3.3 Additive Models 131

3.3.1 Penalized regression spline representation of an additive

model 132

3.3.2 Fitting additive models by penalized least squares 132

3.4 Generalized Additive Models 135

3.5 Summary 137

3.6 Exercises 138

4 Some GAM theory 141

4.1 Smoothing bases 142

4.1.1 Why splines? 142

Natural cubic splines are smoothest interpolators 142

Cubic smoothing splines 144

4.1.2 Cubic regression splines 145

4.1.3 A cyclic cubic regression spline 147

4.1.4 P-splines 148

4.1.5 Thin plate regression splines 150

Thin plate splines 150

Thin plate regression splines 153

Properties of thin plate regression splines 154

Knot based approximation 156

4.1.6 Shrinkage smoothers 156

CONTENTS vii

4.1.7 Choosing the basis dimension 157

4.1.8 Tensor product smooths 158

Tensor product bases 158

Tensor product penalties 161

4.2 Setting up GAMs as penalized GLMs 163

4.2.1 Variable coefficient models 164

4.3 Justifying P-IRLS 165

4.4 Degrees of freedom and residual variance estimation 166

4.4.1 Residual variance or scale parameter estimation 167

4.5 Smoothing Parameter Estimation Criteria 168

4.5.1 Known scale parameter: UBRE 168

4.5.2 Unknown scale parameter: Cross Validation 169

Problems with Ordinary Cross Validation 170

4.5.3 Generalized Cross Validation 171

4.5.4 GCV/UBRE/AIC in the Generalized case 173

Approaches to GAM GCV/UBRE minimization 175

4.6 Numerical GCV/UBRE: performance iteration 177

4.6.1 Minimizing the GCV or UBRE score 177

Stable and efficient evaluation of the scores and derivatives 178

The weighted constrained case 181

4.7 Numerical GCV/UBRE optimization by outer iteration 182

4.7.1 Differentiating the GCV/UBRE function 182

4.8 Distributional results 185

4.8.1 Bayesian model, and posterior distribution of the parameters,

for an additive model 185

4.8.2 Structure of the prior 187

4.8.3 Posterior distribution for a GAM 187

4.8.4 Bayesian confidence intervals for non-linear functions of

parameters 190

4.8.5 P-values 190

4.9 Confidence interval performance 192

viii CONTENTS

4.9.1 Single smooths 192

4.9.2 GAMs and their components 195

4.9.3 Unconditional Bayesian confidence intervals 198

4.10 Further GAM theory 200

4.10.1 Comparing GAMs by hypothesis testing 200

4.10.2 ANOVA decompositions and Nesting 202

4.10.3 The geometry of penalized regression 204

4.10.4 The “natural” parameterization of a penalized smoother 205

4.11 Other approaches to GAMs 208

4.11.1 Backfitting GAMs 209

4.11.2 Generalized smoothing splines 211

4.12 Exercises 213

5 GAMs in practice: mgcv 217

5.1 Cherry trees again 217

5.1.1 Finer control of gam 219

5.1.2 Smooths of several variables 221

5.1.3 Parametric model terms 224

5.2 Brain Imaging Example 226

5.2.1 Preliminary Modelling 228

5.2.2 Would an additive structure be better? 232

5.2.3 Isotropic or tensor product smooths? 233

5.2.4 Detecting symmetry (with by variables) 235

5.2.5 Comparing two surfaces 237

5.2.6 Prediction with predict.gam 239

Prediction with lpmatrix 241

5.2.7 Variances of non-linear functions of the fitted model 242

5.3 Air Pollution in Chicago Example 243

5.4 Mackerel egg survey example 249

5.4.1 Model development 250

5.4.2 Model predictions 255

CONTENTS ix

5.5 Portuguese larks 257

5.6 Other packages 261

5.6.1 Package gam 261

5.6.2 Package gss 263

5.7 Exercises 265

6 Mixed models: GAMMs 273

6.1 Mixed models for balanced data 273

6.1.1 A motivating example 273

The wrong approach: a fixed effects linear model 274

The right approach: a mixed effects model 276

6.1.2 General principles 277

6.1.3 A single random factor 278

6.1.4 A model with two factors 281

6.1.5 Discussion 286

6.2 Linear mixed models in general 287

6.2.1 Estimation of linear mixed models 288

6.2.2 Directly maximizing a mixed model likelihood in R 289

6.2.3 Inference with linear mixed models 290

Fixed effects 290

Inference about the random effects 291

6.2.4 Predicting the random effects 292

6.2.5 REML 293

The explicit form of the REML criterion 295

6.2.6 A link with penalized regression 296

6.3 Linear mixed models in R 297

6.3.1 Tree Growth: an example using lme 298

6.3.2 Several levels of nesting 303

6.4 Generalized linear mixed models 303

6.5 GLMMs with R 305

6.6 Generalized Additive Mixed Models 309

x CONTENTS

6.6.1 Smooths as mixed model components 309

6.6.2 Inference with GAMMs 311

6.7 GAMMs with R 312

6.7.1 A GAMM for sole eggs 312

6.7.2 The Temperature in Cairo 314

6.8 Exercises 318

A Some Matrix Algebra 325

A.1 Basic computational efficiency 325

A.2 Covariance matrices 326

A.3 Differentiating a matrix inverse 326

A.4 Kronecker product 327

A.5 Orthogonal matrices and Householder matrices 327

A.6 QR decomposition 328

A.7 Choleski decomposition 328

A.8 Eigen-decomposition 329

A.9 Singular value decomposition 330

A.10 Pivoting 331

A.11 Lanczos iteration 331

B Solutions to exercises 335

B.1 Chapter 1 335

B.2 Chapter 2 340

B.3 Chapter 3 345

B.4 Chapter 4 347

B.5 Chapter 5 354

B.6 Chapter 6 363

Bibliography 373

Index 378

Preface

This book is designed for readers wanting a compact, but thorough, introduction to

linear models, generalized linear models , generalized additive models, and the mixed

model extension of these, with particular emphasis on generalized additive models.

The aim is to provide a full, but concise, theoretical treatment, explaining how the

models and methods work, in order to underpin quite extensive material on practical

application of the models using R.

Linear models are statistical models in which a univariate response is modelled as the

sum of a ‘linear predictor’ and a zero mean random error term. The linear predictor

depends on some predictor variables, measured with the response variable, and some

unknown parameters, which must be estimated. A key feature of linear models is

that the linear predictor depends linearly on these parameters. Statistical inference

with such models is usually based on the assumption that the response variable has

a normal distribution. Linear models are used widely in most branches of science,

both in the analysis of designed experiments, and for other modeling tasks, such as

polynomial regression. The linearity of the models endows them with some rather

elegant theory, which is explored in some depth in Chapter 1, alongside practical

examples of their use.

Generalized linear models (GLMs) somewhat relax the strict linearity assumption of

linear models, by allowing the expected value of the response to depend on a smooth

monotonic function of the linear predictor. Similarly the assumption that the response

is normally distributed is relaxed by allowing it to follow any distribution from the

exponential family (for example, normal, Poisson, binomial, gamma etc.). Inference

for GLMs is based on likelihood theory, as is explained, quite fully, in chapter 2,

where the practical use of these models is also covered.

A Generalized Additive Model (GAM) is a GLM in which part of the linear pre-

dictor is specified in terms of a sum of smooth functions of predictor variables. The

exact parametric form of these functions is unknown, as is the degree of smoothness

appropriate for each of them. To use GAMs in practice requires some extensions to

GLM methods:

1. The smooth functions must be represented somehow.

2. The degree of smoothness of the functions must be made controllable, so that

models with varying degrees of smoothness can be explored.

xi

xii PREFACE

3. Some means for estimating the most appropriate degree of smoothness from data

is required, if the models are to be useful for more than purely exploratory work.

This book provides an introduction to the framework for Generalized Additive Mod-

elling in which (i) is addressed using basis expansions of the smooth functions, (ii) is

addressed by estimating models by penalized likelihood maximization, in which wig-

gly models are penalized more heavily than smooth models in a controllable manner,

and (iii) is performed using methods based on cross validation or sometimes AIC or

Mallow’s statistic. Chapter 3 introduces this framework, chapter 4 provides details

of the theory and methods for using it, and chapter 5 illustrated the practical use of

GAMs using the R package mgcv.

The final chapter of the book looks at mixed model extensions of linear, general-

ized linear, and generalized additive models. In mixed models, some of the unknown

coefficients (or functions) in the model linear predictor are now treated as random

variables (or functions). These ‘random effects’ are treated as having a covariance

structure that itself depends on some unknown fixed parameters. This approach en-

ables the use of more complex models for the random component of data, thereby

improving our ability to model correlated data. Again theory and practical applica-

tion are presented side by side.

I assume that most people are interested in statistical models in order to use them,

rather than to gaze upon the mathematical beauty of their structure, and for this rea-

son I have tried to keep this book practically focused. However, I think that practical

work tends to progress much more smoothly if it is based on solid understanding of

how the models and methods used actually work. For this reason, the book includes

fairly full explanations of the theory underlying the methods, including the underly-

ing geometry, where this is helpful. Given that the applied modelling involves using

computer programs, the book includes a good deal of material on statistical mod-

elling in R. This approach is now fairly standard when writing about practical sta-

tistical analysis, but in addition Chapter 3 attempts to introduce GAMs by having

the reader ‘build their own’ GAM using R: I hope that this provides a useful way of

quickly gaining a rather solid familiarity with the fundamentals of the GAM frame-

work presented in this book. Once the basic framework is mastered from chapter 3,

the theory in chapter 4 is really filling in details, albeit practically important ones.

The book includes a moderately high proportion of practical examples which re-

flect the reality that statistical modelling problems are usually quite involved, and

rarely require only straightforward brain-free application of some standard model.

This means that some of the examples are fairly lengthy, but do provide illustration

of the process of producing practical models of some scientific utility, and of check-

ing those models. They also provide much greater scope for the reader to decide that

what I’ve done is utter rubbish.

Working through this book from Linear Models, through GLMs to GAMs and even-

tually GAMMs, it is striking that as model flexibility increases, so that the models

become better able to describe the reality that we believe generated a set of data, so

the methods for inference become less well founded. The linear model class is quite

PREFACE xiii

restricted, but within it, hypothesis testing and interval estimation are exact, while

estimation is unbiased. For the larger class of GLMs this exactness is generally lost

in favour of the large sample approximations of general likelihood theory, while esti-

mators themselves are consistent, but not necessarily unbiased. Generalizing further

to GAMs, penalization lowers the convergence rates of estimators, hypothesis testing

is only approximate, and satisfactory interval estimation seems to require the adop-

tion of a Bayesian approach. With time, improved theory will hopefully reduce these

differences. In the meantime, this book is offered in the belief that it is usually better

to be able to say something approximate about the right model, rather than something

very precise about the wrong model.

Life is too short to spend too much of it reading statistics text books. This book is of

course an exception to this rule and should be read from cover to cover. However, if

you don’t feel inclined to follow this suggestion, here are some alternatives.

• For those who are already very familiar with linear models and GLMs, but want

to use GAMs with a reasonable degree of understanding: work through Chapter 3

and read chapter 5, trying some exercises from both, use chapter 4 for reference.

Perhaps skim the other chapters.

• For those who want to focus only on practical modelling in R, rather than theory.

Work through the following: 1.5, 1.6.4, 1.7, 2.3, Chapter 5, 6.3, 6.5 and 6.7.

• For those familiar with the basic idea of setting up a GAM using basis expansions

and penalties, but wanting to know more about the underlying theory and practical

application: work through Chapters 4 and 5, and probably 6.

• For those not interested in GAMs, but wanting to know about linear models,

GLMs and mixed models. Work through Chapters 1 and 2, and Chapter 6 up

to section 6.6.

The book is written to be accessible to numerate researchers and students from the

last two years of an undergraduate programme upwards. It is designed to be used ei-

ther for self study, or as the text for the ‘regression modelling’ strand of mathematics

and/or statistics degree programme. Some familiarity with statistical concepts is as-

sumed, particularly with notions such as random variable, expectation, variance and

distribution. Some knowledge of matrix algebra is also needed, although Appendix

A is intended to provide all that is needed beyond the fundamentals.

Finally, I’d like to thank the people who have in various ways helped me out in the

writing of this book, or in the work that lead to writing it. Among these, are Lucy

Augustin, Nicole Augustin, Miguel Bernal, Steve Blythe, David Borchers, Mark

Bravington, Steve Buckland, Richard Cormack, José Pedro Granadeiro ,Chong Gu,

Bill Gurney, John Halley, Joe Horwood, Sharon Hedley, Peter Jupp, Alain Le Tetre,

Stephan Lang, Mike Lonergan, Henric Nilsson, Roger D. Peng, Charles Paxton,

Björn Stollenwerk, Yorgos Stratoudaki, the R core team in particular Kurt Hornik

and Brian Ripley, the Little Italians and the RiederAlpinists. I am also very grateful

to the people who have sent me bug reports and suggestions which have greatly im-

proved the the mgcv package over the last few years: the list is rather too long to

reproduce here, but thankyou.

CHAPTER 1

Linear Models

How old is the universe? The standard big-bang model of the origin of the universe

says that it expands uniformly, and locally, according to Hubble’s law:

y = βx

where y is the relative velocity of any two galaxies separated by distance x, and β is

“Hubble’s constant”(in standard astrophysical notation y ≡ v, x ≡ d and β ≡ H0).

β−1 gives the approximate age of the universe, but β is unknown and must somehow

be estimated from observations of y and x, made for a variety of galaxies at different

distances from us.

Figure 1.1 plots velocity against distance for 24 galaxies, according to measurements

made using the Hubble Space Telescope. Velocities are assessed by measuring the

Doppler effect red shift in the spectrum of light observed from the Galaxies con-

cerned, although some correction for ‘local’ velocity components is required. Dis-

5 10 15 20

5
0

0
1

0
0

0
1

5
0

0

Distance (Mpc)

V
e
lo

c
it
y
 (

k
m

s
−
1
)

Figure 1.1 A Hubble diagram showing the relationship between distance, x, and velocity, y,

for 24 Galaxies containing Cepheid stars. The data are from the Hubble Space Telescope key

project to measure the Hubble constant as reported in Freedman et al. (2001).

1

2 LINEAR MODELS

tance measurement is much less direct, and is based on the 1912 discovery, by Hen-

rietta Leavit, of a relationship between the period of a certain class of variable stars,

known as the Cepheids, and their luminosity. The intensity of Cepheids varies regu-

larly with a period of between 1.5 and something over 50 days, and the mean intensity

increases predictably with period. This means that, if you can find a Cepheid, you can

tell how far away it is, by comparing its apparent brightness to its period predicted

intensity.

It is clear, from the figure, that the observed data do not follow Hubble’s law exactly,

but given the measurement process, it would be surprising if they did. Given the

apparent variability, what can be inferred from these data? In particular: (i) what

value of β is most consistent with the data? (ii) what range of β values is consistent

with the data and (iii) are some particular theoretically derived values of β consistent

with the data? Statistics is about trying to answer these three sorts of question.

One way to proceed is to formulate a linear statistical model of the way that the data

were generated, and to use this as the basis for inference. Specifically, suppose that,

rather than being governed directly by Hubble’s law, the observed velocity is given

by Hubble’s constant multiplied by the observed distance plus a ‘random variability’

term. That is

yi = βxi + εi i = 1 . . . 24 (1.1)

where the εi terms are independent random variables such that E(εi) = 0 and

E(ε2i) = σ2. The random component of the model is intended to capture the fact

that if we gathered a replicate set of data, for a new set of galaxies, Hubble’s law

would not change, but the apparent random variation from it would be different, as a

result of different measurement errors. Notice that it is not implied that these errors

are completely unpredictable: their mean and variance are assumed to be fixed, it is

only their particular values, for any particular galaxy, that are not known.

1.1 A simple linear model

This section develops statistical methods for a simple linear model of the form (1.1).

This allows the key concepts of linear modelling to be introduced without the dis-

traction of any mathematical difficulty.

Formally, consider n observations, xi, yi, where yi is an observation on random vari-

able, Yi, with expectation, µi ≡ E(Yi). Suppose that an appropriate model for the

relationship between x and y is:

Yi = µi + εi where µi = xiβ. (1.2)

Here β is an unknown parameter and the εi are mutually independent zero mean

random variables, each with the same variance σ2. So the model says that Y is given

by x multiplied by a constant plus a random term. Y is an example of a response

variable, while x is an example of a predictor variable. Figure 1.2 illustrates this

model for a case where n = 8.

A SIMPLE LINEAR MODEL 3

βx

εi

Yi

xi

Figure 1.2 Schematic illustration of a simple linear model with one explanatory variable.

Simple least squares estimation

How can β, in model (1.2) be estimated from the xi, yi data? A sensible approach

is to choose a value of β that makes the model fit closely to the data. To do this we

need to define a measure of how well, or how badly, a model with a particular β fits

the data. One possible measure is the residual sum of squares of the model:

S =
n
∑

i=1

(yi − µi)
2 =

n
∑

i=1

(yi − xiβ)2

If we have chosen a good value of β, close to the true value, then the model pre-

dicted µi should be relatively close to the yi, so that S should be small, whereas poor

choices will lead to µi far from their corresponding yi, and high values of S. Hence

β can be estimated by minimizing S w.r.t. β and this is known as the method of least

squares.

To minimize S, differentiate w.r.t. β:

∂S
∂β

= −
n
∑

i=1

2xi(yi − xiβ)

and set the result to zero to find β̂, the least squares estimate of β:

−
n
∑

i=1

2xi(yi − xiβ̂) = 0⇒
n
∑

i=1

xiyi − β̂

n
∑

i=1

x2
i = 0⇒ β̂ =

n
∑

i=1

xiyi/

n
∑

i=1

x2
i .
∗

1.1.1 Sampling properties of β̂

To evaluate the reliability of the least squares estimate, β̂, it is useful to consider the

sampling properties of β̂. That is, we should consider some properties of the distri-

bution of β̂ values, which would be obtained from repeated independent replication

∗ ∂2S/∂β2 = 2
P

x2
i which is clearly positive, so a minimum of S has been found.

4 LINEAR MODELS

of the xi, yi data used for estimation. To do this, it is helpful to introduce the concept

of an estimator, which is obtained by replacing the observations, yi, in the estimate

of β̂ by the random variables, Yi, to obtain

β̂ =

n
∑

i=1

xiYi/

n
∑

i=1

x2
i .

Clearly the estimator, β̂, is a random variable and we can therefore discuss its distri-

bution. For now, consider only the first two moments of that distribution.

The expected value of β̂ is obtained as follows:

E(β̂) = E

(

n
∑

i=1

xiYi/

n
∑

i=1

x2
i

)

=

n
∑

i=1

xiE(Yi)/

n
∑

i=1

x2
i =

n
∑

i=1

x2
iβ/

n
∑

i=1

x2
i = β.

So β̂ is an unbiased estimator — its expected value is equal to the true value of the

parameter that it is supposed to estimate.

Unbiasedness is a reassuring property, but knowing that an estimator gets it right on

average, does not tell us much about how good any one particular estimate is likely to

be: for this we also need to know how much estimates would vary from one replicate

data set to the next — we need to know the estimator variance.

From general probability theory we know that if Y1, Y2, . . . , Yn are independent ran-

dom variables and a1, a2, . . . an are real constants then

var

(

∑

i

aiYi

)

=
∑

i

a2
i var(Yi).

But we can write

β̂ =
∑

i

aiYi where ai = xi/
∑

i

x2
i ,

and from the original model specification we have that var(Yi) = σ2 for all i. Hence,

var(β̂) =
∑

i

x2
i /

(

∑

i

x2
i

)2

σ2 =

(

∑

i

x2
i

)−1

σ2. (1.3)

In most circumstances σ2 itself is an unknown parameter and must also be estimated.

Since σ2 is the variance of the εi, it makes sense to estimate it using the variance of

the estimated εi, the model residuals, ε̂i = yi − xiβ̂. An unbiased estimator of σ2 is:

σ̂2 =
1

n− 1

∑

i

(yi − xiβ̂)2

(proof of unbiasedness is given later for the general case). Plugging this into (1.3)

obviously gives an unbiased estimate of the variance of β̂.

A SIMPLE LINEAR MODEL 5

1.1.2 So how old is the universe?

The least squares calculations derived above are available as part of the statistical
package and environment R. The function lm fits linear models to data, including
the simple example currently under consideration. The Cepheid distance — velocity
data shown in figure 1.1 are stored in a data frame† hubble. The following R code
fits the model and produces the (edited) output shown.

> data(hubble)

> hub.mod <- lm(y˜x-1,data=hubble)

> summary(hub.mod)

Call:

lm(formula = y ˜ x - 1, data = hubble)

Coefficients:

Estimate Std. Error

x 76.581 3.965

The call to lm passed two arguments to the function. The first is a model formula,

y˜x-1, specifying the model to be fitted: the name of the response variable is to

the left of ‘˜’ while the predictor variable is specified on the right; the ‘-1’ term

indicates that the model has no ‘intercept’ term, i.e. that the model is a straight line

through the origin. The second (optional) argument gives the name of the data frame

in which the variables are to be found. lm takes this information and uses it to fit the

model by least squares: the results are returned in a ‘fitted model object’, which in

this case has been assigned to an object called hub.mod for later examination. ‘<-’

is the assignment operator, and hub.mod is created by this assignment (overwriting

any previously existing object of this name).

The summary function is then used to examine the fitted model object. Only part

of its output is shown here: β̂ and the estimate of the standard error of β̂ (the square

root of the estimated variance of β̂, derived above). Before using these quantities

it is important to check the model assumptions. In particular we should check the

plausibility of the assumptions that the εi are independent and all have the same

variance. The way to do this is to examine residual plots.

The ‘fitted values’ of the model are defined as µ̂i = β̂xi, while the residuals are
simply ε̂i = yi − µ̂i. A plot of residuals against fitted values is often useful and the
following produces the plot in figure 1.3 (a).

plot(fitted(hub.mod),residuals(hub.mod),xlab="fitted values",

ylab="residuals")

What we would like to see, in such a plot, is an apparently random scatter of residu-
als around zero, with no trend in either the mean of the residuals, or their variability,

† A data frame is just a two dimensional array of data in which the values of different variables are stored
in different named columns.

6 LINEAR MODELS

500 1000 1500

−
6

0
0

−
2

0
0

0
2

0
0

4
0

0
6

0
0

fitted values

re
s
id

u
a

ls

a

500 1000 1500

−
3

0
0

−
1

0
0

0
1

0
0

2
0

0

fitted values

re
s
id

u
a

ls

b

Figure 1.3 Residuals against fitted values for (a) the model (1.1) fitted to all the data in figure

1.1 and (b) the same model fitted to data with two substantial outliers omitted.

as the fitted values increase. A trend in the mean violates the independence assump-
tion, and is usually indicative of something missing in the model structure, while a
trend in the variability violates the constant variance assumption. The main problem-
atic feature of figure 1.3(a) is the presence of two points with very large magnitude
residuals, suggesting a problem with the constant variance assumption. It is proba-
bly prudent to repeat the model fit, with and without these points, to check that they
are not having undue influence on our conclusions. The following code omits the
offending points and produces a new residual plot shown in figure 1.3(b).

> hub.mod1 <- lm(y˜x-1,data=hubble[-c(3,15),])

> summary(hub.mod1)

Call:

lm(formula = y ˜ x - 1, data = hubble[-c(3, 15),])

Coefficients:

Estimate Std. Error

x 77.67 2.97

> plot(fitted(hub.mod1),residuals(hub.mod1),

+ xlab="fitted values",ylab="residuals")

The omission of the two large outliers has improved the residuals and changed β̂
somewhat, but not drastically.

The Hubble constant estimates have units of (km)s−1 (Mpc)−1. A Mega-parsec is

3.09 × 1019km, so we need to divide β̂ by this amount, in order to obtain Hubble’s

constant with units of s−1. The approximate age of the universe, in seconds, is then

given by the reciprocal of β̂. Here are the two possible estimates expressed in years:

A SIMPLE LINEAR MODEL 7

> hubble.const <- c(coef(hub.mod),coef(hub.mod1))/3.09e19

> age <- 1/hubble.const

> age/(60ˆ2*24*365)

12794692825 12614854757

Both fits give an age of around 13 billion years. So we now have an idea of the best

estimate of the age of the universe, but what range of ages would be consistent with

the data?

1.1.3 Adding a distributional assumption

So far everything done with the simple model has been based only on the model

equations and the two assumptions of independence and equal variance, for the re-

sponse variable. If we wish to go further, and find confidence intervals for β, or test

hypotheses related to the model, then a further distributional assumption will be nec-

essary.

Specifically, assume that εi ∼ N(0, σ2) for all i, which is equivalent to assuming

Yi ∼ N(xiβ, σ2). Now we have already seen that β̂ is just a weighted sum of Yi,
but the Yi are now assumed to be normal random variables, and a weighted sum of

normal random variables is itself a normal random variable. Hence the estimator, β̂,

must be a normal random variable. Since we have already established the mean and

variance of β̂, we have that

β̂ ∼ N

(

β,
(

∑

xi

)−1

σ2

)

. (1.4)

Testing hypotheses about β

One thing we might want to do is to try and evaluate the consistency of some hy-

pothesized value of β with the data. For example some Creation Scientists estimate

the age of the universe to be 6000 years, based on a reading of the Bible. This would

imply that β = 163× 106‡. The consistency with data of such a hypothesized value

for β, can be based on the probability that we would have observed the β̂ actually

obtained, if the true value of β was the hypothetical one.

Specifically, we can test the null hypothesis, H0 : β = β0, versus the alternative

hypothesis, H1 : β 6= β0, for some specified value β0, by examining the probability

of getting the observed β̂, or one further from β0, assuming H0 to be true. If σ2 were

known then we could work directly from (1.4), as follows.

The probability required is known as the p-value of the test. It is the probability of

getting a value of β̂ at least as favourable to H1 as the one actually observed, if H0 is

‡ This isn’t really valid, of course, since the Creation Scientists are not postulating a big bang theory.

8 LINEAR MODELS

actually true§. In this case it helps to distinguish notationally between the estimate,

β̂obs , and estimator β̂. The p-value is then

p = Pr
[

|β̂ − β0| ≥ |β̂obs − β0|
∣

∣

∣
H0

]

=

[

|β̂ − β0|
σβ̂

≥ |β̂obs − β0|
σβ̂

∣

∣

∣

∣

∣

H0

]

= Pr[|Z| > |z|]

where Z ∼ N(0, 1), z = (β̂obs − β0)/σβ̂ and σβ̂ = (
∑

x2
i)
−1σ2. Hence, having

formed z, the p-value is easily worked out, using the cumulative distribution function

for the standard normal, built into any statistics package. Small p-values suggest that

the data are inconsistent with H0, while large values indicate consistency. 0.05 is

often used as the boundary between ‘small’ and ‘large’ in this context.

In reality σ2 is usually unknown. Broadly the same testing procedure can still be

adopted, by replacing σ with σ̂, but we need to somehow allow for the extra uncer-

tainty that this introduces (unless the sample size is very large). It turns out that if

H0 : β = β0 is true then

T ≡ β̂ − β0

σ̂β̂
∼ tn−1

where n is the sample size, σ̂β̂ = (
∑

x2
i)
−1σ̂, and tn−1 is the t-distribution with

n − 1 degrees of freedom. This result is proven in section 1.3. It is clear that large

magnitude values of T favour H1, so using T as the test statistic, in place of β̂ we

can calculate a p-value by evaluating

p = Pr[|T | > |t|]

where T ∼ tn−1 and t = (β̂obs − β0)/σ̂β̂ . This is easily evaluated using the c.d.f.

of the t distributions, built into any decent statistics package. Here is some code to
evaluate the p-value for H0 : the Hubble constant is 163000000.

> cs.hubble <- 163000000

> t.stat<-(coef(hub.mod1)-cs.hubble)/

+ summary(hub.mod1)$coefficients[2]

> pt(t.stat,df=21)*2 # 2 because of |T| in p-value defn.

3.906388e-150

i.e. as judged by the test statistic, t, the data would be hugely improbable if β =
1.63 × 108. It would seem that the hypothesized value can be rejected rather firmly

(in this case, using the data with the outliers increases the p-value by a factor of 1000

or so).

Hypothesis testing is particularly useful when there are good reasons to want to stick

with some null hypothesis, until there is good reason to reject it. This is often the

§ This definition holds for any hypothesis test, if the specific ‘β̂’ is replaced by the general ‘a test statis-

tic’.

A SIMPLE LINEAR MODEL 9

case when comparing models of differing complexity: it is often a good idea to retain

the simpler model until there is quite firm evidence that it is inadequate. Note one

interesting property of hypothesis testing. If we choose to reject a null hypothesis

whenever the p-value is less than some fixed level, α (often termed the significance

level of a test), then we will inevitably reject a proportion, α, of correct null hypothe-

ses. We could try and reduce the probability of such mistakes by making α very

small, but in that case we pay the price of reducing the probability of rejecting H0

when it is false!

Confidence intervals

Having seen how to test whether a particular hypothesized value of β is consistent

with the data, the question naturally arises of what range of values of β would be

consistent with the data. To do this, we need to select a definition of ‘consistent’: a

common choice is to say that any parameter value is consistent with the data if it

results in a p-value of ≥ 0.05, when used as the null value in a hypothesis test.

Sticking with the Hubble constant example, and working at a significance level of

0.05, we would have rejected any hypothesized value for the constant, that resulted

in a t value outside the range (−2.08, 2.08), since these values would result in p-

values of less than 0.05. The R function qt can be used to find such ranges: e.g.

qt(c(0.025,0.975),df=21) returns the range of the middle 95% of t21 ran-

dom variables. So we would accept any β0 fulfilling:

−2.08 ≤ β̂ − β0

σ̂β̂
≤ 2.08

which re-arranges to give the interval

β̂ − 2.08σ̂β̂ ≤ β0 ≤ β̂ + 2.08σ̂β̂ .

Such an interval is known as a ‘95% Confidence interval’ for β.

The defining property of a 95% confidence interval is this: if we were to gather an

infinite sequence of independent replicate data sets, and calculate 95% confidence

intervals for β from each, then 95% of these intervals would include the true β, and

5% would not. It is easy to see how this comes about. By construction, a hypothesis

test with a significance level of 5%, rejects the correct null hypothesis for 5% of

replicate data sets, and accepts it for the other 95% of replicates. Hence 5% of 95%

confidence intervals must exclude the true parameter, while 95% include it.

For the Hubble example, a 95% CI for the constant (in the usual astro-physicists
units) is given by:

> sigb <- summary(hub.mod1)$coefficients[2]

> h.ci<-coef(hub.mod1)+qt(c(0.025,0.975),df=21)*sigb

> h.ci

[1] 71.49588 83.84995

10 LINEAR MODELS

This can be converted to a confidence interval for the age of the universe, in years, as
follows:

> h.ci<-h.ci*60ˆ2*24*365.25/3.09e19 # convert to 1/years

> sort(1/h.ci)

[1] 11677548698 13695361072

i.e. the 95% CI is (11.7,13.7) billion years. Actually this ‘Hubble age’ is the age

of the universe if it has been expanding freely, essentially unfettered by gravitation.

If the universe is really ‘matter dominated’ then the galaxies should be slowed by

gravity over time so that the universe would actually be younger than this, but it is

time to get on with the subject of this book.

1.2 Linear models in general

The simple linear model, introduced above, can be generalized by allowing the re-

sponse variable to depend on multiple predictor variables (plus an additive constant).

These extra predictor variables can themselves be transformations of the original pre-

dictors. Here are some examples, for each of which a response variable datum, yi,
is treated as an observation on a random variable, Yi, where E(Yi) ≡ µi, the εi are

zero mean random variables, and the βj are model parameters, the values of which

are unknown and will need to be estimated using data.

1. µi = β0 + xiβ1, Yi = µi + εi, is a straight line relationship between y and

predictor variable, x.

2. µi = β0 +xiβ1 +x2
iβ2 +x3

iβ3, Yi = µi+εi, is a cubic model of the relationship

between y and x.

3. µi = β0 + xiβ1 + ziβ2 + log(xizi)β3, Yi = µi + εi, is a model in which y
depends on predictor variables x and z and on the log of their product.

Each of these is a linear model because the εi terms and the model parameters, βj ,
enter the model in a linear way. Notice that the predictor variables can enter the model

non-linearly. Exactly as for the simple model, the parameters of these models can be

estimated by finding the βj values which make the models best fit the observed data,

in the sense of minimizing
∑

i(yi−µi)
2. The theory for doing this will be developed

in section 1.3, and that development is based entirely on re-writing the linear model

using using matrices and vectors.

To see how this re-writing is done, consider the straight line model given above.

Writing out the µi equations for all n pairs, (xi, yi), results in a large system of

LINEAR MODELS IN GENERAL 11

linear equations:

µ1 = β0 + x1β1

µ2 = β0 + x2β1

µ3 = β0 + x3β1

. .

. .

µn = β0 + xnβ1

which can be re-written in matrix-vector form as
















µ1

µ2

µ3

.

.
µn

















=

















1 x1

1 x2

1 x3

. .

. .
1 xn

















[

β0

β1

]

.

So the model has the general form µ = Xβ, i.e. the expected value vector µ is given

by a model matrix (also known as a design matrix), X, multiplied by a parameter

vector, β. All linear models can be written in this general form.

As a second illustration, the cubic example, given above, can be written in matrix

vector form as
















µ1

µ2

µ3

.

.
µn

















=

















1 x1 x2
1 x3

1

1 x2 x2
2 x3

2

1 x3 x2
3 x3

3

. . . .

. . . .
1 xn x2

n x3
n

























β0

β1

β2

β3









.

Models in which data are divided into different groups, each of which are assumed

to have a different mean, are less obviously of the form µ = Xβ, but in fact they

can be written in this way, by use of dummy indicator variables. Again, this is most

easily seen by example. Consider the model

µi = βj if observation i is in group j,

and suppose that there are three groups, each with 2 data. Then the model can be

re-written
















µ1

µ2

µ3

µ4

µ5

µ6

















=

















1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1





















β0

β1

β2



 .

Variables indicating the group to which a response observation belongs, are known as

factor variables. Somewhat confusingly, the groups themselves are known as levels

12 LINEAR MODELS

of a factor. So the above model involves one factor, ‘group’, with three levels. Mod-

els of this type, involving factors, are commonly used for the analysis of designed

experiments. In this case the model matrix depends on the design of the experiment

(i.e on which units belong to which groups), and for this reason the terms ‘design

matrix’ and ‘model matrix’ are often used interchangeably. Whatever it is called ,X

is absolutely central to understanding the theory of linear models, generalized linear

models and generalized additive models.

1.3 The theory of linear models

This section shows how the parameters, β, of the linear model

µ = Xβ, y ∼ N(µ, Inσ
2)

can be estimated by least squares. It is assumed that X is a matrix, with n rows

and p columns. It will be shown that the resulting estimator, β̂, is unbiased, has the

lowest variance of any possible linear estimator of β, and that, given the normality

of the data, β̂ ∼ N(β, (XTX)−1σ2). Results are also derived for setting confidence

limits on parameters and for testing hypotheses about parameters — in particular the

hypothesis that several elements of β are simultaneously zero.

In this section it is important not to confuse the length of a vector with its dimension.

For example (1, 1, 1)T has dimension 3 and length
√

3. Also note that no distinction

has been made notationally between random variables and particular observations of

those random variables: it is usually clear from the context which is meant.

1.3.1 Least squares estimation of β

Point estimates of the linear model parameters, β, can be obtained by the method of

least squares, that is by minimizing

S =

n
∑

i=1

(yi − µi)
2,

with respect to β. To use least squares with a linear model, written in general matrix-

vector form, first recall the link between the Euclidean length of a vector and the sum

of squares of its elements. If v is any vector of dimension, n, then

‖v‖2 ≡ vTv ≡
n
∑

i=1

v2
i .

Hence

S = ‖y − µ‖2 = ‖y −Xβ‖2

Since this expression is simply the squared (Euclidian) length of the vector y−Xβ,

its value will be unchanged if y −Xβ is rotated. This observation is the basis for a

THE THEORY OF LINEAR MODELS 13

practical method for finding β̂, and for developing the distributional results required

to use linear models.

Specifically, like any real matrix, X can always be decomposed

X = Q

[

R

0

]

= QfR (1.5)

where R is a p × p upper triangular matrix†, and Q is an n × n orthogonal matrix,

the first p columns of which form Qf (see A.6). Recall that orthogonal matrices

rotate vectors, but do not change their length. Orthogonality also means that QQT =
QTQ = In. Applying QT to y −Xβ implies that

‖y −Xβ‖2 = ‖QTy −QTXβ‖2 =

∥

∥

∥

∥

QTy −
[

R

0

]

β

∥

∥

∥

∥

2

.

Writing QTy =

[

f

r

]

, where f is vector of dimension p, and hence r is a vector of

dimension n− p, yields

‖y −Xβ‖2 =

∥

∥

∥

∥

[

f

r

]

−
[

R

0

]

β

∥

∥

∥

∥

2

= ‖f −Rβ‖2 + ‖r‖2.‡

The length of r does not depend on β, while ‖f −Rβ‖2 can be reduced to zero by

choosing β so that Rβ equals f . Hence

β̂ = R−1f (1.6)

is the least squares estimator of β. Notice that ‖r‖2 = ‖y−Xβ̂‖2, the residual sum

of squares for the model fit.

1.3.2 The distribution of β̂

The distribution of the estimator, β̂, follows from that of QTy. Multivariate normal-

ity of QTy follows from that of y, and since the covariance matrix of y is Inσ
2, the

covariance matrix of QTy is

VQTy = QTInQσ2 = Inσ
2.

Furthermore

E

[

f

r

]

= E(QTy) = QTXβ =

[

R

0

]

β

⇒ E(f) = Rβ and E(r) = 0.

i.e. we have that

f ∼ N(Rβ, Ipσ
2) and r ∼ N(0, In−pσ

2)

† i.e. Ri,j = 0 if i > j.

‡ If the last equality isn’t obvious recall that ‖x‖2 =
P

i x2
i , so if x =

»

v

w

–

, ‖x‖2 =
P

i v2
i +

P

i w2
i = ‖v‖2 + ‖w‖2.

14 LINEAR MODELS

with both vectors independent of each other.

Turning to the properties of β̂ itself, unbiasedness follows immediately:

E(β̂) = R−1
E(f) = R−1Rβ = β.

Since the covariance matrix of f is Ipσ
2, it also follows that the covariance matrix of

β̂ is

Vβ̂ = R−1IpR
−Tσ2 = R−1R−Tσ2. (1.7)

Furthermore, since β̂ is just a linear transformation of the normal random variables

f , it must follow a multivariate normal distribution,

β̂ ∼ N(β,Vβ̂).

The forgoing distributional result is not usually directly useful for making inferences

about β, since σ2 is generally unknown and must be estimated, thereby introducing

an extra component of variability that should be accounted for.

1.3.3 (β̂i − βi)/σ̂β̂i
∼ tn−p

Since the elements of r are i.i.d. N(0, σ2) random variables,

1

σ2
‖r‖2 =

1

σ2

n−p
∑

i=1

r2
i ∼ χ2

n−p.

The mean of a χ2
n−p r.v. is n − p, so this result is sufficient (but not necessary: see

exercise 7) to imply that

σ̂2 = ‖r‖2/(n− p) (1.8)

is an unbiased estimator of σ2§. The independence of the elements of r and f also

implies that β̂ and σ̂2 are independent.

Now consider a single parameter estimator, β̂i, with standard deviation, σβ̂i
, given

by the square root of element i, i of Vβ̂ . An unbiased estimator of Vβ̂ is V̂β̂ =

Vβ̂ σ̂
2/σ2 = R−1R−Tσ̂2, so an estimator, σ̂β̂i

, is given by the square root of element

i, i of V̂β̂ , and it is clear that σ̂β̂i
= σβ̂i

σ̂/σ. Hence

β̂i − βi
σ̂β̂i

=
β̂i − βi
σβ̂i

σ̂/σ
=

(β̂i − βi)/σβ̂i
√

1
σ2 ‖r‖2/(n− p)

∼ N(0, 1)
√

χ2
n−p/(n− p)

∼ tn−p

(where the independence of β̂i and σ̂2 has been used). This result enables confidence

intervals for βi to be found, and is the basis for hypothesis tests about individual βi’s
(for example H0 : βi = 0).

§ Don’t forget that ‖r‖2 = ‖y −Xβ̂‖2.

THE THEORY OF LINEAR MODELS 15

1.3.4 F-ratio results

It is also of interest to obtain distributional results for testing, for example, the si-

multaneous equality to zero of several model parameters. Such tests are particularly

useful for making inferences about factor variables and their interactions, since each

factor (or interaction) is typically represented by several elements of β.

First consider partitioning the model matrix into two parts so that X = [X0 : X1],
where X0 and X1 have p − q and q columns, respectively. Let β0 and β1 be the

corresponding sub-vectors of β.

QTX0 =

[

R0

0

]

where R0 is the first p − q rows and columns of R (Q and R are from (1.5)). So

rotating y −X0β0 using QT implies that

‖y −X0β0‖2 = ‖f0 −R0β0‖2 + ‖f1‖2 + ‖r‖2

where f has been partitioned so that f =

[

f0
f1

]

(f1 being of dimension q). Hence

‖f1‖2 is the increase in residual sum of squares that results from dropping X1 from

the model (i.e. setting β1 = 0).

Now, under

H0 : β1 = 0,

E(f1) = 0 (using the facts that E(f) = Rβ and R is upper triangular), and we

already know that the elements of f1 are i.i.d. normal r.v.s with variance σ2. Hence,

if H0 is true,
1

σ2
‖f1‖2 ∼ χ2

q .

So, forming an ‘F-ratio statistic’, F , assuming H0, and recalling the independence of

f and r we have

F =
‖f1‖2/q

σ̂2
=

1
σ2 ‖f1‖2/q

1
σ2 ‖r‖2/(n− p)

∼
χ2
q/q

χ2
n−p/(n− p)

∼ Fq,n−p

and this result can be used to test the significance of model terms.

In general if β is partitioned into sub-vectors β0,β1 . . . ,βm (each usually relating

to a different effect), of dimensions q0, q1, . . . , qm, then f can also be so partitioned,

fT = [fT

0 , fT

1 , . . . , fT

m], and tests of

H0 : βj = 0 vs. H1 : βj 6= 0

are conducted using the result that under H0

F =
‖fj‖2/qj

σ̂2
∼ Fqj ,n−p

with F larger than this suggests, if the alternative is true. This is the result used to

draw up sequential ANOVA tables for a fitted model, of the sort produced by a single

16 LINEAR MODELS

argument call to anova in R. Note, however, that the hypothesis test about βj is

only valid in general if βk = 0 for all k such that j < k ≤ m: this follows from

the way that the test was derived, and is the reason that the ANOVA tables resulting

from such procedures are referred to as ‘sequential’ tables. The practical upshot is

that, if models are reduced in a different order, the p-values obtained will be different.

The exception to this is if the β̂j’s are mutually independent, in which case the all

tests are simultaneously valid, and the ANOVA table for a model is not dependent on

the order of model terms: such independent β̂j’s usually arise only in the context of

balanced data, from designed experiments.

Notice that sequential ANOVA tables are very easy to calculate: once a model has

been fitted by the QR method, all the relevant ‘sums of squares’ are easily calculated

directly from the elements of f , with the elements of r providing the residual sum of

squares.

1.3.5 The influence matrix

One matrix which will feature extensively in the discussion of GAMs is the influence

matrix (or hat matrix) of a linear model. This is the matrix which yields the fitted

value vector, µ̂, when post-multiplied by the data vector, y. Recalling the definition

of Qf , as being the first p columns of Q, f = Qfy and so

β̂ = R−1QT

f y.

Furthermore µ̂ = Xβ̂ and X = QfR so

µ̂ = QfRR−1QT

f y = QfQ
T

f y

i.e. the matrix A ≡ QfQ
T

f is the influence (hat) matrix such that µ̂ = Ay.

The influence matrix has a couple of interesting properties. Firstly, the trace of the

influence matrix is the number of (identifiable) parameters in the model, since

tr (A) = tr
(

QfQ
T

f

)

= tr
(

QT

f Qf

)

= tr (Ip) = p.

Secondly, AA = A, a property known as idempotency . Again the proof is simple:

AA = QfQ
T

f QfQ
T

f = QfIpQ
T

f = QfQ
T

f = A.

1.3.6 The residuals, ε̂, and fitted values, µ̂

The influence matrix is helpful in deriving properties of the fitted values, µ̂, and

residuals, ε̂. µ̂ is unbiased, since E(µ̂) = E(Xβ̂) = XE(β̂) = Xβ = µ. The

covariance matrix of the fitted values is obtained from the fact that µ̂ is a linear

transformation of the random vector y, which has covariance matrix Inσ
2, so that

Vµ̂ = AInA
Tσ2 = Aσ2,

by the idempotence (and symmetry) of A. The distribution of µ̂ is degenerate multi-

variate normal.

THE THEORY OF LINEAR MODELS 17

Similar arguments apply to the residuals.

ε̂ = (I−A)y,

so

E(ε̂) = E(y)− E(µ̂) = µ− µ = 0.

As in the fitted value case, we have

Vε̂ = (In −A)In(In −A)Tσ2 = (In − 2A + AA)σ2 = (In −A) σ2

Again, the distribution of the residuals will be degenerate normal. The results for the

residuals are useful for model checking, since they allow the residuals to be stan-

dardized, so that they should have constant variance, if the model is correct.

1.3.7 Results in terms of X

The presentation so far has been in terms of the method actually used to fit linear

models in practice (the QR decomposition approach¶), which also greatly facilitates

the derivation of the distributional results required for practical modelling. However,

for historical reasons, these results are more usually presented in terms of the model

matrix, X, rather than the components of its QR decomposition. For completeness

some of the results are restated here, in terms of X.

Firstly consider the covariance matrix of β. This turns out to be (XTX)−1σ2, which

is easily seen to be equivalent to (1.7) as follows:

V
β̂

= (XTX)−1σ2 =
(

RTQT

f QfR
)−1

σ2 =
(

RTR
)−1

σ2 = R−1R−Tσ2.

The expression for the least squares estimates is β̂ = (XTX)−1XTy, which is equiv-

alent to (1.6):

β̂ = (XTX)−1XTy = R−1R−TRTQT

f y = R−1QT

f y = R−1f .

Given this last result it is easy to see that the influence matrix can be written:

A = X(XTX)−1XT.

These results are of largely historical and theoretical interest: they should not be used

for computational purposes, and derivation of the distributional results is much more

difficult if one starts from these formulae.

1.3.8 The Gauss Markov Theorem: what’s special about least squares?

How good are least squares estimators? In particular, might it be possible to find

better estimators, in the sense of having lower variance while still being unbiased?

¶ A few programs still fit models by solution of XTXβ̂ = XTy, but this is less computationally stable
than the rotation method described here, although it is a bit faster.

18 LINEAR MODELS

The Gauss Markov theorem shows that least squares estimators have the lowest vari-

ance of all unbiased estimators that are linear (meaning that the data only enter the

estimation process in a linear way).

Theorem: Suppose that µ ≡ E(Y) = Xβ and Vy = σ2I, and let φ̃ = cTY be any

unbiased linear estimator of φ = tTβ, where t is an arbitrary vector. Then:

Var(φ̃) ≥ Var(φ̂)

where φ̂ = tTβ̂, and β̂ = (XTX)−1XTY is the least squares estimator of β. Notice

that, since t is arbitrary, this theorem implies that each element of β̂ is a minimum

variance unbiased estimator.

Proof: Since φ̃ is a linear transformation of Y, Var(φ̃) = cTcσ2. To compare vari-

ances of φ̂ and φ̃ it is also useful to express Var(φ̂) in terms of c. To do this, note

that unbiasedness of φ̃ implies that

E(cTY) = tTβ ⇒ cT
E(Y) = tTβ ⇒ cTXβ = tTβ ⇒ cTX = tT.

So the variance of φ̂ can be written as

Var(φ̂) = Var(tTβ̂) = Var(cTXβ̂).

This is the variance of a linear transformation of β̂, and the covariance matrix of β̂

is (XTX)−1σ2, so

Var(φ̂) = Var(cTXβ̂) = cTX(XTX)−1XTcσ2 = cTAcσ2

(where A is the influence or hat matrix). Now the variances of the two estimators can

be directly compared, and it can be seen that

Var(φ̃) ≥ Var(φ̂)

iff

cT(I−A)c ≥ 0.

This condition will always be met, because it is equivalent to:

[(I−A)c]T(I−A)c ≥ 0

by the idempotency of (I−A), but this last condition is saying that a sum of squares

can not be less than 0, which is clearly true. 2

Notice that this theorem uses independence and equal variance assumptions, but does

not assume normality. Of course there is a sense in which the theorem is intuitively

rather unsurprising, since it says that the minimum variance estimators are those

obtained by seeking to minimize the residual variance.

1.4 The geometry of linear modelling

A full understanding of what is happening when models are fitted by least squares

is facilitated by taking a geometric view of the fitting process. Some of the results

derived in the last few sections become rather obvious when viewed in this way.

THE GEOMETRY OF LINEAR MODELLING 19

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

x

y

1

2

3

1

2

3

Figure 1.4 The geometry of least squares. The left panel shows a straight line model fitted to

3 data by least squares. The right panel gives a geometric interpretation of the fitting process.

The 3 dimensional space shown is spanned by 3 orthogonal axes: one for each response vari-

able. The observed response vector, y, is shown as a point (•) within this space. The columns

of the model matrix define two directions within the space: the thick and dashed lines from

the origin. The model states that E(y) could be any linear combination of these vectors: i.e.

anywhere in the ‘model subspace’ indicated by the grey plane. Least squares fitting finds the

closest point in the model sub space to the response data (•): the ‘fitted values’. The short

thick line joins the response data to the fitted values: it is the ‘residual vector’.

1.4.1 Least squares

Again consider the linear model,

µ = Xβ, y ∼ N(µ, Inσ
2),

where X is an n × p model matrix. But now consider an n dimensional Euclidean

space, <n, in which y defines the location of a single point. The space of all possible

linear combinations of the columns of X defines a subspace of <n, the elements of

this space being given by Xβ, where β can take any value in <p: this space will be

referred to as the space of X (strictly the column space). So, a linear model states

that, µ, the expected value of Y, lies in the space of X. Estimating a linear model,

by least squares, amounts to finding the point, µ̂ ≡ Xβ̂, in the space of X, that is

closest to the observed data y. Equivalently, µ̂ is the orthogonal projection of y on

to the space of X. An obvious, but important, consequence of this is that the residual

vector, ε̂ = y − µ̂, is orthogonal to all vectors in the space of X.

Figure 1.4 illustrates these ideas for the simple case of a straight line regression

model for 3 data (shown conventionally in the left hand panel). The response data

and model are

y =





.04

.41

.62



 and µ =





1 0.2
1 1.0
1 0.6





[

β1

β2

]

.

Since β is unknown, the model simply says thatµ could be any linear combination of

20 LINEAR MODELS

1

2

3

1

2

3

Figure 1.5 The geometry of fitting via orthogonal decompositions. The left panel illustrates

the geometry of the simple straight line model of 3 data introduced in figure 1.4. The right

hand panel shows how this original problem appears after rotation by QT, the transpose of

the orthogonal factor in a QR decomposition of X. Notice that in the rotated problem the

model subspace only has non-zero components relative to p axes (2 axes for this example),

while the residual vector has only zero components relative to those same axes.

the vectors [1, 1, 1]T and [.2, 1, .6]T. As the right hand panel of figure 1.4 illustrates,

fitting the model by least squares amounts to finding the particular linear combination

of the columns of these vectors, that is as close to y as possible (in terms of Euclidean

distance).

1.4.2 Fitting by orthogonal decompositions

Recall that the actual calculation of least squares estimates involves first forming the

QR decomposition of the model matrix, so that

X = Q

[

R

0

]

,

where Q is an n × n orthogonal matrix and R is a p × p upper triangular matrix.

Orthogonal matrices rotate vectors (without changing their length) and the first step

in least squares estimation is to rotate both the response vector, y, and the columns

of the model matrix, X, in exactly the same way, by pre-multiplication with QT‖.

Figure 1.5 illustrates this rotation for the example shown in figure 1.4. The left panel

shows the response data and model space, for the original problem, while the right

‖ In fact the QR decomposition is not uniquely defined, in that the sign of rows of Q, and corresponding
columns of R, can be switched, without changing X — these sign changes are equivalent to reflections
of vectors, and the sign leading to maximum numerical stability is usually selected in practice. These
reflections don’t introduce any extra conceptual difficulty, but can make plots less easy to understand,
so I have surpressed them in this example.

THE GEOMETRY OF LINEAR MODELLING 21

1

2

3

1

2

3

Figure 1.6 The geometry of nested models.

hand panel shows the data and space after rotation by QT. Notice that, since the

problem has simply been rotated, the relative position of the data and basis vectors

(columns of X) has not changed. What has changed is that the problem now has

a particularly convenient orientation relative to the axes. The first two components

of the fitted value vector can now be read directly from axes 1 and 2, while the

third component is simply zero. By contrast, the residual vector has zero components

relative to axes 1 and 2, and its non-zero component can be read directly from axis

3. In terms of section 1.3.1, these vectors are [fT,0T]T and [0T, rT]T, respectively.

The β̂ corresponding to the fitted values is now easily obtained. Of course we usually

require fitted values and residuals to be expressed in terms of the un-rotated problem,

but this is simply a matter of reversing the rotation using Q. i.e.

µ̂ = Q

[

f

0

]

, and ε̂ = Q

[

0

r

]

.

1.4.3 Comparison of nested models

A linear model with model matrix X0 is nested within a linear model with model

matrix X1 if they are models for the same response data, and the columns of X0

span a subspace of the space spanned by the columns of X1. Usually this simply

means that X1 is X0 with some extra columns added.

The vector of the difference between the fitted values of two nested linear models

is entirely within the subspace of the larger model, and is therefore orthogonal to

the residual vector for the larger model. This fact is geometrically obvious, as figure

1.6 illustrates, but it is a key reason why F ratio statistics have a relatively simple

distribution (under the simpler model).

Figure 1.6 is again based on the same simple straight line model that forms the ba-

sis for figures 1.4 and 1.5, but this time also illustrates the least squares fit of the

22 LINEAR MODELS

simplified model

yi = β0 + εi,

which is nested within the original straight line model. Again, both the original and

rotated versions of the model and data are shown. This time the fine continuous line

shows the projection of the response data onto the space of the simpler model, while

the fine dashed line shows the vector of the difference in fitted values between the

two models. Notice how this vector is orthogonal both to the reduced model subspace

and the full model residual vector.

The right panel of figure 1.6 illustrates that the rotation, using the transpose of the

orthogonal factor Q, of the full model matrix, has also lined up the problem very

conveniently for estimation of the reduced model. The fitted value vector for the

reduced model now has only one non-zero component, which is the component of

the rotated response data (•) relative to axis 1. The residual vector has gained the

component that the fitted value vector has lost, so it has zero component relative to

axis one, while its other components are the positions of the rotated response data

relative to axes 2 and 3.

So, much of the work required for estimating the simplified model has already been

done, when estimating the full model. Note, however, that if our interest had been in

comparing the full model to the model

yi = β1xi + εi,

then it would have been necessary to reorder the columns of the full model matrix,

in order to avoid extra work in this way.

1.5 Practical linear models

This section covers practical linear modelling, via an extended example: the analysis

of data reported by Baker and Bellis (1993), which they used to support a theory

of ‘sperm competition’ in humans. The basic idea is that it is evolutionarily advan-

tageous for males to (sub-conciously) increase their sperm count in proportion to

the opportunities that their mate may have had for infidelity. Such behaviour has

been demonstrated in a wide variety of other animals, and using a sample of student

and staff volunteers from Manchester University, Baker and Bellis set out to see if

there is evidence for similar behaviour in humans. Two sets of data will be examined:

sperm.comp1 contains data on sperm count, time since last copulation and propor-

tion of that time spent together, for single copulations, from 15 heterosexual couples;

sperm.comp2 contains data on median sperm count, over multiple copulations,

for 24 heterosexual couples, along with the weight, height and age of the male and

female of each couple, and the volume of one teste of the male. From these data,

Baker and Bellis concluded that sperm count increases with the proportion of time,

since last copulation, that a couple have spent apart, and that sperm count increases

with female weight.

In general, practical linear modelling is concerned with finding an appropriate model

PRACTICAL LINEAR MODELS 23

lm Estimates a linear model by least squares. Returns a fitted model ob-

ject of class lm containing parameter estimates plus other auxiliary

results for use by other functions.

plot Produces model checking plots from a fitted model object.

summary Produces summary information about a fitted model, including pa-

rameter estimates, associated standard errors and p-values, r2 etc.

anova Used for model comparison based on F ratio testing.

AIC Extract Akaike’s information criterion for a model fit.∗∗

residuals Extract an array of model residuals form a fitted model.

fitted Extract an array of fitted values from a fitted model object.

predict Obtain predicted values from a fitted model, either for new values

of the predictor variables, or for the original values. Standard errors

of the predictions can also be returned.

Table 1.1 Some standard linear modelling functions. Strictly all of these functions except lm

itself end .lm, but when calling them with an object of class lm this may be omitted.

to explain the relationship of a response (random) variable to some predictor vari-

ables. Typically, the first step is to decide on a linear model that can reasonably be

supposed capable of describing the relationship, in terms of the predictors included

and the functional form of their relationship to the response. In the interests of ensur-

ing that the model is not too restrictive this ‘full’ model is often more complicated

than is necessary, in that the most appropriate value for a number of its parameters

may, in fact, be zero. Part of the modelling process is usually concerned with ‘model

selection’: that is deciding which parameter values ought to be zero. At each stage

of model selection it is necessary to estimate model parameters by least squares fit-

ting, and it is equally important to check the model assumptions (particularly equal

variance and independence) by examining diagnostic plots. Once a model has been

selected and estimated, its parameter estimates can be interpreted, in part with the aid

of confidence intervals for the parameters, and possibly with other follow up analy-

ses. In R these practical modelling tasks are facilitated by a large number of functions

for linear modelling, some of which are listed in table 1.1.

1.5.1 Model fitting and model checking

The first thing to do with the sperm competition data is to have a look at it.

pairs(sperm.comp1[,-1])

produces the plot shown in figure 1.7. The columns of the data frame are plotted

against each other pairwise (with each pairing transposed between lower left and

upper right of the plot); the first column has been excluded from the plot as it sim-

ply contains subject identification lables. The clearest pattern seems to be of some

decrease in sperm count as the proportion of time spent together increases.

24 LINEAR MODELS

time.ipc

0.0 0.2 0.4 0.6 0.8 1.0

4
0

8
0

1
2
0

1
6
0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

prop.partner

40 60 80 100 120 140 160 100 200 300 400 500

1
0
0

3
0
0

5
0
0

count

Figure 1.7 Pairs plot of the sperm competition data from Baker and Bellis 1993. ‘Count’

is sperm count (millions) from one copulation, ‘time.ipc’ is time (hours) since the previous

copulation and ‘prop.partner’ is the proportion of the time since the previous copulation that

the couple have spent together.

Following Baker and Bellis, a reasonable initial model might be,

yi = β0 + tiβ1 + piβ2 + εi, (1.9)

where yi is sperm count (count), ti is the time since last inter pair copulation

(time.ipc) and pi is the proportion of time, since last copulation, that the pair

have spent together (prop.partner). As usual, the βj are unknown parameters

and the εi are i.i.d. N(0, σ2) random variables. Really this model defines the class

of models thought to be appropriate: it is not immediately clear whether either of β1

and β2 are non-zero.

The following fits the model (1.9) and stores the results in an object called sc.mod1.

sc.mod1 <- lm(count˜time.ipc+prop.partner,sperm.comp1)

The first argument to lm is a model formula, specifying the structure of the model to

be fitted. In this case, the response (to the left of ˜) is count, and this is to depend on

variables time.ipc and prop.partner. By default, the model will include an

intercept term, unless it is suppressed by a ‘-1’ in the formula. The second argument

to lm supplies a data frame, within which the variables in the formula can be found.

The terms on the right hand side of the model formula specify how the model matrix,
X, is to be specified. In fact, in this example, the terms give the model matrix columns
directly. It is possible to check the model matrix of a linear model:

PRACTICAL LINEAR MODELS 25

100 200 300 400 500

−
2
0
0

0
1
0
0

2
0
0

Fitted values

R
e

s
id

u
a

ls

Residuals vs Fitted

9

114

−1 0 1

−
2
.0

−
1
.0

0
.0

1
.0

Theoretical Quantiles

S
ta

n
d

a
rd

iz
e

d
 r

e
s
id

u
a

ls

Normal Q−Q plot

9

7

1

100 200 300 400 500

0
.0

0
.4

0
.8

1
.2

Fitted values

S
ta

n
d

a
rd

iz
e

d
 r

e
s
id

u
a

ls

Scale−Location plot
9

7
1

2 4 6 8 10 12 14

0
.0

0
0
.1

0
0
.2

0
0
.3

0

Obs. number

C
o

o
k
’s

 d
is

ta
n

c
e

Cook’s distance plot

2
7

9

Figure 1.8 Model checking plots for the linear model fitted to the sperm.comp1 data.

> model.matrix(sc.mod1)

(Intercept) time.ipc prop.partner

1 1 60 0.20

2 1 149 0.98

3 1 70 0.50

4 1 168 0.50

5 1 48 0.20

6 1 32 1.00

7 1 48 0.02

8 1 56 0.37

9 1 31 0.30

10 1 38 0.45

11 1 48 0.75

12 1 54 0.75

13 1 32 0.60

14 1 48 0.80

15 1 44 0.75

Having fitted the model, it is important to check the plausibility of the assumptions,
graphically.

par(mfrow=c(2,2)) # split the graphics device into 4 panels

plot(sc.mod1) # (uses plot.lm as cs.mod1 is class ‘lm’)

The resulting plots, shown in figure 1.8, require some explanation. Note that, in two

of the plots, the residuals have been scaled, by dividing them by their estimated

standard deviation (see section 1.3.6). If the model assumptions are met, then this

standardization should result in residuals that look like N(0, 1) random deviates.

26 LINEAR MODELS

• The upper left plot shows the model residuals, ε̂i, against the model fitted values,

µ̂i, where µ̂ = Xβ̂ and ε̂ = y − µ̂. The residuals should be evenly scattered

above and below zero (the distribution of fitted values is not of interest). A trend

in the mean of the residuals would violate the assumption of independent response

variables, and usually results from an erroneous model structure: e.g. assuming a

linear relationship with a predictor, when a quadratic is required, or omitting an

important predictor variable. A trend in the variability of the residuals suggests

that the variance of the response is related to its mean, violating the constant

variance assumption: transformation of the response or use of a GLM may help,

in such cases. The plot shown does not indicate any problem.

• The lower left plot is a scale-location plot. The square root of the absolute value of

each standardized residual is plotted against the equivalent fitted value. It can be

easier to judge the constant variance assumption from such a plot, and the square

root transformation reduces the skew in the distribution, which would otherwise

be likely to occur. Again, the plot shown gives no reason to doubt the constant

variance assumption.

• The upper right panel is a normal Q-Q (quantile-quantile) plot. The standardized

residuals are sorted and then plotted against the quantiles of a standard normal dis-

tribution. If the residuals are normally distributed then the resulting plot should

look like a straight line relationship, perturbed by some random scatter. The cur-

rent plot fits this description, so the normality assumption seems plausible.

• The lower left panel shows Cook’s distance for each observation. Cook’s distance

is a measure of how much influence each observation has on the fitted model. If

µ̂
[k]
i is the ith fitted value, when the kth datum is omitted from the fit, then Cook’s

distance is

dk =
1

(p + 1)σ̂2

n
∑

i=1

(µ̂
[k]
i − µ̂i)

2, (1.10)

where p is the number of parameters and n the number of data. A very large value

of dk indicates a point that has a substantial influence on the model results. If

the Cook’s distance values indicate that model estimates may be very sensitive

to just one or two data, then it usually prudent to repeat any analysis without the

offending points, in order to check the robustness of the modelling conclusions.

In this case none of the points look wildly out of line.

By default the ‘most extreme’ three points in each plot are labelled with their row in-
dex in the original data frame, so that the corresponding data can be readily checked.
The 9th datum is flagged in all 4 plots in figure 1.8. It should be checked:

> sperm.comp1[9,]

subject time.ipc prop.partner count

9 P 31 0.3 76

This subject has quite a low count, but not the lowest in the frame. Examination of the

plot of count against prop.partner indicates that the point adds substantially

to the uncertainty surrounding the relationship, but its hard to see a good reason to

PRACTICAL LINEAR MODELS 27

remove it, particularly since, if anything, it is obscuring the relationship, rather than

exaggerating it.

Since the assumptions of model (1.9) appear reasonable, we can proceed to examine
the fitted model object. Typing the name of an object in R causes the default print
method for the object to be invoked (print.lm in this case).

> sc.mod1

Call:

lm(formula=count˜time.ipc+prop.partner,data=sperm.comp1)

Coefficients:

(Intercept) time.ipc prop.partner

357.418 1.942 -339.560

The intercept parameter (β0) is estimated to be 357.4. Notionally, this would be the

count expected if time.ipc and prop.partner were zero, but the value is bi-

ologically implausible if interpreted in this way. Given that the smallest observed

time.ipc was 31 hours we cannot really expect to predict the count at zero. The

remaining two parameter estimates are β̂1 and β̂2, and are labelled by the name of

the variable to which they relate. In both cases they give the expected increase in

count for a unit increase in their respective predictor variable. Note the important

point that the absolute values of the parameter estimates are only interpretable rela-

tive to the variable which they multiply. For example, we are not entitled to conclude

that the effect of prop.partner is much greater than that of time.ipc, on the

basis of the relative magnitudes of the respective parameters: they are measured in

completely different units.

One point to consider, is whether prop.partner is the most appropriate predictor
variable. Perhaps the total time spent together (in hours) would be a better predictor.

sc.mod2 <- lm(count˜time.ipc+I(prop.partner*time.ipc),

sperm.comp1)

would fit such a model. The term I(prop.partner*time.ipc) indicates that,

rather than use proportion of time together as a predictor, total time should be used.

The I() function is used to ‘protect’ the product prop.partner*time.ipc

within the model formula. This is necessary because symbols like + and * have

special meanings within model formulae (see section 1.7): by protecting terms using

I(), the usual arithmetic meanings are restored. Examination of diagnostic plots

for sc.mod2 shows that two points have much greater influence on the fit than the

others, so for the purposes of this section it seems sensible to stick with the biologists’

preferred model structure and use prop.partner.

28 LINEAR MODELS

1.5.2 Model summary

The summary†† function provides a good deal more information about the fitted
model.

> summary(sc.mod1)

Call:

lm(formula=count˜time.ipc+prop.partner,data=sperm.comp1)

Residuals:

Min 1Q Median 3Q Max

-239.740 -96.772 2.171 96.837 163.997

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 357.4184 88.0822 4.058 0.00159 **
time.ipc 1.9416 0.9067 2.141 0.05346 .

prop.partner -339.5602 126.2535 -2.690 0.01969 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 136.6 on 12 degrees of freedom

Multiple R-Squared: 0.4573, Adjusted R-squared: 0.3669

F-statistic: 5.056 on 2 and 12 DF, p-value: 0.02554

The explanation of the parts of this output are as follows:

Call simply reminds you of the call that generated the object being summarized.

Residuals gives a five figure summary of the residuals: this should indicate any

gross departure from normality, for example a very skewed set of residuals might

lead to very different magnitudes for Q1 and Q2, or to the median residual being a

long way from 0 (the mean residual is always zero if the model includes an intercept:

see exercise 6).

Coefficients gives a table relating to the estimated parameters of the model.

The first two columns are the least squares estimates (β̂j’s) and the estimated stan-

dard errors associated with those estimates (σ̂β̂j
), respectively. The standard error

calculations follow sections 1.3.2 and 1.3.3. The third column gives the parameter

estimates divided by their estimated standard errors:

Tj ≡
β̂j
σ̂β̂j

.

†† Note that calling the summary function with a fitted linear model object, x, actually results in the
following: summary looks at the class of the x, finds that it is lm and passes it to summary.lm;
summary.lm calculates a number of interesting quantities from x which it returns in a list, y,
of class lm.summary; unless y is assigned to an object, R prints it, using the print method
print.lm.summary.

PRACTICAL LINEAR MODELS 29

Tj is a standardized measure of how far each parameter estimate is from zero. It was

shown, in section 1.3.3, that under H0 : βj = 0,

Tj ∼ tn−p, (1.11)

where n is the number of data and p the number of model parameters estimated.

i.e. if the null hypothesis is true, then the observed Tj should be consistent with

having been drawn from a tn−p distribution. The final Pr(>|t|) column provides

the measure of that consistency, namely the probability that the magnitude of a tn−p
random variable would be at least as large as the observed Tj . This quantity is known

as the p-value of the test of H0 : βj = 0. A large p-value indicates that the data

are consistent with the hypothesis, in that the observed Tj is quite a probable value

for a tn−p deviate, so that there is no reason to doubt the hypothesis underpinning

(1.11). Conversely a small p-value suggests that the hypothesis is wrong, since the

observed Tj is a rather improbable observation from the tn−p distribution implied by

βj = 0. Various arbitrary significance levels are often used as the boundary p-values

for deciding whether to accept or reject hypotheses. Some common ones are listed at

the foot of the table, and the p-values are flagged according to which, if any, they fall

below.

Residual standard error gives σ̂ where σ̂2 =
∑

(ε̂2i)/(n− p) (see section

1.3.3). n− p is the ‘residual degrees of freedom’.

Multiple R-squared is an estimate of the proportion of the variance in the data

explained by the regression:

r2 = 1−
∑

ε̂2i /n
∑

(yi − ȳ)2/n

where ȳ is the mean of the yi. The fraction in this expression is basically an estimate

of the proportion variance not explained by the regression.

Adjusted R-squared. The problem with r2 is that it always increases when a

new predictor variable is added to the model, no-matter how useless that variable

is for prediction. Part of the reason for this is that the variance estimates used to

calculate r2 are biased in a way that tends to inflate r2. If unbiased estimators are

used we get the adjusted r2

r2
adj = 1−

∑

ε̂2i /(n− p)
∑

(yi − ȳ)2/(n− 1)
.

A high value of r2
adj indicates that the model is doing well at explaining the variability

in the response variable.

F-statistic. The final line, giving an F-statistic and p-value, is testing the null

hypothesis that the data were generated from a model with only an intercept term,

against the alternative that the fitted model generated the data. This line is really

about asking if the whole model is of any use. The theory of such tests is covered in

section 1.3.4.

30 LINEAR MODELS

So the summary of sc.mod1 suggests that there is evidence that the model is better

than one including just a constant (p-value = 0.02554). There is quite clear evidence

that prop.partner is important in predicting sperm count (p-value = 0.019), but

less evidence that time.ipc matters (p-value = 0.053). Indeed, using the conven-

tional significance level of 0.05, we might be tempted to conclude that time.ipc

does not affect count at all. Finally note that the model leaves most of the variability

in count unexplained, since r2
adj is only 37%.

1.5.3 Model selection

From the model summary it appears that time.ipc may not be necessary: the as-

sociated p-value of 0.053 does not provide strong evidence that the true value of β1 is

non-zero. By the ‘true value’ is meant the value of the parameter in the model imag-

ined to have actually generated the data; or equivalently, the value of the parameter

applying to the whole population of couples from which, at least conceptually, our

particular sample has been randomly drawn. The question then arises of whether a

simpler model, without any dependence on time.ipc, might be appropriate. This

is a question of model selection. Usually it is a good idea to avoid over-complicated

models, dependent on irrelevant predictor variables, for reasons of interpretability

and efficiency. Inferences about causality will be made more difficult if a model con-

tains spurious predictors, but estimates using such a model will also be less precise,

as more parameters than necessary have been estimated from the finite amount of

uncertain data available.

Several approaches to model selection are based on hypothesis tests about model
terms, and can be thought of as attempting to find the simplest model consistent with
a set of data, where consistency is judged relative to some threshold p-value. For the
sperm competition model the p-value for time.ipc is greater than 0.05, so this
predictor might be a candidate for dropping.

> sc.mod3 <- lm(count˜prop.partner,sperm.comp1)

> summary(sc.mod3)

(edited)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 451.50 86.23 5.236 0.000161 ***
prop.partner -292.23 140.40 -2.081 0.057727 .

Residual standard error: 154.3 on 13 degrees of freedom

Multiple R-Squared: 0.25, Adjusted R-squared: 0.1923

F-statistic: 4.332 on 1 and 13 DF, p-value: 0.05773

These results provide a good example of why it is dangerous to apply automatic

model selection procedures unthinkingly. In his case dropping time.ipc has made

the estimate of the parameter multiplying prop.partner less precise: indeed this

term also has a p-value greater than 0.05 according to this new fit. Furthermore, the

PRACTICAL LINEAR MODELS 31

new model has a much reduced r2, while the model’s overall p-value does not give

strong evidence that it is better than a model containing only an intercept. The only

sensible choice here is to revert to sc.mod1. The statistical evidence indicates that

it is better than the intercept only model, and dropping its possibly ‘non-significant’

term has lead to a much worse model.

Hypothesis testing is not the only approach to model selection. One alternative is to
try and find the model that gets as close as possible to the true model, rather than to
find the simplest model consistent with data. In this case we can attempt to find the
model which does the best job of predicting the E(yi). Selecting models in order to
minimize Akaike’s Information Criterion (AIC) is one way of trying to do this (see
section 1.8.5). In R, the AIC function can be used to calculate the AIC statistic for
different models.

> sc.mod4 <- lm(count˜1,sperm.comp1) # null model

> AIC(sc.mod1,sc.mod3,sc.mod4)

df AIC

sc.mod1 4 194.7346

sc.mod3 3 197.5889

sc.mod4 2 199.9031

This alternative model selection approach also suggests that the model with both

time.ipc and prop.partner is best.

So, on the basis of sperm.comp1, there seems to be reasonable evidence that sperm

count increases with time.ipc but decreases with prop.partner: exactly as

Baker and Bellis concluded.

1.5.4 Another model selection example

The second dataset from Baker and Bellis (1993) is sperm.comp2. This gives me-

dian sperm count for 24 couples, along with ages (years), heights (cm) and weights

(kg) for the male and female of each couple and volume (cm3) of one teste for the

male of the couple (m.vol). There are quite a number of missing values for the pre-

dictors, particularly for m.vol, but, for the 15 couples for which there is an m.vol

measurement, the other predictors are also available. The number of copulations over

which the median count has been taken varies widely from couple to couple. Ideally

one should probably allow within couple and between couple components to the ran-

dom variability component of the data, to allow for this, but this will not be done

here. Following Baker and Bellis it seems reasonable to start from a model including

linear effects of all predictors. i.e.

counti = β0 + β1 × f.agei + β2 × f.weighti + β3 × f.heighti + β4 × m.agei
+ β5 × m.weighti + β6 × m.heighti + β7 × m.vol + εi

The following estimates and summarizes the model, and plots diagnostics.

> sc2.mod1<-lm(count˜f.age+f.height+f.weight+m.age+m.height+

32 LINEAR MODELS

150 200 250 300 350 400

−
2
0
0

0
1
0
0

Fitted values

R
e

s
id

u
a

ls

Residuals vs Fitted

9

19
12

−1 0 1

−
2

−
1

0
1

2

Theoretical Quantiles

S
ta

n
d

a
rd

iz
e

d
 r

e
s
id

u
a

ls

Normal Q−Q plot

19

2

12

150 200 250 300 350 400

0
.0

0
.5

1
.0

1
.5

Fitted values

S
ta

n
d

a
rd

iz
e

d
 r

e
s
id

u
a

ls
Scale−Location plot

19

2

12

2 4 6 8 10 12 14

0
.0

1
.0

2
.0

3
.0

Obs. number

C
o

o
k
’s

 d
is

ta
n

c
e

Cook’s distance plot

19

2

7

Figure 1.9 Model checking plots for the sperm competition model.

+ m.weight+m.vol,sperm.comp2)

> plot(sc2.mod1)

> summary(sc2.mod1)

[edited]

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1098.518 1997.984 -0.550 0.600

f.age 10.798 22.755 0.475 0.650

f.height -4.639 10.910 -0.425 0.683

f.weight 19.716 35.709 0.552 0.598

m.age -1.722 10.219 -0.168 0.871

m.height 6.009 10.378 0.579 0.581

m.weight -4.619 12.655 -0.365 0.726

m.vol 5.035 17.652 0.285 0.784

Residual standard error: 205.1 on 7 degrees of freedom

Multiple R-Squared: 0.2192, Adjusted R-squared: -0.5616

F-statistic: 0.2807 on 7 and 7 DF, p-value: 0.9422

The resulting figure 1.9, looks reasonable, but datum 19 appears to produce the most

extreme point on all 4 plots. Checking row 19 of the data frame, shows that the male

of this couple is rather heavy (particularly for his height), and has a large m.vol

measurement, but a count right near the bottom of the distribution (actually down at

the level that might be expected to cause fertility problems, if this is typical). Clearly,

whatever we conclude from these data will need to be double checked without this

observation. Notice, from the summary, how poorly this model does at explaining

PRACTICAL LINEAR MODELS 33

the count variability: the adjusted r2 is actually negative, an indication that we have

a large number of irrelevant predictors in the model.

There are only 15 data from which to estimate the 8 parameters of the full model: it

would be better to come up with something more parsimonious. In this case using

AIC suggests a rather complicated model with only m.weight dropped. It seems

quite sensible to switch to hypothesis testing based model selection, and ask whether

there is really good evidence that all these terms are necessary? One approach is to

perform ‘backwards model selection’, by repeatedly removing the single term with

highest p-value, above some threshold (e.g. 0.05), and then refitting the resulting

reduced model, until all terms have significant p-values. For example the first step in

this process would remove m.age:

> sc2.mod2<-lm(count˜f.age+f.height+f.weight+m.height+

+ m.weight+m.vol,sperm.comp2)

> summary(sc2.mod2)

[edited]

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1054.770 1856.843 -0.568 0.586

f.age 8.847 18.359 0.482 0.643

f.height -5.119 9.871 -0.519 0.618

f.weight 20.259 33.334 0.608 0.560

m.height 6.033 9.727 0.620 0.552

m.weight -4.473 11.834 -0.378 0.715

m.vol 4.506 16.281 0.277 0.789

Residual standard error: 192.3 on 8 degrees of freedom

Multiple R-Squared: 0.216, Adjusted R-squared: -0.372

F-statistic: 0.3674 on 6 and 8 DF, p-value: 0.8805

Notice how, relative to sc2.mod1, the reduced model has different estimates for

each of the remaining parameter, as well as smaller standard error estimates for each

parameter, and (consequently) different p-values. This is part of the reason for only

dropping one term at a time: when we drop one term from a model, it is quite possible

for some remaining terms to have their p-values massively reduced. For example, if

two terms are highly correlated it is quite possible for both to be highly significant

individually, but both to have very high p-values if present together. This occurs

because the terms are to some extent interchangeable predictors: the information

provided by one is much the same as the information provided by the other, so that

one must be present in the model but both are not needed. If we were to drop several

terms from a model at once we might miss such effects.

Proceeding with backwards selection, we would drop m.vol next. This allows rather
more of the couples to be used in the analysis. Continuing in the same way leads to
the dropping of m.weight, f.height, m.height and finally f.age before
arriving at a final model which includes only f.weight.

> sc2.mod7<-lm(count˜f.weight,sperm.comp2)

34 LINEAR MODELS

> summary(sc2.mod7)

[edited]

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1002.281 489.352 -2.048 0.0539 .

f.weight 22.397 8.629 2.595 0.0173 *

Residual standard error: 147.3 on 20 degrees of freedom

Multiple R-Squared: 0.252, Adjusted R-squared: 0.2146

F-statistic: 6.736 on 1 and 20 DF, p-value: 0.01730

This model does appear to be better than a model containing only a constant, accord-

ing both to a hypothesis test at the 5% level and AIC.

Apparently then, only female weight influences sperm count. This concurs with the
conclusion of Baker and Bellis (1993), who interpreted the findings to suggest that
males might ‘invest’ more in females with a higher reproductive potential. However,
in the light of the residual plots we need to re-analyze the data without observation
19, before having too much confidence in the conclusions. This is easily done, for
example . . .

> sc <- sperm.comp2[-19,]

> sc3.mod1<-lm(count˜f.age+f.height+f.weight+m.age+m.height+

+ m.weight+m.vol,sc)

> summary(sc3.mod1)

[edited]

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1687.406 1251.338 1.348 0.2262

f.age 55.248 15.991 3.455 0.0136 *
f.height 21.381 8.419 2.540 0.0441 *
f.weight -88.992 31.737 -2.804 0.0310 *
m.age -17.210 6.555 -2.626 0.0393 *
m.height -11.321 6.869 -1.648 0.1504

m.weight 6.885 7.287 0.945 0.3812

m.vol 48.996 13.938 3.515 0.0126 *
--- [edited]

Notice how m.vol now has the lowest p-value. Repeating the whole backwards

selection process, every term now drops out except for m.vol, leading to the much

less interesting conclusion that the data only really supply evidence that size of testes

influences sperm count. Given the rather tedious plausibility of this conclusion it

probably makes sense to prefer it to the conclusion based on the full data set.

A follow up

Given the biological conclusions from the analysis of sperm.comp2, it would
make sense to revisit the analysis of sperm.comp1. Baker and Bellis do not re-
port m.vol values for these data, but the same couples feature in both datasets and
are identified by label, so the required values can be obtained:

PRACTICAL LINEAR MODELS 35

sperm.comp1$m.vol <-

sperm.comp2$m.vol[sperm.comp2$pair%in%sperm.comp1$subject]

Repeating the same sort of backwards selection we end up selecting a 1 term model:

> sc1.mod1<-lm(count˜m.vol,sperm.comp1)

> summary(sc1.mod1)

Call:

lm(formula = count ˜ m.vol, data = sperm.comp1)

Residuals:

Min 1Q Median 3Q Max

-187.236 -55.028 -8.606 75.928 156.257

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -58.694 121.619 -0.483 0.6465

m.vol 23.247 7.117 3.266 0.0171 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 120.8 on 6 degrees of freedom

Multiple R-Squared: 0.64, Adjusted R-squared: 0.58

F-statistic: 10.67 on 1 and 6 DF, p-value: 0.01711

Although based on only 8 couples, this must call into question the original analysis,

which concluded that time since last copulation and proportion of time spent together

controlled sperm count. There is at least a suggestion that the explanation for sperm

count variability may be rather more prosaic than is predicted by sperm competition

theory.

1.5.5 Confidence intervals

Exactly as in section 1.1.3 the results from section 1.3.3 can be used to obtain con-

fidence intervals for the parameters. In general, for a p parameter model of n data, a

(1− 2α)100% confidence interval for the jth parameter is

β̂j ± tn−p(α)σ̂β̂j
,

where tn−p(α) is the value below which a tn−p random variable would lie with

probability α.

As an example of its use, the following calculates a 95% confidence interval for the
mean increase in count per cm3 increase in m.vol.

> sc.c <- summary(sc1.mod1)$coefficients

> sc.c # check info extracted from summary

36 LINEAR MODELS

Estimate Std. Error t value Pr(>|t|)

(Intercept) -58.69444 121.619433 -0.4826075 0.64647664

m.vol 23.24653 7.117239 3.2662284 0.01711481

> sc.c[2,1]+qt(c(.025,.975),6)*sc.c[2,2]

[1] 5.831271 40.661784 # 95% CI

1.5.6 Prediction

It is possible to predict the expected value of the response at new values of the pre-
dictor variables using the predict function. For example: what are the model pre-
dicted counts for m.vol values of 10, 15, 20 and 25? The following obtains the
answer along with associated standard errors (see section 1.3.6).

> df <- data.frame(m.vol=c(10,15,20,25))

> predict(sc1.mod1,df,se=TRUE)

$fit

1 2 3 4

173.7708 290.0035 406.2361 522.4688

$se.fit

1 2 3 4

60.39178 43.29247 51.32314 76.98471

The first line creates a data frame containing the predictor variable values at which

predictions are required. The second line calls predictwith the fitted model object

and new data from which to predict. se=TRUE tells the function to return standard

errors along with the predictions.

1.6 Practical modelling with factors

Most of the models covered so far have been for situations in which the predic-

tor variables are continuous variables, but there are many situations in which the

predictor variables are more qualitative in nature, and serve to divide the responses

into groups. Examples might be eye- colour of subjects in a psychology experiment,

which of three alternative hospitals were attended by patients in a drug trial, manu-

facturers of cars used in crash tests etc. Variables like these, which serve to classify

the units on which the response variable has been measured into distinct categories,

are known as factor variables, or simply factors. The different categories of the fac-

tor are known as levels of the factor. For example levels of the factor ‘eye colour’

might be ‘blue’, ‘brown’, ‘grey’ and ‘green’, so that we would refer to eye colour

as a factor with four levels. Note that ‘levels’ is quite confusing terminology: there

is not necessarily any natural ordering of the levels of a factor. Hence ‘levels’ of a

factor might best be thought of as ‘categories’ of a factor, or ‘groups’ of a factor.

Factor variables are handled using dummy variables. Each factor variable can be

replaced by as many dummy variables as there are levels of the factor — one for each

PRACTICAL MODELLING WITH FACTORS 37

level of the factor. For each response datum, only one of these dummy variables will

be non- zero: the dummy variable for the single level that applies to that response.

Consider an example to see how this works in practice: 9 laboratory rats are fed

too much, so that they divide into 3 groups of 3: ‘fat’, ‘very fat’ and ‘enormous’.

Their blood insulin levels are then measured 10 minutes after being fed a standard

amount of sugar. The investigators are interested in the relationship between insulin

levels and the factor ‘rat size’. Hence a model could be set up in which the predictor

variable is the factor ‘rat size’, with the three levels ‘fat’, ‘very fat’ and ‘enormous’.

Writing yi for the ith insulin level measurement, a suitable model might be:

E(Yi) ≡ µi =







β0 if rat is fat
β1 if rat is very fat
β2 if rat is enormous

and this is easily written in linear model form, using a dummy predictor variable for

each level of the factor:




























µ1

µ2

µ3

µ4

µ5

µ6

µ7

µ8

µ9





























=





























1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1

































β0

β1

β2



 .

A key difference between dummy variables and directly measured predictor vari-

ables, is that the dummy variables, and parameters associated with a factor, are al-

most always treated as a group during model selection — it does not usually make

sense for a subset of the dummy variables associated with a factor to be dropped or

included on their own: either all are included or none. The F ratio tests derived in

section 1.3.4 are designed for hypothesis testing in this situation.

1.6.1 Identifiability

When modelling with factor variables, model ‘identifiability’ becomes an important

issue. It is quite easy to set up models, involving factors, in which it is impossible

to estimate the parameters uniquely, because an infinite set of alternative parameter

vectors would give rise to exactly the same expected value vector. A simple exam-

ple illustrates the problem. Consider again the fat rat example, but suppose that we

wanted to formulate the model in terms of an overall mean insulin level, α, and devi-

ations from that level, βj , associated with each level of the factor. The model would

be something like:

µi = α + βj if rat i is rat size level j

38 LINEAR MODELS

(where j is 0, 1 or 2, corresponding to ‘fat’, ‘very fat’ or ‘enormous’). The problem

with this model is that there is not a one-to-one correspondence between the param-

eters and the fitted values, so that the parameters can not be uniquely estimated from

the data. This is easy to see. Consider any particular set of α and β values, giving

rise to a particular µ value: any constant c could be added to α and simultaneously

subtracted from each element of β without changing the value of µ. Hence there is

an infinite set of parameters giving rise to each µ value, and therefore the parameters

can not be estimated uniquely. The model is not ‘identifiable’.

This situation can be diagnosed directly from the model matrix. Written out in full

the example model is




























µ1

µ2

µ3

µ4

µ5

µ6

µ7

µ8

µ9





























=





























1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1
1 0 0 1





































α
β0

β1

β2









.

But the columns of the model matrix are not independent, and this lack of full column

rank means that the formulae for finding the least squares parameter estimates break

down‡‡. Identifiable models have model matrices of full column rank, unidentifiable

ones are column rank deficient.

The solution to the identifiability problem is to impose just enough linear constraints

on the model parameters, that the model becomes identifiable. For example, in the

fat rat model, we could impose the constraint that

2
∑

j=0

βj = 0.

This would immediately remove the identifiability problem, but does require use of

a linearly constrained least squares method (see sections 1.8.1 and 1.8.2). A simpler

constraint is to set one of the unidentifiable parameters to zero, which requires only

that the model is re-written, without the zeroed parameter, rather than a modified

fitting method. For example, in the fat rat case, we could set α to zero, and recover

the original identifiable model. This is perfectly legitimate, since the reduced model

is capable of reproducing any expected values that the original model could produce.

In the one factor case this discussion of identifiability may seem to be un-necessarily

complicated, since it is so easy to write down the model directly, in an identifiable

form. However, when models involve more than one factor variable, the issue can not

‡‡ In terms of section 1.3.1, R will not be full rank, and will hence not be invertible; in terms of section
1.3.7, XTX will not be invertible.

PRACTICAL MODELLING WITH FACTORS 39

be avoided. For a more general treatment of identifiability constraints see sections

1.8.1 and 1.8.2.

1.6.2 Multiple factors

It is frequently the case that more than one factor variable should be included in a

model, and this is straightforward to do. Continuing the fat rat example, it might be

that the sex of the rats is also a factor in insulin production, and that the appropriate

model is:

µi = α + βj + γk if rat i is rat size level j and sex k

where k is 0 or 1 for male or female. Written out in full (assuming the rats are

MMFFFMFMM) the model is





























µ1

µ2

µ3

µ4

µ5

µ6

µ7

µ8

µ9





























=





























1 1 0 0 1 0
1 1 0 0 1 0
1 1 0 0 0 1
1 0 1 0 0 1
1 0 1 0 0 1
1 0 1 0 1 0
1 0 0 1 0 1
1 0 0 1 1 0
1 0 0 1 1 0













































α
β0

β1

β2

γ0

γ1

















.

It is immediately obvious that the model matrix is of column rank 4, implying that

two constraints are required to make the model identifiable. You can see the lack of

column independence by noting that column 5 is column 1 minus column 6, while

column 2 is column 1 minus columns 3 and 4. An obvious pair of constraints would

be to set β0 = γ0 = 0, so that the full model is





























µ1

µ2

µ3

µ4

µ5

µ6

µ7

µ8

µ9





























=





























1 0 0 0
1 0 0 0
1 0 0 1
1 1 0 1
1 1 0 1
1 1 0 0
1 0 1 1
1 0 1 0
1 0 1 0





































α
β1

β2

γ1









.

When you specify models involving factors in R, it will automatically impose iden-

tifiability constraints for you, and by default these constraints will be that the param-

eter for the ‘first’ level of each factor is zero (‘first’ is essentially arbitrary here —

the order of levels of a factor is not important).

40 LINEAR MODELS

1.6.3 ‘Interactions’ of factors

In the examples considered so far, the effect of factor variables has been purely ad-

ditive, but it is possible that a response variable may react differently to the combi-

nation of two factors, than would be predicted purely by the effect of the two factors

separately. For example, if examining patient blood cholesterol levels, we might con-

sider the factors ‘hypertensive’ (yes/no) and ‘diabetic’ (yes/no). Being hypertensive

or diabetic would be expected to raise cholesterol levels, but being both is likely to

raise cholesterol levels much more than would be predicted from just adding up the

apparent effects when only one condition is present. When the effect of two factor

variables together differs from the sum of their separate effects, then they are said

to interact, and an adequate model in such situations requires interaction terms. Put

another way, if the effects of one factor change in response to another factor, then the

factors are said to interact.

Let us continue with the fat rat example, but now suppose that how insulin level

depends on size varies with sex. An appropriate model is then

µi = α + βj + γk + δjk if rat i is rat size level j and sex k,

where the δjk terms are the parameters for the interaction of rat size and sex. Writing

this model out in full it is clear that it is spectacularly unidentifiable:





























µ1

µ2

µ3

µ4

µ5

µ6

µ7

µ8

µ9





























=





























1 1 0 0 1 0 1 0 0 0 0 0
1 1 0 0 1 0 1 0 0 0 0 0
1 1 0 0 0 1 0 1 0 0 0 0
1 0 1 0 0 1 0 0 0 1 0 0
1 0 1 0 0 1 0 0 0 1 0 0
1 0 1 0 1 0 0 0 1 0 0 0
1 0 0 1 0 1 0 0 0 0 0 1
1 0 0 1 1 0 0 0 0 0 1 0
1 0 0 1 1 0 0 0 0 0 1 0





































































α
β0

β1

β2

γ0

γ1

δ00

δ01

δ10

δ11

δ20

δ21









































.

In fact, for this simple example, with rather few rats, we now have more parameters

than data. There are of course many ways of constraining this model to achieve iden-

tifiability. One possibility (the default in R) is to set β0 = γ0 = δ00 = δ01 = δ10 =
δ20 = 0. The resulting model can still produce any fitted value vector that the full

model can produce, but all the columns of its model matrix are independent, so that

the model is identifiable:

PRACTICAL MODELLING WITH FACTORS 41





























µ1

µ2

µ3

µ4

µ5

µ6

µ7

µ8

µ9





























=





























1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 1 0 0
1 1 0 1 1 0
1 1 0 1 1 0
1 1 0 0 0 0
1 0 1 1 0 1
1 0 1 0 0 0
1 0 1 0 0 0













































α
β1

β2

γ1

δ11

δ21

















.

Of course, the more factor variables are present, the more interactions are possible,

and the higher the order of the possible interactions: for example if three factors

are present then each factor could interact with each factor, giving three possible

‘two-way’ interactions, while all the factors could also interact together, giving a

three-way interaction (e.g. the way in which insulin levels dependendence on rat size

is influenced by sex is itself influenced by blood group — perhaps with interactions

beyond two-way, equations are clearer than words.)

1.6.4 Using factor variables in R

It is very easy to work with factor variables in R. All that is required is that you let
R know that a particular variable is a factor variable. For example, suppose z is a
variable declared as follows:

> z<-c(1,1,1,2,2,1,3,3,3,3,4)

> z

[1] 1 1 1 2 2 1 3 3 3 3 4

and it is to be treated as a factor with 4 levels. The function as.factor() will
ensure that z is treated as a factor:

> z<-as.factor(z)

> z

[1] 1 1 1 2 2 1 3 3 3 3 4

Levels: 1 2 3 4

Notice that, when a factor variable is printed, a list of its levels is also printed — this
provides an easy way to tell if a variable is a factor variable. Note also that the digits
of z are treated purely as labels: the numbers 1 to 4 could have been any labels. For
example, x could be a factor with 3 levels, declared as follows:

> x<-c("A","A","C","C","C","er","er")

> x

[1] "A" "A" "C" "C" "C" "er" "er"

> x<-as.factor(x)

> x

[1] A A C C C er er

Levels: A C er

42 LINEAR MODELS

Once a variable is declared as a factor variable, then R can process it automati-

cally within model formulae, by replacing it with the appropriate number of binary

dummy variables (and imposing any necessary identifiability constraints on the spec-

ified model).

As an example of the use of factor variables consider the PlantGrowth data frame
supplied with R. These are data on the growth of plants under control conditions and
two different treatment conditions. The factor group has three levels cntrl, trt1
and trt2, and it is believed that the growth of the plants depends on this factor. First
check that group is already a factor variable:

> PlantGrowth$group

[1] ctrl ctrl ctrl ctrl ctrl ctrl ctrl ctrl ctrl ctrl trt1

[12] trt1 trt1 trt1 trt1 trt1 trt1 trt1 trt1 trt1 trt2 trt2

[23] trt2 trt2 trt2 trt2 trt2 trt2 trt2 trt2

Levels: ctrl trt1 trt2

. . . since a list of levels is reported, it must be. If it had not been then

PlantGrowth$group <- as.factor(PlantGrowth$group)

would have converted it. The response variable for these data is weight of the plants
at some set time after planting, and the aim is to investigate whether the group factor
controls this, and if so, to what extent.

> pgm.1 <- lm(weight ˜ group,data=PlantGrowth)

> plot(pgm.1)

As usual, the first thing to do, after fitting a model, is to check the residual plots
shown in figure 1.10. In this case there is some suggestion of decreasing variance
with increasing mean, but the effect does not look very pronounced, so it is probably
safe to proceed.

> summary(pgm.1)

[edited]

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.0320 0.1971 25.527 <2e-16 ***
grouptrt1 -0.3710 0.2788 -1.331 0.1944

grouptrt2 0.4940 0.2788 1.772 0.0877 .

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.6234 on 27 degrees of freedom

Multiple R-Squared: 0.2641, Adjusted R-squared: 0.2096

F-statistic: 4.846 on 2 and 27 DF, p-value: 0.01591

Notice how R reports an intercept parameter and parameters for the two treatment

levels, but, in order to obtain an identifiable model, it has not included a parameter

for the control level of the group factor. So the estimated overall mean weight (in

the population that these plants represent, given control conditions) is 5.032, while

PRACTICAL MODELLING WITH FACTORS 43

4.8 5.0 5.2 5.4

−
1

.0
0

.0
1

.0

Fitted values

R
e

s
id

u
a

ls

Residuals vs Fitted

17
15

4

−2 −1 0 1 2

−
1

0
1

2

Theoretical Quantiles

S
ta

n
d

a
rd

iz
e

d
 r

e
s
id

u
a

ls

Normal Q−Q plot

17
15

4

4.8 5.0 5.2 5.4

0
.0

0
.5

1
.0

1
.5

Fitted values

S
ta

n
d

a
rd

iz
e

d
 r

e
s
id

u
a

ls

Scale−Location plot
17
15

4

0 5 10 15 20 25 30

0
.0

0
0

.1
0

0
.2

0

Obs. number

C
o

o
k
’s

 d
is

ta
n

c
e

Cook’s distance plot

17

15

4

Figure 1.10 Model checking plots for the plant growth example.

treatment 1 is estimated to lower this weight by 0.37, and treatment 2 to increase it

by 0.49. However, neither parameter individually appears to be significantly different

from zero. (Don’t forget that model.matrix(pgm.1) can be used to check up

on the form of the model matrix used in the fit.)

Model selection based on the summary output is very difficult for models containing
factors. It makes little sense to drop the dummy variable for just one level of a factor
from a model, and if we did, what would we then do about the model identifiability
constraints? Usually, it is only of interest to test whether the whole factor variable
should be in the model or not, and this amounts to testing whether all its associated
parameters are simultaneously zero or not. The F-ratio tests derived in section 1.3.4
are designed for just this purpose, and in R, such tests can be invoked using the
anova function. For example, we would compare pgm.1 to a model in which the
expected response is given by a single parameter that does not depend on group:

> pgm.0<-lm(weight˜1,data=PlantGrowth)

> anova(pgm.0,pgm.1)

Analysis of Variance Table

Model 1: weight ˜ 1

Model 2: weight ˜ group

Res.Df RSS Df Sum of Sq F Pr(>F)

1 29 14.2584

2 27 10.4921 2 3.7663 4.8461 0.01591 *

44 LINEAR MODELS

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The output here gives the F-ratio statistic used to test the null hypothesis that the

simpler model is correct, against the alternative that pgm.1 is correct. If the null is

true then the probability of obtaining so large an F value is only 0.016, suggesting

that the null hypothesis is not very plausible.

So we see that the data provide evidence for an effect of the group factor variable

on weight, which appeared marginal or absent when we examined p-values for the

individual model parameters. This comes about because we have, in effect, consid-

ered all the parameters associated with the factor simultaneously, thereby obtaining

a more powerful test than any of the single parameter tests could be. In the light of

this analysis, the most promising treatment to look at is clearly treatment 2, since this

gives the largest and ‘most significant’ effect and it is a positive effect.

1.7 General linear model specification in R

Having seen several examples of the use of lm, it is worth briefly reviewing the way

in which models are specified using model formulae in R. The main components of

a formula are all present in the following example

y ˜ a*b + x:z -1

Note the following:

• ˜ separates the response variable, on the left, from the ‘linear predictor’, on the

right. So in the example y is the response and a, b, x and z are the predictors.

• + indicates that the response depends on what is to the left of + and what is to the

right of it. Hence within formulae ‘+’ should be thought of as ‘and’ rather than

‘the sum of’.

• : indicates that the response depends on the interaction of the variables to the left

and right of :. Interactions are obtained by forming the element-wise products of

all model matrix columns corresponding to the two terms that are interacting and

appending the resulting columns to the model matrix (although, of course, some

identifiability constraints may be required).

• * means that the response depends on whatever is to the left of * and whatever

is to the right of it and their interaction. i.e. a*b is just a shorter way of writing

a + b + a:b.

• -1 means that the default intercept term should not be included in the model.

Note that, for models involving factor variables, this often has no real impact on

the model structure, but simply reduces the number of identifiability constraints

by one, while changing the interpretation of some parameters.

Because of the way that some symbols change their usual meaning in model formu-

lae, it is necessary to take special measures if the usual meaning is to be restored to

FURTHER LINEAR MODELLING THEORY 45

arithmetic operations within a formula. This is accomplished by using the identity

function I() which simply evaluates its argument and returns it. For example, if we

wanted to fit the model:

yi = β0 + β1(xi + zi) + β2vi + εi

then we could do so using the model formula

y ˜ I(x+z) + v

Note that there is no need to ‘protect’ arithmetic operations within arguments to other

functions in this way. For example

yi = β0 + β1 log(xi + zi) + β2vi + εi

would be fitted correctly by

y ˜ log(x+z) + v

1.8 Further linear modelling theory

This section covers linear models with constraints on the parameters (including a

discussion of contrasts), the connection with maximum likelihood estimation, AIC

and Mallows Cp, linear models for non-independent data with non-constant variance

and non-linear models.

1.8.1 Constraints I: general linear constraints

It is often necessary, particularly when working with factor variables, to impose con-

straints on the linear model parameters, of the general form

Cβ = 0,

where C is an m×p matrix of known coefficients. The general approach to imposing

such constraints is to rewrite the model in terms of p−m unconstrained parameters.

There are a number of ways of doing this, but a simple general approach uses the QR

decomposition of CT. Let

CT = U

[

P

0

]

where U is a p× p orthogonal matrix and P is an m×m upper triangular matrix. U

can be partitioned U ≡ (D : Z) where Z is a p× (p−m) matrix.

It turns out that

β = Zβz

will meet the constraints for any value of the p −m dimensional vector βz . This is

easy to see:

Cβ =
[

PT 0
]

[

DT

ZT

]

Zβz =
[

PT 0
]

[

0

Ip−m

]

βz = 0.

46 LINEAR MODELS

Hence to minimize ‖y−Xβ‖2 w.r.t. β, subject to Cβ = 0, the following algorithm

can be used.

1. Find the QR decomposition of CT: the final p − m columns of the orthogonal

factor define Z.

2. Minimize the unconstrained sum of squares ‖y−XZβz‖2 w.r.t. βz to obtain β̂z .

3. β̂ = Zβ̂z .

Note that, in practice, it is computationally inefficient to form Z explicitly, when we

only need to be able to post-multiply X by it, and pre-multiply βz by it. The reason

for this is that Z is completely defined as the product of m ‘Householder rotations’:

simple matrix operations that can be applied very rapidly to any vector or matrix. R
includes routines for multiplication by the orthogonal factor of a QR decomposition

which makes use of these efficiencies. See A.5 and A.6 for further details on QR

decomposition.

1.8.2 Constraints II: ‘contrasts’ and factor variables

There is another approach to imposing identifiability constraints on models involving

factor variables. To explain it, it is worth revisiting the basic identifiability problem

with a simple example. Consider the model

yi = µ + αj + εi if yi is from group j

and suppose that there are three groups with two observations in each. The model

matrix in this case is

X =

















1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1

















,

but this is not of full column rank: any of its columns could be made up from a linear

combination of the other 3. In geometric terms the model space is of dimension 3 and

not 4, and this means that we can not estimate all 4 model parameters, but at most 3

parameters. Numerically this problem would manifest itself in the rank deficiency of

R in equation (1.6), which implies that R−1 does not exist.

One approach to this issue is to remove one of the model matrix columns, implic-

itly treating the corresponding parameter as zero. This gives the model matrix full

column rank, so that the remaining parameters are estimable, but since the model

space is unaltered, we have not fundamentally changed the model. It can still predict

every set of fitted values that the original model could predict. By default R drops

the model matrix column corresponding to the first level of each factor, in order to

FURTHER LINEAR MODELLING THEORY 47

impose identifiability on models with factors. For the simple example this results in

X′ =

















1 0 0
1 0 0
1 1 0
1 1 0
1 0 1
1 0 1

















.

To generalize this approach, it helps to write out this deletion in a rather general way.

For example, if we re-write the original model matrix in partitioned form, X = [1 :
X1], where 1 is a column of 1s, then

X′ = [1 : X1C1] where C1 =





0 0
1 0
0 1



 .

Now all that C1 has done is to replace the 3 columns of X1 by a 2 column linear

combination of them, which cannot be combined to give 1. On reflection, any matrix

which did these two things would have served as well as the particular C1 actually

given, in terms of making the model identifiable. This observation leads to the idea of

choosing alternative matrix elements for C1, in order to enhance the interpretability

of the parameters actually estimated, for some models.

Matrices like C1 are known as contrast matrices† and several different types are

available in R. The degree of interpretability of some of the contrasts is open to

debate. For the C1 given, suppose that parameters µ, α′2 and α′3 are estimated: µ
would now be interpretable as the mean for group 1, while α′2 and α′3 would be the

differences between the means for groups 2 and 3, and the mean for group 1.

With all contrast matrices, the contrast matrix itself can be used to transformed back

from the parameters actually estimated, to estimates in the original redundant param-

eterization. e.g.

α̂ = C1α̂
′.

The contrast approach generalizes easily to models with multiple factors and their

interactions. Again a simple example makes things clear. Consider the model:

yi = µ + αj + βk + γjk + εi if yi from groups j and k

The unconstrained model matrix for this might have the form X = [1 : Xα : Xβ :
Xα.Xβ], where Xα and Xβ are the columns generated by α and β and Xα.Xβ

are the columns corresponding to γ, which are in fact generated by element wise

multiplication of all possible pairings of the column from Xα and Xβ .

To make this model identifiable we would choose contrast matrices Cα and Cβ for

α and β respectively, and then form the following identifiable model matrix:

X′ = [1 : XαCα : XβCβ : (XαCα).(XβCβ)]

† Actually, in much of the literature on linear models the given C1 would not be called a ‘contrast’, as
its columns are not orthogonal to 1, but R makes no terminological distinction.

48 LINEAR MODELS

(in this case γ = Cα ⊗ Cβγ
′, where ⊗ is the Kronecker product). Some further

information can be found in Venables and Ripley (2004).

1.8.3 Likelihood

The theory developed in section 1.3 is quite sufficient to justify the approach of

estimating linear models by least squares, but although it doesn’t directly strengthen

the case, it is worth understanding the link between the method of least squares and

the method of maximum likelihood, for normally distributed data.

The basic idea of likelihood is that, given some parameter values, a statistical model

allows us to write down the probability, or probability density, of any set of data,

and in particular of the set actually observed. In some sense, parameter values which

cause the model to suggest that the observed data are probable, are more ‘likely’

than parameter values that suggest that what was observed was improbable. In fact it

seems reasonable to use as estimates of the parameters, those values which maximize

the probability of the data according to the model: these are the ‘maximum likelihood

estimates’ of the parameters.

In the next chapter the properties of maximum likelihood estimation will be covered

in greater detail. For the moment consider the likelihood for the parameters of a linear

model. According to the model, the joint p.d.f. of the response data is

fβ,σ2(y) = (2πσ2)−n/2e−‖y−Xβ‖
2/(2σ2).

Now suppose that the observed data are plugged into this expression and it is treated

as a function of its parameters β and σ2. This is known as the likelihood function

L(β, σ2) = (2πσ2)−n/2e−‖y−Xβ‖
2/(2σ2),

and it is important to note that y is now representing the actual observed data, rather

than arguments of a p.d.f. To estimate the parameters, L should be maximized w.r.t.

them, and it is immediately apparent that the value of β maximizing L will be the

value minimizing

S = ‖y −Xβ‖2

(irrespective of the value of σ2 or its MLE).

In itself this connection is of little interest, but it suggests how to estimate linear

models when data do not meet the constant variance assumption, and may not even

be independent. To this end consider the linear model

µ = Xβ, y ∼ N(µ,Vσ2)

FURTHER LINEAR MODELLING THEORY 49

where V is any positive definite‡ matrix. In this case the likelihood for β is

L(β) =
1

√

(2πσ2)n|V|
e−(y−Xβ)TV−1(y−Xβ)/(2σ2)

and if V is known then maximum likelihood estimation of the β is achieved by

minimizing

Sv = (y −Xβ)TV−1(y −Xβ).

In fact the likelihood approach can be taken further, since if V depends on unknown

parameters then these too can be estimated by maximum likelihood estimation: this

is what is done in linear mixed modelling, which is discussed in Chapter 6.

1.8.4 Non-independent data with variable variance

In the previous section a modified least squares criterion was developed for linear

model parameter estimation, when data follow a general multivariate normal distri-

bution, with unknown mean and covariance matrix known to within a constant of

proportionality. It turns out to be possible to transform this fitting problem so that it

has exactly the form of the fitting problem for independent data with constant vari-

ance. Having done this, all inference about the model parameters can proceed using

the methods of section 1.3.

First let L be any matrix such that LTL = V: a Choleski decomposition is usually

the easiest way to obtain this (see section A.7). Then

Sv = (y −Xβ)TV−1(y −Xβ)

= (y −Xβ)TL−1L−T(y −Xβ)

= ‖L−Ty − L−TXβ‖2,
and this least squares objective can be minimized by the methods already met (i.e.

form a QR decomposition of L−TX etc.)

It is not just the model fitting that carries over from the theory of section 1.3. Since

L−Ty is a linear transformation of a normal random vector, it must have a multi-

variate normal distribution, and it is easily seen that E(L−Ty) = L−TXβ while the

covariance matrix of L−Ty is

VL−Ty = L−TVL−1σ2 = L−TLTLL−1 = Iσ2

i.e. y ∼ N(L−TXβ, Iσ2). In other words, the transformation has resulted in a new

linear modelling problem, in which the response data are independent normal random

variables with constant variance: exactly the situation which allows all the results

from section 1.3 to be used for inference about β.

‡ A matrix A is positive definite if xTAx > 0 for any non zero vector x. Equivalent to this condition
is the condition that all the eigenvalues of A must be strictly positive. Practical tests for positive def-
initeness are examination of the eigenvalues of the matrix, or (more efficiently) seeing if a Choleski
decomposition of the matrix is possible (this must be performed without pivoting, otherwise only pos-
itive semi-definiteness is tested): see A.7.

50 LINEAR MODELS

axis 1

a
x
is

 2

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

axis 1

a
x
is

 2

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 1.11 Fitting a linear model to data that are not independent/constant-variance. The

example is a straight line through the origin fit to two data. In both panels the response data

values give the co-ordinates of the point • and the straight line is the vector defining the

‘model subspace’ (the line along which the fitted values could lie). It is assumed that the data

arise from the multivariate normal distribution contoured in the left panel. The right panel

shows the fitting problem after transformation in the manner described in section 1.8.4: the

response data and model subspace have been transformed and this implies a transformation

of the distribution of the response. The transformed data are an observation from a radially

symmetric multivariate normal density.

Figure 1.11 illustrates the geometry of the transformation for a simple linear model,

yi = βxi + εi, εi ∼ N(0,V),

where yT = (.6, .7), xT = (.3, .7), β = .6 and V =

[

.6 .5

.5 1.1

]

. The left panel

shows the geometry of the original fitting problem, while the right panel shows the

geometry of the transformed fitting problem.

1.8.5 AIC and Mallow’s statistic,

Consider again the problem of selecting between nested models, which is usually

equivalent to deciding whether some terms from the model should simply be set to

zero. The most natural way to do this would be to select the model with the smallest

residual sum of squares or largest likelihood, but this is always the largest model

under consideration. Model selection methods based on F-ratio or t-tests address this

problem by selecting the simplest model consistent with the data, where consistency

is judged using some significance level (threshold p-value), that has to be chosen

more or less arbitrarily.

In this section an alternative approach is developed, based on the idea of trying to

select the model that should do the best job of predicting µ ≡ E(y), rather than

FURTHER LINEAR MODELLING THEORY 51

the model that gets as close as possible to y. This can be approached from a least

squares or likelihood perspective, with the latter being slightly more satisfactory in

the handling of the parameter σ2.

As discussed in section 1.8.3, a linear model is estimated by finding the βi values

maximizing

f(β, σ2) =
1

(√
2πσ

)n exp
[

−‖y −Xβ‖2/(2σ2),
]

(1.12)

and generally, the more parameters we allow the model, the more closely it will fit y,

even if that means fitting the noise component of y. This over-fitting problem would

be solved if we could find the model maximizing

K(β̂, σ2) =
1

(√
2πσ

)n exp
[

−‖µ−Xβ̂‖2/(2σ2)
]

. (1.13)

Consider adding terms to the model, so that at some point in the sequence of models

the ‘true’ model appears. If we really knew µ then (1.13) would reach a maximum

once the model was just large enough to correctly representµ, and would then stay at

that maximum if further (redundant) terms were added. If the model had in fact been

estimated by maximizing (1.12) then we would still expect (1.13) to be maximized

once the true model is reached, but to decline thereafter, as the model predictions

move away from µ, in order to fit the noise component of y increasingly well.

Clearly (1.13) can not be used directly since µ is unknown, but it can be estimated.

First consider the norm in (1.13):

‖µ−Xβ̂‖2 = ‖µ−Ay‖2 = ‖y −Ay − ε‖2

= ‖y −Ay‖2 + εTε− 2εT(y −Ay)

= ‖y −Ay‖2 + εTε− 2εT(µ+ ε) + 2εTA(µ+ ε)

= ‖y −Ay‖2 − εTε− 2εTµ+ 2εTAµ+ 2εTAε.

Now, E(εTε) = E(
∑

i ε
2
i) = nσ2, E(εTµ) = E(εT)µ = 0 and E(εTAµ) =

E(εT)Aµ = 0. The final term is slightly trickier, but using the fact that a scalar is its

own trace:

E[tr
(

εTAε
)

] = E[tr
(

AεεT
)

] = tr
(

AE[εεT]
)

= tr (AI)σ2 = tr (A) σ2.

Hence

E

(

‖µ−Xβ̂‖2
)

= E
(

‖µ−Ay‖2
)

= E
(

‖y −Ay‖2
)

− nσ2 + 2tr (A) σ2,

(1.14)

which can be estimated by

̂‖µ−Xβ̂‖2 = ‖y −Ay‖2 − nσ2 + 2tr (A)σ2. (1.15)

Hence an appropriate estimate of κ = log K is

κ̃ = −n log
(√

2πσ
)

− 1

2σ2
‖y −Xβ̂‖2 + n/2− tr (A) .

52 LINEAR MODELS

i.e. if l is the log likelihood of the model then

κ̃ = l(β̂, σ2)− p + n/2

where p = tr (A) is the number of identifiable model parameters. This will be max-

imized by whatever model minimizes

κ = 2(−l(β̂, σ2) + p)

which is known as Akaike’s information criteria (Akaike, 1973) or AIC (the factor

of -2 is conventional, for reasons that will become apparent in the next chapter).

The above derivation assumes that σ2 is known, whereas, in fact, it is usually esti-

mated. If we use the MLE , σ̂2 = ‖y −Xβ̂‖2/n, then the AIC criteria becomes

κ = 2(−l(β̂, σ̂2) + p) + 2

where the extra 2 serves to penalize the extra free parameter in the model: justifi-

cation of this is postponed until section 2.4.7, where AIC is derived for any model

estimated by likelihood maximization.

Notice how the above derivation does not involve any assumption that directly im-

plies that the models to be compared must be nested: however a more detailed exam-

ination of the comparison of models by AIC would suggest that the comparison will

be more reliable for nested models, since in that case some of the neglected terms

in the approximation of κ cancel. Notice also that if the true model is not in the set

of models under consideration then the properties of (1.13) will be less ideal. Indeed

in this case (1.13) would itself tend to favour more complex models, since it would

be impossible to match µ exactly: as sample size increases and estimates become

more precise, this tendency starts to overcome the negative effects of overfitting and

leads to more complex models being selected. This tendency for AIC to favour more

complex models with increasing sample size is often seen in practice: presumably

because the true model is rarely in the set of candidate models.

If we were to start from a least squares perspective then we could simply try to

estimate ‖µ − Xβ̂‖2/σ2. Re-using the derivations given above, this results in an

estimate known as Mallow’s Cp (Mallows, 1973)

Cp = ‖y −Xβ̂‖2/σ2 + 2p− n.

Model selection by Cp minimization, works well if σ2 is known, but for most models

σ2 must be estimated, and using the estimate derived from the model fit has the

unfortunate consequence that Cp ceases to depend on which model has been fitted,

in any meaningful way. To avoid this, σ2 is usually fixed at the estimate given by the

fit of the largest candidate model (unless it really is known, of course).

1.8.6 Non-linear least squares

Some non-linear models can be estimated by iterative approximation by a linear

model. At each iterate the fitted approximating linear model suggests improved pa-

FURTHER LINEAR MODELLING THEORY 53

0.0 0.5 1.0 1.5 2.0

0
.0

0
.5

1
.0

1
.5

2
.0

y1

y
2

a

0.0 0.5 1.0 1.5 2.0

0
.0

0
.5

1
.0

1
.5

2
.0

y1

y
2

b

0.0 0.5 1.0 1.5 2.0

0
.0

0
.5

1
.0

1
.5

2
.0

y1’

y
2
’

c

0.0 0.5 1.0 1.5 2.0

0
.0

0
.5

1
.0

1
.5

2
.0

y1’’

y
2
’’

d

0.0 0.5 1.0 1.5 2.0

0
.0

0
.5

1
.0

1
.5

2
.0

y1’’

y
2
’’

e

0.0 0.5 1.0 1.5 2.0

0
.0

0
.5

1
.0

1
.5

2
.0

y1

y
2

f

Figure 1.12 Geometry of a single iteration of the Gauss Newton approach to non-linear model

fitting. The example is fitting the model E(yi) = exp(βxi) to xi, yi data (i = 1, 2). (a) plots

y2 against y1 (•) with the curve illustrating the possible values for the expected values of the

response variable: as the value of β changes E(y) follows this curve - the ‘model manifold’.

An initial guess at the parameter gives the fitted values plotted as �. (b) The tangent space to

the model manifold is found and illustrated by the dashed line. (c) The model, tangent and data

are linearly translated so that the current estimate of the fitted values is at the origin. (d) The

model, tangent and data are linearly translated so that Jβ̂[k] gives the location of the current

estimate of the fitted values. (e) β̂[k+1] is estimated by finding the closest point in the tangent

space to the response data, by least squares. (f) shows the original model and data, with the

next estimate of the fitted values, obtained using β̂[k+1]. The steps can now be repeated until

the estimates converge.

rameter estimates, and at convergence the parameter estimates are least squares esti-

mates. In addition, the approximating linear model at convergence can be used as the

basis for approximate inference about the parameters.

Formally, consider fitting the model:

E(y) ≡ µ = f(β)

to response data y, when f is a non-linear vector valued function of β. An obvious

fitting objective is:

S =
n
∑

i=1

{yi − fi(β)}2 = ‖y − f(β)‖2

54 LINEAR MODELS

and if the functions, fi, are sufficiently well behaved then this non-linear least squares

problem can be solved by iterative linear least squares. To do this, we start from a

guess at the best fit parameters, β̂[k], and then take a first order Taylor expansion of

fi around β̂[k] so that the fitting objective becomes

S ≈ S [k] = ‖y − f(β̂[k]) + J[k]β̂[k] − J[k]β‖2

where J[k] is the ‘Jacobian’ matrix such that J
[k]
ij = ∂fi/∂βj (derivatives evaluated

at β̂[k], of course). Defining a vector of pseudodata,

z[k] = y − f(β̂[k]) + J[k]β̂[k],

the objective can be re-written

S [k] = ‖z[k] − J[k]β‖2,
and, since this is a linear least squares problem, it can be minimized with respect to

β to obtain an improved estimated parameter vector β̂[k+1]. If f(β) is not too non-

linear then this process can be iterated until the β̂[k] sequence converges, to the final

least squares estimate β̂.

Figure 1.12 illustrates the geometrical interpretation of this method. Because the

non-linear model is being approximated by a linear model, large parts of the theory of

linear models carry over as approximations in the current context. For example, under

the assumption of equal variance, σ2, and independence of the response variable, the

covariance matrix of the parameters is simply: (JTJ)−1σ2, where J is evaluated at

convergence.

If f is sufficiently non linear that convergence does not occur, then a simple ‘step

reduction’ approach will stabilize the fitting. The vector ∆ = β̂[k+1]− β̂[k] is treated

as a trial step. If β̂[k+1], does not decrease S, then trial steps β̂[k] + α∆ are taken,

with ever decreasing α, until S does decrease (of course, 0 < α < 1). Geometrically,

this is equivalent to performing an updating step by fitting to the average yα + (1−
α)f(β[k]), rather than original data y: viewed in this way it is clear that for small

enough α, each iteration must decrease S, until a minimum is reached. It is usual to

halve α each time that a step is unsuccessful, and to start each iteration with twice the

α value which finally succeeded at the previous step (or α = 1 if this is less). If it is

necessary to set α < 1 at the final step of the iteration then it is likely that inference

based on the final approximating linear model will be somewhat unreliable.

1.8.7 Further reading

The literature on linear models is rather large, and there are many book length treat-

ments. For a good introduction to linear models with R, see Faraway (2004). Other

sources on the linear modelling functionality in R are Chambers (1993) and Ven-

ables and Ripley (2003). Numerical estimation of linear models is covered in Golub

and van Loan (1996, chapter 5). Dobson (2001), McCullagh and Nelder (1989) and

Davison (2003) also consider linear models as part of broader treatments. For R itself

see R Development Core Team (2005).

EXERCISES 55

1.9 Exercises

1. 4 car journeys in London of length 1, 3, 4 and 5 kilometres took 0.1, 0.4, 0.5 and

0.6 hours respectively. Find a least squares estimate of the mean journey speed.

2. Given n observations xi, yi, find the least squares estimate of β in the linear

model: yi = µi + εi, µi = β.

3. Which, if any, of the following common linear model assumptions are required

for β̂ to be unbiased: (i) The Yi are independent, (ii) the Yi all have the same

variance, (iii) the Yi are normally distributed?

4. Write out the following three models in the form y = Xβ + ε, ensuring that

all the parameters left in the written out model are identifiable. In all cases y is

the response variable, ε the residual “error” and other greek letters indicate model

parameters.

(a) The ‘balanced one-way ANOVA model’:

yij = α + βi + εij

where i = 1 . . . 3 and j = 1 . . . 2.

(b) A model with two explanatory factor variables and only 1 observation per com-

bination of factor variables:

yij = α + βi + γj + εij

The first factor (β) has 3 levels and the second factor has 4 levels.

(c) A model with two explanatory variables: a factor variable and a continuous

variable, x.

yi = α + βj + γxi + εi if obs. i is from factor level j

Assume that i = 1 . . . 6, that the first two observations are for factor level 1

and the remaining 4 for factor level 2 and that the xi’s are 0.1, 0.4, 0.5, 0.3, 0.4

and 0.7.

5. Consider some data for deformation (in mm), yi of 3 different types of alloy, under

different loads (in kg), xi. When there is no load, there is no deformation, and the

deformation is expected to vary linearly with load, in exactly the same way for all

three alloys. However, as the load increases the three alloys deviate from this ideal

linear behaviour in slightly different ways, with the relationship becoming slightly

curved (possibly suggesting quadratic terms). The loads are known very precisely,

so errors in xi’s can by ignored, whereas the deformations, yi are subject to larger

measurement errors, that do need to be taken into account. Define a linear model

suitable for describing these data, assuming that the same 6 loads are applied to

each alloy, and write it out in the form y = Xβ + ε.

6. Show that for a linear model with model matrix X, fitted to data y, with fitted

values µ̂,

XTµ̂ = XTy.

What implication does this have for the residuals of a model which includes an

intercept term?

56 LINEAR MODELS

7. Equation (1.8) in section 1.3.3 gives an unbiased estimator of σ2, but in the text

unbiasedness was only demonstrated assuming that the response data were nor-

mally distributed. By considering E(r2
i) and the independence of the elements

of r, show that the estimator (1.8) is unbiased whatever the distribution of the

response, provided that the response data are independent with constant variance.

8. The MASS library contains a data frame Rubber on wear of tyre rubber. The

response loss measures rubber loss in grammes per hour. The predictors are

tens, a measure of the the tensile strength of the rubber with units of kgm−2,

and hard, the hardness of the rubber in Shore§ units. Modelling interest focuses

on predicting wear from hardness and tensile strength.

(a) Starting with a model in which loss is a polynomial function of tens and

hard, with all terms up to 3rd order present, perform backwards model se-

lection, based on hypothesis testing, to select an appropriate model for these

data.

(b) Note the AIC scores of the various models that you have considered. It would

also be possible to do model selection based on AIC, and the step function in

R provides a convenient way of doing this. After reading the step help file,

use it to select an appropriate model for the loss data, by AIC.

(c) Use the contour and predict functions in R to produce a contour plot of

model predicted loss, against tens and hard. You may find functions seq

and rep helpful, as well.

9. The R data frame warpbreaks gives the number of breaks per fixed length

of wool during weaving, for two different wool types, and 3 different weaving

tensions. Using a linear model, establish whether there is evidence that the

effect of tension on break rate is dependent on the type of wool. If there is, use

interaction.plot to examine the nature of the dependence.

10. This question is about modelling the relationship between stopping distance of

a car and its speed at the moment that the driver is signalled to stop. Data on

this are provided in R data frame cars. It takes a more or less fixed ‘reaction

time’ for a driver to apply the car’s brakes, so that the car will travel a distance

directly proportional to its speed before beginning to slow. A car’s kinetic energy

is proportional to the square of its speed, but the brakes can only dissipate that

energy, and slow the car, at a roughly constant rate per unit distance travelled: so

we expect that once braking starts, the car will travel a distance proportional to

the square of its initial speed, before stopping.

(a) Given the information provided above, fit a model of the form

disti = β0 + β1speedi + β2speed
2
i + εi

to the data in cars, and from this starting model, select the most appropriate

model for the data using both AIC, and hypothesis testing methods.

(b) From your selected model, estimate the average time that it takes a driver to

apply the brakes (there are 5280 feet in a mile).

§ measures hardness as the extent of the rebound of a diamond tipped hammer, dropped on the test object.

EXERCISES 57

(c) When selecting between different polynomial models for a set of data, it is

often claimed that one should not leave in higher powers of some continuous

predictor, while removing lower powers of that predictor. Is this sensible?

11. This question relates to the material in sections 1.3.1 to 1.3.4, and it may be use-

ful to review sections A.5 and A.6 of Appendix A. R function qr computed the

QR decomposition of a matrix, while function qr.qry provides a means of effi-

ciently pre-multiplying a vector by the Q matrix of the decomposition and qr.R

extracts the R matrix. See ?qr for details.

The question concerns calculation of estimates and associated quantities for the

linear model, yi = Xiβ + εi, where the εi are i.i.d. N(0, σ2).

(a) Write an R function which will take a vector of response variables, y, and

a model matrix, X, as arguments, and compute the least squares estimates of

associated parameters, β, based on QR decomposition of X.

(b) Test your function by using it to estimate the parameters of the model

disti = β0 + β1speedi + β2speed
2
i + εi

for the data found in R data frame cars. Note that:

X <- model.matrix(dist ˜ speed + I(speedˆ2),cars)

will produce a suitable model matrix. Check your answers against those pro-

duced by the lm function.

(c) Extend your function to also return the estimated standard errors of the pa-

rameter estimators, and the estimated residual variance. Again, check your an-

swers against what lm produces, using the carsmodel. Note that solve(R)

or more efficiently backsolve(R,diag(ncol(R)))will produce the in-

verse of an upper triangular matrixR.

(d) Use R function pt to produce p-values for testing the null hypothesis that each

βi is zero (against a two sided alternative). Again check your answers against

a summary of an equivalent lm fit.

(e) Extend your fitting function again, to produce the p-values associated with a

sequential ANOVA table for your model (see section 1.3.4). Again test your

results by comparison with the results of applying the anova function to an

equivalent lm fit. Note that pf is the function giving the c.d.f. of F-distributions.

12. R data frame InsectSprays contains counts of insects in each of several plots.

The plots had each been sprayed with one of 6 insecticides. A model for these data

might be

yi = µ + βj if ith observation is for spray j.

A possible identifiability constraint for this model is that
∑

j βj = 0. In R, con-

struct the rank deficient model matrix, for this model, and the coefficient matrix

for the sum to zero constraint on the parameters. Using the methods of section

1.8.1, impose the constraint via QR decomposition of the constraint matrix, fit the

model (using lm with your constrained model matrix), and then obtain the esti-

mates of the original parameters. You will need to use R functions qr, qr.qy

58 LINEAR MODELS

and qr.qty as part of this. Confirm that your estimated parameters meet the

constraint.

13. The R data frame trees contains data on Height, Girth and Volume of 31

felled cherry trees. A possible model for these data is

Volumei = β1Girth
β2

i Height
β3

i + εi,

which can be fitted by non-linear least squares using the method of section 1.8.6.

(a) Write an R function to evaluate (i) the vector of E(Volume) estimates given a

vector of βj values and vectors of Girth and Height measurements and

(ii) the 31 × 3 ‘Jacobian’ matrix with (i, j)th element ∂E(Volumei)/∂βj , re-

turning these in a two item list. (Recall that ∂xy/∂y = xy log(x).)

(b) Write R code to fit the model, to the trees data, using the method of section

1.8.6. Starting values of .002, 2 and 1 are reasonable.

(c) Evaluate approximate standard error estimates for your estimated model pa-

rameters.

CHAPTER 2

Generalized Linear Models

Generalized linear models∗ (Nelder and Wedderburn, 1972) allow for response dis-

tributions other than normal, and for a degree of non-linearity in the model structure.

A GLM has the basic structure

g(µi) = Xiβ,

where µi ≡ E(Yi), g is a smooth monotonic ‘link function’, Xi is the ith row of

a model matrix, X, and β is a vector of unknown parameters. In addition, a GLM

usually makes the distributional assumptions that the Yi are independent and

Yi ∼ some exponential family distribution.

The exponential family of distributions includes many distributions that are useful

for practical modelling, such as the Poisson, Binomial, Gamma and Normal distri-

butions. The comprehensive reference for GLMs is McCullagh and Nelder (1989),

while Dobson (2001) provides a thorough introduction.

Because generalized linear models are specified in terms of the ‘linear predictor’,

Xβ, many of the general ideas and concepts of linear modelling carry over, with a

little modification, to generalized linear modelling. Basic model formulation is much

the same as for linear models, except that a link function and distribution must be

chosen. Of course, if the identity function is chosen as the link, along with the normal

distribution, then ordinary linear models are recovered as a special case.

The generalization comes at some cost however: model fitting now has to be done

iteratively, and distributional results, used for inference, are now approximate and

justified by large sample limiting results, rather than being exact. But before going

further into these issues, consider a couple of simple examples.

Example 1: In the early stages of a disease epidemic, the rate at which new cases

occur can often increase exponentially through time. Hence, if µi is the expected

number of new cases on day ti, a model of the form

µi = c exp(bti),

∗ Note that there is a distinction between ‘generalized’ and ‘general’ linear models - the latter term being
sometimes used to refer to all linear models other than simple straight lines.

59

60 GENERALIZED LINEAR MODELS

might be appropriate, where c and b are unknown parameters. Such a model can be

turned into GLM form, by using a log link so that

log(µi) = log(c) + bti = β0 + tiβ1

(by definition of β0 = log c and β1 = b). Note that the right hand side of the model

is now linear in the parameters. The response variable is the number of new cases

per day and, since this is a count, the Poisson distribution is probably a reasonable

distribution to try. So the GLM for this situation uses a Poisson response distribution,

log link, and linear predictor β0 + tiβ1.

Example 2: The rate of capture of prey items, yi, by a hunting animal, tends to

increase with increasing density of prey, xi, but to eventually level off, when the

predator is catching as much as it can cope with. A suitable model for this situation

might be

µi =
axi

h + xi
,

where a is an unknown parameter, representing the maximum capture rate, and h
is an unknown parameter, representing the prey density at which the capture rate is

half the maximum rate. Obviously this model is non-linear in its parameters, but, by

using a reciprocal link, the right hand side can be made linear in the parameters:

1

µi
=

1

a
+

h

a

1

xi
= β0 +

1

xi
β1

(here β0 ≡ 1/a and β1 ≡ h/a). In this case the standard deviation of prey capture

rate might be approximately proportional to the mean rate, suggesting the use of a

Gamma distribution for the response, and completing the model specification.

Of course we are not restricted to the simple straight line forms of the examples, but

can have any structure for the linear predictor that was possible for linear models.

2.1 The theory of GLMs

Estimation and inference with GLMs is based on the theory of maximum likelihood

estimation, although the maximization of the likelihood turns out to require an it-

erative least squares approach, related to the method of section 1.8.6. This section

begins by introducing the exponential family of distributions, which allows a gen-

eral method to be developed for maximizing the likelihood of a GLM. Inference for

GLMs is then discussed, based on general results of likelihood theory (which are

derived at the end of the chapter). In this section it is sometimes useful to distinguish

between the response data, y, and the random variable that it is an observation of,

Y , so they are distinguished notationally: this has not been done for estimates and

estimators.

THE THEORY OF GLMS 61

N
o
rm

al
P

o
is

so
n

B
in

o
m

ia
l

G
am

m
a

In
v
er

se
G

au
ss

ia
n

f
(y

)
1

σ
√

2
π

ex
p
(

−
(y
−
µ
)2

2
σ

2

)

µ
y

e
x
p

(−
µ
)

y
!

(

n y

)
(

µ n

)

y
(

1
−

µ n

)

n
−
y

1
Γ
(ν

)

(

ν µ

)

ν

y
ν
−

1
ex

p
(

−
ν
y µ

)
√

γ
2
π
y
3

ex
p
[

−
γ
(y
−
µ
)2

2
µ

2
y

]

R
an

g
e

−
∞

<
y

<
∞

y
=

0,
1,

2,
..

.
y

=
0,

1,
..

.,
n

y
>

0
y

>
0

θ
µ

lo
g
(µ

)
lo

g
(

µ
n
−
µ

)

−
1 µ

−
1

2
µ

2

φ
σ

2
1

1
1 ν

1 γ

a
(φ

)
φ
(=

σ
2
)

φ
(=

1)
φ
(=

1)
φ
(

=
1 ν

)

φ
(

=
1 γ

)

b(
θ)

θ
2 2

ex
p
(θ

)
n

lo
g
(

1
+

eθ
)

−
lo

g
(−

θ)
−
√
−

2θ

c(
y
,φ

)
−

1 2

[

y
2 φ

+
lo

g
(2

π
φ
)]

−
lo

g
(y

!)
lo

g
(

n y

)

ν
lo

g
(ν

y
)
−

lo
g
(y

Γ
(ν

))
−

1 2

[

lo
g
(2

π
y
3
φ
)
+

1 φ
y

]

V
(µ

)
1

µ
µ
(1
−

µ
/n

)
µ

2
µ

3

g c
(µ

)
µ

lo
g
(µ

)
µ
n
−
µ

1 µ
1 µ
2

D
(y

,µ̂
)

(y
−

µ̂
)2

2y
lo

g
(

y µ̂

)

−
2
[

y
lo

g
(

y µ̂

)

+
2
[

y
−
µ̂
µ̂
−

lo
g
(

y µ̂

)
]

(y
−
µ̂
)2

µ̂
2
y

2(
y
−

µ̂
)

(n
−

y
)
lo

g
(

n
−
y

n
−
µ̂

)
]

T
ab

le
2
.1

S
o
m

e
E

xp
o
n
en

ti
a
l

F
a
m

il
y

D
is

tr
ib

u
ti

o
n
s.

N
o
te

th
a
t

w
h
en

y
=

0,
y

lo
g
(y

/
µ̂
)

is
re

p
la

ce
d

b
y

ze
ro

(i
ts

li
m

it
a
s
y
→

0)
.

62 GENERALIZED LINEAR MODELS

2.1.1 The exponential family of distributions

The response variable in a GLM can have any distribution from the exponential fam-

ily. A distribution belongs to the exponential family of distributions if its probability

density function, or probability mass function, can be written as

fθ(y) = exp [{yθ − b(θ)}/a(φ) + c(y, φ)] ,

where b, a and c are arbitrary functions, φ an arbitrary ‘scale’ parameter, and θ is

known as the ‘canonical parameter’ of the distribution (in the GLM context, θ will

completely depend on the model parameters β, but it is not necessary to make this

explicit yet).

For example, it is easy to see that the normal distribution is a member of the expo-

nential family since

fµ(y) =
1

σ
√

2π
exp

[

− (y − µ)2

2σ2

]

= exp

[−y2 + 2yµ− µ2

2σ2
− log(σ

√
2π)

]

= exp

[

yµ− µ2/2

σ2
− y2

2σ2
− log(σ

√
2π)

]

,

which is of exponential form, with θ = µ, b(θ) = θ2/2 ≡ µ2/2, a(φ) = φ = σ2

and c(φ, y) = −y2/(2φ)− log(
√

φ2π) ≡ −y2/(2σ2)− log(σ
√

2π). Table 2.1 gives

a similar breakdown for the members of the exponential family implemented for

GLMs in R.

It is possible to obtain general expressions for the the mean and variance of expo-

nential family distributions, in terms of a, b and φ. The log likelihood of θ, given a

particular y, is simply log[fθ(y)] considered as a function of θ. That is

l(θ) = [yθ − b(θ)]/a(φ) + c(y, φ)

and so
∂l

∂θ
= [y − b′(θ)]/a(φ).

Treating l as a random variable, by replacing the particular observation y by the

random variable Y , enables the expected value of ∂l/∂θ to be evaluated:

E

(

∂l

∂θ

)

= [E(Y)− b′(θ)]/a(φ).

Using the general result that E(∂l/∂θ) = 0 (at the true value of θ, see (2.14) in

section 2.4) and re-arranging implies that

E(Y) = b′(θ). (2.1)

i.e. the mean, of any exponential family random variable, is given by the first deriva-

tive of b w.r.t. θ, where the form of b depends on the particular distribution. This

equation is the key to linking the model parameters, β, of a GLM to the canonical

THE THEORY OF GLMS 63

parameters of the exponential family. In a GLM, the parameters β determine the

mean of the response variable, and, via (2.1), they thereby determine the canonical

parameter for each response observation.

Differentiating the likelihood once more yields

∂2l

∂θ2
= −b′′(θ)/a(φ),

and plugging this into the general result, E(∂2l/∂θ2) = −E[(∂l/∂θ)2] (the deriva-

tives are evaluated at the true θ value, see result (2.16), section 2.4), gives

b′′(θ)/a(φ) = E
[

(Y − b′(θ))2
]

/a(φ)2,

which re-arranges to the second useful general result:

var(Y) = b′′(θ)a(φ).

a could in principle be any function of φ, and when working with GLMs there is no

difficulty in handling any form of a, if φ is known. However, when φ is unknown

matters become awkward, unless we can write a(φ) = φ/ω, where ω is a known

constant. This restricted form in fact covers all the cases of practical interest here

(see e.g. table 2.1). a(φ) = φ/ω allows the possibility of, for example, unequal

variances in models based on the normal distribution, but in most cases ω is simply

1. Hence we now have

var(Y) = b′′(θ)φ/ω. (2.2)

In subsequent sections it will often be convenient to consider var(Y) as a function of

µ ≡ E(Y), and, since µ and θ are linked via (2.1), we can always define a function

V (µ) = b′′(θ)/ω, such that var(Y) = V (µ)φ. Several such functions are listed in

table 2.1.

2.1.2 Fitting Generalized Linear Models

Recall that a GLM models an n−vector of independent response variables, Y, where

µ ≡ E(Y), via

g(µi) = Xiβ

and

Yi ∼ fθi
(yi),

where fθi
(yi) indicates an exponential family distribution, with canonical parameter

θi, which is determined by µi (via equation 2.1) and hence ultimately by β. Given

vector y, an observation of Y, maximum likelihood estimation ofβ is possible. Since

the Yi are mutually independent, the likelihood of β is

L(β) =
n
∏

i=1

fθi
(yi),

64 GENERALIZED LINEAR MODELS

and hence the log-likelihood of β is

l(β) =

n
∑

i=1

log[fθi
(yi)]

=

n
∑

i=1

[yiθi − bi(θi)]/ai(φ) + ci(φ, yi),

where the dependence of the right hand side on β is through the dependence of

the θi on β. Notice that the functions a, b and c may vary with i — this allows

different binomial denominators, ni, for each observation of a binomial response,

or different (but known to within a constant) variances for normal responses, for

example. φ, on the other hand, is assumed to be the same for all i. As discussed in

the previous section, for practical work it suffices to consider only cases where we

can write ai(φ) = φ/ωi, where ωi is a known constant (usually 1), in which case

l(β) =

n
∑

i=1

ωi[yiθi − bi(θi)]/φ + ci(φ, yi).

Maximization proceeds by partially differentiating l w.r.t. each element of β, setting

the resulting expressions to zero and solving for β.

∂l

∂βj
=

1

φ

n
∑

i=1

ωi

(

yi
∂θi
∂βj
− b′i(θi)

∂θi
∂βj

)

,

and by the chain rule
∂θi
∂βj

=
∂θi
∂µi

∂µi
∂βj

,

so that differentiating (2.1), we get

∂µi
∂θi

= b′′i (θi)⇒
∂θi
∂µi

=
1

b′′i (θi)
,

which then implies that

∂l

∂βj
=

1

φ

n
∑

i=1

[yi − b′i(θi)]

b′′i (θi)/ωi

∂µi
∂βj

.

Substituting from (2.1) and (2.2), into this last equation, implies that the equations to

solve for β are
n
∑

i=1

(yi − µi)

V (µi)

∂µi
∂βj

= 0 ∀ j. (2.3)

However, these equations are exactly the equations that would have to be solved

in order to find β by non-linear weighted least squares, if the weights V (µi) were

known in advance and were independent of β. In this case the least squares objective

would be

S =
n
∑

i=1

(yi − µi)
2

V (µi)
, (2.4)

THE THEORY OF GLMS 65

where µi depends non-linearly on β, but the weights V (µi) are treated as fixed. To

find the least squares estimates involves solving ∂S/∂βj = 0 ∀ j, but this system of

equations is easily seen to be (2.3), when the V (µi) terms are treated as fixed.

This correspondence immediately suggests an iterative method for solving (2.3). Let

β̂[k] denote the estimated parameter vector at the kth iterate and let η[k] and µ[k] be

the vectors with elements η
[k]
i = Xiβ̂

[k] and µ
[k]
i = g−1(η

[k]
i), respectively, where

g−1(·) is the inverse function of the link. Starting with a parameter guesstimate, β̂[0],

the following steps are iterated until the sequence of β̂[k]’s converges:

1. Calculate the V (µ
[k]
i) terms implied by the current β̂[k].

2. Given these estimates use the method of section 1.8.6 to minimize (2.4) with

respect to β, in order to obtain β̂[k+1] (the V (µ
[k]
i) being treated as fixed and not

as functions of β).

3. Set k to k + 1.

In fact this method is slower than it need be. Step 2 itself involves iteration, but there

is little point in actually iterating the non-linear least squares method to convergence

before the V (µ
[k]
i) have converged. Hence step 2 is usually replaced by:

2. Using β̂[k] as the starting values, perform one iteration only, of the iterative method

of solving (2.4) given in section 1.8.6, to obtain β̂[k+1].

Applying this approach results in a rather compact and neat scheme. To see this let us

write the non-linear least squares problem in matrix form. Defining diagonal matrix

V[k] where V[k]ii = V (µ
[k]
i), (2.4) becomes

S =
∥

∥

∥

√

V−1
[k] [y − µ(β)]

∥

∥

∥

2

and, following the method of section 1.8.6, µ is replaced by its first order Taylor

expansion around β̂[k] so that

S ≈
∥

∥

∥

√

V−1
[k]

[

y − µ[k] − J
(

β − β̂[k]
)]
∥

∥

∥

2

where J is the ‘Jacobian’ matrix, with elements Jij = ∂µi/∂βj |β̂[k] . Now

g(µi) = Xiβ ⇒ g′(µi)
∂µi
∂βj

= Xij

and hence

Jij =
∂µi
∂βj

∣

∣

∣

∣

β̂[k]

= Xij/g′(µ[k]
i).

So defining G as the diagonal matrix with elements Gii = g′(µ[k]
i), J = G−1X.

Hence, without further approximation,

S ≈
∥

∥

∥

√

V−1
[k]G

−1
[

G(y − µ[k]) + η[k] −Xβ
]∥

∥

∥

2

=
∥

∥

∥

√

W[k]
(

z[k] −Xβ
)
∥

∥

∥

2

66 GENERALIZED LINEAR MODELS

by definition of ‘pseudodata’

z
[k]
i = g′(µ[k])(yi − µ

[k]
i) + η

[k]
i

and diagonal weight matrix, W[k], with elements

W
[k]
ii =

1

V (µ
[k]
i)g′(µ[k]

i)2
.

The following steps are therefore iterated to convergence

1. Using the current µ[k] and η[k] calculate pseudodata z[k] and iterative weights

W[k].

2. Minimize the sum of squares

∥

∥

∥

√
W[k]

(

z[k] −Xβ
)

∥

∥

∥

2

with respect to β, in order

to obtain β̂[k+1], and hence η[k+1] = Xβ̂[k+1] and µ[k+1]. Increment k by one.

The converged β̂ solves (2.3), and is hence the maximum likelihood estimate of β†.
The algorithm converges in most practical circumstances, although there are excep-

tions (for example poor or overly flexible models of binomial data).

Notice that to start the iteration we only need µ[0] and η[0] values, but not β̂[0].

Hence the iteration is usually started by setting µ
[0]
i = yi and η

[0]
i = g(µ

[0]
i), with

slight adjustment of µ
[0]
i , as required, to avoid infinite η

[0]
i ’s (e.g. if yi = 0 with a

log link). The method is known as Iteratively Re-weighted Least Squares (IRLS) for

obvious reasons, and is due, in this context, to Nelder and Wedderburn (1972).

2.1.3 The IRLS objective is a quadratic approximation to the log-likelihood

The working linear model in the IRLS iteration is not simply a means of finding the

maximum likelihood estimates of the parameters. To within an additive constant

S = − 1

2φ

∥

∥

∥

√
W (z−Xβ)

∥

∥

∥

2

(at convergence) is also a quadratic approximation to the log likelihood of the model

in the vicinity of β̂. Clearly the first derivatives w.r.t. the βj match between the log-

likelihood and S: in fact they are all zero. The second derivative matrix of S is

−XWX/φ and this turns out to match the expected second derivative matrix of

the log likelihood, and hence, by the law of large numbers, the second derivative

matrix itself, in the large sample limit.

To prove this, first define u as the vector of derivatives of the log -likelihood w.r.t.

the model parameters, so that ui = ∂l/∂βi, and then re-write the derivatives in (2.3)

in matrix vector form as

u = XTG−1V−1(y − µ)/φ.

† Note that the algorithm would not minimize (2.4) if V(µi) was treated as a function of β, since in
that case equating the derivatives to zero would not yield (2.3). i.e. the likelihood maximization is
fundamentally different to least squares with a mean variance relationship.

THE THEORY OF GLMS 67

Then

E(uuT) = XTG−1V−1
E[(Y − µ)(Y − µ)T]V−1G−1X/φ2

= XTG−1V−1VV−1G−1X/φ

= XTWX/φ

since E[(Y−µ)(Y−µ)T] = Vφ. By the general likelihood result (2.19), in section

2.4.2, −E(uuT) is also the expected second derivative matrix of the log likelihood.

This correspondence of derivatives is sufficient to demonstrate that S is a quadratic

approximation to the log-likelihood in the vicinity of the β̂, and, by consistency of

MLEs, in the vicinity of the true parameter values.

2.1.4 AIC for GLMs

Model selection by direct comparison of likelihoods suffers from the problem that,

if redundant parameters are added to a correct model, the likelihood almost always

increases (and never decreases), because the extra parameters let the model get closer

to the data, even though that only means ‘modelling the noise’ component of the data.

As in the linear model case, this problem would be alleviated if we were somehow

able to choose models on the basis of their ability to fit the mean of the data, µ,

rather than the data, y. In a GLM context, a reasonable approach would be to choose

between models on the basis of their ability to maximize l(β;µ), rather than l(β;y),
but to do so we have to be able to estimate l(β;µ).

Actually this estimation is straightforward. From section 2.1.3 we have that

l(β̂;y) ' k − 1

2φ

∥

∥

∥

√
W
(

z−Xβ̂
)∥

∥

∥

2

,

and since this must also hold true if y = µ

l(β̂;µ) ' k − 1

2φ

∥

∥

∥

√
W
(

η −Xβ̂
)
∥

∥

∥

2

.

Then the argument leading to (1.15) in section 1.8.5 (modified only to include weights)

yields the estimator

̂l(β̂;µ) = k − 1

2φ

∥

∥

∥

√
W
(

z−Xβ̂
)∥

∥

∥

2

+ n/2− tr (A)

' l(β̂;y)− tr (A) + n/2

where A = X(XTWX)−1XTW and hence tr (A) = p, the number of (identifi-

able) model parameters.

Hence, when choosing between models, we would choose whichever model had the

highest value of l(β̂)− p, which is equivalent to choosing the model with the lowest

value of Akaike’s Information Criterion (Akaike, 1973),

AIC = 2[−l(β̂) + p].

68 GENERALIZED LINEAR MODELS

The forgoing argument assumes that φ is known. If it is not then an estimate‡, φ̂, will

be needed in order to evaluate the AIC, and as a result the penalty term p in the AIC

will become p + 1. This generalization is justified in section 2.4.7.

2.1.5 Large sample distribution of β̂

Distributional results for GLMs are not exact, but are based instead on large sample

approximations, making use of general properties of maximum likelihood estimators

including consistency (see section 2.4). From the general properties of maximum

likelihood estimators, we have that, in the large sample limit,

β̂ ∼ N(β, I−1),

where I = E(uuT) is the information matrix of the model parameters, and u is

the vector of derivatives of the log -likelihood w.r.t. the model parameters, so that

ui = ∂l/∂βi (see (2.20) and (2.19) in section 2.4). In section 2.1.3 it was shown that

E(uuT) = XTWX/φ and hence in the large sample limit

β̂ ∼ N(β, (XTWX)−1φ).

For distributions with known scale parameter, φ, this result can be used directly to

find confidence intervals for the parameters, but if the scale parameter is unknown

(e.g. for the normal distribution), then it must be estimated, and intervals must be

based on an appropriate t distribution. Scale parameter estimation is covered in sec-

tion 2.1.7.

2.1.6 Comparing models by hypothesis testing

Consider testing

H0 : g(µ) = X0β0

against

H1 : g(µ) = X1β1,

where µ is the expectation of a response vector, Y, whose elements are independent

random variables from the same member of the exponential family of distributions,

and where X0 ⊂ X1. If we have an observation, y, of the response vector, then a

generalized likelihood ratio test can be performed. Let l(β̂0) and l(β̂1) be the maxi-

mized likelihoods of the two models. If H0 is true then in the large sample limit,

2[l(β̂1)− l(β̂0)] ∼ χ2
p1−p0 , (2.5)

where pi is the number of (identifiable) parameters (βi) in model i (see sections 2.4.5

and 2.4.6 for the derivation of this result). If the null hypothesis is false, then model

1 will tend to have a substantially higher likelihood than model 0, so that twice the

‡ which should strictly be a maximum likelihood estimate, or an estimator tending to the MLE in large
sample limit.

THE THEORY OF GLMS 69

difference in log likelihoods would be too large for consistency with the relevant χ2

distribution.

The approximate result (2.5) is only directly useful if the log likelihoods of the mod-

els concerned can be calculated. In the case of GLMs estimated by IRLS, this is only

the case if the scale parameter, φ, is known. Hence the result can be used directly with

Poisson and binomial models, but not with the normal§, gamma or inverse Gaussian

distributions, where the scale parameter is not known. What to do in these latter cases

will be discussed shortly.

Deviance

When working with GLMs in practice, it is useful to have a quantity that can be inter-

preted in a similar way to the residual sum of squares, in ordinary linear modelling.

This quantity is the deviance of the model and is defined as

D = 2[l(β̂max)− l(β̂)]φ (2.6)

=

n
∑

i=1

2ωi

[

yi(θ̃i − θ̂i)− b(θ̃i) + b(θ̂i)
]

, (2.7)

where l(β̂max) indicates the maximized likelihood of the saturated model: the model

with one parameter per data point. l(β̂max) is the highest value that the likelihood

could possibly have, given the data, and is evaluated by simply setting µ̂ = y

and evaluating the likelihood. θ̃ and θ̂ denote the maximum likelihood estimates

of canonical parameters, for the saturated model and model of interest, respectively.

Notice how the deviance is defined to be independent of φ. Table 2.1 lists the con-

tributions of a single datum to the deviance, for several distributions — these are the

terms inside the summation in the definition of the deviance.

Related to the deviance is the scaled deviance,

D∗ = D/φ,

which does depend on the scale parameter. For the Binomial and Poisson distribu-

tions, where φ = 1, the deviance and scaled deviance are the same, but this is not the

case more generally.

By the generalized likelihood ratio test result (2.5), we might expect that, if the model

is correct, then approximately

D∗ ∼ χ2
n−p, (2.8)

in the large sample limit. Actually such an argument is bogus, since the limiting argu-

ment justifying (2.5) relies on the number of parameters in the model staying fixed,

while the sample size tends to infinity, but the saturated model has as many param-

eters as data. Asymptotic results are available for some of the distributions in table

2.1, to justify (2.8) as a large sample approximation under many circumstances (see

§ Of course for normal distribution and identity link we use the results of chapter 1.

70 GENERALIZED LINEAR MODELS

McCullagh and Nelder, 1989), and it is exact for the Normal case. Note, however,

that it breaks down entirely for the binomial with binary data.

Given the definition of deviance, it is easy to see that the likelihood ratio test, with

which this section started, can be performed by re-expressing the twice log-likelihood

ratio statistic as D∗0 −D∗1. Then under H0

D∗0 −D∗1 ∼ χ2
p1−p0 (2.9)

(in the large sample limit), where D∗i is the deviance of model i which has pi iden-

tifiable parameters. But again, this is only useful if the scale parameter is known so

that D∗ can be calculated.

Model comparison with unknown φ

Under H0 we have the approximate results

D∗0 −D∗1 ∼ χ2
p1−p0 and D∗1 ∼ χ2

n−p,

and, if D∗0 −D∗1 and D∗1 are treated as asymptotically independent, this implies that

F =
(D∗0 −D∗1)/(p1 − p0)

D∗1/(n− p1)
∼ Fp1−p0,n−p1 ,

in the large sample limit (a result which is exactly true in the ordinary linear model

special case, of course). The useful property of F is that it can be calculated without

knowing φ, which can be cancelled from top and bottom of the ratio yielding, under

H0, the approximate result that

F =
(D0 −D1)/(p1 − p0)

D1/(n− p1)
∼̇Fp1−p0,n−p1 . (2.10)

The advantage of this result is that it can be used for hypothesis testing based model

comparison, when φ is unknown. The disadvantages are the dubious distributional

assumption for D∗1, and the independence approximation, on which it is based.

Of course an obvious alternative approach would be to use an estimate, φ̂, to obtain

an estimate, D̂∗i = Diφ̂, for each model, and then to use (2.9) for hypothesis testing.

However if we use the estimate (2.11) for this purpose then it is readily seen that

D̂∗0− D̂∗1 is simply (n−p1)×F , so our test would be exactly equivalent to using the

F ratio result (2.10), but with Fp1−p0,∞ as the reference distribution. Clearly direct

use of (2.10) is a more conservative approach, and hence usually to be preferred: it

at least makes some allowance for the uncertainty in estimating the scale parameter.

2.1.7 φ̂ and Pearson’s statistic

As we have seen, the MLEs of the parameters, β, can be obtained without knowing

the scale parameter, φ, but, in those cases in which this parameter is unknown, it

must usually be estimated. Approximate result (2.8) provides one obvious estimator.

THE THEORY OF GLMS 71

The expected value of a χ2
n−p random variable is n − p, so equating the observed

D∗ = D/φ to its approximate expected value we have

φ̂D = D̂/(n− p). (2.11)

A second estimator is based on the Pearson statistic , which is defined as

X2 =

n
∑

i=1

(yi − µ̂i)
2

V (µ̂i)

Clearly X2/φ would be the sum of squares of a set of zero mean, unit variance,

random variables, having n− p degrees of freedom, suggesting ¶ that if the model is

adequate then approximately X2/φ ∼ χ2
n−p: this approximation turns out to be well

founded. Setting the observed Pearson statistic to its expected value we get

φ̂ = X̂2/(n− p).

Note, that it is straightforward to show that

X2 = ‖
√

W(z−Xβ̂)‖2,
where W and z are the IRLS weights and pseudodata, evaluated at convergence.

2.1.8 Canonical link functions

The canonical link, gc, for a distribution, is the link function such that gc(µi) = θi,
where θi is the canonical parameter of the distribution. For example, for the Poisson

distribution the canonical link is the log function (see table 2.1 for other examples).

Use of the canonical link means that θi = Xiβ (where Xi is the ith row of X).

Canonical links tend to have some nice properties, such as ensuring that µ stays

within the range of the response variable, but they also have more subtle advantages,

one of which is derived here. Recall that likelihood maximization involves differen-

tiating the log likelihood with respect to each βj , and setting the results to zero, to

obtain the system of equations

∂l

∂βj
=

n
∑

i=1

ωi

(

yi
∂θi
∂βj
− µi

∂θi
∂βj

)

= 0 ∀ j.

But if the canonical link is being used then ∂θi/∂βj = Xij , and if, as is often the

case, wi = 1 ∀ i this system of equations reduces to

XTy −XTµ̂ = 0,

i.e. to XTy = XTµ̂. Now consider the case in which X contains a column of 1’s:

this implies that one of the equations in this system is simply
∑

i yi =
∑

i µ̂i. Sim-

ilarly any other weighted summation, where the weights are given by model matrix

¶ Recall that if {Zi : i = 1 . . . n} are a set of i.i.d. N(0, 1) r.v.’s then
P

Z2
i ∼ χ2

n.

72 GENERALIZED LINEAR MODELS

columns (or a linear combination of these), is conserved between the raw data and

the fitted values.

One practical upshot of this is that, for any GLM with an intercept term and canoni-

cal link, the residuals will sum to zero: this ‘observed unbiasedness’ is a reassuring

property. Another practical use of the result is in categorical data analysis using log-

linear models, where it provides a means of ensuring, via specification of the model,

that totals which were built into the design of a study can be preserved in any model.

2.1.9 Residuals

Model checking is perhaps the most important part of applied statistical modelling.

In the case of ordinary linear models, this is based on examination of the model

residuals, which contain all the information in the data, not explained by the sys-

tematic part of the model. Examination of residuals is also the chief means for model

checking in the case of GLMs, but in this case the standardization of residuals is both

necessary and a little more difficult.

For GLMs the main reason for not simply examining the raw residuals, ε̂i = yi− µ̂i,
is the difficulty of checking the validity of the assumed mean variance relationship

from the raw residuals. For example, if a Poisson model is employed, then the vari-

ance of the residuals should increase in direct proportion to the size of the fitted

values (µ̂i). However if raw residuals are plotted against fitted values it takes an

extra-ordinary ability to judge whether the residual variability is increasing in pro-

portion to the mean, as opposed to, say, the square root or square of the mean. For

this reason it is usual to standardize GLM residuals, in such a way that, if the model

assumptions are correct, the standardized residuals should have approximately equal

variance, and behave, as far as possible, like residuals from an ordinary linear model

(although see figure 6.9 in section 6.5 for an alternative plotting approach).

Pearson Residuals

The most obvious way to standardize the residuals is to divide them by a quantity

proportional to their standard deviation according to the fitted model. This gives rise

to the Pearson residuals

ε̂pi =
yi − µ̂i
√

V (µ̂i)
,

which should have approximately zero mean and variance φ, if the model is correct.

These residuals should not display any trend in mean or variance when plotted against

the fitted values, or any covariates (whether included in the model or not). The name

‘Pearson residuals’ relates to the fact that the sum of squares of the Pearson residuals

gives the Pearson statistic discussed in section 2.1.7.

Note that the Pearson residuals are the residuals of the working linear model from the

converged IRLS method, divided by the square roots of the converged IRLS weights.

THE THEORY OF GLMS 73

Deviance Residuals

In practice the distribution of the Pearson residuals can be quite asymmetric around

zero, so that their behaviour is not as close to ordinary linear model residuals as

might be hoped for. The deviance residuals are often preferable in this respect. The

deviance residuals are arrived at by noting that the deviance plays much the same

role for GLMs that the residual sum of squares plays for ordinary linear models:

indeed for an ordinary linear model the deviance is the residual sum of squares. In

the ordinary linear model case, the deviance is made up of the sum of the squared

residuals. That is the residuals are the square roots of the components of the deviance

with the appropriate sign attached.

So, writing di as the component of the deviance contributed by the ith datum (i.e. the

ith term in the summation in (2.7)) we have

D =

n
∑

i=1

di

and, by analogy with the ordinary linear model, we can define

ε̂di = sign(yi − µ̂i)
√

di.

As required the sum of squares of these ‘deviance residuals’ gives the deviance itself.

Now if the deviance were calculated for a model where all the parameters were

known, then (2.8) would become D∗ ∼ χ2
n, and this might suggest that for a sin-

gle datum di ∼ χ2
1, implying that εdi ∼ N(0, 1). Of course (2.8) can not reasonably

be applied to a single datum, but non the less it suggests that we might expect the

deviance residuals to behave something like N(0, 1) random variables, for a well

fitting model, especially in cases for which (2.8) is expected to be a reasonable ap-

proximation.

2.1.10 Quasi-likelihood

The treatment of GLMs has so far assumed that the distribution of the response vari-

able is a known member of the exponential family. If there is a good reason to sup-

pose that the response follows a particular distribution then it is appealing to base

models on that distribution, but in many cases the nature of the response distribution

is not known so precisely, and it is only possible to specify what the relationship

between the variance of the response and its mean should be. That is, the function

V (µ) can be specified, but little more. The question then arises of whether it is possi-

ble to develop theory for fitting and inference with GLMs, starting from the position

of specifying only the mean variance relationship.

It turns out that it is possible to develop satisfactory methods, based on the notion

of quasi-likelihood. Consider an observation, yi, of a random variable with mean µi
and known variance function, V (µi). Then the log quasi likelihood for µi given yi is

74 GENERALIZED LINEAR MODELS

defined to be

qi(µi) =

∫ µi

yi

yi − z

φV (z)
dz. (2.12)

As we will see, the key feature of this function is that it shares many useful proper-

ties of li, the log-likelihood corresponding to a single observation, but only requires

knowledge of V rather than the full distribution of Yi. Provided that the data are ob-

servations of independent random variables, we can define a log quasi likelihood for

the mean vector, µ, of all the response data, or any parameter vector defining µ as

q(µ) =

n
∑

i=1

qi(µi).

The key property of q is that, for the purposes of inference with GLMs, it behaves

in a very similar manner to the log-likelihood, but only requires knowledge of the

variance function in order to define it.

Consider, for example, obtaining maximum quasi-likelihood parameter estimates of

the GLM parameters β. Differentiating q w.r.t. βj yields

∂q

∂βj
=

n
∑

i=1

yi − µi
φV (µi)

∂µi
∂βj

,

so that the parameter estimates are solutions to the equations

n
∑

i=1

(yi − µi)

V (µi)

∂µi
∂βj

= 0 ∀ j,

but this is exactly the system (2.3), that must be solved to find the m.l.e.s for a GLM.

Hence the maximum quasi-likelihood parameter estimates can be found by the usual

GLM IRLS method, which in any case only requires knowledge of V (µ).

Furthermore, the log-quasi likelihood shares just enough properties with the log-

likelihood that the results on the large sample distribution of the parameter estima-

tors, given in section 2.1.5, also hold for the maximum quasi-likelihood estimators

of the parameters. Similarly, the large sample distributional results of section 2.1.6,

underpinning hypothesis testing with GLMs, hold when the log-likelihood, l, is re-

placed by the log quasi-likelihood, q. The theoretical basis for these assertions is

provided in section 2.4.8.

Note that the log quasi-likelihood of the saturated model is always zero, so the quasi-

deviance of a GLM is simply

Dq = −2q(µ̂)φ.

Obviously the discussion of residuals and scale parameter estimation also carries

over from the likelihood to the quasi-likelihood case, again with no more than the

replacement of l by q.

The practical use of the quasi-likelihood approach requires that the integral in (2.12)

be evaluated, but this is possible for most practically useful forms of V : McCullagh

GEOMETRY OF GLMS 75

and Nelder (1989) give examples, or in R you can type e.g.

quasi(variance="muˆ3")$dev.resids

to access the form of qi for any particular mean variance relationship there imple-

mented. For mean variance relationships corresponding to an exponential family dis-

tribution from table 2.1, the form of the quasi-deviance corresponds exactly to the

form of the deviance for that family.

One major practical use of quasi-likelihood is to provide a means of modelling count

data that are more variable than the Poisson or binomial distributions (with their fixed

scale parameters) predict: the quasi-likelihood approach assumes that φ is unknown.

Such ‘over-dispersed’ data are common in practice. Another practical use is to pro-

vide a means of modelling data with a mean variance relationship for which there is

no obvious exponential family distribution: for example continuous data for which

the variance is expected to be proportional to the mean.

2.2 Geometry of GLMs

The geometry of GLMs and GLM fitting is less straightforward than the geometry of

ordinary linear models, since the likelihood used to judge model fit does not generally

mean that the fit can be judged by Euclidian distance between model and data. Figure

2.1 illustrates the geometric situation that prevails for GLMs, using the example of

the fit to 3 data of a 2 parameter GLM with a Gamma distribution and a log link. The

flat model subspace of section 1.4 is now replaced by a curved ‘model manifold’,

consisting of all the possible fitted value vectors predictable by the model. Since

Euclidean distance between model manifold and data is no longer the measure of

fit being used then different means must be employed to illustrate the geometry of

estimation. The black lines, in the right panel of figure 2.1, show all the combinations

of the response variables, which give rise to the same estimated model. Notice how

these lines are not generally parallel, and are not generally orthogonal to the model

manifold.

To fully understand figure 2.1, it may help to consider what the figure would look

like for some different 2 parameter models.

1. For an ordinary linear model, the model manifold would be a flat plane, to which

all the lines of equal fit would be orthogonal (and hence parallel to each other).

2. For a GLM assuming a normal distribution (but non-identity link) the lines of

equal fit would be orthogonal to the (tangent space of the) model manifold where

they meet it.

3. For a 2 parameter fit to 4 data, the lines of equal fit would become planes of equal

fit.

In general, the geometric picture presented in figure 2.1 applies to any GLM. With

more data the lines of equal fit become n− p dimensional planes of equal fit, where

n and p are the number of data and parameters respectively: for any fixed β, equa-

tion (2.3) gives the restrictions on y defining such a plane. Note that these planes

76 GENERALIZED LINEAR MODELS

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

x

y

1

2

Figure 2.1 The geometry of GLMs. The left panel illustrates the best fit of the generalized

linear model E(y) ≡ µ = exp(β0 + β1x) to the three x, y data shown, assuming that each yi

is an observation of a Gamma distributed random variable with mean given by the model. The

right panel illustrates the geometry of GLM fitting using this model as an example. The unit

cube shown, represents a space within which the vector (y1, y2, y3)
T defines a single point, •.

The grey surface shows all possible predicted values (within the unit cube) according to the

model, i.e. it represents all possible (µ1, µ2, µ3)
T values. As the parameters β0 and β1 are

allowed to vary, over all their possible values, this is the surface that the corresponding model

‘fitted values’ trace out: the ‘model manifold’. The continuous lines, which each start at one

face of the cube and leave at another, are lines of equivalent fit: the values of the response

data (y1, y2, y3)
T lying on such a line, each result in the same maximum likelihood estimates

of β0, β1 and hence the same (µ1, µ2, µ3)
T. Notice how the equivalent fit lines are neither

parallel to each other nor orthogonal to the model manifold.

can intersect — a point which will be returned to later. For discrete response data

the pictures are no different, although the lines of equal fit strictly make sense only

under continuous generalizations of the likelihoods (generally obtainable by replac-

ing factorials by appropriate gamma functions in the probability functions). Only

for the normal distribution are the lines/planes of equal fit orthogonal to the model

manifold where-ever they meet it. For other distributions the lines/planes of equal fit

may sometimes be parallel to each other, but are never all orthogonal to the model

manifold.

2.2.1 The geometry of IRLS

The geometry of the IRLS estimation algorithm is most easily appreciated by con-

sidering the fit of a one parameter model to 2 response data. Figure 2.2 illustrates the

geometry of such a model: in this case a GLM with a log link and Gamma errors,

GEOMETRY OF GLMS 77

0.0 0.5 1.0 1.5 2.0

8
1

0
1

2
1

4
1

6
1

8
2

0

x

y

0 5 10 15

0
5

1
0

1
5

1

2

Figure 2.2 Geometry of the GLM E(yi) ≡ µi = 20 exp(−βxi) where yi ∼ Gamma and

i = 1, 2. The left panel illustrates the maximum likelihood estimate of the model (continuous

line) fitted to the 2 x, y data shown as •. The right panel illustrates the fitting geometry. The

15 × 15 square is part of the space <2 in which (y1, y2) defines a single point, •. The bold

curve is the ‘model manifold’: it consists of all possible points (µ1, µ2) according to the model

(i.e. as β varies (µ1, µ2) traces out this curve). The fine lines are examples of lines of equal fit.

All points (y1, y2) lying on one of these lines share the same MLE of β and hence (µ1, µ2):

this MLE is where the equal fit line cuts the model manifold. The lines of equal fit are plotted

for β = .1, .2, .3, .4, .5, .6, .7, .8, .9, 1, 1.2, 1.5, 2, 3, 4. (β = .1, .7 and 2 are represented

by unbroken lines, with the β = 2 line being near the bottom of the plot. The β = .1 line is

outside the plotting region in this plot, but appears in subsequent plots.)

but similar pictures can be constructed for a GLM with any combination of link and

distributional assumption.

Now the key problems in fitting a GLM are that the model manifold is not flat, and

that the lines of equal fit are not orthogonal to the model manifold where they meet

it. The IRLS method linearly translates and rescales the fitting problem, so that at

the current estimate of µ, the model manifold and intersecting line of equal fit are

orthogonal, and, in the rescaled space, the location of the current estimate of µ is

given by X multiplied by the current β estimate. This rescaling results in a fitting

problem that can be treated as locally linear, so that the β estimate can be updated

by least squares.

Figure 2.3 illustrates how the IRLS steps involved in forming pseudodata and weight-

ing it, effectively transform the fitting problem into one that can be approximately

solved by linear least squares. The figure illustrates the transformations involved in

one IRLS step, which are redone repeatedly, as the IRLS method is iterated to con-

vergence.

78 GENERALIZED LINEAR MODELS

0 5 10 15

0
5

1
0

1
5

(a)

1

2

0 5 10 15

0
5

1
0

1
5

(b)

1

2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

(c)

1

2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

(d)

1

2

Figure 2.3 Geometry of the IRLS estimation of a GLM, based on the example shown in figure

2.2. (a) shows the geometry of the fitting problem — the model manifold is the thick black

curve, the equal fit lines are the thin lines (as figure 2.2), the data are at • and the current

estimates of the fitted values, µ[k], are at �. (b) The problem is re-centred around the current

fitted values (yi is replaced by yi − µ
[k]
i). (c) The problem is linearly re-scaled so that the

columns of X now span the tangent space to the model manifold at �. The tangent space is

illustrated by the grey line (this step replaces yi−µ
[k]
i by g′(µ

[k]
i)(yi−µ

[k]
i)). (d) The problem

is linearly translated so that the location of � is now given by Xβ[k]. For most GLMs the

problem would now have to be rescaled again by multiplying the components relative to each

axis by
√

Wi, where the Wi are the iterative weights: this would ensure that the equal estimate

line through �, is orthogonal to the tangent space. In the current example these weights are

all 1, so that the required orthogonality already holds. Now for the transformed problem, in

the vicinity of �, the model manifold can be approximated by the tangent space, to which the

equal fit lines are approximately orthogonal: hence an updated estimate of µ and β can be

obtained by finding the least squares projection of the transformed data, •, onto the tangent

space (grey line).

GEOMETRY OF GLMS 79

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
2

Figure 2.4 Geometry of fitting and convergence problems. The geometry of a 1 parameter

GLM with a log link and normal errors is illustrated. The thick curve is the model manifold

— within the unit square, it contains all the possible fitted values of the data, according to the

model. The thin lines are the equal fit lines (levels as in figure 2.2). Notice how the lines of

equal fit meet and cross each other at the top left of the plot. Data in this overlap region will

yield model likelihoods having local minima at more than one parameter value. Consideration

of the operation of the IRLS fitting method reveals that, in this situation, it may converge to

different estimates depending on the initial values used to start the fitting process. • illustrates

the location of a problematic response vector, used to illustrate non-unique convergence in the

text.

2.2.2 Geometry and IRLS convergence

Figure 2.4 illustrates the geometry of fitting a model, E(yi) ≡ µi = exp(−βxi),
where the yi are normally distributed and there are two data, yi, to fit, for which

x1 = .6 and x2 = 1.5. As in the previous two sections, lines of equal fit are shown on

a plot in which a response vector (y1, y2)
T would define a single point and the set of

all possible fitted values (µ1, µ2)
T, according to the model, is shown as a thick curve.

In this example, the lines of equal fit intersect and cross in the top left hand corner

of the plot (corresponding to very poor model fit). This crossing is problematic: in

particular, the results of IRLS fitting to data lying in the upper left corner will depend

on the initial parameter estimate from which the IRLS process is started, since each

such data point lies on the intersection of two equal fit lines. If the IRLS iteration is

started from fitted values in the top right of the plot then fitted values nearer the top

right will be estimated, while starting the iteration with fitted values at the bottom

left of the plot will result in estimated fitted values that are different, and closer to

the bottom left of the plot.

That this indeed happens, in practice, is easily demonstrated in R, by fitting to the

data y1 = .02, y2 = .9, illustrated as • in figure 2.4.

> ms<-exp(-x*4) # set initial values at lower left

80 GENERALIZED LINEAR MODELS

> glm(y˜X-1,family=gaussian(link=log),mustart=ms)

Coefficients:

5.618

Residual Deviance: 0.8098 AIC: 7.868

> ms <- exp(-x*0.1) # set initial values at upper right

> glm(y˜X-1,family=gaussian(link=log),mustart=ms)

Coefficients:

0.544

Residual Deviance: 0.7017 AIC: 7.581

Notice that the second fit here actually has higher likelihood (lower deviance) —

the fits are not equivalent in terms of likelihood. The type of fitting geometry that

gives rise to these ambiguities does not always occur: for example some models have

parallel lines/planes of equal fit, but for any model with intersecting lines/planes of

equal fit there is some scope for ambiguity. Fortunately, if the model is a good model,

it is often the case that data lying in the region of ambiguity is rather improbable. In

the example in figure 2.4, the problematic region consists entirely of data that the

model can only fit very poorly. It follows that very poor models of data may yield

estimation problems of this sort: but it is not uncommon for very poor models to

be a feature of early attempts to model any complex set of data. If such problems

are encountered then it can be better to proceed by linear modelling of transformed

response data, until good enough candidate models have been identified to switch

back to GLMs.

Of course, if reasonable starting values are chosen, then the ambiguity in the fitting

process is unlikely to cause major problems when fitting GLMs: the algorithm will

converge to one of the local minima of the likelihood, after all. However the ambi-

guity can cause more serious convergence problems for GAM estimation by “per-

formance iteration”, when it becomes possible to cycle between alternative minima

without ever converging.

2.3 GLMs with R

The glm function provides the means for using GLMs in R. Its use is similar to that

of the lm function but with two differences. The right hand side of the model formula,

specifying the form for the linear predictor, now gives the link function of the mean

of the response, rather than the mean of the response directly. Also glm takes a

family argument, which is used to specify the distribution from the exponential

family to use, and the link function that is to go with it. In this section the use of the

glm function with a variety of simple GLMs will be presented, to illustrate the wide

variety of model structures that the GLM encompasses.

2.3.1 Binomial models and heart disease

Early diagnosis of heart attack is important if the best care is to be given to patients.

One suggested diagnostic aid is the level of the enzyme creatinine kinase (CK) in

GLMS WITH R 81

CK value Patients with Patients without

Heart attack heart attack

20 2 88

60 13 26

100 30 8

140 30 5

180 21 0

220 19 1

260 18 1

300 13 1

340 19 1

380 15 0

420 7 0

460 8 0

Table 2.2 Data (from Hand et al., 1994) on heart attack probability as a function of CK level.

the blood stream. A study was conducted (Smith, 1967) in which the level of CK

was measured for 360 patients suspected of suffering from a heart attack. Whether

or not each patient had really suffered a heart attack was established later, after more

prolonged medical investigation. The data are given in table 2.2. The original paper

classified patients according to ranges of CK level, but in the table only midpoints of

the range have been given.

It would be good to be able to base diagnostic criteria on data like these, so that CK

level can be used to estimate the probability that a patient has had a heart attack.

We can go some way towards such a goal, by constructing a model which tries to

explain the proportion of patients suffering a heart attack, from the CK levels. In the

following the data were read into a data.frame called heart. It contains variables

ha, ok and ck, giving numbers of patients who subsequently turned out to have had,

or not to have had, heart attacks, at each CK level. It makes sense to plot the observed

proportions against CK level first.

p<-heart$ha/(heart$ha+heart$ok)

plot(heart$ck,p,xlab="Creatinine kinase level",

lab="Proportion Heart Attack")

The resulting plot is figure 2.5.

A particularly convenient model for describing these proportions is

E(pi) =
eβ0+β1xi

1 + eβ0+β1xi
,

where pi is the proportion with heart attacks at CK level xi. This curve is sigmoid in

82 GENERALIZED LINEAR MODELS

100 200 300 400
0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Creatinine kinase level

P
ro

p
o
rt

io
n
 H

e
a
rt

 A
tt

a
c
k

Figure 2.5 Observed proportion of patients subsequently diagnosed as having had a heart

attack, against CK level at admittance .

shape, and bounded between 0 and 1. (Obviously the heart data do not show the

lower tail of this proposed sigmoid curve.) This means that the expected number of

heart attack sufferers is given by

µi ≡ E(piNi) =
eβ0+β1xi

1 + eβ0+β1xi
Ni,

where Ni is the known total number of patients at each CK level. This model is

somewhat non-linear in its parameters, but if the ‘logit’ link,

g(µi) = log

(

µi
Ni − µi

)

,

is applied to it we obtain

g(µi) = β0 + β1xi,

the r.h.s. of which is linear in the model parameters. The logit link is the canonical

link for binomial models, and hence the default in R.

In R there are two ways of specifying binomial models with glm.

1. The response variable can be the observed proportion of successful binomial tri-

als, in which case an array giving the number of trials must be supplied as the

weights argument to glm. For binary data, no weights vector need be supplied,

as the default weights of 1 suffice.

2. The response variable can be supplied as a two column array, in which the first

column gives the number of binomial ‘successes’, and the second column is the

number of binomial ‘failures’.

For the current example the second method will be used. Supplying 2 arrays of the

GLMS WITH R 83

−2 0 2 4 6 8 10 12

−
3

−
1

1
2

3

Predicted values
R

e
s
id

u
a

ls

Residuals vs Fitted

1
9

3

−1.5 −0.5 0.0 0.5 1.0 1.5

−
2

0
−

1
0

0
1

0

Theoretical Quantiles

S
td

.
d

e
v
ia

n
c
e

 r
e

s
id

.

Normal Q−Q plot

1

3

9

−2 0 2 4 6 8 10 12

0
1

2
3

4
5

Predicted values

S
td

.
d

e
v
ia

n
c
e

 r
e

s
id

.

Scale−Location plot
1

3

9

2 4 6 8 10 12

0
2

4
6

8

Obs. number

C
o

o
k
’s

 d
is

ta
n

c
e

Cook’s distance plot

1

3
5

Figure 2.6 Model checking plots for the first attempt to fit the CK data.

r.h.s. of the model formula involves using cbind. Here is a glm call which will fit
the heart attack model:

> mod.0<-glm(cbind(ha,ok)˜ck,family=binomial(link=logit),

+ data=heart)

or we could have used

mod.0<-glm(cbind(ha,ok)˜ck,family=binomial,data=heart)

since the logit link is canonical for the binomial and hence the R default. Here is the

default information printed about the model:

> mod.0

Call: glm(formula=cbind(ha,ok)˜ck,family=binomial,data=heart)

Coefficients:

(Intercept) ck

-2.75834 0.03124

Degrees of Freedom: 11 Total (i.e. Null); 10 Residual

Null Deviance: 271.7

Residual Deviance: 36.93 AIC: 62.33

The Null deviance is the deviance for a model with just a constant term, while

84 GENERALIZED LINEAR MODELS

the Residual deviance is the deviance of the fitted model (and also the scaled
deviance in the case of a binomial model). These can be combined to give the pro-
portion deviance explained, a generalization of r2, as follows:

> (271.7-36.93)/271.7

[1] 0.864078

AIC is the Akaike Information Criteria for the model, discussed in sections 2.1.4 and

2.4.7 (it could also have been extracted using AIC(mod.))).

Notice that the deviance is quite high for the χ2
10 random variable that it should

approximate if the model is fitting well. In fact

> 1-pchisq(36.93,10)

[1] 5.819325e-05

shows that there is a very small probability of a χ2
10 random variable being as large

as 36.93. The residual plots (shown in figure 2.6) also suggest a poor fit.

> op<-par(mfrow=c(2,2))

> plot(mod.0)

The plots have the same interpretation as the model checking plots for an ordinary

linear model, discussed in detail in section 1.5.1, except that it is now the deviance

residuals that are plotted, the Predicted values are on the scale of the linear

predictor rather than the response, and some departure from a straight line relation-

ship in the Normal QQ plot is often to be expected. The plots are not easy to interpret

when there are so few data, but there appears to be a trend in the mean of the residuals

plotted against fitted value, which would cause concern. Furthermore, the first point

appears to have rather high influence. Note that the interpretation of the residuals

would be much more difficult for binary data: exercise 2 explores simple approaches

that can be taken in the binary case.

Notice how the problems do not stand out so clearly from a plot of the fitted values
overlayed on the raw estimated probabilities (see figure 2.7):

> plot(heart$ck,p,xlab="Creatinine kinase level",

+ ylab="Proportion Heart Attack")

> lines(heart$ck,fitted(mod.0))

Note also that the fitted values provided by glm for binomial models are the esti-

mated pi’s, rather than the estimated µi’s.

The residual plots suggest trying a cubic linear predictor, rather than the initial straight
line.

> mod.2<-glm(cbind(ha,ok)˜ck+I(ckˆ2)+I(ckˆ3),family=binomial,

+ data=heart)

> mod.2

Call: glm(formula=cbind(ha,ok)˜ck+I(ckˆ2)+I(ckˆ3),

GLMS WITH R 85

100 200 300 400

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Creatinine kinase level

P
ro

p
o
rt

io
n
 H

e
a
rt

 A
tt

a
c
k

Figure 2.7 Predicted and observed probability of heart attack against CK level.

family=binomial,data=heart)

Coefficients:

(Intercept) ck I(ckˆ2) I(ckˆ3)

-5.786e+00 1.102e-01 -4.648e-04 6.448e-07

Degrees of Freedom: 11 Total (i.e. Null); 8 Residual

Null Deviance: 271.7

Residual Deviance: 4.252 AIC: 33.66

> par(mfrow=c(2,2))

> plot(mod.2)

Clearly 4.252 is not too large for consistency with a χ2
8 distribution (it is less than the

expected value, in fact) and the AIC has improved substantially. The residual plots
(figure 2.8) now show less clear patterns than for the previous model, although if we
had more data then such a departure from constant variance would be a cause for
concern. Furthermore the fit is clearly closer to the data now (see figure 2.9):

par(mfrow=c(1,1))

plot(heart$ck,p,xlab="Creatinine kinase level",

ylab="Proportion Heart Attack")

lines(heart$ck,fitted(mod.2))

We can also get R to test the null hypothesis that mod.0 is correct against the alter-
native that mod.2 is required. Somewhat confusingly the anova function is used to
do this, although it is an analysis of deviance (i.e. a generalized likelihood ratio test)
that is being performed, and not an analysis of variance.

> anova(mod.0,mod.2,test="Chisq")

Analysis of Deviance Table

86 GENERALIZED LINEAR MODELS

−4 −2 0 2 4 6 8

−
1

.0
0

.0
1

.0

Predicted values

R
e

s
id

u
a

ls

Residuals vs Fitted

5

4

10

−1.5 −0.5 0.5 1.0 1.5

−
1

0
0

5
1

0

Theoretical Quantiles

S
td

.
d

e
v
ia

n
c
e

 r
e

s
id

.

Normal Q−Q plot

5

4

10

−4 −2 0 2 4 6 8

0
.0

1
.0

2
.0

3
.0

Predicted values

S
td

.
d

e
v
ia

n
c
e

 r
e

s
id

.

Scale−Location plot
5

4

10

2 4 6 8 10 12

0
.0

0
0

.1
5

0
.3

0

Obs. number

C
o

o
k
’s

 d
is

ta
n

c
e

Cook’s distance plot
5

4 10

Figure 2.8 Model checking plots for the second attempt to fit the CK data.

100 200 300 400

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Creatinine kinase level

P
ro

p
o
rt

io
n
 H

e
a
rt

 A
tt
a
c
k

Figure 2.9 Predicted and observed probability of heart attack against CK level.

GLMS WITH R 87

1982 1984 1986 1988 1990 1992

0
5
0

1
5
0

2
5
0

Year

N
e
w

 A
ID

S
 c

a
s
e
s

Figure 2.10 AIDS cases per year in Belgium

Model 1: cbind(ha, ok) ˜ ck

Model 2: cbind(ha, ok) ˜ ck + I(ckˆ2) + I(ckˆ3)

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 10 36.929

2 8 4.252 2 32.676 8.025e-08

A p-value this low indicates very strong evidence against the null hypothesis - we

really do need model 2. Recall that this comparison of models has a much firmer

theoretical basis than the examination of the individual deviances had.

2.3.2 A Poisson regression epidemic model

The introduction to this chapter included a simple model for the early stages of an
epidemic. Venables and Ripley (2003) provide some data on the number of new
AIDS cases each year, in Belgium, from 1981 onwards. The data can be entered into
R and plotted as follows.

y<- c(12,14,33,50,67,74,123,141,165,204,253,246,240)

t<-1:13

plot(t+1980,y,xlab="Year",ylab="New AIDS cases",ylim=c(0,280))

Figure 2.10 shows the resulting plot. The scientifically interesting question, relating

to such data, is whether they provide any evidence that the increase in the underly-

ing rate of new case generation is slowing. The simple model from the introduction

might provide a plausible model from which to start investigating this question. The

model assumes that the underlying expected number of cases per year, µi, increases

according to:

µi = c exp(bti)

where c and b are unknown parameters, and ti is time in years since the start of the

88 GENERALIZED LINEAR MODELS

3.5 4.0 4.5 5.0 5.5

−
4

−
2

0
2

Predicted values

R
e

s
id

u
a

ls

Residuals vs Fitted

13
2

1

−1.5 −0.5 0.5 1.0 1.5

−
2

.0
−

0
.5

0
.5

Theoretical Quantiles

S
td

.
d

e
v
ia

n
c
e

 r
e

s
id

.

Normal Q−Q plot

13

2
1

3.5 4.0 4.5 5.0 5.5

0
.0

0
.5

1
.0

1
.5

Predicted values

S
td

.
d

e
v
ia

n
c
e

 r
e

s
id

.

Scale−Location plot
13

2
1

2 4 6 8 10 12

0
2

4
6

8
1

2

Obs. number

C
o

o
k
’s

 d
is

ta
n

c
e

Cook’s distance plot

13

21

Figure 2.11 Residual plots for m0 fitted to the AIDS data.

data. A log link turns this into a GLM,

log(µi) = log(c) + bti = β0 + tiβ1,

and we assume that yi ∼ Poi(µi) where yi is the observed number of new cases in

year ti. The yi are assumed independent. This is essentially a model of unchecked

spread of the disease.

The following fits the model (the log link is canonical for the Poisson distribution,
and hence the R default) and checks it.

> m0 <- glm(y˜t,poisson)

> m0

Call: glm(formula = y ˜ t, family = poisson)

Coefficients:

(Intercept) t

3.1406 0.2021

Degrees of Freedom: 12 Total (i.e. Null); 11 Residual

Null Deviance: 872.2

Residual Deviance: 80.69 AIC: 166.4

> par(mfrow=c(2,2))

> plot(m0)

The deviance is very high for the observation of a χ2
11 random variable that it ought

GLMS WITH R 89

2.5 3.0 3.5 4.0 4.5 5.0 5.5

−
1

.5
−

0
.5

0
.5

1
.5

Predicted values

R
e

s
id

u
a

ls

Residuals vs Fitted

11

6

2

−1.5 −0.5 0.5 1.0 1.5

−
1

0
1

2

Theoretical Quantiles

S
td

.
d

e
v
ia

n
c
e

 r
e

s
id

.

Normal Q−Q plot

11

6
2

2.5 3.0 3.5 4.0 4.5 5.0 5.5

0
.0

0
.4

0
.8

1
.2

Predicted values

S
td

.
d

e
v
ia

n
c
e

 r
e

s
id

.

Scale−Location plot
11

6

2

2 4 6 8 10 12

0
.0

0
.2

0
.4

0
.6

Obs. number

C
o

o
k
’s

 d
is

ta
n

c
e

Cook’s distance plot

13

11

2

Figure 2.12 Residual plots for m1 fitted to the AIDS data.

to approximate, if the model is a good fit. The residual plots shown in figure 2.11

are also worrying. In particular the clear pattern in the mean of the residuals, plotted

against the fitted values, shows violation of the independence assumption, and prob-

ably results from omission of something important from the model. Since, for this

model, the fitted values increase monotonically with time, we would get the same

sort of pattern if residuals were plotted against time — i.e. it appears that a quadratic

term in time could usefully be added to the model. The very high influence of the

final year’s data, evident in the Cook’s distance plot, is also worrying. Note that the

interpretation of residual plots can become difficult if the Poisson mean is low, so

that the data are mostly zeroes and ones. In such cases the simulation approaches

covered in exercise 2 can prove useful, if adapted to the Poisson case.

It seems sensible to amend the model by adding a quadratic term to obtain:

µi = exp(β0 + β1ti + β2t
2
i).

This model allows situations other than unrestricted spread of the disease to be rep-
resented. The following fits and checks it:

> m1 <- glm(y˜t+I(tˆ2),poisson)

> plot(m1)

> summary(m1)

Call:

glm(formula = y ˜ t + I(tˆ2), family = poisson)

90 GENERALIZED LINEAR MODELS

Deviance Residuals:

Min 1Q Median 3Q Max

-1.45903 -0.64491 0.08927 0.67117 1.54596

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.901459 0.186877 10.175 < 2e-16 ***
t 0.556003 0.045780 12.145 < 2e-16 ***
I(tˆ2) -0.021346 0.002659 -8.029 9.82e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 872.2058 on 12 degrees of freedom

Residual deviance: 9.2402 on 10 degrees of freedom

AIC: 96.924

Number of Fisher Scoring iterations: 4

Notice how the residual plots shown in figure 2.12 are now much improved: the clear

trend in the mean has gone, the (vertical) spread of the residuals is reasonably even,

the influence of point 13 is much reduced and the QQ plot is straighter. The fuller

model summary shown for this model also indicates improvement: the deviance is

now quite reasonable, i.e. close to what is expected for a χ2
10 r.v., and the AIC has

dropped massively. All in all this model appears to be quite reasonable.

Notice also, how the structure of the glm summary is similar to an lm summary.

The standard errors and p-values in the table of coefficient estimates is now based

on the large sample distribution of the parameter estimators given in section 2.1.5.

The z value column simply reports the parameter estimates divided by their es-

timated standard deviations. Since no dispersion parameter estimate is required for

the Poisson, these z-values should be observations of N(0,1) r.v.s, if the true value of

the corresponding parameter is zero (at least in the large sample limit), and the re-

ported p-value is based on this distributional approximation. For mod.1 the reported

p-values are very low: i.e for each parameter there is clear evidence that it is not zero.

Note that Fisher Scoring iterations are another name for IRLS iterations

in the GLM context.

Examination of the coefficient summary table indicates that the hypothesis that β2 =
0 can be firmly rejected, providing clear evidence that mod.1 is preferable to mod.0.
The same question can also be addressed using a generalized likelihood ratio test:

> anova(m0,m1,test="Chisq")

Analysis of Deviance Table

Model 1: y ˜ t

Model 2: y ˜ t + I(tˆ2)

GLMS WITH R 91

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 11 80.686

2 10 9.240 1 71.446 2.849e-17

The conclusion is the same as before: the tiny p-value indicates that mod.0 should

be firmly rejected in favour of mod.1. Notice that the p-value from the summary

and the analysis of deviance table are different, since they are based on fundamen-

tally different approximate distributional results. The test="Chisq" argument to

anova is justified because the scale parameter is known for this model, had it been

estimated it would be preferable to set test to "F".

The hypothesis testing approach to model selection is appropriate here, as the main

question of interest is whether there is evidence, from these data, that the epidemic

is spreading un-checked, or not. It would be prudent not to declare that things are

improving if the evidence is not quite firm that this is true. If we had been more

interested in simply finding the best model for predicting the data then comparison

of AIC would be more appropriate, but leads to the same conclusion for these data.

The parameter β1 can be interpreted as the rate of spread of the disease at the epi-
demic start: that is, as a sort of intrinsic rate of increase of the disease in a new
population where no control measures are in place. Notice how the estimate of this
parameter has actually increased substantially between the first and second models:
it would have been possible to be quite badly misled if we had stuck with the first
poorly fitting model. An approximate confidence interval for β1 can be obtained in
the usual manner, based on the large sample results from section 2.1.5. The required
estimate and standard error are easily extracted using the summary function, as the
following illustrates:

> beta.1 <- summary(m1)$coefficients[2,]

> ci <- c(beta.1[1]-1.96*beta.1[2],beta.1[1]+1.96*beta.1[2])

> ci # print 95% CI for beta_1

0.4662750 0.6457316

The use of the critical points of the standard normal distribution is appropriate, be-

cause the scale parameter is known for this model. Had it been estimated, then we

would have had to use critical points from the t distribution, with degrees of freedom

set to the residual degrees of freedom of the model (i.e number of data less number

of estimated β parameters).

Another obvious thing to want to do, is to use the model to find a confidence interval
for the underlying rate of case generation at any time. The following R code illus-
trates how to use the predict.glm function to find CI’s for the underlying rate,
over the whole period of the data, and plot these.

new.t<-seq(1,13,length=100)

fv <- predict(m1,data.frame(t=new.t),se=TRUE)

plot(t+1980,y,xlab="Year",ylab="New AIDS cases",ylim=c(0,280))

lines(new.t+1980,exp(fv$fit))

lines(new.t+1980,exp(fv$fit+2*fv$se.fit),lty=2)

lines(new.t+1980,exp(fv$fit-2*fv$se.fit),lty=2)

92 GENERALIZED LINEAR MODELS

1982 1984 1986 1988 1990 1992

0
5
0

1
5
0

2
5
0

Year

N
e
w

 A
ID

S
 c

a
s
e
s

Figure 2.13 Underlying AIDS case rate according to model m1 shown as a continuous curve

with 95% confidence limits shown as dashed curves.

The plot is shown in figure 2.13. Notice that by default the predict.glm function

predicts on the scale of the linear predictor: we have to apply the inverse of the link

function to get back onto the original response scale.

So the data provide quite firm evidence to suggest that the unfettered exponential

increase model is overly pessimistic: by the end of the data there is good evidence

that the rate of increase is slowing. Of course this model contains no mechanistic

content — it says nothing about how or why the slowing might be occurring: as such

it is entirely in-appropriate for prediction beyond the range of the data. The model

allows us to be reasonably confident that the apparent slowing in the rate of increase

in new cases is real, and not just the result of chance variation, but it says little or

nothing about what may happen later.

2.3.3 Log-linear models for categorical data

The following table classifies a sample of women and men according to their belief

in the afterlife:

Believer Non-Believer

Female 435 147

Male 375 134

The data (reported in Agresti, 1996) come from the US General Social Survey (1991),

and the ‘non-believer’ category includes ‘undecideds’. Are there differences between

males and females in the holding of this belief? We can address this question by us-

ing analysis of deviance to compare the fit of 2 competing models of these data: one

in which belief is modelled as independent of gender, and a second in which there

is some interaction between belief and gender. First consider the model of indepen-

GLMS WITH R 93

dence. If yi is an observation of the counts in one of the cells of the table, then we

could model the expected number of counts as

µi ≡ E(Yi) = nγkαj if yi is data for gender k, and faith j

where n is the total number of people surveyed, α1 the proportion of believers, α2

the proportion of non-believers and γ1 and γ2 the proportions of women and men

respectively. Taking logs of this model yields

ηi ≡ log(µi) = log(n) + log(γk) + log(αj).

So defining ñ = log(n), γ̃k = log(γk) and α̃j = log(αj) the model can be written

as








η1

η2

η3

η4









=









1 1 0 0 1
1 1 0 1 0
1 0 1 0 1
1 0 1 1 0





















ñ
γ̃1

γ̃2

α̃1

α̃2













This is clearly a GLM structure, but is obviously not identifiable. Dropping γ̃1 and

α̃1 solves the identifiability problem yielding








η1

η2

η3

η4









=









1 0 1
1 0 0
1 1 1
1 1 0













ñ
γ̃2

α̃2



 .

Note how gender and faith are both factor variables with two levels in this model.

If the counts in the contingency table occurred independently at random, then the

obvious distribution to use would be Poisson. In fact even when the total number

of subjects in the table, or even some other marginal totals are fixed, then it can

be shown that the correct likelihood can be written as a product of Poisson p.m.f.s,

conditional on the various fixed quantities. Hence provided that the fitted model is

forced to match the fixed total, and any fixed marginal totals, the Poisson is still the

distribution to use. As was shown in section 2.1.8, forcing the model to match certain

fixed totals in the data is simply a matter of insisting on certain terms being retained

in the model.

The simple ‘independence’ model is easily estimated in R. First enter the data and
check it:

> al<-data.frame(y=c(435,147,375,134),

+ gender=as.factor(c("F","F","M","M")),

+ faith=as.factor(c(1,0,1,0)))

> al

y gender faith

1 435 F 1

2 147 F 0

3 375 M 1

4 134 M 0

94 GENERALIZED LINEAR MODELS

Since gender and faith are both factor variables, model specification is very easy. The
following fits the model and checks that the model matrix is as expected:

> mod.0<-glm(y˜gender+faith,data=al,family=poisson)

> model.matrix(mod.0)

(Intercept) genderM faith1

1 1 0 1

2 1 0 0

3 1 1 1

4 1 1 0

Now look at the fitted model object mod.0

> mod.0

Call: glm(formula=y˜gender+faith,family=poisson,data=al)

Coefficients:

(Intercept) genderM faith1

5.0100 -0.1340 1.0587

Degrees of Freedom: 3 Total (i.e. Null); 1 Residual

Null Deviance: 272.7

Residual Deviance: 0.162 AIC: 35.41

> fitted(mod.0)

1 2 3 4

432.099 149.901 377.901 131.099

The fit appears to be quite close, and it would be somewhat surprising if a model with

interactions between faith and gender did significantly better. Never the less such a

model could be:

ηi ≡ log(µi) = ñ + γ̃k + α̃j + ζ̃kj if yi is data for gender k and belief j

where ζkj is an ‘interaction parameter’. This model allows each combination of faith

and gender to vary independently. As written, the model has rather a large number of

un-identifiable terms.









η1

η2

η3

η4









=









1 1 0 0 1 0 1 0 0
1 1 0 1 0 1 0 0 0
1 0 1 0 1 0 0 0 1
1 0 1 1 0 0 0 1 0





































ñ
γ̃1

γ̃2

α̃1

α̃2

ζ̃11

ζ̃12

ζ̃21

ζ̃22





























.

GLMS WITH R 95

But this is easily reduced to something identifiable:








η1

η2

η3

η4









=









1 0 1 0
1 0 0 0
1 1 1 1
1 1 0 0

















ñ
γ̃2

α̃2

ζ̃22









.

The following fits the model, checks the model matrix and prints the fitted model
object:

> mod.1<-glm(y˜gender*faith,data=al,family=poisson)

> model.matrix(mod.1)

(Intercept) genderM faith1 genderM:faith1

1 1 0 1 0

2 1 0 0 0

3 1 1 1 1

4 1 1 0 0

> mod.1

Call: glm(formula=y˜gender*faith,family=poisson,data=al)

Coefficients:

(Intercept) genderM faith1 genderM:faith1

4.99043 -0.09259 1.08491 -0.05583

Degrees of Freedom: 3 Total (i.e. Null); 0 Residual

Null Deviance: 272.7

Residual Deviance: 9.659e-14 AIC: 37.25

To test whether there is evidence for an interaction between gender and faith the null
hypothesis that mod.0 is correct is tested against the more general alternative that
mod.1 is correct, using analysis of deviance.

> anova(mod.0,mod.1,test="Chisq")

Analysis of Deviance Table

Model 1: y ˜ gender + faith

Model 2: y ˜ gender * faith

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 1 0.16200

2 0 9.659e-14 1 0.16200 0.68733

A p-value of 0.69 suggests that there is no evidence to reject model 0 and the hypoth-

esis of no association between gender and belief in the afterlife.

Notice that, in fact, the model with the interaction is the saturated model, which is

why its deviance is numerically zero, and there was not really any need to fit it and

compare it with the independence model explicitly — in this case we could just as

well have examined the deviance of the independence model. However the general

approach taken for this simple 2 way contingency table can easily be generalized to

96 GENERALIZED LINEAR MODELS

multi-way tables and to arbitrary number of groups. In other words, the approach

outlined here can be extended to produce a rather general approach for analyzing

categorical data using log-linear GLMs.

Finally, note that the fitted values for mod.0 had the odd property that although

the fitted values and original data are different, the total number of men and women

is conserved between data and fitted values, as is the total number of believers and

non-believers. This results from the fact that the log link is canonical for the Poisson

distribution, so by the results of section 2.1.8 XTy = XTµ̂. The summations equated

on the two sides of this last equation are the total number of subjects, the total number

of males and the total number of believers: this explains the match between fitted

values and data in respect of these totals.

2.3.4 Sole eggs in the Bristol channel

Fish stock assessment is difficult because adult fish are not easy to survey: they tend

to actively avoid fishing gear, so that turning number caught into an assessment of

the number in the sea is rather difficult. To get around this problem, fisheries biolo-

gists sometimes try and count fish eggs, and work back to the number of adult fish

required to produce the estimated egg population. These ‘egg production methods’

are appealing because eggs are straightforward to sample. This section concerns a

simple attempt to model data on sole eggs in the Bristol channel. The data (available

in Dixon, 2003) are measurements of density of eggs per square metre of sea surface

in each of 4 identifiable egg developmental stages, at each of a number of sampling

stations in the Bristol channel on the west coast of England. The samples were taken

during 5 cruises spaced out over the spawning season. Figure 2.14 shows the sur-

vey locations and egg densities for stage I eggs for each of the 5 surveys. Similar

plots could be produced for stages II-IV. For further information on this stock, see

Horwood (1993) and Horwood and Walker (1990).

The biologists’ chief interest is in estimating the rate at which eggs are spawned at

any time and place within the survey arena, so this is the quantity that needs to be

estimated from the data. To this end it helps that the durations of the egg stages are

known (they vary somewhat with temperature, but temperature is known for each

sample). Basic demography suggests that a reasonable model for the density of eggs

(per day per square metre of sea surface), at any age a and location-time with covari-

ates x, would be

d(a,x) = S(x)e−δ(x)a.

That is, the density of eggs of age a is given by the product of the local spawning rate

S and the local survival rate. δ is the per capita mortality rate, and, given this rate,

we expect a proportion exp(−δa) of eggs to reach age a. Both S and δ are assumed

to be functions of some covariates.

What we actually observe are not egg densities per unit age, per m2 sea surface, but

egg densities in stages per m2 sea surface: yi, say. To relate the model to the data we

need to integrate the model egg density over the age range to which any particular

GLMS WITH R 97

−6.5 −6.0 −5.5 −5.0 −4.5 −4.0

5
0

.0
5

0
.5

5
1

.0
5

1
.5

day 49.5

lo

la

−6.5 −6.0 −5.5 −5.0 −4.5 −4.0

5
0

.0
5

0
.5

5
1

.0
5

1
.5

day 70

lo

la

−6.5 −6.0 −5.5 −5.0 −4.5 −4.0

5
0

.0
5

0
.5

5
1

.0
5

1
.5

day 93.5

lo

la

−6.5 −6.0 −5.5 −5.0 −4.5 −4.0

5
0

.0
5

0
.5

5
1

.0
5

1
.5

day 110.5

lo

la

−6.5 −6.0 −5.5 −5.0 −4.5 −4.0

5
0

.0
5

0
.5

5
1

.0
5

1
.5

day 140.5

lo

la

Figure 2.14 Density per m2 sea surface of stage I sole eggs in the Bristol channel. The days

given are the Julian day of the survey midpoint (day 1 is January 1). The symbol sizes are

proportional to egg density and a simple dot indicates a station where no eggs were found.

datum relates. That is, if a−i and a+
i are the lower and upper age limits for the egg

stage to which yi relates, then the model should be

E(yi) ≡ µi =

∫ a+
i

a−i

d(z,xi)dz.

Evaluation of the integral would be straightforward, but does not enable the model to

be expressed in the form of a GLM. However, if the integral is approximated so that

the model becomes

µi = ∆id(āi,xi)),

where ∆i = a+
i − a−i and āi = (a+

i + a−i)/2, then progress can be made, since in

that case

log(µi) = log(∆i) + log(S(x))− δ(x)āi. (2.13)

The right hand side of this model can be expressed as the linear predictor of a GLM,

with terms representing log(S) and δ as functions of covariates and with log(∆)
treated as an ‘offset’ term — essentially a column of the model matrix with associated

parameter fixed at 1.

For the sole eggs, a reasonable starting model might represent log(S) as a cubic

function of longitude, lo, latitude, la, and time, t. Mortality might be modelled by

98 GENERALIZED LINEAR MODELS

0 1 2 3

0
1

2
3

4

fitted(b4)^0.5

s
o
lr
$
e
g
g
s
^0

.5

0 1 2 3

−
4

−
2

0
2

4
6

fitted(b4)^0.5

re
s
id

u
a
ls

(b
4
)

Figure 2.15 Residual plots for the final Sole egg model.

a simpler function — say a quadratic in t. It remains only to decide on a distributional

assumption. The eggs are sampled by hauling a net vertically through the water and

counting the number of eggs caught in it. This might suggest a Poisson model, but

most such data display overdispersion relative to Poisson, and additionally, the data

are not available as raw counts but rather as densities per m2 sea surface. These

considerations suggest using quasi-likelihood, with the variance proportional to the

mean.

The following R code takes the sole data frame, calculates the mean ages and offset
terms required, and fits the suggested model. Since polynomial models can lead to
numerical stability problems, if not handled carefully, the covariates are all translated
and scaled before fitting.

> sole$off <- log(sole$a.1-sole$a.0)# model offset term

> sole$a<-(sole$a.1+sole$a.0)/2 # mean stage age

> solr<-sole # make copy for rescaling

> solr$t<-solr$t-mean(sole$t)

> solr$t<-solr$t/var(sole$t)ˆ0.5

> solr$la<-solr$la-mean(sole$la)

> solr$lo<-solr$lo-mean(sole$lo)

> b <- glm(eggs ˜ offset(off)+lo+la+t+I(lo*la)+I(loˆ2)+I(laˆ2)

+ +I(tˆ2)+I(lo*t)+I(la*t)+I(loˆ3)+I(laˆ3)+I(tˆ3)+

+ I(lo*la*t)+I(loˆ2*la)+I(lo*laˆ2)+I(loˆ2*t)+

+ I(laˆ2*t)+I(la*tˆ2)+I(lo*tˆ2)+ a +I(a*t)+I(tˆ2*a),

+ family=quasi(link=log,variance="mu"),data=solr)

> summary(b)

Call:

glm(formula = eggs˜offset(off)+lo+la+t+I(lo*la)+

I(loˆ2)+I(laˆ2)+I(tˆ2)+I(lo*t)+I(la*t)+I(loˆ3)+

I(laˆ3)+I(tˆ3)+I(lo*la*t)+I(loˆ2*la)+I(lo*laˆ2)

+I(loˆ2*t)+I(laˆ2*t)+I(la*tˆ2)+I(lo*tˆ2)+

a+I(a*t)+I(tˆ2*a),family = quasi(link=log,

GLMS WITH R 99

variance = "mu"), data = solr)

Deviance Residuals:

Min 1Q Median 3Q Max

-4.10474 -0.35127 -0.10418 -0.01289 5.66956

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.03836 0.14560 -0.263 0.792202

lo 5.22548 0.39436 13.251 < 2e-16 ***
la -5.94345 0.50135 -11.855 < 2e-16 ***
t -2.43222 0.25761 -9.442 < 2e-16 ***
I(lo * la) 3.38576 0.61797 5.479 4.99e-08 ***
I(loˆ2) -3.98406 0.36744 -10.843 < 2e-16 ***
I(laˆ2) -4.21517 0.56228 -7.497 1.10e-13 ***
I(tˆ2) -1.77607 0.26279 -6.758 1.97e-11 ***
I(lo * t) 0.20029 0.35117 0.570 0.568518

I(la * t) 1.82637 0.47332 3.859 0.000119 ***
I(loˆ3) -3.46452 0.49554 -6.991 4.03e-12 ***
I(laˆ3) 8.53152 1.28587 6.635 4.48e-11 ***
I(tˆ3) 0.70085 0.12397 5.653 1.87e-08 ***
I(lo * la * t) -1.10150 0.90738 -1.214 0.224959

I(loˆ2 * la) 5.20779 0.88873 5.860 5.65e-09 ***
I(lo * laˆ2) -12.87497 1.24298 -10.358 < 2e-16 ***
I(loˆ2 * t) 0.79928 0.54238 1.474 0.140774

I(laˆ2 * t) 5.42159 1.08911 4.978 7.14e-07 ***
I(la * tˆ2) -1.14220 0.46440 -2.459 0.014021 *
I(lo * tˆ2) 0.65862 0.36929 1.783 0.074705 .

a -0.12285 0.02184 -5.624 2.21e-08 ***
I(a * t) 0.09456 0.04615 2.049 0.040635 *
I(tˆ2 * a) -0.18310 0.05998 -3.053 0.002306 **

Sig. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for quasi family taken to be 1.051635)

Null deviance: 3108.86 on 1574 degrees of freedom

Residual deviance: 913.75 on 1552 degrees of freedom

AIC: NA

Number of Fisher Scoring iterations: 7

The summary information suggests dropping the lo*t term (it seems unreasonable
to drop the constant altogether). Rather than re-type the whole glm command again
it is easier to use:

b1<-update(b,˜.-I(lo*t))

which re-fits the model, dropping the term specified. Repeating the process, suggests

100 GENERALIZED LINEAR MODELS

day 50

−6.5 −6.0 −5.5 −5.0 −4.5 −4.0

5
0

.0
5

0
.5

5
1

.0
5

1
.5

day 68

−6.5 −6.0 −5.5 −5.0 −4.5 −4.0

5
0

.0
5

0
.5

5
1

.0
5

1
.5

day 86

−6.5 −6.0 −5.5 −5.0 −4.5 −4.0

5
0

.0
5

0
.5

5
1

.0
5

1
.5

day 104

−6.5 −6.0 −5.5 −5.0 −4.5 −4.0

5
0

.0
5

0
.5

5
1

.0
5

1
.5

day 122

−6.5 −6.0 −5.5 −5.0 −4.5 −4.0

5
0

.0
5

0
.5

5
1

.0
5

1
.5

day 140

−6.5 −6.0 −5.5 −5.0 −4.5 −4.0

5
0

.0
5

0
.5

5
1

.0
5

1
.5

Figure 2.16 Model predicted Sole spawning rates in the Bristol Channel at various times in

the spawning season.

dropping lo*la*t, lo*tˆ2 and finally loˆ2*t, after which all the remaining
terms are significant at the 5% level. If b4 is the final reduced model, then it can be
tested against the full model:

> anova(b,b4,test="F")

Analysis of Deviance Table

[edited]

Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 1552 913.75

2 1556 919.28 -4 -5.54 1.3161 0.2618

which gives no reason not to accept the simplified model.

The default residual plots are unhelpful for this model, because of the large number
of zeroes in the data, corresponding to areas where there really are no eggs. This
tends to lead to some very small values for the linear predictor, corresponding to
zero predictions which in turn lead to rather distorted plots. The following residual
plots are perhaps more useful.

> par(mfrow=c(1,2)) # split graph window into 4 panels

> plot(fitted(b4),solr$eggs) # fitted vs. data plot

> plot(fitted(b4)ˆ0.5,residuals(b4)) # resids vs. sqrt(fitted)

The plots are shown in figure 2.15. The most noticeable features of both plots relate

LIKELIHOOD 101

to the large number of zeros in the data, with the lower boundary line in the right

hand plot corresponding entirely to zeros, for which the raw residual is simply the

negative of the fitted value. The plots are clearly far from perfect, but it is unlikely

that great improvements can be made to them, with models of this general type.

The fitted model can be used for prediction of the spawning rate over the Bristol

channel, by setting up a data frame containing the times and locations at which pre-

dictions are required, the age at which prediction is required — always zero — and

the offset required — zero if spawning rate per square metre is the desired output.

The time and location co-ordinates must be scaled in the same way as was done for

fitting, of course. Figure 2.16 shows model predicted spawning rates produced in this

way from model b4. It has been possible to get surprisingly far with the analysis of

these data using a simple GLM approach, but the fitting did become somewhat un-

wieldy when it came to specifying that spawning rate should be a smooth function of

location and time. For a less convenient spatial spawning distribution, it is doubtful

that a satisfactory model could have been produced in this manner. This is part of the

motivation for seeking to extend the way in which GLMs are specified, to allow a

more compact and flexible way of specifying smooth functional relationships within

the models: i.e. part of the motivation for developing GAMs.

2.4 Likelihood

This final, slightly more advanced, section covers the general theory of likelihood and

quasi-likelihood, used for inference with GLMs. In particular the results invoked in

section 2.1 are derived here. The emphasis is on explaining the key ideas as simply

as possible, so some of the results are proved only for the simple case of a single

parameter and i.i.d. data with the generalizations merely stated. To emphasize that

the results given here apply much more widely than GLMs, the parameter that is the

object of inference is denoted by θ in this section: for GLMs this will usually be β.

Good references on the topics covered here are Cox and Hinkley (1974) and Silvey

(1970), which are followed quite closely below.

Proofs are only given in outline and two general statistical results are used repeatedly:

the ‘law of large numbers’ (LOLN) and the ‘central limit theorem’ CLT. In the i.i.d.

context these are as follows. Let X1, X2, . . . , Xn be i.i.d. random variables with

mean µ and variance σ2 (both of which are finite). The LOLN states that as n→∞
X̄ → µ (in probability)‖. The CLT states that as n → ∞ the distribution of X̄
tends to N(µ, σ2/n) whatever the distribution of the Xi. Both results generalize to

multivariate and non i.i.d. settings.

‖ tending to a limit in probability basically means that the probability of being further than any positive
constant ε from the limit tends to zero.

102 GENERALIZED LINEAR MODELS

2.4.1 Invariance

Consider an observation, y = [y1, y2, . . . , yn]
T, of a vector of random variables, with

joint p.m.f. or p.d.f. f(y, θ), where θ is a parameter with m.l.e. θ̂. If γ is a parameter

such that γ = g(θ), where g is any function, then the maximum likelihood estimate

of γ is γ̂ = g(θ̂), and this property is known as invariance.

Invariance holds for any g, but a proof is easiest for the case in which g is a one to

one function, so that g−1 is well defined. In this case θ = g−1(γ) and maximum

likelihood estimation would proceed by maximizing the likelihood

L(γ) = f(y, g−1(γ))

w.r.t. γ. But we know that the maximum of f occurs at f(y, θ̂), by definition of θ̂, so

it must be the case that L’s maximum w.r.t. γ occurs when θ̂ = g−1(γ̂). i.e.

γ̂ = g(θ̂)

is the m.l.e. of γ. So, when working with maximum likelihood estimation, we can

adopt whatever parameterization is most convenient for performing calculations, and

simply transform back to the most interpretable parameterization at the end. Note

that invariance holds for vector parameters as well.

2.4.2 Properties of the expected log-likelihood

The key to proving and understanding the large sample properties of maximum

likelihood estimators lies in obtaining some results for the expectation of the log-

likelihood, and then using the convergence in probability of the log-likelihood to its

expected value, which results from the law of large numbers. In this section, some

simple properties of the expected log likelihood are derived.

Let y1, y2, . . . , yn be independent observations from a p.d.f. f(y, θ), where θ is an

unknown parameter with true value θ0. Treating θ as unknown, the log-likelihood for

θ is

l(θ) =

n
∑

i=1

log[f(yi, θ)] =

n
∑

i=1

li(θ),

where li is the log-likelihood, given only the single observation yi. Treating l as a

function of random variables, Y1, Y2, . . . , Yn, means that l is itself a random variable

(and the li are independent random variables). Hence we can consider expectations

of l and its derivatives.

Result 1:

E0

∂l

∂θ

˛

˛

˛

˛

θ0

!

= 0 (2.14)

The subscript on the expectation is to emphasize that the expectation is w.r.t. f(y, θ0).
The proof goes as follows (where it is to be taken that all derivatives are evaluated at

LIKELIHOOD 103

θ0, and there is sufficient regularity that the order of differentiation and integration

can be exchanged)

E0

(

∂li
∂θ

)

= E0

(

∂

∂θ
log[f(Y, θ)]

)

=

∫

1

f(y, θ0)

∂f

∂θ
f(y, θ0)dy

=

∫

∂f

∂θ
dy =

∂

∂θ

∫

fdy =
∂1

∂θ
= 0.

That the same holds for l follows immediately.

Result 1 has the following obvious consequence:

Result 2:

var

∂l

∂θ

˛

˛

˛

˛

θ0

!

= E0

2

4

∂l

∂θ

˛

˛

˛

˛

θ0

!2
3

5 . (2.15)

It can further be shown that

Result 3:

I ≡ E0

2

4

∂l

∂θ

˛

˛

˛

˛

θ0

!2
3

5 = −E0

"

∂2l

∂θ2

˛

˛

˛

˛

θ0

#

(2.16)

where I is referred to as the information about θ contained in the data. The terminol-

ogy refers to the fact that, if the data tie down θ very closely (and accurately), then the

log likelihood will be sharply peaked in the in the vicinity θ0 (i.e. high I), whereas

data containing little information about θ will lead to an almost flat likelihood, and

low I.

The proof of result 3 is simple. For a single observation, result 1 says that
∫

∂ log(f)

∂θ
fdy = 0.

Differentiating again w.r.t. θ yields
∫

∂2 log(f)

∂θ2
f +

∂ log(f)

∂θ

∂f

∂θ
dy = 0

but
∂ log(f)

∂θ
=

1

f

∂f

∂θ

and so
∫

∂2 log(f)

∂θ2
fdy = −

∫
[

∂ log(f)

∂θ

]2

fdy

which is

E0

[

∂2li
∂θ2

∣

∣

∣

∣

θ0

]

= −E0





(

∂li
∂θ

∣

∣

∣

∣

θ0

)2


 .

The result follows very easily (given the independence of the li).

104 GENERALIZED LINEAR MODELS

E(Y)

C[E(Y)]

E(C[Y])

Figure 2.17 Schematic illustration of Jensen’s inequality which says that if c is a concave

function then E[c(Y)] ≤ c(E[Y]). The curve shows a concave function, while the lines connect

the values of a discrete uniform random variable Y on the horizontal axis to the values of the

discrete random variable c(Y) on the vertical axis. It is immediately clear that the way that

c spreads out c(Y) values corresponding to low Y values, while bunching together c(Y)
values corresponding to high Y values implies Jensen’s inequality. Further reflection suggests

(correctly) that Jensen’s inequality holds for any distribution.

Note that by result 1 the expected log likelihood has a turning point at θ0, and since

I is positive, result 3 indicates that this turning point is a maximum. So the expected

log likelihood has a maximum at the true parameter value. Unfortunately results 1

and 3 don’t establish that this maximum is a global maximum, but a slightly more

involved proof shows that this is in fact the case.

Result 4:

E0[l(θ0)] ≥ E0[l(θ)] ∀ θ (2.17)

The proof is based on Jensen’s inequality, which says that if c is a concave function

(i.e. has negative second derivative) and Y is a random variable, then

E[c(Y)] ≤ c(E[Y]).

The inequality is almost a statement of the obvious as figure 2.17 illustrates. Now

consider the concave function, log, and the random variable, f(Y, θ)/f(Y, θ0). Jensen’s

inequality implies that

E0

[

log

(

f(Y, θ)

f(Y, θ0)

)]

≤ log

[

E0

(

f(Y, θ)

f(Y, θ0)

)]

.

Consider the right hand side of the inequality.

E0

(

f(Y, θ)

f(Y, θ0)

)

=

∫

f(y, θ)

f(y, θ0)
f(y, θ0)dy =

∫

f(y, θ)dy = 1.

LIKELIHOOD 105

So, since log(1) = 0 the inequality becomes

E0

[

log

(

f(Y, θ)

f(Y, θ0)

)]

≤ 0

⇒ E0[log(f(Y, θ))] ≤ E0[log(f(Y, θ0))]

from which the result follows immediately.

The above results were derived for continuous Y , but also hold for discrete Y : the

proofs are almost identical, but with
∑

all yi
replacing

∫

dy. Note also that, although

the results presented here were derived assuming that the data were independent

observations from the same distribution, this is in fact much more restrictive than is

necessary, and the results hold more generally.

Similarly, the results generalize to vector parameters. Let u be the vector such that

ui = ∂l/∂θi, and H be the hessian matrix of the log-likelihood w.r.t. the parameters

so that Hi,j = ∂2l/∂θi∂θj . Then

Result 1 (vector parameter)

E0(u) = 0 (2.18)

and

Result 3 (vector parameter)

I ≡ E0(uuT) = −E0(H). (2.19)

2.4.3 Consistency

Maximum likelihood estimators are often not unbiased, but under quite mild regu-

larity conditions they are consistent. This means that as the sample size, on which

the estimate is based, tends to infinity, the maximum likelihood estimator tends in

probability to the true parameter value. Consistency therefore implies asymptotic∗∗

unbiasedness, but it actually implies slightly more than this — for example that the

variance of the estimator is decreasing with sample size.

Formally, if θ0 is the true value of parameter θ, and θ̂n is its m.l.e. based on n obser-

vations, y1, y2, . . . , yn, then consistency means that

Pr[|θ̂n − θ0| < ε]→ 1

as n→∞ for any positive ε.

To see why m.l.e.s are consistent, consider an outline proof for the case of a single

parameter, θ, estimated from independent observations y1, y2, . . . , yn on a random

variable with p.m.f. or p.d.f. f(y, θ0). The log-likelihood in this case will be

l(θ) ∝ 1

n

n
∑

i=1

log(f(yi, θ))

∗∗ ‘asymptotic’ here meaning ‘as sample size tends to infinity’.

106 GENERALIZED LINEAR MODELS

θ0θ
^

E0(log(f(Y, θ)))

1

n
∑
i=1

n

log(f(yi, θ))

Figure 2.18 Illustration of the idea behind the derivation of consistency of MLEs. The dashed

curve is proportional to the log likelihood while the solid curve is the expectation of the log

likelihood. The solid curve has a maximum at the true parameter value, and as sample size

tends to infinity the dashed curve tends to the solid curve by the LOLN, hence in the large

sample limit the log likelihood has a maximum at the true parameter value, and we expect

θ̂n → θ0 as n→∞.

where the factor of 1/n is introduced purely for later convenience. We need to

show that in the large sample limit l(θ) achieves its maximum at the true param-

eter value θ0, but in the previous section it was shown that the expected value of

the log likelihood for a single observation attains its maximum at θ0. The law of

large numbers tells us that as n → ∞,
∑n
i=1 log[f(Yi, θ)]/n tends (in probability)

to E0[log(f(Y, θ))]. So in the large sample limit we have that

l(θ0) ≥ l(θ)

i.e. that θ̂ is θ0.

To show that θ̂ → θ0 in some well ordered manner as n → ∞ requires that we

assume some regularity (for example, at minimum, we need to be able to assume

that if θ1 and θ2 are ‘close’ then so are l(θ1) and l(θ2)), but in the vast majority

of practical situations such conditions hold. Figure 2.18 can help illustrate how the

argument works: as the sample size tends to infinity the dashed curve, proportional

to the log likelihood, tends in probability to the solid curve, E0[log(f(Y, θ))], which

has its maximum at θ0, hence θ̂ → θ0.

For simplicity of presentation, the above argument dealt only with a single param-

eter and data that were independent observations of a random variable from one

distribution. In fact consistency holds in much more general circumstance: for vector

parameters, and non-independent data that do not necessarily all come from the same

distribution.

LIKELIHOOD 107

2.4.4 Large sample distribution of θ̂

To obtain the large sample distribution of the m.l.e., θ̂, we make a Taylor expansion

of the derivative of the log likelihood around the true parameter, θ0, and evaluate this

at θ̂.
∂l

∂θ

∣

∣

∣

∣

θ̂

' ∂l

∂θ

∣

∣

∣

∣

θ0

+
(

θ̂ − θ0

) ∂2l

∂θ2

∣

∣

∣

∣

θ0

and from the definition of the m.l.e. the left hand side must be zero, so we have that

(

θ̂ − θ0

)

'
− ∂l/∂θ|θ0
∂2l/∂θ2|θ0

,

with equality in the large sample limit (by consistency of θ̂). Now the top of this

fraction has expected value zero and variance I (see results (2.14) and (2.15)), but it

is also made up of a sum of i.i.d. random variables, li = log[f(xi, θ)], so that by the

central limit theorem, as n→∞, its distribution will tend to N(0, I). By the law of

large numbers we also have that, as n→∞, ∂2l/∂θ2
∣

∣

θ0
→ I (in probability). So in

the large sample limit (θ̂ − θ0) is distributed as an N(0, I) r.v. divided by I. i.e. in

the limit as n→∞
(

θ̂ − θ0

)

∼ N(0, I−1).

The result generalizes to vector parameters:

θ̂ ∼ N(θ0, I−1) (2.20)

in the large sample limit. Again the result holds generally and not just for the some-

what restricted form of the likelihood which we have assumed here.

Usually I will not be known, any more than θ is, and will have to be estimated by

plugging θ̂ into the expression for I. Often this empirical information matrix, which

is just the negative of the hessian (−H) of the log-likelihood evaluated at the m.l.e.,

is an adequate approximation to the information matrix I itself (this follows from

the law of large numbers).

2.4.5 The generalized likelihood ratio test (GLRT)

Consider an observation, y, on a random vector of dimension n with p.d.f. (or p.m.f.)

f(y,θ), where θ is a parameter vector. Suppose that we want to test:

H0 : R(θ) = 0 vs. H1 : R(θ) 6= 0,

where R is a vector valued function of θ, such that H0 imposes r restrictions on the

parameter vector. If H0 is true then in the limit as n→∞
2λ = 2(l(θ̂H1

)− l(θ̂H0
)) ∼ χ2

r, (2.21)

where l is the log-likelihood function and θ̂H1
is the m.l.e. of θ. θ̂H0

is the value of

θ satisfying R(θ) = 0, which maximizes the likelihood (i.e. the restricted m.l.e.).

This result is used to calculate approximate p-values for the test.

108 GENERALIZED LINEAR MODELS

Tests performed in this way are known as ‘generalized likelihood ratio tests’, since

λ is the log of the ratio of the maximized likelihoods under each hypothesis. In the

context of GLMs, the null hypothesis is usually that the correct model is a simplified

version of the model under the alternative hypothesis.

2.4.6 Derivation of 2λ ∼ χ2
r under H0

To simplify matters, first suppose that the parameterization is such that θ =

[

ψ

γ

]

,

where ψ is r dimensional, and the null hypothesis can be written H0 : ψ = ψ0.

In principle it is always possible to re-parameterize a model so that the null has this

form††.

Now let the unrestricted m.l.e. be

[

ψ̂

γ̂

]

, and let

[

ψ0

γ̂0

]

be the m.l.e. under the

restrictions defining the null hypothesis. The key to making progress is to be able to

express γ̂0 in terms of ψ̂, γ̂ and ψ0. This is possible, in general, in the large sample

limit, provided that the null hypothesis is true, so that ψ̂ is close to ψ0. Taking a

Taylor expansion of the log likelihood around the unrestricted m.l.e. θ̂ yields

l(θ) ' l(θ̂)− 1

2

(

θ − θ̂
)T

H
(

θ − θ̂
)

(2.22)

where Hi,j = − ∂2l/∂θi∂θj
∣

∣

θ̂
(note the factor of −1 introduced here). Exponenti-

ating this expression, the likelihood can be written

L(θ) ' L(θ̂) exp

[

−
(

θ − θ̂
)T

H
(

θ − θ̂
)

/2

]

.

i.e. the likelihood can be approximated by a function proportional to the p.d.f. of

an N(θ̂,H−1) random variable. By standard properties of the multivariate normal

p.d.f., if
[

ψ

γ

]

∼ N

([

ψ̂

γ̂

]

,

[

Σψψ Σψγ

Σγψ Σγγ

])

then

γ|ψ ∼ N(γ̂ + ΣγψΣ
−1
ψψ(ψ − ψ̂),Σγγ −ΣγψΣ

−1
ψψΣψγ).

Hence ifψ is fixed atψ0 by hypothesis, then the approximation to the likelihood will

be maximized when γ takes the value

γ̂0 = γ̂ + ΣγψΣ
−1
ψψ(ψ0 − ψ̂). (2.23)

If the null hypothesis is true, then in the large sample limit ψ̂ → ψ0 (in probability)

so that the approximate likelihood tends to the true likelihood, and we can expect

(2.23) to hold for the maximizers of the exact likelihood.

†† Of course, to use the result no re-parameterization is necessary — it’s only being done here for theo-
retical convenience when deriving the result. Invariance ensures that reparameterization is a legitimate
thing to do.

LIKELIHOOD 109

Expressing (2.23) in terms of a partitioning of Σ = H−1, is not as useful as having

the results in terms of the equivalent partitioning of H itself. Writing ΣH = I in

partitioned form
[

Σψψ Σψγ

Σγψ Σγγ

] [

Hψψ Hψγ

Hγψ Hγγ

]

=

[

I 0

0 I

]

,

and multiplying out, results in four matrix equations, of which two are useful:

ΣψψHψψ + ΣψγHγψ = I, (2.24)

ΣψψHψγ + ΣψγHγγ = 0. (2.25)

Re-arranging (2.25) while noting that, by symmetry, HT

ψγ = Hγψ and ΣT

ψγ =

Σγψ
‡‡, yields

−H−1
γγHγψ = ΣγψΣ

−1
ψψ

and hence

γ̂0 = γ̂ + H−1
γγHγψ(ψ̂ −ψ0). (2.26)

For later use it is also worth eliminating Σψγ from (2.24) and (2.25), which results

in

Σ−1
ψψ = Hψψ −HψγH

−1
γγHγψ. (2.27)

Now provided that the null hypothesis is true, so that ψ̂ is close to ψ0, we can re-use

the expansion (2.22) and write the log-likelihood at the restricted m.l.e. as

l(ψ0, γ̂0) ' l(ψ̂, γ̂)− 1

2

[

ψ0 − ψ̂
γ̂0 − γ̂

]T

H

[

ψ0 − ψ̂
γ̂0 − γ̂

]

.

Hence

2λ = 2(l(ψ̂, γ̂)− l(ψ0, γ̂0)) '
[

ψ0 − ψ̂
γ̂0 − γ̂

]T

H

[

ψ0 − ψ̂
γ̂0 − γ̂

]

.

Substituting for γ̂0 from (2.26) and writing out H in partitioned form gives

2λ '
[

ψ0 − ψ̂
H−1
γγHγψ(ψ̂ −ψ0)

]T [

Hψψ Hψγ

Hγψ Hγγ

] [

ψ0 − ψ̂
H−1
γγHγψ(ψ̂ − ψ0)

]

and a short routine slog results in

2λ ' (ψ̂ −ψ0)
T
[

Hψψ −HψγH
−1
γγHγψ

]

(ψ̂ −ψ0).

But given (2.27), this means that

2λ ' (ψ̂ −ψ0)
TΣ−1

ψψ(ψ̂ −ψ0). (2.28)

Now if H0 is true, then as n → ∞ this expression will tend towards exactness as

ψ̂ → ψ0. Furthermore, by the law of large numbers and (2.19), H → I as n → ∞
(recall that in this section H is the negative second derivative matrix), which means

‡‡ and of course remembering that (AB)T = BTAT.

110 GENERALIZED LINEAR MODELS

that Σ tends to I−1, and hence Σψψ tends to the covariance matrix of ψ̂ (see result

2.20). Hence, by the asymptotic normality of the m.l.e. ψ̂,

2λ ∼ χ2
r

under H0. Having proved the asymptotic distribution of λ under H0, you might be

wondering why it was worth bothering, when we could simply have used the right

hand side of (2.28) directly as the test statistic. This approach is indeed possible, and

is known as the Wald test, but it suffers from the disadvantage that at finite sample

sizes the magnitude of the test statistic depends on how we choose to parameterize the

model. The GLRT, on the other hand, is invariant to the parameterization we choose

to use, irrespective of sample size. This invariance seems much more satisfactory —

we do not generally want our statistical conclusions to depend on details of how we

set up the model, if those details could never be detected by observing data from the

model.

2.4.7 AIC in general

As we have seen, selecting between (nested) models on the basis of which has higher

likelihood is generally unsatisfactory, because the model with more parameters al-

ways has the higher likelihood. Indeed, the previous section shows that, if we add a

redundant parameter to an already correct model, the expected increase in likelihood

is ' 1/2. This problem arises because each additional parameter allows the model

to get a little closer to the observed data, by fitting the noise component of the data,

as well as the signal. If we were to judge between models on the basis of their fit

to new data, not used in estimation, then this problem would not arise. The Akaike

Information Criterion (AIC) is an attempt to provide a way of doing this.

The derivation of AIC basically has two parts:

i) The average ability of a maximum likelihood estimated model to predict new

data is measured by the expected Kulbeck-Leibler (K-L) discrepancy between

the estimated model and the true model. This can be shown to be approximately

the minimum K-L discrepancy that the model could possibly achieve, for any

parameter values, plus an estimable constant.

ii) The expected negative log likelihood of the model can be approximately expressed

as the minimum K-L distance that could possibly be achieved minus the same es-

timable constant (and another ignorable constant). This immediately suggests an

estimator for the expected KL discrepancy in terms of the negative log likelihood

and the constant.

Superficially similar looking expectations appear to evaluate to rather different quan-

tities in parts (i) and (ii), which can cause confusion. The key difference is that in part

(i) we are interested in the estimated model’s ability to predict new data, so that the

parameter estimators are not functions of the data over whose distribution the ex-

pectations are taken. In part (ii), when examining the expected log likelihood, the

parameter estimators are most definitely functions of the data.

LIKELIHOOD 111

Suppose then, that our data were really generated from a density f0(y) and that our

model density is fθ(y), where θ denotes the parameter(s) of fθ , and y and θ will

generally be vectors, with θ having dimension p.

K(fθ, f0) =

∫

{log[f0(y)]− log[fθ(y)]} f0(y)dy (2.29)

provides a measure of how badly fθ matches the truth, known as the Kullbeck-Leibler

discrepancy. So, if θ̂ is the m.l.e. of θ, then K(fθ̂, f0) could be used to provide a

measure of how well our model is expected to fit a new set of data, not used to

estimate θ̂. Note that because we are interested in new data, θ̂ is treated as fixed and

not as a function of y when evaluating (2.29).

Of course, (2.29) can not be used directly, since we are not sure of f0, but progress

can be made by considering a truncated Taylor expansion of fθ about the (unknown)

parameters θK which would minimize (2.29).

log[fθ̂(y)] ' log[fθK
(y)] + (θ̂ − θK)Tg +

1

2
(θ̂ − θK)TH(θ̂ − θK) (2.30)

where g and H are the gradient vector and Hessian matrix of first and second deriva-

tives of fθ w.r.t. θ evaluated at θK . It is easy to see that if θK minimizes (2.29) then
∫

gf0dy = 0, so that substituting (2.30) into (2.29) yields

K(fθ̂, f0) ' K(fθK
, f0) +

1

2
(θ̂ − θK)TIK(θ̂ − θK) (2.31)

where IK is the information matrix at θK . The dependence on θK is not helpful here,

but can be removed by taking expectations over the distribution of θ̂, which yields

E
[

K(fθ̂, f0)
]

' K(fθK
, f0) + p/2, (2.32)

where it has been assumed that the model is close enough to correct that consistency

ensures closeness of θ̂ and θK and the large sample distribution of θ̂ implies that

twice the last term in (2.31) has a χ2
p distribution.

Now (2.32) still depends on f0, and we need to be able to estimate it using what

we have available, which does not include knowledge of f0. A useful estimator of

K(fθK
, f0) can be based on −l(θ̂) = − log[fθ̂(y)], but to ensure that it is approxi-

mately unbiased, we need to consider E[−l(θ̂)], where the expectation is now taken

allowing for the fact that θ̂ is a function of y.

E{−l(θ̂)} = E{−l(θK)− [l(θ̂)− l(θK)]}

' −
∫

log[fθK
(y)]f0(y)dy − p/2

= K(fθK
, f0)− p/2−

∫

log[f0(y)]f0(y)dy

where again it has been assumed that the model is close enough to correct that we can

use the large sample result [l(θ̂)− l(θK)] ∼ χ2
p. Re-arrangement yields the estimator

̂K(fθK
, f0) = −l(θ̂) + p/2 +

∫

log[f0(y)]f0(y)dy,

112 GENERALIZED LINEAR MODELS

which can be substituted into (2.31) to obtain the estimator

̂E
{

K(fθ̂, f0)
}

' −l(θ̂) + p +

∫

log[f0(y)]f0(y)dy.

The final term on the RHS depends only on the unknown true model, and will be

the same for any set of models to be compared using a given data set. Hence, it can

safely be dropped, and−l(θ̂)+p can be used for model comparison purposes. Twice

this quantity is known as the Akaike Information Criterion,

AIC = 2[−l(θ̂) + p]. (2.33)

Generally we expect estimated models with lower AIC scores to be closer to the true

model, in the K-L sense, than models with higher AIC scores. The p term in the AIC

score penalizes models with more parameters than necessary, thereby counteracting

the tendency of the likelihood to favour ever larger models.

The forgoing derivation assumes that the estimated model is ‘close’ to the true model.

If a sequence of nested models includes a model that is acceptably close, then all

larger models will also be close. On the other hand if we start to violate this assump-

tion, by oversimplifying a model, then the resulting decrease in l(θ̂) will typically

be much larger than the decrease in p, resulting in a substantial drop in AIC score:

basically the likelihood part of the AIC score is well able to discriminate between

models that are over-simplified, and those that are not.

A derivation of AIC which deals more carefully with the case in which the model is

‘wrong’ is given in Davison (2003), from which the above derivation borrows heav-

ily. A more careful accounting makes more precise the nature of the approximation

made by using the penalty term, p, when the model is incorrect: but it doesn’t make

p any less approximate in that case.

2.4.8 Quasi-likelihood results

The results of sections 2.4.3 to 2.4.6 also apply if the log likelihood l is replaced by

the log quasi-likelihood q. The key to demonstrating this lies in deriving equivalents

to results 1 to 4 of section 2.4.2, for the log quasi likelihood function. Again, for

clarity, only a single parameter θ will be considered, but the results generalize.

Consider observations y1, y2, . . . , yn on independent random variables, each with

expectation µi. Given a single yi, let the log quasi likelihood of µi be qi(µi) (as

defined by (2.12) in section 2.1.10), and suppose that all the µi depend on a parameter

θ, which therefore has log quasi likelihood function

q(θ) =
n
∑

i=1

qi(µi).

Let θ0 denote the true parameter value, E0 denote the expectation operator given that

parameter value, and let µ0
i denote the true expected value of yi.

LIKELIHOOD 113

Result 1:

E0

∂q

∂θ

˛

˛

˛

˛

θ0

!

= 0 (2.34)

The proof is simple:

E0

(

∂qi
∂θ

∣

∣

∣

∣

θ0

)

= E0

(

∂qi
∂µi

∣

∣

∣

∣

µ0
i

)

∂µi
∂θ

∣

∣

∣

∣

θ0

=
E0(Yi)− µ0

i

φV (µ0
i)

∂µi
∂θ

∣

∣

∣

∣

θ0

= 0,

from which the result follows immediately.

Given result 1 it is clear that,

Result 2:

var

∂q

∂θ

˛

˛

˛

˛

θ0

!

= E0

2

4

∂q

∂θ

˛

˛

˛

˛

θ0

!2
3

5 . (2.35)

Furthermore it can be shown that

Result 3:

Iq ≡ E0

2

4

∂q

∂θ

˛

˛

˛

˛

θ0

!2
3

5 = −E0

"

∂2q

∂θ2

˛

˛

˛

˛

θ0

#

(2.36)

where Iq might be termed the quasi- information about θ. The proof is straightfor-

ward.

E0





(

∂qi
∂θ

∣

∣

∣

∣

θ0

)2


 = E0





(

∂qi
∂µi

∣

∣

∣

∣

µ0
i

)2




(

∂µi
∂θ

∣

∣

∣

∣

θ0

)2

= E0

[

(Yi − µ0
i)

2

φ2V (µ0
i)

2

]

(

∂µi
∂θ

∣

∣

∣

∣

θ0

)2

=
1

φV (µ0
i)

(

∂µi
∂θ

∣

∣

∣

∣

θ0

)2

Which can be shown to be equal to −E0

[

∂2qi/∂θ2
∣

∣

θ0

]

as follows

E0

[

∂2qi
∂θ2

∣

∣

∣

∣

θ0

]

= E0

[

∂2qi
∂µ2

i

∣

∣

∣

∣

µ0
i

](

∂µi
∂θ

∣

∣

∣

∣

θ0

)2

+ E0

(

∂qi
∂µi

∣

∣

∣

∣

µ0
i

)

∂2µi
∂θ2

∣

∣

∣

∣

θ0

= E0

[

∂2qi
∂µ2

i

∣

∣

∣

∣

µ0
i

](

∂µi
∂θ

∣

∣

∣

∣

θ0

)2

= E0

(

−1

φV (µ0
i)
− Yi − µ0

i

φ2V (µ0
i)

2

∂V

∂µ

∣

∣

∣

∣

µ0
i

)(

∂µi
∂θ

∣

∣

∣

∣

θ0

)2

=
−1

φV (µ0
i)

(

∂µi
∂θ

∣

∣

∣

∣

θ0

)2

114 GENERALIZED LINEAR MODELS

The result now follows easily given the independence of the Yi and hence of the qi.

Finally we have

Result 4:

E0[q(θ0)] ≥ E0[q(θ)] ∀ θ (2.37)

Proof is considerably easier than was the case for the equivalent likelihood result. By

result 1 we know that E0(q) has a turning point at θ0. Furthermore

E0

(

∂q

∂θ

)

=
n
∑

i=1

E0

(

∂qi
∂µi

)

∂µi
∂θ

=
n
∑

i=1

µ0
i − µi

φV (µi)

∂µi
∂θ

implying that q decreases monotonically away from θ0 provided that each ∂µi/∂θ
has the same sign for all θ (different µi can have derivatives of different sign, of

course). The restriction is always the met for a GLM (since the signs of these deriva-

tives are controlled by the signs of the corresponding elements of the model matrix,

which are fixed).

As in the likelihood case, these quasi-likelihood results can be generalized to vector

parameters.

The consistency, large sample distribution and GLRT results of sections 2.4.3 to 2.4.6

can now be re-derived for models estimated by quasi-likelihood maximization. The

arguments of sections 2.4.3 to 2.4.6 are unchanged except for the replacement of l by

q, li by qi, I by Iq and results 1 to 4 of section 2.4.2 by results 1 to 4 of the current

section.

2.5 Exercises

1. A Bernoulli random variable, Y , takes the value 1 with probability p and 0 with

probability 1− p, so that its probability function is:

f(y) = py(1− p)1−y, y = 0 or 1

(a) Find µ ≡ E(Y).

(b) Show that the Bernoulli distribution is a member of the exponential family of

distributions, by showing that its probability function can be written as

f(y) = exp [{yθ − b(θ)}/a(φ) + c(y, φ)] ,

for appropriately defined θ, b(θ), φ, a and c. (See section 2.1.1.)

(c) What will the canonical link be for the Bernoulli distribution?

2. Residual checking for non-Gaussian error models is not always as straightforward

as it is in the Gaussian case, and the problems are particularly acute in the case of

binary data. This question explores this issue.

(a) The following code fits a GLM to data simulated from a simple binomial model
and examines the default residual plots.

EXERCISES 115

n<-100;m<-10

x <- runif(n)

lp <- 3*x-1

mu <- binomial()$linkinv(lp)

y <- rbinom(1:n,m,mu)

par(mfrow=c(2,2))

plot(glm(y/m˜x,family=binomial,weights=rep(m,n)))

Run the code several times to get a feel for the range of results that are possible

even when the model is correct (as it clearly is in this case).

(b) Explore how the plots change as m (the number of binomial trials) is reduced

to 1. Also examine the effect of sample size n.

(c) By repeatedly simulating data from a fitted model, and then refitting to the

simulated data, you can build up a picture of how the residuals should behave

when the distributional assumption is correct, and the data are really indepen-

dent. Write code to take a glm object fitted to binary data, simulate binary data

given the model fitted values, refit the model to the resulting data, and extract

residuals from the resulting fits. Functions fitted and rbinom are useful

here.

(d) If rsd contains your residual vector then

plot(sort(rsd),(1:length(rsd)-.5)/length(rsd))

produces a plot of the ‘empirical CDF’ of the residuals, which can be useful

for characterizing their distribution. By repeatedly simulating residuals, as in

the previous part, you can produce a ‘simulation envelope’ showing e.g. where

the middle 95% of these ‘empirical CDFs’ should lie, if the model assumptions

are met: such envelopes provide a guide to whether an observed ‘real’ residual

distribution is reasonable, or not. Based on your answer to the previous part,

write code to do this.

(e) Plots of the residuals against fitted values, or predictors, are also hard to inter-

pret for models of binary data. A simple check for lack of independence in the

residuals can be obtained by ordering the residuals according the the values of

the fitted values or a predictor, and checking whether these ordered residuals

show fewer (or more) runs of values above and below zero than they should if

independent. The command

rsd <- rsd[sort(fv,return.index=TRUE)$ix] will put rsd into the

order corresponding to increasing fv. It is possible to simulate from the distri-

bution of runs of residuals that should occur, under independence, as part of the

simulation loop used in the previous part: modify your code to check whether

the residuals appear non-independent with respect to fitted values.

3. This question looks at data covering guilty verdicts involving multiple murders in

Florida between 1976 and 1987. The data are classified by skin ‘colour’ of victim

and defendant and by whether or not the sentence was death.

116 GENERALIZED LINEAR MODELS

Victim’s Defendant’s Death No Death

Race Race Penalty Penalty

White White 53 414

Black 11 37

Black White 0 16

Black 4 139

Data are from Radelet and Pierce Florida Law Review:431-34 (1991), as reported

in Agresti (1996).

(a) What proportion of black defendants and what proportion of white defendants

were sentenced to death?

(b) Find the log-linear model which best explains these data.

(c) How would you interpret your best fit model?

4. If a random variable, Yi, has expected value µi, and variance φV (µi), where φ is

a scale parameter and V (µi) = µi, then find the the quasi-likelihood of µi, given

an observation yi, by evaluation (2.12). Confirm that the corresponding deviance

is equivalent to the deviance obtained if Yi ∼ Poi(µi).

5. If a linear model is to be estimated by minimizing
∑

i wi(yi − Xiβ)2 w.r.t. β,

show that the formal expression for the resulting parameter estimates is β̂ =
(XTWX)−1XTWy where W is a diagonal matrix such that Wi,i = wi. (Note

that the expression is theoretically useful, but would not be used for practical

computation).

6. This question relates to the IRLS method of section 2.1.2, and gives an alternative

insight into the distribution of the parameter estimators β̂. Let yi be independent

random variables with mean µi, such that g(µi) = ηi ≡ Xiβ, where g is a link

function, X a model matrix and β a parameter vector. Let the variance of yi be

V (µi)φ, where V is a known function, and φ a scale parameter. Define

zi = g′(µi)(yi − µi) + ηi and wi =
{

V (µi)g
′(µi)

2
}−1

.

(a) Show that E(zi) = Xiβ.

(b) Show that the covariance matrix of z is W−1φ, where W is a diagonal matrix

with Wi,i = wi.

(c) If β is estimated by minimization of
∑

i wi(zi −Xiβ)2 show that the covari-

ance matrix of the resulting estimates, β̂, is (XTWX)−1φ, and find E(β̂).

(d) The multivariate version of the central limit theorem implies that as the di-

mension of z tends to infinity, XTWz will tend to multivariate gaussian. What

does this imply about the large sample distribution of β̂?

7. Write R code to implement an IRLS scheme to fit the GLM defined in section

2.3.2 to the data given there. Use the lm function to fit the working linear model

at each iteration.

8. This question is about GLMs for quite unusual models, handling non-linear pa-

rameters, and direct likelihood maximization as a flexible alternative to using

EXERCISES 117

GLMs. Data frame harrier has 2 columns: Consumption.Rate of Grouse

by Hen Harriers (per day), and the corresponding Grouse.Density (per km2).

They have been digitized from figure 1 of Asseburg et al. (2005). Ecological the-

ory suggests that the the expected consumption rate, c, should be related to grouse

density, d, by the model,

E(ci) =
admi

1 + atdmi
,

where a, t and m are unknown parameters. It is expected that the variance in

consumption rate is proportional to the mean consumption rate.

(a) Show that, for fixed m, a GLM relating ci and di can be obtained by use of the

reciprocal link.

(b) For m = 1 estimate the model using glm with the quasi family.

(c) Plot the model residuals against Grouse density, and interpret the plot.

(d) Search for the approximate value of m which minimizes the model deviance,

by repeatedly re-fitting the model with alternative trial values.

(e) For your best fit model, with the optimal m, produce a plot showing the curve

of predicted consumption against density overlaid on the raw data. Using the R
function predict, with the se argument set to TRUE, add approximate 95%

confidence limits to the plot.

(f) A more systematic way fitting this model is to write a function, which takes

the model parameters, and the consumption and density vectors as arguments,

and evaluates the model likelihood (or quasi-likelihood in the current context).

This likelihood can then be maximized using the R built in optimizer, optim.

Write R code to do this (see question 4 for the quasi-likelihood).

Note that the optim will optionally return the approximate Hessian of a likeli-

hood, so this general approach gives you easy access to everything you need for

approximate inference about the parameters of the model, using the results cov-

ered in section 2.4. The approach is very general: it would be easy to estimate the

full model discussed in Asseburg et al. (2005) in the same way.

9. R data frame ldeaths contains monthly death rates from 3 lung diseases in the

UK over a period of several years (see ?ldeaths for details and reference). One

possible model for the data is that they can be treated as Poisson random variables

with a seasonal component and a long term trend component, as follows:

E(deathsi) = β0 + β1ti + α sin(2πtoyi/12 + φ),

where β0, β1, α and φ are parameters ti is time since the start of the data, and toy

is time of year, in months (January being month 1).

(a) By making use of basic properties of sines and cosines, get this model into a

form suitable for fitting using glm, and fit it. Use as.numeric(ldeaths)

to treat ldeaths as a regular numeric vector rather than a time series object.

(b) Plot the raw data time series on a plot, with the predicted timeseries overlaid.

(c) Is the model an adequate fit?

118 GENERALIZED LINEAR MODELS

10. In 2.3.2 an approximate confidence interval for β1 was found using the large sam-

ple distribution of the GLM parameter estimators. An alternative method of con-

fidence interval calculation is sometimes useful, based on inversion of the gen-

eralized likelihood ratio test (see sections 2.1.6, 2.4.5 and 2.4.6). This works by

finding the range of values of β1 that would have been accepted as null hypotheses

about β1, using a GLRT. If the threshold for acceptance is 5% the resulting range

gives a 95% confidence interval, if the threshold is 1% we get a 99% interval, and

so on.

(a) Using glm, refit the AIDs model, with the quadratic time dependence, and save

the resulting object.

(b) Write a loop which refits the same model for a sequence of fixed β1 values cen-

tered on the MLE from part (a) and stores the resulting model log likelihoods.

In this step you are fitting the model under a sequence of null hypotheses about

β1. The way to fix β1 in the model fit is to use an offset term in your model.

e.g. if you want to fix β1 at 0.5, you would replace the t term in your model

formula, with the term, offset(.5*t).

(c) Plot the log likelihoods from the last part against the corresponding β1 values,

and add to your plot the line above which the log-likelihoods are high enough

that the corresponding β1 values would be included in a 95% confidence inter-

val. From your plot, read off the 95% CI for β1 and compare it to the interval

obtained previously.

CHAPTER 3

Introducing GAMs

3.1 Introduction

A generalized additive model (Hastie and Tibshirani, 1986, 1990) is a generalized

linear model with a linear predictor involving a sum of smooth functions of covari-

ates. In general the model has a structure something like

g(µi) = X∗iθ + f1(x1i) + f2(x2i) + f3(x3i, x4i) + . . . (3.1)

where

µi ≡ E(Yi) and Yi ∼ some exponential family distribution.

Yi is a response variable, X∗i is a row of the model matrix for any strictly parametric

model components, θ is the corresponding parameter vector, and the fj are smooth

functions of the covariates, xk. The model allows for rather flexible specification

of the dependence of the response on the covariates, but by specifying the model

only in terms of ‘smooth functions’, rather than detailed parametric relationships, it

is possible to avoid the sort of cumbersome and unwieldy models seen in section

2.3.4, for example. This flexibility and convenience comes at the cost of two new

theoretical problems. It is necessary both to represent the smooth functions in some

way and to choose how smooth they should be.

This chapter illustrates how GAMs can be represented using penalized regression

splines, estimated by penalized regression methods, and how the appropriate degree

of smoothness for the fj can be estimated from data using cross validation. To avoid

obscuring the basic simplicity of the approach with a mass of technical detail, the

most complicated model considered here will be a simple GAM with two univariate

smooth components. Furthermore, the methods presented will not be those that are

most suitable for general practical use, being rather the methods that enable the basic

framework to be explained simply. The ideal way to read this chapter is sitting at a

computer working through the statistics, and its implementation in R, side by side.

If adopting this approach recall that the help files for R functions can be accessed by

typing ? followed by the function name, at the command line (e.g. ?lm, for help on

the linear modelling function).

119

120 INTRODUCING GAMS

3.2 Univariate smooth functions

The representation of smooth functions is best introduced by considering a model

containing one smooth function of one covariate,

yi = f(xi) + εi, (3.2)

where yi is a response variable, xi a covariate, f a smooth function and the εi are

i.i.d. N(0, σ2) random variables. To further simplify matters, suppose that the xi lie

in the interval [0, 1].

3.2.1 Representing a smooth function: regression splines

To estimate f , using the methods covered in chapters 1 and 2, requires that f be

represented in such a way that (3.2) becomes a linear model. This can be done by

choosing a basis, defining the space of functions of which f (or a close approxima-

tion to it) is an element. Choosing a basis, amounts to choosing some basis functions,

which will be treated as completely known: if bi(x) is the ith such basis function,

then f is assumed to have a representation

f(x) =

q
∑

i=1

bi(x)βi, (3.3)

for some values of the unknown parameters, βi. Substituting (3.3) into (3.2) clearly

yields a linear model.

A very simple example: a polynomial basis

As a simple example, suppose that f is believed to be a 4th order polynomial, so

that the space of polynomials of order 4 and below contains f . A basis for this space

is b1(x) = 1, b2(x) = x, b3(x) = x2, b4(x) = x3 and b5(x) = x4, so that (3.3)

becomes

f(x) = β1 + xβ2 + x2β3 + x3β4 + x4β5,

and (3.2) becomes the simple model

yi = β1 + xiβ2 + x2
iβ3 + x3

iβ4 + x4
iβ5 + εi.

Figures 3.1 and 3.2 illustrate a basis function representation of a function, f , using a

polynomial basis.

Polynomial bases tend to be very useful for situations in which interest focuses on

properties of f in the vicinity of a single specified point, but when the questions of

interest relate to f over its whole domain (currently [0,1]), the polynomial bases have

some problems (see exercise 1). The spline bases perform well in such circumstances,

largely because they can be shown to have good approximation theoretic properties.

UNIVARIATE SMOOTH FUNCTIONS 121

0.0 0.2 0.4 0.6 0.8 1.0
0

.0
0

.5
1

.0
1

.5
2

.0

x

b
1
(x

)=
1

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

b
2
(x

)=
x

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

b
3
(x

)=
x

2

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

b
4
(x

)=
x

3

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x
b

5
(x

)=
x

4

0.0 0.2 0.4 0.6 0.8 1.0

2
.5

3
.0

3
.5

4
.0

x

f(
x
)

Figure 3.1 Illustration of the idea of representing a function in terms of basis functions, using

a polynomial basis. The first 5 panels (starting from top left), illustrate the 5 basis functions,

bj(x), for a 4th order polynomial basis. The basis functions are each multiplied by a real

valued parameter, βj , and are then summed to give the final curve f(x), an example of which

is shown in the bottom right panel. By varying the βj , we can vary the form of f(x), to produce

any polynomial function of order 4 or lower. See also figure 3.2

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

x

b
1
(x

)β
1
=

4
.3

1

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
−

8
−

6
−

4
−

2
0

x

b
2
(x

)β
2
=

−
1
0
.7

2
x

0.0 0.2 0.4 0.6 0.8 1.0

0
5

1
0

1
5

x

b
3
(x

)β
3
=

1
6
.8

x
2

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

x

b
4
(x

)β
4
=

2
.2

2
x

3

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
−

8
−

6
−

4
−

2
0

x

b
5
(x

)β
5
=

−
1
0
.8

8
x

4

0.0 0.2 0.4 0.6 0.8 1.0

2
.5

3
.0

3
.5

4
.0

x

f(
x
)

Figure 3.2 An alternative illustration of how a function is represented in terms of basis func-

tions. As in figure 3.1, a 4th order polynomial basis is illustrated. In this case the 5 basis

function, bj(x), each multiplied by its coefficient βj , are shown in the first five figures (start-

ing at top left). Simply summing these 5 curves yields the function, f(x), shown at bottom

right.

122 INTRODUCING GAMS

0.2 0.4 0.6 0.8

0
.0

0
.2

0
.4

0
.6

0
.8

x

y

Figure 3.3 A cubic spline is a curve constructed from sections of cubic polynomial joined

together so that the curve is continuous up to second derivative. The spline shown (dotted

curve) is made up of 7 sections of cubic. The points at which they are joined (◦) (and the

two end points) are known as the knots of the spline. Each section of cubic has different

coefficients, but at the knots it will match its neighbouring sections in value and first two

derivatives. Straight dashed lines show the gradients of the spline at the knots and the curved

continuous lines are quadratics matching the first and second derivatives at the knots: these

illustrate the continuity of first and second derivatives across the knots. This spline has zero

second derivatives at the end knots: a ‘natural spline’.

Another example: a cubic spline basis

A univariate function can be represented using a cubic spline. A cubic spline is a

curve, made up of sections of cubic polynomial, joined together so that they are

continuous in value as well as first and second derivatives (see figure 3.3). The points

at which the sections join are known as the knots of the spline. For a conventional

spline, the knots occur wherever there is a datum, but for the regression splines of

interest here, the locations of the knots must be chosen. Typically the knots would

either be evenly spaced through the range of observed x values, or placed at quantiles

of the distribution of unique x values. Whatever method is used, let the knot locations

be denoted by {x∗i : i = 1, · · · , q − 2}.
Given knot locations, there are many alternative, but equivalent, ways of writing

down a basis for cubic splines. A simple basis to use, results from the very general

approach to splines that can be found in the books by Wahba (1990) and Gu (2002),

although the basis functions are slightly intimidating when written down. For this

basis: b1(x) = 1, b2(x) = x and bi+2 = R(x, x∗i) for i = 1 . . . q − 2 where

R(x, z) =
[

(z − 1/2)2 − 1/12
] [

(x− 1/2)2 − 1/12
]

/4

−
[

(|x− z| − 1/2)4 − 1/2 (|x− z| − 1/2)2 + 7/240
]

/24. (3.4)

UNIVARIATE SMOOTH FUNCTIONS 123

0.0 0.2 0.4 0.6 0.8 1.0
0

.0
0

.5
1

.0
1

.5
2

.0

x

b
1
(x

)=
1

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

b
2
(x

)=
x

0.0 0.2 0.4 0.6 0.8 1.0

−
0

.0
0

1
5

0
.0

0
0

0
0

.0
0

1
0

x

b
3
(x

)=
R

(x
,
x

1*
)

0.0 0.2 0.4 0.6 0.8 1.0

−
0

.0
0

4
0

.0
0

0
0

.0
0

2

x

b
4
(x

)=
R

(x
,
x

2*
)

0.0 0.2 0.4 0.6 0.8 1.0

−
0

.0
0

1
5

0
.0

0
0

0
0

.0
0

1
0

x
b

5
(x

)=
R

(x
,
x

3*
)

0.0 0.2 0.4 0.6 0.8 1.0

2
.5

3
.0

3
.5

4
.0

x

f(
x
)

Figure 3.4 Illustration of the representation of a smooth function using the a rank 5 cubic

regression spline basis (with knot locations x∗1 = 1/6, x∗2 = 3/6 and x∗3 = 5/6). The first 5

panels (starting from top left), illustrate the 5 basis functions, bj(x), for a rank 5 cubic spline

basis. The basis functions are each multiplied by a real valued parameter, βj , and are then

summed to give the final curve f(x), an example of which is shown in the bottom right panel.

By varying the βj we can vary the form of f(x). See also figure 3.5

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

x

b
1
(x

)β
1

0.0 0.2 0.4 0.6 0.8 1.0

−
2

.0
−

1
.5

−
1

.0
−

0
.5

0
.0

x

b
2
(x

)β
2

0.0 0.2 0.4 0.6 0.8 1.0

−
0

.2
0

.0
0

.1
0

.2

x

b
3
(x

)β
3

0.0 0.2 0.4 0.6 0.8 1.0

−
2

.0
−

1
.0

0
.0

1
.0

x

b
4
(x

)β
4

0.0 0.2 0.4 0.6 0.8 1.0

−
1

.5
−

0
.5

0
.5

1
.5

x

b
5
(x

)β
5

0.0 0.2 0.4 0.6 0.8 1.0

2
.5

3
.0

3
.5

4
.0

x

f(
x
)

Figure 3.5 An alternative illustration of how a function is represented in terms of cubic spline

basis functions. This figure shows the same rank 5 cubic regression spline basis that is shown

in figure 3.4, but in this case the basis functions, bj(x), are each shown multiplied by corre-

sponding coefficients βj (first five figures, starting at top left). Simply summing these 5 curves

yields the function, f(x), shown at bottom right.

124 INTRODUCING GAMS

1.5 2.0 2.5 3.0

2
.0

3
.0

4
.0

Engine capacity (Litres)

W
e

a
r

In
d

e
x

Figure 3.6 Data on engine wear index versus engine capacity for 19 Volvo car engines, ob-

tained from http://www3.bc.sympatico.ca/Volvo Books/engine3.html

(see Gu, 2002, p.37 for further details). Using this cubic spline basis for f means that

(3.2) becomes a linear model y = Xβ+ ε, where the ith row of the model matrix is

Xi =
[

1, xi, R(xi, x
∗
1), R(xi, x

∗
2), . . . , R(xi, x

∗
q−2)

]

.

Hence the model can be estimated by least squares. A rank 5 example of this basis is

illustrated in figures 3.4 and 3.5.

Using the cubic spline basis

Now consider an illustrative example. It is often claimed, at least by people with

little actual knowledge of engines, that a car engine with a larger cylinder capacity

will wear out less quickly than a smaller capacity engine. Figure 3.6 shows some data

for 19 Volvo engines. The pattern of variation is not entirely clear, so (3.2) might be

an appropriate model.

First read the data into R and scale the engine capacity data to lie in [0,1].

size<-c(1.42,1.58,1.78,1.99,1.99,1.99,2.13,2.13,2.13,

2.32,2.32,2.32,2.32,2.32,2.43,2.43,2.78,2.98,2.98)

wear<-c(4.0,4.2,2.5,2.6,2.8,2.4,3.2,2.4,2.6,4.8,2.9,

3.8,3.0,2.7,3.1,3.3,3.0,2.8,1.7)

x<-size-min(size);x<-x/max(x)

plot(x,wear,xlab="Scaled engine size",ylab="Wear index")

Now write an R function defining R(x, z)

rk<-function(x,z) # R(x,z) for cubic spline on [0,1]

{ ((z-0.5)ˆ2-1/12)*((x-0.5)ˆ2-1/12)/4-

((abs(x-z)-0.5)ˆ4-(abs(x-z)-0.5)ˆ2/2+7/240)/24

}

UNIVARIATE SMOOTH FUNCTIONS 125

0.0 0.2 0.4 0.6 0.8 1.0

2
.0

3
.0

4
.0

Scaled engine size
W

e
a

r
in

d
e

x

Figure 3.7 Regression spline fit (continuous line) to data (◦) on engine wear index versus

(scaled) engine capacity for 19 Volvo car engines.

and use it to write an R function which will take a sequence of knots and an array of
x values to produce a model matrix for the spline.

spl.X<-function(x,xk)

set up model matrix for cubic penalized regression spline

{ q<-length(xk)+2 # number of parameters

n<-length(x) # number of data

X<-matrix(1,n,q) # initialized model matrix

X[,2]<-x # set second column to x

X[,3:q]<-outer(x,xk,FUN=rk) # and remaining to R(x,xk)

X

}

All that is required now is to select a set of knots, x∗i , and the model can be fitted. In
the following a rank 6 basis is used, meaning that q = 6 and there are 4 knots: these
have been evenly spread over [0,1].

xk<-1:4/5 # choose some knots

X<-spl.X(x,xk) # generate model matrix

mod.1<-lm(wear˜X-1) # fit model

xp<-0:100/100 # x values for prediction

Xp<-spl.X(xp,xk) # prediction matrix

lines(xp,Xp%*%coef(mod.1)) # plot fitted spline

The model fit looks quite plausible (figure 3.7), but the choice of degree of model

smoothness, controlled here by the basis dimension, q (i.e. the number of knots +

2), was essentially arbitrary. This issue must be addressed if a satisfactory theory for

modelling with smooth functions is to be developed.

126 INTRODUCING GAMS

3.2.2 Controlling the degree of smoothing with penalized regression splines

One obvious possibility, for choosing the degree of smoothing, is to try to make use

of the hypothesis testing methods from chapter 1, to select q by backwards selec-

tion. However such an approach is problematic, since a model based on k− 1 evenly

spaced knots will not generally be nested within a model based on k evenly spaced

knots. It is possible to start with a fine grid of knots and simply drop knots sequen-

tially, as part of backward selection, but the resulting uneven knot spacing can itself

lead to poor model performance. Furthermore, for these regression spline models,

the fit of the model tends to depend quite strongly on the locations chosen for the

knots.

An alternative to controlling smoothness by altering the basis dimension, is to keep

the basis dimension fixed, at a size a little larger than it is believed could reasonably

be necessary, but to control the model’s smoothness by adding a “wiggliness” penalty

to the least squares fitting objective. For example, rather than fitting the model by

minimizing,

‖y −Xβ‖2,
it could be fit by minimizing,

‖y −Xβ‖2 + λ

∫ 1

0

[f ′′(x)]2dx,

where the integrated square of second derivative penalizes models that are too “wig-

gly”. The trade off between model fit and model smoothness is controlled by the

smoothing parameter, λ. λ→∞ leads to a straight line estimate for f , while λ = 0
results in an un-penalized regression spline estimate.

Because f is linear in the parameters, βi, the penalty can always be written as a

quadratic form in β (see exercise 7),
∫ 1

0

[f ′′(x)]2dx = βTSβ,

where S is a matrix of known coefficients. It is now that the somewhat complicated

form of the spline basis, used here, proves its worth, for it turns out that Si+2,j+2 =
R(x∗i , x

∗
j) for i, j = 1, . . . , q − 2 while the first two rows and columns of S are 0

(Gu, 2002, p.34).

Therefore, the penalized regression spline fitting problem is to minimize

‖y −Xβ‖2 + λβTSβ (3.5)

w.r.t. β. The problem of estimating the degree of smoothness for the model is now

the problem of estimating the smoothing parameter λ. But before addressing λ esti-

mation, consider β estimation, given λ.

It is fairly straightforward to show (see exercise 4) that the formal expression for the

minimizer of (3.5), the penalized least squares estimator of β, is

β̂ =
(

XTX + λS
)−1

XTy. (3.6)

UNIVARIATE SMOOTH FUNCTIONS 127

Similarly the influence, or hat matrix, A, for the model can be written

A = X
(

XTX + λS
)−1

XT.

Recall that µ̂ = Ay. Of course, these expressions are not the ones to use for compu-

tation, for which the greater numerical stability offered by orthogonal methods is to

be preferred.

For practical computation therefore, note that
∥

∥

∥

∥

[

y

0

]

−
[

X√
λB

]

β

∥

∥

∥

∥

2

= ‖y −Xβ‖2 + λβTSβ.

where B is any square root of the matrix S such that BTB = S. The sum of squares

term, on the right hand side, is just a least squares objective for a model in which

the model matrix has been augmented by a square root of the penalty matrix, while

the response data vector has been augmented with q zeros. B can be obtained easily

by spectral decomposition or pivoted Choleski decomposition (see A.7 or A.8), and

once obtained the augmented least squares problem can be solved using orthogonal

methods, in order to solve the penalized least squares problem and fit the model.

To see a penalized regression spline in action, involves first writing a function to
obtain S.

spl.S<-function(xk)

set up the penalized regression spline penalty matrix,

given knot sequence xk

{ q<-length(xk)+2;S<-matrix(0,q,q) # initialize matrix to 0

S[3:q,3:q]<-outer(xk,xk,FUN=rk) # fill in non-zero part

S

}

A square root function is also needed in order to find B =
√

S: using the spectral
decomposition is simple, if a little inefficient (see section A.8).

mat.sqrt<-function(S) # A simple matrix square root

{ d<-eigen(S,symmetric=TRUE)

rS<-d$vectors%*%diag(d$valuesˆ0.5)%*%t(d$vectors)

}

Now the ingedients are in place to write a simple function for fitting a penalized
regression spline.

prs.fit<-function(y,x,xk,lambda)

function to fit penalized regression spline to x,y data,

with knots xk, given smoothing parameter, lambda.

{ q<-length(xk)+2 # dimension of basis

n<-length(x) # number of data

create augmented model matrix

Xa <- rbind(spl.X(x,xk),mat.sqrt(spl.S(xk))*sqrt(lambda))

y[(n+1):(n+q)]<-0 # augment the data vector

lm(y˜Xa-1) # fit and return the penalized regression spline

}

128 INTRODUCING GAMS

0.0 0.2 0.4 0.6 0.8 1.0

2
.0

3
.0

4
.0

λ = 0.01

Scaled capacity

W
e
a
r

0.0 0.2 0.4 0.6 0.8 1.0

2
.0

3
.0

4
.0

λ = 0.0001

Scaled capacity

W
e
a
r

0.0 0.2 0.4 0.6 0.8 1.0

2
.0

3
.0

4
.0

λ = 0.000001

Scaled capacity

W
e
a
r

Figure 3.8 Penalized regression spline fits to the engine wear versus capacity data using three

different values for the smoothing parameter.

To use this function, we need to choose the basis dimension, q, the knot locations,

x∗j , and a value for the smoothing parameter, λ. Provided that q is large enough that

the basis is more flexible than we expect to need to represent f(x), then neither the

exact choice of q, nor the precise selection of knot locations, has a great deal of

influence on the model fit. Rather it is the choice of λ that now plays the crucial role

in determining model flexibility, and ultimately the estimated shape of f̂(x). In the

following example q = 9 and the knots are evenly spread out over [0,1]. But it is

the smoothing parameter, λ = 10−4, which really controls the behaviour of the fitted

model.

xk<-1:7/8 # choose some knots

mod.2<-prs.fit(wear,x,xk,0.0001) # fit pen. reg. spline

Xp<-spl.X(xp,xk) # matrix to map params to fitted values at xp

plot(x,wear);lines(xp,Xp%*%coef(mod.2)) # plot data & spl. fit

By changing the value of the smoothing parameter, λ, a variety of models of different

smoothness can be obtained. Figure 3.8 illustrates this, but begs the question, which

value of λ is ‘best’?

3.2.3 Choosing the smoothing parameter, λ: cross validation

If λ is too high then the data will be over smoothed, and if it is too low then the data

will be under smoothed: in both cases this will mean that the spline estimate f̂ will

not be close to the true function f . Ideally, it would be good to choose λ so that f̂ is

as close as possible to f . A suitable criterion might be to choose λ to minimize

M =
1

n

n
∑

i=1

(f̂i − fi)
2,

where the notation f̂i ≡ f̂(xi) and fi ≡ f(xi) have been adopted for conciseness.

Since f is unknown, M cannot be used directly, but it is possible to derive an estimate

of E(M) + σ2, which is the expected squared error in predicting a new variable. Let

UNIVARIATE SMOOTH FUNCTIONS 129

f̂ [−i] be the model fitted to all data except yi, and define the ordinary cross validation

score

Vo =
1

n

n
∑

i=1

(f̂
[−i]
i − yi)

2.

This score results from leaving out each datum in turn, fitting the model to the re-

maining data and calculating the squared difference between the missing datum and

its predicted value: these squared differences are then averaged over all the data.

Substituting yi = fi + εi,

Vo =
1

n

n
∑

i=1

(f̂
[−i]
i − fi − εi)

2

=
1

n

n
∑

i=1

(f̂
[−i]
i − fi)

2 − (f̂
[−i]
i − fi)εi + ε2i .

Since E(εi) = 0, and εi and f̂
[−i]
i are independent, the second term in the summation

vanishes if expectations are taken:

E(Vo) =
1

n
E

(

n
∑

i=1

(f̂
[−i]
i − fi)

2

)

+ σ2.

Now, f̂ [−i] ≈ f̂ with equality in the large sample limit, so E(Vo) ≈ E(M) + σ2 also

with equality in the large sample limit. Hence choosing λ in order to minimize Vo is

a reasonable approach if the ideal would be to minimize M . Choosing λ to minimize

Vo is known as ordinary cross validation.

Ordinary cross validation is a reasonable approach, in its own right, even without a

mean square (prediction) error justification. If models are judged only by their ability

to fit the data from which they were estimated, then complicated models are always

selected over simpler ones. Choosing a model in order to maximize the ability to

predict data to which the model was not fitted, does not suffer from this problem, as

figure 3.9 illustrates.

It is inefficient to calculate Vo by leaving out one datum at a time, and fitting the

model to each of the n resulting data sets, but fortunately it can be shown that

Vo =
1

n

n
∑

i=1

(yi − f̂i)
2/(1−Aii)

2,

where f̂ is the estimate from fitting to all the data, and A is the corresponding influ-

ence matrix (see section 4.5.2). In practice the weights, 1−Aii, are often replaced by

the mean weight, tr(I−A)/n, in order to arrive at the generalized cross validation

score

Vg =
n
∑n
i=1(yi − f̂i)

2

[tr(I−A)]2
.

GCV has computational advantages over OCV, and it also has advantages in terms

130 INTRODUCING GAMS

0.2 0.4 0.6 0.8 1.0

−
2

0
2

4
6

8

λ too high

x

y

0.2 0.4 0.6 0.8 1.0

−
2

0
2

4
6

8

λ about right

x

y

0.2 0.4 0.6 0.8 1.0

−
2

0
2

4
6

8

λ too low

x

y

Figure 3.9 Illustration of the principle behind cross validation. In this case the fifth datum (•)
has been omitted from fitting and the continuous line shows a penalized regression spline fitted

to the remaining data (◦). When the smoothing parameter is too high the spline fits many of

the data poorly and does no better with the missing point. When λ is too low the spline fits

the noise as well as the signal and the extra variability that this induces causes it to predict

the missing datum rather poorly. For the intermediate λ the spline is fitting the underlying

signal quite well, but smoothing through the noise: as a result the missing datum is reasonably

well predicted. Cross validation leaves out each datum from the data in turn and considers the

average ability of models fitted to the remaining data to predict the left out datum.

of invariance (see Wahba, 1990, p.53 or sections 4.5.2 and 4.5.3). In any case, it can

also be shown to minimize E(M) in the large sample limit.

Returning to the engine wear example, a simple direct search for the GCV optimal
smoothing parameter can be made as follows.

lambda<-1e-8;n<-length(wear);V<-0

for (i in 1:60) # loop through smoothing parameters

{ mod<-prs.fit(wear,x,xk,lambda) # fit model, given lambda

trA<-sum(influence(mod)$hat[1:n]) # find tr(A)

rss<-sum((wear-fitted(mod)[1:n])ˆ2)# residual sum of squares

V[i]<-n*rss/(n-trA)ˆ2 # obtain GCV score

lambda<-lambda*1.5 # increase lambda

}

plot(1:60,V,type="l",main="GCV score",xlab="i") # plot score

Note that the influence() function returns a list of diagnostics including hat,

an array of the elements on the leading diagonal of the influence/hat matrix of the

augmented model. The first n of these are the leading diagonal of the influence matrix

of the penalized model (see exercise 5).

For the example, V[31] is the lowest GCV score, so that the optimal smoothing

parameter, from those tried, is λ̂ = 1.530 × 10−8 ≈ 0.002. A plot of the optimal
model is easily produced

i<-(1:60)[V==min(V)] # extract index of min(V)

mod.3<-prs.fit(wear,x,xk,1.5ˆ(i-1)*1e-8) # fit optimal model

Xp<-spl.X(xp,xk) # and plot it

ADDITIVE MODELS 131

0 10 20 30 40 50 60

0
.4

5
0
.5

5
0
.6

5
0
.7

5

GCV score

i

V

0.0 0.2 0.4 0.6 0.8 1.0

2
.0

3
.0

4
.0

GCV optimal fit

Scaled capacity

W
e
a
r

Figure 3.10 Left panel: the GCV function for the engine wear example. The smoothing pa-

rameters are shown on a log scale on the x axis, such that λ = 1.5i × 10−8. Right panel: the

fitted model which minimizes the GCV score.

plot(x,wear);lines(xp,Xp%*%coef(mod.3))

The GCV function and the GCV optimal model are shown in figure 3.10.

3.3 Additive Models

Now suppose that two explanatory variables, x and z, are available for a response

variable, y, and that a simple additive model structure

yi = f1(xi) + f2(zi) + εi (3.7)

is appropriate. The fj are smooth functions, and the εi are i.i.d. N(0, σ2) random

variables. Again, for simplicity, assume that all zi and xi lie in [0, 1].

There are two points to note about this model. Firstly, the assumption of additive

effects is a fairly strong one: f1(x) + f2(z) is a quite restrictive special case of the

general smooth function of two variables f(x, z). Secondly, the fact that the model

now contains more than one function introduces an identifiability problem: f1 and f2

are each only estimable to within an additive constant. To see this, note that any con-

stant could be simultaneously added to f1 and subtracted from f2, without changing

the model predictions. Hence identifiability constraints have to be imposed on the

model before fitting.

Provided the identifiability issue is addressed, the additive model can be represented

using penalized regression splines, estimated by penalized least squares and the de-

gree of smoothing estimated by cross validation, in the same way as the simple uni-

variate model.

132 INTRODUCING GAMS

3.3.1 Penalized regression spline representation of an additive model

Each smooth function in (3.7) can be represented using a penalized regression spline

basis. Using the spline basis from section 3.2.1

f1(x) = δ1 + xδ2 +

q1−2
∑

j=1

R(x, x∗j)δj+2

and

f2(z) = γ1 + zγ2 +

q2−2
∑

j=1

R(z, z∗j)γj+2

where δj and γj are the unknown parameters for f1 and f2 respectively. q1 and q2

are the number of unknown parameters for f1 and f2, while x∗j and z∗j are the knot

locations for the two functions.

The identifiability problem with the additive model means that δ1 and γ1 are con-

founded. The simplest way to deal with this is to constrain one of them to zero, say

γ1 = 0. Having done this, it is easy to see that the additive model can be written in

the linear model form, y = Xβ + ε, where the ith row of the model matrix is now

Xi =
[

1, xi, R(xi, x
∗
1), R(xi, x

∗
2), . . . , R(xi, x

∗
q1−2), zi, R(zi, z

∗
1), . . . , R(zi, z

∗
q2−2)

]

and the parameter vector is β = [δ1, δ2, . . . , δq1 , γ2, γ3, . . . , γq2]
T.

The wiggliness of the functions can also be measured exactly as in section 3.2.2.

∫ 1

0

f ′′1 (x)2dx = βTS1β and

∫ 1

0

f ′′2 (x)2dx = βTS2β

where S1 and S2 are zero everywhere except for S1i+2,j+2 = R(x∗i , x
∗
j) for i, j =

1, . . . , q1 − 2 and S2i+q1+1,j+q1+1 = R(z∗i , z
∗
j) for i, j = 1, . . . , q2 − 2.

It is, of course, perfectly possible to use any of a large number of alternative bases in

place of the regression spline basis used here — only the details are changed by doing

this, not the general principle that, once a basis has been chosen, model matrices and

penalty coefficient matrices can immediately be obtained.

3.3.2 Fitting additive models by penalized least squares

The parameters β of the model (3.7) are obtained by minimization of the penalized

least squares objective

‖y −Xβ‖2 + λ1β
TS1β + λ2β

TS2β,

where the smoothing parameters λ1 and λ2 control the weight to be given to the

objective of making f1 and f2 smooth, relative to the objective of closely fitting the

response data. For the moment, assume that these smoothing parameters are given.

ADDITIVE MODELS 133

Defining S ≡ λ1S1 + λ2S2, the objective can be re-written as

‖y −Xβ‖2 + βTSβ =

∥

∥

∥

∥

[

y

0

]

−
[

X

B

]

β

∥

∥

∥

∥

2

.

where B is any matrix square root such that BTB = S. As in the single smooth

case, the right hand expression is simply the un-penalized least squares objective

for an augmented version of the model and corresponding response data: hence the

model can be fitted by standard linear regression.

Here is a function to set up a simple two term additive model, if x and z are the two
predictor variables.

am.setup<-function(x,z,q=10)

Get X, S_1 and S_2 for a simple 2 term AM

{ # choose knots ...

xk <- quantile(unique(x),1:(q-2)/(q-1))

zk <- quantile(unique(z),1:(q-2)/(q-1))

get penalty matrices ...

S <- list()

S[[1]] <- S[[2]] <- matrix(0,2*q-1,2*q-1)

S[[1]][2:q,2:q] <- spl.S(xk)[-1,-1]

S[[2]][(q+1):(2*q-1),(q+1):(2*q-1)] <- spl.S(zk)[-1,-1]

get model matrix ...

n<-length(x)

X<-matrix(1,n,2*q-1)

X[,2:q]<-spl.X(x,xk)[,-1] # 1st smooth

X[,(q+1):(2*q-1)]<-spl.X(z,zk)[,-1] # 2nd smooth

list(X=X,S=S)

}

The same number of knots is assumed for each term in this case, and they have been

evenly spread through the data by using the quantile function. The penalty matri-

ces are obtained using spl.S, while the model matrix is constructed by combining

columns of the model matrices obtained by calling spl.X for each predictor. Note

that the rows and columns of S1 and S2 corresponding to the intercept of each term

have been dropped, as have the intercept columns of the component matrices of X.

The routine returns a two item list containing the model matrix for the additive model

and a list containing the two penalty matrices.

It is now a straightforward matter to write a function that will take the response
variable, X, the penalty matrix list, and the smoothing parameters, as arguments,
calculate the corresponding augmented model matrix and data vector, fit the model
and calculate its GCV score:

fit.am<-function(y,X,S,sp)

function to fit simple 2 term additive model

{ # get sqrt of total penalty matrix ...

rS <- mat.sqrt(sp[1]*S[[1]]+sp[2]*S[[2]])

q <- ncol(X) # number of params

134 INTRODUCING GAMS

n <- nrow(X) # number of data

X1 <- rbind(X,rS) # augmented X

y1<-y;y1[(n+1):(n+q)]<-0 # augment data

b<-lm(y1˜X1-1) # fit model

trA<-sum(influence(b)$hat[1:n]) # tr(A)

norm<-sum((y-fitted(b)[1:n])ˆ2) # RSS

list(model=b,gcv=norm*n/(n-trA)ˆ2,sp=sp)

}

Let us use the routine to estimate an additive model for the data in R data frame

trees. The data are Volume, Girth and Height for 31 felled cherry trees. In-

terest lies is in predicting Volume, and we can try estimating the model

Volume = f1(Girth) + f2(Height) + εi

using the simple functions just produced. Given the simple smoothers being used
here, we must first rescale the predictors onto [0,1]

data(trees)

rg <- range(trees$Girth)

trees$Girth <- (trees$Girth - rg[1])/(rg[2]-rg[1])

rh <- range(trees$Height)

trees$Height <- (trees$Height - rh[1])/(rh[2]-rh[1])

Then the model matrix and penalty matrices can be obtained.

am0 <- am.setup(trees$Girth,trees$Height)

Given these, a grid search can be performed to find the model fit that approximately
minimizes the GCV score.

sp<-c(0,0) # initialize smoothing parameter (s.p.) array

for (i in 1:30) for (j in 1:30) # loop over s.p. grid

{ sp[1]<-1e-5*2ˆ(i-1);sp[2]<-1e-5*2ˆ(j-1) # s.p.s

b<-fit.am(trees$Volume,am0$X,am0$S,sp) # fit using s.p.s

if (i+j==2) best<-b else # store 1st model

if (b$gcv<best$gcv) best<-b # store best model

}

best$sp # GCV best smoothing parameter found

[1] 0.01024 5368.70912

So the smooth of girth has a fairly low smoothing parameter, presumably allowing f1

some curvature, while the f2 has a very high smoothing parameter corresponding to
a straight line estimate. The values of the smooths at the predictor variable values can
be obtained quite easily by zeroing all model coefficients, except those corresponding
to the term of interest, and using predict as the following code shows.

plot fitted against data ...

plot(trees$Volume,fitted(best$model)[1:31],

xlab="Fitted Volume",ylab="Actual Volume")

evaluate and plot f_1 against Girth ...

b<-best$model

GENERALIZED ADDITIVE MODELS 135

10 20 30 40 50 60 70

1
0

2
0

3
0

4
0

5
0

6
0

7
0

Actual Volume

F
it
te

d
 V

o
lu

m
e

0.0 0.2 0.4 0.6 0.8 1.0

1
0

2
0

3
0

4
0

5
0

6
0

Scaled Girth

f 1^

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

Scaled Height

f 2^

Figure 3.11 The best fit two term additive model for the tree data. The left panel shows

actual versus predicted tree volumes. The middle panel is the estimate of the smooth function of

Girth, evaluated at the observed Girths. The right panel is the estimate of the smooth function

of Height, evaluated at the observed Heights.

b$coefficients[1]<-0 # zero the intercept

b$coefficients[11:19]<-0 # zero the second smooth coefs

f0<-predict(b) # predict f_1 only, at data values

plot(trees$Girth,f0[1:31],xlab="Scaled Girth",

ylab=expression(hat(f[1])))

Similar code can be produced in order to plot f̂2: figure 3.11 shows the model fitted

values against data, as well as f̂1 against girth and f̂2 against height.

3.4 Generalized Additive Models

Generalized additive models (GAMs) follow from additive models, as generalized

linear models follow from linear models. That is, the linear predictor now predicts

some known smooth monotonic function of the expected value of the response, and

the response may follow any exponential family distribution, or simply have a known

mean variance relationship, permitting the use of a quasi-likelihood approach. The

resulting model has a general form something like (3.1) in section 3.1.

As an illustration, suppose that we would like to model the trees data using a GAM

of the form:

log{E(Volumei)} = f1(Girthi) + f2(Heighti), Volumei ∼ Gamma.

This model is perhaps more natural than the additive model, as we might expect

volume to be the product of some function of girth and some function of height,

and it is probably reasonable to expect the variance in volume to increase with mean

volume.

Now it is tempting to suppose that all that is needed, to fit this GAM, is to replace

the call to lm with a call to glm in fit.am, and perhaps tweak the definition of the

GCV score a little. Unfortunately, further reflection reveals that this is not the case.

136 INTRODUCING GAMS

Whereas the additive model was estimated by penalized least squares, the GAM will

be fitted by penalized likelihood maximization: in practice this will be achieved by

penalized iterative least squares, but there is no simple trick to produce an unpenal-

ized GLM whose likelihood is equivalent to the penalized likelihood of the GAM

that we wish to fit.

To fit the model we simply iterate the following penalized iteratively re-weighted

least squares (P-IRLS) scheme to convergence.

1. Given current parameter estimates β[k], and corresponding estimated mean re-

sponse vector µ[k], calculate:

wi ∝
1

V (µ
[k]
i)g′(µ[k]

i)
and zi = g(µ

[k]
i)(yi − µ

[k]
i) + Xiβ

[k]

where var(Yi) = V (µ[k])φ as in section 2.1.2, and Xi is the ith row of X.

2. Minimize

‖
√

W(z−Xβ)‖2 + λ1β
TS1β + λ2β

TS2β

w.r.t. β to obtain β[k+1]. W is a diagonal matrix such that Wii = wi.

Step 2 can be replaced by the equivalent:

2a. Minimize
∥

∥

∥

∥

[√
W 0
0 I

]([

z

0

]

−
[

X

B

]

β

)∥

∥

∥

∥

2

w.r.t. β to obtain β[k+1], where B is a matrix square root such that BTB =
λ1S1 + λ2S2.

In the current case, the link function, g, is the log, so g′(µi) = µ−1
i , while for the

gamma distribution, V (µi) = µ2
i . Hence, for the log-link, gamma errors model, we

have:

wi = 1 and zi =
(

yi − µ
[k]
i

)

/µ
[k]
i + Xiβ

[k].

What should be used for the GCV score for this model? A natural choice is to use the

GCV score for the final linear model in the P-IRLS iteration (although we will see,

in chapter 4, that there may be better choices than this).

It is now a straightforward matter to modify fit.am, in order to produce a function
that will fit this GAM.

fit.gamG<-function(y,X,S,sp)

function to fit simple 2 term generalized additive model

Gamma errors and log link

{ # get sqrt of combined penalty matrix ...

rS <- mat.sqrt(sp[1]*S[[1]]+sp[2]*S[[2]])

q <- ncol(X) # number of params

n <- nrow(X) # number of data

X1 <- rbind(X,rS) # augmented model matrix

b <- rep(0,q);b[1] <- 1 # initialize parameters

SUMMARY 137

10 20 30 40 50 60 70

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

Actual Volume

F
it
te

d
 V

o
lu

m
e

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

Scaled Girth

f 1^

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.1

0
.2

0
.3

0
.4

Scaled Height

f 2^

Figure 3.12 The best fit two term generalized additive model for the tree data. The left

panel shows actual versus predicted tree volumes. The middle panel is the estimate of the

smooth function of Girth, evaluated at the observed Girths. The right panel is the estimate of

the smooth function of Height, evaluated at the observed Heights.

norm <- 0;old.norm <- 1 # initialize convergence control

while (abs(norm-old.norm)>1e-4*norm) # repeat un-converged

{ eta <- (X1%*%b)[1:n] # ’linear predictor’

mu <- exp(eta) # fitted values

z <- (y-mu)/mu + eta # pseudodata (recall w_i=1, here)

z[(n+1):(n+q)] <- 0 # augmented pseudodata

m <- lm(z˜X1-1) # fit penalized working model

b <- m$coefficients # current parameter estiamtes

trA <- sum(influence(m)$hat[1:n]) # tr(A)

old.norm <- norm # store for convergence test

norm <- sum((z-fitted(m))[1:n]ˆ2) # RSS of working model

}

list(model=m,gcv=norm*n/(n-trA)ˆ2,sp=sp)

}

To use this function to find the GCV optimum fit, we simply replace ‘fit.am’ by

‘fit.gamG’ in the smoothing parameter grid search loop given in section 3.3.2.

Again, the smooth of Girth is estimated to be more flexible than the smooth of

Height. The same code as was used to plot the model fit and estimated components

of the fit, for the additive model, can be used to produce equivalent plots for the GAM

(although the inverse of the link — the exponential function — must be applied to

the fitted values from the working linear model when producing the first plot). Figure

3.12 shows the results of the fitting exercise.

3.5 Summary

This chapter has illustrated how models based on smooth functions of predictor vari-

ables can be represented, and estimated, once a basis and wiggliness penalty have

been chosen for each smooth in the model. Model estimation is by penalized versions

of the least squares or maximum-likelihood/IRLS methods, by which linear models

138 INTRODUCING GAMS

or generalized linear models are fitted, since, given a basis, an additive model or

GAM is simply a linear model or GLM, with one or more associated penalties. The

additional problem, in working with additive models and GAMs, is that we have to

choose how much to penalize the fitting process, but GCV seems to provide a quite

reasonable solution.

Everything in this chapter has deliberately been kept as straightforward as possible,

in order to try and emphasize the basic simplicity of this sort of modelling. If the

material here has been thoroughly understood, then most of what follows in the next

chapter simply adds detail to the general framework. It should be clear, for example:

that we could use a wide range of alternative bases in place of the bases employed

here; that representing smooth functions of more than one variable requires that we

choose basis functions of more than one variable, but changes nothing else; that gen-

eralizing to more smooth functions in a model is entirely trivial; that dealing with

other link functions and distributions involves programming, but nothing conceptu-

ally new; that deciding to move GCV optimization to within the linear model call of

the P-IRLS is a change in detail, but not concept; that model checking will be similar

to what is done for linear models and GLMs, and so on.

3.6 Exercises

1. This question is about illustrating the problems with polynomial bases. First run

set.seed(1)

x<-sort(runif(40)*10)ˆ.5

y<-sort(runif(40))ˆ0.1

to simulates some apparently innocuous x, y data.

(a) Fit 5th and 10th order polynomials to the simulated data using e.g.

lm(y˜poly(x,5)).

(b) Plot the x, y data, and overlay the fitted polynomials. (Use the predict

function to obtain predictions on a fine grid over the range of the x data: only

predicting at the data, fails to illustrate the polynomial behaviour adequately).

(c) One particularly simple basis for a cubic regression spline is b1(x) = 1,

b2(x) = x and bj+2(x) = |x − x∗j |3 for j = 1 . . . q − 2, where q is the

basis dimension, and the x∗j are knot locations. Use this basis to fit a rank 11

cubic regression spline to the x, y data (using lm and evenly spaced knots).

(d) Overlay the predicted curve according to the spline model, onto the existing

x, y plot, and consider which basis you would rather use.

2. Polynomial models of the data from question 1 can also provide an illustration of
why orthogonal matrix methods are preferable to fitting models by solution of the
‘normal equations’ XTXβ = XTy. The bases produced by poly are actually
orthogonal polynomial bases, which are a numerically stable way of representing
polynomial models, but if a naive basis is used then a numerically badly behaved
model can be produced:

form<-paste("I(xˆ",1:10,")",sep="",collapse="+")

form <- as.formula(paste("y˜",form))

EXERCISES 139

produces the model formula for a suitably ill-behaved model. Fit this model using

lm, extract the model matrix from the fitted model object using model.matrix,

and re-estimate the model parameters by solving the ‘normal equations’ given

above (see ?solve). Compare the estimated coefficients in both cases, along

with the fits. It is also instructive to increase the order of the polynomial by one or

two and examine the results (and to decrease it to 5, say, in order to confirm that

the QR and normal equations approaches agree if everything is ‘well behaved’).

Finally, note that the singular value decomposition (see A.9) provides a reliable

way of diagnosing the linear dependencies that can cause problems when model

fitting. svd(X)$d obtains the singular values of a matrix X. The largest divided

by the smallest gives the ‘condition number’ of the matrix — a measure of how

‘close’ it is to a matrix with non-independent columns.

3. Splines are not the only basis-penalty smoothers. Quite reasonable ‘piecewise lin-

ear smoothers’ can be constructed based on simple linear interpolation. This ques-

tion is about implementing such a smoother, and using it to smooth the mcycle

data from the MASS package. Consider smoothing x, y data. A piecewise linear

smoother is based on the piecewise linear interpolant through a set of function

values f ∗j at a set of evenly space x values, x∗j : the f ∗ would be the coefficients of

the smooth, the x∗j are ‘knot locations’.

(a) In order to obtain the model matrix for a smooth, there is actually no need

to explicitly write down its basis functions: all that is required is to be able

to evaluate the smooth f(x) for any x value, given its coefficients, β. This

is because f(x) =
∑

j βjbj(x), so that if all βj’s are set to zero, except for

βk, which is set to one, then f(x) = bk(x): this fact provides an easy way of

evaluating the basis functions of f given a function evaluating f itself.

Make use of this idea to write a function which will take an array of x values

and obtain the model matrix corresponding to a piecewise linear smoother,

having m knots spread evenly through the range of the x values. Do this by

making use of the approx function in R.

(b) Modify your function so that it also takes a y vector argument of response data

to be smoothed, and fits the piecewise linear smoother to the supplied data.

Have the function return the estimated model coefficients and fitted values in a

list.

(c) Use your function to model the mycle data (accel is the response): plot the

fitted values over the raw data, trying values of m of 10 and 20. You will proba-

bly find that controlling the smoothness by modifying m is a bit unsatisfactory:

the estimates either wiggle too much or miss the data.

(d) To improve the smoother it helps to introduce a wiggliness penalty. Given the

meaning of the model coefficients, very simple difference penalties on the co-

efficients can be used. For example, it might be appropriate to penalize:

P1 =
m
∑

j=2

(βi+1 − βi)
2 or P2 =

m−1
∑

j=2

(βi+1 − 2βi + βi−1)
2.

(recall that βj = f(x∗j).) The diff function makes computational work with

140 INTRODUCING GAMS

such penalties very easy. If diff(diag(m),differences=j) returns

the matrix Dj , show that Pj = βTDT

j Djβ for j = 1, 2.

(e) Modify your piecewise linear smoother function to fit the smoother by penal-

ized regression using the P2 penalty. The function should now take a smoothing

parameter as an argument (and should use diff to find the square root of the

penalty directly).

(f) Try out your function on the mcycle data, using different values for the

smoothing parameter and m = 20.

(g) Modify your functions once more, so that it returns the GCV score for the

model, in addition to the coefficients and fitted values. Search for the GCV

optimal smoothing parameter, and produce a final plot illustrating its fit.

4. Show that the β minimizing (3.5), in section 3.2.2, is given by (3.6).

5. Let X be an n×p model matrix, S a p×p penalty matrix, and B any matrix such

that BTB = S. If

X̃ =

[

X

B

]

is an augmented model matrix, show that the sum of the first n elements on the

leading diagonal of X̃(X̃TX̃)−1X̃T is tr
(

X(XTX + S)−1XT
)

.

6. The ‘obvious’ way to estimate smoothing parameters is by treating smoothing

parameters just like the other model parameters, β, and to choose λ to minimize

the residual sum of squares for the fitted model. What estimate of λ will such an

approach always produce?

7. Show that for any function f , which has a basis expansion

f(x) =
∑

j

βjbj(x),

it is possible to write
∫

f ′′(x)2dx = βTSβ,

where the coefficient matrix S can be expressed in terms of the known basis func-

tions bj (assuming that these possess at least two (integrable) derivatives). As

usual β is a parameter vector with βj in its jth element.

8. Show that for any function f which has a basis expansion

f(x, z) =
∑

j

βjbj(x, z),

it is possible to write

∫
(

∂2f

∂x2

)2

+ 2

(

∂2f

∂x∂z

)2

+

(

∂f2

∂z2

)2

dxdz = βTSβ,

where the coefficient matrix S can be expressed in terms of the known basis func-

tions bj (assuming that these possess at least two (integrable) derivatives w.r.t. x
and z). Again, β is a parameter vector with βj in its jth element.

CHAPTER 4

Some GAM theory

In the last chapter, it was demonstrated how the problem of estimating a general-

ized additive model, becomes the problem of estimating smoothing parameters and

model coefficients for a penalized likelihood maximization problem, once a basis for

the smooth functions has been chosen, together with associated measures of function

wiggliness. In practice the penalized likelihood maximization problem is solved by

penalized iteratively re-weighted least squares (P-IRLS), while the smoothing pa-

rameters can be estimated using cross validation or related criteria. The purpose of

this chapter is to justify and extend the methods introduced in chapter 3, and to add

some distribution theory to facilitate confidence interval calculation and hypothesis

testing. Table 4.1 lists the main elements of the approach, and where they can be

found within the chapter.

The methods discussed in this chapter are almost all built around penalized regression

smoothers, based on splines. This type of smoother goes back at least as far as Wahba

(1980) and Parker and Rice (1985). The suggestion of representing GAMs using

spline like penalized regression smoothers was made in section 9.3.6 of Hastie and

Tibshirani (1990) and was given renewed impetus by Marx and Eilers (1998), but it

is not the only possibility, as will briefly be covered at the chapter’s end.

The chapter starts by introducing several different penalized regression smoothers

useful for practical work, including smooth functions of several covariates. Since

these are all spline based, some discussion of why splines are useful smoothers is

also presented. There follows a short explanation of how these can be assembled

into an estimable GAM, and the P-IRLS estimation scheme is then justified, be-

fore moving on to the important topic of smoothing parameter estimation. Having

covered model representation and estimation, a Bayesian model useful for deriving

confidence intervals is then introduced, before considering practical performance of

such intervals, and the calculation of approximate p-values for model terms. Some

further topics of theoretical interest are then touched on before finishing with a very

brief presentation of some key ideas underpinning two alternative frameworks for

GAM estimation and inference. A review of the matrix algebra used in this chapter

is provided in Appendix A.

141

142 SOME GAM THEORY

What How Where

Turn GAM into penalized GLM

with coefficients β and smooth-

ing parameters λ

Choose bases and wiggliness

measures for the smooth terms

4.1, 4.2

Select λ By GCV, UBRE or AIC 4.5

using efficient, robust Newton

methods

4.6, 4.7

Estimate β By P-IRLS 4.3

Find confidence intervals/ credi-

ble intervals for (functions of) β

Use Bayesian smoothing model 4.8, 4.9

Test hypotheses about GAMs Use frequentist approximations,

or GLM methods on unpenalized

GAM

4.8.5,

4.10.1

Table 4.1 The main components of the framework for generalized additive modelling covered

in this chapter, and where they can be found.

4.1 Smoothing bases

For simplicity of presentation, only one very simple type of penalized regression

smoother was presented in Chapter 3. For practical work a variety of alternative

smoothers are available, and this section introduces a useful subset of the possibili-

ties, starting with smooths of one covariate, and then moving on to smooths of one or

more covariates. Since all the smooths presented are based on splines (although the

tensor product smooths need not be), the section starts by addressing the question:

what’s so special about splines?

4.1.1 Why splines?

Almost all the smooths considered in this book are based in some way on splines,

so it is worth spending a little time on the theoretical properties that make these

functions so appealing for penalized regression. Rather than attempt full generality,

the flavour of the theoretical ideas can be gleaned by considering some properties of

cubic splines, first in the context of interpolation, and then of smoothing.

Natural cubic splines are smoothest interpolators

Consider a set of points {xi, yi : i = 1, . . . , n} where xi < xi+1. The natural

cubic spline, g(x), interpolating these points, is a function made up of sections of

cubic polynomial, one for each [xi, xi+1], which are joined together so that the whole

SMOOTHING BASES 143

spline is continuous to second derivative, while g(xi) = yi and g′′(x1) = g′′(xn) =
0. Figure 3.3 illustrates such a cubic spline.

Of all functions that are continuous on [x1, xn], have absolutely continuous first

derivatives and interpolate {xi, yi}, g(x) is the one that is is smoothest in the sense

of minimizing:

J(f) =

∫ xn

x1

f ′′(x)2dx.

Green and Silverman (1994) provide a neat proof of this, based on the original work

of Schoenberg (1964). Let f(x) be an interpolant of {xi, yi}, other than g(x), and

let h(x) = f(x)− g(x). We seek an expression for J(f) in terms of J(g).
∫ xn

x1

f ′′(x)2dx =

∫ xn

x1

{g′′(x) + h′′(x)}2dx

=

∫ xn

x1

g′′(x)2dx + 2

∫ xn

x1

g′′(x)h′′(x)dx +

∫ xn

x1

h′′(x)2dx

and integrating the second term on the second line, by parts, yields
∫ xn

x1

g′′(x)h′′(x)dx = g′′(xn)h
′(xn)− g′′(x1)h

′(x1)−
∫ xn

x1

g′′′(x)h′(x)dx

= −
∫ xn

x1

g′′′(x)h′(x)dx

= −
n−1
∑

i=1

g′′′(x+
i)

∫ xi+1

xi

h′(x)dx

= −
n−1
∑

i=1

g′′′(x+
i) {h(xi+1)− h(xi)}

= 0,

where equality of lines 1 and 2 follows from the fact that g′′(x1) = g′′(xn) = 0.

Equality of lines 2 and 3 results from the fact that g(x) is made up of sections of

cubic polynomial, so that g′′′(x) is constant over any interval (xi, xi+1). The final

equality to zero follows from the fact that both f(x) and g(x) are interpolants, and

are hence equal at xi, implying that h(xi) = 0.

So we have shown that
∫ xn

x1

f ′′(x)2dx =

∫ xn

x1

g′′(x)2dx +

∫ xn

x1

h′′(x)2dx ≥
∫ xn

x1

g′′(x)2dx

with equality only if h′′(x) = 0 for x1 < x < xn. However, h(x1) = h(xn) = 0,

so in fact we have equality if and only if h(x) = 0 on [x1, xn]. In other words any

interpolant that is not identical to g(x) will have a higher integrated squared second

derivative. So there is a well defined sense in which the cubic spline is the smoothest

possible interpolant through any set of data.

The smoothest interpolation property is not the only good property of cubic spline

144 SOME GAM THEORY

interpolants. In de Boor (1978, Chapter 5) a number of results are presented showing

that cubic spline interpolation is optimal, or at least very good, in various respects.

For example, if a ‘complete’ cubic spline, g, is used to approximate a function, f̃ ,

by interpolating a set of points {xi, f̃(xi) : i = 1, . . . , n} and matching f̃ ′(x1) and

f̃ ′(xn) then if f̃(x) has 4 continuous derivatives:

max|f̃ − g| ≤ 5

384
max(xi+1 − xi)

4max|f̃ ′′′′|,

and this can be shown to be the best achievable.

These properties of spline interpolants, suggest that splines ought to provide a good

basis for representing smooth terms in statistical models. Whatever the true under-

lying smooth function is, a spline ought to be able to approximate it closely, and if

we want to construct models from smooth functions of covariates, then representing

those functions from smoothest approximations is intuitively appealing.

Cubic smoothing splines

In statistical work, yi is usually measured with noise, and it is generally more useful

to smooth xi, yi data, rather than interpolating them. To this end, rather than setting

g(xi) = yi, it might be better to treat the g(xi) as n free parameters of the cubic

spline, and to estimate them in order to minimize

n
∑

i=1

{yi − g(xi)}2 + λ

∫

g′′(x)2dx,

where λ is a tuneable parameter, used to control the relative weight to be given to the

conflicting goals of matching the data and producing a smooth g. The resulting g(x)
is a smoothing spline (Reinsch, 1967). In fact, of all functions, f , that are continuous

on [x1, xn], and have absolutely continuous first derivatives, g(x) is the function

minimizing:
n
∑

i=1

{yi − f(xi)}2 + λ

∫

f ′′(x)2dx. (4.1)

The proof is easy. Suppose that some other function, f ∗(x), minimized (4.1). In that

case we could interpolate {xi, f ∗(xi)} using a cubic spline, g(x). Now g(x) and

f ∗(x) have the same sum of squares term in (4.1), but by the properties of interpo-

lating splines, g(x) must have the lower integrated squared second derivative. Hence

g(x) yields a lower (4.1) than f ∗(x), and a contradiction, unless f ∗ = g.

So, the cubic spline basis arises naturally from the specification of the smoothing ob-

jective (4.1), in which, what is meant by model fit is defined precisely, what is meant

by smoothness is defined precisely, and the basis for representing smooth functions

is not chosen in advance, but rather emerges from seeking the function minimizing

(4.1).

Smoothing splines, then, seem to be somewhat ideal smoothers. The only substantial

problem, is the fact that they have as many free parameters as there are data to be

SMOOTHING BASES 145

smoothed. This seems wasteful, given that, in practice, λ will almost always be high

enough that the resulting spline is much smoother than n degrees of freedom would

suggest. Indeed, in section 4.10.4 we will see that many degrees of freedom of a

spline are often suppressed completely by the penalty. For univariate smoothing with

cubic splines, the large number of parameters turns out not to be problematic, but

as soon as we try to deal with more covariates, the computational expense becomes

severe.

An obvious compromise between retaining the good properties of splines, and com-

putational efficiency, is to use penalized regression splines, as introduced in Chapter

3. At its simplest, this involves constructing a spline basis (and associated penalties)

for a much smaller data-set than the one to be analyzed, and then using that basis

(plus penalties) to model the original data set. The covariate values in the smaller

data set should be arranged to nicely cover the distribution of covariate values in the

original data set. This penalized regression spline idea is presented in Wahba (1980)

and Parker and Rice (1985), for example. In the rest of this section, some spline based

penalized regression smoothers will be presented, starting with univariate smoothers,

and then moving on to smooths of several variables.

4.1.2 Cubic regression splines

The basis used in Chapter 3 was one way of defining a cubic regression spline basis,

but there are other ways of defining such smoothers, which have some advantages

in terms of interpretability of the parameters. One approach is to parameterize the

spline in terms of its values at the knots.

Consider defining a cubic spline function, f(x), with k knots, x1 . . . xk. Let βj =
f(xj) and δj = f ′′(xj). Then the spline can be written as

f(x) = a−j (x)βj + a+
j (x)βj+1 + c−j (x)δj + c+

j (x)δj+1 if xj ≤ x ≤ xj+1 (4.2)

where the basis functions a−j , a+
j , c−j and c+

j are defined in table 4.2. The conditions

that the spline must be continuous to second derivative, at the xj , and should have

zero second derivative at x1 and xk, can be shown to imply (exercise 1) that

Bδ− = Dβ. (4.3)

where δ− = (δ2, . . . , δk−1)
T (since δ1 = δk = 0) and B and D are defined in table

4.2.

Defining F− = B−1D, and

F =





0

F−

0





where 0 is a row of zeros, we have that δ = Fβ. Hence, the spline can be re-written

entirely in terms of β as

f(x) = a−j (x)βj + a+
j (x)βj+1 + c−j (x)Fjβ + c+

j (x)Fj+1β if xj ≤ x ≤ xj+1,

146 SOME GAM THEORY

Basis functions for a cubic spline

a−j (x) = (xj+1 − x)/hj c−j (x) = [(xj+1 − x)3/hj − hj(xj+1 − x)]/6

a+
j (x) = (x− xj)/hj c+

j (x) = [(x− xj)
3/hj − hj(x− xj)]/6

Non-zero matrix elements — non cyclic spline

Di,i = 1/hi Di,i+1 = −1/hi − 1/hi+1 Di,i+2 = 1/hi+1

Bi,i = (hi + hi+1)/3 i = 1 . . . k − 2

Bi,i+1 = hi+1/6 Bi+1,i = hi+1/6 i = 1 . . . k − 3

Non-zero matrix elements — cyclic spline

B̃i−1,i = B̃i,i−1 = hi−1/6 B̃i,i = (hi−1 + hi)/3

D̃i−1,i = D̃i,i−1 = 1/hi−1 D̃i,i = −1/hi−1 − 1/hi i = 2 . . . k − 1

B̃1,1 = (hk−1 + h1)/3 B̃1,k−1 = hk−1/6 B̃k−1,1 = hk−1/6

D̃1,1 = −1/h1 − 1/hk−1 D̃1,k−1 = 1/hk−1 D̃k−1,1 = 1/hk−1

Table 4.2 Definitions of basis functions and matrices used to define a cubic regression spline.

hj = xj+1 − xj .

which can be re-written, once more, as

f(x) =

k
∑

i=1

bi(x)βi

by implicit definition of new basis functions bi(x): figure 4.1 illustrates the basis.

Hence, given a set of x values, at which to evaluate the spline, it is easy to obtain

a model matrix mapping β to the evaluated spline. It can further be shown (e.g.

Lancaster and Šalkauskas, 1986, or exercise 2) that

∫ xk

x1

f ′′(x)2dx = βTDTB−1Dβ

i.e. S ≡ DTB−1D is the penalty matrix for this basis.

Notice that in addition to having directly interpretable parameters, this basis does not

require any re-scaling of the predictor variables before it can be used to construct a

GAM, although, as with the chapter 3 basis, we do have to choose the locations of

the knots xj . See Lancaster and Šalkauskas (1986) for more details about this basis.

SMOOTHING BASES 147

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

x

b
4
(x

)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

x

f(
x
)

Figure 4.1 The left hand panel illustrates one basis function,b4(x), for a cubic regression

spline of the type discussed in section 4.1.2: this basis function takes the value one at one knot

of the spline, and zero at all other knots (such basis functions are sometimes called ‘cardinal

basis functions’). The right hand panel shows how such basis functions are combined to repre-

sent a smooth curve. The various curves of medium thickness show the basis functions, bj(x),

of a cubic regression spline, each multiplied by its associated coefficient βj: these scaled basis

functions are summed to get the smooth curve illustrated by the thick continuous curve. The

vertical thin lines show the knot locations.

4.1.3 A cyclic cubic regression spline

It is quite often appropriate for a model smooth function to be ‘cyclic’, meaning

that the function has the same value and first few derivatives at its upper and lower

boundaries. For example, in most applications, it would not be appropriate for a

smooth function of time of year to change discontinuously at the year end. The pe-

nalized cubic regression spline, of the previous section, can be modified to produce

such a smooth. The spline can still be written in the form (4.2), but we now have that

β1 = βk and δ1 = δk. In this case then, we define vectors βT = (β1, . . . , βk−1) and

δT = (δ1, . . . , δk−1). The conditions that the spline must be continuous to second

derivative at each knot, and that f(x1) must match f(xk), up to second derivative,

are equivalent to

B̃δ = D̃β

where B̃ and D̃ are defined in table 4.2. Similar reasoning to that employed in the

previous section implies that the spline can be written as

f(x) =

k−1
∑

i=1

b̃i(x)βi,

by appropriate definition of the basis functions b̃i(x): figure 4.2 illustrates this basis.

A second derivative penalty also follows:
∫ xk

x1

f ′′(x)2dx = βTD̃TB̃−1D̃β.

148 SOME GAM THEORY

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

x

b
2
(x

)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

x

f

Figure 4.2 The left hand panel illustrates one basis function, b2(x), for a cyclic cubic regres-

sion spline of the type discussed in section 4.1.3: this basis function takes the value one at

one knot of the spline, and zero at all other knots - notice how the basis function values and

first two derivatives match at x = 0 and x = 1. The right hand panel shows how such basis

functions are combined to represent a smooth curve. The various curves of medium thickness

show the basis functions, bj(x), of a cubic regression spline, each multiplied by its associated

coefficient βj: these scaled basis functions are summed to get the smooth curve illustrated by

the thick continuous curve. The vertical thin lines show the knot locations.

4.1.4 P-splines

Yet another way to represent cubic splines (and indeed splines of higher or lower

order), is by use of the B-spline basis. The B-spline basis is appealing because the

basis functions are strictly local — each basis function is only non-zero over the

intervals between m + 3 adjacent knots, where m + 1 is the order of the basis (e.g.

m = 2 for a cubic spline∗). To define a k parameter B-spline basis, we need to define

k+m+1 knots, x1 < x2 < . . . < xk+m+1, where the interval over which the spline

is to be evaluated lies within [xm+2, xk] (so that the first and last m+1 knot locations

are essentially arbitrary). An (m + 1)th order spline can then be represented as

f(x) =
k
∑

i=1

Bm
i (x)βi,

where the B-spline basis functions are most conveniently defined recursively as fol-

lows:

Bm
i (x) =

x− xi
xi+m+1 − xi

Bm−1
i (x) +

xi+m+2 − x

xi+m+2 − xi+1
Bm−1
i+1 (x) i = 1, . . . k

and

B−1
i (x) =

{

1 xi ≤ x < xi+1

0 otherwise

(see e.g. de Boor, 1978; Lancaster and Šalkauskas, 1986). For example, the following
R code can be used to evaluate single B-spline basis functions at a series of x values:

∗ The somewhat inconvenient definition of order is for compatibility with the notation usually used for
normal splines.

SMOOTHING BASES 149

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

x

f

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

x

f

Figure 4.3 Illustration of the representation of a smooth curve by rank 10 B-spline bases. The

left plot shows a B spline basis with m = 1. The thin curves show B-spline basis functions

multiplied by their associated coefficients, each is non-zero over only 3 intervals. The sum

of the coefficients multiplied by the basis functions gives the spline itself, represented by the

thicker continuous curve. The right panel is the same, but for a basis for which m = 2: in

this case each basis function is non-zero over 4 adjacent intervals. In both panels the knot

locations are where each basis function peaks.

bspline <- function(x,k,i,m=2)

evaluate ith b-spline basis function of order m at the values

in x, given knot locations in k

{ if (m==-1) # base of recursion

{ res <- as.numeric(x<k[i+1]&x>=k[i])

} else # construct from call to lower order basis

{ z0 <- (x-k[i])/(k[i+m+1]-k[i])

z1 <- (k[i+m+2]-x)/(k[i+m+2]-k[i+1])

res <- z0*bspline(x,k,i,m-1)+ z1*bspline(x,k,i+1,m-1)

}

res

}

Figure 4.3 illustrates the representation of functions using B-spline bases of two dif-

ferent orders.

B-splines were developed as a very stable basis for large scale spline interpolation

(see de Boor, 1978, for further details), but for most statistical work with low rank

penalized regression splines, you would have to be using very poor numerical meth-

ods before the enhanced stability of the basis became noticeable. The real statistical

interest in B-splines has resulted from the work of Eilers and Marx (1996) in using

them to develop what they term P-splines.

P-splines are low rank smoothers using a B-spline basis, usually defined on evenly

spaced knots, and a difference penalty applied directly to the parameters, βi, to con-

trol function wiggliness. How this works is best seen by example. If we decide to

penalize the squared difference between adjacent βi values then the penalty would

150 SOME GAM THEORY

be

P =

k−1
∑

i=1

(βi+1 − βi)
2 = β2

1 − 2β1β2 + 2β2
2 − 2β2β3 + . . . + β2

k,

and it is straightforward to see that this can be written

P = βT













1 −1 0 . .
−1 2 −1 . .
0 −1 2 . .
.
.













β.

Such penalties are very easily generated in R. For example the penalty matrix for P
can be generated by:

k<-6 # example basis dimension

P <- diff(diag(k),differences=1) # sqrt of penalty matrix

S <- t(P)%*%P # penalty matrix

Higher order penalties are produced by increasing the differences parameter.

The only lower order penalty is the identity matrix.

P-splines are extremely easy to set up and use, and allow a good deal of flexibility,

in that any order of penalty can be combined with any order of B-spline basis, as

the user sees fit. Their disadvantage is that the simplicity is somewhat diminished if

uneven knot spacing is required, and that the penalties are less easy to interpret in

terms of the properties of the fitted smooth, than the more usual spline penalties. See

exercises 7 to 9, for further coverage of P-splines.

4.1.5 Thin plate regression splines

The bases covered so far are each useful in practice, but are open to some criticisms.

1. It is necessary to choose knot locations, in order to use each basis: this introduces

an extra degree of subjectivity into the model fits.

2. The bases are only useful for representing smooths of one predictor variable.

3. It is not clear to what extent the bases are better or worse than any other basis that

might be used.

In this section, an approach is developed which goes some way to addressing these

issues, by producing knot free bases, for smooths of any number of predictors, that

are in a certain limited sense ‘optimal’: the thin plate regression splines.

Thin plate splines

Thin plate splines (Duchon, 1977) are a very elegant and general solution to the

problem of estimating a smooth function of multiple predictor variables, from noisy

SMOOTHING BASES 151

0.0 0.2 0.4 0.6 0.8 1.0

1
0

1
4

1
8

x

b
a
s
is

 f
u
n
c
ti
o
n

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
0

1
0

x

b
a
s
is

 f
u
n
c
ti
o
n

0.0 0.2 0.4 0.6 0.8 1.0

−
8

0
−

6
0

−
4

0
−

2
0

x

b
a
s
is

 f
u
n
c
ti
o
n

0.0 0.2 0.4 0.6 0.8 1.0

−
1

5
−

1
3

−
1

1
−

9

x

b
a
s
is

 f
u
n
c
ti
o
n

0.0 0.2 0.4 0.6 0.8 1.0

0
.6

1
.0

1
.4

1
.8

x

b
a
s
is

 f
u
n
c
ti
o
n

0.0 0.2 0.4 0.6 0.8 1.0

6
0

1
0

0
1

4
0

1
8

0

x
b
a
s
is

 f
u
n
c
ti
o
n

0.0 0.2 0.4 0.6 0.8 1.0

−
1

4
0

−
1

0
0

−
6

0

x

b
a
s
is

 f
u
n
c
ti
o
n

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4
6

8

x

f(
x
)

Figure 4.4 Illustration of a thin plate spline basis for representing a smooth function of one

variable fitted to 7 data with penalty order m = 2. The first 7 panels (starting at top left) show

the basis functions, multiplied by coefficients, that are summed to give the smooth curve in the

lower right panel. The first two basis functions span the space of functions that are completely

smooth, according to the wiggliness measure. The remaining basis functions represent the

wiggly component of the smooth curve: these latter functions are shown after absorbtion of

the thin plate spline constraints TTδ = 0 into the basis.

observations of the function, at particular values of those predictors. Consider then,

the problem of estimating the smooth function g(x), from n observations (yi,xi)
such that

yi = g(xi) + εi

where εi is a random error term and where x is a d - vector (d ≤ n). Thin-plate spline

smoothing estimates g by finding the function f̂ minimizing:

‖y − f‖2 + λJmd(f) (4.4)

where y is the vector of yi data and f = (f(x1), f(x2), . . . , f(xn))
T. Jmd(f) is a

penalty functional measuring the ‘wiggliness’ of f , and λ is a smoothing parameter,

controlling the tradeoff between data fitting and smoothness of f . The wiggliness

penalty is defined as

Jmd =

∫

. . .

∫

<d

∑

ν1+...+νd=m

m!

ν1! . . . νd!

(

∂mf

∂xν11 . . . ∂xνd

d

)2

dx1 . . . dxd.
† (4.5)

Further progress is only possible if m is chosen so that 2m > d, and in fact for

‘visually smooth’ results it is preferable that 2m > d+1. Subject to the first of these

† The general form of the penalty is somewhat intimidating, so an example is useful. In the case of a
smooth of two predictors with wiggliness measured using second derivatives, we have

J22 =

Z Z „

∂2f

∂x2
1

«2

+

„

∂2f

∂x1∂x2

«2

+

„

∂2f

∂x2
2

«2

dx1dx2.

152 SOME GAM THEORY

restrictions, it can be shown that the function minimizing (4.4) has the form,

f̂(x) =

n
∑

i=1

δiηmd(‖x− xi‖) +

M
∑

j=1

αjφj(x), (4.6)

where δ and α are vectors of coefficients to be estimated, δ being subject to the

linear constraints that TTδ = 0 where Tij = φj(xi). The M =
(

m+d−1
d

)

functions,

φi, are linearly independent polynomials spanning the space of polynomials in <d
of degree less than m. The φi span the space of functions for which Jmd is zero,

i.e. the ‘null space’ of Jmd: those functions that are considered ‘completely smooth’.

For example, for m = d = 2 these functions are φ1(x) = 1, φ2(x) = x1 and

φ3(x) = x2. The remaining basis functions used in (4.6) are defined as

ηmd(r) =











(−1)m+1+d/2

22m−1πd/2(m−1)!(m−d/2)!r
2m−d log(r) d even

Γ(d/2−m)
22mπd/2(m−1)!

r2m−d d odd.

Now defining matrix E by Eij ≡ ηmd(‖xi − xj‖), the thin plate spline fitting

problem becomes,

minimize ‖y −Eδ −Tα‖2 + λδTEδ subject to TTδ = 0, (4.7)

with respect to δ and α. Wahba (1990) or Green and Silverman (1994) provide fur-

ther information about thin-plate splines, and figure 4.4 illustrates a thin plate spline

basis in one dimension.

The thin plate spline, f̂ , is something of an ideal smoother: it has been constructed

by defining exactly what is meant by smoothness, exactly how much weight to give

to the conflicting goals of matching the data and making f̂ smooth, and finding the

function that best satisfies the resulting smoothing objective. Notice that in doing

this we did not have to choose knot positions or select basis functions, both of these

emerged naturally from the mathematical statement of the smoothing problem. In

addition, thin plate splines can deal with any number of predictor variables, and

allow the user some flexibility to select the order of derivative used in the measure

of function wiggliness. So, at first sight it might seem that the problems listed at the

start of this section are all solved, and thin plate spline bases and penalties should be

used to represent all the smooth terms in the model.

The problem with thin plate splines is computational cost: these smoothers have as

many unknown parameters as there are data (strictly, number of unique predictor

combinations), and, except in the single predictor case, the computational cost of

model estimation is proportional to the cube of the number of parameters. This is

a very high price to pay for using such smooths. Given that the effective degrees

of freedom estimated for a model term is usually a small proportion of n, it seems

wasteful to use so many parameters to represent the term, and this begs the question

of whether a low rank approximation could be produced which is as close as possible

to the thin plate spline smooth, without incurring prohibitive computational cost.

SMOOTHING BASES 153

0.0 0.2 0.4 0.6 0.8 1.0

8
1

0
1

2
1

4
1

6
1

8
x

b
a
s
is

 f
u
n
c
ti
o
n

0.0 0.2 0.4 0.6 0.8 1.0

−
1

5
−

5
5

1
0

x

b
a
s
is

 f
u
n
c
ti
o
n

0.0 0.2 0.4 0.6 0.8 1.0

−
3

0
−

2
5

−
2

0
−

1
5

−
1

0

x

b
a
s
is

 f
u
n
c
ti
o
n

0.0 0.2 0.4 0.6 0.8 1.0

−
5

0
5

1
0

x

b
a
s
is

 f
u
n
c
ti
o
n

0.0 0.2 0.4 0.6 0.8 1.0

0
5

1
0

1
5

x

b
a
s
is

 f
u
n
c
ti
o
n

0.0 0.2 0.4 0.6 0.8 1.0

−
4

0
2

4
6

8

x
b
a
s
is

 f
u
n
c
ti
o
n

0.0 0.2 0.4 0.6 0.8 1.0

−
5

−
4

−
3

−
2

−
1

x

b
a
s
is

 f
u
n
c
ti
o
n

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4
6

8

x

f(
x
)

Figure 4.5 Illustration of a rank 7 thin plate regression spline basis for representing a smooth

function of one variable, with penalty order m = 2. The first 7 panels (starting at top left) show

the basis functions, multiplied by coefficients, that are summed to give the smooth curve in the

lower right panel. The first two basis functions span the space of functions that are completely

smooth, according to the wiggliness measure. The remaining basis functions represent the

wiggly component of the smooth curve: notice how these functions become successively more

wiggly while generally tending to contribute less and less to the overall fit.

Thin plate regression splines

Thin plate regression splines are based the idea of truncating the space of the wig-

gly components of the thin plate spline (the components with parameters δ), while

leaving the components of ‘zero wiggliness’ unchanged (the α components). Let

E = UDUT be the eigen-decomposition of E, so that D is a diagonal matrix of

eigenvalues of E arranged so that |Di,i| ≥ |Di−1,i−1| and the columns of U are the

corresponding eigenvectors. Now let Uk denote the matrix consisting of the first k
columns of U and Dk denote the top right k × k submatrix of D. Restricting δ to

the columns space of Uk, by writing δ = Ukδk, means that (4.7) becomes

minimise ‖y −UkDkδk −Tα‖2 + λδT

kDkδk subject to TTUkδk = 0

w.r.t. δk and α. The constraints can be absorbed in the usual manner, described in

section 1.8.1. We first find any orthogonal column basis, Zk, such that TTUkZk =
0. One way to do this is to form the QR decomposition of UT

kT: the final M columns

of the orthogonal factor give a Zk (see sections 1.8.1 and A.6). Restricting δk to this

space, by writing δk = Zkδ̃, yields the unconstrained problem that must be solved

to fit the rank k approximation to the smoothing spline:

minimise ‖y −UkDkZkδ̃ −Tα‖2 + λδ̃TZT

kDkZkδ̃

with respect to δ̃ and α. This has a computational cost of O(k3). Having fitted the

model, evaluation of the spline at any point is easy: simply evaluate δ = UkZkδ̃ and

use (4.6).

154 SOME GAM THEORY

Now, the main problem is how to find Uk and Dk sufficiently cheaply. A full eigen-

decomposition of E requires O(n3) operations, which would somewhat limit the

utility of the TPRS approach. Fortunately the method of Lanczos iteration can be

employed to find Uk and Dk at the substantially lower cost of O(n2k) operations.

See Appendix A, section A.11, for a suitable Lanczos algorithm.

Properties of thin plate regression splines

It is clear that thin plate regression splines avoid the problem of knot placement, are

relatively cheap to compute, and can be constructed for smooths of any number of

predictor variables, but what of their optimality properties? The thin-plate splines

are optimal in the sense that no smooth function will better minimize (4.4), but to

what extent is that optimality inherited by the TPRS approximation? To answer this it

helps to think about what would make a good approximation. An ideal approximation

would probably result in the minimum possible perturbation of the fitted values of

the spline, at the same time as making the minimum possible change to the ‘shape’

of the fitted spline. It is difficult to see how both these aims could be achieved, for all

possible response data, without first fitting the full thin plate spline. But if the criteria

are loosened somewhat to minimizing the worst possible changes in shape and fitted

value then progress can be made, as follows.

The basis change and truncation can be thought of as replacing E, in the norm in

(4.7), by the matrix Ê = EUkU
T

k , while replacing E, in the penalty term of (4.7),

by Ẽ = UT

kUkEUkU
T

k . Now since the fitted values of the spline are given by

Eδ̂ + Tα, the worst possible change in fitted values could be measured by:

êk = max
δ 6=0

‖(E− Êk)δ‖
‖δ‖ .

(dividing by ‖δ‖ is necessary since the upper norm otherwise has a maximum at

infinity.) The ‘shape’ of the spline is measured by the penalty term in (4.7), so a

suitable measure of the worst possible change in the shape of the spline caused by

the truncation might be:

ẽk = max
δ 6=0

δT(E− Ẽk)δ

‖δ‖2 .

It turns out to be quite easy to show that êk and ẽk are simultaneously minimized

by the choice of Uk, as the truncated basis for δ. i.e. there is no matrix of the same

dimension as Uk which would lead to lower êk or ẽk, if used in place of Uk (see

Wood, 2003).

Note that êk and ẽk are really formulated in too large a space. Ideally we would

impose the constraints TTδ = 0 on both, but in that case different bases minimize

the two criteria. This in turn leads to the question of whether it would not be better

to concentrate on just one of the criteria, but this is unsatisfactory, as it leads to

results that depend on how the original thin plate spline problem is parameterized.

SMOOTHING BASES 155

z

x

z

x

z

x

z

x

z
x

z

x

z

x

z

x

z

x

z
x

z

x

z

x

z

x

z

x

z
x

z

x

f

Figure 4.6 Illustration of a rank 15 thin plate regression spline basis for representing a smooth

function of two variables, with penalty order m = 2. The first 15 panels (starting at top

left) show the basis functions, multiplied by coefficients, that are summed to give the smooth

surface in the lower right panel. The first three basis functions span the space of functions

that are completely smooth, according to the wiggliness measure, J22. The remaining basis

functions represent the wiggly component of the smooth curve: notice how these functions

become successively more wiggly.

Furthermore, these results can be extremely poor for some parameterizations. For

example, if the thin plate spline. is parameterized in terms of the fitted values, then

the êk optimal approximation is not smooth. Similarly, very poor fitted values result

from an ẽk optimal approximation to a thin plate spline., if that thin plate spline is

parameterized so that the penalty matrix is an identity matrix, with some leading

diagonal entries zeroed.

To sum up: thin plate regression splines are probably the best that can be hoped for

in terms of approximating the behaviour of a thin plate spline using a basis of any

given low rank. They have the nice property of avoiding having to choose ‘knot lo-

cations’, and are reasonably computationally efficient, if Lanczos iteration is used to

find the truncated eigen-decomposition of E. They also retain the rotational invari-

156 SOME GAM THEORY

ance (isotropy) of full thin plate spline. Figures 4.5 and 4.6 provide examples of the

bases functions that result from adopting a t.p.r.s approach.

Knot based approximation

If one is prepared to forgo optimality, and choose knot locations, then a simpler

approximation is available, which avoids the truncated eigen-decomposition. If knot

locations {x∗i : i = 1 . . . k} are chosen, then the spline can be approximated by

f̂(x) =

k
∑

i=1

δiηmd(‖x− x∗i‖) +

M
∑

j=1

αjφj(x) (4.8)

where δ and α are estimated by minimizing

‖y −Xβ‖2 + λβTSβ subject to Cβ = 0

w.r.t. βT = (δT,αT). X is an n× k + M matrix such that

Xij =

{

ηmd(‖xi − x∗j‖) j = 1, . . . , k
φj−k(xi) j = k + 1, . . . , k + M.

S is a (k + M) × (k + M) matrix with zeroes everywhere except in its upper left

k × k block where Sij = ηmd(‖x∗i − x∗j‖). Finally, C is an M × (k + M) matrix

such that

Cij =

{

φi(x
∗
j) j = 1, . . . , k

0 j = k + 1, . . . , k + M.

This approximation goes back at least to Wahba (1980). Some care is required to

choose the knot locations carefully. In one dimension it is usual to choose quantiles

of the empirical distribution of the predictor, or even spacing, but in more dimensions

matters are often more difficult. One possibility is to take a random sample of the ob-

served predictor variable combinations, another to take a ‘spatially stratified’ sample

of the predictor variable combinations. Even spacing is sometimes appropriate, or

more sophisticated space filling schemes can be used: Ruppert et al. (2003) provide

a useful discussion of the alternatives.

4.1.6 Shrinkage smoothers

A disadvantage of the smooths discussed so far, is that no matter how large their

associated smoothing parameter becomes, the smooth is never completely eliminated

in the sense of having all its parameters estimated to be zero. On the contrary, some

functions are treated as completely smooth by the penalty, and hence functions of this

class are always completely un-penalized. From the point of view of model selection

with GAMs it would be more convenient if smooths could be zeroed by adjustment

of smoothing parameters. One way to do this would be to add an extra penalty, with

associated smoothing parameter which acted only on the unpenalized functions, but

this would open up the possibility of penalizing the smooth components of a function

SMOOTHING BASES 157

more than the wiggly components, which seems unsatisfactory, as well as requiring

an extra smoothing parameter per smooth. A fairly crude alternative, is simply to add

a small multiple of the identity matrix to the penalty matrix of the smooth, i.e.

S→ S + εI

so that the penalty will now shrink all parameters to zero if its associated smooth-

ing parameter is large enough. If ε is small enough, the identity part of the penalty

will have almost no impact when a function is ‘wiggly’: only once it becomes close

to ‘completely smooth’ will the identity component start to become important, and

really start shrinking the parameters towards zero.

4.1.7 Choosing the basis dimension

When using penalized regression splines the modeller chooses the basis dimension as

part of the model building process. Typically, this substantially reduces the compu-

tational burden of modelling, relative to full spline methods, and recognizes the fact

that, usually, something is seriously wrong if a statistical model really requires as

many coefficients as there are data. Working with fixed basis dimensions also makes

it rather trivial to demonstrate large sample consistency, and other properties, of the

smoothing methods, but only at the cost of a slightly artificial assumption that the

truth is really in the space spanned by the reduced basis.

The main challenge introduced, by this low rank approach, is that a basis dimension

has to be chosen. In the context of spline smoothing, Kim and Gu (2004) showed

that the basis size should scale as n2/9, where n is the number of data. Based on

simulation they suggested using 10n2/9 as the basis dimension, but it is hard to see

how one can really know what the constant of proportionality should be, without

knowing the truth that is being estimated. Chapter 5 includes several examples where

the rule appears to give too small a basis dimension, for example in section 5.6.2.

Wood (2006) also suggests that the basis dimension should depend on the number of

covariates of a smooth, as well as the sample size.

In practice, then, choice of basis dimension is something that probably has to remain

a part of model specification. However, it is important to note that the exact size of

basis dimension is really not that critical. The basis dimension is only setting an upper

bound on the flexibility of a term: it is the smoothing parameter that controls the

actual effective degrees of freedom. Hence the model fit is usually rather insensitive

to the basis dimension, provided that it is not set restrictively low for the application

concerned. The only caveat to this point is the slightly subtle one, that a function

space with basis dimension 20 will contain a larger space of functions with EDF 5

than will a function space of dimension 10 (the numbers being arbitrary): it is this

fact that causes model fit to retain some sensitivity to basis dimension, even if the

appropriate EDF for a term is well below the basis dimension.

In practice, the modeller needs to decide roughly how large a basis dimension is

fairly certain to provide adequate flexibility, in any particular application, and use

that.

158 SOME GAM THEORY

4.1.8 Tensor product smooths

A major feature of the thin plate (regression) spline approach of section 4.1.5 is the

isotropy of the wiggliness penalty: wiggliness in all directions is treated equally,

with the fitted spline entirely invariant to rotation of the co-ordinate system for the

predictor variables. For example, suppose we were to measure air pollution at a fixed

set of points in Southern England, measuring the location of the points relative to

the UK national grid and modelling pollution levels as a smooth function of the two

spatial co-ordinates. Now suppose that the locations were instead measured on the

French grid, and the modelling exercise repeated: the model fit would be identical

(provided that the earth is flat).

This isotropy is often considered to be desirable when modelling things as a smooth

function of geographic co-ordinates‡, but it has some disadvantages. Chief among

them is the difficulty of knowing how to scale predictors relative to one another, when

both are arguments of the same smooth, but they are measured in fundamentally dif-

ferent units. For example, consider a smooth function of a single spatial co-ordinate

and time: the implied relative importance of smoothness in time versus smoothness

in space, is very different between a situation in which the units are metres and

hours, compared to that in which the units are light-years and nanoseconds. One

pragmatic approach is to scale all predictors into the unit square, as is often done in

loess smoothing, but this is essentially arbitrary. A more satisfactory approach uses

tensor product smooths.

Tensor product bases

The basic approach of this section is to start from smooths of single covariates, rep-

resented using any basis with associated quadratic penalty measuring ‘wiggliness’ of

the smooth. From these ‘marginal smooths’ a ‘tensor product’ construction is used

to build up smooths of several variables. See de Boor (1978) for an important early

reference on tensor product spline bases.

The methods developed here can be used to construct smooth functions of any num-

ber of covariates, but the simplest introduction is via the construction of a smooth

function of 3 covariates, x, z and v, the generalization then being trivial. The process

starts by assuming that we have low rank bases available, for representing smooth

functions fx, fz and fv of each of the covariates. That is we can write:

fx(x) =

I
∑

i=1

αiai(x), fz(z) =

L
∑

l=1

δldl(z) and fv(v) =

K
∑

k=1

βkbk(v),

where the αi, δl and βk are parameters, and the ai(x), dl(z) and bk(v) are known

basis functions.

‡ Although it’s possible to overstate the case for doing this: in many applications at many locations
North-South is not the same as East-West.

SMOOTHING BASES 159

0.0 0.2 0.4 0.6 0.8 1.0

−
0

.2
0

.4
0

.8
x

a
3
(x

)

0.0 0.2 0.4 0.6 0.8 1.0

−
0

.2
0

.4
0

.8

z

d
5
(z

)

z

x

b
(x, z)

Figure 4.7 How the product of two marginal basis functions for smooth functions of x and z,

separately, results in a basis function for a smooth function of x and z together. The two left

panels show the 3rd and 5th basis functions for rank 8 cubic regression spline smooths of x
and z respectively. The right hand plot shows a3(x)b5(z), one of 64 similar basis functions of

the tensor product smooth derived from these two marginal smooths.

Now consider how the smooth function of x, fx, could be converted into a smooth

function of x and z. What is required is for fx to vary smoothly with z, and this can

be achieved by allowing its parameters, αi, to vary smoothly with z. Using the basis

already available for representing smooth functions of z we could write:

αi(z) =
L
∑

l=1

δildl(z)

which immediately gives

fxz(x, z) =

I
∑

i=1

L
∑

l=1

δildl(z)ai(x).

Figure 4.7 illustrates this construction. Continuing in the same way, we could now

create a smooth function of x, z and v by allowing fxz to vary smoothly with v.

Again, the obvious way to do this is to let the parameters of fxz vary smoothly with

v, and following the same reasoning as before we get

fxzv(x, z, v) =
I
∑

i=1

L
∑

l=1

K
∑

k=1

βilkbk(v)dl(z)ai(x).

For any particular set of observations of x, z and v, there is a simple relationship

between the model matrix, X, evaluating the tensor product smooth at these obser-

vations, and the model matrices Xx, Xz and Xv that would evaluate the marginal

smooths at the same observations. If ⊗ is the usual Kronecker product (see section

A.4), then it is easy to show that, given appropriate ordering of the βilk into a vector

160 SOME GAM THEORY

x
z

sm
o
o
th

Figure 4.8 Illustration of a tensor product smooth of two variables x and z, constructed from

2 rank 6 marginal bases. Following section 4.1.8 a tensor product smooth can always be

parameterized in terms of the values of the function at a set of ‘knots’ spread over the function

domain on a regular mesh: i.e. in terms of the heights of the •’s shown. The basis construction

can be thought of as follows: start with a smooth of x parameterized in terms of function

values at a set of ‘knots’; to make the smooth of x vary smoothly with z, simply allow each of

its parameters to vary smoothly with z: this can be done by representing each parameter using

a smooth of z, also parameterized in terms of function values at a set of ‘knots’. Exactly the

same smooth arises if we reverse the roles of x and z in this construction. The tensor product

smooth penalty in the x direction, advocated in section 4.1.8, is simply the sum of the the

marginal wiggliness measure for the smooth of x applied to the thick black curves parallel to

the x axes: the z penalty is similarly defined in terms of the marginal penalty of the smooth of

z applied to the thick black curves parallel to the z axis.

β, the ith row of X is simply:

Xi = Xxi ⊗Xzi ⊗Xvi.

Clearly (i) this construction can be continued for as many covariates as are required;

(ii) the result is independent of the order in which we treat the covariates and (iii) the

covariates can themselves be vector covariates. Figure 4.8 attempts to illustrate the

tensor product construction for a smooth of two covariates.

SMOOTHING BASES 161

Tensor product penalties

Having derived a ‘tensor product’ basis for representing smooth functions, it is also

necessary to have some way of measuring function ‘wiggliness’, if the basis is to be

useful for representing smooth functions in a GAM context. Again, it is possible to

start from wiggliness measures associated with the marginal smooth functions, and

again the three covariate case provides sufficient illustration. Suppose then, that each

marginal smooth has an associated functional that measures function wiggliness, and

can be expressed as a quadratic form in the marginal parameters. That is

Jx(fx) = αTSxα, Jz(fz) = δTSzδ and Jv(fv) = BTSvB.

The S• matrices contain known coefficients, and α, δ and B are vectors of coeffi-

cients of the marginal smooths. An example of a penalty functional is the cubic spline

penalty, Jx(fx) =
∫

(∂2fx/∂x2)2dx. Now let fx|zv(x) be fxvz(x, z, v) considered

as a function of x only, with z and v held constant, and define fz|xv(z) and fv|xz(v)
similarly. A natural way of measuring wiggliness of fxzv is to use:

J(fxzv) = λx

∫

z,v

Jx(fx|zv)dzdv+λz

∫

x,v

Jz(fz|xv)dxdv+λv

∫

x,z

Jv(fv|xz)dxdz

where the λ• are smoothing parameters controlling the tradeoff between wiggliness

in different directions, and allowing the penalty to be invariant to the relative scaling

of the covariates. As an example, if cubic spline penalties were used as the marginal

penalties, then

J(f) =

∫

x,z,v

λx

(

∂2f

∂x2

)2

+ λz

(

∂2f

∂z2

)2

+ λv

(

∂2f

∂v2

)2

dxdzdv.

Hence, if the marginal penalties are easily interpretable, in terms of function shape,

then so is the induced penalty. Numerical evaluation of the integrals in J is straight-

forward. As an example consider the penalty in the x direction. The function fx|zv(x)
can be written as

fx|zv(x) =
I
∑

i=1

αi(z, v)ai(x),

and it is always possible to find the matrix of coefficients Mz,v such that α(z, v) =
Mzvβ where β is the vector of βilk arranged in some appropriate order. Hence

Jx(fx|zv) = α(z, v)TSxα(z, v) = βTMT

zvSxMzvβ

and so
∫

z,v

Jx(fx|zv)dzdv = βT

∫

z,v

MT

zvSxMzvdzdvβ.

The last integral can be performed numerically, and it is clear that the same approach

can be applied to all components of the penalty. However, a simple reparameteri-

zation can be used to provide an approximation to the terms in the penalty, which

performs well in practice, and avoids the need for explicit numerical integration.

To see how the approach works, consider the marginal smooth fx. Let {x∗i : i =

162 SOME GAM THEORY

1, . . . , I} be a set of values of x spread evenly through the range of the observed x
values. In this case we can always re-parameterize fx in terms of new parameters

α′i = fx(x
∗
i).

Clearly under this re-parameterization α′ = Γα where Γij = ai(x
∗
j). Hence the

marginal model matrix becomes X′x = XxΓ
−1 and the penalty coefficient matrix

becomes S′x = Γ−TSxΓ
−1.

Now suppose that the same sort of re-parameterization is applied to the marginal

smooths fv and fz . In this case we have that
∫

z,v

Jx(fx|zv)dzdv ≈ h
∑

lk

Jx(fx|z∗lv∗k),

where h is some constant of proportionality related to the spacing of the z∗l ’s and v∗k’s.

Similar expressions hold for the other integrals making up J . It is straightforward to

show that the summation in the above approximation is:

J∗x(fxzv) = βTS̃xβ where S̃x = S′x ⊗ IL ⊗ IK

and IL is the rank L identity matrix. Exactly similar definitions hold for the other

components of the penalty so that

J∗z(fxzv) = βTS̃zβ where S̃z = II ⊗ S′z ⊗ IK

and

J∗v(fxzv) = βTS̃vβ where S̃v = II ⊗ IL ⊗ S′v.

Hence

J(fxzv) ≈ J∗(fxzv) = λxJ
∗
x(fxzv) + λzJ

∗
z (fxzv) + λvJ

∗
v(fxzv),

where any constants, h, have been absorbed into the λj . Again, this penalty construc-

tion clearly generalizes to any number of covariates. Figure 4.8 attempts to illustrate

what the penalties actually measure, for a smooth of two variables.

Given its model matrix and penalties, the coefficients and smoothing parameters of a

tensor product smooth can be estimated as GAM components using the methods of

sections 4.3 and 4.6 or 4.7. These smooths have the nice property of being invariant

to rescaling of the covariates, provided only that the marginal smooths are similarly

invariant (which is always the case in practice).

Note that it is possible to omit the reparameterization of the marginal smooths, in

terms of function values, and to work with penalties of the form

βTS̄zβ where S̄z = II ⊗ Sz ⊗ IK

for example: Eilers and Marx (2003) successfully used this approach to smooth with

respect to two variables using tensor products of B-splines. A potential problem

with the approach is that the penalties no-longer have the interpretation in terms

of (averaged) function shape, that is inherited from the marginal smooths when re-

parameterization is used. Another proposal in the literature is to use single penalties

SETTING UP GAMS AS PENALIZED GLMS 163

of the form:

βTSβ where S = S1 ⊗ S2 ⊗ · · · ⊗ Sd.

but this often leads to severe undersmoothing. The reason for the undersmoothing is

straightforward: the rank of S is the product of the ranks of the Sj , and in practice this

is often far too low for practical work. For example, consider a smooth of 3 predictors

constructed as a tensor product smooth of 3 cubic spline bases, each of rank 5. The

resulting smooth would have 125 free parameters, but a penalty matrix of rank 27.

This means that varying the weight given to the penalty would only result in the

effective degrees of freedom for the smooth varying between 98 and 125: not a very

useful range. By contrast, for the same marginal bases, the multiple term penalties

would have rank 117, leading to a much more useful range of effective degrees of

freedom of between 8 and 125.

4.2 Setting up GAMs as penalized GLMs

As we saw in Chapter 3, a GAM models a response variable, yi, using a model

structure of a form like:

g(µi) = X∗iθ + f1(x1i) + f2(x2i, x3i) + f3(x4i) + · · · (4.9)

where µi ≡ E(yi) and yi ∼ ‘an exponential family distribution’§. Here g is a known,

monotonic, twice differentiable, link function; X∗i is the ith row of a model matrix

for any strictly parametric model components, with parameter vector θ; the fj are

smooth functions of the covariates xj .

To estimate such a model we can specify a basis for each smooth function, along

with a corresponding definition of what is meant by smoothness/wiggliness of the

function. Starting with the bases, we choose a set of basis functions, bji, for each

function, so that it can be represented as:

fj(xj) =

qj
∑

i=1

βjibji(xj)

where xj may be a vector quantity and the βji are coefficients of the smooth, which

will need to be estimated as part of model fitting.

Given a basis, it is straightforward to create a model matrix, X̃j, for each smooth. If

fj is the vector such that fji = fj(xji) and β̃j =
[

βj1, βj2, . . . , βjqj

]T
, then

fj = X̃jβ̃j

where X̃j,ik = bjk(xji), and the covariate, xj , may sometimes be a vector quantity.

Typically, (4.9) is not an identifiable model, unless each smooth is subject to a ‘cen-

tering constraint’. A suitable constraint is that the sum (or mean) of the elements of

§ although if we take a quasi-likelihood approach we can relax the distributional assumption somewhat
and only specify a mean variance relationship for yi.

164 SOME GAM THEORY

fj should be zero, which can be written as

1TX̃jβ̃j = 0.

Using the approach taken in section 1.8.1, this constraint can easily be absorbed by

re-parameterization. Specifically we find a matrix Z, the qj − 1 columns of which

are orthogonal, and which satisfies:

1TX̃jZ = 0.

Now reparameterizing the smooth in terms of qj − 1 new parameters, βj, such that

β̃j = Zβj, we obtain a new model matrix for the jth term, Xj = X̃jZ, such that fj =
Xjβj automatically satisfies the centering constraint. Z is never formed explicitly,

since it can be represented by a single Householder matrix (see section A.5).

Given centered model matrices, for each smooth term, (4.9) can now be re-written as

g(µi) = Xiβ (4.10)

where X = [X∗ : X1 : X2 : · · ·] and βT = [θT,βT

1 ,βT

2 , · · ·]. Clearly (4.10) is just

a GLM, and we can therefore write down its likelihood, l(β), say. Equally clearly, if

the qj are large enough that we have a reasonable chance of accurately representing

the unknown fj’s, and β is estimated by ordinary likelihood maximization, then

there is a good chance of substantially overfitting. For this reason, GAMs are usually

estimated by penalized likelihood maximization, where the penalties are designed to

suppress overly wiggly estimates of the fj terms.

The most convenient penalties to work with are those which measure function wig-

gliness as a quadratic form in the coefficients of the function. For example, the wig-

gliness of the jth function might be measured by β̃T

j S̃jβ̃j, where S̃j is a matrix of

known coefficients. Sometimes S̃j may itself be a weighted sum of simpler matrices

of known coefficients, where the weights are parameters to be estimated (see sec-

tion 4.1.8). The centering reparameterization would convert this penalty to the form

βT

j S̄jβj where S̄j = ZTS̃jZ. Notationally it is convenient to re-write the penalty in

terms of the full coefficient vector β, so that it becomes βTSjβ, where Sj is just S̄j
padded with zeroes so that βTSjβ ≡ βT

j S̄jβj.

Given a wiggliness measure for each function, we can define a penalized likelihood

for the model,

lp(β) = l(β)− 1

2

∑

j

λjβ
TSjβ, (4.11)

where the λj are smoothing parameters, controlling the tradeoff between goodness of

fit of the model and model smoothness. Given values for the λj , then lp is maximized

to find β̂, but the λj must themselves be estimated.

4.2.1 Variable coefficient models

Hastie and Tibshirani (1993) proposed a class of models, which they dubbed ‘vari-

able coefficient models’. These models are basically GAMs, in which the smooths

JUSTIFYING P-IRLS 165

may be multiplied by some known covariate. An example is

g(µi) = X∗iθ + f1(x1i)x2i + f2(x3i, x4i)x5i + f3(x6i)x7i + · · ·

Setting up these models for estimation by penalized regression methods is straight-

forward. Each row of the model matrix for the smooth is multiplied by the corre-

sponding value of the covariate. For example, the formal expression for the model

matrix for the term f1(x1i)x2i, in the above example, is simply diag(x2)X1, where

X1 is the model matrix for f1(x1i), and diag(x2) is a diagonal matrix with x2i at the

ith position on its leading diagonal (in the terminology of the mgcv package, covered

in Chapter 5, variables like x2 are known as ‘by’ variables). No other modification

of the GAM framework presented in this chapter is necessary.

Note that such models make it easy to condition smooths on factors. For example,

if a smooth of x should depend on which of two levels of a factor, a, pertains for a

particular response observation, we could write a model as

g(µi) = f(xi)z1i + f(xi)z2i,

where zj is an indicator variable for whether the corresponding factor level is j.

4.3 Justifying P-IRLS

As we saw in chapter 3, the GAM penalized likelihood, (4.11), can be maximized by

penalized iteratively re-weighted least squares, and in this section some justification

for this approach is provided. For notational compactness (4.11) can be re-written as

lp(β) = l(β)− 1

2
βTSβ

where S =
∑

j λjSj , and for the moment the λj are taken as known. To maximize

lp we set its derivatives with respect to the βj to zero:

∂lp
∂βj

=
∂l

∂βj
− [Sβ]j =

1

φ

n
∑

i=1

yi − µi
V (µi)

∂µi
∂βj
− [Sβ]j = 0,

where [·]j denotes the jth row of a vector. But by the same argument used in section

2.1.2 these equations are exactly those that would have to be solved to maximize the

penalized non-linear least squares problem

Sp =

n
∑

i=1

(yi − µi)
2

var(Yi)
+ βTSβ,

assuming that the var(Yi) terms were known. Again following section 2.1.2 it is easy

to show that, in the vicinity of some parameter vector estimate β̂[k],

Sp '
∥

∥

∥

√

W[k]
(

z[k] −Xβ
)
∥

∥

∥

2

+ βTSβ, (4.12)

166 SOME GAM THEORY

where, if g is the model link function, z[k] is a vector of pseudodata and W[k] is a

diagonal matrix with diagonal elements w
[k]
i then

w
[k]
i =

1

V (µ
[k]
i)g′(µ[k]

i)2
and zi = g(µ

[k]
i)(yi − µ

[k]
i) + Xiβ̂

[k].

Hence given smoothing parameters, the maximum penalized likelihood estimates, β̂,

are obtained by iterating the steps

1. Given the current β̂[k] calculate the pseudodata z[k] and weights w
[k]
i .

2. Minimize 4.12 w.r.t. β to find β̂[k+1]. Increment k.

to convergence. See O’Sullivan et al. (1986) for an early reference on penalized like-

lihood maximization for smooth models.

4.4 Degrees of freedom and residual variance estimation

Before covering λ estimation, it is helpful to consider the notion of degrees of free-

dom for a GAM, and this will also lead on naturally to the question of scale parameter

estimation. How many degrees of freedom does a fitted GAM have? Clearly, if the

smoothing parameters were all set to zero then the degrees of freedom of the model

would be the dimension of β (less the number of identifiability constraints). At the

opposite extreme, if all the smoothing parameters are very high then the model will

be quite inflexible and will hence have very few degrees of freedom. One way of mea-

suring the flexibility of the fitted model is to define the effective degrees of freedom as

tr (A), by analogy with section 1.3.5. It is fairly easy to show that the maximum of

tr (A) is just the number of parameters less the number of constraints, and similarly

that the minimum values is rank(
∑

i Si) less than this. As the smoothing parameters

vary, from zero to infinity, the effective degrees of freedom moves smoothly between

these limits.

Now the degrees of freedom of the model are, in effect, reduced by the application of

the penalties during fitting, and penalties for different model terms will have different

smoothing parameters, and will hence penalize their smooth functions differently. It

is therefore natural to want to break the effective degrees of freedom down, into

effective degrees of freedom for each smooth. In fact one might as well go further

still, and try to ascertain the effective degrees of freedom associated with each β̂i,
separately. Again this is natural, since the penalties generally penalize each element

of β differently.

To this end, first define¶ P ≡ (XTX+S)−1XT, so that β̂ = Py (in the un-weighted

additive model case). Hence tr (A) = tr (XP). Now define P0
i to be P with all its

¶ Again writing S =
P

j λjSj .

DEGREES OF FREEDOM AND RESIDUAL VARIANCE ESTIMATION 167

rows zeroed except the ith, which is left unchanged. In this case the vector P0
iy has

β̂i for its ith element, and zero elsewhere, while

tr (A) =

p
∑

i=1

tr
(

XP0
i

)

.

So, it is natural to interpret tr
(

XP0
i

)

as the effective degrees of freedom associated

with the ith parameter. However,

tr
(

XP0
i

)

= (PX)i,i,

so the vector of effective degrees of freedom for the model parameters is given by

the leading diagonal of

F = PX = (XTX + S)−1XTX.

For an intuitive insight into the meaning of effective degrees of freedom, an alterna-

tive argument is perhaps more useful. Without penalization, the parameter estimates

would be,

β̃ = (XTX)−1XTy.

With penalization the estimates are

β̂ = (XTX + S)−1XTy

= (XTX + S)−1XTX(XTX)−1XTy

= Fβ̃

i.e. F is the matrix mapping the un-penalized estimates to the penalized ones. Now

∂β̂i/∂β̃i = Fii, meaning that Fii measures how much the penalized β̂i will change,

as a result of a unit change in the un-penalized β̃. This is why Fii measures the effec-

tive degrees of freedom of the ith penalized parameters: the un-penalized parameter

has one degree of freedom, but the penalties effectively shrink that freedom to vary,

by a factor Fii. Actually things are not quite as straightforward as this implies, since

there is actually no general guarantee that Fii > 0, although for most reasonable

bases and penalties the Fii are positive, unless autocorrelated data are being mod-

elled (as in chapter 6).

In the general, weighted, case the degrees of freedom matrix is easily shown to be

F = (XTWX + S)−1XTWX.

4.4.1 Residual variance or scale parameter estimation

In the identity link, normal errors case, then by analogy with linear regression, σ2

could be estimated by the residual sum of squares divided by the residual degrees of

freedom:

σ̂2 =
‖y −Ay‖2
n− tr (A)

, (4.13)

168 SOME GAM THEORY

where tr (A) = tr (F). In fact (4.13) is not unbiased, since it is readily shown that

E
(

‖y −Ay‖2
)

= σ2
[

n− 2tr (A) + tr
(

ATA
)]

+ bTb, (4.14)

where b = µ − Aµ represents the smoothing bias. Re-arranging (4.14) and sub-

stituting µ̂ for µ, yields an alternative estimator for σ̂2, but the need to estimate b

means that it is still a biased estimator, and a rather complicated one to work with.

For this reason (4.13) is usually preferred.

In the generalized additive model case, the scale parameter is usually estimated by

the Pearson-like scale estimator,

φ̂ =

∑

i V (µ̂i)
−1(yi − µ̂i)

2

n− tr (A)
.

4.5 Smoothing Parameter Estimation Criteria

Penalized likelihood maximization can only estimate model coefficients, β, given

smoothing parameters λ, so this section covers the topic of smoothing parameter

estimation introduced in section 3.2.3. Two basic approaches are useful: when the

scale parameter is known then attempting to minimize the expected mean square er-

ror leads to estimation by Mallow’s Cp/UBRE; when the scale parameter is unknown

then attempting to minimize prediction error leads to cross validation or GCV. As

usual it helps to start with the additive model case, and to generalize it at the end.

4.5.1 Known scale parameter: UBRE

An appealing way of estimating smoothing parameters would be to choose them in

order that µ̂ is as close as possible to the true µ ≡ E(y). An appropriate measure

of this proximity might be M , the expected Mean Square Error (MSE) of the model,

and in section 1.8.5, the argument‖ leading to (1.14) implies that this is:

E(M) = E

(

‖µ−Xβ̂‖2/n
)

= E
(

‖y −Ay‖2
)

/n− σ2 + 2tr (A)σ2/n. (4.15)

Hence it seems reasonable to choose smoothing parameters which minimize an es-

timate of this expected MSE, that is to minimize the Un-Biased Risk Estimator

(Craven and Wahba, 1979),

Vu(λ) = ‖y −Ay‖2/n− σ2 + 2tr (A)σ2/n, (4.16)

which is also Mallow’s Cp (Mallows, 1973). Note that the r.h.s. of (4.16) depends on

the smoothing parameters through A.

If σ2 is known then estimating λ by minimizing Vu works well, but problems arise

‖ which makes no assumptions that are invalidated by penalized least squares estimation.

SMOOTHING PARAMETER ESTIMATION CRITERIA 169

if σ2 has to be estimated. For example, substituting the approximation

E
(

‖y −Ay‖2
)

= σ2(n− tr (A)), (4.17)

implied by (4.13), into (4.15) yields,

M = E

(

‖µ−Xβ̂‖2/n
)

=
tr (A)

n
σ2 (4.18)

and the MSE estimator M̃ = tr (A) σ̂2/n. Now consider comparison of 1 and 2

parameter models using M̃ : the 2 parameter model has to reduce σ̂2 to less than

half the one parameter σ2 estimate before it would be judged to be an improvement.

Clearly, therefore, M̃ is not a suitable basis for model selection.

4.5.2 Unknown scale parameter: Cross Validation

As we have seen, naively attempting to minimize the average square error in model

predictions of E(y), will not work well when σ2 is unknown. An alternative is to

base smoothing parameter estimation on mean square prediction error: that is on the

average squared error in predicting a new observation y using the fitted model. The

expected mean square prediction error is readily shown to be

P = σ2 + M.

The direct dependence on σ2 tends to mean that criteria based P are much more

resistant to over-smoothing, which would inflate the σ2 estimate, than are criteria

based on M alone.

The most obvious way to estimate P is to use cross validation (e.g. Stone, 1974). By

omitting a datum, yi, from the model fitting process, it becomes independent of the

model fitted to the remaining data. Hence the squared error in predicting yi is readily

estimated, and by omitting all data in turn we arrive at the ordinary cross validation

estimate of P , given in section 3.2.3:

Vo =
1

n

n
∑

i=1

(yi − µ̂
[−i]
i)2

where µ̂
[−i]
i denotes the prediction of E(yi) obtained from the model fitted to all data

except yi.

Fortunately, calculating Vo by performing n model fits, to obtain the n terms µ̂
[−i]
i ,

is unnecessary. To see this, first consider the penalized least squares objective which

in principle has to be minimized to find the ith term in the OCV score:

n
∑

j=1
j 6=i

(yj − µ̂
[−i]
j)2 + Penalties.

Clearly, adding zero to this objective will leave the estimates that minimize it com-

170 SOME GAM THEORY

pletely unchanged. So we can add the term (µ̂
[−i]
i − µ̂

[−i]
i)2 to obtain

n
∑

j=1

(y∗j − µ̂
[−i]
j)2 + Penalties, (4.19)

where y∗ = y − ȳ[i] + µ̄[i]: ȳ[i] and µ̄[i] are vectors of zeroes except for their ith

elements which are yi and µ̂
[−i]
i , respectively.

Fitting, by minimizing (4.19), obviously results in ith prediction µ̂
[−i]
i , and also in an

influence matrix A, which is just the influence matrix for the model fitted to all the

data (since (4.19) has the structure of the fitting objective for the model of the whole

data). So considering the ith prediction we have that:

µ̂
[−i]
i = Aiy

∗ = Aiy − Aiiyi + Aiiµ̂
[−i]
i = µ̂i −Aiiyi + Aiiµ̂

[−i]
i ,

where µ̂i is from the fit to the full y. Subtraction of yi from both sides, and a little

rearrangement then yields

yi − µ̂
[−i]
i = (yi − µ̂i)/(1−Aii),

so that the OCV score becomes

Vo =
1

n

n
∑

i=1

(yi − µ̂i)
2

(1−Aii)2
, (4.20)

which can clearly be calculated from a single fit of the original model. Stone (1977)

demonstrates the asymptotic equivalence of cross validation and AIC.

Problems with Ordinary Cross Validation

OCV is a reasonable way of estimating smoothing parameters, but suffers from two

potential drawbacks. Firstly, it is computationally expensive to minimize in the addi-

tive model case, where there may be several smoothing parameters. Secondly, it has

a slightly disturbing lack of invariance (see Golub et al., 1979; Wahba, 1990, p. 53).

To appreciate the invariance problem, consider the additive model fitting objective,

‖y −Xβ‖2 +
m
∑

i=1

λiβ
TSiβ,

again. Given smoothing parameters, all inferences about β, made on the basis of

minimizing this objective, are identical to the inferences that would be made by using

the alternative objective:

‖Qy −QXβ‖2 +
m
∑

i=1

λiβ
TSiβ,

where Q is any orthogonal matrix of appropriate dimension. However, the two ob-

jectives generally give rise to different OCV scores.

SMOOTHING PARAMETER ESTIMATION CRITERIA 171

0.0 0.2 0.4 0.6 0.8 1.0

0
5

1
0

x

y

5 10 15 20

5
6

7
8

9
1
0

1
1

edf

o
c
v

Figure 4.9 Lack of invariance or ordinary cross validation. The left panel shows a smooth

function (continuous line) and some data sampled from it at random x values with noise added

in the y direction. The right panel shows OCV scores against estimated degrees of freedom for

a rank 20 penalized regression spline fitted to the data: the continuous curve is the OCV score

for the model fitted using the original objective; the dashed line shows the OCV score for the

model fitted by an alternative objective. Both objectives result in identical inferences about

the model coefficients for any given smoothing parameters, so the difference in OCV score is

somewhat unsatisfactory. GCV and UBRE do not suffer from this problem.

Figure 4.9 illustrates this problem for a smooth of x, y data. The right hand side of

figure 4.9 shows Vo plotted against effective degrees of freedom, for the same rank 20

penalized regression spline fitted to the data in the left panel: the continuous curve

is Vo corresponding to the original objective, while the dashed curve is Vo for the

orthogonally transformed objective. For this example, Q was obtained from the QR

decomposition of X, but similar differences occur for arbitrary orthogonal Q. Note

how the ‘optimal’ degrees of freedom differ between the two OCV scores, and that

this occurs despite the fact that the fitted models at any particular EDF are identical.

4.5.3 Generalized Cross Validation

The problems with ordinary cross validation arise because, despite parameter esti-

mates, effective degrees of freedom and expected prediction error being invariant to

rotation of y −Xβ by any orthogonal matrix Q, the elements, Aii, on the leading

diagonal of the influence matrix, are not invariant and neither are the individual terms

in the summation in (4.20). This sensitivity to an essentially arbitrary choice about

how fitting is done is unsatisfactory, but what can be done to improve matters?

One approach is to consider what might make for ‘good’ or ‘bad’ rotations of y−Xβ

and to decide to perform cross validation on a particularly nicely rotated problem.

One thing that would appear to be undesirable is to base cross validation on data in

which a few points have very high leverage relative to the others. That is highly un-

even Aii values are undesirable, as they will tend to cause the cross validation score

172 SOME GAM THEORY

5 10 15 20

4
.0

4
.5

5
.0

5
.5

6
.0

EDF

S
c
o

re

5 10 15 20

4
.0

4
.5

5
.0

5
.5

6
.0

EDF

S
c
o

re

5 10 15 20

4
.0

4
.5

5
.0

5
.5

6
.0

EDF

S
c
o

re

Figure 4.10 Comparison of different smoothing parameter estimation criteria for rank 20

penalized regression splines fitted to three replicates of the simulated data shown in figure

4.9. The curves are as follows (in ascending order at the 20 EDF end of the left hand panel):

the continuous curve is observed mean square error + known σ2; the long dashed curve is

Vu +σ2; the short dashed curve is Vg , the GCV criterion; the alternating dashes and dots are

Vo, the OCV criterion. The dot on each curve shows the location of its minimum.

(4.20) to be dominated by a small proportion of the data. This suggests choosing the

rotation Q in order to make the Aii as even as possible.

In fact it is possible to choose Q in order to make all the Aii equal. To see this note

that if A is the influence matrix for the original problem, then the influence matrix

for the rotated problem is

AQ = QAQT

but if B is any matrix such that BBT = A then the influence matrix can be written:

AQ = QBBTQT.

Now if the orthogonal matrix Q is such that each row of QB has the same Euclidean

length, then it is clear that all the elements on the leading diagonal of the influ-

ence matrix, AQ, have the same value, which must be tr (A) /n, since tr (AQ) =
tr
(

QAQT
)

= tr
(

AQTQ
)

= tr (A).

Does a Q with this neat row-length-equalizing property actually exist? It is easy to

see that it does, by construction. Firstly note that it is always possible to produce an

orthogonal matrix to be applied from the left, whose action is to perform a rotation

which affects only two rows of a target matrix, such as B: a matrix with this property

is known as a Givens rotation. As the angle of rotation, θ, increases smoothly from

zero, the Euclidean lengths of the two rows varies smoothly, although the sum of their

squared lengths remains constant, as befits a rotation. Once θ reaches 90 degrees,

the row lengths are interchanged, since the magnitudes of the elements of the rows

have been interchanged. Hence there must exist an intermediate θ at which the row

lengths are exactly equal. Let the Givens rotation with this θ be termed the ‘averaging

rotation’ for the two rows. If we now apply an averaging rotation to the pair of rows of

SMOOTHING PARAMETER ESTIMATION CRITERIA 173

B having smallest and largest Euclidean lengths, then the range of row lengths in the

modified B will automatically be reduced. Iterating this process must eventually lead

to all row lengths being equal, and the product of the averaging rotations employed

in the iteration yields Q.

With this best rotation of the fitting problem, the ordinary cross validation score

(4.20) can be written

Vg =
n‖y − µ̂‖2

[n− tr (A)]2
. (4.21)

which is known as the Generalized Cross Validation score (GCV, Craven and Wahba,

1979; Golub et al., 1979). Notice that we do not have to actually perform the rotation

in order to use GCV. Also, since the expected prediction error is unaffected by the

rotation, and GCV is just OCV on the rotated problem, GCV must be as valid an es-

timate of prediction error as OCV, but GCV has the nice property of being invariant.

Figure 4.10 compares GCV, OCV and UBRE scores for some simulated data. Un-

surprisingly the criteria tend to be in quite close agreement, and are all in closer

agreement with each other than with the observed MSE + σ2.

4.5.4 GCV/UBRE/AIC in the Generalized case

The previous sections have only dealt with additive models rather than generalized

additive models, but the generalization is straightforward. The GAM fitting objective

can be written in terms of the model deviance (equation (2.7), section 2.1.6), as

D(β) +

m
∑

j=1

λjβ
TSjβ

which is minimized w.r.t. β. Given λ then this objective can be quadratically approx-

imated, by

‖
√

W(z−Xβ)‖2 +
m
∑

j=1

λjβ
TSjβ, (4.22)

where the approximation should reasonably capture the dependence of the penalized

deviance on λ and β, in the vicinity of the current λ, and the corresponding minimiz-

ing values of β. This approximation is justified in section 2.1.3, which shows that the

first two derivatives of D(β) and ‖
√

W(z−Xβ)‖2 are approximately equal, while

the approximate distributional results for the Pearson statistic and Deviance (e.g. sec-

tion 2.1.7) suggest that they have approximately equal expected value.

Now, for the problem (4.22), it is straightforward to re-use the arguments of sections

4.5.2 and 4.5.3 in order to derive a GCV score for smoothing parameter selection:

Vwg =
n‖
√

W(z−Xβ)‖2
[n− tr (A)]2

. (4.23)

Of course, this approximation is only valid locally to the λ used to find z and W,

174 SOME GAM THEORY

but re-using the approximation from section 2.1.3, a globally applicable GCV score

(Hastie and Tibshirani, 1990) can be obtained

Vg =
nD(β̂)

(n− tr (A))2
. (4.24)

Applying similar arguments to the UBRE criterion, yields

Vwu =
1

n
‖
√

W(z−Xβ)‖2 − σ2 +
2

n
tr (A)σ2. (4.25)

and hence

Vu =
1

n
D(β̂)− σ2 +

2

n
tr (A)σ2. (4.26)

Notice how this criterion is effectively just a linear transformation of AIC.

Although the definition of Vg is intuitively very reasonable (since the deviance is

specifically constructed to behave like the residual sum of squares term it is replac-

ing) the given justification for Vg is not strong. In particular the value of D(β̂) is

often not all that close to that of ‖
√

W(z−Xβ̂)‖2, so that the final approximation

in the argument leading to Vg is rather poor. One way of dealing with this would be

to recognize that in reality D(β̂) + k ≈ ‖
√

W(z−Xβ̂)‖2, where k is a constant

which could be estimated from an initial model fit in which it is neglected. A sec-

ond fit could then be performed in which the GCV score used D(β̂) + k in place of

D(β̂). However, in practice this seems not to result in large enough improvements to

be worthwhile (see exercise 9). Clearly the whole issue presents no problem for the

UBRE score, for which the value of k is immaterial.

Intuitively, it might also seem reasonable∗∗ to replace the deviance by the Pearson

statistic in order to obtain GCV and UBRE scores for the generalized case. The

resulting scores are:

Vpg =
n
∑n
i=1 V (µ̂i)

−1(yi − µ̂i)
2

[n− tr (A)]2

and

Vpu =
1

n

n
∑

i=1

V (µ̂i)
−1(yi − µ̂i)

2 − σ2 +
2

n
tr (A) σ2.

Actually, these scores are a little problematic: they are more difficult to justify us-

ing the sorts of arguments presented in previous sections, because of the depen-

dence of V on µ̂i (which also means that the Pearson statistic is not a quadratic

approximation to the deviance). More seriously, they can lead to oversmoothing,

which is particularly severe for binary data. It’s easy to show that for binary data

E(Vpg) = n2/(n − tr (A))2, which is clearly minimized by adopting the smoothest

possible model (exercise 4).

SMOOTHING PARAMETER ESTIMATION CRITERIA 175

0.0 0.2 0.4 0.6 0.8 1.0
0

5
1

0
1

5

x

y

5 10 15 20 25

0
.8

0
.9

1
.0

1
.1

1
.2

1
.3

1
.4

edf

g
c
v

5 10 15 20 25

0
.8

0
.9

1
.0

1
.1

1
.2

1
.3

1
.4

edf

g
c
v

5 10 15 20 25

0
.8

0
.9

1
.0

1
.1

1
.2

1
.3

1
.4

edf

g
c
v

5 10 15 20 25
0

.8
0

.9
1

.0
1

.1
1

.2
1

.3
1

.4

edf

g
c
v

5 10 15 20 25

0
.8

0
.9

1
.0

1
.1

1
.2

1
.3

1
.4

edf

g
c
v

Figure 4.11 Illustration of performance iteration. The top left panel shows 200 simulated x, y
data: the x co-ordinates are uniform random deviates and the y co-ordinates are Poisson ran-

dom variables with x dependent mean given by the thick curve. The data are modelled as

log(µi) = f(xi), yi ∼ Poi(µi) with f represented using a rank 25 penalized regression

spline. The effective degrees of freedom for f were chosen by performance iteration. Working

from middle top to bottom right, the remaining panels illustrate the progress of the perfor-

mance iteration. In each panel the continuous curve is the (deviance based) GCV score for the

model plotted against EDF (this curve is the same in each panel), while the dashed curve is the

GCV score for the working linear model of the current P-IRLS iteration, against EDF. In each

panel the minimum of each curve is marked. Notice how the two curves become increasingly

close in the vicinity of the finally selected model, as iteration progresses: in fact the correspon-

dence is unusually close in the replicate shown, often the dashed curve is a further below the

continuous curve, with the performance iteration therefore suggesting a slightly more complex

model. The thin continuous curve, in the upper left panel, shows the model fits corresponding

to the minimum of the model GCV score and the model corresponding to the performance

iteration estimate: they are indistinguishable.

Approaches to GAM GCV/UBRE minimization

In the GAM case there are two possible numerical strategies for estimating smooth-

ing parameters using Vg or Vu minimization:

• Vg/u can be minimized directly, which means that the P-IRLS scheme must be

iterated to convergence for each trial set of smoothing parameters. This is some-

times termed outer iteration, since estimation is outer to the P-IRLS loop.

• Vwg/u can be minimized and smoothing parameters selected for each working pe-

∗∗ at least to those as foolish as the author of this volume.

176 SOME GAM THEORY

nalized linear model of the P-IRLS iteration. This is known as performance iter-

ation, since it is typically rather computationally efficient.

Performance iteration (originally proposed by Gu, 1992) usually converges, and re-

quires only that we have available a reliable and efficient method for score minimiza-

tion in the context of penalized least squares problems. It typically requires no more

P-IRLS iterations than are required to fit a model with known smoothing parame-

ters. Figure 4.11 illustrates how performance iteration works using a simple model

of Poisson data. Note how the performance iteration results do not exactly match the

results obtained by direct outer iteration.

The fact that performance iteration does not exactly minimize Vu/g, of the actual

model, is slightly unsatisfactory when it comes to comparing alternative models on

the basis of their Vwu/g scores — if the scores of two models are quite similar then

there is always a possibility that the model with the lower score, from performance

iteration, might actually have the higher score, if you minimized the scores directly.

Of course in practice this is only likely to occur when models are essentially indis-

tinguishable, but it is still not entirely satisfactory. A more substantial concern with

performance iteration is that it can fail to converge at all.

The simplest sort of failure for performance iteration is as follows. At some stage in

the P-IRLS a set of smoothing parameter estimates and coefficient estimates, {λ̃, β̃}
is obtained; this set in turn implies a working linear model and GCV score which

yields a new set of estimates, {λ̂, β̂}; this new set of estimates itself yields a new

working model and GCV score, which in turn yield a new set of estimates, but these

turn out to be {λ̃, β̃}. This cycling never ends and convergence therefore never oc-

curs. Similar problems involving cycling through a much larger number of sets of

estimates also occur, so that simple tactics for detecting and dealing with this prob-

lem are not viable. The cycling is related to the fitting geometry issues discussed

in section 2.2.2, which are exacerbated by the way in which changing smoothing

parameters modify that geometry (see section 4.10.3). This sort of problem is partic-

ularly common in the presence of ‘concurvity’, for example when a model includes

terms such as f1(xi) + f2(zi), but z is itself a smooth function of x: in this circum-

stance the smooth functions, f1 and f2, are confounded, and there may be very little

information in Vu/g from which to estimate their smoothing parameters separately:

neglected dependencies in the performance iteration approach then become critical.

Concurvity problems like this are very common in models which include a smooth of

spatial location, and a number of covariates which themselves vary fairly smoothly

over space.

A final technical problem, with performance iteration, relates to divergence of the

P-IRLS scheme. Such divergence can occasionally occur with all GLM fitting by

iteratively reweighted least squares, but is easily dealt with by reducing the parameter

step length taken, if divergence is detected. Unfortunately divergence is not easily

detected with performance iteration, because model likelihood, GCV/UBRE score

and penalized likelihood may all legitimately increase as well as decrease from one

iteration to the next (see e.g. steps 2 to 3 in figure 4.11).

NUMERICAL GCV/UBRE: PERFORMANCE ITERATION 177

Direct outer iteration (which was proposed in O’Sullivan et al., 1986) suffers none of

these disadvantages of performance iteration, but it is more computationally costly,

since the P-IRLS scheme must be iterated to convergence in order to evaluate Vu/g,

for each trial set of smoothing parameters. Reliable and reasonably efficient opti-

mization, in this case, requires that at least first derivatives of Vu/g w.r.t. smoothing

parameters be calculated, as part of the P-IRLS process.

In the following sections the computations required for performance and outer itera-

tion will be explained.

4.6 Numerical GCV/UBRE: performance iteration

Estimation of smoothing parameters for an additive model, or for a generalized ad-

ditive model using performance iteration, requires that we can minimize the GCV

score (4.21) or UBRE score (4.16) with respect to multiple smoothing parameters,

for models estimated by penalized least squares. This section explains the computa-

tional method by which this can be achieved in an efficient and stable manner. Gu and

Wahba (1991) provided the first algorithm for this sort of problem, which exploited

the special structure of the smoothing spline models in which they were interested.

Wood (2000) provided a method, based on a similar optimization strategy, for the

type of models considered here, but this section will follow the more stable approach

of Wood (2004).

4.6.1 Minimizing the GCV or UBRE score

In order to fit GAMs, it will eventually be necessary to estimate smoothing parame-

ters for weighted penalized least squares problems, possibly subject to linear equality

constraints. But, as we saw in sections 1.8.1 and 1.8.4, a constrained weighted prob-

lem can always be transformed to an un-weighted, unconstrained one, so it is with

such problems that this section will deal. The penalized least squares objective con-

sidered here will therefore be

Sp = ‖y −Xβ‖2 + βTHβ +
m
∑

i=1

λiβ
TSiβ, (4.27)

and for a given λ, this is minimized w.r.t. β to obtain β̂. H is any positive semi-

definite matrix, which may be zero, but may also be used to allow lower bounds to

be imposed on the smoothing parameters, or to regularize an ill-conditioned problem.

For example, if it is required that λ1 ≥ 0.1 and λ2 ≥ 10, then we could set H =
0.1S1 + 10S2.

One slight practical modification of the GCV and UBRE scores is worth including at

this stage. Sometimes the GCV or UBRE selected model is deemed to be too wiggly,

and a smoother model is desired. One way to achieve this, in a systematic way, is to

increase the amount that each model effective degree of freedom counts, in the GCV

178 SOME GAM THEORY

or UBRE score, by a factor γ ≥ 1 (see e.g. Chambers and Hastie, 1993, p. 574). The

slightly modified criteria that will be considered here are therefore:

Vg =
n‖y −Ay‖2
[n− γtr(A)]2

(4.28)

and

Vu =
1

n
‖y −Ay‖2 +

2

n
σ2γtr(A)− σ2. (4.29)

The dependence of Vg and Vu on λ, is through the influence matrix A, which is in

turn obtained via the minimization of Sp.

In the multiple smoothing parameter case there is no efficient direct method for min-

imizing the GCV and UBRE scores: their evaluation is made numerically costly be

the presence of the tr (A) terms in both. It is therefore necessary to adopt a numer-

ical approach based on Newton’s method. That is, the score, V , is approximated in

the vicinity of the current best estimate of the smoothing parameters, by a quadratic

function.

V(λ) ' V(λ[k]) + (λ− λ[k])Tm +
1

2
(λ− λ[k])TM(λ− λ[k])

where m and M are the first derivative vector and second derivative matrix of V w.r.t.

the smoothing parameters. It is easy to show that the minimum of the approximating

quadratic is at

λ[k+1] = λ[k] −M−1m,

and this can be used as the next estimate of the smoothing parameters. A new approx-

imating quadratic is then found by expansion about λ[k+1] and this is minimized to

find λ[k+2], with the process being repeated until convergence.

In fact several things can go wrong with Newton’s method, so some modifications

are needed. Firstly, the method does not ‘know’ that the smoothing parameters must

be positive, and may step to negative values, but this is easily avoided by using ρi =
log(λi) as the optimization parameters. Secondly M may not be positive definite,

so that the quadratic has no unique minimum: in this case the best that can be done

is to search in the steepest descent direction, −m, for parameter values that will

reduce the score. Finally the quadratic approximation may simply be very poor, so

that stepping to its minimum actually increases the real V : in this case it is worth

trying to successively half the length of the step, from ρ[k], until a step is found that

actually decreases V ; if this fails then steepest descent can be tried. See Gill et al.

(1981) for a general coverage of optimization.

Stable and efficient evaluation of the scores and derivatives

The main challenge, in implementing the numerical approach outlined above, is to

be able to evaluate the GCV and UBRE scores, and their derivatives, in a manner that

is both computationally efficient and stable. Stability can be an issue, as the model

matrix for a complex GAM can become close to column rank deficient, which can

NUMERICAL GCV/UBRE: PERFORMANCE ITERATION 179

cause problems with the estimation of the β parameters, let alone the smoothing

parameters, if care is not taken.

The expensive part of evaluating the GCV or UBRE/AIC criteria is the evaluation of

the trace of the influence matrix of the problem (4.27), so it is this influence matrix

that must be considered first:

A = X

(

XTX + H +

m
∑

i=1

λiSi

)−1

XT.

The process of getting this into a more useful form starts with a QR decomposition

of X,

X = QR,

where the columns of Q are columns of an orthogonal matrix, and R is an upper tri-

angular matrix (see A.6). For maximum stability a pivoted QR decomposition should

actually be used here (Golub and van Loan, 1996): this has the consequence that the

parameter vector and rows and columns of the Si matrices have to be permuted be-

fore proceeding, with the inverse permutation applied to the parameter vector and

covariance matrix at the end of the estimation procedure.

The next step is to define S = H +
∑m
i=1 λiSi and B as any matrix square root of

S such that BTB = S. B can be obtained efficiently by pivoted Choleski decompo-

sition (see ?chol in R, for example) or by eigen-decomposition of the symmetric

matrix S (see e.g. Golub and van Loan, 1996). Augmenting R with B, a singular

value decomposition (Golub and van Loan, 1996, LAPACK contains a suitable ver-

sion) is then obtained:
[

R

B

]

= UDVT.

The columns of U are columns of an orthogonal matrix, and V is an orthogonal

matrix. D is the diagonal matrix of singular values: examination of these is the most

reliable way of detecting numerical rank deficiency of the fitting problem (Golub

and van Loan, 1996; Watkins, 1991). Rank deficiency of the fitting problem is dealt

with at this stage by removing from D the rows and columns containing any singular

values that are ‘too small’, along with the corresponding columns of U and V. This

has the effect of recasting the original fitting problem into a reduced space in which

the model parameters are identifiable. ‘Too small’ is judged with reference to the

largest singular value: for example, singular values less than the largest singular value

multiplied by the square root of the machine precision might be deleted.

Now let U1 be the sub matrix of U such that R = U1DVT. This implies that

X = QU1DVT, while XTX + S = VD2VT and consequently

A = QU1DVTVD−2VTVDUT

1QT

= QU1U
T

1QT.

Hence, tr (A) = tr
(

U1U
T

1QTQ
)

= tr
(

U1U
T

1

)

. Notice that the main computa-

tional cost is the forming the QR decomposition, but thereafter evaluation of tr (A)
is relatively cheap for new trial values of λ.

180 SOME GAM THEORY

For efficient minimization of the smoothness selection criteria, we also need to find

the derivatives of the criteria w.r.t. the smoothing parameters. To this end, it helps to

write the influence matrix as A = XG−1XT where G = XTX+S = VD2VT and

hence G−1 = VD−2VT. Letting ρi = log(λi) we then have that

∂G−1

∂ρi
= −G−1 ∂G

∂ρi
G−1 = −λiVD−2VTSiVD−2VT

and so
∂A

∂ρi
= X

∂G−1

∂ρi
XT = −λiQU1D

−1VTSiVD−1UT

1QT.

Turning to the second derivatives, we have

∂2G−1

∂ρi∂ρj
= G−1 ∂G

∂ρj
G−1 ∂G

∂ρi
G−1 −G−1 ∂2G

∂ρi∂ρj
G−1 + G−1 ∂G

∂ρi
G−1 ∂G

∂ρj
G−1

and, of course,

∂2A

∂ρi∂ρj
= X

∂2G−1

∂ρi∂ρj
XT.

This becomes

∂2A

∂ρi∂ρj
= λiλjQU1D

−1VT[SjVD−2VTSi]
‡VD−1UT

1QT + δij
∂A

∂ρi

where B‡ ≡ B + BT and δij = 1, if i = j, and zero otherwise.

Writing α = ‖y−Ay‖2, we can now find convenient expressions for the component

derivatives needed in order to find the derivatives of the GCV or UBRE/AIC scores.

First define: (i) y1 = UT

1QTy; (ii) Mi = D−1VTSiVD−1 and (iii) Ki = MiU
T

1U1.

Some tedious manipulation then shows that:

tr

(

∂A

∂ρi

)

= −λitr (Ki)

tr

(

∂2A

∂ρi∂ρj

)

= 2λiλjtr (MjKi)− δijλitr (Ki)

while
∂α

∂ρi
= 2λi

[

yT

1 Miy1 − yT

1 Kiy1

]

and

∂2α

∂ρi∂ρj
= 2λiλjy

T

1 [MiKj + MjKi −MiMj −MjMi + KiMj]y1 + δij
∂α

∂ρi
.

The above derivatives can be used to find the derivatives of Vg or Vu w.r.t. the ρi.
Defining δ = n− γtr(A), so that

Vg =
nα

δ2
and Vu =

1

n
α− 2

n
δσ2 + σ2,

NUMERICAL GCV/UBRE: PERFORMANCE ITERATION 181

then
∂Vg
∂ρi

=
n

δ2

∂α

∂ρi
− 2nα

δ3

∂δ

∂ρi
and

∂2Vg
∂ρi∂ρj

= −2n

δ3

∂δ

∂ρj

∂α

∂ρi
+

n

δ2

∂2α

∂ρi∂ρj
− 2n

δ3

∂α

∂ρj

∂δ

∂ρi
+

6nα

δ4

∂δ

∂ρj

∂δ

∂ρi
− 2nα

δ3

∂2δ

∂ρi∂ρj
.

Similarly

∂Vu
∂ρi

=
1

n

∂α

∂ρi
− 2

∂δ

∂ρi

σ2

n

and
∂2Vu

∂ρi∂ρj
=

1

n

∂2α

∂ρi∂ρj
− 2

∂2δ

∂ρi∂ρj

σ2

n
.

For each trial λ, these derivatives can be obtained at quite reasonable computational

cost, so that Newton’s method backed up by steepest descent can be used to find the

optimum λ fairly efficiently. Given the estimated λ̂, the best fit β vector is simply,

β̂ = VD−1y1,

while the Bayesian covariance matrix for the parameters (see section 4.8) is

Vβ = VD−2VT.

The weighted constrained case

So far weights and constraints have been neglected. GAM estimation, by perfor-

mance iteration, requires that smoothing parameters be estimated for the working

linear models at each P-IRLS iteration, which are generally weighted. Similarly, in

most cases, some linear constraints on a GAM are required to ensure identifiabil-

ity of its smooth components, and, if these have not been absorbed into the basis as

described in section 4.2, they must be imposed during fitting. Hence, in general the

problems of interest will be of the form

minimize ‖
√

W(y−Xβ)‖2+βTHβ+
m
∑

i=1

λiβ
TSiβ w.r.t. β subject to Cβ = 0

where W typically contains the iterative weights of a P-IRLS iteration, although it

could also be a general positive definite matrix††, such as the inverse of the covariance

matrix of the response data.

Exactly as described in section 1.8.1, the constraints can be eliminated from the

problem by forming the QR decomposition of CT, in order to find a basis for the

null space of the constraints, Z. Writing β = Zβz ensures that the constraints are

†† in which case
√

W is any matrix square root such that
√

W
T√

W = W.

182 SOME GAM THEORY

met. Hence, letting ỹ =
√

Wy, X̃ =
√

WXZ, H̃ = ZTHZ and S̃i = ZTSiZ the

problem becomes

minimize ‖ỹ − X̃βz‖2 + βT

z H̃βz +

m
∑

i=1

λiβ
T

z S̃iβz w.r.t. βz

which is in exactly the un-weighted, unconstrained form, required for the smoothing

parameter selection method described above.

Transforming the parameters and their variances back to the original parameter space,

after fitting, is straightforward:

β̂ = Zβ̂z and Vβ = ZVβz
ZT.

4.7 Numerical GCV/UBRE optimization by outer iteration

The previous section detailed an effective numerical method for use with perfor-

mance iteration, or to estimate a simple additive model. In this section a numerical

method for ‘outer iteration’ is presented. Our aim is to minimize the GCV score,

Vg =
nD(µ̂)

[n− γtr (A)]2
, (4.30)

or UBRE score (scaled AIC),

Vu =
1

n
D(µ̂)− σ2 +

2γ

n
tr (A)σ2, (4.31)

with respect to the model smoothing parameters. Recall that µ̂i is a maximum penal-

ized likelihood estimate of µi given smoothing parameters, and tr (A) is the trace

of the influence matrix of the working weighted linear model, at convergence of the

P-IRLS scheme used to find µ̂i.

The basic approach is to use a Newton type method, as outlined in section 4.6.1, to

minimize (4.30) or (4.31), directly. To do this, we need to evaluate the gradient vec-

tor, and Hessian matrix, of Vg or Vu, which involves either iterating various deriva-

tives alongside the P-IRLS model fitting iterations, or estimating the derivatives by

finite differencing. In this section first derivatives are calculated exactly, as part of a

modified P-IRLS iteration, while the Hessian is calculated by finite differencing of

these first derivatives. Given exact first derivatives, Newton methods are usually very

effective, even if second derivatives are quite crudely approximated, so this is a safe

approach to take.

4.7.1 Differentiating the GCV/UBRE function

The derivatives of the GCV and UBRE functions, w.r.t. smoothing parameters, have

similar components, so it suffices to concentrate on the GCV score. All quantities in

NUMERICAL GCV/UBRE OPTIMIZATION BY OUTER ITERATION 183

this section are estimates at the current β̂, but to avoid clutter I will omit hats from

all quantities except β̂. Writing (4.30) as Vg = nD/δ2, we have that

∂D

∂βj
= −2

n
∑

i=1

ωi
yi − µ̂i

V (µ̂i)g′(µ̂i)
Xij

and, of course,

∂D

∂ρk
=

p
∑

j=1

∂D

∂βj

∂βj
∂ρk

.

where ρk = log(λk). The key component in this expression is ∂βj/∂ρk which has

to be calculated iteratively as part of the P-IRLS calculation. ∂δ/∂ρk depends on the

derivative of tr(A) w.r.t. ρk, which must also be obtained.

To calculate these derivatives, the P-IRLS iteration of section 4.3 is generalized, so

that one iteration step becomes:

1. Evaluate the pseudodata ,

zi =
∂ηi
∂µi

(yi − µi) + ηi,

and corresponding derivatives,

∂zi
∂ρk

= (yi − µi)g
′′(µi)

∂µi
∂ηi

∂ηi
∂ρk

.

Note that ηi = Xiβ̂, is the ‘linear predictor’ for the ith datum.

2. Evaluate the weights,

wi =
[

V (µi)g
′(µi)

2
]−1/2

,

and derivatives,

∂wi
∂ρk

= −1

2
w3
i

[

∂V

∂µi

∂µi
∂ηi

+ 2V (µi)g
′′(µi)

]

∂ηi
∂ρk

.

3. Drop any observations (for this iteration only) for which wi = 0 or ∂µi/∂ηi = 0.

4. Find the parameters, β̂, minimizing
∑

i

w2
i (zi −Xiβ)2 + βTHβ +

∑

k

eρiβTSiβ

and the derivative vector, ∂β̂/∂ρk, for the next iteration.

Notice that the iteration requires the second derivative of the link w.r.t. µi, and the

first derivative of the variance function: these are not required by the usual P-IRLS

iteration.

The penalized least squares step (4), and corresponding derivative update, need to be

spelled out. This is facilitated by first transforming the pseudodata so that

z′i = wizi and
∂z′i
∂ρk

=
∂wi
∂ρk

zi + wi
∂zi
∂ρk

.

184 SOME GAM THEORY

Now define W = diag(w) and S = H +
∑

k eρkSk. Formally, we have that

β̂ = (XTW2X + S)−1XTWz′ = Bz′

by definition of B. Similarly the influence matrix is formally:

A = WX(XTW2X + S)−1XTW.

Of course these expressions are not suitable for computation. Instead, find the QR

decomposition

WX = QR

(as in the methods for performance iteration, this would usually be done with pivot-

ing) and find a square root E, such that ETE = S. Now form the SVD,
[

R

E

]

= UDVT.

Again some truncation of this SVD may be performed at this stage, exactly as for the

performance iteration method. Let U1 be the first p rows of U, so that R = U1DVT.

Now

B = VD−1UT

1QT (4.32)

and

A = QU1U
T

1QT. (4.33)

It is also useful to define G = (XTW2X + S)−1 = VD−2VT.

∂β̂

∂ρk
=

∂B

∂ρk
z′ + B

∂z′

∂ρk
and some effort then yields:

∂B

∂ρk
= −2BTkA− eρkG−1SkB + BTk

where Tk = diag{∂wi/∂ρk/wi}. Similarly

∂A

∂ρk
= TkA− 2ATkA− eρkBTSkB + ATk.

Actual evaluation of the trace of the derivatives of A, and of the product of B’s

derivatives and z′ uses the representations of A and B given in (4.33) and (4.32).

In practice ∂β̂/∂ρk must be updated at each step of the P-IRLS iteration, while the

slightly more expensive, ∂tr (A) /∂ρk, need only be evaluated once the iteration has

converged.

Given this numerically efficient and stable method for evaluating GCV or UBRE

scores, and their derivatives w.r.t. smoothing parameters, smoothing parameter es-

timation can proceed by Quasi-Newton methods, or by the Newton method, with

finite differencing to obtain an estimate of the Hessian. It is possible to extend the

derivative calculations further, in order to obtain an exact Hessian, but the resulting

expressions become somewhat involved, and the benefits of an exact Hessian are

nothing like as substantial as the benefits of exact first derivatives.

DISTRIBUTIONAL RESULTS 185

4.8 Distributional results

The previous few sections have shown how point estimates for the model parameters,

β, and smoothing parameters, λ, can be obtained, but it is also of interest to quantify

the uncertainty of those estimates. In particular it would be useful to be able to find

confidence intervals for the parameters, β, and quantities derived from them, such as

the estimates of the smooth terms themselves. Similarly it would be useful to be able

to test whether terms were required in a model at all.

There are two approaches to uncertainty estimation. Firstly, writing S = H+
∑

i λiSi,
and recalling that the parameter estimators are of the form,

β̂ = (XTWX + S)−1XTWy,

where the data or pseudodata, y, have covariance matrix W−1φ, we have that

Ve = (XTWX + S)−1XTWX(XTWX + S)−1φ

is the covariance matrix for the estimators β̂. From the normality of y, or large sam-

ple multivariate normality of XTWy, (see section 4.8.3), it follows that, approxi-

mately

β̂ ∼ N(E(β̂),Ve). (4.34)

Generally E(β̂) 6= β, so that there are problems in using this result for calculating

confidence intervals. However, if β = 0 then E(β̂) = 0, with the same holding

approximately for some subsets of β: hence the result can be useful for testing model

terms for equality to zero.

An alternative is to use a Bayesian approach to uncertainty estimation, which results

in a Bayesian posterior covariance matrix for the parameters,

Vβ = (XTWX + S)−1φ

and a corresponding posterior distribution for those parameters,

β ∼ N(β̂,Vβ). (4.35)

Once again, for non normal data, posterior normality of the parameters is an approx-

imation justified by large sample results. This latter result can be used directly to

calculate credible intervals for parameters.

The remainder of this section, derives the Bayesian results, and considers the calcu-

lation of p-values from the frequentist distribution of the estimators.

4.8.1 Bayesian model, and posterior distribution of the parameters, for an additive

model

Consider an additive model, for which we have selected smoothing bases and penal-

ties, so that the model can be written as

Y = Xβ + ε, ε ∼ N(0,W−1σ2), (4.36)

186 SOME GAM THEORY

to be fitted by minimization of the penalized least squares objective

‖W1/2(y −Xβ)‖2 +

m
∑

i=1

λiβ
TSiβ. (4.37)

where W is some positive definite weight matrix. Assume that the model has already

been re-parameterized to eliminate any identifiability constraints.

Following Wahba (1983) and Silverman (1985), we can recognize that, by imposing

a particular penalty, we are effectively imposing some prior beliefs about the likely

characteristics of the correct model. That is, the model structure allows considerably

more flexibility than we believe is really likely, and we choose to penalize models

that are in some sense too wiggly. It is natural to give a Bayesian structure to this

approach, by specifying a prior distribution on the parameters β.

Specifically let the (generally improper) prior for β be:

fβ(β) ∝ e−
1
2β

T
P

Si/τiβ

where the τi are parameters controlling the dispersion of the prior. The prior is ap-

propriate since it makes explicit the fact that we believe smooth models to be more

likely than wiggly ones, but it gives equal probability density to all models of equal

smoothness.

From the original model specification we know that the conditional distribution of y

given β is

f(y|β) ∝ e−
1
2 (y−Xβ)TW(y−Xβ)/σ2

.

So using Bayes rule we have:

f(β|y) ∝ e−
1
2 (yTWy/σ2−2βTXTWy/σ2+βT(XTWX/σ2+

P

Si/τi)β)

∝ e−
1
2 (−2βTXTWy/σ2+βT(XTWX/σ2+

P

Si/τi)β)

Now, if α ∼ N([XTWX +
∑

λiSi]
−1XTWy, [XTWX +

∑

λiSi)]
−1σ2), then

the probability density function for α is:

fα(α) ∝
e−

1
2 (α−(XTWX+

P

λiSi)
−1XTWy)T(XTWX+

P

λiSi)(α−(XTWX+
P

λiSi)
−1XTWy)/σ2

∝ e−
1
2 (−2αTXTWy/σ2+αT(XTWX/σ2+

P

λiSi/σ
2)α)

Comparing fα(α) and f(β|y), it is clear that if we choose τi = σ2/λi then

β|y ∼ N([XTWX +
∑

λiSi]
−1XTWy, [XTWX +

∑

λiSi]
−1σ2).

That is

β|y ∼ N(β̂, (XTWX +
∑

λiSi)
−1σ2). (4.38)

This result yields a self consistent basis for constructing Bayesian “confidence inter-

vals”, or more correctly “credible intervals”, for any quantity derived from β.

Clearly the problem of choosing the τi is equivalent to the problem of choosing the

λi, and in practice it is usual to simply plug the GCV or UBRE estimates, λ̂i into

DISTRIBUTIONAL RESULTS 187

(4.38). An estimate of σ2 is also usually required and we can use (4.13) from section

4.4.1, for this purpose.

4.8.2 Structure of the prior

To some extent, the prior on β has been chosen to give the rather convenient form for

the distribution of β|y, that intuition might suggest is sensible. However the structure

of the prior is rather reasonable in any case. Firstly, note that the prior is equivalent

to assuming that each of the components of model wiggliness, βTSiβ, is an inde-

pendent exponentially distributed random variable with expected value τi. The inde-

pendence assumption is quite natural in situations in which the penalties are “non-

overlapping”, for example when
∑

Si is block-diagonal, as in the case for most of

the GAMs considered here.

To explore the prior structure further, first define S ≡
∑

Si/τi. Since S will gen-

erally not be of full rank, the prior fβ is generally improper, being “almost” multi-

variate normal. Re-parameterizing in terms of the eigen-basis of S clarifies this. Let

S = UDUT where the columns of U are the eigenvectors of S, and the diagonal

matrix D has the eigenvalues of S arranged in order of decreasing magnitude on its

leading diagonal. The model fitting problem, and Bayesian analysis, are invariant‡‡

to re-parameterization in terms of βu = UTβ.

Given this basis change βTSβ ≡ βT

uDβu, but the rank deficiency of S generally

means that the lower right portion of D is zero. Hence the last few elements of βu are

completely un-penalized. Accordinglyβu can be partitioned into parts corresponding

to the wiggly and smooth components of the model: βT

u = [βT

w,βT

s]T. Now, given

the prior for β, the prior for βu is:

fβu
(βu) ∝ e−

1
2β

T
uDβu/σ

2

but if D+ is the largest sub matrix of D having strictly positive elements on its

leading diagonal, then

fβu
(βu) ∝ e−

1
2β

T
wD+βw/σ

2

.

i.e. the prior is a multivariate normal for the non-smooth component of the model (as

measured by the penalty), multiplied by a completely uninformative improper prior

on the parameters corresponding to the components of the model that are of zero

wiggliness, according to the penalty.

4.8.3 Posterior distribution for a GAM

Now consider a GAM, so that the model becomes

g(µi) = Xiβ, µi ≡ E(Yi), Yi ∼ exponential family, (4.39)

‡‡ The invariance is by orthogonality of U: it may readily be verified, for example, that the Bayesian
covariance matrix for βu is (UTXTWXU + σ2D)−1σ2 corresponding to the Bayesian covariance
matrix for β already given.

188 SOME GAM THEORY

where g is a known link function, and it is estimated by minimization of

−l(β) +
1

2

m
∑

i

λiβ
TSiβ, (4.40)

with respect to β. l(β) is the log likelihood of the model.

As we have seen repeatedly (4.40) is minimized by iteratively solving the problem,

minimise
∥

∥

∥

√

W[k](Xβ − z[k])
∥

∥

∥

2

+

m
∑

i=1

λiβ
TSiβ w.r.t. β,

where k is the iteration index,

z[k] = Xβ[k] + G[k](y − µ[k]),

µ
[k]
i is the current model estimate of E(Yi), G

[k] is a diagonal matrix such that G
[k]
ii =

g′(µ[k]
i), and W is a diagonal weight matrix where

Wii =
[

G
[k]2
ii V

(

µ
[k]
i

)]−1

.

V (µi) gives the variance of Yi to within a scale parameter. The penalized least

squares problem can be viewed as a quadratic approximation to the penalized likeli-

hood in the vicinity of the true parameters.

The iterative least squares approach suggests working in terms of the random vector

z = Xβ + G(y − µ).

Then, E(z|β) = Xβ, and the covariance matrix of z|β is W−1φ (where φ is the

scale parameter). Defining v = XTWz, it follows that E(v|β) = XT WXβ and

the covariance matrix of v|β is XTWXφ. It can further be shown that as sample

size, n, tends to infinity the distribution of v|β tends to the multivariate normal

N(XTWXβ,XTWXφ). (4.41)

This last result follows from the Central Limit Theorem (Lindeberg, 1922) and the

fact that a random vector v has a multivariate normal distribution if and only if cTv

has a univariate normal distribution, for any vector of constants c.

Specifically, if c is any vector of constants then, subject to some conditions, the

distribution of,

cTv = cTXTWz

tends to normality as n → ∞, by the Central Limit Theorem of Lindeberg (1922).

Hence the distribution of v tends to a multivariate normal distribution as n→∞.

Before using (4.41) it is important to examine the conditions for validity of the ap-

proximation, which follow from Lindeberg’s conditions for the validity of the CLT

(see e.g Feller, 1957). First let,

ai =
∑

j

cjXijWi,

DISTRIBUTIONAL RESULTS 189

so that,

cTv =
n
∑

i=1

aizi.

Defining

s2
n =

n
∑

i=1

a2
iφ/wi

and

Ui =

{

aizi − aiµi if |aizi − ai − µi| ≤ εsn
0 if |aizi − ai − µi| > εsn

for all ε, Lindeberg’s conditions are that:

1

s2
n

∑

E(U2
i)→ 1

and sn → ∞ as n → ∞. In the current context sn → ∞ is a given, and provided

that the ai are bounded, then the first condition will be satisfied if Pr[Ui = 0] → 0
as n→∞. The elements of c do not change as the limit is taken, so boundedness of

the ai is given by boundedness of the XijWi. Hence the condition will be met if:

lim
n→∞

Pr(|aizi − aiµi| > ε
∑

i

a2
iφ/wi) = 0 ∀ ε.

By Chebyshev’s inequality

Pr(|aizi − aiµi| > ε
∑

i

a2
iφ/wi) <

a2
iφ/wi

[
∑

i a
2
iφ/wi]

2
ε2

so it is sufficient that
a2
i /wi

[
∑

i a
2
i /wi]

2 → 0

as n→∞ for the result to hold. Since c does no more than form weighted sums over

columns of X, a sufficient condition for the last condition to hold is that as n→∞:

(XijW
1/2
i)2

[

∑

i(XijW
1/2
i)2

]2 → 0 ∀ i, j.

This last condition is actually interpretable, and says that no element of X should

dominate the fit, as the sample size tends to infinity: it is a fairly mild condition in

most penalized regression settings.

Having established its validity, we can now use the large sample approximation

(4.41), for the distribution of v|β, and procede as in section 4.8.1, to obtain the

posterior for β:

β|v ∼ N([XTWX +
∑

λiSi]
−1v, [XTWX +

∑

λiSi]
−1φ), (4.42)

which is (4.38). Plugging in the v and W estimates at convergence of the P-IRLS al-

gorithm, along with the estimated smoothing parameters, and if necessary an estimate

190 SOME GAM THEORY

for φ, these results can be used to set approximate Bayesian confidence intervals for

any quantity derived from β. For many exponential family distributions the scale pa-

rameter φ is known, but if an estimate is needed then φ̂ = ‖W1/2(y−µ̂)‖2/tr(I−A)
can be used, where A is the influence (or hat) matrix for the model.

4.8.4 Bayesian confidence intervals for non-linear functions of parameters

Given the results of the previous sections, it is straightforward to find confidence in-

tervals for linear functions of the model parameters, including the component func-

tions of a GAM, for example. Bayesian confidence intervals for non-linear functions

of the parameters can also be obtained by simulation from the posterior distribution

of β. Specifically if G(β) is the function of interest, then the approximate posterior

cumulative distribution function F̂ (g) for G can be obtained by simulating a set of

random vectors, {β∗i : i = 1, . . . N}, from the multivariate normal posterior for β so

that:

F̂ (g) =
1

N

N
∑

i=1

H(g −G(β∗i))

where H is the Heaviside function (jumping from 0 to 1 at g). Bayesian “confidence

intervals” are obtained from the quantiles of this distribution in the obvious manner,

and are of considerable practical use. Previous approaches to finding confidence in-

tervals for G(β) have used bootstrapping (e.g. Borchers et al., 1997; Augustin et al.,

1998): but in the usual case, in which evaluation of G is very much cheaper than

model fitting, the cost of the intervals proposed here will be about the same as the

cost of performing one bootstrap replicate.

4.8.5 P-values

Now consider the problem of testing whether some subset, βj , of β is identically

zero. In a GAM context, if βj contains the coefficients for a single smooth term, then

E(β̂j) ≈ 0 if βj = 0. In fact if the covariates of the smooth are uncorrelated with

other smooth terms in the model then E(β̂j) = 0, but otherwise there is a (usually)

weak dependence of E(β̂j) on the bias in the other penalized model terms.

Extracting the frequentist covariance matrix of β̂j , Vβ̂j
, from Ve (see (4.34)), we

have that under the null hypothesis βj = 0 and so,

β̂j∼̇N(0,Vβ̂j
).

From this it follows that, if V
β̂j

is of full rank, then under the null hypothesis

β̂T

j V
−1

β̂j
β̂j∼̇χ2

d,

where d = dim(βj). In fact the action of the penalty often suppresses some dimen-

sions of the parameter space, so that Vβ̂j
is not of full rank (for example if a cubic

DISTRIBUTIONAL RESULTS 191

spline term, subject to a centering constraint, is heavily penalized it becomes effec-

tively a straight line, with only one degree of freedom). If r = rank(Vβ̂j
) and Vr−

β̂j

is the rank r pseudoinverse of the covariance matrix, then testing is performed using

the result that under the null,

β̂T

j V
r−
β̂j
β̂j∼̇χ2

r.

Specifically the p-value for the test that βj = 0 is Pr[X > β̂T

j V
r−
β̂j
β̂j] where

X ∼ χ2
r . r is usually determined numerically, while forming the pseudoinverse of

the covariance matrix.

If Ve, and hence Vβ̂j
, contain an unknown scale parameter, φ, then it is usually

better to base p-value calculations on the approximate result,

β̂T

j V̂
r−
β̂j
β̂j/r

φ̂/(n− edf)
∼ Fr,edf ,

where ‘edf’ denotes the estimated degrees of freedom for the model (the denominator

here is effectively the GCV score).

The p-values, calculated in this manner, behave correctly for un-penalized models,

or models with known smoothing parameters, but when smoothing parameters have

been estimated, the p-values are typically lower than they should be, meaning that

the tests reject the null too readily. This is because smoothing parameter uncertainty

has been neglected in the reference distributions used for testing. As a result these

distributions are typically too narrow, so that they ascribe too low a probability to

moderately high values of the test statistics. Limited simulation experience suggests

that the p-values can be as little as half the correct value at around the 5% level, when

the null is true, although they may be more accurate than this in other circumstances.

Note that this problem is in no way unique to GAMs. If you perform model selection

on any model, and then hypothesis test using the selected model, the p-values associ-

ated with model terms will not be strictly correct, since they neglect model selection

uncertainty. The advantage in performing model selection before hypothesis testing

is that the elimination of unnecessary model degrees of freedom increases power.

In practical terms, if these p-values suggest that a term is not needed in a model,

then this is probably true, but if a term is deemed ‘significant’ it is important to be

aware that this significance may be overstated. If hypothesis testing is a key aim of

an analysis, then it may sometimes be preferable to base tests on overspecified un-

penalized models, so that although the fits may be excessively wiggly, the p-values

will be correct: the price to pay will be some loss of power. If adopting this approach,

it is quite important to avoid allowing the smooths excessively flexibility, otherwise

tests will have low power. Hence the choice of basis dimension for a smooth becomes

quite important: it needs to be large enough that the model structure can include a

reasonable approximation to the truth, but small enough to avoid loos of power. See

question 11 in Chapter 5 for further discussion.

192 SOME GAM THEORY

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

f1(x)

x

f

0.0 0.2 0.4 0.6 0.8 1.0

−
3

−
2

−
1

0
1

2
3

f2(x)

x

f

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

f3(x)

x

f

f4(x, z)

x

z

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

f5(x, z)

x

z

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 4.12 The five test functions used in the simulation study reported in section 4.9.1.

4.9 Confidence interval performance

Confidence intervals based on section 4.8 rely on large sample results to deal with

non-Gaussian distributions, and treat the smoothing parameters as fixed, when in

reality they are estimated from the data. It is not clear how these assumptions will

affect the coverage probabilities of the intervals, so it worth looking at simulation

evidence. This section first examines coverage probabilities of single smooths and

then GAMs, via simulation.

4.9.1 Single smooths

This section examines the performance of the intervals for models involving only sin-

gle smooth terms, examining Gaussian and non-Gaussian cases. Five test functions,

plotted in figure 4.12, were employed:

f1(x) = 2 sin(πx), f2(x) = e2x − 3.75,

f3(x) = x11(10[1− x])6 + 10(10x)3(1− x)10− 1.4,

f4(x, z) = πσxσz

[

1.2e−(x−0.2)2/σ2
x−(z−0.3)2 + 0.8e−(x−0.7)2/σ2

x−(z−0.8)2/σ2
z

]

,

f5(x, z) = 1.9
[

1.45 + ex sin(13[x− 0.6]2)
]

e−z sin(7z).

CONFIDENCE INTERVAL PERFORMANCE 193

0.0 0.2 0.4 0.6 0.8 1.0

−
0

.5
0

.5
1

.0

x

y

a

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

x

y

b

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

x

y

c

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

x

y

d

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
x

y

e

0.0 0.2 0.4 0.6 0.8 1.0

0
4

8
1

2

x

y

f

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

x

y

g

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

x

y

h

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

x
y

i

Figure 4.13 Illustration of the 3 noise levels employed for each of the 3 error families exam-

ined. (a) Gaussian, σ = 0.2. (b) Gaussian, σ = 0.05. (c) Gaussian, σ = 0.02. (d) Poisson,

pmax = 3. (e) Poisson, pmax = 6. (f) Poisson, pmax = 9. (g) Binomial nbin = 1. (h)

Binomial nbin = 3. (i) Binomial nbin = 5.

For each function, data were simulated from 3 error models (normal, Poisson and

binomial) at each of 3 signal to noise ratios, at each of two sample sizes (n = 200 or

n = 500). In each case, covariates were simulated from a uniform distribution on the

unit interval or unit square. The functions were linearly scaled, as detailed below, and

each was then applied to the simulated covariate to give the ‘true’ linear predictor for

each function. The inverse of the canonical link for the distribution was applied to

the linear predictor, to obtain the true response means, and data were simulated from

the appropriate distribution, with that mean.

In the normal case the functions were scaled to have range [0,1] and normal random

deviates with one of three noise levels (σ = 0.02, 0.05 or 0.2) were then added to the

true expected values. In the Poisson case the functions were scaled so that the true

means lay in [0.2, pmax] where pmax was one of 3, 6 or 9, and Poisson deviates with

the required mean were simulated. In the binomial case the functions were scaled so

194 SOME GAM THEORY

normal

c
o

v
e

ra
g

e
 p

ro
b

a
b

ili
ty

0
.8

5
0

.9
0

0
.9

5
1

.0
0

.2 .05 .02 .2 .05 .02 .2 .05 .02 .2 .05 .02 .2 .05 .02
f1 f2 f3 f4 f5

Poisson

c
o

v
e

ra
g

e
 p

ro
b

a
b

ili
ty

0
.8

5
0

.9
0

0
.9

5
1

.0
0

3 6 9 3 6 9 3 6 9 3 6 9 3 6 9
f1 f2 f3 f4 f5

binomial

c
o

v
e

ra
g

e
 p

ro
b

a
b

ili
ty

0
.8

5
0

.9
0

0
.9

5
1

.0
0

1 3 5 1 3 5 1 3 5 1 3 5 1 3 5
f1 f2 f3 f4 f5

Figure 4.14 Results from the confidence interval performance simulation study detailed in

section 4.9.1. The three figures show results for the three noise models. Results are shown

for each function at each noise level (see text for explanation of numbers). ◦ shows average

realized coverage probabilities for sample sizes of 200, while • is the equivalent for n = 500.

Dashed horizontal lines show the nominal coverage probabilities for the intervals examined,

and vertical lines show ± 2 standard error bands for the realized coverage probabilities.

that the binomial probabilities lay in the range [0.02,0.98], and data were simulated

from binomial distributions with denominator nbin of 1, 3 or 5. Figure 4.13 shows

data simulated in this way for f3, with each noise level shown for each distribution.

500 replicate data sets were generated for each function at each combination of sam-

ple size, distribution and noise level. Each replicate data set was modelled using a thin

plate regression spline, fitted by penalized likelihood maximization, with smoothing

parameter chosen by GCV in the normal case and UBRE via performance iteration

otherwise. TPRS basis dimensions of 10, 10, 20, 40 and 100 where used for func-

tions 1 to 5 respectively: these values were chosen to be as small as possible subject

to the constraint that inability of the basis to fit the underlying truth should have a

CONFIDENCE INTERVAL PERFORMANCE 195

0.0 0.2 0.4 0.6 0.8 1.0

−
6

−
4

−
2

0
2

4
6

x1

f^ 1

0.0 0.2 0.4 0.6 0.8 1.0

−
6

−
4

−
2

0
2

4
6

x2

f^ 2

0.0 0.2 0.4 0.6 0.8 1.0

−
6

−
4

−
2

0
2

4
6

x3

f^ 3

0.0 0.2 0.4 0.6 0.8 1.0

−
6

−
4

−
2

0
2

4
6

x4

f^ 6

Figure 4.15 Example component wise Bayesian confidence intervals for an additive model in

which the linear predictor is the sum of (unscaled) functions 1, 2, 3 and 6 (see section 4.9.2)

applied to independent covariates simulated from a uniform distribution. The gaussian noise

standard deviation was 2 and the sample size was 400. Solid curves are the function estimates,

and dashed curves delimit the 95 % confidence regions (credible regions) for each function.

Smoothing parameter selection was by GCV.

negligible affect on the realized coverage probabilities. For each replicate, coverage

proportions were obtained for 90%, 95% and 99% confidence intervals for the func-

tions evaluated at the covariate values. From the resulting 500 ‘across the function’

coverage proportions, an overall mean coverage probability, and its standard error,

were calculated.

Figure 4.14 shows the results. Clearly, for these single functions the confidence inter-

vals perform well: the realized coverage probabilities are usually close to the nomi-

nal. The exception is instructive: f2 sometimes shows low coverage, and this seems

to relate to a tendency to wrongly select a straight line model, for this function, when

the signal to noise ratio is low.

4.9.2 GAMs and their components

A further study was conducted to investigate the effectiveness of these confidence

intervals in a GAM setting. Two sets of simulations were carried out. In each, n in-

dependent values were simulated from U(0, 1) to simulate 4 independent covariates.

In the first example, the linear predictor was made up of a sum of linearly scaled ver-

196 SOME GAM THEORY

normal

c
o

v
e

ra
g

e
 p

ro
b

a
b

ili
ty

0
.7

0
0

.8
0

0
.9

0
1

.0
0

.2 .05 .02 .2 .05 .02 .2 .05 .02 .2 .05 .02 .2 .05 .02
all f1 f2 f3 f6

Poisson

c
o

v
e

ra
g

e
 p

ro
b

a
b

ili
ty

0
.7

0
0

.8
0

0
.9

0
1

.0
0

3 6 9 3 6 9 3 6 9 3 6 9 3 6 9
all f1 f2 f3 f6

binomial

c
o

v
e

ra
g

e
 p

ro
b

a
b

ili
ty

0
.7

0
0

.8
0

0
.9

0
1

.0
0

1 3 5 1 3 5 1 3 5 1 3 5 1 3 5
all f1 f2 f3 f6

Figure 4.16 Results from the first GAM confidence interval performance simulation study de-

tailed in section 4.9.2. The three figures show results for the three noise models. Results are

shown for the whole model (left) and each component function at each noise level (see text

for explanation of numbers). ◦ shows average realized coverage probabilities for sample sizes

of 200, while • is the equivalent for n = 500. Each realized coverage probability is joined

to its corresponding nominal probability by a vertical line. Dashed horizontal lines show the

nominal coverage probabilities for the intervals examined.

sions of functions 1, 2 and 3, from section 4.9.1, plus the null function 0 (referred to

as f6 below), applied to these simulated covariate values. Figure 4.15 shows compo-

nent wise intervals calculated from the fit to one such replicate (but without function

scaling in the data simulation).

Except for f6, the functions were scaled to have the same range before being summed.

This linear predictor was then treated in exactly the same manner as in the univariate

cases of section 4.9.1, so that the noise levels have broadly the same interpretation as

before. The second set of simulations was carried out in a similar manner, but with

true linear predictor given by a sum of scaled versions of functions 1, 3 and 5.

CONFIDENCE INTERVAL PERFORMANCE 197

normal

c
o

v
e

ra
g

e
 p

ro
b

a
b

ili
ty

0
.7

0
0

.8
0

0
.9

0
1

.0
0

.2 .05 .02 .2 .05 .02 .2 .05 .02 .2 .05 .02
all f2 f3 f6

Poisson

c
o

v
e

ra
g

e
 p

ro
b

a
b

ili
ty

0
.7

0
0

.8
0

0
.9

0
1

.0
0

3 6 9 3 6 9 3 6 9 3 6 9
all f2 f3 f6

binomial

c
o

v
e

ra
g

e
 p

ro
b

a
b

ili
ty

0
.7

0
0

.8
0

0
.9

0
1

.0
0

1 3 5 1 3 5 1 3 5 1 3 5
all f2 f3 f6

Figure 4.17 As figure 4.16, but for the second GAM simulation study detailed in section 4.9.2.

GAMs were fitted to each of 500 replicates at each sample size (n = 200 or 500),

model structure, distribution and error level combination. The model terms were rep-

resented using penalized thin plate regression splines, and the models were fitted by

penalized likelihood maximization with smoothing parameters selected by GCV in

the normal cases and UBRE via performance iteration in the Poisson and binomial

cases. Confidence intervals for the linear predictor, at the simulated covariate values,

were obtained, along with confidence intervals for each component function, evalu-

ated at the simulated values of its covariate argument(s). 99%, 95% and 90% intervals

were calculated in all cases. The proportion of these intervals including the truth was

calculated for each replicate (i.e. the assessment was made ‘across the function’),

and was eventually averaged across all replicates.

Figure 4.16 summarizes the results from the first model structure. The results demon-

strate that while the overall coverage for the whole model is reasonably close to nom-

inal, the component wise coverages are quite unreliable. This pattern is confirmed by

198 SOME GAM THEORY

the results for the second model structure shown in figure 4.17, where again the cov-

erage probabilities, realized across the model, for the expected values of the response

are close to nominal, while the component wise coverages are poor.

In summary: confidence intervals for the ‘whole model’ appear to be reliable, while

component-wise intervals can only be used as a rough guide to the uncertainty of the

components. A likely explanation for this problem is that the intervals are conditional

on the smoothing parameters. Because it is relatively easy to get the overall amount

of smoothing right, whole model intervals behave well. However, getting smoothing

parameters for individual components right is more difficult, and this may be what

causes the poor performance of component wise intervals.

4.9.3 Unconditional Bayesian confidence intervals

One possibility for improving the performance of the intervals is to extend the Bayesian

treatment further, and base intervals on the joint posterior density,

f(β, λ̂|y) = f(β|λ̂,y)f(λ̂|y).

By accounting for smoothing parameter uncertainty, the performance of the component-

wise intervals should be improved. Provided that we are only interested in obtaining

confidence intervals for quantities that are functions of β, but not λ, there is no diffi-

culty in working in terms of λ̂ rather than λ itself. However, f(λ̂|y) is unknown. To

obtain this distribution would probably require a fully Bayesian treatment, in which

priors were also specified for the τi (or λi), but then one might as well explore the

full posterior distribution f(β,λ|y). While possible, (see e.g. Fahrmeir and Lang,

2001) this is a computer intensive undertaking, requiring MCMC simulations that

are substantially less routine to use than the penalized regression methods employed

here.

A pragmatic alternative is to replace f(λ̂|y) by a parametric bootstrap approximation

to the sampling distribution of λ̂, fλ̂(λ̂), say, so that

f(β, λ̂|y) ≈ f(β|λ̂,y)fλ̂(λ̂).

If this is done, then the following practical algorithm can be used:

1. Fit the penalized regression model to response data y, selecting λ by GCV or

similar, to obtain estimates λ̂[1]. Let the corresponding parameter estimates be

β̂[1] and the estimated parameter covariance matrix be V̂
[1]
β .

2. Repeat steps 3 to 5 for k = 2 . . .Nb.

3. Based on the fitted model from step 1, simulate a parametric bootstrap response

vector y[k]. That is, simulate random deviates with the appropriate response dis-

tribution, and mean given by the fitted values from step 1.

4. Fit the penalized regression model to the bootstrap data, y[k], to obtain a bootstrap

estimate of the smoothing parameters, λ̂[k].

CONFIDENCE INTERVAL PERFORMANCE 199

normal

c
o

v
e

ra
g

e
 p

ro
b

a
b

ili
ty

0
.7

0
0

.8
0

0
.9

0
1

.0
0

.2 .05 .02 .2 .05 .02 .2 .05 .02 .2 .05 .02 .2 .05 .02
all f1 f2 f3 f6

Poisson

c
o

v
e

ra
g

e
 p

ro
b

a
b

ili
ty

0
.7

0
0

.8
0

0
.9

0
1

.0
0

3 6 9 3 6 9 3 6 9 3 6 9 3 6 9
all f1 f2 f3 f6

binomial

c
o

v
e

ra
g

e
 p

ro
b

a
b

ili
ty

0
.7

0
0

.8
0

0
.9

0
1

.0
0

1 3 5 1 3 5 1 3 5 1 3 5 1 3 5
all f1 f2 f3 f6

Figure 4.18 Coverage probability results for the first GAM from section 4.9.2, for a sample

size of 200, but now using the unconditional intervals of section 4.9.3. Details are described

in the caption of figure 4.16, to which this figure should be compared. Notice the huge im-

provement in the performance of the component wise intervals, when smoothing parameter

uncertainty is accounted for.

5. Fit the penalized regression model to y, using the smoothing parameters λ̂[k], to

obtain parameter estimates and estimated covariance matrix, β̂[k] and V̂
[k]
β .

6. To simulate, approximately, from the posterior f(β, λ̂|z), generate a random inte-

ger, j, from a discrete uniform distribution on {1, . . . , Nb} and simulate a random

β from N(β[j], V̂
[j]
β).

Given steps 1 to 5, repeated simulations using step 6 can be used to find approximate

Bayesian confidence intervals for any function of the parameters, β. The method

offers substantial advantages over direct bootstrapping to find confidence intervals.

Since bootstrapping is only used to approximate the distribution of the smoothing pa-

200 SOME GAM THEORY

rameters, there is no need to worry about the smoothing induced bias in the bootstrap

β̂, since they are not going to be used to obtain confidence intervals.

Similarly, since we are typically only interested in confidence intervals on quanti-

ties that are a function of β, and not λ̂, a rather small Nb will usually be tolerable,

offering substantial computational savings, relative to a pure bootstrapping method

(simulation from f(β|λ̂,y) is very cheap computationally, at least once the square

root of the covariance matrix has been evaluated for a given λ̂).

Figure 4.18 is the equivalent to figure 4.16, but with confidence intervals calculated

by the above method, using Nb = 20. Notice that the intervals now show a tendency

to over cover a little, but that the component wise confidence intervals are substan-

tially improved. The only very poor result is for the nuisance function f6, where the

intervals over cover at all confidence levels. This is likely to result from the fact that

the true smoothing parameter is infinite for this function. Hence the only error that

can be made is to under-smooth and therefore produce intervals that over-cover.

4.10 Further GAM theory

This section covers some further results that are useful for applied modelling with

GAMs, as well as some material that is just interesting.

4.10.1 Comparing GAMs by hypothesis testing

Sometimes it is desirable to test a null hypothesis that the simpler of two nested

GAMs is correct, against the alternative that the larger of the two is correct. As in

the GLM case discussed in section 2.1.6, it is sensible to proceed by using the log-

likelihood ratio (i.e. difference in deviance between the two models) as a test statis-

tic, where the likelihoods are now evaluated at the maximum penalized likelihood

estimates. If η̂0 is the estimated linear predictor for the null model, and η̂1 is the

equivalent for the alternative, then the test statistic is

λ = 2[l(η̂1)− l(η̂0)].

Unfortunately the sampling distribution of λ, under the null, is unknown, and we are

forced back onto rather crude approximations.

In particular, if we condition on the smoothing parameters (i.e. treat them as known,

rather than estimated) then a rough approximation is that under the null

λ ∼ χ2
EDF1−EDF0

. (4.43)

i.e. that λ follows a χ2 distribution with degrees of freedom given by the difference

in effective degrees of freedom between the two models.

This approximation is most easily justified for penalized regression spline smooths.

FURTHER GAM THEORY 201

0.0 0.2 0.4 0.6 0.8 1.0
−

1
0

−
5

0
5

1
0

x0

s
(x

0
,5

)

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
−

5
0

5
1

0

x1

s
(x

1
,2

)

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
−

5
0

5
1

0

x2

s
(x

2
,8

)

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
−

5
0

5
1

0

x3

s
(x

3
,1

)
Figure 4.19 Illustration of the similarity between the estimated terms of a GAM represented

using penalized regression splines (solid curves) and pure regression splines (dashed curves

— based on thin plate regression splines). Both models are fitted to the same data, and the

effective degrees of freedom of each penalized term matches the degrees of freedom of its

pure regression equivalent. Partial residuals are shown to give an indication of the scale of

variability in the data. In this example the mean square difference between the fitted values

from the two models is 1.2% of the residual variance. The correlation between the fitted values

from the two models is 0.998.

As we saw in section 4.1.5, it is possible to come up with an optimal rank k approxi-

mation to a full spline smooth for any k (above some detail dependent technical min-

imum). Such approximations perform rather well as pure regression splines. Hence

for any penalized regression spline model, with given termwise effective degrees of

freedom, there is a very similar model based on pure regression splines, with similar

true termwise degrees of freedom. i.e for any set of data, the two models will produce

very similar estimated linear predictors, and similar estimated smooth terms. Figure

4.19 illustrates the similarity between fits for a 4 term GAM, represented using pe-

nalized regression splines and pure regression splines.

Hence any comparison of two GAMs represented using penalized regression splines,

can be approximated by the comparison of two GAMs represented using pure regres-

sion splines. However GAMs represented using pure regression splines are simply

GLMs, and for this case the distribution of λ under the null is well approximated

by χ2
p1−p0 , where p0 and p1 are the numbers of parameters for the null and alter-

native models, as we saw in sections 2.1.6 and 2.4.6. However, since the two ver-

sions (penalized regression or pure regression) of each GAM produce very similar

linear predictors for any replicate set of data, it follows that they must produce sim-

202 SOME GAM THEORY

ilar statistics λ, which must therefore follow similar distributions (by construction

EDF1 − EDF0 ≈ p1 − p0). i.e. there is some reason to expect (4.43) to be not too

far from the truth.

In the case in which the scale parameter is unknown, an F-ratio test would be used

exactly as in section 2.1.6, with the modifications that maximum penalized likelihood

estimates replace MLEs and effective degrees of freedom are used in place of real

degrees of freedom. The justification follows from that for (4.43).

Note that strictly, the foregoing argument requires the approximating regression mod-

els to be properly nested, suggesting that (4.43) will be most reliable if we are careful

to ensure that each smooth term in the estimated null model has no more effective

degrees of freedom than same term in the alternative model (this can easily be forced

in fitting). Note also, that the less like a spline a smoother is, the less clear it is that

the argument in this section applies. However, for penalized regression smoothers of

any sort it is probably the case that a pure regression approximation based on truncat-

ing the natural parameterization (section 4.10.4) of the smoother would be adequate

for the purposes of the argument. Hastie and Tibshirani (1990) provide an alternative

justification of (4.43).

As was mentioned in section 4.8.5, if hypothesis testing is a key aim of an analysis,

then it is sometimes preferable to forgo penalization altogether in order to ensure

that p-values are correct (i.e. have a uniform distribution under the null). This works

because an un-penalized GAM is simply a GLM, for which Generalized Likelihood

Ratio Tests work reliably. However, some care is required to ensure that smoothing

bases are sufficiently small that test power is maintained, while being sufficiently

large that the test is not compromised by model mis-specification. Of course having

tested hypotheses in this way, it is still preferable to use penalized versions of the

model(s) for point estimation and confidence interval calculations.

4.10.2 ANOVA decompositions and Nesting

It is sometimes of interest to fit models with a linear predictor containing terms like,

f1(x) + f2(z) + f3(x, z),

which can be thought of as an ANOVA decomposition of a function of x and z (there

is a rich literature on such models in the context of smoothing splines, for example

Wahba et al., 1995; Gu, 2002). If we use the tensor product methods of section 4.1.8,

then it is quite easy to ensure that bases for the different terms are appropriately

nested. For example the basis for f1(x) + f2(z) will be strictly nested within the

basis for f3(x, z), if f3 is a represented using a tensor product basis which uses the

bases for f1 and f2 as marginal bases. By strict nesting is meant that f3(x, z) could

exactly represent any possible f1(x) + f2(z), given the bases used. Of course we

do not have to ensure this exact nesting occurs, but it makes some aspects of model

interpretation easier if we do.

It is worth thinking quite carefully before using such models, for, even if we set

FURTHER GAM THEORY 203

things up to ensure strict nesting of the bases for f1 and f2 within the basis for

f3, the notion of smoothness implied by using the ANOVA decomposition will be

different to the notion of smoothness employed by using f3 alone. The ANOVA

decomposition model has a more complicated wiggliness penalty than the simple

smooth of x and z, with 2 extra smoothing parameters to be estimated. One way of

viewing this, is as a way of allowing flexibility in the form of the wiggliness measure,

so that the final choice of what smoothness means is somewhat data driven.

If such nested models are used, then it is necessary to impose some identifiability

conditions, if they are to be estimable. A general method, which can deal with any

choice of bases for the smooths, is as follows. Working through all smooths, starting

from smooths of two variables and working up through smooths of more variables:

1. Identify all smooths of fewer or the same number of variables sharing covariates

with the current smooth.

2. Numerically identify any linear dependence of the basis for the current smooth

on the other smooths sharing its covariates, and constrain the current smooth to

remove this.

Numerical identification of dependency is fairly straightforward. Let X1 be the com-

bined model matrix for all the lower order model terms sharing covariates with the

smooth of interest, and X2 be the model matrix of the smooth of interest. Provided

X1 and X2 are separately of full column rank, then we could test for dependence

between them by forming the QR decomposition,

[X1 : X2] = QR,

where the columns of Q are columns of an orthogonal matrix, and R is full rank

upper triangular if [X1 : X2] is of full column rank, and reduced rank otherwise.

Order d rank deficiency of R is identified by a d × d zero block at its lower right

corner, but to identify which columns of X2 to remove in order to fix this requires

identification of the rows of R at which the non-zero elements ‘step-in’ from the

leading diagonal of the matrix. Furthermore, for the best performance, with rank

deficient matrices the QR decomposition should really be done with column pivoting,

but this may result in columns of X1 being identified as candidates for removal,

which makes no sense in the current context.

Given these considerations, a practical approach is based on performing the QR de-

composition of [X1 : X2] with pivoting, but in two parts, so that columns of X1

can not be ‘pivoted past’ columns of X2. This is achieved as follows. Form the QR

decomposition

X1 = Q1

[

R1

0

]

.

Now let B be QT

1X2 with the first r rows removed, where r is the number of columns

of X1. Now form a second QR decomposition with pivoting

B = Q2

[

R2

0

]

.

204 SOME GAM THEORY

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

y

1

2

Figure 4.20 The simple, one parameter, linear regression used to illustrate the geometry of

penalized regression in section 4.10.3. The left panel shows the least square fit to two re-

sponse data of a straight line through the origin. The right panel shows the corresponding

un-penalized fitting geometry in a space in which there is an axis for each response datum,

and the response data are therefore represented by a single point (the grey circle). The thick

line shows the model-subspace: the model fitted values must lie on this line. The open circle is

the orthogonal projection of the response data onto the model space: i.e. the fitted values.

If some columns of X2 depend on columns of X1 then there will be a zero block at

the lower right corner of R2, and columns of X2 responsible for this block will be

identifiable from the record of which columns of X2 have been pivoted to these final

columns. These dependent columns can be removed, to make the model identifiable,

or equivalently, the corresponding parameters can be constrained to zero.

If the basis of this algorithm is unclear, note that the implied QR decomposition used

is

[X1 : X2] = Q1

[

I 0

0 Q2

]





R1 B̄

0 R2

0 0



 ,

where B̄ is the first r rows of QT

1X2.

4.10.3 The geometry of penalized regression

The geometry of linear and generalized linear model fitting, covered in sections 1.4

and 2.2, becomes more complicated when quadratically penalized estimation is used.

In the unpenalized cases a response data vector, y, which is exactly representable by

the model (i.e. g(yi) = Xiβ for some β and all i), results in model fitted values

µ̂ = y. When penalized estimation is used, then this is generally not the case (except

for y that are exactly representable by the model, with parameter values for which

the penalty is exactly zero). However, there is a geometric interpretation of penal-

FURTHER GAM THEORY 205

ized fitting, in terms of projections in a larger space than the ‘data space’ that was

considered in sections 1.4 and 2.2.

Consider the model

y = Xβ + ε

to be estimated by minimization of the penalized objective function

‖y −Xβ‖2 + λβTSβ. (4.44)

A geometric interpretation of penalized estimation can be obtained by re-writing

(4.44) as
∥

∥

∥

∥

[

y

0

]

−
[

X√
λS

]

β

∥

∥

∥

∥

2

i.e. as the ordinary least squares objective for an augmented model, fitted to the re-

sponse data augmented with zeroes. So penalized regression amounts to orthogonally

projecting

[

y

0

]

onto the space spanned by the columns of

[

X√
λS

]

and then or-

thogonally projecting back onto the space spanned by X, to get the fitted values

corresponding to y.

It’s difficult to draw pictures that really illustrate all aspects of this geometry in a

satisfactory way, but some insight can be gained by considering the model

yi = xiβ + εi

for 2 data. Figure 4.20 illustrates the unpenalized fitting geometry for this model, as

in section 1.4. Now consider fitting this model by penalized regression: in fact by

simple ridge regression. The model fitting objective is then

2
∑

i=1

(yi − xiβ)2 + λβ2 =

∥

∥

∥

∥

∥

∥





y1

y2

0



−





x1

x2√
λ



 β

∥

∥

∥

∥

∥

∥

2

.

The geometry of this model fit is shown in figure 4.21. Notice the way in which

increasing λ results in fitted values closer and closer to zero.

For the simple penalty, illustrated in figure 4.21, only β = 0 results in a zero penalty,

and hence only the response data (0, 0) would result in identical fitted values (0, 0).
For penalties on multiple parameters, the penalty coefficient matrix, S, is generally

d short of full rank, where d is some integer. There is then a rank d subspace of the

model space, for which the fitting penalty is identically zero, and if the data happen

to be in that space (i.e. with no component outside it) then the fitted values will be

exactly equal to the response data. For example, data lying exactly on a straight line

are left unchanged by a cubic spline smoother.

4.10.4 The “natural” parameterization of a penalized smoother

Penalized smoothers, with a single penalty, can always be parameterized in such a

way that the parameter estimators are independent, with unit variance, in the absence

206 SOME GAM THEORY

1

2

i

1

2

ii

1

2

p
e
n
a
lty

iii

1

2

p
e
n
a
lty

iv

1

2

p
e
n
a
lty

v

1

2

p
e
n
a
lty

vi

Figure 4.21 Geometry of penalized linear regression for the model shown in figure 4.20. (i)

The unpenalized geometry, exactly as in figure 4.20. (ii) The space shown in panel (i) is aug-

mented by a space corresponding to the penalty term. (iii) Another view of the augmented

space from (ii), still corresponding to the unpenalized, λ = 0 case. (iv) penalized geometry

for λ = 0.1. The thin line now shows the model subspace spanned by the columns of the

augmented model matrix. Fitting amounts to finding the orthogonal projection from the (zero

augmented) response data vector (grey circle) onto the augmented model subspace (giving the

black circle). The model fitted values for the (un-augmented) response data are obtained by

then projecting back onto the original model subspace to get the model fitted values (the open

circle). (v) Same as (iv) for the λ = 1. (vi) same as (iv) for λ = 10. Notice how even data

lying exactly on the original model subspace, results in fitted values that are different from

those data: only zero data are not shrunk in this way.

of the penalty, and the penalty matrix is diagonal. This parameterization is particu-

larly helpful for understanding the way in which the penalty suppresses model de-

grees of freedom.

Consider a smooth with model matrix X, parameter vector, β, wiggliness penalty

coefficient matrix, S and smoothing parameter λ. Suppose that the model is to be

estimated by penalized least squares from data with variance σ2. Forming the QR

decomposition

X = QR,

we can re-parameterize in terms of β′ = Rβ, so that the model matrix is now Q,

and the penalty matrix becomes R−TSR−1. Eigen-decomposing the penalty matrix

yields

R−TSR−1 = UDUT,

where U is an orthogonal matrix, the columns of which are the eigenvectors of

FURTHER GAM THEORY 207

R−TSR−1, while D is a diagonal matrix of the corresponding eigenvalues, arranged

in decreasing order. Reparameterization, via a rotation/reflection of the parameter

space, now yields parameters β′′ = UTβ′, and correspondingly a model matrix QU

and penalty matrix D. If the penalty is not applied then the covariance matrix for

these parameters is Iσ2, since U is orthogonal, and the columns of Q are columns

of an orthogonal matrix.

If the penalty is applied, then the Bayesian covariance matrix of the parameters is

simply the diagonal matrix (I + λD)−1σ2, from which the role of the penalty in

limiting parameter variance is rather clear. The frequentist equivalent would simply

be the square of the Bayesian covariance matrix.

The effective degrees of freedom matrix, (XTX+λS)−1XTX, in the original parme-

terization, now becomes the diagonal matrix:

(I + λD)−1.

Hence the effective degrees of freedom for the ith parameter is now given by (1 +
λDii)

−1.

So, in the natural parameterization, all parameters have the same degree of associated

variability, when un-penalized, and the penalty acts on each parameter independently

(i.e. the degree of penalization of one parameter has no affect on the the other pa-

rameters). In this parameterization the relative magnitudes of different Dii terms

directly indicate the relative degree of penalization of different components of the

model space. Note that D is uniquely defined — no matter what parameterization

you start out with, the elements of D are always the same.

Figure 4.22 illustrates how parameters get ‘shrunk’ by the penalty, using the natural

parameterization. The fact that at most levels of penalization, some subspace of the

model space is almost completely suppressed, while some other subspace is left al-

most unpenalized, is clear from these figures, and lends some support to the idea that

a penalized fit is somehow equivalent to an unpenalized fit with degrees of freedom

close to the effective degrees of freedom of the penalized model. However the fact

that many parameters have intermediate penalization, means that this support is only

limited.

The natural parameterization makes the penalized smoothers behave more like full

spline models than is otherwise immediately apparent. For example, for a full spline

smoother the EDF matrix is simply the influence matrix, A, which also defines

the Bayesian posterior covariance matrix Aσ2 and the equivalent frequentist ma-

trix A2σ2. In other words, the relationship between these matrices, which holds for

smoothing splines, also holds for general penalized regression smoothers with the

natural parameterization.

The penalty’s action in effectively suppressing some dimensions of the model space

is also readily apparent in the natural parameterization. For most smoothers the

penalty assesses the “wiggliness” of the fitted model, in such a way that smoother

functions are generally not simply closer to the zero function. In this circumstance,

208 SOME GAM THEORY

0 10 20 30 40

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

parameter index

E
D

F
 p

e
r

p
a
ra

m
e
te

r

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
1
0

EDF = 4.48

x

y
0 10 20 30 40

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

parameter index

E
D

F
 p

e
r

p
a
ra

m
e
te

r

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
1
0

EDF = 11.79

x

y

0 10 20 30 40

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

parameter index

E
D

F
 p

e
r

p
a
ra

m
e
te

r

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
1
0

EDF = 28.76

x

y

Figure 4.22 How parameters are shrunk to zero by the penalty in the natural parameteriza-

tion. All plots relate to a rank 40 cubic regression spline fit to the data shown in the bottom

row plots. The top row plots the degrees of freedom associated with each parameter against

parameter index using the natural parameterization, for 3 levels of penalization. On each plot

the effective degrees of freedom (i.e. the effective number of free parameters) is shown by a

vertical dashed line: note that this is simply the sum of the plotted degrees of freedom per

parameter. The lower row shows the smooth fit corresponding to each of the top row plots.

For this smooth the first two ‘natural’ parameters are never penalized. Notice how some po-

tentially penalized parameters are effectively un-penalized, some are effectively suppressed

completely, while some suffer intermediate penalization. Clearly, it is only approximately true

that a penalized fit is equivalent to an unpenalized fit with the number of parameters given by

the penalized fit effective degrees of freedom.

if increased penalization is to lead to continuously smoother models then, in the

natural parameterization, it is clear that the elements of D must have a spread of

(non-negative) values, with the higher values penalizing coefficients corresponding

to more wiggly components of the model function. If this not clear, consider the

converse situation in which all elements on the leading diagonal of D are the same.

In this case increased penalization amounts to simply multiplying each model coeffi-

cient by the same constant, thereby shrinking the fitted function towards zero without

changing its shape.

4.11 Other approaches to GAMs

The name “Generalized Additive Model” was coined by Hastie and Tibshirani, who

first proposed this class of models, along with methods for their estimation, and as-

sociated inference (Hastie and Tibshirani, 1986, 1990). Their proposed GAM es-

timation technique of “backfitting” has the advantage that it allows the component

functions of an additive model to be represented using almost any smoothing or mod-

OTHER APPROACHES TO GAMS 209

elling technique (regression trees for example). The disadvantage is that estimation

of the degree of smoothness of a model is hard to integrate into this approach.

The generalized smoothing spline methods of Wahba, Gu and co-workers also en-

compass GAMs, within a rather complete theoretical framework, which does allow

smoothness estimation, but is restricted to splines as model components (Wahba,

1990; Gu, 2002, see e.g.). Until recently, this framework had the drawback of rather

high computational cost, but recent work by Kim and Gu (Gu and Kim, 2002; Kim

and Gu, 2004) has much improved this situation.

Another alternative, is to take the fully Bayesian approach to GAMs of Fahrmeir,

Lang and co-workers (e.g. Fahrmeir and Lang, 2001; Fahrmeir et al., 2004; Lang

and Bresger, 2004). In this case the representation of GAMs is rather similar to what

has been presented in this chapter, but the Bayesian model of section 4.8.1 is pushed

to its logical conclusion and all inference is fully Bayesian, using MCMC.

The aim of the remainder of this section is to give a brief and partial sketch of the key

ideas underpinning the backfitting and generalized smoothing spline frameworks.

The aim is not to be comprehensive, but simply to give starting points for under-

standing these approaches. For full treatments, see the books by Hastie and Tibshi-

rani (1990) and Gu (2002), and for an introduction to practical computation with

these methods see section 5.6.

4.11.1 Backfitting GAMs

Backfitting is a beautifully simple way of fitting GAMs, which allows an enormous

range of possibilities for representing the component functions of a GAM, including

many that are not really smooth at all, in the sense that we have been considering so

far. In this section only the basic principles of the simplest version of backfitting will

be presented.

The basic idea behind backfitting is to estimate each smooth component of an addi-

tive model by iteratively smoothing partial residuals from the AM, with respect to

the covariate(s) that the smooth relates to. The partial residuals relating to the jth

smooth term are the residuals resulting from subtracting all the current model term

estimates from the response variable, except for the estimate of jth smooth. Almost

any smoothing method (and mixtures of methods) can be employed to estimate the

smooths.

Here is a more formal description of the algorithm. Suppose that the object is to

estimate the additive model:

yi = α +
m
∑

j=1

fj(xji) + εi

where the fj are smooth functions, and the covariates xj , may sometimes be vector

covariates. Let f̂j denote the vector whose ith element is the estimate of fj(xji). The

basic backfitting algorithm is as follows.

210 SOME GAM THEORY

0.0 0.2 0.4 0.6 0.8 1.0

−
5

0
5

1
0

e
p

0.0 0.2 0.4 0.6 0.8 1.0

−
5

0
5

0.0 0.2 0.4 0.6 0.8 1.0

−
6

−
2

2
4

6

0.0 0.2 0.4 0.6 0.8 1.0

−
3

−
1

1
3

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
2

0
2

e
p

0.0 0.2 0.4 0.6 0.8 1.0

−
4

0
2

4
6

0.0 0.2 0.4 0.6 0.8 1.0

−
4

0
2

4
6

0.0 0.2 0.4 0.6 0.8 1.0

−
3

−
1

1
2

0.0 0.2 0.4 0.6 0.8 1.0

−
3

−
1

1
3

e
p

0.0 0.2 0.4 0.6 0.8 1.0
−

4
0

2
4

6
0.0 0.2 0.4 0.6 0.8 1.0

−
4

0
2

4
6

0.0 0.2 0.4 0.6 0.8 1.0

−
3

−
1

1
2

0.0 0.2 0.4 0.6 0.8 1.0

−
3

−
1

1
3

x1

e
p

0.0 0.2 0.4 0.6 0.8 1.0

−
4

0
2

4
6

x2

0.0 0.2 0.4 0.6 0.8 1.0

−
4

0
2

4
6

x3

0.0 0.2 0.4 0.6 0.8 1.0

−
3

−
1

1
2

x4

Figure 4.23 Fitting a 4 term Additive Model using backfitting. Iteration proceeded across

the columns and down the rows (i.e. starts at top left and finishes at bottom right). The jth

column relates to the jth smooth and its covariate. The points shown in each plot are the

partial residuals for the term being estimated, plotted against the corresponding covariate.

By smoothing these residuals, an estimate of the corresponding smooth function (evaluated at

the covariate values) is produced: these estimates are shown as thick curves. For example, the

third column, second row, shows the partial residuals for f3, at the second iteration, plotted

against x3: the thick curve is therefore the second iteration estimate of f3, and results from

smoothing the partial residuals with respect to x3. The estimated functions change moving

down the rows, but have stabilized by the last row.

1. Set α̂ = ȳ and f̂j = 0 for j = 1, . . . , m.

2. Repeat steps 3 to 5 until the estimates, f̂j , stop changing.

3. For j = 1, . . . , m repeat steps 4 and 5.

4. Calculate partial residuals:

ejp = y − α̂−
∑

k 6=j
f̂k

5. Set f̂j equal to the result of smoothing ejp with respect to xj .

As an example, here is some R code implementing the basic backfitting algorithm,

using R routine smooth.spline as the smoothing method. It is assumed that

edf[j] contains the required degrees of freedom for the jth smooth, that x is an m

column array, with jth column containing the (single) covariate for the jth smooth,

and that the response is in y.

OTHER APPROACHES TO GAMS 211

f<-x*0;alpha<-mean(y);ok <- TRUE

while (ok) { # backfitting loop

for (i in 1:m) { # loop through the smooth terms

ep <- y - rowSums(f[,-i]) - alpha

b <- smooth.spline(x[,i],ep,df=edf[i])

f[,i] <- predict(b,x[,i])$y

}

rss <- sum((y-rowSums(f))ˆ2)

if (abs(rss-rss0)<1e-6*rss) ok <- FALSE

rss0 <- rss

}

Figure 4.23 shows 4 iterations of the backfitting algorithm applied to the estimation

of an additive model with 4 smooth components. In this case the data were simulated

using the code given in the help file for gam in the mgcv package. The edf array

was set to 3, 3, 8 and 3.

To fit GAMs by penalized iteratively re-weighted least squares, a weighted version

of the backfitting algorithm is used, and there are some refinements which speed up

convergence (which can otherwise be slow if covariates are highly correlated). Notice

how the cost of the algorithm depends on the cost of the componentwise smoothers:

smooth.spline is a very efficient way of smoothing with respect to one variable,

for example. Clearly the elegance of backfitting is appealing, as is the flexibility to

choose a very wide variety of smoothing methods, for component estimation, but

this does come at a price. It is not easy to efficiently integrate smoothness estimation

methods with backfitting: the obvious approach of applying GCV to the smoothing

of partial residuals is definitely not recommendable, while direct estimation of the

influence/hat matrix of the whole model has computational cost of at least O(mn2),
where n is the number of data, so that cross validation or GCV would both be quite

expensive.

4.11.2 Generalized smoothing splines

The generalized smoothing spline approach is built around some very elegant and

general methods for smoothing, based on the theory of reproducing kernel Hilbert

spaces. This section will only give the briefest introduction to this theory, but even

that is somewhat tougher going than the rest of this book.

To reduce the level of abstraction, a little, let us revisit the cubic smoothing spline.

To this end, first construct a space of functions of x, say, which are ‘wiggly’ accord-

ing to the cubic spline penalty. That is consider a space of functions, F , where the

inner product of two functions, f and g ∈ F is 〈g, f〉 =
∫

g′′(x)f ′′(x)dx, and con-

sequently a norm on the space is the cubic spline penalty,
∫

f ′′(x)2dx: except for the

zero function, functions for which this norm is zero are currently excluded from F .

There is a rather remarkable theorem, the Reisz representation theorem, which says

that there exists a function Rz ∈ F , such that f(z) = 〈Rz, f〉, for any f ∈ F : i.e. if

212 SOME GAM THEORY

we want to evaluate f at some particular value z, then one way of doing it is to take

the inner product of the function, f , with the ‘representor of evaluation’ function,

Rz .

Suppose further that we construct a function of two variables R(z, x), such that for

any z, R(z, x) = Rz(x). This function is known as the reproducing kernel of the

space, since 〈R(z, ·), R(·, t)〉 = R(z, t), i.e.
∫

∂2R(z, x)

∂x2

∂2R(x, t)

∂x2
dx = R(z, t),

by the Reisz representation theorem. Basically, if you take an appropriately defined

inner product of R, with itself, you get back R: hence the terminology. If you must

know what R actually looks like see (3.4) in section 3.2.1.

Now, consider the cubic smoothing spline problem of finding the function minimiz-

ing:
n
∑

i=1

{yi − f(xi)}2 + λ

∫

f ′′(x)2dx. (4.45)

It turns out that the minimizer is in the space of functions that can be represented as:

f̂(x) = β0 + β1x +

n
∑

i=1

δiR(xi, x).

where the βj’s and δi’s are coefficients to be estimated. The first two terms on the

r.h.s simply span the space of functions for which
∫

f ′′(x)2dx = 0, the null space

of the penalty: clearly β0 and β1 can be chosen to minimize the sum of squares

term without worrying about the effect on the penalty. The terms in the summation

represent the part of f̂(x) that is in F . It is clear that not all functions in F can be

represented as
∑n
i=1 δiR(x, xi), so how do we know that the minimizer of 4.45 can?

The answer lies in writing the minimizer, f̂ ’s, component in F as r + η where

r =
∑n

i=1 δiR(x, xi), and η is any function in the part of F which is orthogonal

to r. Orthogonality means that each inner product 〈R(xi, x), η(x)〉 = 0, but these

inner products evaluate η(xi), so we have that η(xi) = 0 for each i: i.e. η(x) can

have no effect on the sum of squares term in (4.45). In the case of the penalty term,

orthogonality of r and η means that:
∫

f̂ ′′(x)2dx =

∫

r′′(x)2dx +

∫

η′′(x)2dx.

Obviously, the member of F which minimizes this, is the zero function, η(x) = 0.

Having demonstrated what form the minimizer has, we must now actually find the

minimizing βj’s and δi’s. Given that we now have a basis, this is not difficult, al-

though it is necessary to derive two linear constraints ensuring identifiability between

the null space components and the reproducing kernel terms in the model, before this

can be done.

The above argument is excessively complicated if all that is required is to derive the

EXERCISES 213

cubic smoothing spline, but its utility lies in how it generalizes. The cubic spline

penalty can be replaced by any other derivative based penalty with associated inner

product, and x can be a vector. In fact this reproducing kernel Hilbert space approach

generalizes in all sorts of wonderful directions, and in contrast to the other methods

described in this book, the basis for representing component functions of a model

emerges naturally from the specification of fitting criteria like (4.45), rather than

being a more or less arbitrary choice made by the modeller. See Wahba (1990) or Gu

(2002) for a full treatment of this approach. The down sides are theoretical difficulty,

less freedom to choose smoothers, greater difficulty in generalizing the models in

some directions, and for full models, computational cost. However the work of Kim

and Gu (2004) has made this point much less significant than it was.

4.12 Exercises

1. It is easy to see that the cubic regression spline defined by equation (4.2) in section

4.1.2 has value βj and second derivative δj at knot xj , and that value and second

derivative are continuous across the knots. Show that the condition that the first

derivative of the spline be continuous across xj (and that the second derivative be

zero at x1 and xk), leads to equation (4.3).

2. This question refers, again, to the cubic regression spline (4.2) of section 4.1.2.

(a) Show that the second derivative of the spline can be expressed as

f ′′(x) =

k−2
∑

i=2

δidi(x),

where

di(x) =







(x− xi)/hi−1 xi−1 ≤ x ≤ xi
(xi−1 − x)/hi xi ≤ x ≤ xi+1

0 otherwise.

(b) Hence show that, in the notation of section 4.1.2,
∫

f ′′(x)2dx = δ−TBδ−.

(It may be helpful to review exercise 7 in Chapter 3, before proceeding with

this part.)

(c) Finally show that
∫

f ′′(x)2dx = βTDTB−1Dβ.

3. Prove that equation (4.14) in section 4.4.1 is true.

4. This question follows on from section 4.5.4. Show that, in the notation of that

section,

E

(

n
∑

i V (µi)
−1(y − µi)

2

{n− tr (A)}2
)

=
n2

{n− tr (A)}2
if the yi are binary random variables with mean µi and the model smoothing

parameters are treated as known. What does this indicate about Vpg ?

214 SOME GAM THEORY

5. The natural parameterization of section 4.10.4 is particularly useful for under-

standing the way in which penalization causes bias in estimates, and this question

explores this issue.

(a) Find an expression for the bias in a parameter estimator β̂′′i in the natural pa-

rameterization (bias being defined as E{β̂′′i − β′′i }). What does this tell you

about the bias in components of the model which are unpenalized, or only very

weakly penalized, and in components for which the ‘true value’ of the corre-

sponding parameter is zero or nearly zero?

(b) The Mean Square Error in a parameter estimator (MSE) is defined as E{(β̂i −
βi)

2} (dropping the primes for notational convenience). Show that the MSE of

the estimator is in fact the estimator variance plus the square of the estimator

bias.

(c) Find an expression for the mean square error of the ith parameter of a smooth

in the natural parameterization.

(d) Show that the lowest achievable MSE, for any natural parameter, is bounded

above by σ2, implying that penalization always has the potential to reduce the

MSE of a parameter if the right smoothing parameter value is chosen. Com-

ment on the proportion of the minimum achievable MSE that is contributed by

the squared bias term, for different magnitudes of parameter value.

(e) Under the prior from the Bayesian model of section 4.8.1, but still working in

the natural parameterization, show that the expected squared value of the ith

parameter is σ2/(λiDii). Using this result as a guide to the typical size of β2
i ,

find an expression for the typical size of the squared bias in a parameter, and

find a corresponding upper bound on the squared bias as a proportion of σ2.

6. Cross validation can fail completely for some problems: this question explores

why.

(a) Consider attempting to smooth some response data yi by solving the ‘ridge

regression’ problem

minimise
n
∑

i=1

(yi − µi)
2 + λ

n
∑

i=1

µ2
i w.r.t. µ,

where λ is a smoothing parameter. Show that for this problem the GCV and

OCV scores are identical, and are independent of λ.

(b) By considering the basic principle underpinning ordinary cross validation, ex-

plain what causes the failure of cross validation in part (a).

(c) Given the explanation of the failure of cross validation for the ridge regression

problem in part (a), it might be expected that the following modified approach

would work better. Suppose that we have an xi covariate observed for each yi
(and for convenience xi < xi+1 ∀ i). Define the function µ(x) to be the piece-

wise linear interpolant of the points (xi, µi). In this case we could estimate the

µi by minimizing the following penalized least squares objective

n
∑

i=1

(yi − µi)
2 + λ

∫

µ(x)2dx

EXERCISES 215

w.r.t. the µi.

Now consider 3 equally spaced points x1, x2, x3 with corresponding µ values

µ1, µ2, µ3. Suppose that µ1 = µ3 = µ∗, but that we are free to choose µ2.

Show that the in order to minimize
∫ x3

x1
µ(x)2dx we should set µ2 = −µ∗/2.

What does this imply about trying to choose λ by cross validation? (Hint: think

about what the penalty will do to µi if we ‘leave out’ yi.)

(d) Would the penalty:
∫

µ′(x)2dx

suffer from the same problem as the penalty in part (c)?

(e) Would you expect to encounter these sorts of problems with penalized regres-

sion smoothers? Explain.

7. This question concerns the P-splines of section 4.1.4, the eigen-basis of the penalty

discussed in section 4.8.2 and the natural parameterization of section 4.10.4.

(a) Write an R function which will return the model matrix and square root penalty

matrix for a P-spline, given a sequence of knots, covariate vector x, the re-

quired basis dimension q, and the orders of B-spline and difference penalty

required.

(b) Simulate 100 uniform x data on (0, 1), use your routine to evaluate the basis

functions of a rank 9 B-spline basis at the x values, and plot these 9 basis

functions. (Use cubic B-splines with a second order difference penalty.)

(c) Following section 4.8.2 and using the data and basis from the previous part,

re-parameterize in terms of the eigen-basis of the P-spline penalty matrix, and

plot the 9 evaluated basis functions corresponding to the re-parameterization.

(d) Re-parameterize the P-spline smoother using its natural parameterization (see

section 4.10.4). Again plot the 9 evaluated basis functions corresponding to

this parameterization.

8. This question covers P-IRLS and smoothing parameter estimation, using the P-
spline set up in the previous question. The following simulates some x, y data:

f <- function(x) .04*xˆ11*(10*(1-x))ˆ6+2*(10*x)ˆ3*(1-x)ˆ10

n <- 100;x <- sort(runif(n))

y <- rpois(rep(1,n),exp(f(x)))

An appropriate model for the data is yi ∼ Poi(µi) where log(µi) = f(xi): f is a

smooth function, representable as a P-spline, and the yi are independent.

(a) Write an R function to estimate the model by penalized likelihood maximiza-

tion, given a smoothing parameter. Re-use the function from the first part of

the previous question, in order to set up the P-spline for f .

(b) Modify your routine to return the model deviance and model degrees of free-

dom, so that a GCV score can be calculated for the model.

(c) Write a loop to fit the model and evaluate its (deviance based) GCV score,

on a grid of smoothing parameter values. Plot the fitted values from the GCV

optimal model, over the original data.

216 SOME GAM THEORY

9. In section 4.5.4 it was pointed out that the approximations underpinning the de-

viance based GCV score are not very good, and that in principle a better GCV

score might be obtained by adding a constant to the deviance in the GCV score,

the constant being estimated from an initial model fit in which it is taken to be

zero. Following on from the previous question, apply this approach and compare

the best fit models, with and without the correction to the GCV score.

10. The following R code simulates some data sampled with noise from a function of
two covariates:

test1<-function(x,z,sx=0.3,sz=0.4)

{ 1.2*exp(-(x-0.2)ˆ2/sxˆ2-(z-0.3)ˆ2/szˆ2)+

0.8*exp(-(x-0.7)ˆ2/sxˆ2-(z-0.8)ˆ2/szˆ2)

}

n <- 200

x <- matrix(runif(2*n),n,2)

f <- test1(x[,1],x[,2])

y <- f + rnorm(n)*.1

Write an R function to fit a thin plate spline of two variables (penalty order m = 2)

to the simulated {yi,xi} data, given a smoothing parameter value. Write the func-

tion so that it can fit either a full thin plate spline or a ‘knot based’ thin plate

regression spline (see first and last subsections of section 4.1.5 for details). To

deal with the linear constraints on the spline, see section 1.8.1 and ?qr. The sim-

ple augmented linear model approach introduced in section 3.2.2 can be used for

actual fitting. Write another function to evaluate the fitted spline at new covari-

ate values. Use your functions to fit thin plate splines to the simulated data and

produce contour plots of the results, for several different smoothing parameter

values.

11. The natural parameterization of section 4.10.4 also allows the GCV score for a

single smoothing parameter model to be evaluated very efficiently, for different

trial values of the smoothing parameter. Consider such a single smooth to be

fitted to response data y: this question examines the efficient calculation of the

components of the GCV score.

(a) In the notation of section 4.10.4, find an expression for the influence matrix A

in terms of Q, U, D and λ.

(b) Show that the effective degrees of freedom of the model is simply:

k
∑

i=1

1

1 + λDii
.

(c) Again using the natural parameterization, show how calculations can be ar-

ranged so that, after some initial setting up, each new evaluation of ‖y−Ay‖2
costs only O(k) arithmetic operations.

CHAPTER 5

GAMs in practice: mgcv

This chapter covers use of the generalized additive modelling functions provided by

R package mgcv: the design of these functions is based largely on Hastie (1993),

although to facilitate smoothing parameter estimation, their details have been mod-

ified. It is also well worth being aware of other packages available for GAM type

modelling in R. At time of writing, two other packages stand out: gss, written by

Chong Gu and gam, written by Trevor Hastie. There is not space in this book to cover

these in detail, but section 5.6 offers brief introductions to both. Packages assist

and gamlss are also available at cran.r-project.org, and the vgam package

is also worth seeking out.

The gam function from library mgcv is very much like the glm function covered in

chapter 2. The main difference is that the gam model formula can include smooth

terms, s() and te(), and there are a number of options available for controlling

automatic smoothness selection, or for directly controlling model smoothness. Some

simple examples are helpful for introducing the main features, so this chapter starts

with the cherry tree data from chapter 3, before moving on to some more realistic

examples. When reading this chapter note that R and the mgcv package are subject

to continuing efforts to improve them. Sometimes this may involve modifications of

numerical optimization behaviour, which may result in noticeable, but (hopefully)

statistically unimportant, differences between the output given in this chapter, and

the corresponding results with more recent versions. Sometimes the exact formatting

of output can also change a little.

5.1 Cherry trees again

The example with which chapter 3 ended is easily re-done.

library(mgcv)

data(trees)

ct1<-gam(Volume˜s(Height)+s(Girth),

family=Gamma(link=log),data=trees)

This fits the Generalized additive model

log(E[Volumei]) = f1(Heighti) + f2(Girthi) where Volumei ∼ Gamma

217

218 GAMS IN PRACTICE: MGCV

and the fj are smooth functions. The degree of smoothness (within certain limits)
of the fj is estimated by GCV. The results can be checked by typing the name of
the fitted model object to invoke the print.gam print method, and by plotting the
fitted model object. For example

> ct1

Family: Gamma

Link function: log

Formula:

Volume ˜ s(Height) + s(Girth)

Estimated degrees of freedom:

1.076070 2.408379 total = 4.484449

GCV score: 0.008103299

> plot(ct1,residuals=TRUE)

The resulting plot is displayed in the upper two panels of figure 5.1. Notice that the

default print method reports the model distribution family, link function and formula,

before displaying the effective degrees of freedom for each term (in the order that the

terms appear in the model formula) and the whole model: in this case a straight line,

corresponding to one degree of freedom, is estimated for the effect of height, while

the effect of Girth is a estimated as a smooth curve with 2.4 degrees of freedom; the

total degrees of freedom is the sum of these two, plus one degree of freedom for the

model intercept. Finally the GCV score for the fitted model is reported.

The plots show the estimated effects as solid lines/curves, with 95% confidence lim-

its (strictly Bayesian credible intervals, based on section 4.8) shown as dashed lines.

The coincidence of the confidence limits and the estimated straight line, at the point

where the line passes through zero on the vertical axis, is a result of the identifiability

constraints applied to the smooth terms∗. The points shown on the plots are partial

residuals. These are simply the Pearson residuals added to the smooth terms evalu-

ated at the appropriate covariate values. For example, the residuals plotted in the top

left panel of figure 5.1 are given by

ε̂partial
1i = f1(Heighti) + ε̂pi

plotted against Heighti. For a well fitting model the partial residuals should be

evenly scattered around the curve to which they relate. The ‘rug plots’, along the

bottom of each plot, show the values of the covariates of each smooth, while the

number in each y-axis caption is the effective degrees of freedom of the term being

plotted.

∗ The identifiability constraint is that the sum of the values of each curve, at the observed covariate
values, must be zero: for a straight line, this condition exactly determines where the line must pass
through zero, so there can be no uncertainty about this point.

CHERRY TREES AGAIN 219

65 70 75 80 85

−
0

.5
0

.0
0

.5
1

.0

Height

s
(H

e
ig

h
t,

1
.0

8
)

8 10 12 14 16 18 20

−
0

.5
0

.0
0

.5
1

.0

Girth

s
(G

ir
th

,2
.4

1
)

65 70 75 80 85

−
0

.5
0

.0
0

.5
1

.0

Height

s
(H

e
ig

h
t,

1
)

8 10 12 14 16 18 20

−
0

.5
0

.0
0

.5
1

.0

Girth

s
(G

ir
th

,2
.1

7
)

Figure 5.1 Components of GAM model fits to the cherry tree data. The upper two panels are

from ct1 and the lower 2 from ct4.

5.1.1 Finer control of gam

The simple form of the gam call producing ct1 hides a number of options that have

been set to default values. The first of these is the choice of basis used to represent the

smooth terms. The default is to use thin plate regression splines, which have some

appealing properties, but can be computationally costly for large data sets. In the

following this is modified by using s(...,bs="cr") to select penalized cubic

regression splines to represent the same cherry tree model.

> ct2<-gam(Volume˜s(Height,bs="cr")+s(Girth,bs="cr"),

+ family=Gamma(link=log),data=trees)

> ct2

Family: Gamma

Link function: log

Formula:

Volume ˜ s(Height, bs = "cr") + s(Girth, bs = "cr")

Estimated degrees of freedom:

1.000126 2.418591 total = 4.418718

GCV score: 0.008080546

220 GAMS IN PRACTICE: MGCV

As you can see, the change in basis has made very little difference to the fit. Plots are

in fact indistinguishable to those for ct1. This is re-assuring: it would be unfortunate

if the model depended very strongly on details like the exact choice of basis. How-

ever, larger changes to the basis, such as using P-splines, can make an appreciable

difference.

Another choice hidden, in the previous two model fits, is the choice of the dimension,
k, of the basis used to represent smooth terms. In the previous two fits, the default,
k = 10, was used. The choice of basis dimensions amounts to setting the maximum
possible degrees of freedom allowed for each model term. The actual effective de-
grees of freedom, for each term, will usually be estimated from the data, by GCV
or UBRE, but the upper limit on this estimate is k − 1: the basis dimension, less
one degree of freedom due to the identifiability constraint on each smooth term. The
following example sets k to 20 for the smooth of Girth (and illustrates, by the way,
that there is no problem in mixing different bases).

> ct3 <- gam(Volume ˜ s(Height)+s(Girth,bs="cr",k=20),

+ family=Gamma(link=log),data=trees)

> ct3

Family: Gamma

Link function: log

Formula:

Volume ˜ s(Height) + s(Girth, bs = "cr", k = 20)

Estimated degrees of freedom:

1.000003 2.424226 total = 4.424229

GCV score: 0.00808297

Again, this change makes boringly little difference in this case, and the plots (not

shown) are indistinguishable from those for ct1. This insensitivity to basis dimen-

sion is not universal, of course, and one quite subtle point is worth being aware of.

This is that a space of functions of dimension 20, will contain a larger subspace of

functions with effective degrees of freedom 5, than will a function space of dimen-

sion 10 (the particular numbers being arbitrary here). Hence it is often the case that

increasing k will change the effective degrees of freedom estimated for a term, even

though both old and new estimated degrees of freedom are lower that the original

k − 1.

A final default choice, that it is worth being aware of, is the value for γ in the GCV
or UBRE scores (expressions (4.28) or (4.29), respectively) optimized in order to
select the degree of smoothness of each term. The default value is 1, but GCV is
known to have some tendency to overfitting on occasion, and it has been suggested
that using γ ≈ 1.4 can largely correct this without compromising model fit (Kim
and Gu, 2004). Applying this idea to the current model, results in the bottom row of
figure 5.1 and the following output.

CHERRY TREES AGAIN 221

> ct4 <- gam(Volume ˜ s(Height) + s(Girth),

+ family=Gamma(link=log),data=trees,gamma=1.4)

> ct4

Family: Gamma

Link function: log

Formula:

Volume ˜ s(Height) + s(Girth)

Estimated degrees of freedom:

1.00011 2.169248 total = 4.169358

GCV score: 0.00922805

> plot(ct4,residuals=TRUE)

Clearly the heavier penalty on each degree of freedom in the GCV score has resulted

in a model with fewer degrees of freedom, but the figure indicates that the change in

estimates that this produces is barely perceptible.

5.1.2 Smooths of several variables

gam is not restricted to models containing only smooths of one predictor. In prin-

ciple, smooths of any number of predictors are possible via two types of smooth.

Within a model formula, s(), terms using the "tp" or "ts" bases, produce isotropic

smooths of multiple predictors, while te() terms produce smooths of multiple pre-

dictors from tensor products of any bases available for use with s() (including mix-

tures of different bases). The tensor product smooths are invariant to linear rescaling

of covariates, and can be quite computationally efficient.

The following code fragments both fit the model

log(E[Volumei]) = f(Heighti, Girthi) where Volumei ∼ Gamma,

and f is a smooth function. Firstly an isotropic thin plate regression spline is used:

> ct5 <- gam(Volume ˜ s(Height,Girth,k=25),

+ family=Gamma(link=log),data=trees)

> ct5

Family: Gamma

Link function: log

Formula:

Volume ˜ s(Height, Girth, k = 25)

Estimated degrees of freedom:

4.668129 total = 5.668129

222 GAMS IN PRACTICE: MGCV

bs Description Advantages Disadvantages

"tp" Thin plate re-

gression splines.

Can smooth w.r.t. any

number of covariates.

Computationally costly

for large data sets.

(TPRS) Invariant to rotation of

covariate axes.

Not invariant to covari-

ate rescaling.

Can select penalty order

No ‘knots’ and some op-

timality properties.

"ts" TPRS with

shrinkage

As TPRS, but smooth-

ness selection can zero

term completely

as TPRS

"cr" cubic regression

spline (CRS)

Computationally cheap Can only smooth w.r.t 1

covariate.

Directly interpretable

parameters

Knot based

Doesn’t have TPRS opti-

mality.

"cs" CRS with

shrinkage

As CRS, but smoothness

selection can zero term

completely.

As CRS

"cc" cyclic CRS As CRS, but start point

same as end point

As CRS

"ps" P-splines Any combination of ba-

sis and penalty order

possible

Based on equally spaced

knots

Perform well in tensor

products

Penalties awkward to in-

terpret.

No optimality properties

available.

Table 5.1 Smoothing bases built in to package mgcv, and a summary of their advantages and

disadvantages. (To use P-splines see ?p.spline.)

GCV score: 0.009358786

> plot(ct5,too.far=0.15)

yielding the left hand panel of figure 5.2. Secondly a tensor product smooth is used.
Note that the k argument to te specifies the dimension for each marginal basis: if
different dimensions are required for the marginal bases then k can also be supplied
as an array.

CHERRY TREES AGAIN 223

s(Height,Girth,4.72)

65 70 75 80 85

8
1
0

1
2

1
4

1
6

1
8

2
0

Height

G
ir
th

te(Height,Girth,3)

65 70 75 80 85

8
1
0

1
2

1
4

1
6

1
8

2
0

Height

G
ir
th

Figure 5.2 Smooth functions of height and girth fitted to the cherry tree data, with degree of

smoothing chosen by GCV. The left hand panel shows a thin plate regression spline fit (ct5),

while the right panel shows a tensor product spline fit (ct6). For both plots the bold contours

show the estimate of the smooth; the dashed contours show the smooth plus the standard error

of the smooth and the dotted contours show the smooth less its standard error. The symbols

show the locations of the covariate values on the height - girth plane. Parts of the smooths that

are far away from covariate values have been excluded from the plots using the too.far

argument to plot.gam.

> ct6 <- gam(Volume ˜ te(Height,Girth,k=5),

+ family=Gamma(link=log),data=trees)

> ct6

Family: Gamma

Link function: log

Formula:

Volume ˜ te(Height, Girth, k = 5)

Estimated degrees of freedom:

3.000175 total = 4.000175

GCV score: 0.008197151

> plot(ct6,too.far=0.15)

Notice how the tensor product model has fewer degrees of freedom and a lower GCV

score, than the TPRS smooth here. In fact, with just 3 degrees of freedom, the tensor

224 GAMS IN PRACTICE: MGCV

Tensor product, te TPRS, s(...,bs="tp")

Invariant to linear rescaling of covari-

ates, but not to rotation of covariate

space.

Invariant to rotation of covariate space

(isotropic), but not to rescaling of co-

variates.

Good for smooth interactions of quan-

tities measured in different units,

or where very different degrees of

smoothness appropriate relative to dif-

ferent covariates.

Good for smooth interactions of quan-

tities measured in same units, such as

spatial co-ordinates, where isotropy is

appropriate.

Computationally inexpensive, provided

TPRS bases are not used as marginal

bases.

Computational cost can be high as it in-

creases with square of number of data

(can be avoided by approximation).

Apart from scale invariance, not much

supporting theory.

Some optimality results available.

Table 5.2 Comparison of the tensor product (te) and thin plate regression spline

(s(...,bs="tp") or s(...,bs="ts")) approaches to smoothing with respect to mul-

tiple covariates.

product smooth model amounts to

log(E[Volumei]) = β0 + β1Heighti + β2Girthi + β3HeightiGirthi,

the ‘wiggly’ components of the model having been penalized away altogether.

5.1.3 Parametric model terms

So far, only models consisting of smooth terms have been considered, but there is no
difficulty in mixing smooth and parametric model components. For example, given
that the smooth of height, in model ct1, is estimated to be a straight line, we might
as well fit the model:

gam(Volume˜Height+s(Girth),family=Gamma(link=log),data=trees)

but to make the example more informative, let us instead suppose that the Height
is actually only measured as a categorical variable. This can easily be arranged, by
creating a factor variable which simply labels each tree as small, medium or large:

trees$Hclass <- factor(floor(trees$Height/10)-5,

labels=c("small","medium","large"))

Now we can fit a generalized additive model to these data, using the Hclass variable
as a factor variable.

ct7 <- gam(Volume ˜ Hclass+s(Girth),

family=Gamma(link=log),data=trees)

CHERRY TREES AGAIN 225

8 10 12 14 16 18 20

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

Girth

s
(G

ir
th

,2
.4

1
)

0
.0

0
.1

0
.2

0
.3

Hclass

P
a

rt
ia

l
fo

r
H

c
la

s
s

small medium large

Figure 5.3 Plot of model ct7, a semi-parametric model of cherry tree volume, with a factor

for height and a smooth term for the dependence on Girth. The left plot shows the smooth

of Girth, with 95% confidence interval, while the right panel shows the estimated effect, for

each level of factor Hclass. The effect of being in the small height class is shown as zero,

because the default contrasts have been used here, which set the parameter for the first level

of each factor to zero.

par(mfrow=c(1,2))

plot(ct7,all.terms=T)

The resulting plot is shown in figure 5.3

Often, more information about a fitted model is required than is supplied by plots
or the default print method, and various utility functions exist to provide this. For
example the anova function can be used to investigate the approximate significance
of model terms.

> anova(ct7)

Family: Gamma

Link function: log

Formula:

Volume ˜ Hclass + s(Girth)

Parametric Terms:

df F p-value

Hclass 2 7.076 0.00358

Approximate significance of smooth terms:

edf Est.rank F p-value

s(Girth) 2.414 9.000 54.43 1.98e-14

226 GAMS IN PRACTICE: MGCV

Clearly there is quite strong evidence that both Height and Girth matter (see section
4.8.5, for information on the p-value calculations for the smooth terms). Similarly,
an approximate AIC value can be obtained for the model:

> AIC(ct7)

[1] 154.9411

The summary method provides considerable detail.

> summary(ct7)

Family: Gamma

Link function: log

Formula:

Volume ˜ Hclass + s(Girth)

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.12693 0.04814 64.949 < 2e-16 ***
Hclassmedium 0.13459 0.05428 2.479 0.020085 *
Hclasslarge 0.23024 0.06137 3.752 0.000908 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Approximate significance of smooth terms:

edf Est.rank F p-value

s(Girth) 2.414 9.000 54.43 1.98e-14 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

R-sq.(adj) = 0.967 Deviance explained = 96.9%

GCV score = 0.012076 Scale est. = 0.0099671 n = 31

Notice that, in this case, the significance of individual parameters of the parametric

terms is given, rather than whole term significance. Other measures of fit are also

reported, such as the adjusted r2 and percentage deviance explained, along with the

GCV score, an estimate of the scale parameter of the model, and the number of data

fitted.

5.2 Brain Imaging Example

This section examines a more substantial example, in particular covering issues of

model selection and checking in more detail. The data are from brain imaging by

functional magnetic resonance scanning, and were reported in Landau et al. (2003).

The data are available in data frame brain, and are shown in figure 5.4. Each row

BRAIN IMAGING EXAMPLE 227

scale Controls whether to use UBRE or GCV for smoothness esti-

mation.

scale > 0 is taken as known scale parameter:UBRE used.

scale < 0⇒ scale parameter unknown: GCV used.

scale = 0 ⇒ UBRE for Poisson or binomial, otherwise

GCV.

gamma This multiplies the model degrees of freedom in the GCV

or UBRE criteria. Hence as gamma is increased from 1 the

‘penalty’ per degree of freedom increases in the GCV or UBRE

criterion and increasingly smooth models are produced. In-

creasing gamma to around 1.4 can usually reduce over-fitting,

without much degradation in prediction error performance.

sp An array of supplied smoothing parameters. When this array is

non null, a negative element signals that a smoothing parameter

should be estimated, while a non-negative value is used as the

smoothing parameter for the corresponding term. This is useful

for directly controlling the smoothness of some terms.

min.sp Minimum values for smoothing parameters can be supplied

here.

method An argument usually set with gam.method, which controls

the numerical method used to estimate smoothing parameters.

The most important choice is between ‘outer’, and ‘perfor-

mance’ iteration in the generalized additive modelling case.

Table 5.3 Main arguments to gam for controlling the smoothness estimation process.

of the data frame corresponds to one voxel. The columns are: X and Y, giving the lo-

cations of each voxel; medFPQ, the brain activity level measurement (median ‘Fun-

damental Power Quotient’ over three measurements); region, a code indicating

which region the voxel belongs to (0 for ‘base’ region; 1 for region of experimental

interest and 2 for region subjected to direct stimulation) — there are some NA’s in

this column; meanTheta is the average phase shift at each voxel, which we will not

consider further. This section will consider models for medFPQ as a function of X

and Y.

Clearly the medFPQ data are quite noisy, and the main purpose of the modelling

in this section is simply to partition this very variable signal into a smooth trend

component and a ‘random variability’ component, so that the pattern in the image

becomes a bit clearer. For data such as these, where the discretization (into voxels) is

essentially arbitrary, there is clearly a case to be made for employing a model which

includes local correlation in the ‘error’ terms. Chapter 6 covers methods for doing

this, but for the moment we will proceed by treating the randomness as being inde-

pendent between voxels, and letting all between voxel correlation be modelled by the

trend. This is not simply a matter of convenience, but relates closely to the purpose of

228 GAMS IN PRACTICE: MGCV

10 20 30 40 50

5
0

6
0

7
0

8
0

medFPQ brain image

Y

X

10 20 30 40 50

5
0

6
0

7
0

8
0

regions of interest

Y

X

Figure 5.4 The raw data for the brain imaging data discussed in section 5.2. The left hand plot

shows the median of 3 measurements of Fundamental Power Quotient values at each voxel

making up this slice of the scan: these are the measurements of brain activity. The right hand

panel shows the regions of interest: the ‘base region’ is the darkest shade, the region directly

stimulated experimentally is shown in light grey and the region of experimental interest is show

as dark grey. Unclassified voxels are white.

the analysis: for these data the main interest lies in cleaning up this particular image,

that is in removing the component of variability that appears to be nothing more than

random variation, at the level of the individual voxel. The fact that the underlying

mechanism generating features in the image, may include a component attributable

to correlated noise across voxels, is only something that need be built into the model

if the objective is to be able to remove this component of the pattern from the image,

in addition to removing the un-correlated noise component.

5.2.1 Preliminary Modelling

An appropriate initial model structure would probably involve modelling medFPQ

as a smooth function of X and Y, but before attempting to fit models, it is worth
examining the data itself to look for possible problems. When this is done, 2 voxels
appear problematic. These voxels have medFPQ values recorded as 3 × 10−6 and
4 × 10−7, while the remaining 1565 voxels have values in the range 0.003 to 20.
Residual plots from all attempts to model the data set, including these two voxels,
consistently show them as grotesque outliers. For these reasons, these two voxels
were excluded from the following analysis:

brain <- brain[brain$medFPQ>5e-3,] # exclude 2 outliers

The fairly skewed nature of the response data, medFPQ, and the fact that it is a
necessarily positive quantity, suggest that some transformation may be required if
a Gaussian error model is to be used. Attempting to use a Gaussian model without
transformation confirms this:

BRAIN IMAGING EXAMPLE 229

−3 −2 −1 0 1 2 3

−
5

0
5

1
0

Normal Q−Q Plot

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

0 2 4 6 8 10

−
5

0
5

1
0

Resids vs. linear pred.

linear predictor

re
s
id

u
a

ls

Histogram of residuals

Residuals

F
re

q
u

e
n

c
y

−5 0 5 10

0
2

0
0

4
0

0
6

0
0

8
0

0

0 2 4 6 8 10

0
5

1
0

1
5

2
0

Response vs. Fitted Values

Fitted Values
R

e
s
p

o
n

s
e

Figure 5.5 Some basic model checking plots for model m0 fitted to the brain scan data. The

upper left normal QQ plot clearly shows a problem with the Gaussian assumption. This is

unsurprising when the upper right plot of residuals versus fitted values (linear predictor) is

examined: the constant variance assumption is clearly untenable. The lower left histogram

of residuals confirms the pattern evident in the QQ plot: there are too many residuals in the

tails and centre of the distribution relative to its shoulders. In this case the plot of response

variable against fitted values, shown in the lower right panel, emphasizes the failure of the

constant variance assumption.

> m0 <- gam(medFPQ˜s(Y,X,k=100),data=brain)

> gam.check(m0)

Smoothing parameter selection converged after 6 iterations.

The RMS GCV score gradiant at convergence was 6.460904e-06 .

The Hessian was positive definite.

The estimated model rank was 100 (maximum possible: 100)

gam.check is a routine that produces some basic residual plots, and a little further
information about the success or otherwise of the fitting process. The plots produced
for m0 are shown in figure 5.5. As explained in the caption of that figure, there are
clear problems with the constant variance assumption: variance is increasing with
the mean here. From the plots it is not easy to gauge the rate at which the variance
of the data is increasing with the mean, but, in the absence of a good physical model
of the mechanism underlying the relationship, some guidance can be obtained by a

simple informal approach. If we assume that var(yi) ∝ µβi , where µi = E(yi) and β
is some parameter, then a simple regression estimate of β can be obtained as follows:

230 GAMS IN PRACTICE: MGCV

> lm(log(eˆ2)˜log(fv))

Call:

lm(formula = log(eˆ2) ˜ log(fv))

Coefficients:

(Intercept) log(fv)

-1.961 1.912

i.e. β ≈ 2. That is, from the residuals of the simple fit, it appears that the variance of

the data increases with the square of the mean. This in turn suggests using the Gamma

distribution, which has this mean variance relationship, or of treating the 4th root of

medFPQ as the response for a Gaussian model (since such a transformation should

approximately stabilize the variance, given the apparent mean-variance relationship

on the original scale). With the Gamma model, it might also be appropriate to use a

log link, in order to ensure that all model predicted FPQ values are positive.

The following fits models based first on transforming the data, and then on use of the
Gamma distribution.

m1<-gam(medFPQˆ.25˜s(Y,X,k=100),data=brain)

gam.check(m1)

gm <- gam.method(gam="perf.magic")

m2<-gam(medFPQ˜s(Y,X,k=100),data=brain,family=Gamma(link=log),

method=gm)

The plots from gam.check are shown in figure 5.6, and now show nothing prob-

lematic. gam.check plots for m2 are equally good (but not shown). Note that, for

this example, I have used the performance iteration to estimate smoothing param-

eters, rather than outer iteration. The two methods are unlikely to differ greatly, in

this case, since for the Gamma distribution with a log link the iterative weights are

simply 1: hence the computationally quicker performance iteration is preferable.

The major difference between m1 and m2 is in their biased-ness on different scales.
The model of the transformed data is approximately unbiased on the 4th root of the
response scale (approximately because the variance stabilization can only be approx-
imate): this means that it is biased downwards on the response scale itself. The log-
Gamma model is approximately unbiased on the response scale (only approximately
because maximum penalized likelihood estimation is not generally unbiased, but is
consistent). This can be seen if we look at the mean of the fitted values (response
scale) for the two models, and compare this to the mean of the raw data:

> mean(fitted(m1)ˆ4);mean(fitted(m2));mean(brain$medFPQ)

[1] 0.985554 # m1 tends to under-estimate

[1] 1.212545 # m2 substantially better

[1] 1.250302

Clearly, if the response scale is the scale of prime interest, then the Gamma model

is to be preferred to the a model based on normality of the transformed data. So far,

BRAIN IMAGING EXAMPLE 231

−3 −2 −1 0 1 2 3

−
0

.6
−

0
.2

0
.2

0
.4

0
.6

Normal Q−Q Plot

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

1.0 1.2 1.4 1.6

−
0

.6
−

0
.2

0
.2

0
.4

0
.6

Resids vs. linear pred.

linear predictor

re
s
id

u
a

ls

Histogram of residuals

Residuals

F
re

q
u

e
n

c
y

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

0
5

0
1

0
0

2
0

0
3

0
0

1.0 1.2 1.4 1.6

0
.5

1
.0

1
.5

2
.0

Response vs. Fitted Values

Fitted Values
R

e
s
p

o
n

s
e

Figure 5.6 Some basic model checking plots for model m1 fitted to the transformed brain

scan data. The upper left normal QQ plot is very close to a straight line, suggesting that

the distributional assumption is reasonable. The upper right plot suggests that variance is

approximately constant as the mean increases. The histogram of residuals at lower left appears

approximately consistent with normality. The lower right plot of response against fitted values

shows a positive linear relationship with a good deal of scatter: nothing problematic.

then, the best model seems to be the Gamma log-link model m2, which should be

examined a little further.

> m2

Family: Gamma

Link function: log

Formula:

medFPQ ˜ s(Y, X, k = 100)

Estimated degrees of freedom:

63.17224 total = 64.17224

GCV score: 0.5994399

> vis.gam(m2,plot.type="contour",too.far=0.03,

+ color="gray",n.grid=60,zlim=c(-1,2))

232 GAMS IN PRACTICE: MGCV

So a relatively complex fitted surface has been estimated, with 64 degrees of freedom.

The function vis.gam provides quite useful facilities for plotting predictions from a

gam fit against pairs of covariates, either as coloured perspective plots, or as coloured

contour plots. The plot it produces for m2 is shown in figure 5.7(a). Notice how the

activity in the directly stimulated region and the region of interest stand out clearly

in this plot.

5.2.2 Would an additive structure be better?

Given the large number of degrees of freedom, employed by the model m2, the ques-

tion naturally arises of whether a different, simpler, model structure might achieve

a more parsimonious fit. Since this is a book about GAMs, the obvious candidate is

the additive model,

log(E[medFPQi]) = f1(Yi) + f2(Xi), medFPQi ∼ Gamma.

> m3 <- gam(medFPQ˜s(Y,k=30)+s(X,k=30),data=brain,

+ family=Gamma(link=log),method=gm)

> m3

Family: Gamma

Link function: log

Formula:

medFPQ ˜ s(Y, k = 30) + s(X, k = 30)

Estimated degrees of freedom:

9.50822 19.56363 total = 30.07185

GCV score: 0.6817362

Clearly the GCV score is higher for this model, suggesting that it is not an im-

provement, and a comparison of explained deviances using summary(m2) and

summary(m3) also suggests that the additive model is substantially worse.

It is also possible to test whether m3 generated the data against the alternative that
m2 did using

> anova(m3,m2,test="F")

Analysis of Deviance Table

Model 1: medFPQ ˜ s(Y, k = 30) + s(X, k = 30)

Model 2: medFPQ ˜ s(Y, X, k = 100)

Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 1533.928 970.91

2 1499.828 894.27 34.100 76.64 3.9098 5.727e-13 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

BRAIN IMAGING EXAMPLE 233

which suggests that the additive structure can be firmly rejected. Note that the test

performed here involves three types of approximation (in addition to the usual use of

asymptotic results). Firstly the test is based on treating the penalized fits as if they

were un-penalized fits, with degrees of freedom given my the effective degrees of

freedom of the models; secondly, the tests are conditional on smoothing parameters

that have in fact been estimated; and thirdly, although, conceptually the smooth func-

tion f1(Y)+f2(X) is nested within the smooth function f(Y, X), this is not exactly

true, given the bases actually used to represent the smooth functions. Given the clear

cut nature of the rejection of the additive model, these approximations need not cause

much concern here, but care would be needed if the p-value was anywhere near some

pre-defined significance level for acceptance or rejection.

The fact that the models are not strictly nested can be addressed by replacing m2 by

m4 <- gam(medFPQ˜s(Y,k=30)+s(X,k=30)+s(Y,X,k=100),data=brain,

family=Gamma(link=log),method=gm)

but the additive structure is still firmly rejected, if this is done.

Perhaps the most persuasive argument against the additive structure is provided by

the plot of the predicted log activity levels provided in figure 5.7 (b): the additive

structure produces horizontal and vertical ‘stripes’ in the plot that have no real sup-

port from the data.

5.2.3 Isotropic or tensor product smooths?

As discussed in chapter 4, isotropic smooths, of the sort produced by s(Y,X) terms,

are usually good choices when the covariates of the smooth are naturally on the same

scale, and we expect that the same degree of smoothness is appropriate with respect

to both covariate axes. For the brain scan data these conditions probably hold, so the

isotropic smooths are probably a good choice.

Nevertheless, it is worth checking what the results look like if we use a scale invariant

tensor product smooth of Y and X, in place of the isotropic smooth (see section 4.1.8).

Such smooths are computationally rather efficient (if the marginal bases of a tensor

product smooth are cheap to construct, then so is the tensor product basis itself).

Additionally, as discussed in section 4.10.2, there is always at least one additive

model structure which is strictly nested within a tensor product smooth.

For example

tm<-gam(medFPQ˜te(Y,X,k=10),data=brain,family=Gamma(link=log),

method=gm)

tm1<-gam(medFPQ˜s(Y,k=10,bs="cr")+s(X,bs="cr",k=10),

data=brain,family=Gamma(link=log),method=gm)

fits a tensor product smooth to the FPQ data, storing the result in tm, and then fits a

purely additive model to the same data, storing the result in tm1. The smooth in tm

234 GAMS IN PRACTICE: MGCV

10 20 30 40 50

5
0

6
0

7
0

8
0

(a)

Y

X

10 20 30 40 50

5
0

6
0

7
0

8
0

(b)

Y

X

10 20 30 40 50

5
0

6
0

7
0

8
0

(c)

Y

X

10 20 30 40 50

5
0

6
0

7
0

8
0

(d)

Y

X

Figure 5.7 Comparison of 4 models of the brain scan data. All plots show image plots and

overlaid contour plots, on the scale of the linear predictor. (a) is model m2 based on an

isotropic smooth of Y and X. (b) is model m3 based on a sum of smooth functions of Y and X.

Notice the apparent artefacts in (b), relating to the assumption of an additive structure. (c)

plots model tm and is basically as (a), but using a rank 100 tensor product smooth in place of

the isotropic smooth. (d) is for model tm1, which is as model m3 except that the bases used

ensure that this model is strictly nested within tm. All plots were produced with something

like: vis.gam(m2,plot.type="contour",too.far=0.03,color="gray",

n.grid=60,zlim=c(-1,2),main="(a)")

is a tensor product of two cubic regression spline bases, each of rank 10, and is hence

of rank 100. The bases for the two rank 10 cubic regression splines, used in tm1, are

also part of the tensor product basis used in tm, so tm1 is strictly nested within tm,

thereby removing one potential difficulty in model comparison.

As with the previous models, a comparison of GCV scores suggests that the additive
model is not the best.

> tm1

[edited]

Estimated degrees of freedom:

8.44507 8.081686 total = 17.52676

BRAIN IMAGING EXAMPLE 235

GCV score: 0.7390905

> tm

[edited]

Estimated degrees of freedom:

57.88622 total = 58.88622

GCV score: 0.6166449

Similarly, an approximate test of the null hypothesis that the additive structure is
appropriate, strongly suggests accepting tm.

> anova(tm1,tm,test="F")

Analysis of Deviance Table

Model 1: medFPQ˜s(Y,k=10,bs="cr")+s(X,bs="cr",k=10)

Model 2: medFPQ˜te(Y,X,k=10)

Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 1546.473 1004.34

2 1505.114 906.04 41.359 98.31 4.0053 9.882e-16 ***

Plots of tm and tm1 are shown in figure 5.7 (c) and (d). The plot for tm (c) is rather

similar to the plot for m2, while once again the additive model, tm1, produces a plot

with horizontal and vertical stipes, which are almost certainly artefacts (the stripes

are less pronounced than for m3 because tm1 has been forced to be a smoother

model).

5.2.4 Detecting symmetry (with by variables)

It is sometimes of interest to test whether the image underlying some noisy data is

symmetric, and this is quite straightforward to accomplish, with the methods covered

here. For the brain data we might want to test whether the underlying activity levels

are symmetric about the mean X value of 64.5. The symmetry model in this case

would be

log(E[medFPQi]) = f(Yi, |Xi − 64.5|), medFPQi ∼ Gamma

and this could be compared with model m2, which does not assume symmetry, al-

though for strict nested of models we would need to be slightly more sophisticated

and use an asymmetry model with a form such as,

log(E[medFPQi]) = f(Yi, |Xi − 64.5|) + fr(Yi, |Xi − 64.5|).righti,
where fr is represented using the same basis as f , and righti is a dummy variable,

taking the values 1 or 0, depending on whether medFPQi is from the right or left side

of the brain.

The following code creates variables required to fit these two model, estimates them,
and prints the results.

> brain$Xc <- abs(brain$X - 64.5)

236 GAMS IN PRACTICE: MGCV

> brain$right <- as.numeric(brain$X<64.5)

> m.sy <- gam(medFPQ˜s(Y,Xc,k=100),data=brain,

+ family=Gamma(link=log),method=gm)

> m.as <- gam(medFPQ˜s(Y,Xc,k=100)+s(Y,Xc,k=100,by=right),

+ data=brain,family=Gamma(link=log),method=gm)

> m.sy

[edited]

Estimated degrees of freedom:

52.54246 total = 53.54246

GCV score: 0.6498528

> m.as

[edited]

Estimated degrees of freedom:

59.80448 46.20071 total = 107.0052

GCV score: 0.5967997

The GCV scores suggest that the asymmetric model is better. Approximate hypoth-
esis testing can proceed either by comparing the two models using an F test (see
section 4.10.1), or by the Wald testing approach (section 4.8.5):

> anova(m.sy,m.as,test="F")

Analysis of Deviance Table

Model 1: medFPQ˜s(Y,Xc,k=100)

Model 2: medFPQ˜s(Y,Xc,k=100)+s(Y,Xc,k=100,by=right)

Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 1510.458 946.71

2 1456.995 857.57 53.463 89.14 2.999 8.677e-12 ***
> anova(m.as)

Family: Gamma

Link function: log

Formula:

medFPQ ˜ s(Y, Xc, k = 100) + s(Y, Xc, k = 100, by = right)

Approximate significance of smooth terms:

edf Est.rank F p-value

s(Y,Xc) 59.8 99.0 4.172 < 2e-16

s(Y,Xc):right 46.2 99.0 2.104 6.19e-09

The two approaches are in agreement that there is very strong evidence against sym-

metry, but the approximate p-values are not in very close numerical agreement. This

is unsurprising, given that each is obtained from rather extreme tails of different dis-

tributional approximations. At the cost of another ‘nesting approximation’ we could

also have compared m.sy with m2, in which case the reported p-value is of the order

of 10−14.

Note that, as mentioned in sections 4.8.5 and 4.10.1, the p-values produced by this

BRAIN IMAGING EXAMPLE 237

analysis ignore the fact that we have selected the model effective degrees of free-

dom. As a result, the distribution of the p-values, under the null, deviates a little from

the uniform distribution that p-values should follow. This problem can be fixed, at

the cost of some loss of power, by working with un-penalized models for hypothe-

sis testing purposes. Using model terms of the form s(...,fx=TRUE) is the way

to achieve this. If the above analysis is repeated without penalization the p-values

change somewhat, but, unsurprisingly, still firmly reject the null hypothesis of sym-

metry. It is important to be aware that the un-penalized approach is not a panacea:

more care is needed in the choice of the k argument of s() when it is used, since

excessively high k will lead to low testing power. Also, penalization definitely is

required for CI calculation and point estimation.

Plots of the different model predictions help to show why symmetry is so clearly
rejected (figure 5.8).

vis.gam(m.sy,plot.type="contour",view=c("Xc","Y"),too.far=.03,

color="gray",n.grid=60,zlim=c(-1,2),main="both sides")

vis.gam(m.as,plot.type="contour",view=c("Xc","Y"),

cond=list(right=0),too.far=.03,color="gray",n.grid=60,

zlim=c(-1,2),main="left side")

vis.gam(m.as,plot.type="contour",view=c("Xc","Y"),

cond=list(right=1),too.far=.03,color="gray",n.grid=60,

zlim=c(-1,2),main="right side")

5.2.5 Comparing two surfaces

The symmetry testing, considered in the last section, is an example of comparing
surfaces — in that case one half of an image, with a mirror image of the other half.
In some circumstances, it is also interesting to compare completely independent sur-
faces in a similar way. To see how this might work, a second set of brain scan data
can be simulated, using the fitted model m2, and perturbed, somewhat, as follows.

brain1 <- brain

mu <- fitted(m2)

n<-length(mu)

ind <- brain1$X<60 & brain1$Y<20

mu[ind] <- mu[ind]/3

set.seed(1)

brain1$medFPQ <- rgamma(rep(1,n),mu/m2$sig2,scale=m2$sig2)

Now the data sets can be combined, and dummy variables created to identify which
dataset each row of the combined data frame relates to.

brain2=rbind(brain,brain1)

brain2$sample1 <- c(rep(1,n),rep(0,n))

brain2$sample0 <- 1 - brain2$sample1

After which it is straightforward to fit a model with a single combined surface for

238 GAMS IN PRACTICE: MGCV

5 10 15 20

1
0

2
0

3
0

4
0

5
0

both sides

Xc

Y

5 10 15 20

1
0

2
0

3
0

4
0

5
0

left side

Xc

Y

5 10 15 20

1
0

2
0

3
0

4
0

5
0

right side

Xc

Y

Figure 5.8 Half brain images for the two models involved in examining possible symmetry in

the brain image data. The left panel shows the predictions of log activity for the symmetry

model: the left side of the image would be a mirror image of this plot. The middle plot shows

a mirror image of the left side brain image under the asymmetry model, while the right plot

shows the right side image under the asymmetry model. Clearly the asymmetry model suggests

rather different activity levels in the two sides of the image.

both data sets, and a second model where the surfaces are allowed to differ. Note
that in the latter case a single common surface is estimated, with a difference surface
for the second sample. This approach is often preferable to a model with two com-
pletely separate surfaces, for reasons of parsimony. If there is no difference between
the surfaces, it will still be necessary to estimate two quite complex surfaces, if we
adopt separate surfaces for each data set. With the common surface plus difference
approach, only one complex surface need be estimated: the difference being close to
flat. Similarly, any time that the surfaces are likely to differ in a fairly simply way, it
makes sense to use the common surface plus difference model, thereby reducing the
number of degrees of freedom needed by the model.

m.same<-gam(medFPQ˜s(Y,X,k=100),data=brain2,

family=Gamma(link=log),method=gm)

m.diff<-gam(medFPQ˜s(Y,X,k=100)+s(Y,X,by=sample1,k=100),

data=brain2,family=Gamma(link=log),method=gm)

Examination of the GCV scores for the two models suggests that the second model
m.diff is slightly preferable to m.same, as do the AIC values, and an approxi-
mate test of the hypothesis that a single surface is correct, against the two surface
alternative, tends to confirm this:

BRAIN IMAGING EXAMPLE 239

> anova(m.same,m.diff,test="F")

Analysis of Deviance Table

Model 1: medFPQ˜s(Y,X,k=100)

Model 2: medFPQ˜s(Y,X,k=100)+s(Y,X,by=sample1,k=100)

Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 3058.646 1937.36

2 3044.218 1906.11 14.428 31.25 3.7877 1.575e-06 ***

Repeating this analysis without penalization still suggests rejecting the null of no

difference, but with a much increased p-value. This emphasizes the price paid for

the well behaved p-values that come from not penalizing. The fact that the difference

term is estimated to have only 14 degrees of freedom in the penalized fit means that

using a basis dimension of 100 in the un-penalized fit was really excessive: and this

degree of over-specification leads to greatly reduced power. Repeating the analysis

again with a basis dimension of 50 for the difference smooth gives a much reduced

p-value, but of course this p-value is no longer strictly valid, since the model has

been modified in the light of an initial fit.

In this example, the data for the two surfaces was available on exactly the same

regular mesh, but the approach is equally applicable for irregular data where the data

are not at the same covariate values for the two surfaces (although of course the

regions of covariate space covered should overlap, for a comparison of this sort to be

meaningful).

5.2.6 Prediction with predict.gam

The predict method function, predict.gam, enables a gam fitted model ob-

ject to be used for prediction at new values of the model covariates. It is also used

to provide estimates of the uncertainty of those predictions, and the user can spec-

ify whether predictions should be made on the scale of the response or of the linear

predictor. For predictions on the scale of the linear predictor, predict.gam also

allows predictions to be decomposed into their component terms, and it is also pos-

sible to extract the matrix, which when multiplied by the model parameter vector,

yields the vector of predictions at the given set of covariate values.

Usually the covariate values, at which predictions are required, are supplied as a
data frame in argument newdata, but if this argument is not supplied then pre-
dictions/fitted values are returned for the original covariate values, used for model
estimation. Here are some examples. Firstly on the scale of the linear predictor.

> predict(m2)[1:5]

1 2 3 5 6

0.3024547 0.3418227 0.3474573 0.2769854 0.4541785

> pv <- predict(m2,se=TRUE)

> pv$fit[1:5]

1 2 3 5 6

240 GAMS IN PRACTICE: MGCV

0.3024547 0.3418227 0.3474573 0.2769854 0.4541785

> pv$se[1:5]

1 2 3 5 6

0.2640762 0.2164298 0.2158971 0.2237674 0.2275705

and then on the response scale

> predict(m2,type="response")[1:5]

1 2 3 5 6

1.353176 1.407511 1.415464 1.319147 1.574879

> pv <- predict(m2,type="response",se=TRUE)

> pv$se[1:5]

1 2 3 5 6

0.3573416 0.3046273 0.3055945 0.2951821 0.3583961

For both sets of examples, predictions are produced for all 1564 voxels, but I have

only printed the first 5. Note that the standard errors provided on the response scale

are approximate, being obtained by the usual Taylor expansion approach.

Usually, predictions are required for new covariate values, rather than simply for the
values used in fitting. Suppose, for example, that we are interested in two points in
the brain scan image, firstly in the directly stimulate area, (X = 80.1, Y = 41.8), and
secondly in the region of experimental interest, (X = 68.3, Y = 41.8). A data frame
can be created, containing the covariate values for which predictions are required, and
this can be passed to predict.gam, as the following couple of examples show.

> pd <- data.frame(X=c(80.1,68.3),Y=c(41.8,41.8))

> predict(m2,newdata=pd)

1 2

1.2931442 0.6116455

> predict(m2,newdata=pd,type="response",se=TRUE)

$fit

1 2

3.644227 1.843462

$se.fit

1 2

0.5444432 0.2693135

It is also possible to obtain the contributions that each model term, excluding the
intercept, makes to the linear predictor, as the following example shows. The additive
model m3 has been used to illustrate this, since it has more than one term.

> predict(m3,newdata=pd,type="terms",se=TRUE)

$fit

s(Y) s(X)

1 0.2496231 0.521442293

2 0.2496231 -0.007236053

$se.fit

s(Y) s(X)

1 0.05841173 0.09677576

2 0.05841173 0.08109702

BRAIN IMAGING EXAMPLE 241

As you can see, named arrays have been returned, the columns of which correspond

to each model term. There is one array for the predicted values, and a second for the

corresponding standard errors.

Prediction with lpmatrix

Because the GAMs discussed in this book have an underlying parametric represen-

tation, it is possible to obtain a ‘prediction matrix’, Xp, say, which maps the model

parameters, β̂, to the predictions of the linear predictor, η̂p, say. That is, to find the

Xp such that

η̂p = Xpβ̂.

predict.gam can return Xp, if its type argument is set to "lpmatrix".

The following example illustrates this. Since the returned matrix is of dimension
2 × 101, it has not been printed out, but rather it is demonstrated that it does indeed
give the required linear predictor values, when multiplied by the coefficients of the
fitted model.

> Xp <- predict(m2,newdata=pd,type="lpmatrix")

> fv <- Xp%*%coef(m2)

> fv

[,1]

1 1.2931442

2 0.6116455

Why is Xp useful? A major use, is in the calculation of variances for combinations

of linear predictor values. Clearly, if V̂β is the estimate of the parameter covariance

matrix, then from standard probability theory, the estimated covariance matrix of ηp
must be:

V̂ηp
= XpV̂βX

T

p .

Now suppose that we are really interested in, for example, the difference, δ, between

the linear predictor values at the points in the two regions. This difference could be

written as, δ = dTηp, where dT = [1,−1]T. In that case, standard theory says that:

v̂ar(δ) = dTV̂ηp
d = dTXpV̂βX

T

pd

The following code illustrates this.

> d<-t(c(1,-1))

> d%*%fv

[,1]

[1,] 0.6814987

> d%*%Xp%*%m2$Vp%*%t(Xp)%*%t(d)

[,1]

[1,] 0.04321413

So, the ability to obtain an explicit ‘predictor matrix’, makes some variance calcu-

lations rather straightforward. Of course the neat linear theory, facilitating these cal-

culations, is only applicable if we are interested in inference about linear functions

242 GAMS IN PRACTICE: MGCV

Histogram of mean.FPQ

mean.FPQ
F

re
q
u
e
n
c
y

1.4 1.6 1.8 2.0 2.2 2.4

0
5
0

1
0
0

1
5
0

2
0
0

Figure 5.9 Histogram of 1000 draws from the posterior distribution of average medFPQ in

the region of experimental interest in the brain scan example.

of the linear predictor. As soon as the functions of interest become non-linear, as is

generally the case when working on the response scale, we need different methods,

which are covered next.

5.2.7 Variances of non-linear functions of the fitted model

Prediction matrices, in conjunction with simulation from the posterior distribution of

the parameters, β, give a simple and general method for obtaining variance estimates

(or indeed distribution estimates), for any quantity derived from the fitted model,

not simply those quantities that are linear in β. The idea of this sort of posterior

simulation was discussed in section 4.8.4.

As an example, suppose that we would like to estimate the posterior distribution

of the average medFPQ, in the region of experimental interest. Since the quantity

of interest is on the response scale, and not the scale of the linear predictor, it is

not linear in β, and the simple approach, taken at the end of the last section, is not

applicable.

To approach this problem, a prediction matrix is first obtained, which will map the
parameters to the values of the linear predictor that will be needed to form the aver-
age.

ind <- brain$region==1& ! is.na(brain$region)

Xp <- predict(m2,newdata=brain[ind,],type="lpmatrix")

Next, a large number of replicate parameter sets are simulated from the posterior
distribution of β, using the mvrnorm function from the MASS library.

library(MASS)

br <- mvrnorm(n=1000,coef(m2),m2$Vp) # simulate from posterior

AIR POLLUTION IN CHICAGO EXAMPLE 243

Each column of the matrix br, is a replicate parameter vector, drawn from the pos-
terior distribution of β. Given these replicate parameter vectors, and the matrix Xp,
it is a simple matter to obtain the linear predictor implied by each replicate, from
which the required averages can easily be obtained, as follows.

mean.FPQ<-rep(0,1000)

for (i in 1:1000)

{ lp <- Xp%*%br[i,] # replicate linear predictor

mean.FPQ[i] <- mean(exp(lp)) # replicate region 1 mean FPQ

}

or more efficiently, but less readably

mean.FPQ <- colMeans(exp(Xp%*%t(br)))

So mean.FPQ now contains 1000 replicates from the posterior distribution of the

mean FPQ measurement in region 1. The results of hist(mean.FPQ) are shown

in figure 5.9.

Clearly, this simulation approach is rather general: samples from the posterior distri-

bution of any quantity that can be predicted from the fitted model, are rather easily

obtained. Notice also that, in comparison to bootstrapping, the approach is very com-

putationally efficient. The only real disadvantage is that the results are conditional on

the estimated smoothing parameters, but this is something that can be addressed us-

ing the ideas discussed in section 4.9.3: a practical implementation of that approach

is given in section 5.4.2.

5.3 Air Pollution in Chicago Example

The relationship between air-pollution and health is a moderately controversial topic,

and there is a great deal of epidemiological work attempting to elucidate the links.

In this section a variant of a type of analysis that has become quite prevalent in

air-pollution epidemiology is presented. The data are from Peng and Welty (2004)

and are contained in a data frame chicago. The response of interest is the daily

death rate in Chicago, death, over a number of years. Possible explanatory variable

for the observed death rate are levels of ozone, o3median, levels of sulpher diox-

ide, so2median, mean daily temperature, tmpd, and levels of particulate matter,

pm10median, (as generated by diesel exhaust, for example). In addition to these

air quality variables, the underlying death rate tends to vary with time (in particular

throughout the year), for reasons having little or nothing to do with air quality.

A conventional approach to modelling these data would be to assume that the ob-

served numbers of deaths are Poisson random variables, with an underlying mean

that is the product of a basic, time varying, death rate, modified through multiplica-

tion by pollution dependent effects. That is, the model would be

log(E[deathi]) = f(timei) + β1pm10mediani + β2so2mediani

+ β3o3mediani + β4tmpdi,

244 GAMS IN PRACTICE: MGCV

−4 −2 0 2 4

0
5

1
0

1
5

Normal Q−Q Plot

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s
4.6 4.7 4.8 4.9 5.0

0
5

1
0

1
5

Resids vs. linear pred.

linear predictor

re
s
id

u
a

ls

Histogram of residuals

Residuals

F
re

q
u

e
n

c
y

0 5 10 15 20

0
5

0
0

1
5

0
0

100 110 120 130 140 150

1
0

0
2

0
0

3
0

0
4

0
0

Response vs. Fitted Values

Fitted Values

R
e

s
p

o
n

s
e

Figure 5.10 Basic model checking plots for the ap0 air pollution mortality model. For Possion

data with moderately high means the distribution of the standardized residuals should be quite

close to normal, so that the QQ-plot is obviously problematic. As all the plots make clear there

are a few gross outliers that are very problematic in this fit.

where deathi follows a Poisson distribution, and f is a smooth function.

The model is easily fitted and checked.

ap0 <- gam(death˜s(time,bs="cr",k=200)+pm10median+so2median+

o3median+tmpd,data=chicago,family=poisson)

gam.check(ap0)

A cubic regression spline has been used for f , since 5000 observations is too many
for straightforward use of the TPRS basis. The checking plots are shown in figure
5.10, and show clear problems as a result of some substantial outliers. Plotting the
estimated smooth, with and without partial residuals, emphasizes the size of the out-
liers.

par(mfrow=c(2,1))

plot(ap0,n=1000) # n increased to make plot smooth

plot(ap0,residuals=TRUE,n=1000)

The plots are shown in figure 5.11, and 4 gross outliers, in close proximity to each
other, are clearly visible. Examination of the data indicates that the outliers are the
four highest daily death rates occurring in the data, and that they occurred on con-
secutive days,

> chicago$death[3111:3125]

[1] 112 97 122 119 116 121 226 411 287 228 159 142 123 102 94

AIR POLLUTION IN CHICAGO EXAMPLE 245

−2000 −1000 0 1000 2000

−
0

.2
0

.0
0

.2

time

s
(t

im
e

,1
6

8
.6

4
)

−2000 −1000 0 1000 2000

0
5

1
0

1
5

2
0

time

s
(t

im
e

,1
6

8
.6

4
)

Figure 5.11 The estimate of the smooth from model ap0 shown with and without partial resid-

uals. Note the 4 enormous outliers apparently in close proximity to each other.

Plotting this section of data also indicates that this peak is associated with a period of

very high temperatures and high ozone. One immediate possibility is that the model is

simply too inflexible, and that some non-linear response of death rate to temperature

and ozone is required. This might suggest replacing the linear dependencies on the

air quality covariates, with smooth functions, so that the model structure becomes:

log(E[deathi]) = f1(timei) + f2(pm10mediani) + f3(so2mediani)

+ f4(o3mediani) + f5(tmpdi)

where the fj are smooth functions. This model is easily fitted

ap1<-gam(death˜s(time,bs="cr",k=200)+s(pm10median,bs="cr")+

s(so2median,bs="cr")+s(o3median,bs="cr")+s(tmpd,bs="cr"),

data=chicago,family=poisson)

but the gam.check plots are almost indistinguishable from those shown in figure

5.10. Figure 5.12 shows the estimated smooths, and indicates a problem with the

distribution of pm10median values, in particular, which might be expected to cause

leverage problems. Similar plots, with partial residuals, again indicate a severe failure

to fit the 4 day run of record death rates.

More detailed examination of the data, surrounding the 4 day mortality surge, shows

246 GAMS IN PRACTICE: MGCV

−2000 −1000 0 1000 2000
−

0
.2

0
.0

0
.2

time

s
(t

im
e
,1

6
7
.9

4
)

−50 0 50 100 150 200 250 300

−
0
.2

0
.0

0
.2

pm10median

s
(p

m
1
0
m

e
d
ia

n
,6

.8
6
)

0 10 20 30

−
0
.2

0
.0

0
.2

so2median

s
(s

o
2
m

e
d
ia

n
,7

.3
8
)

−20 −10 0 10 20 30 40

−
0
.2

0
.0

0
.2

o3median

s
(o

3
m

e
d
ia

n
,1

.5
8
)

−20 0 20 40 60 80

−
0
.2

0
.0

0
.2

tmpd

s
(t

m
p
d
,8

.2
7
)

Figure 5.12 The estimate of the smooth from model ap1 shown without partial residuals. Note

the gap in the pm10median values. Similar plots with partial residuals highlight exactly the

same gross outliers as were evident in figure 5.11.

that the highest temperatures in the temperature record where recorded in the few

days preceding the high mortalities, when there were also high ozone levels recorded.

This suggests that average temperature and pollution levels, over the few days pre-

ceding a given mortality rate, might better predict it than the temperature and levels

only on the day itself. On reflection, such a model might be more sensible on biolog-

ical/medical grounds: the pollution levels and temperatures recorded in the data are

no where near high enough to cause immediate acute disease and mortality, and it

seems more plausible that any effects would take some time to manifest themselves

via, for example, the aggravation of existing medical conditions.

The high mortality episode provides a useful way of trying to identify appropriate

aggregations and lags for the predictor variable. If the extremely high mortalities are

related to the pollutants, then, presumably, these high mortalities lie at the extreme

of some combination of predictors. Some experimentation with aggregating the pre-

dictor variables in different ways suggests that the sum (or mean) of the predictors

on the day in question, and the three preceding days, might be appropriate. Figure

5.13 illustrates this.

Given these considerations the following simple function was used to sum the pollu-
tant and temperature levels over the 4 days up to and including each daily mortality
reading. Corresponding portions of the time and death rate vectors were also selected.

AIR POLLUTION IN CHICAGO EXAMPLE 247

−50 0 50 100
0

1
0

0
2

0
0

3
0

0

o3

tm
p

Figure 5.13 Plots of all observed combinations of temperature and ozone, summed over 4 day

periods. The large symbols show the 4 day periods ending in each of the 4 extreme mortality

events. The suggestion is that a combination of persistent high temperatures and high ozone

over several days might lead to higher mortality risk

lag.sum <- function(a,l0,l1)

l0 is the smallest lag, l1 the largest

{ n<-length(a)

b<-rep(0,n-l1)

for (i in 0:(l1-l0)) b <- b + a[(i+1):(n-l1+i)]

b

}

death<-chicago$death[4:5114]

time<-chicago$time[4:5114]

o3 <- lag.sum(chicago$o3median,0,3)

tmp <- lag.sum(chicago$tmpd,0,3)

pm10 <- lag.sum(log(chicago$pm10median+40),0,3)

so2 <- lag.sum(log(chicago$so2median+10),0,3)

So, for example, the aggregate variable,

o3i =

i
∑

j=i−3

o3medianj

is to be used as the predictor for deathi, with similar definitions for the other pre-

dictor variables (except time, of course).

Given the suggestion, from examination of the data, that a combination of high ozone

and high temperature might lead to very high death rates, the following model was

tried next,

log(E[deathi]) = f1(timei) + f2(o3i, tmpi, pm10i),

where f1 and f2 are smooth functions. Isotropy is probably not an appropriate as-
sumption for f2, so it was represented by a tensor product smooth as follows

248 GAMS IN PRACTICE: MGCV

−2 0 2

−
4

0
2

4

Normal Q−Q Plot

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s
4.6 4.8 5.0 5.2 5.4 5.6

−
4

0
2

4

Resids vs. linear pred.

linear predictor

re
s
id

u
a

ls

Histogram of residuals

Residuals

F
re

q
u

e
n

c
y

−6 −4 −2 0 2 4 6

0
5

0
0

1
0

0
0

1
5

0
0

100 150 200 250 300

1
0

0
2

0
0

3
0

0
4

0
0

Response vs. Fitted Values

Fitted Values

R
e

s
p

o
n

s
e

Figure 5.14 Basic checking plots for model ap2. Note the substantial improvement in com-

parison to Figure 5.10.

ap2 <- gam(death ˜ s(time,bs="cr",k=200) +

te(o3,tmp,pm10,k=c(8,8,6)),family=poisson)

(This model is slow to converge, and fails to converge altogether if performance

iteration is used).

The default checking plots, for this model, are shown in figure 5.14, and are now

greatly improved. Having reached the stage of having a model that is not obviously

wrong, it is worth proceeding to see if it can be simplified, and one obvious simplifi-

cation to try is,

log(E[deathi]) = f1(timei) + f2(o3i, tmpi) + f3(pm10i).

ap3 <- gam(death ˜ s(time,bs="cr",k=200) + te(o3,tmp,k=8) +

s(pm10,bs="cr",k=6),family=poisson)

fits the model, and the gam.check plots are very similar to figure 5.14. By default,

smoothness selection for these models has been performed using UBRE, and the

simpler model, ap3, has a slightly lower UBRE score, suggesting that it is to be pre-

ferred. In this case UBRE is effectively AIC, so a comparison of AIC scores leads to

the same conclusion (although in this example approximate hypothesis testing points

in the other direction). Further simplification, to an additive structure in smooths of

each covariate separately, worsens the fit quite radically, since the model is again un-

able to fit the peak death rates. Adding so2 improves the model marginally, in that

the UBRE score is reduced a little, but the estimated effect if of small magnitude,

MACKEREL EGG SURVEY EXAMPLE 249

−2000 −1000 0 1000 2000

−
0
.1

0
.0

0
.1

0
.2

time

s
(t

im
e
,1

3
6
.8

5
)

te(o3,tmp,38.63)

−50 0 50 100

0
1
0
0

2
0
0

3
0
0

o3

tm
p

−1se +1se

10 12 14 16 18

−
0
.1

0
.0

0
.1

0
.2

pm10

s
(p

m
1
0
,3

.4
2
)

Figure 5.15 A reasonable model for the Chicago air-pollution mortality data. The panels show

the estimates of the terms in model ap3. The upper panel is the smooth function of time; the

lower left panel is the smooth function of aggregated lagged temperature and ozone; the lower

right panel is the function of (transformed) aggregated lagged particulate matter.

with only one degree of freedom and a confidence interval that barely excludes 0.

Further experimentation with alternative additive decompositions only worsens the

model fit.

Estimates of the components of model ap3 are shown in figure 5.15. Clearly the

notion that several days of high ozone and temperature can cause elevated death rates

can explain these data, but given the way that the data have been used to develop a

model, we would really need to see if the same model works well in other locations,

or time periods, before giving it too much credence.

5.4 Mackerel egg survey example

World wide, most commercially exploitable fish stocks are over exploited, with some

stocks, such as Newfoundland Cod, having famously collapsed. Effective manage-

ment of stocks rests on sound fish stock assessment, but this is not easy to achieve.

250 GAMS IN PRACTICE: MGCV

The main difficulty is that counting the number of catchable fish of any given species

is all but impossible. A standard statistical sampling approach, based on trying to

catch fish, fails because, for large mobile organisms, there is no way of relating what

is caught to what was available to catch, in a given area. To some extent, surveys

with sonar avoid such catchability problems, but suffer from other problems, chiefly

that it is often impossible to determine which fish species cause a given sonar sig-

nal. Another alternative is to attempt to reconstruct past fish stocks, on the basis of

records of what fish get landed commercially, an approach known as ‘virtual popula-

tion analysis’, but this suffers from the problem that it tells you quite accurately what

the stock was several years ago, but is rather imprecise about its current or recent

state.

Egg production methods are a very different means of assessing stocks. The basic

idea is to try and assess the number of eggs produced by a stock, or the rate at which

a stock is producing eggs, and then to work out the number (or more often mass)

of adult fish required to produce this number or production rate. This works because

egg production rates per kg of adult fish can be assessed from adults caught in trawls,

while eggs can be sampled in an unbiased manner. Egg data are obtained, over the

area occupied by a stock, by sending out scientific cruise ships to sample eggs, at

each station of some predefined sampling grid. Eggs are usually sampled by hauling

a fine meshed net up from the sea bed to the sea surface (or at least from well below

the depth at which eggs are expected to the surface). The number of eggs, of the

target species, in the sample is then counted, and, of course, the volume of water

sampled is known.

5.4.1 Model development

To get the most out of the egg data, it is helpful to model the egg distribution, and

here GAMs can be useful. The example considered in this section concerns data from

a 1992 mackerel egg survey. The data were first modelled using GAMs by Borchers

et al. (1997), and first entered the public domain as data sets mack and smacker

in the sm library of Bowman and Azzalini (1997). Here they have been combined

into one data set mack. The left hand panel of figure 5.16 shows the location at

which samples were taken, and the egg densities found there. As well as longitude

and latitude, a number of other possible predictors of egg abundance are available:

salinity; surface temperature of the ocean, temp.surf; water temperature at

a depth of 20m, temp.20m; depth of the ocean, b.depth; and finally, distance

from the 200m seabed contour, c.dist. The latter predictor reflects the biologists’

belief that the fish like to spawn near the edge of the continental shelf, conventionally

considered to end at a seabed depth of 200m. At each sampling location, a net was

hauled vertically through the water column from well below the depth at which eggs

are found, to the surface: the mackerel eggs caught in the net were counted, to give

the response variable, egg.count.

The Poisson distribution might be a reasonable model for the egg counts, with a mean

MACKEREL EGG SURVEY EXAMPLE 251

−14 −12 −10 −8 −6 −4 −2

4
4

4
6

4
8

5
0

5
2

5
4

5
6

5
8

lon

la
t

0 10 20 30 40 50 60 70

−
5

0
5

1
0

fitted values

re
s
id

u
a
ls

−3 −2 −1 0 1 2 3

−
5

0
5

1
0

Normal QQ plot of residuals

Theoretical Quantiles

S
a
m

p
le

 Q
u
a
n
ti
le

s

Figure 5.16 The left hand plot shows the density of stage I mackerel eggs per square metre

of sea surface as assessed by net samples in the 1992 Mackerel egg survey. Circle areas are

proportional to egg density and are centered on the location at which the egg samples were

obtained. The right hand plots show residual plots for the gm GAM fitted to these data.

given by

E[egg.counti] = gi × [net area]i

where gi is the density of eggs, per square metre of sea surface, at the ith sampling

location. Taking logs of this equation we get,

log(E[egg.counti]) = fi + log([net area]i)

where fi = log(gi) will be modelled as a function of predictor variables, using an

additive structure, and log([net area]i) will be treated as a model ‘offset’: that is, as

a column of the model matrix with associated parameter fixed at 1.

For the purposes of this exercise, a simple additive structure will be assumed, with
the first model being fitted as follows:

mack$log.net.area <- log(mack$net.area)

gm <- gam(egg.count˜s(lon,lat,bs="ts")+s(I(b.depthˆ.5),bs="ts")

+s(c.dist,bs="ts")+s(salinity,bs="ts")+s(temp.surf,bs="ts")

+s(temp.20m,bs="ts")+offset(log.net.area),

data=mack,family=poisson,scale=-1,gamma=1.4)

Here, shrinkage smoothers have been used, which are constructed in such a way

that smooth terms can be penalized away altogether, making no contribution to the

252 GAMS IN PRACTICE: MGCV

s(lon,lat,10.32)

−14 −12 −10 −8 −6 −4 −2

4
4

4
6

4
8

5
0

5
2

lon

la
t

−1se +1se

10 20 30 40 50 60

−
4

−
3

−
2

−
1

0
1

2

I(b.depth^0.5)

s
(I

(b
.d

e
p
th

^0
.5

),
2
.6

8
)

0.0 0.5 1.0 1.5 2.0 2.5

−
4

−
3

−
2

−
1

0
1

2

c.dist

s
(c

.d
is

t,
5
)

34.5 35.0 35.5

−
4

−
3

−
2

−
1

0
1

2

salinity

s
(s

a
lin

it
y
,0

)

14 16 18

−
4

−
3

−
2

−
1

0
1

2

temp.surf

s
(t

e
m

p
.s

u
rf

,0
)

12 14 16 18 20

−
4

−
3

−
2

−
1

0
1

2

temp.20m

s
(t

e
m

p
.2

0
m

,4
.2

)

Figure 5.17 Estimated model terms for the simple additive gm mackerel model.

model (see section 4.1.6). The argument scale=-1 forces the scale parameter of

the Poisson to be treated as unknown, and smoothing parameters to be estimated by

GCV, rather than UBRE, which is the Poisson default: hence the model is employing

an ‘overdispersed Poisson’ structure. The argument gamma=1.4, forces each model

effective degree of freedom to count as 1.4 degrees of freedom in the GCV score,

which forces models to be a little smoother than they might otherwise be, and is

an ad hoc way of avoiding overfitting (Kim and Gu, 2004). Sea bed depth has been

square root transformed, to achieve an even spread of covariate values, without a

few high depths having undue leverage. The right hand panels of figure 5.16 show

residual plots for this model, which are not too bad, considering the high proportion

of zeroes in these data.

Figure 5.17 shows the estimated smooth terms for model gm. The surface tempera-
ture and salinity effects have been shrunk to zero. Refitting without salinity enables
the full data set to be used for estimation, so surface temperature should be left in for
the moment (some experimentation is needed to find a reasonable k for the smooth
of lon and lat).

> gm1<-gam(egg.count ˜ s(lon,lat,bs="ts",k=100)+

+ s(I(b.depthˆ.5),bs="ts") + s(c.dist,bs="ts") +

+ s(temp.surf,bs="ts") + s(temp.20m,bs="ts") +

+ offset(log.net.area),

+ data=mack,family=poisson,scale=-1,gamma=1.4)

> gm1

MACKEREL EGG SURVEY EXAMPLE 253

0 20 40 60 80

−
6

−
4

−
2

0
2

4
6

a

fitted values

re
s
id

u
a
ls

(g
m

1
a
)

44 46 48 50 52 54 56 58

−
6

−
4

−
2

0
2

4
6

b

mack$lat

re
s
id

u
a
ls

(g
m

1
a
)

−14 −12 −10 −8 −6 −4 −2

−
6

−
4

−
2

0
2

4
6

c

mack$lon

re
s
id

u
a
ls

(g
m

1
a
)

34.5 35.0 35.5

−
6

−
4

−
2

0
2

4
6

d

mack$salinity

re
s
id

u
a
ls

(g
m

1
a
)

−3 −2 −1 0 1 2 3

−
6

−
4

−
2

0
2

4
6

e

Theoretical Quantiles

S
a
m

p
le

 Q
u
a
n
ti
le

s

0 20 40 60 80 100

−
2

−
1

0
1

2
3

f

fitted values

re
s
id

u
a
ls

(g
m

2
)

Figure 5.18 a-e are residual plots for model gm1a. Only d appears problematic, but in fact

the pattern is simply the result of both data and model predicting zeroes (or near zeroes) in

the areas of low salinity. f is a residual plot for a negative binomial model and is clearly not

satisfactory.

Family: poisson

Link function: log

Formula:

egg.count˜s(lon,lat,bs="ts",k=100)+s(I(b.depthˆ0.5),

bs="ts")+s(c.dist,bs="ts")+s(temp.surf,bs="ts")+

s(temp.20m,bs="ts")+offset(log.net.area)

Estimated degrees of freedom:

77.3188 1.6469 1.49499e-15 4.0150e-09 6.24424 total = 86.2099

GCV score: 5.834046

Clearly their effective degrees of freedom are so small that the smooths of c.dist
and temp.surf have effectively been eliminated from the model, so we may as
well refit without them.

gm1a<-gam(egg.count˜s(lon,lat,bs="ts",k=100)+

s(I(b.depthˆ.5),bs="ts") + s(temp.20m,bs="ts")+

offset(log.net.area),data=mack,family=poisson,

scale=-1,gamma=1.4)

254 GAMS IN PRACTICE: MGCV

s(lon,lat,77.32)

−14 −12 −10 −8 −6 −4 −2

4
4

4
6

4
8

5
0

5
2

5
4

5
6

5
8

lon

la
t

−1se +1se

10 20 30 40 50 60

−
4

−
2

0
2

I(b.depth^0.5)

s
(I

(b
.d

e
p
th

^0
.5

),
1
.6

5
)

10 12 14 16 18 20

−
4

−
2

0
2

temp.20m

s
(t

e
m

p
.2

0
m

,6
.2

5
)

Figure 5.19 Estimated smooth terms for the mackerel model gm1a. The left panel shows the

smooth of location. The upper right panel shows the smooth of seabed depth and the lower

right panel shows the smooth of temperature at 20 metres depth.

As expected the estimates of the smooths included in gm1a are almost identical to the

estimates of the equivalent smooths from gm1. Residual plots for gm1a are shown

in figure 5.18, and suggest no problems with the model. In some respects the high

degrees of freedom estimated for the spatial smooth is disappointing: biologically it

would be more satisfactory for the model to be based on predictors to which spawn-

ing fish might be responding directly. Spatial location can really only be a proxy for

something else, or the result of a process in which much of the pattern is driven by

spatial correlation.

The fitted model produces a scale parameter estimate of 4.8, indicating a fair degree
of over-dispersion, relative to Poisson data. Rather than adopting the quasi-likelihood
over dispersed Poisson approach, of the models used so far, it might be worth trying
the negative binomial distribution. gam can use the negative binomial family from
the MASS library, although, at time of writing, only with performance iteration esti-
mation of smoothing parameters.

> gm2<-gam(egg.count ˜ s(lon,lat,bs="ts",k=40) +

+ s(I(b.depthˆ.5),bs="ts") + s(c.dist,bs="ts") +

+ s(temp.surf,bs="ts") + s(temp.20m,bs="ts") +

+ offset(log.net.area),

+ data=mack,family=negative.binomial(1),

+ control=gam.control(maxit=100),gamma=1.4)

> gm2

MACKEREL EGG SURVEY EXAMPLE 255

Family: Negative Binomial(0.6226)

Link function: log

Formula:

egg.count ˜ s(lon,lat,bs="ts",k=40)+s(I(b.depthˆ0.5),

bs="ts")+s(c.dist,bs="ts")+s(temp.surf,bs="ts")+

s(temp.20m,bs="ts")+offset(log.net.area)

Estimated degrees of freedom:

17.230 2.2881 0.93996 6.6139e-10 5.1026 total = 26.562

GCV score: 1.126673

The model ascribes considerably more variability to random variation than do the
Poisson based models, but far fewer degrees of freedom to the spatial smooth (even
if k is increased substantially). However the residual plot, figure 5.18f, shows a
clear pattern, with residual variability declining sharply with increasing mean: the
model appears to overstate the variance of data corresponding to high mean densi-
ties. Hence, from the models considered here, gm1a appears to me least inappropri-
ate, and its component smooths are shown in figure 5.19. The rather gentle nature of
the depth effect might suggest that it is not really significant, however

> anova(gm1a)

[edited]

Approximate significance of smooth terms:

edf Est.rank F p-value

s(lon,lat) 77.313 99.000 6.583 < 2e-16

s(I(b.depthˆ0.5)) 1.656 9.000 2.302 0.0152

s(temp.20m) 6.250 9.000 6.572 6.24e-09

implies otherwise. Note however that the p-value probably overstates the significance

of sea bed depth, although it is highly unlikely that an exact p-value would be greater

than 0.05 (what simulation evidence there is suggests it is probably < 0.03).

5.4.2 Model predictions

The purpose of this sort of modelling exercise is assessment of the total stock of eggs,

which means that predictions are required from the model. In the first instance a sim-

ple map of predicted densities is useful. The data frame mackp contains the model

covariates on a regular grid, over the survey area, as well as an indexing column in-

dicating which grid square the covariates belong to, in an appropriate 2D array. The

following code produces the plot on the left hand side of figure 5.20

mackp$log.net.area <- 0*mackp$lon # make offset column

lon<-seq(-15,-1,1/4);lat<-seq(44,58,1/4)

zz<-array(NA,57*57)

zz[mackp$area.index]<-predict(gm1a,mackp)

256 GAMS IN PRACTICE: MGCV

−14 −12 −10 −8 −6 −4 −2

4
4

4
6

4
8

5
0

5
2

5
4

5
6

5
8

lon

la
t

Histogram of mean.eggs1

mean.eggs1

F
re

q
u
e
n
c
y

100 110 120 130 140

0
5
0

1
5
0

2
5
0

Histogram of mean.eggs

mean.eggs

F
re

q
u
e
n
c
y

100 110 120 130 140

0
1
0
0

3
0
0

5
0
0

Figure 5.20 The left hand panel shows predicted log densities of mackerel eggs over the 1992

survey area, according to the model gm1a. The upper right panel shows the posterior dis-

tribution of mean egg densities per square metre sea surface, conditional on the estimated

smoothing parameters. The lower left panel is the same, but unconditional.

image(lon,lat,matrix(zz,57,57),col=gray(0:32/32),

cex.lab=1.5,cex.axis=1.4)

contour(lon,lat,matrix(zz,57,57),add=TRUE)

lines(coast$lon,coast$lat,col=1)

Notice the substantial problem that the egg densities remain high at the western

boundary of the survey area.

Typically, uncertainty estimates are required for quantities derived from fitted model

predictions, and as in the brain imaging example, these can be obtained by simulation

from the posterior distribution of the model coefficients. For example, the following

obtains a sample from the posterior distribution of mean density of mackerel eggs

across the survey area, shown in the upper right panel of figure 5.20.

library(MASS)

br1 <- mvrnorm(n=1000,coef(gm1a),gm1a$Vp)

Xp <- predict(gm1a,newdata=mackp,type="lpmatrix")

mean.eggs1 <- colMeans(exp(Xp%*%t(br1)))

hist(mean.eggs1)

A disadvantage of such simulations, from the posterior distribution of the parameters,

PORTUGUESE LARKS 257

β, is that they are conditional on the estimated smoothing parameters, λ̂. That is, we

are simulating from the posterior f(β|λ̂), when we would really like to simulate from

f(β). Following section 4.9.3, we could improve matters by approximating f(β̂) by

its bootstrap sampling distribution, and then using the fact that f(β) = f(β|λ̂)f(λ̂),
to simulate from an approximate version of f(β). The following code does just that,
and plots the results in the lower right panel of figure 5.20.

f<-fitted(gm1a)

form<-egg.count˜offset(log.net.area)+s(lon,lat,bs="ts",k=100)+

s(I(b.depthˆ.5),bs="ts")+s(temp.20m,bs="ts")

mack.bs <- mack

n <- nrow(mack)

br <- matrix(0,0,length(coef(gm1a)))

for (i in 1:19)

{ e <- rpois(rep(1,n),f) - f

y <- round(f+e*gm2$sig2ˆ.5)

y[y<0] <- 0

mack.bs$egg.count <- y

sp <-

gam(form,data=mack.bs,family=poisson,scale=-1,gamma=1.4)$sp

b <- gam(form,data=mack,family=poisson,sp=sp,scale=-1)

br <- rbind(br,mvrnorm(n=100,coef(b),b$Vp))

}

br <- rbind(br,mvrnorm(n=100,coef(gm1a),gm1a$Vp))

mean.eggs <- colMeans(exp(Xp%*%t(br)))

hist(mean.eggs)

The unconditional distribution is a little wider than the conditional one, but in this

case the differences are not large.

5.5 Portuguese larks

Figure 5.21 shows data on the presence or absence of Crested Lark in each of a set of

sampled 2km × 2km squares, gathered as part of the compilation of the Portuguese

Atlas of Breeding Birds. The whole of Portugal was divided into 10km × 10km

squares, each square was further subdivided into 25, 2km × 2km ‘tetrads’, and a

number of tetrads (usually 6) were selected from each square. Each selected tetrad†

was then surveyed, to establish which bird species were breeding within it: Crested

Lark is one of the species surveyed (although it should be noted that there are some

problems distinguishing Crested Lark from Thekla Lark).

The compilers of the Atlas would like to summarize the information in figure 5.21,

as a map, showing how the probability that a tetrad contains breeding Crested Larks

varies over Portugal. An obvious approach is to model the presence absence data, ci,
as

logit(µi) = f(xi, yi)

† Actually at time of writing the field work was not quite finished, so a few tetrads had yet to be surveyed.

258 GAMS IN PRACTICE: MGCV

4100 4200 4300 4400 4500 4600

3
0

0
3

5
0

4
0

0
4

5
0

5
0

0
5

5
0

km north

k
m

 w
e
s
t

Figure 5.21 Presence (black) and absence (white) of Crested Lark in sampled 2km by 2km

squares in Portugal.

where logit(µi) = µi/(1 − µi), f is a smooth function of location variables x and
y, and ci ∼ binomial(1, µi). The geographic nature of the data, suggests using an
isotropic smoother to represent f . Given the rather large number of data, it speeds
things up to base the TPRS on rather fewer spatial locations than those contained in
the entire data set: this can be done by making use of the knots argument of gam. In
the following, 2000 randomly chosen tetrad locations are used as initial knots from
which to produce a TPRS basis.

ind <- sample(1:25100,2000,replace=FALSE)

m2 <- gam(crestlark ˜ s(x,y,k=100),data=bird,family=binomial,

knots=bird[ind,],gamma=1.4)

The model is fitted with γ = 1.4, since for this application slight over-smoothing is
much preferable to under-smoothing. By default UBRE/AIC is used for smoothing
parameter estimation in the binomial case, and in this example a relatively complex
model is selected.

> m2

Family: binomial

Link function: logit

Formula:

crestlark ˜ s(x, y, k = 100)

Estimated degrees of freedom:

82.58799 total = 83.58799

UBRE score: -0.2416895

Model checking with binary data is somewhat awkward,(see exercise 2 in Chapter

PORTUGUESE LARKS 259

2) especially for spatial data, but for this application we can simplify matters con-
siderably by choosing to model the data at the 10km by 10km square level, in order
to obtain a binomial response, with easier to interpret residuals. It turns out that, in
terms of predicted probabilities, the estimated models are almost indistinguishable,
whether we model raw data, or the aggregated data. The bird data frame contains
a column QUADRICULA identifying which 10 km square each tetrad belongs to, so
aggregation is easy.

bird$n <- bird$y*0+1 # when summed, gives binomial denominator

bird$n[is.na(bird$crestlark)] <- NA

ba <- aggregate(data.matrix(bird),by=list(bird$QUADRICULA),

FUN=sum,na.rm=TRUE)

ba$x <- ba$x / 25 # don’t want locations summed!

ba$y <- ba$y / 25

The model can now be fitted.

> m10 <- gam(cbind(crestlark,n-crestlark)˜s(x,y,k=100),

data=ba,family=binomial,gamma=1.4)

> m10

Family: binomial

Link function: logit

Formula:

cbind(crestlark, n - crestlark) ˜ s(x, y, k = 100)

Estimated degrees of freedom:

75.22112 total = 76.22112

UBRE score: 0.5183815

As usual, the (deviance) residuals should be plotted against fitted values to check
model assumptions, but conventional residual plots are unlikely to pick up one po-
tential problem with spatial data: namely spatial auto-correlation in the residuals,
and consequent violation of the independence assumption. To check this, it is useful
to examine the variogram of the residuals, and the geoR package has convenient
functions for doing this.

library(geoR)

coords<-matrix(0,1004,2);coords[,1]<-ba$x;coords[,2]<-ba$y

gb<-list(data=residuals(m10,type="d"),coords=coords)

plot(variog(gb,max.dist=1e5))

plot(fitted(m10),residuals(m10))

The plotted variogram is shown at the top left of figure 5.22. Uncorrelated residuals

should give a more or less flat variogram, while un-modelled spatial auto-correlation

usually results in a variogram which increases sharply before eventually plateau-ing.

In the current case, the the variogram suggests no autocorrelation, or even slight

negative autocorrelation which might suggest very slight overfitting (although see

exercise 4).

260 GAMS IN PRACTICE: MGCV

0 20000 60000

0
.0

0
.4

0
.8

1
.2

distance

s
e

m
iv

a
ri
a

n
c
e

0.0 0.2 0.4 0.6 0.8

−
2

0
2

4

fitted(m10)

re
s
id

u
a

ls
(m

1
0

)

450 500 550 600 650 700

4
1

0
0

4
2

0
0

4
3

0
0

4
4

0
0

4
5

0
0

4
6

0
0

km east

k
m

 n
o

rt
h

Figure 5.22 Plots related to model m10 for Crested Lark in Portugal. Top left: variogram of

the deviance residuals: there is no evidence that the model is missing auto-correlation in these

data. Lower left: residuals against fitted values, showing no problems, except for minor over-

dispersion. Right: model predicted probability that Crested Lark is breeding in a 2km square

at any location in Portugal.

The residual plot against fitted values shown at the lower left of figure 5.22 is very

good, for binomial data, although there is a suggestion of overdispersion (i.e. the data

seem slightly more variable than truly binomial data).

The end product of this modelling exercise should be a map of breeding probabilities.
In this case the bird data frame actually contains the locations for all 2km tetrads
in Portugal, so it is a fairly simply matter to produce such a map. The only fiddly part
is embedding the predictions, for each tetrad in Portugal, in a larger square array of
tetrads, where any tetrad not in Portugal is assigned the value NA: this is necessary
to facilitate plotting. The following code suffices.

mx <- sort(unique(bird$x));my<-sort(unique(bird$y))

nx<-length(mx);ny<-length(my)

ixm <- 1:nx;names(ixm)<-mx

ix <- ixm[as.character(bird$x)]

iym <- 1:ny;names(iym)<-my

iy <- iym[as.character(bird$y)]

OTHER PACKAGES 261

um <- matrix(NA,nx,ny)

fv10 <- predict(m10,bird,type="response")

my<-my/1000;mx <- mx/1000

um[ix+(iy-1)*nx] <- fv10

image(mx,my,matrix(um,nx,ny),xlab="km east",ylab="km north")

contour(mx,my,matrix(um,nx,ny),add=TRUE)

The results are shown on the right hand side of figure 5.22. Note that the probabilities

plotted are interpretable as follows: if you pick a 10km square in Portugal, then the

plotted probability for that square, is the probability that a randomly selected 2km

tetrad within the square will contain breeding Crested Larks.

5.6 Other packages

There are a number of other packages implementing GAMs, and related models for

R, and this section offers a very brief introduction to two of them: Trevor Hastie’s

gam package, which is a port to R of the original gam in S-PLUS, and Chong

Gu’s gss package, which is a rather complete package for general smoothing spline

models. In both cases, a model from the Chicago air pollution example will be re-

estimated.

Two packages not covered here are the assist package, which implements the

approach of e.g. Wang (1998b) and Wang (1998a), and the gamlss package which

offers the generalization of GAMs presented in Rigby and Stasinopoulos (2004).

5.6.1 Package gam

Package gam is an implementation of the GAM framework of Hastie and Tibshirani

(1990). The mgcv package was an attempt to provide GAMs for R, before the gam

package was available, and its functions are based closely on the S equivalents de-

signed by Hastie (1993). For this reason, basic use of gam is rather similar to basic

use of mgcv. The main differences are: (i) s() terms in a gam::gam formula de-

note cubic smoothing spline smooths of one variable; (ii) smooths of any number of

variables are provided by lo terms, and are loess smooths; (iii) gam::gam does not

estimate the degree of smoothness automatically.

In the following, a version of the final Chicago air pollution model is fitted, using
package gam. The flexibility of the smooths (controlled by the df and span ar-
guments) has been selected to give a fit with terms of similar complexity to those
estimated using mgcv::gam.

> library(gam)

> bfm <- gam(death˜s(time,df=140)+lo(o3,tmp,span=.1),

family=poisson,control=gam.control(bf.maxit=150))

The control argument has to be modified a little, in this case, to achieve convergence
of the back fitting iterations. Here is a default summary of the fit.

262 GAMS IN PRACTICE: MGCV

−2000 −1000 0 1000 2000

−
0

.1
0

.0
0

.1
0

.2

time

s
(t

im
e
,

d
f

=
 1

4
0
)

o3

tm
p

lo
(o

3
, tm

p
, sp

a
n
 =

 0
.1

)

4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3

0
5

1
0

linear predictor

re
s
id

u
a
ls

Figure 5.23 A GAM fitted to the Chicago air pollution data, using gam from package gam.

The upper panel is the estimated smooth of time while the lower left panel is a perspective plot

of the estimated ozone, temperature interaction. The lower right plot is a residual plot.

> summary(bfm)

Call: gam(formula=death˜s(time,df=140)+lo(o3,tmp,span=0.1),

family=poisson,control=gam.control(maxit=100,bf.maxit=150))

Deviance Residuals:

Min 1Q Median 3Q Max

-4.05604 -0.72077 -0.02738 0.67355 13.43195

(Dispersion Parameter for poisson family taken to be 1)

Null Deviance: 9860.715 on 5110 degrees of freedom

Residual Deviance: 5823.157 on 4929.065 degrees of freedom

AIC: 39815.83

Number of Local Scoring Iterations: 20

DF for Terms and Chi-squares for Nonparametric Effects

Df Npar Df Npar Chisq P(Chi)

(Intercept) 1.0

s(time, df = 140) 1.0 139.0 1336.27 0.00

lo(o3, tmp, span = 0.1) 2.0 38.9 645.51 0.00

OTHER PACKAGES 263

Plotting of model terms is easily.

plot(bfm,se=T,rug=F,phi=30,theta=-30)

produces the upper and lower left panels in figure 5.23. The residual plot, at lower

right of the figure, shows that this model still misses the really high deaths by a little

way. This may be because of the way the relative scaling of ozone and temperature

has been handled: these variables are scaled into the unit square, and then smoothed

with a locally weighted regression. The scaling step is somewhat arbitrary, and im-

poses an implicit assumption about how smoothly death rate varies with temperature

as opposed to ozone: this assumption maybe behind the slightly worse fit, relative to

the previous version of this model.

5.6.2 Package gss

The gss package is a comprehensive implementation of the general smoothing spline
approach to modelling described in the monographs by Wahba (1990) and Gu (2002).
The modelling approach is somewhat different to the gam functions met so far, be-
ing based strongly on the notion of ANOVA decompositions of functions (see section
4.10.2). Again the Air pollution model provides a useful example:

library(gss)

ssm <- gssanova1(death˜time+o3*tmp,family="poisson",nbasis=200)

The gssanova1 function is a computationally efficient reduced rank version of the

function gssanova, which fits generalized smoothing spline ANOVA models based

on the methods reported in Kim and Gu (2004). The model formula specifies a linear

predictor, with the following structure:

f1(time) + f2(o3) + f3(tmp) + f4(o3, tmp).

i.e. smooth main effect functions of the three covariates, plus a smooth interac-
tion of ozone and temperature. Notice that the size of approximating basis used by
gssanova1 has been adjusted here, using the nbasis argument: the default basis
size performs rather poorly in this example. Here is a summary of the fitted model.

> summary(ssm)

Call:

gssanova1(formula=death˜time+o3*tmp,family="poisson",

nbasis=200)

(Dispersion parameter for poisson family taken to be 1)

Working residuals (weighted):

Min 1Q Median 3Q Max

-0.34584431 -0.06654956 -0.00357026 0.06297024 0.48446762

Residual sum of squares: 5699.994

264 GAMS IN PRACTICE: MGCV

−2000 −1000 0 1000 2000

−
0

.1
5

−
0

.0
5

0
.0

5
0

.1
5

time

ti
m

e
 e

ff
e
c
t

o3

tm
p

o
3
*tm

p

4.6 4.8 5.0 5.2 5.4 5.6 5.8

−
4

−
2

0
2

4
6

linear predictor

re
s
id

u
a
ls

Figure 5.24 A GAM fitted to the Chicago air pollution data, using ssanova1 from package

gss. The upper panel is the estimated smooth of time while the lower left panel is a perspective

plot of the estimated ozone, temperature interaction. The lower right plot is a residual plot.

Deviance residuals:

Min 1Q Median 3Q Max

-4.5208983 -0.7249406 -0.0373412 0.6706598 5.5970047

Deviance: 5695.739

Null deviance: 9860.715

Penalty associated with the fit: 81.43146

gss does not provide a default plot function for such models, but it does provide
a predict method function, so that it is easy to create the required plots. The
following creates the upper panel in figure 5.24.

tp <- seq(min(time),max(time),length=500)

fvt <- predict(ssm,newdata=data.frame(time=tp,

o3=rep(mean(o3),500),tmp=rep(mean(tmp),500)),

include=list("time"))

plot(tp,fvt,type="l",xlab="time",ylab="time effect")

Notice the include argument to predict.ssanova1: only model terms on this

list are included in the predictions: so only the smooth function of time has been

evaluated and returned here‡.

‡ predict.ssanova1 allows the calculation of standard errors for predictions, but for this particular
model this failed (a very unusual occurance).

EXERCISES 265

The code for producing the perspective plot, at the lower left of figure 5.24, showing
the dependence on ozone and temperature, is as follows.

m <- 40

o3m <- seq(min(o3),max(o3),length=m)

tmpm <- seq(min(tmp),max(tmp),length=m)

tmpp <- rep(tmpm,rep(m,m))

o3p <- rep(o3m,m)

pd <- data.frame(time=rep(0,m*m),o3=o3p,tmp=tmpp)

fv <- predict(ssm,newdata=pd,include=list("o3","tmp","o3:tmp"))

library(mgcv)

ind <- exclude.too.far(o3p,tmpp,o3,tmp,dist=0.04)

fv[ind] <- 0

persp(o3m,tmpm,matrix(fv,m,m),phi=30,theta=-30,zlab="o3*tmp",

xlab="o3",ylab="tmp")

Notice the modified include argument to predict: we have to specify the smooth

main effects of ozone and temperature and the smooth interaction of the two, in order

to obtain the complete dependence on these two variables. The exclude.too.far

function, from package mgcv, is used to remove parts of the perspective plot that are

too distant from supporting data.

The residual plot for this model is shown in the lower right panel of figure 5.24 and

is rather encouraging.

5.7 Exercises

1. This question re-examines the hubble data from Chapter 1.

(a) Use gam to fit the model:

Vi = f(Di) + εi

to the hubble data, where f is a smooth function and the εi are i.i.d. N(0, σ2).
Does a straight line model appear to be most appropriate? How would you

interpret the best fit model?

(b) Examine appropriate residual plots and refit the model with more appropriate

distributional assumptions. How are your conclusions from part (a) modified?

2. This question is about using gam for univariate smoothing, the advantages of pe-

nalized regression and weighting a smooth model fit. The mcycle data in the

MASS package are a classic dataset in univariate smoothing, introduced in Silver-

man (1985). The data measure the acceleration of the rider’s head, against time,

in a simulated motorcycle crash.

(a) Plot the acceleration against time, and use gam to fit a univariate smooth to

the data, selecting the smoothing parameter by GCV (k of 30 to 40 is plenty

for this example). Plot the resulting smooth, with partial residuals, but without

standard errors.

(b) Use lm and poly to fit a polynomial to the data, with approximately the

same degrees of freedom as was estimated by gam. Use termplot to plot

266 GAMS IN PRACTICE: MGCV

the estimated polynomial and partial residuals. Note the substantially worse fit

achieved by the polynomial, relative to the penalized regression spline fit.

(c) It’s possible to overstate the importance of penalization in explaining the im-

provement of the penalized regression spline, relative to the the polynomial.

Use gam to refit an un-penalized thin plate regression spline to the data, with

basis dimension the same as that used for the polynomial, and again produce a

plot for comparison with the previous two results.

(d) Redo part (c) using an un- penalized cubic regression spline. You should find

a fairly clear ordering of the acceptability of the results for the 4 models tried

— what is it?

(e) Now plot the model residuals against time, and comment.

(f) To try and address the problems evident from the residual plot, try giving the

first 20 observations the same higher weight, α, while leaving the remaining

observations with weight one. Adjust α so that the variance of the first 20

residuals matches that of the remaining residuals. Recheck the residuals plots.

(g) Experiment with the order of penalty used in the smooth. Does increasing it

affect the model fit?

3. This question uses the mcycle data again, in order to explore the influence matrix

of a smoother, more fully.

(a) Consider a model for response data, y, which has the influence matrix, A,

mapping the response data to the fitted values, given a smoothing parameter,

λ. i.e. µ̂ = Ay. Show that if we fit the same model, with the same λ to the re-

sponse data Ij (the jth column of the identity matrix) then the resulting model

fitted values are the jth column of A.

(b) Using the result from part (a) evaluate the influence matrix, A, for the model

fitted in question 2(a).

(c) What value do all the rows of A sum to? Why?

(d) Any smoothing model that can be represented as µ̂ = Ay, simply replaces

each value yj by a weighted sum of neighbouring yi values. e.g. µ̂j =
∑

i Ajiyi,
where the Aji are the weights in the summation. It is instructive to examine

the weights in the summation, so plot the weights used to form µ̂65 against

mcycle$time. What you have plotted is the ‘equivalent kernel’ of the fitted

spline (at the 65th datum).

(e) Plot all the equivalent kernels, on the same plot. Why do their peak heights

vary?

(f) Now vary the smoothing parameter around the GCV selected value. What hap-

pens to the equivalent kernel for the 65th datum?

4. This question follows on from questions 2 and 3, and examines the auto-correlation

of residuals that results from smoothing.

(a) Based on the best model from question 2, produce a plot of the residual auto-

correlation at lag 1 (average correlation between each residual and the previous

residual, see ?acf) against the model effective degrees of freedom. Vary the

degrees of freedom between 2 and 40 by varying the sp argument to gam.

EXERCISES 267

(b) Why do you see positive autocorrelation at very low EDF, and what causes this

to reduce as the EDF increases?

(c) The explanation of why autocorrelation becomes negative is not quite so straight-

forward. Given the insight from question 3, that smoothers operate by forming

weighted averages of neighbouring data, the cause of the negative autocorrela-

tion can be understood by examining the simplest weighted average smoother:

the k-point running mean. The fitted values from such a smoother are a sim-

ple average of the k nearest neighbours of the point in question (including the

point itself). k is an odd integer.

i. Write out the form of a typical row, j, of the influence matrix, A, of the

simple running mean smoother. Assume that row j is not near the beginning

or end of A, and is therefore unaffected by edge-effects.

ii. It is easy to show that the residuals are given by ε̂ = (I−A)y and hence that

their covariance matrix is Vε̂ = (I−A)(I−A)σ2. Find expressions for the

elements of Vε̂ on its leading diagonal and on the sub- and super- diagonal,

in terms of k. Again, only consider rows/columns that are unaffected by

being near the edge of the data.

iii. What do your expressions suggest about residual auto-correlation as the

amount of smoothing is reduced?

5. This question is about modelling data with seasonality, and the need to be very

careful if trying to extrapolate with GAMs (or any statistical model). The data

frame co2s contains monthly measurements of CO2 at the south pole from Jan-

uary 1957 onwards. The columns are co2, the month of the year, month, and the

cumulative number of months since January 1957, c.month. There are missing

co2 observations in some months.

(a) Plot the CO2 observations against cumulative months.

(b) Fit the model, co2i = f(c.monthi) + εi where f is a smooth function and the

εi are i.i.d. with constant variance, using the gam function. Use the cr basis,

and a basis dimension of 300.

(c) Obtain the predicted CO2 for each month of the data plus 36 months after the

end of the data as well as associated standard errors. Produce a plot of the

predictions with twice standard error bands. Are the predictions in the last 36

months credible?

(d) Fit the model co2i = f1(c.monthi) + f2(monthi) + εi where f1 and f2 are

smooth functions, but f2 is cyclic (you will need to use the knots argument

of gam to ensure that f2 wraps appropriately: it’s important to make sure that

January is the same as January, not that December and January are the same!).

(e) Repeat the prediction and plotting in part (c) for the new model. Are the pre-

dictions more credible now? Explain the differences between the new results

and those from part (c).

6. The data frame ipo contains data from Lowry and Schwert (2002) on the num-

ber of ‘Intitial Public Offerings’ (IPOs) per month in the US financial markets

between 1960 and 2002. IPOs are the process by which companies go public:

268 GAMS IN PRACTICE: MGCV

ownership of the company is sold, in the form of shares, as a means of raising

capital. Interest focuses on exploring the effect that several variables may have on

numbers of IPOs per month, n.ipo. Of particular interest are the variables:

ir the average initial return from investing in an IPO. This is measured as per-

centage difference between the offer price of shares, and the share price after the

first day of trading in the shares: this is basically a reflection of by how much the

offer price undervalues the company. One might expect companies to pay careful

attention to this when deciding on IPO timing.

dp is the average percentage difference between the middle of the share price

range proposed when the IPO is first filed, and the final offer price. This might

be expected to carry information about direction of changes in market sentiment.

reg.t the average time (in days) it takes from filing to offer. Obviously fluctua-

tions in the length of time it takes to register has a direct impact on the number of

companies making it through to offering in any given month.

Find a suitable possible model for explaining the number of IPOs in terms of these

variables (as well as time, and time of year). Note that it is probably appropriate to

look at lagged versions of ir and dp, since the length of the registration process

precludes the number of IPOs in a month being driven by the initial returns in that

same month. In the interests of interpretability it is probably worth following the

advice of Kim and Gu (2004) and setting gamma=1.4 in the gam call. Look at

appropriate model checking plots, and interpret the results of your model fitting.

7. The data frame wine contains data on prices and growing characteristics of 25

high quality Bordeaux wines from 1952 to 1998 as reported in:

http://schwert.ssb.rochester.edu/a425/a425.htm.

price gives the average price as a percentage of 1961; s.temp is the average

temperature (Celsius) over the summer preceding harvest, while h.temp is the

average temperature at harvest; w.rain is the mm of rain in the preceding winter,

while h.rain give the mm of rain in the harvest month; year is obvious. Create

a GAM to model price in terms of the given predictors. Interpret the effects and

use the model to predict the missing prices.

8. The mgcv package allows users to add their own smoother classes for use with

gam. Two functions must be written in order to do this. The first is a smooth con-

structor function with the name smooth.construct.xy.smooth.spec,

where xy is the two letter code which will be used to identify the smoother class

when referring to it in a gam formula: something like s(...,bs="xy")would

be used to invoke this class. This function has access to the model covariates, any

supplied knots and the information on setting up the smooth supplied to s().

It must return an object containing model and penalty matrices, and some other

supplementary information. It must also assign that object a class: in the follow-

ing the class is assumed to be called xy.smooth, but you are free to choose.

The second function is called Predict.matrix.xy.smooth, and is used to

evaluate a ‘prediction matrix’ which will map the coefficients of the smooth to

evaluations of the smooth at a new set of data — this function is used for predic-

tion and plotting.

EXERCISES 269

Full specification for the two functions can be found in the help file ?p.spline,

which also includes example functions implementing P-spline smoothers for gam.

Further examples can be found in the functions for handling smooth types cr, cc,

tp, while the functions for smooths cs and ts show how slight variations on ex-

isting smoothers can be implemented. Once you have defined a (single penalty)

smoother it can automatically be used for tensor product smoothing (the con-

structor smooth.construct.tensor.smooth.spec sets up tensor prod-

uct smooths, and is somewhat from other constructors).

Ruppert et al. (2003) discuss the use of penalized regression splines based on

simple ridge penalties applied to the coefficients of a spline represented using the

‘truncated power basis’ for splines. For a spline of order m with k−m−1 ‘knots’,

x∗i , a spline f is represented as:

f(x) =

m
∑

i=0

xiβi+1 +

k−m−1
∑

i=1

βi+m+1|x− x∗i |m+

where the βi are unknown parameters and |z|+ = z if z is positive and zero

otherwise. (Note that a cubic spline has m = 3, in this question.) The suggested

penalty on the spline is simply

λ
k
∑

i=m+2

β2
i .

Using the P-spline functions as templates, implement this class of smoothers for

use with gam. Try it out on the first example given in the help file ?gam.

9. Sometimes rather unusual models can be expressed as GAMs. For example the

data frame blowfly contains counts (not samples!) of adults in a laboratory

population of blowflies, as reported in the classic ecological papers of Nicholson

(1954a,b). One possible model for these data (basically Ellner et al., 1997) is that

they are governed by the equation,

∆nt+1 = fb(nt−k)nt−k − fd(nt)nt + εt,

where nt is the population at time t, ∆nt+1 = nt+1 − nt, fb and fd are smooth

functions and the εt are i.i.d. errors with constant variance. The idea is that the

change in population is given by the difference between the birth and death rates

plus a random term. per capita birth rates and death rates are smooth functions of

populations, and the delayed effect of births on the adult population is because it

takes around 12 days to go from egg to adult.

(a) Plot the blowfly data against time.

(b) Fit the proposed model, using gam. You will need to use by variables to do

this. Comment on the estimates of fb and fd. It is worth making fb and fd
depend on log populations, rather than the populations themselves, to avoid

leverage problems.

(c) Using the beginning of the real data as a starting sequence, iterate your esti-

mated model forward in time, to the end of the data, and plot it. First do this

270 GAMS IN PRACTICE: MGCV

with the noise terms set to zero, and then try again with an error standard devi-

ation of up to 500 (much larger and the population tends to explode). Comment

on the results. You will need to artificially restrict the population to the range

seen in the real data, to avoid problems caused by extrapolating the model.

(d) Why is the approach used for these data unlikely to be widely applicable?

10. This question is about creating models for calibration of satellite remote sensed

data. The data frame chl contains direct ship based measurements of chlorophyll

concentrations in the top 5 metres of ocean water, chl, as well as the corre-

sponding satellite estimate chl.sw (actually a multi-year average measurement

for the location and time of year), along with ocean depth, bath, day of year,

jul.day and location lon, lat. The data are from the world ocean database

(see http://seawifs.gsfc.nasa.gov/SEAWIFS/ for information on

SeaWifs). chl and chl.sw do not correlate all that well with each other, proba-

bly because the reflective characteristics of water tend to change with time of year

and whether the water is near the coast (and hence full of particulate matter) or

open ocean. One way of improving the predictive power of the satellite observa-

tions might be to model the relationship between directly measured chlorophyll

and remote sensed chlorophyll, viewing the relationship as a smooth one that is

modified by other factors. Using ocean depth as an indicator for water type (near

shore vs. open) a model something like:

E(chli) = f1(chl.swi)f2(bathi)f3(jul.dayi)

might be a reasonable starting point.

(a) Plot the response data and predictors against each other using pairs. Notice

that some of predictors have very skewed distributions. It is worth trying some

simple power transformations in order to get a more even spread of predictors,

and reduce the chance of a few points being over influential: find appropriate

transformations.

(b) Using gam, try modelling the data using a model of the sort suggested (but with

predictors transformed as in part (a)). Make sure that you use an appropriate

family. It will probably help to increase the default basis dimensions used for

smoothing, somewhat (especially for jul.day). Use the "cr" basis to avoid

excessive computational cost.

(c) In this sort of modelling the aim is to improve on simply using the satellite

measurements as predictions of the direct measurements. Given the large num-

ber of data, it is easy to end up using rather complex models after quite alot

of examination of the data. It is therefore important to check that the model

are not overfitting. A sensible way of doing this is to randomly select, say,

90% of the data to be fitted by the model, and then to see how well the model

predicts the other 10% of data. Do this, using proportion deviance explained

as the measure of fit/prediction. Note that the family you used will contain a

function dev.resids, which you can use to find the deviance of and set of

predictions.

EXERCISES 271

11. Investigate the performance of the p-values reported by summary.gam and de-

scribed in section 4.8.5, by a simulation study based on the first example in the

help file ?gam.

(a) If a term should not be in the model, then its associated p-values should fol-

low a uniform distribution on (0,1). Check this by simulation. Compare the

performance of the p-values when smoothing parameters are estimated, and

when the term is left un-penalized (using s(...,fx=TRUE)). What can you

conclude?

(b) From the results of part (a) it is tempting to do all hypothesis testing without

penalization. Investigate whether this reduces the power of the tests (i.e. the

ability to detect terms that are significant.)

CHAPTER 6

Mixed models

A different approach to estimation and inference with GAMs is based on represent-

ing GAMs as mixed models with the smooth terms as random effects. To facilitate

the explanation of this approach, this chapter first introduces linear mixed models,

starting with simple mixed models for balanced experimental data and then moving

on to general linear mixed models. Note that Pinheiro and Bates (2000) offers fuller

coverage of linear mixed modelling in R, while Ruppert et al. (2003) includes a clear

explanation of smoothers as mixed model components.

In general, linear mixed models extend the linear model

y = Xβ + ε, ε ∼ N(0, Iσ2)

to

y = Xβ + Zb + ε, b ∼ N(0,ψ), ε ∼ N(0,Λσ2)

where random vector, b, contains random effects, with zero expected value and co-

variance matrix ψ, and Z is a model matrix for the random effects. Λ is a positive

definite matrix, of simple structure, which is typically used to model residual auto-

correlation: its elements are usually determined by some simple model, with few (or

no) unknown parameters. Often Λ is simply the identity matrix. This extension al-

lows the model a more complex stochastic structure than the ordinary linear model,

and, in particular, implies that the elements of the response vector, y, are no longer

independent.

6.1 Mixed models for balanced data

Some details of the general, likelihood based, approach to mixed modelling require

an understanding of linear mixed models for balanced data, so this section will briefly

cover this topic. First consider an example.

6.1.1 A motivating example

Plant leaves have tiny holes, called ‘stomata’ through which they take up air, but also

lose water. Most non-tropical plants photosynthesize in such a way that, on sunny

273

274 MIXED MODELS: GAMMS

low CO2 high CO2

1

2

3

4

5

6

Figure 6.1 Schematic diagram of the CO2 experiment.

days, they are limited by how much carbon dioxide they can obtain through these

stomata. The ‘problem’, for a plant, is that if its stomata are too small, it will not

be able to get enough carbon dioxide, and if they are too large it will lose too much

water on sunny days. Given the importance of this to such plants, it seems likely that

stomatal size will depend on the concentration of carbon dioxide in the atmosphere.

This may have climate change implications, if increasing the amount of CO2 in the

atmosphere causes plants to release less water: water vapour is the most important

green house gas.

Consider an experiment∗ in which tree seedlings are grown under two levels of car-

bon dioxide concentration, with 3 trees assigned to each treatment, and suppose that

after 6 months growth, stomatal area is measured at each of 4 random locations on

each plant (the sample sizes here are artificially small). Figure 6.1 shows the experi-

mental layout schematically.

The wrong approach: a fixed effects linear model

A model of these data should include a (2 level) factor for CO2 treatment, but also

a (6 level) factor for individual tree, since we have multiple measurements on each

tree and must expect some variability in stomatal area from tree to tree. So a suitable

linear model is

yi = αj + βk + εi if observation i is for CO2 level j, plant k,

where yi is the ith stomatal area measurement, αj is the population mean stomatal

area at CO2 level j, βk is the deviation of tree k from that mean and the εi are

i.i.d. N(0, σ2) random variables. Now if this is a fixed effects model, we have two

problems:

1. The αj’s and βk’s are completely confounded. Trees are ‘nested’ within treatment,

with 3 trees in one treatment and 3 in the other: any number you like could be

∗ One important part of the design of such an experiment would be to ensure that the trees are grown
under natural, variable light levels. At constant average light levels the plants are not CO2 limited.

MIXED MODELS FOR BALANCED DATA 275

added to α1 and simultaneously subtracted from β1, β2 and β3, without changing

the model predictions at all, and the same goes for α2 and the remaining βk’s.

2. We really want to learn about trees in general, but this is not possible with a model

in which there is a fixed effect for each particular tree: we cannot use the model

to predict what happens to a tree other than the 6 in the experiment.

The following R session illustrates problem 1. First compare models with and with-
out the tree factor (βk’s):

> m1 <- lm(area ˜ CO2 + tree,stomata)

> m0 <- lm(area ˜ CO2,stomata)

> anova(m0,m1)

Analysis of Variance Table

Model 1: area ˜ CO2

Model 2: area ˜ CO2 + tree

Res.Df RSS Df Sum of Sq F Pr(>F)

1 22 2.1348

2 18 0.8604 4 1.2744 6.6654 0.001788 **

Clearly, there is strong evidence for tree to tree differences, which means that with
this model we can not tell wether CO2 had an effect or not. To re-emphasize this
point, here is what happens if we attempt to test for a CO2 effect:

> m2 <- lm(area ˜ tree,stomata)

> anova(m2,m1)

Analysis of Variance Table

Model 1: area ˜ tree

Model 2: area ˜ CO2 + tree

Res.Df RSS Df Sum of Sq F Pr(>F)

1 18 0.8604

2 18 0.8604 0 -2.220e-16

The confounding of the CO2 and tree factors, means that the models being compared

here are really the same model: as a result, they give the same residual sum of squares

and have the same residual degrees of freedom — ‘comparing’ them tells us nothing

about the effect of CO2.

In many ways this problem comes about because our model is simply too flexible.

Individual tree effects are allowed to take any value whatsoever, which amounts to

saying that each individual tree is completely different to every other individual tree:

e.g. having results for 6 trees will tell us nothing whatsoever about a 7th. This is not

a sensible starting point for a model aimed at analyzing data like these. We really

expect trees of a particular species to behave in broadly similar ways, so that a rep-

resentative (preferably random) sample of trees from the wider population of such

trees, will allow us to make inferences about that wider population of trees. Treating

the individual trees, not as completely unique individuals, but as a random sample

from the target population of trees, will allow us to estimate the CO2 effect, and to

generalize beyond the six trees in the experiment.

276 MIXED MODELS: GAMMS

The right approach: a mixed effects model

The key to a establishing whether CO2 has an effect is to recognize that the CO2

factor and tree factors are different in kind. The CO2 effects are fixed characteristics

of the whole population of trees that we are trying to learn about. In contrast, the

tree effect will vary randomly from tree to tree in the population. We are not pri-

marily interested in the values of the tree effect for the particular trees used in the

experiment: if we had used a different 6 trees these effects would have taken differ-

ent values anyway. But we can not simply ignore the tree effect without inducing

dependence between the response observations (area), and hence violating the in-

dependence assumption of the linear model. In this circumstance, it makes sense to

model the distribution of tree effects across the population of trees, and to suppose

that the particular tree effects that occur in the experiment are just independent ob-

servations from this distribution. That is, the CO2 effect will be modelled as a fixed

effect, but the tree effect will be modelled as a random effect. Here is a model set up

in this way:

yi = αj + bk + εi if observation i is for CO2 level j plant k, (6.1)

where bk ∼ N(0, σ2
b), εi ∼ N(0, σ2) and all the bj and εi are mutually independent

random variables. Now testing for tree effects can proceed exactly as it did in the

fixed effects case, by comparing the least squares fits of models with and without the

tree effects. But this mixed effects model also lets us test CO2 effects, whether or not

there is evidence for a tree effect.

All that is required is to average the data at each level of the random effect, i.e. at

each tree. For balanced data, such as we have here, the key feature of a mixed effects

model is that this ‘averaging out’ of a random effect, automatically implies a simpli-

fied mixed effects model for the aggregated data: the random effect is absorbed into

the independent residual error term. It is easy to see that the model for the average

stomatal area per tree must be,

ȳk = αj + ek if plant k is for CO2 level j, (6.2)

where the ek are independent N(0, σ2
b + σ2/4) random variables.

Now it is a straightforward matter to test for a CO2 effect in R. First aggregate the
data for each tree:

> st <- aggregate(data.matrix(stomata),

+ by=list(tree=stomata$tree),mean)

> st$CO2 <- as.factor(st$CO2);st

tree area CO2 tree

1 1 1.623374 1 1

2 2 1.598643 1 2

3 3 1.162961 1 3

4 4 2.789238 2 4

5 5 2.903544 2 5

6 6 2.329761 2 6

MIXED MODELS FOR BALANCED DATA 277

and then fit the model implied by the aggregation.

> m3 <- lm(area˜CO2,st)

> anova(m3)

Analysis of Variance Table

Response: area

Df Sum Sq Mean Sq F value Pr(>F)

CO2 1 2.20531 2.20531 27.687 0.006247 **
Residuals 4 0.31861 0.07965

There is strong evidence for a CO2 effect here, and we would now proceed to ex-

amine the estimate of this fixed effect (e.g. using summary(m3)). Usually, with a

mixed model, the variances of the random effects are of more interest than the effects

themselves, so in this example σ2
b should be estimated.

Let RSSi stand for the residual sum of squares for model i. From the usual theory of

linear models we have that:

σ̂2 = RSS1/18

(RSS1 is the residual sum of squares from fitting (6.1)) and

̂σ2
b + σ2/4 = RSS3/4

(RSS3 is the residual sum of squares from fitting (6.2)). Both estimators are unbiased.

Hence, an unbiased estimator for σ2
b is

σ̂2
b = RSS3/4− RSS1/72

This can easily be evaluated in R.

> summary(m3)$sigmaˆ2 - summary(m1)$sigmaˆ2/4

[1] 0.06770177

6.1.2 General principles

To see how the ideas from the previous section generalize, consider data from a

designed experiment and an associated linear mixed model for the data, in which the

response variable depends only on factor variables and their interactions (which may

be random or fixed). Assume that the data are balanced with respect to the model,

meaning that for each factor or interaction in the model, the same number of data

have been collected at each of its levels. In this case:

• Aggregated data, obtained by averaging the response at each level of any factor or

interaction, will be described by a mixed model, derived from the original mixed

model by the averaging process.

• Models for different aggregations will enable inferences to be made about differ-

ent fixed and random factors, using standard methods for ordinary linear models.

Note that not all aggregations will be useful, and the random effects themselves

can not be ‘estimated’ in this way.

278 MIXED MODELS: GAMMS

..
..

..
..

..
..

..
..

.........

1 2 3 I

1
2
3
4

J

Units

S
a
m

p
le

s
..
..

.........

Figure 6.2 Schematic illustration of the balanced one-way experimental layout discussed in

section 6.1.3. Rectangles are experimental units and •’s indicate measurements.

• The variances of the random effects can be estimated from combinations of the

the usual residual variance estimates from models for different aggregations.

These principles are useful for two reasons. Firstly, the classic mixed model analy-

ses for designed experiments can be derived using them. Secondly, they provide a

straightforward explanation for the degrees of freedom of the reference distributions

used in mixed model hypothesis testing: the degrees of freedom are always those

that apply to the aggregated model appropriate for testing hypotheses about the ef-

fect concerned. For example, in the CO2 analysis, the hypothesis tests about the CO2

effect were conducted with reference to an F1,4 distribution, with these degrees of

freedom being those appropriate to the aggregated model, used for the test.

To illustrate and reinforce these ideas, two further simple examples of the analysis

of ‘standard designs’ will be covered, before returning to the general mixed models

that are of more direct relevance to GAMs.

6.1.3 A single random factor

Consider an experimental design in which you have J measurements from each of I
units, illustrated schematically in figure 6.2. Suppose that we are interested in estab-

lishing whether there are differences between the units, but are not really interested

in the individual unit effects: rather in quantifying how much variability can be as-

cribed to differences between units. This would suggest using a random effect term

for units.

A concrete example comes from animal breeding. For a breeding program to be

successful, we need to know that variability in the trait, which is to be modified by

the program, has a substantial enough genetic component that we can expect to alter it

by selective breeding. Consider a pig breeding experiment in which I pregnant sows

are fed a standard diet, and the fat content of J of each of their piglets is measured.

MIXED MODELS FOR BALANCED DATA 279

The interesting questions here are: is there evidence for litter to litter variability in fat

content (which would be consistent with genetic variation in this trait) and if so how

large is this component, in relation to the piglet to piglet variability within a litter?

Notice here that we are not interested in how piglet fat content varies from particular

sow to particular sow in the experiment, but rather in the variability between sows in

general. This suggests using a random effect for sow, in a model for such data.

So, a suitable model is

yij = α + bi + εij , (6.3)

where α is the fixed parameter for the population mean, i = 1 . . . I , j = 1 . . . J ,

bi ∼ N(0, σ2
b), εij ∼ N(0, σ2) and all the bi and εij terms are mutually independent.

The first question of interest is whether σ2
b > 0, i.e. whether there is evidence that

the factor variable contributes to the variance of the response. Formally we would

like to test H0 : σ2
b = 0 against H1 : σ2

b > 0. To do this, simply note that the null

hypothesis is exactly equivalent to H0 : bi = 0 ∀ i, since both formulations of H0

imply that the data follow,

yij = α + εij . (6.4)

Hence we can test the null hypothesis by using standard linear modelling methods to

compare (6.4) to (6.3) by using an F-ratio test (ANOVA).

Fitting (6.3) to the data will also yield the usual estimate of σ2,

σ̂2 = RSS1/(n− I),

where RSS1 is the residual sum of squares from fitting the model to data, n = IJ is

the number of data, and n− I is the residual degrees of freedom from this model fit.

So far the analysis with the mixed model has been identical to what would have

been done with a fixed effects model, but now consider estimating σ2
b . The ‘obvious’

method of just using the sample variance of the b̂i’s, ‘estimated’ by least squares, is

not to be recommended, as such estimators are biased. Instead we make use of the

model that results from averaging at each level of the factor:

ȳi· = α + bi +
1

J

J
∑

j=1

εij .

Now define a new set of I random variables,

ei = bi +
1

J

J
∑

j=1

εij .

The ei’s are clearly mutually independent, since their constituent random variables

are independent and no two ei’s share a constituent random variable. They are also

zero mean normal random variables, since each is a sum of zero mean normal random

variables. It is also clear that

var(ei) = σ2
b + σ2/J.

280 MIXED MODELS: GAMMS

Hence, the model for the aggregated data becomes,

ȳi· = α + ei, (6.5)

where the ei are i.i.d. N(0, σ2
b + σ2/J) random variables. If RSS2 is the residual

sum of squares when this model is fitted by least squares, then the residual variance

estimate gives

RSS2/(I − 1) = σ̂2
b + σ̂2/J.

Re-arrangement implies that

σ̂2
b = RSS2/(I − 1)− σ̂2/J

is an unbiased estimator of σ2
b .

Now consider a practical industrial example. An engineering test for longitudinal
stress in rails, involves measuring the time it takes certain ultrasonic waves to travel
along the rail. To be a useful test, engineers need to know the average travel time for
rails, and the variability to expect between rails, as well as the variability in the mea-
surement process. The Rail data frame available with R package nlme provides
3 measurements of travel time for each of 6 randomly chosen rails. This provides an
obvious application for model (6.3). First examine the data.

> library(nlme) # load nlme ‘library’, which contains data

> data(Rail) # load data

> Rail

Rail travel

1 1 55

2 1 53

3 1 54

4 2 26

5 2 37

. . .

. . .

17 6 85

18 6 83

Now fit model (6.3) as a fixed effects model, and use this model to test H0 : σ2
b = 0,

i.e. to test for evidence of differences between rails.

> m1 <- lm(travel ˜ Rail,Rail)

> anova(m1)

Analysis of Variance Table

Response: travel

Df Sum Sq Mean Sq F value Pr(>F)

Rail 5 9310.5 1862.1 115.18 1.033e-09 ***
Residuals 12 194.0 16.2

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

So there is strong evidence to reject the null hypothesis and accept rail to rail differ-
ences as real. As we saw theoretically, so far the analysis does not differ from that for

MIXED MODELS FOR BALANCED DATA 281

a fixed effects model, but to estimate σ2
b involves averaging at each level of the ran-

dom effect and fitting model (6.5) to the resulting averages. R function aggregate
will achieve the required averaging.

> rt <- # average over Rail effect

+ aggregate(data.matrix(Rail),by=list(Rail$Rail),mean)

> rt

Group.1 Rail travel

1 1 1 31.66667

2 2 2 50.00000

3 3 3 54.00000

4 4 4 82.66667

5 5 5 84.66667

6 6 6 96.00000

It is now possible to fit (6.5) and calculate σ̂b and σ̂, as described above:

> m0 <- lm(travel ˜ 1,rt) # fit model to aggregated data

> sigb <- (summary(m0)$sigmaˆ2-summary(m1)$sigmaˆ2/3)ˆ0.5

> # sigbˆ2 is variance component for rail

> sig <- summary(m1)$sigma # sigˆ2 is resid. var. component

> sigb

[1] 24.80547

> sig

[1] 4.020779

So, there is a fairly large amount of rail to rail variability, whereas the measurement
error is relatively small. In this case the model intercept, α, is confounded with the
random effects, bj , so α must be estimated from the fit of model (6.5).

> summary(m0)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 66.50 10.17 6.538 0.00125 **

Model checking proceeds by looking at residual plots, from the fits to both the orig-

inal and the aggregated data, since, approximately, these should look like samples of

i.i.d. normal random variables. However there would have to be a really grotesque

violation of the normality assumption for the bj’s, before you could hope to pick it

up from examination of 6 residuals.

6.1.4 A model with two factors

Now consider an experiment in which each observation is grouped according to two

factors. A schematic diagram of such a design is shown in figure 6.3. Suppose that

one factor is to be modelled as a fixed effect and one as a random effect. A typical

example is a randomized block design, for an agricultural field trial, testing different

fertilizer formulations. The response variable would be yield of the crop concerned,

282 MIXED MODELS: GAMMS

1

2

3

1 2 3 4

Factor A

F
a
c
to

r
B

Figure 6.3 A schematic diagram of a two factor design of the sort discussed in section 6.1.4,

with 3 levels of one factor, 4 levels of another and 5 observations for each combination of

factor levels. Note that this diagram is not intended to represent the actual physical layout of

any experiment.

assessed by harvesting at the end of the experiment. Because crop yields depend

on many uncontrolled soil related factors, it is usual to arrange the experiment in

blocks, within which it is hoped that the soil will be fairly homogeneous. Treatments

are randomly arranged within the blocks. For example, a field site might be split into

4 adjacent blocks, with 15 plots in each block, each plot being randomly assigned

one of five replicates of each of 3 fertilizer treatments. The idea is that differences

within blocks should be smaller than differences between blocks — i.e. variability in

conditions within a block will be smaller than variability across the whole field. A

suitable model for the data would include a block effect, to account for this block to

block variability, and since we are not in the least interested in the particular values

of the block effects, but view them as representing variability in environment with

location, it makes sense to treat them as random effects. The treatments, on the other

hand, would be modelled as fixed effects, since the values of the treatment effects are

fixed properties of the crop population in general. (If we repeated the experiment in

a different location, the particular values of the block effects would be unrelated to

the block effects in the first experiment, whereas the fertilizer effects should be very

similar.)

So, a model for the kth observation at level i of fixed effect A and level j of random

effect B is

yijk = µ + αi + bj + (αb)ij + εijk, (6.6)

where bj ∼ N(0, σ2
b), (αb)ij ∼ N(0, σ2

αb) and εijk ∼ N(0, σ2), and all these

random variables are mutually independent. µ is the overall population mean, the

αi’s are the I fixed effects for factor A, the bj’s are the J random effects for factor B,

and the (αb)ij’s are the IJ interaction terms for the interaction between the factors

(an interaction term involving a random effect must also be a random term).

Testing H0 : σ2
αb = 0 is logically equivalent to testing H0 : (αb)ij = 0 ∀ ij, in a

fixed effects framework. Hence this hypothesis can be tested by the usual ANOVA/F-

MIXED MODELS FOR BALANCED DATA 283

ratio test comparison of models, with and without the interaction terms. If RSS1 now

denotes the residual sum of squares from fitting (6.6) then:

σ̂2 = RSS1/(n− IJ).

In a purely fixed effects context it only makes sense to test for main effects if the

interaction terms are not significant, and can hence be treated as zero. In the mixed

effects case, because the interaction is a random effect, it is possible to make infer-

ences about the main effects whether or not the interaction terms are significant. This

can be done by averaging the K data at each level of the interaction. The averaging,

together with model (6.6), implies the following model for the averages:

ȳij· = µ + αi + bj + (αb)ij +
1

K

K
∑

k=1

εijk.

Defining

eij = (αb)ij +
1

K

K
∑

k=1

εijk,

it is clear that, since the eij’s are each sums of zero mean normal random variables,

they are also zero mean normal random variables. Also, since the (αb)ij’s and εijk’s

are mutually independent random variables, and no (αb)ij or εijk is a component of

more than one eij , the eij’s are mutually independent. Furthermore

var(eij) = σ2
αb + σ2/K.

Hence the simplified model is,

ȳij· = µ + αi + bj + eij , (6.7)

where the eij’s are i.i.d. N(0, σ2
αb + σ2/K) random variables. The null hypothesis,

H0 : αi = 0 ∀ i, is tested by comparing the least squares fits of (6.7) and ȳij· =
µ + bj + eij , in the usual way, by F-ratio testing. Similarly H0 : σ2

b = 0 is logically

equivalent to H0 : bj = 0 ∀ j, and is hence tested by ANOVA comparison of (6.7)

and ȳij· = µ + αi + eij . The residual sum of squares for model (6.7), RSS2, say, is

useful for unbiased estimation of the residual variance.

σ̂2
αb + σ̂2/K = RSS2/(IJ − I − J + 1)

and hence,

σ̂2
αb = RSS2/(IJ − I − J + 1)− σ̂2/K.

Averaging the data once more, over the levels of factor B, induces the model

ȳ·j· = µ +
1

I

I
∑

i=1

αi + bj +
1

I

I
∑

i=1

eij .

Defining µ′ = µ + 1
I

∑

i αi and ej = bj + 1
I

∑

i eij this model becomes

ȳ·j· = µ′ + ej , (6.8)

284 MIXED MODELS: GAMMS

A B C

4
5

5
0

5
5

6
0

6
5

7
0

Machine

s
c
o

re

6 2 4 1 3 5

4
5

5
0

5
5

6
0

6
5

7
0

Worker

s
c
o

re

Figure 6.4 Plots of the Machines data discussed in section 6.1.4.

where

ej ∼ N(0, σ2
b + σ2

αb/I + σ2/(IK)).

Hence, if RSS3 is the residual sum of squares of model (6.8), an unbiased estimator

of σ2
b is given by

σ̂2
b = RSS3/(J − 1)− σ̂2

αb/I − σ̂2/(IK).

Now consider a practical example. The Machines data frame from the nlme pack-
age, contains data from an industrial experiment comparing 3 different machine
types. The aim of the experiment was to determine which machine type resulted
in highest worker productivity. 6 workers were randomly selected to take part in the
trial, with each worker operating each machine 3 times (presumably after an appro-
priate period of training designed to eliminate any ‘learning effect’ from the data).
The following produces the plots shown in figure 6.4

> library(nlme) # only needed in R, not S-PLUS

> data(Machines) # only needed in R, not S-PLUS

> names(Machines)

[1] "Worker" "Machine" "score"

> attach(Machines) # make data available without ‘Machines$’

> par(mfrow=c(1,2)) # split graphics window into two

> plot(Machine,score)

> plot(Worker,score)

From the experimental aims, it is clear that fixed machine effects and random worker

effects are appropriate. We are interested in the effects of these particular machine

types, but are only interested in the worker effects in as much as they reflect vari-

ability between workers in the population of workers using this type of machine.

Put another way, if the experiment were repeated somewhere else (with different

workers) we would expect the estimates of the machine effects to be quite close to

the results obtained from the current experiment, while the individual worker effects

MIXED MODELS FOR BALANCED DATA 285

would be quite different (although with similar variability, we hope). So model (6.6)

is appropriate, with αi’s representing the fixed machine effects, bj’s representing the

random worker effects, and (αb)ij representing the worker machine interaction (i.e.

the fact that different workers may work better on different machines).

Fitting the full model, we can immediately test H0 : σ2
αb = 0.

> m1 <- lm(score ˜ Worker*Machine,Machines)

> m0 <- lm(score ˜ Worker + Machine,Machines)

> anova(m0,m1)

Analysis of Variance Table

Model 1: score ˜ Worker + Machine

Model 2: score ˜ Worker + Machine + Worker:Machine

Res.Df RSS Df Sum of Sq F Pr(>F)

1 46 459.82

2 36 33.29 10 426.53 46.13 < 2.2e-16 ***

We must accept H1 : σ2
αb 6= 0. There is very strong evidence for an interaction

between machine and worker. σ2 can now be estimated. . .

>summary(m1)$sigmaˆ2

[1] 0.9246296

To examine the main effects we can aggregate at each level of the interaction,

Mach <- aggregate(data.matrix(Machines),by=

list(Machines$Worker,Machines$Machine),mean)

Mach$Worker <- as.factor(Mach$Worker)

Mach$Machine <- as.factor(Mach$Machine)

and fit model (6.7) to the resulting data.

> m0 <- lm(score ˜ Worker + Machine,Mach)

> anova(m0)

Analysis of Variance Table

Response: score

Df Sum Sq Mean Sq F value Pr(>F)

Worker 5 413.96 82.79 5.8232 0.0089495 **
Machine 2 585.09 292.54 20.5761 0.0002855 ***
Residuals 10 142.18 14.22

The very low p-values again indicate that H0 : σ2
b = 0 and H0 : α1 = α2 = α3 = 0

should be rejected in favour of the obvious alternatives. There is strong evidence for

differences between machine types and for variability between workers. Going on

to examine the fixed effect estimates, using standard fixed effects methods, indicates

that machine 3 leads to substantially increased productivity.

Estimation of σ2
αb, the interaction variance, is straightforward.

> summary(m0)$sigmaˆ2 - summary(m1)$sigmaˆ2/3

[1] 13.90946

286 MIXED MODELS: GAMMS

Finally, aggregate once more and fit (6.8) in order to estimate the worker variance
component, σ2

b .

> M <- aggregate(data.matrix(Mach),by=list(Mach$Worker),mean)

> m00 <- lm(score ˜ 1,M)

> summary(m00)$sigmaˆ2 - (summary(m0)$sigmaˆ2)/3

[1] 22.96118

Residual plots should be checked for m1, m0 and m00.

6.1.5 Discussion

Although practical examples were presented in the preceding subsections, this theory

for mixed models of balanced experimental data is primarily of theoretical interest

for understanding the results used in classical mixed model ANOVA tables, and for

motivating the use of particular reference distributions when conducting hypothe-

sis tests for mixed models. In practice, the somewhat cumbersome analysis, based

on aggregating data, would usually be eschewed in favour of using specialist mixed

modelling software, such as that accessible via R function lme from the nlme li-

brary.

Before leaving the topic of balanced data altogether, it is worth noting the reason that

ordinary linear model theory can be used for inference with balanced models. The

first reason relates to the estimator of the residual variance, σ̂2. In ordinary linear

modelling, σ̂2 does not depend in any way on the values of the model parameters β

and is independent of β̂ (see section 1.3.3). This fact is not altered if some elements

of β are themselves random variables. Hence the usual estimator of σ̂2, based on

the least squares estimate of a linear model, remains valid, and unbiased, for a linear

mixed model.

The second reason relates to the estimators of the fixed effect parameters. In a fixed

effects setting, consider two subsetsβ1 and β2 of the parameter vector, β, with corre-

sponding model matrix columns X1 and X2. If X1 and X2 are orthogonal, meaning

that XT

1X2 = 0, then the least squares estimators β̂1 and β̂2 will be independent:

so inferences about β1 do not depend in any way on the value of β2. This situation

is unaltered if we now move to a mixed effects model, and suppose that the β2 is

actually a random vector. Hence, in a mixed model context, we can still use fixed

effects least squares methods for inferences about any fixed effects whose estimators

are independent of all the random effects in the model. So, when successively aggre-

gating data (and models), we can use least squares methods to make inferences about

a fixed effect as soon as the least squares estimator of that fixed effect becomes inde-

pendent of all random effects in the aggregated model. Generally such independence

only occurs for balanced data from designed experiments.

Generally, least squares methods are not useful for directly ‘estimating’ the values

of random effects. This is, in part, because identifiability constraints are generally

required in order to estimate effects, but imposing such constraints on random effects

fundamentally modifies the model by changing the random effect distributions.

LINEAR MIXED MODELS IN GENERAL 287

6.2 Linear mixed models in general

The general linear mixed model can conveniently be written as

y = Xβ + Zb + ε, b ∼ N(0,ψθ), ε ∼ N(0,Λσ2) (6.9)

where ψθ is a positive definite covariance matrix for the random effects b, and Z

is a matrix of fixed coefficients describing how the response variable, y, depends

on the random effects (it is a model matrix for the random effects). ψθ depends on

some parameters, θ, which will be the prime target of statistical inference about the

random effects (the exact nature of the dependence is model specific). Finally, Λ is a

positive definite matrix which usually has a simple structure depending on few or no

unknown parameters: it is sometimes used to model residual correlation, but is often

simply an identity matrix.

As a simple example of this general formulation, recall the rails example from section

6.1.3. The model for the jth response on the ith rail is

yij = α + bi + εij , bi ∼ N(0, σ2
b), εij ∼ N(0, σ2), (6.10)

with all bi’s and εij’s mutually independent. There were 6 rails with 3 measurements

on each. In the general linear mixed model form, the model is therefore
































































y11

y12

y13

y21

y22

y23

y31

y32

y33

y41

y42

y43

y51

y52

y53

y61

y62

y63

































































=

































































1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

































































[

α
]

+

































































1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1

















































































b1

b2

b3

b4

b5

b6

















+

































































ε11
ε12
ε13
ε21
ε22
ε23
ε31
ε32
ε33
ε41
ε42
ε43
ε51
ε52
ε53
ε61
ε62
ε63

































































where b ∼ N(0, I6σ
2
b) and ε ∼ N(0, I18σ

2). In this case the random effects param-

eter vector, θ, contains the single element σ2
b .

Returning to the general model, we could combine the residual vector and random

effects into a single, non-independent, variable-variance residual vector, e = Zb+ε.
It is obvious that e is a zero mean multivariate normal vector, and its covariance

288 MIXED MODELS: GAMMS

matrix must be ZψθZ
T + Iσ2. Hence (6.9) can be re-written as:

y = Xβ + e, e ∼ N(0,Σθσ
2) (6.11)

where Σθ = ZψθZ
T/σ2 + I, and the subscript, θ, emphasizes the dependence of

Σθ on the covariance parameter vector, θ (a dependence inherited from ψθ). So if θ

were known then we could estimate β using the methods of section 1.8.4.

6.2.1 Estimation of linear mixed models

In general, of course, θ must be estimated, and maximum likelihood estimation pro-

vides the basic framework for doing this. As first discussed in section 1.8.3 the like-

lihood of β, θ and σ2 will be

L(β,θ, σ2) =
1

√

(2πσ2)n|Σθ|
exp

[

−(y −Xβ)TΣ−1
θ (y −Xβ)/(2σ2)

]

(6.12)

and maximizing L w.r.t. β, θ and σ2 will provide β̂, θ̂ and σ̂2. Usually this max-

imization can be simplified by profiling the likelihood. The idea is that since we

already know, from section 1.8.4, exactly how to find the maximum likelihood esti-

mates of β and σ2, for a given θ, these estimators can be plugged into the likelihood

as implicit functions of θ, to yield the profile likelihood

Lp(θ) =
1

√

(2πσ̂2
θ)
n|Σθ|

exp
[

−(y −Xβ̂θ)
TΣ−1

θ (y −Xβ̂θ)/(2σ̂2
θ)
]

.

Here β̂θ is the maximum likelihood/least squares estimate of β for a given θ (calcu-

lated as in section 1.8.4) and σ̂2
θ is the corresponding m.l.e. of σ2. For purposes of

numerical maximization, Lp can then be treated as a function of θ alone: whatever

values maximize Lp w.r.t. θ will automatically maximize L, of course. Obviously,

the maximum likelihood estimates of the other parameters are simply β̂θ̂ and σ̂2
θ̂

.

Why is profiling useful? Usually we must resort to iterative numerical methods to

do the maximization with respect to θ, and while we could use the same iterative

methods with all the parameters it would be very computationally slow to do so,

relative to using the quick, one-step, methods available for obtaining β̂ and σ̂2, given

any particular values for θ.

The iterative method used to maximize Lp (or more usually lp = log Lp) is just

the multivariate version of Newton’s method, as described at the beginning of sec-

tion 4.6.1, for example. Starting with a parameter guess θ0, lp is approximated by

a quadratic sharing lp’s value and first and second derivatives at θ0. The value of θ

maximizing this approximating quadratic is used as the next estimate of θ, and the

process is iterated to convergence, at which point the maxima of the approximating

quadratic and lp will coincide.

LINEAR MIXED MODELS IN GENERAL 289

6.2.2 Directly maximizing a mixed model likelihood in R

Usually linear mixed modelling is performed using specialist routines, but it is worth

seeing how straightforward it is to estimate a simple linear mixed model. For exam-

ple, it is easy to write an R function to evaluate the log-likelihood of a linear mixed

model, and maximize that log likelihood w.r.t. the variance parameters of the model.

Consider the mixed model

y = Xβ + Zb + ε

where the εi are i.i.d. N(0, σ2) and the bi are i.i.d. N(0, σ2
b). For estimation purposes,

let us use the parameters γ1 = log(σb) and γ2 = log(σ). The following function will
evaluate the log likelihood, profiling out β.

ll <- function(gamma,X,Z,y)

{ sigma.b <- exp(gamma[1])

sigma <- exp(gamma[2])

n <- nrow(Z)

evaluate covariance matrix for y

V <- Z%*%t(Z)*sigma.bˆ2 + diag(n)*sigmaˆ2

L <- chol(V) # L’L=V

transform dependent linear model to indep.

y <- backsolve(L,y,transpose=TRUE)

X <- backsolve(L,X,transpose=TRUE)

b <- coef(lm(y˜X-1)) # estimate fixed effects

evaluate log likelihood

logLik <- -n/2*log(2*pi) - sum (log(diag(L))) -

sum((y-X%*%b)ˆ2)/2

attr(logLik,"fixed") <- b # allow retrieval of beta

logLik

}

Given variance parameters, the routine simply evaluates the covariance matrix of

the response data, finds its square root, and then uses the inverse transpose of this

square root to transform the dependent data linear modelling problem, to a linear

modelling problem for independent data, with constant variance: this allows β̂ (given

the variance parameters) to be found immediately. Then all that remains is to evaluate

the log likelihood.

The routine can easily be employed with a general purpose function optimizer, such
as optim in R. As an example, the parameters of model (6.10) from sections 6.1.3
and 6.2 can be estimates as follows.

> options(contrasts=c("contr.treatment","contr.treatment"))

> Z <- model.matrix(˜Rail$Rail-1)

> X <- matrix(1,18,1)

>

> rail.mod <- optim(c(0,0),ll,control=list(fnscale=-1),

X=X,Z=Z,y=Rail$travel)

>

> exp(rail.mod$par) # variance components

290 MIXED MODELS: GAMMS

[1] 22.629166 4.024072

> attr(ll(rail.mod$par,X,Z,Rail$travel),"fixed")

X

66.5 # fixed effect estimate

See ?optim for details about the operation of optim. Notice that these maximum

likelihood estimates are similar to those obtained in section 6.1.3, but that the vari-

ance component estimates are reduced, particularly that for σb. This is because max-

imum likelihood estimates are not always unbiased, and those for variance compo-

nents tend to be biased downwards. This issue will be revisited in the subsequent

sections.

6.2.3 Inference with linear mixed models

Except in the balanced data case, inference about the fixed effects and random effects

is approximate. For fixed effects it is usual to condition on the random effects, and

then use fixed effect methods for inference. Inference about the random effects is

based on likelihood theory, but in the case of hypothesis testing is ‘very approximate’.

Fixed effects

Since linear mixed models are fitted using maximum likelihood estimation, we could,

in principle, use generalized likelihood ratio tests for all model comparison/hypothesis

testing (see section 2.4). In practice, however, it is usually better to perform tests

about model fixed effects by conditioning on θ̂ (i.e. treating the θ estimates as if

they were known parameters). Then our model can usefully be treated as a fixed ef-

fects model for non-independent data with variable variance, of the form (6.11). This

fixed effects model, and the corresponding data, can be transformed to an equivalent

model for independent data, as described in section 1.8.4, at which point all the stan-

dard fixed effects theory, described in chapter 1, can be applied to drawing inferences

about the fixed effect parameters, β.

The reason that this conditional approach is usually preferable to an approach based

on asymptotic likelihood theory, is that the approximations involved in conditioning

on θ̂ are usually better than those involved in using the large sample likelihood results

at finite sample sizes. In fact, for balanced designs, where θ̂ is independent of the

other estimators, exact tests can be obtained by the conditional approach.

If the, θ̂ conditional, ordinary linear model approach, is used for inference about the

fixed effects, then there is an approximation that can improve it somewhat. When

F-ratio testing the significance of model terms, the denominator (lower) degrees of

freedom for the F distribution would at first sight seem to be given by the residual

degrees of freedom from the fit of the θ̂ conditional linear model. This is perfectly

valid as an approximation, and is fine in the large sample limit, but if an alternative

scheme is used, it is possible to partly compensate for the variability neglected by

LINEAR MIXED MODELS IN GENERAL 291

conditioning on θ̂. Specifically, it is better to use a method for approximating the

denominator degrees of freedom which, in the balanced data case, will coincide with

the denominator degrees of freedom that would have been used in the classical mixed

modelling approach, described in section 6.1. The justification for this is provided by

the fact that in the balanced data cases the REML (see section 6.2.5) and classical

estimators of the fixed effects and variance components coincide, and must therefore

follow the same distributions. But, of course, these distributions are known exactly in

the balanced case. There is more than one method for approximating the denominator

degrees of freedom which will meet the given criteria: see section 2.4 of Pinheiro and

Bates (2000) for the one used in R package nlme (which is covered in section 6.2.5).

Inference about the random effects

Inference about the random effects is more difficult, and does rely on large sample

likelihood results (see section 2.4). In particular, in the large sample limit
[

log σ̂

θ̂

]

∼̇N

([

log σ
θ

]

, I−1
σ,θ

)

(6.13)

where

Iσ,θ =

















∂2lp
∂(logσ)2

∂2lp
∂ logσ∂θ1

∂2lp
∂ logσ∂θ2

· ·
∂2lp

∂ logσ∂θ1

∂2lp
∂θ21

∂2lp
∂θ1∂θ2

· ·
∂2lp

∂ logσ∂θ2

∂2lp
∂θ1∂θ2

∂2lp
∂θ22

· ·
· · · · ·
· · · · ·

















— the empirical information matrix (i.e. it is evaluated at the parameter estimators).

The parameterization in terms of log σ tends to give better finite sample results than

using the un-logged variance. (6.13) allows approximate confidence intervals for the

variance parameters to be found.

Models differing in their random effects structure can be compared using generalized

likelihood ratio tests. Specifically, if l1 is the maximized log likelihood of a model

with p1 parameters, and l0 is the maximized log likelihood of a reduced version of

the model (i.e. one with a simplified random effects structure) with p0 parameters,

then if the reduced model is correct

2(l1 − l0)∼̇χ2
p1−p0 . (6.14)

Unfortunately there is a problem with this approach, which undermines the utility

of this large sample approximation. Namely, the null hypothesis specified by the

smaller model will typically restrict some of the variance parameters to the edge of

the feasible parameter space (i.e. the null hypotheses involve assumptions that some

variance components are zero). This violates the conditions under which the log of

the likelihood ratio will have the stated distribution.

In practice, the most sensible approach is to treat the p-values from the log-ratio

292 MIXED MODELS: GAMMS

tests as “very approximate”. If the p-value is very large, or very small, there is no

practical difficulty about interpreting it, but on the borderline of significance, more

care is needed. Pinheiro and Bates (2000) give a simulation approach which could be

used in such cases.

For practical work, some other points of view can also be useful:

1. The assumptions underpinning the asymptotic distribution of the log likelihood

ratio test statistic are not violated when using this result to find confidence inter-

vals for parameters (by test inversion). Hence, if you can sensibly define the size

of a variance component that would count as ‘practically negligible’, there is no

problem in assessing whether this value is inside or outside the confidence inter-

val for the parameters. Put another way: if you have confidence intervals for the

parameters, it is rather seldom that inability to exactly test a variance component,

for precise equality to zero, is likely to be a serious practical problem.

2. In a sense, a p-value is just a way of measuring whether a test statistic is ‘large’

or ‘small’. When testing whether variance components should be zero, there is

nothing fundamentally wrong with the log likelihood ratio test statistic itself: it

is calculating a p-value from it that is problematic. But suppose we obtained a

p-value of 0.7 using (6.14) to compare two mixed models. What this means is

that the log-likelihood ratio statistic is so small, that if it occurred in a test where

all the GLRT assumptions were met, the p-value would be 0.7: this small a log

likelihood ratio can not possibly provide any evidence for the alternative model,

even though the p-value itself is not right for our test. Similar arguments apply for

very high log-likelihood ratio statistics.

These points are not made in order to imply that there is no problem with conducting

hypothesis tests about variance components, but merely to point out that the situation

is very far from hopeless.

6.2.4 Predicting the random effects

Since the bi’s are random effects, we do not estimate them, as we would fixed param-

eters, but we may want to predict them. The usual way to do this is to evaluate the

expected value of b, given the data, y (obviously the unconditional expected value

is 0, by construction of the model). The most straightforward derivation of E(b|y)
uses the following general result from probability.

If x and z are random vectors, with the joint normal distribution
[

x

z

]

∼ N

([

µx
µz

]

,

[

Σxx Σxz

Σzx Σzz

])

(where Σxz = ΣT

zx), then the mean of x given z is

E(x|z) = µx + ΣxzΣ
−1
zz (z− µz) (6.15)

LINEAR MIXED MODELS IN GENERAL 293

and the covariance matrix of x given z is

Σx|z = Σxx −ΣxzΣ
−1
zzΣzx. (6.16)

Now consider the general linear mixed effects model. We have that
[

b

y

]

∼ N

([

0

Xβ

]

,

[

ψ Σby

Σyb Σθσ
2

])

where Σθ = ZψZT/σ2 + I (the subscript serving as a reminder of the dependence

of this matrix on the variance parameters θ). From (6.15) we have E(y|b) = Xβ +
Σybψ

−1(b − 0), while the original model structure gives E(y|b) = Xβ + Zb.

Hence

Zb = Σybψ
−1b,

and for this to hold for all b requires that

Σyb = Zψ.

Now we can use (6.15), once more, to obtain the mean for b given y,

E(b|y) = ψZTΣ−1
θ (y −Xβ)/σ2,

which is estimated by plugging the estimates of the parameters β, θ and σ2 into the

expression on the r.h.s. to obtain:

b̂ = ψ̂ZTΣ−1

θ̂
(y −Xβ̂)/σ̂2 (6.17)

(where ψ̂ follows from θ̂.)

For completeness, note that from the general result (6.16), the covariance matrix for

b given y is

Σb|y = ψ −ψZTΣ−1
θ Zψ/σ2,

and the distribution of b conditional on y is multivariate normal, of course.

Model ‘fitted values’ are predicted as

ŷ = ̂
E(y|b̂) = Xβ̂ + Zb̂,

and residuals as

ε̂ = y − ŷ.

Both are useful for model checking.

Note that, in practice, computation of b̂ often uses the results of section 6.2.6.

6.2.5 REML

To complete the theoretical treatment of mixed effects linear models, we should con-

sider one more issue. The maximum likelihood estimators of variance parameters,

tend to become quite badly biased, as the number of fixed parameters in a model in-

creases, particularly if sample sizes are not large. The problem is best seen in the con-

text of estimating a single variance component, by maximum likelihood estimation:

294 MIXED MODELS: GAMMS

consider estimating the residual variance of a fixed effect linear model by maximum

likelihood.

The likelihood of the parameters σ and β of the model y = Xβ+ ε, ε ∼ N(0, Iσ2)
is

L(β, σ) =
1

(2πσ2)n/2
exp

[−‖y −Xβ‖2
2σ2

]

,

so that the log-likelihood is

l(β, σ) = log(L(β, σ)) = −n

2
log(2π)− n log(σ)− ‖y −Xβ‖2/(2σ2).

Differentiating l w.r.t. σ, and setting the result to zero, yields the m.l.e.

∂l

∂σ
= −n

σ
+ ‖y −Xβ‖2/σ3 = 0⇒ σ̂2 = ‖y −Xβ̂‖2/n.

Comparing this with the unbiased estimator (1.8), derived in section 1.3.3, it is clear

that

E(σ̂2) =
n− p

n
σ2,

where p is the dimension of β, and n the dimension of y. Unfortunately this ten-

dency to underestimate variance components, increasingly badly as p increases, is a

general feature of maximum likelihood estimators (from normal distribution derived

likelihoods). The difficulty is that the estimators take no account of the degrees of

freedom ‘lost’ by estimating the fixed effects.

One way of alleviating this problem is to estimate the variance components, not

by maximizing the likelihood, but by maximizing the so called ‘REML’ criterion,

where ‘REML’ sometimes stands for ‘REstricted Maximum Likelihood’ (Patterson

and Thompson, 1971). The REML approach measures the fit of the variance param-

eters, not from the joint likelihood of the variance parameters and β, but rather by

the (scaled) average of the likelihood over all the possible values of β. This average

likelihood is the REML criterion, and it is maximised to find the variance parame-

ters. Since this approach does not ‘lose’ any degrees of freedom by estimating fixed

effects, it tends not to suffer the under-estimation problems of maximum likelihood

variance component estimation. Formally, if L(β,θ, σ2) is the likelihood for the pa-

rameters of a mixed effects linear model, then

LR(θ, σ2) =

∫

L(β,θ, σ2)dβ

is the equivalent REML criterion.

The numerical methods for maximizing LR are similar to those used for maximizing

the profiled likelihood under maximum likelihood estimation. Once variance com-

ponents have been estimated by REML, we can condition on the estimated θ and σ2,

write the mixed model as (6.11), and use the methods of sections 1.8.4 to estimate

the fixed parameters β. Given estimates of all the model parameters, inference about

the fixed effects proceeds as for the MLE case.

Some care is needed for inference about the random effects. It turns out that LR be-

haves much like the likelihood, L, from the point of view of inference. Specifically,

LINEAR MIXED MODELS IN GENERAL 295

the expressions for the asymptotic distributions θ̂ and σ̂2 are similar to the expres-

sions under MLE, but with the log of LR, lR, replacing the log-likelihood, l. The one

major difference is that generalized likelihood ratio testing, with lR replacing l, only

works if the models being compared have identical fixed effects structures.

The explicit form of the REML criterion

At first sight, the integral in the REML criterion, LR, appears a little intimidating, but

in fact it is straightforward to obtain LR in closed form. Purely for notational com-

pactness define Σ = Σθσ
2. Then plugging the likelihood (6.12) into the expression

for LR, we have

LR(θ, σ2) =
1

√

(2π)n|Σ|

∫

exp
[

−(y −Xβ)TΣ−1(y −Xβ)/2
]

dβ

The quadratic form can be expanded as

(y −Xβ)TΣ−1(y −Xβ) = (y −Xβ̂ + Xβ̂ −Xβ)TΣ−1(y −Xβ̂ + Xβ̂ −Xβ)

= (y −Xβ̂)TΣ−1(y−Xβ̂)

+ (Xβ̂ −Xβ)TΣ−1(Xβ̂ −Xβ)

+ 2(y −Xβ̂)TΣ−1(Xβ̂ −Xβ)

= (y −Xβ̂)TΣ−1(y−Xβ̂) + (β̂ − β)TXTΣ−1X(β̂ − β)

where the least squares estimate of β, given Σ, is β̂ = (XTΣ−1X)−1XTΣ−1y, and

the final equality results from the fact that

(y −Xβ̂)TΣ−1(Xβ̂ −Xβ) = (y −X(XTΣ−1X)−1XTΣ−1y)TΣ−1X(β̂ − β)

= (yTΣ−1X− yTΣ−1X)(β̂ − β) = 0.

Hence

LR(θ, σ2) =
e−(y−Xβ̂)TΣ−1(y−Xβ̂)/2

√

(2π)n|Σ|

∫

e−(β−β̂)TXTΣ−1X(β−β̂)/2dβ

Now if the expression inside the integral were divided by (2π)p/2|XTΣ−1X|−1/2

(where p is the dimension of β), then it would be immediately recognizable as a

multivariate normal p.d.f., and the integral would be 1. Hence the integral is in fact

(2π)p/2|XTΣ−1X|−1/2, and

LR(θ, σ2) =
e−(y−Xβ̂)TΣ−1(y−Xβ̂)/2

√

(2π)n|Σ|

√

(2π)p

|XTΣ−1X| .

Clearly the log REML criterion is therefore

lR =
p− n

2
log(2π)− 1

2
log |Σ|− 1

2
log |XTΣ−1X|− 1

2
(y−Xβ̂)TΣ−1(y−Xβ̂).

296 MIXED MODELS: GAMMS

6.2.6 A link with penalized regression

If ψ and σ2 are known, or we condition on their estimates, then it turns out that

the predicted values of the random effects, b̂, (see equation 6.17) and the maximum

likelihood estimates of the parameters, β̂, are the values minimizing the penalized

sum of squares
1

σ2
‖y −Xβ − Zb‖2 + bTψ−1

θ b.

This was proven by Harville (1976, 1977), but a much simpler proof follows Pinheiro

and Bates (2000).

Start by writing down, fβ,θ,σ2(y,b) = fβ,σ2(y|b)fθ(b), the joint p.d.f. of y and b,

from which the marginal p.d.f. of y can be obtained by integration w.r.t. b:

fβ,θ,σ2(y,b) =
1

(2πσ2)n/2
e−

1
2σ2 ‖y−Xβ−Zb‖2 1

(2π)q/2|ψθ|1/2
e−

1
2bTψ−1

θ
b.

Finding any matrix square root, B, such that BTB = ψ−1
θ σ2, we then have

fβ,θ,σ2(y,b) =
|B|

(2πσ2)
n+q

2

e−
1

2σ2 ‖ỹ−X̃β−Z̃b‖2 ,

where ỹ =

[

y

0

]

, X̃ =

[

X

0

]

and Z̃ =

[

Z

B

]

. Now let b̂β = (Z̃TZ̃)−1Z̃T(ỹ −

X̃β), be the value of b maximizing fβ,θ,σ2(y,b) for any given β. Since f(b|y) =

f(y,b)/f(y) it is clear that f(b|y) is also maximized by b̂β. i.e. these are the

‘posterior modes’ of the random effects. Furthermore, since f(b|y) is a normal dis-

tribution, its mean is the same as its mode, so b̂β = E(b|y), assuming β is known.

Now turning to the fixed effects, β, it helps to re-write the norm in the joint p.d.f. as

‖ỹ − X̃β − Z̃b‖2 = ‖ỹ − X̃β − Z̃b̂β + Z̃b̂β − Z̃b̂‖2

= ‖ỹ − X̃β − Z̃b̂β‖2 + ‖Z̃(b̂β − b)‖2

The final equality above is geometrically obvious, since the residual vector, from

regressing ỹ − X̃β on the columns of Z̃, is clearly orthogonal to Z̃, but in any case
it follows from:

(b̂β − b)TZ̃T[ỹ − X̃β − Z̃b̂β] = (b̂β − b)TZ̃T[ỹ − X̃β − Z̃(Z̃TZ̃)−1Z̃T(ỹ − X̃β)]

= (b̂β − b)T[Z̃Tỹ − Z̃TX̃β − Z̃T(ỹ− X̃β)]

= (b̂β − b)T0 = 0.

Hence the joint p.d.f. of y and b can be written

fβ,θ,σ2(y,b) =
abs|B|

(2πσ2)
n+q

2

e−
1

2σ2 ‖ỹ−X̃β−Z̃b̂β‖2− 1
2σ2 (b−b̂β)TZ̃TZ̃(b−b̂β).

Now the marginal p.d.f. of y is fβ,θ,σ2(y) =
∫

fβ,θ,σ2(y,b)db and from the prop-

erties of a normal p.d.f. we have that

|Z̃TZ̃|1/2
(2πσ2)q/2

∫

e−
1

2σ2 (b−b̂β)TZ̃TZ̃(b−b̂β)db = 1

LINEAR MIXED MODELS IN R 297

so that

fβ,θ,σ2(y) =
abs|B|

(2πσ2)
n
2 |Z̃TZ̃| 12

e−
1

2σ2 ‖ỹ−X̃β−Z̃b̂β‖2

which, when treated as a function of the parameters, is the likelihood of β,θ and σ2.

Clearly the likelihood is maximized by the values of β minimizing

‖ỹ − X̃β − Z̃b̂β‖2,

and hence the posterior modes b̂ and the maximum likelihood estimates β̂ are the

values of b and β simultaneously minimizing

‖ỹ − X̃β − Z̃b‖2 =
1

σ2
‖y −Xβ − Zb‖2 + bTψ−1

θ b.

6.3 Linear mixed models in R

There are several packages for linear mixed modelling in R, of which nlme and

latterly lme4 are particularly noteworthy. In this section I will concentrate on the

nlme package: actually this package provides much more than just linear mixed

models, but the rest is beyond the scope of this book (see Pinheiro and Bates, 2000).

The main model fitting function of interest is called lme. A call to the lme function

is similar to a call to lm, except that an extra argument specifying the random effects

structure must also be supplied to the model. By default, lme works with a slightly

more restricted structure for linear mixed models than the very general form (6.9),

given in section 6.2. Specifically lme assumes that your data are grouped according

to the levels of some factor(s), and that the same random effects structure is required

for each group, with random effects independent between groups. Assuming just one

level of grouping, the model for the data in the ith group is then

yi = Xiβ + Zibi + εi, bi ∼ N(0,ψ), εi ∼ N(0,Λσ2). (6.18)

Careful attention should be paid to which terms have an i subscript, and hence de-

pend on group, and which are common to all groups. Note, in particular, that β, ψ

and Λ, the unknowns for the fixed effects and random effects respectively, are as-

sumed to be the same for all groups, as is the residual variance, σ2. This form of

mixed effects model, which was introduced by Laird and Ware (1982), is a sensible

default, because it is very common in practical applications, and because model fit-

ting for this structure is more efficient than for the general form (6.9). However it is

important to realize that (6.18) is only a special form of (6.9). Indeed if we treat all

the data as belonging to a single group then (6.18) is exactly (6.9), with no special

structure imposed.

Because of lme’s default behaviour you need to provide two parts to the random
effects specification: a part that specifies Zi and a part specifying the grouping fac-
tor(s). By default, ψ is assumed to be a general positive definite matrix to be esti-
mated, but it is also possible to specify that it should have a more restricted form

298 MIXED MODELS: GAMMS

(for example Iσ2
b). The simplest way to specify the random effects structure is with

a one sided formula. For example ˜x|g would set up Zi according to the ˜x part
of the formula while the levels of the factor variable, g, would be used to split the
data into groups (i.e. the levels of g are effectively the group index, i). The random
effects formula is one sided, because there is no choice about the response variable
— it must be whatever was specified in the fixed effects formula. So an example call
to lme looks something like this:

> lme(y˜x+z,dat,˜x|g)

where the response is y, the fixed effects depend on x and z, the random effects
depend only on x, the data are grouped according to factor g, and all data are in data
frame dat. An alternative way of specifying the same model is:

> lme(y˜x+z,dat,list(g=˜x))

and in fact this latter form is the one we will eventually use with GAMMs.

As an example, model (6.10), from sections 6.1.3 and 6.2, can easily be fitted.

> library(nlme)

> lme(travel˜1,Rail,list(Rail=˜1))

Linear mixed-effects model fit by REML

Data: Rail

Log-restricted-likelihood: -61.0885

Fixed: travel ˜ 1

(Intercept)

66.5

Random effects:

Formula: ˜1 | Rail

(Intercept) Residual

StdDev: 24.80547 4.020779

Number of Observations: 18

Number of Groups: 6

Note that, because REML has been used for estimation, the results are identical to

those obtained in section 6.1.3. If we had used MLE, by specifying method="ML"

in the call to lme, then the results would have corresponded to those obtained in

section 6.2.2.

6.3.1 Tree Growth: an example using lme

The nlme package includes a data frame called Loblolly, containing growth data

on Loblolly pine trees. height, in feet (data are from the US), and age, in years, are

recorded for 14 individual trees. A factor variable Seed, with 14 levels, indicates the

identity of individual trees. Interest lies in characterizing the, population level, mean

growth trajectory of the Loblolly Pines, but it is clear that we would expect a good

LINEAR MIXED MODELS IN R 299

Fitted values (ft)

S
ta

n
d

a
rd

iz
e

d
 r

e
s
id

u
a

ls

10 20 30 40 50 60

−2

−1

0

1

Fitted values (ft)

S
ta

n
d

a
rd

iz
e

d
 r

e
s
id

u
a

ls

10 20 30 40 50 60

−1

0

1

2

Fitted values (ft)

S
ta

n
d

a
rd

iz
e

d
 r

e
s
id

u
a

ls

10 20 30 40 50 60

−2

−1

0

1

2

Figure 6.5 Default residual plots for models m0, m1 and m2 (left to right). There is a clear

trend in the mean of the residuals for the first two models, which model m2 eliminates.

deal of tree to tree variation, and probably also some degree of autocorrelation in the

random component of height.

From examination of data plots, the following initial model might be appropriate for

the ith measurement on the jth tree:

heightji = β0 + β1ageji + β2age
2
ji + β3age

3
ji

+ b0 + bj1ageji + bj2age
2
ji + bj3age

3
ji + εji

where the εji are zero mean normal random variables, with correlation given by

ρ(εji, εjk) = φ|ageji−agejk|, and φ is an unknown parameter: this εji model is a

continuous autoregressive model of order 1. The ε terms are independent between

different trees. As usual β denotes the fixed effects and bj ∼ N(0,ψ) denotes the

random effects.

This model is easily estimated using lme as follows.

m0 <- lme(height ˜ age + I(ageˆ2) + I(ageˆ3),Loblolly,

random=list(Seed=˜age+I(ageˆ2)+I(ageˆ3)),

correlation=corCAR1(form=˜age|Seed))

The random argument specifies that there should be a different cubic term for

each tree, while the correlation argument specifies a continuous autoregres-

sive model for the residuals for each tree. form=˜age|Seed indicates that age is

the continuous variable determining the degree of correlation between residuals, and

that the correlation applies within measurements made on one tree, but not between

measurements made on different trees.

The command

plot(m0)

produces the default residual plot shown in the left panel of figure 6.5. The plot
shows a clear trend in the mean of the residuals: the model seems to underestimate
the first group of measurements, made at age 5, and then overestimate the next group,
made at age 10, before somewhat underestimating the next group, which correspond
to year 15. This suggests a need for a more flexible model, so fourth and fifth order
polynomials were also tried.

300 MIXED MODELS: GAMMS

Residuals (ft)

S
e
e
d

−0.5 0.0 0.5

329
327
325
307
331
311
315
321
319
301
323
309
303
305

Residuals (ft)

Q
u
a
n
ti
le

s
 o

f
s
ta

n
d
a
rd

 n
o
rm

a
l

−0.5 0.0 0.5

−2

−1

0

1

2

Figure 6.6 Further residual plots for model m2. The left panel shows boxplots of the residuals

for each tree, while the right plot is a normal QQ plot for the residuals.

m1 <- lme(height ˜ age+I(ageˆ2)+I(ageˆ3)+I(ageˆ4),Loblolly,

list(Seed=˜age+I(ageˆ2)+I(ageˆ3)),cor=corCAR1(form=˜age|Seed))

plot(m1)

m2<-lme(height˜age+I(ageˆ2)+I(ageˆ3)+I(ageˆ4)+I(ageˆ5),Loblolly

,list(Seed=˜age+I(ageˆ2)+I(ageˆ3)),cor=corCAR1(form=˜age|Seed))

plot(m2)

The resulting residuals plots are shown in the middle and right panels of figure 6.5.
m1 does lead to a slight improvement, but only m2 is really satisfactory. Further
model checking plots can now be produced for m2.

plot(m2,Seed˜resid(.))

qqnorm(m2,˜resid(.))

qqnorm(m2,˜ranef(.))

The resulting plots are shown in figures 6.6 and 6.7, and suggest that the model is

reasonable.

An obvious question is whether the elaborate model structure, with random cubic
and autocorrelated within tree errors, is really required. First try dropping the auto-
correlation component.

> m3<-lme(height˜age+I(ageˆ2)+I(ageˆ3)+I(ageˆ4)+I(ageˆ5),

+ Loblolly,list(Seed=˜age+I(ageˆ2)+I(ageˆ3)))

> anova(m3,m2)

Model df AIC BIC logLik Test L.Ratio p-value

m3 1 17 262.347 302.411 -114.173

m2 2 18 258.145 300.566 -111.072 1 vs 2 6.20156 0.0128

The anova command is actually conducting a generalized likelihood ratio test here,

which rejects m3 in favour of m2. anova also reports the AIC for the models, which

also suggest that m2 is preferable. There seems to be reasonable evidence for auto-

correlation in the within tree residuals.

LINEAR MIXED MODELS IN R 301

Random effects

Q
u

a
n

ti
le

s
 o

f
s
ta

n
d

a
rd

 n
o

rm
a

l

−0.2 −0.1 0.0 0.1

−1

0

1

(Intercept)

−0.2 −0.1 0.0 0.1 0.2 0.3

age

−0.002 −0.001 0.000 0.001 0.002

I(age^2)

−3 e−04 −1 e−04 1 e−04

−1

0

1

I(age^3)

Figure 6.7 Normal QQ plots for the predicted random effects from model m2. The plots should

look like random scatters around straight lines, if the normality assumptions for the random

effects are reasonable: only b̂1 shows any suggestion of any problem, but it is not enough to

cause serious concern.

Perhaps the random effects model could be simplified, by dropping the dependence
of tree specific growth on the cube of age.

> m4<-lme(height˜age+I(ageˆ2)+I(ageˆ3)+I(ageˆ4)+I(ageˆ5),

+ Loblolly,list(Seed=˜age+I(ageˆ2)),

+ correlation=corCAR1(form=˜age|Seed))

>

> anova(m4,m2)

Model df AIC BIC logLik Test L.Ratio p-value

m4 1 14 247.981 280.975 -109.991

m2 2 18 258.145 300.566 -111.073 1 vs 2 2.16397 0.7056

Recall that the GLRT test is somewhat problematic here, since m4 is m2 with some

variance parameters set to the edge of the feasible parameter space: however a like-

lihood ratio statistic so small that it would have given rise to a p-value of .7, for a

standard GLRT, is certainly not going to provide any grounds for rejecting m4 in

favour of m2 in the current case. Comparison of AIC scores (which could also have

been obtained using AIC(m4,m2)) suggests quite emphatically that m4 is the better

model.

302 MIXED MODELS: GAMMS

Age of tree (yr)

H
e

ig
h

t
o

f
tr

e
e

 (
ft

)

5 10 15 20 25

10
20
30
40
50
60

329 327

5 10 15 20 25

325 307

5 10 15 20 25

331

311 315 321 319

10
20
30
40
50
60

301

10
20
30
40
50
60

323

5 10 15 20 25

309 303

5 10 15 20 25

305

Figure 6.8 Model predictions from m4 at the individual tree level, overlaid on individual

Loblolly pine growth data. The panel titles are the value of the Seed individual tree iden-

tifier.

Going further, and dropping the quadratic term from the random effects model is
firmly rejected by approximate GRLT testing, and by comparison of AIC scores.
Another obvious model to try is one with a less general random effects structure.
The models so far have allowed the random effects for any tree to be correlated in a
very general way: it has simply been assumed that bj ∼ N(0,ψ), where the only re-
striction on the matrix ψ, is that it should be positive definite. Perhaps a less flexible
model would suffice: for example, ψ might be a diagonal matrix (with positive diag-
onal elements). Such a structure (and indeed many other structures) can be specified
in the call to lme.

> m6 <- lme(height ˜ age+I(ageˆ2)+I(ageˆ3)+I(ageˆ4)+I(ageˆ5),

+ Loblolly,list(Seed=pdDiag(˜age+I(ageˆ2))),

+ correlation=corCAR1(form=˜age|Seed))

> anova(m6,m4)

Model df AIC BIC logLik Test L.Ratio p-value

m6 1 11 264.740 290.664 -121.370

m4 2 14 247.981 280.975 -109.991 1 vs 2 22.7591 <.0001

Again, both approximate GLRT test and AIC comparison favours the more general
model m4. The nlme package includes very many useful utilities for examining and
plotting grouped data, one of which is the following, for plotting data and model
predictions together on a unit by unit basis. See figure 6.8.

plot(augPred(m4))

GENERALIZED LINEAR MIXED MODELS 303

6.3.2 Several levels of nesting

It is quite common, when using mixed models, to have several levels of nesting
present in a model. For example, in the machine type and worker productivity model
(6.6), of section 6.1.4, there are random effects for worker and each worker-machine
combination. lme can accommodate such structures as follows

> lme(score˜Machine,Machines,list(Worker=˜1,Machine=˜1))

Linear mixed-effects model fit by REML

Data: Machines

Log-restricted-likelihood: -107.8438

Fixed: score ˜ Machine

(Intercept) MachineB MachineC

52.355556 7.966667 13.916667

Random effects:

Formula: ˜1 | Worker

(Intercept)

StdDev: 4.781049

Formula: ˜1 | Machine %in% Worker

(Intercept) Residual

StdDev: 3.729536 0.9615768

Number of Observations: 54

Number of Groups:

Worker Machine %in% Worker

6 18

Notice how any grouping factor in the random effects list is assumed to be nested

within the grouping factors to its left.

This section can only hope to scratch the surface of what is possible with lme: for a

much fuller account, see Pinheiro and Bates (2000).

6.4 Generalized linear mixed models

Generalized linear mixed models follow from linear mixed models, as GLMs fol-

lowed from linear models. Let µb ≡ E(y|b). Then a GLMM has the form

g(µbi) = Xiβ+Zib, b ∼ N(0,ψ) and yi|b ∼ exponential family distribution

where g is a monotonic link function, and the covariance matrix, ψ, of the random

effects, is usually parameterized in terms of a parameter vector θ. The yi|b are inde-

pendent.

The likelihood for a GLMM is most helpfully obtained by considering the joint dis-

tribution of the response and the random effects:

fβ,θ,φ(y,b) ∝ |ψ| exp

(

log f(y|b)− 1

2
bTψ−1b

)

304 MIXED MODELS: GAMMS

where f(y|b) is the joint distribution of the response conditional on the random

effects, which is of the form given in chapter 2 for the GLM. Now the marginal

distribution of y, and hence the likelihood, is obtained by integrating out the random

effects. i.e.

L(β, θ, φ) ∝ |ψ|
∫

exp

(

l(β,b)− 1

2
bTψ−1b

)

db

where l(β,b) is f(y|b) with the observed y plugged in, considered as a function of

β and b, i.e. the log likelihood of the GLM that would result from treating both β and

b as fixed effects (see section 2.1.2). Unfortunately, this integral generally has to be

either approximated, or evaluated numerically, with the latter becoming increasingly

impractical as the dimension of b increases.

A simple approximation is obtained by replacing lp = l(β,b) − bTψ−1b/2 by

a quadratic approximation about estimated values, β̂ and b̂, that maximize lp. The

resulting integral can be evaluated, and the approximation is usually reasonable, since

the integrand decays rapidly to zero away from b̂: this is a Laplace approximation to

the integral.

Following this prescription, l(β,b) can be approximated by Sm = −‖W1/2(z −
Xβ − Zb)‖2/(2φ), to within an additive constant, where

zi = g′(µbi)(yi − µbi) + Xiβ + Zib

and

Wii =
1

V (µbi)g
′(µbi)

2
.

In these expressions, µbi = g−1(Xiβ + Zib), φ is the ‘scale parameter’ of the expo-

nential family distribution concerned and V is the function characterizing the mean

variance relationship for the distribution.

From the results of section 2.1.3, it follows that Sm has the same first derivatives

w.r.t. β and b as l(β,b), and its Hessian matrix with respect to these parameters is

the expected hessian of l(β,b), so that the quadratic approximation is justified by

the law of large numbers. Hence the approximate likelihood of the model is given by

L∗(β, θ, φ) ∝ |ψ|
∫

exp

(−1

2φ
‖W1/2(z−Xβ − Zb)‖2 − 1

2
bTψ−1b

)

db,

which is simply the likelihood of a weighted linear mixed model.

Hence L may be maximized approximately by iteratively maximizing approximate

likelihoods, L∗, using the methods already discussed for linear mixed models. Notice

that the results are only approximately maximum likelihood estimates now, even

as the sample size tends to infinity. The approximation depends on how good the

Laplace approximation to the integral is, and also on the Wii’s varying only slowly

with β and b.

So the recipe for fitting a GLMM is:

GLMMS WITH R 305

1. Obtain initial estimates β̂[1] and b̂[1], for example by setting b̂[1] = 0 and fitting

the resulting GLM to get β̂[1].

2. Set k = 1 and iterate the following steps until convergence.

3. Given β̂[k] and b̂[k], find z and W as defined above.

4. Estimate the linear mixed effects model

z = Xβ + Zb + ε, b ∼ N(0,ψ), ε ∼ N(0,W−1φ)

to obtain estimates β̂[k+1], θ̂[k+1] and φ̂[k+1], and predictions b̂[k+1]. Increment

k by one.

This approximate method is usually known as Penalized Quasi Likelihood (PQL), as

a result of the way in which Breslow and Clayton (1993) sought to justify it theoret-

ically.

While approximate parameter estimator distributions for GLMMs are easily ob-

tained, it is not clear whether general likelihood based inferential procedures can

be made to work with the approximate likelihood used in estimation, or some variant

of it. The development of theory for AIC or GLRT like statistics for these models is

still an open research topic, but it is tempting to use the AIC of the working linear

mixed model at convergence as a rough guide for model selection.

6.5 GLMMs with R

GLMMs as described in section 6.4 are implemented by routine glmmPQL supplied

with Venables and Ripley’s MASS library. glmmPQL calls are much like lme calls

except that it is now necessary to supply a family. Also glmmPQL will accept

offsets, unlike lme (at time of writing). As you would expect from section 6.4,

glmmPQL operates by iteratively calling lme, and it returns the fitted lme model

object for the working model at convergence.

To illustrate its use, consider again the Sole egg modelling undertaken in section

2.3.4. One issue with the data used in that exercise, is that, at any sampling station,

the counts for the four different egg stages are all taken from the same net sample. It

is therefore very likely that there is a ‘sampling station’ component to the variance

of the data, which effectively means that the data for different stages at a station can

not be treated as independent. This effect can easily be checked by examining the

residuals from the final model in section 2.3.4 for evidence of a ‘station effect’.

> rf <- residuals(b4,type="d") # extract deviance residuals

> ## create an identifier for each sampling station

> solr$station <- factor(with(solr,paste(-la,-lo,-t,sep="")))

>

> ## is there evidence of a station effect in the residuals?

> solr$rf <-rf

> rm <- lme(rf˜1,solr,random=˜1|station)

> rm0 <- lm(rf˜1,solr)

306 MIXED MODELS: GAMMS

> anova(rm,rm0)

Model df AIC BIC logLik Test L.Ratio p-value

rm 1 3 3319.57 3335.66 -1656.79

rm0 2 2 3582.79 3593.52 -1789.40 1 vs 2 265.220 <.0001

The above output compares two models for the residuals. rm0 models them as i.i.d.

normal random variables, with some unknown mean, while rm models the residuals

as having a mean depending on a station dependent random effect. The GLRT test,

performed by the anova function, clearly rejects the i.i.d. model, suggesting that

there is a real sampling station effect.

One way of modelling the sampling station effect would be to suppose that the mean

of each stage count, at each station, is multiplied by a log-normal random variable,

exp(bi), where bi ∼ N(0, σ2
b) is a station specific random effect. The resulting

GLMM can be estimated as follows.

> b <- glmmPQL(eggs ˜ offset(off)+lo+la+t+I(lo*la)+I(loˆ2)+

I(laˆ2)+I(tˆ2)+I(lo*t)+I(la*t)+I(loˆ3)+I(laˆ3)+

I(tˆ3)+I(lo*la*t)+I(loˆ2*la)+I(lo*laˆ2)+I(loˆ2*t)+

I(laˆ2*t)+I(la*tˆ2)+I(lo*tˆ2) # end log spawn

+ a +I(a*t)+I(tˆ2*a),random=list(station=˜1),

family=quasi(link=log,variance="mu"),data=solr)

> summary(b)

[edited]

Value Std.Error DF t-value p-value

(Intercept) 0.025506 0.1813214 1178 0.140665 0.8882

lo 4.643018 0.5179583 374 8.964077 0.0000

la -4.878785 0.6313637 374 -7.727375 0.0000

t -2.101037 0.3091183 374 -6.796872 0.0000

I(lo * la) 4.221226 0.8216752 374 5.137342 0.0000

I(loˆ2) -4.895147 0.4573844 374 -10.702480 0.0000

I(laˆ2) -5.187457 0.7565845 374 -6.856415 0.0000

I(tˆ2) -1.469416 0.1961255 374 -7.492220 0.0000

I(lo * t) -0.246946 0.3646591 374 -0.677197 0.4987

I(la * t) 1.578309 0.4576964 374 3.448376 0.0006

I(loˆ3) -3.956541 0.6598010 374 -5.996567 0.0000

I(laˆ3) 5.524490 1.5175128 374 3.640490 0.0003

I(tˆ3) 0.633109 0.1359888 374 4.655593 0.0000

I(lo * la * t) -0.040474 0.8643458 374 -0.046826 0.9627

I(loˆ2 * la) 6.700204 1.0944157 374 6.122175 0.0000

I(lo * laˆ2) -11.539919 1.5509149 374 -7.440717 0.0000

I(loˆ2 * t) 0.517189 0.6008440 374 0.860770 0.3899

I(laˆ2 * t) 4.879013 1.0328137 374 4.724001 0.0000

I(la * tˆ2) -0.548011 0.4099971 374 -1.336623 0.1822

I(lo * tˆ2) 0.822542 0.3576837 374 2.299635 0.0220

a -0.121312 0.0125463 1178 -9.669168 0.0000

I(a * t) 0.092769 0.0270447 1178 3.430218 0.0006

I(tˆ2 * a) -0.187472 0.0362511 1178 -5.171498 0.0000

[edited]

GLMMS WITH R 307

0 1 2 3 4

0
1

2
3

4

fitted

e
g

g
s

0 1 2 3 4

−
2

0
2

4

fitted

s
c
a
le

d
 r

e
s
id

u
a
ls

0 1 2 3 4

−
5

0
5

fitted

ra
w

 r
e
s
id

u
a
ls

Figure 6.9 Model checking plots for the GLMM of the Bristol Channel Sole data. The left

panel shows the relationship between raw data and fitted values. The middle panel plots Pear-

son residuals against fitted values: there are a handful of rather high residuals at low predicted

densities. The right panel shows raw residuals against fitted values, with reference lines il-

lustrating where 1 residual standard deviation and 2 residual standard deviations from the

residual mean should lie, for each fitted value.

The summary† suggests dropping I(lo * la * t). Refitting without this term,

and then examining the significance of terms in the resulting model, suggests drop-

ping I(lo*t). Continuing in the same way we drop I(loˆ2*t) and I(la*tˆ2),

before all terms register as significant at the 5% level. Note that GLR testing is not

possible with models estimated in this way — we do not actually know the value

of the maximized likelihood for the model. Supposing that the final fitted model is

again called b4, some residual plots can now be produced.

fv <- exp(fitted(b)+solr$off) # note need to add offset

resid <- solr$egg-fv # raw residuals

plot(fvˆ.5,solr$eggsˆ.5)

abline(0,1,lwd=2)

plot(fvˆ.5,resid/fvˆ.5)

plot(fvˆ.5,resid)

fl<-sort(fvˆ.5)

add 1 s.d. and 2 s.d. reference lines

lines(fl,fl);lines(fl,-fl);lines(fl,2*fl,lty=2)

lines(fl,-2*fl,lty=2)

The resulting plots are shown in figure 6.9. Comparison of these plots with the equiv-
alent plots in section 2.3.4 highlights how substantial the station effect appears to be,
and this is emphazized by exaimining the estimated size effect.

> intervals(b4,which="var-cov")

Approximate 95% confidence intervals

† summary(b) could have been replaced by anova(b,type="marginal"), the latter being the
more useful function for models with factors.

308 MIXED MODELS: GAMMS

day 50

−6.5 −6.0 −5.5 −5.0 −4.5 −4.0

5
0

.0
5

0
.5

5
1

.0
5

1
.5

day 68

−6.5 −6.0 −5.5 −5.0 −4.5 −4.0

5
0

.0
5

0
.5

5
1

.0
5

1
.5

day 86

−6.5 −6.0 −5.5 −5.0 −4.5 −4.0

5
0

.0
5

0
.5

5
1

.0
5

1
.5

day 104

−6.5 −6.0 −5.5 −5.0 −4.5 −4.0

5
0

.0
5

0
.5

5
1

.0
5

1
.5

day 122

−6.5 −6.0 −5.5 −5.0 −4.5 −4.0

5
0

.0
5

0
.5

5
1

.0
5

1
.5

day 140

−6.5 −6.0 −5.5 −5.0 −4.5 −4.0

5
0

.0
5

0
.5

5
1

.0
5

1
.5

Figure 6.10 Predicted spawning distributions of Bristol Channel Sole according to the GLMM

of section 6.5. Notice how the spawning distributions are less peaked than those shown in

figure 2.16.

Random Effects:

Level: station

lower est. upper

sd((Intercept)) 0.8398715 0.9599066 1.097097

Within-group standard error:

lower est. upper

0.5565463 0.5777919 0.5998485

Clearly the station effect is somewhat larger than the variability in the working resid-

uals.

Figure 6.10 shows the predicted spawning rates over the Bristol Channel, at various

times of year. Note that, relative to the predictions made using GLMs, in section

2.3.4, the peak spawning densities are slightly lower for this model, however, given

the clear evidence for a station effect, the current model is probably better supported

than the GLM.

GENERALIZED ADDITIVE MIXED MODELS 309

6.6 Generalized Additive Mixed Models

A GAMM is just a GLMM in which part of the linear predictor is specified in terms

of smooth functions of covariates (see e.g. Lin and Zhang, 1999). For example, an

Additive Mixed Model has a structure something like

yi = Xiβ + f1(x1i) + f2(x2i, x3i) + . . . + Zib + εi (6.19)

where yi is a univariate response; θ is a vector of fixed parameters; Xi is a row of

a fixed effects model matrix; the fjs are smooth functions of covariates xk; Zi is a

row of a random effects model matrix; b ∼ N(0,ψ) is a vector of random effects

coefficients, with unknown positive definite covariance matrix ψ; ε ∼ N(0,Λ) is a

residual error vector, with ith element εi, and covariance matrix Λ, which is usually

assumed to have some simple pattern.

The generalization from GLMs to GAMs required the development of theory for

penalized regression, in order to avoid overfitting, but GLMM methods require no

adjustment in order to cope with GAMMs: it is possible to write any of the penal-

ized regression smoothers considered in this book, as components of a mixed model,

while treating their smoothing parameters as variance component parameters, to be

estimated by Likelihood, REML or PQL methods.

For example, (6.19) can be turned into a regular linear mixed model, by making use of

the Bayesian model of smoothing covered in section 4.8.1, and in particular the ma-

terial in section 4.8.2. Each smooth is treated as having a fixed effects (unpenalized)

component, which can be absorbed into Xiβ, and a random effects effects (penal-

ized) component, which can be absorbed into Zib. The random effects component

of the smooth also has an associated Gaussian distributional assumption, based on

the wiggliness measure for the smooth, and having an unknown variance parameter,

which is related to the smoothing parameter, as in section 4.8.2.

6.6.1 Smooths as mixed model components

This section explains, in more detail, how any quadratically penalized smooth can

be used as a conventional component of a linear mixed model. The material here is

closely related to that in section 4.8.2. Smooths with a single smoothing parameter

are considered first, followed by the tensor product smooths of section 4.1.8.

First consider a smooth with a single smoothing parameter. For example,

f(x) =
J
∑

j=1

bj(x)βj

with associated wiggliness measure, J(f) = βTSβ, where S is a positive semi-

definite matrix of coefficients (only semi-definite because most penalties treat some

space of functions as having zero wiggliness). Given (yi,xi) data, it is straightfor-

ward to produce a model matrix Xf , where Xf
ij = bj(xi), so that Xfβ is a vector

of f(xi) values.

310 MIXED MODELS: GAMMS

Following section 4.8.1, the mixed model approach to estimating f , starts from the

premise that, by stating that f is smooth, we really believe that it is more probable

that f is smooth than that f is wiggly. This can be formalized by specifying a prior for

the wiggliness of the model which is ∝ exp(−λβTSβ/2), say. Such a prior implies

an improper Gaussian prior for β itself, but an improper distribution for β does not

fit easily into standard linear mixed modelling approaches (e.g. Pinheiro and Bates,

2000). Some re-parameterization is therefore needed, so that the new parameters di-

vide into a set with a proper distribution, to be treated as random effects, and a set (of

size M) with an improper uniform distribution, which can be treated as fixed effects.

In general, this can be achieved by using the eigen-decomposition, S = UDUT,

where U is an orthogonal matrix, the columns of which are the eigenvectors of S,

and D is a diagonal matrix, with the corresponding eigenvalues arranged in descend-

ing order on the leading diagonal. Let D+ denote the smallest sub-matrix of D con-

taining all the strictly positive eigenvalues. Now re-parameterize, so that the new

coefficient vector can be written (bT

R,βT

F)T ≡ UTβ, where βF is of dimension M .

It is clear that βTSβ = bT

RD+bR, and that the coefficients βF are unpenalized. Par-

titioning the eigenvector matrix so that U ≡ [UR : UF], where UF has M columns,

and defining XF ≡ XfUF , while XR = XfUR, the mixed model representation

of the smooth, in terms of a linear predictor and random effects distribution is now

XFβF + XRbR where bR ∼ N(0,D−1
+ /λ)

where λ and βF are fixed parameters to be estimated. For convenient estimation with

standard software, a further re-parameterization is useful. Defining b =
√

D−1
+ bR

and Z = XR

√

D+, then the mixed model representation of the term, evaluated at

its covariate values is

XFβF + Zb where b ∼ N(0, I/λ)

Including such a term in a standard GLMM is simply a matter of appending the

columns of XF to the fixed effect model matrix, appending the columns of Z to

the random effects model matrix, and specifying the given random effects covari-

ance matrix. Obviously, the multiple smooth terms of an additive model are easily

combined (although centering constraints are then required, which can most conve-

niently be absorbed into the basis before any of this section’s re-parameterizations as

in section 4.2).

When representing tensor product smooths (see section 4.1.8), which have multiple

smoothing parameters, the only change is that the positive semi-definite pseudoin-

verse of the covariance matrix for β is now of the form
∑d
i=1 λiS̃i, where S̃i is

defined in section 4.1.8. The degree of rank deficiency of this matrix, MT , is readily

shown to be given by the product of the dimensions of the null spaces of the marginal

penalty matrices, Si, (provided that λi > 0 ∀ i). Again re-parameterization is needed,

this time by forming,
d
∑

i=1

S̃i = UDUT

where U is an orthogonal matrix of eigenvectors, and D is a diagonal matrix of

GENERALIZED ADDITIVE MIXED MODELS 311

eigenvalues, with MT zero elements at the end of the leading diagonal. Notice that

there are no λi parameters in the sum that is decomposed: this is reasonable since the

null space of the penalty does not depend on these parameters (however given finite

precision arithmetic it might be necessary to scale the S̃i matrices in some cases).

It is not now possible to achieve the sort of simple representation of a term that

was obtained with a single penalty, so the re-parameterization is actually simpler.

Partitioning the eigenvector matrix so that U ≡ [UR : UF] where UF has MT

columns, it is necessary to define XF ≡ XfUF , Z ≡ XfUR and Si = UT

RS̃iUR.

A mixed model representation of the tensor product term (i.e. the linear predictor and

random effects distribution) is now

XFβF + Zb where b ∼ N

(

0,
(

∑

λiSi
)−1

)

,

where the λi and βF parameters have to be estimated. This covariance matrix struc-

ture is not a form that is available in standard software, but it turns out to be possible

to implement, at least in the nlme software of Pinheiro and Bates (2000): R package

mgcv provides an appropriate ‘pdMat’ class for lme called ‘pdTens’. Given such

a class, incorporation of one or more tensor product terms into a (generalized) linear

mixed model is straightforward.

6.6.2 Inference with GAMMs

When using GAMMs, it is often desirable to be able to calculate confidence/credible

intervals, exactly as for a GAM. In particular, credible regions for the smooth compo-

nents are required. To do this, let β now contain all the fixed effects and the random

effects for the smooth terms (only), and let X̄ be the corresponding model matrix.

Let Z̄ be the random effects model matrix excluding the columns relating to smooths,

and let ψ̄ be the corresponding random effects covariance matrix. Now define a co-

variance matrix

V = Z̄ψ̄Z̄T + Λσ2.

Essentially the Bayesian approach of section 4.8.1 implies that

β ∼ N(β̂, (X̄TV−1X̄ + S)−1)

where S =
∑

λi/σ2Si. Similarly the leading diagonal of

F = (X̄TV−1X̄ + S)−1(X̄TV−1X̄)

gives the effective degrees of freedom for each element of β.

In the AMM case, the usual inferential framework for linear mixed models applies

exactly, and can be used for model comparison: for example AIC based model selec-

tion is straightforward. In the GAMM case, model comparison is not so straightfor-

ward, since these issues are still somewhat open for GLMMs.

312 MIXED MODELS: GAMMS

6.7 GAMMs with R

R library mgcv includes a gamm function which fits GAMMs based on linear mixed

models, as implemented in the nlme library. The function is basically a wrapper

function for lme, or the GLMM fitting routine glmmPQL, from the MASS library:

its purpose is to perform the re-parameterizations detailed in section 6.6.1, call lme,

or glmmPQL, to actually estimate the model, and then unscramble the returned object

so that (i) it looks like a gam object and (ii) the posterior covariance matrix of section

6.6.2 is readily calculated. This section presents some examples of its use.

It should be noted that gamm seems to work lme quite hard, and it is not difficult to

specify models which cause numerical problems in estimation, or failure of the PQL

iterations in the generalized case. This seems to be particularly true when explicitly

modelling correlation in the data, probably because of the inherent difficulty in sep-

arating correlation from trend, when the trend model is itself rather complex. Note

also that changes in the underlying optimization methods may lead to slight differ-

ences between the results obtained with different mgcv and nlme versions: these

should not be statistically important.

6.7.1 A GAMM for sole eggs

To start with, let us revisit the Bristol Channel Sole data, one more time. The GLMs

and GLMMs considered in sections 2.3.4 and 6.5 were rather unwieldy, as a result of

the large number of polynomial terms involved in specifying the models. If nothing

else, a GAMM offers a way of reducing the clumsiness of the model formulation.

It is straightforward to write the basic sole model (2.13), plus random effect, as a

GAMM,

log(µi) = log(∆i) + f1(loi, lai, ti)− f2(ti)āi + bk,

if observation i is from sampling station k. Here f1 and f2 are smooth functions,

bk ∼ N(0, σ2
b) are the i.i.d. random effects for station, and, as before, µi is the

expected value for the ith observation, while ∆i and āi are the the width and average

age of the corresponding egg class. lo, la and t are location and time variables.

Notice that, for simplicity, the mortality rate term, f2 is assumed to depend only on

time: this assumption could be relaxed, but it is unlikely that the data really contain

enough information to say much about spatial variation in mortality rate.

We need to decide what sort of smooths to use to represent f1 and f2. For f1, a tensor

product of a thin plate regression spline of lo and la, with a thin plate regression

spline (or any other spline) of t, is probably appropriate: isototropy is a reasonable

assumption for spatial dependence (although in that case we should really use a more

isotropic co-ordinate system than longitude and latitude), but not for the space-time

interaction. Anything could be used for f2 and the default TPRS suffices.

The multiplication of f2 by āi is achieved using the by variable mechanism. We need

to bear in mind that f2 will be subject to centering constraints, when estimated as part

of a GAM: this means that we will need to add an extra āi term into the right-hand

GAMMS WITH R 313

0 1 2 3 4

0
1

2
3

4

fitted

e
g

g
s

0 1 2 3 4

−
2

−
1

0
1

2
3

fitted

s
c
a
le

d
 r

e
s
id

u
a
ls

0 1 2 3 4

−
5

0
5

fitted

ra
w

 r
e
s
id

u
a
ls

Figure 6.11 Model checking plots for the GAMM of the Bristol Channel Sole data. The left

panel shows the relationship between raw data and fitted values. The middle panel plots Pear-

son residuals against fitted values: there are a handful of rather high residuals at low predicted

densities. The right panel shows raw residuals against fitted values, with reference lines il-

lustrating where 1 residual standard deviation and 2 residual standard deviations from the

residual mean should lie, for each fitted value. Note how plots are very similar to those from

figure 6.9, although the residuals at low densities are less extreme in the current plots.

side of the model, to allow for the fact that such a constraint is not required in the

current case.

Here is the call used to fit the model. Note that, unlike lme gamm will only accept
the list form of the random argument.

bam<-gamm(eggs ˜ te(lo,la,t,bs=c("tp","tp"),k=c(25,5),d=c(2,1))

+a+s(t,k=5,by=a)+offset(off),family=quasi(link=log,

variance="mu"),data=solr,random=list(station=˜1))

gamm returns a list with two components: lme is the object returned by lme or
glmmPQL; gam is an incomplete object of class gam, which can be treated like a
gam object for prediction, plotting etc. For example,

> bam$gam

Family: quasi

Link function: log

Formula:

eggs ˜ offset(off) + te(lo, la, t, bs = c("tp", "tp"), k = c(25,

5), d = c(2, 1)) + a + s(t, k = 5, by = a)

Estimated degrees of freedom:

49.96516 3.409959 total = 55.37512.

Residual plots for the model are shown in figure 6.11, these have been calculated

from bam$lme so that the predictions of the random effects are included in fitted

314 MIXED MODELS: GAMMS

day 50

−6.5 −6.0 −5.5 −5.0 −4.5 −4.0

5
0

.0
5

0
.5

5
1

.0
5

1
.5

day 68

−6.5 −6.0 −5.5 −5.0 −4.5 −4.0

5
0

.0
5

0
.5

5
1

.0
5

1
.5

day 86

−6.5 −6.0 −5.5 −5.0 −4.5 −4.0

5
0

.0
5

0
.5

5
1

.0
5

1
.5

day 104

−6.5 −6.0 −5.5 −5.0 −4.5 −4.0

5
0

.0
5

0
.5

5
1

.0
5

1
.5

day 122

−6.5 −6.0 −5.5 −5.0 −4.5 −4.0

5
0

.0
5

0
.5

5
1

.0
5

1
.5

day 140

−6.5 −6.0 −5.5 −5.0 −4.5 −4.0

5
0

.0
5

0
.5

5
1

.0
5

1
.5

Figure 6.12 Predicted spawning rates at various times, using the GAMM of Bristol Channel

sole eggs, presented in section 6.7. Note how plots are peakier and of rather different shape to

those from figure 6.10.

values and excluded from residuals, as is appropriate for model checking. The plots

show a slight improvement relative to the equivalent plots from section 6.5. Figure

6.12 shows why some improvement in residual plots may be possible: the greater

flexibility of the GAM allows more complicated shapes for the distributions, and

allows a higher (and sharper) peak abundance.

6.7.2 The Temperature in Cairo

Figure 6.13 shows daily temperature in Cairo over nearly a decade. The data are from

http://www.engr.udayton.edu/weather/citylistWorld.htm. It is

clear that the data contain a good deal of noisy short term auto-correlation, and a

strong yearly cycle. Much less clear, given these other sources of variation, is whether

there is evidence for any increase in average mean temperature over the period: this

is the sort of uncertainty that allows climate change skeptics to get away with it. A

reasonable model of these data might therefore be

tempi = f1(time.of.yeari) + f2(timei) + ei (6.20)

where ei = φei−1 + εi, the εi being i.i.d. N(0, σ2) random variables. f1 should

be a ‘cyclic’ function, with value and first 2 derivatives matching at the year ends.

GAMMS WITH R 315

0 1000 2000 3000

5
0

6
0

7
0

8
0

9
0

time (days)

te
m

p
e

ra
tu

re
 (

F
)

Figure 6.13 Daily air temperature in Cairo, Egypt from January 1st 1995.

The basic idea is that if we model time of year and autocorrelation properly, then

we should be in a good position to establish whether there is a significant overall

temperature trend.

Model (6.20) is easily fitted.

ctamm<-gamm(temp˜s(day.of.year,bs="cc",k=20)+s(time,bs="cr"),

data=cairo,correlation=corAR1(form=˜1|year))

Note a couple of details: the data run includes some leap years, where day.of.year

runs from 1 to 366. This means that by default the cyclic smooth matches at day 1

and 366, which is correct in non-leap years, but not quite right in the leap years

themselves: a very fussy analysis might deal more carefully with this. Secondly, I

have nested the AR model for the residuals within year: this vastly speeds up com-

putation, but is somewhat arbitrary.

Examining the gam part of the fitted model first

> summary(ctamm$gam)

Family: gaussian

Link function: identity

Formula:

temp ˜ s(day.of.year, bs = "cc", k = 20) + s(time, bs = "cr")

Parametric coefficients:

Estimate std. err. t ratio Pr(>|t|)

(Intercept) 71.641 0.1527 469.2 < 2.22e-16

Approximate significance of smooth terms:

edf chi.sq p-value

s(day.of.year) 8.504 4016.4 < 2.22e-16

s(time) 1.514 16.976 0.030618

316 MIXED MODELS: GAMMS

R-sq.(adj) = 0.849 Scale est. = 16.56 n = 3780

it seems that there is some evidence for a long term trend in temperature, and that the
model fits fairly closely. We can also extract things from the lme representation of
the fitted model, for example 95% confidence intervals for the variance parameters.

> intervals(ctamm$lme,which="var-cov")

Approximate 95% confidence intervals

Random Effects:

Level: g.1

lower est. upper

sd(Xr.1 - 1) 0.01066380 0.01660477 0.02923367

Level: g.2

lower est. upper

sd(Xr.2 - 1) 2.070215e-06 1.184291e-05 12962.93

Correlation structure:

lower est. upper

Phi 0.6605867 0.6847904 0.7075721

attr(,"label")

[1] "Correlation structure:"

Within-group standard error:

lower est. upper

3.918120 4.069355 4.226427

The confidence interval for φ is easily picked out, and provides very strong evidence
that the AR1 model is preferable to an independence model (φ = 0), while the inter-
val for σ is (3.92,4.23). Note that confidence intervals for the smoothing parameters
are also available. Under the Random Effects heading the interval for g.1 re-
lates to the smoothing parameter for the first smooth, while that for g.2 relates to
the second smooth. The parameterization is not completely obvious: the reported
parameters are σ/

√
λi, as the following confirms

> sqrt(ctammgamsig2/ctammgamsp)

[1] 1.660477e-02 1.184291e-05

This ability to quantify the uncertainty associated with the smoothing parameters is

a nice bonus from use of the mixed model approach.

The approximate p-values from the summary command suggested evidence for a
long term temperature trend, but since this model is just a linear mixed model and
we hence have access to its full likelihood, we can use likelihood based methods for
testing, as well. For example

> ctamm0<-gamm(temp˜s(day.of.year,bs="cc",k=20),data=cairo,

+ correlation=corAR1(form=˜1|year))

> ctamm0$gam

GAMMS WITH R 317

0 100 200 300

−
1

5
−

1
0

−
5

0
5

1
0

day.of.year

s
(d

a
y
.o

f.
y
e

a
r,

8
.5

)

0 1000 2000 3000

−
1

.5
−

1
.0

−
0

.5
0

.0
0

.5
1

.0
1

.5

time

s
(t

im
e

,1
.5

1
)

Figure 6.14 GAMM terms for daily air temperature in Cairo, Egypt from January 1st 1995.

The left panel is the estimated annual cycle: note that it has a fatter peak and thinner trough

than a sinusoid. The right pattern is the estimated long term trend: there appears to have been

a rise of around 1.5 F over the period of the data.

Family: gaussian

Link function: identity

Formula:

temp ˜ s(day.of.year, bs = "cc", k = 20)

Estimated degrees of freedom:

8.42289 total = 9.42289

> anova(ctamm0$lme,ctamm$lme)

Model df AIC BIC logLik Test L.Ratio p-value

ctamm0$lme 1 5 18991.6 19022.8 -9490.8

ctamm$lme 2 7 18983.8 19027.5 -9484.9 1 vs 2 11.8189 0.0027

The hypothesis testing is again approximate here, but still suggests clear evidence for

the trend. The AIC also clearly support the model with a long term trend.

To finish this short example, we can plot the estimated model terms

plot(ctamm$gam)

which results in figure 6.14. The temperature increase appears to be quite marked.

The simulation techniques covered in Chapter 5 can be used to simulate from the

posterior distribtion of the modelled temperature rise, if required.

318 MIXED MODELS: GAMMS

6.8 Exercises

1. A pig breeding company was interested in investigating litter to litter variability in
piglet weight (after a fixed growth period). 6 sows were selected randomly from
the companies breeding stock, impregnated and 5 (randomly selected) piglets
from each resulting litter were then weighed at the end of a growth period. The
data were entered into an R data frame, pig, with weights recorded in column w
and a column, sow, containing a factor variable indicating which litter the piglet
came from. The following R session is part of the analysis of these data using a
simple mixed model for piglet weight.

> pig$w

[1] 9.6 10.1 11.2 11.1 10.5 9.5 9.6 9.4 9.5 9.5 11.5

[12] 10.9 10.8 10.7 11.7 10.7 11.2 11.2 10.9 10.5 12.3 12.1

[23] 11.2 12.3 11.7 11.2 10.3 9.9 11.1 10.5

> pig$sow

[1] 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6

[28] 6 6 6

Levels: 1 2 3 4 5 6

> m1<-lm(w˜sow,data=pig)

> anova(m1)

Analysis of Variance Table

Response: w

Df Sum Sq Mean Sq F value Pr(>F)

sow 5 15.8777 3.1755 14.897 1.086e-06 ***
Residuals 24 5.1160 0.2132

> piggy<-aggregate(data.matrix(pig),

+ by=list(sow=pig$sow),mean)

> m0<-lm(w˜1,data=piggy)

> summary(m1)$sigmaˆ2

[1] 0.2131667

> summary(m0)$sigmaˆ2

[1] 0.6351067

(a) The full mixed model being used in the R session has a random effect for

litter/sow and a fixed mean. Write down a full mathematical specification of

the model.

(b) Specify the hypothesis being tested by the anova function, both in terms of

the parameters of the mixed model, and in words.

(c) What conclusion would you draw from the printed ANOVA table. Again state

your conclusions both in terms of the model parameters and in terms of what

this tells you about pigs.

(d) Using the given output, obtain an (unbiased) estimate of the between litter

variance in weight, in the wider population of pigs.

2. Consider a model with 2 random effects of the form:

yij = α + bi + cj + εij

EXERCISES 319

where i = 1, . . . , I , j = 1, . . . , J , bi ∼ N(0, σ2
b), cj ∼ N(0, σ2

c) and εij ∼
N(0, σ2) and all these r.v.’s are mutually independent. If the model is fitted by

least squares then

σ̂2 = RSS/(IJ − I − J + 1)

is an unbiased estimator of σ2, where RSS is the residual sum of squares from

the model fit.

(a) Show that, if the above model is correct, the averages ȳi· =
∑

j yij/J are

governed by the model:

ȳi· = a + ei

where the ei are i.i.d. N(0, σ2
b+σ2/J) and a is a random intercept term. Hence

suggest how to estimate σ2
b .

(b) Show that the averages ȳ·j =
∑

i yij/I are governed by the model:

ȳ·j = a′ + e′j

where the e′j are i.i.d. N(0, σ2
c +σ2/I) and a′ is a random intercept parameter.

Suggest an estimator for σ2
c .

3. Data were collected on blood cholesterol levels and blood pressure for a group

of patients regularly attending an outpatient clinic for a non heart disease related

condition. Measurements were taken each time the patient attended the clinic. A

possible model for the resulting data is,

yij = µ + ai + βxij + εij , ai ∼ N(0, σ2
a) and εij ∼ N(0, σ2),

where yij is the jth blood pressure measurement for the ith patient and xij is

the corresponding cholesterol measurement. β is a fixed parameter relating blood

pressure to cholesterol concentration and ai is a random coefficient for the ith

patient. Assume (somewhat improbably) that the same number of measurements

are available for each patient.

(a) Explain how you would test H0 : σ2
a = 0 vs. H1 : σ2

a > 0 and test H0 : β = 0
vs H1 : β 6= 0, using standard software for ordinary linear modelling.

(b) Explain how β and σ2
a could be estimated. You should write down the models

involved, but should assume that these would be fitted using standard linear

modelling software.

4. Write out the following 3 models in the general form,

y = Xβ + Zb + ε, b ∼ N(0,ψ) and ε ∼ N(0, Iσ2),

where Z is a matrix containing known coefficients which determine how the re-

sponse, y, depends on the random effects b (i.e. it is a ‘model matrix’ for the

random effects). ψ is the covariance matrix of the random effects b. You should

ensure that X is specified so that the fixed effects are identifiable (you don’t need

to do this for Z) and don’t forget to specify ψ.

(a) The model from question 3, assuming 4 patients and 2 measurements per pa-

tient.

320 MIXED MODELS: GAMMS

(b) The mixed effects model from section 6.1.1, assuming only two measurements

per tree.

(c) Model (6.6) from section 6.1.4, assuming that I = 2, J = 3 and K = 3.

5.(a) Show that if X and Z are independent random vectors, both of the same di-

mension, and with covariance matrices Σx and Σz , then the covariance matrix

of X + Z is Σx + Σz .

(b) Consider a study examining patients blood insulin levels 30 minutes after eat-

ing, y, in relation to sugar content, x, of the meal eaten. Suppose that each of

3 patients had their insulin levels measured for each of 3 sugar levels, and that

an appropriate linear mixed model for the jth measurement on the ith patient

is,

yij = α + βxij + bi + εij , bi ∼ N(0, σ2), and εij ∼ N(0, σ2),

where all the random effects and residuals are mutually independent.

i. Write this model out in matrix vector form.

ii. Find the covariance matrix for the response vector y.

6. The R data frame Oxide from the nlme library contains data from a quality

control exercise in the semiconductor industry. The object of the exercise was to

investigate sources of variability in the thickness of oxide layers in silicon wafers.

The dataframe contains the following columns:

Thickness is the thickness of the oxide layer (in nanometres, as far as I can

tell).

Source is a two level factor indicating which of two possible suppliers the sam-

ple came from.

Site is a 3 level factor, indicating which of three sites on the silicon wafer the

thickness was measured.

Lot is a factor variable with levels indicating which particular batch of Silicon

wafers this measurement comes from.

Wafer is a factor variable with levels labelling the individual wafers examined.

The investigators are interested in finding out if there are systematic differences

between the two sources, and expect that thickness may vary systematically across

the three sites; they are only interested in the lots and wafers in as much as they

are representative of a wider population of lots and wafers.

(a) Identify which factors you would treat as random and which as fixed, in a linear

mixed model analysis of these data.

(b) Write down a model that might form a suitable basis for beginning to analyze

the Oxide data.

(c) Perform a complete analysis of the data, including model checking. Your aim

should be to identify the sources of thickness variability in the data and any

fixed effects causing thickness variability.

7. Starting from model (6.6) in section 6.1.4, re-analyse the Machines data using

lme. Try to find the most appropriate model, taking care to examine appropriate

EXERCISES 321

model checking plots. Make sure that you test whether the interaction in (6.6)

is appropriate. Similarly test whether a more complex random effects structure

would be appropriate: specifically one in which the machine-worker interaction is

correlated within worker. If any data appear particularly problematic in the check-

ing plots, repeat the analysis, and see if the conclusions change.

8. This question follows on from question 7. Follow up multiple comparisons are a

desirable part of some analyses. This question is about how to do this in practice.

In the analysis of the Machines data the ANOVA table for the fixed effects indi-

cates that there are significant differences between machine types, so an obvious

follow up analysis would attempt to assess exactly where these differences lie.

Obtaining Bonferroni corrected intervals for each of the 3 machine to machine

differences would be one way to proceed, and this is easy to do.
First note that provided you have set up the default contrasts using

options(contrasts=c("contr.treatment","contr.treatment"))

(before calling lme, of course) then lme will set your model up in such away that

the coefficients associated with the Machine effect correspond to the difference

between the second and first machines, and between the third and first machines.
Hence the intervals function can produce two of the required comparisons
automatically. However, by default the intervals function uses the 95% con-
fidence level, which needs to be modified if you wish to Bonferroni correct for the
fact that 3 comparisons are being made. If your model object is m1 then

intervals(m1,level=1-0.05/3,which="fixed")

will produce 2 of the required intervals. Note the Bonferroni correction ‘3’. The

option which="fixed" indicates that only fixed effect intervals are required.
The third comparison, between machines B and C can easily be obtained by
changing the way that the factor variable Machine is treated, so that machine
type B or C count as the ‘first machine’ when setting up the model. The MASS
library provides a function, relevel, for doing this.

library(MASS) # load MASS library

levels(Machines$Machine) # check the level names

reset levels so that ‘first level’ is "B" ...

Machines$Machine<-relevel(Machines$Machine,"B")

Now refit the model and re-run the intervals function for the new fit. This

will yield the interval for the remaining comparison (plus one of the intervals you

already have, of course). What are the Bonferroni corrected 95% intervals for the

3 possible comparisons? How would you interpret them?

9. The data frame Gun (library nlme) is from a trial examining methods for firing

naval guns. Two firing methods were compared, with each of a number of teams

of 3 gunners; the gunners in each team were matched to have similar physique

(Slight, Average or Heavy). The response variable rounds is rounds fired per

minute, and there are 3 explanatory factor variables, Physique (levels Slight,

Medium and Heavy); Method (levels M1 and M2) and Team with 9 levels.

The main interest is in determining which method and or physique results in the

highest firing rate, and in quantifying team-to-team variability in firing rate.

322 MIXED MODELS: GAMMS

(a) Identify which factors should be treated as random and which as fixed, in the

analysis of these data.

(b) Write out a suitable mixed model as a starting point for the analysis of these

data.

(c) Analyse the data using lme in order to answer the main questions of inter-

est. Include any necessary follow up multiple comparisons (as in the previous

question) and report your conclusions.

10. In an experiment comparing two varieties of Soybeans, plants were grown on

48 plots and measurements of leaf weight were taken at regular intervals as the

plants grew. The nlme data frame Soybean contains the resulting data and has

the following columns:

Plot is a factor variable with levels for each of the 48 plots.

weight is the leaf weight in grammes.

Time is the time in days since planting.

Variety is either F or P indicating the variety of Soybean.

There is one observation for each variety in each plot at each time. Interest focuses

on modelling the growth of Soybeans over time and on establishing whether or not

this differs between the varieties.

(a) A possible model for the weights is

wijk = αi + βitk + γit
2
k + δit

3
k + aj + bjtk + εijk

where wijk is the weight measurement for the ith variety in the jth plot at

the kth time; [aj , bj]
T ∼ N(0,ψ) where ψ is a covariance matrix, and εijk ∼

N(0, σ2). The random effects are independent of the residuals and independent

of random effects with different j. The residuals are i.i.d.

Fit this model using lme and confirm that the residual variance appears to

increase with the (random effect conditional) mean.

(b) To deal with the mean variance relationship, it might be appropriate to model

the weights as being Gamma distributed, so that the model becomes a GLMM.

e.g.

log(µijk) = αi + βitk + γit
2
k + δit

3
k + aj + bjtk

where µijk ≡ E(wijk) and wijk ∼ Gamma. Fit this GLMM, using glmmPQL

from the MASS package, and confirm the improvement in residual plots that

results.

(c) Explore the whether further improvements to the model could be made by

modifications of the random or fixed effects model structures.

11. This question follows on from question 10, on Soybean modelling.

(a) Using gamm, replace the cubic function of time in the GLMM of question 10,

with a smooth function of time. You should allow for the possibility that the

varieties depend differently on time, and examine appropriate model checking

plots.

EXERCISES 323

(b) Evaluate whether a model with or without a variety effect is more appropriate,

and what kind of variety effect is most appropriate.

(c) Explain why a model with separate smooths for the two different varieties is

different to a model with a smooth for one variety and a smooth correction for

the other variety.

APPENDIX A

Some Matrix Algebra

This appendix provides some useful matrix results, and a brief introduction to some

relevant numerical linear algebra.

A.1 Basic computational efficiency

Consider the numerical evaluation of the the expression

ABy

where A and B are n×n matrices and y is an n-vector. The following code evaluates
this expression in two ways (wrong and right).

> n <- 1000

> A <- matrix(runif(n*n),n,n)

> B <- matrix(runif(n*n),n,n)

> y <- runif(n)

> system.time((A%*%B)%*%y) # wrong way

[1] 5.60 0.01 5.61 NA NA

> system.time(A%*%(B%*%y)) # right way

[1] 0.02 0.00 0.02 NA NA

So, in this case, the ‘wrong way’ took 5.6 seconds and the ‘right way’ less than 0.02

seconds. Why? The wrong way first multiplied A and B at a cost of n3 floating point

operations, and then multiplied AB by y at the cost of n2 further operations: total

cost n3 + n2 operations. The right way first formed the vector By at a cost of n2

operations and then formed ABy at a further cost of n2 operations: total cost 2n2

operations. So we should have got around a 500 fold speed up by doing things the

right way.

This sort of effect is pervasive: the order in which matrix operations are performed
can have a major impact on computational speed. An important example is in the
evaluation of the trace of a matrix (the sum of the leading diagonal). It is easy to
show that tr (AB) = tr (BA), and for non-square matrices, one of these is always
cheaper to evaluate than the other. Here is an example

> m <- 500;n<-5000

325

326 SOME MATRIX ALGEBRA

> A <- matrix(runif(m*n),n,m)

> B <- matrix(runif(m*n),m,n)

> system.time(sum(diag(A%*%B)))

[1] 51.61 0.16 51.93 NA NA

> system.time(sum(diag(B%*%A)))

[1] 4.92 0.00 4.92 NA NA

In this case formation of AB costs n2m operations, while formation of BA costs
only m2n: i.e. in the example, the second evaluation is 10 times faster than the
first. Actually even the second evaluation is wasteful, as the following code is easily
demonstrated to evaluate the trace, at a cost of only mn operations

> system.time(sum(t(B)*A))

[1] 0.11 0.00 0.11 NA NA

(somewhat similar code to this gets all the elements on the leading diagonal). Simple

tricks like these can lead to very large efficiency gains in matrix computations.

A.2 Covariance matrices

If X is a random vector and µx = E(X), then the covariance matrix of X is

Vx = E
{

(X− µx)(X− µx)T
}

.

Vx is symmetric and positive semi definite (all its eigenvalues are ≥ 0). The ith ele-

ment on the leading diagonal of Vx is the variance of Xi, while the (i, j)th element

is the covariance of Xi and Xj .

If C is a matrix of fixed real coefficients and Y = CX then the covariance matrix of

Y is

Vy = CVxC
T.

This result is sometimes known as the ‘law of propagation of errors’. It is easily

proven. First note that µy ≡ E(Y) = CE(X) = Cµx. Then

Vy = E
{

(Y − µy)(Y − µy)T
}

= E
{

(CX−Cµx)(CX−Cµx)
T
}

= CE
{

(X− µx)(X− µx)T
}

CT

= CVxC
T.

A.3 Differentiating a matrix inverse

Consider differentiation of A−1 w.r.t. x. By definition of a matrix inverse we have

that I = A−1A. Differentiating this expression w.r.t. x gives

0 =
∂A−1

∂x
A + A−1 ∂A

∂x

KRONECKER PRODUCT 327

which re-arranges to
∂A−1

∂x
= −A−1 ∂A

∂x
A−1.

A.4 Kronecker product

The Kronecker product of a n × m matrix A and p × q matrix B is the np × qm
matrix









A11B A12B . .
A21B A22B . .

. . . .

. . . .









.

In R this is implemented by the operator %x%: see ?kronecker for details.

A.5 Orthogonal matrices and Householder matrices

Orthogonal matrices are square matrices which rotate/reflect vectors and have a va-

riety of interesting and useful properties. If Q is an orthogonal matrix then QQT =
QTQ = I, i.e. Q−1 = QT. If x is any vector of appropriate dimension then

‖Qx‖ = ‖x‖∗, that is Q changes the elements of x without changing its length:

i.e. it rotates/reflects x. It follows immediately that all the eigenvalues of Q are one.

A particularly important class of orthogonal matrices are the Householder/reflector

matrices. Let u be a non-zero vector. Then

H = I− γuuT where γ = 2/‖u‖2

is a Householder matrix or reflector matrix. Note that H is symmetric.

The multiplication of a vector by a householder matrix is a prime example of the

need to think carefully about the order of operations when working with matrices.

H is never stored as a complete matrix, but rather u and γ are stored. Then Hx is

evaluated as follows (overwriting x by Hx).

1. α← uTx

2. x← x− αγu

Notice how this requires only O(n) operations, where n = dim(x) — explicit for-

mation and use of H is O(n2).

Householder matrices are important, because if x and y are two non-zero vectors of

the same length (i.e. ‖x‖ = ‖y‖), then the Householder matrix such that Hx = y

is obtained by setting u = x − y. This property is exploited in the next section, but

note that in practical computation it is important to guard against possible overflow

or cancelation error when using these matrices: see e.g. Watkins (1991, section 3.2)

for further details.

∗ recall than ‖x‖2 = xTx.

328 SOME MATRIX ALGEBRA

A.6 QR decomposition

Any real n×m (m ≤ n, here) matrix X can be written as

X = Q

[

R

0

]

where Q is an orthogonal matrix, and R is an m×m upper triangular matrix. Q can

be made up of the product of m Householder matrices. Here is how.

First construct the Householder matrix H1 which reflects/rotates the first column of

x in such a way that all but its first element is zeroed. e.g.

H1









x11 x12 x13 .
x21 x22 x23 .
x31 x32 x33 .
. . . .









=









x′11 x′12 x′13 .
0 x′22 x′23 .
0 x′32 x′33 .
. . . .









x′11 will be the length of the first column of X. The next step is to calculate the

Householder matrix, H2, which will transform the second column of X, so that its

first element is unchanged, and every element beyond the second is zeroed. e.g.

H2









x′11 x′12 x′13 .
0 x′22 x′23 .
0 x′32 x′33 .
. . . .









=









x′11 x′12 x′13 .
0 x′′22 x′′23 .
0 0 x′′33 .
. . . .









Notice that the fact that H2 is only acting on elements from the second row down

has two implications: (i) the first row is unchanged by H2 and (ii) the first column is

unchanged, since in this case H2 simply transforms zero to zero.

Continuing in the same way we eventually reach the situation where

HmHm−1 · · ·H1X =

[

R

0

]

Hence QT = HmHm−1 · · ·H1 implying that Q = H1H2 · · ·Hm.

Note that it is quite common to write the QR decomposition as X = QR where Q is

the first m columns of the orthogonal matrix just constructed. Whichever convention

is used, Q is always stored as a series of m Householder matrix components. See

?qr in R for details about using QR decompositions in R.

A.7 Choleski decomposition

The Choleski decomposition is a very efficient way of finding the ‘square root’ of a

positive definite matrix. A positive definite matrix, D, is one for which xTDx > 0
for any non-zero vector x (of appropriate dimension). Positive definite matrices are

symmetric and have strictly positive eigenvalues.

EIGEN-DECOMPOSITION 329

The Choleski decomposition of D is

D = RTR

where R is an upper triangular matrix of the same dimension as D. The algorithm

for constructing the Choleski factor, R, is quite simple, and can be found in any

textbook on numerical linear algebra, for example Golub and van Loan (1996) or

Watkins (1991). The Choleski decomposition costs around n3/6 operations for an

n×n matrix, which makes it a rather efficient way of solving linear systems involving

positive definite matrices. For example, the x satisfying Dx = y where D is the x

satisfying

RTRx = y

where R is the Choleski factor of D. Because R is triangular it is cheap to solve for
Rx and then for x. The following code provides an example in R.

n <- 1000

D <- matrix(runif(n*n),n,n)

D <- D%*%t(D) # create a +ve def. matrix

y <- runif(n) # and a y

now solve Dx=y, efficiently, using the Choleski factor of D

R <- chol(D)

x <- backsolve(R,y,transpose=TRUE)

x <- backsolve(R,y)

A.8 Eigen-decomposition

Consider an n × n matrix A. There exist n scalars λi and n corresponding vectors

ui such that

Aui = λiui,

i.e. multiplication of ui by A results in a scalar multiple of ui. The λi are known

as the eigenvalues (own-values) of A, and the corresponding ui are the eigenvectors

(strictly ‘right eigenvectors’, since ‘left eigenvectors’ can also be defined).

In this book we only need eigenvalues and eigenvectors of symmetric matrices, so

suppose that A is symmetric. In that case it is possible to write

A = UΛUT

where the eigenvectors, ui, are the columns of the n×n orthogonal matrix U, while

the eigenvalues λi provide the diagonal elements of the diagonal matrix Λ. Such a

decomposition is known as an eigen-decomposition or spectral decomposition.

The eigen-decomposition of A provides an interesting geometric interpretation of

how any n vector, x, is transformed by multiplication by A. The product Ax can be

written as UΛUTx: so UT first rotates x into the ‘eigenspace’ of A, the resulting

vector then has each of its elements multiplied by an eigenvector of A, before being

rotated back into the original space by U.

330 SOME MATRIX ALGEBRA

It is easy to see that for any integer m, Am = UΛmUT, which, given the eigen-

decomposition, is rather cheap to evaluate, since Λ is diagonal. This result also means

that any function with a power series expansion has a natural generalization to the

matrix setting. For example, the exponential of a matrix would be

exp(A) = U exp(Λ)UT

where exp(Λ) is the diagonal matrix with exp(λi) as the ith element on its leading

diagonal.

Here are some other useful results related to eigenvalues:

• The ‘rank’ of a matrix is the number of non-zero eigenvalues that it possesses.

The rank is the number of independent rows/columns of a matrix.

• A symmetric matrix is positive definite if all its eigenvalues are strictly positive.

i.e. xTAx > 0 ∀ x 6= 0.

• A symmetric matrix is positive semi definite if all its eigenvalues are non-negative.

i.e. xTAx ≥ 0 ∀ x 6= 0.

• The trace of a matrix is also the sum of its eigenvalues.

• The determinant of a matrix is the product of its eigenvalues.

Numerical calculation of eigenvalues and eigenvectors is quite a specialized topic.

Algorithms usually start by reducing the matrix to tri-diagonal or bi-diagonal form

by successive application of Householder rotations from the left and right. By orthog-

onality of the Householder rotations, the reduced matrix has the same eigenvalues as

the original matrix. The eigenvalues themselves are then found by an iterative proce-

dure, usually the QR-algorithm (not to be confused with the QR decomposition!) see

Golub and van Loan (1996) or Watkins (1991) for details. See ?eigen for details of

the eigen routines available in R. Sometimes only the largest magnitude eigenvalues

and corresponding eigenvectors are required, in which case see section A.11.

A.9 Singular value decomposition

The singular value decomposition is rather like the eigen-decomposition, except that

it can be calculated for any real matrix (not just square ones), and its components are

all real (eigenvalues and vectors can be complex for non-symmetric matrices). If X

is an n×m real matrix (m ≤ n, say) then it is possible to write

X = UDVT

where the columns of the n ×m matrix U are the first m columns of an orthogonal

matrix (so that UTU = Im, but UUT 6= In), V is an m×m orthogonal matrix and

D is a diagonal matrix, the diagonal elements of which are the singular values of X.

The ith singular value of X is the positive square root of the ith eigenvalue of XTX,

so for a symmetric matrix, the eigenvalues and singular values are the same. Singular

values are so called, because there is a sense in which they indicate the ‘distance’

PIVOTING 331

between a matrix and the ‘nearest’ singular matrix. The ratio of the largest to smallest

singular values is known as the ‘condition number’ of a matrix, and provides a useful

guide to the numerical stability of calculations involving the matrix: again, see Golub

and van Loan (1996) or Watkins (1991) for details.

The number of non-zero singular values gives the rank of a matrix, and the singular

value decomposition is the most reliable method for estimating the rank of a matrix

numerically.

Again, the calculation of the singular value decomposition starts by transforming the

matrix to a bi-diagonal form, after which, iteration is used to find the singular values

themselves (once again, see Golub and van Loan, 1996; Watkins, 1991).

A.10 Pivoting

Some matrix decompositions have better numerical properties if they are applied, not

to the original matrix, but to a matrix in which the columns and/or rows of the matrix

have been permuted. This is known as pivoting. Some properties of decompositions

are invariant to this pivoting, whilst for other uses the pivoting has to be unscrambled

after the decomposition.

As an example, if pivoting is used with a Choleski decomposition, then it is possible
to find a square root of a positive semi- definite matrix, by this method. Here is an
example in R

> B <- matrix(runif(200*100),200,100)

> B <- B%*%t(B) ## B is now +ve semi-definite...

> chol(B) ## ... so un-pivoted Choleski fails

Error in chol(B) : the leading minor of order 101 is

not positive definite

> R <- chol(B, pivot = TRUE) ## ok with pivoting

> piv <- order(attr(R, "pivot")) ## extract pivot index

> R <- R[, piv] ## unscramble pivoting

> range(B-t(R)%*%R) ## check that result is valid sqrt

[1] -4.867218e-12 4.444445e-12 ## it is!

of course, what is lost here is that R is no-longer upper triangular.

A.11 Lanczos iteration

Lanczos iteration (see e.g. Demmel, 1997) is a method which can be used to ob-

tain the rank k truncated eigen-decomposition of a symmetric matrix, E, in O(kn2)
operations, by iteratively building up a tridiagonal matrix the eigenvalues of which

converge (in order of decreasing magnitude) to those required, as iteration proceeds.

The algorithm is iterative, and at the ith iteration produces an (i × i) symmetric

tri-diagonal matrix (Ki, say), the eigenvalues of which approximate the i largest

332 SOME MATRIX ALGEBRA

magnitude eigenvalues of the original matrix: these eigenvalues converge as the it-

eration proceeds, with those of largest magnitude converging first. The eigenvalues

and vectors of Ki can be obtained in order i3 operations, using the usual QR algo-

rithm† with accumulation of the eigenvectors. In principle it should be possible to get

away with O(i2) operations by only using the QR algorithm to find the eigenvalues

and then inverse iteration to find the eigenvectors, but I experienced some stability

problems when using a simple implementation of inverse iteration to do this, partic-

ularly for thin plate regression splines of one predictor variable. In any case i3 � n2

in most cases. The eigenvectors of the original matrix are easily obtained from the

eigenvectors of Ki.

A complete version of the algorithm, suitable for finding the truncated decomposition

of E is as follows.

1. Let b be an arbitrary non-zero n vector‡.

2. Set q1 ← b/‖b‖.
3. Repeat steps (4) to (12) for j = 1, 2, . . . until enough eigenvectors have con-

verged.

4. Form c← Eqj .

5. Calculate γj ← qT

j c

6. Reorthogonalize c to ensure numerical stability, by performing the following step

twice:

c← c−
j−1
∑

i=1

(cTqi)qi

7. Set ξj ← ‖c‖
8. Set qj+1 ← c/ξj

9. Let Kj be the (j × j) tridiagonal matrix with γ1, . . . γj on the leading diagonal,

and ξ1, . . . ξj−1 on the leading sub- and super- diagonals.

10. If iteration has proceeded far enough to make it worthwhile, find the eigen- de-

composition (spectral decomposition) Kj = VΛVT, where the columns of V

are eigenvectors of Kj and Λ is diagonal with eigenvalues on leading diagonal.

11. Compute “error bounds” for each Λi,i: |ξjVi,j |.
12. Use the error bounds to test for convergence of the k largest magnitude eigenval-

ues. Terminate the loop if all are converged.

13. The ith eigenvalue of E is Λi,i. The ith eigenvector of E is Qvi, where Q is the

matrix whose columns are the qj (for all j calculated) and vi is the ith column

of V (again calculated at the final iteration). Hence Dk and Uk can easily be

formed.

† Not to be confused with the QR decomposition: they are completely different things.
‡ It may be best to initialize this from a simple random number generator, to reduce the risk of starting out

orthogonal to some eigenvector (exact repeatability can be ensured by starting from the same random
number generator seed)

LANCZOS ITERATION 333

The given algorithm is stabilized by orthogonalization against all previous vectors

qj : several selective orthogonalization schemes have been proposed to reduce the

computational burden of this step, but I experienced convergence problems when

trying to use these schemes with E from the 1 covariate TPRS problem. In any case

the computational cost of the method is dominated by the O(n2) step: c← Eqj , so

the efficiency benefits of using a selective method are unlikely to be very great, in

the current case (if E were sparse then selective methods would offer a benefit).

Finally note that E need not actually be formed and stored as a whole: it is only

necessary that its product with a vector can be formed. For a fuller treatment of the

Lanczos method see Demmel (1997), from which the algorithm given here has been

modified.

APPENDIX B

Solutions to exercises

To avoid this appendix reaching the same length as the rest of the book, the fol-

lowing solutions do not generally include R output and plots, but only the code for

generating them.

B.1 Chapter 1

1. ti = βdi + εi is a reasonable model. So the least squares estimate of β is

β̂ =

∑

i xiyi
∑

i x
2
i

=
0.1 + 1.2 + 2 + 3

1 + 9 + 16 + 25
=

6.3

51
' .1235

implying a speed of 51/6.3 ' 8.1 kilometres per hour.

2.

∂

∂β

n
∑

i=1

(yi − β)2 = −2
n
∑

i=1

(yi − β) = 0⇒ β̂ = ȳ

3. None of these.

4.(a)

















y11

y12

y21

y22

y31

y32

















=

















1 0 0
1 0 0
1 1 0
1 1 0
1 0 1
1 0 1





















α
β2

β3



+

















ε11
ε12
ε21
ε22
ε31
ε32

















The constraint β1 = 0 ensures model identifiability (i.e. full column rank of

X): any other constraint doing the same is ok.

335

336 SOLUTIONS TO EXERCISES

(b)









































y11

y12

y13

y14

y21

y22

y23

y24

y31

y32

y33

y34









































=









































1 0 0 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1
1 1 0 0 0 0
1 1 0 1 0 0
1 1 0 0 1 0
1 1 0 0 0 1
1 0 1 0 0 0
1 0 1 1 0 0
1 0 1 0 1 0
1 0 1 0 0 1

























































α
β2

β3

γ2

γ3

γ4

















+









































ε11
ε12
ε13
ε14
ε21
ε22
ε23
ε24
ε31
ε32
ε33
ε34









































Here β1 = γ1 = 0 have been chosen as constraints ensuring identifiability: of

course there are many other possibilities (depending on what contrasts are of

most interest).

(c)

















y1

y1

y3

y4

y5

y6

















=

















1 0 0.1
1 0 0.4
1 1 0.5
1 1 0.3
1 1 0.4
1 1 0.7





















α
β2

γ



+

















ε1
ε2
ε3
ε4
ε5
ε6

















5. The situation described in the question translates into a model of the form:

µi =







kxi + αx2
i alloy 1

kxi + βx2
i alloy 2

kxi + γx2
i alloy 3

CHAPTER 1 337

where yi ∼ N(µi, σ
2). Written out in full matrix-vector form this is

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

y11

y12

y13

y14

y15

y16

y17

y18

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

x1 x2
1 0 0

x2 x2
2 0 0

x3 x2
3 0 0

x4 x2
4 0 0

x5 x2
5 0 0

x6 x2
6 0 0

x1 0 x2
1 0

x2 0 x2
2 0

x3 0 x2
3 0

x4 0 x2
4 0

x5 0 x2
5 0

x6 0 x2
6 0

x1 0 0 x2
1

x2 0 0 x2
2

x3 0 0 x2
3

x4 0 0 x2
4

x5 0 0 x2
5

x6 0 0 x2
6

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

2

6

6

4

k
α
β
γ

3

7

7

5

+

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

ε1
ε2
ε3
ε4
ε5
ε6
ε7
ε8
ε9
ε10
ε11
ε12
ε13
ε14
ε15
ε16
ε17
ε18

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

6.

µ̂ = X(XTX)−1XTy⇒ XTµ̂ = XTX(XTX)−1XTy = XTy

If the model has an intercept then one column of X is a column of ones, so that

one of the equations in XTµ̂ = XTy is simply
∑

i µ̂i =
∑

i yi. Re-arrangement

of this shows that the residuals must sum to zero.

7. Given that E(r2
i) = σ2,

E(‖r‖2) =

n−p
∑

i=0

E(r2
i) = (n− p)σ2,

and the result follows.

8.(a) library(MASS)

m1 <- lm(loss˜hard+tens+I(hard*tens)+I(hardˆ2)+I(tensˆ2)+

I(hardˆ2*tens)+I(tensˆ2*hard)+I(tensˆ3)+I(hardˆ3),Rubber)

plot(m1) ## residuals OK

summary(m1) ## p-values => drop I(tensˆ2*hard)

m2 <- update(m1,.˜.-I(tensˆ2*hard))

summary(m2)

m3 <- update(m2,.˜.-hard)

summary(m3)

m4 <- update(m3,.˜.-1)

summary(m4)

m5 <- update(m4,.˜.-I(hardˆ2))

summary(m5) ## p-values => keep all remaining

plot(m5) ## residuals OK

(b) AIC(m1,m2,m3,m4,m5)

m6 <- step(m1)

338 SOLUTIONS TO EXERCISES

(c) m <- 40;attach(Rubber)

mt <- seq(min(tens),max(tens),length=m)

mh <- seq(min(hard),max(hard),length=m)

lp <- predict(m6,data.frame(hard=rep(mh,rep(m,m)),

tens=rep(mt,m)))

contour(mt,mh,matrix(lp,m,m),xlab="tens",ylab="hard")

points(tens,hard)

detach(Rubber)

9. > wm <- lm(breaks˜wool*tension,warpbreaks)

> plot(wm) # residuals OK

> anova(wm)

Analysis of Variance Table

Response: breaks

Df Sum Sq Mean Sq F value Pr(>F)

wool 1 450.7 450.7 3.7653 0.0582130 .

tension 2 2034.3 1017.1 8.4980 0.0006926 ***
wool:tension 2 1002.8 501.4 4.1891 0.0210442 *
Residuals 48 5745.1 119.7

... so there is evidence for a wool:tension interaction.

> with(warpbreaks,interaction.plot(tension,wool,breaks))

10.(a) > cm1 <- lm(dist ˜ speed + I(speedˆ2),cars)

> summary(cm1)

Intercept has very high p-value, so drop it

> cm2 <- lm(dist ˜ speed + I(speedˆ2)-1,cars)

> summary(cm2)

both terms now significant, but try the alternative of

dropping ‘speed’

> cm3 <- lm(dist ˜ I(speedˆ2),cars)

> AIC(cm1,cm2,cm3)

df AIC

cm1 4 418.7721

cm2 3 416.8016

cm3 3 416.9860

> plot(cm2)

Clearly cm2, with speed and speed squared terms is to be preferred, but note

that variance seems to be increasing with mean a little: perhaps a GLM, better?

(b) In seconds, the answer is obtained as follows

> b <- coef(cm2)

> 5280/(b[1]*60ˆ2)

1.183722

This is a long time, but would have a rather wide associated confidence interval.

The stopping distances in cars are quite long relative to those usually quoted.

(c) The usual argument is really nonsense, and seems to result from confusing

CHAPTER 1 339

continuous and factor variables. In the current case it would condemn us to

leaving in the constant, and tolerating very high estimator uncertainty, even

though hypothesis testing, AIC, and the physical mechanisms underlying the

data all suggest dropping it.

11. The following is a version of the function that you should end up with.

fitlm <- function(y,X)

{ qrx <- qr(X) ## get QR decomposition

y <- qr.qty(qrx,y) ## form Q’y efficiently

R <- qr.R(qrx) ## extract R

p <- ncol(R);n <- length(y) ## get dimensions

f <- y[1:p]; r <- y[(p+1):n]## partition Q’y

beta <- backsolve(R,f) ## parameter estimates (a)

sig2 <- sum(rˆ2)/(n-p) ## resid variance estimate (c)

Ri <- backsolve(R,diag(ncol(R))) ## inverse of R matrix

Vb <- Ri%*%t(Ri)*sig2 ## covariance matrix

se <- diag(Vb)ˆ.5 ## standard errors (c)

F.ratio <- fˆ2/sig2 ## sequential F-ratios

seq.p.val <- 1-pf(F.ratio,1,n-p) ## seq. p-values (e)

list(beta=beta,se=se,sig2=sig2,seq.p.val=seq.p.val,df=n-p)

}

The following code uses the function to answer some of the question parts.

get example X ...

X <- model.matrix(dist ˜ speed + I(speedˆ2),cars)

cm <- fitlm(cars$dist,X) # used fitting function

cm$beta;cm$se # print estimates and s.e.s (a,c)

cm1<-lm(dist ˜ speed + I(speedˆ2),cars) # equiv. lm call

summary(cm1) # check estimates and s.e.s (b,c)

t.ratio <- cm$beta/cm$se # form t-ratios

p.val <- pt(-abs(t.ratio),df=cm$df)*2

p.val # print evaluated p-values (d)

print sequential ANOVA p-values, and check them (e)

cm$seq.p.val

anova(cm1)

12. X <- model.matrix(˜spray-1,InsectSprays)

X <- cbind(rep(1,nrow(X)),X) # redundant model matrix

C <- matrix(c(0,rep(1,6)),1,7) # constraints

qrc <- qr(t(C)) # QR decomp. of C’

use fact that Q=[D:Z] and XQ = (Q’X’)’ to form XZ ...

XZ <- t(qr.qty(qrc,t(X)))[,2:7]

m1 <- lm(InsectSprays$count˜XZ-1) # fit model

bz <- coef(m1) # estimates in constrained parameterization

form b = Z b_z, using fact that Q=[D:Z], again

b <- c(0,bz)

b <- qr.qy(qrc,b)

sum(b[2:7])

13.(a) EV.func <- function(b,g,h)

{ mu <- b[1]*gˆb[2]*hˆb[3]

340 SOLUTIONS TO EXERCISES

J <- cbind(gˆb[2]*hˆb[3],mu*log(g),mu*log(h))

list(mu=mu,J=J)

}

(b) > attach(trees)

> b <- c(.002,2,1);b.old <- 100*b+100

> while (sum(abs(b-b.old))>1e-7*sum(abs(b.old))) {

+ EV <- EV.func(b,Girth,Height)

+ z <- (Volume-EV$mu) + EV$J%*%b

+ b.old <- b

+ b <- coef(lm(z˜EV$J-1))

+ }

> b

0.001448827 1.996921475 1.087646524

(c) > sig2 <- sum((Volume - EV$mu)ˆ2)/(nrow(trees)-3)

> Vb <- solve(t(EV$J)%*%EV$J)*sig2

> se <- diag(Vb)ˆ.5;se

[1] 0.001366994 0.082077439 0.242158811

B.2 Chapter 2

1.(a) µ ≡ E(Y) = (1− p)× 0 + p× 1 = p.

(b)

f(y) = exp(log(µy(1− µ)1−y))

= exp(y log(µ) + (1− y) log(1− µ))

= exp

(

y log

(

µ

1− µ

)

+ log(1− µ)

)

.

Now let θ = log(µ/(1− µ)) so that eθ = µ/(1− µ) and therefor

1 + eθ =
1

1− µ
⇒ − log(1 + eθ) = log(1− µ)⇒ b(θ) = log(1 + eθ).

Hence,

f(y) = exp(yθ − b(θ)),

which is exponential form with a(φ) = φ = 1 and c(y, φ) ≡ 0. So the

Bernoulli distribution is in the exponential family.

(c) A canonical link is one which when applied to the mean, µ, gives the canonical

parameter, so for the Bernoulli it is clearly:

g(µ) = log

(

µ

1− µ

)

a special case of the logit link.

2. After completing all 4 parts, you get something like the following:

example glm fit...

b <- glm(y/m˜x,family=binomial,weights=rep(m,n))

reps <- 200;mu <- fitted(b)

CHAPTER 2 341

rsd <- matrix(0,reps,n) # array for simulated resids

runs <- rep(0,reps) # array for simulated run counts

for (i in 1:reps) { # simulation loop

ys <- rbinom(1:n,m,mu) # simulate from fitted model

refit model to simulated data

br <- glm(ys/m˜x,family=binomial,weights=rep(m,n))

rs <- residuals(br) # simulated resids (meet assumptions)

rsd[i,] <- sort(rs) # store sorted residuals

fv.sort <- sort(fitted(br),index.return=TRUE)

rs <- rs[fv.sort$ix] # order resids by sorted fit values

rs <- rs > 0 # check runs of +ve, -ve resids

runs[i] <- sum(rs[1:(n-1)]!=rs[2:n])

}

plot original ordered residuals, and simulation envelope

for (i in 1:n) rsd[,i] <- sort(rsd[,i])

par(mfrow=c(1,1))

plot(sort(residuals(b)),(1:n-.5)/n) # original

plot 95% envelope

lines(rsd[5,],(1:n-.5)/n);lines(rsd[reps-5,],(1:n-.5)/n)

compare original runs to distribution under independence

rs <- residuals(b)

fv.sort <- sort(fitted(b),index.return=TRUE)

rs <- rs[fv.sort$ix]

rs <- rs > 0

obs.runs <- sum(rs[1:(n-1)]!=rs[2:n])

sum(runs>obs.runs)

3. First read in the data:

> count <- c(53,414,11,37,0,16,4,139)

> death <- factor(c(1,0,1,0,1,0,1,0))

> defendant <- factor(c(0,0,1,1,0,0,1,1))

> victim <- factor(c(0,0,0,0,1,1,1,1))

> levels(death) <- c("no","yes")

> levels(defendant) <- c("white","black")

> levels(victim) <- c("white","black")

(a) > sum(count[death=="yes"&defendent=="black"])/

+ sum(count[defendent=="black"])

[1] 0.07853403

> sum(count[death=="yes"&defendent=="white"])/

+ sum(count[defendent=="white"])

[1] 0.1097308

(b) > dm <- glm(count˜death*victim+death*defendant+

+ victim*defendant,family=poisson(link=log))

> summary(dm)

[edited]

Coefficients:

Estimate Std Err z value Pr(>|z|)

(Intercept) 6.02631 0.04913 122.669 < 2e-16

342 SOLUTIONS TO EXERCISES

deathyes -2.05946 0.14585 -14.121 < 2e-16

victimblack -3.26517 0.25478 -12.816 < 2e-16

defendblack -2.42032 0.17155 -14.109 < 2e-16

deathyes:victimblack -2.40444 0.60061 -4.003 6.25e-05

deathyes:defendblack 0.86780 0.36707 2.364 0.0181

victimblack:defendblack 4.59497 0.31353 14.656 < 2e-16

> dm0 <- glm(count˜death*victim+victim*defendant,

+ family=poisson(link=log))

> anova(dm0,dm,test="Chisq")

Analysis of Deviance Table

Model 1: count ˜ death * victim + victim * defendant

Model 2: count ˜ death * victim + death * defendant+

victim * defendant

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 2 5.3940

2 1 0.3798 1 5.0142 0.0251

A model in which the counts depend on all two way interactions seems ap-

propriate. Note that the least significant interaction is between the defendant’s

skin ‘colour’ and death penalty, but that dropping this term does not seem to

be justified (AIC also suggests leaving it in).

(c) From the summary table it is clear that the strongest and most significant as-

sociation is between skin colour of victim and defendant: blacks kill blacks

and whites kill whites, for the most part. Next in terms of significance and

strength of effect is the association between victims colour, and death penalty:

the death penalty is less likely if the victim is black. Finally, being black is

associated with an increased likelihood of being sentenced to death, once these

other associations have been taken into account. Most of these effects can be

ascertained by careful examination of the original table, but their significance

and the relative strength of the effects are striking results from the modelling.

4.
∫ µi

yi

yi − z

φz
dz =

1

φ
[yi log(z)− z]µi

yi

=
1

φ
[yi log(µi/yi)− µi + yi]

Since the quasi likelihood of the saturated model is zero, the corresponding de-

viance is simply

2yi log(yi/µi)− 2(yi − µi),

which corresponds to the Poisson deviance.

5.
∑

i wi(yi −Xiβ)2 ≡
∑

i(ỹi − X̃iβ)2 where ỹi =
√

wiyi and X̃ij =
√

wiXij .

Hence re-using the results from section 1.3.7 we have (X̃TX̃)−1X̃Tỹ. Re-writing

this in terms of X and W yields the required result.

6.(a) E(zi) = g′(µi)(E(yi)− µi) + ηi = 0 + Xiβ

CHAPTER 2 343

(b)

var(zi) = var {g′(µi)yi}
= g′(µi)

2var(yi)

= g′(µi)
2V (µi)φ = w−1

i φ.

Furthermore, since the yi are independent, then so are the zi, so the covariance

matrix of the zi’s is W−1φ, as required.

(c) From the previous question we have that β̂ = (XTWX)−1XTWz. So, by

the results of A.2 on transformation of covariance matrices, we have that the

covariance matrix of β̂ is

(XTWX)−1XTWW−1WX(XTWX)−1φ = (XTWX)−1φ.

Similarly,

E(β̂) = (XTWX)−1XTWE(z) = (XTWX)−1XTWXβ = β.

(d) If XTWz tends to multivariate normality than so must β̂. Hence, in the large

sample limit, β̂ ∼ N(β, (XTWX)−1φ). Of course in practical application of

GLMs we calculate z and W using β̂, rather than β, but as sample size tends

to infinity β̂ → β, so the result still holds.

7. y<- c(12,14,33,50,67,74,123,141,165,204,253,246,240)

t<-1:13

X <- cbind(rep(1,13),t,tˆ2) # model matrix

mu <- y;eta <- log(mu) # initial values

ok <- TRUE

while (ok) {

evalaute pseudodata and weights

z <- (y-mu)/mu + eta

w <- as.numeric(mu)

fit weighted working linear model

z <- sqrt(w)*z; WX <- sqrt(w)*X

beta <- coef(lm(z˜WX-1))

evaluate new eta and mu

eta.old <- eta

eta <- X%*%beta

mu <- exp(eta)

test for convergence...

if (max(abs(eta-eta.old))<1e-7*max(abs(eta))) ok <- FALSE

}

plot(t,y);lines(t,mu) # plot fit

8.(a)
1

E(ci)
=

1

admi
+ t

(b) m <- 1

b <- glm(Consumption.Rate˜I(1/Grouse.Densityˆm),

family=quasi(link=inverse,variance=mu),data=harrier)

344 SOLUTIONS TO EXERCISES

(c) plot(harrier$Grouse.Density,residuals(b))

. . . the plot shows a clear pattern if m = 1, and the parameter estimates lead to

a rather odd curve.

(d) Re-using the code from (b) with different m values, suggests that m ≈ 3.25
produces the lowest deviance.

(e) pd <- data.frame(Grouse.Density = seq(0,130,length=200))

pr <- predict(b,newdata=pd,se=TRUE)

with(harrier,plot(Grouse.Density,Consumption.Rate))

lines(pd$Grouse.Density,1/pr$fit,col=2)

lines(pd$Grouse.Density,1/(pr$fit-pr$se*2),col=3)

lines(pd$Grouse.Density,1/(pr$fit+pr$se*2),col=3)

(f) ll <- function(b,cr,d)

evalates -ve quasi- log likelihood of model

b is parameters, cr is consumption, d is density

{ ## get expected consumption...

dm <- dˆb[3]

Ec <- exp(b[1])*dm/(1+exp(b[1])*exp(b[2])*dm)

appropriate quasi-likelihood...

ind <- cr>0 ## have to deal with cr==0 case

ql <- cr - Ec

ql[ind] <- ql[ind] + cr[ind]*log(Ec[ind]/cr[ind])

-sum(ql)

}

Now fit model ...

fit <- optim(c(log(.4),log(10),3),ll,method="L-BFGS-B",

hessian=TRUE,cr=harrier$Consumption.Rate,

d=harrier$Grouse.Density)

and plot results ...

b <- fit$par

d <- seq(0,130,length=200); dm <- dˆb[3]

Ec <- exp(b[1])*dm/(1+exp(b[1])*exp(b[2])*dm)

with(harrier,plot(Grouse.Density,Consumption.Rate))

lines(d,Ec,col=2)

9. death <- as.numeric(ldeaths)

month <- rep(1:12,6)

time <- 1:72

ldm <- glm(death ˜ sin(month/12*2*pi)+cos(month/12*2*pi),

family=poisson(link=identity))

plot(time,death,type="l");lines(time,fitted(ldm),col=2)

summary(ldm)

plot(ldm)

The model is clearly inadequate: massive over-dispersion and clear pattern in the

residuals. Probably residual autocorrelation should be modelled properly here,

reflecting the time-series nature of the data.

10. y<- c(12,14,33,50,67,74,123,141,165,204,253,246,240)

t<-1:13

b <- glm(y˜t + I(tˆ2),family=poisson)

CHAPTER 3 345

log.lik <- b1 <- seq(.4,.7,length=100)

for (i in 1:100)

{ log.lik[i] <- logLik(glm(y˜offset(b1[i]*t)+I(tˆ2),

family=poisson))

}

plot(b1,log.lik,type="l")

points(coef(b)[2],logLik(b),pch=19)

abline(logLik(b)-qchisq(.95,df=1),0,lty=2)

From the resulting plot, the 95% CI is (0.43,0.68), slightly wider than the (0.47,0.65)

found earlier, but in this case almost symmetric. One key difference between

these intervals and the intervals covered in the text, is that they are not necessar-

ily symmetric. Another is that parameter values within the interval always have

higher likelihood than those outside it, and a third is that they are invariant to

re-parameterization.

B.3 Chapter 3

1. ## polynomial fits ...

xx <- seq(min(x),max(x),length=200)

plot(x,y)

b<-lm(y˜poly(x,5))

lines(xx,predict(b,data.frame(x=xx)))

b<-lm(y˜poly(x,10))

lines(xx,predict(b,data.frame(x=xx)),col=2)

spline fits ...

sb <- function(x,xk) { abs(x-xk)ˆ3}

q<-11

xk<-((1:(q-2)/(q-1))*10)ˆ.5

lazy person’s formula construction ...

form<-paste("sb(x,xk[",1:(q-2),"])",sep="",collapse="+")

form <- paste("y˜x+",form)

b<-lm(formula(form))

lines(xx,predict(b,data.frame(x=xx)),col=3)

Note the wild behaviour of the order 10 polynomial, compared to the much better

behaviour of the spline model of the same rank.

The difference in behaviour of the two rank 11 models is perhaps unsurprising.

The theoretical justification for polynomial approximations of unknown functions

would probably be Taylor’s theorem: but this is concerned with getting good ap-

proximations in the vicinity of some particular point of interest: it is clear from

the theorem that the approximation will eventually become very poor as we move

away from that point. The theoretical justifications for splines are much more

concerned with properties of the function over the whole region of interest.

2. ## x,y, and xx from previous question

b1 <- lm(form)

plot(x,y)

lines(xx,predict(b1,data.frame(x=xx)),col=4)

X <- model.matrix(b1) # extract model matrix

346 SOLUTIONS TO EXERCISES

beta <- solve(t(X)%*%X,t(X)%*%y,tol=0)

b1$coefficients <- beta # trick for simple prediction

lines(xx,predict(b1,data.frame(x=xx)),col=5)

. . . upping the basis dimension to 11, makes the normal equations estimates per-

form very badly.

3. pls <- function(x,y,m=10,lambda=1,order=2)

{ n <- length(x)

xk <- seq(min(x),max(x),length=m) # knot locations

X <- matrix(0,n,m) # model matrix

for (i in 1:m) X[,i] <- approx(xk,diag(m)[,i],x)$y

D <- diff(diag(m),differences=order) # sqrt penalty matrix

Xa <- rbind(X,lambda*D) # augmented model matrix

b<-lm(c(y,rep(0,m-order))˜Xa-1) # fit model

edf<-sum(influence(b)$hat[1:n]) # effective d.o.f.

fv<-fitted(b)[1:n]

rss <- sum((y-fv)ˆ2)

list(gcv=rss/(n-edf)ˆ2,edf=edf,fv=fv,coef=coef(b),xk=xk)

}

Example (at approx GCV optimum lambda)

library(MASS)

b <- pls(mcycle$time,mcycle$accel,m=20,lambda=.8)

plot(mcycle$time,accel);

lines(mcycle$time,b$fv)

4.

Sp = ‖y −Xβ‖2 + λβTSβ

= (y −Xβ)T (y −Xβ) + λβTSβ

= yTy − 2βTXTy + βT
(

XTX + λS
)

β.

Differentiating Sp w.r.t. β and setting to zero results in the system of equations

(XTX + λS)β̂ = XTy,

which yields the required result.

5. The result follows from the fact that the upper left n×n submatrix of X̃(X̃TX̃)−1X̃T

is X(XTX + S)−1XT, as the following shows:

X̃(X̃TX̃)−1X̃T =

[

X

B

]

(XTX + S)−1
[

XT BT
]

=

[

X(XTX + S)−1XT X(XTX + S)−1BT

B(XTX + S)−1XT B(XTX + S)−1BT

]

6. Zero. The most complex model will always be chosen, as this will allow the data

to be fitted most closely (only for a set of data configurations of probability zero

is this not true — for example data lying exactly on a straight line).

7. Differentiating the basis expansion for f , we get f ′′(x) = βTd(x) where dj(x) =

CHAPTER 4 347

b′′j(x). Using the fact that a scalar is its own transpose we then have that:
∫

f ′′(x)2dx =

∫

βTd(x)d(x)Tβdx = βTSβ

where

S =

∫

d(x)d(x)Tdx.

8.

∫
(

∂2f

∂x2

)2

+ 2

(

∂2f

∂x∂z

)2

+

(

∂f2

∂z2

)2

dxdz =

∫
(

∂2f

∂x2

)2

dxdz + 2

∫
(

∂2f

∂x∂z

)2

dxdz +

∫
(

∂f2

∂z2

)2

dxdz

Treating each integral on the r.h.s. in a similar way to the integral in the previous

question we find that the penalty can be written as βTSβ where

S =

∫

dxx(x, z)dxx(x, z)T+2dxz(x, z)dxz(x, z)T+dzz(x, z)dzz(x, z)Tdxdy.

Here the jth element of dxz(s, z) is ∂2bj/∂x∂z, with similar definitions for dxx
and dzz . Obviously this sort of argument can be applied to all sorts of penalties

involving integrals of sums of squared derivatives.

B.4 Chapter 4

1. Consider the spline defined by (4.2). At knot position xj , we require that the

derivative at xj of the section of cubic to the left of xj matches the derivative

at xj of the section of cubic to the right of xj . Writing this condition out in full

yields

− βj
hj

+
βj+1

hj
+ δj

hj
6

+ δj+1
3hj
6
− δj+1

hj
6

=

− βj+1

hj+1
+

βj+2

hj+1
− δj+1

3hj+1

6
+ δj+1

hj+1

6
− δj+2

hj+1

6

and simple re-arrangement leads to

1

hj
βj −

(

1

hj
+

1

hj+1

)

βj+1 +
1

hj+1
βj+2 =

hj
6

δj +

(

hj
3

+
hj+1

3

)

δj+1 +
hj+1

6
δj+2.

With the additional restriction that δ1 = δk = 0, this latter system repeated for

j = 1, . . . , k − 2 is (4.3).

2.(a) Differentiating (4.2) twice, yields

f ′′(x) = δj(xj+1 − x)/hj + δj+1(x− xj)/hj , xj ≤ x ≤ xj+1.

348 SOLUTIONS TO EXERCISES

By inspection this can be re-written in the required form.

(b) Writing d(x) as the vector with ith element di+1(x) (the first and last di’s
have coefficients zero, so are of no interest), it is easy to show (e.g. exercise 7,

Chapter 3), that
∫

f ′′(x)2dx = δ−T

∫

d(x)d(x)Tdxδ−.

Since each di(x) is non-zero over only 2 intervals, it is clear that
∫

d(x)d(x)Tdx
is tridiagonal, and it is also obviously symmetric, by construction. The (i−1)th

leading diagonal element is given by
∫ xi+1

xi−1

di(x)2dx =

[

(x− xi−1)
3

3h2
i−1

]xi

xi−1

−
[

(xi+1 − x)3

3h2
i

]xi+1

xi

=
hi−1

3
+

hi
3

,

where i runs from 2 to k − 1. In the same vein, the off diagonal elements

(i− 1, i) and (i, i− 1) are given by:
∫ xi

xi−1

di(x)di−1(x) =

∫ xi

xi−1

x− xi−1

hi−1

xi − x

hi−1
dx =

hi−1

6
.

In other words
∫

d(x)d(x)Tdx = B, as required.

(c) From (4.3) we have that δ− = B−1Dβ, form which the result follows imme-

diately by substitution.

3.

E(‖y −Ay‖2) = E(‖µ+ ε−Aµ−Aε‖2)
= (µ+ ε−Aµ−Aε)T(µ+ ε−Aµ−Aε)

= µTµ− µTAµ+ µTAAµ+

E(εTε)− 2E(εTAε) + E(εTAAε)

= bTb + nσ2 − 2tr (A) σ2 + tr (AA)σ2

where E(εTAε) = E(tr
(

εTAε
)

) = E(tr
(

AεεT
)

) = tr
(

Aσ2
)

, and similar

have been used.

4. For binary random variables we have that,

E{(yi − µi)
2} = E(y2

i)− 2µiE(yi) + E(µ2
i) = µ− 2µ2 + µ = µ− µ2,

and V (µi) = µi(1− µi). Substituting into the expression to be evaluated yields,

n
∑

i 1

{n− tr (A)}2 =
n2

{n− tr (A)}2 ,

as required. So the expected value of E(Vpg) → n2/{n − tr (A)}2 as n → ∞,

provided that µ̂ is consistent.

5.(a) In the regular parameterization:

E(β̂) = (XTX + λS)−1XT
E(y)

= (XTX + λS)−1XTXβ.

CHAPTER 4 349

In the natural parameterization this becomes:

E(β̂′′) = (I + λD)−1β′′

So

bias(β̂′′i) = −β′′i λDii/(1 + λDii).

So if β′′i = 0 then its estimator is unbiased. Equally if the parameter is unpenal-

ized because λDii = 0 then the estimator is unbiased. Clearly the bias will be

small for small true parameter value or low penalization: it is only moderate or

strongly penalized model components of substantial magnitude that are subject

to substantial bias.

(b)

E{(β̂i − βi)
2} = E{(β̂i − E(β̂i) + E(β̂i)− βi)

2}
= E{(β̂i − E(β̂i))

2}+ E{(E(β̂i)− βi)
2}

+E{(β̂i − E(β̂i))(E(β̂i)− βi)}
= var(β̂i) + bias(β̂i)

2 + 0

(c) So the MSE, M , of βi (natural parameterization) is

M =
σ2

(1 + λDii)2
+

(λDii)
2β2
i

(1 + λDii)2
=

σ2 + (λDiiβi)
2

(1 + λDii)2

this expression makes it rather clear how increasing λ decreases variance while

increasing bias.

(d) Writing

M

σ2
=

1 + k2r

(1 + k)2

where λDii = k and β2
i /σ2 = r, it’s clear that M/σ2 (and hence M) is

minimized by choosing λ so that k = 1/r, in which case M = σ2r/(1 + r).
In the natural parameterization the unpenalized estimator variance (and hence

unpenalized MSE) is σ2, and σ2r/(1 + r) is clearly always less than this. If

λ could be chosen to minimize the MSE for a particular parameter, then from

the preceding formulae, it is clear that small magnitude βi’s would lead to high

penalization and MSE dominated by the bias term, while large magnitude βi’s
would be lightly penalized, with the MSE dominated by the variance.

(e) In the natural parameterization the Bayesian prior variance for βi is σ2/(λiDii).
Since the prior expected value (for penalized terms) is 0, this means that E(β2

i) =
σ2/(λiDii) according to the prior. If this is representative of the typical size of

β2
i then the typical size of the bias(β̂i)

2 would be:

λDiiσ
2

(1 + λDii)2
,

implying that the squared bias should typically be bounded above by something

like σ2/4.

350 SOLUTIONS TO EXERCISES

6.(a) The influence matrix for this problem is obviously A = (I + λI)−1. Hence

tr (A) = n/(1 + λ) and µi = yi/(1 + λ). Substituting into the expression

for the OCV or GCV scores results in Vo = Vg =
∑

i y
2
i /n, which does not

depend on λ.

(b) If we were to drop a yi from the model sum of squares term, then the only

thing influencing the estimate of µi would be the penalty term, which would

be minimized by setting µi = 0, whatever (positive) value λ takes. This com-

plete decoupling, where each µi is influenced only by its own yi, will clearly

cause cross validation to fail: if we leave out yi then the corresponding µi is

always estimated as zero, since the other data have no influence on it, and this

behaviour occurs for any possible value of λ. In a sense this is unsurprising,

since there is actually no covariate in this problem, and hence nothing to indi-

cate which yi or µi values should be close in value.

(c) From the symmetry around x2 it suffices to examine only the integral of the

penalty from x1 to x2. Without loss of generality we can take x1 to be 0. If

b is the slope of the line segment joining (x1 = 0, µ1 = µ∗) to (x2, µ2) then

µ2 = µ∗ + bx2, and it is simpler to work in terms of b, initially. So

2P =

∫ x3

x1

µi(x)2dx = 2

∫ x2

0

(µ∗ + bx)2dx

so that

P = µ∗2x2 + µ∗bx2
2 + b2x3

2/3.

To find the b minimizing P , set ∂P∂b = 0, which implies b = −3µ∗/(2x2) and

hence µ2 = −µ∗/2.

So, consider a set of 3 adjacent points with roughly similar yi and µi values:

if we omit the middle point from the fitting, then the action of the penalty will

send its µi estimate to the other side of zero, from its neighbours. This is a

rather unfortunate tendency. It means that the missing datum will always be

better predicted with a high λ than with a lower one, since the higher λ will

tend to shrink the µi for the included data towards zero, which will mean that

the µi for the omitted datum will also be closer to zero, and hence less far

from the omitted datum value. Hence cross validation will have the patholog-

ical tendency to always select the model µi = 0 ∀ i, an effect which can be

demonstrated practically!

(d) The first derivative penalty does not suffer from the problems of the other two

penalties. In this case the action of the penalty is merely to try and flatten

µ(x) in the vicinity of an omitted datum: increased flattening with increased

λ generally pulls µ(x) away from the omitted datum, in the way that cross

validation implicitly assumes will happen.

(e) Generally, penalized regression smoothers can not decouple in the manner of

the smoothers considered in this question: because each smoother has far fewer

parameters than data, each µi is necessarily dependent on several yi, rather than

just one: it is simply not possible for the penalty to do something bizarre to one

µi while leaving the others unchanged.

CHAPTER 4 351

7.(a) library(splines)

pspline.XB <- function(x,q=10,m=2,p.m=2)

Get model matrix and sqrt Penalty matrix for P-spline

{ # first make knot sequence, k

k <- seq(min(x),max(x),length=q-m)

dk <- k[2]-k[1]

k <- c(k[1]-dk*((m+1):1),k,k[q-m]+dk*(1:(m+1)))

now get model matrix and root penalty

X <- splineDesign(k,x,ord=m+2)

B <- diff(diag(q),difference=p.m)

list(X=X,B=B)

}

(b) n<-100

x <- sort(runif(n))

ps <- pspline.XB(x,q=9,m=2,p.m=2)

par(mfrow=c(3,3)) # plot the original basis functions

for (i in 1:9) plot(x,ps$X[,i],type="l")

(c) S <- t(ps$B)%*%ps$B

es <- eigen(S);U <- es$vectors

XU <- ps$X%*%U # last p.m cols are penalty null space

par(mfrow=c(3,3)) # plot penalty eigenbasis functions

for (i in 1:9) plot(x,XU[,i],type="l")

(d) qrx <- qr(ps$X) # QR of X

R <- qr.R(qrx)

RSR <- solve(t(R),S);RSR <- t(solve(t(R),t(RSR)))

ersr <- eigen(RSR)

U <- ersr$vectors

Q <- qr.Q(qrx)

QU <- Q%*%U

par(mfrow=c(3,3)) # plot the natural basis functions

for (i in 1:9) plot(x,QU[,i],type="l")

8.(a) The following answers (a) and (b). Note that rss is only returned in order to
facilitate question 9.

fit.wPs <- function(y,X,B,lambda=0,w=rep(1,length(y)))

fit to y by weighted penalized least squares, X is

model matrix, B is sqrt penalty, lambda is smothing p.

{ w <- as.numeric(wˆ.5)

n <- nrow(X)

X<-rbind(w*X,sqrt(lambda)*B)

y<-c(w*y,rep(0,nrow(B)))

b <- lm(y˜X-1) # actually estimate model

trA <- sum(influence(b)$hat[1:n])

rss <- sum((y-fitted(b))[1:n]ˆ2)

list(trA=trA,rss=rss,b=coef(b))

}

fitPoiPs <- function(y,X,B,lambda=0)

Fit Poisson model with log-link by P-IRLS

352 SOLUTIONS TO EXERCISES

{ mu <- y;mu[mu==0] <- .1

eta <- log(mu)

converged <- FALSE

dev <- ll.sat <- sum(dpois(y,y,log=TRUE))

while (!converged) {

z <- (y-mu)/mu + eta

w <- mu

fPs <- fit.wPs(z,X,B,lambda,w)

eta <- X%*%fPs$b

mu=exp(eta)

old.dev <- dev

dev <- 2*(ll.sat-sum(dpois(y,mu,log=TRUE)))

if (abs(dev-old.dev)<1e-6*dev) converged <- TRUE

}

list(dev=dev,rss=fPs$rss,trA=fPs$trA,b=fPs$b,fv=mu)

}

(c) # set up P-spline using code from Q 7.(a)

library(splines)

ps <- pspline.XB(x,q=10,m=2,p.m=2)

lambda <- 1e-4;reps <- 60

sp <- trA <- gcv <- rep(0,reps)

for (i in 1:reps) { # loop through trial s.p.s

fps <- fitPoiPs(y,psX,psB,lambda=lambda)

trA[i] <- fps$trA;sp[i] <- lambda

gcv[i] <- n*fps$dev/(n-trA[i])ˆ2

lambda <- lambda*1.3

}

plot(trA,gcv,type="l")

fps1 <- fitPoiPs(y,psX,psB,lambda=sp[gcv==min(gcv)])

plot(x,y);lines(x,fps1$fv)

9. Following on from Q.8, the following code estimates k and uses it in a modified
GCV score.

k <- fps1$rss - fps1$dev

lambda <- 1e-4;reps <- 60

sp <- trA <- gcv <- rep(0,reps)

for (i in 1:reps) {

fps <- fitPoiPs(y,psX,psB,lambda=lambda)

trA[i] <- fps$trA;sp[i] <- lambda

gcv[i] <- n*(fps$dev+k)/(n-trA[i])ˆ2

lambda <- lambda*1.3

}

fps2 <- fitPoiPs(y,psX,psB,lambda=sp[gcv==min(gcv)])

lines(x,fps2$fv,col=2) # added to Q8 plot

Repeated simulation of the question 8/9 example, suggests that the modified GCV

score seldom gives very different results to the unmodified version, although, of

course, it tends to smooth a little less.

10. eta <- function(r)

{ # thin plate spline basis functions

CHAPTER 4 353

ind <- r<=0

eta <- r

eta[!ind] <- r[!ind]ˆ2*log(r[!ind])/(8*pi)

eta[ind] <- 0

eta

}

XSC <- function(x,xk=x)

{ # set up t.p.s., given covariates, x, and knots, xk

n <- nrow(x);k <- nrow(xk)

X <- matrix(1,n,k+3) # tps model matrix

for (j in 1:k) {

r <- sqrt((x[,1]-xk[j,1])ˆ2+(x[,2]-xk[j,2])ˆ2)

X[,j] <- eta(r)

}

X[,j+2] <- x[,1];X[,j+3] <- x[,2]

C <- matrix(0,3,k+3) # tps constraint matrix

S <- matrix(0,k+3,k+3)# tps penalty matrix

for (i in 1:k) {

C[1,i]<-1;C[2,i] <- xk[i,1];C[3,i] <- xk[i,2]

for (j in i:k) S[j,i]<-S[i,j] <-

eta(sqrt(sum((xk[i,]-xk[j,])ˆ2)))

}

list(X=X,S=S,C=C)

}

absorb.con <- function(X,S,C)

{ # get constraint null space, Z...

qrc <- qr(t(C)) # QR=C’, Q=[Y,Z]

m <- nrow(C);k <- ncol(X)

X <- t(qr.qty(qrc,t(X)))[,(m+1):k] # form XZ

now form Z’SZ ...

S <- qr.qty(qrc,t(qr.qty(qrc,t(S))))[(m+1):k,(m+1):k]

list(X=X,S=S,qrc=qrc)

}

fit.tps <- function(y,x,xk=x,lambda=0)

{ tp <- XSC(x,xk) # get tps matrices

tp <- absorb.con(tpX,tpS,tp$C) # make unconstrained

ev <- eigen(tp$S,symmetric=TRUE) # get sqrt penalty, rS

rS <- ev$vectors%*%(ev$valuesˆ.5*t(ev$vectors))

X <- rbind(tp$X,rS*sqrt(lambda)) # augmented model matrix

z <- c(y,rep(0,ncol(rS))) # augmented data

beta <- coef(lm(z˜X-1)) # fit model

beta <- qr.qy(tp$qrc,c(0,0,0,beta)) # backtransform beta

}

eval.tps <- function(x,beta,xk)

{ # evaluate tps at x, given parameters, beta, and knots, xk.

k <- nrow(xk);n <- nrow(x)

f <- rep(beta[k+1],n)

354 SOLUTIONS TO EXERCISES

for (i in 1:k) {

r <- sqrt((x[,1]-xk[i,1])ˆ2+(x[,2]-xk[i,2])ˆ2)

f <- f + beta[i]*eta(r)

}

f <- f + beta[k+2]*x[,1] + beta[k+3]*x[,2]

}

select some ‘knots’, xk ...

ind <- sample(1:n,100,replace=FALSE)

xk <- x[ind,]

fit model ...

beta <- fit.tps(y,x,xk=xk,lambda=.01)

contour truth and fit

par(mfrow=c(1,2))

xp <- matrix(0,900,2)

x1<-seq(0,1,length=30);x2<-seq(0,1,length=30)

xp[,1]<-rep(x1,30);xp[,2]<-rep(x2,rep(30,30))

truth<-matrix(test1(xp[,1],xp[,2]),30,30)

contour(x1,x2,truth)

fit <- matrix(eval.tps(xp,beta,xk),30,30)

contour(x1,x2,fit)

. . . obviously, many other solutions are possible.

11.(a)

A = QU(I + λD)−1UTQT.

(b)

tr (A) = tr
(

QU(I + λD)−1UTQT
)

= tr
(

(I + λD)−1UTQTQU
)

= tr
(

(I + λD)−1
)

=
k
∑

i=1

1

1 + λDii
.

(c)

‖y −Ay‖2 = yTy − 2yTAy + yTAAy

= yTy − 2ỹT(I + λD)−1ỹ + ỹT(I + λD)−2ỹ

where ỹ = UTQTy. Once yTy and ỹ have been evaluated, it’s clear that

‖y −Ay‖2 can be evaluated in O(k) operations, since D is diagonal, and ỹ

is of dimension k. So the GCV score can be calculated in O(k) operations, for

each trial λ.

B.5 Chapter 5

1.(a) data(hubble)

h1 <- gam(V˜s(D),data=hubble)

plot(h1) ## model is curved

h0 <- gam(V˜D,data=hubble)

CHAPTER 5 355

h1;h0

AIC(h1,h0)

The smooth (curved) model has a lower GCV and lower AIC score than the

straight line model. On the face of it there is a suggestion that velocities are

lower at very high distances than Hubble’s law suggests. This would imply an

accelerating expansion!

(b) gam.check(h1) # oh dear

h2 <- gam(V˜s(D),data=hubble,family=quasi(var=mu))

gam.check(h2) # not great, but better

h2

The residual plots for h1 are problematic: there is a clear relationship between

the mean and the variance. Perhaps a quasi-likelihood approach might solve

this. m2 does have somewhat better residual plots, although they are still not

perfect. All evidence for departure from Hubble’s has has now vanished.

2.(a) library(MASS)

par(mfrow=c(2,2))

mc <- gam(accel˜s(times,k=40),data=mcycle)

plot(mc,residuals=TRUE,se=FALSE,pch=1)

Note the way the fitted curve dips too early.

(b) mc1 <- lm(accel˜poly(times,11),data=mcycle)

termplot(mc1,partial.resid=TRUE)

Notice the wild oscillations, unsupported by the data.

(c) mc2 <- gam(accel˜s(times,k=11,fx=TRUE),data=mcycle)

plot(mc2,residuals=TRUE,se=FALSE,pch=1)

. . . not much worse than the penalized fit.

(d) mc3 <- gam(accel˜s(times,k=11,fx=TRUE,bs="cr"),data=mcycle)

plot(mc3,residuals=TRUE,se=FALSE,pch=1)

So, mc is a bit better than mc2 which is a bit better than mc3 which is much

better than mc1: i.e. the polynomial does much worse than any sort of spline,

while regression splines are a bit worse than penalized splines, however the

TPRS is almost as good as a penalized spline.

(e) par(mfrow=c(1,1))

plot(mcycle$times,residuals(mc))

The first 20 residuals have much lower variance than the remainder. In addition,

just after time 9 there is a substantial cluster of negative residuals, followed by

a cluster of positive residuals, suggesting that the model is not capturing the

mean acceleration correctly in this region: something which is also apparent in

the defualt plot of mc: the model dips too early.

(f) The following was run several times with different α values, before settling on
400 as the weight which causes the final ratio to be approximately 1.

mcw <- gam(accel˜s(times,k=40),data=mcycle,

weights=c(rep(400,20),rep(1,113)))

plot(mcw,residuals=TRUE,pch=1)

rsd <- residuals(mcw)

356 SOLUTIONS TO EXERCISES

plot(mcycle$times,rsd)

var(rsd[21:133])/var(rsd[1:20])

The model and residual plots are now very much better. Although this pro-

cedure was somewhat ad hoc it can only be better than ignoring the variance

problem in this case.

(g) The following uses the integrated squared third derivative as penalty (m=3).

gam(accel˜s(times,k=40,m=3),data=mcycle,

weights=c(rep(400,20),rep(1,113)))

the original model perhaps failed to go quite deep enough at the minimum of

the data: the new curve is fine. Further increase of m doesn’t result in much

further change.

3.(a) Fitting the model to Ij and evaluating the fitted values, µ̂∗, is equivalent to

forming µ̂∗ = AIj , but this is clearly just the jth column of A.

(b) library(MASS)

n <- nrow(mcycle)

A <- matrix(0,n,n)

for (i in 1:n) {

mcycle$y<-mcycle$accel*0;mcycle$y[i] <- 1

A[,i] <- fitted(gam(y˜s(times,k=40),data=mcycle,sp=mc$sp))

}

(Actually this could be done more efficiently using the fit=FALSE option in

gam.)

(c) rowSums(A) shows that all the rows sum to 1. This has to happen, since by

construction the model does not penalize the constant (or linear trend) part of

the model. Hence if b is a vector all elements of which have the same value, b,

then we require that b = Ab. This means that bi =
∑n
j=1 Aijbj ∀ i, but this is

equivalent to b = b
∑n
j=1 Aij ∀ i, which will only happen if

∑n
j=1 Aij = 1 ∀ i.

i.e. the rows of A must each sum to 1.

(d) plot(mcycle$times,A[,65],type="l",ylim=c(-0.05,0.15))

Notice how the kernel peaks at the time of the datum that it relates to.

(e) for (i in 1:n) lines(mcycle$times,A[,i])

The kernels all have rather similar typical widths: the heights vary according

to the number of data within that width. If many data are making a substantial

contribution to the weighted sum that defines the fitted value, then the weights

must be lower than if fewer data contribute.

(f) par(mfrow=c(2,2))

mcycle$y<-mcycle$accel*0;mcycle$y[65] <- 1

for (k in 1:4) plot(mcycle$times,fitted(

gam(y˜s(times,k=40),data=mcycle,sp=mc$sp*10ˆ(k-1.5))

),type="l",ylab="A[65,]",ylim=c(-0.01,0.12))

Low smoothing parameters lead to narrow, high kernels, while high smoothing

parameters result in wide low kernels.

CHAPTER 5 357

4.(a) w <- c(rep(400,20),rep(1,113))

m <- 40;par(mfrow=c(1,1))

sp <- seq(-13,12,length=m) ## trial log(sp)’s

AC1 <- EDF <- rep(0,m)

for (i in 1:m) { ## loop through s.p.’s

b <- gam(accel˜s(times,k=40),data=mcycle,weights=w,

sp=exp(sp[i]))

EDF[i] <- sum(b$edf)

AC1[i] <- acf(residuals(b),plot=FALSE)$acf[2]

}

plot(EDF,AC1,type="l");abline(0,0,col=2)

So the lag 1 residual autocorrelation starts positive declines to zero around the

GCV best fit model, and then becomes increasingly negative.

(b) At low EDF the model oversmooths and fails to capture the mean of the data.

This will lead to clear patterns in the mean of the residuals against time: the

ACF picks this residual trend up as positive autocorrelation.

(c) i. So the jth row of the n× n matrix A is j − (k + 1)/2 zeroes, followed by

k values, 1/k, followed by n− j − (k− 1)/2 further zeroes. i.e. something

like:
[

0 . . 0 1/k 1/k . . 1/k 0 . . 0
]

ii. Using Vε̂/σ2 = I − 2A + AA and slogging through, it turns out that

the leading diagonal elements (in the interior) are σ2(k − 1)/k, while the

elements on the sub and super diagonal (the lag 1 covariances) are−σ2(k+
1)/k2.

iii. The correlation at lag 1 is clearly

−
√

k + 1

k(k − 1)

So the residual autocorrelation is always negative, with magnitude decreas-

ing as k increases. Once k is small enough, oversmoothing is avoided, so

that the observed ACF reflects this residual autocorrelation, rather than the

inadequately modelled trend. It is this increasingly negative auto-correlation

that was seen in the mcycle example in part (a).

It is tempting to view negative autocorrelation in the residuals as an indica-

tion of overfitting, but the preceding analysis indicates that some care would

be needed to do this, since the true residual auto-correlation (at lag 1) should

always be negative.

5.(a) attach(co2s)

plot(c.month,co2,type="l")

(b) b<-gam(co2˜s(c.month,k=300,bs="cr"))

(c) pd <- data.frame(c.month=1:(n+36))

fv <- predict(b,pd,se=TRUE)

plot(pd$c.month,fv$fit,type="l")

lines(pd$c.month,fv$fit+2*fv$se,col=2)

lines(pd$c.month,fv$fit-2*fv$se,col=2)

358 SOLUTIONS TO EXERCISES

The prediction of smoothly and sharply decreasing CO2 is completely out of

line with the long term pattern in the data, and is driven entirely by the seasonal

dip at the end of the data.

(d) b2 <- gam(co2˜s(month,bs="cc")+s(c.month,bs="cr",k=300),

knots=list(month=seq(1,13,length=10)))

Notice how the knots argument has been used to ensure that the smooth of

month wraps round correctly: month 1 should be the same as month 13 (if it

ever occurred), not month 12.

(e) pd2 <- data.frame(c.month=1:(n+36),

month=rep(1:12,length.out=n+36))

fv <- predict(b2,pd2,se=TRUE)

plot(pd$c.month,fv$fit,type="l")

lines(pd$c.month,fv$fit+2*fv$se,col=2)

lines(pd$c.month,fv$fit-2*fv$se,col=2)

The predictions now look much more credible, since we now extrapolate the

long terms trend, and simply repeat the seasonal cycle on top of it. However,

it is worth noting that the smooth of cumulative month (the long term trend) is

still estimated to have rather high effective degrees of freedom, and it does still

wiggle alot, suggesting that extrapolation is still a fairly dangerous thing to do,

and we had better not rely on it very far into the future.

Note that an alternative way of extrapolating is to add knots beyond the range
of the observed data. e.g. with the argument

knots=list(...,c.month=seq(1,n+36,length=300))

Since the function value at these extra knots can only very subtly alter the shape

of the function in the range of the data, the resulting curves tend to have very

high associated standard errors: this is probably realistic!

6. There is no unique ‘right’ answer to this, but here is an outline of how to get
started. I looked at ir and dp lagged for 1 to 4 months. Everything suggested
dropping the effect of ir at lag 4 from the model, but everything else marginally
improved the model, so was left in. Here is the code.

n<-nrow(ipo)

create lagged variables ...

ipo$ir1 <- c(NA,ipo$ir[1:(n-1)])

ipo$ir2 <- c(NA,NA,ipo$ir[1:(n-2)])

ipo$ir3 <- c(NA,NA,NA,ipo$ir[1:(n-3)])

ipo$ir4 <- c(NA,NA,NA,NA,ipo$ir[1:(n-4)])

ipo$dp1 <- c(NA,ipo$dp[1:(n-1)])

ipo$dp2 <- c(NA,NA,ipo$dp[1:(n-2)])

ipo$dp3 <- c(NA,NA,NA,ipo$dp[1:(n-3)])

ipo$dp4 <- c(NA,NA,NA,NA,ipo$dp[1:(n-4)])

fit initial model and look at it ...

b<-gam(n.ipo˜s(ir1)+s(ir2)+s(ir3)+s(ir4)+s(log(reg.t))+

s(dp1)+s(dp2)+s(dp3)+s(dp4)+s(month,bs="cc")+s(t,k=20),

data=ipo,knots=list(month=seq(1,13,length=10)),

family=poisson,gamma=1.4)

par(mfrow=c(3,4))

CHAPTER 5 359

plot(b,scale=0)

summary(b)

re-fit model dropping ir4 ...

b1 <- gam(n.ipo˜s(ir1)+s(ir2)+s(ir3)+s(log(reg.t))+s(dp1)+

s(dp2)+s(dp3)+s(dp4)+s(month,bs="cc")+s(t,k=20),

data=ipo,knots=list(month=seq(1,13,length=10)),

family=poisson,gamma=1.4)

par(mfrow=c(3,4))

plot(b1,scale=0)

summary(b1)

residual checking ...

gam.check(b1)

acf(residuals(b1))

The final model has good residual plots that largely eliminate the auto-correlation.

In the above the degrees of freedom for t have been kept fairly low, in order to try

and force the model to use the other covariates in preference to t, and because too

much freedom for the smooth of time tends to lead to it being used to the point of

overfitting (lag 1 residual auto-correlation becomes very negative, for example).

The most noticeable feature of the plotted smooth effects is the way that IR at all

significant lags tends to be associated with an increase in IPO volume up to around

20%, after which there is a decline. If this reflects company behaviour, it certainly

makes sense. If IR averages are too low then there is a danger of investors not

being interested in IPOs, while excessively high IRs suggest that companies are

currently being undervalued excessively, so that unreasonably small amounts of

capital will be raised by the IPO. The other plots are harder to interpret!

7. The following is the best model I found.

wm<-gam(price˜s(h.rain)+s(s.temp)+s(h.temp)+s(year),

data=wine,family=Gamma(link=identity),gamma=1.4)

plot(wm,pages=1,residuals=TRUE,pch=1,scale=0)

acf(residuals(wm))

gam.check(wm)

predict(wm,wine,se=TRUE)

A Gamma family seems to produce acceptable residual plots. w.temp appears

to be redundant. Two way interactions between the weather variables only make

the GCV and AIC scores worse. gamma=1.4 is a prudent defence against over-

fitting, given that the sample size is so small. The effects are easy to interpret:

(i) more recent vintages are worth less than older ones; (ii) low harvest rainfall

and high summer temperatures are both associated with higher prices; (iii) there

is some suggestion of an optimum harvest temperature at 17.5C, but the possible

increases at very low and very high harvest temperatures make interpretation dif-

ficult (however this harvest effect substantially increases the proportion deviance

explained).

8. smooth.construct.tr.smooth.spec<-function(object,data,knots)

a truncated power spline constructor method function

object$p.order = null space dimension

{ m <- object$p.order

360 SOLUTIONS TO EXERCISES

if (m<1) stop("silly m supplied")

nk<-object$bs.dim-m-1 # number of knots

if (nk<=0) stop("k too small for m")

x <- get.var(object$term,data) # find the data

x.shift <- mean(x) # shift used to enhance stability

if (!is.null(knots)) # are there supplied knots?

k <- get.var(object$term,knots)

else k<-NULL

if (is.null(k)) # space knots through data

{ n<-length(x)

k<-quantile(x[2:(n-1)],seq(0,1,length=nk+2))[2:(nk+1)]

}

if (length(k)!=nk) # right number of knot?

stop(paste("there should be ",nk," supplied knots"))

x <- x - x.shift # basis stabilizing shift

k <- k - x.shift # knots treated the same!

X<-matrix(0,length(x),object$bs.dim)

for (i in 1:(m+1)) X[,i] <- xˆ(i-1)

for (i in 1:nk) X[,i+m+1]<-(x-k[i])ˆm*as.numeric(x>k[i])

object$X<-X # the finished model matrix

if (!object$fixed) # create the penalty matrix

{ object$S[[1]]<-diag(c(rep(0,m+1),rep(1,nk)))

}

object$rank<-nk # penalty rank

object$null.space.dim <- m+1 # dim. of unpenalized space

store "tr" specific stuff ...

object$knots<-k;object$m<-m;object$x.shift <- x.shift

get the centering constraint ...

object$C<-matrix(colSums(object$X),1,object$bs.dim)

object$df<-ncol(object$X)-1 # maximum DoF

if (object$by!="NA") # deal with "by" variable

{ by <- get.var(object$by,data) # find by variable

if (is.null(by)) stop("Can’t find by variable")

object$X<-by*object$X # form diag(by)%*%X

}

class(object)<-"tr.smooth" # Give object a class

object

}

Predict.matrix.tr.smooth<-function(object,data)

prediction method function for the ‘tr’ smooth class

{ x <- get.var(object$term,data)

x <- x - object$x.shift # stabilizing shift

m <- object$m; # spline order (3=cubic)

k<-object$knots # knot locations

nk<-length(k) # number of knots

X<-matrix(0,length(x),object$bs.dim)

for (i in 1:(m+1)) X[,i] <- xˆ(i-1)

for (i in 1:nk) X[,i+m+1] <- (x-k[i])ˆm*as.numeric(x>k[i])

CHAPTER 5 361

X # return the prediction matrix

}

Now run first data simulation in ?gam

Fit simulated data using the new class ...

m <- 2

b<-gam(y˜s(x0,bs="tr",m=m)+s(x1,bs="tr",m=m)+

s(x2,bs="tr",m=m)+s(x3,bs="tr",m=m))

plot(b,pages=1)

9.(a) plot(bfday,bfpop,type="l")

(b) ## prepare differenced and lagged data ...

bf$dn <- c(NA,bf$pop[2:n]-bf$pop[1:(n-1)])

lag <- 6

bf$n.lag <- c(rep(NA,lag),bf$pop[1:(n-lag)])

bf1 <- bf[(lag+1):n,] # strip out NAs, for convenience

fit model, note no intercept ...

b<-gam(dn˜n.lag+pop+s(log(n.lag),by=n.lag)+

s(log(pop),by=-pop)-1,data=bf1)

plot(b,pages=1,scale=-1,se=F) ## effects

plot(abs(fitted(b)),residuals(b))

acf(residuals(b))

So the per capita birth rate declines with increasing population, which is sen-

sible, given likely competition for resources. The mortality rate increases with

population, which is also plausible, although the decline at very high densi-

ties is surprising, and may not be real. Note that both functions are negative in

places: this is biologically nonsensical. The residual plots are not brilliant, and

there is residual auto-correlation at lag 1, so the model is clearly not great.

(c) fv <- bf$pop

e <- rnorm(n)*0 ## increase multiplier for noisy version

min.pop <- min(bf$pop);max.pop <- max(bf$pop)

for (i in (lag+1):n) { ## iteration loop

dn <- predict(b,data.frame(n.lag=fv[i-lag],pop=fv[i-1]))

fv[i] <- fv[i-1]+dn + e[i];

fv[i]<-min(max.pop,max(min.pop,fv[i]))

}

plot(bf$day,fv,type="l")

The amplitude without noise is rather low, but does improve with noise, how-

ever the feature that cycles tend to be smoother at the trough and noisier at

the peak is not re-captured, suggesting that something more complicated than

a constant variance model may be needed. Ideally we would fit the model with

constraints forcing the functions to be positive, and possibly monotonic: this is

possible, but more complicated (see ?pcls).

(d) Census data like these are rather unusual. In most cases the model has to deal

with measurement error as well, which rather invalidates the approach used in

this question.

362 SOLUTIONS TO EXERCISES

10.(a) pairs(chl)

Notice, in particular, that there is fairly good coverage of the predictors bath

and jul.day. Plotting histograms of individual predictors indicates very skewed

distributions for chl.sw and bath: raising these to the power of .4 and .25

respectively largely eliminates this problem.

(b) fam <- quasi(link=log,var=muˆ2)

cm <- gam(chl ˜ s(I(chl.swˆ.4),bs="cr",k=20)+

s(I(bathˆ.25),bs="cr",k=60)+s(jul.day,bs="cr",k=20),

data=chl,family=fam,gamma=1.4)

gam.check(cm)

summary(cm)

The given quasi family seems to deal nicely with the mean variance relation-

ship, and a log link is required to linearize the model.

(c) ## create fit and validation sets ...

set.seed(2)

n<-nrow(chl);nf <- floor(n*.9)

ind <- sample(1:n,nf,replace=FALSE)

chlf <- chl[ind,];chlv <- chl[-ind,]

fit to the fit set

smf<-gam(chl ˜ s(I(chl.swˆ.4),bs="cr",k=20)+

s(I(bathˆ.25),bs="cr",k=60)+s(jul.day,bs="cr",k=20),

data=chlf,family=fam,gamma=1.4)

evaluate prop. dev. explained for validation set

y <- chlv$chl;w <- y*0+1

mu <- predict(cmf,chlv,type="response")

pred.dev <- sum(fam$dev.resids(y,mu,w))

null.dev <- sum(fam$dev.resids(y,mean(y),w))

1-pred.dev/null.dev # prop dev. explained

I got proportion deviance explained of about 46% for the fitted models and for

predicting the validation set, suggesting that the model is not overfitting, and

does provide a useful improvement on the raw satellite data. More sophisti-

cated models based on tensor product smooths can be used to improve matters

further. For practical use of these models, it is always important to look at

their predictions over the whole spatial arena of interest, at a number of times

through the year, to check for artefacts (for example from extrapolating outside

the observed predictor space).

11. Based on ?gam here is a function to simulate data.

sim.data <- function(n=400,sig=2) {

x0 <- runif(n, 0, 1);x1 <- runif(n, 0, 1)

x2 <- runif(n, 0, 1);x3 <- runif(n, 0, 1)

f0 <- function(x) 2 * sin(pi * x)

f1 <- function(x) exp(2 * x)

f2<-function(x) 0.2*xˆ11*(10*(1-x))ˆ6+10*(10*x)ˆ3*(1-x)ˆ10

f3 <- function(x) 0*x

f <- f0(x0) + f1(x1) + f2(x2)

e <- rnorm(n, 0, sig)

y <- f + e

CHAPTER 6 363

return(data.frame(y=y,f=f,x0=x0,x1=x1,x2=x2,x3=x3))

}

Note that x3 has no effect on the response, while x0 has the weakest effect of the

significant predictors.

(a) reps <- 200

n.func<-4 # which term to examine

pv <- rep(0,reps) # array for observed p-values

for (i in 1:reps) {

dat <- sim.data(n=200,sig=2)

b<-gam(y˜s(x0)+s(x1)+s(x2)+s(x3,fx=FALSE),data=dat)

pv[i] <- summary(b)$s.pv[n.func]

}

pv <- sort(pv)

true <- (1:reps-.5)/reps

plot(true,pv);abline(0,1,col=2)

The resulting QQ-plot should look like a random scatter around the plotted

straight line, if the p-values are really from a uniform distribution. In this case

the points lie on a curve a little below the line: the p-values tend to be a little

too small — they reject the null too easily. So if a p-value says that a term is

not significant, it probably isn’t, but significance is a little harder to be sure

about.

If the code is re-run with fx=TRUE then the p-values behave as they should.

(b) The answer to (a) suggests basing hypothesis tests on un-penalized terms, in

order to get the p-values right. This will mean that all terms have rather wiggly

estimates, which might be expected to result in low power to reject a false

null (of no effect). This can be investigated by slight modification of the code

given for part (a). Set n.func<-1, in order to look at p-values for the first

term, which should be in the model, but only has a weak effect. Then compare

what proportion of p-values are less than, say, 0.05, (i) when the smoothing

parameter for the first term is estimated, and (ii) when the first term is replaced

by s(x0,fx=TRUE), so that it is unpenalized. When I did this (i) gave 90%

of p-values less than 0.05, while (ii) gave 80%. Hence there is some reduction

in power, but this is perhaps modest given the better behaviour of the p-values

without penalization.

B.6 Chapter 6

1.(a)

yij = α + bi + εij , bi ∼ N(0, σ2
b) εij ∼ N(0, σ2),

where yij is the weight of the jth piglet in the ith litter and the random variables

bi and εij are all mutually independent.

(b) H0 : σ2
b = 0 against H1 : σ2

b > 0. i.e. testing whether or not there is a maternal

component of piglet weight variability.

(c) There is very strong evidence (p ≈ 10−6) that σ2
b > 0. i.e. very strong evidence

for a maternal component to piglet weight variability.

364 SOLUTIONS TO EXERCISES

(d)

σ̂2
b = σ̂2

0 − σ̂2
1/5 = 0.592

2.(a)

ȳi· =
1

J

J
∑

j=1

yij = α + bi +

J
∑

j=1

cj +
1

J

J
∑

j=1

εij

= a + ei

where a = α +
∑

j cj and ei = bi +
∑

j εij/J . The ei’s are obviously inde-

pendent since the bi’s and εij’s are mutually independent and no two ei’s share

a bi or εij . Normality of the ei’s follows immediately from normality of the

bi’s and εij’s. Furthermore,

E(ei) = E(bi) +
1

J

J
∑

j=1

E(εij) = 0

and (using independence of the terms)

var(ei) = var(bi) +
1

J2

J
∑

j=1

var(εij) = σ2
b + σ2/J.

So σ2
b + σ2/J can be estimated from the residual sum of squares, RSS1, of

the least squares fit of the aggregated model to the ȳi· data:

σ̂2
b + σ̂2/J = RSS1/(I − 1)

⇒ σ̂2
b = RSS1/(I − 1)− σ̂2/J

where σ̂2 is given in the question.

(b) Calculations tediously similar to part (a), culminate in:

σ̂2
c = RSS2/(J − 1)− σ̂2/I

where RSS2 is the residual sum of squares for the 2nd aggregated model fit to

the ȳ·j data.

3.(a) H0 : σ2
a = 0 would be tested by ANOVA comparison of the fit of the given full

model, to the fit of the simplified model implied by H0,

yij = µ + βxij + εij , εij ∼ N(0, σ2).

H0 : β = 0 would be tested by comparing the fit of the full model with the fit

of the reduced model implied by this null,

yij = µ + ai + εij , ai ∼ N(0, σ2
a) and εij ∼ N(0, σ2),

using ANOVA, in the same manner as if both were fixed effect linear models.

(b) To estimate σ2
a and β the data would be averaged at each level of the random

CHAPTER 6 365

effect ai to yield

ȳi· = µ + ai + βx̄i· +
1

J

J
∑

j=1

εij

= µ + βx̄i· + ei

where ei ∼ N(0, σ2
a+σ2/J). The least squares fit of this model can be used to

estimate β (the full model fit can not be used, since β̂ will not be independent

of the ai). If RSS1 and RSS0 are the residual sums of squares for fitting the

full and reduced models respectively to the yij and ȳi· data, then the obvious

estimator of σ2
a is:

σ̂2
a =

RSS0

I − 2
− RSS1

J(IJ − I − 1)
.

4. (In this question the fixed effects model matrices resulting from any other valid

identifiability constraints on the fixed effects are fine, of course.)

(a)
























y11

y12

y21

y22

y31

y32

y41

y42

























=

























1 x11

1 x12

1 x21

1 x22

1 x31

1 x32

1 x41

1 x42

























[

α
β

]

+

























1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1

































a1

a2

a3

a4









+

























ε11
ε12
ε21
ε22
ε31
ε32
ε41
ε42

























with

ψ = I4σ
2
a

(b)

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

y11

y12

y21

y22

y31

y32

y41

y42

y51

y52

y61

y62

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 0
1 0
1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1
0 1
0 1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

»

α1

α2

–

+

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

4

b1

b2

b3

b4

b5

b6

3

7

7

7

7

7

7

5

+

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

ε11
ε12
ε21
ε22
ε31
ε32
ε41
ε42
ε51
ε52
ε61
ε62

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

with

ψ = I6σ
2
b

366 SOLUTIONS TO EXERCISES

(c)

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

y111
y112
y113
y121
y122
y123
y131
y132
y133
y211
y212
y213
y221
y222
y223
y231
y232
y233

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

»

µ
α2

–

+

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 0 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0 0
0 1 0 0 1 0 0 0 0
0 1 0 0 1 0 0 0 0
0 1 0 0 1 0 0 0 0
0 0 1 0 0 1 0 0 0
0 0 1 0 0 1 0 0 0
0 0 1 0 0 1 0 0 0
1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 0 1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

6

6

6

6

4

b1
b2
b3

(αb)11
(αb)12
(αb)13
(αb)21
(αb)22
(αb)23

3

7

7

7

7

7

7

7

7

7

7

7

5

+

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

ε111
ε112
ε113
ε121
ε122
ε123
ε131
ε132
ε133
ε211
ε212
ε213
ε221
ε222
ε223
ε231
ε232
ε233

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

ψ =

[

I3σ
2
b 0

0 I6σ
2
αb

]

5.(a)

Σx+z = E[(X + Z− µx − µz)(X + Z− µx − µz)T]

= E[(X− µx)(X− µx)T] + E[(Z− µz)(X− µx)T]

+ E[(X− µx)(Z− µz)T] + E[(Z− µz)(Z− µz)T]

= E[(X− µx)(X− µx)T] + E[(Z− µz)(Z− µz)T] (by ind.)

= Σx + Σz

(b) i.





























y11

y12

y13

y21

y22

y23

y31

y32

y33





























=





























1 x11

1 x12

1 x13

1 x21

1 x22

1 x23

1 x31

1 x32

1 x33





























[

α
β

]

+





























1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1

































b1

b2

b3



+





























ε11
ε12
ε13
ε21
ε22
ε23
ε31
ε32
ε33





























where b ∼ N(0, Iσ2
b) and ε ∼ N(0, Iσ2).

CHAPTER 6 367

ii. The covariance matrix of y is





























1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1

































1 0 0
0 1 0
0 0 1









1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1



σ2
b+





























1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1





























σ2

which is
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

σ2 + σ2
b

σ2
b

σ2
b

0 0 0 0 0 0

σ2
b

σ2 + σ2
b

σ2
b

0 0 0 0 0 0

σ2
b

σ2
b

σ2 + σ2
b

0 0 0 0 0 0

0 0 0 σ2 + σ2
b

σ2
b

σ2
b

0 0 0

0 0 0 σ2
b

σ2 + σ2
b

σ2
b

0 0 0

0 0 0 σ2
b

σ2
b

σ2 + σ2
b

0 0 0

0 0 0 0 0 0 σ2 + σ2
b

σ2
b

σ2
b

0 0 0 0 0 0 σ2
b

σ2 + σ2
b

σ2
b

0 0 0 0 0 0 σ2
b

σ2
b

σ2 + σ2
b

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

6.(a) Site and source should be fixed; Lot and Wafer should be random.

(b) The thickness for wafer l, lot k, site j and source i is

yijkl = µ + αi + βj + bk + c(k)l + εijkl

where bk ∼ N(0, σ2
b), c(k)l ∼ N(0, σ2

c), εijkl ∼ N(0, σ2) and all these r.v.s

are independent. The subscript, (k)l, is used to emphasize that wafer is nested

within lot to help clarify the practical fitting of the model (I haven’t indicated

all such nestings this way!).

(c) > options(contrasts=c("contr.treatment",

+ "contr.treatment"))

> m1 <- lme(Thickness˜Site+Source,Oxide,˜1|Lot/Wafer)

> plot(m1) # check resids vs. fitted vals

> qqnorm(residuals(m1)) # check resids for normality

> abline(0,sd(resid(m1)))# adding a "reference line"

> qqnorm(m1,˜ranef(.,level=1)) # check normality of b_k

> qqnorm(m1,˜ranef(.,level=2)) # check normality of c_(k)l

> m2 <- lme(Thickness˜Site+Source,Oxide,˜1|Lot)

> anova(m1,m2)

368 SOLUTIONS TO EXERCISES

Model df AIC BIC logLik Test L.Ratio p-value

m1 1 7 455.76 471.30 -220.88

m2 2 6 489.41 502.72 -238.70 1 vs 2 35.6444 <.0001

The checking plots suggest no problems at all in this case. m1 is the full model

fit and m2 is a reduced version, with no c(k)l terms. The anova(m1,m2)

command performs a generalized likelihood ratio test of the hypothesis that

the data were generated my m2 against the alternative that they were generated

by m1. The p value is so low in this case that, despite the problems with GLRT

tests in this context, we can be very confident in rejecting H0 and concluding

that m1 is necessary. i.e. there is evidence for wafer to wafer variability above

what is explicable by lot to lot variability.

> anova(m1)

numDF denDF F-value p-value

(Intercept) 1 46 240197.01 <.0001

Site 2 46 0.60 0.5508

Source 1 6 1.53 0.2629

There appears to be no evidence for site or source effects, and hence no need
for follow up multiple comparisons. Note that for unbalanced data you would
usually refit without the redundant fixed effects at this point, in order to gain a
little precision, but these data are balanced, so doing so would make no differ-
ence.

> intervals(m1)

Approximate 95% confidence intervals

Fixed effects:

lower est. upper

(Intercept) 1983.237346 1994.9166667 2006.595987

Site2 -2.327301 -0.2500000 1.827301

Site3 -1.243967 0.8333333 2.910634

Source2 -9.888949 10.0833333 30.055615

attr(,"label")

[1] "Fixed effects:"

Random Effects:

Level: Lot

lower est. upper

sd((Intercept)) 5.831891 10.94954 20.55808

Level: Wafer

lower est. upper

sd((Intercept)) 4.057118 5.982933 8.822887

Within-group standard error:

lower est. upper

2.914196 3.574940 4.385495

So the lot to lot variation is substantial, with a standard deviation of between

5.8 and 20.6, while the wafer to wafer variation, within a lot, is not much

CHAPTER 6 369

less, with standard deviation between 4.1 and 8.8. The unaccounted for ‘within

wafer’ variability seems to be a little less, having a standard deviation some-

where between 2.9 and 4.4. There is no evidence that site on the wafer or source

have any influence on thickness.

7. library(nlme)

attach(Machines)

interaction.plot(Machine,Worker,score) # note 6B

base model

m1<-lme(score˜Machine,Machines,˜1|Worker/Machine)

check it...

plot(m1)

plot(m1,Machine˜resid(.),abline=0)

plot(m1,Worker˜resid(.),abline=0)

qqnorm(m1,˜resid(.))

qqnorm(m1,˜ranef(.,level=1))

qqnorm(m1,˜ranef(.,level=2)) ## note outlier

try more general r.e. structure

m2<-lme(score˜Machine,Machines,˜Machine|Worker)

check it...

qqnorm(m2,˜resid(.))

qqnorm(m2,˜ranef(.,level=1)) ## still an outlier

simplified model...

m0 <- lme(score˜Machine,Machines,˜1|Worker)

formal comparison

anova(m0,m1,m2) ## m1 most appropriate

anova(m1) ## significant Machine effect

intervals(m1) ## Machines B and C better than A

remove problematic worker 6, machine B

Machines <- Machines[-(34:36),]

re-running improves plots, but conclusions same.

It seems that (6.6) is the most appropriate model of those tried, and broadly the

same conclusions are reached with or without Worker 6, on Machine B, which

causes outliers on several checking plots. See next question for comparison of

machines B and C.

8. Using the data without worker 6 machine B:

> intervals(m1,level=1-0.05/3,which="fixed")

Approximate 98.3333333333333% confidence intervals

Fixed effects:

lower est. upper

(Intercept) 48.084573 52.35556 56.62654

MachineB 6.402636 10.43100 14.45936

MachineC 9.735685 13.76405 17.79241

attr(,"label")

[1] "Fixed effects:"

> levels(Machines$Machine)

[1] "A" "B" "C"

> Machines$Machine<-relevel(Machines$Machine,"B")

370 SOLUTIONS TO EXERCISES

> m1a<-lme(score˜Machine,Machines,˜1|Worker/Machine)

> intervals(m1a,level=1-0.05/3,which="fixed")

Approximate 98.3333333333333% confidence intervals

Fixed effects:

lower est. upper

(Intercept) 58.3517968 62.786554 67.221311

MachineA -14.4593604 -10.430998 -6.402636

MachineC -0.9798778 3.333049 7.645975

attr(,"label")

[1] "Fixed effects:"

So, there is evidence for differences between machine A and the other 2, but not

between B and C, at the 5% level. However, depending on how economically sig-

nificant the point estimate of the B-C difference is, it might be worth conducting a

study with more workers in order to check whether the possible small difference

might actually be real.

9.(a) Physique and method would be modelled as fixed effects: the estimation of

these effects is of direct interest and we would expect to obtain similar es-

timates in a replicate experiment; the effect of these factors should be fixed

properties of the population of interest. Team would be modelled as a ran-

dom effect — team to team variation is to be expected, but the individual team

effects are not of direct interest and would be completely different if the exper-

iment were repeated with different gunners.

(b) If yijk denotes the number of rounds for team i, which physique j using method

k then a possible model is

yijk = µ + αj + βk + bi + εijk

where the bi are i.i.d. N(0, σ2
b) and the εijk are i.i.d. N(0, σ2). A more careful

notation might make explicit the nesting of team within build by, for example,

replacing bi by bi(j). An interaction between physique and method might also

be considered (as might a random two way interaction of method and team).

(c) > library(nlme);data(Gun) # R only

> options(contrasts=c("contr.treatment","contr.treatment"))

> plot(Gun$method,Gun$rounds)

> plot(Gun$Physique,Gun$rounds)

> m1 <- lme(rounds˜Method+Physique,Gun,˜1|Team)

> plot(m1) # fitted vs. resid plot

> qqnorm(residuals(m1))

> abline(0,m1$sigma) # add line of "perfect Normality"

> anova(m1)

numDF denDF F-value p-value

(Intercept) 1 26 2056.533 <.0001

Method 1 26 316.843 <.0001

Physique 2 6 1.227 0.3576

numDF denDF F-value p-value

(Intercept) 1 26 2056.533 <.0001

Method 1 26 316.843 <.0001

CHAPTER 6 371

Physique 2 6 1.227 0.3576

> m1 <- lme(rounds˜Method,Gun,˜1|Team)

> intervals(m1)

Approximate 95% confidence intervals

Fixed effects:

lower est. upper

(Intercept) 22.562759 23.588889 24.615019

Method -9.493963 -8.511111 -7.528259

Random Effects:

Level: Team

lower est. upper

sd((Intercept)) 0.5399411 1.101828 2.24844

Within-group standard error:

lower est. upper

1.092947 1.434451 1.882661

The residual plots appear quite reasonable in this case (although if you check

the random effects themselves these are not so good). Since there is no evi-

dence for an effect of Physique the only sensible follow up comparison would

compare methods: method one appears to lead to an average increase in firing

rate of between 7.5 and 9.5 rounds per minute relative to method 2 (with 95%

confidence). By contrast the team to team variability and within team variabil-

ity are rather low with 95% CIs on their standard deviations of (0.5,2.2) and

(1.1,1.9) respectively.

10.(a) library(nlme)

attach(Soybean)

m1<-lme(weight˜Variety*Time+Variety*I(Timeˆ2)+

Variety*I(Timeˆ3),Soybean,˜Time|Plot)

plot(m1) ## clear increasing variance with mean

(b) library(MASS)

m2<-glmmPQL(weight˜Variety*Time+Variety*I(Timeˆ2)+

Variety*I(Timeˆ3),data=Soybean,random=˜Time|Plot,

family=Gamma(link=log))

plot(m2) ## much better

(c) m0<-glmmPQL(weight˜Variety*Time+Variety*I(Timeˆ2)+

Variety*I(Timeˆ3),data=Soybean,random=˜1|Plot,

family=Gamma(link=log)) ## simpler r.e. structure

m3<-glmmPQL(weight˜Variety*Time+Variety*I(Timeˆ2)+

Variety*I(Timeˆ3),data=Soybean,random=˜Time+

I(Timeˆ2)|Plot,family=Gamma(link=log))

... m3 has more complex r.e. structure

Following not strictly valid, but gives a rough

quide. Suggests m2 is best...

AIC(m0,m2,m3)

summary(m2) ## drop Variety:Time

m4<-glmmPQL(weight˜Variety+Time+Variety*I(Timeˆ2)+

372 SOLUTIONS TO EXERCISES

Variety*I(Timeˆ3),data=Soybean,random=˜Time|Plot,

family=Gamma(link=log))

summary(m4) ## perhaps drop Variety:I(Timeˆ3)?

m5<-glmmPQL(weight˜Variety+Time+Variety*I(Timeˆ2)+

I(Timeˆ3),data=Soybean,random=˜Time|Plot,

family=Gamma(link=log))

summary(m5) ## don’t drop any more

AIC(m2,m4,m5) ## supports m4

intervals(m5,which="fixed")

So m4 or m5 are probably the best models to use, and both suggest that variety

P has a higher weight on average.

11.(a) g1<-gamm(weight ˜ Variety + s(Time) +

s(Time,by=as.numeric(Variety=="P")),data=Soybean,

family=Gamma(link=log), random=list(Plot=˜Time))

plot(g1$lme) ## standard mean variance plot

par(mfrow=c(1,3))

plot(g1$gam,residuals=TRUE,all.terms=TRUE) ## gam plot

The residual plots look fine. It seems that variety P increases its weight a little

more slowly than variety F (don’t forget that this is on the log scale).

(b) summary(g1$gam) ## evidence for variety dependence

could also do following

g2 <- gamm(weight˜s(Time),family=Gamma(link=log),

data=Soybean,random=list(Plot=˜Time))

g3 <- gamm(weight˜Variety+s(Time),family=Gamma(link=log),

data=Soybean,random=list(Plot=˜Time))

following only a rough guide, but also supports g1 ...

AIC(g1$lme,g2$lme,g3$lme)

The summary (in combination with the plotted effects) gives strong evidence

that variety P gives higher weights, with the difference decreasing slightly with

time. Fitting models without a smooth function of time as a correction for P,

or without any effect of Variety both give model fits that seem worse than the

original model fit according to the AIC of the working model at convergence

of the PQL iterations, confirming the implications of the summary.

(c) If varieties F and P have only slightly different trajectories through time, but

we use completely separate smooths for each, then both smooths will require a

similar relatively large number of degrees of freedom in order to represent the

time trajectory of each variety. On the other hand, if we model the trajectory

of P as F’s trajectory plus a correction, it is possible that this correction may

be very smooth, so that a good fit can be achieved without using up as many

degrees of freedom as would be needed for the same fit, using the completely

separate smooths. This is in fact what happens for the Soybean data.

Bibliography

Agresti, A. (1996). An Introduction to Categorical Data Analysis. New York: Wiley.

Akaike, H. (1973). Information theory and an extension of the maximum likelihood

principle. In B. Petran and F. Csaaki (Eds.), International Symposium on Informa-

tion Theory, Akadeemiai Kiadi, Budapest, Hungary., pp. 267–281.

Asseburg, C., S. Smout, J. Matthiopoulos, C. Fernández, S. Redpath, S. Thirgood,

and J. Harwood (2005). The functional response of a generalist predator. Preprint.

Augustin, N. H., D. L. Borchers, E. D. Clarke, S. T. Buckland, and M. Walsh (1998).

Spatio-temporal modelling of annual egg production of fish stocks using gener-

alized additive models. Canadian Journal of Fisheries and Aquatic Science 55,

2608–2621.

Baker, R. R. and M. A. Bellis (1993). Human sperm competition: ejaculate adjust-

ment by males and the function of masturbation. Animal behaviour 46, 861–885.

Borchers, D. L., S. T. Buckland, I. G. Priede, and S. Ahmadi (1997). Improving the

precision of the daily egg production method using generalized additive models.

Canadian Journal of Fisheries and Aquatic Science 54, 2727–2742.

Bowman, A. W. and A. Azzalini (1997). Applied Smoothing Techniques for Data

Analysis. Oxford University Press.

Breslow, N. E. and D. G. Clayton (1993). Approximate inference in generalized

linear mixed models. Journal of the American Statistical Association 88, 9–25.

Chambers, J. M. (1993). Linear models. In J. M. Chambers and T. J. Hastie (Eds.),

Statistical Models in S, pp. 95–144. Chapman & Hall.

Chambers, J. M. and T. J. Hastie (Eds.) (1993). Statistical Models in S. Chapman &

Hall.

Cox, D. R. and D. V. Hinkley (1974). Theoretical Statistics. Chapman & Hall.

Craven, P. and G. Wahba (1979). Smoothing noisy data with spline functions. Nu-

merische Mathematik 31, 377–403.

Davison, A. C. (2003). Statistical Models. Cambridge, UK: Cambridge University

Press.

de Boor (1978). A Practical Guide to Splines. New York: Springer.

Demmel, J. (1997). Applied Numerical Linear Algebra. Philadelphia: SIAM.

Dixon, C. E. (2003). Multi-dimensional modelling of physiologically and temporally

373

374 BIBLIOGRAPHY

structured populations. Ph. D. thesis, University of St Andrews.

Dobson, A. J. (2001). An Introduction to Generalized Linear Models (2nd ed.).

Chapman & Hall/CRC.

Duchon, J. (1977). Splines minimizing rotation-invariant semi-norms in solobev

spaces. In W. Schemp and K. Zeller (Eds.), Construction Theory of Functions of

Several Variables, Berlin, pp. 85–100. Springer.

Eilers, P. H. C. and B. D. Marx (1996). Flexible smoothing with B-splines and

penalties. Statistical Science 11(2), 89–121.

Eilers, P. H. C. and B. D. Marx (2003). Multivariate calibration with temperature

interaction using two-dimensional penalized signal regression. Chemometrics and

intelligent laboratory systems 66, 159–174.

Ellner, S. P., B. E. Kendall, S. N. Wood, E. McCauley, and C. J. Briggs (1997).

Inferring mechanism from time-series data: delay differential equations. Physica

D 110(3-4), 182–194.

Fahrmeir, L., T. Kneib, and S. Lang (2004). Penalized structured additive regression

for space-time data: a bayesian perspective. Statistica Sinica 14(3), 731–761.

Fahrmeir, L. and S. Lang (2001). Bayesian inference for generalized additive mixed

models based on markov random field priors. Applied Statistics 50, 201–220.

Faraway, J. J. (2004). Linear Models with R. Chapman & Hall/CRC.

Feller, W. (1957). An Introduction to Probability Theory and its Applications (2nd

ed.), Volume 1. New York: Wiley.

Freedman, W. L., B. F. Madore, B. K. Gibson, L. Ferrarese, D. D. Kelson, S. Sakai,

J. R. Mould, R. C. Kennicutt, H. C. Ford, J. A. Graham, J. P. Huchra, S. M. Hughes,

G. D. Illingworth, L. M. Macri, and P. B. Stetson (2001). Final results from the

hubble space telescope key project to measure the hubble constant. The Astrophys-

ical Journal (553), 47–72.

Gill, P. E., W. Murray, and M. H. Wright (1981). Practical Optimization. London:

Academic Press.

Golub, G. H., M. Heath, and G. Wahba (1979). Generalized cross validation as a

method for choosing a good ridge parameter. Technometrics 21(2), 215–223.

Golub, G. H. and C. F. van Loan (1996). Matrix Computations (3rd ed.). Baltimore:

Johns Hopkins University Press.

Green, P. J. and B. W. Silverman (1994). Nonparametric Regression and Generalized

Linear Models. Chapman & Hall.

Gu, C. (1992). Cross-validating non-gaussian data. Journal of Computational and

Graphical Statistics 1, 169–179.

Gu, C. (2002). Smoothing Spline ANOVA Models. New York: Springer.

Gu, C. and Y. J. Kim (2002). Penalized likelihood regression: general approximation

and efficient approximation. Canadian Journal of Statistics 34(4), 619–628.

Gu, C. and G. Wahba (1991). Minimizing gcv/gml scores with multiple smoothing

BIBLIOGRAPHY 375

parameters via the newton method. SIAM Journal on Scientific and Statistical

Computing 12(2), 383–398.

Hand, D. J., F. Daly, A. D. Lunn, K. J. McConway, and E. Ostrowski (1994). A

Handbook of Small Data Sets. Chapman & Hall.

Harville, D. A. (1976). Confidence intervals and sets for linear combinations of fixed

and random effects. Biometrics 32(2), 403–407.

Harville, D. A. (1977). Maximum likelihood approaches to variance component

estimation and to related problems. Journal of the American Statistical Associa-

tion 72(358), 320–340.

Hastie, T. and R. Tibshirani (1986). Generalized additive models (with discussion).

Statistical Science 1, 297–318.

Hastie, T. and R. Tibshirani (1990). Generalized Additive Models. Chapman & Hall.

Hastie, T. and R. Tibshirani (1993). Varying-coefficient models. Journal of the Royal

Statistical Society, Series B 55(4), 757–796.

Hastie, T. J. (1993). Generalized additive models. In J. Chambers and T. Hastie

(Eds.), Statistical Models in S. London: Chapman & Hall.

Horwood, J. (1993). The bristol channel sole (solea solea (l.)): A fisheries case study.

Advances in Marine Biology 29, 215–367.

Horwood, J. and M. G. Walker (1990). Determinacy of fecundity in sole (solea

solea) from the bristol channel. Journal of the Marine Biological Association of

the United Kingdom 70, 803–813.

Kim, Y. J. and C. Gu (2004). Smoothing spline gaussian regression: more scalable

computation via efficient approximation. Journal of the Royal Statistical Society,

Series B 66, 337–356.

Laird, N. M. and J. H. Ware (1982). Random-effects models for longitudinal data.

Biometrics 38, 963–974.

Lancaster, P. and K. Šalkauskas (1986). Curve and Surace Fitting: an introduction.

London: Academic Press.

Landau, S., I. C. Ellison-Wright, and E. T. Bullmore (2003). Tests for a difference

in timing of physiological response between two brain regions measured by using

functional magnetic resonance imaging. Applied Statistics 53(1), 63–82.

Lang, S. and D. Bresger (2004). Bayesian p-splines. Journal of Computational and

Graphical Statistics 13, 183–212.

Lin, X. and D. Zhang (1999). Inference in generalized additive mixed models using

smoothing splines. Journal of the Royal Statistical Society, Series B 61, 381–400.

Lindeberg, J. W. (1922). Eine neue herleitung des esponentialgesetzes in der

wahrscheinlichkeitsrechnung. Mathematische Zeitschrift 15, 211–225.

Lowry, M. and G. W. Schwert (2002). Ipo market cycles: Bubbles or sequential

learning? The Journal of Finance 67(3), 1171–1198.

Mallows, C. L. (1973). Some comments on cp. Technometrics 15, 661–675.

376 BIBLIOGRAPHY

Marx, B. D. and P. H. Eilers (1998). Direct generalized additive modeling with

penalized likelihood. Computational Statistics and Data Analysis 28, 193–209.

McCullagh, P. and J. A. Nelder (1989). Generalized Linear Models (2nd ed.). Lon-

don: Chapman & Hall.

Nelder, J. A. and R. W. M. Wedderburn (1972). Generalized linear models. Journal

of the Royal Statistical Society, Series A 135, 370–384.

Nicholson, A. J. (1954a). Compensatory reactions of populations to stresses and their

evolutionary significance. Australian Journal of Zoology 2, 1–8.

Nicholson, A. J. (1954b). An outline of the dynamics of animal populations. Aus-

tralian Journal of Zoology 2, 9–65.

O’Sullivan, F. B., B. Yandall, and W. Raynor (1986). Automatic smoothing of regres-

sion functions in generalized linear models. Journal of the American Statistical

Association 81, 96–103.

Parker, R. and J. Rice (1985). Discussion of silverman (1985). Journal of the Royal

Statistical Society, Series B 47(1).

Patterson, H. D. and R. Thompson (1971). Recovery of interblock information when

block sizes are unequal. Biometrika 58, 545–554.

Peng, R. D. and L. J. Welty (2004). The NMMAPSdata package. R News 4(2),

10–14.

Pinheiro, J. C. and D. M. Bates (2000). Mixed- Effects Models in S and S-PLUS.

New York: Springer-Verlag.

R Development Core Team (2005). R: A language and environment for statistical

computing. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-

900051-07-0.

Reinsch, C. H. (1967). Smoothing by spline functions. Numerische Mathematik 10,

177–183.

Rigby, R. A. and D. M. Stasinopoulos (2004). Generalized additive models for loca-

tion, scale and shape (with discussion). Applied Statistics 54, 1–38.

Ruppert, D., M. P. Wand, and R. J. Carroll (2003). Semiparametric Regression.

Cambridge University Press.

Schoenberg, I. J. (1964). Spline functions and the problem of graduation. Proced-

dings of the National Acadamy of Sciences 52, 947–950.

Silverman, B. W. (1985). Some aspects of the spline smoothing approach to non-

parametric regression curve fitting. Journal of the Royal Statistical Society, Series

B 47(1), 1–53.

Silvey, S. D. (1970). Statistical Inference. Chapman & Hall.

Smith, A. F. (1967). Diagnostic value of serum-creatinine-kinase in a coronary care

unit. Lancet 2, 178.

Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions

(with discussion). Journal of the Royal Statistical Society, Series B 36, 111–147.

BIBLIOGRAPHY 377

Stone, M. (1977). An asymptotic equivalence of choise of model by cross-validation

and akaike’s criterion. Journal of the Royal Statistical Society, Series B 39, 44–47.

Venables, B. and B. R. Ripley (2003). Modern Applied Statistics in S (4th ed.).

Springer.

Wahba, G. (1980). Spline bases, regularization, and generalized cross validation for

solving approximation problems with large quantities of noisy data. In E. Cheney

(Ed.), Approximation Theory III. London: Academic Press.

Wahba, G. (1983). Bayesian confidence intervals for the cross validated smoothing

spline. Journal of the Royal Statistical Society, Series B 45, 133–150.

Wahba, G. (1990). Spline models for observational data. Philadelphia: SIAM.

Wahba, G., Y. Wang, C. Gu, R. Klein, and B. Klein (1995). Smoothing spline

ANOVA for exponential families, with application to the Wisconsin epidemio-

logical The Annals of Statistics 23(6), 1865–1895.

Wang, Y. (1998a). Mixed effects smoothing spline analysis of variance. Journal of

the Royal Statistical Society, Series B 60, 159–174.

Wang, Y. (1998b). Smoothing spline models with correlated random errors. Journal

of the American Statistical Association 93(441), 341–348.

Watkins, D. S. (1991). Fundamentals of Matrix Computation. New York: John Wiley

and Sons.

Wood, S. N. (2000). Modelling and smoothing parameter estimation with multiple

quadratic penalties. Journal of the Royal Statistical Society, Series B 62, 413–428.

Wood, S. N. (2003). Thin plate regression splines. Journal of the Royal Statistical

Society, Series B 65, 95–114.

Wood, S. N. (2004). Stable and efficient multiple smoothing parameter estimation for

generalized additive models. Journal of the American Statistical Association 99,

673–686.

Wood, S. N. (2006). Low rank scale invariant tensor product smooths for generalized

additive mixed models. Biometrics.

Index

χ2 test, 70, 191

additive model, 131–135

fitting, 133

model matrix, 132

penalty, 132

age of Universe, 5

aggregate, 276

AIC, 182

GLMs, 67, 84

in general , 110–112

linear model, 50

AIC, 226

analysis of deviance, 68, 70, 85, 95

ANOVA, 15, 43, 55, 57, 279

decomposition of function, 202–204

anova, 43, 226

augmented linear model, 127, 133, 205, 216

autocorrelation, 315

B-spline, 148

basis, 148

backfitting, 209–211

basis, 142

B-spline, 148

choice of dimension, 157, 220

cubic regression, 123

cubic regression spline, 146

expansion, 120, 163

polynomial, 120

tensor product, 158–160

thin plate spline, 152

truncated power, 269

Bayesian covariance matrix, 181, 207

Bayesian smoothing model, 185–187, 309,

310

prior structure, 187

simulation from posterior, 190, 242, 256

unconditional posterior simulation, 257

binary data, 257

residual checking, 114

binomial distribution, 258

binomial family, 258

Bonferroni correction, 321

by variable, 165, 235, 238

and centering constraints, 312

canonical parameter, 62, 71

central limit theorem, 101, 188

Chebyshev’s inequality, 189

Choleski decomposition, 127, 328

concurvity, 176

confidence interval

and transformation, 10

Bayesian, 190

Bayesian unconditional, 198–200, 202

definition, 9

for smoothing parameter, 316

GLM, 68, 91

GLRT inversion, 118

linear model, 9, 14, 35

performance for GAM, 192–198

Wilk’s, 118

confounding, 176, 274

contingency tables, 92

contour, 56

contrast matrix, 47

Cook’s distance, 26

covariance matrix, 326

of linear transformation, 326

cross validation, 130

failure of, 214

general, see GCV

ordinary, see OCV

cubic regression spline, 146, 222

fitting, 127

model matrix, 124, 125

penalty, 146

penalty matrix, 127

INDEX 379

cubic spline, 122, 211

approximation properties, 144

natural, 142

penalty, 126, 144

quadratic penalty, 126

r.k. basis, 124

smoothest interpolant, 143

cyclic spline, 147, 222, 315

penalty, 147

daily temperature, 314

Datasets

AIDS in Belgium, 87, 118

belief in afterlife, 92

bird, 259

blowfly, 269

brain, 226

cairo, 315

chicago, 243

chl, 270

co2s, 267

engine wear, 124

Florida death penalty, 116

harrier, 117

heart attacks and CK, 81

hubble, 5, 265

ipo, 267

mack, 250

MASS

mcycle, 139, 265

Rubber, 56

nlme

Gun, 321

Loblolly, 298

Machines, 284, 303, 320

Oxide, 320

Rail, 280, 289, 298

Soybean, 322

R
InsectSprays, 57

ldeaths, 117

PlantGrowth, 42

trees, 58, 134, 137, 217

warpbreaks, 56

sole, 96, 305, 313

sperm.comp1, 22

sperm.comp2, 22, 31

wine, 268

design matrix, 11

deviance, 69

approximate distribution, 69

null, 83

proportion explained, 84

residual, 84

scaled, 69

EDF, 167, 200, 207

and basis dimension, 157, 220

matrix, 167

effective degrees of freedom, see EDF

eigen decomposition, 153, 329

eigenvalue, 329

eigenvector, 329

Euclidean norm, 12

exclude.too.far, 265

exponential family, 59, 62–63

mean, 62

variance, 63

extrapolation

dangers of, 267, 357, 362

F-ratio statistic, 15, 29, 70

F-test, 15, 43, 70, 191, 202, 233, 236, 279,

283

factor variables, 11, 36, 43

contrasts, 46

dummy variables, 11, 37

identifiability, 37

interactions, 40

use in R, 41–44

follow up comparisons, 321

formula, 44

I(), 27, 45

GAM, 119, 135–137, 163

as penalized GLM , 163–164

backfit, 208–211

Bayesian model, 185–187

non-linear functions, 190

posterior, 185, 187–190

prior, 187

bias, 214

coefficient estimators, 166, 181

confidence interval, 190

performance, 192–198

termwise, 195–198, 204

constraints, 181

380 INDEX

centering, 163

identifiability, 203–204

degrees of freedom, 166–167

distributional results, 185–191

fitting, 166

frequentist approximation, 185

hypothesis testing, 190, 200–202, 233,

236

unpenalized, 191, 202

influence matrix, 179

interation

smooth with factor, 165

large sample results, 187–190

model matrix, 164

motivation, 101

penalized log likelihood, 164, 165

proximity of penalized and unpenalized

versions, 201

scale estimation, 167–168

termwise p-values, 190–191, 226, 236

gam, 217, 220, 228, 230, 232, 233, 235, 238,

244, 245, 248, 251, 253, 255, 261

anova.gam, 225, 233, 235, 236, 239,

255

arguments, 227

controlling, 219–221

fitting, 227

gamma argument, 220, 252

knots, 258

knots argument, 258

parametric terms, 224

plot.gam, 218, 221–223

all.terms, 225

contour plot interpretation, 223

n argument, 244

too.far, 223

predict.gam, 239, 240, 242, 256, 261

lpmatrix, 241

print.gam, 218, 223

scale argument, 252

summary.gam, 226, 261

tensor product smooths, 222

TPRS terms, 221

user defined smoothers, 268

gam package, 261–263

gam, 261

plot.gam, 263

summary.gam, 261

gam.check, 229, 230, 244

gam.method, 230

GAMM, 309–317

and AIC, 311

inference, 311

with R, 312–317

gamm

correlation structures, 315

random argument, 298, 313

use of, 312–317

gamma distribution, 221, 232

Gamma family, 221, 232

Gauss Markov theorem, 17

Gauss-Newton method, 53

GCV, 129, 171–174

derivatives, 179–184

for GLM, 173–174, 216

GAM case, 136

Pearson based, 174, 213

score, 178, 182

single penalty case, 216

stable optimization, 178–184

generalized additive mixed model, see

GAMM

generalized additive model, see GAM

generalized cross validation, see GCV

generalized likelihood ratio test, 68, 85,

107–110, 200

generalized linear mixed model, see GLMM

generalized linear model, see GLM

generalized smoothing splines, 211–213

geometry

generalized linear model , 75–80

IRLS, 76

IRLS convergence, 79

least squares, 19

linear model, 18

general covariance structure, 50

nested models, 21

non-linear least squares, 53

orthogonal fitting, 20

penalized least squares, 204–205

geoR package, 259

GLM, 59

estimation, 63

estimator distribution, 68

fitted values

properties, 72

hypothesis testing, 68

in R, 80–96, 98–101

INDEX 381

likelihood, 64

quasi-likelihood, 73–75

residuals, 72

deviance, 73

Pearson, 72

working, 72

theory, 60–75

glm, 80, 83, 85, 88, 89, 94, 95, 98

AIC, 84

anova, 95, 100

summary.glm, 98

update, 99

GLMM, 303–308

PQL, 304

glmmPQL, 305

gss package, 263–265

predict.ssanova1, 264

ssanova1, 263

hat matrix, 16

Householder matrix, 327

Hubble’s law, 1

hypothesis testing

and model selection, 191

GAM, 190, 200–202, 235–239

GLM, 68, 85, 90, 95

GLRT, 107–110

linear model, 7–9, 14, 15, 43

unpenalized GAM, 191, 202, 239, 271

idempotency, 16

influence matrix, 16, 127, 179

properties, 16, 266

information, 103

information matrix, 68, 105

empirical or observed, 107

interaction

factors, 40

smooth, 158, 202

smooth with factor, 165

invariance, 224

and cross validation, 170–173

GLRT, 110

of MLEs, 102

rotational, 156, 158, 221, 258

scale, 158, 221, 263

IRLS

algorithm, 66

convergence, 79

derivation, 63–66

divergence, 176

geometry, 76

initalization, 66

iterative weights, 66

penalized, 136

properties, 66

pseudodata, 66, 166, 188

weights, 166, 188

iteratively re-weighted least squares, see

IRLS

Jacobian, 54, 65

Jensen’s inequality, 104

knots, 122, 125, 133, 156

Kronecker product, 327

Kullbeck-Leibler discrepancy, 111

Lanczos iteration, 154, 331

Laplace approximation, 108, 304

law of large numbers, 101

least squares, 12

estimators, 12

non-independent data, 49

non-linear, 52

residual variance estimation, 56

likelihood

consistency of MLEs, 105

distribution of estimators, 107

linear model, 48

properties of expected log, 102

theory , 101–114

linear constraints, 38, 45, 57

linear contrasts, 46

linear mixed model, 273

general case, 287–303

and penalized regression, 296–297

estimation, 288–290

grouped data, 297

likelihood, 288

predicting random effects, 292–293,

296–297

R functions, see also lme, 297–303

response covariance matrix, 288, 289

simple balanced case, 273–286

2 way design, 281–286

382 INDEX

aggregated model, 276, 280, 283

estimation in R, 280, 284

general principles, 277–278, 286

hypothesis testing, 285

interactions, 282

oneway ANOVA, 278–281

variance components, 277, 280, 284,

285

why bother, 273–278

linear model, 2, 10

ANOVA, 15

checking, 25

coefficients, 27

estimator distribution, 13

F-ratio, 15

fitted values, 16

properties, 55

formula, 5, 44

likelihood, 48

model matrix, 11, 24

model selection, 30–35

stepwise, 56

polynomial, 56

prediction, 36

residuals, 16

t-ratio, 14, 28

theory , 12–18

traditional results, 17

linear predictor, 59

link function, 59

canonical, 71

lm, 5, 6, 24, 27, 30–35, 42, 44, 125, 128,

134, 137

associated functions, 23

for mixed models, 275

plot.lm, 25

print.lm, 27

step, 56

summary.lm, 28

use of, 24

lme

correlation argument, 299

form of model, 297

intervals, 316

plot.lme, 299

use of, 298

log-linear models, 92

lpmatrix, 241

Mallow’s statistic, 50, 168

matrix

square root, 289

determinant, 330

differentiating, 327

efficient computation, 325

positive definite, 330

positive semi-definite, 330

square root, 127

trace, 330

matrix square root, 179

mean square error, 128, 168

mgcv, 217

mixed effects model

general case, 299

model formula, see formula

model matrix, 11, 287

multiple comparisons, 321

natural spline, 142

negative binomial distribution, 254

negative.binomial family, 254

nesting, 202, 234, 274

Newton’s method, 178, 288

nlme package, 297

normal distribution

joint distribution results, 292

OCV, 129, 169–171

not invariant, 170

offset, 97

offset, 118, 251

optim, 290

ordinary cross validation, see OCV

orthogonal matrix, 327

outer iteration, 175, 182–184

outliers

dealing with, 27, 32, 228, 244–248

overdispersion, 75, 98

overfitting

checking for, 270

P-IRLS, 136, 165–166, 215

differentiation of, 182–184

divergence, 176

P-spline, 148, 215, 222

penalty, 150

p-value, 29, 95

INDEX 383

and model selection, 191

for GAM term, 190–191

interpretation, 29

properties, 271

partial residuals, see residuals, partial

Pearson statistic, 71, 168, 174

penalized IRLS, see P-IRLS

penalized quasi-likelihood, see GLMM, PQL

performance iteration, 176–182

convergence failure, 176

pivoting, 331

Poisson distribution, 250

poisson family, 251

polynomial, 120, 299

posterior simulation, 190, 242

PQL, 305, 309

prediction

lpmatrix, 241

response scale, 240

term-wise, 240

prediction error, 128, 169

propagation of errors, 326

QQ plot, 26

QR decomposition, 13, 57, 204, 328

quasi family, 306

quasi-information, 113

quasi-likelihood, 73

theory , 112–114

R model formulae, 44

R2, 29

adjusted, 29, 226

random effects, 273, 276

rank deficiency, 179, 184, 203–204

reflector matrix, see Householder matrix

REML, 293–295, 309

and inference, 295

explicit form, 295

motivation, 294

restrictions on use, 295

reproducing kernel, 124, 212

residual plots

against fitted values, 26

Cook’s distance, 26

GLMM, 307

GLMs, 84

linear mixed model, 286

linear model, 5

QQ-plot, 26

scale location, 26

zero line, 101

residual sum of squares, 13

residuals

autocorrelation, 267, 315

checking binary, 114

deviance, 73

distribution, 73

GAM, 229, 244

GLMs, 72

improvement by transformation, 228–231

linear model, 16

partial, 218

Pearson, 72

properties, 55

s, 221

bs argument, 220, 222

fx argument, 271

k argument, 220

choice of, 157

scale parameter, 62, 70, 213

estimation, 70, 167

scope of statistics, 2

semi-parametric models, 224–226

shrinkage smoother, 156, 222, 251

singular value decomposition, 330

singularity, 179, 184

smoothing bias, 168, 185

smoothing parameter, 126, 144

as variance component, 310

confidence interval, 316

smoothing parameter estimation, 128–131,

134, 175–184, 215

criteria, 168–174

efficiently for single smooth, 216

numerical strategy, 175

outer iteration, 175, 182–184

performance iteration, 176–182

smoothing spline ANOVA, see SS-ANOVA

smooths, see also spline

as mixed model terms, 309–311

built into mgcv, 222

of several variables, 221–224

running mean, 267

Sole eggs, 96

384 INDEX

spectral decomposition, see eigen

decomposition

sperm competition , 22–36

spline

B-spline, 148

basis size choice, 157

built into mgcv, 222

cubic, 122, 213

cubic regression, 122, 146

cubic smoothing, 144, 211

cyclic, 147

equivalent kernel, 266

fitting, 127

natural parameterization, 205–208, 214,

215

P-spline, 148, 215

truncated power, 269

penalized regression, 126, 145

penalized regression estimator, 126

reproducing kernel approach, 211–213

tensor product, 158

theoretical properties, 142–145

thin plate, 150

thin plate regression (TPRS), 150

SS-ANOVA, 202, 263

summary

gam, 226

glm, 90, 91

lm, 28

te, 221, 233

bs argument, 313

k argument, 222, 248

tensor product smooth, 158–163

alternative penalties, 162

as mixed model term, 310–311

basis , 158–160

comparison with TPRS, 224, 233–235

marginal bases, 158

marginal penalties, 161

penalty, 161, 162

penalty re-parameterization, 162

tensor product smooth penalty , 161–163

thin plate regression splines, see TPRS

thin plate spline, 150, 216

basis, 152

penalty, 151

TPRS, 150–156, 222

basis, 153, 155

comparison with tensor product, 224,

233–235

construction, 153

knot based, 156, 216

properties, 154, 266

speeding up, 258

transformation

to reduce leverage, 252

to stabilize variance, 26, 228–231

UBRE, 168–169

derivatives, 179–184

equivalence to AIC, 174

for GLM, 174

score, 178, 182

stable optimization, 178–184

unbiased risk estimator, see UBRE

validation set, 270

Variable coefficient model, 164–165

variable coefficient model, 235

mixed effects version, 312

variance function, 63

variogram, 259

vis.gam, 231, 234, 237

Wald test, 110, 191, 236

weighted constrained penalized least

squares, 181

wiggliness penalty, 144

