
M A N N I N G

Hefin I. Rhys

1. We pass unlabeled data
to an unsupervised algorithm.

2. The algorithm learns the patterns
in the data and outputs a model.

4. ...and get where the new data
maps onto these patterns.

3. We pass new, unlabeled
data into the model...

Unlabeled

data

Unlabeled,

new data

Where new

data maps

onto pattern

Model

Model
Unsupervised

algorithm

1. We pass labeled data
to a supervised algorithm.

2. The algorithm learns the relationships
in the data and outputs a model.

4. ...and get predicted
values/labels for the new data.

3. We pass unlabeled
data into the model...

Labeled

data

Unlabeled,

new data

Predicted

values
Model

Model
Supervised
algorithm

Supervised vs. unsupervised machine learning. Supervised algorithms take data that is already
labeled with a ground truth and build a model that can predict the labels of unlabeled, new data.
Unsupervised algorithms take unlabeled data and learn patterns within it, such that new data can
be mapped onto these patterns.

Machine Learning
with R, the tidyverse,

and mlr
HEFIN I. RHYS

M A N N I N G

SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2020 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Development editor: Marina Michaels
Technical development editor: Doug Warren

Manning Publications Co. Review editor: Aleksandar Dragosavljević
20 Baldwin Road Production editor: Lori Weidert
PO Box 761 Copy editor: Tiffany Taylor
Shelter Island, NY 11964 Proofreader: Katie Tennant

Technical proofreader: Kostas Passadis
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617296574
Printed in the United States of America

www.manning.com

brief contents
PART 1 INTRODUCTION ..1

1 ■ Introduction to machine learning 3

2 ■ Tidying, manipulating, and plotting data
with the tidyverse 22

PART 2 CLASSIFICATION ...53

3 ■ Classifying based on similarities with
k-nearest neighbors 55

4 ■ Classifying based on odds with logistic regression 88

5 ■ Classifying by maximizing separation with
discriminant analysis 115

6 ■ Classifying with naive Bayes and support
vector machines 135

7 ■ Classifying with decision trees 167

8 ■ Improving decision trees with random forests
and boosting 186
iii

BRIEF CONTENTSiv
PART 3 REGRESSION ...205

9 ■ Linear regression 207

10 ■ Nonlinear regression with generalized
additive models 237

11 ■ Preventing overfitting with ridge regression,
LASSO, and elastic net 251

12 ■ Regression with kNN, random forest,
and XGBoost 283

PART 4 DIMENSION REDUCTION ..305

13 ■ Maximizing variance with principal
component analysis 307

14 ■ Maximizing similarity with t-SNE and UMAP 327

15 ■ Self-organizing maps and locally linear
embedding 345

PART 5 CLUSTERING ...375

16 ■ Clustering by finding centers with k-means 377

17 ■ Hierarchical clustering 400

18 ■ Clustering based on density: DBSCAN
and OPTICS 423

19 ■ Clustering based on distributions with
mixture modeling 454

20 ■ Final notes and further reading 468

contents
preface xv
acknowledgments xvii
about this book xix
about the author xxi
about the cover illustration xxii

PART 1 INTRODUCTION ..1

1 Introduction to machine learning 3
1.1 What is machine learning? 4

AI and machine learning 6 ■ The difference between a model
and an algorithm 7

1.2 Classes of machine learning algorithms 10
Differences between supervised, unsupervised, and semi-supervised
learning 10 ■ Classification, regression, dimension reduction,
and clustering 13 ■ A brief word on deep learning 14

1.3 Thinking about the ethical impact of machine
learning 17

1.4 Why use R for machine learning? 19
1.5 Which datasets will we use? 20
1.6 What will you learn in this book? 20
v

CONTENTSvi

2 Tidying, manipulating, and plotting data with the tidyverse 22
2.1 What is the tidyverse, and what is tidy data? 23
2.2 Loading the tidyverse 25
2.3 What the tibble package is and what it does 25

Creating tibbles 26 ■ Converting existing data frames into
tibbles 26 ■ Differences between data frames and tibbles 27

2.4 What the dplyr package is and what it does 29
Manipulating the CO2 dataset with dplyr 29 ■ Chaining dplyr
functions together 34

2.5 What the ggplot2 package is and what it does 35
2.6 What the tidyr package is and what it does 40
2.7 What the purrr package is and what it does 42

Replacing for loops with map() 43 ■ Returning an atomic vector
instead of a list 45 ■ Using anonymous functions inside the map()
family 47 ■ Using walk() to produce a function’s side effects 47
Iterating over multiple lists simultaneously 49

PART 2 CLASSIFICATION ..53

3 Classifying based on similarities with k-nearest neighbors 55
3.1 What is the k-nearest neighbors algorithm? 56

How does the k-nearest neighbors algorithm learn? 56
What happens if the vote is tied? 59

3.2 Building your first kNN model 59
Loading and exploring the diabetes dataset 60 ■ Using mlr to
train your first kNN model 62 ■ Telling mlr what we’re trying to
achieve: Defining the task 63 ■ Telling mlr which algorithm to use:
Defining the learner 64 ■ Putting it all together: Training the
model 65

3.3 Balancing two sources of model error: The bias-variance
trade-off 67

3.4 Using cross-validation to tell if we’re overfitting
or underfitting 69

3.5 Cross-validating our kNN model 70
Holdout cross-validation 70 ■ K-fold cross-validation 73
Leave-one-out cross-validation 75

3.6 What algorithms can learn, and what they must be told:
Parameters and hyperparameters 77

CONTENTS vii

3.7 Tuning k to improve the model 79
Including hyperparameter tuning in cross-validation 81
Using our model to make predictions 83

3.8 Strengths and weaknesses of kNN 83

4 Classifying based on odds 88with logistic regression
4.1 What is logistic regression? 89

How does logistic regression learn? 90 ■ What if we have
more than two classes? 97

4.2 Building your first logistic regression model 98
Loading and exploring the Titanic dataset 99 ■ Making the
most of the data: Feature engineering and feature selection 100
Plotting the data 102 ■ Training the model 105 ■ Dealing
with missing data 106 ■ Training the model (take two) 106

4.3 Cross-validating the logistic regression model 107
Including missing value imputation in cross-validation 107
Accuracy is the most important performance metric, right? 108

4.4 Interpreting the model: The odds ratio 108
Converting model parameters into odds ratios 109 ■ When a
one-unit increase doesn’t make sense 110

4.5 Using our model to make predictions 110
4.6 Strengths and weaknesses of logistic regression 111

5 Classifying by maximizing separation with
discriminant analysis 115
5.1 What is discriminant analysis? 116

How does discriminant analysis learn? 118 ■ What if we have more
than two classes? 121 ■ Learning curves instead of straight lines:
QDA 122 ■ How do LDA and QDA make predictions? 123

5.2 Building your first linear and quadratic discriminant
models 125
Loading and exploring the wine dataset 125 ■ Plotting the
data 127 ■ Training the models 128

5.3 Strengths and weaknesses of LDA and QDA 132

6 Classifying with naive Bayes and support vector machines 135
6.1 What is the naive Bayes algorithm? 136

Using naive Bayes for classification 138 ■ Calculating the
likelihood for categorical and continuous predictors 140

CONTENTSviii

6.2 Building your first naive Bayes model 140
Loading and exploring the HouseVotes84 dataset 141
Plotting the data 142 ■ Training the model 143

6.3 Strengths and weaknesses of naive Bayes 145
6.4 What is the support vector machine (SVM)

algorithm? 145
SVMs for linearly separable data 146 ■ What if the classes
aren’t fully separable? 148 ■ SVMs for non-linearly separable
data 149 ■ Hyperparameters of the SVM algorithm 151
What if we have more than two classes? 153

6.5 Building your first SVM model 155
Loading and exploring the spam dataset 156 ■ Tuning our
hyperparameters 156 ■ Training the model with the tuned
hyperparameters 161

6.6 Cross-validating our SVM model 162
6.7 Strengths and weaknesses of the SVM algorithm 163

7 Classifying with decision trees 167
7.1 What is the recursive partitioning algorithm? 168

Using Gini gain to split the tree 169 ■ What about continuous
and multilevel categorical predictors? 171 ■ Hyperparameters
of the rpart algorithm 174

7.2 Building your first decision tree model 176
7.3 Loading and exploring the zoo dataset 176
7.4 Training the decision tree model 177

Training the model with the tuned hyperparameters 180

7.5 Cross-validating our decision tree model 183
7.6 Strengths and weaknesses of tree-based algorithms 184

8 Improving decision trees with random forests and boosting 186
8.1 Ensemble techniques: Bagging, boosting, and

stacking 187
Training models on sampled data: Bootstrap aggregating 187
Learning from the previous models’ mistakes: Boosting 189
Learning from predictions made by other models: Stacking 194

8.2 Building your first random forest model 194
8.3 Building your first XGBoost model 198

CONTENTS ix

8.4 Strengths and weaknesses of tree-based algorithms 203
8.5 Benchmarking algorithms against each other 203

PART 3 REGRESSION ...205

9 Linear regression 207
9.1 What is linear regression? 208

What if we have multiple predictors? 210 ■ What if our predictors
are categorical? 213

9.2 Building your first linear regression model 215
Loading and exploring the Ozone dataset 216 ■ Imputing missing
values 218 ■ Automating feature selection 221 ■ Including
imputation and feature selection in cross-validation 229
Interpreting the model 231

9.3 Strengths and weaknesses of linear regression 234

10 Nonlinear regression with generalized additive models 237
10.1 Making linear regression nonlinear with

polynomial terms 238
10.2 More flexibility: Splines and generalized

additive models 241
How GAMs learn their smoothing functions 242 ■ How GAMs
handle categorical variables 243

10.3 Building your first GAM 244
10.4 Strengths and weaknesses of GAMs 249

11 Preventing overfitting with ridge regression, LASSO,
and elastic net 251

11.1 What is regularization? 251
11.2 What is ridge regression? 252
11.3 What is the L2 norm, and how does ridge regression

use it? 255
11.4 What is the L1 norm, and how does LASSO use it? 259
11.5 What is elastic net? 260
11.6 Building your first ridge, LASSO, and elastic net models 263

Loading and exploring the Iowa dataset 263 ■ Training the
ridge regression model 265 ■ Training the LASSO model 271
Training the elastic net model 274

CONTENTSx
Benchmarking ridge, LASSO,11.7 elastic net, and OLS against
277each other

Strengths and weakne11.8 sses of ridge, LASSO,
279and elastic net

12 Regression with kNN, random forest, and XGBoost 283
12.1 Using k-nearest neighbors to predict a continuous

variable 284
12.2 Using tree-based learners to predict a continuous

variable 286
12.3 Building your first kNN regression model 289

Loading and exploring the fuel dataset 290 ■ Tuning the k
hyperparameter 295

12.4 Building your first random forest regression
model 297

12.5 Building your first XGBoost regression model 299
12.6 Benchmarking the kNN, random forest, and XGBoost

model-building processes 301
12.7 Strengths and weaknesses of kNN, random forest,

and XGBoost 303

PART 4 DIMENSION REDUCTION305

13 Maximizing variance with principal component analysis 307
13.1 Why dimension reduction? 308

Visualizing high-dimensional data 308 ■ Consequences of the
309curse of dimensionality ■ 309Consequences of collinearity

Mitigating the curse of dimensionality and collinearity by using
310dimension reduction

13.2 What is principal component analysis? 311
13.3 Building your first PCA model 315

Loading and exploring the banknote dataset 316 ■ Performing
PCA 317 ■ Plotting the result of our PCA 320 ■ Computing the
component scores of new data 323

13.4 Strengths and weaknesses of PCA 324

CONTENTS xi
14 Maximizing similarity with t-SNE and UMAP 327
14.1 What is t-SNE? 328
14.2 Building your first t-SNE embedding 332

Performing t-SNE 333 ■ Plotting the result of t-SNE 335

14.3 What is UMAP? 337
14.4 Building your first UMAP model 339

Performing UMAP 339 ■ Plotting the result of UMAP 342
Computing the UMAP embeddings of new data 343

14.5 Strengths and weaknesses of t-SNE and UMAP 343

15 Self-organizing maps and locally linear embedding 345
15.1 Prerequisites: Grids of nodes and manifolds 345
15.2 What are self-organizing maps? 347

Creating the grid of nodes 348 ■ Randomly assigning weights,
and placing cases in nodes 349 ■ Updating node weights to better
match the cases inside them 350

15.3 Building your first SOM 353
Loading and exploring the flea dataset 353 ■ Training the
SOM 354 ■ Plotting the SOM result 357 ■ Mapping new data
onto the SOM 362

15.4 What is locally linear embedding? 364
15.5 Building your first LLE 365

Loading and exploring the S-curve dataset 365 ■ Training the
LLE 367 ■ Plotting the LLE result 369

15.6 Building an LLE of our flea data 370
15.7 Strengths and weaknesses of SOMs and LLE 372

PART 5 CLUSTERING ...375

16 Clustering by finding centers with k-means 377
16.1 What is k-means clustering? 378

Lloyd’s algorithm 378 ■ MacQueen’s algorithm 380
Hartigan-Wong algorithm 381

16.2 Building your first k-means model 382
Loading and exploring the GvHD dataset 382 ■ Defining our
task and learner 384 ■ Choosing the number of clusters 386

CONTENTSxii
Tuning k and the algorithm choice for our k-means model 391
Training the final, tuned k-means model 395 ■ Using our model
to predict clusters of new data 397

16.3 Strengths and weaknesses of k-means clustering 398

17 Hierarchical clustering 400
17.1 What is hierarchical clustering? 401

Agglomerative hierarchical clustering 404 ■ Divisive hierarchical
clustering 406

17.2 Building your first agglomerative hierarchical
clustering model 406
Choosing the number of clusters 409 ■ Cutting the tree to select a
flat set of clusters 414

17.3 How stable are our clusters? 416
17.4 Strengths and weaknesses of hierarchical clustering 419

18 Clustering based on density: DBSCAN and OPTICS 423
18.1 What is density-based clustering? 424

How does the DBSCAN algorithm learn? 425 ■ How does the
OPTICS algorithm learn? 427

18.2 Building your first DBSCAN model 433
Loading and exploring the banknote dataset 433 ■ Tuning the
epsilon and minPts hyperparameters 434

18.3 Building your first OPTICS model 449
18.4 Strengths and weaknesses of density-based clustering 451

19 Clustering based on distributions with mixture modeling 454
19.1 What is mixture model clustering? 455

Calculating probabilities with the EM algorithm 455
EM algorithm expectation and maximization steps 458
What if we have more than one variable? 459

19.2 Building your first Gaussian mixture model for
clustering 461

19.3 Strengths and weaknesses of mixture model
clustering 465

CONTENTS xiii
20 Final notes and further reading 468
20.1 A brief recap of machine learning concepts 469

Supervised, unsupervised, and semi-supervised learning 469
Balancing the bias-variance trade-off for model performance 471
Using model validation to identify over-/underfitting 472
Maximizing model performance with hyperparameter tuning 475
Using missing value imputation to deal with missing data 476
Feature engineering and feature selection 476 ■ Improving model
performance with ensemble techniques 477 ■ Preventing
overfitting with regularization 478

20.2 Where can you go from here? 478
Deep learning 478 ■ Reinforcement learning 479 ■ General
R data science and the tidyverse 479 ■ mlr tutorial and creating
new learners/metrics 479 ■ Generalized additive models 479
Ensemble methods 479 ■ Support vector machines 480
Anomaly detection 480 ■ Time series 480 ■ Clustering 480
Generalized linear models 480 ■ Semi-supervised learning 481
Modeling spectral data 481

20.3 The last word 481

482Refresher on statistical conceptsappendix

499index

preface
While working on my PhD, I made heavy use of statistical modeling to better under-
stand the processes I was studying. R was my language of choice, and that of my peers
in life science academia. Given R’s primary purpose as a language for statistical com-
puting, it is unparalleled when it comes to building linear models.

 As my project progressed, the types of data problems I was working on changed. The
volume of data increased, and the goal of each experiment became more complex and
varied. I was now working with many more variables, and problems such as how to
visualize the patterns in data became more difficult. I found myself more frequently
interested in making predictions on new data, rather than, or in addition to, just under-
standing the underlying biology itself. Sometimes, the complex relationships in the data
were difficult to represent manually with traditional modeling methods. At other times,
I simply wanted to know how many distinct groups existed in the data.

 I found myself more and more turning to machine learning techniques to help me
achieve my goals. For each new problem, I searched my existing mental toolbox of sta-
tistical and machine learning skills. If I came up short, I did some research: find out
how others had solved similar problems, try different methods, and see which gave the
best solution. Once my appetite was whetted for a new set of techniques, I read a text-
book on the topic. I usually found myself frustrated that the books I was reading tended
to be aimed towards people with degrees in statistics.

 As I built my skills and knowledge slowly (and painfully), an additional source of
frustration came from the way in which machine learning techniques in R are spread
disparately between a plethora of different packages. These packages are written by
xv

PREFACExvi
different authors who all use different syntax and arguments. This meant an addi-
tional challenge when learning a new technique. At this point I became very jealous of
the scikit-learn package from the Python language (which I had not learned), which
provides a common interface for a large number of machine learning techniques.

 But then I discovered R packages like caret and mlr, which suddenly made my
learning experience much easier. Like scikit-learn, they provide a common interface
for a large number of machine learning techniques. This took away the cognitive load
of needing to learn the R functions for another package each time I wanted to try
something new, and made my machine learning projects much simpler and faster. As
a result of using (mostly) the mlr package, I found that the handling of data actually
became the most time consuming and complicated part of my work. After doing some
more research, I discovered the tidyverse set of packages in R, whose purpose is to
make the handling, transformation, and visualization of data simple, streamlined, and
reproducible. Since then, I’ve used tools from the tidyverse in all of my projects.

 I wanted to write this book because machine learning knowledge is in high demand.
There are lots of resources available to budding data scientists or anyone looking to
train computers to solve problems. But I’ve struggled to find resources that simultane-
ously are approachable to newcomers, teach rigor and good practice, and use the mlr
and tidyverse packages. My aim when writing this book has been to have as little code
as possible do as much as possible. In this way, I hope to make your learning experi-
ence easier, and using the mlr and tidyverse packages has, I think, helped me do that.

acknowledgments
When starting out on this process, I was extremely naive as to how much work it would
require. It took me longer to write than I thought, and would have taken an awful lot
longer were it not for the support of several people. The quality of the content would
also not be anywhere near as high without their help.

 Firstly, and most importantly, I would like to thank you, my husband, Zand. From
the outset of this project, you understood what this book meant to me and did every-
thing you could to give me time and space to write it. For a whole year, you’ve put up
with me working late into the night, given up weekends, and allowed me to shirk my
domestic duties in favor of writing. I love you.

 I thank you, Marina Michaels, my development editor at Manning—without you,
this book would read more like the ramblings of an idiot than a coherent textbook.
Early on in the writing process, you beat out my bad habits and made me a better
writer and a better teacher. Thank you also for our long, late-night discussions about
the difference between American cookies and British biscuits. Thank you, my techni-
cal development editor, Doug Warren—your insights as a prototype reader made the
content much more approachable. Thank you, my technical proofreader, Kostas
Passadis—you checked my code and theory, and told me when I was being stupid. I owe
the technical accuracy of the book to you.

 Thank you, Stephen Soenhlen, for giving me this amazing opportunity. Without
you, I would never had the confidence to think I could write a book. Finally, a thank-
you goes to all the other staff at Manning who worked on the production and promo-
tion, and my reviewers who provided invaluable feedback: Aditya Kaushik, Andrew
xvii

ACKNOWLEDGMENTSxviii
Hamor, David Jacobs, Erik Sapper, Fernando Garcia, Izhar Haq, Jaromir D.B. Nemec,
Juan Rufes, Kay Engelhardt, Lawrence L. Matias, Luis Moux-Dominguez, Mario Giesel,
Miranda Whurr, Monika Jakubczak, Prabhuti Prakash, Robert Samohyl, Ron Lease,
and Tony Holdroyd.

about this book
Who should read this book
I firmly believe that machine learning should not be the domain only of computer
scientists and people with degrees in mathematics. Machine learning with R, the tidyverse,
and mlr doesn’t assume you come from either of these backgrounds. To get the
most from the book, though, you should be reasonably familiar with the R lan-
guage. It will help if you understand some basic statistical concepts, but all that
you’ll need is included as a statistics refresher in the appendix, so head there first
to fill in any gaps in your knowledge. Anyone with a problem to solve, and data that
contains the answer to that problem, can benefit from the topics taught in this
book.

If you are a newcomer to R and want to learn or brush up on your basic R skills, I
suggest you take a look at R in Action, by Robert I. Kabacoff (Manning, 2015).

How this book is organized: A roadmap
This book has 5 parts, covering 20 chapters. The first part of the book is designed to
get you up and running with some of the broad machine learning and R skills you’ll
use throughout the rest of the book. The first chapter is designed to get your machine
learning vocabulary up to speed. The second chapter will teach you a large number of
tidyverse functions that will improve your general R data science skills.

The second part of the book will introduce you to a range of algorithms used for
classification (predicting discrete categories). From this part of the book onward,
each chapter will start by teaching how a particular algorithm works, followed by a
xix

ABOUT THIS BOOKxx
worked example of that algorithm. These explanations are graphical, with mathematics
provided optionally for those who are interested. Throughout the chapters, you will
find exercises to help you develop your skills.

 The third, fourth, and fifth parts of the book are dedicated to algorithms for regres-
sion (predicting continuous variables), dimension reduction (compressing information
into fewer variables), and clustering (identifying groups within data), respectively.
Finally, the last chapter of the book will recap the important, broad concepts we cov-
ered, and give you a roadmap of where you can go to further your learning.

 In addition, there is an appendix containing a refresher on some basic statistical
concepts we’ll use throughout the book. I recommend you at least flick through the
appendix to make sure you understand the material there, especially if you don’t
come from a statistical background.

About the code
As this book is written with the aim of getting you to code through the examples along
with me, you’ll find R code throughout most of the chapters. You’ll find R code both
in numbered listings and in line with normal text. In both cases, source code is for-
matted in a fixed-width font like this to separate it from ordinary text.

 All of the source code is freely available at https://www.manning.com/books/
machine-learning-with-r-the-tidyverse-and-mlr. The R code in this book was written
with R 3.6.1, with mlr version 2.14.0, and tidyverse version 1.2.1.

liveBook discussion forum
Purchase of Machine Learning with R, the tidyverse, and mlr includes free access to a pri-
vate web forum run by Manning Publications where you can make comments about
the book, ask technical questions, and receive help from the author and from other
users. To access the forum, go to https://livebook.manning.com/#!/book/machine-
learning-with-r-the-tidyverse-and-mlr. You can also learn more about Manning’s forums
and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We
suggest you try asking some challenging questions lest their interest stray! The forum
and the archives of previous discussions will be accessible from the publisher’s website
as long as the book is in print.

https://www.manning.com/books/machine-learning-with-r-the-tidyverse-and-mlr.
https://www.manning.com/books/machine-learning-with-r-the-tidyverse-and-mlr.
https://livebook.manning.com/#!/book/machine-learning-with-r-the-tidyverse-and-mlr
https://livebook.manning.com/#!/book/machine-learning-with-r-the-tidyverse-and-mlr
https://livebook.manning.com/#!/discussion

about the author
Hefin I. Rhys is a life scientist and cytometrist with eight years of experience teaching
R, statistics, and machine learning. He has contributed his statistical/machine learn-
ing knowledge to multiple academic studies. He has a passion for teaching statistics,
machine learning, and data visualization.
xxi

about the cover illustration
The figure on the cover of Machine Learning with R, the tidyverse, and mlr is captioned
“Femme de Jerusalem,” or “Woman of Jerusalem.” The illustration is taken from a col-
lection of dress costumes from various countries by Jacques Grasset de Saint-Sauveur
(1757–1810), titled Costumes Civils Actuels de Tous les Peuples Connus, published in France
in 1788. Each illustration is finely drawn and colored by hand. The rich variety of Gras-
set de Saint-Sauveur’s collection reminds us vividly of how culturally apart the world’s
towns and regions were just 200 years ago. Isolated from each other, people spoke dif-
ferent dialects and languages. In the streets or in the countryside, it was easy to iden-
tify where they lived and what their trade or station in life was just by their dress.

 The way we dress has changed since then, and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns, regions, or countries. Perhaps we have traded cultural
diversity for a more varied personal life—certainly, for a more varied and fast-paced
technological life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Grasset de Saint-Sauveur’s pictures.
xxii

Part 1

Introduction

While this first part of the book includes only two chapters, it is essential to
provide you with the basic knowledge and skills you’ll rely on throughout the book.

 Chapter 1 introduces you to some basic machine learning terminology. Hav-
ing a good vocabulary for the core concepts can help you see the big picture of
machine learning and aid in your understanding of the more complex topics
we’ll explore later in the book. This chapter teaches you what machine learning
is, how it can benefit (or harm) us, and how we can categorize different types of
machine learning tasks. The chapter finishes by explaining why we’re using R
for machine learning, what datasets you’ll be working with, and what you can
expect to learn from the book.

 In chapter 2, we take a brief detour away from machine learning and focus
on developing your R skills by covering a collection of packages known as the
tidyverse. The packages of the tidyverse provide us with the tools to store, manip-
ulate, transform, and visualize our data using more human-readable, intuitive
code. You don’t need to use the tidyverse when working on machine learning
projects, but doing so helps you simplify your data-wrangling processes. We’ll use
tidyverse tools in the projects throughout the book, so a solid grounding in
them in chapter 2 can help you in the rest of the chapters. I’m sure you’ll find
that these skills improve your general R programming and data science skills.

 Beginning with chapter 2, I encourage you to start coding along with me. To
maximize your retention of knowledge, I strongly recommend that you run the
code examples in your own R session and save your .R files so you can refer back
to your code in the future. Make sure you understand how each line of code
relates to its output.

Introduction to
machine learning
You interact with machine learning on a daily basis whether you recognize it or not.
The advertisements you see online are of products you’re more likely to buy based on
the things you’ve previously bought or looked at. Faces in the photos you upload to
social media platforms are automatically identified and tagged. Your car’s GPS pre-
dicts which routes will be busiest at certain times of day and replots your route to
minimize journey length. Your email client progressively learns which emails you
want and which ones you consider spam, to make your inbox less cluttered; and your
home personal assistant recognizes your voice and responds to your requests. From
small improvements to our daily lives such as these, to big, society-changing ideas
such as self-driving cars, robotic surgery, and automated scanning for other Earth-like
planets, machine learning has become an increasingly important part of modern life.

This chapter covers
 What machine learning is

 Supervised vs. unsupervised machine learning

 Classification, regression, dimension reduction,
and clustering

 Why we’re using R

 Which datasets we will use
3

4 CHAPTER 1 Introduction to machine learning
 But here’s something I want you to understand right away: machine learning isn’t
solely the domain of large tech companies or computer scientists. Anyone with basic
programming skills can implement machine learning in their work. If you’re a scien-
tist, machine learning can give you extraordinary insights into the phenomena you’re
studying. If you’re a journalist, it can help you understand patterns in your data that
can delineate your story. If you’re a businessperson, machine learning can help you
target the right customers and predict which products will sell the best. If you’re
someone with a question or problem, and you have sufficient data to answer it,
machine learning can help you do just that. While you won’t be building intelligent
cars or talking robots after reading this book (like Google and Deep Mind), you will
have gained the skills to make powerful predictions and identify informative patterns
in your data.

 I’m going to teach you the theory and practice of machine learning at a level that
anyone with a basic knowledge of R can follow. Ever since high school, I’ve been terrible
at mathematics, so I don’t expect you to be great at it either. Although the techniques
you’re about to learn are based in math, I’m a firm believer that there are no hard con-
cepts in machine learning. All of the processes we’ll explore together will be explained
graphically and intuitively. Not only does this mean you’ll be able to apply and under-
stand these processes, but you’ll also learn all this without having to wade through math-
ematical notation. If, however, you are mathematically minded, you’ll find equations
presented through the book that are “nice to know,” rather than “need to know.”

 In this chapter, we’re going to define what I actually mean by machine learning.
You’ll learn the difference between an algorithm and a model, and discover that
machine learning techniques can be partitioned into types that help guide us when
choosing the best one for a given task.

What is machine learning?1.1
Imagine you work as a researcher in a hospital. What if, when a new patient is checked
in, you could calculate the risk of them dying? This would allow the clinicians to treat
high-risk patients more aggressively and result in more lives being saved. But where
would you start? What data would you use? How would you get this information from
the data? The answer is to use machine learning.

 Machine learning, sometimes referred to as statistical learning, is a subfield of artifi-
cial intelligence (AI) whereby algorithms “learn” patterns in data to perform specific
tasks. Although algorithms may sound complicated, they aren’t. In fact, the idea
behind an algorithm is not complicated at all. An algorithm is simply a step-by-step
process that we use to achieve something that has a beginning and an end. Chefs have
a different word for algorithms—they call them “recipes.” At each stage in a recipe,
you perform some kind of process, like beating an egg, and then you follow the next
instruction in the recipe, such as mixing the ingredients.

 Have a look in figure 1.1 at an algorithm I made for making a cake. It starts at the
top and progresses through the various operations needed to get the cake baked and

5What is machine learning?
served up. Sometimes there are decision points where the route we take depends on
the current state of things, and sometimes we need to go back or iterate to a previous
step of the algorithm. While it’s true that extremely complicated things can be
achieved with algorithms, I want you to understand that they are simply sequential
chains of simple operations.

 So, having gathered data on your patients, you train a machine learning algorithm
to learn patterns in the data associated with the patients’ survival. Now, when you
gather data on a new patient, the algorithm can estimate the risk of that patient dying.

 As another example, imagine you work for a power company, and it’s your job to
make sure customers’ bills are estimated accurately. You train an algorithm to learn
patterns of data associated with the electricity use of households. Now, when a new
household joins the power company, you can estimate how much money you should
bill them each month.

Prefer

custard

Decide on

accompaniment

Start

Add

custard

Add

ice cream

Bake for 20 min

Prefer

ice cream

Mix ingredients

Put in cake tin

Ready!Not ready

Urgh,

raisins?!

That’s

tasty!

End

Test with fork

Serve cake

Bake for 5 min

Figure 1.1 An algorithm for making and serving a cake. We start at the top and, after
performing each operation, follow the next arrow. Diamonds are decision points, where
the arrow we follow next depends on the state of our cake. Dotted arrows show routes
that iterate back to previous operations. This algorithm takes ingredients as its input
and outputs cake with either ice cream or custard!

6 CHAPTER 1 Introduction to machine learning
 Finally, imagine you’re a political scientist, and you’re looking for types of voters
that no one (including you) knows about. You train an algorithm to identify patterns
of voters in survey data, to better understand what motivates voters for a particular
political party. Do you see any similarities between these problems and the problems
you would like to solve? Then—provided the solution is hidden somewhere in your
data—you can train a machine learning algorithm to extract it for you.

AI and machine learning1.1.1

Arthur Samuel, a scientist at IBM, first used the term machine learning in 1959. He used
it to describe a form of AI that involved training an algorithm to learn to play the
game of checkers. The word learning is what’s important here, as this is what distin-
guishes machine learning approaches from traditional AI.

 Traditional AI is programmatic. In other words, you give the computer a set of
rules so that when it encounters new data, it knows precisely which output to give. An
example of this would be using if else statements to classify animals as dogs, cats,
or snakes:

numberOfLegs <- c(4, 4, 0)
climbsTrees <- c(TRUE, FALSE, TRUE)

for (i in 1:3) {
if (numberOfLegs[i] == 4) {

if (climbsTrees[i]) print("cat") else print("dog")
} else print("snake")

}

In this R code, I’ve created three rules, mapping every possible input available to us to
an output:

1 If the animal has four legs and climbs trees, it’s a cat.
2 If the animal has four legs and does not climb trees, it’s a dog.
3 Otherwise, the animal is a snake.

Now, if we apply these rules to the data, we get the expected answers:

[1] "cat"
[1] "dog"
[1] "snake"

The problem with this approach is that we need to know in advance all the possible
outputs the computer should give, and the system will never give us an output that we
haven’t told it to give. Contrast this with the machine learning approach, where
instead of telling the computer the rules, we give it the data and allow it to learn the
rules for itself. The advantage of this approach is that the machine can “learn” pat-
terns we didn’t even know existed in the data—and the more data we provide, the bet-
ter it gets at learning those patterns (figure 1.2).

7What is machine learning?
1.1.2 The difference between a model and an algorithm

In practice, we call a set of rules that a machine learning algorithm learns a model.
Once the model has been learned, we can give it new observations, and it will output
its predictions for the new data. We refer to these as models because they represent
real-world phenomena in a simplistic enough way that we and the computer can inter-
pret and understand it. Just as a model of the Eiffel Tower may be a good representa-
tion of the real thing but isn’t exactly the same, so statistical models are attempted
representations of real-world phenomena but won’t match them perfectly.

NOTE You may have heard the famous phrase coined by the statistician George
Box that “All models are wrong, but some are useful”; this refers to the approx-
imate nature of models.

The process by which the model is learned is referred to as the algorithm. As we discov-
ered earlier, an algorithm is just a sequence of operations that work together to solve a
problem. So how does this work in practice? Let’s take a simple example. Say we have

Data

Rules

Answers

1. We create the algorithm
by specifying all the rules
ourselves.

1. We give data to an
algorithm.

3. The algorithm learns
the rules that map the
answers to the data.

5. ...and get answers for the
new data.

4. We pass new data through
these rules...

2. Either we also give it the
answers, or it learns them for itself.

2. Then we pass data
through these rules. 3. This gives us answers,

based on our rules.

Traditional

AI

Data

Answers

New answers

Rules
Machine

learning

RulesNew data

Figure 1.2 Traditional AI vs. machine learning AI. In traditional AI applications,
we provide the computer with a complete set of rules. When it’s given data, it
outputs the relevant answers. In machine learning, we provide the computer
with data and the answers, and it learns the rules for itself. When we pass new
data through these rules, we get answers for this new data.

8 CHAPTER 1 Introduction to machine learning

two continuous variables, and we would like to train an algorithm that can predict one
(the outcome or dependent variable) given the other (the predictor or independent vari-
able). The relationship between these variables can be described by a straight line that
can be defined using only two parameters: its slope and where it crosses the y-axis (the
y-intercept). This is shown in figure 1.3.

0 1 2 3 4 5

Predictor variable

O
u

tp
u

t
v
a

ri
a

b
le

6 7 8 9
0

1

2

3

4

5

6

7

8

9

3

4

y-intercept = 2

slope = 3/4 = 0.75

y = intercept + slope * x
y = 2 + 0.75x

Figure 1.3 Any straight line can be described by its
slope (the change in y divided by the change in x) and its
intercept (where it crosses the y-axis when x = 0). The
equation y = intercept + slope * x can be used to predict
the value of y given a value of x.

An algorithm to learn this relationship could look something like the example in fig-
ure 1.4. We start by fitting a line with no slope through the mean of all the data. We
calculate the distance each data point is from the line, square it, and sum these
squared values. This sum of squares is a measure of how closely the line fits the data.
Next, we rotate the line a little in a clockwise direction and measure the sum of
squares for this line. If the sum of squares is bigger than it was before, we’ve made the
fit worse, so we rotate the slope in the other direction and try again. If the sum of
squares gets smaller, then we’ve made the fit better. We continue with this process,
rotating the slope a little less each time we get closer, until the improvement on our
previous iteration is smaller than some preset value we’ve chosen. The algorithm has
iteratively learned the model (the slope and y-intercept) needed to predict future val-
ues of the output variable, given only the predictor variable. This example is slightly
crude but hopefully illustrates how such an algorithm could work.

NOTE One of the initially confusing but eventually fun aspects of machine
learning is that there is a plethora of algorithms to solve the same type of
problem. The reason is that different people have come up with slightly dif-
ferent ways of solving the same problem, all trying to improve upon previous
attempts. For a given task, it is our job as data scientists to choose which algo-
rithm(s) will learn the best-performing model.

While certain algorithms tend to perform better than others with certain types of
data, no single algorithm will always outperform all others on all problems. This con-
cept is called the no free lunch theorem. In other words, you don’t get something for

9What is machine learning?
Iteration 100Iteration 1Square distancesFit horizontal line

O
u
tp

u
t
v
a
ri
a
b
le

O
u
tp

u
t
v
a
ri
a
b
le

O
u
tp

u
t
v
a
ri
a
b
le

O
u
tp

u
t
v
a
ri
a
b
le

Predictor variablePredictor variablePredictor variablePredictor variable

Yes

Yes

No

No

2. It iteratively learns
the relationship
between the two...

3. ...and outputs the slope
and y-intercept.

1. The algorithm takes
the predictor and output
variables as its inputs.

Increment slope of the
line counterclockwise

Increment slope of the
line in the same direction

by a little less

Save squared distances
between data and the line

as INITIAL

Fit horizontal line
through mean of data

Save squared distances
between data and the line

as NEW

End

Is the improvement less
than a preset value?

Is NEW < INITIAL?

Increment slope of
the line clockwise

Save squared distances
between data and the line

as INITIAL

Start

Figure 1.4 A hypothetical algorithm for learning the parameters of a straight line. This algorithm
takes two continuous variables as inputs and fits a straight line through the mean. It iteratively
rotates the line until it finds a solution that minimizes the sum of squares. The parameters of the
line are output as the learned model.

10 CHAPTER 1 Introduction to machine learning
nothing; you need to put some effort into working out the best algorithm for your par-
ticular problem. Data scientists typically choose a few algorithms they know tend to
work well for the type of data and problem they are working on, and see which algo-
rithm generates the best-performing model. You’ll see how we do this later in the
book. We can, however, narrow down our initial choice by dividing machine learn-
ing algorithms into categories, based on the function they perform and how they
perform it.

Classes of machine1.2 learning algorithms
All machine learning algorithms can be categorized by their learning type and the
task they perform. There are three learning types:

 Supervised
 Unsupervised
 Semi-supervised

The type depends on how the algorithms learn. Do they require us to hold their hand
through the learning process? Or do they learn the answers for themselves? Super-
vised and unsupervised algorithms can be further split into two classes each:

 Supervised
– Classification
– Regression

 Unsupervised
– Dimension reduction
– Clustering

The class depends on what the algorithms learn to do.
 So we categorize algorithms by how they learn and what they learn to do. But why

do we care about this? Well, there are a lot of machine learning algorithms available to
us. How do we know which one to pick? What kind of data do they require to function
properly? Knowing which categories different algorithms belong to makes our job of
selecting the most appropriate ones much simpler. In the next section, I cover how
each of the classes is defined and why it’s different from the others. By the end of this
section, you’ll have a clear understanding of why you would use algorithms from one
class over another. By the end of the book, you’ll have the skills to apply a number of
algorithms from each class.

Differences between supervised, unsupervised,1.2.1
and semi-supervised learning

Imagine you are trying to get a toddler to learn about shapes by using blocks of wood.
In front of them, they have a ball, a cube, and a star. You ask them to show you the
cube, and if they point to the correct shape, you tell them they are correct; if they are

11Classes of machine learning algorithms
incorrect, you also tell them. You repeat this procedure until the toddler can identify
the correct shape almost all of the time. This is called supervised learning, because you,
the person who already knows which shape is which, are supervising the learner by
telling them the answers.

 Now imagine a toddler is given multiple balls, cubes, and stars but this time is also
given three bags. The toddler has to put all the balls in one bag, the cubes in another
bag, and the stars in another, but you won’t tell them if they’re correct—they have to
work it out for themselves from nothing but the information they have in front of
them. This is called unsupervised learning, because the learner has to identify patterns
themselves with no outside help.

 A machine learning algorithm is said to be supervised if it uses a ground truth or, in
other words, labeled data. For example, if we wanted to classify a patient biopsy as
healthy or cancerous based on its gene expression, we would give an algorithm the
gene expression data, labeled with whether that tissue was healthy or cancerous. The
algorithm now knows which cases come from each of the two types, and it tries to
learn patterns in the data that discriminate them.

 Another example would be if we were trying to estimate a person’s monthly credit
card expenditure. We could give an algorithm information about other people, such
as their income, family size, whether they own their home, and so on, including how
much they typically spent on their credit card in a month. The algorithm looks for
patterns in the data that can predict these values in a reproducible way. When we col-
lect data from a new person, the algorithm can estimate how much they will spend,
based on the patterns it learned.

 A machine learning algorithm is said to be unsupervised if it does not use a ground
truth and instead looks on its own for patterns in the data that hint at some underly-
ing structure. For example, let’s say we take the gene expression data from lots of can-
cerous biopsies and ask an algorithm to tell us if there are clusters of biopsies. A cluster
is a group of data points that are similar to each other but different from data in other
clusters. This type of analysis can tell us if we have subgroups of cancer types that we
may need to treat differently.

 Alternatively, we may have a dataset with a large number of variables—so many that
it is difficult to interpret the data and look for relationships manually. We can ask an
algorithm to look for a way of representing this high-dimensional dataset in a lower-
dimensional one, while maintaining as much information from the original data as
possible. Take a look at the summary in figure 1.5. If your algorithm uses labeled data
(a ground truth), then it is supervised, and if it does not use labeled data, then it is
unsupervised.

12 CHAPTER 1 Introduction to machine learning

Semi-supervised learning
Most machine learning algorithms will fall into one of these categories, but there is
an additional approach called semi-supervised learning. As its name suggests, semi-
supervised machine learning is not quite supervised and not quite unsupervised.

Semi-supervised learning often describes a machine learning approach that com-
bines supervised and unsupervised algorithms together, rather than strictly defining
a class of algorithms in and of itself. The premise of semi-supervised learning is that,
often, labeling a dataset requires a large amount of manual work by an expert
observer. This process may be very time consuming, expensive, and error prone, and
may be impossible for an entire dataset. So instead, we expertly label as many of the
cases as is feasibly possible, and then we build a supervised model using only the

1. We pass unlabeled data
to an unsupervised algorithm.

2. The algorithm learns the patterns
in the data and outputs a model.

4. ...and get where the new data
maps onto these patterns.

3. We pass new, unlabeled
data into the model...

Unlabeled

data

Unlabeled,

new data

Where new

data maps

onto pattern

Model

Model
Unsupervised

algorithm

1. We pass labeled data
to a supervised algorithm.

2. The algorithm learns the relationships
in the data and outputs a model.

4. ...and get predicted
values/labels for the new data.

3. We pass unlabeled
data into the model...

Labeled

data

Unlabeled,

new data

Predicted

values
Model

Model
Supervised
algorithm

Figure 1.5 Supervised vs. unsupervised machine learning. Supervised algorithms take data that
is already labeled with a ground truth and build a model that can predict the labels of unlabeled,
new data. Unsupervised algorithms take unlabeled data and learn patterns within it, such that
new data can be mapped onto these patterns.

13Classes of machine learning algorithms
Within the supervised and unsupervised categories, machine learning algorithms can
be further categorized by the tasks they perform. Just as a mechanical engineer knows
which tools to use for the task at hand, so the data scientist needs to know which algo-
rithms they should use for their task. There are four main classes to choose from: clas-
sification, regression, dimension reduction, and clustering.

1.2.2 Classification, regression, dimension reduction, and clustering

Supervised machine learning algorithms can be split into two classes:

 Classification algorithms take labeled data (because they are supervised learning
methods) and learn patterns in the data that can be used to predict a categorical
output variable. This is most often a grouping variable (a variable specifying
which group a particular case belongs to) and can be binomial (two groups) or
multinomial (more than two groups). Classification problems are very common
machine learning tasks. Which customers will default on their payments?
Which patients will survive? Which objects in a telescope image are stars, plan-
ets, or galaxies? When faced with problems like these, you should use a classifi-
cation algorithm.

 Regression algorithms take labeled data and learn patterns in the data that can
be used to predict a continuous output variable. How much carbon dioxide
does a household contribute to the atmosphere? What will the share price of
a company be tomorrow? What is the concentration of insulin in a patient’s
blood? When faced with problems like these, you should use a regression
algorithm.

Unsupervised machine learning algorithms can also be split into two classes:

 Dimension-reduction algorithms take unlabeled (because they are unsupervised learn-
ing methods) and high-dimensional data (data with many variables) and learn a
way of representing it in a lower number of dimensions. Dimension-reduction
algorithms may be used as an exploratory technique (because it’s very difficult
for humans to visually interpret data in more than two or three dimensions at

labeled data. We pass the rest of our data (the unlabeled cases) into the model to
get their predicted labels, called pseudo-labels because we don’t know if all of them
are actually correct. Now we combine the data with the manual labels and pseudo-
labels, and use the result to train a new model.

This approach allows us to train a model that learns from both labeled and unlabeled
data, and it can improve overall predictive performance because we are able to use
all of the data at our disposal. If you would like to learn more about semi-supervised
learning after completing this book, see Semi-Supervised Learning by Olivier Cha-
pelle, Bernhard Scholkopf, and Alexander Zien (MIT Press, 2006). This reference may
seem quite old, but it is still very good.

14 CHAPTER 1 Introduction to machine learning
once) or as a preprocessing step in the machine learning pipeline (it can help
mitigate problems such as collinearity and the curse of dimensionality, terms I’ll
define in later chapters). Dimension-reduction algorithms can also be used to
help us visually confirm the performance of classification and clustering algo-
rithms (by allowing us to plot the data in two or three dimensions).

 Clustering algorithms take unlabeled data and learn patterns of clustering in
the data. A cluster is a collection of observations that are more similar to each
other than to data points in other clusters. We assume that observations in
the same cluster share some unifying features that make them identifiably
different from other clusters. Clustering algorithms may be used as an explor-
atory technique to understand the structure of our data and may indicate a
grouping structure that can be fed into classification algorithms. Are there
subtypes of patient responders in a clinical trial? How many classes of respon-
dents were there in the survey? Do different types of customers use our com-
pany? When faced with problems like these, you should use a clustering
algorithm.

See figure 1.6 for a summary of the different types of algorithms by type and function.
 By separating machine learning algorithms into these four classes, you will find it

easier to select appropriate ones for the tasks at hand. This is why the book is struc-
tured the way it is: we first tackle classification, then regression, then dimension reduc-
tion, and then clustering, so you can build a clear mental picture of your toolbox of
available algorithms for a particular application. Deciding which class of algorithm to
choose from is usually straightforward:

 If you need to predict a categorical variable, use a classification algorithm.
 If you need to predict a continuous variable, use a regression algorithm.
 If you need to represent the information of many variables with fewer variables,

use dimension reduction.
 If you need to identify clusters of cases, use a clustering algorithm.

A brief word on deep learning1.2.3

If you’ve done more than a little reading about machine learning, you have probably
come across the term deep learning, and you may have even heard the term in the
media. Deep learning is a subfield of machine learning (all deep learning is machine
learning, but not all machine learning is deep learning) that has become extremely
popular in the last 5 to 10 years for two main reasons:

 It can produce models with outstanding performance.
 We now have the computational power to apply it more broadly.

Deep learning uses neural networks to learn patterns in data, a term referring to the way
in which the structure of these models superficially resembles neurons in the brain, with

15Classes of machine learning algorithms
1. Classification and regression
algorithms are given labeled data.

2. They output classification and
regression models, respectively.

3. We pass unlabeled, new
data into the models.

4. Classification models predict
group membership.

5. Regression models predict
continuous variables.

1. Dimension reduction and clustering
algorithms are given unlabeled data.

2. They output a lower-dimension
representation of the data and
clustering model, respectively.

3. We pass unlabeled, new
data into the models.

4. Dimension reduction maps new data
onto the lower-dimensional representation.

5. Clustering models predict
cluster membership.

Labeled

data

Unlabeled,

new data

Unlabeled

data

Unsupervised

Supervised

Unlabeled,

new data

Mapped
onto new

representation

Predicted
clusters

New data

representation

Clustering

model

Predicted

groups

Predicted

values

New data

representation

Clustering

model

Classification

model

Regression

model

Classification

model

Regression

model

Classification

algorithm

Regression

algorithm

Dimension-
reduction
algorithm

Clustering
algorithm

Figure 1.6 Classification, regression, dimension reduction, and clustering. Classification and
regression algorithms build models that predict categorical and continuous variables of unlabeled,
new data, respectively. Dimension-reduction algorithms create a new representation of the original
data in fewer dimensions and map new data onto this representation. Clustering algorithms identify
clusters within the data and map new data onto these clusters.

16 CHAPTER 1 Introduction to machine learning

connections to pass information between them. The relationship between AI, machine
learning, and deep learning is summarized in figure 1.7.

AI

M
ac

hi
ne

learning

D
e
ep

learning

Figure 1.7 The relationship between artificial intelligence
(AI), machine learning, and deep learning. Deep learning
comprises a collection of techniques that form a subset of
machine learning techniques, which themselves are a
subfield of AI.

While it’s true that deep learning methods will typically outperform “shallow” learn-
ing methods (a term sometimes used to distinguish machine learning methods that
are not deep learning) for the same dataset, they are not always the best choice. Deep
learning methods often are not the most appropriate method for a given problem for
three reasons:

 They are computationally expensive. By expensive, we don’t mean monetary cost, of
course: we mean they require a lot of computing power, which means they can
take a long time (hours or even days!) to train. Arguably this is a less important
reason not to use deep learning, because if a task is important enough to you,
you can invest the time and computational resources required to solve it. But if
you can train a model in a few minutes that performs well, then why waste addi-
tional time and resources?

 They tend to require more data. Deep learning models typically require hundreds to
thousands of cases in order to perform extremely well. This largely depends on
the complexity of the problem at hand, but shallow methods tend to perform
better on small datasets than their deep learning counterparts.

 The rules are less interpretable. By their nature, deep learning models favor per-
formance over model interpretability. Arguably, our focus should be on perfor-
mance; but often we’re not only interested in getting the right output, we’re
also interested in the rules the algorithm learned because these help us to inter-
pret things about the real world and may help us further our research. The
rules learned by a neural network are not easy to interpret.

So while deep learning methods can be extraordinarily powerful, shallow learning
techniques are still invaluable tools in the arsenal of data scientists.

NOTE Deep learning algorithms are particularly good at tasks involving com-
plex data, such as image classification and audio transcription.

17Thinking about the ethical impact of machine learning

Because deep learning techniques require a lot of additional theory, I believe they
require their own book, and so we will not discuss them here. If you would like to
learn how to apply deep learning methods (and, after completing this book, I suggest
you do), I strongly recommend Deep Learning with R by Francois Chollet and Joseph J.
Allaire (Manning, 2018).

1.3 Thinking about the ethical impact of machine learning
Machine learning can be a force for good, whether that’s helping people understand
nature or assisting organizations to better manage their resources. But machine
learning also has the potential to do great harm. For example, in 2017, a study was
published showing that a machine learning model could predict—with startling accu-
racy—a person’s sexual orientation from nothing but an image of their face.1 While
the authors had no sinister intentions, the study raised concerns about the potential
misuse of machine learning. Imagine if a country in which it is still illegal to be gay
(happily, Botswana legalized homosexuality in 2019, so this number should now be 71)
used a model like this to persecute or even execute people?

 Here’s another example: in 2015, it was discovered that Google’s algorithm for
image recognition would classify images of people of color as images of gorillas.2 The
ethical consideration here is that the data the algorithm was trained on was biased
toward images of white people and did a poor job of making accurate (and non-racist)
predictions on images of non-white people. To avoid this kind of bias, it is imperative
that our datasets are adequately representative of the population our model will be let
loose on. Whether this is done using sensible sampling strategies or by testing for and
correcting biases after training, it is our responsibility to ensure that our models aren’t
biased against particular groups of subjects.

 An additional ethical concern with regard to machine learning research is one of
security and credibility. While it may seem like something taken directly from a sci-
ence fiction film, machine learning research has now reached a point where models
can create videos of a person speaking, from just an image of their face. Researchers
have used this so-called deep fake technology to produce videos of Barack Obama
speaking whatever audio they provide.3 Imagine misusing this technology to fabricate
evidence of a defendant in a criminal trial making a statement they never made. Simi-
lar technology has also been used to replace one person’s face in a video with another
person’s face. Sadly and notoriously, this has been misused to swap celebrities’ faces
into pornographic videos. Imagine the potential of this for ruining a person’s career
and dignity.

1 Yilun Wang and Michal Kosinski, “Deep Neural Networks Are More Accurate than Humans at Detecting Sex-
ual Orientation from Facial Images,” 2017, https://osf.io/zn79k.

2 Jessica Guynn, “Google Photos Labeled Black People ‘Gorillas,’” USA Today, 2015, http://mng.bz/j5Na.
3 Supasorn Suwajanakorn, Steven M. Seitz, and Ira Kemelmacher-Shlizerman, “Synthesizing Obama: Learning

Lip Sync from Audio,” ACM Transactions on Graphics 36 (4), article 95, 2017, http://mng.bz/WOQg.

https://osf.io/zn79k
http://mng.bz/j5Na
http://mng.bz/WOQg

18 CHAPTER 1 Introduction to machine learning

 The previous point brings me to the issue of data protection and consent. In order
to train useful machine learning models that perform well, we need data. But it’s
important to consider whether the data you are using was collected ethically. Does it
contain personal, sensitive, or financial information? Does the data belong to anyone?
If so, have they given informed consent as to how it will be used? A spotlight was
shined on these issues in 2018 when the consultancy firm Cambridge Analytica mined
the social media data of millions of people without their consent. The subsequent
media outcry and liquidation of Cambridge Analytica should serve as a stark reminder
as to the importance of ethical data-collection procedures.

 Two more ethical considerations are these:

 When a model suggests a particular course of action, should we follow its pre-
diction blindly, or take it under advisement?

 Who is culpable when something goes wrong?

Imagine that we have a machine learning model that tells us whether to operate on a
patient based on their diagnostic data. Would you be happy to follow the advice of the
model if it had been shown to be correct in all previous cases? What about a model
that predicts whether a defendant is guilty or innocent? You could argue that this sec-
ond example is ridiculous, but it highlights my point: should humans be involved in
the decision-making processes informed by machine learning? If so, how should humans
be involved in these processes? The answers to these questions depend on the deci-
sion being made, how it affects the people involved, and whether human emotions
should be considered in the decision-making process.

 The issue of culpability poses this question: when a decision made by a machine
learning algorithm leads to harm, who is responsible? We live in societies in which
people are held accountable for their actions. When something bad happens, rightly
or wrongly, we expect that someone will be found culpable. In 2018, a car with self-
driving capability collided with and killed a pedestrian.4 Who was culpable? The man-
ufacturer? The person in the car? The pedestrian? Does it matter if the pedestrian was
jaywalking? Ethical quandaries like these need to be considered and carefully worked
out before such machine learning technologies are released into the world.

 When you train a machine learning model, I request that you ask yourself these
five questions:

 Are my intentions ethical?
 Even if my intentions are ethical, could someone else do harm with my model?
 Is my model biased in a way that can cause harm or discriminate?
 Has the data been collected ethically?
 Once deployed, how will humans fit into the decisions made by the model?

4 “Death of Elaine Herzberg,” Wikipedia, http://mng.bz/8zqK.

http://mng.bz/8zqK

19Why use R for machine learning?
If the answer to any of them makes you feel uneasy, please carefully consider if what
you’re doing is ethical. Just because we can do something, doesn’t mean we should. If
you would like to explore a deeper discussion of how to perform ethical machine
learning, I suggest Towards a Code of Ethics for Artificial Intelligence by Paula Boddington
(Springer, 2017).

1.4 Why use R for machine learning?
There is something of a rivalry between the two most commonly used data science
languages: R and Python. Anyone who is new to machine learning will choose one
or the other to get started, and their decision will often be guided by the learning
resources they have access to, which one is more commonly used in their field of
work, and which one their colleagues use. There are no machine learning tasks that
are only possible to apply in one language or the other, although some of the more
cutting-edge deep learning approaches are easier to apply in Python (they tend to
be written in Python first and implemented in R later). Python, while very good for
data science, is a more general-purpose programming language, whereas R is geared
specifically for mathematical and statistical applications. This means users of R can
focus purely on data but may feel restricted if they ever need to build applications
based on their models.

 There really isn’t an overall winner when pitching these two against each other for
data science (although of course everyone has their favorite). So why have I chosen to
write a book about machine learning in R? Because there are modern tools in R
designed specifically to make data science tasks simple and human-readable, such as
those from the tidyverse (we’ll cover these tools in depth in chapter 2).

 Traditionally, machine learning algorithms in R were scattered across multiple
packages written by different authors. This meant you would need to learn to use new
functions with different arguments and implementations each time you wanted to
apply a new algorithm. Proponents of Python could use this as an example of why it
was better suited for machine learning, because Python has the well-known scikit-learn
package that has a plethora of built-in machine learning algorithms. But R has now
followed suit, with the caret and mlr packages. While mlr is quite similar to caret in
purpose and functionality, I believe mlr is more flexible and intuitive; so, we’ll be
using mlr in the book.

 The mlr package (which stands for machine learning in R) provides an interface
for a large number of machine learning algorithms and allows you to perform
extremely complicated machine learning tasks with very little coding. Where possi-
ble, we will use the mlr package throughout this book so that when you’re finished,
you’ll be proficient at using one of the most modern machine learning packages
available.

20 CHAPTER 1 Introduction to machine learning
Which datasets will we use?1.5
To make your learning process as fun and interesting as possible, we will use real data-
sets in our machine learning pipelines. R comes with a considerable number of built-in
datasets, which are supplemented by datasets that come with packages we’ll be loading
into our R sessions. I decided to use datasets that come with R or its packages, to make
it easier for you to work through the book while offline. We’ll use these datasets to
help us build our machine learning models and compare how different models per-
form on different types of data.

TIP With so many datasets to choose from, after completing each chapter, I
suggest you apply what you’ve learned to a different dataset.

What will you learn in this book?1.6
This book gives you a hands-on introduction to machine learning with R. To benefit
from the book, you should be comfortable with basic R coding, such as loading pack-
ages and working with objects and data structures. You will learn the following:

 How to organize, tidy, and plot your data using the tidyverse
 Critical concepts such as overfitting, underfitting, and bias-variance trade-off
 How to apply several machine learning algorithms from each of the four classes

(classification, regression, dimension reduction, and clustering)
 How to validate model performance and prevent overfitting
 How to compare multiple models to decide on the best one for your purpose

Throughout the book, we’ll use interesting examples to learn concepts and apply our
knowledge. When possible, we will also apply multiple algorithms to the same dataset
so you get a feel for how different algorithms perform under certain situations.

Summary
 Artificial intelligence is the appearance of intelligent knowledge by a computer

process.
 Machine learning is a subfield of artificial intelligence, where the computer

learns relationships in data to make predictions about future, unseen data or to
identify meaningful patterns that help us understand our data better.

 A machine learning algorithm is the process by which patterns and rules in the
data are learned. A model is a collection of those patterns and rules that accepts
new data, applies the rules to it, and outputs an answer.

 Deep learning is a subfield of machine learning, which is, itself, a subfield of AI.
 Machine learning algorithms are categorized/divided as supervised and unsu-

pervised, depending on whether they learn from ground-truth-labeled data
(supervised learning) or unlabeled data (unsupervised learning).

21Summary
 Supervised learning algorithms are categorized/divided as classification (if
they predict a categorical variable) or regression (if they predict a continuous
variable).

 Unsupervised learning algorithms are categorized/divided as dimension reduc-
tion (if they find a lower-dimension representation of the data) or clustering (if
they identify clusters of cases in the data).

 Along with Python, R is a popular data science language and contains many
tools and built-in datasets that simplify the process of data science and machine
learning.

Tidying, manipulating,
and plotting data
with the tidyverse
I’m really excited to start teaching machine learning to you. But before we dive
into that, I want to teach you some skills that are going to make your learning expe-
rience simpler and more effective. These skills will also improve your general data
science and R programming skills.

 Imagine that I asked you to build me a car (a typical request between friends).
You could go old-fashioned: you could purchase the metal, glass, and other compo-
nents; hand-cut all the pieces; hammer them into shape; and rivet them together.
The car might look beautiful and work perfectly, but it would take a very long time
to build, and it would be hard for you to remember exactly what you did if you had
to make another one.

 Instead, you could take a modern approach and use robotic arms in your fac-
tory. You could program them to cut and bend the pieces into predefined shapes

This chapter covers
 Understanding the tidyverse

 What is meant by tidy data

 Installing and loading the tidyverse

 Using the tibble, dplyr, ggplot2, tidyr, and purrr
packages
22

23What is the tidyverse, and what is tidy data?
and assemble the pieces for you. In this scenario, building a car would be much faster
and simpler for you, and it would be easy for you to reproduce the same process in the
future.

 Now imagine that I make a more reasonable request and ask you to reorganize and
plot a dataset, ready to be passed through a machine learning pipeline. You could use
base R functions for this, and they would work fine. But the code would be long, it
wouldn’t be very human-readable (so in a month you’d struggle to remember what
you did), and the plots would be cumbersome to produce.

 Instead, you could take a more modern approach and use functions from the
tidyverse family of packages. These functions help simplify the data-manipulation pro-
cess, are very human-readable, and allow you to produce very attractive graphics with
minimal typing.

2.1 What is the tidyverse, and what is tidy data?
The purpose of this book is to give you the skills to apply machine learning approaches
to your data. While it isn’t my intention to cover all other aspects of data science (nor
could I, in a single book), I do want to introduce you to the tidyverse. Before you can
input your data into a machine learning algorithm, it needs to be in a format that the
algorithm is happy to work with.

 The tidyverse is an “opinionated collection of R packages designed for data sci-
ence,” created for the purpose of making data science tasks in R simpler, more
human-readable, and more reproducible. The packages are “opinionated” because
they are designed to make tasks the package authors consider to be good practice,
easy, and make tasks they consider to be bad practice, difficult. The name comes from
the concept of tidy data, a data structure in which

 Each row represents a single observation.
 Each column represents a variable.

Take a look at the data in table 2.1. Imagine that we take four runners and put them
on a new training regime. We want to know if the regime is improving their running
times, so we record their best times just before the new training starts (month 0), and
for three months thereafter.

Table 2.1 An example of untidy data. This table contains the running times for four runners, taken
immediately before starting a new training regime and then for three months thereafter.

Athlete Month 0 Month 1 Month 2 Month 3

11.9911.9812.112.50Joana

14.3014.7014.914.86Debi

11.8012.0012.112.10Sukhveer

19.0019.3019.719.60Kerol

24 CHAPTER 2 Tidying, manipulating, and plotting data with the tidyverse
This is an example of untidy data. Can you see why? Well, let’s go back to our rules.
Does each row represent a single observation? Nope. In fact, we have four observa-
tions per row (one for each month). Does each column represent a variable? Nope.
There are only three variables in this data: the athlete, the month, and the best time,
and yet we have five columns!

 How would the same data look in tidy format? Table 2.2 shows you.

This time, we have the column Month that contains the month identifiers that were
previously used as separate columns, and the Best column, which holds the best time
for each athlete for each month. Does each row represent a single observation? Yes!
Does each column represent a variable? Yes! So this data is in tidy format.

 Ensuring that your data is in tidy format is an important early step in any machine
learning pipeline, and so the tidyverse includes the package tidyr, which helps you
achieve this. The other packages in the tidyverse work with tidyr and each other to
help you do the following:

 Organize and display your data in a sensible way (tibble)
 Manipulate and subset your data (dplyr)

This table contains the same data as table 2.1, but in tidy format.Table 2.2

Athlete Month Best

12.500Joana

0 14.86Debi

0 12.10Sukhveer

0 19.60Kerol

1 12.10Joana

1 14.90Debi

1 12.10Sukhveer

1 19.70Kerol

2 11.98Joana

2 14.70Debi

2 12.00Sukhveer

2 19.30Kerol

3 11.99Joana

3 14.30Debi

3 11.80Sukhveer

3 19.00Kerol

25What the tibble package is and what it does

 Plot your data (ggplot2)
 Replace for loops with a functional programming approach (purrr)

All of the operations available to you in the tidyverse are achievable using base R code,
but I strongly suggest that you incorporate the tidyverse in your work: it will help you
keep your code simpler, more human-readable, and reproducible.

2.2

2.3

Core and optional packages of the tidyverse
I’m going to teach you to use the tibble, dplyr, ggplot2, tidyr, and purrr packages of
the tidyverse. These are part of the “core” tidyverse packages, along with these:

 readr, for reading data into R from external files
 forcats, for working with factors
 stringr, for working with strings

In addition to these core packages that can be loaded together, the tidyverse includes
a number of optional packages that need to be loaded individually.

To learn more about the other tools of the tidyverse, see R for Data Science by Garrett
Grolemund and Hadley Wickham (O’Reilly Media, 2016).

Loading the tidyverse
The packages of the tidyverse can all be installed and loaded together (recommended)

install.packages("tidyverse")
library(tidyverse)

or installed and loaded individually as needed:

install.packages(c("tibble", "dplyr", "ggplot2", "tidyr", "purrr"))
library(tibble)
library(dplyr)
library(ggplot2)
library(tidyr)
library(purrr)

What the tibble package is and what it does
If you have been doing any form of data science or analysis in R, you will surely have
come across data frames as a structure for storing rectangular data. Data frames
work fine and, for a long time, were the only way to store rectangular data with col-
umns of different types (in contrast to matrices, which can only handle data of the
same type), but very little has been done to improve the aspects of data frames that
data scientists dislike.

NOTE Data is rectangular if each row has a number of elements equal to the
number of columns, and each column has a number of elements equal to
the number of rows. Data isn’t always of this kind!

26 CHAPTER 2 Tidying, manipulating, and plotting data with the tidyverse
The tibble package introduces a new data structure, the tibble, to “keep the features
that have stood the test of time, and drop the features that used to be convenient but
are now frustrating” (http://mng.bz/1wxj). Let’s see what’s meant by this.

Creating tibbles2.3.1

Creating tibbles with the tibble() function works the same as creating data frames:

myTib <- tibble(x = 1:4,
y = c("london", "beijing", "las vegas", "berlin"))

myTib

A tibble: 4 x 2
x y

<int> <chr>
1 london1

2 2 beijing
3 3 las vegas
4 4 berlin

If you’re used to working with data frames, you will immediately notice two differ-
ences in how tibbles are printed:

 When you print a tibble, it tells you that it’s a tibble and its dimensions.
 Tibbles tell you the type of each variable.

This second feature is particularly useful in avoiding errors due to incorrect variable
types.

TIP When printing a tibble, <int> denotes an integer variable, <chr> denotes
a character variable, <dbl> denotes a floating-point number (decimal), and
<lgl> denotes a logical variable.

Converting existing data frames into tibbles2.3.2

Just as you can coerce objects into data frames using the as.data.frame() function,
you can coerce objects into tibbles using the as_tibble() function:

myDf <- data.frame(x = 1:4,
y = c("london", "beijing", "las vegas", "berlin"))

dfToTib <- as_tibble(myDf)

dfToTib

A tibble: 4 x 2
x y

<int> <fct>
1 1 london
2 2 beijing
3 3 las vegas
4 4 berlin

Tells us it’s a tibble with four
rows and two columns

Variable names

Variable classes: <int> = integer,
<chr> = character

http://mng.bz/1wxj

27What the tibble package is and what it does
NOTE In this book, we’ll be working with data already built into R. Often, we
need to read data into our R session from a .csv file. To load the data as a tib-
ble, you use the read_csv() function. read_csv() comes from the readr pack-
age, which is loaded when you call library(tidyverse), and is the tidyverse
version of read.csv().

2.3.3 Differences between data frames and tibbles

If you’re used to working with data frames, you’ll notice a few differences with tibbles.
I’ve summarized the most notable differences between data frames and tibbles in this
section.

TIBBLES DON’T CONVERT YOUR DATA TYPES

A common frustration people have when creating data frames is that they convert
string variables to factors by default. This can be annoying because it may not be the
best way to handle the variables. To prevent this conversion, you must supply the
stringsAsFactors = FALSE argument when creating a data frame.

 In contrast, tibbles don’t convert string variables to factors by default. This behav-
ior is desirable because automatic conversion of data to certain types can be a frustrat-
ing source of bugs:

myDf <- data.frame(x = 1:4,
y = c("london", "beijing", "las vegas", "berlin"))

myDfNotFactor <- data.frame(x = 1:4,
y = c("london", "beijing", "las vegas", "berlin"),
stringsAsFactors = FALSE)

myTib <- tibble(x = 1:4,
y = c("london", "beijing", "las vegas", "berlin"))

class(myDf$y)
[1] "factor"

class(myDfNotFactor$y)
[1] "character"

class(myTib$y)
[1] "character"

If you want a variable to be a factor in a tibble, you simply wrap the c() function inside
factor():

myTib <- tibble(x = 1:4,
y = factor(c("london", "beijing", "las vegas", "berlin")))

myTib

CONCISE OUTPUT, REGARDLESS OF DATA SIZE

When you print a data frame, all the columns are printed to the console (by default),
making it difficult to view early variables and cases. When you print a tibble, it only

28 CHAPTER 2 Tidying, manipulating, and plotting data with the tidyverse

prints the first 10 rows and the number of columns that fit on your screen (by default),
making it easier to get a quick understanding of the data. Note that the names of vari-
ables that aren’t printed are listed at the bottom of the output. Run the following
code, and contrast the output of the starwars tibble (which is included with dplyr
and available when you call library(tidyverse)) with how it looks when converted
into a data frame.

data(starwars)

starwars

as.data.frame(starwars)

TIP The data() function loads into your global environment a dataset that is
included with base R or an R package. Use data() with no arguments to list
all the datasets available for your currently loaded packages.

SUBSETTING WITH [ALWAYS RETURNS ANOTHER TIBBLE

When subsetting a data frame, the [operator will return another data frame if you
keep more than one column, or a vector if you keep only one. When subsetting a tib-
ble, the [operator will always return another tibble. If you wish to explicitly return a
tibble column as a vector, use either the [[or $ operator instead. This behavior is
desirable because we should be explicit in whether we want a vector or rectangular
data structure, to avoid bugs:

1]myDf[,

4321[1]

1]myTib[,

tibble# A 14 x:
x

<int>
11
22
33
44

myTib[[1]]

4321[1]

myTib$x

4321[1]

TheListing 2.1 starwars data as a tibble and a data frame

NOTE An exception to this is if you subset a data frame using a single index
with no comma (such as myDf[1]). In this case, the [operator will return a
single-column data frame, but this method doesn’t allow us to combine row
and column subsetting.

29What the dplyr package is and what it does
VARIABLES ARE CREATED SEQUENTIALLY

When building a tibble, variables are created sequentially so that later variables can
reference those defined earlier. This means we can create variables on the fly that
refer to other variables in the same function call:

sequentialTib <- tibble(nItems = c(12, 45, 107),
cost = c(0.5, 1.2, 1.8),
totalWorth = nItems * cost)

sequentialTib

A tibble: 3 x 3
cost totalWorthnItems

<dbl><dbl> <dbl>
0.5121 6

2 45 1.2 54
3 107 1.8 193

What the dplyr package is and what it does2.4
When working with data, we often need to perform operations on it such as the
following:

 Selecting only the rows and/or columns of interest
 Creating new variables
 Arranging the data in ascending or descending order of certain variables
 Getting summary statistics

There may also be a natural grouping structure in the data that we would like to main-
tain when performing these operations. The dplyr package allows us to perform these
operations in a very intuitive way. Let’s work through an example.

Manipulating the CO2 dataset with dplyr2.4.1

Let’s load the built-in CO2 dataset in R. We have a tibble with 84 cases and 5 variables,
documenting the uptake of carbon dioxide by different plants under various condi-
tions. I’m going to use this dataset to teach you some fundamental dplyr skills.

library(tibble)

data(CO2)

CO2tib <- as_tibble(CO2)

Exercise 1
Load the mtcars dataset using the data() function, convert it into a tibble, and explore
it using the summary() function.

Exploring the CO2 datasetListing 2.2

30 CHAPTER 2 Tidying, manipulating, and plotting data with the tidyverse

CO2tib

A tibble: 84 x 5
Plant Type Treatment conc uptake

* <ord> <fct> <fct> <dbl> <dbl>
1 Qn1 Quebec nonchilled 95 16
2 Qn1 Quebec nonchilled 175 30.4
3 Qn1 Quebec nonchilled 250 34.8
4 Qn1 Quebec nonchilled 350 37.2
5 Qn1 Quebec nonchilled 500 35.3
6 Qn1 Quebec nonchilled 675 39.2
7 Qn1 Quebec nonchilled 1000 39.7
8 Qn2 Quebec nonchilled 95 13.6
9 Qn2 Quebec nonchilled 175 27.3

10 Qn2 Quebec nonchilled 250 37.1
... with 74 more rows

Let’s say we want to select only columns 1, 2, 3, and 5. We can do this using the select()
function. In the select() function call in the following listing, the first argument is
the data; then we supply either the numbers or names of the columns we wish to
select, separated by commas.

library(dplyr)

selectedData <- select(CO2tib, 1, 2, 3, 5)

selectedData

A tibble: 84 x 4
Plant Type Treatment uptake

* <ord> <fct> <fct> <dbl>
1 Qn1 Quebec nonchilled 16
2 Qn1 Quebec nonchilled 30.4
3 Qn1 Quebec nonchilled 34.8
4 Qn1 Quebec nonchilled 37.2
5 Qn1 Quebec nonchilled 35.3
6 Qn1 Quebec nonchilled 39.2
7 Qn1 Quebec nonchilled 39.7
8 Qn2 Quebec nonchilled 13.6
9 Qn2 Quebec nonchilled 27.3

10 Qn2 Quebec nonchilled 37.1
... with 74 more rows

Selecting columns usingListing 2.3 select()

Exercise 2
Select all of the columns of your mtcars tibble except the qsec and vs variables.

Now let’s suppose we wish to filter our data to include only cases whose uptake was
greater than 16. We can do this using the filter() function. The first argument of
filter() is, once again, the data, and the second argument is a logical expression

31What the dplyr package is and what it does
that will be evaluated for each row. We can include multiple conditions here by sepa-
rating them with commas.

filteredData <- filter(selectedData, uptake > 16)

filteredData

A tibble: 66 x 4
uptakeTreatmentPlant Type
<dbl><fct><ord> <fct>

1 Qn1 Quebec nonchilled 30.4
2 Qn1 Quebec nonchilled 34.8
3 Qn1 Quebec nonchilled 37.2
4 Qn1 Quebec nonchilled 35.3
5 Qn1 Quebec nonchilled 39.2
6 Qn1 Quebec nonchilled 39.7
7 Qn2 Quebec nonchilled 27.3
8 Qn2 Quebec nonchilled 37.1
9 Qn2 Quebec nonchilled 41.8

10 Qn2 Quebec nonchilled 40.6
... with 56 more rows

Next, we would like to group by individual plants and summarize the data to get the
mean and standard deviation of uptake within each group. We can achieve this using
the group_by() and summarize() functions, respectively.

 In the group_by() function, the first argument is—you guessed it—the data (see
the pattern here?), followed by the grouping variable. We can group by more than
one variable by separating them with commas. When we print groupedData, not much
has changed except that we get an indication above the data saying that they are
grouped, the variable by which they are grouped, and how many groups there are.
This tells us that any further operations we apply will be performed on a group-by-
group basis.

groupedData <- group_by(filteredData, Plant)

groupedData

A tibble: 66 x 4
Plant [11]# Groups:

uptakeTreatmentPlant Type

Filtering rows usingListing 2.4 filter()

Exercise 3
Filter your mtcars tibble to include only cases with a number of cylinders (cyl) not
equal to 8.

Grouping data withListing 2.5 group_by()

32 CHAPTER 2 Tidying, manipulating, and plotting data with the tidyverse

<ord> <fct> <fct> <dbl>
1 Qn1 Quebec nonchilled 30.4
2 Qn1 Quebec nonchilled 34.8
3 Qn1 Quebec nonchilled 37.2
4 Qn1 Quebec nonchilled 35.3
5 Qn1 Quebec nonchilled 39.2
6 Qn1 Quebec nonchilled 39.7
7 Qn2 Quebec nonchilled 27.3
8 Qn2 Quebec nonchilled 37.1
9 Qn2 Quebec nonchilled 41.8

10 Qn2 Quebec nonchilled 40.6
... with 56 more rows

TIP You can remove a grouping structure from a tibble by wrapping it in the
ungroup() function.

In the summarize() function, the first argument is the data; in the second argument,
we name the new variables we’re creating, followed by an = sign, followed by a defini-
tion of that variable. We can create as many new variables as we like by separating
them by commas. In listing 2.6, we create two summary variables: the mean of the
uptake for each group (meanUp) and the standard deviation of the uptake for each
group (sdUp). Now, when we print summarizedData, we can see that aside from our
grouping variable, our original variables have been replaced with the summary vari-
ables we just created.

summarizedData <- summarize(groupedData, meanUp = mean(uptake),
sdUp = sd(uptake))

summarizedData

A tibble: 11 x 3
sdUpPlant meanUp

<dbl><ord> <dbl>

Creating summaries of variables usingListing 2.6 summarize()

1 Qn1 36.1 3.42
2 Qn2 38.8 6.07
3 Qn3 37.6 10.3
4 Qc1 32.6 5.03
5 Qc3 35.5 7.52
6 Qc2 36.6 5.14
7 Mn3 26.2 3.49
8 Mn2 29.9 3.92
9 Mn1 29.0 5.70

10 Mc3 18.4 0.826
11 Mc1 20.1 1.83

Finally, we will mutate a new variable from the existing ones to calculate the coefficient
of variation for each group, and then we’ll arrange the rows in the data so that the row
with the smallest value of the new variable is at the top, and the row with the largest
value is at the bottom. We can do this with the mutate() and arrange() functions.

33What the dplyr package is and what it does

 For the mutate() function, the first argument is the data. The second argument is
the name of the new variable to be created, followed by an = sign, followed by its defini-
tion. We can create as many new variables as we like by separating them with commas.

mutatedData <- mutate(summarizedData, CV = (sdUp / meanUp) * 100)

mutatedData

A tibble: 11 x 4
CVsdUpPlant meanUp

<dbl> <dbl><dbl><ord>
1 Qn1 36.1 3.42 9.48
2 Qn2 38.8 6.07 15.7
3 Qn3 37.6 10.3 27.5
4 Qc1 32.6 5.03 15.4
5 Qc3 35.5 7.52 21.2
6 Qc2 36.6 5.14 14.1
7 Mn3 26.2 3.49 13.3
8 Mn2 29.9 3.92 13.1
9 Mn1 29.0 5.70 19.6

10 Mc3 18.4 0.826 4.48
11 Mc1 20.1 1.83 9.11

TIP Argument evaluation in dplyr functions is sequential, meaning we could
have defined the CV variable in the summarize() function by referencing the
meanUp and sdUp variables, even though they hadn’t been created yet!

The arrange() function takes the data as the first argument, followed by the vari-
able(s) we wish to arrange the cases by. We can arrange by multiple columns by sepa-
rating them with commas: doing so will arrange the cases in the order of the first
variable, and any ties will be ordered based on their value of the second variable, and
so on with subsequent ties.

arrangedData <- arrange(mutatedData, CV)

arrangedData

A tibble: 11 x 4
CVsdUpPlant meanUp

<dbl> <dbl><dbl><ord>

Creating new variables usingListing 2.7 mutate()

Arranging tibbles by variables usingListing 2.8 arrange()

1 Mc3 18.4 0.826 4.48
2 Mc1 20.1 1.83 9.11
3 Qn1 36.1 3.42 9.48
4 Mn2 29.9 3.92 13.1
5 Mn3 26.2 3.49 13.3
6 Qc2 36.6 5.14 14.1
7 Qc1 32.6 5.03 15.4
8 Qn2 38.8 6.07 15.7
9 Mn1 29.0 5.70 19.6

34 CHAPTER 2 Tidying, manipulating, and plotting data with the tidyverse
10 Qc3 35.5 7.52 21.2
11 Qn3 37.6 10.3 27.5

TIP If you want to arrange a tibble in descending order of a variable’s values,
simply wrap the variable in desc(): arrange(mutatedData, desc(CV)).

Chaining dplyr functions together2.4.2

Everything we did in section 2.4.1 could be achieved using base R, but I hope you can
see that the dplyr functions—or verbs, as they’re often called (because they are human-
readable and clearly imply what they do)—help make the code simpler and more
human-readable. But the power of dplyr really comes from the ability to chain these
functions together into intuitive, sequential processes.

 At each stage of our CO2 data manipulation, we saved the intermediate data and
applied the next function to it. This is tedious, creates lots of unnecessary data objects
in our R environment, and is not as human-readable. Instead, we can use the pipe
operator, %>%, which becomes available when we load dplyr. The pipe passes the out-
put of the function on its left as the first argument to the function on its right. Let’s
look at a basic example:

library(dplyr)

c(1, 4, 7, 3, 5) %>% mean()

[1] 4

The %>% operator takes the output of the c() function on the left (a vector of
length 5), and “pipes” it into the first argument of the mean() function. We can use
the %>% operator to chain multiple functions together to make the code more con-
cise and human-readable.

 Remember how I made a point of saying that the first argument of each dplyr func-
tion is the data? Well, the reason this is so important and useful is that it allows us to
pipe the data from the previous operation into the next one. The entire process of
data manipulation we went through in section 2.4.1 becomes the following listing.

arrangedData <- CO2tib %>%
select(c(1:3, 5)) %>%
filter(uptake > 16) %>%
group_by(Plant) %>%
summarize(meanUp = mean(uptake), sdUp = sd(uptake)) %>%
mutate(CV = (sdUp / meanUp) * 100) %>%
arrange(CV)

arrangedData

A tibble: 11 x 4
Plant meanUp sdUp CV

Chaining dplyr operations together withListing 2.9 %>%

35What the ggplot2 package is and what it does

<ord> <dbl> <dbl> <dbl>
1 Mc3 18.4 0.826 4.48
2 Mc1 20.1 1.83 9.11
3 Qn1 36.1 3.42 9.48
4 Mn2 29.9 3.92 13.1
5 Mn3 26.2 3.49 13.3
6 Qc2 36.6 5.14 14.1
7 Qc1 32.6 5.03 15.4
8 Qn2 38.8 6.07 15.7
9 Mn1 29.0 5.70 19.6

10 Qc3 35.5 7.52 21.2
11 Qn3 37.6 10.3 27.5

Read the code from top to bottom, and every time you come to a %>% operator, say
“and then.” You would read it as “Take the CO2 data, and then select these columns,
and then filter these rows, and then group by this variable, and then summarize with
these variables, and then mutate this new variable, and then arrange in order of this
variable and save the output as arrangedData. Can you see that this is how you might
explain your data-manipulation process to a colleague in plain English? This is the
power of dplyr: being able to perform complex data manipulations in a logical,
human-readable way.

TIP It is conventional to start a new line after a %>% operator to help make
the code easier to read.

2.5

Exercise 4
Group the mtcars tibble by the gear variable, summarize the medians of the mpg and
disp variables, and mutate a new variable that is the mpg median divided by the disp
median, all chained together with the %>% operator.

What the ggplot2 package is and what it does
In R, there are three main plotting systems:

 Base graphics
 Lattice
 ggplot2

Arguably, ggplot2 is the most popular system among data scientists; and as it’s part of
the tidyverse, we will use this system to plot our data throughout this book. The “gg” in
ggplot2 stands for grammar of graphics, a school of thought that says any data graphic
can be created by combining data with layers of plot components such as axes, tick-
marks, gridlines, dots, bars, and lines. By layering plot components like this, you can
use ggplot2 to create communicative, attractive plots in a very intuitive way.

Let’s load the iris dataset that comes with R and create a scatter plot of two of its vari-
ables. This data was collected and published by Edgar Anderson in 1935 and contains
length and width measurements of the petals and sepals of three species of iris plant.

36 CHAPTER 2 Tidying, manipulating, and plotting data with the tidyverse

The code to create the plot in figure 2.1 is shown in listing 2.10. The function ggplot()
takes the data you supply as the first argument and the function aes() as the second
(more about this in a moment). This creates a plotting environment, axis, and axis
labels based on the data.

 The aes() function is short for aesthetic mappings, which, if you’re used to base R
plotting, may be new to you. An aesthetic is a feature of a plot that can be controlled by
a variable in the data. Examples of aesthetics include the x-axis, y-axis, color, shape,
size, and even transparency of the data points drawn on the plot. In the function call
in listing 2.10, we have asked ggplot() to map the Sepal.Length and Sepal.Width
variables to the x- and y-axes, respectively.

Plotting data with theListing 2.10 ggplot() function

2.0

2.5

3.0

3.5

4.0

4.5

5 6 7 8

Sepal.Length

S
e
p
a
l.
W

id
th

Figure 2.1 A scatter plot created with ggplot2. The Sepal.Length variable is mapped to the x
aesthetic, and the Sepal.Width variable is mapped to the y aesthetic. A black-and-white theme
was applied by adding the theme_bw() layer.

library(ggplot2)
data(iris)
myPlot <- ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width)) +

geom_point() +
theme_bw()

myPlot

TIP Notice that we don’t need to wrap the variable names in quotes; ggplot()
is clever!

37What the ggplot2 package is and what it does
We finish the line with the + symbol, which we use to add additional layers to our plot
(we can add as many layers as it takes to create our desired plot). Convention states
that when we add additional layers to our plots, we finish the current layer with + and
place the next layer on a new line. This helps maintain readability.

NOTE When adding layers to the initial ggplot() function call, each line
needs to finish with +; you cannot put the + on a new line.

The next layer is a function called geom_point(). Geom stands for geometric object, which is
a graphical element used to represent data points, such as bars, lines, box and whiskers,
and so on; the functions to produce these layers are all named geom_[graphical
element]. For example, let’s add two new layers to our plot: geom_density_2d(),
which adds density contours; and geom_smooth(), which fits a smoothed line with con-
fidence bands to the data (see figure 2.2).

The plot is reasonably complex, and to achieve the same in base R would take many
lines of code. Here’s how easy this is to achieve with ggplot2!

myPlot +
geom_density_2d() +
geom_smooth()

Adding geom layers to aListing 2.11 ggplot object

2.0

2.5

3.0

3.5

4.0

4.5

5 6 7 8

Sepal.Length

S
e
p
a
l.
W

id
th

Figure 2.2 The same scatter plot as in figure 2.1, with 2D density contours and a smoothed line
added as layers using the geom_density_2d() and geom_smooth functions, respectively.

38 CHAPTER 2 Tidying, manipulating, and plotting data with the tidyverse
NOTE You can save a ggplot as a named object and simply add new layers to
that object, instead of creating the plot from scratch each time.

Finally, it’s often important to highlight a grouping structure within the data, and we can
do this by adding a color or shape aesthetic mapping, as shown in figure 2.3. The code
to produce these plots is shown in listing 2.12. The only difference between them is that
species is given as the argument to the shape or col (color) aesthetic.

ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, shape = Species)) +
geom_point() +
theme_bw()

ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, col = Species)) +
+geom_point()

theme_bw()

NOTE Notice how ggplot() automatically produces a legend when you add
aesthetic mappings other than x and y. With base graphics, you would have to
produce these manually!

One final thing I want to teach you about ggplot() is its extremely powerful faceting
functionality. Sometimes we may wish to create subplots of our data where each sub-
plot, or facet, displays data belonging to some group present in the data.

 For example, figure 2.4 shows the same iris data, but this time faceted by the
Species variable. The code to create this plot is shown in listing 2.13: I’ve simply

MappingListing 2.12 species to the shape and color aesthetics

2.0

2.5

3.0

3.5

4.0

4.5

5 6 7 8

Sepal.Length

S
e
p
a
l.
W

id
th

2.0

2.5

3.0

3.5

4.0

4.5

5 6 7 8

Sepal.Length

S
e
p
a
l.
W

id
th

Species

virginicasetosa versicolor

Species

virginicasetosa versicolor

Figure 2.3 The same scatter plot as in figure 2.1, with the Species variable mapped to the shape
and col aesthetics

39What the ggplot2 package is and what it does
added a facet_wrap() layer to the ggplot call, and specified I want it to facet by
(~ Species).

ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width)) +
facet_wrap(~ Species) +

+geom_point()
theme_bw()

While there is much more you can do with ggplot2 than is presented here (including
customizing the appearance of virtually everything), I just want to give you an under-
standing of how to create the basic plots needed to replicate those you’ll find through-
out the book. If you want to take your data-visualization skills to the next level, I strongly
recommend ggplot2: Elegant Graphics for Data Analysis by Hadley Wickham (Springer
International Publishing, 2016).

TIP The order of plot elements on a ggplot is important! Plot elements are
layered on sequentially, so elements added later in a ggplot() call will be on
top of all the others. Reorder the geom_density_2d() and geom_point() func-
tions used to create figure 2.2, and look closely to see what happens (the plot
might look the same, but it’s not!).

Grouping subplots with theListing 2.13 facet_wrap() function

setosa versicolor virginica

8765 8765 5 6 7 8

2.0

2.5

3.0

3.5

4.0

4.5

Sepal.Length

S
e
p
a
l.
W

id
th

The same data is shown, but with different iris species plotted on separate subplots or facets.Figure 2.4

40 CHAPTER 2 Tidying, manipulating, and plotting data with the tidyverse

What the tidyr package is and what it does2.6
In section 2.1, we looked at an example of data that was not tidy and then at the same
data after restructuring it in tidy format. Quite often, as data scientists, we don’t have
much control over the format data is in when it comes to us; we commonly have to
restructure untidy data into a tidy format so that we can pass it into our machine
learning pipelines. Let’s make an untidy tibble and convert it into its tidy format.

 Listing 2.14 shows a tibble of fictitious patient data, where patients’ body mass
index (BMI) was measured at month 0, month 3, and month 6 after the start of some
imaginary intervention. Is this data tidy? Well, no. There are only three variables in
the data:

 Patient ID
 The month the measurement was taken
 The BMI measurement

But we have four columns! Also, each row doesn’t contain the data for a single obser-
vation: it contains all the observations made on that patient.

Exercise 5
Create a scatter plot of the drat and wt variables from your mtcars tibble, and color
the dots by the carb variable. See what happens when you wrap the carb aesthetic
mapping in as.factor().

Untidy tibbleListing 2.14

library(tibble)

library(tidyr)

patientData <- tibble(Patient = c("A", "B", "C"),
Month0 = c(21, 17, 29),
Month3 = c(20, 21, 27),
Month6 = c(21, 22, 23))

patientData

A tibble: 3 x 4
Patient Month0 Month3 Month6
<chr> <dbl> <dbl> <dbl>

1 A 21 20 21
2 B 17 21 22
3 C 29 27 23

To convert this untidy tibble into its tidy counterpart, we can use tidyr’s gather()

function. The gather() function takes the data as its first argument. The key argu-
ment defines the name of the new variable that will represent the columns we are
“gathering.” In this case, the columns we are gathering are named Month0, Month3,

41What the tidyr package is and what it does
and Month6, so we call the new column that will hold these keys Month. The value
argument defines the name of the new variable that will represent the data from the
columns we are gathering. In this case, the values were BMI measurements, so we
call the new column that will represent these values BMI. The final argument is a vec-
tor defining which variables to gather and convert into the key-value pairs. By using
-Patient, we are telling gather() to use all the variables except the identifying vari-
able, Patient.

tidyPatientData <- gather(patientData, key = Month,
value = BMI, -Patient)

tidyPatientData

A tibble: 9 x 3
BMIPatient Month

<chr><chr> <dbl>
1 A Month0 21
2 B Month0 17
3 C Month0 29
4 A Month3 20
5 B Month3 21
6 C Month3 27
7 A Month6 21
8 B Month6 22
9 C Month6 23

We could have achieved the same result by typing the following, instead (note that the
tibbles returned by the two listings are identical).

gather(patientData, key = Month, value = BMI, Month0:Month6)

A tibble: 9 x 3
BMIPatient Month

<chr><chr> <dbl>
1 A Month0 21
2 B Month0 17
3 C Month0 29
4 A Month3 20
5 B Month3 21
6 C Month3 27
7 A Month6 21
8 B Month6 22
9 C Month6 23

gather(patientData, key = Month, value = BMI, c(Month0, Month3, Month6))

A tibble: 9 x 3
Patient Month BMI

Tidying data with theListing 2.15 gather() function

Different ways to select columns for gatheringListing 2.16

42 CHAPTER 2 Tidying, manipulating, and plotting data with the tidyverse

<dbl><chr><chr>
21Month01 A
17Month02 B
29Month03 C
20Month34 A
21Month35 B
27Month36 C
21Month67 A
22Month68 B
23Month69 C

2.7

Converting data to wide format
The data structure in the patientData tibble is called wide format, where observa-
tions for a single case are placed in the same row, across multiple columns. Mostly
we want to work with tidy data because it makes our lives simpler: we can see imme-
diately which variables we have, grouping structures are made clear, and most func-
tions are designed to work easily with tidy data. There are, however, some rare
occasions where we need to convert our tidy data into wide format, perhaps because
a function we need expects the data in this format. We can convert tidy data into its
wide format using the spread() function:

spread(tidyPatientData, key = Month, value = BMI)

A tibble: 3 x 4
Patient Month0 Month3 Month6
<chr> <dbl> <dbl> <dbl>

1 A 21 20 21
2 B 17 21 22
3 C 29 27 23

Its use is the opposite of gather(): we supply the key and value arguments as the
names of the key and value columns we created using the gather() function, and
the function converts these into wide format for us.

Exercise 6
Gather the vs, am, gear, and carb variables from your mtcars tibble into a single key-
value pair.

What the purrr package is and what it does
The last tidyverse package I’m going to show you is purrr (with three r’s). R gives us
the tools to use it as a functional programming language. This means it gives us the
tools to treat all computations like mathematical functions that return their values,
without altering anything in the workspace.

NOTE When a function does something other than return a value (such as
draw a plot or alter an environment), it’s called a side effect of the function. A
function that does not produce any side effects is said to be a pure function.

43What the purrr package is and what it does

A simple example of functions that do and do not produce side effects is shown in list-
ing 2.17. The pure() function returns the value of a + 1 but does not alter anything in
the global environment. The side_effects() function uses the super-assignment
operator <<- to reassign the object a in the global environment. Each time you run
the pure() function, it gives the same output; but running the side_effect() func-
tion gives a new value each time (and will impact the output of subsequent pure()
function calls as well).

2.7.1

Creating a list of numeric vectorsListing 2.17

a <- 20

pure <- function() {
a <- a + 1
a

}

side_effect <- function() {
a <<- a + 1
a

}

c(pure(), pure())
[1] 21 21

c(side_effect(), side_effect())
[1] 21 22

Calling functions without side effects is usually desirable because it’s easier to predict
what the function will do. If a function has no side effects, it can be substituted with a
different implementation without breaking anything in your code.

An important consequence is that for loops, which when used on their own can
create unwanted side effects (such as modifying existing variables), can be wrapped
inside other functions. Functions that wrap for loops inside them allow us to iterate
over each element of a vector/list (including columns and rows of data frames or tib-
bles), apply a function to that element, and return the result of the whole iterative
process.

NOTE If you’re familiar with the apply() family of base R functions, func-
tions from the purrr package help us achieve the same thing, but using a con-
sistent syntax and some convenient features.

Replacing for loops with map()

The purrr package provides a set of functions that allow us to apply a function to each
element of a list. Which purrr function to use depends on the number of inputs and
what we want our output to be; in this section, I’ll demonstrate the importance of the
most commonly used functions from this package.

44 CHAPTER 2 Tidying, manipulating, and plotting data with the tidyverse
 Imagine that we have a list of three numeric vectors:

listOfNumerics <- list(a = rnorm(5),
b = rnorm(9),
c = rnorm(10))

listOfNumerics

$a
[1] -1.4617 -0.3948 2.1335 -0.2203 0.3429

$b
[1] 0.2438 -1.3541 0.6164 -0.5524 0.4519 0.3592 -1.3415 -1.7594 1.2160

$c
0.6492 -1.63201.40040.17780.5152 -1.1657 -0.76680.2792[1] -1.1325

[10] -1.0986

Now, let’s say we want to apply a function to each of the three list elements separately,
such as the length() function to return the length of each element. We could use a
for loop to do this, iterating over each list element and saving the length as an ele-
ment of a new list that we predefine to save time:

elementLengths <- vector("list", length = 3)

for(i in seq_along(listOfNumerics)) {
elementLengths[[i]] <- length(listOfNumerics[[i]])

}

elementLengths

[[1]]
[1] 5

[[2]]
[1] 9

[[3]]
[1] 20

This code is difficult to read, requires us to predefine an empty vector to prevent the
loop from being slow, and has a side effect: if we run the loop again, it will overwrite
the elementLengths list.

 Instead, we can replace the for loop with the map() function. The first argument
of all the functions in the map family is the data we’re iterating over. The second argu-
ment is the function we’re applying to each list element. Take a look at figure 2.5,
which illustrates how the map() function applies a function to every element of a
list/vector and returns a list containing the outputs.

 In this example, the map() function applies the length() function to each element
of the listOfNumerics list and returns these values as a list. Notice that the map()

45What the purrr package is and what it does
function also uses the names of the input elements as the names of the output ele-
ments (a, b, and c):

map(listOfNumerics, length)

$a
5[1]

$b
9[1]

$c
20[1]

NOTE If you’re familiar with the apply family of functions, map() is the purrr
equivalent of lapply().

I hope you can immediately see how much simpler this is to code, and how much eas-
ier it is to read, than the for loop!

2.7.2 Returning an atomic vector instead of a list

So the map() function always returns a list. But what if, instead of returning a list, we
wanted to return an atomic vector? The purrr package provides a number of func-
tions to do just that:

 map_dbl() returns a vector of doubles (decimals).
 map_chr() returns a character vector.
 map_int() returns a vector of integers.
 map_lgl() returns a logical vector.

map(.x, .f, ...)

element 1 element 2 element 3 element 4

length()

element 1 element 2 element 3 element 4

1. The function
takes a vector
or list as input.. .

2. . .. and a function...

3. . . . and returns a list
where each element is
the result of applying the
function to the original
input.

Figure 2.5 The map() function takes a vector or list as input, applies a function to each element
individually, and returns a list of the returned values.

46 CHAPTER 2 Tidying, manipulating, and plotting data with the tidyverse
Each of these functions returns an atomic vector of the type specified by its suffix. In
this way, we are forced to think about and predetermine what type of data our output
should be. For example, as shown in listing 2.18, we can return the lengths of each of
our listOfNumerics list elements just as before, using the map_int() function. Just
like map(), the map_int() function applies the length() function to each element of
our list, but it returns the output as a vector of integers. We can do the same thing
using the map_chr() function, which coerces the output into a character vector, but
the map_lgl() function throws an error because it can’t coerce the output into a logi-
cal vector.

NOTE Forcing us to explicitly state the type of output we want to return pre-
vents bugs from unexpected types of output.

map_int(listOfNumerics, length)

cba
2095

map_chr(listOfNumerics, length)

cba
"9" "20""5"

map_lgl(listOfNumerics, length)

Error: Can't coerce element 1 from a integer to a logical

Finally, we can use the map_df() function to return a tibble instead of a list.

map_df(listOfNumerics, length)

A tibble: 1 x 3
cba

<int> <int> <int>
10951

Returning atomic vectorsListing 2.18

Exercise 7
Use a function from the purrr package to return a logical vector indicating whether the
sum of the values in each column of the mtcars dataset is greater than 1,000.

Returning a tibble withListing 2.19 map_df()

47What the purrr package is and what it does

Using anonymous functions inside the map() family2.7.3

Sometimes we want to apply a function to each element of a list that we haven’t
defined yet. Functions that we define on the fly are called anonymous functions and can
be useful when the function we’re applying isn’t going to be used often enough to
warrant assigning it to an object. Using base R, we define an anonymous function by
simply calling the function() function.

2.7.4

Defining an anonymous function withListing 2.20 function()

map(listOfNumerics, function(.) . + 2)

$a
[1] 0.5383 1.6052 4.1335 1.7797 2.3429

$b
[1] 2.2438 0.6459 2.6164 1.4476 2.4519 2.3592 0.6585 0.2406 3.2160

$c
[1] 0.8675 2.2792 2.5152 0.8343 1.2332 2.1778 3.4004 2.6492 0.3680 0.9014

NOTE Notice the . in the anonymous function. This represents the element
that map() is currently iterating over.

The expression after function(.) is the body of the function. There is nothing wrong
with this syntax—it works perfectly fine—but purrr provides a shorthand for func-

tion(.): the ~ (tilde) symbol. Therefore, we could simplify the map() call to

map(listOfNumerics, ~. + 2)

by substituting ~ for function(.).

Using walk() to produce a function’s side effects

Sometimes we want to iterate over a function for its side effects. Probably the most com-
mon example is when we want to produce a series of plots. In this situation, we can use
the walk() function to apply a function to each element of a list to produce the func-
tion’s side effects. The walk() function also returns the original input data we pass it, so
it’s useful for plotting an intermediate step in a series of piped operations. Here’s an
example of walk() being used to create a separate histogram for each element of our list:

par(mfrow = c(1, 3))

walk(listOfNumerics, hist)

NOTE The par(mfrow = c(1, 3)) function call simply splits the plotting device
into two rows and four columns for base plots.

The resulting plot is shown in figure 2.6.
But what if we want to use the name of each list element as the title for its histo-

gram? We can do this using the iwalk() function, which makes the name or index of

48 CHAPTER 2 Tidying, manipulating, and plotting data with the tidyverse

each element available to us. In the function we supply to iwalk(), we can use .x to
reference the list element we’re iterating over and .y to reference its name/index:

iwalk(listOfNumerics, ~hist(.x, main = .y))

NOTE Each of the map() functions has an i version that lets us reference
each element’s name/index.

The resulting plot is shown in figure 2.7. Notice that now each histogram’s title shows
the name of the list element it’s plotting.

Histogram of .x[[i]]Histogram of .x[[i]]Histogram of .x[[i]]

.x[[i]]

3210–1–2

.x[[i]] .x[[i]]

–20 –10 0.0 1.00.5–0.5 –20 –10 0.0 1.0–15 1.5 0.5–0.5–15 1.5

Fr
eq

ue
nc

y

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Fr
eq

ue
nc

y

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Fr
eq

ue
nc

y

0.
0

0.
5

1.
0

1.
0

1.
5

2.
0

The result of “walking” theFigure 2.6 hist() function over each element of our list using walk()

a b c

.x

3210–1–2

.x .x

–20 –10 0.0 1.00.5–0.5 –20 –10 0.0 1.0–15 1.5 0.5–0.5–15 1.5

Fr
eq

ue
nc

y

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Fr
eq

ue
nc

y

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Fr
eq

ue
nc

y

0.
0

0.
5

1.
0

1.
0

1.
5

2.
0

Figure 2.7 The result of “walking” the hist() function over each element of our list using iwalk()

49What the purrr package is and what it does

Iterating over mult2.7.5 iple lists simultaneously

Sometimes the data we wish to iterate over isn’t contained in a single list. Imagine that
we want to multiply each element in our list by a different value. We can store these
values in a separate list and use the map2() function to iterate over both lists simulta-
neously, multiplying the element in the first list by the element in the second. This
time, instead of referencing our data with ., we specifically reference the first and sec-
ond lists using .x and .y, respectively:

multipliers <- list(0.5, 10, 3)

map2(.x = listOfNumerics, .y = multipliers, ~.x * .y)

Now, imagine that instead of iterating over just two lists, we want to iterate over three
or more. The pmap() function allows us to iterate over multiple lists simultaneously. I
use pmap() when I want to test multiple combinations of arguments for a function.
The rnorm() function draws a random sample from the normal distribution and has
three arguments: n (the number of samples), mean (the center of the distribution),
and sd (the standard deviation). We can create a list of values for each and then use
pmap() to iterate over each list to run the function on each combination.

 We start by using the expand.grid() function to create a data frame containing
every combination of the input vectors. Because data frames are really just lists of col-
umns, supplying one to pmap() will iterate a function over each column in the data
frame. Essentially, the function we ask pmap() to iterate over will be run using the
arguments contained in each row of the data frame. Therefore, pmap() will return
eight different random samples, one corresponding to each combination of argu-
ments in the data frame.

 Because the first argument of all map family functions is the data we wish to iterate
over, we can chain them together using the %>% operator. The following code pipes
the random samples returned by pmap() into the iwalk() function to draw a separate
histogram for each sample, labeled with its index.

UsingListing 2.21 pmap() to iterate over multiple lists

arguments <- expand.grid(n = c(100, 200),
mean = c(1, 10),
sd = c(1, 10))

arguments

n mean sd
1 100 1 1
2 200 1 1
3 100 10 1
4 200 10 1
5 100 1 10
6 200 1 10
7 100 10 10
8 200 10 10

50 CHAPTER 2 Tidying, manipulating, and plotting data with the tidyverse
par(mfrow = c(2, 4))

pmap(arguments, rnorm) %>%
iwalk(~hist(.x, main = paste("Element", .y)))

The resulting plot is shown in figure 2.8.

Don’t worry if you haven’t memorized all of the tidyverse functions I just covered—
we’ll be using these tools throughout the book in our machine learning pipelines.
There’s also much more we can do with tidyverse tools than I’ve covered here, but this
will certainly be enough for you to solve the most common data-manipulation prob-
lems you’ll encounter. Now that you’re armed with the knowledge of how to use this
book, in the next chapter we’ll dive into the theory of machine learning.

Summary
 The tidyverse is a collection of R packages that simplifies the organization,

manipulation, and plotting of data.
 Tidy data is rectangular data where each row is a single observation and each

column is a variable. It’s often important to ensure that data is in tidy format
before passing it into machine learning functions.

 Tibbles are a modern take on data frames that have better rules for printing
rectangular data, never change variable types, and always return another tibble
when subsetted using [.

Element 4Element 3Element 2Element 1

Element 8Element 7Element 6Element 5

.x
0–1

Fr
eq

ue
nc

y

–11 2 3 –2 0 1 2 3 4

0
5

10
15

20

Fr
eq

ue
nc

y

0
5

10
15

20

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

0
5

10
15

20

79 10 11 12 138

–20–10 0 10 20 30 40–20–10 0 10 20 30–30–20–10 0 10 20 30 4010 20 300–20 –10

8 9 10 1211 13
.x.x.x

.x.x.x.x

0
10

20
30

40
Fr

eq
ue

nc
y

Fr
eq

ue
nc

y

0
10

20
30

40

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

0
10

20
30

40

0
5

10
20

15

0
5

10
15

20
25

Figure 2.8 The pmap() function was used to iterate the rnorm() function over three vectors of arguments.
The output from pmap() was piped into iwalk() to iterate the hist() function over each random sample.

51Solutions to exercises

 The dplyr package provides human-readable, verb-like functions for data-
manipulation processes, the most important of which are select(), filter(),
group_by(), summarize(), and arrange().

 The most powerful aspect of dplyr is the ability to pipe functions together using
the %>% operator, which passes the output of the function on its left as the first
argument of the function on its right.

 The ggplot2 package is a modern and popular plotting system for R that lets
you create effective plots in a simple, layered way.

 The tidyr package provides the important function gather(), which lets you
easily convert untidy data into tidy format. The opposite of this function is
spread(), which converts tidy data into wide format.

 The purrr package provides a simple, consistent way to iteratively apply func-
tions over each element in a list.

Solutions to exercises
1 Load mtcars, convert it to a tibble, and explore it with summary():

library(tidyverse)

data(mtcars)

mtcarsTib <- as_tibble(mtcars)

summary(mtcarsTib)

2 Select all columns except qsec and vs:

select(mtcarsTib, c(-qsec, -vs))
or
select(mtcarsTib, c(-7, -8))

3 Filter for rows with cylinder numbers not equal to 8:

filter(mtcarsTib, cyl != 8)

4 Group by gear, summarize the medians of mpg and disp, and mutate a new vari-
able that is the mpg median divided by the disp median:

mtcarsTib %>%
group_by(gear) %>%
summarize(mpgMed = median(mpg), dispMed = median(disp)) %>%
mutate(mpgOverDisp = mpgMed / dispMed)

5 Create a scatter plot of the drat and wt variables, and color by carb:

ggplot(mtcarsTib, aes(drat, wt, col = carb)) +
geom_point()

ggplot(mtcarsTib, aes(drat, wt, col = as.factor(carb))) +
geom_point()

52 CHAPTER 2 Tidying, manipulating, and plotting data with the tidyverse
6 Gather vs, am, gear, and carb into a single key-value pair:

gather(mtcarsTib, key = "variable", value = "value", c(vs, am, gear, carb))
or
gather(mtcarsTib, key = "variable", value = "value", c(8:11))

7 Iterate over each column of mtcars, returning a logical vector:

map_lgl(mtcars, ~sum(.) > 1000)
or
map_lgl(mtcars, function(.) sum(.) > 1000)

Part 2

Classification

Now that we’ve covered some basic machine learning terminology, and
your tidyverse skills are developing, let’s finally start learning some practical
machine learning skills. The rest of the book is split into four parts:

■ Classification
■ Regression
■ Dimension reduction
■ Clustering

Within each of these parts, each chapter will focus on a different algorithm (or
algorithms). Each chapter will start by explaining the theory behind how the
algorithm learns, in a graphical way, and the rest of the chapter turns our knowl-
edge into skills by applying the algorithm to a real dataset.

 Recall from chapter 1 that classification and regression are both supervised
learning tasks. They’re supervised because we have a ground truth we can use to
train the models. We’re going to begin by focusing on the prediction of categorical
variables in chapters 3 through 8, so welcome to the classification part of the book.
Alongside teaching you how the algorithms work and how to use them, I’ll also be
teaching you a range of other machine learning skills, such as how to evaluate the
performance of your models and how to tune models to maximize their perfor-
mance. By the time you’ve completed this part of the book, I hope you’ll feel very
confident using the mlr package in R for machine learning tasks. The mlr package
creates a very simple, repetitive work flow for any machine learning task and will
make your learning much simpler. Once we’ve completed the classification part of
the book, we’ll move on to predicting continuous variables in the regression part.

Classifying based on
similarities with

k-nearest neighbors
This chapter covers
 Understanding the bias-variance trade-off

 Underfitting vs. overfitting

 Using cross-validation to assess model
performance

 Building a k-nearest neighbors classifier

 Tuning hyperparameters

This is probably the most important chapter of the entire book. In it, I’m going to
show you how the k-nearest neighbors (kNN) algorithm works, and we’re going
to use it to classify potential diabetes patients. In addition, I’m going to use the
kNN algorithm to teach you some essential concepts in machine learning that we
will rely on for the rest of the book.

By the end of this chapter, not only will you understand and be able to use the
kNN algorithm to make classification models, but you will be able to validate its
performance and tune it to improve its performance as much as possible. Once the
model is built, you’ll learn how to pass new, unseen data into it and get the data’s
predicted classes (the value of the categorical or grouping variable we are trying to
predict). I’ll introduce you to the extremely powerful mlr package in R, which
55

56 CHAPTER 3 Classifying based on similarities with k-nearest neighbors
contains a mouth-watering number of machine learning algorithms and greatly sim-
plifies all of our machine learning tasks.

What is the k-neares3.1 t neighbors algorithm?
I think the simple things in life are the best: playing Frisbee in the park, walking my
dog, playing board games with my family, and using the kNN algorithm. Some machine
learning practitioners look down on kNN a little because it’s very simplistic. In fact, kNN
is arguably the simplest machine learning algorithm, and this is one of the reasons I
like it so much. In spite of its simplicity, kNN can provide surprisingly good classifica-
tion performance, and its simplicity makes it easy to interpret.

NOTE Remember that, because kNN uses labeled data, it is a supervised learn-
ing algorithm.

How does the k-neares3.1.1 t neighbors algorithm learn?

So how does kNN learn? Well, I’m going to use snakes to help me explain. I’m from
the UK, where—some people are surprised to learn—we have a few native species of
snake. Two examples are the grass snake and the adder, which is the only venomous
snake in the UK. But we also have a cute, limbless reptile called a slow worm, which is
commonly mistaken for a snake.

 Imagine that you work for a reptile conservation project aiming to count the num-
bers of grass snakes, adders, and slow worms in a woodland. Your job is to build a
model that allows you to quickly classify reptiles you find into one of these three
classes. When you find one of these animals, you only have enough time to rapidly
estimate its length and some measure of how aggressive it is toward you, before it slith-
ers away (funding is very scarce for your project). A reptile expert helps you manually
classify the observations you’ve made so far, but you decide to build a kNN classifier to
help you quickly classify future specimens you come across.

 Look at the plot of data before classification in figure 3.1. Each of our cases is plot-
ted against body length and aggression, and the species identified by your expert is
indicated by the shape of the datum. You go into the woodland again and collect data
from three new specimens, which are shown by the black crosses.

Grass snake

Adder

Slow worm

New data

Body length

A
gg

re
ss

io
n

Figure 3.1 Body length and aggression of
reptiles. Labeled cases for adders, grass
snakes, and slow worms are indicated by
their shape. New, unlabeled data are shown
by black crosses.

57What is the k-nearest neighbors algorithm?
We can describe the kNN algorithm (and other machine learning algorithms) in terms
of two phases:

1 The training phase
2 The prediction phase

The training phase of the kNN algorithm consists only of storing the data. This is
unusual among machine learning algorithms (as you’ll learn in later chapters), and it
means that most of the computation is done during the prediction phase.

 During the prediction phase, the kNN algorithm calculates the distance between
each new, unlabeled case and all the labeled cases. When I say “distance,” I mean their
nearness in terms of the aggression and body-length variables, not how far away in the
woods you found them! This distance metric is often called Euclidean distance, which in
two or even three dimensions is easy to visualize in your head as the straight-line dis-
tance between two points on a plot (this distance is shown in figure 3.2). This is calcu-
lated in as many dimensions as are present in the data.

Next, for each unlabeled case, the algorithm ranks the neighbors from the nearest
(most similar) to the furthest (the least similar). This is shown in figure 3.3.

Body length

A
gg

re
ss

io
n

Grass snake

Adder

Slow worm

New datax

xx

Figure 3.2 The first step of the kNN
algorithm: calculating distance. The
lines represent the distance between
one of the unlabeled cases (the cross)
and each of the labeled cases.

1

2

3
4

5

6

7

8

9

10

11

12

13
14 15

16
17

18

19
20

Grass snake

Adder

Slow worm

New data

Body length

A
gg

re
ss

io
n xx

x

Figure 3.3 The second step of the kNN
algorithm: ranking the neighbors. The
lines represent the distance between
one of the unlabeled cases (the cross)
and each of the labeled cases. The
numbers represent the ranked distance
between the unlabeled case (the cross)
and each labeled case (1 = closest).

58 CHAPTER 3 Classifying based on similarities with k-nearest neighbors
The algorithm identifies the k-labeled cases (neighbors) nearest to each unlabeled
case. k is an integer specified by us (I’ll cover how we choose k in section 3.1). In other
words, find the k-labeled cases that are most similar in terms of their variables to the
unlabeled case. Finally, each of the k-nearest neighbor cases “votes” on which class the
unlabeled data belongs in, based on the nearest neighbor’s own class. In other words,
whatever class most of the k-nearest neighbors belong to is what the unlabeled case is
classified as.

NOTE Because all of its computation is done during the prediction phase,
kNN is said to be a lazy learner.

Let’s work through figure 3.4 and see this in practice. When we set k to 1, the algo-
rithm finds the single labeled case that is most similar to each of the unlabeled data
items. Each of the unlabeled reptiles is closest to a member of the grass snake class, so
they are all assigned to this class.

When we set k to 3, the algorithm finds the three labeled cases that are most similar to
each of the unlabeled data items. As you can see in the figure, two of the unlabeled
cases have nearest neighbors belonging to more than one class. In this situation, each

Grass snake

Adder Slow worm

New data

Body length

A
gg

re
ss

io
n

1-nearest neighbor

Body length

A
gg

re
ss

io
n

3-nearest neighbors

Body length

A
gg

re
ss

io
n

5-nearest neighbors

Body length

A
gg

re
ss

io
n

Before classification

Figure 3.4 The final step of the kNN
algorithm: identifying the k-nearest
neighbors and taking the majority vote.
Lines connect the unlabeled data with
their one, three, and five nearest
neighbors. The majority vote in each
scenario is indicated by the shape
drawn under each cross.

59Building your first kNN model
nearest neighbor “votes” for its own class, and the majority vote wins. This is very
intuitive because if a single unusually aggressive grass snake happens to be the near-
est neighbor to an as-yet-unlabeled adder, it will be outvoted by the neighboring
adders in the data.

 Hopefully now you can see how this extends to other values of k. When we set k to 5,
for example, the algorithm simply finds the five nearest cases to the unlabeled data
and takes the majority vote as the class of the unlabeled case. Notice that in all three
scenarios, the value of k directly impacts how each unlabeled case is classified.

TIP The kNN algorithm can actually be used for both classification and
regression problems! I’ll show you how in chapter 12, but the only difference
is that instead of taking the majority class vote, the algorithm finds the mean
or median of the nearest neighbors’ values.

3.1.2 What happens if the vote is tied?

It may happen that all of the k-nearest neighbors belong to different classes and that
the vote results in a tie. What happens in this situation? Well, one way we can avoid
this in a two-class classification problem (when the data can only belong to one of two,
mutually exclusive groups) is to ensure that we pick odd numbers of k. This way, there
will always be a deciding vote. But what about in situations like our reptile classifica-
tion problem, where we have more than two groups?

 One way of dealing with this situation is to decrease k until a majority vote can be
won. But this doesn’t help if an unlabeled case is equidistant between its two nearest
neighbors.

 Instead, a more common (and pragmatic) approach is to randomly assign cases
with no majority vote to one of the classes. In practice, the proportion of cases that
have ties among their nearest neighbors is very small, so this has a limited impact on
the classification accuracy of the model. However, if you have many ties in your data,
your options are as follows:

 Choose a different value of k.
 Add a small amount of noise to the data.
 Consider using a different algorithm! I’ll show you how you can compare the

performance of different algorithms on the same problem at the end of chap-
ter 8.

3.2 Building your first kNN model
Imagine that you work in a hospital and are trying to improve the diagnosis of patients
with diabetes. You collect diagnostic data over a few months from suspected diabetes
patients and record whether they were diagnosed as healthy, chemically diabetic, or
overtly diabetic. You would like to use the kNN algorithm to train a model that can
predict which of these classes a new patient will belong to, so that diagnoses can be
improved. This is a three-class classification problem.

60 CHAPTER 3 Classifying based on similarities with k-nearest neighbors
 We’re going to start with a simple, naive way of building a kNN model and then
gradually improve it throughout the rest of the chapter. First things first—let’s install
the mlr package and load it along with the tidyverse:

install.packages("mlr", dependencies = TRUE)

library(mlr)

library(tidyverse)

WARNING Installing the mlr package could take several minutes. You only need
to do this once.

Loading and exploring the diabetes dataset3.2.1

Now, let’s load some data built into the mclust package, convert it into a tibble, and
explore it a little (recall from chapter 2 that a tibble is the tidyverse way of storing rect-
angular data): see listing 3.1. We have a tibble with 145 cases and 4 variables. The
class factor shows that 76 of the cases were non-diabetic (Normal), 36 were chemi-
cally diabetic (Chemical), and 33 were overtly diabetic (Overt). The other three vari-
ables are continuous measures of the level of blood glucose and insulin after a glucose
tolerance test (glucose and insulin, respectively), and the steady-state level of blood
glucose (sspg).

data(diabetes, package = "mclust")

diabetesTib <- as_tibble(diabetes)

summary(diabetesTib)

sspginsulinglucoseclass
: 10.0Min.45.0:: 70Chemical:36 Min.Min.

1st Qu.:118.01st Qu.: 352.090Qu.:1st:76Normal
97:Median Median :156.0Median : 403.0:33Overt

:186.1Mean: 540.8Mean:122Mean
3rd Qu.:221.03rd Qu.: 558.03rd Qu.:112

:748.0Max.:1568.0Max.:353Max.

diabetesTib

A tibble: 145 x 4
class glucose insulin sspg

* <fct> <dbl> <dbl> <dbl>
1 Normal 80 356 124
2 Normal 97 289 117
3 Normal 105 319 143
4 Normal 90 356 199
5 Normal 90 323 240
6 Normal 86 381 157
7 Normal 100 350 221

Loading the diabetes dataListing 3.1

61Building your first kNN model
8 Normal 85 301 186
9 Normal 97 379 142

10 Normal 97 296 131
... with 135 more rows

To show how these variables are related, they are plotted against each other in figure 3.5.
The code to generate these plots is in listing 3.2.

ggplot(diabetesTib, aes(glucose, insulin, col = class)) +
geom_point() +
theme_bw()

ggplot(diabetesTib, aes(sspg, insulin, col = class)) +
geom_point() +
theme_bw()

ggplot(diabetesTib, aes(sspg, glucose, col = class)) +
geom_point() +
theme_bw()

Plotting the diabetes dataListing 3.2

600400200200100 0300
Glucose

0

1500

1000

500

In
su

lin

0

1500

1000

500

In
su

lin

sspg

6004002000
sspg

100

200

300

G
lu

co
se

Class

Chemical

Normal

Overt

Figure 3.5 Plotting the relationships between variables in diabetesTib. All three combinations
of the continuous variables are shown, shaded by class.

62 CHAPTER 3 Classifying based on similarities with k-nearest neighbors
Looking at the data, we can see there are differences in the continuous variables
among the three classes, so let’s build a kNN classifier that we can use to predict dia-
betes status from measurements of future patients.

Our dataset only consists of continuous predictor variables, but often we may be work-
ing with categorical predictor variables too. The kNN algorithm can’t handle categor-
ical variables natively; they need to first be encoded somehow, or distance metrics
other than Euclidean distance must be used.

 It’s also very important for kNN (and many machine learning algorithms) to scale
the predictor variables by dividing them by their standard deviation. This preserves
the relationships between the variables, but ensures that variables measured on larger
scales aren’t given more importance by the algorithm. In the current example, if we
divided the glucose and insulin variables by 1,000,000, then predictions would rely
mostly on the value of the sspg variable. We don’t need to scale the predictors our-
selves because, by default, the kNN algorithm wrapped by the mlr package does this
for us.

3.2.2 Using mlr to train your first kNN model

We understand the problem we’re trying to solve (classifying new patients into one of
three classes), and now we need to train the kNN algorithm to build a model that will
solve that problem. Building a machine learning model with the mlr package has
three main stages:

1 Define the task. The task consists of the data and what we want to do with it. In
this case, the data is diabetesTib, and we want to classify the data with the
class variable as the target variable.

2 Define the learner. The learner is simply the name of the algorithm we plan to use,
along with any additional arguments the algorithm accepts.

3 Train the model. This stage is what it sounds like: you pass the task to the learner,
and the learner generates a model that you can use to make future predictions.

TIP This may seem unnecessarily cumbersome, but splitting the task, learner,
and model into different stages is very useful. It means we can define a single
task and apply multiple learners to it, or define a single learner and test it
with multiple different tasks.

Exercise 1
Reproduce the plot of glucose versus insulin shown in figure 3.5, but use shapes
rather than colors to indicate which class each case belongs to. Once you’ve done
this, modify your code to represent the classes using shape and color.

63Building your first kNN model

Telling mlr what we’re trying to achieve: Defining the task3.2.3

Let’s begin by defining our task. The components needed to define a task are

 The data containing the predictor variables (variables we hope contain the
information needed to make predictions/solve our problem)

 The target variable we want to predict

For supervised learning, the target variable will be categorical if we have a classifica-
tion problem, and continuous if we have a regression problem. For unsupervised
learning, we omit the target variable from our task definition, as we don’t have access
to labeled data. The components of a task are shown in figure 3.6.

TargetData

insulin sspgglucose

+

The "task"

class

12435680
281468300...

"Normal"
"Overt"...

Figure 3.6 Defining a task in mlr. A task
definition consists of the data containing the
predictor variables and, for classification and
regression problems, a target variable we
want to predict. For unsupervised learning,
the target is omitted.

We want to build a classification model, so we use the makeClassifTask() function to
define a classification task. When we build regression and clustering models in parts 3
and 5 of the book, we’ll use makeRegrTask() and makeClusterTask(), respectively.
We supply the name of our tibble as the data argument and the name of the factor
that contains the class labels as the target argument:

diabetesTask <- makeClassifTask(data = diabetesTib, target = "class")

NOTE You may notice a warning message from mlr when you build the task,
stating that your data is not a pure data.frame (it’s a tibble). This isn’t a
problem, because the function will convert the tibble into a data.frame for
you.

If we call the task, we can see it’s a classification task on the diabetesTib tibble, whose
target is the class variable. We also get some information about the number of obser-
vations and the number of different types of variables (often called features in machine
learning lingo). Some additional information includes whether we have missing data,
the number of observations in each class, and which class is considered to be the “pos-
itive” class (only relevant for two-class tasks):

diabetesTask

Supervised task: diabetesTib
Type: classif
Target: class
Observations: 145
Features:

64 CHAPTER 3 Classifying based on similarities with k-nearest neighbors
ordered functionalsfactorsnumerics
0003

FALSEMissings:
FALSEHas weights:
FALSEHas blocking:

FALSEcoordinates:Has
3Classes:

OvertNormalChemical
337636

Positive class: NA

Telling mlr which algorithm3.2.4 to use: Defining the learner

Next, let’s define our learner. The components needed to define a learner are as follows:

 The class of algorithm we are using:
– "classif." for classification
– "regr." for regression
– "cluster." for clustering
– "surv." and "multilabel." for predicting survival and multilabel classifica-

tion, which I won’t discuss
 The algorithm we are using
 Any additional options we may wish to use to control the algorithm

As you’ll see, the first and second components are combined together in a single char-
acter argument to define which algorithm will be used (for example, "classif.knn").
The components of a learner are shown in figure 3.7.

We use the makeLearner() function to define a learner. The first argument to the
makeLearner() function is the algorithm that we’re going to use to train our model.
In this case, we want to use the kNN algorithm, so we supply "classif.knn" as the
argument. See how this is the class ("classif.) joined to the name (knn") of the
algorithm?

 The argument par.vals stands for parameter values, which allows us to specify the
number of k-nearest neighbors we want the algorithm to use. For now, we’ll just set
this to 2, but we’ll discuss how to choose k soon:

knn <- makeLearner("classif.knn", par.vals = list("k" = 2))

OptionsClass

The "learner"

...
Algorithm

...

...

" "
...

++
classif.
regr.

cluster.

knn
glm

kmeans

Figure 3.7 Defining a learner in mlr. A
learner definition consists of the class of
algorithm you want to use, the name of
the individual algorithm, and, optionally,
any additional arguments to control the
algorithm’s behavior.

65Building your first kNN model

Putting it all together: Training the model3.2.5

Now that we’ve defined our task and our learner, we can now train our model. The
components needed to train a model are the learner and task we defined earlier. The
whole process of defining the task and learner and combining them to train the model
is shown in figure 3.8.

How to list all of mlr’s algorithms
The mlr package has a large number of machine learning algorithms that we can give
to the makeLearner() function, more than I can remember without checking! To list
all the available learners, simply use

listLearners()$class

Or list them by function:

listLearners("classif")$class
listLearners("regr")$class
listLearners("cluster")$class

If you’re ever unsure which algorithms are available to you or which argument to pass
to makeLearner() for a particular algorithm, use these functions to remind yourself.

The "model"

Data Target
insulin sspgglucose

+

The "task"

class
12435680
281468300...

"Normal"
"Overt"...

OptionsClass

The "learner"

...

Algorithm

...

...

...
+

+

+
classif.
regr.

cluster.

knn
glm

kmeans

" "

Figure 3.8 Training a model in mlr.
Training a model simply consists of
combining a learner with a task.

This is achieved with the train() function, which takes the learner as the first argu-
ment and the task as its second argument:

knnModel <- train(knn, diabetesTask)

We have our model, so let’s pass the data through it to see how it performs. The
predict() function takes unlabeled data and passes it through the model to get the

66 CHAPTER 3 Classifying based on similarities with k-nearest neighbors

predicted classes. The first argument is the model, and the data being passed to it is
given as the newdata argument:

knnPred <- predict(knnModel, newdata = diabetesTib)

We can pass these predictions as the first argument of the performance() function.
This function compares the classes predicted by the model to the true classes, and
returns performance metrics of how well the predicted and true values match each other.
Use of the predict() and performance() functions is illustrated in figure 3.9.

class

"Normal"
"Chemical"...

predict()

performance()

Predicted values

class

"Normal"
"Overt"...

True values Performance metrics

mmce

acc

...

+

Predicted valuesData

Model

insulin sspgglucose class

12435680
281468300...

"Normal"
"Chemical"...

Figure 3.9 A summary of the predict() and performance() functions
of mlr. predict() passes observations into a model and outputs the
predicted values. performance() compares these predicted values to the
cases’ true values and outputs one or more performance metrics
summarizing the similarity between the two.

We specify which performance metrics we want the function to return by supplying
them as a list to the measures argument. The two measures I’ve asked for are mmce,
the mean misclassification error; and acc, or accuracy. MMCE is simply the proportion of
cases classified as a class other than their true class. Accuracy is the opposite of this:
the proportion of cases that were correctly classified by the model. You can see that
the two sum to 1.00:

performance(knnPred, measures = list(mmce, acc))

mmce acc
0.04827586 0.95172414

So our model is correctly classifying 95.2% of cases! Does this mean it will perform
well on new, unseen patients? The truth is that we don’t know. Evaluating model perfor-
mance by asking it to make predictions on data you used to train it in the first place
tells you very little about how the model will perform when making predictions on

67Balancing two sources of model error: The bias-variance trade-off

3.3

completely unseen data. Therefore, you should never evaluate model performance
this way. Before we discuss why, I want to introduce an important concept called the
bias-variance trade-off.

Balancing two sources of model error:
The bias-variance trade-off
There is a concept in machine learning that is so important, and misunderstood by so
many people, that I want to take the time to explain it well: the bias-variance trade-off.
Let’s start with an example. A colleague sends you data about emails your company
has received and asks you to build a model to classify incoming emails as junk or not
junk (this is, of course, a classification problem). The dataset has 30 variables consist-
ing of observations like the number of characters in the email, the presence of URLs,
and the number of email addresses it was sent to, in addition to whether the email was
junk or not.

You lazily build a classification model using only four of the predictor variables
(because it’s nearly lunch and they’re serving katsu curry today). You send the model
to your colleague, who implements it as the company’s junk filter.

A week later, your colleague comes back to you, complaining that the junk filter
is performing badly and is consistently misclassifying certain types of emails. You
pass the data you used to train the model back into the model, and find it correctly
classifies only 60% of the emails. You decide that you may have underfitted the data:
in other words, your model was too simple and was biased toward misclassifying cer-
tain types of emails.

You go back to the data, and this time you include all 30 variables as predictors in
your model. You pass the data back through your model and find that it correctly clas-
sifies 98% of the emails: an improvement, surely! You send this second model to your
colleague and tell them you are certain it’s better. Another week goes by, and again,
your colleague comes to you and complains that the model is performing badly: it’s
misclassifying many emails, and in a somewhat unpredictable manner. You decide that
you have overfitted the data: in other words, your model was too complex and is model-
ing noise in the data that you used to train it. Now, when you give new datasets to the
model, there is a lot of variance in the predictions it gives. A model that is overfitted
will perform well on the data used to train it, but poorly on new data.

Underfitting and overfitting are two important sources of error in model building.
In underfitting, we have included too few predictors or too simple a model to ade-
quately describe the relationships/patterns in the data. The result is a model that is
said to be biased: a model that performs poorly on both the data we use to train it and
on new data.

NOTE Because we typically like to explain away as much variation in our
data as possible, and because we often have many more variables than are
important for our problem, underfitting is less frequently a problem than
overfitting.

68 CHAPTER 3 Classifying based on similarities with k-nearest neighbors

Overfitting is the opposite of underfitting and describes the situation where we
include too many predictors or too complex a model, such that we are modeling not
only the relationships/patterns in our data, but also the noise. Noise in a dataset is vari-
ation that is not systematically related to variables we have measured, but rather is due
to inherent variability and/or error in measurement of our variables. The pattern of
noise is very specific to an individual dataset, so if we start to model the noise, our
model may perform very well on the data we trained it on but give quite variable results
for future datasets.

 Underfitting and overfitting both introduce error and reduce the generalizability of
the model: the ability of the model to generalize to future, unseen data. They are also
opposed to each other: somewhere between a model that underfits and has bias, and
a model that overfits and has variance, is an optimal model that balances the bias-
variance trade-off; see figure 3.10.

Now, look at figure 3.11. Can you see that the underfit model poorly represents the
patterns in the data, and the overfit model is too granular and models noise in the
data instead of the real patterns?

 In the case of our kNN algorithm, selecting a small value of k (where only a small
number of very similar cases are included in the vote) is more likely to model the

Model complexity

Bias2

G
en

er
al

iz
at

io
n

er
ro

r

V
ariance

Total error

OverfittingUnderfitting Optimal

Figure 3.10 The bias-variance trade-off.
Generalization error is the proportion of erroneous
predictions a model makes and is a result of
overfitting and underfitting. The error associated
with overfitting (too complex a model) is variance.
The error associated with underfitting (too simple a
model) is bias. The error associated with overfitting
(too complex a model) is variance. An optimal
model balances this trade-off.

Variable 1

V
ar

ia
bl

e
2

Variable 1

V
ar

ia
bl

e
2

Variable 1

V
ar

ia
bl

e
2

OverfitUnderfit Optimal

Figure 3.11 Examples of underfitting, optimal fitting, and overfitting for a two-
class classification problem. The dotted line represents a decision boundary.

69Using cross-validation to tell if we’re overfitting or underfitting
noise in our data, resulting in a more complex model that is overfit and will produce
a lot of variance when we use it to classify future patients. In contrast, selecting a
large value of k (where more neighbors are included in the vote) is more likely to
miss local differences in our data, resulting in a less complex model that is underfit
and is biased toward misclassifying certain types of patients. I promise you’ll learn
how to select k soon!

 So the question you’re probably asking now is, “How do I tell if I’m under- or over-
fitting?” The answer is a technique called cross-validation.

3.4 Using cross-validation to tell if we’re overfitting
or underfitting
In the email example, once you had trained the second, overfit model, you tried to
evaluate its performance by seeing how well it classified data you had used to train it. I
mentioned that this is an extremely bad idea, and here is why: a model will almost
always perform better on the data you trained it with than on new, unseen data. You
can build a model that is extremely overfit, modeling all of the noise in the dataset,
and you would never know, because passing the data back through the model gives
you good predictive accuracy.

 The answer is to evaluate the performance of your model on data it hasn’t seen yet.
One way you could do this would be to train the model on all of the data available to
you and then, over the next weeks and months, as you collect new data, pass it
through your model and evaluate how the model performs. This approach is very slow
and inefficient, and could make model building take years!

 Instead, we typically split our data in two. We use one portion to train the model:
this portion is called the training set. We use the remaining portion, which the algo-
rithm never sees during training, to test the model: this portion is the test set. We then
evaluate how close the model’s predictions on the test set are to their true values. We
summarize the closeness of these predictions with performance metrics that we’ll explore
in section 3.1. Measuring how well the trained model performs on the test set helps us
determine whether our model will perform well on unseen data, or whether we need
to improve it further.

 This process is called cross-validation (CV), and it is an extremely important
approach in any supervised machine learning pipeline. Once we have cross-validated
our model and are happy with its performance, we then use all the data we have
(including the data in the test set) to train the final model (because typically, the
more data we train our model with, the less bias it will have).

 There are three common cross-validation approaches:

 Holdout cross-validation
 K-fold cross-validation
 Leave-one-out cross-validation

70 CHAPTER 3 Classifying based on similarities with k-nearest neighbors

Cross-validating our kNN model3.5
Let’s start by reminding ourselves of the task and learner we created earlier:

diabetesTask <- makeClassifTask(data = diabetesTib, target = "class")

knn <- makeLearner("classif.knn", par.vals = list("k" = 2))

Great! Before we train the final model on all the data, let’s cross-validate the learner.
Ordinarily, you would decide on a CV strategy most appropriate for your data; but for
the purposes of demonstration, I’m going to show you holdout, k-fold, and leave-one-
out CV.

Holdout cross-validation3.5.1

Holdout CV is the simplest method to understand: you simply “hold out” a random
proportion of your data as your test set, and train your model on the remaining data.
You then pass the test set through the model and calculate its performance metrics
(we’ll talk about these soon). You can see a scheme of holdout CV in figure 3.12.

Training set Test set

Holdout CV

1. The data is randomly split into a training and test set.
2. A model is trained using only the training set.
3. Predictions are made on the test set.
4. The predictions are compared to the true values.

Figure 3.12 Holdout CV. The data is randomly split into a
training set and test set. The training set is used to train the
model, which is then used to make predictions on the test
set. The similarity of the predictions to the true values of the
test set is used to evaluate model performance.

When following this approach, you need to decide what proportion of the data to use
as the test set. The larger the test set is, the smaller your training set will be. Here’s the
confusing part: performance estimation by CV is also subject to error and the bias-
variance trade-off. If your test set is too small, then the estimate of performance is
going to have high variance; but if the training set is too small, then the estimate of per-
formance is going to have high bias. A commonly used split is to use two-thirds of the
data for training and the remaining one-third as a test set, but this depends on the num-
ber of cases in the data, among other things.

MAKING A HOLDOUT RESAMPLING DESCRIPTION

The first step when employing any CV in mlr is to make a resampling description,
which is simply a set of instructions for how the data will be split into test and training
sets. The first argument to the makeResampleDesc() function is the CV method we’re
going to use: in this case, "Holdout". For holdout CV, we need to tell the function

71Cross-validating our kNN model
what proportion of the data will be used as the training set, so we supply this to the
split argument:

holdout <- makeResampleDesc(method = "Holdout", split = 2/3,
stratify = TRUE)

I’ve included an additional, optional argument, stratify = TRUE. It asks the function
to ensure that when it splits the data into training and test sets, it tries to maintain the
proportion of each class of patient in each set. This is important in classification prob-
lems like ours, where the groups are very unbalanced (we have more healthy patients
than both other groups combined) because, otherwise, we could get a test set with
very few of one of our smaller classes.

PERFORMING HOLDOUT CV
Now that we’ve defined how we’re going to cross-validate our learner, we can run the
CV using the resample() function. We supply the learner and task that we created,
and the resampling method we defined a moment ago, to the resample() function.
We also ask it to give us measures of MMCE and accuracy:

holdoutCV <- resample(learner = knn, task = diabetesTask,
resampling = holdout, measures = list(mmce, acc))

The resample() function prints the performance measures when you run it, but you
can access them by extracting the $aggr component from the resampling object:

holdoutCV$aggr

acc.test.meanmmce.test.mean
0.89795920.1020408

You’ll notice two things:

 The accuracy of the model as estimated by holdout cross-validation is less than
when we evaluated its performance on the data we used to train the full model.
This exemplifies my point earlier that models will perform better on the data
that trained them than on unseen data.

 Your performance metrics will probably be different than mine. In fact, run the
resample() function over and over again, and you’ll get a very different result
each time! The reason for this variance is that the data is randomly split into the
test and training sets. Sometimes the split is such that the model performs well
on the test set; sometimes the split is such that it performs poorly.

Exercise 2
Use the makeResampleDesc() function to create another holdout resampling descrip-
tion that uses 10% of the data as the test set and does not use stratified sampling
(don’t overwrite your existing resampling description).

72 CHAPTER 3 Classifying based on similarities with k-nearest neighbors

CALCULATING A CONFUSION MATRIX

To get a better idea of which groups are being correctly classified and which are being
misclassified, we can construct a confusion matrix. A confusion matrix is simply a tabu-
lar representation of the true and predicted class of each case in the test set.

 With mlr, we can calculate the confusion matrix using the calculateConfusion-
Matrix() function. The first argument is the $pred component of our holdoutCV
object, which contains the true and predicted classes of the test set. The optional argu-
ment relative asks the function to show the proportion of each class in the true and
predicted class labels:

calculateConfusionMatrix(holdoutCV$pred, relative = TRUE)

Relative confusion matrix (normalized by row/column):
predicted

-err.-OvertNormalChemicaltrue
Chemical 0.92/0.73 0.08/0.04 0.00/0.00 0.08

0.12/0.20 0.88/0.96 0.00/0.00 0.12Normal
0.09/0.07 0.00/0.00 0.91/1.00 0.09Overt

0.00 0.100.040.27-err.-

Absolute confusion matrix:
predicted
Chemical Normal Overt -err.-true

10111Chemical
30233Normal
11001Overt
5014-err.-

The absolute confusion matrix is easier to interpret. The rows show the true class
labels, and the columns show the predicted labels. The numbers represent the num-
ber of cases in every combination of true class and predicted class. For example, in
this matrix, 11 patients were correctly classified as chemically diabetic, but one was
erroneously classified as healthy. Correctly classified patients are found on the diago-
nal of the matrix (where true class == predicted class).

The relative confusion matrix looks a little more intimidating, but the principal is
the same. This time, instead of the number of cases for each combination of true class
and predicted class, we have the proportion. The number before the / is the propor-
tion of the row in this column, and the number after the / is the proportion of the col-
umn in this row. For example, in this matrix, 92% of chemically diabetic patients were
correctly classified, while 8% were misclassified as healthy. (Do you see that these are
the proportions for the numbers I used for the absolute confusion matrix?)

Confusion matrices help us understand which classes our model classifies well
and which ones it does worse at classifying. For example, based on this confusion
matrix, it looks like our model struggles to distinguish healthy patients from chemi-
cally diabetic ones.

NOTE Does your confusion matrix look different than mine? Of course it
does! The confusion matrix is based on the prediction made on the test set;

73Cross-validating our kNN model

and because the test set is selected at random in holdout CV, the confusion
matrix will change every time you rerun CV.

As the performance metrics reported by holdout CV depend so heavily on how much
of the data we use as the training and test sets, I try to avoid it unless my model is very
expensive to train, so I generally prefer k-fold CV. The only real benefit of this method is
that it is computationally less expensive than the other forms of CV. This can make it the
only viable CV method for computationally expensive algorithms. But the purpose of
CV is to get as accurate an estimation of model performance as possible, and holdout
CV may give you very different results each time you apply it, because not all of the data
is used in the training set and test set. This is where the other forms of CV come in.

3.5.2 K-fold cross-validation

In k-fold CV, we randomly split the data into approximately equal-sized chunks called
folds. Then we reserve one of the folds as a test set and use the remaining data as the
training set (just like in holdout). We pass the test set through the model and make a
record of the relevant performance metrics. Now, we use a different fold of the data as
our test set and do the same thing. We continue until all the folds have been used
once as the test set. We then get an average of the performance metric as an estimate
of model performance. You can see a scheme of k-fold CV in figure 3.13.

Test set

ng setTraini Test set

Test set

Test set

Test set

Fold 1

Fold 2

Fold 3

Fold 4

Fold 5

K-fold CV

1. The data is randomly split into equal-sized folds.k
2. Each fold is used as the test set once, where the rest

of the data makes the training set.
3. For each fold, predictions are made on the test set.
4. The predictions are compared to the true values.

Figure 3.13 K-fold CV. The data is randomly
split into near equally sized folds. Each fold is
used as the test set once, with the rest of the
data used as the training set. The similarity of
the predictions to the true values of the test set
is used to evaluate model performance.

NOTE It’s important to note that each case in the data appears in the test set
only once in this procedure.

This approach will typically give a more accurate estimate of model performance
because every case appears in the test set once, and we are averaging the estimates over
many runs. But we can improve this a little by using repeated k-fold CV, where, after the
previous procedure, we shuffle the data around and perform it again.

For example, a commonly chosen value of k for k-fold is 10. Again, this depends on
the size of the data, among other things, but it is a reasonable value for many datasets.

74 CHAPTER 3 Classifying based on similarities with k-nearest neighbors
This means we split the data into 10 nearly equal-sized chunks and perform the CV. If
we repeat this procedure 5 times, then we have 10-fold CV repeated 5 times (this is not
the same as 50-fold CV), and the estimate of model performance will be the average of
50 different runs.

 Therefore, if you have the computational power, it is usually preferred to use
repeated k-fold CV instead of ordinary k-fold. This is what we’ll be using in many exam-
ples in this book.

PERFORMING K-FOLD CV
We perform k-fold CV in the same way as holdout. This time, when we make our
resampling description, we tell it we’re going to use repeated k-fold cross-validation
("RepCV"), and we tell it how many folds we want to split the data into. The default
number of folds is 10, which is often a good choice, but I want to show you how you
can explicitly control the splits. Next, we tell the function that we want to repeat the
10-fold CV 50 times with the reps argument. This gives us 500 performance measures
to average across! Again, we ask for the classes to be stratified among the folds:

kFold <- makeResampleDesc(method = "RepCV", folds = 10, reps = 50,
stratify = TRUE)

kFoldCV <- resample(learner = knn, task = diabetesTask,
resampling = kFold, measures = list(mmce, acc))

Now let’s extract the average performance measures:

kFoldCV$aggr

acc.test.meanmmce.test.mean
0.89772120.1022788

The model correctly classified 89.8% of cases on average—much lower than when we
predicted the data we used to train the model! Rerun the resample() function a few
times, and compare the average accuracy after each run. The estimate is much more
stable than when we repeated holdout CV.

TIP We’re usually only interested in the average performance measures, but
you can access the performance measure from every iteration by running
kFoldCV$measures.test.

CHOOSING THE NUMBER OF REPEATS

Your goal when cross-validating a model is to get as accurate and stable an estimate of
model performance as possible. Broadly speaking, the more repeats you can do, the
more accurate and stable these estimates will become. At some point, though, having
more repeats won’t improve the accuracy or stability of the performance estimate.

 So how do you decide how many repeats to perform? A sound approach is to
choose a number of repeats that is computationally reasonable, run the process a few

75Cross-validating our kNN model

times, and see if the average performance estimate varies a lot. If not, great. If it does
vary a lot, you should increase the number of repeats.

CALCULATING A CONFUSION MATRIX

Now, let’s build the confusion matrix based on the repeated k-fold CV:

calculateConfusionMatrix(kFoldCV$pred, relative = TRUE)

Relative confusion matrix (normalized by row/column):
predicted

-err.-OvertNormalChemicaltrue
Chemical 0.81/0.78 0.10/0.05 0.09/0.10 0.19

0.04/0.07 0.96/0.95 0.00/0.00 0.04Normal
0.16/0.14 0.00/0.00 0.84/0.90 0.16Overt

0.10 0.100.050.22-err.-

Absolute confusion matrix:
predicted
Chemical Normal Overt -err.-true

3371581791463Chemical
13603664136Normal
26913810269Overt
742158179405-err.-

3.5.3

Exercise 3
Define two new resampling descriptions: one that performs 3-fold CV repeated 5
times, and one that performs 3-fold CV repeated 500 times (don’t overwrite your
existing description). Use the resample() function to cross-validate the kNN algo-
rithm using both of these resampling descriptions. Repeat the resampling five times
for each method, and see which one gives more stable results.

NOTE Notice that the number of cases is much larger. This is because we
repeated the procedure 50 times.

Leave-one-out cross-validation

Leave-one-out CV can be thought of as the extreme of k-fold CV: instead of breaking
the data into folds, we reserve a single observation as a test case, train the model on
the whole of the rest of the data, and then pass the test case through it and record the
relevant performance metrics. Next, we do the same thing but select a different obser-
vation as the test case. We continue doing this until every observation has been used
once as the test case, where we take the average of the performance metrics. You can
see a scheme of leave-one-out CV in figure 3.14.

Because the test set is only a single observation, leave-one-out CV tends to give
quite variable estimates of model performance (because the performance estimate of
each iteration depends on correctly labeling that single test case). But it can give less-
variable estimates of model performance than k-fold when your dataset is small. When

76 CHAPTER 3 Classifying based on similarities with k-nearest neighbors
you have a small dataset, splitting it up into k folds will leave you with a very small
training set. The variance of a model trained on a small dataset tends to be higher
because it will be more influenced by sampling error/unusual cases. Therefore, leave-
one-out CV is useful for small datasets where splitting it into k folds would give vari-
able results. It is also computationally less expensive than repeated, k-fold CV.

NOTE A supervised learning model that has not been cross-validated is virtu-
ally useless, because you have no idea whether the predictions it makes on
new data will be accurate or not.

PERFORMING LEAVE-ONE-OUT CV
Creating a resampling description for leave-one-out is just as simple as for holdout
and k-fold CV. We specify leave-one-out CV when making the resample description by
supplying LOO as the argument to the method. Because the test set is only a single case,
we obviously can’t stratify with leave-one-out. Also, because each case is used once as
the test set, with all the other data used as the training set, there’s no need to repeat
the procedure:

LOO <- makeResampleDesc(method = "LOO")

Exercise 4
Try to create two new leave-one-out resampling descriptions: one that uses stratified
sampling, and one that repeats the procedure five times. What happens?

Case 1

Case 2

Case n

Leave-one-out CV

1. Use all of the data except a single case as the training set.
2. Predict the value of the single test case.
3. Repeat until every case has been the test case.
4. The predictions for each case are compared to the true values.

Figure 3.14 Leave-one-out CV is the extreme of k-fold, where we reserve a
single case as the test set and train the model on the remaining data. The
similarity of the predictions to the true values of the test set is used to
evaluate model performance.

77What algorithms can learn, and what they must be told: Parameters and hyperparameters

Now, let’s run the CV and get the average performance measures:

LOOCV <- resample(learner = knn, task = diabetesTask, resampling = LOO,
measures = list(mmce, acc))

LOOCV$aggr

acc.test.meanmmce.test.mean
0.88275860.1172414

If you rerun the CV over and over again, you’ll find that for this model and data, the
performance estimate is more variable than for k-fold but less variable than for the hold-
out we ran earlier.

CALCULATING A CONFUSION MATRIX

Once again, let’s look at the confusion matrix:

calculateConfusionMatrix(LOOCV$pred, relative = TRUE)

Relative confusion matrix (normalized by row/column):
predicted

-err.-OvertNormalChemicaltrue
Chemical 0.81/0.74 0.14/0.06 0.06/0.07 0.19

0.05/0.10 0.95/0.94 0.00/0.00 0.05Normal
0.18/0.15 0.00/0.00 0.82/0.93 0.18Overt

0.07 0.120.060.26-err.-

Absolute confusion matrix:
predicted
Chemical Normal Overt -err.-true

72529Chemical
40724Normal
62706Overt

172510-err.-

3.6

So you now know how to apply three commonly used types of cross-validation! If we’ve
cross-validated our model and are happy that it will perform well enough on unseen
data, then we would train the model on all of the data available to us, and use this to
make future predictions.

But I think we can still improve our kNN model. Remember how earlier, we manu-
ally choose a value of 2 for k? Well, randomly picking a value of k isn’t very clever, and
there are much better ways we can find the optimal value.

What algorithms can learn, and what they must be
told: Parameters and hyperparameters
Machine learning models often have parameters associated with them. A parameter is a
variable or value that is estimated from the data and that is internal to the model and
controls how it makes predictions on new data. An example of a model parameter is
the slope of a regression line.

78 CHAPTER 3 Classifying based on similarities with k-nearest neighbors

In the kNN algorithm, k is not a parameter, because the algorithm doesn’t esti-
mate it from the data (in fact, the kNN algorithm doesn’t actually learn any parame-
ters). Instead, k is what’s known as a hyperparameter: a variable or option that controls
how a model makes predictions but is not estimated from the data. As data scientists,
we don’t have to provide parameters to our models; we simply provide the data, and
the algorithms learn the parameters for themselves. We do, however, need to pro-
vide whatever hyperparameters they require. You’ll see throughout this book that
different algorithms require and use different hyperparameters to control how they
learn their models.

So because k is a hyperparameter of the kNN algorithm, it can’t be estimated by
the algorithm itself, and it’s up to us to choose a value. How do we decide? Well, there
are three ways you can choose k or, in fact, any hyperparameter:

 Pick a “sensible” or default value that has worked on similar problems before. This
option is a bad idea. You have no way of knowing whether the value of k you’ve
chosen is the best one. Just because a value worked on other datasets doesn’t
mean it will perform well on this dataset. This is the choice of the lazy data sci-
entist who doesn’t care much about getting the most from their data.

 Manually try a few different values, and see which one gives you the best performance.
This option is a bit better. The idea here is that you pick a few sensible values of
k, build a model with each of them, and see which model performs the best.
This is better because you’re more likely to find the best-performing value of k;
but you’re still not guaranteed to find it, and doing this manually could be
tedious and slow. This is the choice of the data scientist who cares but doesn’t
really know what they’re doing.

 Use a procedure called hyperparameter tuning to automate the selection process. This
solution is the best. It maximizes the likelihood of you finding the best-perform-
ing value of k while also automating the process for you. This is the method
we’ll be using throughout the book.

NOTE While the third option is generally the best if possible, some algorithms
are so computationally expensive that they prohibit extensive hyperparame-
ter tuning, in which case you may have to settle for manually trying different
values.

But how does changing the value of k impact model performance? Well, values of k
that are too low may start to model noise in the data. For example, if we set k = 1, then
a healthy patient could be misclassified as chemically diabetic just because a single
chemically diabetic patient with an unusually low insulin level was their nearest neigh-
bor. In this situation, instead of just modeling the systematic differences between the
classes, we’re also modeling the noise and unpredictable variability in the data.

On the other hand, if we set k too high, a large number of dissimilar patients will
be included in the vote, and the model will be insensitive to local differences in the
data. This is, of course, the bias-variance trade-off we talked about earlier.

79Tuning k to improve the model

3.7 Tuning k to improve the model
Let’s apply hyperparameter tuning to optimize the value of k for our model. An
approach we could follow would be to build models with different values of k using our
full dataset, pass the data back through the model, and see which value of k gives us
the best performance. This is bad practice, because there’s a large chance we’ll get a
value of k that overfits the dataset we tuned it on. So once again, we rely on CV to help
us guard against overfitting.

The first thing we need to do is define a range of values over which mlr will try,
when tuning k:

knnParamSpace <- makeParamSet(makeDiscreteParam("k", values = 1:10))

The makeDiscreteParam() function inside the makeParamSet() function allows us to
specify that the hyperparameter we’re going to be tuning is k, and that we want to
search the values between 1 and 10 for the best value of k. As its name suggests, make-
DiscreteParam() is used to define discrete hyperparameter values, such as k in kNN,
but there are also functions to define continuous and logical hyperparameters that
we’ll explore later in the book. The makeParamSet() function defines the hyperpa-
rameter space we defined as a parameter set, and if we wanted to tune more than one
hyperparameter during tuning, we would simply separate them by commas inside this
function.

Next, we define how we want mlr to search the parameter space. There are a few
options for this, and in later chapters we’ll explore others, but for now we’re going to
use the grid search method. This is probably the simplest method: it tries every single
value in the parameter space when looking for the best-performing value. For tuning
continuous hyperparameters, or when we are tuning several hyperparameters at once,
grid search becomes prohibitively expensive, so other methods like random search are
preferred:

gridSearch <- makeTuneControlGrid()

Next, we define how we’re going to cross-validate the tuning procedure, and we’re
going to use my favorite: repeated k-fold CV. The principle here is that for every value
in the parameter space (integers 1 to 10), we perform repeated k-fold CV. For each
value of k, we take the average performance measure across all those iterations and
compare it with the average performance measures for all the other values of k we
tried. This will hopefully give us the value of k that performs best:

cvForTuning <- makeResampleDesc("RepCV", folds = 10, reps = 20)

Now, we call the tuneParams() function to perform the tuning:

tunedK <- tuneParams("classif.knn", task = diabetesTask,
resampling = cvForTuning,
par.set = knnParamSpace, control = gridSearch)

80 CHAPTER 3 Classifying based on similarities with k-nearest neighbors

The first and second arguments are the names of the algorithm and task we’re apply-
ing, respectively. We give our CV strategy as the resampling argument, the hyperpa-
rameter space we define as the par.set argument, and the search procedure to the
control argument.

 If we call our tunedK object, we get the best-performing value of k, 7, and the aver-
age MMCE value for that value. We can access the best-performing value of k directly
by selecting the $x component:

tunedK

Tune result:
Op. pars: k=7
mmce.test.mean=0.0769524

tunedK$x
$k

7[1]

We can also visualize the tuning process (the result of this code is shown in figure 3.15):

knnTuningData <- generateHyperParsEffectData(tunedK)

plotHyperParsEffect(knnTuningData, x = "k", y = "mmce.test.mean",
plot.type = "line") +

theme_bw()

Now we can train our final model, using our tuned value of k:

tunedKnn <- setHyperPars(makeLearner("classif.knn"),
par.vals = tunedK$x)

tunedKnnModel <- train(tunedKnn, diabetesTask)

0.08

0.09

0.10

0.11

10.07.55.02.5
k

m
m

ce
.te

st
.m

ea
n

Figure 3.15 The MMCE values from fitting the kNN model with
different values of k during a grid search

81Tuning k to improve the model
This is as simple as wrapping the makeLearner() function, where we make a new kNN
learner, inside the setHyperPars() function, and providing the tuned value of k as the
par.vals argument. We then train our final model as before, using the train() function.

3.7.1 Including hyperparameter tuning in cross-validation

Now, when we perform some kind of preprocessing on our data or model, such as tun-
ing hyperparameters, it’s important to include this preprocessing inside our CV, so that
we cross-validate the whole model-training procedure. This takes the form of nested CV,
where an inner loop cross-validates different values of our hyperparameter (just as we
did earlier), and then the winning hyperparameter value gets passed to an outer CV
loop. In the outer CV loop, the winning hyperparameters are used for each fold.

 Nested CV proceeds like this:

1 Split the data into training and test sets (this can be done using the holdout,
k-fold, or leave-one-out method). This division is called the outer loop.

2 The training set is used to cross-validate each value of our hyperparameter
search space (using whatever method we decide). This is called the inner loop.

3 The hyperparameter that gives the best cross-validated performance from each
inner loop is passed to the outer loop.

4 A model is trained on each training set of the outer loop, using the best hyper-
parameter from its inner loop. These models are used to make predictions on
their test sets.

5 The average performance metrics of these models across the outer loop are
then reported as an estimate of how the model will perform on unseen data.

If you prefer a graphical explanation, take a look at figure 3.16.

Test set ing setTrain

Test set Training setTraining set

Test setng setTraini

k = 1

k = 2

Winning k

Winning k

Winning kO
ut

er
 c

ro
ss

-v
al

id
at

io
n

lo
op

In
ne

r
cr

os
s-

va
lid

at
io

n
lo

op

Fold 3

Fold 2

Fold 1

......

k = 1

k = 2

......

k = 1

k = 2

... ...

Figure 3.16 Nested CV. The dataset is
split into folds. For each fold, the
training set is used to create sets of
inner k-fold CV. Each of these inner sets
cross-validates a single hyperparameter
value by splitting the data into training
and test sets. For each fold in these
inner sets, a model is trained using the
training set and evaluated on the test
set, using that set’s hyperparameter
value. The hyperparameter from each
inner CV loop that gives the best-
performing model is used to train the
models on the outer loop.

82 CHAPTER 3 Classifying based on similarities with k-nearest neighbors

In the example in figure 3.16, the outer loop is 3-fold CV. For each fold, inner sets of
4-fold CV are applied, only using the training set from the outer loop. This 4-fold cross-
validation is used to evaluate the performance of each hyperparameter value we’re
searching over. The winning value of k (the one that gives the best performance) is
then passed to the outer loop, which is then used to train the model, and its perfor-
mance is evaluated on the test set. Can you see that we’re cross-validating the whole
model-building process, including hyperparameter tuning?

What’s the purpose of this? It validates our entire model-building procedure,
including the hyperparameter-tuning step. The cross-validated performance estimate
we get from this procedure should be a good representation of how we expect our
model to perform on completely new, unseen data.

The process looks pretty complicated, but it is extremely easy to perform with mlr.
First, we define how we’re going to perform the inner and outer CV:

inner <- makeResampleDesc("CV")

outer <- makeResampleDesc("RepCV", folds = 10, reps = 5)

I’ve chosen to perform ordinary k-fold cross-validation for the inner loop (10 is the
default number of folds) and 10-fold CV, repeated 5 times, for the outer loop.

Next, we make what’s called a wrapper, which is basically a learner tied to some pre-
processing step. In our case, this is hyperparameter tuning, so we create a tuning
wrapper with makeTuneWrapper():

knnWrapper <- makeTuneWrapper("classif.knn", resampling = inner,
par.set = knnParamSpace,
control = gridSearch)

Here, we supply the algorithm as the first argument and pass our inner CV procedure as
the resampling argument. We supply our hyperparameter search space as the par.set

argument and our gridSearch method as the control argument (remember that we
created these two objects earlier). This “wraps” together the learning algorithm with the
hyperparameter tuning procedure that will be applied inside the inner CV loop.

Now that we’ve defined our inner and outer CV strategies and our tuning wrapper,
we run the nested CV procedure:

cvWithTuning <- resample(knnWrapper, diabetesTask, resampling = outer)

The first argument is the wrapper we created a moment ago, the second argument is
the name of the task, and we supply our outer CV strategy as the resampling argument.
Now sit back and relax—this could take a while!

Once it finishes, you can print the average MMCE:

cvWithTuning

Resample Result
Task: diabetesTib

83Strengths and weaknesses of kNN

Learner: classif.knn.tuned
Aggr perf: mmce.test.mean=0.0856190
Runtime: 42.9978

Your MMCE value will probably be a little different than mine due to the random
nature of the validation procedure, but the model is estimated to correctly classify
91.4% of cases on unseen data. That’s not bad; and now that we’ve cross-validated our
model properly, we can be confident we’re not overfitting our data.

3.7.2 Using our model to make predictions

We have our model, and we’re free to use it to classify new patients! Let’s imagine that
some new patients come to the clinic:

newDiabetesPatients <- tibble(glucose = c(82, 108, 300),
insulin = c(361, 288, 1052),
sspg = c(200, 186, 135))

newDiabetesPatients

A tibble: 3 x 3
sspgglucose insulin

<dbl> <dbl><dbl>
2003611 82

3.8

2 108 288 186
3 300 1052 135

We can pass these patients into our model and get their predicted diabetes status:

newPatientsPred <- predict(tunedKnnModel, newdata = newDiabetesPatients)

getPredictionResponse(newPatientsPred)

[1] Normal Normal Overt
Levels: Chemical Normal Overt

Congratulations! Not only have you built your first machine learning model, but we’ve
covered some reasonably complex theory, too. In the next chapter, we’re going to
learn about logistic regression, but first I want to list the strengths and weaknesses of
the k-nearest neighbor algorithm.

Strengths and weaknesses of kNN
While it often isn’t easy to tell which algorithms will perform well for a given task, here
are some strengths and weaknesses that will help you decide whether kNN will per-
form well for your task.

The strengths of the kNN algorithm are as follows:

 The algorithm is very simple to understand.
 There is no computational cost during the learning process; all the computa-

tion is done during prediction.
 It makes no assumptions about the data, such as how it’s distributed.

84 CHAPTER 3 Classifying based on similarities with k-nearest neighbors
The weaknesses of the kNN algorithm are these:

 It cannot natively handle categorical variables (they must be recoded first, or a
different distance metric must be used).

 When the training set is large, it can be computationally expensive to compute
the distance between new data and all the cases in the training set.

 The model can’t be interpreted in terms of real-world relationships in the data.
 Prediction accuracy can be strongly impacted by noisy data and outliers.
 In high-dimensional datasets, kNN tends to perform poorly. This is due to a

phenomenon you’ll learn about in chapter 5, called the curse of dimensionality. In
brief, in high dimensions the distances between the cases start to look the same,
so finding the nearest neighbors becomes difficult.

Summary
 kNN is a simple supervised learning algorithm that classifies new data based on

the class membership of its nearest k cases in the training set.
 To create a machine learning model in mlr, we create a task and a learner, and

then train the model using them.
 MMCE is the mean misclassification error, which is the proportion of misclassi-

fied cases in a classification problem. It is the opposite of accuracy.
 The bias-variance trade-off is the balance between two types of error in predic-

tive accuracy. Models with high bias are underfit, and models with high vari-
ance are overfit.

 Model performance should never be evaluated on the data used to train it;
cross-validation should be used, instead.

Exercise 5
Load the iris dataset using the data() function, and build a kNN model to classify
its three species of iris (including tuning the k hyperparameter).

Exercise 6
Cross-validate this iris kNN model using nested CV, where the outer CV is holdout
with a two-thirds split.

Exercise 7
Repeat the nested CV as in the previous exercise, but using 5-fold, non-repeated
CV as the outer loop. Which of these methods gives you a more stable MMCE esti-
mate when you repeat them?

85Solutions to exercises

 Cross-validation is a set of techniques for evaluating model performance by
splitting the data into training and test sets.

 Three common types of cross-validation are holdout, where a single split is
used; k-fold, where the data is split into k chunks and the validation performed
on each chunk; and leave-one-out, where the test set is a single case.

 Hyperparameters are options that control how machine learning algorithms
learn, which cannot be learned by the algorithm itself. Hyperparameter tuning
is the best way to find optimal hyperparameters.

 If we perform a data-dependent preprocessing step, such as hyperparameter
tuning, it’s important to incorporate this in our cross-validation strategy, using
nested cross-validation.

Solutions to exercises
1 Plot the glucose and insulin variables against each other, representing the

class variable using shape, and then using shape and color:

ggplot(diabetesTib, aes(glucose, insulin,
shape = class)) +

geom_point() +
theme_bw()

ggplot(diabetesTib, aes(glucose, insulin,
shape = class, col = class)) +

+geom_point()
theme_bw()

2 Create a holdout resampling description that uses 10% of the cases as the test
set and does not use stratified sampling:

holdoutNoStrat <- makeResampleDesc(method = "Holdout", split = 0.9,
stratify = FALSE)

3 Compare the stability of the performance estimates of 3-fold cross-validation
repeated 5 times or 500 times:

kFold500 <- makeResampleDesc(method = "RepCV", folds = 3, reps = 500,
stratify = TRUE)

kFoldCV500 <- resample(learner = knn, task = diabetesTask,
resampling = kFold500, measures = list(mmce, acc))

kFold5 <- makeResampleDesc(method = "RepCV", folds = 3, reps = 5,
stratify = TRUE)

kFoldCV5 <- resample(learner = knn, task = diabetesTask,
resampling = kFold5, measures = list(mmce, acc))

kFoldCV500$aggr
kFoldCV5$aggr

86 CHAPTER 3 Classifying based on similarities with k-nearest neighbors
4 Attempt to make leave-one-out resampling descriptions that use stratified sam-
pling and repeated sampling:

makeResampleDesc(method = "LOO", stratify = TRUE)

makeResampleDesc(method = "LOO", reps = 5)

Both will result in an error as LOO cross-validation cannot
be stratified or repeated.

5 Load the iris dataset, and build a kNN model to classify its three species of iris
(including tuning the k hyperparameter):

data(iris)

irisTask <- makeClassifTask(data = iris, target = "Species")

knnParamSpace <- makeParamSet(makeDiscreteParam("k", values = 1:25))

gridSearch <- makeTuneControlGrid()

cvForTuning <- makeResampleDesc("RepCV", folds = 10, reps = 20)

tunedK <- tuneParams("classif.knn", task = irisTask,
resampling = cvForTuning,
par.set = knnParamSpace,
control = gridSearch)

tunedK

tunedK$x

knnTuningData <- generateHyperParsEffectData(tunedK)

plotHyperParsEffect(knnTuningData, x = "k", y = "mmce.test.mean",
plot.type = "line") +
theme_bw()

tunedKnn <- setHyperPars(makeLearner("classif.knn"), par.vals = tunedK$x)

tunedKnnModel <- train(tunedKnn, irisTask)

6 Cross-validate this iris kNN model using nested cross-validation, where the
outer cross-validation is holdout with a two-thirds split:

inner <- makeResampleDesc("CV")

outerHoldout <- makeResampleDesc("Holdout", split = 2/3, stratify = TRUE)

knnWrapper <- makeTuneWrapper("classif.knn", resampling = inner,
par.set = knnParamSpace,
control = gridSearch)

87Solutions to exercises
holdoutCVWithTuning <- resample(knnWrapper, irisTask,
resampling = outerHoldout)

holdoutCVWithTuning

7 Repeat the nested cross-validation using 5-fold, non-repeated cross-validation as
the outer loop. Which of these methods gives you a more stable MMCE esti-
mate when you repeat them?

outerKfold <- makeResampleDesc("CV", iters = 5, stratify = TRUE)

kFoldCVWithTuning <- resample(knnWrapper, irisTask,
resampling = outerKfold)

kFoldCVWithTuning

resample(knnWrapper, irisTask, resampling = outerKfold)

Repeat each validation procedure 10 times and save the mmce value.
WARNING: this may take a few minutes to complete.

kSamples <- map_dbl(1:10, ~resample(
knnWrapper, irisTask, resampling = outerKfold)$aggr
)

hSamples <- map_dbl(1:10, ~resample(
knnWrapper, irisTask, resampling = outerHoldout)$aggr
)

hist(kSamples, xlim = c(0, 0.11))
hist(hSamples, xlim = c(0, 0.11))

Holdout CV gives more variable estimates of model performance.

Classifying based
on odds with

logistic regression
This chapter covers
 Working with the logistic regression algorithm

 Understanding feature engineering

 Understanding missing value imputation

In this chapter, I’m going to add a new classification algorithm to your toolbox:
logistic regression. Just like the k-nearest neighbors algorithm you learned about in
the previous chapter, logistic regression is a supervised learning method that pre-
dicts class membership. Logistic regression relies on the equation of a straight line
and produces models that are very easy to interpret and communicate.

Logistic regression can handle continuous (without discrete categories) and
categorical (with discrete categories) predictor variables. In its simplest form, logis-
tic regression is used to predict a binary outcome (cases can belong to one of two
classes), but variants of the algorithm can handle multiple classes as well. Its name
comes from the algorithm’s use of the logistic function, an equation that calculates
the probability that a case belongs to one of the classes.

While logistic regression is most certainly a classification algorithm, it uses linear
regression and the equation for a straight line to combine the information from mul-
tiple predictors. In this chapter, you’ll learn how the logistic function works and
how the equation for a straight line is used to build a model.
88

89What is logistic regression?

NOTE If you’re already familiar with linear regression, a key distinction
between linear and logistic regression is that the former learns the relation-
ship between predictor variables and a continuous outcome variable, whereas
the latter learns the relationship between predictor variables and a categorical
outcome variable.

By the end of this chapter, you will have applied the skills you learned in chapters 2
and 3 to prepare your data and build, interpret, and evaluate the performance of a
logistic regression model. You will also have learned what missing value imputation is,
a method for filling in missing data with sensible values when working with algorithms
that cannot handle missing values. You will apply a basic form of missing value imputa-
tion as a strategy to deal with missing data.

4.1 What is logistic regression?
Imagine that you’re the curator of fifteenth-century art at a museum. When works of
art, allegedly by famous painters, come to the museum, it’s your job to determine
whether they are genuine or fake (a two-class classification problem). You have access
to the chemical analysis performed on each painting, and you are aware that many
forgeries of this period used paints with lower copper content than the original paint-
ings. You can use logistic regression to learn a model that tells you the probability of a
painting being an original based on the copper content of its paint. The model will
then assign this painting to the class with the highest probability (see figure 4.1).

NOTE The algorithm is commonly applied to two-class classification prob-
lems (this is referred to as binomial logistic regression), but a variant called
multinomial logistic regression handles classification problems where you have
three or more classes.

p ClassData Model

1. New data is passed to
the model.

2. The model (indirectly) estimates the
probability of the data belonging to each class.

3. The data is assigned to the class
with the highest probability.

Figure 4.1 Logistic regression learns models that output the probability (p) of
new data belonging to each of the classes. Typically, new data is assigned the
class to which it has the highest probability of belonging. The dotted arrow
indicates that there are additional steps in calculating the probabilities, which
we’ll discuss in section 4.1.1.

Logistic regression is a very popular classification algorithm, especially in the medical
community, partly because of how interpretable the model is. For every predictor vari-
able in our model, we get an estimate of just how the value of that variable impacts the
probability that a case belongs to one class over another.

90 CHAPTER 4 Classifying based on odds with logistic regression
 We know that logistic regression learns models that estimate the probability of new
cases belonging to each class. Let’s delve into how the algorithm learns the model.

How does logistic regression learn?4.1.1

Take a look at the (imaginary) data in figure 4.2. I’ve plotted the copper content of a
sample of paintings we know to be real or forgeries against their class as if it were a
continuous variable between 0 and 1. We can see that, on average, the forgeries con-
tain less copper in their paint than the originals. We could model this relationship with
a straight line, as shown in the figure. This approach works well when your predictor
variable has a linear relationship with a continuous variable that you want to predict
(we’ll cover this in chapter 9); but as you can see, it doesn’t do a good job of modeling
the relationship between a continuous variable and a categorical one.

As shown in the figure, we could find the copper content at which the straight line
passes halfway between 0 and 1, and classify paintings with copper content below this
value as forgeries and paintings above the value as originals. This might result in many
misclassifications, so a better approach is needed.

 We can better model the relationship between copper content and class member-
ship using the logistic function, which is shown in figure 4.3. The logistic function is an
S-shaped curve that maps a continuous variable (copper content, in our case) onto
values between 0 and 1. This does a much better job of representing the relationship
between copper content and whether a painting is an original or forgery. The figure
shows a logistic function fit to the same data as in figure 4.2. We could find the copper

fiedmisclassiCases
forgeriesas

F
or

ge
ry

 (
0)

 o
r

or
ig

in
al

 (
1)

0.0

0.5

1.0

Classified as
ginalori

ed asClassifi
ryforge

Copper content
3020100

ssifiedse misclaCa
inalas an orig

Figure 4.2 Plotting copper content against class. The y-axis displays the
categorical class membership as if it were a continuous variable, with
forgeries and originals taking the values of 0 and 1, respectively. The solid
line represents a poor attempt to model a linear relationship between
copper content and class. The dashed line at y = 0.5 indicates the
threshold of classification.

91What is logistic regression?
content at which the logistic function passes halfway between 0 and 1, and classify
paintings with copper content below this value as forgeries and paintings above the
value as originals. This typically results in fewer misclassifications than when we do this
using a straight line.

 Importantly, as the logistic function maps our x variable between the values of 0
and 1, we can interpret its output as the probability of a case with a particular copper
content being an original painting. Take another look at figure 4.3. Can you see that
as copper content increases, the logistic function approaches 1? This represents the
fact that, on average, original paintings have a higher copper content, so if you pick a
painting at random and find that it has a copper content of 20, it has a ~ 0.99 or 99%
probability of being an original.

NOTE If I had coded the grouping variable the other way around (with forger-
ies being 1 and originals being 0), then the logistic function would approach 1
for low values of copper and approach 0 for high values. We would simply inter-
pret the output as the probability of being a forgery, instead.

The opposite is also true: as copper content decreases, the logistic function approaches
0. This represents the fact that, on average, forgeries have lower copper content, so if
you pick a painting at random and find it has a copper content of 7, it has a ~ 0.99 or
99% probability of being a forgery.

 Great! We can estimate the probability of a painting being an original by using the
logistic function. But what if we have more than one predictor variable? Because prob-
abilities are bounded between 0 and 1, it’s difficult to combine the information from
two predictors. For example, say the logistic function estimates that a painting has a
0.6 probability of being an original for one predictor variable, and a 0.7 probability

F
or

ge
ry

 (
0)

 o
r

or
ig

in
al

 (
1)

Copper content

0.0

0.5

1.0

Classified as
nalorigi

aslassifiedC
forgery

3020100

ssifiedse misclaCa
inals an origa

fiedmisclassiCase
a forgeryas

Figure 4.3 Modeling the data with the logistic function. The S-shaped
curve represents the logistic function fitted to the data. The center of
the curve passes through the mean of copper content and maps it
between 0 and 1.

92 CHAPTER 4 Classifying based on odds with logistic regression
for the other predictor. We can’t simply add these estimates together, because they
would be larger than 1, and this wouldn’t make sense.

 Instead, we can take these probabilities and convert them into their log odds (the
“raw” output from logistic regression models). To introduce log odds, let me first
explain what I mean by odds, and the difference between odds and probability.

 The odds of a painting being an original are

 Equation 4.1

You may come across this written as

 Equation 4.2

Odds are a convenient way of representing the likelihood of something occurring.
They tell us how much more likely an event is to occur, rather than how likely it is not
to occur.

 In The Empire Strikes Back, C3PO says that the odds of “successfully navigating an
asteroid field are approximately 3,720 to 1!” What C3PO was trying to tell Han and
Leia was that the probability of successfully navigating an asteroid field is approxi-
mately 3,720 times smaller than the probability of unsuccessfully navigating it. Simply
stating the odds is often a more convenient way of representing likelihood because we
know that, for every 1 asteroid field that was successfully navigated, 3,720 were not!
Additionally, whereas probability is bounded between 0 and 1, odds can take any posi-
tive value.

NOTE Despite being a highly intelligent protocol droid, C3PO got his odds
the wrong way around (as many people do). He should have said the odds of
successfully navigating an asteroid field are approximately 1 to 3,720!

Figure 4.4 shows copper content plotted against the odds of a painting being an origi-
nal. Notice that the odds are not bounded between 0 and 1, and that they take on pos-
itive values.

 As we can see, though, the relationship between the copper content of the paint
and the odds of a painting being an original is not linear. Instead, if we take the natu-
ral logarithm (log with a base of e, abbreviated as ln) of the odds, we get the log odds:

 Equation 4.3

TIP Equation 4.3, which converts probabilities into log odds, is also called
the logit function. You will often see logit regression and logistic regression used
interchangeably.

odds probability of being an original
probability of being a forgery

---=

odds p
1 p–
------------=

 oddslog p
1 p–

 ln=

93What is logistic regression?

I’ve taken the natural logarithm of the odds shown in figure 4.3 to generate their log
odds, and plotted these log odds against copper content in figure 4.5. Hurray! We
have a linear relationship between our predictor variable and the log odds of a paint-
ing being an original. Also notice that log odds are completely unbounded: they can
extend to positive and negative infinity. When interpreting log odds

 A positive value means something is more likely to occur than to not occur.
 A negative value means something is less likely to occur than to occur.
 Log odds of 0 means something is as likely to occur as not to occur.

O
dd

s
of

 b
ei

ng
 a

n
or

ig
in

al

Copper content
0 10 20

0

1000

4000

30

2000

3000

Figure 4.4 Plotting the odds of being an original against copper content.
The probabilities derived from the logistic function were converted into
odds and plotted against copper content. Odds can take any positive
value. The straight line represents a poor attempt to model a linear
relationship between copper content and odds.

Lo
g

od
ds

 o
f b

ei
ng

 a
n

or
ig

in
al

Copper content
0 10 20

–4

8

30

0

4

Figure 4.5 Plotting the log odds of being an original against copper content. The
odds were converted into log odds using the logit function and plotted against
copper content. Log odds are unbounded and can take any value. The straight
line represents the linear relationship between copper content and log odds.

94 CHAPTER 4 Classifying based on odds with logistic regression

When discussing figure 4.4, I highlighted that the relationship between copper con-
tent and the odds of being an original painting was not linear. Next, I showed you in
figure 4.5 that the relationship between copper content and log odds was linear. In
fact, linearizing this relationship is why we take the natural logarithm of the odds.
Why did I make such a big deal about there being a linear relationship between our
predictor variable and its log odds? Well, modeling a straight line is easy. Recall from
chapter 1 that all an algorithm needs to learn to model a straight-line relationship is
the y-intercept and the slope of the line. So logistic regression learns the log odds of a
painting being an original when copper content is 0 (the y-intercept), and how the
log odds change with increasing copper content (the slope).

NOTE The more influence a predictor variable has on the log odds, the steeper
the slope will be, while variables that have no predictive value will have a slope
that is nearly horizontal.

Additionally, having a linear relationship means that when we have multiple predic-
tor variables, we can add their contributions to the log odds together to get the over-
all log odds of a painting being an original, based on the information from all of its
predictors.

 Now, how do we get from the straight-line relationship between copper content
and the log odds of being an original, to making predictions about new paintings?
The model calculates the log odds of our new data being an original painting using

log odds = y-intercept + slope * copper

where we add the y-intercept and the product of the slope and the value of copper in
our new painting. Once we’ve calculated the log odds of the new painting, we convert
it into the probability of being an original using the logistic function:

 Equation 4.4p 1

1 e z–
+

----------------=

where p is the probability, e is Euler’s number (a fixed constant ~ 2.718), and z is the
log odds of a particular case.

Then, quite simply, if the probability of a painting being an original is > 0.5, it is
classified as an original. If the probability is < 0.5, it is classified as a forgery. This con-
version of log odds to odds to probabilities is illustrated in figure 4.6.

NOTE This threshold probability is 0.5 by default. In other words, if there is
more than a 50% chance that a case belongs to the positive class, assign it to
the positive class. We can alter this threshold, however, in situations where we
need to be really sure before classifying a case as belonging to the positive
class. For example, if we’re using the model to predict whether a patient
needs high-risk surgery, we want to be really sure before going ahead with the
procedure!

95What is logistic regression?
You will often see the model

log odds = y-intercept + slope * copper

rewritten as in equation 4.5.

 Equation 4.5

Don’t be scared by this! Look at equation 4.5 again. This is the way statisticians repre-
sent models that predict straight lines, and it is exactly the same as the equation
describing log odds. The logistic regression model predicts the log odds (on the left
of the equals) by adding the y-intercept (β0) and the slope of the line (βcopper) multi-
plied by the value of copper (xcopper).

 You may be wondering: why are you showing me equations when you promised me
you wouldn’t? Well, in most situations, we won’t have a single predictor; we’ll have many.
By representing the model in this way, you can see how it can be used to combine multi-
ple predictors together linearly: in other words, by adding their effects together.

 Let’s say we also include the amount of the metal lead as a predictor for whether a
painting is an original or not. The model will instead look like this:

 Equation 4.6

An example of what this model might look like is shown in figure 4.7. With two predic-
tor variables, we can represent the model as a plane, with the log odds shown on the
vertical axis. The same principle applies for more than two predictors, but it’s difficult
to visualize on a 2D surface.

 Now, for any painting we pass into our model, the model does the following:

1 Multiplies its copper content by the slope for copper
2 Multiplies the lead content by the slope for lead
3 Adds these two values and the y-intercept together to get the log odds of that

painting being an original

1. New data is converted
into its log odds.

2. The log odds are
converted into probabilities.

3. Data is assigned to the class
with the highest probability.

p ClassData Logistic
function

Log odds

Figure 4.6 Summary of how logistic regression models predict class membership. Data is
converted into log odds (logits), which are converted into odds and then into the probability of
belonging to the “positive” class. Cases are assigned to the positive class if their probability
exceeds a threshold probability (0.5 by default).

p
1 p–

 ln β0 βcopper xcopper+=

p
1 p–

 ln β0 βcopper xcopper βleadxlead++=

96 CHAPTER 4 Classifying based on odds with logistic regression
4 Converts the log odds into a probability
5 Classifies the painting as an original if the probability is > 0.5, or classifies the

painting as a forgery if the probability is < 0.5

We can extend the model to include as many predictor variables as we want:

 Equation 4.7

where k is the number of predictor variables in the dataset and the … represents all
the variables in between.

TIP Remember in chapter 3, when I explained the difference between
parameters and hyperparameters? Well, β0, β1, and so on are model parame-
ters, because they are learned by the algorithm from the data.

The whole procedure for classifying new paintings is summarized in figure 4.8. First, we
convert the copper and lead values of our new data into their log odds (logits) by using
the linear model learned by the algorithm. Next, we convert the log odds into their
probabilities using the logistic function. Finally, if the probability is > 0.5, we classify the
painting as an original; and if its probability is < 0.5, we classify it as a forgery.

Le
ad

 c
on

te
nt

Copper content

0
5

10
15

20
25

30 0

5

10

15

20

25

30

−10

0

10

20

30

Lo
g

od
ds

 o
f b

ei
ng

an
 o

rig
in

al

Figure 4.7 Visualizing a logistic regression model with two predictors.
Copper content and lead content are plotted on the x- and z-axes, respectively.
Log odds are plotted on the y-axis. The plane shown inside the plot represents
the linear model that combines the intercept and the slopes of copper content
and lead content to predict log odds.

p
1 p–

 ln β0 β1x1 β2x2 ...βkxk++=

97What is logistic regression?

NOTE Although the first and third paintings in figure 4.8 were both classified
as forgeries, they had very different probabilities. As the probability of the
third painting is much smaller than the probability of the first, we can be
more confident that painting 3 is a forgery than we are confident that paint-
ing 1 is a forgery.

4.1.2 What if we have more than two classes?

The previous scenario is an example of binomial logistic regression. In other words, the
decision about which class to assign to new data can take on only one of two named cat-
egories (bi and nomos from Latin and Greek, respectively). But we can use a variant of
logistic regression to predict one of multiple classes. This is called multinomial logistic
regression, because there are now multiple possible categories to choose from.

 In multinomial logistic regression, instead of estimating a single logit for each
case, the model estimates a logit for each case for each of the output classes. These logits
are then passed into an equation called the softmax function which turns these logits
into probabilities for each class, that sum to 1 (see figure 4.9). Then whichever class
has the largest probability is selected as the output class.

13.3 –1.83 0.14 Forgery
21.2 6.72 0.99 Original
2.5 –9.33 9 × 10–5 Forgery

log odds = β0 + β1 1X + β2 2X > 0.5: original
< 0.5: forgery

p

p

p
if
if

LeadCopper Log odds p Class

2.95
12.5

1.2

=
1 + e–log odds

Painting

1
2

3

1

Figure 4.8 The process of classifying new paintings. The predictor variable values
of three paintings are converted into log odds based on the learned model parameters
(intercept and slopes). The log odds are converted into probabilities (p), and if p >
0.5, the case is classified as the “positive” class.

a = 0.1
b = 0.6
c = 2.0

Log odds

a = 0.11
b = 0.18
c = 0.71

p

c
Class

(Do not sum to 1)

Softmax

(Sum to 1)

13.3

LeadCopper

2.95

Figure 4.9 Summary of the softmax function. In the binomial case, only one logit is
needed per case (the logit for the positive class). Where there are multiple classes
(a, b, and c in this example), the model estimates one logit per class for each case.
The softmax function maps these logits to probabilities that sum to one. The case is
assigned to the class with the largest probability.

98 CHAPTER 4 Classifying based on odds with logistic regression

TIP You will sometimes see softmax regression and multinomial logistic regression
used interchangeably.

The classif.logreg learner wrapped by mlr will only handle binomial logistic reg-
ression. There isn’t currently an implementation of ordinary multinomial logistic
regression wrapped by mlr. We can, however, use the classif.LiblineaRL1LogReg
learner to perform multinomial logistic regression (although it has some differences I
won’t discuss).

4.2

The softmax function
It isn’t necessary for you to memorize the softmax function, so feel free to skip this,
but the softmax function is defined as

pa =
 elogita

 elogita + elogitb + elogitc

where pa is the probability of a case belonging to class a, e is Euler’s number (a fixed
constant ~ 2.718), and logita, logitb, and logitc are the logits for this case for being
in classes a, b, and c, respectively.

If you’re a math buff, this can be generalized to any number of classes using the
equation

pj =
 elogitj

 Σ
K

k=1
elogitk

where pj is the probability of being in class j, and ΣK
k=1 means to sum the elogits from class

1 to class K (where there are K classes in total).

Write your own implementation of the softmax function in R, and try plugging other
vectors of numbers into it. You’ll find that it always maps the input to an output where
all the elements sum to 1.

Now that you know how logistic regression works, you’re going to build your first bino-
mial logistic regression model.

Building your first logistic regression model
Imagine that you’re a historian interested in the RMS Titanic, which famously sank in
1912 after colliding with an iceberg. You want to know whether socioeconomic factors
influenced a person’s probability of surviving the disaster. Luckily, such socioeco-
nomic data is publicly available!

Your aim is to build a binomial logistic regression model to predict whether a pas-
senger would survive the Titanic disaster, based on data such as their gender and how
much they paid for their ticket. You’re also going to interpret the model to decide

99Building your first logistic regression model

which variables were important in influencing the probability of a passenger surviving.
Let’s start by loading the mlr and tidyverse packages:

library(mlr)
library(tidyverse)

4.2.1 Loading and exploring the Titanic dataset

Now let’s load the data, which is built into the titanic package, convert it into a tibble
(with as_tibble()), and explore it a little. We have a tibble containing 891 cases and 12
variables of passengers of the Titanic. Our goal is to train a model that can use the infor-
mation in these variables to predict whether a passenger would survive the disaster.

install.packages("titanic")

data(titanic_train, package = "titanic")

titanicTib <- as_tibble(titanic_train)

titanicTib

A tibble: 891 x 12
Age SibSp Parch TicketSexPassengerId Survived Pclass Name

<int> <chr> <chr> <dbl> <int> <int> <chr><int><int>

Loading and exploring theListing 4.1 Titanic dataset

1 1 0 3 Brau… male 22 1 0 A/5 2…
2 2 1 1 Cumi… fema… 38 1 0 PC 17…
3 3 1 3 Heik… fema… 26 0 0 STON/…
4 4 1 1 Futr… fema… 35 1 0 113803
5 5 0 3 Alle… male 35 0 0 373450
6 6 0 3 Mora… male NA 0 0 330877
7 7 0 1 McCa… male 54 0 0 17463
8 8 0 3 Pals… male 2 3 1 349909
9 9 1 3 John… fema… 27 0 2 347742

10 10 1 2 Nass… fema… 14 1 0 237736
... with 881 more rows, and 3 more variables: Fare <dbl>,
Cabin <chr>, Embarked <chr>

The tibble contains the following variables:

 PassengerId—An arbitrary number unique to each passenger
 Survived—An integer denoting survival (1 = survived, 0 = died)
 Pclass—Whether the passenger was housed in first, second, or third class
 Name—A character vector of the passengers’ names
 Sex—A character vector containing “male” and “female”
 Age—The age of the passenger
 SibSp—The combined number of siblings and spouses on board
 Parch—The combined number of parents and children on board
 Ticket—A character vector with each passenger’s ticket number

100 CHAPTER 4 Classifying based on odds with logistic regression
 Fare—The amount of money each passenger paid for their ticket
 Cabin—A character vector of each passenger’s cabin number
 Embarked—A character vector of which port passengers embarked from

The first thing we’re going to do is use tidyverse tools to clean and prepare the data
for modeling.

Making the most of the da4.2.2 ta: Feature engineering and
feature selection

Rarely will you be working with a dataset that is ready for modeling straight away. Typ-
ically, we need to perform some cleaning first to ensure that we get the most from the
data. This includes steps such as converting data to the correct types, correcting mis-
takes, and removing irrelevant data. The titanicTib tibble is no exception; we need
to clean it up before we can pass it to the logistic regression algorithm. We’ll perform
three tasks:

1 Convert the Survived, Sex, and Pclass variables into factors.
2 Create a new variable called FamSize by adding SibSp and Parch together.
3 Select the variables we believe to be of predictive value for our model.

If a variable should be a factor, it’s important to let R know it’s a factor, so that R treats
it appropriately. We can see from the output of titanicTib in listing 4.1 that Survived
and Pclass are both integer vectors (<int> is shown above their columns in the out-
put) and that Sex is a character vector (<chr> above the column). Each of these vari-
ables should be treated as a factor because it represents discrete differences between
cases that are repeated throughout the dataset.

 We might hypothesize that the number of family members a passenger has on
board might impact their survival. For example, people with many family members
may be reluctant to board a lifeboat that doesn’t have enough room for their whole
family. While the SibSp and Parch variables contain this information separated by sib-
lings and spouses, and parents and children, respectively, it may be more informative
to combine these into a single variable containing overall family size.

 This is an extremely important machine learning task called feature engineering : the
modification of variables in your dataset to improve their predictive value. Feature
engineering comes in two flavors:

 Feature extraction—Predictive information is held in a variable, but in a format
that is not useful. For example, let’s say you have a variable that contains the
year, month, day, and time of day of certain events occurring. The time of day
has important predictive value, but the year, month, and day do not. For this vari-
able to be useful in your model, you would need to extract only the time-of-day
information as a new variable.

 Feature creation—Existing variables are combined to create new ones. Merging
the SibSp and Parch variables to create FamSize is an example.

101Building your first logistic regression model

Using feature extraction and feature creation allows us to extract predictive informa-
tion present in our dataset but not currently in a format that maximizes its usefulness.

 Finally, we will often have variables in our data that have no predictive value. For
example, does knowing the passenger’s name or cabin number help us predict sur-
vival? Possibly not, so let’s remove them. Including variables with little or no predictive
value adds noise to the data and will negatively impact how our models perform, so it’s
best to remove them.

 This is another extremely important machine learning task called feature selection,
and it is pretty much what it sounds like: keeping variables that add predictive value,
and removing those that don’t. Sometimes it’s obvious to us as humans whether vari-
ables are useful predictors or not. Passenger name, for example, would not be useful
because every passenger has a different name! In these situations, it’s common sense
to remove such variables. Often, however, it’s not so obvious, and there are more
sophisticated ways we can automate the feature-selection process. We’ll explore this in
later chapters.

 All three of these tasks (converting to factors, feature engineering, and feature selec-
tion) are performed in listing 4.2. I’ve made our lives easier by defining a vector of the
variables we wish to convert into factors, and then using the mutate_at() function to
turn them all into factors. The mutate_at() function is like the mutate() function, but
it allows us to mutate multiple columns at once. We supply the existing variables as a
character vector to the .vars argument and tell it what we want to do to those variables
using the .funs argument. In this case, we supply the vector of variables we defined, and
the “factor” function to convert them into factors. We pipe the result of this into a
mutate() function call that defines a new variable, FamSize, which is the sum of SibSp
and Parch. Finally, we pipe the result of this into a select() function call, to select only
the variables we believe may have some predictive value for our model.

fctrs <- c("Survived", "Sex", "Pclass")

titanicClean <- titanicTib %>%
mutate_at(.vars = fctrs, .funs = factor) %>%
mutate(FamSize = SibSp + Parch) %>%
select(Survived, Pclass, Sex, Age, Fare, FamSize)

titanicClean

A tibble: 891 x 6
Fare FamSizeAgeSurvived Pclass Sex

<int><dbl> <dbl><fct><fct><fct>

Cleaning theListing 4.2 Titanic data, ready for modeling

1 0 3 male 22 7.25 1
2 1 1 female 38 71.3 1
3 1 3 female 26 7.92 0
4 1 1 female 35 53.1 1
5 0 3 male 35 8.05 0
6 0 3 male NA 8.46 0
7 0 1 male 54 51.9 0

102 CHAPTER 4 Classifying based on odds with logistic regression

8 0 3 male 2 21.1 4
9 1 3 female 27 11.1 2

10 1 2 female 14 30.1 1
... with 881 more rows

When we print our new tibble, we can see that Survived, Pclass, and Sex are now fac-
tors (<fct> shown above their columns in the output); we have our new variable,
FamSize; and we have removed irrelevant variables.

NOTE Have I been too hasty in removing the Name variable from the tibble?
Hidden in this variable are the salutations for each passenger (Miss, Mrs., Mr.,
Master, and so on), which may have predictive value. Using this information
would require feature extraction.

Plotting the data4.2.3

Now that we’ve cleaned our data a little, let’s plot it to get better insight into the relation-
ships in the data. Here’s a little trick to simplify plotting multiple variables together using
ggplot2. Let’s convert the data into an untidy format, such that each of the predictor vari-
able names is held in one column, and its values are held in another column, using the
gather() function (refresh your memory of this by looking at the end of chapter 2).

NOTE The gather() function will warn that “attributes are not identical
across measure variables; they will be dropped.” This is simply warning you
that the variables you are gathering together don’t have the same factor lev-
els. Ordinarily this might mean you’ve collapsed variables you didn’t mean to,
but in this case we can safely ignore the warning.

Creating an untidy tibble for plottingListing 4.3

titanicUntidy <- gather(titanicClean, key = "Variable", value = "Value",
-Survived)

titanicUntidy

A tibble: 4,455 x 3
Survived Variable Value
<fct> <chr> <chr>

1 0 Pclass 3
2 1 Pclass 1
3 1 Pclass 3
4 1 Pclass 1
5 0 Pclass 3
6 0 Pclass 3
7 0 Pclass 1
8 0 Pclass 3
9 1 Pclass 3

10 1 Pclass 2
... with 4,445 more rows

We now have an untidy tibble with three columns: one containing the Survived factor,
one containing the names of the predictor variables, and one containing their values.

103Building your first logistic regression model
NOTE Note that the value column is a character vector (<chr>). This is
because it contains “male” and “female” from the Sex variable. As a column
can only hold data of a single type, all the numerical data is also converted
into characters.

You may be wondering why we’re doing this. Well, it allows us to use ggplot2’s faceting
system to plot our different variables together. In listing 4.4, I take the titanicUntidy
tibble, filter for the rows that do not contain the Pclass or Sex variables (as these are
factors, we’ll plot them separately), and pipe this data into a ggplot() call.

titanicUntidy %>%
filter(Variable != "Pclass" & Variable != "Sex") %>%
ggplot(aes(Survived, as.numeric(Value))) +
facet_wrap(~ Variable, scales = "free_y") +
geom_violin(draw_quantiles = c(0.25, 0.5, 0.75)) +
theme_bw()

In the ggplot() function call, we supply Survived as the x aesthetic and Value as the
y aesthetic (coercing it into a numeric vector with as.numeric() because it was con-
verted into a character by our gather() function call earlier). Next—and here’s the
cool bit—we ask ggplot2 to facet by the Variable column, using the facet_wrap()
function, and allow the y-axis to vary between the facets. Faceting allows us to draw
subplots of our data, indexed by some faceting variable. Finally, we add a violin geo-
metric object, which is similar to a box plot but also shows the density of data along
the y-axis. The resulting plot is shown in figure 4.10.

Creating subplots for each continuous variableListing 4.4

FareFamSizeAge

10 10 0 1

0

100

200

300

400

500

0.0

2.5

5.0

7.5

10.0

0

20

40

60

80

Survived

as
.n

um
er

ic
 (

V
al

ue
)

Figure 4.10 Faceted plot of Survived against FamSize and Fare. Violin
plots show the density of data along the y-axis. The lines on each violin represent
the first quartile, median, and third quartile (from lowest to highest).

104 CHAPTER 4 Classifying based on odds with logistic regression

Can you see how the faceting worked? Rows in the data with different values of Vari-
able are plotted on different subplots! This is why we needed to gather the data into
an untidy format: so we could supply a single variable for ggplot2 to facet by.

Now let’s do the same thing for the factors in our dataset by filtering the data for rows
that contain only the Pclass and Sex variables. This time, we want to see what propor-
tion of passengers in each level of the factors survived. To do so, we plot the factor lev-
els on the x-axis by supplying Value as the x aesthetic mapping; and we want to use
different colors to denote survival versus non-survival, so we supply Survived as the fill
aesthetic. We facet by Variable as before and add a bar geometric object with the
argument position = "fill", which stacks the data for survivors and non-survivors
such that they sum to 1 to show us the proportion of each. The resulting plot is shown
in figure 4.11.

titanicUntidy %>%
filter(Variable == "Pclass" | Variable == "Sex") %>%
ggplot(aes(Value, fill = Survived)) +
facet_wrap(~ Variable, scales = "free_x") +
geom_bar(position = "fill") +
theme_bw()

Exercise 1
Redraw the plot in figure 4.10, but add a geom_point() layer, setting the alpha argu-
ment to 0.05 and the size argument to 3. Does this make the violin plot make more
sense?

Creating subplots for each categorical variableListing 4.5

Pclass Sex

1 2 3 malefemale

0.00

0.25

0.50

0.75

1.00

Value

C
ou

nt Survived

0

1

Figure 4.11 Faceted plot of Survived against Pclass and Sex. Filled
bars represent the proportion of passengers at each level of the factors that
survived (1 = survival).

105Building your first logistic regression model
NOTE In the filter() function calls in listings 4.4 and 4.5, I used the & and |
operators to mean “and” and “or,” respectively.

So it seems like passengers who survived tended to have slightly more family members
on board (perhaps contradicting our hypothesis), although passengers with very large
families on board tended not to survive. Age doesn’t seem to have had an obvious
impact on survival, but being female meant you would be much more likely to survive.
Paying more for your fare increased your probability of survival, as did being in a
higher class (though the two probably correlate).

Training the model4.2.4

Now that we have our cleaned data, let’s create a task, learner, and model with mlr
(specifying "classif.logreg" to use logistic regression as our learner). By setting the
argument predict.type = "prob", the trained model will output the estimated proba-
bilities of each class when making predictions on new data, rather than just the pre-
dicted class membership.

titanicTask <- makeClassifTask(data = titanicClean, target = "Survived")

logReg <- makeLearner("classif.logreg", predict.type = "prob")

logRegModel <- train(logReg, titanicTask)

Error in checkLearnerBeforeTrain(task, learner, weights) :
Task 'titanicClean' has missing values in 'Age', but learner 'classif.logre

g' does not support that!

Whoops! Something went wrong. What does the error message say? Hmm, it seems we
have some missing data from the Age variable, and the logistic regression algorithm
doesn’t know how to handle that. Let’s have a look at this variable. (I’m only display-
ing the first 60 elements to save room, but you can print the entire vector.)

titanicClean$Age[1:60]
4.0 58.0 20.02.0 27.0 14.0NA 54.0[1] 22.0 38.0 26.0 35.0 35.0

8.0 38.0NA 35.0 34.0 15.0 28.0NA 31.02.0[14] 39.0 14.0 55.0
NA 21.0 18.0NA 66.0 28.0 42.0NANA 40.0NANA 19.0[27]

7.0 21.0NA 18.0NANANA3.0 19.0NA[40] 14.0 40.0 27.0
5.0 11.0NA 21.0 28.5[53] 49.0 29.0 65.0

Exercise 2
Redraw the plot in figure 4.11, but change the geom_bar() argument position equal
to "dodge". Do this again, but make the position argument equal to "stack". Can
you see the difference between the three methods?

Creating a task and learner, and training a modelListing 4.6

Counting missing values in theListing 4.7 Age variable

106 CHAPTER 4 Classifying based on odds with logistic regression

(titanicClean$Age))is.nasum(
177[1]

Ah, we have lots of NAs (177 in fact!), which is R’s way of labeling missing data.

Dealing with missing data4.2.5

There are two ways to handle missing data:

 Simply exclude cases with missing data from the analysis
 Apply an imputation mechanism to fill in the gaps

The first option may be valid when the ratio of cases with missing values to complete
cases is very small. In that case, omitting cases with missing data is unlikely to have a
large impact on the performance of our model. It is a simple, if not elegant, solution
to the problem.

 The second option, missing value imputation, is the process by which we use some
algorithm to estimate what those missing values would have been, replace the NAs with
these estimates, and use this imputed dataset to train our model. There are many differ-
ent ways of estimating the values of missing data, and we’ll use more sophisticated ones
throughout the book, but for now, we’ll employ mean imputation, where we simply take
the mean of the variable with missing data and replace missing values with that.

 In listing 4.8, I use mlr’s impute() function to replace the missing data. The first
argument is the name of the data, and the cols argument asks us which columns we
want to impute and what method we want to apply. We supply the cols argument as a
list of the column names, separated by commas if we have more than one. Each column
listed should be followed by an = sign and the imputation method (imputeMean() uses
the mean of the variable to replace NAs). I save the imputed data structure as an object,
imp, and use sum(is.na()) to count the number of missing values from the data.

imp <- impute(titanicClean, cols = list(Age = imputeMean()))

(titanicClean$Age))is.nasum(
177[1]

4.2.6

Imputing missing values in theListing 4.8 Age variable

sum(is.na(imp$data$Age))
[1] 0

We can see that those 177 missing values have all been imputed!

Training the model (take two)

Okay, we’ve imputed those pesky missing values with the mean and created the new
object imp. Now let’s try again by creating a task using the imputed data. The imp

object contains both the imputed data and a description for the imputation process
we used. To extract the data, we simply use imp$data.

107Cross-validating the logistic regression model
titanicTask <- makeClassifTask(data = imp$data, target = "Survived")

logRegModel <- train(logReg, titanicTask)

This time, no error messages. Next, let’s cross-validate our model to estimate how it
will perform.

4.3 Cross-validating the logistic regression model
Remember that when we cross-validate, we should cross-validate our entire model-
building procedure. This should include any data-dependent preprocessing steps,
such as missing value imputation. In chapter 3, we used a wrapper function to wrap
together our learner and our hyperparameter tuning procedure. This time, we’re
going to create a wrapper for our learner and our missing value imputation.

4.3.1 Including missing value imputation in cross-validation

The makeImputeWrapper() function wraps together a learner (given as the first argu-
ment) and an imputation method. Notice how we specify the imputation method in
exactly the same way as for the impute() function in listing 4.8, by supplying a list of
columns and their imputation method.

logRegWrapper <- makeImputeWrapper("classif.logreg",
cols = list(Age = imputeMean()))

Now let’s apply stratified, 10-fold cross-validation, repeated 50 times, to our wrapped
learner.

NOTE Remember that we first define our resampling method using make-
ResampleDesc() and then use resample() to run the cross-validation.

Because we’re supplying our wrapped learner to the resample() function, for each
fold of the cross-validation, the mean of the Age variable in the training set will be
used to impute any missing values.

kFold <- makeResampleDesc(method = "RepCV", folds = 10, reps = 50,
stratify = TRUE)

logRegwithImpute <- resample(logRegWrapper, titanicTask,
resampling = kFold,
measures = list(acc, fpr, fnr))

logRegwithImpute

Training a model on imputed dataListing 4.9

Wrapping together the learner and the imputation methodListing 4.10

Cross-validating our model-building processListing 4.11

108 CHAPTER 4 Classifying based on odds with logistic regression

4.3.2

4.4

Resample Result
Task: imp$data
Learner: classif.logreg.imputed
Aggr perf: acc.test.mean=0.7961500,fpr.test.mean=0.2992605,fnr.test.mean=0.14

44175
Runtime: 10.6986

As this is a two-class classification problem, we have access to a few extra performance
metrics, such as the false positive rate (fpr) and false negative rate (fnr). In the cross-
validation procedure in listing 4.11, we ask for accuracy, false positive rate, and false neg-
ative rate to be reported as performance metrics. We can see that although on average
across the repeats our model correctly classified 79.6% of passengers, it incorrectly clas-
sified 29.9% of passengers who died as having survived (false positives), and incorrectly
classified 14.4% of passengers who survived as having died (false negatives).

Accuracy is the most important performance metric, right?

You might think that the accuracy of a model’s predictions is the defining metric of its
performance. Often, this is the case, but sometimes, it’s not.

Imagine that you work for a bank as a data scientist in the fraud-detection depart-
ment. It’s your job to build a model that predicts whether credit card transactions are
legitimate or fraudulent. Let’s say that out of 100,000 credit card transactions, only 1 is
fraudulent. Because fraud is relatively rare, (and because they’re serving pizza for lunch
today), you decide to build a model that simply classifies all transactions as legitimate.

The model accuracy is 99.999%. Pretty good? Of course not! The model isn’t able
to identify any fraudulent transactions and has a false negative rate of 100%!

The lesson here is that you should evaluate model performance in the context of your
particular problem. Another example could be building a model that will guide doctors
to use an unpleasant treatment, or not, for a patient. In the context of this problem, it
may be acceptable to incorrectly not give a patient the unpleasant treatment, but it is
imperative that you don’t incorrectly give a patient the treatment if they don’t need it!

If positive events are rare (as in our fraudulent credit card example), or if it is partic-
ularly important that you don’t misclassify positive cases as negative, you should favor
models that have a low false negative rate. If negative events are rare, or if it is particu-
larly important that you don’t misclassify negative cases as positive (as in our medical
treatment example), you should favor models that have a low false positive rate.

Take a look at https://mlr.mlr-org.com/articles/tutorial/measures.html to see all
the performance measures currently wrapped by mlr and the situations in which they
can be used.

Interpreting the model: The odds ratio
I mentioned at the start of the chapter that logistic regression is very popular because
of how interpretable the model parameters (the y-intercept, and the slopes for each of
the predictors) are. To extract the model parameters, we must first turn our mlr
model object, logRegModel, into an R model object using the getLearnerModel()

109Interpreting the model: The odds ratio

function. Next, we pass this R model object as the argument to the coef() function,
which stands for coefficients (another term for parameters), so this function returns the
model parameters.

logRegModelData <- getLearnerModel(logRegModel)

coef(logRegModelData)

AgeSexmalePclass3Pclass2(Intercept)
3.809661697 -1.000344806 -2.132428850 -2.775928255 -0.038822458

FamSizeFare
0.003218432 -0.243029114

The intercept is the log odds of surviving the Titanic disaster when all continuous vari-
ables are 0 and the factors are at their reference levels. We tend to be more interested
in the slopes than the y-intercept, but these values are in log odds units, which are dif-
ficult to interpret. Instead, people commonly convert them into odds ratios.

 An odds ratio is, well, a ratio of odds. For example, if the odds of surviving the
Titanic if you’re female are about 7 to 10, and the odds of surviving if you’re male are
2 to 10, then the odds ratio for surviving if you’re female is 3.5. In other words, if you
were female, you would have been 3.5 times more likely to survive than if you were
male. Odds ratios are a very popular way of interpreting the impact of predictors on
an outcome, because they are easily understood.

4.4.1 Converting model parameters into odds ratios

How do we get from log odds to odds ratios? By taking their exponent (e log odds). We
can also calculate 95% confidence intervals using the confint() function, to help us
decide how strong the evidence is that each variable has predictive value.

exp(cbind(Odds_Ratio = coef(logRegModelData), confint(logRegModelData)))

Waiting for profiling to be done...
97.5 %2.5 %Odds_Ratio

(Intercept) 45.13516691 19.14718874 109.72483921
0.652208410.206503920.36775262Pclass2
0.208852200.067003110.11854901Pclass3
0.091166570.041821640.06229163Sexmale
0.976529500.947000490.96192148Age
1.008632630.998720011.00322362Fare
0.891100440.683154650.78424868FamSize

Extracting model parametersListing 4.12

Converting model parameters into odds ratiosListing 4.13

Most of these odds ratios are less than 1. An odds ratio less than 1 means an event is
less likely to occur. It’s usually easier to interpret these if you divide 1 by them. For exam-
ple, the odds ratio for surviving if you were male is 0.06, and 1 divided by 0.06 = 16.7.

110 CHAPTER 4 Classifying based on odds with logistic regression

This means that, holding all other variables constant, men were 16.7 times less likely to
survive than women.

 For continuous variables, we interpret the odds ratio as how much more likely a pas-
senger is to survive for every one-unit increase in the variable. For example, for every
additional family member, a passenger was 1/0.78 = 1.28 times less likely to survive.

 For factors, we interpret the odds ratio as how much more likely a passenger is to
survive, compared to the reference level for that variable. For example, we have odds
ratios for Pclass2 and Pclass3, which are how many more times passengers in classes
2 and 3 are likely to survive compared to those in class 1, respectively.

 The 95% confidence intervals indicate the strength of the evidence that each vari-
able has predictive value. An odds ratio of 1 means the odds are equal and the variable
has no impact on prediction. Therefore, if the 95% confidence intervals include the
value 1, such as those for the Fare variable, then this may suggest that this variable isn’t
contributing anything.

When a one-unit increase doesn’t make sense4.4.2

A one-unit increase often isn’t easily interpretable. Say you get an odds ratio that
says for every additional ant in an anthill, that anthill is 1.000005 times more likely
to survive a termite attack. How can you comprehend the importance of such a
small odds ratio?

 When it doesn’t make sense to think in one-unit increases, a popular technique
is to log2 transform the continuous variables instead, before training the model with
them. This won’t impact the predictions made by the model, but now the odds ratio
can be interpreted this way: every time the number of ants doubles, the anthill is x
times more likely to survive. This will give much larger and much more interpreta-
ble odds ratios.

Using our model to make predictions4.5
We’ve built, cross-validated, and interpreted our model, and now it would be nice to
use the model to make predictions on new data. This scenario is a little unusual in
that we’ve built a model based on a historical event, so (hopefully!) we won’t be using
it to predict survival of another Titanic disaster. Nevertheless, I want to illustrate to
you how to make predictions with a logistic regression model, the same as you can for
any other supervised algorithm. Let’s load some unlabeled passenger data, clean it
ready for prediction, and pass it through our model.

Using our model to make predictions on new dataListing 4.14

data(titanic_test, package = "titanic")

titanicNew <- as_tibble(titanic_test)

titanicNewClean <- titanicNew %>%
mutate_at(.vars = c("Sex", "Pclass"), .funs = factor) %>%

111Strengths and weaknesses of logistic regression
mutate(FamSize = SibSp + Parch) %>%
select(Pclass, Sex, Age, Fare, FamSize)

predict(logRegModel, newdata = titanicNewClean)

Prediction: 418 observations
predict.type: prob
threshold: 0=0.50,1=0.50
time: 0.00

prob.0 prob.1 response
1 0.9178036 0.08219636 0
2 0.5909570 0.40904305 0
3 0.9123303 0.08766974 0
4 0.8927383 0.10726167 0
5 0.4069407 0.59305933 1
6 0.8337609 0.16623907 0
... (#rows: 418, #cols: 3)

4.6 Strengths and weaknesses of logistic regression
While it often isn’t easy to tell which algorithms will perform well for a given task, here
are some strengths and weaknesses that will help you decide whether logistic regres-
sion will perform well for you.

 The strengths of the logistic regression algorithm are as follows:

 It can handle both continuous and categorical predictors.
 The model parameters are very interpretable.
 Predictor variables are not assumed to be normally distributed.

The weaknesses of the logistic regression algorithm are these:

 It won’t work when there is complete separation between classes.
 It assumes that the classes are linearly separable. In other words, it assumes that

a flat surface in n-dimensional space (where n is the number of predictors)
can be used to separate the classes. If a curved surface is required to separate
the classes, logistic regression will underperform compared to some other
algorithms.

 It assumes a linear relationship between each predictor and the log odds. If, for
example, cases with low and high values of a predictor belong to one class, but
cases with medium values of the predictor belong to another class, this linearity
will break down.

Exercise 3
Repeat the model-building process, but omit the Fare variable. Does it make a differ-
ence to model performance as estimated by cross-validation? Why?

112 CHAPTER 4 Classifying based on odds with logistic regression

Exercise 4
Extract the salutations from the Name variable, and convert any that aren’t "Mr", "Dr",
"Master", "Miss", "Mrs", or "Rev" to "Other". Look at the following code for a hint
as to how to extract the salutations with the str_split() function from the stringr
tidyverse package:

names <- c("Mrs. Pool", "Mr. Johnson")

str_split(names, pattern = "\\.")
[[1]]
[1] "Mrs" " Pool"

[[2]]
[1] "Mr" " Johnson"

Exercise 5
Build a model that includes Salutation as another predictor, and cross-validate it.
Does this improve model performance?

Summary
 Logistic regression is a supervised learning algorithm that classifies new data by

calculating the probabilities of the data belonging to each class.
 Logistic regression can handle continuous and categorical predictors, and

models a linear relationship between the predictors and the log odds of belong-
ing to the positive class.

 Feature engineering is the process by which we extract information from, or
create new variables from, existing variables to maximize their predictive value.

 Feature selection is the process of choosing which variables in a dataset have
predictive value for machine learning models.

 Imputation is a strategy for dealing with missing data, where some algorithm is
used to estimate what the missing values would have been. You learned how to
apply mean imputation for the Titanic dataset.

 Odds ratios are an informative way of interpreting the impact each of our pre-
dictors has on the odds of a case belonging to the positive class. They can be cal-
culated by taking the exponent of the model slopes (e log odds).

Solutions to exercises
1 Redraw the violin plots, adding a geom_point() layer with transparency:

titanicUntidy %>%
filter(Variable != "Pclass" & Variable != "Sex") %>%
ggplot(aes(Survived, as.numeric(Value))) +
facet_wrap(~ Variable, scales = "free_y") +

113Solutions to exercises

geom_violin(draw_quantiles = c(0.25, 0.5, 0.75)) +
geom_point(alpha = 0.05, size = 3) +
theme_bw()

2 Redraw the bar plots, but use the "dodge" and "stack" position arguments:

titanicUntidy %>%
filter(Variable == "Pclass" | Variable == "Sex") %>%
ggplot(aes(Value, fill = Survived)) +
facet_wrap(~ Variable, scales = "free_x") +
geom_bar(position = "dodge") +
theme_bw()

titanicUntidy %>%
filter(Variable == "Pclass" | Variable == "Sex") %>%
ggplot(aes(Value, fill = Survived)) +
facet_wrap(~ Variable, scales = "free_x") +
geom_bar(position = "stack") +
theme_bw()

3 Build the model, but omit the Fare variable:

titanicNoFare <- select(titanicClean, -Fare)

titanicNoFareTask <- makeClassifTask(data = titanicNoFare,
target = "Survived")

logRegNoFare <- resample(logRegWrapper, titanicNoFareTask,
resampling = kFold,
measures = list(acc, fpr, fnr))

logRegNoFare

Omitting the Fare variable makes little difference to model performance,
because it has no additional predictive value to the Pclass variable (look at the
odds ratio and confidence interval for Fare in listing 4.13).

4 Extract salutations from the Name variable (there are many ways of doing this, so
don’t worry if your way is different than mine):

surnames <- map_chr(str_split(titanicTib$Name, "\\."), 1)

salutations <- map_chr(str_split(surnames, ", "), 2)

salutations[!(salutations %in% c("Mr", "Dr", "Master",
"Miss", "Mrs", "Rev"))] <- "Other"

5 Build a model using Salutation as a predictor:

fctrsInclSals <- c("Survived", "Sex", "Pclass", "Salutation")

titanicWithSals <- titanicTib %>%
mutate(FamSize = SibSp + Parch, Salutation = salutations) %>%

114 CHAPTER 4 Classifying based on odds with logistic regression
mutate_at(.vars = fctrsInclSals, .funs = factor) %>%
select(Survived, Pclass, Sex, Age, Fare, FamSize, Salutation)

titanicTaskWithSals <- makeClassifTask(data = titanicWithSals,
target = "Survived")

logRegWrapper <- makeImputeWrapper("classif.logreg",
cols = list(Age = imputeMean()))

kFold <- makeResampleDesc(method = "RepCV", folds = 10, reps = 50,
stratify = TRUE)

logRegWithSals <- resample(logRegWrapper, titanicTaskWithSals,
resampling = kFold,
measures = list(acc, fpr, fnr))

logRegWithSals

The feature extraction paid off! Including Salutation as a predictor improved
model performance.

Classifying by maximizing
separation with

discriminant analysis
This chapter covers
 Understanding linear and quadratic discriminant

analysis

 Building discriminant analysis classifiers to
predict wines

Discriminant analysis is an umbrella term for multiple algorithms that solve classifi-
cation problems (where we wish to predict a categorical variable) in a similar way.
While there are various discriminant analysis algorithms that learn slightly differ-
ently, they all find a new representation of the original data that maximizes the sep-
aration between the classes.

Recall from chapter 1 that predictor variables are the variables we hope contain
the information needed to make predictions on new data. Discriminant function
analysis algorithms find a new representation of the predictor variables (which
must be continuous) by combining them together into new variables that best dis-
criminate the classes. This combination of predictor variables often has the handy
benefit of reducing the number of predictors to a much smaller number. Because
of this, despite discriminant analysis algorithms being classification algorithms,
they are similar to some of the dimension-reduction algorithms we’ll encounter in
part 4 of the book.
115

116 CHAPTER 5 Classifying by maximizing separation with discriminant analysis
NOTE Dimension reduction is the process of learning how the information in a
set of variables can be condensed into a smaller number of variables, with as
little information loss as possible.

What is discriminant analysis?5.1
In this section, you’ll learn why discriminant analysis is useful and how it works. Imag-
ine that you want to find out if you can predict how patients will respond to a drug
based on their gene expression. You measure the expression level of 1,000 genes and
record whether they respond positively, negatively, or not at all to the drug (a three-
class classification problem).

 A dataset that has as many predictor variables as this (and it isn’t rare to find data-
sets this large) presents a few problems:

 The data is very difficult to explore and plot manually.
 There may be many predictor variables that contain no or very little predictive

information.
 We have the curse of dimensionality to contend with (a problem algorithms encoun-

ter when trying to learn patterns in high-dimensional data).

In our gene expression example, it would be nearly impossible to plot all 1,000 genes
in such a way that we could interpret the similarities/differences between the classes.
Instead, we could use discriminant analysis to take all that information and condense
it into a manageable number of discriminant functions, each of which is a combination
of the original variables. Put another way, discriminant analysis takes the predictor
variables as input and finds a new, lower-dimensional representation of those variables
that maximizes the separation between the classes. Therefore, while discriminant analy-
sis is a classification technique, it employs dimension reduction to achieve its goal.
This is illustrated in figure 5.1.

NOTE Due to their dimensionality reduction, discriminant analysis algorithms
are popular techniques for classification problems where you have many con-
tinuous predictor variables.

Pos

Class

Neg

None

DF2Class DF1

Original data Fewer dimensions

54321 ... 1000

Pos

Neg

None

Discriminant
analysis

Figure 5.1 Discriminant analysis algorithms take the original data and
combine continuous predictor variables together into new variables that
maximize the separation of the classes.

117What is discriminant analysis?

The number of these discriminant functions will be the smaller of these:

 The number of classes minus 1
 The number of predictor variables

In the gene expression example, the information contained in those 1,000 predictor
variables would be condensed into just 2 variables (three classes minus 1). We could
now easily plot these two new variables against each other to see how separable our
three classes are!

 As you learned in chapter 4, including predictor variables that contain little or no
predictive value adds noise, which can negatively impact how the learned model per-
forms. When discriminant analysis algorithms learn their discriminant functions, greater
weight or importance is given to predictors that better discriminate the classes. Predic-
tors that contain little or no predictive value are given less weight and contribute less
to the final model. To a degree, this lower weighting of uninformative predictors miti-
gates their impact on model performance.

NOTE Despite mitigating the impact of weak predictors, a discriminant analy-
sis model will still tend to perform better after performing feature selection
(removing weakly predictive predictors).

The curse of dimensionality is a terrifying-sounding phenomenon that causes prob-
lems when working with high-dimensional data (data with many predictor variables).
As the feature space (the set of all possible combinations of predictor variables) increases,
the data in that space becomes more sparse. Put more plainly, for the same number of
cases in a dataset, if you increase the feature space, the cases get further apart from
each other, and there is more empty space between them. This is demonstrated in fig-
ure 5.2 by going from a one-feature space to a three-feature space.

 The consequence of this increase in dimensionality is that an area of the feature
space may have very few cases occupying it, so an algorithm is more likely to learn

xxx

z

yy

Three dimensionsTwo dimensionsOne dimension

Figure 5.2 Data becomes more sparse as the number of dimensions
increases. Two classes are shown in one-, two-, and three-dimensional
feature spaces. The dotted lines in the three-dimensional representation
are to clarify the position of the points along the z-axis. Note the increasing
empty space with increased dimensions.

118 CHAPTER 5 Classifying by maximizing separation with discriminant analysis
from “exceptional” cases in the data. When algorithms learn from exceptional cases,
this results in models that are overfit and have a lot of variance in their predictions.
This is the curse of dimensionality.

NOTE As the number of predictor variables increases linearly, the number of
cases would need to increase exponentially to maintain the same density in
the feature space.

This isn’t to say that having more variables is bad, however! For most problems, adding
predictors with valuable information improves the predictive accuracy of a model . . .
until it doesn’t (until we get diminishing returns). So how do we guard against overfit-
ting due to the curse of dimensionality? By performing feature selection (as we did in
chapter 4) to include only variables that have predictive value, and/or by performing
dimension reduction. You will learn about a number of specific dimension-reduction
algorithms in part 4 of this book, but discriminant analysis actually performs dimen-
sion reduction as part of its learning procedure.

NOTE The phenomenon of the predictive power of a model increasing as the
number of predictor variables increases, but then decreasing again as we con-
tinue to add more predictors, is called the Hughes phenomenon, after the statis-
tician G. Hughes.

Discriminant analysis isn’t one algorithm but instead comes in many flavors. I’m going
to teach you the two most fundamental and commonly used algorithms:

 Linear discriminant analysis (LDA)
 Quadratic discriminant analysis (QDA)

In the next section, you’ll learn how these algorithms work and how they differ. For
now, suffice it to say that LDA and QDA learn linear (straight-line) and curved deci-
sion boundaries between classes, respectively.

How does discriminant analysis learn?5.1.1

I’ll start by explaining how LDA works, and then I’ll generalize this to QDA. Imag-
ine that we have two predictor variables we are trying to use to separate two classes
in our data (see figure 5.3). LDA aims to learn a new representation of the data that
separates the centroid of each class, while keeping the within-class variance as low as
possible. A centroid is simply the point in the feature space that is the mean of all
the predictors (a vector of means, one for each dimension). Then LDA finds a line
through the origin that, when the data is projected onto it, simultaneously does the
following:

 Maximizes the difference between the class centroids along the line
 Minimizes the within-class variance along the line

119What is discriminant analysis?
To choose this line, the algorithm maximizes the expression in equation 5.1 over all
possible axes:

 Equation 5.1

The numerator is the difference between the class means (and for the means of
class 1 and class 2, respectively), squared to ensure that the value is positive (because
we don’t know which will be bigger). The denominator is the sum of variances of each
class along the line (and for the variances of class 1 and class 2, respectively). The
intuition behind this is that we want the means of the classes to be as separated as pos-
sible, with the scatter/variance within each class to be as small as possible.

Why not simply find the line that maximizes the separation of the centroids? Because
the line that best separates the centroids doesn’t guarantee the best separation of the
cases in the different classes. This is illustrated in figure 5.4. In the example on the

x1 x2–()2

s 1
2 s2

2+

x1 x2

s1
2 s2

2

()2x – x

Variable 1

V
ar

ia
bl

e
2

x x

s2

s +2 s2

s2

Maximize separation
between class means

Minimize variation
within each class

0
0

Figure 5.3 Learning a discriminant function in two dimensions. LDA learns
a new axis such that, when the data is projected onto it (dashed lines), it
maximizes the difference between class means while minimizing intra-class
variance. x– and s2 are the mean and variance of each class along the new
axis, respectively.

xxxx

s2s2 s2s2

0
0

Variable 1

V
ar

ia
bl

e
2

Maximizing centroid
separation only

Maximizing separation and
minimizing variance

0
0

Variable 1

V
ar

ia
bl

e
2

Figure 5.4 Constructing a new
axis that only maximizes class
centroid separation doesn’t fully
resolve the classes (left example).
Constructing a new axis that
maximizes centroid separation
while also minimizing variance
within each class results in better
separation of the classes (right).
x– and s2 are the mean and variance
of each class along the new axis,
respectively.

120 CHAPTER 5 Classifying by maximizing separation with discriminant analysis
left, a new axis is drawn that simply maximizes the separation of the centroids of the
two classes. When we project the data onto this new axis, the classes are not fully
resolved because the relatively high variance means they overlap with each other. In
the example on the right, however, the new axis tries to maximize centroid separation
while minimizing the variance of each class along that axis. This results in centroids
that are slightly closer together, but much smaller variances, such that the cases from
the two classes are fully separated.

 This new axis is called a discriminant function, and it is a linear combination of the
original variables. For example, a discriminant function could be described by this
equation:

DF = –0.5 × var1 + 1.2 × var2 + 0.85 × var3

In this way, the discriminant function (DF) in this equation is a linear combination of
variables var1, var2 and var3. The combination is linear because we are simply adding
together the contributions from each variable. The values that each variable is multi-
plied by are called the canonical discriminant function coefficients and weight each vari-
able by how much it contributes to class separation. In other words, variables that
contribute most to class separation will have larger absolute canonical DF coefficients
(positive or negative). Variables that contain little or no class-separation information
will have canonical DF coefficients closer to zero.

Linear discriminant analysis vs. principal component analysis
If you’ve come across principal component analysis (PCA) before, you might be won-
dering how it differs from linear discriminant analysis (LDA). PCA is an unsupervised
learning algorithm for dimension reduction, meaning that, unlike LDA, it doesn’t rely
on labeled data.

While both algorithms can be used to reduce the dimensionality of the dataset, they
do so in different ways and to achieve different goals. Whereas LDA creates new axes
that maximize class separation, so that we can classify new data using these new
axes, PCA creates new axes that maximize the variance of the data projected onto
them. Rather than classification, the goal of PCA is to explain as much of the variation
and information in the data as possible, using only a small number of new axes. This
new, lower-dimensional representation can then be fed into other machine learning
algorithms. (If you’re unfamiliar with PCA, don’t worry! You’ll learn about it in depth in
chapter 13.)

If you want to reduce the dimensionality of data with labeled class membership, you
should typically favor LDA over PCA. If you want to reduce the dimensionality of unla-
beled data, you should favor PCA (or one of the many other dimension-reduction algo-
rithms we’ll discuss in part 4 of the book).

121What is discriminant analysis?
What if we have more than two classes?5.1.2

Discriminant analysis can handle classification problems with more than two classes.
But how does it learn the best axis in this situation? Instead of trying to maximize the
separation between class centroids, it maximizes the separation between each class
centroid and the grand centroid of the data (the centroid of all the data, ignoring class
membership). This is illustrated in figure 5.5, where we have two continuous measure-
ments made on cases from three classes. The class centroids are shown with triangles,
and the grand centroid is indicated by a cross.

LDA first finds the axis that best separates the class centroids from the grand centroid
that minimizes the variance of each class along it. Then, LDA constructs a second DF
that is orthogonal to the first. This simply means the second DF must be perpendicular
to the first (at a right angle in this 2D example).

NOTE The number of DFs will be whichever is smaller: (number of classes)
minus 1, or the number of predictor variables.

The data is then projected onto these new axes such that each case gets a discriminant
score for each function (its value along the new axis). These discriminant scores can be
plotted against each other to form a new representation of the original data.

 But what’s the big deal? We’ve gone from having two predictor variables to having
. . . two predictor variables! In fact, can you see that all we’ve done is center and scale
the data, and rotate it around zero? When we only have two variables, discriminant
analysis cannot perform any dimension reduction because the number of DFs is the
smaller of the number of classes minus 1 and the number of variables (and we only
have two variables).

 But what about when we have more than two predictor variables? Figure 5.6 shows
an example where we have three predictor variables (x, y, and z) and three classes. Just
as in figure 5.5, LDA finds the DF that maximizes the separation between each class

New representation

D
F

1

DF2
V

ar
ia

bl
e

2

Variable 1

D
F1

DF2

Find discriminant functions

V
ar

ia
bl

e
2

Variable 10
0

Initial input data

Figure 5.5 When there are more than two classes, LDA maximizes the distance between each
class centroid (triangles) and the grand centroid (cross) while minimizing intra-class variance.
Once the first discriminant function is found, a second is constructed that is orthogonal to it. The
original data can be plotted against these functions.

122 CHAPTER 5 Classifying by maximizing separation with discriminant analysis

5.1.3

x

y

z

Initial input data New representationDiscriminant functions

DF1

D
F

2x

y

z

DF1D
F2

Figure 5.6 When there are more than two predictors, the cube represents a feature space
with three predictor variables (x, y, and z) and three classes (dotted lines help indicate the
position of each case along the z-axis). Discriminant function 1 (DF1) is found, and then
DF2, which is orthogonal to DF1, is found. Dotted lines indicate “shadows” of DF1 and DF2
to help show their depth along the z-axis. The data can be projected onto DF1 and DF2.

centroid and the grand centroid, while minimizing the variance along it. This line
extends through a three-dimensional space.

Next, LDA finds the second DF (which is orthogonal to the first), which also tries
to maximize separation while minimizing variance. Because we only have three classes
(and the number of DFs is the smaller of the number of classes minus 1 or the num-
ber of predictors), we stop at two DFs. By taking the discriminant scores of each case
in the data (the values of each case along the two DFs), we can plot our data in only
two dimensions.

NOTE The first DF always does the best job at separating the classes, followed
by the second, the third, and so on.

LDA has taken a three-dimensional dataset and combined the information in those
three variables into two new variables that maximize the separation between the
classes. That’s pretty cool—but if instead of just three predictor variables we had 1,000
(as in the example I used earlier), LDA would still condense all this information into
only 2 variables! That’s super cool.

Learning curves instead of straight lines: QDA

LDA performs well if the data within each class is normally distributed across all the
predictor variables, and the classes have similar covariances. Covariance simply means
how much one variable increases/decreases when another variable increases/decreases.
So LDA assumes that for each class in the dataset, the predictor variables covary with
each other the same amount.

This often isn’t the case, and classes have different covariances. In this situation,
QDA tends to perform better than LDA because it doesn’t make this assumption
(though it still assumes the data is normally distributed). Instead of learning straight
lines that separate the classes, QDA learns curved lines. It is also well suited, therefore,

123What is discriminant analysis?

to situations in which classes are best separated by a nonlinear decision boundary.
This is illustrated in figure 5.7.

 In the example on the left in the figure, the two classes are normally distributed
across both variables and have equal covariances. We can see that the covariances are
equal because, for both classes, as variable 1 increases, variable 2 decreases by the
same amount. In this situation, LDA and QDA will find similar DFs, although LDA is
slightly less prone to overfitting than QDA because it is less flexible.

 In the example on the right in the figure, the two classes are normally distributed,
but their covariances are different. In this situation, QDA will find a curved DF that,
when the data is projected onto it, will tend to do a better job of separating the classes
than a linear DF.

5.1.4 How do LDA and QDA make predictions?

Whichever method you’ve chosen, the DFs have been constructed, and you’ve reduced
your high-dimensional data into a small number of discriminants. How do LDA and
QDA use this information to classify new observations? They use an extremely import-
ant statistical theorem called Bayes’ rule.

 Bayes’ rule provides us with a way of answering the following question: given the
values of the predictor variables for any case in our data, what is the probability of that
case belonging to class k? This is written as p(k|x), where k represents membership in
class k, and x represents the values of the predictor variables. We would read this as
“the probability of belonging to class k, given the data, x.” This is given by Bayes’ rule:

 Equation 5.2

V
ar

ia
bl

e
2

Variable 10
0

V
ar

ia
bl

e
2

Variable 10
0

Different covariancesEqual covariances

LD
F

LDF

Q
DF QDA

LDA

Figure 5.7 Examples of two classes which have equal covariance (the relationship
between variable 1 and 2 is the same for both classes) and different covariances.
Ovals represent distributions of data within each class. Quadratic and linear DFs
(QDF and LDF) are shown. The projection of the classes with different covariances
onto each DF is shown.

p k x()
p x k() p k()×

p x()
--------------------------------=

Don’t be scared by this! There are only four terms in the equation, and I’m going to
walk you through them. You already know p(k|x) is the probability of a case belonging
to class k given the data. This is called the posterior probability.

124 CHAPTER 5 Classifying by maximizing separation with discriminant analysis

 p(x|k) is the same thing, but flipped around: what is the probability of observing
this data, given the case belongs to class k? Put another way: if this case was in class k,
what is the likelihood of it having these values of the predictor variables? This is called
the likelihood.

 p(k) is called the prior probability and is simply the probability of any case belonging
to class k. This is the proportion of all cases in the data that belong to class k. For
example, if 30% of cases were in class k, p(k) would equal 0.3.

 Finally, p(x) is the probability of observing a case with exactly these predictor values
in the dataset. This is called the evidence. Estimating the evidence is often very difficult
(because each case in the dataset may have a unique combination of predictor val-
ues), and it only serves to make all the posterior probabilities sum to 1. Therefore, we
can omit the evidence from the equation and say that

 Equation 5.3

where the ∝ symbol means the values on either side of it are proportional to each other
instead of equal to each other. In a more digestible way,

posterior ∝ likelihood × prior

The prior probability for a case (p(k)) is easy to work out: it’s the proportion of cases
in the dataset that belong to class k. But how do we calculate the likelihood (p(x|k))?
The likelihood is calculated by projecting the data onto its DFs and estimating its prob-
ability density. The probability density is the relative probability of observing a case with
a particular combination of discriminant scores.

 Discriminant analysis assumes that the data is normally distributed, so it estimates
the probability density by fitting a normal distribution to each class across each DF. The
center of each normal distribution is the class centroid, and its standard deviation is one
unit on the discriminant axis. This is illustrated in figure 5.8 for a single DF and for two
DFs (the same thing happens in more than two dimensions but is difficult to visualize).
You can see that cases near the class centroid along the discriminant axes have a high
probability density for that class, and cases far away have a lower probability density.

p k x() p x k() p k()×∝

One discriminant function

Probability density of point x
belonging to class k, (|)p x k

jk

x

Two discriminant functions

DF1DF2

Figure 5.8 The probability density of each class is assumed to be normally
distributed, where the center of each distribution is the centroid of the
class. This is shown for one DF (for classes k and j) and for two.

125Building your first linear and quadratic discriminant models

Once the probability density is estimated for a case for a given class, it can be passed
into the equation:

posterior = likelihood × prior

The posterior probability is estimated for each class, and the class that has the highest
probability is what the case is classified as.

NOTE The prior probability (proportion of cases in that class) is important
because if the classes are severely imbalanced, despite a case being far from
the centroid of a class, the case could be more likely to belong to that class
simply because there are so many more cases in it.

Bayes’ rule is very important in statistics and machine learning. Don’t worry if you
don’t quite understand it yet; that’s by design. I want to introduce you to it gently now,
and we’ll cover it in more depth in chapter 6.

5.2 Building your first linear and quadratic discriminant
models
Now that you know how discriminant analysis works, you’re going to build your first
LDA model. If you haven’t already, load the mlr and tidyverse packages:

library(mlr)
library(tidyverse)

5.2.1 Loading and exploring the wine dataset

In this section, you’ll learn how to build and evaluate the performance of linear and
quadratic discriminant analysis models. Imagine that you’re a detective in a murder
mystery. A local wine producer, Ronald Fisher, was poisoned at a dinner party when
someone replaced the wine in the carafe with wine poisoned with arsenic.

 Three other (rival) wine producers were at the party and are your prime suspects.
If you can trace the wine to one of those three vineyards, you’ll find your murderer. As
luck would have it, you have access to some previous chemical analysis of the wines
from each of the vineyards, and you order an analysis of the poisoned carafe at the
scene of the crime. Your task is to build a model that will tell you which vineyard the
wine with the arsenic came from and, therefore, the guilty party.

 Let’s load the wine data built into the HDclassif package (after installing it), con-
vert it into a tibble, and explore it a little. We have a tibble containing 178 cases and 14
variables of measurements made on various wine bottles.

Loading and exploring the wine datasetListing 5.1

install.packages("HDclassif")

data(wine, package = "HDclassif")

wineTib <- as_tibble(wine)

126 CHAPTER 5 Classifying by maximizing separation with discriminant analysis

wineTib

A tibble: 178 x 14
V9V8V7V6V5V4V3V2V1class

<int> <dbl> <dbl> <dbl> <dbl> <int> <dbl> <dbl> <dbl> <dbl>
2.293.06 0.282.812715.62.431.7114.211

2 1 13.2 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28
3 1 13.2 2.36 2.67 18.6 101 2.8 3.24 0.3 2.81
4 1 14.4 1.95 2.5 16.8 113 3.85 3.49 0.24 2.18
5 1 13.2 2.59 2.87 21 118 2.8 2.69 0.39 1.82
6 1 14.2 1.76 2.45 15.2 112 3.27 3.39 0.34 1.97
7 1 14.4 1.87 2.45 14.6 96 2.5 2.52 0.3 1.98
8 1 14.1 2.15 2.61 17.6 121 2.6 2.51 0.31 1.25
9 1 14.8 1.64 2.17 14 97 2.8 2.98 0.290 1.98

10 1 13.9 1.35 2.27 16 98 2.98 3.15 0.22 1.85
... with 168 more rows, and 4 more variables: V10 <dbl>,
V11 <dbl>, V12 <dbl>, V13 <int>

Often, as data scientists, we receive data that is messy or not well curated. In this case,
the names of the variables are missing! We could continue working with V1, V2, and so
on, but it would be hard to keep track of which variable is which. So we’re going to
manually add the variable names. Who said the life of a data scientist was glamorous?
Then, we’ll convert the class variable to a factor.

names(wineTib) <- c("Class", "Alco", "Malic", "Ash", "Alk", "Mag",
"Phe", "Flav", "Non_flav", "Proan", "Col", "Hue",
"OD", "Prol")

wineTib$Class <- as.factor(wineTib$Class)

wineTib

A tibble: 178 x 14
Flav Non_flav ProanPheMagAlkAshAlco MalicClass

<dbl> <dbl><fct> <dbl> <dbl> <dbl> <dbl> <int> <dbl> <dbl>

Cleaning the datasetListing 5.2

1 1 14.2 1.71 2.43 15.6 127 2.8 3.06 0.28 2.29
2 1 13.2 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28
3 1 13.2 2.36 2.67 18.6 101 2.8 3.24 0.3 2.81
4 1 14.4 1.95 2.5 16.8 113 3.85 3.49 0.24 2.18
5 1 13.2 2.59 2.87 21 118 2.8 2.69 0.39 1.82
6 1 14.2 1.76 2.45 15.2 112 3.27 3.39 0.34 1.97
7 1 14.4 1.87 2.45 14.6 96 2.5 2.52 0.3 1.98
8 1 14.1 2.15 2.61 17.6 121 2.6 2.51 0.31 1.25
9 1 14.8 1.64 2.17 14 97 2.8 2.98 0.290 1.98

10 1 13.9 1.35 2.27 16 98 2.98 3.15 0.22 1.85
... with 168 more rows, and 4 more variables: Col <dbl>,
Hue <dbl>, OD <dbl>, Prol <int>

That’s much better. We can see that we have 13 continuous measurements made on 178
bottles of wine, where each measurement is the amount of a different compound/

127Building your first linear and quadratic discriminant models

element in the wine. We also have a single categorical variable, Class, which tells us
which vineyard the bottle comes from.

NOTE Lots of people consider it good form to keep variable names lower-
case. I don’t mind so much so long as my style is consistent. Therefore, notice
that I changed the name of the grouping variable class to Class.

5.2.2 Plotting the data

Let’s plot the data to get an idea of how the compounds vary between the vineyards.
As for the Titanic dataset in chapter 4, we’re going to gather the data into an untidy
format so we can facet by each of the variables.

wineUntidy <- gather(wineTib, "Variable", "Value", -Class)

ggplot(wineUntidy, aes(Class, Value)) +
facet_wrap(~ Variable, scales = "free_y") +
geom_boxplot() +
theme_bw()

The resulting plot is shown in figure 5.9.

Creating an untidy tibble for plottingListing 5.3

Prol

Non_flav OD Phe Proan

Flav Hue Mag Malic

Alco Alk Ash Col

1 2 3

1 2 3 1 2 3 1 2 3

5

10

1
2
3
4
5
6

1

2

3

1.5

2.0

2.5

3.0

80
100
120
140
160

1

2

3

4

10

15

20

25

30

0.50
0.75
1.00
1.25
1.50
1.75

2

3

4

1

11

12

13

14

15

1
2
3
4
5

0.2
0.3
0.4
0.5
0.6

500

1000

1500

Class

V
al

ue

Figure 5.9 Box and whiskers plots of each continuous variable in the data against vineyard number. For
the box and whiskers, the thick horizontal line represents the median, the box represents the interquartile
range (IQR), the whiskers represent the Tukey range (1.5 times the IQR above and below the quartiles), and
the dots represent data outside of the Tukey range.

128 CHAPTER 5 Classifying by maximizing separation with discriminant analysis
A data scientist (and detective working the case) looking at this data would jump for
joy! Look at how many obvious differences there are between wines from the three dif-
ferent vineyards. We should easily be able to build a well-performing classification
model because the classes are so separable.

Training the models5.2.3

Let’s define our task and learner, and build a model as usual. This time, we supply
"classif.lda" as the argument to makeLearner() to specify that we’re going to use
LDA.

TIP LDA and QDA have no hyperparameters to tune and are therefore said
to have a closed-form solution. In other words, all the information that LDA
and QDA need is in the data. Their performance is also unaffected by vari-
ables on different scales. They will give the same result whether the data is
scaled or not!

wineTask <- makeClassifTask(data = wineTib, target = "Class")

lda <- makeLearner("classif.lda")

ldaModel <- train(lda, wineTask)

NOTE Recall from chapter 3 that the makeClassifTask() function warns us
that our data is a tibble and not a pure data.frame. This warning can be safely
ignored.

Let’s extract the model information using the getLearnerModel() function, and get
DF values for each case using the predict() function. By printing head(ldaPreds),
we can see that the model has learned two DFs, LD1 and LD2, and that the predict()
function has indeed returned the values for these functions for each case in our
wineTib dataset.

ldaModelData <- getLearnerModel(ldaModel)

ldaPreds <- predict(ldaModelData)$x

head(ldaPreds)
LD1 LD2

1 -4.700244 1.9791383
2 -4.301958 1.1704129
3 -3.420720 1.4291014
4 -4.205754 4.0028715
5 -1.509982 0.4512239
6 -4.518689 3.2131376

Creating the task and learner, and training the modelListing 5.4

Extracting DF values for each caseListing 5.5

129Building your first linear and quadratic discriminant models

To visualize how well these two learned DFs separate the bottles of wine from the
three vineyards, let’s plot them against each other. We start by piping the wineTib
dataset into a mutate() call where we create a new column for each of the DFs. We
pipe this mutated tibble into a ggplot() call and set LD1, LD2, and Class as the x, y,
and color aesthetics, respectively. Finally, we add a geom_point() layer to add dots,
and a stat_ellipse() layer to draw 95% confidence ellipses around each class.

wineTib %>%
mutate(LD1 = ldaPreds[, 1],

LD2 = ldaPreds[, 2]) %>%
ggplot(aes(LD1, LD2, col = Class)) +
geom_point() +
stat_ellipse() +
theme_bw()

The resulting plot is shown in figure 5.10.

Looking good. Can you see that LDA has reduced our 13 predictor variables into just
two DFs that do an excellent job of separating the wines from each of the vineyards?

 Next, let’s use exactly the same procedure to build a QDA model.

Plotting the DF values against each otherListing 5.6

Plotting the DF values against each otherListing 5.7

●

● ●

●

●

●● ●

● ●
● ●●●

●
●●

●

●

●

●
●● ●

● ●

●

●●
●●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●
●

● ●
●

●●

●

● ●●

●
●

●

● ●

●

●

●

●
●

● ●

●
●

●●
●

●

●

●

●

●
●

●●

●

●
● ●●

● ●

●

●

●
●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●
●

●
●

●

●
●

●
●

●

●
●

●
●
●

●

●

●●

●

●

●
●●●● ●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●●
●

●

●

●●

●

●
●

●

–6

–4

–2

0

2

4

630–3–6

LD1

L
D

2

1

2

3

Class

Figure 5.10 Plotting the DFs against each other. The values for LD1 and LD2
for each case are plotted against each other, shaded by their class.

qda <- makeLearner("classif.qda")

qdaModel <- train(qda, wineTask)

NOTE Sadly, it isn’t easy to extract the DFs from the implementation of QDA
that mlr uses, to plot them as we did for LDA.

130 CHAPTER 5 Classifying by maximizing separation with discriminant analysis
Now, let’s cross-validate our LDA and QDA models together to estimate how they’ll
perform on new data.

kFold <- makeResampleDesc(method = "RepCV", folds = 10, reps = 50,
stratify = TRUE)

ldaCV <- resample(learner = lda, task = wineTask, resampling = kFold,
measures = list(mmce, acc))

qdaCV <- resample(learner = qda, task = wineTask, resampling = kFold,
measures = list(mmce, acc))

ldaCV$aggr
acc.test.meanmmce.test.mean

0.988229880.01177012

qdaCV$aggr
acc.test.meanmmce.test.mean

0.9920227040.007977296

Great! Our LDA model correctly classified 98.8% of wine bottles on average. There
isn’t much room for improvement here, but our QDA model managed to correctly
classify 99.2% of cases! Let’s also look at the confusion matrices (interpreting them is
part of the chapter’s exercises):

calculateConfusionMatrix(ldaCV$pred, relative = TRUE)

Relative confusion matrix (normalized by row/column):
predicted

true 1 2 3 -err.-
1 1e+00/1e+00 3e-04/3e-04 0e+00/0e+00 3e-04
2 8e-03/1e-02 1e+00/1e+00 1e-02/2e-02 2e-02
3 0e+00/0e+00 1e-02/7e-03 1e+00/1e+00 1e-02
-err.- 0.010 0.007 0.021 0.01

Absolute confusion matrix:
predicted

true 1 2 3 -err.-
1 2949 1 0 1
2 29 3470 51 80
3 0 23 2377 23
-err.- 29 24 51 104

calculateConfusionMatrix(qdaCV$pred, relative = TRUE)

Relative confusion matrix (normalized by row/column):
predicted

-err.-321true
0.993/0.984 0.007/0.006 0.000/0.000 0.0071

Cross-validating the LDA and QDA modelsListing 5.8

131Building your first linear and quadratic discriminant models
2 0.014/0.016 0.986/0.991 0.000/0.000 0.014
3 0.000/0.000 0.005/0.003 0.995/1.000 0.005
-err.- 0.016 0.009 0.000 0.009

Absolute confusion matrix:
predicted

true 1 2 3 -err.-
1 2930 20 0 20
2 49 3501 0 49
3 0 12 2388 12
-err.- 49 32 0 81

Now, detective, the chemical analysis of the poisoned wine is in. Let’s use our QDA
model to predict which vineyard it came from:

poisoned <- tibble(Alco = 13, Malic = 2, Ash = 2.2, Alk = 19, Mag = 100,
Phe = 2.3, Flav = 2.5, Non_flav = 0.35, Proan = 1.7,
Col = 4, Hue = 1.1, OD = 3, Prol = 750)

predict(qdaModel, newdata = poisoned)

Prediction: 1 observations
predict.type: response
threshold:
time: 0.00

response
1 1

The model predicts that the poisoned bottle came from vineyard 1. Time to go and
make an arrest!

Ronald Fisher
You may be happy to know that, in the real world, Ronald Fisher wasn’t poisoned at
a dinner party. This is, perhaps, fortunate for you, because Sir Ronald Fisher (1890-
1962) was a famous biostatistician who went on to be called the father of statistics.
Fisher developed many statistical tools and concepts we use today, including discrim-
inant analysis. In fact, linear discriminant analysis is commonly confused with Fisher’s
discriminant analysis, the original form of discriminant analysis that Fisher developed
(but which is slightly different).

However, Fisher was also a proponent of eugenics, the belief that some races are
superior to others. In fact, he shared his opinions in a 1952 UNESCO statement
called “The Race Question,” in which he said that “the groups of mankind differ pro-
foundly in their innate capacity for intellectual and emotional development” (https://
unesdoc.unesco.org/ark:/48223/pf0000073351). Perhaps now you don’t feel so
sorry for our murder mystery victim.

https://unesdoc.unesco.org/ark:/48223/pf0000073351
https://unesdoc.unesco.org/ark:/48223/pf0000073351
https://unesdoc.unesco.org/ark:/48223/pf0000073351

132 CHAPTER 5 Classifying by maximizing separation with discriminant analysis
Strengths and weaknesses of LDA and QDA5.3
While it often isn’t easy to tell which algorithms will perform well for a given task, here
are some strengths and weaknesses that will help you decide whether LDA and QDA
will perform well for you.

 The strengths of the LDA and QDA algorithms are as follows:

 They can reduce a high-dimensional feature space into a much more manage-
able number.

 They can be used for classification or as a preprocessing (dimension reduction)
technique for other classification algorithms that may perform better on the
dataset.

 QDA can learn curved decision boundaries between classes (this isn’t the case
for LDA).

The weaknesses of the LDA and QDA algorithms are these:

 They can only handle continuous predictors (although recoding a categorical
variable as numeric may help in some cases).

 They assume the data is normally distributed across the predictors. If the data is
not, performance will suffer.

 LDA can only learn linear decision boundaries between classes (this isn’t the
case for QDA).

 LDA assumes equal covariances of the classes, and performance will suffer if
this isn’t the case (this isn’t the case for QDA).

 QDA is more flexible than LDA and so can be more prone to overfitting.

Exercise 1
Interpret the confusion matrices shown in the previous section.

a Which model is better at identifying wines from vineyard 3?
b Does our LDA model misclassify more wines from vineyard 2 as being from

vineyard 1 or vineyard 3?

Exercise 2
Extract the discriminant scores from our LDA model, and use only these as the pre-
dictors for a kNN model (including tuning k). Experiment with your own cross-valida-
tion strategy. Look back at chapter 3 if you need a refresher on training a kNN model.

133Solutions to exercises
Summary
 Discriminant analysis is a supervised learning algorithm that projects the data

onto a lower-dimensional representation to create discriminant functions.
 Discriminant functions are linear combinations of the original (continuous)

variables that maximize the separation of class centroids while minimizing the
variance of each class along them.

 Discriminant analysis comes in many flavors, the most fundamental of which
are LDA and QDA.

 LDA learns linear decision boundaries between classes and assumes that classes
are normally distributed and have equal covariances.

 QDA can learn curved decision boundaries between classes and assumes that
each class is normally distributed, but does not assume equal covariances.

 The number of discriminant functions is the smaller of the number of classes
minus 1, or the number of predictor variables.

 Class prediction uses Bayes’ rule to estimate the posterior probability of a case
belonging to each of the classes.

Solutions to exercises
1 Interpret the confusion matrices:

a Our QDA model is better at identifying wines from vineyard 3. It misclassi-
fied 12 as from vineyard 2, whereas the LDA model misclassified 23.

b Our LDA model misclassifies more cases from vineyard 2 as from vineyard 3
than as from vineyard 1.

2 Use the discriminant scores from the LDA as predictors in a kNN model:

CREATE TASK ----
wineDiscr <- wineTib %>%

mutate(LD1 = ldaPreds[, 1], LD2 = ldaPreds[, 2]) %>%
select(Class, LD1, LD2)

wineDiscrTask <- makeClassifTask(data = wineDiscr, target = "Class")

TUNE K ----
knnParamSpace <- makeParamSet(makeDiscreteParam("k", values = 1:10))
gridSearch <- makeTuneControlGrid()
cvForTuning <- makeResampleDesc("RepCV", folds = 10, reps = 20)
tunedK <- tuneParams("classif.knn", task = wineDiscrTask,

resampling = cvForTuning,
par.set = knnParamSpace,
control = gridSearch)

knnTuningData <- generateHyperParsEffectData(tunedK)
plotHyperParsEffect(knnTuningData, x = "k", y = "mmce.test.mean",

plot.type = "line") +
theme_bw()

134 CHAPTER 5 Classifying by maximizing separation with discriminant analysis
----PROCESSCROSS-VALIDATE MODEL-BUILDING#
<- makeResampleDesc("CV")inner

10)=iters<- makeResampleDesc("CV",outer
knnWrapper <- makeTuneWrapper("classif.knn", resampling = inner,

par.set = knnParamSpace,
control = gridSearch)

cvWithTuning <- resample(knnWrapper, wineDiscrTask, resampling = outer)
cvWithTuning

TRAINING FINAL MODEL WITH TUNED K ----
tunedKnn <-
setHyperPars(makeLearner("classif.knn"), par.vals = tunedK$x)

tunedKnnModel <- train(tunedKnn, wineDiscrTask)

Classifying with naive
Bayes and support

vector machines
The naive Bayes and support vector machine (SVM) algorithms are supervised
learning algorithms for classification. Each algorithm learns in a different way.
The naive Bayes algorithm uses Bayes’ rule, which you learned about in chapter 5,
to estimate the probability of new data belonging to one of the classes in the data-
set. The case is then assigned to the class with the highest probability. The SVM
algorithm looks for a hyperplane (a surface that has one less dimension than there
are predictor variables) that separates the classes. The position and direction of
this hyperplane depend on support vectors: cases that lie closest to the boundary
between the classes.

NOTE While commonly used for classification, the SVM algorithm can also
be used for regression problems. I won’t discuss how here, but if you’re

This chapter covers
 Working with the naive Bayes algorithm

 Understanding the support vector machine
algorithm

 Tuning many hyperparameters simultaneously
with a random search
135

136 CHAPTER 6 Classifying with naive Bayes and support vector machines
interested (and want to explore SVMs in more depth generally), see Support Vec-
tor Machines by Andreas Christmann and Ingo Steinwart (Springer, 2008).

The naive Bayes and SVM algorithms have different properties that make each suit-
able in different circumstances. For example, naive Bayes can mix both continuous
and categorical predictors natively, while for SVMs, categorical variables must first be
recoded into a numerical format. On the other hand, SVMs are excellent at finding
decision boundaries between classes that are not linearly separable, by adding a new
dimension to the data that reveals a linear boundary. The naive Bayes algorithm will
rarely outperform an SVM trained on the same problem, but naive Bayes tends to per-
form well for problems like spam detection and text classification.

 Models trained using naive Bayes also have a probabilistic interpretation. For each
case on which the model makes predictions, the model outputs the probability of that
case belonging to one class over another, giving us a measure of certainty in our pre-
diction. This is useful for situations in which we may want to further scrutinize cases
with probabilities close to 50%. Conversely, models trained using the SVM algorithm
typically don’t output easily interpretable probabilities, but have a geometric interpreta-
tion. In other words, they partition the feature space and classify cases based on which
partition they fall within. SVMs are more computationally expensive to train than
naive Bayes models, so if a naive Bayes model performs well for your problem, there
may be no reason to choose a model that is more computationally expensive to train.

 By the end of this chapter, you’ll know how the naive Bayes and SVM algorithms
work and how to apply them to your data. You will also have learned how to tune sev-
eral hyperparameters simultaneously, because the SVM algorithm has many of them.
And you will understand how to apply the more pragmatic approach of using a random
search—instead of the grid search we applied in chapter 3—to find the combination of
hyperparameters that performs best.

What is the naive Bayes algorithm?6.1
In the last chapter, I introduced you to Bayes’ rule (named after the mathematician
Thomas Bayes). I showed how discriminant analysis algorithms use Bayes’ rule to pre-
dict the probability of a case belonging to each of the classes, based on its discrimi-
nant function values. The naive Bayes algorithm works in exactly the same way, except
that it doesn’t perform dimension reduction as discriminant analysis does, and it can
handle categorical, as well as continuous, predictors. In this section, I hope to convey
a deeper understanding of how Bayes’ rule works with a few examples.

 Imagine that 0.2% of the population have unicorn disease (symptoms include
obsession with glitter and compulsive rainbow drawing). The test for unicorn disease
has a true positive rate of 90% (if you have the disease, the test will detect it 90% of
the time). When tested, 5% of the whole population get a positive result from the test.
Based on this information, if you get a positive result from the test, what is the proba-
bility you have unicorn disease?

137What is the naive Bayes algorithm?
 Many people’s instinct is to say 90%, but this doesn’t account for how prevalent
the disease is and the proportion of tests that are positive (which also includes false
positives). So how do we estimate the probability of having the disease, given a posi-
tive test result? Well, we use Bayes’ rule. Let’s remind ourselves of what Bayes’ rule is:

Where

 p(k|x) is the probability of having the disease (k) given a positive test result (x).
This is called the posterior probability.

 p(x|k) is the probability of getting a positive test result if you do have the disease.
This is called the likelihood.

 p(k) is the probability of having the disease regardless of any test. This is the
proportion of people in the population with the disease and is called the prior
probability.

 p(x) is the probability of getting a positive test result and includes the true posi-
tives and false positives. This is called the evidence.

We can rewrite this in plain English:

So our likelihood (the probability of getting a positive test result if we do have unicorn
disease) is 90%, or 0.9 expressed as a decimal. Our prior probability (the proportion
of people with unicorn disease) is 0.2%, or 0.002 as a decimal. Finally, our evidence
(the probability of getting a positive test result) is 5%, or 0.05 as a decimal. You can
see all these values illustrated in figure 6.1. Now we simply substitute in these values
into Bayes’ rule:

Phew! After taking into account the prevalence of the disease and the proportion of
tests that are positive (including false positives), a positive test means we have only a
3.6% chance of actually having the disease—much better than 90%! This is the
power of Bayes’ rule: it allows you to incorporate prior information to get a more
accurate estimation of conditional probabilities (the probability of something, given
the data).

p k x()
p x k() p k()×

p x()
--------------------------------=

posterior likelihood prior×
evidence

--=

posterior 0.9 0.002×
0.05

---------------------------- 0.036= =

138 CHAPTER 6 Classifying with naive Bayes and support vector machines
6.1.1 Using naive Bayes for classification

Let’s take another, more machine learning–focused, example. Imagine that you have a
database of tweets from the social media platform Twitter, and you want to build a model
that automatically classifies each tweet into a topic. The topics are

 Politics
 Sports
 Movies
 Other

You create four categorical predictor variables:

 Whether the word opinion is present
 Whether the word score is present
 Whether the word game is present
 Whether the word cinema is present

NOTE I’m keeping things simple for this example. If we were really trying to
build a model to predict tweet topics, we would need to include many more
words than this!

For each of our four topics, we can express the probability of a case belonging to that
topic as

99.8%

0.2%

90%
positive

10%
negative

4.83%
positive

95.17%
negative

Tr
ue

po
sit

ive
s

0.18%

Fals
e

ne
ga

tiv
es

0.02%

Fa
ls

e
po

si
tiv

es

4.82%

Truene
ga

tiv
es

95.18%

5%
positive

3.6%

5%
positive

96.4%

Has unicorn
disease

Does not have
unicorn disease

Evidence PosteriorLikelihoodPrior

×

×

÷

÷

Figure 6.1 Using Bayes’ rule to calculate the posterior probability of
having unicorn disease, given a positive test result. The priors are the
proportion of people with or without the disease. The likelihoods are the
probabilities of getting positive or negative test results for each disease
status. The evidence is the probability of getting a positive test result
(true positives plus the false positives).

p topic words()
p words topic() p topic()×

p words()
--=

139What is the naive Bayes algorithm?

Now that we have more than one predictor variable, p(words|topic) is the likelihood
of a tweet having that exact combination of words present, given the tweet is in that
topic. We estimate this by finding the likelihood of having this combination of values
of each predictor variable individually, given that the tweet belongs to that topic, and
multiply them together. This looks like this:

For example, if a tweet contains the words opinion, score, and game, but not cinema, then
the likelihood would be as follows for any particular topic:

p topic words() =

p opinion topic() p score topic() p game topic() p cinema topic() p topic()××××
p opinion() p score() p game() p cinema()×××

p words topic() =

p opinionyes topic() p scoreyes topic() p gameyes topic() p cinemano topic()×××

Now, the likelihood of a tweet containing a certain word if it’s in a particular topic is
simply the proportion of tweets from that topic that contain that word. Multiplying
the likelihoods together from each predictor variable gives us the likelihood of observ-
ing this combination of predictor variable values (this combination of words), given a
particular class.

This is what makes naive Bayes “naive.” By estimating the likelihood for each pre-
dictor variable individually and then multiplying them, we are making the very strong
assumption that the predictor variables are independent. In other words, we are assum-
ing that the value of one variable has no relationship to the value of another one. In
the majority of cases, this assumption is not true. For example, if a tweet contains the
word score, it may be more likely to also include the word game.

In spite of this naive assumption being wrong quite often, naive Bayes tends to per-
form well even in the presence of non-independent predictors. Having said this,
strongly dependent predictor variables will impact performance.

So the likelihood and prior probabilities are fairly simple to compute and are the
parameters learned by the algorithm; but what about the evidence (p(words))? In
practice, because the values of the predictor variables are usually reasonably unique to
each case in the data, calculating the evidence (the probability of observing that com-
bination of values) is very difficult. As the evidence is really just a normalizing con-
stant that makes all the posterior probabilities sum to 1, we can discard it and simply
multiply the likelihood and prior probability:

posterior ∝ likelihood × prior

Note that instead of an = sign, I use ∝ to mean “proportional to,” because without the
evidence to normalize the equation, the posterior is no longer equal to the likelihood

140 CHAPTER 6 Classifying with naive Bayes and support vector machines
times the prior. This is okay, though, because proportionality is good enough to find
the most likely class. Now, for each tweet, we calculate the relative posterior probabil-
ity for each of the topics:

p(politics|words) ∝ p(words|politics) × p(politics)
p(sports|words) ∝ p(words|sports) × p(sports)

p(movies|words) ∝ p(words|movies) × p(movies)
p(other|words) ∝ p(words|other) × p(other)

Then we assign the tweet to the topic with the highest relative posterior probability.

Calculating the likeli6.1.2 hood for categorical and
continuous predictors

When we have a categorical predictor (such as whether a word is present or not),
naive Bayes uses that proportion of training cases in that particular class, with that
value of the predictor. When we have a continuous variable, naive Bayes (typically)
assumes that the data within each group is normally distributed. The probability den-
sity of each case based on this fitted normal distribution is then used to estimate the
likelihood of observing this value of the predictor in that class. In this way, cases near
the mean of the normal distribution for a particular class will have high probability
density for that class, and cases far away from the mean will have a low probability den-
sity. This is the same way you saw discriminant analysis calculate the likelihood in fig-
ure 5.7 in chapter 5.

 When your data has a mixture of categorical and continuous predictors, because
naive Bayes assumes independence between data values, it simply uses the appropriate
method for estimating the likelihood, depending on whether each predictor is cate-
gorical or continuous.

Building your first naive Bayes model6.2
In this section, I’ll teach you how to build and evaluate the performance of a naive
Bayes model to predict political party affiliation. Imagine that you’re a political scien-
tist. You’re looking for common voting patterns in the mid-1980s that would predict
whether a US congressperson was a Democrat or Republican. You have the voting
record of each member of the House of Representatives in 1984, and you identify 16
key votes that you believe most strongly split the two political parties. Your job is to
train a naive Bayes model to predict whether a congressperson was a Democrat or a
Republican, based on how they voted throughout the year. Let’s start by loading the
mlr and tidyverse packages:

library(mlr)
library(tidyverse)

141Building your first naive Bayes model
Loading and exploring the HouseVotes84 dataset6.2.1

Now let’s load the data, which is built into the mlbench package, convert it into a tib-
ble (with as_tibble()), and explore it.

NOTE Remember that a tibble is just a tidyverse version of a data frame that
helps make our lives a little easier.

We have a tibble containing 435 cases and 17 variables of members of the House Rep-
resentatives in 1984. The Class variable is a factor indicating political party member-
ship, and the other 16 variables are factors indicating how the individuals voted on
each of the 16 votes. A value of y means they voted in favor, a value of n means they
voted against, and a missing value (NA) means the individual either abstained or did
not vote. Our goal is to train a model that can use the information in these variables
to predict whether a congressperson was a Democrat or Republican, based on how
they voted.

data(HouseVotes84, package = "mlbench")

votesTib <- as_tibble(HouseVotes84)

votesTib

A tibble: 435 x 17
V10V9V8V7V6V5V4V3V2Class V1

<fct> <fct> <fct> <fct> <fct> <fct> <fct> <fct> <fct> <fct> <fct>
1 repu… n ynnnyyyny
2 repu… n y n y y y n n n n
3 demo… NA y y NA y y n n n n
4 demo… n y y n NA y n n n n
5 demo… y y y n y y n n n n
6 demo… n y y n y y n n n n
7 demo… n y n y y y n n n n
8 repu… n y n y y y n n n n
9 repu… n y n y y y n n n n

10 demo… y y y n n n y y y n
… with 425 more rows, and 6 more variables: V11 <fct>, V12 <fct>,
V13 <fct>, V14 <fct>, V15 <fct>, V16 <fct>

NOTE Ordinarily I would manually give names to unnamed columns to make
it clearer what I’m working with. In this example, the variable names are the
names of votes and are a little cumbersome, so we’ll stick with V1, V2, and so
on. If you want to see what issue each vote was for, run ?mlbench::House-
Votes84.

It looks like we have a few missing values (NAs) in our tibble. Let’s summarize the num-
ber of missing values in each variable using the map_dbl() function. Recall from chap-
ter 2 that map_dbl() iterates a function over every element of a vector/list (or, in this

Loading and exploring theListing 6.1 HouseVotes84 dataset

142 CHAPTER 6 Classifying with naive Bayes and support vector machines
case, every column of a tibble), applies a function to that element, and returns a vec-
tor containing the function output.

 The first argument to the map_dbl() function is the name of the data we’re going
to apply the function to, and the second argument is the function we want to apply.
I’ve chosen to use an anonymous function (using the ~ symbol as shorthand for func-
tion(.).

NOTE Recall from chapter 2 that an anonymous function is a function that we
define on the fly instead of predefining a function and assigning it to an object.

Our function passes each vector to sum(is.na(.)) to count the number of missing
values in that vector. This function is applied to each column of the tibble and returns
the number of missing values for each.

map_dbl(votesTib, ~sum(is.na(.)))

V10V9V8V7V6V5V4V3V2V1Class
72215141115111148120

V16V15V14V13V12V11
1042817253121

Every column in our tibble has missing values except the Class variable! Luckily, the
naive Bayes algorithm can handle missing data in two ways:

 By omitting the variables with missing values for a particular case, but still using
that case to train the model

 By omitting that case entirely from the training set

By default, the naive Bayes implementation that mlr uses is to keep cases and drop
variables. This usually works fine if the ratio of missing to complete values for the
majority of cases is quite small. However, if you have a small number of variables and a
large proportion of missing values, you may wish to omit the cases instead (and, more
broadly, consider whether your dataset is sufficient for training).

Plotting the data6.2.2

Let’s plot our data to get a better understanding of the relationships between political
party and votes. Once again, we’ll use our trick to gather the data into an untidy for-
mat so we can facet across the predictors. Because we’re plotting categorical variables

Using theListing 6.2 map_dbl() function to show missing values

Exercise 1
Use the map_dbl() function as we did in listing 6.2 to count the number of y values
in each column of votesTib. Hint: Use which(. == "y") to return the rows in each
column that equal y.

143Building your first naive Bayes model
against each other, we set the position argument of the geom_bar() function to
"fill", which creates stacked bars for y, n, and NA responses that sum to 1.

votesUntidy <- gather(votesTib, "Variable", "Value", -Class)

ggplot(votesUntidy, aes(Class, fill = Value)) +
facet_wrap(~ Variable, scales = "free_y") +
geom_bar(position = "fill") +
theme_bw()

The resulting plot is shown in figure 6.2. We can see there are some very clear differ-
ences in opinion between Democrats and Republicans!

Training the model6.2.3

Now let’s create our task and learner, and build our model. We set the Class variable
as the classification target of the makeClassifTask() function, and the algorithm we
supply to the makeLearner() function is "classif.naiveBayes".

Plotting theListing 6.3 HouseVotes84 dataset

V6 V7 V8 V9

V2 V3 V4 V5

V13 V14 V15 V16

V1 V10 V11 V12

republicandemocratrepublicandemocratrepublicandemocratrepublicandemocrat

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Class

C
ou

nt

Value

n

y

NA

Figure 6.2 Filled bar charts showing the proportion of Democrats and Republicans that voted for (y) or against
(n) or abstained (NA) on 16 different votes.

144 CHAPTER 6 Classifying with naive Bayes and support vector machines
votesTask <- makeClassifTask(data = votesTib, target = "Class")

bayes <- makeLearner("classif.naiveBayes")

bayesModel <- train(bayes, votesTask)

The model training completes with no errors because naive Bayes can handle missing
data.

 Next, we’ll use 10-fold cross-validation repeated 50 times to evaluate the perfor-
mance of our model-building procedure. Again, because this is a two-class classifica-
tion problem, we have access to the false positive rate and false negative rate, and so
we ask for these as well in the measures argument to the resample() function.

kFold <- makeResampleDesc(method = "RepCV", folds = 10, reps = 50,
stratify = TRUE)

bayesCV <- resample(learner = bayes, task = votesTask,
resampling = kFold,
measures = list(mmce, acc, fpr, fnr))

bayesCV$aggr

fnr.test.meanfpr.test.meanacc.test.meanmmce.test.mean
0.108196580.082235290.901793420.09820658

Our model correctly predicts 90% of test set cases in our cross-validation. That’s not
bad! Now let’s use our model to predict the political party of a new politician, based
on their votes.

politician <- tibble(V1 = "n", V2 = "n", V3 = "y", V4 = "n", V5 = "n",
V6 = "y", V7 = "y", V8 = "y", V9 = "y", V10 = "y",
V11 = "n", V12 = "y", V13 = "n", V14 = "n",
V15 = "y", V16 = "n")

politicianPred <- predict(bayesModel, newdata = politician)

getPredictionResponse(politicianPred)

[1] democrat
Levels: democrat republican
[source]

Our model predicts that the new politician is a Democrat.

Creating the task and learner, and training the modelListing 6.4

Cross-validating the naive Bayes modelListing 6.5

Using the model to make predictionsListing 6.6

145What is the support vector machine (SVM) algorithm?
Strengths and weaknesses of naive Bayes6.3
While it often isn’t easy to tell which algorithms will perform well for a given task, here
are some strengths and weaknesses that will help you decide whether naive Bayes will
perform well for your task.

 The strengths of naive Bayes are as follows:

 It can handle both continuous and categorical predictor variables.
 It’s computationally inexpensive to train.
 It commonly performs well on topic classification problems where we want to

classify documents based on the words they contain.
 It has no hyperparameters to tune.
 It is probabilistic and outputs the probabilities of new data belonging to each

class.
 It can handle cases with missing data.

The weaknesses of naive Bayes are these:

 It assumes that continuous predictor variables are normally distributed (typi-
cally), and performance will suffer if they’re not.

 It assumes that predictor variables are independent of each other, which usually
isn’t true. Performance will suffer if this assumption is severely violated.

What is the support vect6.4 or machine (SVM) algorithm?
In this section, you’ll learn how the SVM algorithm works and how it can add an extra
dimension to data to make the classes linearly separable. Imagine that you would like
to predict whether your boss will be in a good mood or not (a very important machine
learning application). Over a couple of weeks, you record the number of hours you
spend playing games at your desk and how much money you make the company each
day. You also record your boss’s mood the next day as good or bad (they’re very
binary). You decide to use the SVM algorithm to build a classifier that will help you
decide whether you need to avoid your boss on a particular day. The SVM algorithm
will learn a linear hyperplane that separates the days your boss is in a good mood from
the days they are in a bad mood. The SVM algorithm is also able to add an extra
dimension to the data to find the best hyperplane.

Exercise 2
Wrap your naive Bayes model inside the getLearnerModel() function. Can you iden-
tify the prior probabilities and the likelihoods for each vote?

146 CHAPTER 6 Classifying with naive Bayes and support vector machines
SVMs for linearly separable data6.4.1

Take a look at the data shown in figure 6.3. The plots show the data you recorded on
the mood of your boss, based on how hard you’re working and how much money
you’re making the company.

 The SVM algorithm finds an optimal linear hyperplane that separates the classes.
A hyperplane is a surface that has one less dimension than there are variables in the
dataset. For a two-dimensional feature space, such as in the example in figure 6.3, a
hyperplane is simply a straight line. For a three-dimensional feature space, a hyper-
plane is a surface. It’s hard to picture hyperplanes in a four or more dimensional
feature space, but the principle is the same: they are surfaces that cut through the fea-
ture space.

For problems where the classes are fully, linearly separable, there may be many differ-
ent hyperplanes that do just as good a job at separating the classes in the training data.
To find an optimal hyperplane (which will, hopefully, generalize better to unseen
data), the algorithm finds the hyperplane that maximizes the margin around itself. The
margin is a distance around the hyperplane that touches the fewest training cases. The
cases in the data that touch the margin are called support vectors because they support
the position of the hyperplane (hence, the name of the algorithm).

 The support vectors are the most important cases in the training set because they
define the boundary between the classes. Not only this, but the hyperplane that the
algorithm learns is entirely dependent on the position of the support vectors and
none of the other cases in the training set. Take a look at figure 6.4. If we move the
position of one of the support vectors, then we move the position of the hyperplane.
If, however, we move a non-support vector case, there is no influence on the hyper-
plane at all!

Time playing games

M
on

ey
 m

ad
e

0
0

Margin

Hyperplane

Support vectors

0
0

Optimal boundarySub-optimal boundary

Maximized
margin

Time playing games

M
on

ey
 m

ad
e

Good mood
Bad mood

Figure 6.3 The SVM algorithm finds a hyperplane (solid line) that passes through the
feature space. An optimal hyperplane is one that maximizes the margin around itself
(dotted lines). The margin is a region around the hyperplane that touches the fewest
cases. Support vectors are shown with double circles.

147What is the support vector machine (SVM) algorithm?
SVMs are extremely popular right now. That’s mainly for three reasons:

 They are good at finding ways of separating non-linearly separable classes.
 They tend to perform well for a wide variety of tasks.
 We now have the computational power to apply them to larger, more complex

datasets.

This last point is important because it highlights a potential downside of SVMs: they
tend to be more computationally expensive to train than many other classification
algorithms. For this reason, if you have a very large dataset, and computational power
is limited, it may be economical for you to try cheaper algorithms first and see how
they perform.

TIP Usually, we favor predictive performance over speed. But a computation-
ally cheap algorithm that performs well enough for your problem may be
preferable to you than one that is very expensive. Therefore, I may try cheaper
algorithms before trying the expensive ones.

Moving a non-support
vector has no effect.

0
0

0
0

Moving a support vector
moves the boundary.

0
0

0
0

Time playing gamesTime playing games

Time playing gamesTime playing games

M
o

n
e

y
 m

a
d

e
M

o
n
e
y
 m

a
d
e

M
o

n
e

y
 m

a
d

e
M

o
n
e
y
 m

a
d
e

Figure 6.4 The position of the hyperplane is entirely dependent on the position of
support vectors. Moving a support vector moves the hyperplane from its original position
(dotted line) to a new position (top two plots). Moving a non-support vector has no
impact on the hyperplane (bottom two plots).

148 CHAPTER 6 Classifying with naive Bayes and support vector machines

6.4.2

How does the SVM algorithm find the optimal hyperplane?
The math underpinning how SVMs work is complex, but if you’re interested, here
are some of the basics of how the hyperplane is learned. Recall from chapter 4 that
the equation for a straight line can be written as y = ax + b, where a and b are the
slope and y-intercept of the line, respectively. We could rearrange this equation to
be y – ax – b = 0 by shifting all the terms onto one side of the equals sign. Using this
formulation, we can say that any point that falls on the line is one that satisfies this
equation (the expression will equal zero).

You’ll often see the equation for a hyperplane given as wx + b = 0, where w is the vector
(–b –a 1), x is the vector (1 x y), and b is still the intercept. In the same way that
any point that lies on a straight line satisfies y – ax – b = 0, any point that falls on a
hyperplane satisfies the equation wx + b = 0.

The vector w is orthogonal or normal to the hyperplane. Therefore, by changing the
intercept, b, we can create new hyperplanes that are parallel to the original. By chang-
ing b (and rescaling w) we can arbitrarily define the hyperplanes that mark the mar-
gins as wx + b = –1 and wx + b = +1. The distance between these margins is given
by 2/||w||, where ||w|| is √ –b2 + –a2 + 12. As we want to find the hyperplane that max-
imizes this distance, we need to minimize ||w|| while ensuring that each case is clas-
sified correctly. The algorithm does this by making sure all cases in one class lie
below wx + b = –1 and all cases in the other class lie above wx + b = +1. A simple
way of doing this is to multiply the predicted value of each case by its corresponding
label (–1 or +1), making all outputs positive. This creates the constraint that the mar-
gins must satisfy yi(wxi + b) ≥ 1. The SVM algorithm therefore tries to solve the fol-
lowing minimization problem:

minimize ||w|| subject to yi(wxi + b) ≥ 1 for i = 1 ... N.

What if the classes aren’t fully separable?

In the illustrations I’ve shown you so far, the classes have been fully separable. This is
so I could clearly show you how the positioning of the hyperplane is chosen to maxi-
mize the margin. But what about situations where the classes are not completely sepa-
rable? How can the algorithm find a hyperplane when there is no margin that won’t
have cases inside it?

The original formulation of SVMs uses what is often referred to as a hard margin. If
an SVM uses a hard margin, then no cases are allowed to fall within the margin. This
means that, if the classes are not fully separable, the algorithm will fail. This is, of
course, a massive problem, because it relegates hard-margin SVM to handling only
“easy” classification problems where the training set can be clearly partitioned into its
component classes. As a result, an extension to the SVM algorithm called soft-margin
SVM is much more commonly used. In soft-margin SVM, the algorithm still learns a
hyperplane that best separates the classes, but it allows cases to fall inside its margin.

The soft-margin SVM algorithm still tries to find the hyperplane that best separates
the classes, but it is penalized for having cases inside its margin. How severe the penalty
is for having a case inside the margin is controlled by a hyperparameter that controls

149What is the support vector machine (SVM) algorithm?

how “hard” or “soft” the margin is (we’ll discuss this hyperparameter and how it
affects the position of the hyperplane later in the chapter). The harder the margin is,
the fewer cases will be inside it; the hyperplane will depend on a smaller number of
support vectors. The softer the margin is, the more cases will be inside it; the hyper-
plane will depend on a larger number of support vectors. This has consequences for
the bias-variance trade-off: if our margin is too hard, we might overfit the noise near
the decision boundary, whereas if our margin is too soft, we might underfit the data
and learn a decision boundary that does a bad job of separating the classes.

6.4.3 SVMs for non-linearly separable data

Great! So far the SVM algorithm seems quite simple—and for linearly separable classes
like in our boss-mood example, it is. But I mentioned that one of the strengths of the
SVM algorithm is that it can learn decision boundaries between classes that are not lin-
early separable. I’ve told you that the algorithm learns linear hyperplanes, so this seems
like a contradiction. Well, here’s what makes the SVM algorithm so powerful: it can add
an extra dimension to your data to find a linear way to separate nonlinear data.

 Take a look at the example in figure 6.5. The classes are not linearly separable
using the two predictor variables. The SVM algorithm adds an extra dimension to the

Variable 1

V
ar

ia
bl

e
2

Data with kernelOriginal data

No good linear
decision boundary

Linear decision
hyperplane

Varia
ble

1Variable 2

K
er

ne
l f

un
ct

io
n

Variable 1

V
ar

ia
bl

e
2

Figure 6.5 The SVM algorithm adds an extra dimension to linearly separate the data. The
classes in the original data are not linearly separable. The SVM algorithm adds an extra
dimension that, in a two-dimensional feature space, can be illustrated as a “stretching”
of the data into a third dimension. This additional dimension allows the data to be linearly
separated. When this hyperplane is projected back onto the original two dimensions, it
appears as a curved decision boundary.

150 CHAPTER 6 Classifying with naive Bayes and support vector machines
data, such that a linear hyperplane can separate the classes in this new, higher-dimen-
sional space. We can visualize this as a sort of deformation or stretching of the feature
space. The extra dimension is called a kernel.

NOTE Recall from chapter 5 that discriminant analysis condenses the infor-
mation from the predictor variables into a smaller number of variables. Con-
trast this to the SVM algorithm, which expands the information from the
predictor variables into an extra variable!

How does the algorithm find this new kernel? It uses a mathematical transformation
of the data called a kernel function. There are many kernel functions to choose from,
each of which applies a different transformation to the data and is suitable for find-
ing linear decision boundaries for different situations. Figure 6.6 shows examples of
situations where some common kernel functions can separate non-linearly separa-
ble data:

 Linear kernel (equivalent to no kernel)
 Polynomial kernel
 Gaussian radial basis kernel
 Sigmoid kernel

The type of kernel function for a given problem isn’t learned from the data—we have
to specify it. Because of this, the choice of kernel function is a categorical hyperparame-
ter (a hyperparameter that takes discrete, not continuous values). Therefore, the best
approach for choosing the best-performing kernel is with hyperparameter tuning.

Why is it called a kernel?
The word kernel may confuse you (it certainly confuses me). It has nothing to do with
the kernel in computing (the bit of your operating system that directly interfaces with
the computer hardware), or kernels in corn or fruit.

The truth is that the reason they are called kernels is murky. In 1904, a German math-
ematician named David Hilbert published Grundzüge einer allgemeinen theorie der lin-
earen integralgleichungen (Principles of a general theory of linear integral equations).
In this book, Hilbert uses the word kern to mean the core of an integral equation. In
1909, an American mathematician called Maxime Bôcher published An introduction
to the study of integral equations in which he translates Hilbert’s use of the word kern
to kernel.

The mathematics of kernel functions evolved from the work in these publications and
took the name kernel with them. The extremely confusing thing is that multiple, seem-
ingly unrelated concepts in mathematics include the word kernel!

151What is the support vector machine (SVM) algorithm?
6.4.4 Hyperparameters of the SVM algorithm

This is where SVMs become fun/difficult/painful, depending on your problem, com-
putational budget, and sense of humor. We need to tune quite a lot of hyperparame-
ters when building an SVM. This, coupled with the fact that training a single model
can be moderately expensive, can make training an optimally performing SVM take
quite a long time. You’ll see this in the worked example in section 6.5.2.

 So the SVM algorithm has quite a few hyperparameters to tune, but the most
important ones to consider are as follows:

 The kernel hyperparameter (shown in figure 6.6)
 The degree hyperparameter, which controls how “bendy” the decision boundary

will be for the polynomial kernel (shown in figure 6.6)
 The cost or C hyperparameter, which controls how “hard” or “soft” the margin is

(shown in figure 6.7)
 The gamma hyperparameter, which controls how much influence individual

cases have on the position of the decision boundary (shown in figure 6.7)

The effects of the kernel function and degree hyperparameter are shown in figure 6.6.
Note the difference in the shape of the decision boundary between the second- and
third-degree polynomials.

Variable 1

V
ar

ia
bl

e
2

Linear

Variable 1

V
ar

ia
bl

e
2

Second polynomial

Variable 1

V
ar

ia
bl

e
2

Third polynomial

V
ar

ia
bl

e
2

Radial basis

Variable 1 Variable 1
V

ar
ia

bl
e

2

Sigmoid

Figure 6.6 Examples of kernel functions. For each example, the solid line indicates
the decision boundary (projected back onto the original feature space), and the
dashed lines indicate the margin. With the exception of the linear kernel, imagine
that the cases of one of the groups are raised off the page in a third dimension.

152 CHAPTER 6 Classifying with naive Bayes and support vector machines
NOTE The higher the degree of the polynomial, the more bendy and com-
plex a decision boundary can be learned, but this has the potential to overfit
the training set.

The cost (also called C) hyperparameter in soft-margin SVMs assigns a cost or penalty
to having cases inside the margin or, put another way, tells the algorithm how bad it is
to have cases inside the margin. A low cost tells the algorithm that it’s acceptable to
have more cases inside the margin and will result in wider margins that are less influ-
enced by local differences near the class boundary. A high cost imposes a harsher pen-
alty on having cases inside the boundary and will result in narrower margins that are
more influenced by local differences near the class boundary. The effect of cost is illus-
trated for a linear kernel in the top part of figure 6.6.

NOTE Cases inside the margin are also support vectors, as moving them would
change the position of the hyperplane.

The gamma hyperparameter controls the influence that each case has on the position
of the hyperplane and is used by all the kernel functions except the linear kernel.
Think of each case in the training set jumping up and down shouting, “Me! Me! Clas-
sify me correctly!” The larger gamma is, the more attention-seeking each case is, and
the more granular the decision boundary will be (potentially leading to overfitting).
The smaller gamma is, the less attention-seeking each case will be, and the less granu-
lar the decision boundary will be (potentially leading to underfitting). The effect of
gamma is illustrated for a Gaussian radial basis kernel in the bottom part of figure 6.7.

Variable 1

V
ar

ia
bl

e
2

Cost = 10

V
ar

ia
bl

e
2

Gamma = 0.1

Variable 1

V
ar

ia
bl

e
2

Gamma = 10

Variable 1

Variable 1

V
ar

ia
bl

e
2

Cost = 0.1

Figure 6.7 The impact of the cost and
gamma hyperparameters. Larger values
of the cost hyperparameter give greater
penalization for having cases inside the
margin. Larger values of the gamma
hyperparameter mean individual cases
have greater influence on the position
of the decision boundary, leading to
more complex decision boundaries.

153What is the support vector machine (SVM) algorithm?
So the SVM algorithm has multiple hyperparameters to tune! I’ll show you how we
can tune these simultaneously using mlr in section 6.5.2.

6.4.5 What if we have more than two classes?

So far, I’ve only shown you examples of two-class classification problems. This is
because the SVM algorithm is inherently geared toward separating two classes. But
can we use it for multiclass problems (where we’re trying to predict more than two
classes)? Absolutely! When there are more than two classes, instead of creating a sin-
gle SVM, we make multiple models and let them fight it out to predict the most likely
class for new data. There are two ways of doing this:

 One-versus-all
 One-versus-one

In the one-versus-all (also called one versus rest) approach, we create as many SVM
models as there are classes. Each SVM model describes a hyperplane that best sepa-
rates one class from all the other classes. Hence the name, one-versus-all. When we clas-
sify new, unseen cases, the models play a game of winner takes all. Put simply, the model
that puts the new case on the “correct” side of its hyperplane (the side with the class it
separates from all the others) wins. The case is then assigned to the class that the
model was trying to separate from the others. This is illustrated in the plot on the left
in figure 6.8.

In the one-versus-one approach, we create an SVM model for every pair of classes.
Each SVM model describes a hyperplane that best separates one class from one other
class, ignoring data from the other classes. Hence, the name, one-versus-one. When we
classify new, unseen cases, each model casts a vote. For example, if one model separates

V
ar

ia
bl

e
2

Variable 10
0

One-versus-all

V
ar

ia
bl

e
2

Variable 10
0

One-versus-one

Figure 6.8 One-versus-all and one-versus-one approaches to
multiclass SVMs. In the one-versus-all approach, a hyperplane
is learned per class, separating it from all the other cases. In
the one-versus-one approach, a hyperplane is learned for every
pair of classes, separating them while ignoring the data from
the other classes.

154 CHAPTER 6 Classifying with naive Bayes and support vector machines
classes A and B, and the new data falls on the B side of the decision boundary, that
model will vote for B. This continues for all the models, and the majority class vote
wins. This is illustrated in the plot on the right in figure 6.8.

 Which do we choose? Well in practice, there is usually little difference in the per-
formance of the two methods. Despite training more models (for more than three
classes), one-versus-one is sometimes less computationally expensive than one-versus-
all. This is because, although we’re training more models, the training sets are smaller
(because of the ignored cases). The implementation of the SVM algorithm called by
mlr uses the one-versus-one approach.

 There is, however, a problem with these approaches. There will often be regions of
the feature space in which none of the models gives a clear winning class. Can you see
the triangular space between the hyperplanes on the left in figure 6.8? If a new case
appeared inside this triangle, none of the three models would clearly win outright.
This is a sort of classification no-man’s land. Though not as obvious in figure 6.8, this
also occurs with the one-versus-one approach.

 If there is no outright winner when predicting a new case, a technique called Platt
scaling is used (named after computer scientist John Platt). Platt scaling takes the dis-
tances of the cases from each hyperplane and converts them into probabilities using
the logistic function. Recall from chapter 4 that the logistic function maps a continu-
ous variable to probabilities between 0 and 1. Using Platt scaling to make predictions
proceeds like this:

1 For every hyperplane (whether we use one-versus-all or one-versus-one):
a Measure the distance of each case from the hyperplane.
b Use the logistic function to convert these distances into probabilities.

2 Classify new data as belonging to the class of the hyperplane that has the high-
est probability.

If this seems confusing, take a look at figure 6.9. We’re using the one-versus-all approach
in the figure, and we have generated three separate hyperplanes (one to separate
each class from the rest). The dashed arrows in the figure indicate distance in either
direction, away from the hyperplanes. Platt scaling converts these distances into prob-
abilities using the logistic function (the class each hyperplane separates from the rest
has positive distance).

 When we classify new, unseen data, the distance of the new data is converted into
a probability using each of the three S-shaped curves, and the case is classified as the
one that gives the highest probability. Handily, all of this is taken care of for us in
the implementation of SVM called by mlr. If we supply a three-class classification
task, we will get a one-versus-one SVM model with Platt scaling without having to
change our code.

155Building your first SVM model
6.5 Building your first SVM model
In this section, I’ll teach you how to build an SVM model and tune multiple hyperpa-
rameters simultaneously. Imagine that you’re sick and tired of receiving so many spam
emails (maybe you don’t need to imagine!). It’s difficult for you to be productive
because you get so many emails requesting your bank details for a mysterious Ugan-
dan inheritance, and trying to sell you Viagra.

 You decide to perform a feature extraction on the emails you receive over a few
months, which you manually class as spam or not spam. These features include things
like the number of exclamation marks and the frequency of certain words. With this
data, you want to make an SVM that you can use as a spam filter, which will classify new
emails as spam or not spam.

 In this section, you’ll learn how to train an SVM model and tune multiple hyperpa-
rameters simultaneously. Let’s start by loading the mlr and tidyverse packages:

library(mlr)
library(tidyverse)

V
ar

ia
bl

e
2

Variable 10
0

V
ar

ia
bl

e
2

Variable 10
0

V
ar

ia
bl

e
2

Variable 10
0

P
ro

ba
bi

lit
y

Distance from boundary
00

1

P
ro

ba
bi

lit
y

00

1

Distance from boundary

P
ro

ba
bi

lit
y

00

1

Distance from boundary

Figure 6.9 How Platt scaling is used to get probabilities for each hyperplane. This
example shows a one-versus-all approach (it also applies to one-versus-one). For each
hyperplane, the distance of each case from the hyperplane is recorded (indicated by
double-headed arrows). These distances are converted into probabilities using the
logistic function.

156 CHAPTER 6 Classifying with naive Bayes and support vector machines

Loading and exploring the spam dataset6.5.1

Now let’s load the data, which is built into the kernlab package, convert it into a tibble
(with as_tibble()), and explore it.

NOTE The kernlab package should have been installed along with mlr as a
suggested package. If you get an error when trying to load the data, you may
need to install it with install.packages("kernlab").

We have a tibble containing 4,601 emails and 58 variables extracted from emails. Our
goal is to train a model that can use the information in these variables to predict
whether a new email is spam or not.

NOTE Except for the factor type, which denotes whether an email is spam,
all of the variables are continuous, because the SVM algorithm cannot handle
categorical predictors.

data(spam, package = "kernlab")

spamTib <- as_tibble(spam)

spamTib

A tibble: 4,601 x 58
mailover remove internet orderourall num3dmake address

<dbl> <dbl> <dbl><dbl><dbl> <dbl> <dbl> <dbl> <dbl><dbl>
1 0 0.64 0.64 0 0.32 0 0 0 0 0
2 0.21 0.28 0.5 0 0.14 0.28 0.21 0.07 0 0.94
3 0.06 0 0.71 0 1.23 0.19 0.19 0.12 0.64 0.25
4 0 0 0 0 0.63 0 0.31 0.63 0.31 0.63
5 0 0 0 0 0.63 0 0.31 0.63 0.31 0.63
6 0 0 0 0 1.85 0 0 1.85 0 0
7 0 0 0 0 1.92 0 0 0 0 0.64
8 0 0 0 0 1.88 0 0 1.88 0 0
9 0.15 0 0.46 0 0.61 0 0.3 0 0.92 0.76

10 0.06 0.12 0.77 0 0.19 0.32 0.38 0 0.06 0
... with 4,591 more rows, and 48 more variables...

TIP This dataset has a lot of features! I’m not going to discuss the meaning
of each one, but you can see a description of what they mean by running
?kernlab::spam.

6.5.2 Tuning our hyperparameters

Let’s define our task and learner. This time, we supply "classif.svm" as the argu-
ment to makeLearner() to specify that we’re going to use SVM.

Loading and exploring the spam datasetListing 6.7

Creating the task and learnerListing 6.8

spamTask <- makeClassifTask(data = spamTib, target = "type")

svm <- makeLearner("classif.svm")

157Building your first SVM model
Before we train our model, we need to tune our hyperparameters. To find out which
hyperparameters are available for tuning for an algorithm, we simply pass the name of
the algorithm in quotes to getParamSet(). For example, listing 6.9 shows how to print
the hyperparameters for the SVM algorithm. I’ve removed some rows and columns of
the output to make it fit, but the most important columns are there:

 The row name is the name of the hyperparameter.
 Type is whether the hyperparameter takes numeric, integer, discrete, or logical

values.
 Def is the default value (the value that will be used if you don’t tune the hyper-

parameter).
 Constr defines the constraints for the hyperparameter: either a set of specific

values or a range of acceptable values.
 Req defines whether the hyperparameter is required by the learner.
 Tunable is logical and defines whether that hyperparameter can be tuned (some

algorithms have options that cannot be tuned but can be set by the user).

getParamSet("classif.svm")

TunableReqConstrDefType
cost TRUEY0 to Inf1numeric
kernel TRUE-[lin,poly,rad,sig]radialdiscrete
degree TRUEY1 to Inf3integer
gamma TRUEY0 to Inf-numeric
scale TRUE--TRUElogicalvector

The SVM algorithm is sensitive to variables being on different scales, so it’s usually a
good idea to scale the predictors first. Notice the scale hyperparameter: it tells us that
the algorithm will scale the data for us by default.

Printing available SVM hyperparametersListing 6.9

Extracting the possible values for a hyperparameter
While the getParamSet() function is useful, I don’t find it particularly simple to
extract information from. If you call str(getParamSet("classif.svm")), you’ll see
that it has a reasonably complex structure.

To extract information about a particular hyperparameter, you need to call getParam-
Set("classif.svm")$pars$[HYPERPAR] (where [HYPERPAR] is replaced by the
hyperparameter you’re interested in). To extract the possible values for that hyperpa-
rameter, you append $values to the call. For example, the following extracts the pos-
sible kernel functions:

getParamSet("classif.svm")$pars$kernel$values

$linear
[1] "linear"

158 CHAPTER 6 Classifying with naive Bayes and support vector machines
These are the most important hyperparameters for us to tune:

 Kernel
 Cost
 Degree
 Gamma

Listing 6.10 defines the hyperparameters we want to tune. We’re going to start by
defining a vector of kernel functions we wish to tune.

TIP Notice that I omit the linear kernel. This is because the linear kernel is
the same as the polynomial kernel with degree = 1, so we’ll just make sure we
include 1 as a possible value for the degree hyperparameter. Including the lin-
ear kernel and the first-degree polynomial kernel is simply a waste of comput-
ing time.

Next, we use the makeParamSet() function to define the hyperparameter space we
wish to tune over. To the makeParamSet() function, we supply the information needed
to define each hyperparameter we wish to tune, separated by commas. Let’s break this
down line by line:

 The kernel hyperparameter takes discrete values (the name of the kernel func-
tion), so we use the makeDiscreteParam() function to define its values as the
vector of kernels we created.

 The degree hyperparameter takes integer values (whole numbers), so we use the
makeIntegerParam() function and define the lower and upper values we wish
to tune over.

 The cost and gamma hyperparameters take numeric values (any number
between zero and infinity), so we use the makeNumericParam() function to
define the lower and upper values we wish to tune over.

For each of these functions, the first argument is the name of the hyperparameter
given by getParamSet("classif.svm"), in quotes.

(continued)
$polynomial
[1] "polynomial"

$radial
[1] "radial"

$sigmoid
[1] "sigmoid"

159Building your first SVM model
kernels <- c("polynomial", "radial", "sigmoid")

svmParamSpace <- makeParamSet(
makeDiscreteParam("kernel", values = kernels),
makeIntegerParam("degree", lower = 1, upper = 3),
makeNumericParam("cost", lower = 0.1, upper = 10),
makeNumericParam("gamma", lower = 0.1, 10))

Cast your mind back to chapter 3, when we tuned k for the kNN algorithm. We used
the grid search procedure during tuning to try every value of k that we defined. This is
what the grid search method does: it tries every combination of the hyperparameter
space you define and finds the best-performing combination.

 Grid search is great because, provided you specify a sensible hyperparameter space
to search over, it will always find the best-performing hyperparameters. But look at the
hyperparameter space we defined for our SVM. Let’s say we wanted to try values for
the cost and gamma hyperparameters from 0.1 to 10, in steps of 0.1 (that’s 100 values of
each). We’re trying three kernel functions and three values of the degree hyperparame-
ter. To perform a grid search over this parameter space would require training a
model 90,000 times! In such a situation, if you have the time, patience, and computa-
tional budget for such a grid search, then good for you. I, for one, have better things I
could be doing with my computer!

 Instead, we can employ a technique called random search. Rather than trying every
possible combination of parameters, random search proceeds as follows:

1 Randomly select a combination of hyperparameter values.
2 Use cross-validation to train and evaluate a model using those hyperparameter

values.
3 Record the performance metric of the model (usually mean misclassification

error for classification tasks).
4 Repeat (iterate) steps 1 to 3 as many times as your computational budget allows.
5 Select the combination of hyperparameter values that gave you the best-

performing model.

Unlike grid search, random search isn’t guaranteed to find the best set of hyperpa-
rameter values. However, with enough iterations, it can usually find a good combina-
tion that performs well. By using random search, we can run 500 combinations of
hyperparameter values, instead of all 90,000 combinations.

 Let’s define our random search using the makeTuneControlRandom() function. We
use the maxit argument to tell the function how many iterations of the random search
procedure we want to use. You should try to set this as high as your computational
budget allows, but in this example we’ll stick to 20 to prevent the example from tak-
ing too long. Next, we describe our cross-validation procedure. Remember I said in
chapter 3 that I prefer k-fold cross-validation unless the process is computationally

Defining the hyperparameter space for tuningListing 6.10

160 CHAPTER 6 Classifying with naive Bayes and support vector machines
expensive. Well, this is computationally expensive, so we’re compromising by using
holdout cross-validation instead.

randSearch <- makeTuneControlRandom(maxit = 20)

cvForTuning <- makeResampleDesc("Holdout", split = 2/3)

There’s something else we can do to speed up this process. R, as a language, doesn’t
make that much use of multithreading (using multiple CPUs simultaneously to
accomplish a task). However, one of the benefits of the mlr package is that it allows
multithreading to be used with its functions. This helps you use multiple cores/CPUs on
your computer to accomplish tasks such as hyperparameter tuning and cross-validation
much more quickly.

TIP If you don’t know how many cores your computer has, you can find out
in R by running parallel::detectCores(). (If your computer only has one
core, the 90s called—they want their computer back.)

To run an mlr process in parallel, we place its code between the parallelStart-
Socket() and parallelStop() functions from the parallelMap package. To start our
hyperparameter tuning process, we call the tuneParams() function and supply the fol-
lowing as arguments:

 First argument = name of the learner
 task = name of our task
 resampling = cross-validation procedure (defined in listing 6.11)
 par.set = hyperparameter space (defined in listing 6.10)
 control = search procedure (random search, defined in listing 6.11)

This code between the parallelStartSocket() and parallelStop() functions is shown
in listing 6.12. Notice that the downside of running cross-validation processes in paral-
lel is that we no longer get a running update of how far we’ve got.

WARNING The computer I’m writing this on has four cores, and this code
takes nearly a minute to run on it. It is of the utmost importance that you go
make a cup of tea while it runs. Milk and no sugar, please.

library(parallelMap)
library(parallel)

parallelStartSocket(cpus = detectCores())

tunedSvmPars <- tuneParams("classif.svm", task = spamTask,
resampling = cvForTuning,

Defining the random searchListing 6.11

Performing hyperparameter tuningListing 6.12

161Building your first SVM model
par.set = svmParamSpace,
control = randSearch)

parallelStop()

TIP The degree hyperparameter only applies to the polynomial kernel func-
tion, and the gamma hyperparameter doesn’t apply to the linear kernel. Does
this create errors when the random search selects combinations that don’t
make sense? Nope. If the random search selects the sigmoid kernel, for exam-
ple, it simply ignores the value of the degree hyperparameter.

Welcome back after our interlude! You can print the best-performing hyperparameter
values and the performance of the model built with them by calling tunedSvm, or
extract just the named values (so you can train a new model using them) by calling
tunedSvm$x. Looking at the following listing, we can see that the first-degree polyno-
mial kernel function (equivalent to the linear kernel function) gave the model that
performs the best, with a cost of 5.8 and gamma of 1.56.

tunedSvmPars

Tune result:
Op. pars: kernel=polynomial; degree=1; cost=5.82; gamma=1.56
mmce.test.mean=0.0645372

tunedSvmPars$x
$kernel
[1] "polynomial"

$degree
1[1]

$cost
[1] 5.816232

$gamma
[1] 1.561584

Your values are probably different than mine. This is the nature of the random search:
it may find different winning combinations of hyperparameter values each time it’s
run. To reduce this variance, we should commit to increasing the number of iterations
the search makes.

6.5.3 Training the model with the tuned hyperparameters

Now that we’ve tuned our hyperparameters, let’s build our model using the best-
performing combination. Recall from chapter 3 that we use the setHyperPars()
function to combine a learner with a set of predefined hyperparameter values. The

Extracting the winning hyperparameter values from tuningListing 6.13

162 CHAPTER 6 Classifying with naive Bayes and support vector machines
first argument is the learner we want to use, and the par.vals argument is the object
containing our tuned hyperparameter values. We then train a model using our tuned-
Svm learner with the train() function.

tunedSvm <- setHyperPars(makeLearner("classif.svm"),
par.vals = tunedSvmPars$x)

tunedSvmModel <- train(tunedSvm, spamTask)

TIP Because we already defined our learner in listing 6.8, we could simply
have run setHyperPars(svm, par.vals = tunedSvmPars$x) to achieve the
same result.

6.6 Cross-validating our SVM model
We’ve built a model using tuned hyperparameters. In this section, we’ll cross-validate
the model to estimate how it will perform on new, unseen data.

 Recall from chapter 3 that it’s important to cross-validate the entire model-building
process. This means any data-dependent steps in our model-building process (such as
hyperparameter tuning) need to be included in our cross-validation. If we don’t
include them, our cross-validation is likely to give an overoptimistic estimate (a biased
estimate) of how well the model will perform.

TIP What counts as a data-independent step in model building? Things like
removing nonsense variables by hand, changing variable names and types,
and replacing a missing value code with NA. These steps are data-independent
because they would be the same regardless of the values in the data.

Recall also that to include hyperparameter tuning in our cross-validation, we need to
use a wrapper function that wraps together our learner and hyperparameter tuning pro-
cess. The cross-validation process is shown in listing 6.15.

 Because mlr will use nested cross-validation (where hyperparameter tuning is per-
formed in the inner loop, and the winning combination of values is passed to the outer
loop), we first define our outer cross-validation strategy using the makeResamplDesc()
function. In this example, I’ve chosen 3-fold cross-validation for the outer loop. For
the inner loop, we’ll use the cvForTuning resampling description defined in listing
6.11 (holdout cross-validation with a 2/3 split).

 Next, we make our wrapped learner using the makeTuneWrapper() function. The
arguments are as follows:

 First argument = name of the learner
 resampling = inner loop cross-validation strategy
 par.set = hyperparameter space (defined in listing 6.10)
 control = search procedure (defined in listing 6.11)

Training the model with tuned hyperparametersListing 6.14

163Strengths and weaknesses of the SVM algorithm
As the cross-validation will take a while, it’s prudent to start parallelization with the
parallelStartSocket() function. Now, to run our nested cross-validation, we call the
resample() function, where the first argument is our wrapped learner, the second
argument is our task, and the third argument is our outer cross-validation strategy.

WARNING This takes a little over a minute on my four-core computer. In the
meantime, you know what to do. Milk and no sugar, please. Do you have any
cake?

outer <- makeResampleDesc("CV", iters = 3)

svmWrapper <- makeTuneWrapper("classif.svm", resampling = cvForTuning,
par.set = svmParamSpace,
control = randSearch)

parallelStartSocket(cpus = detectCores())

cvWithTuning <- resample(svmWrapper, spamTask, resampling = outer)

parallelStop()

Now let’s take a look at the result of our cross-validation procedure by printing the
contents of the cvWithTuning object.

cvWithTuning

Resample Result
Task: spamTib
Learner: classif.svm.tuned
Aggr perf: mmce.test.mean=0.0988956
Runtime: 73.89

We’re correctly classifying 1 – 0.099 = 0.901 = 90.1% of emails as spam or not spam.
Not bad for a first attempt!

6.7 Strengths and weaknesses of the SVM algorithm
While it often isn’t easy to tell which algorithms will perform well for a given task, here
are some strengths and weaknesses that will help you decide whether the SVM algo-
rithm will perform well for your case.

 The strengths of the SVM algorithm are as follows:

 It’s very good at learning complex nonlinear decision boundaries.
 It performs very well on a wide variety of tasks.
 It makes no assumptions about the distribution of the predictor variables.

Cross-validating the model-building processListing 6.15

Extracting the cross-validation resultListing 6.16

164 CHAPTER 6 Classifying with naive Bayes and support vector machines
The weaknesses of the SVM algorithm are these:

 It is one of the most computationally expensive algorithms to train.
 It has multiple hyperparameters that need to be tuned simultaneously.
 It can only handle continuous predictor variables (although recoding a categor-

ical variable as numeric may help in some cases).

Summary
 The naive Bayes and support vector machine (SVM) algorithms are supervised

learners for classification problems.
 Naive Bayes uses Bayes’ rule (defined in chapter 5) to estimate the probability

of new data belonging to each of the possible output classes.
 The SVM algorithm finds a hyperplane (a surface with one less dimension than

there are predictors) that best separates the classes.
 While naive Bayes can handle both continuous and categorical predictor vari-

ables, the SVM algorithm can only handle continuous predictors.
 Naive Bayes is computationally cheap, while the SVM algorithm is one of the

most expensive algorithms.
 The SVM algorithm can use kernel functions to add an extra dimension to the

data that helps find a linear decision boundary.
 The SVM algorithm is sensitive to the values of its hyperparameters, which must

be tuned to maximize performance.
 The mlr package allows parallelization of intensive processes, such as hyperpa-

rameter tuning, by using the parallelMap package.

Exercise 3
The NA values in votesTib include when politicians abstained from voting, so recode
these values into the value "a" and cross-validate a naive Bayes model including
them. Does this improve performance?

Exercise 4
Perform another random search for the best SVM hyperparameters using nested
cross-validation. This time, limit your search to the linear kernel (so no need to tune
degree or gamma), search over the range 0.1 and 100 for the cost hyperparameter,
and increase the number of iterations to 100. Warning: This took nearly 12 minutes
to complete on my machine!

165Solutions to exercises
Solutions to exercises
1 Use the map_dbl() function to count the number of y values in each column of

votesTib:

map_dbl(votesTib, ~ length(which(. == "y")))

2 Extract the prior probabilities and likelihoods from your naive Bayes model:

getLearnerModel(bayesModel)

The prior probabilities are 0.61 for democrat and
0.39 for republican (at the time these data were collected!).

The likelihoods are shown in 2x2 tables for each vote.

3 Recode the NA values from the votesTib tibble, and cross-validate a model includ-
ing these values:

votesTib[] <- map(votesTib, as.character)

votesTib[is.na(votesTib)] <- "a"

votesTib[] <- map(votesTib, as.factor)

votesTask <- makeClassifTask(data = votesTib, target = "Class")

bayes <- makeLearner("classif.naiveBayes")

kFold <- makeResampleDesc(method = "RepCV", folds = 10, reps = 50,
stratify = TRUE)

bayesCV <- resample(learner = bayes, task = votesTask, resampling = kFold,
measures = list(mmce, acc, fpr, fnr))

bayesCV$aggr

Only a very slight increase in accuracy

4 Perform a random search restricted to the linear kernel, tuning over a larger
range of values for the cost hyperparameter:

svmParamSpace <- makeParamSet(
makeDiscreteParam("kernel", values = "linear"),
makeNumericParam("cost", lower = 0.1, upper = 100))

randSearch <- makeTuneControlRandom(maxit = 100)

cvForTuning <- makeResampleDesc("Holdout", split = 2/3)

outer <- makeResampleDesc("CV", iters = 3)

166 CHAPTER 6 Classifying with naive Bayes and support vector machines
svmWrapper <- makeTuneWrapper("classif.svm", resampling = cvForTuning,
par.set = svmParamSpace,
control = randSearch)

parallelStartSocket(cpus = detectCores())

cvWithTuning <-
resample(svmWrapper, spamTask, resampling = outer) # ~1 min

parallelStop()

cvWithTuning

Classifying with
decision trees
This chapter covers
 Working with decision trees

 Using the recursive partitioning algorithm

 An important weakness of decision trees

There’s nothing like the great outdoors. I live in the countryside, and when I walk
my dog in the woods, I’m reminded just how much we rely on trees. Trees produce
the atmosphere we breathe, create habitats for wildlife, provide us with food, and
are surprisingly good at making predictions. Yes, you read that right: trees are good
at making predictions. But before you go asking the birch in your back garden for
next week’s lottery numbers, I should clarify that I’m referring to several super-
vised learning algorithms that use a branching tree structure. This family of algo-
rithms can be used to solve both classification and regression tasks, can handle
continuous and categorical predictors, and are naturally suited to solving multi-
class classification problems.

NOTE Remember that a predictor variable is a variable we believe may
contain information about the value of our outcome variable. Continuous
predictors can have any numeric value on their measurement scale, while
categorical variables can have only finite, discrete values/categories.
167

168 CHAPTER 7 Classifying with decision trees

The basic premise of all tree-based classification algorithms is that they learn a sequence
of questions that separates cases into different classes. Each question has a binary
answer, and cases will be sent down the left or right branch depending on which crite-
ria they meet. There can be branches within branches; and once the model is learned,
it can be graphically represented as a tree. Have you ever played the game 20 Ques-
tions, where you have to guess what object someone is thinking of by asking yes-or-no
questions? What about the game Guess Who, where you have to guess the other player’s
character by asking questions about their appearance? These are examples of tree-
based classifiers.

 By the end of this chapter, you’ll see how such simple, interpretable models can be
used to make predictions. We’ll finish the chapter by highlighting an important weak-
ness of decision trees, which you’ll learn how to overcome in the next chapter.

What is the recursive partitioning algorithm?7.1
In this section, you’ll learn how decision tree algorithms—and specifically, the recur-
sive partitioning (rpart) algorithm—work to learn a tree structure. Imagine that you
want to create a model to represent the way people commute to work, given features
of the vehicle. You gather information on the vehicles, such as how many wheels they
have, whether they have an engine, and their weight. You could formulate your classi-
fication process as a series of sequential questions. Every vehicle is evaluated at each
question and moves either left or right in the model depending on how its features
satisfy the question. An example of such a model is shown in figure 7.1.

Leaves

Has engine?
TRUEFALSE

< 2

UNICYCLE

≥ 2How many
wheels?

How heavy?
< 3000 Kg ≥ 3000 Kg

Has pedals?
FALSE

SCOOTER

TRUE

BICYCLE

CAR

NodesRoot node

TANK

Figure 7.1 The structure of a decision tree. The root node is the node that contains all
the data prior to splitting. Nodes are split by a splitting criterion into two branches, each
of which leads to another node. Nodes that do not split any further are called leaves.

Notice that our model has a branching, tree-like structure, where each question splits
the data into two branches. Each branch can lead to additional questions, which have

169What is the recursive partitioning algorithm?
branches of their own. The question parts of the tree are called nodes, and the very
first question/node is called the root node. Nodes have one branch leading to them
and two branches leading away from them. Nodes at the end of a series of questions
are called leaf nodes or leaves. Leaf nodes have a single branch leading to them but no
branches leading away from them. When a case finds its way down the tree into a leaf
node, it progresses no further and is classified as the majority class within that leaf. It
may seem strange to you (it does to me, anyway) that the root is at the top and the
leaves are at the bottom, but this is the way tree-based models are usually represented.

NOTE Although not shown in this small example, it is perfectly fine (and com-
mon) to have questions about the same feature in different parts of the tree.

This all seems simple so far. But in the previous simplistic example, we could have con-
structed this ourselves by hand. (In fact, I did!) So tree-based models aren’t necessarily
learned by machine learning. A decision tree could be an established HR process for
dealing with disciplinary action, for example. You could have a tree-based approach to
deciding which flight to buy (is the price above your budget, is the airline reliable, is
the food terrible, and so on). So how can we learn the structure of a decision tree
automatically for complex datasets with many features? Enter the rpart algorithm.

NOTE Tree-based models can be used for both classification and regression
tasks, so you may see them described as classification and regression trees
(CART). However, CART is a trademarked algorithm whose code is propri-
etary. The rpart algorithm is simply an open source implementation of CART.
You’ll learn how to use trees for regression tasks in chapter 12.

At each stage of the tree-building process, the rpart algorithm considers all of the pre-
dictor variables and selects the predictor that does the best job of discriminating the
classes. It starts at the root and then, at each branch, looks again for the next feature
that will best discriminate the classes of the cases that took that branch. But how does
rpart decide on the best feature at each split? This can be done a few different ways,
and rpart offers two approaches: the difference in entropy (called the information gain)
and the difference in Gini index (called the Gini gain). The two methods usually give
very similar results; but the Gini index (named after the sociologist and statistician
Corrado Gini) is slightly faster to compute, so we’ll focus on it.

TIP The Gini index is the default method rpart uses to decide how to split the
tree. If you’re concerned that you’re missing the best-performing model, you
can always compare Gini index and entropy during hyperparameter tuning.

7.1.1 Using Gini gain to split the tree

In this section, I’ll show you how Gini gain is calculated to find the best split for a par-
ticular node when growing a decision tree. Entropy and the Gini index are two ways of
trying to measure the same thing: impurity. Impurity is a measure of how heteroge-
neous the classes are within a node.

170 CHAPTER 7 Classifying with decision trees
NOTE If a node contains only a single class (which would make it a leaf), it
would be said to be pure.

By estimating the impurity (with whichever method you choose) that would result
from using each predictor variable for the next split, the algorithm can choose the
feature that will result in the smallest impurity. Put another way, the algorithm chooses
the feature that will result in subsequent nodes that are as homogeneous as possible.

 So what does the Gini index look like? Figure 7.2 shows an example split. We have
20 cases in a parent node belonging to two classes, A and B. We split the node into two
leaves based on some criterion. In the left leaf, we have 11 cases from class A and 3
from class B. In the right leaf, we have 5 from class B and 1 from class A.

We want to know the Gini gain of this split. The Gini gain is the difference between the
Gini index of the parent node and the Gini index of the split. Looking at our example
in figure 7.2, the Gini index for any node is calculated as

where p(A) and p(B) are the proportions of cases belonging to classes A and B, respec-
tively. So the Gini indices for the parent node and the left and right leaves are shown
in figure 7.3.

Parent

Left Right

20 cases:
12 in class A
8 in class B

14 cases:
11 in class A
3 in class B

6 cases:
1 in class A
5 in class B

Figure 7.2 An example decision
tree split for 20 cases belonging
to classes A and B

Gini index 1 p A()2 p B()2
+()–=

Parent

Left Right

Gini indexleft = 1 –
14((11

14((3
2 2

+ Gini indexright = 1 –
6((1

6((5
2 2

+

= 0.34

Gini indexparent = 1 –
20(()

()()

(12
20((8

2 2

+

= 0.48

= 0.28

20 cases:
12 in class A
8 in class B

14 cases:
11 in class A
3 in class B

6 cases:
1 in class A
5 in class B

Figure 7.3 Calculating the
Gini index of the parent node
and the left and right leaves

171What is the recursive partitioning algorithm?

Now that we have the Gini indices for the left and right leaves, we can calculate the
Gini index for the split as a whole. The Gini index of the split is the sum of the left
and right Gini indices multiplied by the proportion of cases they accepted from the
parent node:

And the Gini gain (the difference between the Gini indices of the parent node and
the split) is simply

where 0.48 is the Gini index of the parent, as calculated in figure 7.3.
 The Gini gain at a particular node is calculated for each predictor variable, and

the predictor that generates the largest Gini gain is used to split that node. This pro-
cess is repeated for every node as the tree grows.

7.1.2

Generalizing the Gini index to any number of classes
In this example, we’ve considered only two classes, but the Gini index of a node is
easily calculable for problems that have many classes. In that situation, the equation
for Gini index generalizes to

Gini index = 1 – ΣK
k=1 p(classk)

2

which is just a fancy way of saying that we calculate p(classk)2 for each class from 1
to K (the number of classes), add them all up, and subtract this value from 1.

If you’re interested, the equation for entropy is

entropy = ΣK
k=1 – p(classk) × log2 p(classk)

which is just a fancy way of saying that we calculate –p(class) × log2p(class) for each
class from 1 to K (the number of classes) and add them all up (which becomes a
subtraction because the first term is negative). As for Gini gain, the information gain
is calculated as the entropy of the parent minus the entropy of the split (which is cal-
culated exactly the same way as the Gini index for the split).

Gini indexsplit p left() Gini indexleft× p right() Gini indexright×+=

Gini indexsplit
14
20
------ 0.34× 6

20
------ 0.28×+ 0.32==

Gini gain 0.48 0.32– 0.16= =

What about continuous and multilevel categorical predictors?

In this section, I’ll show you how the splits are chosen for continuous and categorical
predictor variables. When a predictor variable is dichotomous (has only two levels), it’s
quite obvious how to use it for a split: cases with one value go left, and cases with the
other value go right. Decision trees can also split the cases using continuous variables,

172 CHAPTER 7 Classifying with decision trees
but what value is chosen as the split point? Have a look at the example in figure 7.4.
We have cases from three classes plotted against two continuous variables. The feature
space is split into rectangles by each node. At the first node, the cases are split into
those with a value of variable 2, greater than or less than 20. The cases that make it to
the second node are further split into those with a value of variable 1, greater than or
less than 10,000.

NOTE Notice that the variables are on vastly different scales. The rpart algo-
rithm isn’t sensitive to variables being on different scales, so there’s no need
to scale and center your predictors!

But how is the exact split point chosen for a continuous predictor? Well, the cases in
the training set are arranged in order of the continuous variable, and the Gini gain is
evaluated for the midpoint between each adjacent pair of cases. If the greatest Gini
gain among all predictor variables is one of these midpoints, then this is chosen as the
split for that node. This is illustrated in figure 7.5.

 A similar procedure is used for categorical predictors with more than two levels.
First, the Gini index is computed for each level of the predictor (using the proportion
of each class that has that value of the predictor). The factor levels are arranged in
order of their Gini indices, and the Gini gain is evaluated for a split between each
adjacent pair of levels. Take a look at the example in figure 7.6. We have a factor with
three levels (A, B, and C): we evaluate the Gini index of each and find that their val-
ues are B < A < C. Now we evaluate the Gini gain for the splits B versus A and C, and C
versus B and A.

 In this way, we can create a binary split from categorical variables with many pre-
dictors without having to try every single possible combination of level splits (2m –1,
where m is the number of levels of the variable). If the split B versus A and C is found

V
ar

ia
bl

e
2

Variable 1

N
ode 1

Node 2

20

10,000

Value of
variable 2

≥ < 2020

< 10,000 ≥ 10,000Value of
variable 1

Figure 7.4 How splitting is performed for continuous predictors. Cases
belonging to three classes are plotted against two continuous variables.
The first node splits the feature space into rectangles based on the value
of variable 2. The second node further splits the variable 2 ≥ 20 feature
space into rectangles based on the value of variable 1.

173What is the recursive partitioning algorithm?
to have the greatest Gini gain, then cases reaching this node will go down one branch
if they have a value of B for this variable, and will go down the other branch if they
have a value of A or C.

5.2

12.1

1.3

0.8

0.8

1.3

2.9

3.1

> 1.05

0.8 1.3 2.9 3.1

> 2.10

0.8 1.3 2.9 3.1

> 3.00

0.8 1.3 2.9 3.1

1. Cases are arranged
in order of the
continuous predictor.

2. A separate split is
considered between
each adjacent pair
of cases.

3. If one of these splits gives the highest Gini
gain of any candidate split, select it.

Figure 7.5 How the split point is chosen for continuous predictors. Cases (circles) are
arranged in order of their value of the continuous predictor. The midpoint between each
adjacent pair of cases is considered as a candidate split, and the Gini gain is calculated
for each. If one of these splits has the highest Gini gain of any candidate split, it will
be used to split the tree at this node.

A

B

C

1. The Gini index is
calculated for
each factor level.

5 in class X
3 in class Y

2 in class X
9 in class Y

7 in class X
8 in class Y

A

B

C

NOT B

B A C

B AC

2. Cases are arranged in
order of their Gini index.

3. If one of these splits gives
the highest Gini gain of
any candidate split, select it.

NOT C

= 1 –
15((7

15((8
2 2

+

= 0.50

= 1 –
11((2

11((9
2 2

+

= 0.30

= 1 –
8((5

8((3
2 2

+

= 0.47

()

()

()

Figure 7.6 How the split point is chosen for categorical predictors. The Gini index of each
factor level is calculated using the proportion of cases from each class with that factor level.
The factor levels are arranged in order of their Gini indices, and the Gini gain is evaluated for
each split between adjacent levels.

174 CHAPTER 7 Classifying with decision trees
Hyperparameters of the rpart algorithm7.1.3

In this section, I’ll show you which hyperparameters need to be tuned for the rpart
algorithm, what they do, and why we need to tune them in order to get the best-
performing tree possible. Decision tree algorithms are described as greedy. By greedy, I
don’t mean they take an extra helping at the buffet line; I mean they search for the
split that will perform best at the current node, rather than the one that will produce the
best result globally. For example, a particular split might discriminate the classes best
at the current node but result in poor separation further down that branch. Con-
versely, a split that results in poor separation at the current node may yield better sep-
aration further down the tree. Decision tree algorithms would never pick this second
split because they only look at locally optimal splits, instead of globally optimal ones.
There are three issues with this approach:

 The algorithm isn’t guaranteed to learn a globally optimal model.
 If left unchecked, the tree will continue to grow deeper until all the leaves are

pure (of only one class).
 For large datasets, growing extremely deep trees becomes computationally

expensive.

While it’s true that rpart isn’t guaranteed to learn a globally optimal model, the
depth of the tree is of greater concern to us. Besides the computational cost, grow-
ing a full-depth tree until all the leaves are pure is very likely to overfit the training
set and create a model with high variance. This is because as the feature space is
split up into smaller and smaller pieces, we’re much more likely to start modeling
the noise in the data.

 How do we guard against such extravagant tree building? There are two ways of
doing it:

 Grow a full tree, and then prune it.
 Employ stopping criteria.

In the first approach, we allow the greedy algorithm to grow its full, overfit tree, and
then we get out our garden shears and remove leaves that don’t meet certain criteria.
This process is imaginatively named pruning, because we end up removing branches
and leaves from our tree. This is sometimes called bottom-up pruning because we start
from the leaves and prune up toward the root.

 In the second approach, we include conditions during tree building that will force
splitting to stop if certain criteria aren’t met. This is sometimes called top-down prun-
ing because we are pruning the tree as it grows down from the root.

 Both approaches may yield comparable results in practice, but there is a slight
computational edge to top-down pruning because we don’t need to grow full trees
and then prune them back. For this reason, we will use the stopping criteria approach.

 The stopping criteria we can apply at each stage of the tree-building process are as
follows:

175What is the recursive partitioning algorithm?

 Minimum number of cases in a node before splitting
 Maximum depth of the tree
 Minimum improvement in performance for a split
 Minimum number of cases in a leaf

These criteria are illustrated in figure 7.7. For each candidate split during tree building,
each of these criteria is evaluated and must be passed for the node to be split further.

minsplit = 4

11

5

4

6

2

1 31 3

minsplit = 5

11

5

4

6

2

minbucket = 1

11

5

4

6

2

1 31 3

minbucket = 5

11

56

maxdepth = 1

11

5

4

6

2

1 31 3

maxdepth = 3

11

56

cp = 0

11

5

4

6

2

1 31 3

cp = 0.1

11

5

4

6

2

cp = 0.3

cp = 0.17

cp = 0.08

cp = 0.3

cp = 0.17

Figure 7.7 Hyperparameters of rpart. Important nodes are highlighted in each example, and
the numbers in each node represent the number of cases. The minsplit, maxdepth, cp, and
minbucket hyperparameters all simultaneously constrain the splitting of each node.

The minimum number of cases needed to split a node is called minsplit by rpart. If a
node has fewer than the specified number, the node will not be split further. The max-
imum depth of the tree is called maxdepth by rpart. If a node is already at this depth, it
will not be split further. The minimum improvement in performance is, confusingly,
not the Gini gain of a split. Instead, a statistic called the complexity parameter (cp in
rpart) is calculated for each level of depth of the tree. If the cp value of a depth is less
than the chosen threshold value, the nodes at this level will not be split further. In
other words, if adding another layer to the tree doesn’t improve the performance of
the model by cp, don’t split the nodes. The cp value is calculated as

p(incorrectl + 1) – p(incorrectl)cp = --
n(splitsl) – n(splitsl + 1)

where p(incorrect) is the proportion of incorrectly classified cases at a particular
depth of the tree, and n(splits) is the number of splits at that depth. The indices l and
l + 1 indicate the current depth (l) and one depth above (l + 1). This reduces to the

176 CHAPTER 7 Classifying with decision trees
difference in incorrectly classified cases in one depth compared to the depth above it,
divided by the number of new splits added to the tree. If this seems a bit abstract at the
moment, we’ll work through an example when we build our own decision tree in sec-
tion 7.7.

 Finally, the minimum number of cases in a leaf is called minbucket by rpart. If split-
ting a node would result in leaves containing fewer cases than minbucket, the node will
not be split.

 These four criteria combined can make for very stringent and complicated stop-
ping criteria. Because the values of these criteria cannot be learned directly from the
data, they are hyperparameters. What do we do with hyperparameters? Tune them! So
when we build a model with rpart, we will tune these stopping criteria to get values
that give us the best-performing model.

NOTE Recall from chapter 3 that a variable or option than controls how an
algorithm learns, but which cannot be learned from the data, is called a hyper-
parameter.

Building your first decision tree model7.2
In this section, you’re going to learn how to build a decision tree with rpart and how
to tune its hyperparameters. Imagine that you work in public engagement at a wildlife
sanctuary. You’re tasked with creating an interactive game for children, to teach them
about different animal classes. The game asks the children to think of any animal in
the sanctuary, and then asks them questions about the physical characteristics of that
animal. Based on the responses the child gives, the model should tell the child what
class their animal belongs to (mammal, bird, reptile, and so on). It’s important for
your model to be general enough that it can be used at other wildlife sanctuaries.
Let’s start by loading the mlr and tidyverse packages:

library(mlr)
library(tidyverse)

Loading and explor7.3 ing the zoo dataset
Let’s load the zoo dataset that is built into the mlbench package, convert it into a tib-
ble, and explore it. We have a tibble containing 101 cases and 17 variables of observa-
tions made on various animals; 16 of these variables are logical, indicating the
presence or absence of some characteristic, and the type variable is a factor contain-
ing the animal classes we wish to predict.

data(Zoo, package = "mlbench")

zooTib <- as_tibble(Zoo)

zooTib

Loading and exploring the zoo datasetListing 7.1

177Training the decision tree model
A tibble: 101 x 17
airborne aquatic predator toothed backbonemilkfeathers eggshair

<lgl><lgl><lgl><lgl><lgl> <lgl> <lgl><lgl> <lgl>
1 TRUE FALSE FALSE TRUE FALSE FALSE TRUE TRUE TRUE
2 TRUE FALSE FALSE TRUE FALSE FALSE FALSE TRUE TRUE
3 FALSE FALSE TRUE FALSE FALSE TRUE TRUE TRUE TRUE
4 TRUE FALSE FALSE TRUE FALSE FALSE TRUE TRUE TRUE
5 TRUE FALSE FALSE TRUE FALSE FALSE TRUE TRUE TRUE
6 TRUE FALSE FALSE TRUE FALSE FALSE FALSE TRUE TRUE
7 TRUE FALSE FALSE TRUE FALSE FALSE FALSE TRUE TRUE
8 FALSE FALSE TRUE FALSE FALSE TRUE FALSE TRUE TRUE
9 FALSE FALSE TRUE FALSE FALSE TRUE TRUE TRUE TRUE

TRUETRUEFALSEFALSEFALSEFALSE TRUEFALSE10 TRUE
... with 91 more rows, and 8 more variables: breathes <lgl>, venomous <lgl>,

fins <lgl>, legs <int>, tail <lgl>, domestic <lgl>, catsize <lgl>,#
type <fct>#

Unfortunately, mlr won’t let us create a task with logical predictors, so let’s convert
them into factors instead. There are a few ways to do this, but dplyr’s mutate_if()
function comes in handy here. This function takes the data as the first argument (or
we could have piped this in with %>%). The second argument is our criterion for select-
ing columns, so here I’ve used is.logical to consider only the logical columns. The
final argument is what to do with those columns, so I’ve used as.factor to convert
the logical columns into factors. This will leave the existing factor type untouched.

zooTib <- mutate_if(zooTib, is.logical, as.factor)

TIP Alternatively, I could have used mutate_all(zooTib, as.factor), because
the type column is already a factor.

7.4 Training the decision tree model
In this section, I’ll walk you through training a decision tree model using the rpart
algorithm. We’ll tune the algorithm’s hyperparameters and train a model using the
optimal hyperparameter combination.

 Let’s define our task and learner, and build a model as usual. This time, we sup-
ply "classif.rpart" as the argument to makeLearner() to specify that we’re going
to use rpart.

zooTask <- makeClassifTask(data = zooTib, target = "type")

tree <- makeLearner("classif.rpart")

Next, we need to perform hyperparameter tuning. Recall that the first step is to define
a hyperparameter space over which we want to search. Let’s look at the hyperparameters

Converting logical variables to factorsListing 7.2

Creating the task and learnerListing 7.3

178 CHAPTER 7 Classifying with decision trees
available to us for the rpart algorithm, in listing 7.4. We’ve already discussed the most
important hyperparameters for tuning: minsplit, minbucket, cp, and maxdepth. There are
a few others you may find useful to know about.

 The maxcompete hyperparameter controls how many candidate splits can be dis-
played for each node in the model summary. The model summary shows the candi-
date splits in order of how much they improved the model (Gini gain). It may be
useful to understand what the next-best split was after the one that was actually used,
but tuning maxcompete doesn’t affect model performance, only its summary.

 The maxsurrogate hyperparameter is similar to maxcompete but controls how many
surrogate splits are shown. A surrogate split is a split used if a particular case is missing
data for the actual split. In this way, rpart can handle missing data as it learns which
splits can be used in place of missing variables. The maxsurrogate hyperparameter con-
trols how many of these surrogates to retain in the model (if a case is missing a value
for the main split, it is passed to the first surrogate split, then to the second surrogate
if it is also missing a value for the first surrogate, and so on). Although we don’t have
any missing data in our dataset, future cases we wish to predict might. We could set this
to zero to save some computation time, which is equivalent to not using surrogate vari-
ables, but doing so might reduce the accuracy of predictions made on future cases
with missing data. The default value of 5 is usually fine.

TIP Recall from chapter 6 that we can quickly count the number of missing
values per column of a data.frame or tibble by running map_dbl(zooTib,
~sum(is.na(.))).

The usesurrogate hyperparameter controls how the algorithm uses surrogate splits. A
value of zero means surrogates will not be used, and cases with missing data will not be
classified. A value of 1 means surrogates will be used, but if a case is missing data for
the actual split and for all the surrogate splits, that case will not be classified. The
default value of 2 means surrogates will be used, but a case with missing data for the
actual split and for all the surrogate splits will be sent down the branch that contained
the most cases. The default value of 2 is usually appropriate.

NOTE If you have cases that are missing data for the actual split and all the
surrogate splits for a node, you should probably consider the impact missing
data is having on the quality of your dataset!

getParamSet(tree)

Constr Req Tunable TrafoDefType len
-TRUE-20 1 to Inf-integerminsplit
-TRUE-- 1 to Inf-integerminbucket
-TRUE-0 to 1- 0.01numericcp
-TRUE-4 0 to Inf-integermaxcompete
-TRUE-5 0 to Inf-integermaxsurrogate

Printing available rpart hyperparametersListing 7.4

179Training the decision tree model
-TRUE-0,1,22-discreteusesurrogate
-TRUE-0,10-surrogatestyle discrete
-TRUE-30-integermaxdepth 1 to 30
-FALSE-10 0 to Inf-integerxval
-TRUE----untypedparms

Now, let’s define the hyperparameter space we want to search over. We’re going to
tune the values of minsplit (an integer), minbucket (an integer), cp (a numeric), and
maxdepth (an integer).

NOTE Remember that we use makeIntegerParam() and makeNumericParam()
to define the search spaces for integer and numeric hyperparameters, respec-
tively.

treeParamSpace <- makeParamSet(
makeIntegerParam("minsplit", lower = 5, upper = 20),
makeIntegerParam("minbucket", lower = 3, upper = 10),
makeNumericParam("cp", lower = 0.01, upper = 0.1),
makeIntegerParam("maxdepth", lower = 3, upper = 10))

Next, we can define how we’re going to search the hyperparameter space we defined
in listing 7.5. Because the hyperparameter space is quite large, we’re going to use a
random search rather than a grid search. Recall from chapter 6 that a random search
is not exhaustive (will not try every hyperparameter combination) but will randomly
select combinations as many times (iterations) as we tell it to. We’re going to use 200
iterations.

 In listing 7.6 we also define our cross-validation strategy for tuning. Here, I’m
going to use ordinary 5-fold cross-validation. Recall from chapter 3 that this will split
the data into five folds and use each fold as the test set once. For each test set, a model
will be trained on the rest of the data (the training set). This will be performed for
each combination of hyperparameter values tried by the random search.

NOTE Ordinarily, if classes are imbalanced, I would use stratified sampling.
Here, though, because we have very few cases in some of the classes, there are
not enough cases to stratify (try it: you’ll get an error). For this example, we
won’t stratify; but in situations where you have very few cases in a class, you
should consider whether there is enough data to justify keeping that class in
the model.

200)=<- makeTuneControlRandom(maxitrandSearch

5)=iters<- makeResampleDesc("CV",cvForTuning

Finally, let’s perform our hyperparameter tuning!

Defining the hyperparameter space for tuningListing 7.5

Defining the random searchListing 7.6

180 CHAPTER 7 Classifying with decision trees

library(parallel)
library(parallelMap)

parallelStartSocket(cpus = detectCores())

tunedTreePars <- tuneParams(tree, task = zooTask,
resampling = cvForTuning,
par.set = treeParamSpace,
control = randSearch)

parallelStop()

tunedTreePars

Tune result:
Op. pars: minsplit=10; minbucket=4; cp=0.0133; maxdepth=9
mmce.test.mean=0.0698

To speed things up, we first start parallelization by running parallelStartSocket(),
setting the number of CPUs equal to the number we have available.

TIP If you want to use your computers for other things while tuning occurs,
you may wish to set the number of CPUs used to fewer than the maximum
available to you.

Then we use the tuneParams() function to start the tuning process. The arguments
are the same as we’ve used previously: the first is the learner, the second is the task,
resampling is the cross-validation method, par.set is the hyperparameter space, and
control is the search method. Once it’s completed, we stop parallelization and print
our tuning results.

WARNING This takes about 30 seconds to run on my four-core machine.

The rpart algorithm isn’t nearly as computationally expensive as the support vector
machine (SVM) algorithm we used for classification in chapter 6. Therefore, despite
tuning four hyperparameters, the tuning process doesn’t take as long (which means
we can perform more search iterations).

7.4.1 Training the model with the tuned hyperparameters

Now that we’ve tuned our hyperparameters, we can train our final model using them.
Just like in the previous chapter, we use the setHyperPars() function to create a
learner using the tuned hyperparameters, which we access using tunedTreePars$x.
We can then train the final model using the train() function, as usual.

Performing hyperparameter tuningListing 7.7

Training the final tuned modelListing 7.8

tunedTree <- setHyperPars(tree, par.vals = tunedTreePars$x)

tunedTreeModel <- train(tunedTree, zooTask)

181Training the decision tree model
One of the wonderful things about decision trees is how interpretable they are. The
easiest way to interpret the model is to draw a graphical representation of the tree.
There are a few ways of plotting decision tree models in R, but my favorite is the
rpart.plot() function from the package of the same name. Let’s install the rpart.plot
package first and then extract the model data using the getLearnerModel() function.

install.packages("rpart.plot")

library(rpart.plot)

treeModelData <- getLearnerModel(tunedTreeModel)

rpart.plot(treeModelData, roundint = FALSE,
box.palette = "BuBn",
type = 5)

The first argument of the rpart.plot() function is the model data. Because we
trained this model using mlr, the function will give us a warning that it cannot find the
data used to train the model. We can safely ignore this warning, but if it irritates you as
much as it irritates me, you can prevent it by supplying the argument roundint =
FALSE. The function will also complain if we have more classes that its default color
palette (neediest function ever!). Either ignore this or ask for a different palette by
setting the box.palette argument equal to one of the predefined palettes (run
?rpart.plot for a list of available palettes). The type argument changes how the tree
is displayed. I quite like the simplicity of option 5, but check ?rpart.plot to experi-
ment with the other options.

 The plot generated by listing 7.9 is shown in figure 7.8. Can you see how simple and
interpretable the tree is? When predicting the classes of new cases, they start at the top
(the root) and follow the branches based on the splitting criterion at each node.

 The first node asks whether the animal produces milk or not. This split was chosen
because it has the highest Gini gain of all candidate splits (it immediately discrimi-
nates mammals, which make up 41% of the training set from the other classes). The
leaf nodes tell us which class is classified by that node and the proportions of each
class in that node. For example, the leaf node that classifies cases as mollusc.et.al con-
tains 83% mollusc.et.al cases and 17% insect cases. The percentage at the bottom of
each leaf indicates the percentage of cases in the training set in this leaf.

 To inspect the cp values for each split, we can use the printcp() function. This
function takes the model data as the first argument and an optional digits argument
specifying how many decimal places to print in the output. There is some useful infor-
mation in the output, such as the variables actually used for splitting the data and the
root node error (the error before any splits). Finally, the output includes a table of the
cp values for each split.

Plotting the decision treeListing 7.9

182 CHAPTER 7 Classifying with decision trees
printcp(treeModelData, digits = 3)

Classification tree:
3,=7, minbucket=0, minsplit=d, xval=dataf,=rpart::rpart(formula

5)=0.0248179216007702, maxdepth=cp

Variables actually used in tree construction:
[1] airborne aquatic backbone feathers fins milk

Root node error: 60/101 = 0.594

n= 101

CP nsplit rel error
1 0.3333 0 1.000
2 0.2167 1 0.667
3 0.1667 2 0.450
4 0.0917 3 0.283
5 0.0500 5 0.100
6 0.0248 6 0.050

Remember that in section 7.1.3, I showed you how the cp values were calculated:

Exploring the modelListing 7.10

TRUE

TRUE

TRUE

TRUE

FALSE

FALSE

FALSE

FALSE

TRUE TRUE FALSEFALSE

milk

feathers

fins

backbone

aquatic airborne

bird
.00 1.00 .00 .00

.00 .00 .00
20%

fish
.00 .00 .00 1.00

.00 .00 .00
13%

mammal
1.00 .00 .00 .00

.00 .00 .00
41%

reptile
.00 .00 1.00 .00

.00 .00 .00
4%

amphibian
.00 .00 .20 .00

.80 .00 .00
5%

insect
.00 .00 .00 .00.

00 1.00 .00
6%

mollusc.et.al
.00 .00 .00 .00

.00 .17 .83
12%

Figure 7.8 Graphical representation of our decision tree model. The splitting criterion is shown for
each node. Each leaf node shows the predicted class, the proportion of each of the classes in that leaf,
and the proportion of all cases in that leaf.

cp
p incorrectl 1+() p incorrectl()–

n splitsl() n splitsl 1+()–
--=

183Cross-validating our decision tree model
So that you can get a better understanding of what the cp value means, let’s work
through how the cp values were calculated in the table in listing 7.10.

 The cp value for the first split is

The cp value for the second split is

and so on. If any candidate split would yield a cp value lower than the threshold set by
tuning, the node is not split further.

TIP For a detailed summary of the model, run summary(treeModelData).
The output is quite long (and gets longer the deeper your tree goes), so I
won’t print it here. It includes the cp table, orders the predictors by their
importance, and displays the primary and surrogate splits for each node.

7.5 Cross-validating our decision tree model
In this section, we’ll cross-validate our model-building process, including hyperparam-
eter tuning. We’ve done this a few times already now, but it’s so important that I’m
going to reiterate: you must include data-dependent preprocessing in your cross-
validation. This includes the hyperparameter tuning we performed in listing 7.7.

 First, we define our outer cross-validation strategy. This time I’m using 5-fold cross-
validation as my outer cross-validation loop. We’ll use the cvForTuning resampling
description we made in listing 7.6 for the inner loop.

 Next, we create our wrapper by “wrapping together” our learner and hyperparam-
eter tuning process. We supply our inner cross-validation strategy, hyperparameter
space, and search method to the makeTuneWrapper() function.

 Finally, we can start parallelization with the parallelStartSocket() function, and
start the cross-validation process with the resample() function. The resample() func-
tion takes our wrapped learner, task, and outer cross-validation strategy as arguments.

WARNING This takes about 2 minutes on my four-core machine.

outer <- makeResampleDesc("CV", iters = 5)

treeWrapper <- makeTuneWrapper("classif.rpart", resampling = cvForTuning,
par.set = treeParamSpace,
control = randSearch)

parallelStartSocket(cpus = detectCores())

Cross-validating the model-building processListing 7.11

cp 1.00 0.667–
1 0–

------------------------------ 0.333= =

cp 0.667 0.450–
2 1–

---------------------------------- 0.217= =

184 CHAPTER 7 Classifying with decision trees
cvWithTuning <- resample(treeWrapper, zooTask, resampling = outer)

parallelStop()

Now let’s look at the cross-validation result and see how our model-building process
performed.

cvWithTuning

Resample Result
Task: zooTib
Learner: classif.rpart.tuned
Aggr perf: mmce.test.mean=0.1200
Runtime: 112.196

Hmm, that’s a little disappointing, isn’t it? During hyperparameter tuning, the best
hyperparameter combination gave us a mean misclassification error (MMCE) of
0.0698 (you likely got a different value). But our cross-validated estimate of model
performance gives us an MMCE of 0.12. Quite a large difference! What’s going on?
Well, this is an example of overfitting. Our model is performing better during hyper-
parameter tuning than during cross-validation. This is also a good example of why it’s
important to include hyperparameter tuning inside our cross-validation procedure.

 We’ve just discovered the main problem with the rpart algorithm (and decision
trees in general): they tend to produce models that are overfit. How do we overcome
this problem? The answer is to use an ensemble method, an approach where we use mul-
tiple models to make predictions for a single task. In the next chapter, I’ll show you
how ensemble methods work, and we’ll use them to vastly improve our decision tree
model. I suggest that you save your .R file, as we’re going to continue using the same
dataset and task in the next chapter. This is so I can highlight for you how much better
these ensemble techniques are, compared to ordinary decision trees.

7.6 Strengths and weaknesses of tree-based algorithms
While it often isn’t easy to tell which algorithms will perform well for a given task, here
are some strengths and weaknesses that will help you decide whether decision trees
will perform well for you.

 The strengths of tree-based algorithms are as follows:

 The intuition behind tree-building is quite simple, and each individual tree is
very interpretable.

 It can handle categorical and continuous predictor variables.
 It makes no assumptions about the distribution of the predictor variables.
 It can handle missing values in sensible ways.
 It can handle continuous variables on different scales.

Extracting the cross-validation resultListing 7.12

185Summary
The weakness of tree-based algorithms is this:

 Individual trees are very susceptible to overfitting—so much so that they are
rarely used.

Summary
 The rpart algorithm is a supervised learner for both classification and regres-

sion problems.
 Tree-based learners start with all the cases in the root node and find sequential

binary splits until cases find themselves in leaf nodes.
 Tree construction is a greedy process and can be limited by setting stopping cri-

teria (such as the minimum number of cases required in a node before it can
be split).

 The Gini gain is a criterion used to decide which predictor variable will result in
the best split at a particular node.

 Decision trees have a tendency to overfit the training set.

Improving decision trees
with random forests

and boosting
This chapter covers
 Understanding ensemble methods

 Using bagging, boosting, and stacking

 Using the random forest and XGBoost algorithms

 Benchmarking multiple algorithms against the
same task

In the last chapter, I showed you how we can use the recursive partitioning algo-
rithm to train decision trees that are very interpretable. We finished by highlighting
an important limitation of decision trees: they have a tendency to overfit the train-
ing set. This results in models that generalize poorly to new data. As a result, indi-
vidual decision trees are rarely used, but they can become extremely powerful
predictors when many trees are combined together.

By the end of this chapter, you’ll understand the difference between ordinary
decision trees and ensemble methods, such as random forest and gradient boosting, which
combine multiple trees to make predictions. Finally, as this is the last chapter in the
classification part of the book, you’ll learn what benchmarking is and how to use it to
find the best-performing algorithm for a particular problem. Benchmarking is the
process of letting a bunch of different learning algorithms fight it out to select the
one that performs best for a particular problem.
186

187Ensemble techniques: Bagging, boosting, and stacking
 We will continue to work with the zoo dataset we were using in the previous chap-
ter. If you no longer have the zooTib, zooTask, and tunedTree objects defined in your
global environment (run ls() to find out), just rerun listings 7.1 through 7.8 from
the previous chapter.

8.1 Ensemble techniques: Bagging, boosting, and stacking
In this section, I’ll show you what ensemble methods are and how they can be used to
improve the performance of tree-based models. Imagine that you wanted to know
what a country’s views were on a particular issue. What would you consider to be a bet-
ter barometer of public opinion: the opinion of a single person you ask on the street,
or the collective vote of many people at the ballot box? In this scenario, the decision
tree is the single person on the street. You create a single model, pass it new data, and
ask its opinion as to what the predicted output should be. Ensemble methods, on the
other hand, are the collective vote.

 The idea behind ensemble methods is that instead of training a single model, you
train multiple models (sometimes hundreds or even thousands of models). Next, you
ask the opinion of each of those models as to what the predicted output should be for
new data. You then consider the votes from all the models when making the final pre-
diction. The idea is that predictions informed by a majority vote will have less variance
than predictions made by a lone model.

 There are three different ensemble methods:

 Bootstrap aggregating
 Boosting
 Stacking

Let’s discuss each of these in more detail.

8.1.1 Training models on sampled data: Bootstrap aggregating

In this section, I’ll explain the principle of the bootstrap aggregating ensemble
technique, and how this is used in an algorithm called random forest. Machine learn-
ing algorithms can be sensitive to noise resulting from outliers and measurement
error. If noisy data exists in our training set, then our models are more likely to have
high variance when making predictions on future data. How can we train a learner
that makes use of all the data available to us, but can look past this noisy data and
reduce prediction variance? The answer is to use bootstrap aggregating (or bagging
for short).

 The premise of bagging is quite simple:

1 Decide how many sub-models you’re going to train.
2 For each sub-model, randomly sample cases from the training set, with replace-

ment, until you have a sample the same size as the original training set.
3 Train a sub-model on each sample of cases.

188 CHAPTER 8 Improving decision trees with random forests and boosting

4 Pass new data through each sub-model, and let them vote on the prediction.
5 The modal prediction (the most frequent prediction) from all the sub-models is

used as the predicted output.

The most critical part of bagging is the random sampling of the cases. Imagine that
you’re playing Scrabble and have the bag of 100 letter tiles. Now imagine that you put
your hand into the bag, blindly rummage around a little, pull out a tile, and write
down what letter you got. This is taking a random sample. Then, crucially, you put the
tile back. This is called replacement, and sampling with replacement simply means put-
ting the values back after you’ve drawn them. This means the same value could be
drawn again. You continue to do this until you have drawn 100 random samples, the
same number as are in the bag to begin with. This process is called bootstrapping and is
an important technique in statistics and machine learning. Your bootstrap sample of
100 tiles should do a reasonable job of reflecting the frequencies of each letter in the
original bag.

 So why does training sub-models on bootstrap samples of the training set help us?
Imagine that cases are distributed over their feature space. Each time we take a boot-
strap sample, because we are sampling with replacement, we are more likely to select a
case near the center of that distribution than a case that lies near the extremes of the
distribution. Some of the bootstrap samples may contain many extreme values and
make poor predictions on their own, but here’s the second crucial part of bagging: we
aggregate the predictions of all these models. This simply means we let them all make
their predictions and then take the majority vote. The effect of this is a sort of averag-
ing out of all the models, which reduces the impact of noisy data and reduces overfit-
ting. Bagging for decision trees is illustrated in figure 8.1.

Original data

6

6 6

6

Random sample Random sample

R
an

do
m

sa
m

pl
e R

andom
sam

ple

Modal prediction

Figure 8.1 Bootstrap aggregating (bagging) with decision trees. Multiple decision trees are learned
in parallel, each one trained on a bootstrap sample of cases from the training set. When predicting
new data, each tree makes a prediction, and the modal (most frequent) prediction wins.

189Ensemble techniques: Bagging, boosting, and stacking

8.1.2

Bagging (and, as you’ll learn, boosting and stacking) is a technique that can be applied
to any supervised machine learning algorithm. Having said this, it works best on algo-
rithms that tend to create low-bias, high-variance models, such as decision trees. In
fact, there is a famous and very popular implementation of bagging for decision trees
called random forest. Why is it called random forest? Well, it uses many random samples
from the training set to train a decision tree. What do many trees make? A forest!

TIP Although the “no free lunch” theorem still applies (as mentioned in
chapter 1), individual decision trees seldom perform better than their ran-
dom forest counterparts. For this reason, I may build a decision tree to get a
broad understanding of the relationships in my data, but I tend to jump
straight in with an ensemble technique for predictive modeling.

So the random forest algorithm uses bagging to create a large number of trees. These
trees are saved as part of the model; when we pass the model new data, each tree
makes its own prediction, and the modal prediction is returned. The random forest
algorithm has one extra trick up its sleeve, however. At each node of a particular tree,
the algorithm randomly selects a proportion of the predictor variables it will consider
for that split. At the next node, the algorithm makes another random selection of pre-
dictor variables it will consider for that split, and so on. While this may seem counter-
intuitive, the result of randomly sampling cases and randomly sampling features is to
create individual trees that are highly uncorrelated.

NOTE If some variables in the data are highly predictive of the outcome, then
these variables will be selected as split criteria for many of the trees. Trees that
contain the same splits as each other don’t contribute any more information.
This is why it’s desirable to have uncorrelated trees, so that different trees
contribute different predictive information. Randomly sampling cases reduces
the impact that noise and outlying cases have on the model.

Learning from the previous models’ mistakes: Boosting

In this section, I’ll explain the principle of the boosting ensemble technique and how
it is used in algorithms called AdaBoost, XGBoost, and others. With bagging, the individ-
ual models are trained in parallel. In contrast, boosting is an ensemble technique
that, again, trains many individual models, but builds them sequentially. Each addi-
tional model seeks to correct the mistakes of the previous ensemble of models.

Just like bagging, boosting can be applied to any supervised machine learning
algorithm. However, boosting is most beneficial when using weak learners as the sub-
models. By weak learner, I don’t mean someone who keeps failing their driving test; I
mean a model that only does a little better at making predictions than a random
guess. For this reason, boosting has been traditionally applied to shallow decision
trees. By shallow, I mean a decision tree that doesn’t have many levels of depth, or may
have only a single split.

NOTE Decision trees with only one split are imaginatively called decision stumps.
You can see an example of a decision stump if you look back at figure 7.2.

190 CHAPTER 8 Improving decision trees with random forests and boosting
The function of boosting is to combine many weak learners together to form one strong
ensemble learner. The reason we use weak learners is that there is no improvement in
model performance when boosting with strong learners versus weak learners. So why
waste computational resources training hundreds of strong, probably more complex
learners, when we can get the same performance by training weak, less complex ones?

 There are two methods of boosting, which differ in the way they correct the mis-
takes of the previous set of models:

 Adaptive boosting
 Gradient boosting

WEIGHTING INCORRECTLY PREDICTED CASES: ADAPTIVE BOOSTING

There is only one well-known adaptive boosting algorithm, which is the famous Ada-
Boost algorithm published in 1997. AdaBoost works as follows. Initially, all cases in the
training set have the same importance, or weight. An initial model is trained on a boot-
strap sample of the training set where the probability of a case being sampled is pro-
portional to its weight (all equal at this point). The cases that this initial model
incorrectly classifies are given more weight/importance, while cases that it correctly
classifies are given less weight/importance.

 The next model takes another bootstrap sample from the training set, but the
weights are no longer equal. Remember that the probability of a case being sampled is
proportional to its weight. So, a case with twice as much weight as another case is twice
as likely to be sampled (and more likely to be sampled repeatedly). This ensures that
cases incorrectly classified by the previous model are more likely to be featured in the
bootstrap for the subsequent model. The subsequent model is therefore more likely
to learn rules that will correctly classify these cases.

 Once we have at least two models, the data are classified based on an aggregated
vote, just like in bagging. Cases that are incorrectly classified by the majority vote are
then given more weight, and cases that are correctly classified by the majority vote are
given less weight. Perhaps slightly confusingly, the models themselves also have a
weight. This model weight is based on how many mistakes a particular model makes
(more mistakes, less weight). If you only have two models in an ensemble, one of
which predicts group A and the other of which predicts group B, the model with the
higher weight wins the vote.

 This process continues: a new model is added to the ensemble, all the models vote,
weights are updated, and the next model samples the data based on the new weights.
Once we reach the maximum number of predefined trees, the process stops, and we
get our final ensemble model. This is illustrated in figure 8.2. Think about the impact
this is having: new models are correcting the mistakes of the previous set of models.
This is why boosting is an excellent way of reducing bias. However, just like bagging, it
also reduces variance, because we’re also taking bootstrap samples! When unseen
cases are passed to the final model for prediction, each tree votes individually (like in
bagging), but each vote is weighted by the model weight.

191Ensemble techniques: Bagging, boosting, and stacking
How are the model weights and case weights calculated?
The model weight is calculated as

model weight = 0.5 × ln
1 – p(incorrect)

p(incorrect)

where ln is the natural logarithm and p(incorrect) is the proportion of incorrectly clas-
sified cases.

The case weights are calculated as

 initial weight × e–model weight; if correctly classified
case weight =
 initial weight × emodel weight; if incorrectly classified

This notation simply means that for cases correctly classified, we use the formula on
the top; and for cases incorrectly classified, we use the formula on the bottom. The
only subtle difference is that the model weight is negative for cases that were cor-
rectly classified. Plug some numbers into these formulas: you’ll find that the formula
for correctly classified cases decreases their weight, while the formula for incorrectly
classified cases increases it.

Original data

11 11

Variable 1

V
ar

ia
bl

e
2

1. An initial tree builds
a weak model.

2. Case weights
are updated.

+

3. Both models vote to
form an ensemble model.

4. Case weights
are updated.

+

5. The new model
votes with the
current ensemble.

Random sample
Random sample

Random sample

Figure 8.2 Adaptive boosting with decision trees. An initial model is trained on a random sample
of the training set. Correctly classified cases get lower weights, while incorrectly classified cases
get higher weights (indicated by data point size). The probability of subsequent models sampling
each case is proportional to the case’s weight. As trees are added, they vote to form an ensemble
model, the predictions of which are used to update the weights at every iteration.

192 CHAPTER 8 Improving decision trees with random forests and boosting
LEARNING FROM THE PREVIOUS MODELS’ RESIDUALS: GRADIENT BOOSTING

Gradient boosting is very similar to adaptive boosting, only differing in the way it cor-
rects the mistakes of the previous models. Rather than weighting the cases differently
depending on the accuracy of their classification, subsequent models try to predict
the residuals of the previous ensemble of models.

 A residual, or residual error, is the difference between the true value (the “observed”
value) and the value predicted by a model. This is easier to understand when thinking
about predicting a continuous variable (regression). Imagine that you’re trying to
predict how much debt a person has. If an individual has a real debt of $2,500, but our
model predicts they have a debt of $2,100, the residual is $400. It’s called a residual
because it’s the error left over after the model has made its prediction.

 It’s a bit harder to think of a residual for a classification model, but we can quantify
the residual error of a classification model as

 The proportion of all cases incorrectly classified
 The log loss

The proportion of cases that were misclassified is pretty self-explanatory. The log loss
is similar but more greatly penalizes a model that makes incorrect classifications confi-
dently. If your friend tells you with “absolute certainty” that Helsinki is the capital of
Sweden (it’s not), you’d think less of them than if they said they “think it might be”
the capital. This is how log loss treats misclassification error. For either method, mod-
els that give the correct classifications will have a lower error than those that make lots
of misclassifications. Which method is better? Once again it depends, so we’ll let
hyperparameter tuning choose the best one.

NOTE Using the proportion of misclassified cases as the residual error tends
to result in models that are a little more tolerant of a small number of misclas-
sified cases than using the log loss. These measures of residual error that are
minimized at each iteration are called loss functions.

So in gradient boosting, subsequent models are chosen that minimize the residual
error of the previous ensemble of models. By minimizing the residual error, subse-
quent models will, in effect, favor the correct classification of cases that were previ-
ously misclassified (thereby modeling the residuals).

Calculating log loss
It isn’t necessary for you to know the formula for log loss, but for math buffs who are
interested, it is calculated as

log loss = – –1
N

ΣN
i=1 ΣK

k=1 yik ln(pik)

where N is the number of cases, K is the number of classes, ln is the natural loga-
rithm, yik is an indicator as to whether label k is the correct classification for case i,

193Ensemble techniques: Bagging, boosting, and stacking
Gradient boosting doesn’t necessarily train sub-models on samples of the training set.
If we choose to sample the training set, the process is called stochastic gradient boosting
(stochastic just means “random,” but it is a good word to impress your friends with).
Sampling in stochastic gradient descent is usually without replacement, which means it
isn’t a bootstrap sample. We don’t need to replace each case during sampling because
it’s not important to sample cases based on their weights (like in AdaBoost) and there
is little impact on performance. Just like for AdaBoost and random forest, it’s a good
idea to sample the training set, because doing so reduces variance. The proportion of
cases we sample from the training set can be tuned as a hyperparameter.

 There are a number of gradient boosting algorithms around, but probably the best
known is the XGBoost (extreme gradient boosting) algorithm. Published in 2014,
XGBoost is an extremely popular classification and regression algorithm. Its popular-
ity is due to how well it performs on a wide range of tasks, as it tends to outperform
most other supervised learning algorithms. Many Kaggle (an online community that
runs machine learning competitions) data science competitions have been won using
XGBoost, and it has become the supervised learning algorithm many data scientists
try before anything else.

 While XGBoost is an implementation of gradient boosting, it has a few tricks up its
sleeve:

 It can build different branches of each tree in parallel, speeding up model
building.

 It can handle missing data.
 It employs regularization. You’ll learn more about this in chapter 11, but it pre-

vents individual predictors from having too large of an impact on predictions
(this helps to prevent overfitting).

TIP There are even more recent gradient boosting algorithms available,
such as LightGBM and CatBoost. These are not currently wrapped by the mlr
package, so we’ll stick with XGBoost, but feel free to explore them yourself!

and pik is the proportion of cases belonging to the same class as case i that were
correctly classified. We can read this as follows:

1 For every case in the training set:
a Take the proportion of cases belonging to the same class as that case

that were correctly classified.
b Take the natural logarithm of these proportions.

2 Sum these logs.
3 Multiply by –1 / N.

194 CHAPTER 8 Improving decision trees with random forests and boosting
Learning from predictions made by other models: Stacking8.1.3

In this section, I’ll explain the principle of the stacking ensemble technique and how
it is used to combine predictions from multiple algorithms. Stacking is an ensemble
technique that, while valuable, isn’t as commonly used as bagging and boosting. For
this reason, I won’t discuss it in a lot of detail, but if you’re interested in learning
more, I recommend Ensemble Methods: Foundations and Algorithms by Zhi-Hua Zhou
(Chapman and Hall/CRC, 2012).

 In bagging and boosting, the learners are often (but don’t always have to be) homo-
geneous. Put another way, all of the sub-models were learned by the same algorithm
(decision trees). Stacking explicitly uses different algorithms to learn the sub-models.
For example, we may choose to use the kNN algorithm (from chapter 3), logistic
regression algorithm (from chapter 4), and the SVM algorithm (from chapter 6) to
build three independent base models.

 The idea behind stacking is that we create base models that are good at learning
different patterns in the feature space. One model may then be good at predicting in
one area of the feature space but makes mistakes in another area. One of the other
models may do a good job of predicting values in an area of the feature space where
the others do poorly. So here’s the key in stacking: the predictions made by the base
models are used as predictor variables (along with all the original predictors) by
another model: the stacked model. This stacked model is then able to learn from the
predictions made by the base models to make more accurate predictions of its own.
Stacking can be tedious and complicated to implement, but it usually results in
improved model performance if you use base learners that are different enough from
each other.

 I hope I’ve conveyed a basic understanding of ensemble techniques, in particular
the random forest and XGBoost algorithms. In the next section, we’ll use these two
algorithms to train models on our zoo task and see which performs the best!

NOTE Ensemble methods like bagging, boosting, and stacking are not strictly
machine learning algorithms in their own right. They are algorithms that can
be applied to other machine learning algorithms. For example, I’ve described
bagging and boosting here as being applied to decision trees. This is because
ensembling is most commonly applied to tree-based learners; but we could
just as easily apply bagging and boosting to other machine learning algo-
rithms, such as kNN and linear regression.

Building your first random forest model8.2
In this section, I’ll show you how to build a random forest model (using bootstrapping
to train many trees and aggregating their predictions) and how to tune its hyperpa-
rameters. There are four important hyperparameters for us to consider:

 ntree—The number of individual trees in the forest
 mtry—The number of features to randomly sample at each node

195Building your first random forest model
 nodesize—The minimum number of cases allowed in a leaf (the same as min-
bucket in rpart)

 maxnodes—The maximum number of leaves allowed

Because we’re aggregating the votes of many trees in random forest, the more trees we
have, the better. There is no downside to having more trees aside from computational
cost: at some point, we get diminishing returns. Rather than tuning this value, I usu-
ally fix it to a number of trees I know fits my computational budget, generally several
hundred to the low thousands. Later in this section, I’ll show you how to tell if you’ve
used enough trees, or if you can reduce your tree number to speed up training times.

 The other three hyperparameters—mtry, nodesize, and maxnodes—will need tuning,
though, so let’s get started. We’ll continue with our zooTask that we defined in the last
chapter (if you no longer have zooTask defined in your global environment, just
rerun listings 7.1, 7.2, and 7.3). The first thing to do is create a learner with the make-
Learner() function. This time, our learner is "classif.randomForest":

forest <- makeLearner("classif.randomForest")

Next, we’ll create the hyperparameter space we’re going to tune over. To begin with, we
want to fix the number of trees at 300, so we simply specify lower = 300 and upper = 300
in its makeIntegerParam() call. We have 16 predictor variables in our dataset, so let’s
search for an optimal value of mtry between 6 and 12. Because some of our groups are
very small (probably too small), we’ll need to allow our leaves to have a small number of
cases in them, so we’ll tune nodesize between 1 and 5. Finally, we don’t want to constrain
the tree size too much, so we’ll search for a maxnodes value between 5 and 20.

forestParamSpace <- makeParamSet(
makeIntegerParam("ntree", lower = 300, upper = 300),
makeIntegerParam("mtry", lower = 6, upper = 12),
makeIntegerParam("nodesize", lower = 1, upper = 5),
makeIntegerParam("maxnodes", lower = 5, upper = 20))

100)=<- makeTuneControlRandom(maxitrandSearch

5)=iters<- makeResampleDesc("CV",cvForTuning

parallelStartSocket(cpus = detectCores())

tunedForestPars <- tuneParams(forest, task = zooTask,
resampling = cvForTuning,
par.set = forestParamSpace,
control = randSearch)

parallelStop()

tunedForestPars

Tuning the random forest hyperparametersListing 8.1

Creates the
hyperparameter
tuning space

Defines a random search
method with 100 iterations

Defines a 5-fold
cross-validation
strategy

Tunes the
hyperparameters

Prints the
tuning results

196 CHAPTER 8 Improving decision trees with random forests and boosting
Tune result:
Op. pars: ntree=300; mtry=11; nodesize=1; maxnodes=13
mmce.test.mean=0.0100

Now let’s train a final model by using setHyperPars() to make a learner with our
tuned hyperparameters, and then passing it to the train() function:

tunedForest <- setHyperPars(forest, par.vals = tunedForestPars$x)

tunedForestModel <- train(tunedForest, zooTask)

How do we know if we’ve included enough trees in our forest? We can plot the mean
out-of-bag error against the tree number. When building a random forest, remember
that we take a bootstrap sample of cases for each tree. The out-of-bag error is the
mean prediction error for each case, by trees that did not include that case in their
bootstrap. Out-of-bag error estimation is specific to algorithms that use bagging and
allows us to estimate the performance of the forest as it grows.

 The first thing we need to do is extract the model information using the
getLearnerModel() function. Then we can simply call plot() on this model data
object (specifying what colors and linetypes to use for each class). Let’s add a legend
using the legend() function so we know what we’re looking at.

forestModelData <- getLearnerModel(tunedForestModel)

species <- colnames(forestModelData$err.rate)

plot(forestModelData, col = 1:length(species), lty = 1:length(species))

legend("topright", species,
col = 1:length(species),
lty = 1:length(species))

The resulting plot is shown in figure 8.3. You won’t be able to see the line color in
the print version of the book, but you will in the ebook or if you reproduce the plot
yourself in R. The plot shows the mean out-of-bag error for each class (separate lines
and a line for the mean) against different numbers of trees in the forest. Can you
see that once we have at least 100 trees in the forest, our error estimates stabilize?
This indicates that we have enough trees in our forest (and could even use fewer). If
you train a model and the mean out-of-bag error doesn’t stabilize, you should add
more trees!

 Okay, so we’re happy there are enough trees in our forest. Now let’s properly cross-
validate our model-building procedure, including hyperparameter tuning. We’ll start
by defining our outer cross-validation strategy as ordinary 5-fold cross-validation.

Plotting the out-of-bag errorListing 8.2

197Building your first random forest model
outer <- makeResampleDesc("CV", iters = 5)

forestWrapper <- makeTuneWrapper("classif.randomForest",
resampling = cvForTuning,
par.set = forestParamSpace,
control = randSearch)

parallelStartSocket(cpus = detectCores())

cvWithTuning <- resample(forestWrapper, zooTask, resampling = outer)

parallelStop()

cvWithTuning

Resample Result
Task: zooTib
Learner: classif.randomForest.tuned
Aggr perf: mmce.test.mean=0.0400
Runtime: 66.1805

Wow! Look how much better our random forest model performs compared to our
original decision tree (remind yourself by looking at listing 7.12 in the last chapter)!

Cross-validating the model-building processListing 8.3

forestModelData

300250200150100500
trees

OOB

reptile

amphibian

mollusc.et.al

mammal
bird
fish

insect

OOB

reptile

amphibian

mollusc.et.al

mammal

0.0

E
rr

or

0.2

0.4

0.6

0.8

bird

fish

insect

Figure 8.3 Plotting the mean out-of-bag error against tree number. For a given forest size during
training, the mean out-of-bag error is plotted on the y-axis for each class (different lines) and for
the overall out of bag (OOB) error. The out-of-bag error is the mean prediction error for each case,
by trees that did not include that case in their bootstrap sample. The y-axis shows the mean out-
of-bag error across all cases.

198 CHAPTER 8 Improving decision trees with random forests and boosting
Bagging has greatly improved our classification accuracy. Next, let’s see if XGBoost
can do even better.

Building your first XGBoost model8.3
In this section, I’ll show you how to build an XGBoost model and how to tune its
hyperparameters. There are eight (!) important hyperparameters for us to consider:

 eta—Known as the learning rate. This is a number between 0 and 1, which model
weights are multiplied by to give their final weight. Setting this value below 1
slows down the learning process because it “shrinks” the improvements made
by each additional model. Preventing the ensemble from learning too quickly
prevents overfitting. A low value is generally better but will make model train-
ing take much longer because many model sub-models are needed to achieve
good prediction accuracy.

 gamma—The minimum amount of splitting by which a node must improve the
predictions. Similar to the cp value we tuned for rpart.

 max_depth—The maximum levels deep that each tree can grow.
 min_child_weight—The minimum degree of impurity needed in a node before

attempting to split it (if a node is pure enough, don’t try to split it again).
 subsample—The proportion of cases to be randomly sampled (without replace-

ment) for each tree. Setting this to 1 uses all the cases in the training set.
 colsample_bytree—The proportion of predictor variables sampled for each tree.

We could also tune colsample_bylevel and colsample_bynode, which instead sample
predictors for each level of depth in a tree and at each node, respectively.

 nrounds—The number of sequentially built trees in the model.
 eval_metric—The type of residual error/loss function we’re going to use. For multi-

class classification, this will either be the proportion of cases that were incorrectly
classified (called merror by XGBoost) or the log loss (called mlogloss by XGBoost).

The first thing to do is create a learner with the makeLearner() function. This time,
our learner is "classif.xgboost":

xgb <- makeLearner("classif.xgboost")

Irritatingly, XGBoost only likes to play with numerical predictor variables. Our predic-
tors are currently factors, so we’ll need to mutate them into numerics and then define
a new task with this mutated tibble. I’ve used the mutate_at() function to convert all
the variables except type (by setting .vars = vars(-type)) into numerics (by setting
.funs = as.numeric).

zooXgb <- mutate_at(zooTib, .vars = vars(-type), .funs = as.numeric)

xgbTask <- makeClassifTask(data = zooXgb, target = "type")

Converting factors into numericsListing 8.4

199Building your first XGBoost model
NOTE In our example, it doesn’t make a difference that our predictors are all
numeric. This is because most of our predictors are binary except legs, which
makes sense as a numeric variable. However, if we have a factor with many dis-
crete levels, does it make sense to treat it as numeric? In theory, no; but in
practice, it can work quite well. We simply recode each level of the factor as
an arbitrary integer and let the decision tree find the best split for us. This is
called numerical encoding (and is what we’ve done to the variables in our data-
set). You may have heard of another method of encoding categorical features
called one-hot encoding. While I won’t discuss one-hot encoding here, I want to
mention that one-hot encoding factors for tree-based models often results in
poor performance.

Now we can define our hyperparameter space for tuning.

WARNING This takes about 3 minutes on my four-core machine.

xgbParamSpace <- makeParamSet(
makeNumericParam("eta", lower = 0, upper = 1),
makeNumericParam("gamma", lower = 0, upper = 5),
makeIntegerParam("max_depth", lower = 1, upper = 5),
makeNumericParam("min_child_weight", lower = 1, upper = 10),
makeNumericParam("subsample", lower = 0.5, upper = 1),
makeNumericParam("colsample_bytree", lower = 0.5, upper = 1),
makeIntegerParam("nrounds", lower = 20, upper = 20),
makeDiscreteParam("eval_metric", values = c("merror", "mlogloss")))

randSearch <- makeTuneControlRandom(maxit = 1000)

cvForTuning <- makeResampleDesc("CV", iters = 5)

tunedXgbPars <- tuneParams(xgb, task = xgbTask,
resampling = cvForTuning,
par.set = xgbParamSpace,
control = randSearch)

tunedXgbPars

Tune result:
Op. pars: eta=0.669; gamma=0.368; max_depth=1; min_child_weight=1.26;
subsample=0.993; colsample_bytree=0.847; nrounds=10;
eval_metric=mlogloss; mmce.test.mean=0.0190

Because more trees are usually better until we stop seeing a benefit, I don’t usually
tune the nrounds hyperparameter but set it based on my computational budget to start
with (here I’ve set it to 20 by making the lower and upper arguments the same). Once
we’ve built the model, we can check if the error flattens out after a certain number of
trees and decide if we need more or can use fewer (just like we did for the random for-
est model).

Tuning XGBoost hyperparametersListing 8.5

200 CHAPTER 8 Improving decision trees with random forests and boosting

 Once we’ve defined our hyperparameter space, we define our search method as a
random search with 1,000 iterations. I like to set the number of iterations as high as I
can, especially as we’re tuning so many hyperparameters simultaneously. We define
our cross-validation strategy as ordinary 5-fold cross-validation and then run the tun-
ing procedure. Because XGBoost will use all of our cores to parallelize the building of
each tree (take a look at your CPU usage during hyperparameter tuning), we won’t
parallelize the tuning procedure as well.

 Now let’s train our final XGBoost model using our tuned hyperparameters. You
should be starting to get familiar with this now. We first use setHyperPars() to make a
learner, and then pass it to the train() function.

tunedXgb <- setHyperPars(xgb, par.vals = tunedXgbPars$x)

tunedXgbModel <- train(tunedXgb, xgbTask)

Let’s plot the loss function against the iteration number to get an idea of whether we
included enough trees.

Training the final tuned modelListing 8.6

Plotting iteration number against log lossListing 8.7

xgbModelData <- getLearnerModel(tunedXgbModel)

ggplot(xgbModelData$evaluation_log, aes(iter, train_mlogloss)) +
geom_line() +
geom_point()

First, we extract the model data using getLearnerModel(). Next, we can extract a data
frame containing the loss function data for each iteration with the $evaluation_log

component of the model data. This contains the columns iter (iteration number)
and train_mlogloss (the log loss for that iteration). We can plot these against each
other to see if the loss has flattened out (indicating that we have trained enough
trees).

NOTE My hyperparameter tuning selected log loss as the best loss function. If
yours selected classification error, you will need to use $train_merror here
instead of $train_mlogloss.

The resulting plot from listing 8.7 is shown in figure 8.4. Can you see that the log loss
flattens out after around 15 iterations? This means we’ve trained enough trees and
aren’t wasting computational resources by training too many.

It’s also possible to plot the individual trees in the ensemble, which is a nice way of
interpreting the model-building process (unless you have a huge number of trees).
For this, we need to install the DiagrammeR package first and then pass the model
data object as an argument to the XGBoost package function xgb.plot.tree(). We
can also specify which trees to plot with the trees argument.

201Building your first XGBoost model

install.packages("DiagrammeR")
xgboost::xgb.plot.tree(model = xgbModelData, trees = 1:5)

The resulting graphic is shown in figure 8.5. Notice that the trees we’re using are shal-
low, and some are decision stumps (tree 2 doesn’t even have a split).

TIP I won’t discuss the information shown in each node in figure 8.5, but for a
better understanding you can run ?xgboost::xgb.plot.tree. You can also rep-
resent the final ensemble as a single tree structure by using xgboost::xgb
.plot.multi.trees(xgbModelData); this helps you to interpret your model
as a whole.

Finally, let’s cross-validate our model-building process exactly as we did for our ran-
dom forest and rpart models.

WARNING This takes nearly 15 minutes on my four-core machine! I strongly
suggest you do something else during this time.

Plotting individual decision treesListing 8.8

Plotting individual decision treesListing 8.9

0.2

0.4

0.6

0.8

2015105
iter

tr
ai

n_
m

lo
gl

os
s

Figure 8.4 Plotting log loss against the number of trees during model
building. The curve flattens out after 15 trees, suggesting there is no benefit
to adding more trees to the model.

outer <- makeResampleDesc("CV", iters = 3)

xgbWrapper <- makeTuneWrapper("classif.xgboost",
resampling = cvForTuning,
par.set = xgbParamSpace,
control = randSearch)

cvWithTuning <- resample(xgbWrapper, xgbTask, resampling = outer)

cvWithTuning

202 CHAPTER 8 Improving decision trees with random forests and boosting
Resample Result
Task: zooXgb
Learner: classif.xgboost.tuned
Aggr perf: mmce.test.mean=0.0390
Runtime: 890.29

Phenomenal! The cross-validation estimates that our model has an accuracy of 1 – 0.039
= 0.961 = 96.1%! Go XGBoost!

< 1.5

< 3

< 1.5

< 1.5

< 1.5

4.5

< 1.5

< 5.5

< 1.5

< 1.5

< 1.5

< 1

< 1.5 Leaf
Cover: 15.4285727

Value: -0.362690508

Leaf
Cover: 2.20408177
Value: 1.59399021

Tree 1
feathers

Cover: 17.6326542
Gain: 23.4149647

Tree 2
Leaf

Cover: 16.8979607
Value: -0.29063949

Leaf
Cover: 3.67346954
Value: 1.11306036

Leaf
Cover: 14.938777
Value: -0.3619681

Tree 3
legs

Cover: 18.6122456
Gain: 17.9365501

Leaf
Cover: 12.2448988

Value: -0.357039958

Tree 6
legs

Cover: 16.1632671
Gain: 5.80118799

Tree 7
hair

Cover: 21.0578575
Gain: 7.01593399

tail
Cover: 13.7142868
Gain: 1.69104981

Leaf
Cover: 2.44897985
Value: 0.685558975

fins
Cover: 8.85165596
Gain: 0.512999058

Leaf
Cover: 12.2062016
Value: 0.477651685

Leaf
Cover: 1.71428585
Value: 0.243914649

Leaf
Cover: 12.000001

Value: -0.356490672

Leaf
Cover: 5.94643211

Value: -0.361681968

Leaf
Cover: 2.90522408

Value: -0.0222302489

Leaf
Cover: 7.49535084

Value: -0.318649173

Leaf
Cover: 4.48258972
Value: 0.521009684

Tree 8
feathers

ver: 11.9779406
ain: 5.3594451

Leaf
Cover: 1.71428585
Value: 0.487829357

Leaf
Cover: 1.46938789

Value: -0.229803905

legs
Cover: 6.76579905
Gain: 0.849037945

Leaf
Cover: 4.63884163

Value: -0.293407112

Leaf
Cover: 1.70344758
Value: 0.254033238

Leaf
Cover: 5.06235123

Value: -0.194224045

Leaf
Cover: 15.4285727

Value: -0.362690508

Leaf
Cover: 1.95918381
Value: 0.862953246

Tree 4
aquatic

Cover: 19.1020412
Gain: 0.68087554 breathes

Cover: 6.8571434
Gain: 1.16745508

Tree 5
legs

Cover: 17.3877563
Gain: 8.51961899

Leaf
Cover: 3.67346954

Value: -0.303561926

catsize
Cover: 3.18367362
Gain: 1.45900977

Tree 9
hair

Cover: 11.4046402
Gain: 0.331886411

Plotting individual trees from our XGBoost modelFigure 8.5

203Benchmarking algorithms against each other

Strengths and weaknesses of tree-based algorithms8.4
While it often isn’t easy to tell which algorithms will perform well for a given task, here
are some strengths and weaknesses that will help you decide whether random forest
or XGBoost will perform well for you.

 The strengths of the random forest and XGBoost algorithms are as follows:

 They can handle categorical and continuous predictor variables (though XGBoost
requires some numerical encoding).

 They make no assumptions about the distribution of the predictor variables.
 They can handle missing values in sensible ways.
 They can handle continuous variables on different scales.
 Ensemble techniques can drastically improve model performance over individ-

ual trees. XGBoost in particular is excellent at reducing both bias and variance.

The weaknesses of tree-based algorithms are these:

 Random forest reduces variance compared to rpart but does not reduce bias
(XGBoost reduces both).

 XGBoost can be computationally expensive to tune because it has many hyper-
parameters and grows trees sequentially.

Benchmarking algorithms against each other8.5
In this section, I’ll teach you what benchmarking is, and we’ll use it to compare the
performance of several algorithms on a particular task. The classification drawer of
your toolbox has lots of algorithms in it now! Experience is a great way to choose an
algorithm for a particular task. But remember, we are always subject to the “no free
lunch” theorem. You may find yourself surprised sometimes that a simpler algo-
rithm outperforms a more complex one for a particular task. A good way of deciding
which algorithm will perform best on a particular task is to perform a benchmarking
experiment.

 Benchmarking is simple. You create a list of learners you’re interested in trying,
and let them fight it out to find the one that learns the best-performing model. Let’s
do this with xgbTask.

Plotting individual decision treesListing 8.10

learners = list(makeLearner("classif.knn"),
makeLearner("classif.LiblineaRL1LogReg"),
makeLearner("classif.svm"),
tunedTree,
tunedForest,
tunedXgb)

benchCV <- makeResampleDesc("RepCV", folds = 10, reps = 5)

bench <- benchmark(learners, xgbTask, benchCV)

204 CHAPTER 8 Improving decision trees with random forests and boosting

bench

task.id learner.id mmce.test.mean
1 zooXgb classif.knn 0.03182
2 zooXgb classif.LiblineaRL1LogReg 0.09091
3 zooXgb classif.svm 0.07109
4 zooXgb classif.rpart 0.09891
5 zooXgb classif.randomForest 0.03200
6 zooXgb classif.xgboost 0.04564

First, we create a list of learner algorithms including k-nearest neighbors ("classif
.knn"), multinomial logistic regression ("classif.LiblineaRL1LogReg"), support
vector machine ("classif.svm"), our tunedTree model that we trained in the previ-
ous chapter, and the tunedForest and tunedXgb models that we trained in this chap-
ter. If you no longer have the tunedTree model defined in your global environment,
rerun listings 7.1 through 7.8.

NOTE This isn’t quite a fair comparison, because the first three learners will
be trained using default hyperparameters, whereas the tree-based models
have been tuned.

We define our cross-validation method using makeResampleDesc(). This time, I’ve
opted for 10-fold cross-validation repeated 5 times. It’s important to note that mlr is
clever here: while the data is partitioned randomly into folds for each repeat, the same
partitioning is used for every learner. Put more plainly, for each cross-validation repeat,
each learner in the benchmark gets exactly the same training set and test set.

Finally, we use the benchmark() function to run the benchmark experiment. The
first argument is the list of learners, the second argument is the name of the task, and
the third argument is the cross-validation method.

What did I tell you about no free lunches? The humble k-nearest neighbors is per-
forming better on this task than the mighty XGBoost algorithm—even though we
didn’t tune it!

Summary
 The random forest and XGBoost algorithms are supervised learners for both

classification and regression problems.
 Ensemble techniques construct multiple sub-models to result in a model that

performs better than any one of its components alone.
 Bagging is an ensemble technique that trains multiple sub-models in parallel on

bootstrap samples of the training set. Each sub-model then votes on the predic-
tion for new cases. Random forest is an example of a bagging algorithm.

 Boosting is an ensemble technique that trains multiple sub-models sequentially,
where each subsequent sub-model focuses on the mistakes of the previous set of
sub-models. AdaBoost and XGBoost are examples of boosting algorithms.

 Benchmarking allows us to compare the performance of multiple algorithms/
models on a single task.

Part 3

Regression

Take a moment to look back on what you’ve learned so far. Assuming you’ve
completed parts 1 and 2 of this book, you now possess the skills you need to
tackle a large range of classification problems. In this part of the book, we’ll shift
our focus from predicting categorical variables to predicting continuous ones.

 As you learned in chapter 1, we use the term regression for supervised machine
learning that predicts a continuous outcome variable. In chapters 9 through 12,
you’re going to learn a variety of regression algorithms that will help you deal
with different data situations. Some of them are suited to situations in which
there are linear relationships between predictor variables and your outcome,
and are highly interpretable. Others are able to model nonlinear relationships
but may not be quite so interpretable.

 We’ll start by covering linear regression—which, as you’ll learn, is closely
related to the logistic regression we worked with in chapter 4. In fact, if you’re
already familiar with linear regression, you may be wondering why I’ve waited until
now to cover linear regression, when the theory of logistic regression is built on
it. It’s because to make your learning more simple and enjoyable, I wanted to
cover classification, regression, dimension reduction, and clustering separately,
so each of these topics is distinct in your mind. But I hope the theory we’ll cover
in this next part will solidify your understanding of logistic regression.

Linear regression
Our first stop in part 3, “Regression,” brings us to linear regression. A classical and
commonly used statistical method, linear regression builds predictive models by
estimating the strength of the relationship between our predictor variables and our
outcome variable. Linear regression is so named because it assumes the relation-
ships between the predictor variables with the outcome variable are linear. Linear
regression can handle both continuous and categorical predictor variables, and I’ll
show you how in this chapter.

 By the end of this chapter, I hope you’ll understand a general approach to
regression problems with mlr, and how this differs from classification. In particular,
you’ll understand the different performance metrics we use for regression tasks,
because mean misclassification error (MMCE) is no longer meaningful. I’ll also

This chapter covers
 Working with linear regression

 Performance metrics for regression tasks

 Using machine learning algorithms to impute
missing values

 Performing feature selection algorithmically

 Combining preprocessing wrappers in mlr
207

208 CHAPTER 9 Linear regression

show you, as I promised in chapter 4, more sophisticated approaches to missing value
imputation and feature selection. Finally, I’ll cover how to combine as many prepro-
cessing steps as we like using sequential wrappers, so we can include them in our
cross-validation.

What is linear regression?9.1
In this section, you’ll learn what linear regression is and how it uses the equation of a
straight line to make predictions. Imagine that you want to predict the pH of batches
of cider, based on the amount of apple content in each batch (in kilograms). An
example of what this relationship might look like is shown in figure 9.1.

Apple content (Kg)

C
id

er
 p

H

0 1 2 3
3.1

3.9

3.3

3.5

3.7

Figure 9.1 Imaginary data of how the pH of cider
batches changes with apple content

NOTE Recall from high school chemistry that the lower the pH, the more
acidic a substance is.

The relationship between apple weight and cider pH appears linear, and we could
model this relationship using a straight line. Recall from chapter 1 that the only
parameters needed to describe a straight line are the slope and intercept:

y = intercept + slope × x

y is the outcome variable, x is the predictor variable, the intercept is the value of y
when x is zero (where the line crosses the y-axis), and the slope is how much y changes
when x increases by one unit.

NOTE Interpreting the slope is useful because it tells us about how the out-
come variable changes with the predictor(s), but interpreting the intercept is
usually not so straightforward (or useful). For example, a model that predicts
a spring’s tension from its length might have a positive intercept, suggesting
that a spring of zero length has tension! If all the variables are centered to
have a mean of zero, then the intercept can be interpreted as the value of y at
the mean of x (which is often more useful information). Centering your vari-
ables like this doesn’t affect the slopes because the relationships between vari-
ables remain the same. Therefore, predictions made by linear regression
models are unaffected by centering and scaling your data.

209What is linear regression?

If you were to read this out loud in plain English, you would say: “For any particular
case, the value of the outcome variable, y, is the model intercept, plus the value of the
predictor variable, x, times its slope.”

 Statisticians write this equation as

y = β0 + β1x1 + ε

where β0 is the intercept, β1 is the slope for variable x1, and ε is the unobserved error
unaccounted for by the model.

NOTE The parameters (also called coefficients) of a linear regression model
are only estimates of the true values. This is because we are typically only
working with a finite sample from the wider population. The only way to
derive the true parameter values would be to measure the entire population,
something that is usually impossible.

So to learn a model that can predict pH from apple weight, we need a way to estimate
the intercept and slope of a straight line that best represents this relationship.

 Linear regression isn’t technically an algorithm. Rather, it’s the approach to mod-
eling relationships using the straight-line equation. We could use a few different algo-
rithms to estimate the intercept and slope of a straight line. For simple situations like
our cider pH problem, the most common algorithm is ordinary least squares (OLS).

 The job of OLS is to learn the combination of values for the intercept and slope
that minimizes the residual sum of squares. We came across the concept of a residual in
chapter 7 as the amount of information left unexplained by a model. In linear regres-
sion, we can visualize this as the vertical distance (along the y-axis) between a case and
the straight line. But OLS doesn’t just consider the raw distances between each case
and the line: it squares them first and then adds them all up (hence, sum of squares).
This is illustrated for our cider example in figure 9.2.

Apple content (Kg)

C
id

er
 p

H

0

β0
β1

1 2 3
3.1

3.9

3.3

3.5

3.7

Δy

Δx

yΔ

Δx

=

=

=

–0.105
1

–0.105

Residual Squared
residual

Figure 9.2 Finding the least squares line
through the data. Residuals are the vertical
distances between the cases and the line.
The area of the boxes represents the squared
residuals for three of the cases. The intercept
(β0) is where the line hits the y-axis when x = 0.
The slope is the change in y (Δy) divided by
the change in x (Δx).

Why does OLS square the distances? You may read that this is because it makes any
negative residuals (for cases that lie below the line) positive, so they contribute to the
sum of squares rather than subtract from it. This is certainly a handy by-product of

210 CHAPTER 9 Linear regression
squaring, but if that was true, we would simply use |residual | to denote the absolute
value (removing the negative sign). We use the squared residuals so that we dispropor-
tionately penalize cases that are far away from their predicted value.

What if we have multiple predictors?9.1.1

OLS finds the combination of slope and intercept that minimizes the sum of squares,
and the line learned in this way will be the one that best fits the data. But regression
problems are rarely as simplistic as trying to predict an outcome with a single predic-
tor; what about when we have multiple predictor variables? Let’s add another variable
to our cider pH problem: fermentation time (see figure 9.3).

When we have multiple predictors, a slope is estimated for each (using OLS), and the
contributions of each variable are added together linearly, along with the model inter-
cept (which is now the value of y when each predictor equals zero). The slopes in lin-
ear regression tell us how the outcome variable changes for a one-unit increase in
each predictor while holding all other predictors constant. In other words, the slopes tell us
how the outcome changes when we change the predictor variables, one at a time. For
example, our two-predictor cider model would look like this:

y = β0 + βapples × apples + βfermentation × fermentation + ε

NOTE You will sometimes see linear regression with a single predictor and
regression with multiple predictors described as simple linear regression and
multiple regression, respectively. I find this distinction a little unnecessary, how-
ever, because we rarely work with only a single predictor.

When we have two predictors, our line becomes a surface/plane. You can see this
illustrated for our cider example in figure 9.4. When we have more than two predic-
tors, our plane becomes a hyperplane. Indeed, our straight-line equation can be gen-
eralized to any number of predictors

y = β0 + β1x1 + β2x2 … βkxk + ε

Apple content (Kg)

C
id

er
 p

H

0 1 2 3
3.1

3.9

3.3

3.5

3.7

Figure 9.3 Adding an additional variable: the size
of each dot corresponds to the fermentation time of
each cider batch.

211What is linear regression?
where there are k predictors in the model. This is called the general linear model, and it
is the central equation of all linear models. If you’re coming from a traditional statisti-
cal modeling background, you may be familiar with t tests and analysis of variance.
These approaches all use the general linear model to represent the relationships
between the predictor variables and the outcome.

NOTE The general linear model is not quite the same as the generalized linear
model, which refers to a class of models that allow different distributions for
the outcome variable. I’ll talk about the generalized linear model soon.

Do you recognize the general linear model? You saw something similar to it when we
covered logistic regression in chapter 4. In fact, everything on the right side of the
equation is identical. The only difference is what was on the left side of the equals
sign. Recall that in logistic regression, we predict the log odds of a case belonging to
a particular class. In linear regression, we simply predict the case’s value of the out-
come variable.

Apple content (Kg)

0

1

2

3

3.0

3.2

3.4

3.6

3.8

4.0

C
id

er
 p

H

Fe
rm

en
ta

tio
n

tim
e

(d
ay

s)

10

12

14

16

18

Residuals

Figure 9.4 Representing a linear model with two predictors. Combining
apple content and fermentation time in our linear model can be represented
as a surface. The solid lines show the residual error for each case (its
vertical distance from the surface).

212 CHAPTER 9 Linear regression

When interpretability is as or more important than performance
While another regression algorithm may perform better for a particular task, models
formulated using the general linear model are often favored for how interpretable they
are. The slopes tell you how much the outcome variable changes with a one-unit
increase of each predictor variable, holding all other variables constant.

There are other algorithms that may learn models that perform better on a particular
task but aren’t as interpretable. Such models are often described as being black
boxes, where the model takes input and gives output, but it’s not easy to see and/or
interpret the rules inside the model that led to that particular output. Random forest,
XGBoost, and SVMs are examples of black-box models.

So when would we prefer an interpretable model (such as a linear regression model),
over a black-box model that performs better? Well, one example is if our model has
the potential to discriminate. Imagine if a model incorporated bias against women
during training. It might be difficult to detect this immediately using a black-box
model, whereas if we can interpret the rules, we can check for such biases. A similar
consideration is safety, where it’s imperative to ensure that our model doesn’t give
potentially dangerous outcomes (such as unnecessary medical intervention).

Another example is when we are using machine learning to better understand a sys-
tem or nature. Getting predictions from a model might be useful, but understanding
those rules to deepen our understanding and stimulate further research may be of
more importance. Black boxes can make this difficult.

Finally, understanding the rules of our model allows us to make changes in the way
we do things. Imagine that a business uses a linear regression model to predict
demand for a particular product, based on things like its cost and how much the
company spends on advertising. Not only can the company predict future demand,
but it also can control it, by interpreting the rules of how the predictor variables
impact the outcome.

When modeling our data with the general linear model, we make the assumption
that our residuals are normally distributed and homoscedastic. Homoscedastic is a
ridiculous-sounding word (impress your friends with it) that simply means the vari-
ance of the outcome variable doesn’t increase as the predicted value of the outcome
increases.

TIP The opposite of homoscedastic is heteroscedastic.

We also make the assumption that there is a linear relationship between each predic-
tor variable and the outcome, and that the effects of the predictor variables on the
response variable are additive (rather than multiplicative).

When these assumptions are valid, our model will make more accurate and unbi-
ased predictions. However, the general linear model can be extended to handle situa-
tions in which the assumption of normally distributed residuals is violated (logistic
regression is one such example).

213What is linear regression?

9.1.2

NOTE I’ll show you how we can check the validity of these assumptions when
we build our own linear regression model later in the chapter.

In situations such as this, we turn to the generalized linear model. The generalized linear
model is the same as the general linear model (in fact, the latter is a special case of the
former), except that it uses various transformations called link functions to map the out-
come variable to the linear predictions made by the right-hand side of the equals sign.
For example, count data is rarely normally distributed, but by building a generalized
model with an appropriate link function, we can transform linear predictions made by
the model back into counts. I don’t intend to talk any further about generalized linear
models here, but a good resource on this topic (if a little heavy) is Generalized Linear
Models With Examples in R by Peter K. Dunn and Gordon K. Smyth (Springer, 2018).

TIP If the residuals are heteroscedastic, it sometimes helps to build a model
that predicts some transformation of the outcome variable instead. For exam-
ple, predicting the log10 of the response variable is a common choice. Predic-
tions made by such a model can then be transformed back onto the original
scale for interpretation. When the effect of multiple predictors on the out-
come is not additive, we can add interaction terms to our model that state the
effect of one predictor variable has on the outcome when the other predictor
variable changes.

What if our predictors are categorical?

So far, we’ve only considered the situation where our predictors are continuous.
Because the general linear model is essentially the equation of a straight line, and we
use it to find the slopes between variables, how can we find the slope of a categorical
variable? Does this even make sense? Well, it turns out we can cheat by recoding cate-
gorical variables into dummy variables. Dummy variables are new representations of cat-
egorical variables that map the categories to 0 and 1.

Imagine that we want to predict the acidity of cider batches based on the type of
apple: Gala or Braeburn. We want to find the intercept and slope that describes the
relationship between these two apple types and acidity, but how do we do that?
Remember earlier that the slope is how much y increases when x increases by one
unit. If we recode our apple type variable such that Gala = 0 and Braeburn = 1, we can
treat apple type as a continuous variable and find how much acidity changes as we go
from 0 to 1. Take a look at figure 9.5: the intercept is the value of y when x is 0, which
is the mean acidity when apple type = Gala. Gala is therefore said to be our reference
level. The slope is the change in y with a one-unit increase in x, which is the difference
between the mean acidity for Gala and the mean acidity with Braeburn. This may feel
like cheating, but it works, and the slope with the least squares will be the one that
connects the means of the categories.

NOTE Which category you choose as the reference level makes no difference
to the predictions made by a model and is the first level of the factor (the first
alphabetically by default).

214 CHAPTER 9 Linear regression

Recoding dichotomous (two-level) factors into a single dummy variable with values of
0 and 1 makes sense, but what if we have a polytomous factor (a factor with more than
two levels)? Do we code them as 1, 2, 3, 4, and so on, and treat this as a single continu-
ous predictor? Well, this wouldn’t work because it’s unlikely that a single straight line
would connect the means of the categories. Instead, we create k – 1 dummy variables,
where k is the number of levels of the factor.

 Take a look at the example in figure 9.6. We have four types of apples (Granny
Smith is my favorite) and would like to predict pH based on the apple type used to
make a particular batch of cider. To convert our four-level factor into dummy vari-
ables, we do the following:

1 Create a table of three columns, where each column represents a dummy variable.
2 Choose a reference level (Gala, in this case).
3 Set the value of each dummy variable to 0 for the reference level.
4 Set the value of each dummy variable to 1 for a particular factor level.

Apple type

C
id

er
 p

H

0 1
3.1

3.9

3.3

3.5

3.7

0 = Gala
1 = Braeburn

Δy

Δx

= 0.27 / 1
= 0.27

β1 = (3.59 – 3.32) / 1

β0 = 3.32

Figure 9.5 Finding the slope between two levels of
a categorical variable using a dummy variable. The
apple types are recoded as 0 and 1 and treated as a
continuous variable. The slope now represents the
difference in means between the two apple types,
and the intercept represents the mean of the
reference category (Gala).

d1 d3d2

0

0

1

0

1

0

00

0

0

0

1

Apple

Gala

Braeburn

Granny Smith

Honeycrisp

y = d1 β d2 β d3β β0 + + + +d1 d2 d3 �

Figure 9.6 Recoding a polytomous categorical variable into
k – 1 dummy variables. A four-level factor can be represented
using three (k – 1) dummy variables. The reference level (Gala)
has a value of 0 for each dummy variable. The other levels have
a value of 1 for a particular dummy variable. A slope is
estimated for each dummy.

We’ve now turned our single variable of four levels into three distinct dummy vari-
ables that each take a value of 1 or 0. But how does this help us? Well, each dummy
variable acts as a flag in the model formula to denote which level a particular case
belongs to. The full model as shown in figure 9.6 is

y = β0 + βd1 d1 + βd2 d2 + βd3 d3 + ε

215Building your first linear regression model
Now, because the intercept (β0) represents acidity when all predictors are equal to 0,
this is now the mean of the reference level, Gala. The slopes in the model βd1, βd2, and
so on) represent the difference between the mean of the reference level and the
means of each of the other levels. If a batch of cider was made with a particular type of
apple, its dummy variables will “switch on” the slope between that type of apple and
the reference class, and “switch off” the others. For example, let’s say a particular
batch was made with Braeburn apples. The model would look like this:

y = β0 + βd1 × 1 + βd2 × 0 + βd3 × 0 + ε

The slopes of the other apple types are still in the model, but because their dummy
variables are set to 0, they make no contribution to the predicted value!

 Models we build using the general linear model can mix both continuous and cat-
egorical predictors together. When we use our model to make predictions on new
data, we simply do the following:

1 Take the values of each of the predictor variables for that data.
2 Multiply these values with the relevant slopes learned by the model.
3 Add these values together.
4 Add the intercept.

The result is our predicted value for that data.
 I hope by now you have a basic understanding of linear regression, so let’s turn this

knowledge into skills by building your first linear regression model!

9.2 Building your first linear regression model
In this section, I’ll teach you how to build, evaluate, and interpret a linear regression
model to predict daily air pollution. I’ll also show other ways of imputing missing data
and selecting relevant features, and how to bundle as many preprocessing steps into
your cross-validation as you like.

 Imagine that you’re an environmental scientist interested in predicting daily levels
of atmospheric ozone pollution in Los Angeles. Recall from high school chemistry
that ozone is an allotrope (a fancy way of saying “another form”) of oxygen molecule
that has three oxygen atoms instead of two (as in the dioxygen that you’re breathing
right now). While ozone in the stratosphere protects us from the sun’s UV rays, prod-
ucts from burning fossil fuels can be converted into ozone at ground level, where it is
toxic. Your job is to build a regression model that can predict ozone pollution levels
based on the time of year and meteorological readings, such as humidity and tem-
perature. Let’s start by loading the mlr and tidyverse packages:

library(mlr)

library(tidyverse)

216 CHAPTER 9 Linear regression
Loading and explor9.2.1 ing the Ozone dataset

Now let’s load the data, which is built into the mlbench package (I like the data exam-
ples in this package), convert it into a tibble (with as_tibble()), and explore it.
We’re also going to give more readable names to the variables. We have a tibble con-
taining 366 cases and 13 variables of daily meteorological and ozone readings.

data(Ozone, package = "mlbench")

ozoneTib <- as_tibble(Ozone)

names(ozoneTib) <- c("Month", "Date", "Day", "Ozone", "Press_height",
"Wind", "Humid", "Temp_Sand", "Temp_Monte",
"Inv_height", "Press_grad", "Inv_temp", "Visib")

ozoneTib

A tibble: 366 x 13
Wind Humid Temp_Sand Temp_MonteOzone Press_heightDayMonth Date

<dbl><dbl><dbl> <dbl> <dbl><fct> <fct> <fct> <dbl>
1 1 1 4 3 5480 8 20 NA NA
2 1 2 5 3 5660 6 NA 38 NA
3 1 3 6 3 5710 4 28 40 NA
4 1 4 7 5 5700 3 37 45 NA
5 1 5 1 5 5760 3 51 54 45.3
6 1 6 2 6 5720 4 69 35 49.6
7 1 7 3 4 5790 6 19 45 46.4
8 1 8 4 4 5790 3 25 55 52.7
9 1 9 5 6 5700 3 73 41 48.0

10 1 10 6 7 5700 3 59 44 NA
... with 356 more rows, and 4 more variables: Inv_height <dbl>,
Press_grad <dbl>, Inv_temp <dbl>, Visib <dbl>

At present, the Month, Day, and Date variables are factors. Arguably this may make
sense, but we’re going to treat them as numerics for this exercise. To do this, we use
the handy mutate_all() function, which takes the data as the first argument and a
transformation/function as the second argument. Here, we use as.numeric to con-
vert all the variables into the numeric class.

NOTE The mutate_all() function doesn’t alter the names of the variables, it
just transforms them in place.

Next, we have some missing data in this dataset (use map_dbl(ozoneTib, ~sum(is
.na(.))) to see how many). Missing data is okay in our predictor variables (we’ll deal
with this later using imputation), but missing data for the variable we’re trying to pre-
dict is not okay. Therefore, we remove the cases without any ozone measurement by
piping the result of the mutate_all() call into the filter() function, where we
remove cases with an NA value for Ozone.

Loading and exploring theListing 9.1 Ozone dataset

217Building your first linear regression model
ozoneClean <- mutate_all(ozoneTib, as.numeric) %>%
filter(is.na(Ozone) == FALSE)

ozoneClean

A tibble: 361 x 13
Wind Humid Temp_Sand Temp_MonteDay Ozone Press_heightDateMonth

<dbl><dbl><dbl> <dbl> <dbl><dbl> <dbl> <dbl> <dbl>
208548034111 NANA

2 1 2 5 3 5660 6 NA 38 NA
3 1 3 6 3 5710 4 28 40 NA
4 1 4 7 5 5700 3 37 45 NA

45.354513576051515
... with 356 more rows, and 4 more variables: Inv_height <dbl>,

Press_grad <dbl>, Inv_temp <dbl>, Visib <dbl>#

NOTE Could we have imputed missing data in our target variable? Yes we
could, but this has the potential to introduce bias into our model. This is
because we’ll be training a model to predict values that were themselves gen-
erated by a model.

Let’s plot each of our predictor variables against Ozone to get an idea of the relation-
ships in the data. We start with our usual trick of gathering the variables with the
gather() function so we can plot them on separate facets.

ozoneUntidy <- gather(ozoneClean, key = "Variable",
value = "Value", -Ozone)

ggplot(ozoneUntidy, aes(Value, Ozone)) +
facet_wrap(~ Variable, scale = "free_x") +
geom_point() +
geom_smooth() +
geom_smooth(method = "lm", col = "red") +
theme_bw()

NOTE Remember we have to use -Ozone to prevent the Ozone variable from
being gathered with the others.

In our ggplot() call, we facet by Variable and allow the x-axes of the facets to vary
by setting the scale argument equal to "free_x". Then, along with a geom_point
layer, we add two geom_smooth layers. The first geom_smooth is given no arguments
and so uses the default settings. By default, geom_smooth will draw a LOESS curve to
the data (a curvy, local regression line) if there are fewer than 1,000 cases, or a GAM
curve if there are 1,000 or more cases. Either will give us an idea of the shape of the
relationships. The second geom_smooth layer specifically asks for the lm method (linear

Cleaning the dataListing 9.2

Plotting the dataListing 9.3

218 CHAPTER 9 Linear regression
model), which draws a linear regression line that best fits the data. Drawing both of
these will help us identify if there are relationships in the data that are nonlinear.

 The resulting plot is shown in figure 9.7. Hmm, some of the predictors have a lin-
ear relationship with ozone levels, some have a nonlinear relationship, and some
seem to have no relationship at all!

Imputing missing values9.2.2

Linear regression can’t handle missing values. Therefore, to avoid having to throw
away a large portion of our dataset, we’re going to use imputation to fill in the gaps. In
chapter 4, we used mean imputation to replace missing values (NAs) with the mean of
the variable. While this may work, it only uses the information within that single vari-
able to predict missing values, and all missing values within a single variable will take
the same value, potentially biasing the model. Instead, we can actually use machine
learning algorithms to predict the value of a missing observation, using all of the
other variables in the dataset! In this section, I’m going to show you how we can do
this with mlr.

 If you run ?imputations, you’ll be able to see the imputation methods that come
packaged with mlr. These include methods such as imputeMean(), imputeMedian(),
and imputeMode() (for replacing missing values with the mean, median, and mode of
each variable, respectively). But the most important method is the one last on the list:

Temp_Monte Temp_Sand Visib Wind

Inv_temp Month Press_grad Press_height

Date Day Humid Inv_height

806040 806040 5004003002001000 0 3 6 9

806040 12.510.07.55.02.5 100500−50 580056005400

0 10 20 30 2 4 6 80604020 500040003000200010000

−10

0

10

20

30

40

−10

0

10

20

30

40

−10

0

10

20

30

40

Value

O
zo

ne

Figure 9.7 Plotting each predictor variable in the Ozone dataset against the Ozone variable. The straight
lines represent linear regression lines, and the curved lines represent GAM lines.

219Building your first linear regression model
imputeLearner(). The imputeLearner() function lets us specify a supervised machine
learning algorithm to predict what the missing values would have been, based on the
information held in all the other variables. For example, if we want to impute missing
values of a continuous variable, the process proceeds as follows:

1 Split the dataset into cases with and without missing values for this particular
variable.

2 Decide on a regression algorithm to predict what the missing values would
have been.

3 Considering only the cases without missing values, use the algorithm to predict
the values of the variable with missing values, using the other variables in the
dataset (including the dependent variable you’re trying to predict in your final
model).

4 Considering only the cases with missing values, use the model learned in step 3
to predict the missing values based on the values of the other predictors.

We employ the same strategy when imputing categorical variables, except that we
choose a classification algorithm instead of a regression one. So we end up using a
supervised learning algorithm to fill in the blanks so that we can use another algo-
rithm to train our final model!

 So how do we choose an imputation algorithm? There are a few practical consider-
ations, but as always it depends somewhat and it may pay off to try different methods
and see which one gives you the best performance. We can at least initially whittle it
down to either a classification or regression algorithm, depending on whether the
variable with missing values is continuous or categorical. Next, whether we have miss-
ing values in one or multiple variables makes a difference because if it’s the latter, we
will need to choose an algorithm that can itself handle missing values. For example,
let’s say we try to use logistic regression to impute missing values of a categorical vari-
able. We’ll get to step 3 in the previous procedure and stop because the other variables
in the data (that the algorithm is trying to use to predict the categorical variable) also
contain missing values. Logistic regression can’t handle that and will throw an error. If
the only variable with missing values was the one we were trying to impute, this
wouldn’t have been a problem. Finally, the only other consideration is computational
budget. If the algorithm you’re using to learn your final model is already computa-
tionally expensive, using a computationally expensive algorithm to impute your miss-
ing values is added expense. Within these constraints, it’s often best to experiment
with different imputation learners and see which one works best for the task at hand.

 When doing any form of missing-value imputation, it’s extremely important to
ensure that the data is either missing at random (MAR) or missing completely at random
(MCAR), and not missing not at random (MNAR). If data is MCAR, it means the likeli-
hood of a missing value is not related to any variable in the dataset. If data is MAR, it
means the likelihood of a missing value is related only to the value of the other vari-
ables in the dataset. For example, someone might be less likely to fill in their salary on

220 CHAPTER 9 Linear regression

a form because of their age. In either of these situations, we can still build models that
are unbiased due to the presence of missing data. But consider the situation where
someone is less likely to fill in their salary on a form because their salary is low. This is
an example of data missing not at random (MNAR), where the likelihood of a missing
value depends on the value of the variable itself. In such a situation, you would likely
build a model that is biased to overestimate the salaries of the people in your survey.

 How do we tell if our data is MCAR, MAR, or MNAR? Not easily. There are meth-
ods for distinguishing MCAR and MAR. For example, you could build a classification
model that predicts whether a case has a missing value for a particular variable. If the
model does better at predicting missing values than a random guess, then the data is
MAR. If the model can’t do much better than a random guess, then the data is prob-
ably MCAR. Is there a way to tell whether data is MNAR? Unfortunately not. Being
confident that your data is not MNAR depends on good experiment design and
thoughtful examination of your predictor variables.

TIP There is a more powerful imputation technique called multiple imputa-
tion. The premise of multiple imputation is that you create many new datasets,
replacing missing data with sensible values in each one. You then train a
model on each of these imputed datasets and return the average model.
While this is probably the most widely used imputation technique, sadly, it
isn’t implemented yet in mlr, so we won’t use it here. However, I strongly sug-
gest you read the documentation for the mice package in R.

For our ozone data, we have missing values across several variables, and they’re all
continuous variables. Therefore, I’m going to choose a regression algorithm that can
handle missing data: rpart. Yep, you heard me right: we’re going to impute the miss-
ing values with the rpart decision tree algorithm. When we covered tree-based learn-
ers in chapter 7, we only considered them for classification problems; but decision
trees can be used to predict continuous variables, too. I’ll show you how this works in
detail in chapter 12; but for now, we’ll let rpart do its thing and impute our missing
values for us.

Using rpart to impute missing valuesListing 9.4

imputeMethod <- imputeLearner("regr.rpart")

ozoneImp <- impute(as.data.frame(ozoneClean),
classes = list(numeric = imputeMethod))

We first use the imputeLearner() function to define what algorithm we’re going to
use to impute the missing values. The only argument we supply to this function is the
name of the learner, which in this case is "regr.rpart".

TIP There is an additional, optional argument, features, that lets us specify
which variables in the dataset to use in the prediction of missing values. The
default is to use all the other variables, but you can use this to specify variables

221Building your first linear regression model
without any missing values, allowing you to use algorithms that can’t them-
selves handle missing data. See ?imputeLearner for more detail.

Next, we use the impute() function to create the imputed dataset, to which the first
argument is the data. We’ve wrapped our tibble inside the as.data.frame() function
just to prevent repeated warnings about the data being a tibble and not a data frame
(these can be safely ignored). We can specify different imputation techniques for differ-
ent columns by supplying a named list to the cols argument. For example, we could say
cols = list(var1 = imputeMean(), var2 = imputeLearner("regr.lm")). We can also
specify different imputation techniques for different classes of variable (one tech-
nique for numeric variables, another for factors) using the classes argument in the
same way. In the following listing, we use the classes argument to impute all the vari-
ables (they are all numeric) using the imputeMethod we defined.

 This results in a dataset we can access using ozoneImp$data, whose missing values
have been replaced with predictions from a model learned by the rpart algorithm.
Now we can define our task and learner using the imputed dataset. By supplying
"regr.lm" as an argument to the makeLearner() function, we’re telling mlr that we
want to use linear regression.

ozoneTask <- makeRegrTask(data = ozoneImp$data, target = "Ozone")

lin <- makeLearner("regr.lm")

NOTE In part 2 of this book, we were used to defining learners as classif
.[ALGORITHM]. In this part of the book, instead of classif., the prefix will be
regr.. This is important because the same algorithm can sometimes be used
for classification and regression, so the prefix tells mlr which task we want to
use the algorithm for.

9.2.3 Automating feature selection

Sometimes it may be obvious which variables have no predictive value and can be
removed from the analysis. Domain knowledge is also very important here, where we
include variables in the model that we, as experts, believe to have some predictive
value for the outcome we’re studying. But it’s often better to take a less subjective
approach to feature selection, and allow an algorithm to choose the relevant features
for us. In this section, I’ll show you how we can implement this in mlr.

 There are two methods for automating feature selection:

 Filter methods—Filter methods compare each of the predictors against the out-
come variable, and calculate a metric of how much the outcome varies with the
predictor. This metric could be a correlation: for example, if both variables are
continuous. The predictor variables are ranked in order of this metric (which,
in theory, ranks them in order of how much information they can contribute to

Defining our task and learnerListing 9.5

222 CHAPTER 9 Linear regression
the model), and we can choose to drop a certain number or proportion of the
worst-performing variables from our model. The number or proportion of vari-
ables we drop can be tuned as a hyperparameter during model building.

 Wrapper methods—With wrapper methods, rather than using a single, out-of-model
statistic to estimate feature importance, we iteratively train our model with dif-
ferent predictor variables. Eventually, the combination of predictors that gives
us the best performing model is chosen.

There are different ways of doing this, but one such example is sequential for-
ward selection. In sequential forward selection, we start with no predictors and
then add predictors one by one. At each step of the algorithm, the feature that
results in the best model performance is chosen. Finally, when the addition of
any more predictors doesn’t result in an improvement in performance, feature
addition stops, and the final model is trained on the selected predictors.

Which method should we choose? It boils down to this: wrapper methods may result
in models that perform better, because we are actually using the model we’re training
to estimate predictor importance. However, because we’re training a fresh model at
each iteration of the selection process (and each step may include other preprocess-
ing steps such as imputation), wrapper methods tend to be computationally expen-
sive. Filter methods, on the other hand, may or may not select the best-performing set
of predictors but are much less computationally expensive.

THE FILTER METHOD FOR FEATURE SELECTION

I’m going to show you both methods for our ozone example, starting with the filter
method. There are a number of metrics we can use to estimate predictor importance.
To see the list of the available filter methods built into mlr, run listFilterMethods().
There are too many to describe in full, but common choices include these:

 Linear correlation—When both predictor and outcome are continuous
 ANOVA—When the predictor is categorical and the outcome is continuous
 Chi-squared—When both the predictor and outcome are continuous
 Random forest importance—Can be used whether the predictors and outcomes

are categorical or continuous (the default)

TIP Feel free to experiment with the methods implemented in mlr. Many of
them require you to first install the FSelector package: install.packages
("FSelector").

The default method used by mlr (because it doesn’t depend on whether the variables
are categorical or continuous) is to build a random forest to predict the outcome, and
return the variables that contributed most to model predictions (using the out-of-bag
error we discussed in chapter 8). In this example, because both the predictors and out-
come variable are continuous, we’ll use linear correlation to estimate variable impor-
tance (it’s a little more interpretable than random forest importance).

223Building your first linear regression model
 First, we use the generateFilterValuesData() function (longest function name
ever!) to generate an importance metric for each predictor. The first argument is the
task, which contains our dataset and lets the function know that Ozone is our target vari-
able. The second, optional argument is method, to which we can supply one of the meth-
ods listed by listFilterMethods(). In this example, I’ve used "linear.correlation".
By extracting the $data component of this object, we get the table of predictors with
their Pearson correlation coefficients.

filterVals <- generateFilterValuesData(ozoneTask,
method = "linear.correlation")

filterVals$data

name type linear.correlation
1 Month numeric 0.053714
2 Date numeric 0.082051
3 Day numeric 0.041514
4 Press_height numeric 0.587524
5 Wind numeric 0.004681
6 Humid numeric 0.451481
7 Temp_Sand numeric 0.769777
8 Temp_Monte numeric 0.741590
9 Inv_height numeric 0.575634
10 Press_grad numeric 0.233318
11 Inv_temp numeric 0.727127
12 Visib numeric 0.414715

plotFilterValues(filterVals) + theme_bw()

It’s easier to interpret this information as a plot, which we can generate with the plot-
FilterValues() function, giving the object we saved the filter values to as its argu-
ment. The resulting plot is shown in figure 9.8.

Now that we have a way of ranking our predictors in order of their estimated impor-
tance, we can decide how to “skim off” the least informative ones. We do this using the
filterFeatures() function, which takes the task as the first argument, our filter-
Vals object as the fval argument, and either the abs, per, or threshold argument.
The abs argument allows us to specify the absolute number of best predictors to
retain. The per argument allows us to specify a top percentage of best predictors to

Using a filter method for feature selectionListing 9.6

Exercise 1
Generate and plot filter values for ozoneTask, but using the default method random-
ForestSRC_importance (don’t overwrite the filterVals object). Are the variables
ranked in the same order of importance between the two methods?

224 CHAPTER 9 Linear regression
retain. The threshold argument allows us to specify a value of our filtering metric (in
this case, correlation coefficient) that a predictor must exceed in order to be retained.
We could manually filter our predictors using one of these three methods. This is
shown in the following listing, but I’ve commented the lines out because we’re not
going to do this. Instead, we can wrap together our learner (linear regression) and
the filter method so that we can treat any of abs, per, and threshold as hyperparame-
ters and tune them.

#ozoneFiltTask <- filterFeatures(ozoneTask,
fval = filterVals, abs = 6)#

#ozoneFiltTask <- filterFeatures(ozoneTask,
fval = filterVals, per = 0.25)#

#ozoneFiltTask <- filterFeatures(ozoneTask,
fval = filterVals, threshold = 0.2)#

To wrap together our learner and filter method, we use the makeFilterWrapper()
function, supplying the linear regression learner we defined as the learner argument
and our filter metric as the fw.method argument.

filterWrapper = makeFilterWrapper(learner = lin,
fw.method = "linear.correlation")

Manually selecting which features to dropListing 9.7

Creating a filter wrapperListing 9.8

0.0

0.2

0.4

0.6

0.8
ozoneImp$data (12 features), filter = linear.correlation

Te
m

p_
San

d

Te
m

p_
M

on
te

I

nv
_t

em
p

Pre
ss

_h
eig

ht

Inv
_h

eig
ht

Hum
id

Visi
b

Pre
ss

_g
ra

d
Dat

e

M
on

th
Day

W
ind

Figure 9.8 Plotting the correlation of each predictor against the ozone level using
plotFilterValues()

225Building your first linear regression model
WARNING Confusing terminology alert! We are still using the filter method for
feature selection. It’s unfortunately confusing that we are making a filter wrap-
per, but this is not the wrapper method for feature selection. We will cover this
shortly.

When we wrap together a learner and a preprocessing step, the hyperparameters for
both become available for tuning as part of our wrapped learner. In this situation, it
means we can tune the abs, per, or threshold hyperparameter using cross-validation, to
select the best-performing features. In this example, we’re going to tune the absolute
number of features to retain.

<- makeParamSet(lmParamSpace
12)=1, upper=lowermakeIntegerParam("fw.abs",

)

gridSearch <- makeTuneControlGrid()

kFold <- makeResampleDesc("CV", iters = 10)

tunedFeats <- tuneParams(filterWrapper, task = ozoneTask, resampling = kFold,
par.set = lmParamSpace, control = gridSearch)

tunedFeats

Tune result:
Op. pars: fw.abs=10
mse.test.mean=20.8834

TIP If you run getParamSet(filterWrapper), you’ll see that the hyperpa-
rameter names for abs, per, and threshold have become fw.abs, fw.per, and
fw.threshold, now that we’ve wrapped the filter method. Another useful hyper-
parameter, fw.mandatory.feat, allows you to force certain variables to be
included regardless of their scores.

First, we define the hyperparameter space, as usual, with makeParamSet(), and define
fw.abs as an integer between 1 and 12 (the minimum and maximum number of fea-
tures we’re going to retain). Next, we define our old friend, the grid search, using
makeTuneControlGrid(). This will try every value of our hyperparameter. We define
an ordinary 10-fold cross-validation strategy using makeResampleDesc() and then
perform the tuning with tuneParams(). The first argument is our wrapped learner,
and then we supply our task, cross-validation method, hyperparameter space, and
search procedure.

 Our tuning procedure picks the 10 predictors with the highest correlation with
ozone as the best-performing combination. But what’s mse.test.mean? You haven’t
seen this performance metric before. Well, the performance metrics we used for clas-
sification, such as mean misclassification error, don’t make sense when we’re predicting

Tuning the number of predictors to retainListing 9.9

226 CHAPTER 9 Linear regression
continuous variables. For regression problems, there are three commonly used per-
formance metrics:

 Mean absolute error (MAE)—Finds the absolute residual between each case and
the model, adds them all up, and divides by the number of cases. We can inter-
pret this as the mean absolute distance of the cases from the model.

 Mean square error (MSE)—Similar to MAE but squares the residuals before find-
ing their mean. This means MSE is more sensitive to outliers than MAE, because
the size of the squared residual grows quadratically, the further from the model
prediction it is.

MSE is the default performance metric for regression learners in mlr. The
choice of MSE or MAE depends on how you want to treat outliers in your data:
if you want your model to be able to predict such cases, use MSE; otherwise, if
you want your model to be less sensitive to outliers, use MAE.

 Root mean square error (RMSE)—Because MSE squares the residual, its value isn’t
on the same scale as the outcome variable. Instead, if we take the square root of
the MSE, we get the RMSE.

When tuning hyperparameters and comparing models, MSE and RMSE will
always select the same models (because RMSE is simply a transformation of
MSE), but RMSE has the benefit of being on the same scale as our outcome
variable and so is more interpretable.

TIP Other regression performance metrics are available to us, such as the
percentage versions of MAE and MSE. If you’re interested in reading about
more of the performance metrics available in mlr (and there are a lot of
them), run ?measures.

Using the MSE performance metric, our tuned filter method has concluded that
retaining the 10 features with the highest correlation with the ozone level results in
the best-performing model. We can now train a final model that includes only these
top 10 features in the task.

filteredTask <- filterFeatures(ozoneTask, fval = filterVals,
abs = unlist(tunedFeats$x))

filteredModel <- train(lin, filteredTask)

Exercise 2
Repeat the feature-filtering process in listings 9.8 and 9.9, but use the default
fw.method argument (randomForestSRC_importance, or just don’t supply it). Does
this select the same number of predictors as when we used linear correlation? Which
method was faster?

Training the model with filtered featuresListing 9.10

227Building your first linear regression model
First, we create a new task that includes only the filtered features, using the filter-
Features() function. To this function, we supply the name of the existing task, the
filterVals object we defined in listing 9.6, and the number of features to retain as
the argument to abs. This value can be accessed as the $x component of tunedFeats
and needs to be wrapped in unlist(); otherwise, the function will throw an error.
This creates a new task that contains only the filtered predictors and retains Ozone as
the target variable. Finally, we train the linear model using this task.

THE WRAPPER METHOD FOR FEATURE SELECTION

With the filter method, we generate univariate statistics describing how each predictor
relates to the outcome variable. This may result in selecting the most informative predic-
tors, but it isn’t guaranteed to. Instead, we can use the actual model we’re trying to train
to determine which features help it make the best predictions. This has the potential to
select a better-performing combination of predictors, but it is computationally more
expensive as we’re training a fresh model for every permutation of predictor variables.

 Let’s start by defining how we’re going to search for the best combination of pre-
dictors. We have four options:

 Exhaustive search—This is basically a grid search. It will try every possible combi-
nation of predictor variables in your dataset and select the one that performs
the best. This is guaranteed to find the best combination but can be prohibi-
tively slow. For example, in our 12-predictor dataset, exhaustive search would
need to try more than 1.3 × 109 different variable combinations!

 Random search—This is just like random search in hyperparameter tuning. We
define a number of iterations and randomly select feature combinations. The
best combination after the final iteration wins. This is usually less intensive
(depending on how many iterations you choose), but it isn’t guaranteed to find
the best combination of features.

 Sequential search—From a particular starting point, we either add or remove fea-
tures at each step that improve performance. This can be one of the following:
– Forward search—We start with an empty model and sequentially add the feature

that improves the model most until additional features no longer improve
the performance.

– Backward search—We start with all the features and remove the feature whose
removal improves the model the most until additional removals no longer
improve the performance.

– Floating forward search—Starting from an empty model, we either add one vari-
able or remove one variable at each step, whichever improves the model the
most, until neither an addition nor a removal improves model performance.

– Floating backward search—The same as floating forward, except we start with a
full model.

 Genetic algorithm—This method, inspired by Darwinian evolution, finds pairs of
feature combinations that act as “parents” to “offspring” variable combinations,

228 CHAPTER 9 Linear regression

which inherit the best-performing features. This method is very cool but can be
computationally expensive as the feature space grows.

Wow! With so many options to choose from, where do we start? Well, I find the exhaus-
tive and genetic searches prohibitively slow for a large feature space. While the random
search can alleviate this problem, I find a sequential search to be a good compromise
between computational cost and probability of finding the best-performing feature
combination. Of its different variants, you may want to experiment with the various
options to see which results in the best-performing model. I like the floating versions
because they consider both addition and removal at each step, so for this example
we’re going to use floating backward selection.

 First, we define the search method using the makeFeatSelControlSequential()
function (wow, the mlr authors really do love their long function names). We use
"sfbs" as the method argument to use a sequential floating backward selection. Then,
we use the selectFeatures() function to perform the feature selection. To this func-
tion we supply the learner, task, cross-validation strategy defined in listing 9.9, and
search method. It’s as easy as that. When we run the function, every permutation of
predictor variables is cross-validated using our kFold strategy to get an estimate of its
performance. By printing the result of this process, we can see the algorithm selected
six predictors that had a slightly lower MSE value than the predictors selected by our
filter method in listing 9.9.

TIP To see all of the available wrapper methods and how to use them, run
?FeatSelControl.

Now I need to warn you about a frustrating bug with regard to the sequential floating
forward search. As of this writing, using "sffs" as the feature-selection method will
throw this error in some circumstances: Error in sum(x) : invalid 'type' (list) of
argument. If you try to use "sffs" as the search method in this example, you may get
such an error. Therefore, while this is very frustrating, I’ve opted to use sequential
floating backward search ("sfbs") instead.

Using a wrapper method for feature selectionListing 9.11

featSelControl <- makeFeatSelControlSequential(method = "sfbs")

selFeats <- selectFeatures(learner = lin, task = ozoneTask,
resampling = kFold, control = featSelControl)

selFeats

FeatSel result:
Features (6): Month, Press_height, Humid, Temp_Sand, Temp_Monte, Inv_height
mse.test.mean=20.4038

Now, just as we did for the filter method, we can create a new task using the imputed
data that contains only those selected predictors, and train a model on it.

229Building your first linear regression model
ozoneSelFeat <- ozoneImp$data[, c("Ozone", selFeats$x)]

ozoneSelFeatTask <- makeRegrTask(data = ozoneSelFeat, target = "Ozone")

wrapperModel <- train(lin, ozoneSelFeatTask)

9.2.4 Including imputation and feature selection in cross-validation

I’ve said it many times before, but I’m going to say it again: include all data-dependent
preprocessing steps in your cross-validation! But up to this point, we’ve only needed to
consider a single preprocessing step. How do we combine more than one? Well, mlr
makes this process extremely simple. When we wrap together a learner and a prepro-
cessing step, we have essentially created a new learner algorithm that includes that
preprocessing. So to include an additional preprocessing step, we simply wrap the
wrapped learner! I’ve illustrated this for our example in figure 9.9. This results in a
sort of Matryoshka doll of wrappers, where one is encapsulated by another, which is
encapsulated by another, and so on.

Using this strategy, we can combine as many preprocessing steps as we like to create a
pipeline. The innermost wrapper will always be used first, then the next innermost,
and so on.

NOTE Because the innermost wrapper is used first, through to the outermost,
it’s important to think carefully about the order you wish the preprocessing
steps to take.

Let’s reinforce this in your mind by actually doing it. We’re going to make an impute
wrapper and then pass it as the learner to a feature-selection wrapper.

Using a wrapper method for feature selectionListing 9.12

Impute regr.lm+

Impute regr.lm+Feat. sel +

Imputation wrapper

Impute regr.lm+Feat. sel +

Wrapped wrapper

Figure 9.9 Combining multiple
preprocessing wrappers. Once a
learner and preprocessing step
(such as imputation) have been
combined in a wrapper, this
wrapper can be used as the
learner in another wrapper.

230 CHAPTER 9 Linear regression

imputeMethod <- imputeLearner("regr.rpart")

imputeWrapper <- makeImputeWrapper(lin,
classes = list(numeric = imputeMethod))

featSelWrapper <- makeFeatSelWrapper(learner = imputeWrapper,
resampling = kFold,
control = featSelControl)

First, we redefine our imputation method using the imputeLearner() function (first
defined in listing 9.4). Then, we create an imputation wrapper using the makeImpute-
Wrapper() function, which takes the learner as the first argument. We use list(numeric
= imputeMethod) as the classes argument to apply this imputation strategy to all of
our numeric predictors (all of them, duh).

 Now here comes the neat bit: we create a feature-selection wrapper using make-
FeatSelWrapper(), and supply the imputation wrapper we created as the learner.
This is the crucial step because we’re creating a wrapper with another wrapper! We set
the cross-validation method as kFold (defined in listing 9.9) and the method of search-
ing feature combinations as featSelControl (defined in listing 9.11).

 Now, let’s cross-validate our entire model-building process like good data scientists.

Combining imputation and feature selection wrappersListing 9.13

Cross-validating the model-building processListing 9.14

library(parallel)
library(parallelMap)

ozoneTaskWithNAs <- makeRegrTask(data = ozoneClean, target = "Ozone")

kFold3 <- makeResampleDesc("CV", iters = 3)

parallelStartSocket(cpus = detectCores())

lmCV <- resample(featSelWrapper, ozoneTaskWithNAs, resampling = kFold3)

parallelStop()

lmCV

Resample Result
Task: ozoneClean
Learner: regr.lm.imputed.featsel
Aggr perf: mse.test.mean=20.5394
Runtime: 86.7071

After loading our friends the parallel and parallelMap packages, we define a task
using the ozoneClean tibble, which still contains missing data. Next, we define an ordi-
nary 3-fold cross-validation strategy for our cross-validation procedure. Finally, we start
parallelization with parallelStartSocket() and start the cross-validation procedure

231Building your first linear regression model
by supplying the learner (the wrapped wrapper), task, and cross-validation strategy to
the resample() function. This took nearly 90 seconds on my four-core machine, so I
suggest you start the process and then read on for a summary of what the code
is doing.

 The cross-validation process proceeds like this:

1 Split the data into three folds.
2 For each fold:

a Use the rpart algorithm to impute the missing values.
b Perform feature selection: Update template to support more than two levels

of nested ordered lists.
c Use a selection method (such as backward search) to select combinations of

features to train models on.
d Use 10-fold cross-validation to evaluate the performance of each model.

3 Return the best-performing model for each of the three outer folds.
4 Return the mean MSE to give us our estimate of performance.

We can see that our model-building process gives us a mean MSE of 20.54, suggesting
a mean residual error of 4.53 on the original ozone scale (taking the square root
of 20.54).

9.2.5 Interpreting the model

Due to their simple structure, linear models are usually quite simple to interpret,
because we can look at the slopes for each predictor to infer how much the out-
come variable is affected by each. However, whether these interpretations are justi-
fied or not depends on whether some model assumptions have been met, so in this
section I’ll show you how to interpret the model output and generate some diagnos-
tic plots.

 First, we need to extract the model information from our model object using the
getLearnerModel() function. By calling summary() on the model data, we get an out-
put with lots of information about our model. Take a look at the following listing.

wrapperModelData <- getLearnerModel(wrapperModel)

summary(wrapperModelData)

Call:
stats::lm(formula = f, data = d)

Residuals:
Max3QMedian1QMin

13.8292.722-0.284-2.950-13.934

Interpreting the modelListing 9.15

232 CHAPTER 9 Linear regression
Coefficients:
Estimate Std. Error t value Pr(>|t|)

0.133621.5027.80056241.796670(Intercept)
0.00018-3.790.078272-0.296659Month

Press_height -0.010353 0.04562-2.010.005161
-0.122521Wind 0.34136-0.950.128593
0.076434Humid 5.5e-075.100.014982
0.227055Temp_Sand 2.9e-075.230.043397
0.266534Temp_Monte 3.5e-054.190.063619

-0.000474Inv_height 0.01099-2.560.000185
-0.005226Visib 0.14275-1.470.003558

Residual standard error: 4.46 on 352 degrees of freedom
0.6820.689, Adjusted R-squared:Multiple R-squared:

p-value: <2e-16F-statistic: 97.7 on 8 and 352 DF,

The Call component would normally tell us the formula we used to create the model
(which variables, and whether we added more complex relationships between them).
Because we built this model using mlr, we unfortunately don’t get that information
here; but the model formula is all of the selected predictors combined linearly together.

 The Residuals component gives us some summary statistics about the model
residuals. Here we’re looking to see if the median is approximately 0 and that the first
and third quartiles are approximately the same. If they aren’t, this might suggest the
residuals are either not normally distributed, or heteroscedastic. In both situations,
not only could this negatively impact model performance, but it could make our inter-
pretation of the slopes incorrect.

 The Coefficients component shows us a table of model parameters and their stan-
dard errors. The intercept is 41.8, which is the estimate of the ozone level when all other
variables are 0. In this particular case it doesn’t really make sense for some of our vari-
ables to be 0 (month, for example) so we won’t draw too much interpretation from this.
The estimates for the predictors are their slopes. For example, our model estimates that
for a one-unit increase in the Temp_Sand variable, Ozone increases by 0.227 (holding all
other variables constant). The Pr(>|t|) column contains the p values that, in theory,
represent the probability of seeing a slope this large if the population slope was actually
0. Use the p values to guide your model-building process, by all means; but there are
some problems associated with p values, so don’t put too much faith in them.

 Finally, Residual standard error is the same as RMSE, Multiple R-squared is an
estimate of the proportion of variance in the data accounted for by our model
(68.9%), and F-statistic is the ratio of variance explained by our model to the vari-
ance not explained by the model. The p value here is an estimate of the probability
that our model is better than just using the mean of Ozone to make predictions.

NOTE Notice the residual standard error value is close to but not the same as
the RMSE estimated for the model-building process by cross-validation. This
difference is because we cross-validated the model-building procedure, not
this particular model itself.

233Building your first linear regression model

We can very quickly and easily print diagnostic plots for linear models in R by supply-
ing the model data as the argument to plot(). Ordinarily, this will prompt you to
press Enter to cycle through the plots. I find this irritating and so prefer to split the
plotting device into four parts using the mfrow argument to the par() function. This
means when we create our diagnostic plots (there will be four of them), they will be
tiled in the same plotting window. These plots may help us identify flaws in our model
that impact predictive performance.

TIP I change this back again with the par() function afterward.

par(mfrow = c(2, 2))
plot(wrapperModelData)
par(mfrow = c(1, 1))

The resulting plot is shown in figure 9.10. The Residuals vs. Fitted plot shows the pre-
dicted ozone level on the x-axis and the residual on the y-axis for each case. We hope
that there are no patterns in this plot. In other words, the amount of error shouldn’t
depend on the predicted value. In this situation, we have a curved relationship. This
indicates that we have nonlinear relationships between predictors and ozone, and/or
heteroscedasticity.

Creating diagnostic plots of the modelListing 9.16

2520151050–5

250

240

19

250
251

251

3210–1–2–3

3
2
1

–1
0

–3
–2

2520151050−5

1.5

1.0

0.5

0.0
0.080.060.040.020.00

2

0

–2

S
ta

nd
ar

di
ze

d
re

si
du

al
s

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Theoretical quantiles

Normal Q−Q

R
es

id
ua

ls
S

ta
nd

ar
di

ze
d

re
si

du
al

s

15
10
5
0

–5
–10
–15

Fitted values

Residuals vs. fitted

Residuals vs. leverage

240

Scale−location

LeverageFitted values

240

250
251

327 64

Cook’s distance

Figure 9.10 Plotting diagnostic plots for our linear model. The Residuals vs. Fitted and Scale-
Location plots help identify patterns that suggest nonlinearity and heteroscedasticity. The Normal
Q-Q plot helps identify non-normality of residuals, and the Residuals vs. Leverage plot helps identify
influential outliers.

The Normal Q-Q (quantile-quantile) plot shows the quantiles of the model residuals
plotted against their quantiles if they were drawn from a theoretical normal distribution.

234 CHAPTER 9 Linear regression
If the data deviates considerably from a 1:1 diagonal line, this suggests the residuals
are not normally distributed. This doesn’t seem to be a problem for this model: the
residuals line up nicely on the diagonal.

 The Scale-Location plot helps us identify heteroscedasticity of the residuals. There
should be no patterns here, but it looks like the residuals are increasingly varied with
larger predicted values, suggesting heteroscedasticity.

 Finally, the Residuals vs. Leverage plot helps us to identify cases that have excessive
influence on the model parameters (potential outliers). Cases that fall inside a dotted
region of the plot called Cook’s distance may be outliers whose inclusion or exclusion
makes a large difference to the model. Because we can’t even see Cook’s distance here
(it is beyond the axis limits), we have no worries about outliers.

 These diagnostic plots (particularly the Residuals vs. Fitted plot) indicate the pres-
ence of nonlinear relationships between the predictor variables and the outcome vari-
able. We may, therefore, be able to get better predictive performance from a model
that doesn’t assume linearity. In the next chapter, I’ll show you how generalized additive
models work, and we’ll train one to improve our model performance. I suggest you
save your .R file, because we’re going to continue using the same dataset and task in
the next chapter. This is so I can highlight to you how much nonlinearity can impact
the performance of linear regression.

Strengths and weaknesse9.3 s of linear regression
While it often isn’t easy to tell which algorithms will perform well for a given task, here
are some strengths and weaknesses that will help you decide whether linear regression
will perform well for you.

 The strengths of linear regression are as follows:

 It produces models that are very interpretable.
 It can handle both continuous and categorical predictors.
 It is very computationally inexpensive.

The weaknesses of linear regression are these:

 It makes strong assumptions about the data, such as homoscedasticity, linearity,
and the distribution of residuals (performance may suffer if these are violated).

 It can only learn linear relationships in the data.
 It cannot handle missing data.

Exercise 3
Instead of using a wrapper method, cross-validate the process of building our model
using a filter method. Are the estimated MSE values similar? Which method is
faster? Tips:

a First, create a filter wrapper using our imputeWrapper as the learner.
b Define a hyperparameter space to tune "fw.abs" using makeParamSet().

235Solutions to exercises
Summary
 Linear regression can handle continuous and categorical predictors.
 Linear regression uses the equation of a straight line to model relationships in

the data as straight lines.
 Missing values can be imputed using supervised learning algorithms that use

the information from all the other variables.
 Automated feature selection takes two forms: filter methods and wrapper methods.
 Filter methods of feature selection calculate univariate statistics outside of a

model, to estimate how related predictors are to the outcome.
 Wrapper methods actively train models on different permutations of the pre-

dictors to select the best-performing combination.
 Preprocessing steps can be combined together in mlr by sequential wrapping of

wrapper functions.

Solutions to exercises
1 Generate filter values using the default randomForestSRC_importance method:

filterValsForest <- generateFilterValuesData(ozoneTask,
method = "randomForestSRC_importance")

filterValsForest$data

plotFilterValues(filterValsForest) + theme_bw()

The randomForestSRC_importance method ranks variables
in a different order of importance.

2 Repeat feature filtering using the default filter statistic:

filterWrapperDefault <- makeFilterWrapper(learner = lin)

tunedFeats <- tuneParams(filterWrapperDefault, task = ozoneTask,
resampling = kFold, par.set = lmParamSpace,
control = gridSearch)

tunedFeats

The default filter statistic (randomForestSRC) tends to select fewer
predictors in this case, but the linear.correlation statistic was faster.

c Define a tuning wrapper that takes the filter wrapper as a learner and per-
forms a grid search.

d Use resample() to perform cross-validation, using the tuning wrapper as the
learner.

236 CHAPTER 9 Linear regression
3 Cross-validate building a linear regression model, but using a filter method:

filterWrapperImp <- makeFilterWrapper(learner = imputeWrapper,
fw.method = "linear.correlation")

filterParam <- makeParamSet(
makeIntegerParam("fw.abs", lower = 1, upper = 12)

)

tuneWrapper <- makeTuneWrapper(learner = filterWrapperImp,
resampling = kFold,
par.set = filterParam,
control = gridSearch)

filterCV <- resample(tuneWrapper, ozoneTask, resampling = kFold)

filterCV

We have a similar MSE estimate for the filter method
but it is considerably faster than the wrapper method. No free lunch!

Nonlinear regression
with generalized
additive models
In chapter 9, I showed you how linear regression can be used to create very inter-
pretable regression models. One of the strongest assumptions made by linear
regression is that there is a linear relationship between each predictor variable and
the outcome. This is often not the case, so in this chapter I’ll introduce you to a
class of models that allows us to model nonlinear relationships in the data.

 We’ll start by discussing how we can include polynomial terms in linear regres-
sion to model nonlinear relationships, and the advantages and disadvantages of
doing this. We’ll then move on to the more sophisticated generalized additive models,
which give us considerably more flexibility to model complex nonlinear relation-
ships. I’ll also show you how these generalized additive models can handle both
continuous and categorical variables, just like in linear regression.

 By the end of this chapter, I hope you’ll understand how to create nonlinear
regression models that are still surprisingly interpretable. We will continue to work

This chapter covers
 Including polynomial terms in linear regression

 Using splines in regression

 Using generalized additive models (GAMs) for
nonlinear regression
237

238 CHAPTER 10 Nonlinear regression with generalized additive models
with the ozone dataset we were using in the previous chapter. If you no longer have
the ozoneClean object defined in your global environment, just rerun listings 9.1 and
9.2 from chapter 9.

Making linear regre10.1 ssion nonlinear with
polynomial terms
In this section, I’ll show you how we can take the general linear model we discussed
in the previous chapter and extend it to include nonlinear, polynomial relationships
between predictor variables and the outcome variable. Linear regression makes the
strong assumption that there is a linear relationship between predictor variables and
the outcome. Sometimes real-world variables have linear relationships, or can be
sufficiently approximated by one, but often they do not. Surely the general linear
model falls down when faced with nonlinear relationships, right? After all, it’s called
the general linear model and uses the equation of a straight line. Well, it turns out
that the general linear model is surprisingly flexible, and we can use it to model poly-
nomial relationships.

 Recall from high school math that a polynomial equation is just an equation with
multiple terms (single numbers or variables). If all the terms in the equation are raised
to the power of 1 (an exponent of 1)—in other words, they are all equal to themselves—
the equation is a first-degree polynomial. If the highest exponent in the equation is 2—in
other words, one or some of the terms are squared but there are no higher exponents—
the equation is a second-degree polynomial or quadratic polynomial. If the highest expo-
nent is 3, the equation is a cubic polynomial; and if the highest exponent is 4, the equa-
tion is a quartic polynomial.

TIP Although there are names for higher-degree polynomials, people usually
just call them nth-degree polynomials (for example, a fifth-degree polynomial).
This is, of course, unless you want to sound super-precocious!

Let’s have a look at some examples of nth-degree polynomials:

 y = x1 (linear)
 y = x2 (quadratic)
 y = x3 (cubic)
 y = x4 (quartic)

The shape of these functions is shown for values of x between –30 and 30 in figure 10.1.
When the exponent is 1, the function is a straight line; but when the exponent is
greater than 1, the function is curvy.

 We can use this to our advantage: if the relationships between our predictor variables
and our outcome variable have a curved relationship, we might be able to model this
relationship by including nth-degree polynomials in our model definition. Think back
to our cider example in chapter 9. Imagine that instead of a linear relationship between
apple content and cider batch pH, we have a downward curvilinear relationship like the

239Making linear regression nonlinear with polynomial terms

one illustrated in figure 10.2. A straight line no longer models this relationship very
well, and predictions made by such a model are likely to have high bias. Instead, we can
better model this relationship by including a quadratic term in the model definition.

Cubic Quartic

Linear Quadratic

200−20200−20

0

250

500

750

0e+00

2e+05

4e+05

6e+05

8e+05

−20

0
y

x x

20

−20000

−10000

0

10000

20000

Figure 10.1 Shapes of polynomial functions from the first to the fourth degree. When the x variable is
raised to the first power, the equation models a straight line. As we increase the power that x is raised
to, the equations model lines with varying degrees of flexibility.

Apple content (Kg)

C
id

er
 p

H

0 1 2 3
3.1

3.9

3.3

3.5

3.7

Figure 10.2 Comparing linear and quadratic fits to
an imaginary nonlinear relationship between apple
content and cider acidity

The formula for the model shown in figure 10.2 would be

y = βapples × apples + βapples
2 × apples2 + ε

where βapples
2 is the slope for the apples2 term, which is more easily understood as how

much the line curves as apple content increases (larger absolute values result in a more

240 CHAPTER 10 Nonlinear regression with generalized additive models
extreme curve). For a single predictor variable, we can generalize this for any nth-degree
polynomial relationship as

y = β0 + β1x + β1x2 + … βnxn + ε

where n is the highest degree of polynomial you’re modeling. Notice that when per-
forming polynomial regression, it’s usual to include all the lower-degree terms for that
predictor variable as well. For example, if you’re modeling a quartic relationship
between two variables, you would include x, x2, x3, and x4 terms in your model defini-
tion. Why is this? If we don’t include the lower-degree terms in the model, the vertex of
the curve—the part of it that flattens out (either at the top or bottom of the curve,
depending on which direction it curves)—is forced to pass through x = 0. This might
be a reasonable constraint to place on the model, but it usually isn’t. Instead, if we
include the lower-degree terms in the model, the curve doesn’t need to pass through
x = 0 and can “wiggle around” more to (hopefully) fit the data better. This is illus-
trated in figure 10.3.

Just as we saw in chapter 9, when the model is given new data, it multiplies the values
of the predictor variables (including the specified exponents) by their slopes and
then adds them all together with the intercept to get the predicted value. The model
we’re using is still the general linear model, because we’re linearly combining the
model terms (adding them together).

3.0

3.2

3.4

3.6

3.8

20–2
x

y

=y
β
0 +

β
1 x 2y =

β
0 +

β
1

+
x

β
2 x 2

Figure 10.3 Comparing the shape of polynomial functions that do and do
not include the first-degree term. Vertical dotted lines indicate the position
of each function’s vertex on the x-axis.

241More flexibility: Splines and generalized additive models
More flexibility: Sp10.2 lines and generalized
additive models
When using polynomial terms in linear regression, the higher the degree of polyno-
mial we use, the more flexible our model will be. High-degree polynomials allow us to
capture complicated nonlinear relationships in the data but are therefore more likely
to overfit the training set. Sometimes, increasing the degree of the polynomials
doesn’t help anyway, because the relationship between the predictor variable and out-
come variable may not be the same across the range of the predictor variable. In such
situations, instead of using high-degree polynomials, we can use splines. In this section,
I’ll explain what splines are and how to use them, and how they relate to polynomials
and a set of models called generalized additive models (GAMs).

 A spline is a piecewise polynomial function. This means it splits the predictor variable
into regions and fits a separate polynomial within each region, which regions connect to
each other via knots. A knot is a position along the predictor variable that divides the
regions within which the separate polynomials are fit. The polynomial curves in each
region of the predictor pass through the knots that delimit that region. This allows us
to model complex nonlinear relationships that are not constant across the range of
the predictor variable. This is illustrated in figure 10.4 using our cider example.

Using splines is a great way of modeling complicated relationships such as the one
shown in figure 10.4, but this approach has some limitations:

 The position and number of the knots need to be chosen manually. Both
choices can make a big impact on the shape of the spline. The choice of knot
position is typically either at obvious regions of change in the data or at regular
intervals across the predictor, such as at the quartiles.

 The degree of the polynomials between knots needs to be chosen. We generally
use cubic splines or higher, because these ensure that the polynomials connect
with each other smoothly through the knots (quadratic polynomials may leave
the spline disconnected at the knots).

 It can become difficult to combine splines of different predictors.

Apple content (Kg)

C
id

er
 p

H

0 1 2 3
3.1

3.9

3.3

3.5

3.7

Knots

Figure 10.4 Fitting a spline to a nonlinear relationship.
The solid dots indicate the knots. Individual polynomial
functions fit the data between the knots and connect to
each other through them.

242 CHAPTER 10 Nonlinear regression with generalized additive models

So, can we do better than simple spline regression? Absolutely. The solution is GAMs.
GAMs extend the general linear model such that instead of

y = β0 + β1x + β2x2 + … β2x2 + ε

they take the form

y = β0 + f1(x1) + f2(x2) + …fk(xk) + ε

where each f(x) represents a function of a particular predictor variable. These func-
tions can be any sort of smoothing function but will typically be a combination of mul-
tiple splines.

NOTE Can you see that the general linear model is a special case of the gen-
eralized additive model, where the function for each predictor variable is the
identity function (f(x) = x)? We can go one step further then and say that the
generalized linear model is a special case of the generalized additive model. This is
because we can also use different link functions with GAMs that allow us to
use them to predict categorical variables (as in logistic regression) or count
variables.

10.2.1 How GAMs learn their smoothing functions

The most common method of constructing these smoothing functions is to use
splines as basis functions. Basis functions are simple functions that can be combined to
form a more complex function. Take a look at figure 10.5. The nonlinear relationship

1.00

0.75

0.50

0.25

0.00

0 25 50 75 100
x

y

Basis
1
2
3
sum

Figure 10.5 Smoothing functions for continuous variables in GAMs are
commonly the sum of a series of basis functions, which are often splines.
Three spline basis functions are summed at each value of x to predict the
value of y. The dotted line shows the sum of the three basis functions, which
models the nonlinear relationship in the data.

243More flexibility: Splines and generalized additive models
between the x and y variables is modeled as a weighted sum of three splines. In other
words, at each value of x, we sum the contributions from each of these basis functions
to give us the function that models the relationship (the dotted line). The overall
function is a weighted sum because each basis function has a corresponding weight,
determining how much it contributes to the final function.

 Let’s take another look at the GAM formula:

y = β0 + f1(x1) + f2(x2) + ... fk(xk) + ε

So each fk(xk) is a smoothing function of that particular variable. When these smooth-
ing functions use splines as basis functions, the function can be expressed as

f(xi) = a1b1(xi) + a2b2(xi) + ... + anbn(xi)

where b1(xi) is the value of the first basis function evaluated at a particular value of x,
and a1 is the weight of the first basis function. GAMs estimate the weights of these
basis functions in order to minimize the residual square error of the model.

 GAMs automatically learn a nonlinear relationship between each predictor vari-
able and the outcome variable, and then add these effects together linearly, along
with the intercept. GAMs overcome the limitations of simply using splines in the gen-
eral linear model by doing the following:

 Automatically selecting the knots for spline functions
 Automatically selecting the degree of flexibility of the smoothing functions by

controlling the weights of the basis functions
 Allowing us to combine splines of multiple predictor variables simultaneously

TIP If I want to use linear modeling and the relationship between my predic-
tors and outcome variable is nonlinear, GAMs are my go-to model. This is
because of their flexibility and their ability to overcome the limitations of
polynomial regression. The exception is if I have a theoretical reason to
believe there is a specific polynomial relationship (say, quadratic) in the data.
In such a situation, using linear regression with a polynomial term may result
in a simpler model, where a GAM might overfit.

10.2.2 How GAMs handle categorical variables

So far, I’ve shown you that GAMs learn nonlinear relationships between our predictor
variables and our outcome. But what about when our predictor variables are categori-
cal? Well, GAMs can handle categorical variables in two different ways.

 One method is to treat categorical variables exactly the same way we do for the
general linear model, and create k – 1 dummy variables that encode the effect of each
level of the predictor on the outcome. When we use this method, the predicted value
of a case is simply the sum of all of the smoothing functions, plus the contribution
from the categorical variable effects. This method assumes independence between the

244 CHAPTER 10 Nonlinear regression with generalized additive models
categorical variable and the continuous variables (in other words, the smoothing
functions are the same across each level of the categorical variable).

 The other method is to model a separate smoothing function for each level of the
categorical variable. This is important in situations where there are distinct nonlinear
relationships between continuous variables and the outcome at each level of a cate-
gorical variable.

NOTE When specifying a GAM as our learner through mlr, the default method
is the first approach.

GAMs are extraordinarily flexible and powerful for a huge range of machine learning
problems. If you would like to delve deeper into the nuts and bolts of GAMs, I recom-
mend Generalized Additive Models: An Introduction with R by Simon Wood (Chapman
and Hall/CRC, 2017).

 I hope by now you have a basic understanding of polynomial regression and
GAMs, so let’s turn this knowledge into skills by building your first nonlinear regres-
sion model!

Building your first GAM10.3
We finished chapter 9 by interrogating the diagnostic plots of our linear regression
model, and deciding it looked as though we have nonlinear relationships in the data.
Therefore, in this section I’m going to show you how to model the data using a GAM,
to account for the nonlinear relationships between the predictors and outcome.

 I’ll start with some feature engineering. From figure 9.7 in chapter 9, it looks
like there’s a curved relationship between Month and Ozone, peaking in summer and
declining in winter. Because we also have access to the day of the month, let’s see if we
can get a more predictive value by combining the two. Put another way, instead of get-
ting month-of-the-year resolution, let’s get day-of-the-year resolution from our data.

 To achieve this, we mutate a new column called DayOfYear. We use the interac-
tion() function to generate a variable that contains the information from both the
Date and Month variables. Because the interaction() function returns a factor, we
wrap it inside the as.numeric() function to convert it into a numeric vector that rep-
resents the days of the year.

Because the new variable contains the information from the Date and Month variables,
we remove them from the data using the select() function—they are now redun-
dant. We then plot our new variable to see how it relates to Ozone.

Exercise 1
To get a better idea of what interaction() is doing, run the following:

interaction(1:4, c("a", "b", "c", "d"))

245Building your first GAM

ozoneForGam <- mutate(ozoneClean,
DayOfYear = as.numeric(interaction(Date, Month))) %>%

select(c(-"Date", -"Month"))

ggplot(ozoneForGam, aes(DayOfYear, Ozone)) +
geom_point() +
geom_smooth() +
theme_bw()

The resulting plot is shown in figure 10.6. Aha! The relationship between ozone levels
and the time of year is even clearer if we use day, instead of month, resolution.

Creating an interaction betweenListing 10.1 Date and Month

Exercise 2
Add another geom_smooth() layer to the plot, using these arguments to fit a qua-
dratic polynomial line to the data:

 method = "lm"
 formula = "y ~ x + I(x^2)"
 col = "red"

Does this polynomial relationship fit the data well?

0

10

20

O
zo

ne

30

200100
DayOfYear

300

Plotting theFigure 10.6 DayOfYear variable against ozone levels

Now let’s define our task, imputation wrapper, and feature-selection wrapper, just as
we did for our linear regression model. Sadly, there isn’t yet an implementation of
ordinary GAMs wrapped by mlr (such as from the mgcv package). Instead, however,
we have access to the gamboost algorithm, which uses boosting (as you learned about
in chapter 8) to learn an ensemble of GAM models. Therefore, for this exercise, we’ll

246 CHAPTER 10 Nonlinear regression with generalized additive models

use the regr.gamboost learner. Other than the different learner (regr.gamboost
instead of regr.lm), we create our imputation and feature selection wrappers exactly
the same way as in listing 9.13.

gamTask <- makeRegrTask(data = ozoneForGam, target = "Ozone")

imputeMethod <- imputeLearner("regr.rpart")

gamImputeWrapper <- makeImputeWrapper("regr.gamboost",
classes = list(numeric = imputeMethod))

gamFeatSelControl <- makeFeatSelControlSequential(method = "sfbs")

kFold <- makeResampleDesc("CV", iters = 10)

gamFeatSelWrapper <- makeFeatSelWrapper(learner = gamImputeWrapper,
resampling = kFold,
control = gamFeatSelControl)

NOTE The authors of mlr wrote it to allow the incorporation of virtually any
machine learning algorithm. If there is an algorithm from a package you want
to use that isn’t yet wrapped by mlr, you can implement it yourself so that you
can use mlr’s functionality with it. While doing so isn’t super-complicated, it
does take a bit of explaining. Therefore, if you want to do this, I recommend
following the mlr tutorial at http://mng.bz/gV5x, which does a good job of
explaining the process.

All that’s left to do is cross-validate the model-building process. Because the gamboost
algorithm is much more computationally intense than linear regression, we’re only
going to use holdout as the method for outer cross-validation.

WARNING This takes about 1.5 minutes to run on my four-core machine.

Defining the task and wrappersListing 10.2

Cross-validating the GAM model-building processListing 10.3

holdout <- makeResampleDesc("Holdout")

gamCV <- resample(gamFeatSelWrapper, gamTask, resampling = holdout)

gamCV

Resample Result
Task: ozoneForGam
Learner: regr.gamboost.imputed.featsel
Aggr perf: mse.test.mean=16.4009
Runtime: 147.441

Great! Our cross-validation suggests that modeling the data using the gamboost algo-
rithm will outperform a model learned by linear regression (the latter gave us a mean
MSE of 22.8 in the previous chapter).

http://mng.bz/gV5x

247Building your first GAM

 Now let’s actually build a model so I can show you how to interrogate your GAM mod-
els to understand the nonlinear functions they’ve learned for your predictor variables.

WARNING This takes about 3 minutes to run on my four-core machine.

library(parallel)
library(parallelMap)

parallelStartSocket(cpus = detectCores())

gamModel <- train(gamFeatSelWrapper, gamTask)

parallelStop()

gamModelData <- getLearnerModel(gamModel, more.unwrap = TRUE)

First, we train a boosted GAM using our gamTask. We can just use gamFeatSelWrapper
as our learner, because this performs imputation and feature selection for us. To
speed things along, we can parallelize the feature selection by running the parallel-
StartSocket() function before running the train() function to actually train the
model.

 We then extract the model information using the getLearnerModel() function.
This time, because our learner is a wrapper function, we need to supply an additional
argument, more.unwrap = TRUE, to tell mlr that it needs to go all the way down
through the wrappers to extract the base model information.

 Now, let’s understand our model a little better by plotting the functions it
learned for each of the predictor variables. This is as easy as calling plot() on our
model information. We can also look at the residuals from the model by extracting
them with the resid() function. This allows us to plot the predicted values (by
extracting the $fitted() component) against their residuals to look for patterns
that suggest a poor fit. We can also plot the quantiles of the residuals against the
quantiles of a theoretical normal distribution, using qqnorm() and qqline(), to see
if they are normally distributed.

Training a GAMListing 10.4

Plotting our GAMListing 10.5

par(mfrow = c(3, 3))

plot(gamModelData, type = "l")

plot(gamModelData$fitted(), resid(gamModelData))

qqnorm(resid(gamModelData))

qqline(resid(gamModelData))

par(mfrow = c(1, 1))

248 CHAPTER 10 Nonlinear regression with generalized additive models
TIP Because we’re about to create a subplot for every predictor, and two for
the residuals, we first divide the plotting device into nine parts using the
mfrow argument of the par() function. We set this back again using the same
function. You may have a different number of predictors than I do, as returned
from your feature selection.

The resulting plot is shown in figure 10.7. For each predictor, we get a plot of its value
against how much that predictor contributes to the ozone estimate across its values.
Lines show the shape of the functions learned by the algorithm, and we can see that
they are all nonlinear.

TIP The “rug” of tick marks at the base of each plot indicates the position of
training cases. This helps us identify regions of each variable that have few
cases, such as at the top end of the Visib variable. GAMs have the potential to
overfit in regions with few cases.

Finally, looking at the residual plots, we can still see a pattern, which may indicate het-
eroscedasticity in the data. We could try training a model on a transformed Ozone
variable (such as log10) to see if this helps, or use a model that doesn’t make this
assumption. The quantile plot shows that most of the residuals lie close to the diago-
nal line, indicating that they approximate a normal distribution, with some deviation
at the tails (which isn’t uncommon).

30 40 50 60 70 80

Temp_Monte

100020003000400050000

Inv_height

0 10050–50

Press_grad

100 200 300 400 5000

2.0

10

5

0

5

0

–5

–10

102

1

0

–1

–2

–3

–4

–5

–10

2.01.0
10

5

0

–5

0.5

0.0

–0.5

–1.0

0

–2

–4

–6

1.5

1.0

0.5

0.0

–0.5

–1.0

Visib

f p
ar

tia
l

f p
ar

tia
l

f p
ar

tia
l

f p
ar

tia
l

300100 2000

DayOfYear

fp
ar

tia
l

0 5 10 15 20 25 30

gamModelData$predict()

re
si

d(
ga

m
M

od
el

D
at

a)

0–1–2 2 31–3

Theoretical quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 10.7 Plotting the nonlinear relationships learned by our GAM. The rug at the base of each
plot shows the position of each case along the x-axis. The residual vs. fitted plot (middle panel of the
second row) shows a pattern suggestive of heteroscedasticity, and the normal Q-Q plot (right panel
of the second row) shows the residuals are normally distributed.

249Summary
Strengths and weaknesses of GAMs10.4
While it often isn’t easy to tell which algorithms will perform well for a given task, here
are some strengths and weaknesses that will help you decide whether GAMs will per-
form well for you.

 The strengths of GAMs are as follows:

 They produce models that are very interpretable, despite being nonlinear.
 They can handle both continuous and categorical predictors.
 They can automatically learn nonlinear relationships in the data.

The weaknesses of GAMs are these:

 They still make strong assumptions about the data, such as homoscedasticity
and the distribution of residuals (performance may suffer if these are violated).

 GAMs have a propensity to overfit the training set.
 GAMs can be particularly poor at predicting data outside the range of values of

the training set.
 They cannot handle missing data.

Summary
 Polynomial terms can be included in linear regression to model nonlinear rela-

tionships between the predictor variables and the outcome.
 Generalized additive models (GAMs) are supervised learners for regression

problems that can handle continuous and categorical predictors.
 GAMs use the equation of a straight line, but allow nonlinear relationships

between the predictor variables and the outcome.
 The nonlinear functions learned by GAMs are often splines created from the

sum of a series of basis functions.

Exercise 3
Just as in exercise 3 in chapter 9, instead of using a wrapper method, cross-validate the
process of building our GAM using a filter method. Are the estimated MSE values sim-
ilar? Which method is faster? Tips:

a First, create a filter wrapper, using gamImputeWrapper as the learner.
b Define a hyperparameter space to tune "fw.abs" using makeParamSet().
c Create a grid search definition using makeTuneControlGrid().
d Define a tune wrapper that takes the filter wrapper as a learner and performs a

grid search.
e Use resample() to perform cross-validation, using the tune wrapper as the

learner.

250 CHAPTER 10 Nonlinear regression with generalized additive models
Solutions to exercises
1 Experiment with the interaction() function:

interaction(1:4, c("a", "b", "c", "d"))

2 Add a geom_smooth() layer, fitting a quadratic relationship to the data:

ggplot(ozoneForGam, aes(DayOfYear, Ozone)) +
geom_point() +
geom_smooth() +
geom_smooth(method = "lm", formula = "y ~ x + I(x^2)", col = "red") +
theme_bw()

The quadratic polynomial does a pretty good job of modeling the
relationship between the variables.

3 Cross-validate building a GAM but using a filter method:

filterWrapperImp <- makeFilterWrapper(learner = gamImputeWrapper,
fw.method = "linear.correlation")

filterParam <- makeParamSet(
makeIntegerParam("fw.abs", lower = 1, upper = 12)

)

gridSearch <- makeTuneControlGrid()

tuneWrapper <- makeTuneWrapper(learner = filterWrapperImp,
resampling = kFold,
par.set = filterParam,
control = gridSearch)

filterGamCV <- resample(tuneWrapper, gamTask, resampling = holdout)

filterGamCV

Preventing overfitting
with ridge regression,

LASSO, and elastic net
Our societies are full of checks and balances. In our political systems, parties bal-
ance each other (in theory) to find solutions that are at neither extreme of each
other’s views. Professional areas, such as financial services, have regulatory bodies
to prevent them from doing wrong and ensure that the things they say and do are
truthful and correct. When it comes to machine learning, it turns out we can
apply our own form of regulation to the learning process to prevent the algo-
rithms from overfitting the training set. We call this regulation in machine learn-
ing regularization.

11.1 What is regularization?
In this section, I’ll explain what regularization is and why it’s useful. Regularization
(also sometimes called shrinkage) is a technique that prevents the parameters of a
model from becoming too large and “shrinks” them toward 0. The result of regu-
larization is models that, when making predictions on new data, have less variance.

This chapter covers
 Managing overfitting in regression problems

 Understanding regularization

 Using the L1 and L2 norms to shrink parameters
251

252 CHAPTER 11 Preventing overfitting with ridge regression, LASSO, and elastic net

NOTE Recall that when we say a model has “less variance,” we mean it makes
less-variable predictions on new data, because it is not as sensitive to the noise
in the training set.

While we can apply regularization to most machine learning problems, it is most com-
monly used in linear modeling, where it shrinks the slope parameter of each predictor
toward 0. Three particularly well-known and commonly used regularization techniques
for linear models are as follows:

 Ridge regression
 Least absolute shrinkage and selection operator (LASSO)
 Elastic net

These three techniques can be thought of as extensions to linear models that reduce
overfitting. Because they shrink model parameters toward 0, they can also automati-
cally perform feature selection by forcing predictors with little information to have no
or negligible impact on predictions.

NOTE When I say “linear modeling,” I’m referring to the modeling of data
using the general linear model, generalized linear model, or generalized addi-
tive model that I showed you in chapters 9 and 10.

By the end of this chapter, I hope you’ll have an intuitive understanding of what regu-
larization is, how it works, and why it’s important. You’ll understand how ridge regres-
sion and LASSO work and how they’re useful, and how elastic net is a mixture of them
both. Finally, you’ll build ridge regression, LASSO, and elastic net models, and use
benchmarking to compare them to each other and to a linear regression model with
no regularization.

What is ridge regression?11.2
In this section, I’ll show you what ridge regression is, how it works, and why it’s useful.
Take a look at the example in figure 11.1, which I’ve reproduced from chapter 3.
I used this figure in chapter 3 to show you what underfitting and overfitting look
like for classification problems. When we underfit the problem, we partition the
feature space in a way that doesn’t do a good job of capturing local differences near the

Variable 1

V
ar

ia
bl

e
2

Variable 1

V
ar

ia
bl

e
2

Variable 1

V
ar

ia
bl

e
2

OverfitUnderfit Optimal

Figure 11.1 Examples of underfitting, optimal fitting, and overfitting for a two-
class classification problem. The dotted line represents a decision boundary.

253What is ridge regression?
decision boundary. When we overfit, we place too much importance on these local dif-
ferences and end up with a decision boundary that captures much of the noise in the
training set, resulting in an overly complex decision boundary.

 Now take a look at figure 11.2, which shows an example of what underfitting and
overfitting look like for regression problems. When we underfit the data, we miss local
differences in the relationship and produce a model that has high bias (makes inaccu-
rate predictions). When we overfit the data, our model is too sensitive to local differ-
ences in the relationship and has high variance (will make very variable predictions
on new data).

NOTE The example I’ve used to labor this point is of a nonlinear relation-
ship, but the sample applies to models of linear relationships too.

The principal job of regularization is to prevent algorithms from learning models that
are overfit, by discouraging complexity. This is achieved by penalizing model parame-
ters that are large, shrinking them toward 0. This might sound counterintuitive: surely
the model parameters learned by ordinary least squares (OLS from chapter 9) are the
best, as they minimize the residual error. The problem is that this is only necessarily
true for the training set, and not the test set.

 Consider the example in figure 11.3. In the left-side plot, imagine that we only
measured the two more darkly shaded cases. OLS would learn a line that passes through
both cases, because this will minimize the sum of squares. We collect more cases in
our study, and when we plot them on the right-side plot, we can see that the first
model we trained doesn’t generalize well to the new data. This is due to sampling error,
which is the difference between the distribution of data in our sample of cases and the
distribution of data in the wider population we’re trying to make predictions on. In
this (slightly contrived) case, because we only measured two cases, the sample doesn’t
do a good job of representing the wider population, and we learned a model that
overfit the training set.

 This is where regularization comes in. While OLS will learn the model that best fits
the training set, the training set probably isn’t perfectly representative of the wider

Predictor variable

O
ut

pu
t v

ar
ia

bl
e

Predictor variable

O
ut

pu
t v

ar
ia

bl
e

Predictor variable

O
ut

pu
t v

ar
ia

bl
e

OverfitUnderfit Optimal

Figure 11.2 Examples of underfitting, optimal fitting, and overfitting for a single-
predictor regression problem. The dotted line represents the regression line.

254 CHAPTER 11 Preventing overfitting with ridge regression, LASSO, and elastic net
population. Overfitting the training set is more likely to result in model parameters
that are too large, so regularization adds a penalty to the least squares that grows big-
ger with larger estimated model parameters. This process usually adds a little bias to
the model, because we’re intentionally underfitting the training set, but the reduction
in model variance often results in a better model anyway. This is especially true in situ-
ations where the ratio of predictors to cases is large.

NOTE How representative your dataset is of the wider population depends on
carefully planning your data acquisition, avoiding introducing bias with experi-
mental design (or identifying and correcting for it if the data already exists),
and ensuring that your datasets are sufficiently large to learn real patterns. If
your dataset poorly represents the wider population, no machine learning
technique, including cross-validation, will be able to help you!

So regularization can help prevent overfitting due to sampling error, but perhaps a
more important use of regularization is in preventing the inclusion of spurious pre-
dictors. If we add predictors to an existing linear regression model, we’re likely to get
better predictions on the training set. This might lead us (falsely) to believe we are
creating a better model by including more predictors. This is sometimes called kitchen-
sink regression (because everything goes in, including the kitchen sink). For example,
imagine that you want to predict the number of people in a park on a given day, and
you include the value of the FTSE 100 that day as a predictor. It’s unlikely (unless the
park was near the London Stock Exchange, perhaps) that the value of the FTSE 100
has an influence on the number of people. Retaining this spurious predictor in the
model has the potential to result in overfitting the training set. Because regularization
will shrink this parameter, it will reduce the degree to which the model overfits the
training set.

Predictor variable

O
ut

pu
t v

ar
ia

bl
e

Predictor variable

O
ut

pu
t v

ar
ia

bl
e

Figure 11.3 Sampling error leads to models that don’t generalize
well to new data. In the left-side example, a regression line is fit,
considering only the more darkly shaded cases. In the right-side
example, all the cases are used to construct the regression line.
The dotted lines help indicate that the magnitude of the slope is
larger on the left side than on the right.

255What is the L2 norm, and how does ridge regression use it?

 Regularization can also help in situations that are ill-posed. An ill-posed problem in
mathematics is one that does not satisfy these three conditions: having a solution,
having a unique solution, and having a solution that depends on the initial condi-
tions. In statistical modeling, a common ill-posed problem is when there is not one
optimal parameter value, often encountered when the number of parameters is higher
than the number of cases. In situations like this, regularization can make estimating
the parameters a more stable problem.

 What does this penalty look like that we add to the least squares estimate? Two pen-
alties are frequently used: the L1 norm and the L2 norm. I’ll start by showing you
what the L2 norm is and how it works, because this is the regularization method used
in ridge regression. Then I’ll extend this to show you how LASSO uses the L1 norm
method, and how elastic net combines both the L1 and L2 norms.

11.3 What is the L2 norm, and how does ridge regression
use it?
In this section, I’ll show you a mathematical and graphical explanation of the L2
norm, how ridge regression uses it, and why you would use it. Imagine that you want
to predict how busy your local park will be, depending on the temperature that day.
An example of what this data might look like is shown in figure 11.4.

Temperature (K)

N
um

be
r

of
 p

eo
pl

e

310270 290 300280
0

50

100

150

200

250

300

1600

1500

1200

2500

4200 0

sum of squares

= Σ

squared residual
= (y – y)ˆ 2

ˆ

predicted y value of case i
observed y value of case i

(y – y)
= 1

i i
2

i

n

sum of squares
= 1600 + 1500 + 1200 + 2500 + 4200 + 0
= 11,000

Figure 11.4 Calculating the sum of squares from a model that predicts the number of
people in a park based on the temperature

NOTE I realize that people may be reading this who are from countries that
use Fahrenheit or Celsius to measure temperature, so I’ve shown the scale in
Kelvin to irritate everyone equally.

When using OLS, the residuals for a particular combination of intercept and slope are
calculated for each case and squared. These squared residuals are then all added up

256 CHAPTER 11 Preventing overfitting with ridge regression, LASSO, and elastic net
to give the sum of squares. We can represent this in mathematical notation as in equa-
tion 11.1.

Equation 11.1

yi is the value of the outcome variable for case i, and ŷi is its value predicted by the
model. This is the vertical distance of each case from the line. The Greek sigma (Σn

i=1)
simply means that we calculate this vertical distance and square it for every case from
the first one (i = 1) to the last one (n) and then add up all these values.

 Mathematical functions that are minimized by machine learning algorithms to
select the best combinations of parameters are called loss functions. Therefore, least
squares is the loss function for the OLS algorithm.

 Ridge regression modifies the least squares loss function slightly to include a term
that makes the function’s value larger, the larger the parameter estimates are. As a
result, the algorithm now has to balance selecting the model parameters that mini-
mize the sum of squares, and selecting parameters than minimize this new penalty. In
ridge regression, this penalty is called the L2 norm, and it is very easy to calculate: we
simply square all of the model parameters and add them up (all except the intercept).
When we have only one continuous predictor, we have only one parameter (the
slope), so the L2 norm is its square. When we have two predictors, we square the
slopes for each and then add these squares together, and so on. This is illustrated for
our park example in figure 11.5.

sum of squares yi ŷi–)(
2

i 1=

n

=

slope = 6.7
11,000 44.9

1. First calculate the sum of squares.

2. Then, calculate the L2 norm.

Temperature (K)

N
um

be
r

of
 p

eo
pl

e

310270 290 300280
0

50

100

150

200

250

300

1600

1500

1200

2500

lambda

4200 0

sum of squares

Σ (y – y)
= 1

i i
2

i

n

sum of squares
= 1600 + 1500 + 1200 + 2500 + 4200 + 0
= 11,000

3. Finally, multiply the L2 norm by lambda
and add it to the sum of squares.

ˆ

L2 norm

Σ βj
2

j = 1

p

L2 norm
= 6.7 = 44.92

+ xλ

+ xλ

Figure 11.5 Calculating the sum of squares and the L2 norm for the slope between temperature
and the number of people at the park.

257What is the L2 norm, and how does ridge regression use it?

NOTE Can you see that, in general, the more predictors a model has, the
larger its L2 norm will be, because we are adding their squares together?
Ridge regularization therefore penalizes models that are too complex (because
they have too many predictors).

So that we can control how much we want to penalize model complexity, we multiply
the L2 norm by a value called lambda (λ, because Greek letters always sound cool).
Lambda can be any value from 0 to infinity and acts as a volume knob: large values of
lambda strongly penalize model complexity, while small values of lambda weakly penal-
ize model complexity. Lambda cannot be estimated from the data, so it is a hyperpa-
rameter that we need to tune to achieve the best performance by cross-validation.
Once we calculate the L2 norm and multiply it by lambda, we then add this product to
the sum of squares to get our penalized least squares loss function.

NOTE If we set lambda to 0, this removes the L2 norm penalty from the equa-
tion and we get back to the OLS loss function. If we set lambda to a very large
value, all the slopes will shrink close to 0.

If we’re mathematically minded, then we can represent this in mathematical notation
as in equation 11.2. Can you see that this is the same as the sum of squares as in equa-
tion 11.1, but we’ve added the lambda and L2 norm terms?

Equation 11.2loss functionL2 yi ŷi–() λ βj
2

j 1=

p

+
i 1=

n

=

So ridge regression learns a combination of model parameters that minimize this new
loss function. Imagine a situation where we have many predictors. OLS might estimate
a combination of model parameters that do a great job of minimizing the least
squares loss function, but the L2 norm of this combination might be huge. In this sit-
uation, ridge regression would estimate a combination of parameters that have a
slightly higher least squares value but a considerably lower L2 norm. Because the L2
norm gets smaller when model parameters are smaller, the slopes estimated by ridge
regression will probably be smaller than those estimated by OLS.

IMPORTANT When using L2- or L1-penalized loss functions, it’s critical that the
predictor variables are scaled first (divided by their standard deviation to put
them on the same scale). This is because we are adding the squared slopes (in
the case of L2 regularization), and this value is going to be considerably larger
for predictors on larger scales (millimeters versus kilometers, for example). If
we don’t scale the predictors first, they won’t all be given equal importance.

If you prefer a more graphical explanation of the L2-penalized loss function (I know I
do), take a look at figure 11.6. The x- and y-axes show values for two slope parameters,
(β1 and β2). The shaded contour lines represent different sum of squares values for
different combinations of the two parameters, where the combination resulting in the
smallest sum of squares is at the center of the contours. The dashed circles centered at

258 CHAPTER 11 Preventing overfitting with ridge regression, LASSO, and elastic net

�2

�1

0.5 1.0 1.5

Sum of squares

2.0–0.5–1.0–1.5–2.0

λ

λ = 0

0.5

1.0

1.5

2.0

-0.5

–1.0

–1.5

–2.0

Parameters chosen
by ridge

Parameters chosen
by OLS

Figure 11.6 A graphical representation of the ridge regression penalty.
The x- and y-axes represent the values of two model parameters. The
solid, concentric circles represent the sum of squares value for different
combinations of the parameters. The dashed circles represent the L2
norm multiplied by lambda.

0 represent the L2 norm multiplied by different values of lambda, for the combina-
tions of β1 and β2 the dashed lines pass through.

Notice that when lambda = 0, the circle passes through the combination of β1 and
β2 that minimizes the sum of squares. When lambda is increased, the circle shrinks
symmetrically toward 0. Now the combination of parameters that minimizes the penal-
ized loss function is the combination with the smallest sum of squares that lies on the cir-
cle. Put another way, the optimal solution when using ridge regression is always at the
intersection of the circle and the ellipse around the OLS estimate. Can you see then
that as we increase lambda, the circle shrinks and the selected combination of model
parameters gets sucked toward 0?

NOTE In this example, I’ve illustrated L2 regularization for two slope param-
eters. If we had only one slope, we would represent the same process on a
number line. If we had three parameters, the same would apply in a three-
dimensional space, and the penalty circle would become a penalty sphere.
This continues in as many dimensions as you have non-intercept parameters
(where the penalty becomes a hypersphere).

So, by using the L2-penalized loss function to learn the slope parameters, ridge regres-
sion prevents us from training models that overfit the training data.

NOTE The intercept isn’t included when calculating the L2 norm because it
is defined as the value of the outcome variable when all the slope parameters
are equal to 0.

259What is the L1 norm, and how does LASSO use it?
What is the L1 norm, an11.4 d how does LASSO use it?
Now that you know about ridge regression, learning how LASSO works will be a sim-
ple extension of what you’ve already learned. In this section, I’ll show you what the L1
norm is, how it differs from the L2 norm, and how the least absolute shrinkage and
selection operator (LASSO) uses it to shrink parameter estimates.

 Let’s remind ourselves what the L2 norm looks like, in equation 11.3. Recall that
we square the value of each of the slope parameters and add them all up. We then
multiply this L2 norm by lambda to get the penalty we add to the sum of squares loss
function.

Equation 11.3

The L1 norm is only slightly different than the L2 norm. Instead of squaring the
parameter values, we take their absolute value instead and then sum them. This is
shown in equation 11.4 by the vertical lines around βj.

Equation 11.4

We then create the loss function for LASSO (the L1-penalized loss function) in exactly
the same way we did for ridge regression: we multiply the L1 norm by lambda (which has
the same meaning) and add it to the sum of squares. The L1-penalized loss function is
shown in equation 11.5. Notice that the only difference between this equation and equa-
tion 11.2 is that we take the absolute value of the parameters before summing them,
instead of squaring them. Say we had three slopes, one of which was negative: 2.2, –3.1,
0.8. The L1 norm of these three slopes would be 2.2 + 3.1 + 0.8 = 6.1.

Equation 11.5

I can already hear you thinking, “So what? What’s the benefit/difference of using the
L1 norm instead of the L2 norm?” Well, ridge regression can shrink parameter esti-
mates toward 0, but they will never actually be 0 (unless the OLS estimate is 0 to begin
with). So if you have a machine learning task where you believe all the variables
should have some degree of predictive value, ridge regression is great because it won’t
remove any variables. But what if you have a large number of variables and/or you
want an algorithm that will perform feature selection for you? LASSO is helpful here
because unlike ridge regression, LASSO is able to shrink small parameter values to 0,
effectively removing that predictor from the model.

 Let’s represent this graphically the same way we did for ridge regression. Figure 11.7
shows the contours of the sum of squares for the same two imaginary parameters as in

L2 norm βj
2

j 1=

p

=

L1 norm βj
j 1=

p

=

loss functionL1 yi ŷi– βλ)(j
j 1=

p

+

i 1=

n

=

260 CHAPTER 11 Preventing overfitting with ridge regression, LASSO, and elastic net

11.5

1.51.00.5 2.0–0.5–1.0–1.5–2.0

0.5

1.0

1.5

2.0

–0.5

–1.0

–1.5

–2.0

�2

�1

Parameters chosen
by LASSO

Sum of squares

λ = 0

λ

Parameters chosen
by OLS

Figure 11.7 A graphical representation of the LASSO penalty. The x- and
y-axes represent the values of two model parameters. The solid, concentric
circles represent the sum of squares value for different combinations of
the parameters. The dashed diamonds represent the L2 norm multiplied
by lambda.

figure 11.6. Instead of forming a circle, the LASSO penalty forms a square, rotated 45o

such that its vertices lie along the axes (I guess you could call this a diamond). Can
you see that, for the same lambda as in our ridge regression example, the combination
of parameters with the smallest sum of squares that touches the diamond is one where
parameter β2 is 0? This means the predictor represented by this parameter has been
removed from the model.

NOTE If we had three parameters, we could represent the LASSO penalty as
a cube (with its vertices aligned with the axes). It’s hard to visualize this in
more than three dimensions, but the LASSO penalty would be a hypercube.

Just to make this extra clear, I’ve overlaid the LASSO and ridge penalties in figure 11.8,
including dotted lines that highlight the parameter values chosen by each method.

What is elastic net?
In this section, I’ll show you what elastic net is and how it mixes L2 and L1 regulariza-
tion to find a compromise between ridge regression and LASSO parameter estimates.
Sometimes you may have a prior justification for why you wish to use ridge regression
or LASSO. If it’s important that you include all your predictors in the model, however
small their contribution, use ridge regression. If you want the algorithm to perform
feature selection for you by shrinking uninformative slopes to 0, use LASSO. More
often than not, though, the decision between ridge regression and LASSO isn’t a clear
one. In such situations, don’t choose between them: use elastic net, instead.

261What is elastic net?
NOTE One important limitation of LASSO is that if you have more predictors
than cases, it will select at most a number of predictors equal to the number
of cases in the data. Put another way, if your dataset contains 100 predictors
and 50 cases, LASSO will set the slopes of at least 50 predictors to 0!

Elastic net is an extension of linear modeling that includes both L2 and L1 regular-
ization in its loss function. It finds a combination of parameter estimates somewhere
between those found by ridge regression and LASSO. We’re also able to control just
how much importance we place on the L2 versus the L1 norms using the hyperpa-
rameter alpha.

 Take a look at equation 11.6. We multiply the L2 norm by 1 – α, multiply the L1
norm by α, and add up these values. We multiply this value by lambda and add it to the
sum of squares. Alpha here can take any value between 0 and 1:

 When alpha is 0, the L1 norm becomes 0, and we get ridge regression.
 When alpha is 1, the L2 norm becomes 0, and we get LASSO.
 When alpha is between 0 and 1, we get a mixture of ridge regression and

LASSO.

How do we choose alpha? We don’t! We tune it as a hyperparameter and let cross-
validation choose the best-performing value for us.

 loss functionelastic = SS + λ ((1 – α) × L2 norm + α × L1 norm) Equation 11.6

If you’re more mathematically inclined, the full elastic net loss function is shown in
equation 11.7. If you’re not mathematically inclined, feel free to skip over this; but if

0.5 1.0 1.5 2.0–0.5–1.0–1.5–2.0

0.5

1.0

1.5

2.0

–0.5

–1.0

–1.5

–2.0

�2

�1

Parameters chosen
by LASSO

Sum of squares

Parameters chosen
by ridge

Parameters chosen
by OLS

Comparing the ridge regression and LASSO penaltiesFigure 11.8

262 CHAPTER 11 Preventing overfitting with ridge regression, LASSO, and elastic net
you look carefully, I’m sure you’ll be able to see how the elastic net loss function com-
bines the ridge and LASSO loss functions.

Equation 11.7

Prefer a graphical explanation? Yep, me too. Figure 11.9 compares the shapes of the
ridge, LASSO, and elastic net penalties. Because the elastic net penalty is somewhere
between the ridge and LASSO penalties, it looks like a square with rounded sides.

So why might we prefer elastic net over ridge regression or LASSO? Well, elastic net
can shrink parameter estimates to 0, allowing it to perform feature selection like
LASSO. But it also circumvents LASSO’s limitation of not being able to select more
variables than there are cases. Another limitation of LASSO is that if there is a group
of predictors that are correlated with each other, LASSO will only select one of the
predictors. Elastic net, on the other hand, is able to retain the group of predictors.

 For these reasons, I usually dive straight in with elastic net as my regularization
method of choice. Even if pure ridge or LASSO will result in the best-performing
model, the ability to tune alpha as a hyperparameter still allows the possibility of select-
ing ridge or LASSO, although the optimal solution is usually somewhere between them.
An exception to this is when we have prior knowledge about the effect of the predictors
we’ve included in our model. If we have very strong domain knowledge that predictors
ought to be included in the model, then we may have a preference for ridge regression.
Conversely, if we have a strong prior belief that there are variables that probably don’t
contribute anything (but we don’t know which), we may prefer LASSO.

loss functionelastic yi ŷi–() λ 1 α– β() j
2 α βj

j 1=

p

+

j 1=

p

+

i 1=

n

=

0.5 1.0 1.5 2.0–0.5–1.0–1.5–2.0

0.5

1.0

1.5

2.0

–0.5

–1.0

–1.5

–2.0

Ridge

LASSO

Elastic net

�2

�1

Figure 11.9 Comparing the shape of the ridge
regression, LASSO, and elastic net penalties

263Building your first ridge, LASSO, and elastic net models
 I hope I’ve conveyed how regularization can be used to extend linear models to
avoid overfitting. You should now also have a conceptual understanding of ridge
regression, LASSO, and elastic net, so let’s turn concepts into experience by training a
model of each!

11.6 Building your first ridge, LASSO, and elastic net models
In this section, we’re going to build ridge, LASSO, and elastic net models on the same
dataset, and use benchmarking to compare how they perform against each other and
against a vanilla (unregularized) linear model. Imagine that you’re trying to estimate
the market price of wheat for the coming year in Iowa. The market price depends on
the yield for that particular year, so you’re trying to predict the yield of wheat from rain
and temperature measurements. Let’s start by loading the mlr and tidyverse packages:

library(mlr)

library(tidyverse)

11.6.1 Loading and exploring the Iowa dataset

Now let’s load the data, which is built into the lasso2 package, convert it into a tibble
(with as_tibble()), and explore it.

NOTE You may need to install the lasso2 package first with install.packages
("lasso2").

We have a tibble containing only 33 cases and 10 variables of various rainfall and tem-
perature measurements, the year, and the wheat yield.

data(Iowa, package = "lasso2")

iowaTib <- as_tibble(Iowa)

iowaTib

A tibble: 33 x 10
Year Rain0 Temp1 Rain1 Temp2 Rain2 Temp3 Rain3 Temp4 Yield

<int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1930 17.8 60.2 5.83 69 1.49 77.9 2.42 74.4 34
2 1931 14.8 57.5 3.83 75 2.72 77.2 3.3 72.6 32.9
3 1932 28.0 62.3 5.17 72 3.12 75.8 7.1 72.2 43
4 1933 16.8 60.5 1.64 77.8 3.45 76.4 3.01 70.5 40
5 1934 11.4 69.5 3.49 77.2 3.85 79.7 2.84 73.4 23
6 1935 22.7 55 7 65.9 3.35 79.4 2.42 73.6 38.4
7 1936 17.9 66.2 2.85 70.1 0.51 83.4 3.48 79.2 20
8 1937 23.3 61.8 3.8 69 2.63 75.9 3.99 77.8 44.6
9 1938 18.5 59.5 4.67 69.2 4.24 76.5 3.82 75.7 46.3

10 1939 18.6 66.4 5.32 71.4 3.15 76.2 4.72 70.7 52.2
... with 23 more rows

Loading and exploring theListing 11.1 Iowa dataset

264 CHAPTER 11 Preventing overfitting with ridge regression, LASSO, and elastic net
Let’s plot the data to get a better understanding of the relationships within it. We’ll
use our usual trick of gathering the data so we can facet by each variable, supplying
"free_x" as the scales argument to allow the x-axis to vary between facets. To get an
indication as to any linear relationships with Yield, I also applied a geom_smooth layer,
using "lm" as the argument to method to get linear fits.

iowaUntidy <- gather(iowaTib, "Variable", "Value", -Yield)

ggplot(iowaUntidy, aes(Value, Yield)) +
facet_wrap(~ Variable, scales = "free_x") +
geom_point() +
geom_smooth(method = "lm") +
theme_bw()

The resulting plot is shown in figure 11.10. It looks like some of the variables correlate
with Yield; but notice that because we don’t have a large number of cases, the slopes
of some of these relationships could drastically change if we only removed a couple of
cases near the extremes of the x-axis. For example, would the slope between Rain2
and Yield be nearly as steep if we hadn’t measured those three cases with the highest
rainfall? We’re going to need regularization to prevent overfitting for this dataset.

Plotting the dataListing 11.2

Year

Rain3

Temp4Temp3

Temp2Temp1

Rain2Rain1Rain0

76726884807672

Value

Y
ie

ld

196019501940193080

76726870 64656055642

64210.07.55.02.5252015

30

50

70

30

50

70

30

50

70

Figure 11.10 Plotting each of the predictors against wheat yield for the Iowa dataset. Lines represent linear
model fits between each predictor and yield.

265Building your first ridge, LASSO, and elastic net models
11.6.2 Training the ridge regression model

In this section, I’ll walk you through training a ridge regression model to predict
Yield from our Iowa dataset. We’ll tune the lambda hyperparameter and train a model
using its optimal value.

 Let’s define our task and learner, this time supplying "regr.glmnet" as the argu-
ment to makeLearner(). Handily, the glmnet function (from the package of the same
name) allows us to create ridge, LASSO, and elastic net models using the same func-
tion. Notice that we set the value of alpha equal to 0 here. This is how we specify that
we want to use pure ridge regression with the glmnet function. We also supply an
argument that you haven’t seen before: id. The id argument just lets us supply a
unique name to every learner. The reason we need this now is that later in the chap-
ter, we’re going to benchmark our ridge, LASSO, and elastic net learners against each
other. Because we create each of these with the same glmnet function, we’ll get an
error because they won’t each have a unique identifier.

iowaTask <- makeRegrTask(data = iowaTib, target = "Yield")

ridge <- makeLearner("regr.glmnet", alpha = 0, id = "ridge")

Let’s get an idea of how much each predictor would contribute to a model’s ability to
predict Yield. We can use the generateFilterValuesData() and plotFilterValues()
functions we used in chapter 9 when performing feature selection using the filter
method.

filterVals <- generateFilterValuesData(iowaTask)

plotFilterValues(filterVals) + theme_bw()

The resulting plot is shown in figure 11.11. We can see that Year contains the most
predictive information about Yield; Rain3, Rain1, and Rain0 seem to contribute very
little; and Temp1 seems to make a negative contribution, suggesting that including it in
the model will be to the detriment of predictive accuracy.

 But we’re not going to perform feature selection. Instead, we’re going to enter all
the predictors and let the algorithm shrink the ones that contribute less to the model.
The first thing we need to do is tune the lambda hyperparameter that controls just how
big a penalty to apply to the parameter estimates.

NOTE Remember that when lambda equals 0, we are applying no penalty and
get the OLS parameter estimates. The larger lambda is, the more the parame-
ters are shrunk toward 0.

Creating the task and learnerListing 11.3

Generating and plotting filter valuesListing 11.4

266 CHAPTER 11 Preventing overfitting with ridge regression, LASSO, and elastic net
We’ll start by defining the hyperparameter space we’re going to search to find the
optimal value of lambda. Recall that to do this, we use the makeParamSet() function,
supplying each of our hyperparameters to search, separated by commas. Because we
only have one hyperparameter to tune, and because lambda can take any numeric
value between 0 and infinity, we use the makeNumericParam() function to specify that
we want to search for numeric values of lambda between 0 and 15.

NOTE Notice that I’ve called the hyperparameter "s" instead of "lambda". If
you run getParamSet(ridge), you will indeed see a tunable hyperparameter
called lambda, so what’s with the "s"? The authors of glmnet helpfully wrote it
so that it will build models for a range of lambdas for us. Then we can plot the
lambdas to see which one gives the best cross-validated performance. This is
handy, but seeing as we’re using mlr as a universal interface to many machine
learning packages, it makes sense for us to tune lambda ourselves the way
we’re used to. The glmnet lambda hyperparameter is used for specifying a
sequence of lambda values to try, and the authors specifically recommend not
supplying a single value for this hyperparameter. Instead, the s hyperparame-
ter is used to train a model with a single, specific lambda, so this is what we will
tune when using mlr. For more information, I suggest reading the documen-
tation for glmnet by running ?glmnet::glmnet.

Next, let’s define our search method as a random search with 200 iterations using
makeTuneControlRandom(), and define our cross-validation method as 3-fold cross-
validation repeated 5 times, using makeResampleDesc(). Finally, we run our hyperpa-
rameter tuning process with the tuneParams() function. To speed things up a little,
let’s use parallelStartSocket() to parallelize the search.

WARNING This takes about 30 seconds on my four-core machine.

0

20

40

60

Year Temp1Rain0Rain1Rain3Rain2 Temp4Temp2Temp3

iowaTib (9 features), filter = randomForestSRC.rfsrc

Figure 11.11 Plotting the result of generateFilterValuesData().
Bar height represents how much information each predictor contains about
wheat yield.

267Building your first ridge, LASSO, and elastic net models
ridgeParamSpace <- makeParamSet(
makeNumericParam("s", lower = 0, upper = 15))

randSearch <- makeTuneControlRandom(maxit = 200)

cvForTuning <- makeResampleDesc("RepCV", folds = 3, reps = 10)

library(parallel)
library(parallelMap)

parallelStartSocket(cpus = detectCores())

tunedRidgePars <- tuneParams(ridge, task = iowaTask,
resampling = cvForTuning,
par.set = ridgeParamSpace,
control = randSearch)

parallelStop()

tunedRidgePars

Tune result:
Op. pars: s=6.04
mse.test.mean=96.8360

Our tuning process selected 6.04 as the best-performing lambda (yours might be a lit-
tle different due to the random search). But how can we be sure we searched over a
large enough range of lambdas? Let’s plot each value of lambda against the mean MSE
of its models and see if it looks like there may be a better value outside of our search
space (greater than 15).

 First, we extract the lambda and mean MSE values for each iteration of the random
search by supplying our tuning object as the argument to the generateHyperPars-
EffectData() function. Then, we supply this data as the first argument of the plot-
HyperParsEffect() function and tell it we want to plot the values of s on the x-axis and
the mean MSE ("mse.test.mean") on the y-axis, and that we want a line that connects
the data points.

ridgeTuningData <- generateHyperParsEffectData(tunedRidgePars)

plotHyperParsEffect(ridgeTuningData, x = "s", y = "mse.test.mean",
plot.type = "line") +

theme_bw()

The resulting plot is shown in figure 11.12. We can see that the MSE is minimized for
lambdas between 5 and 6, and it seems that increasing lambda beyond 6 results in models
that perform worse. If the MSE seemed to be still decreasing at the edge of our search

Tuning theListing 11.5 lambda (s) hyperparameter

Plotting the hyperparameter tuning processListing 11.6

268 CHAPTER 11 Preventing overfitting with ridge regression, LASSO, and elastic net
space, we would need to expand the search in case we’re missing better hyperparameter
values. Because we appear to be at the minimum, we’re going to stop our search here.

NOTE Maybe I’ve been too hasty, because it’s possible we are only in a local min-
imum, the smallest MSE value compared to the values of lambda around it. When
searching a hyperparameter space, there may be many local minima (plural of
minimum); but we really want to find the global minimum, which is the lowest MSE
value across all possible hyperparameter values. For example, imagine that if we
keep increasing lambda, the MSE gets higher but then starts to come down
again, forming a hill. It’s possible that this hill continues to decrease even more
than the minimum shown in figure 11.12. Therefore, it’s a good idea to really
search your hyperparameter space well to try to find that global minimum.

Okay, now that we think we’ve selected the best-performing value of lambda, let’s train
a model using that value. First, we use the setHyperPars() function to define a new
learner using our tuned lambda value. Then, we use the train() function to train the
model on our iowaTask.

tunedRidge <- setHyperPars(ridge, par.vals = tunedRidgePars$x)

tunedRidgeModel <- train(tunedRidge, iowaTask)

Exercise 1
Repeat the tuning process, but this time expand the search space to include values
of s between 0 and 50 (don’t overwrite anything). Did our original search find a local
minimum or the global minimum?

Training a ridge regression model using the tunedListing 11.7 lambda

99

102

105

108

151050
s

m
se

.te
st

.m
ea

n

Figure 11.12 Plotting the ridge regression lambda-tuning process. The x-axis
represents lambda, and the y-axis represents the mean MSE. Dots represent
values of lambda sampled by the random search. The line connects the dots.

269Building your first ridge, LASSO, and elastic net models

One of the main motivations for using linear models is that we can interpret the
slopes to get an idea of how much the outcome variable changes with each predictor.
So let’s extract the parameter estimates from our ridge regression model. First, we
extract the model data using the getLearnerModel() function. Then, we use the
coef() function (short for coefficients) to extract the parameter estimates. Note that
because of the way glmnet works, we need to supply the value of lambda to get the
parameters for that model.

 When we print ridgeCoefs, we get a matrix containing the name of each parame-
ter and its slope. The intercept is the estimated Yield when all the predictors are 0. Of
course, it doesn’t make much sense to have negative wheat yield, but because it
doesn’t make sense for all the predictors to be 0 (such as the year), we won’t interpret
this. We’re more interested in interpreting the slopes, which are reported on the pre-
dictor’s original scale. We can see that for every additional year, wheat yield increased
by 0.533 bushels per acre. For a one-inch increase in Rain1, wheat yield decreased by
0.703, and so on.

NOTE Recall that I mentioned how important it is to scale our predictors so
that they are weighted equally when calculating the L1 and/or L2 norms.
Well, glmnet does this for us by default, using its standardize = TRUE argu-
ment. This is handy, but it’s important to remember that the parameter esti-
mates are transformed back onto the variables’ original scale.

ridgeModelData <- getLearnerModel(tunedRidgeModel)

ridgeCoefs <- coef(ridgeModelData, s = tunedRidgeParsxs)

ridgeCoefs

10 x 1 sparse Matrix of class "dgCMatrix"
1

(Intercept) -908.45834
0.53278Year
0.34269Rain0

-0.23601Temp1
-0.70286Rain1
0.03184Temp2
1.91915Rain2

-0.57963Temp3
0.63953Rain3

-0.47821Temp4

Extracting the model parametersListing 11.8

Let’s plot these parameter estimates against the estimates from unregularized linear
regression, so you can see the effect of parameter shrinkage. First, we need to train a
linear model using OLS. We could do this with mlr, but as we’re not going to do any-
thing fancy with this model, we can create one quickly using the lm() function. The
first argument to lm() is the formula Yield ~ ., which means Yield is our outcome

270 CHAPTER 11 Preventing overfitting with ridge regression, LASSO, and elastic net
variable, and we want to model it (~) using all other variables in the data (.). We tell
the function where to find the data, and wrap the whole lm() function inside the
coef() function to extract its parameter estimates.

 Next, we create a tibble containing three variables:

 The parameter names
 The ridge regression parameter values
 The lm parameter values

Because we want to exclude the intercepts, we use [-1] to subset all the parameters
except the first one (the intercept).

 So that we can facet by model, we gather() the data and then plot it using
ggplot(). Because it’s nice to see things in ascending or descending order, we supply
reorder(Coef, Beta), which will use the Coef variable as the x aesthetic ordered by the
Beta variable. By default, geom_bar() tries to plot frequencies, but because we want
bars to represent the actual value of each parameter, we set the stat = "identity"
argument.

lmCoefs <- coef(lm(Yield ~ ., data = iowaTib))

coefTib <- tibble(Coef = rownames(ridgeCoefs)[-1],
Ridge = as.vector(ridgeCoefs)[-1],
Lm = as.vector(lmCoefs)[-1])

coefUntidy <- gather(coefTib, key = Model, value = Beta, -Coef)

ggplot(coefUntidy, aes(reorder(Coef, Beta), Beta, fill = Model)) +
geom_bar(stat = "identity", col = "black") +
facet_wrap(~Model) +
theme_bw() +
theme(legend.position = "none")

The resulting plot is shown in figure 11.13. In the left facet, we have the parameter
estimates for the unregularized model; and in the right facet, we have the estimates
for our ridge regression model. Can you see that most of the ridge regression parame-
ters (though not all) are smaller than those for the unregularized model? This is the
effect of regularization.

Plotting the model parametersListing 11.9

Exercise 2
Create another plot exactly the same as in figure 11.13, but this time include the
intercepts. Are they the same between the two models? Why?

271Building your first ridge, LASSO, and elastic net models
11.6.3 Training the LASSO model

In this section, we’ll repeat the model-building process of the previous section, but
using LASSO instead. Once we’ve trained our model, we’ll add to our figure, so we
can compare parameter estimates between the models, to give you a better under-
standing of how the techniques differ.

 We start by defining the LASSO learner, this time setting alpha equal to 1 (to make
it pure LASSO). And we give the learner an ID, which we’ll use when we benchmark
the models later:

lasso <- makeLearner("regr.glmnet", alpha = 1, id = "lasso")

Now, let’s tune lambda as we did before for ridge regression.

WARNING This takes about 30 seconds on my four-core machine.

lassoParamSpace <- makeParamSet(
makeNumericParam("s", lower = 0, upper = 15))

parallelStartSocket(cpus = detectCores())

tunedLassoPars <- tuneParams(lasso, task = iowaTask,
resampling = cvForTuning,
par.set = lassoParamSpace,
control = randSearch)

TuningListing 11.10 lambda for LASSO

Lm Ridge

0

1

2

Reorder (Coef, Beta)

B
et

a

Ye
ar

Ye
ar

Rain
2

Rain
1

Rain
3

Rain
3

Rain
0

Rain
2

Rain
1

Rain
0

Te
m

p1

Te
m

p3

Te
m

p2

Te
m

p4

Te
m

p4

Te
m

p1

Te
m

p3

Te
m

p2

Figure 11.13 Comparing the parameter estimates of our ridge regression model to our OLS
regression model

272 CHAPTER 11 Preventing overfitting with ridge regression, LASSO, and elastic net
parallelStop()

tunedLassoPars

Tune result:
Op. pars: s=1.37
mse.test.mean=87.0126

Now we plot the tuning process to see if we need to expand our search.

lassoTuningData <- generateHyperParsEffectData(tunedLassoPars)

plotHyperParsEffect(lassoTuningData, x = "s", y = "mse.test.mean",
plot.type = "line") +

theme_bw()

The resulting plot is shown in figure 11.14. Once again, we can see that the selected
value of lambda falls at the bottom of the valley of mean MSE values. Notice that the
mean MSE flat-lines after lambda values of 10: this is because the penalty is so large
here that all the predictors have been removed from the model, and we get the mean
MSE of an intercept-only model.

Let’s train a LASSO model using our tuned value of lambda.

tunedLasso <- setHyperPars(lasso, par.vals = tunedLassoPars$x)

tunedLassoModel <- train(tunedLasso, iowaTask)

Plotting the hyperparameter tuning processListing 11.11

Training a LASSO model using the tunedListing 11.12 lambda

100

120

140

160

0 5 10 15
s

m
se

.te
st

.m
ea

n

180

Figure 11.14 Plotting the LASSO lambda-tuning process. The x-axis represents
lambda, and the y-axis represents the mean MSE. Dots represent values of
lambda sampled by the random search. The line connects the dots.

273Building your first ridge, LASSO, and elastic net models

Now let’s look at the parameter estimates from our tuned LASSO model and see how
they compare to the ridge and OLS estimates. Once again, we use the getLearner-
Model() function to extract the model data and then the coef() function to extract
the parameter estimates. Notice something unusual? Three of our parameter esti-
mates are just dots. Well, those dots actually represent 0.0. Zilch. Nada. Nothing. The
slopes of these parameters in the dataset have been set to exactly 0. This means they
have been removed from the model completely. This is how LASSO can be used for
performing feature selection.

lassoModelData <- getLearnerModel(tunedLassoModel)

lassoCoefs <- coef(lassoModelData, s = tunedLassoParsxs)

lassoCoefs

10 x 1 sparse Matrix of class "dgCMatrix"
1

(Intercept) -1.361e+03
7.389e-01Year
2.217e-01Rain0
.Temp1
.Rain1
.Temp2
2.005e+00Rain2

-4.065e-02Temp3
1.669e-01Rain3

-4.829e-01Temp4

Let’s plot these parameter estimates alongside those from our ridge and OLS models
to give a more graphical comparison. To do this, we simply add a new column to our
coefTib tibble using $LASSO; it contains the parameter estimates from our LASSO
model (excluding the intercept). We then gather this data so we can facet by model,
and plot it as before using ggplot().

Extracting the model parametersListing 11.13

Plotting the model parametersListing 11.14

coefTib$LASSO <- as.vector(lassoCoefs)[-1]

coefUntidy <- gather(coefTib, key = Model, value = Beta, -Coef)

ggplot(coefUntidy, aes(reorder(Coef, Beta), Beta, fill = Model)) +
geom_bar(stat = "identity", col = "black") +
facet_wrap(~ Model) +
theme_bw() +
theme(legend.position = "none")

The resulting plot is shown in figure 11.15. The plot nicely highlights the difference
between ridge, which shrinks parameters toward 0 (but never actually to 0), and
LASSO, which can shrink parameters to exactly 0.

274 CHAPTER 11 Preventing overfitting with ridge regression, LASSO, and elastic net
11.6.4 Training the elastic net model

This section is going to look a lot like the previous two, but I’ll show you how to train
an elastic net model by tuning both lambda and alpha. We’ll start by creating an elastic
net learner; this time we won’t supply a value of alpha, because we’re going to tune it
to find the best trade-off between L1 and L2 regularization. We also give it an ID that
we can use later when benchmarking:

elastic <- makeLearner("regr.glmnet", id = "elastic")

Now let’s define the hyperparameter space we’re going to tune over, this time includ-
ing alpha as a numeric hyperparameter bounded between 0 and 1. Because we’re now
tuning two hyperparameters, let’s increase the number of iterations of our random
search to get a little more coverage of the search space. Finally, we run the tuning pro-
cess as before and print the optimal result.

WARNING This takes about a minute on my four-core machine.

elasticParamSpace <- makeParamSet(
makeNumericParam("s", lower = 0, upper = 10),
makeNumericParam("alpha", lower = 0, upper = 1))

TuningListing 11.15 lambda and alpha for elastic net

LmLASSO Ridge

0

1

2

Reorder (Coef, Beta)

B
et

a

Ye
ar

Rain
3

Rain
0

Rain
2

Rain
1

Te
m

p4

Te
m

p1

Te
m

p3

Te
m

p2
Ye

ar

Rain
3

Rain
0

Rain
2

Rain
1

Te
m

p4

Te
m

p1

Te
m

p3

Te
m

p2
Ye

ar

Rain
3

Rain
1

Rain
0

Rain
2

Te
m

p4

Te
m

p1

Te
m

p3

Te
m

p2

Figure 11.15 Comparing the parameter estimates of our ridge regression model, LASSO model, and OLS
regression model

275Building your first ridge, LASSO, and elastic net models
randSearchElastic <- makeTuneControlRandom(maxit = 400)

parallelStartSocket(cpus = detectCores())

tunedElasticPars <- tuneParams(elastic, task = iowaTask,
resampling = cvForTuning,
par.set = elasticParamSpace,
control = randSearchElastic)

parallelStop()

tunedElasticPars

Tune result:
Op. pars: s=1.24; alpha=0.981
mse.test.mean=84.7701

Now let’s plot our tuning process to confirm that our search space was large enough.
This time, because we are tuning two hyperparameters simultaneously, we supply
lambda and alpha as the x- and y-axes, and mean MSE ("mse.test.mean") as the z-axis.
Setting the plot.type argument equal to "heatmap" will draw a heatmap where the
color is mapped to whatever we set as the z-axis. For this to work, though, we need to
fill in the gaps between our 1,000 search iterations. To do this, we supply the name of
any regression algorithm to the interpolate argument. Here, I’ve used "regr.kknn",
which uses k-nearest neighbors to fill in the gaps based on the MSE values of the near-
est search iterations. We add a single geom_point to the plot to indicate the combina-
tion of lambda and alpha that were selected by our tuning process.

NOTE This interpolation is for visualization only, so while choosing different
interpolation learners may change the tuning plot, it won’t affect our selected
hyperparameters.

elasticTuningData <- generateHyperParsEffectData(tunedElasticPars)

plotHyperParsEffect(elasticTuningData, x = "s", y = "alpha",
z = "mse.test.mean", interpolate = "regr.kknn",
plot.type = "heatmap") +

scale_fill_gradientn(colours = terrain.colors(5)) +
geom_point(x = tunedElasticParsxs, y = tunedElasticParsxalpha,

col = "white") +
theme_bw()

The resulting plot is shown in figure 11.16. Beautiful! You could hang this on your
wall and call it art. Notice that the selected combination of lambda and alpha (the
white dot) falls in a valley of mean MSE values, suggesting our hyperparameter search
space was wide enough.

Plotting the tuning processListing 11.16

276 CHAPTER 11 Preventing overfitting with ridge regression, LASSO, and elastic net

Now let’s train the final elastic net model using our tuned hyperparameters.

tunedElastic <- setHyperPars(elastic, par.vals = tunedElasticPars$x)

tunedElasticModel <- train(tunedElastic, iowaTask)

Next, we can extract the model parameters and plot them alongside the other three
models, as we did in listings 11.9 and 11.14.

Exercise 3
Let’s experiment with the plotHyperParsEffect() function. Change the plot.type
argument to "contour", add the argument show.experiments = TRUE, and redraw
the plot. Next, change plot.type to "scatter", remove the interpolate and show
.experiments arguments, and remove the scale_fill_gradientn() layer.

Training an elastic net model using tuned hyperparametersListing 11.17

Plotting the model parametersListing 11.18

1.00

0.75

0.50

0.25

0.00

5.02.50.0
s

10.07.5

160

mse.test.mean

140

120

100

A
lp

ha

Figure 11.16 Plotting the hyperparameter tuning process for our elastic net model. The x-axis
represents lambda, the y-axis represents alpha, and the shading represents mean MSE. The
white dot represents the combination of hyperparameters chosen by our tuning process.

elasticModelData <- getLearnerModel(tunedElasticModel)

elasticCoefs <- coef(elasticModelData, s = tunedElasticParsxs)

coefTib$Elastic <- as.vector(elasticCoefs)[-1]

coefUntidy <- gather(coefTib, key = Model, value = Beta, -Coef)

ggplot(coefUntidy, aes(reorder(Coef, Beta), Beta, fill = Model)) +
geom_bar(stat = "identity", position = "dodge", col = "black") +

277Benchmarking ridge, LASSO, elastic net, and OLS against each other

facet_wrap(~ Model) +
theme_bw()

The resulting plot is shown in figure 11.17. Notice that our elastic net model’s param-
eter estimates are something of a compromise between those estimated by ridge
regression and those estimated by LASSO. The elastic net model’s parameters are
more similar to those estimated by pure LASSO, however, because our tuned value of
alpha was close to 1 (remember that when alpha equals 1, we get pure LASSO).

11.7

Exercise 4
Redraw the plot in figure 11.17, but remove the facet_wrap() layer and set the posi-
tion argument of geom_bar() equal to "dodge". Which visualization do you prefer?

0

1

2

0

1

2

LASSOElastic

RidgeLm

Reorder (Coef, Beta)

B
et

a

Ye
ar

Ye
ar

Rain
2

Rain
1

Rain
3

Rain
3

Rain
0

Rain
2

Rain
1

Rain
0

Te
m

p1

Te
m

p3

Te
m

p2

Te
m

p4

Te
m

p4

Te
m

p1

Te
m

p3

Te
m

p2

Figure 11.17 Comparing the parameter estimates of our ridge regression model, LASSO model,
elastic net model, and OLS regression model

Benchmarking ridge, LASSO, elastic net, and OLS
against each other
Let’s use benchmarking to simultaneously cross-validate and compare the performance
of our ridge, LASSO, elastic net, and OLS modeling processes. Recall from chapter 8
that benchmarking takes a list of learners, a task, and a cross-validation procedure.
Then, for each iteration/fold of the cross-validation process, a model is trained using
each learner on the same training set, and evaluated on the same test set. Once the

278 CHAPTER 11 Preventing overfitting with ridge regression, LASSO, and elastic net

entire cross-validation process is complete, we get the mean performance metric (MSE,
in this case) for each learner, allowing us to compare which would perform best.

ridgeWrapper <- makeTuneWrapper(ridge, resampling = cvForTuning,
par.set = ridgeParamSpace,
control = randSearch)

lassoWrapper <- makeTuneWrapper(lasso, resampling = cvForTuning,
par.set = lassoParamSpace,
control = randSearch)

elasticWrapper <- makeTuneWrapper(elastic, resampling = cvForTuning,
par.set = elasticParamSpace,
control = randSearchElastic)

learners = list(ridgeWrapper, lassoWrapper, elasticWrapper, "regr.lm")

We start by defining tuning wrappers for each learner so we can include hyperparam-
eter tuning inside our cross-validation loop. For each wrapper (one each for ridge,
LASSO, and elastic net), we supply the learner, cross-validation strategy, the parame-
ter space for that learner, and the search procedure for that learner (notice that we
use a difference search procedure for elastic net). OLS regression doesn’t need hyper-
parameter tuning, so we don’t make a wrapper for it. Because the benchmark() func-
tion requires a list of learners, we next create a list of these wrappers (and "regr.lm",
our OLS regression learner).

 To run the benchmarking experiment, let’s define our outer resampling strategy
to be 3-fold cross-validation. After starting parallelization, we run the benchmarking
experiment by supplying the list of learners, task, and outer cross-validation strategy to
the benchmark() experiment.

WARNING This took almost 6 minutes on my four-core machine.

Plotting the model parametersListing 11.19

Plotting the model parametersListing 11.20

library(parallel)
library(parallelMap)

kFold3 <- makeResampleDesc("CV", iters = 3)

parallelStartSocket(cpus = detectCores())

bench <- benchmark(learners, iowaTask, kFold3)

parallelStop()

bench

task.id learner.id mse.test.mean
1 iowaTib ridge.tuned 95.48
2 iowaTib lasso.tuned 93.98

279Strengths and weaknesses of ridge, LASSO, and elastic net
3 iowaTib elastic.tuned 99.19
4 iowaTib regr.lm 120.37

Perhaps surprisingly, ridge and LASSO regression both outperformed elastic net,
although all three regularization techniques outperformed OLS regression. Because
elastic net has the potential to select both pure ridge or pure LASSO (based on the
value of the alpha hyperparameter), increasing the number of iterations of the ran-
dom search could end up putting elastic net on top.

11.8 Strengths and weaknesses of ridge, LASSO,
and elastic net
While it often isn’t easy to tell which algorithms will perform well for a given task, here
are some strengths and weaknesses that will help you decide whether ridge regression,
LASSO, and elastic net will perform well for you.

 The strengths of ridge, LASSO, and elastic net are as follows:

 They produce models that are very interpretable.
 They can handle both continuous and categorical predictors.
 They are computationally inexpensive.
 They often outperform OLS regression.
 LASSO and elastic net can perform feature selection by setting the slopes of

uninformative predictors equal to 0.
 They can also be applied to generalized linear models (such as logistic regression).

The weaknesses of ridge, LASSO, and elastic net are these:

 They make strong assumptions about the data, such as homoscedasticity (con-
stant variance) and the distribution of residuals (performance may suffer if
these are violated).

 Ridge regression cannot perform feature selection automatically.
 LASSO cannot estimate more parameters than cases in the training set.
 They cannot handle missing data.

Exercise 5
Create a new tibble that contains only the Yield variable, and make a new regression
task using this data, with Yield set as the target.

a Train an ordinary OLS model on this data (a model with no predictors).
b Train a LASSO model on the original iowaTask with a lambda value of 500.
c Cross-validate both models using leave-one-out cross-validation (make-

ResampleDesc("LOO")).
d How do the mean MSE values of both models compare? Why?

280 CHAPTER 11 Preventing overfitting with ridge regression, LASSO, and elastic net

Exercise 6
Calling plot() on a glmnet model object doesn’t plot model residuals. Install the
plotmo package and use its plotres() function, passing the model data objects for
the ridge, LASSO, and elastic net models as arguments.

Summary
 Regularization is a set of techniques that prevents overfitting by shrinking model

parameter estimates.
 There are three regularization techniques for linear models: ridge regression,

LASSO, and elastic net.
 Ridge regression uses the L2 norm to shrink parameter estimates toward 0 (but

never exactly to 0, unless they were 0 to begin with).
 LASSO uses the L1 norm to shrink parameter estimates toward 0 (and possibly

exactly to 0, resulting in feature selection).
 Elastic net combines both L2 and L1 regularization, the ratio of which is con-

trolled by the alpha hyperparameter.
 For all three, the lambda hyperparameter controls the strength of shrinkage.

Solutions to exercises
1 Expand the search space to include values of lambda from 0 to 50:

ridgeParamSpaceExtended <- makeParamSet(
makeNumericParam("s", lower = 0, upper = 50))

parallelStartSocket(cpus = detectCores())

tunedRidgeParsExtended <- tuneParams(ridge, task = iowaTask, # ~30 sec
resampling = cvForTuning,
par.set = ridgeParamSpaceExtended,
control = randSearch)

parallelStop()

ridgeTuningDataExtended <- generateHyperParsEffectData(
tunedRidgeParsExtended)

plotHyperParsEffect(ridgeTuningDataExtended, x = "s", y = "mse.test.mean",
plot.type = "line") +

theme_bw()

The previous value of s was not just a local minimum,
but the global minimum.

2 Plot the intercepts for the ridge and LASSO models:

coefTibInts <- tibble(Coef = rownames(ridgeCoefs),
Ridge = as.vector(ridgeCoefs),
Lm = as.vector(lmCoefs))

281Solutions to exercises

coefUntidyInts <- gather(coefTibInts, key = Model, value = Beta, -Coef)

ggplot(coefUntidyInts, aes(reorder(Coef, Beta), Beta, fill = Model)) +
geom_bar(stat = "identity", col = "black") +
facet_wrap(~Model) +
theme_bw() +
theme(legend.position = "none")

The intercepts are different. The intercept isn't included when
calculating the L2 norm, but is the value of the outcome when all
the predictors are zero. Because ridge regression changes the parameter
estimates of the predictors, the intercept changes as a result.

3 Experiment with different ways of plotting the hyperparameter tuning process:

plotHyperParsEffect(elasticTuningData, x = "s", y = "alpha",
z = "mse.test.mean", interpolate = "regr.kknn",
plot.type = "contour", show.experiments = TRUE) +

scale_fill_gradientn(colours = terrain.colors(5)) +
geom_point(x = tunedElasticParsxs, y = tunedElasticParsxalpha) +
theme_bw()

plotHyperParsEffect(elasticTuningData, x = "s", y = "alpha",
z = "mse.test.mean", plot.type = "scatter") +

theme_bw()

4 Plot the model coefficients using horizontally dodged bars instead of facets:

ggplot(coefUntidy, aes(reorder(Coef, Beta), Beta, fill = Model)) +
geom_bar(stat = "identity", position = "dodge", col = "black") +
theme_bw()

5 Compare the performance of a LASSO model with a high lambda, and an OLS
model with no predictors:

yieldOnly <- select(iowaTib, Yield)

yieldOnlyTask <- makeRegrTask(data = yieldOnly, target = "Yield")

lassoStrict <- makeLearner("regr.glmnet", lambda = 500)

loo <- makeResampleDesc("LOO")

resample("regr.lm", yieldOnlyTask, loo)

Resample Result
Task: yieldOnly
Learner: regr.lm
Aggr perf: mse.test.mean=179.3428
Runtime: 0.11691

resample(lassoStrict, iowaTask, loo)

Resample Result
Task: iowaTib

282 CHAPTER 11 Preventing overfitting with ridge regression, LASSO, and elastic net
Learner: regr.glmnet
Aggr perf: mse.test.mean=179.3428
Runtime: 0.316366

The MSE values are identical. This is because when lambda is high
enough, all predictors will be removed from the model, just as if
we trained a model with no predictors.

6 Use the plotres() function to plot model diagnostics for glmnet models:

install.packages("plotmo")

library(plotmo)

plotres(ridgeModelData)

plotres(lassoModelData)

plotres(elasticModelData)

The first plot shows the estimated slope for each parameter for
different values of (log) lambda. Notice the different shape
between ridge and LASSO.

Regression with kNN,
random forest,
and XGBoost
This chapter covers
 Using the k-nearest neighbors algorithm for

regression

 Using tree-based algorithms for regression

 Comparing k-nearest neighbors, random forest,
and XGBoost models

You’re going to find this chapter a breeze. This is because you’ve done everything
in it before (sort of). In chapter 3, I introduced you to the k-nearest neighbors
(kNN) algorithm as a tool for classification. In chapter 7, I introduced you to deci-
sion trees and then expanded on this in chapter 8 to cover random forest and
XGBoost for classification. Well, conveniently, these algorithms can also be used to
predict continuous variables. So in this chapter, I’ll help you extend these skills to
solve regression problems.

By the end of this chapter, I hope you’ll understand how kNN and tree-based
algorithms can be extended to predict continuous variables. As you learned in
chapter 7, decision trees suffer from a tendency to overfit their training data and so
are often vastly improved by using ensemble techniques. Therefore, in this chapter,
you’ll train a random forest model and an XGBoost model, and benchmark their
performance against the kNN algorithm.
283

284 CHAPTER 12 Regression with kNN, random forest, and XGBoost
NOTE Recall from chapter 8 that random forest and XGBoost are two tree-
based learners that create an ensemble of many trees to improve prediction
accuracy. Random forest trains many trees in parallel on different bootstrap
samples from the data, and XGBoost trains sequential trees that prioritize
misclassified cases.

Using k-nearest neighbor12.1 s to predict a continuous
variable
In this section, I’ll show you how you can use the kNN algorithm for regression,
graphically and intuitively. Imagine that you’re not a morning person (perhaps, like
me, you don’t have to imagine very hard), and you like to spend as much time in bed
as possible. To maximize the amount of time you spend sleeping, you decide to train a
machine learning model to predict how long it takes you to commute to work, based
on the time you leave the house. It takes you 40 minutes to get ready in the morning,
so you hope this model will tell you what time you need to leave the house to get to
work on time, and therefore what time you need to wake up.

 Every day for two weeks, you record the time you leave the house and how long
your journey takes. Your journey time is affected by the traffic (which varies across the
morning), so your journey length changes, depending on when you leave. An exam-
ple of what the relationship between departure time and journey length might look
like is shown in figure 12.1.

Recall from chapter 3 that the kNN algorithm is a lazy learner. In other words, it
doesn’t do any work during model training (instead, it just stores the training data); it
does all of its work when it makes predictions. When making predictions, the kNN
algorithm looks in the training set for the k cases most similar to each of the new, unla-
beled data values. Each of those k most similar cases votes on the predicted value of
the new data. When using kNN for classification, these votes are for class membership,
and the winning vote selects the class the model outputs for the new data. To remind
you how this process works, I’ve reproduced a modified version of figure 3.4 from
chapter 3, in figure 12.2.

Departure time

Jo
ur

ne
y

le
ng

th
 (

m
in

)

7:457:30 8:00 8:15
30

50

35

40

45

Figure 12.1 An example relationship for how long
your commute to work takes, depending on what
time you leave the house

285Using k-nearest neighbors to predict a continuous variable
The voting process when using kNN for regression is very similar, except that we take
the mean of these k votes as the predicted value for the new data.

 This process is illustrated for our commuting example in figure 12.3. The crosses
on the x-axis represent new data: times we left the house and for which we want to pre-
dict journey length. If we train a one-nearest neighbor model, the model finds the sin-
gle case from the training set that is closest to the departure time of each of the new
data points, and uses that value as the predicted journey length. If we train a three-
nearest neighbor model, the model finds the three training cases with departure
times most similar to each of the new data points, takes the mean journey length of
those nearest cases, and outputs this as the predicted value for the new data. The same
applies to any number of k we use to train the model.

Class 3

Class 1 Class 2

New data

Variable 1

V
ar

ia
bl

e
2

One nearest neighbor

Three nearest neighbors Five nearest neighbors

Variable 1

V
ar

ia
bl

e
2

Before classification

V
ar

ia
bl

e
2

V
ar

ia
bl

e
2

Variable 1

Variable 1

Figure 12.2 The kNN algorithm for classification: identifying the k
nearest neighbors and taking the majority vote. Lines connect the
unlabeled data with their one, three, and five nearest neighbors. The
majority vote in each scenario is indicated by the shape drawn under
each cross.

286 CHAPTER 12 Regression with kNN, random forest, and XGBoost
NOTE Just like when we used kNN for classification, selecting the best-
performing value of k is critical to model performance. If we select a k that is
too low, we may produce a model that is overfitted and makes predictions
with high variance. If we select a k that is too high, we may produce a model
that is underfitted and makes predictions with high bias.

12.2 Using tree-based learners to predict a continuous
variable
In this section, I’ll show you how you can use tree-based algorithms to predict a con-
tinuous outcome variable. Back in chapter 7, I showed you how tree-based algorithms
(such as the rpart algorithm) split a feature space into separate regions, one binary
split at a time. The algorithm tries to partition the feature space such that each region
contains only cases from a particular class. Put another way, the algorithm tries to
learn binary splits that result in regions that are as pure as possible.

Departure time

Jo
ur

ne
y

le
ng

th
 (

m
in

)

7:457:30 8:00 8:15
30

50

35

40

45

Five nearest neighborsThree nearest neighbors

Before regression

Departure time

Jo
ur

ne
y

le
ng

th
 (

m
in

)

7:457:30 8:00 8:15
30

50

35

40

45

Departure time

Jo
ur

ne
y

le
ng

th
 (

m
in

)

7:457:30 8:00 8:15
30

50

35

40

45

One nearest neighbor

Departure time

Jo
ur

ne
y

le
ng

th
 (

m
in

)

7:457:30 8:00 8:15
30

50

35

40

45

Figure 12.3 How the kNN algorithm predicts continuous variables.
The crosses represent new data points for which we wish to predict the
journey length. For the one-, three-, and five-nearest neighbor models,
the nearest neighbors to each new data point are highlighted in a lighter
shade. In each case, the predicted value is the mean journey length of
the nearest neighbors.

287Using tree-based learners to predict a continuous variable
NOTE Remember that the feature space refers to all possible combinations of
predictor variable values, and that purity refers to how homogeneous the cases
are within a single region.

To refresh your memory, I’ve reproduced figure 7.4 in figure 12.4, showing how a fea-
ture space of two predictor variables can be partitioned to predict the membership of
three classes.

Classification with tree-based algorithms is a bit like herding animals into their pens
on a farm. It’s quite obvious that we want one pen for the chickens, one for the cows,
and one for the alpacas (I don’t think you see many alpacas on farms, but I’m particu-
larly fond of them). So conceptually, it’s quite easy for us to picture splitting regions of
the feature space into different pens for different categories. But perhaps it’s not so
easy to picture splitting the feature space to predict a continuous variable.

 So how does this partitioning work for regression problems? In exactly the same
way: the only difference is that instead of each region representing a class, it rep-
resents a value of the continuous outcome variable. Take a look at figure 12.5, where
we’re creating a regression tree using our journey length example. The nodes of the
regression tree split the feature space (departure time) into distinct regions. Each
region represents the mean of the outcome variable of the cases inside it. When mak-
ing predictions on new data, the model will predict the value of the region the new
data falls into. The leaves of the tree are no longer classes, but numbers. This is illus-
trated for situations with one and two predictor variables in figure 12.5, but it extends
to any number of predictors.

 Just as for classification, regression trees can handle both continuous and categori-
cal predictor variables (with the exception of XGBoost, which requires categorical
variables to be numerically encoded). The way splits are decided for continuous and

V
ar

ia
bl

e
2

Variable 1

N
ode 1

Node 2

20

10,000

Value of
variable 2

≥ < 2020

< 10,000 ≥ 10,000Value of
variable 1

Figure 12.4 How splitting is performed for classification problems. Cases
belonging to three classes are plotted against two continuous variables.
The first node splits the feature space into rectangles based on the value of
variable 2. The second node further splits the variable 2 20 feature space
into rectangles based on the value of variable 1.

288 CHAPTER 12 Regression with kNN, random forest, and XGBoost

Departure time

Jo
ur

ne
y

le
ng

th
 (

m
in

)

7:457:30 8:00 8:15
30

50

35

40

45

One predictor

FALSETRUE

TRUE FALSE 45.9

35.2 TRUE FALSE

38.344.8

45
.9

35
.2

38
.3

44
.8

Departure time

D
ay

 o
f t

he
 w

ee
k

7:457:30 8:00 8:15

Fri

Tue

Wed

Thu

Two predictors

Mon

45
.9

FALSETRUE

TRUE FALSE 45.9

FALSETRUE

40.636.0

TRUE FALSE

44.835.2

36
.0

40
.6

44
.8

35
.2

Leave before
7:45

Leave before
7:40

Leave before
7:37

Leave before
7:45

Leave before
7:40

Is it
Friday?

Is it
Wednesday?

Figure 12.5 How splitting is performed for regression problems. The feature space is split into shaded regions
based on the nodes of the tree next to each plot. The predicted journey length is shown inside each region. The
dashed line in the top plot demonstrates how journey length is predicted from departure time based on the tree.
The bottom plot shows a two-predictor situation.

categorical variables is the same as for classification trees, except that instead of find-
ing the split that has the highest Gini gain, the algorithm looks for the split with the
lowest sum of squares.

NOTE Recall from chapter 7 that the Gini gain is the difference between the
Gini indices of the parent node and of the split. The Gini index is a measure
of impurity and is equal to 1 – (p(A)2 + p(B)2), where p(A) and p(B) are the
proportions of cases belonging to classes A and B, respectively.

For each candidate split, the algorithm calculates the sum of squared residuals for the
left and right split, and adds them together to form the sum of squared residuals for

289Building your first kNN regression model
the split as a whole. In figure 12.6, the algorithm is considering the candidate split of a
departure time before 7:45. For each case where the departure time was before 7:45, the
algorithm calculates the mean journey length, finds the residual error (the difference
between each case’s journey length and the mean), and squares it. The same is done for
the cases where you left the house after 7:45, with their respective mean. These two sums
of squared residual values are added together to give the sum of squares for the split. If
you prefer to see this in mathematical notation, it’s shown in equation 12.1.

Equation 12.1

where i ∈ left and i ∈ right indicate cases belonging to the left and right splits, respec-
tively.

 The candidate split with the lowest sum of squares is chosen as the split for any par-
ticular point in the tree. So, for regression trees, purity refers to how spread the data
are around the mean of the node.

12.3 Building your first kNN regression model
In this section, I’ll teach you how to define a kNN learner for regression, tune the k
hyperparameter, and train a model so you can use it to predict a continuous variable.
Imagine that you’re a chemical engineer trying to predict the amount of heat released
by various batches of fuel, based on measurements you made on each batch. We’re
first going to train a kNN model on this task and then compare how it performs to a
random forest and an XGBoost model, later in the chapter.

Departure time

Jo
ur

ne
y

le
ng

th
 (

m
in

)

7:457:30 8:00 8:15
30

50

35

40

45

45
.9

38
.5

LSEFAUETR

45.938.5

Leave before
7:45

SSleft = SSsplit + SSright

Figure 12.6 How candidate splits are chosen for regression problems. The measure of
purity is the sum of squares for the split, which is the combined sums of squares for the
left and right nodes. Each sum of squares is the vertical distance between each case and
the predicted value for the leaf it belongs to.

SSsplit yi ŷleft–()
2

i left∈
 yi ŷright–()

2

i right∈
+=

290 CHAPTER 12 Regression with kNN, random forest, and XGBoost
 Let’s start by loading the mlr and tidyverse packages:

library(mlr)

library(tidyverse)

12.3.1 Loading and exploring the fuel dataset

The mlr package, conveniently, comes with several predefined tasks to help you exper-
iment with different learners and processes. The dataset we’re going to work with in
this chapter is contained inside mlr’s fuelsubset.task. We load this task into our R
session the same way we would any built-in dataset: using the data() function. We can
then use mlr’s getTaskData() function to extract the data from the task, so we can
explore it. As always, we use the as_tibble() function to convert the data frame into
a tibble.

data("fuelsubset.task")

fuel <- getTaskData(fuelsubset.task)

fuelTib <- as_tibble(fuel)

fuelTib

A tibble: 129 x 367
h20 UVVIS.UVVIS.1 UVVIS.UVVIS.2 UVVIS.UVVIS.3 UVVIS.UVVIS.4heatan

<dbl><dbl><dbl><dbl><dbl> <dbl>
1 26.8 2.3 0.874 0.748 0.774 0.747
2 27.5 3 -0.855 -1.29 -0.833 -0.976
3 23.8 2.00 -0.0847 -0.294 -0.202 -0.262
4 18.2 1.85 -0.582 -0.485 -0.328 -0.539
5 17.5 2.39 -0.644 -1.12 -0.665 -0.791
6 20.2 2.43 -0.504 -0.890 -0.662 -0.744
7 15.1 1.92 -0.569 -0.507 -0.454 -0.576
8 20.4 3.61 0.158 0.186 0.0303 0.183
9 26.7 2.5 0.334 0.191 0.0777 0.0410

10 24.9 1.28 0.0766 0.266 0.0808 -0.0733
… with 119 more rows, and 361 more variables

We have a tibble containing 129 different batches of fuel and 367 variables/features!
In fact, there are so many variables that I’ve truncated the printout of the tibble to
remove the names of the variables that didn’t fit on my console.

TIP Run names(fuelTib) to return the names of all the variables in the data-
set. This is useful when working with large datasets with too many columns to
visualize on the console.

The heatan variable is the amount of energy released by a certain quantity of fuel
when it is combusted (measured in megajoules). The h20 variable is the percentage of

Loading and exploring the fuel datasetListing 12.1

291Building your first kNN regression model

humidity in the fuel’s container. The remaining variables show how much ultraviolet
or near-infrared light of a particular wavelength each batch of fuel absorbs (each vari-
able represents a different wavelength).

TIP To see all the tasks that come built into mlr, use data(package = "mlr").

Let’s plot the data to get an idea of how the heatan variable correlates with the
absorbance variable at various wavelengths of ultraviolet and near-infrared light. We’ll
up our tidyverse game by doing some more-complicated operations, so let me take
you step by step through the process in listing 12.2:

1 Because we want to plot a separate geom_smooth() line for every case in the
data, we first pipe the data into a mutate() function call, where we create an id
variable that just acts as a row index. We use nrow(.) to specify the number of
rows in the data object piped into mutate().

2 We pipe the result of step 1 into a gather() function to create a key-value pair
of variables containing the spectral information (wavelength as the key, absor-
bance at that wavelength as the value). We omit the heatan, h20, and id vari-
ables from the gathering process (c(-heatan, -h20, -id)).

3 We pipe the result of step 2 into another mutate() function to create two new
variables:
a A character vector that indicates whether the row shows absorbance of ultra-

violet or near-infrared spectra
b A numeric vector that indicates the wavelength of that particular spectrum

I’ve introduced two functions here from the stringr tidyverse package: str_sub() and
str_extract(). The str_sub() function splits a character string into its individual
alphanumeric characters and symbols, and returns the ones that are between the
start and end arguments. For example, str_sub("UVVIS.UVVIS.1", 1, 3) returns
"UVV". We use this function to mutate a column with the value "UVV" when the spec-
trum is ultraviolet and "NIR" when the spectrum is near-infrared.

 The str_extract() function looks for a particular pattern in a character string,
and returns that pattern. In the example in listing 12.2, we asked the function to look
for any numerical digits, using \\d. The + after \\d tells the function that the pattern
may be matched more than once. For example, compare the output of str_extract
("hello123", "\\d") and str_extract("hello123", "\\d+").

Preparing the data for plottingListing 12.2

fuelUntidy <- fuelTib %>%
mutate(id = 1:nrow(.)) %>%
gather(key = "variable", value = "absorbance",
c(-heatan, -h20, -id)) %>%
mutate(spectrum = str_sub(variable, 1, 3),

wavelength = as.numeric(str_extract(variable, "(\\d)+")))

fuelUntidy

292 CHAPTER 12 Regression with kNN, random forest, and XGBoost
A tibble: 47,085 x 7
absorbance spectrum wavelengthid variableh20heatan

<dbl><dbl> <chr><dbl> <dbl> <int> <chr>
1 26.8 2.3 1 UVVIS.UVVIS.1 0.874 UVV 1
2 27.5 3 2 UVVIS.UVVIS.1 -0.855 UVV 1
3 23.8 2.00 3 UVVIS.UVVIS.1 -0.0847 UVV 1
4 18.2 1.85 4 UVVIS.UVVIS.1 -0.582 UVV 1
5 17.5 2.39 5 UVVIS.UVVIS.1 -0.644 UVV 1
6 20.2 2.43 6 UVVIS.UVVIS.1 -0.504 UVV 1
7 15.1 1.92 7 UVVIS.UVVIS.1 -0.569 UVV 1
8 20.4 3.61 8 UVVIS.UVVIS.1 0.158 UVV 1
9 26.7 2.5 9 UVVIS.UVVIS.1 0.334 UVV 1

10 24.9 1.28 10 UVVIS.UVVIS.1 0.0766 UVV 1
... with 47,075 more rows

This was some reasonably complex data manipulation, so run the code and take a
look at the resulting tibble, and make sure you understand how we created it.

TIP We search for patterns in character vectors by specifying regular expres-
sions, such as "\\d+" in listing 12.2. A regular expression is a special text
string for describing a search pattern. Regular expressions are very useful
tools for extracting (sometimes-complex) patterns from character strings. If
I’ve piqued your interest in regular expressions, you can learn more about
how to use them in R by running ?regex.

Now that we’ve formatted our data for plotting, we’re going to draw three plots:

 absorbance versus heatan, with a separate curve for every wavelength
 wavelength versus absorbance, with a separate curve for every case
 Humidity (h20) versus heatan

In the plot for absorbance versus heatan, we wrap wavelength inside the as.fac-
tor() function, so that each wavelength will be drawn with a discrete color (rather
than a gradient of colors from low to high wavelengths). To prevent the ggplot()
function from drawing a huge legend showing the color of each of the lines, we sup-
press the legend by adding theme(legend.position = "none"). We facet by spectrum
to create subplots for the ultraviolet and near-infrared spectra, allowing the x-axis to
vary between subplots using the scales = "free_x" argument.

 I don’t know about you, but I was always told in school to add titles to my plots. We can
do this in ggplot2 using the ggtitle() function, supplying the title we want in quotes.

TIP The theme() function allows you to customize almost anything about the
appearance of your ggplots, including font sizes and the presence/absence of
grid lines. I won’t discuss this in depth, but I recommend taking a look at the
help page using ?theme to find out what you can do.

In the plot for wavelength versus absorbance, we set the group aesthetic equal to the
id variable we created, so that the geom_smooth() layer will draw a separate curve for
each batch of fuel.

293Building your first kNN regression model
fuelUntidy %>%
ggplot(aes(absorbance, heatan, col = as.factor(wavelength))) +
facet_wrap(~ spectrum, scales = "free_x") +
geom_smooth(se = FALSE, size = 0.2) +
ggtitle("Absorbance vs heatan for each wavelength") +
theme_bw() +
theme(legend.position = "none")

fuelUntidy %>%
ggplot(aes(wavelength, absorbance, group = id, col = heatan)) +
facet_wrap(~ spectrum, scales = "free_x") +
geom_smooth(se = FALSE, size = 0.2) +
ggtitle("Wavelength vs absorbance for each batch") +
theme_bw()

fuelUntidy %>%
ggplot(aes(h20, heatan)) +
geom_smooth(se = FALSE) +
ggtitle("Humidity vs heatan") +
theme_bw()

The resulting plots are shown in figure 12.7 (I’ve combined them into a single figure
to save space). Data really is beautiful sometimes, isn’t it? In the plots of absorbance
against heatan, each line corresponds to a particular wavelength. The relationship
between each predictor variable and the outcome variable is complex and nonlinear.
There is also a nonlinear relationship between h20 and heatan.

 In the plots of wavelength against absorbance, each line corresponds to a particu-
lar batch of fuel, and the lines show its absorbance of ultraviolet and near-infrared
light. The shading of the line corresponds to the heatan value of that batch. It’s diffi-
cult to identify patterns in these plots, but certain absorbance profiles seem to cor-
relate with higher and lower heatan values.

TIP While you can certainly overfit your data, you can never over-plot it. When
starting an exploratory analysis, I will plot my dataset in multiple different ways
to get a better understanding of it from different angles/perspectives.

Plotting the dataListing 12.3

Exercise 1
Add an additional geom_smooth() layer to the plot of absorbance versus heatan
with these arguments:

 group = 1
 col = "blue"

Using the argument group = 1, create a single smoothing line that models all of the
data, ignoring groups.

294 CHAPTER 12 Regression with kNN, random forest, and XGBoost

10–1
Absorbance

0

10

20

30

23

25

27

29

2 4 6

Absorbance versus heatan for each wavelength

Humidity versus heatan

A
bs

or
ba

nc
e

NIR UVV

0.50.0−0.5–1.0

NIR UVV

10

15

20

25

30

Wavelength versus absorbance for each batch

−1

0

1

100500200150100500
Wavelength

h20

H
ea

ta
n

H
ea

ta
n

Heatan

Figure 12.7 Plotting the relationships in the fuelTib dataset. The topmost plots show absorbance against
heatan with separate lines drawn for each wavelength, faceted by near-infrared (NIR) or ultraviolet (UVV)
light. The middle plots show wavelength against absorbance shaded by heatan with separate lines
drawn for each batch of fuel, faceted by NIR or UVV light. The bottom plot shows h20 against heatan.

295Building your first kNN regression model
Because the predefined fuelsubset.task defines the ultraviolet and near-infrared
spectra as functional variables, we’re going to define our own task, treating each wave-
length as a separate predictor. We do this, as usual, with the makeRegrTask() function,
setting the heatan variable as our target. We then define our kNN learner using the
makeLearner() function.

fuelTask <- makeRegrTask(data = fuelTib, target = "heatan")

kknn <- makeLearner("regr.kknn")

NOTE Notice that for regression, the name of the learner is "regr.kknn"
with two k’s, rather than the "classif.knn" we used in chapter 3. This is
because this function is taken from the kknn package, which allows us to per-
form kernel k-nearest neighbors, where we use a kernel function (just like with
SVMs in chapter 6) to find a linear decision boundary between classes.

12.3.2 Tuning the k hyperparameter

In this section, we’re going to tune k to get the best-performing kNN model possible.
Remember that for regression, the value of k determines how many of the nearest
neighbors’ outcome values to average when making predictions on new cases. We first
define the hyperparameter search space using the makeParamSet() function, and define
k as a discrete hyperparameter with possible values 1 through 12. Then we define our
search procedure as a grid search (so that we will try every value in the search space),
and define a 10-fold cross-validation strategy.

Modeling spectral data
The dataset we’re working with is an example of spectral data. Spectral data contains
observations made across a range of (usually) wavelengths. For example, we might
measure how much a substance absorbs light from a range of different colors.

Statisticians and data scientists call this kind of data functional data, where there
are many dimensions in the dataset (the wavelengths we measure across) and there
is a particular order to those dimensions (starting by measuring the absorbance at
the lowest wavelength and working our way to the highest wavelength).

A branch of statistics called functional data analysis is dedicated to modeling data
like this. In functional data analysis, each predictor variable is turned into a function
(for example, a function that describes how absorbance changes over ultraviolet and
near-infrared wavelengths). That function is then used in the model as a predictor, to
predict the outcome variable. We won’t apply this kind of technique to this data, but
if you’re interested in functional data analysis, check out Functional Data Analysis by
James Ramsay (Springer, 2005).

Defining the task and kNN learnerListing 12.4

296 CHAPTER 12 Regression with kNN, random forest, and XGBoost
 As we’ve done many times before, we run the tuning process using the tuneParams()
function, supplying the learner, task, cross-validation method, hyperparameter space,
and search procedure as arguments.

kknnParamSpace <- makeParamSet(makeDiscreteParam("k", values = 1:12))

gridSearch <- makeTuneControlGrid()

kFold <- makeResampleDesc("CV", iters = 10)

tunedK <- tuneParams(kknn, task = fuelTask,
resampling = kFold,
par.set = kknnParamSpace,
control = gridSearch)

tunedK

Tune result:
Op. pars: k=7
mse.test.mean=10.7413

We can plot the hyperparameter tuning process by extracting the tuning data with the
generateHyperParsEffectData() function and passing this to the plotHyperPars-
Effect() function, supplying our hyperparameter ("k") as the x-axis and MSE
("mse.test.mean") as the y-axis. Setting the plot.type argument equal to "line"
connects the samples with a line.

knnTuningData <- generateHyperParsEffectData(tunedK)

plotHyperParsEffect(knnTuningData, x = "k", y = "mse.test.mean",
plot.type = "line") +

theme_bw()

The resulting plot is shown in figure 12.8. We can see that the mean MSE starts to rise
as k increases beyond 7, so it looks like our search space was appropriate.

Now that we have our tuned value of k, we can define a learner using that value, with
the setHyperPars() function, and train a model using it.

TuningListing 12.5 k

Plotting the tuning processListing 12.6

Exercise 2
Let’s make sure our search space was large enough. Repeat the tuning process, but
search values of k from 1 to 50. Plot this tuning process just like we did in figure 12.8.
Was our original search space large enough?

297Building your first random forest regression model
tunedKnn <- setHyperPars(makeLearner("regr.kknn"), par.vals = tunedK$x)

tunedKnnModel <- train(tunedKnn, fuelTask)

12.4 Building your first random forest regression model
In this section, I’ll teach you how to define a random forest learner for regression,
tune its many hyperparameters, and train a model for our fuel task.

NOTE We can also use the rpart algorithm to build a regression tree, but as it
is almost always outperformed by bagged and boosted learners, we’re going to
skip over it and dive straight in with random forest and XGBoost. Recall that
bagged (bootstrap-aggregated) learners train multiple models on bootstrap
samples of the data, and return the majority vote. Boosted learners train mod-
els sequentially, putting more emphasis on correcting the mistakes of the pre-
vious ensemble of models.

We’ll start by defining our random forest learner. Notice that rather than "classif
.randomForest" as in chapter 8, the regression equivalent is "regr.randomForest":

forest <- makeLearner("regr.randomForest")

Next, we’re going to tune the hyperparameters of our random forest learner: ntree,
mtry, nodesize, and maxnodes. I first defined what these hyperparameters do in chap-
ter 8, but let’s recap each one here:

 ntree controls the number of individual trees to train. More trees is usually bet-
ter until adding more doesn’t improve performance further.

 mtry controls the number of predictor variables that are randomly sampled for
each individual tree. Training each individual tree on a random selection of

Training the final, tuned kNN modelListing 12.7

11

12

13

7.55.02.5
k

12.510.0

14

m
se

.te
st

.m
ea

n

Figure 12.8 Plotting our hyperparameter tuning process. The average MSE
(mse.test.mean) is shown for each value of k.

298 CHAPTER 12 Regression with kNN, random forest, and XGBoost
predictor variables helps keep the trees uncorrelated and therefore helps pre-
vent the ensemble model from overfitting the training set.

 nodesize defines the minimum number of cases allowed in a leaf node. For
example, setting nodesize equal to 1 would allow each case in the training set
to have its own leaf.

 maxnodes defines the maximum number of nodes in each individual tree.

As usual, we create our hyperparameter search space using the makeParamSet() func-
tion, defining each hyperparameter as an integer with sensible lower and upper bounds.

 We define a random search with 100 iterations and start the tuning procedure with
our forest learner, fuel task, and holdout cross-validation strategy.

WARNING This tuning process takes a little while, so let’s use our good friends
the parallel and parallelMap packages. Using parallelization, this takes 2 min-
utes on my four-core machine.

forestParamSpace <- makeParamSet(
makeIntegerParam("ntree", lower = 50, upper = 50),
makeIntegerParam("mtry", lower = 100, upper = 367),
makeIntegerParam("nodesize", lower = 1, upper = 10),
makeIntegerParam("maxnodes", lower = 5, upper = 30))

randSearch <- makeTuneControlRandom(maxit = 100)

library(parallel)

library(parallelMap)

parallelStartSocket(cpus = detectCores())

tunedForestPars <- tuneParams(forest, task = fuelTask,
resampling = kFold,
par.set = forestParamSpace,
control = randSearch)

parallelStop()

tunedForestPars

Tune result:
Op. pars: ntree=50; mtry=244; nodesize=6; maxnodes=25
mse.test.mean=6.3293

Next, let’s train the random forest model using our tuned hyperparameters. Once
we’ve trained the model, it’s a good idea to extract the model information and pass
this to the plot() function to plot the out-of-bag error. Recall from chapter 8 that the
out-of-bag error is the mean prediction error for each case by trees that did not include
that case in their bootstrap sample. The only difference between the out-of-bag error

Hyperparameter tuning for random forestListing 12.8

299Building your first XGBoost regression model

for classification and regression random forests is that in classification, the error was
the proportion of cases that were misclassified; but in regression, the error is the
mean squared error.

tunedForest <- setHyperPars(forest, par.vals = tunedForestPars$x)

tunedForestModel <- train(tunedForest, fuelTask)

forestModelData <- getLearnerModel(tunedForestModel)

plot(forestModelData)

The resulting plot is shown in figure 12.9. It looks like the out-of-bag error stabilizes
after 30–40 bagged trees, so we can be satisfied that we have included enough trees in
our forest.

12.5

Training the model and plotting the out-of-bag errorListing 12.9

Forest Model Data

0 10 20 30 40 50
Trees

8

10

12

14

16

E
rr

or

Figure 12.9 Plotting the out-of-bag error for our random forest model. The Error y-axis shows the
mean square error for all cases, predicted by trees that didn’t include that case in the training set.
This is shown for varying numbers of trees in the ensemble. The flattening out of the line suggests
we have included enough individual trees in the forest.

Building your first XGBoost regression model
In this section, I’ll teach you how to define an XGBoost learner for regression, tune its
many hyperparameters, and train a model for our fuel task. We’ll start by defining our
XGBoost learner. Just like for the kNN and random forest learners, instead of using
"classif.xgboost" as in chapter 8, the regression equivalent is "regr.xgboost":

xgb <- makeLearner("regr.xgboost")

Next, we’re going to tune the hyperparameters of our XGBoost learner: eta, gamma,
max_depth, min_child_weight, subsample, colsample_bytree, and nrounds. I first

300 CHAPTER 12 Regression with kNN, random forest, and XGBoost

defined what these hyperparameters do in chapter 8, but again, let’s recap each
one here:

 eta is known as the learning rate. It takes a value between 0 and 1, which is multi-
plied by the model weight of each tree to slow down the learning process to pre-
vent overfitting.

 gamma is the minimum amount of splitting by which a node must improve the
loss function (MSE in the case of regression).

 max_depth is the maximum number of levels deep that each tree can grow.
 min_child_weight is the minimum degree of impurity needed in a node before

attempting to split it (if a node is pure enough, don’t try to split it again).
 subsample is the proportion of cases to be randomly sampled (without replace-

ment) for each tree. Setting this to 1 uses all the cases in the training set.
 colsample_bytree is the proportion of predictor variables sampled for each

tree. We could also tune colsample_bylevel and colsample_bynode, which
instead sample predictors for each level of depth in a tree and at each node,
respectively.

 nrounds is the number of sequentially built trees in the model.

NOTE When we used XGBoost for classification problems, we could also tune
the eval_metric hyperparameter to select between the log loss and classifica-
tion error loss functions. For regression problems, we only have one loss func-
tion available to us—RMSE—so there is no need to tune this hyperparameter.

In listing 12.10, we define the type and upper and lower bounds of each of these
hyperparameters that we’ll search over. We define max_depth and nrounds as integer
hyperparameters, and all the others as numerics. I’ve chosen sensible starting values
for the upper and lower bounds of each hyperparameter, but you may find in your
own projects you need to adjust your search space to find the optimal combination of
values. I usually fix the nrounds hyperparameter as a single value that fits my computa-
tional budget to start with, and then plot the loss function (RMSE) against the tree
number to see if the model error has flattened out. If it hasn’t, I increase the nrounds
hyperparameter until it does. We’ll perform this in listing 12.11.

 Once the search space is defined, we start the tuning process just like we have the
previous two times in this chapter.

WARNING This takes around 1.5 minutes on my four-core machine.

Hyperparameter tuning for XGBoostListing 12.10

xgbParamSpace <- makeParamSet(
makeNumericParam("eta", lower = 0, upper = 1),
makeNumericParam("gamma", lower = 0, upper = 10),
makeIntegerParam("max_depth", lower = 1, upper = 20),
makeNumericParam("min_child_weight", lower = 1, upper = 10),
makeNumericParam("subsample", lower = 0.5, upper = 1),

301Benchmarking the kNN, random forest, and XGBoost model-building processes
makeNumericParam("colsample_bytree", lower = 0.5, upper = 1),
makeIntegerParam("nrounds", lower = 30, upper = 30))

tunedXgbPars <- tuneParams(xgb, task = fuelTask,
resampling = kFold,
par.set = xgbParamSpace,
control = randSearch)

tunedXgbPars

Tune result:
Op. pars: eta=0.188; gamma=6.44; max_depth=11; min_child_weight=1.55; subsamp

le=0.96; colsample_bytree=0.7; nrounds=30
mse.test.mean=6.2830

Now that we have our tuned combination of hyperparameters, let’s train the final
model using this combination. Once we’ve done this, we can extract the model infor-
mation and use it to plot the iteration number (tree number) against the RMSE to see
if we included enough trees in our ensemble. The RMSE information for each tree
number is contained in the $evaluation_log component of the model informa-
tion, so we use this as the data argument for the ggplot() function, specifying iter
and train_rmse to plot the tree number and its RMSE as the x and y aesthetics,
respectively.

tunedXgb <- setHyperPars(xgb, par.vals = tunedXgbPars$x)

tunedXgbModel <- train(tunedXgb, fuelTask)

xgbModelData <- getLearnerModel(tunedXgbModel)

ggplot(xgbModelData$evaluation_log, aes(iter, train_rmse)) +
geom_line() +
geom_point() +
theme_bw()

The resulting plot is shown in figure 12.10. We can see that 30 iterations/trees is just
about enough for the RMSE to have flattened out (including more iterations won’t
result in a better model).

12.6 Benchmarking the kNN, random forest, and XGBoost
model-building processes
I love a bit of healthy competition. In this section, we’re going to benchmark the kNN,
random forest, and XGBoost model-building processes against each other. We start by
creating tuning wrappers that wrap together each learner with its hyperparameter
tuning process. Then we create a list of these wrapper learners to pass into bench-
mark(). As this process will take some time, we’re going to define and use a holdout

Training the model and plotting RMSE against tree numberListing 12.11

302 CHAPTER 12 Regression with kNN, random forest, and XGBoost

cross-validation procedure to evaluate the performance of each wrapper (ideally we
would use k-fold or repeated k-fold).

WARNING It’s tea and cake time! This takes around 7 minutes to run on my
four-core machine. Using the parallelMap package won’t help because we’re
training XGBoost models as part of the benchmark, and XGBoost works fast-
est if you allow it to perform its own internal parallelization.

Benchmarking kNN, random forest, and XGBoostListing 12.12

0

5

10

15

20

0 10 20 30
iter

tr
ai

n_
rm

se

Figure 12.10 Plotting the average root mean square error (train_rmse)
against the iteration of the boosting process. The curve flattens out just before
30 iterations, suggesting that we have included enough trees in our ensemble.

kknnWrapper <- makeTuneWrapper(kknn, resampling = kFold,
par.set = kknnParamSpace,
control = gridSearch)

forestWrapper <- makeTuneWrapper(forest, resampling = kFold,
par.set = forestParamSpace,
control = randSearch)

xgbWrapper <- makeTuneWrapper(xgb, resampling = kFold,
par.set = xgbParamSpace,
control = randSearch)

learners = list(kknnWrapper, forestWrapper, xgbWrapper)

holdout <- makeResampleDesc("Holdout")

bench <- benchmark(learners, fuelTask, holdout)

bench

task.id learner.id mse.test.mean
1 fuelTib regr.kknn.tuned 10.403
2 fuelTib regr.randomForest.tuned 6.174
3 fuelTib regr.xgboost.tuned 8.043

303Solutions to exercises

According to this benchmark result, the random forest algorithm is likely to give us
the best-performing model, with a mean prediction error of 2.485 (the square root
of 6.174).

12.7 Strengths and weaknesses of kNN, random forest,
and XGBoost
The strengths and weaknesses of the kNN, random forest, and XGBoost algorithms
are the same for regression as they were for classification.

Exercise 3
Get a more accurate estimate of each of our model-building processes by rerunning
the benchmark experiment, changing our holdout cross-validation object to our kFold
object. Warning: This took nearly an hour on my four-core machine! Save the bench-
mark result to an object, and pass that object as the only argument to the plot-
BMRBoxplots() function.

Exercise 4
Cross-validate the model-building process of the model that won the benchmark in
exercise 3, but perform 2,000 iterations of the random search during hyperparameter
tuning. Use holdout as the inner cross-validation loop and 10-fold cross-validation
as the outer loop. Warning: I’d suggest you use parallelization and leave this running
during lunch or overnight.

Summary
 The k-nearest neighbors (kNN) and tree-based algorithms can be used for regres-

sion as well as classification.
 When predicting a continuous outcome variable, the predictions made by kNN

are the mean outcome values of the k-nearest neighbors.
 When predicting a continuous outcome variable, the leaves of tree-based algo-

rithms are the mean of the cases within that leaf.
 Out-of-bag error and RMSE can still be used to identify whether random forest

and XGBoost ensembles have enough trees, respectively, in regression problems.

Solutions to exercises
1 Plot absorbance versus heatan with an additional geom_smooth() layer that mod-

els the whole dataset:

fuelUntidy %>%
ggplot(aes(absorbance, heatan, col = as.factor(wavelength))) +
facet_wrap(~ spectrum, scales = "free_x") +
geom_smooth(se = FALSE, size = 0.2) +
geom_smooth(group = 1, col = "blue") +

304 CHAPTER 12 Regression with kNN, random forest, and XGBoost
ggtitle("Absorbance vs heatan for each wavelength") +
theme_bw() +
theme(legend.position = "none")

2 Expand the kNN search space to include values between 1 and 50:

kknnParamSpace50 <- makeParamSet(makeDiscreteParam("k", values = 1:50))

tunedK50 <- tuneParams(kknn, task = fuelTask,
resampling = kFold,
par.set = kknnParamSpace50,
control = gridSearch)

tunedK50

knnTuningData50 <- generateHyperParsEffectData(tunedK50)

plotHyperParsEffect(knnTuningData50, x = "k", y = "mse.test.mean",
plot.type = "line") +

theme_bw()

Our original search space was large enough.

3 Use 10-fold cross-validation as the outer cross-validation loop for the bench-
mark experiment:

benchKFold <- benchmark(learners, fuelTask, kFold)

plotBMRBoxplots(benchKFold)

4 Cross-validate the model-building process for the algorithm that won the bench-
mark, performing 2,000 iterations of the random search and using holdout as
the inner cross-validation strategy (inside the tuning wrapper):

holdout <- makeResampleDesc("Holdout")

randSearch2000 <- makeTuneControlRandom(maxit = 2000)

forestWrapper2000 <- makeTuneWrapper(forest, resampling = holdout,
par.set = forestParamSpace,
control = randSearch2000)

parallelStartSocket(cpus = detectCores())

cvWithTuning <- resample(forestWrapper2000, fuelTask, resampling = kFold)

parallelStop()

Part 4

Dimension reduction

You’re now on your way to becoming a supervised machine learning virtu-
oso! So far, your toolbox of machine learning algorithms gives you the skills to
tackle many real-world classification and regression problems. We’re now going
to move into the realm of unsupervised learning, where we are no longer relying
on labeled data to learn patterns from the data. Because we no longer have a
ground truth to compare to, validating the performance of unsupervised learn-
ers can be challenging, but I’ll show practical ways to ensure the best perfor-
mance possible.

 Recall from chapter 1 that unsupervised learning can be divided into two
goals: dimension reduction and clustering. In chapters 13, 14, and 15, I’ll intro-
duce you to several dimension-reduction algorithms you can use to turn a large
number of variables into a smaller, more manageable number. Our motivations
for doing this might be to simplify the process of visualizing patterns in data with
many dimensions; or as a preprocessing step before passing our data into a
supervised algorithm, to mitigate the curse of dimensionality.

Maximizing variance
with principal

component analysis
Dimension reduction comprises a number of approaches that turn a set of (poten-
tially many) variables into a smaller number of variables that retain as much of the
original, multidimensional information as possible. We sometimes want to reduce
the number of dimensions we’re working with in a dataset, to help us visualize the
relationships in the data or to avoid the strange phenomena that occur in high
dimensions. So dimension reduction is a critical skill to add to your machine learn-
ing toolbox!

 Our first stop in dimension reduction brings us to a very well-known and useful
technique: principal component analysis (PCA). PCA, which has been around since
the turn of the twentieth century, creates new variables that are linear combina-
tions of the original variables. In this way, PCA is similar to discriminant analysis,
which we encountered in chapter 5; but instead of constructing new variables that
separate classes, PCA constructs new variables that explain most of the variation/

This chapter covers
 Understanding dimension reduction

 Dealing with high dimensionality and collinearity

 Using principal component analysis to reduce
dimensionality
307

308 CHAPTER 13 Maximizing variance with principal component analysis
information in the data. In fact, there are no labels for PCA, because it is unsupervised
and learns patterns in the data itself without a ground truth. We can then use the two
or three of these new variables that capture most of the information as inputs to
regression, classification, or clustering algorithms, as well as use them to better under-
stand how the variables in our data are related to each other.

NOTE The first historical example of dimension reduction was a map with
two dimensions. Another form of dimension reduction that we encounter in
our daily lives is the compression of audio into formats like .mp3 and .flac.

The mlr package doesn’t have a dimension-reduction class of tasks, and it doesn’t
have a class of dimension-reduction learners (something like dimred.[ALGORITHM], I
suppose). PCA is the only dimension-reduction algorithm wrapped by mlr that we can
include as a preprocessing step (like imputation or feature selection). In view of this,
we’re going to leave the safety of the mlr package for the time being.

 By the end of this chapter, I hope you’ll understand what dimension reduction is
and why we sometimes need it. I will show you how the PCA algorithm works and how
you can use it to reduce the dimensions of a dataset to help identify counterfeit
banknotes.

13.1 Why dimension reduction?
In this section, I’ll show you the main reasons for applying dimension reduction:

 Making it easier to visualize a dataset with many variables
 Mitigating the curse of dimensionality
 Mitigating the effects of collinearity

I’ll expand on what the curse of dimensionality and collinearity are and why they
cause problems for machine learning, as well as why dimension reduction can reduce
the impact of both when we’re searching for patterns in data.

13.1.1 Visualizing high-dimensional data

When starting an exploratory analysis, one of the first things you should always do is
plot your data. It’s important that we, as data scientists, have an intuitive understand-
ing of the structure of our data, the relationships between variables, and how the data
is distributed. But what if we have a dataset containing thousands of variables? Where
do we even start? Plotting each of these variables against each other isn’t really an
option anymore, so how can we get a feel for the overall structure in our data? Well,
we can reduce the dimensions down to a more manageable number, and plot these
instead. We won’t get all the information of the original dataset when doing this, but it
will help us identify patterns in our data, like clusters of cases that might suggest a
grouping structure in the data.

309Why dimension reduction?

13.1.2 Consequences of the curse of dimensionality

In chapter 5, I discussed the curse of dimensionality. This slightly dramatic-sounding
phenomenon describes a set of challenges we encounter when trying to identify pat-
terns in a dataset with many variables. One aspect of the curse of dimensionality is that
for a fixed number of cases, as we increase the number of dimensions in the dataset
(increase the feature space), the cases get further and further apart. To reiterate this
point in figure 13.1, I’ve reproduced figure 5.2 from chapter 5. In this situation, the
data is said to become sparse. Many machine learning algorithms struggle to learn pat-
terns from sparse data and may start to learn from the noise in the dataset instead.

XXX

Z

yy

Three dimensionsTwo dimensionsOne dimension

Figure 13.1 Data becomes more sparse as the number of dimensions
increases. Two classes are shown in one-, two-, and three-dimensional
feature spaces. The dotted lines in the three-dimensional representation
are to clarify the position of the points along the z-axis. Note the increasing
empty space with increased dimensions.

Another aspect of the curse of dimensionality is that as the number of dimensions
increases, the distances between the cases begin to converge to a single value. Put
another way, for a particular case, the ratio between the distance to its nearest neighbor
and its furthest neighbor tends toward 1 in high dimensions. This presents a challenge
to algorithms that rely on measuring distances (particularly Euclidean distance), such as
k-nearest neighbors, because distance starts to become meaningless.

Finally, it’s quite common to encounter situations in which we have many more
variables than we have cases in the data. This is referred to as the p >> n problem, where
p is the number of variables and n is the number of cases. This, again, results in sparse
regions of the feature space, making it difficult for many algorithms to converge on an
optimal solution.

13.1.3 Consequences of collinearity

Variables in a dataset often have varying degrees of correlation with each other. Some-
times we may have two variables that correlate very highly with each other, such that
one basically contains the information of the other (say, with a Pearson correlation
coefficient > 0.9). In such situations, these variables are said to be collinear or exhibit

310 CHAPTER 13 Maximizing variance with principal component analysis

collinearity. An example of two variables that might be collinear are annual income and
the maximum amount of money a bank is willing to loan someone; you could proba-
bly predict one from the other with a high degree of accuracy.

TIP When more than two variables are collinear, we say we have multicollinearity
in our dataset. When one variable can be perfectly predicted from another vari-
able or combination of variables, we are said to have perfect collinearity.

So what’s the problem with collinearity? Well, it depends on the goal of your analysis
and what algorithms you are using. The most commonly encountered negative impact
of collinearity is on the parameter estimates of linear regression models.

Let’s say you’re trying to predict the value of houses based on the number of bed-
rooms, the age of the house in years, and the age of the house in months, using linear
regression. The age variables are perfectly collinear with each other, because there’s
no information contained in one that is not contained in the other. The parameter
estimates (slopes) for the two predictor variables describe the relationship between
each predictor and the outcome variable, after accounting for the effect of the other
variable. If both predictor variables capture most of (or all of, in this case) the same
information about the outcome variable, then when we account for the effect of one,
there will be no information left for the other one to contribute. As a result, the
parameter estimates for both predictors will be smaller than they should be (because
each was estimated after accounting for the effect of the other).

So collinearity makes the parameter estimates more variable and more sensitive to
small changes in the data. This is mostly a problem if you’re interested in interpreting
and making inferences about the parameter estimates. If all you care about is predic-
tive accuracy, and not interpreting the model parameters, then collinearity may not be
a problem for you at all.

It’s worth mentioning, however, that collinearity is particularly problematic when
working with the naive Bayes algorithm you learned about in chapter 6. Recall that the
“naive” in naive Bayes refers to the fact that this algorithm assumes independence
between predictors. This assumption is often invalid in the real world, but naive Bayes is
usually resistant to small correlations between predictor variables. When predictors are
highly correlated, however, the predictive performance of naive Bayes will suffer consid-
erably, though this is usually easy to identify when you cross-validate your model.

13.1.4 Mitigating the curse of dimensionality and collinearity by using
dimension reduction

How can you mitigate the impacts of the curse of dimensionality and/or collinearity
on the predictive performance of your models? Why, with dimension reduction, of
course! If you can compress most of the information from 100 variables into just 2 or
3, then the problems of data sparsity and near-equal distances disappear. If you turn
two collinear variables into one new variable that captures all the information of both,
then the problem of dependence between the variables disappears.

311What is principal component analysis?

 But we’ve already encountered another set of techniques that can mitigate the
curse of dimensionality and collinearity: regularization. As we saw in chapter 11, regu-
larization can be used to shrink the parameter estimates and even completely remove
weakly contributing predictors. Regularization can therefore reduce sparsity resulting
from the curse of dimensionality, and remove variables that are collinear with others.

NOTE For most people, tackling the curse of dimensionality is a more import-
ant use of dimension reduction than reducing collinearity.

13.2 What is principal component analysis?
In this section, I’ll show you what PCA is, how it works, and why it’s useful. Imagine that
we measure two variables on seven people, and we want to compress this information
down into a single variable using PCA. The first thing we need to do is center the vari-
ables by subtracting each variable’s mean from its corresponding value for each case.

 In addition to centering our variables, we can also scale them by dividing each vari-
able by its standard deviation. This is important if the variables are measured on dif-
ferent scales—otherwise, those on large scales will be weighted more heavily. If our
variables are on similar scales, this standardization step isn’t necessary.

 With our centered and (possibly) scaled data, PCA now finds a new axis that satis-
fies two conditions:

 The axis passes through the origin.
 The axis maximizes the variance of the data along itself.

The new axis that satisfies these conditions is called the first principal axis. When the
data is projected onto this principal axis (moved at a right angle onto the nearest
point on the axis), this new variable is called the first principal component, often abbre-
viated PC1. This process of centering the data and finding PC1 is shown in figure 13.2.

 The first principal axis is the line through the origin of the data that, once the data
is projected onto it, has the greatest variance along it and is said to “maximize the

V
ar

ia
bl

e
2

Variable 10
0

Initial input data Mean-centered data

0

0
Variable 1V

ar
ia

bl
e

2

0

0

Find first PC

Variable 1

V
ar

ia
bl

e
2

Figure 13.2 The first thing we do before applying the PCA algorithm is (usually) to center the
data by subtracting the mean of each variable for each case. This places the origin at the center
of the data. The first principal axis is then found: it is the axis that passes through the origin and
maximizes the variance of the data when projected onto it.

312 CHAPTER 13 Maximizing variance with principal component analysis

variance.” This is illustrated in figure 13.3. This axis is chosen because if this is the line
that accounts for the majority of the variance in the data, then it is also the line that
accounts for the majority of the information in the data.

0
Var 1

V
ar

 2

0

0
Var 1

V
ar

 2

Sub-optimal component

PC1

Optimal component

0

PC1

x

s2

x

s2

Figure 13.3 What it means for the first principal axis to “maximize the
variance.” The left-side plot shows a sub-optimal candidate principal axis.
The right-side plot shows the optimal candidate principal axis. The data is
shown projected onto each principal axis below the respective plots. The
variance of the data along the axis is greatest on the right side.

This new principal axis is actually a linear combination of the predictor variables.
Look again at figure 13.3. The first principal axis extends through the two clusters of
cases to form a negative slope between var 1 and var 2. Just like in linear regression, we
can express this line in terms of how one variable changes when the other variable
changes (as the line passes through the origin, the intercept is 0). Take a look at fig-
ure 13.4, where I’ve highlighted how much var 2 changes when var 1 increases by two
units along the principal axis. For every two-unit change in var 1, var 2 decreases by
0.68 units.

It’s useful to have a standardized way of describing the slope through our feature
space. In linear regression, we can define a slope in terms of how much y changes with
a one-unit increase in x. But we often don’t have any notion of predictor variables and
outcome variables when performing PCA: we just have a set of variables we wish to
compress. Instead, we define the principal axis in terms of how far we need to go
along each variable (the x- and y-axes in the two-dimensional example in figure 13.4)
so that the distance from the origin is equal to 1.

Have another look at figure 13.4. We’re trying to calculate the length of sides a and
b of the triangle when length c is equal to 1. This will then tell us how far along var 1
and var 2 we need to go, to be one unit away from the origin along the principal axis.
How do we calculate the length of c? Why, our good friend Pythagoras’s theorem can

313What is principal component analysis?

Var 1

V
ar

 2

PC1

1 2 3–1–2–3

0.5

1.0

1.5

–0.5

–1.0

–1.5

–0
.6

8

a
bc

PC1 = 0.95 var1 + (–0.32)× × var2

c = 4 + 0.46 = 2.11

0.95

–0
.3

2

a
bc

1.00

a
bc

2.11

2.00

–0
.6

8

2.11

c = a + b = 2 + –0.682 2 2 2 2

2.00

Figure 13.4 Calculating the eigenvector for a principal component. The
distances along each variable are scaled so that they mark a point that is
one unit along the principal axis away from the origin. We can illustrate this
graphically by taking a triangle defined by the change in one variable over
the change in the other variable, and using Pythagoras’s theorem to find the
distance from the origin to divide by.

help! By applying c2 = a2 + b2, we can work out that if we go along var 1 2.00 units and
along var 2 –0.68 units, the length of c is equal to 2.11. To normalize this such that the
length of c is equal to 1, we simply divide all three sides of the triangle by 2.11. We now
define our principal axis as follows: for every 0.95 unit increase in var 1, we decrease
along var 2 by 0.32.

Note that this transformation doesn’t change the direction of the line; all it does is
normalize everything so that the distance from the origin is 1. These normalized dis-
tances along each variable that define a principal axis are called an eigenvector. The for-
mula for the principal component that results from the principal axis is therefore

PC1 = 0.95 × var 1 + (–0.32) × var 2 Equation 13.1

So for any particular case, we center it (subtract the mean of each variable), take its
value of var 1 and multiply by 0.95, and then add the result to the value of var 2 multi-
plied by –0.32, to get this case’s value of PC1. The value of a principal component for
a case is called its component score.

Once we’ve found the first principal axis, we need to find the next one. PCA will
find as many principal axes as there are variables or one less than the number of
cases in the dataset, whichever is smaller. So the first principal component is always
the one that explains most of the variance in the data. Concretely, if we calculate the
variance of the cases along each principal component, PC1 will have the largest
value. The variance of the data along a particular principal component is called its
eigenvalue.

314 CHAPTER 13 Maximizing variance with principal component analysis

NOTE If eigenvectors define the direction of the principal axis through the
original feature space, eigenvalues define the magnitude of spread along the
principal axis.

Once the first principal axis is found, the next one must be orthogonal to it. When we
have only two dimensions in our dataset, this means the second principal axis will
form a right angle with the first. The example in figure 13.5 shows a cloud of cases
being projected onto their first and second principal axes. When converting only two
variables into two principal components, plotting the component scores of the data
amounts to rotating the data around the origin.

Var 1

V
ar

 2

PC1

PC
2

PC1
P

C
2

Projected onto PCsOriginal feature space

Figure 13.5 In a two-dimensional
feature space, the first principal axis is
the one that maximizes the variance
(as it always is), and the second
principal axis is orthogonal (at a right
angle) to the first. In this situation,
plotting the principal components
simply results in a rotation of the data.

NOTE This imposed orthogonality is one of the reasons PCA is good at remov-
ing collinearity between variables: it can turn a set of correlated variables into
a set of uncorrelated (orthogonal) variables.

After rotating the data in figure 13.5, the majority of the variance in the data is explained
by PC1, and PC2 is orthogonal to it. But PCA is usually used to reduce dimensions, not just
rotate bivariate data, so how are the principal axes calculated when we have a higher-
dimensional space? Take a look at figure 13.6. We have a cloud of data in three dimen-
sions that is closest to us at the bottom right of the feature space and gets further from
us at the top left (notice that the points get smaller). The first principal axis is still the
one that explains most of the variance in the data, but this time it extends through
three-dimensional space (from front right to top left). The same process occurs in a
feature space that has more than three dimensions, but it’s difficult to visualize that!

The second principal axis is still orthogonal to the first, but as we now have three
dimensions to play around with, it is free to rotate around the first in a plane that still
maintains a right angle between them. I’ve illustrated this rotational freedom with a
circle around the origin that gets fainter, the further away from us it is. The second
principal axis is the one that is orthogonal to the first but explains the majority of the
remaining variance in the data. The third principal axis must be orthogonal to the
preceding axes (at right angles to both of them) and therefore has no freedom to
move. The first principal component always explains the most variance, followed by
the second, the third, and so on.

315Building your first PCA model

13.3
PC

1

x

y

y

Find first PC

PC1

P
C

2

Find second and
third PCs

Project onto
first two PCs

PC3

(9%)

PC
1

(79%
)

PC2

(1
2%

)

Figure 13.6 In a three-dimensional feature space, the second principal axis is still
orthogonal to the first principal axis, but it has freedom to rotate around the first
(indicated by the ellipse with arrows in the left-side plot) until it maximizes the remaining
variance. The third principal axis is orthogonal to the first and second principal axes and
so has no freedom to rotate; it explains the least amount of variance.

At this point you might be asking, if PCA calculates principal components for the
smaller of the number of variables or the number of cases minus one, how exactly does
it reduce the number of dimensions? Well, simply calculating the principal components
isn’t dimension reduction at all! Dimension reduction comes into it regarding how many
of the principal components we decide to keep in the remainder of our analysis. In the example in
figure 13.6, we have three principal components, but the first two account for 79% +
12% = 91% of the variation in the dataset. If these two principal components capture
enough of the information in the original dataset to make the dimension reduction
worthwhile (perhaps we get better results from a clustering or classification algorithm),
then we can happily discard the remaining 9% of the information. Later in the chapter,
I’ll show you some ways to decide how many principal components to keep.

Building your first PCA model
In this section, we’ll turn the PCA theory we just covered into skills by reducing the
dimensions of a dataset, using PCA. Imagine that you work for the Swiss Federal Depart-
ment of Finance (due to your love of money, chocolate, cheese, and political neutrality).
The department believes that a large number of counterfeit Swiss bankotes are in circu-
lation, and it’s your job to find a way of identifying them. Nobody has looked into this
before, and there is no labeled data to go on. So you ask 200 of your colleagues to each
give you a banknote (you promise to give them back), and you measure the dimensions
of each note. You hope that there will be some discrepancies between genuine notes
and counterfeit ones that you may be able to identify using PCA.

In this section, we’ll tackle this problem by

1 Exploring and plotting the original dataset before PCA
2 Using the prcomp() function to learn the principal components from the data
3 Exploring and plotting the result of the PCA model

316 CHAPTER 13 Maximizing variance with principal component analysis
13.3.1 Loading and exploring the banknote dataset

We’ll start by loading the tidyverse packages, loading the data from the mclust pack-
age, and converting the data frame into a tibble. We have a tibble containing 200
banknotes with 7 variables.

library(tidyverse)

data(banknote, package = "mclust")

swissTib <- as_tibble(banknote)

swissTib

A tibble: 200 x 7
Top DiagonalLeft Right BottomLengthStatus

<dbl><dbl> <dbl><dbl> <dbl> <dbl><fct>
1 genuine 215. 131 131. 9 9.7 141
2 genuine 215. 130. 130. 8.1 9.5 142.
3 genuine 215. 130. 130. 8.7 9.6 142.
4 genuine 215. 130. 130. 7.5 10.4 142
5 genuine 215 130. 130. 10.4 7.7 142.
6 genuine 216. 131. 130. 9 10.1 141.
7 genuine 216. 130. 130. 7.9 9.6 142.
8 genuine 214. 130. 129. 7.2 10.7 142.
9 genuine 215. 129. 130. 8.2 11 142.

10 genuine 215. 130. 130. 9.2 10 141.
... with 190 more rows

The keen-eyed among you may have noticed that this tibble is, in fact, labeled. We
have the variable Status telling us whether each note is genuine or counterfeit. This
is purely for teaching purposes; we’re going to exclude it from the PCA analysis but
map the labels onto the final principal components later, to see whether the PCA
model separates the classes.

 In situations where I have a clear outcome variable, I often plot each of my predic-
tor variables against the outcome (as we’ve done in previous chapters). In unsuper-
vised learning situations, we don’t have an outcome variable, so I prefer to plot all
variables against each other (provided I don’t have so many variables as to prohibit
doing so). We can do this easily using the ggpairs() function from the GGally pack-
age, which you may need to install first. We pass our tibble as the first argument to the
ggpairs() function, and then we supply any additional aesthetic mappings by passing
ggplot2’s aes() function to the mapping argument. Finally, we add a theme_bw() layer
to add the black-and-white theme.

Loading the banknote datasetListing 13.1

Plotting the data withListing 13.2 ggpairs()

install.packages("GGally")

library(GGally)

317Building your first PCA model

ggpairs(swissTib, mapping = aes(col = Status)) +
theme_bw()

The resulting plot is shown in figure 13.7. The output from ggpairs() takes a little
getting used to, but it draws a different kind of plot for each combination of variable
types. For example, along the top row of facets are box plots showing the distribution
of each continuous variable against the categorical variable. We get the same thing in
histogram form down the left column of facets. The diagonal facets show the distribu-
tions of values for each variable, ignoring all others. Finally, dot plots shown the bivar-
iate relationships between pairs of continuous variables.

0 5 1015 0 5 1015 7 8 9 10 11 12 12111098 138139140141142

0
25
50
75

100

214.0
214.5
215.0
215.5
216.0

131.0

7
8
9

10
11
12
13

8
9

10
11
12

142

Cor: 0.231
counterfeit: 0.351
genuine: 0.411

Cor: 0.487
counterfeit: –0.055

genuine: 0.255

Cor: 0.401
counterfeit: 0.000698

genuine: 0.133

Cor: –0.516
counterfeit: 0.206
genuine: –0.15

Cor: –0.594
counterfeit: –0.0622

genuine: –0.26

Cor: 0.142
counterfeit: –0.681
genuine: –0.632

Cor: –0.623
counterfeit: 0.378

genuine: –0.00065

Cor: 0.743
counterfeit: 0.615
genuine: 0.664

Cor: 0.414
counterfeit: –0.0833

genuine: 0.242

Cor: 0.362
counterfeit: –0.0735

genuine: 0.208

Cor: –0.503
counterfeit: –0.0355

genuine: –0.265

Cor: 0.152
counterfeit: 0.229
genuine: 0.416

Cor: –0.19
counterfeit: –0.252

genuine: 0.229

Cor: –0.0613
counterfeit: 0.0868
genuine: 0.0575

Cor: 0.194
counterfeit: 0.0589
genuine: 0.0316

21
4.

0
21

4.
5

21
5.

0
21

5.
5

21
6.

0

12
9.

0
12

9.
5

13
0.

0
13

0.
5

13
1.

0
12

9.
0

12
9.

5
13

0.
0

13
0.

5
13

1.
0

LengthStatus

S
tatus

DiagonalTopBottomRightLeft

Length
Left

R
ight

B
ottom

Top
D

iagonal

141
140
139
138

130.5
130.0
129.5
129.0
131.0
130.5
130.0
129.5
129.0

Figure 13.7 The result of calling the ggpairs() function on our banknote dataset. Each variable is plotted
against every other variable, with different plot types drawn depending on the combination of variable types.

Looking at the plots, we can see that some of the variables seem to differentiate between
the genuine and counterfeit banknotes, such as the Diagonal variable. The Length vari-
able, however, contains little information that discriminates the two classes of banknotes.

NOTE You see that if we had many more variables, visualizing them against
each other in this way would start to become difficult!

13.3.2 Performing PCA

In this section, we’re going to use the PCA algorithm to learn the principal compo-
nents of our banknote dataset. To do this, I’ll introduce you to the prcomp() function
from the stats package that comes with your base R installation. Once we’ve done this,
we’ll inspect the output of this function to interpret the component scores of the

318 CHAPTER 13 Maximizing variance with principal component analysis

principal components. I’ll then show you how to extract and interpret variable loadings
from the principal components, which tell us how much each original variable cor-
relates with each principal component.

pca <- select(swissTib, -Status) %>%
prcomp(center = TRUE, scale = TRUE)

pca

Standard deviations (1, .., p=6):
[1] 1.7163 1.1305 0.9322 0.6706 0.5183 0.4346

Rotation (n x k) = (6 x 6):
PC6PC5PC4PC3PC2PC1

0.5746 -0.05880.006987 -0.81549Length 0.031060.01768
0.6395 -0.29775-0.467758 -0.34197 -0.10338 -0.3949Left

0.34915-0.486679 -0.25246 -0.12347 -0.4303 -0.6141Right
0.4037 -0.2155 -0.462350.26623 -0.58354-0.406758Bottom

0.787570.09149Top 0.1102 -0.2198 -0.41897-0.367891
0.493458 -0.27394 -0.11388 -0.3919 -0.3402 -0.63180Diagonal

summary(pca)

Importance of components:
PC6PC5PC4PC3PC2PC1

1.716 1.131 0.932 0.671 0.5183 0.4346Standard deviation
Proportion of Variance 0.491 0.213 0.145 0.075 0.0448 0.0315

0.491 0.704 0.849 0.924 0.9685 1.0000Cumulative Proportion

Performing the PCAListing 13.3

We first use the select() function to remove the Status variable, and pipe the result-
ing data into the prcomp() function. There are two additional important arguments
to the prcomp() function: center and scale. The center argument controls whether
the data is mean-centered before applying PCA, and its default value is TRUE. We
should always center the data before applying PCA because this removes the intercept
and forces the principal axes to pass through the origin.

The scale argument controls whether the variables are divided by their standard
deviations to put them all on the same scale as each other, and its default value is
FALSE. There isn’t a clear consensus on whether you should standardize your variables
before running PCA. A common rule of thumb is that if your original variables are
measured on a similar scale, standardization isn’t necessary; but if you have one vari-
able measuring grams and another measuring kilograms, you should standardize
them by setting scale = TRUE to put them on the same scale. This is important because
if you have one variable measured on a much larger scale, this variable will dominate
the eigenvectors, and the other variables will contribute much less information to the
principal components. In this example, we’ll set scale = TRUE, but one of the exer-
cises for this chapter is to set scale = FALSE and compare the results.

319Building your first PCA model

NOTE In this example, we’re not interested in including the Status variable
in our dimension-reduction model; but even if we were, PCA cannot handle
categorical variables. If you have categorical variables, your options are to
encode them as numeric (which may or may not work), use a different approach
for dimension reduction (there are some that handle categorical variables
that I won’t discuss here), or extract the principal components from the con-
tinuous variables and then recombine these with the categorical variables in
the final dataset.

When we print the pca object, we get a printout of some information from our model.
The Standard deviations component is a vector of the standard deviations of the
data along each of the principal components. Because the variance is the square of
the standard deviation, to convert these standard deviations into the eigenvalues for
the principal components, we can simply square them. Notice that the values get smaller
from left to right? This is because the principal components explain sequentially less
of the variance in the data.

 The Rotation component contains the six eigenvectors. Remember that these
eigenvectors describe how far along each original variable we go, so that we’re one
unit along the principal axis away from the origin. These eigenvectors describe the
direction of the principal axes.

 If we pass our PCA results to the summary() function, we get a breakdown of the
importance of each of the principal components. The Standard deviation row is the
same as we saw a moment ago and contains the square root of the eigenvalues. The
Proportion of Variance row tells us how much of the total variance is accounted for
by each principal component. This is calculated by dividing each eigenvalue by the
sum of the eigenvalues. The Cumulative Proportion row tells us how much variance
is accounted for by the principal components so far. For example, we can see that PC1
and PC2 account for 49.1% and 21.3% of the total variance, respectively; cumulatively,
they both account for 70.4%. This information is useful when we’re deciding how
many principal components to retain for our downstream analysis.

 If we’re interested in interpreting our principal components, it’s useful to extract
the variable loadings. The variable loadings tell us how much each of the original vari-
ables correlates with each of the principal components. The formula for calculating
the variable loadings for a particular principal component is

Equation 13.2

We can calculate all of the variable loadings simultaneously for all principal compo-
nents and return them as a tibble using the map_dfc() function.

Calculating variable loadingsListing 13.4

variable loadings eigenvector eigenvalue×=

map_dfc(1:6, ~pca$rotation[, .] * sqrt(pca$sdev ^ 2)[.])

A tibble: 6 x 6
V1 V2 V3 V4 V5 V6

320 CHAPTER 13 Maximizing variance with principal component analysis
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.0120 -0.922 0.0165 0.385 -0.0305 0.0135
2 -0.803 -0.387 -0.0964 -0.265 0.331 -0.129
3 -0.835 -0.285 -0.115 -0.289 -0.318 0.152
4 -0.698 0.301 -0.544 0.271 -0.112 -0.201
5 -0.631 0.103 0.734 0.0739 -0.114 -0.182
6 0.847 -0.310 -0.106 -0.263 -0.176 -0.275

We can interpret these values as Pearson correlation coefficients, so we can see that
the Length variable has very little correlation with PC1 (0.012) but a very strong nega-
tive correlation with PC2 (–0.922). This helps us conclude that, on average, cases with
a small component score for PC2 have a larger Length.

13.3.3 Plotting the result of our PCA

Next, let’s plot the results of our PCA model to better understand the relationships in
the data by seeing if the model has revealed any patterns. There are some nice plot-
ting functions for PCA results in the factoextra package, so let’s install and load this
package and play with it (see listing 13.5). Once you’ve loaded the package, use the
get_pca() function to grab the information from our PCA model so we can apply facto-
extra functions to it.

TIP Although we manually calculated the variable loadings in listing 13.4, an
easier way of extracting this information is by printing the $coord component
of the pcaDat object we create in listing 13.5.

The fviz_pca_biplot() function draws a biplot. A biplot is a common method of
simultaneously plotting the component scores, and the variable loadings for the first
two principal components. You can see the biplot in the top left of figure 13.8. The
dots show the component scores for each of the banknotes against the first two prin-
cipal components, and the arrows indicate the variable loadings of each variable.
This plot helps us identify that we seem to have two distinct clusters of banknotes,
and the arrows help us to see which variables tend to correlate with each of the clus-
ters. For example, the rightmost cluster in this plot tends to have higher values for
the Diagonal variable.

TIP The label = "var" argument tells the function to only label the vari-
ables; otherwise, it labels each case with its row number, and this makes me go
cross-eyed.

The fviz_pca_var() function draws a variable loading plot. You can see the variable
loading plot at top right in figure 13.8. Notice that this shows the same variable load-
ing arrows as in the biplot, but now the axes represent the correlation of each of the
variables with each principal component. If you look again at the variable loadings cal-
culated in listing 13.4, you’ll see that this plot is showing the same information: how
much each original variable correlates with the first two principal components.

321Building your first PCA model
The fviz_screeplot() function draws a scree plot. A scree plot is a common way of
plotting the principal components against the amount of variance they explain in the
data, as a graphical way to help identify how many principal components to retain.
The function allows us to plot either the eigenvalue or the percentage variance
accounted for by each principal component, using the choice argument. You can see
scree plots with these two different y-axes in the bottom two plots in figure 13.8.

2.9

1.3

0.9

0.4
0.3 0.2

0

1

2

3

1 2 3 4 5 6
DimensionsDimensions

E
ig

en
va

lu
e

Scree plot

−1.0

−0.5

0.0

0.5

1.0

1.00.50.0−0.5−1.0
Dim1 (49.1%)

D
im

2
(2

1.
3%

)

D
im

2
(2

1.
3%

)

Variables–PCA

Length
thLeng

Left

ightR

Left

htRig

ottomB
ttomBo

Top
Top

agonalDi onalDiag

−2

0

2

20−2

49.1%

21.3%

14.5%

7.5%
4.5%

3.1%

0

10

20

30

40

50

1 2 3 4 5 6

P
er

ce
nt

ag
e

of
 e

xp
la

in
ed

 v
ar

ia
nc

es

Scree plot

Dim1 (49.1%)

PCA–Biplot

Figure 13.8 Typical exploratory plots for PCA analysis as supplied by the factoextra package. The top-
left plot shows a biplot, combining each case’s component scores with arrows to show the variable
loadings. The top-right plot shows the variable loading plot with a correlation circle (the boundary within
which the variable loadings must lie). The bottom scree plots show the eigenvalue (left) and percentage
explained variance (right).

322 CHAPTER 13 Maximizing variance with principal component analysis

NOTE Scree plots are so named because they resemble a scree slope, the collec-
tion of rocks and rubble that accumulates at the foot of a cliff due to weather-
ing and erosion.

install.packages("factoextra")

library(factoextra)

pcaDat <- get_pca(pca)

fviz_pca_biplot(pca, label = "var")

fviz_pca_var(pca)

fviz_screeplot(pca, addlabels = TRUE, choice = "eigenvalue")

fviz_screeplot(pca, addlabels = TRUE, choice = "variance")

I’ve condensed the four plots from listing 13.5 into a single figure (figure 13.8) to
save space.

 When deciding how many principal components to retain, there are a few rules
of thumb. One is to keep the principal components that cumulatively explain at
least 80% of the variance. Another is to retain all principal components with eigen-
values of at least 1; the mean of all the eigenvalues is always 1, so this results in
retaining principal components that contain more information than the average. A
third rule of thumb is to look for an “elbow” in the scree plot and exclude principal
components beyond the elbow (although there is no obvious elbow in our exam-
ple). Instead of relying too much on these rules of thumb, I look at my data pro-
jected onto the principal components, and consider how much information I can
tolerate losing for my application. If I’m applying PCA to my data before applying a
machine learning algorithm to it, I prefer to use automated feature-selection meth-
ods, as we did in previous chapters, to select the combination of principal compo-
nents that results in the best performance.

 Finally, let’s plot our first two principal components against each other and see
how well they’re able to separate the genuine and counterfeit banknotes. We first
mutate the original dataset to include a column of component scores for PC1and PC2
(extracted from our pca object using $x). We then plot the principal components
against each other and add a color aesthetic for the Status variable.

Plotting the PCA resultsListing 13.5

Mapping genuine and counterfeit labelsListing 13.6

swissPca <- swissTib %>%
mutate(PCA1 = pca$x[, 1], PCA2 = pca$x[, 2])

ggplot(swissPca, aes(PCA1, PCA2, col = Status)) +
geom_point() +
theme_bw()

323Building your first PCA model
The resulting plot is shown in figure 13.9. We started with six continuous variables and
condensed most of that information into just two principal components that contain
enough information to separate the two clusters of banknotes! If we didn’t have
labels, having identified different clusters of data, we would now try to understand
what those two clusters were, and perhaps come up with a way of discriminating genu-
ine banknotes from counterfeits.

13.3.4 Computing the component scores of new data

We have our PCA model, but what do we do when we get new data? Well, because the
eigenvectors describe exactly how much each variable contributes to the value of each
principal component, we can simply calculate the component scores of new data
(including centering and scaling, if we performed this as part of the model).

 Let’s generate some new data to see how this works in practice. In listing 13.7, we
first define a tibble consisting of two new cases, and all the same variables entered into
our PCA model. To calculate the component scores of these new cases, we simply use
the predict() function, passing the model as the first argument and the new data as

Exercise 1
Add a stat_ellipse() layer to the plot in figure 13.9 to add 95% confidence ellipses
to each class of banknote.

–2

0

2

20–2
PCA1

P
C

A
2

Status
Counterfeit
Genuine

Figure 13.9 The PCA component scores are plotted for each case, shaded by whether
they were genuine or counterfeit.

324 CHAPTER 13 Maximizing variance with principal component analysis
the second argument. As we can see, the predict() function returns both cases’ com-
ponent scores for each of the principal components.

newBanknotes <- tibble(
Length = c(214, 216),
Left = c(130, 128),
Right = c(132, 129),
Bottom = c(12, 7),
Top = c(12, 8),
Diagonal = c(138, 142)

)

predict(pca, newBanknotes)

PC6PC5PC4PC3PC2PC1
1.9989 -0.1058 -1.659 -3.203 1.623[1,] -4.729

3.469 -1.838 2.3396.466 -0.8918 -0.8215[2,]

You’ve learned how to apply PCA to your data and interpret the information it pro-
vides. In the next chapter, I’ll introduce two nonlinear dimension-reduction tech-
niques. I suggest that you save your .R file, because we’re going to continue using the
same dataset in the next chapter. This is so we can compare the performance of these
nonlinear algorithms to the representation we created here using PCA.

13.4 Strengths and weaknesses of PCA
While it often isn’t easy to tell which algorithms will perform well for a given task, here
are some strengths and weaknesses that will help you decide whether PCA will per-
form well for you.

 The strengths of PCA are as follows:

 PCA creates new axes that are directly interpretable in terms of the original
variables.

 New data can be projected onto the principal axes.
 PCA is really a mathematical transformation and so is computationally inex-

pensive.

The weaknesses of PCA are these:

 Mapping from high dimensions to low dimensions cannot be nonlinear.
 It cannot handle categorical variables natively.
 The final number of principal components to retain must be decided by us for

the application at hand.

Computing the component scores of new dataListing 13.7

325Solutions to exercises
Summary
 Dimension reduction is a class of unsupervised learning that learns a low-

dimensional representation of a high-dimensional dataset while retaining as
much information as possible.

 PCA is a linear dimension-reduction technique that finds new axes that maxi-
mize the variance in the data. The first of these principal axes maximizes the
most variance, followed by the second, and the third, and so on, which are all
orthogonal to the previously computed axes.

 When data is projected onto these principal axes, the new variables are called
principal components.

 In PCA, eigenvalues represent the variance along a principal component, and
the eigenvector represents the direction of the principal axis through the origi-
nal feature space.

Solutions to exercises
1 Add 95% confidence ellipses to the plot of PCA1 versus PCA2:

ggplot(swissPca, aes(PCA1, PCA2, col = Status)) +
geom_point() +
stat_ellipse() +
theme_bw()

2 Compare the PCA results when scale = FALSE:

pcaUnscaled <- select(swissTib, -Status) %>%
prcomp(center = TRUE, scale = FALSE)

pcaUnscaled

Exercise 2
Rerun the PCA on our Swiss banknote dataset, but this time set the scale argument
to FALSE. Compare the following to the PCA we trained on scaled data:

a Eigenvalues
b Eigenvectors
c Biplot
d Variable loading plot
e Scree plot

Exercise 3
Do the same as in exercise 2 again, but this time set the arguments center = FALSE
and scale = TRUE.

326 CHAPTER 13 Maximizing variance with principal component analysis
fviz_pca_biplot(pcaUnscaled, label = "var")

fviz_pca_var(pcaUnscaled)

fviz_screeplot(pcaUnscaled, addlabels = TRUE, choice = "variance")

3 Compare the PCA results when center = FALSE and scale = TRUE:

pcaUncentered <- select(swissTib, -Status) %>%
prcomp(center = FALSE, scale = TRUE)

pcaUncentered

fviz_pca_biplot(pcaUncentered, label = "var")

fviz_pca_var(pcaUncentered)

fviz_screeplot(pcaUncentered, addlabels = TRUE, choice = "variance")

Maximizing similarity
with t-SNE and UMAP
This chapter covers
 Understanding nonlinear dimension reduction

 Using t-distributed stochastic neighbor
embedding

 Using uniform manifold approximation and
projection

In the last chapter, I introduced you to PCA as our first dimension-reduction tech-
nique. While PCA is a linear dimension-reduction algorithm (it finds linear combi-
nations of the original variables), sometimes the information in a set of variables
can’t be extracted as a linear combination of these variables. In such situations,
there are a number of nonlinear dimension-reduction algorithms we can turn to,
such as t-distributed stochastic neighbor embedding (t-SNE), and uniform manifold approx-
imation and projection (UMAP).

t-SNE is one of the most popular nonlinear dimension-reduction algorithms. It
measures the distance between each observation in the dataset and every other
observation, and then randomizes the observations across (usually) two new axes.
The observations are then iteratively shuffled around these new axes until their dis-
tances to each other in this two-dimensional space are as similar to the distances in
the original high-dimensional space as possible.
327

328 CHAPTER 14 Maximizing similarity with t-SNE and UMAP
 UMAP is another nonlinear dimension-reduction algorithm that overcomes some
of the limitations of t-SNE. It works similarly to t-SNE (finds distances in a feature
space with many variables and then tries to reproduce these distances in low-dimen-
sional space), but differs in the way it measures distances.

 By the end of this chapter, I hope you’ll understand what nonlinear dimension
reduction is and why it can be beneficial compared to linear dimension reduction. I will
show you how the t-SNE and UMAP algorithms work and how they’re different from
each other, and we’ll apply each of them to our banknote dataset from chapter 13 so
we can compare their performance with PCA. If you no longer have the swissTib and
newBanknotes objects defined in your global environment, just rerun listings 13.1 and
13.7.

What is t-SNE?14.1
In this section, I’ll show you what t-distributed stochastic neighbor embedding is, how
it works, and why it’s useful. t-distributed stochastic neighbor embedding is such a
mouthful—I’m glad people shorten it to t-SNE (usually pronounced “tee-snee,” or
occasionally “tiz-nee”), not least because when you hear someone say it, you can say
“bless you,” and everyone laughs (at least the first few times).

 Whereas PCA is a linear dimension-reduction algorithm (because it finds new axes
that are linear combinations of the original variables), t-SNE is a nonlinear dimension-
reduction algorithm. It is nonlinear because instead of finding new axes that are logical
combinations of the original variables, it focuses on the similarities between nearby
cases in a dataset and tries to reproduce these similarities in a lower-dimensional space.
The main benefit of this approach is that t-SNE will almost always do a better job than
PCA of highlighting patterns in the data (such as clusters). One of the downsides of
this approach is that the axes are no longer interpretable, because they don’t repre-
sent logical combinations of the original variables.

 The first step in the t-SNE algorithm is to compute the distance between each case
and every other case in the dataset. By default, this distance is the Euclidean distance,
which is the straight-line distance between any two points in the feature space (but we
can use other measures of distance instead). These distances are then converted into
probabilities. This is illustrated in figure 14.1.

 For a particular case in the dataset, the distance between this case and all other
cases is measured. Then a normal distribution is centered on this case, and the dis-
tances are converted into probabilities by mapping them onto the probability density
of the normal distribution. The standard deviation of this normal distribution is
inversely related to the density of cases around the case in question. Put another way,
if there are lots of cases nearby (more dense), then the standard deviation of the nor-
mal distribution is smaller; but if there are few cases nearby (less dense), then the
standard deviation is larger.

 After converting the distances to probabilities, the probabilities for each case are
scaled by dividing them by their sum. This makes the probabilities sum to 1 for every

329What is t-SNE?
case in the dataset. Using different standard deviations for different densities, and
then normalizing the probabilities to 1 for every case, means if there are dense clus-
ters and sparse clusters of cases in the dataset, t-SNE will expand the dense clusters
and compress the sparse ones so they can be visualized more easily together. The
exact relationship between data density and the standard deviation of the normal dis-
tribution depends on a hyperparameter called perplexity, which we’ll discuss shortly.

 Once the scaled probabilities have been calculated for each case in the dataset, we
have a matrix of probabilities that describes how similar each case is to each of the
other cases. This is visualized in figure 14.2 as a heatmap, which is a useful way of
thinking about it.

 Our matrix of probabilities is now our reference, or template, for how the data val-
ues relate to each other in the original, high-dimensional space. The next step in the
t-SNE algorithm is to randomize the cases along (usually) two new axes (this is where
the “stochastic” bit of the name comes from).

NOTE It doesn’t need to be two axes, but it commonly is. This is because
humans struggle to visualize data in more than two dimensions at once, and
because, beyond three dimensions, the computational cost of t-SNE becomes
more and more prohibitive.

t-SNE calculates the distances between the cases in this new, randomized, low-
dimensional space and converts them into probabilities just like before. The only
difference is that instead of using the normal distribution, it now uses Student’s t distri-
bution. The t distribution looks a bit like a normal distribution, except that it’s not quite
as tall in the middle, and its tails are flatter and extend further out (see figure 14.3). It’s

0
0

Var 1

V
ar

 2

Distance

P
ro

ba
bi

lit
y

0.3

0.3880.3

0.02
0.01

0.009

0.0090.0100.0200.3800.3800.300

Unscaled probabilities

Scaled probabilities

1.099

0.0080.0090.0180.3460.3460.273

1.099

Sum

1.000

Sum

Figure 14.1 t-SNE measures the distance from each case to every other case, converted into a
probability by fitting a normal distribution over the current case. These probabilities are scaled by
dividing them by their sum, so that they add to 1.

330 CHAPTER 14 Maximizing similarity with t-SNE and UMAP
a bit like if someone sat on a normal distribution and squashed it. This is where the “t”
in t-SNE comes from. I’ll explain why we use the t distribution momentarily.

 The job for t-SNE now is to “shuffle” the data points around these new axes, step by
step, to make the matrix of probabilities in the lower-dimensional space look as close
as possible to the matrix of probabilities in the original, high-dimensional space. The
intuition here is that if the matrices are as similar as possible, then the data each case

0
0

Var 1

V
ar

2

1

2

3

4 5

7
6

0
0

Var 1

V
ar

2

1

2

3

4 5

7
6

1

7

2

3

4

5

6

1 72 3 4 5 6

0
0

Var 1

Va
r

2

1

2

3

4 5

7
6

0
0

Var 1

V
ar

2

1
2

3

4 5

7
6

Figure 14.2 The scaled probabilities for each case are stored as a matrix of values. This is visualized
here as a heatmap: the closer two cases are, the darker the box is that represents their distance in
the heatmap.

Distance

0.3

80.3 0.38

0.02
0.01

0.009

Distance

0.20
0.29 0.29

0.046
0.038

0.036

Normal distribution
t distribution

Figure 14.3 When converting distances in the lower-dimensional representation into probabilities,
t-SNE fits a Student’s t distribution over the current case instead of a normal distribution. The
Student’s t distribution has longer tails, meaning dissimilar cases are pushed further away to
achieve the same probability as in the high-dimensional representation.

331What is t-SNE?
was close to in the original feature space will still be close by in the low-dimensional
space. You can think of this as a game of attraction and repulsion.

 To make the probability matrix in low-dimensional space look like the one in high-
dimensional space, each case needs to move closer to cases that were close to it in the
original data, and away from cases that were far away. So cases that should be nearby
will pull their neighbor toward them, but cases that should be far away will push non-
neighbors away from them. The balance of these attractive and repulsive forces causes
each case in the dataset to move in a direction that makes the two probability matrices
a little more similar. Now, in this new position, the low-dimensional probability matrix
is calculated again, and the cases move again, making the low- and high-dimensional
matrices look a little more similar again. This process continues until we reach a pre-
determined number of iterations, or until the divergence (difference) between the
matrices stops improving. This whole process is illustrated in figure 14.4.

NOTE The difference between the two matrices is measured using a statistic
called the Kullback-Leibler divergence, which is large when the matrices are very
different and zero when the matrices are perfectly identical.

1

7

2
3
4
5
6

1 72 3 4 5 6

1

7

2
3
4
5
6

1 72 3 4 5 6

1

7

2
3
4
5
6

1 72 3 4 5 6

1

7

2
3
4
5
6

1 72 3 4 5 6

1

7

2
3
4
5
6

1 72 3 4 5 6

1

7

2
3
4
5
6

1 72 3 4 5 6

34 57 1 6 2

Ite
ra

tio
n

1

7 145 36 2

Ite
ra

tio
n

2

7 45 36 2 1

Ite
ra

tio
n

10
0

New
distances

Original
distances

High KL
divergence

Mid KL
divergence

Low KL
divergence

Figure 14.4 Cases are randomly initialized over the new axes (one axis is shown here).
The probability matrix is computed for this axis, and the cases are shuffled around to
make this matrix resemble the original, high-dimensional matrix by minimizing the
Kullback-Leibler (KL) divergence. During shuffling, cases are attracted toward cases
that are similar to them (lines with circles) and repulsed away from cases that are
dissimilar (lines with triangles).

332 CHAPTER 14 Maximizing similarity with t-SNE and UMAP

14.2

Why do we use the t distribution to convert distances into probabilities in the low-
dimensional space? Well, notice again from figure 14.4 that the tails of the t distribu-
tion are wider than for the normal distribution. This means that, in order to get the
same probability as from the normal distribution, dissimilar cases need to be pushed
further away from the case the t distribution is centered over. This helps spread out
clusters of data that might be present in the data, helping us to identify them more
easily. A major consequence of this, however, is that t-SNE is often said to retain local
structure in the low-dimensional representation, but it doesn’t usually retain global
structure. Practically, this means we can interpret cases that are close to each other in
the final representation as being similar to each other, but we can’t easily say which
clusters of cases were more similar to other clusters of cases in the original data.

Once this iterative process has converged at a low KL divergence, we should have a
low-dimensional representation of our original data that preserves the similarities
between nearby cases. While t-SNE typically outperforms PCA for highlighting pat-
terns in data, it does have some significant limitations:

 It is infamously computationally expensive: its computation time increases expo-
nentially with the number of cases in the dataset. There is a multicore implemen-
tation (see https://github.com/RGLab/Rtsne.multicore), but for extremely large
datasets, t-SNE could take hours to run.

 It cannot project new data onto the embedding. By this I mean that, because
the initial placement of the data onto the new axes is random, rerunning t-SNE
on the same dataset repeatedly will give you slightly different results. Thus we
can’t use the predict() function to map new data onto the lower-dimensional
representation as we can with PCA. This prohibits us from using t-SNE as part of
a machine learning pipeline and pretty much relegates its use to data explora-
tion and visualization.

 Distances between clusters often don’t mean anything. Say we have three clus-
ters of data in our final t-SNE representation: two are close, and a third is far
away from the other two. Because t-SNE focuses on local, not global, structure,
we cannot say that the first two clusters are more similar to each other than they
are to the third cluster.

 t-SNE doesn’t necessarily preserve the distances or density of the data in the
final representation, so passing the output of t-SNE into clustering algorithms
that rely on distances or densities tends not to work as well as you might expect.

 We need to select sensible values for a number of hyperparameters, which can
be difficult if the t-SNE algorithm takes minutes to hours to run on a dataset.

Building your first t-SNE embedding
In this section, I’m going to show you how to use the t-SNE algorithm to create a low-
dimensional embedding of our Swiss banknote dataset, to see how it compares with
the PCA model we created in the previous chapter. First, we’ll install and load the
Rtsne package in R, and then I’ll explain the various hyperparameters that control

https://github.com/RGLab/Rtsne.multicore

333Building your first t-SNE embedding
how t-SNE learns. Then, we’ll create a t-SNE embedding using the optimal combina-
tion of hyperparameters. Finally, we’ll plot the new, lower-dimensional representation
learned by the t-SNE algorithm, and compare it to the PCA representation we plotted
in chapter 13.

14.2.1 Performing t-SNE

Let’s start by installing and loading the Rtsne package:

install.packages("Rtsne")

library(Rtsne)

t-SNE has four important hyperparameters that can drastically change the resulting
embedding:

 perplexity—Controls the width of the distributions used to convert distances into
probabilities. High values place more focus on global structure, whereas small
values place more focus on local structure. Typical values lie in the range 5 to
50. The default value is 30.

 theta—Controls the trade-off between speed and accuracy. Because t-SNE is
slow, people commonly use an implementation called Barnes-Hut t-SNE, which
allows us to perform the embedding much faster but with some loss of accuracy.
The theta hyperparameter controls this trade-off, with 0 being “exact” t-SNE and
1 being the fastest but least accurate t-SNE. The default value is 0.5.

 eta—How far each data point moves at each iteration (also called the learning
rate). Lower values need more iterations to reach convergence but may result in
a more accurate embedding. The default value is 200, and this is usually fine.

 max_iter—The maximum iterations allowed before computation stops. This will
depend on your computational budget, but it’s important to have enough itera-
tions to reach convergence. The default value is 1,000.

TIP The most important hyperparameters to tune are usually perplexity and
max_iter.

Our approach to tuning hyperparameters thus far has been to allow an automated
tuning process to choose the best combination for us, through either a grid search or
random search. But due to its computational cost, most people will run t-SNE with its
default hyperparameter values and change them if the embedding doesn’t look sensi-
ble. If this sounds very subjective, that’s because it is; but people are usually able to
identify visually whether t-SNE is pulling apart clusters of observations nicely.

 To give you a visual aid for how each of these hyperparameters affects the final
embedding, I’ve run t-SNE on our Swiss banknote data using a grid of hyperparame-
ter values. Figure 14.5 shows the final embeddings with different combinations of theta
(rows) and perplexity (columns) using the default values of eta and max_iter. Notice that
the clusters become tighter with larger values of perplexity and are lost with very low

334 CHAPTER 14 Maximizing similarity with t-SNE and UMAP

values. Also notice that for reasonable values of perplexity, the clusters are best resolved
when theta is set to 0 (exact t-SNE).

 Figure 14.6 shows the final embeddings with different combinations of max_iter
(rows) and eta (columns). The effect here is a little more subtle, but smaller values of

0.444

0.455

0.456

0.503

0.359

0.513

0.488

0.512

0.535

0.595

0.265

0.303

0.262

0.244

0.227

0.203

0.211

0.206

0.179

0.182

0.152

0.15

0.141

0.138

0.122

1 10 30 40 50

10050050 100–100–50050 100–100–50050 100–100–50050 100–100–500–100–50

–50

0

50

100

–50

0

50

100

–50

0

50

100

–50

0

50

100

–50

0

50

100

tSNE1

tS
N

E
2

0.25
0.5

0.75
1

0

Figure 14.5 The effect on the final t-SNE embedding of the banknote dataset of changing theta
(row facets) and perplexity (column facets) using the default values of eta and max_iter

51.346

0.6

0.319

0.295

0.287

44.509

0.307

0.266

0.265

0.262

46.583

0.364

0.272

0.26

0.262

49.536

1.024

0.277

0.264

0.281

51.884

1.555

0.271

0.27

0.286

1 100 200 300 400

tSNE1

tS
N

E
2

100
300

500
700

1000

500–50500–50500–50500–50500–50
–50

–25

0

25

–50

–25

0

25

–50

–25

0

25

–50

–25

0

25

–50

–25

0

25

 Figure 14.6 The effect on the final t-SNE embedding of the banknote dataset of changing max_iter
(row facets) and eta (column facets) using the default values of theta and perplexity

335Building your first t-SNE embedding

eta need a larger number of iterations in order to converge (because the cases move in
smaller steps at each iteration). For example, for an eta of 100, 1,000 iterations is suffi-
cient to separate the clusters; but with an eta of 1, the clusters remain poorly resolved
after 1,000 iterations. If you would like to see the code I used to generate these fig-
ures, the code for this chapter is available at www.manning.com/books/machine-
learning-with-r-tidyverse-and-mlr.

 Now that you’re a little more tuned in to how t-SNE’s hyperparameters affect its
performance, let’s run t-SNE on our Swiss banknote dataset. Just like for PCA, we first
select all the columns except the categorical variable (t-SNE also cannot handle cate-
gorical variables) and pipe this data into the Rtsne() function. We manually set the
values of the perplexity, theta, and max_iter hyperparameters (honestly, I rarely alter eta)
and set the argument verbose = TRUE so the algorithm prints a running commentary
on what the KL divergence is at each iteration.

Running t-SNEListing 14.1

swissTsne <- select(swissTib, -Status) %>%
Rtsne(perplexity = 30, theta = 0, max_iter = 5000, verbose = TRUE)

TIP By default, the Rtsne() function reduces the dataset to two dimen-
sions. If you want to return another number, you can set this using the dims
argument.

That didn’t take too long, did it? For a small dataset like this, t-SNE takes only a few
seconds. But it quickly gets slow (see what I did there?) as the dataset increases in size.

14.2.2 Plotting the result of t-SNE

Next, let’s plot the two t-SNE dimensions against each other to see how well they sepa-
rated the genuine and counterfeit banknotes. Because we can’t interpret the axes in
terms of how much each variable correlates with them, it’s common for people to
color their t-SNE plots by the values of each of their original variables, to help identify
which clusters have higher and lower values. To do this, we first use the mutate_if()

function to center the numeric variables in our original dataset (by setting .funs =

scale and .predicate = is.numeric). We include scale = FALSE to only center the
variables, not divide by their standard deviations. The reason we center the variables is
that we’re going to shade by their value on the plots, and we don’t want variables with
larger values dominating the color scales (omit this line and see the difference in the
final plot for yourself).

Next, we mutate two new columns that contain the t-SNE axes values for each case.
Finally, we gather the data so that we can facet by each of the original variables. We
plot this data, mapping the value of each original variable to the color aesthetic and
the status of each banknote (genuine versus counterfeit) to the shape aesthetic, and facet
by the original variables. We add a custom color scale gradient to make the color scale
more readable in print.

http://www.manning.com/books/machine-learning-with-r-tidyverse-and-mlr
http://www.manning.com/books/machine-learning-with-r-tidyverse-and-mlr

336 CHAPTER 14 Maximizing similarity with t-SNE and UMAP
swissTibTsne <- swissTib %>%
mutate_if(.funs = scale, .predicate = is.numeric, scale = FALSE) %>%
mutate(tSNE1 = swissTsne$Y[, 1], tSNE2 = swissTsne$Y[, 2]) %>%
gather(key = "Variable", value = "Value", c(-tSNE1, -tSNE2, -Status))

ggplot(swissTibTsne, aes(tSNE1, tSNE2, col = Value, shape = Status)) +
facet_wrap(~ Variable) +
geom_point(size = 3) +
scale_color_gradient(low = "dark blue", high = "cyan") +
theme_bw()

The resulting plot is shown in figure 14.7. Wow! Notice how much better t-SNE does
than PCA at representing the differences between the two clusters in a feature space
with only two dimensions. The clusters are well resolved, although if you look closely,
you can see a couple of cases that seem to be in the wrong cluster. Shading the points
by the value of each variable also helps us identify that counterfeit notes tend to
have lower values of the Diagonal variable and higher values of the Bottom and Top
variables. It also seems as though there might be a small second cluster of counter-
feit notes: this could be a set of notes made by a different counterfeiter, or an artifact

Plotting the t-SNE embeddingListing 14.2

–20

–10

0

10

20

–20

–10

0

10

20

Length TopRight

DiagonalBottom Left

50−550−550−5

−2
−1
0
1
2
3

Value

Status
Counterfeit
Genuine

tSNE1

tS
N

E
2

Figure 14.7 tSNE1 and tSNE2 axes plotted against each other, faceted and shaded by the original
variables, and shaped by whether each case was a genuine or counterfeit banknote

337What is UMAP?

of an imperfect combination of hyperparameters. More investigation would be needed
to tell if these are actually a distinct cluster.

NOTE Do your plots look a little different than mine? Of course they do!
Remember that the initial embedding is random (stochastic), so each time
you run t-SNE on the same data and with the same hyperparameters, you’ll
get a slightly different embedding.

14.3

Exercise 1
Recreate the plot in figure 14.7, but this time don’t center the variables before run-
ning t-SNE on them (just remove the mutate_if() layer). Can you see why scaling
was necessary?

What is UMAP?
In this section, I’ll show you what UMAP is, how it works, and why it’s useful. Uniform
manifold approximation and projection, fortunately shortened to UMAP, is a nonlin-
ear dimension-reduction algorithm like t-SNE. UMAP is state of the art, having only
been published in 2018, and it has a few benefits over the t-SNE algorithm.

First, it’s considerably faster than t-SNE, where the length of time it takes to run
increases less than the square of the number of cases in the dataset. To put this in per-
spective, a dataset that might take t-SNE hours to compress will take UMAP minutes.

The second benefit (and the main benefit, in my eyes) is that UMAP is a deter-
ministic algorithm. In other words, given the same input, it will always give the same
output. This means that, unlike with t-SNE, we can project new data onto the lower-
dimensional representation, allowing us to incorporate UMAP into our machine
learning pipelines.

The third benefit is that UMAP preserves both local and global structure. Practi-
cally, this means that not only can we interpret two cases close to each other in lower
dimensions as being similar to each other in high dimensions, but we can also inter-
pret two clusters of cases close to each other as being more similar to each other in
high dimensions.

So how does UMAP work? Well, UMAP assumes the data is distributed along a man-
ifold. A manifold is an n-dimensional smooth geometric shape where, for every point
on this manifold, there exists a small neighborhood around that point that looks like
a flat, two-dimensional plane. If that doesn’t make sense to you, consider that the
world is a three-dimensional manifold, any part of which can be mapped into a flat
representation literally called a map. UMAP searches for a surface, or a space with
many dimensions, along which the data is distributed. The distances between cases
along the manifold can then be calculated, and a lower-dimensional representation of
the data can be optimized iteratively to reproduce these distances.

Prefer a visual representation? Me too. Have a look at figure 14.8. I’ve drawn a
question mark as a manifold and randomly seeded 15 cases around the manifold

338 CHAPTER 14 Maximizing similarity with t-SNE and UMAP
across 2 variables. UMAP’s job is to learn the question mark manifold so that it can
measure the distances between cases along the manifold instead of ordinary Euclid-
ean distance, like t-SNE does. It achieves this by searching a region around each case,
for another case. Where these regions encapsulate another case, the cases get con-
nected by an edge. This is what I’ve done in the top row of figure 14.8—but can you
see that the manifold is incomplete? There are gaps in my question mark. This is
because the regions I searched around each case had the same radius, and the data
wasn’t uniformly distributed along the manifold. If the cases had been spaced out
along the question mark at regular intervals, then this approach would have worked,
provided I selected an appropriate radius for the search regions.

Real-world data is rarely evenly distributed, and UMAP solves this problem in two
ways. First, it expands each search region for each case until it meets its nearest neigh-
bor. This ensures that there are no orphan cases: while there can be multiple, discon-
nected manifolds in a dataset, every case must connect to at least one other case.
Second, UMAP creates an additional search region that has a larger radius in lower-
density areas and a smaller radius in high-density regions. These search regions are
described as fuzzy, in that the further from the center another case finds itself, the
lower the probability that an edge exists between those cases. This forces an artificial
uniform distribution of the cases (and is where the “uniform” in UMAP comes from).

0
0

Var 1

V
ar

 2

0
0

Var 1

V
ar

 2

0
0

Var 1

V
ar

 2

0

V
ar

 2

0
0

Var 1

V
ar

 2

0 Var 1

Figure 14.8 How UMAP learns a manifold. UMAP expands a search region around
each case. A naive form of this is shown in the top row, where the radius of each
search region is the same. When cases with overlapping search regions are
connected by edges, there are gaps in the manifold. In the bottom row, the search
region extends to the nearest neighbor and then extends outward in a fuzzy way,
with a radius inversely related to the density of data in that region. This results in a
complete manifold.

339Building your first UMAP model

This process is represented in the lower row of figure 14.8; notice that we now get a
more complete estimation of the underlying manifold.

The next step is to place the data onto a new manifold in (usually) two new dimen-
sions. Then the algorithm iteratively shuffles this new manifold around until the dis-
tances between the cases along the manifold look like the distances between the cases
along the original, high-dimensional manifold. This is similar to the optimization step
of t-SNE, except that UMAP minimizes a different loss function called cross-entropy
(whereas t-SNE minimizes KL divergence).

NOTE Just like for t-SNE, we can create more than two new dimensions if we
want to.

Once UMAP has learned the lower-dimensional manifold, new data can be projected
onto this manifold to get the values on the new axes for visualization or as input for
another machine learning algorithm.

NOTE UMAP can also be used to perform supervised dimension reduction, which
really just means that given high-dimensional, labeled data, it learns a mani-
fold that can be used to classify cases into groups.

14.4 Building your first UMAP model
In this section, I’m going to show you how to use the UMAP algorithm to create a low-
dimensional embedding of our Swiss banknote dataset. Remember that we’re trying
to see if we can find a lower-dimensional representation of this dataset to help us iden-
tify patterns, such as different types of banknotes. We’ll start by installing and loading
the umap package in R. Just as we did for t-SNE, we’ll discuss UMAP’s hyperparame-
ters and how they affect the embedding. Then we’ll train a UMAP model on the
banknote dataset and plot it to see how it compares with our PCA model and t-SNE
embedding.

14.4.1 Performing UMAP

In this section, we’ll install and load the umap package and then tune and train our
UMAP model. Let’s start by installing and loading the umap package:

install.packages("umap")

library(umap)

Just like t-SNE, UMAP has four important hyperparameters that control the resulting
embedding:

 n_neighbors—Controls the radius of the fuzzy search region. Larger values will
include more neighboring cases, forcing the algorithm to focus on more global
structure. Smaller values will include fewer neighbors, forcing the algorithm to
focus on more local structure.

340 CHAPTER 14 Maximizing similarity with t-SNE and UMAP

 min_dist—Defines the minimum distance apart that cases are allowed to be in
the lower-dimensional representation. Low values result in “clumpy” embed-
dings, whereas larger values result in cases being spread further apart.

 metric—Defines which distance metric UMAP will use to measure distances
along the manifold. By default, UMAP uses ordinary Euclidean distance, but
other (sometimes crazy) distance metrics can be used instead. A common alter-
native to Euclidean distance is Manhattan distance (also called taxi cab distance):
instead of measuring the distance between two points as a single (possibly diag-
onal) distance, it measures the distance between two points one variable at a
time and adds up these little journeys, just like a taxi cab driving around blocks
in a city.

We can also apply t-SNE with distance metrics other than Euclidean, but we
first need to manually calculate these distances ourselves. The UMAP imple-
mentation just lets us specify the distance we want, and it takes care of the rest.

 n_epochs—Defines the number of iterations of the optimization step.

Once again, to give you a visual aid of how each of these hyperparameters affects the
final embedding, I’ve run UMAP on our Swiss banknote data using a grid of hyperpa-
rameter values. Figure 14.9 shows the final embeddings with different combinations
of n_neighbors (rows) and min_dist (columns) using the default values of metric and
n_epochs. Notice that the cases are more spread out for smaller values of n_neighbors and
min_dist and that the clusters begin to break apart with low values for the n_neighbors
hyperparameter.

0.1 0.2 0.3 0.4 0.5

3
7

100−10100−10100−10100−10100−10

−10
0

10
20

−10
0

10
20

−10
0

10
20

−10
0

10
20

−10
0

10
20

UMAP1

U
M

A
P

2
19

15
11

 Figure 14.9 The effect on the final UMAP embedding of the banknote dataset of changing n_neighbors
(row facets) and min_dist (column facets) using the default values of metric and n_epochs

341Building your first UMAP model

Figure 14.10 shows the final embeddings with different combinations of metric (rows)
and n_epochs (columns). The effect here is a little more subtle, but the clusters tend to
be farther apart with more iterations. It also looks as though Manhattan distance does
a slightly better job of breaking up those three smaller clusters (which we’ve not seen
before!). If you would like to see the code I used to generate these figures, the code
for this chapter is available at www.manning.com/books/machine-learning-with-r-the-
tidyverse-and-mlr.

 I hope that demystifies UMAP’s hyperparameters a little. Now let’s run UMAP on
our Swiss banknote dataset. Just like before, we first select all the columns except the
categorical variable (UMAP cannot currently handle categorical variables, but this
may change in the future) and pipe this data into the as.matrix() function (just to
prevent an irritating warning message). This matrix is then piped into the umap()
function, within which we manually set the values of all four hyperparameters and set
the argument verbose = TRUE so the algorithm prints a running commentary on the
number of epochs (iterations) that have passed.

Performing UMAPListing 14.3

50 125 200 275 350
E

uclidean
M

anhattan

40−4 40−4 40−4 40−4 40−4

−10

−5

0

5

10

−10

−5

0

5

10

UMAP1

U
M

A
P

2

Figure 14.10 The effect on the final UMAP embedding of the swissTib dataset of changing metric (row
facets) and n_epochs (column facets) using the default values of n_neighbors and min_dist

swissUmap <- select(swissTib, -Status) %>%
as.matrix() %>%
umap(n_neighbors = 7, min_dist = 0.1,

metric = "manhattan", n_epochs = 200, verbose = TRUE)

http://www.manning.com/books/machine-learning-with-r-the-tidyverse-and-mlr
http://www.manning.com/books/machine-learning-with-r-the-tidyverse-and-mlr

342 CHAPTER 14 Maximizing similarity with t-SNE and UMAP
14.4.2 Plotting the result of UMAP

Next, let’s plot the two UMAP dimensions against each other to see how well they sep-
arated the genuine and counterfeit banknotes. We go through exactly the same pro-
cess as we did in listing 14.2 to reshape the data so it’s ready for plotting.

swissTibUmap <- swissTib %>%
mutate_if(.funs = scale, .predicate = is.numeric, scale = FALSE) %>%
mutate(UMAP1 = swissUmap$layout[, 1], UMAP2 = swissUmap$layout[, 2]) %>%
gather(key = "Variable", value = "Value", c(-UMAP1, -UMAP2, -Status))

ggplot(swissTibUmap, aes(UMAP1, UMAP2, col = Value, shape = Status)) +
facet_wrap(~ Variable) +
geom_point(size = 3) +
scale_color_gradient(low = "dark blue", high = "cyan") +
theme_bw()

The resulting plot is shown in figure 14.11. The UMAP embedding seems to suggest
the existence of three different clusters of counterfeit banknotes! Perhaps there are
three different counterfeiters at large.

Plotting the UMAP embeddingListing 14.4

Length Right Top

Bottom Diagonal Left

1050−5 1050−5 1050−5

−5

0

5

10

−5

0

5

10
−2
−1
0
1
2
3

Value

Status
Counterfeit
Genuine

UMAP1

U
M

A
P

2

Figure 14.11 UMAP1 and UMAP2 axes plotted against each other, faceted and shaded by the
original variables, and shaped by whether each case was a genuine or counterfeit banknote

343Strengths and weaknesses of t-SNE and UMAP
14.4.3 Computing the UMAP embeddings of new data

Remember I said that, unlike t-SNE, new data can be projected reproducibly onto a
UMAP embedding? Well, let’s do this for the newBanknotes tibble we defined when
predicting PCA component scores in chapter 13 (rerun listing 13.7 if you no longer
have this defined). In fact, the process is exactly the same: we use the predict() func-
tion with the model as the first argument and the new data as the second argument.
This outputs a matrix, where the rows represent the two cases and the columns repre-
sent the UMAP axes:

predict(swissUmap, newBanknotes)

[,2][,1]
1 -6.9516 -7.777

6.1600.12132

14.5 Strengths and weaknesses of t-SNE and UMAP
While it often isn’t easy to tell which algorithms will perform well for a given task, here
are some strengths and weaknesses that will help you decide whether t-SNE and UMAP
will perform well for you.

 The strengths of t-SNE and UMAP are as follows:

 They can learn nonlinear patterns in the data.
 They tend to separate clusters of cases better than PCA.
 UMAP can make predictions on new data.
 UMAP is computationally inexpensive.
 UMAP preserves both local and global distances.

The weaknesses of t-SNE and UMAP are these:

 The new axes of t-SNE and UMAP are not directly interpretable in terms of the
original variables.

 t-SNE cannot make predictions on new data (different result each time).
 t-SNE is computationally expensive.
 t-SNE doesn’t necessarily preserve global structure.
 They cannot handle categorical variables natively.

Exercise 2
Rerun UMAP on our Swiss banknote dataset, but this time include the argument
n_components = 3 (feel free to experiment by changing the values of the other hyper-
parameters). Pass the $layout component of the UMAP object to the GGally
::ggpairs() function. (Tip: You’ll need to wrap this object in as.data.frame(),
or ggpairs() will have a hissy fit.)

344 CHAPTER 14 Maximizing similarity with t-SNE and UMAP
Summary
 t-SNE and UMAP are nonlinear dimension-reduction algorithms.
 t-SNE converts the distances between all cases in the data into probabilities

based on the normal distribution and then iteratively shuffles the cases around
in a lower-dimensional space to reproduce these distances.

 In the lower-dimensional space, t-SNE uses Student’s t distribution to convert
distances to probabilities to better separate clusters of data.

 UMAP learns a manifold that the data are arranged along and then iteratively
shuffles the data around in a lower-dimensional space to reproduce the dis-
tances between cases along the manifold.

Solutions to exercises
1 Recreate the plot of t-SNE1 versus t-SNE2 without scaling the variables first:

swissTib %>%
mutate(tSNE1 = swissTsne$Y[, 1], tSNE2 = swissTsne$Y[, 2]) %>%
gather(key = "Variable",

value = "Value",
c(-tSNE1, -tSNE2, -Status)) %>%

ggplot(aes(tSNE1, tSNE2, col = Value, shape = Status)) +
facet_wrap(~ Variable) +
geom_point(size = 3) +
scale_color_gradient(low = "dark blue", high = "cyan") +
theme_bw()

Scaling is necessary because the scales of the variables are different
from each other.

2 Rerun UMAP, but output and plot three new axes instead of two:

umap3d <- select(swissTib, -Status) %>%
as.matrix() %>%
umap(n_neighbors = 7, min_dist = 0.1, n_components = 3,

metric = "manhattan", n_epochs = 200, verbose = TRUE)

library(GGally)

ggpairs(as.data.frame(umap3d$layout), mapping = aes(col = swissTib$Status))

Self-organizing maps
and locally linear

embedding
In this chapter, we’re continuing with dimension reduction: the class of machine
learning tasks focused on representing the information contained in a large num-
ber of variables, in a smaller number of variables. As you learned in chapters 13 and
14, there are multiple possible ways to reduce the dimensions of a dataset. Which
dimension-reduction algorithm works best for you depends on the structure of
your data and what you’re trying to achieve. Therefore, in this chapter, I’m going
to add two more nonlinear dimension-reduction algorithms to your ever-growing
machine learning toolbox: self-organizing maps (SOMs) and locally linear embed-
ding (LLE).

15.1 Prerequisites: Grids of nodes and manifolds
Both the SOM and LLE algorithms reduce a large dataset into a smaller, more man-
ageable number of variables, but they work in very different ways. The SOM algo-
rithm creates a two-dimensional grid of nodes, like grid references on a map. Each

This chapter covers
 Creating self-organizing maps to reduce

dimensionality

 Creating locally linear embeddings of high-
dimensional data
345

346 CHAPTER 15 Self-organizing maps and locally linear embedding

case in the data is placed into a node and then shuffled around the nodes so that
cases that are more similar to each other in the original data are put close together
on the map.

 This is probably difficult to picture in your head, so let’s look at an analogy. Imag-
ine that you have a big jar of beads with your sewing kit. There are beads of different
sizes and weights, and some are more elongated than others. It’s raining, and there’s
nothing better to do, so you decide that you will organize your beads into sets to make
it easier to find the beads you need in the future. You arrange a grid of bowls on the
table and consider each bead in turn. You then place beads that are most similar to
each other in the same bowl. You put beads that are similar, but not the same, in adja-
cent bowls, while beads that are very different go into bowls that are far away from
each other. An example of what this might look like is shown in figure 15.1.

Bowls Beads

Figure 15.1 Placing beads into bowls
based on their characteristics. Similar
beads are placed in the same or nearby
bowls, while dissimilar beads are placed
in bowls far away from each other. One
bowl didn’t have any beads placed in it,
but that’s okay.

Once you’ve placed all the beads into bowls, you look at your grid and notice that a pat-
tern has emerged. All the large, spherical beads congregate around the top-right corner
of the grid. As you move from right to left, the beads get smaller; and as you move from
top to bottom, the beads become more elongated. Your process of placing beads into
bowls based on the similarities between them has revealed structure in the beads.

This is what self-organizing maps try to do. The “map” of a self-organizing map is
equivalent to the grid of bowls, where each bowl is called a node.

The LLE algorithm, on the other hand, learns a manifold on which the data lies,
similar to the UMAP algorithm you saw in chapter 14. Recall that a manifold is an
n-dimensional smooth geometric shape that can be constructed from a series of linear

347What are self-organizing maps?

“patches.” Whereas UMAP tries to learn the manifold in one go, LLE looks for these
local, linear patches of data around each case, and then combines these linear patches
together to form the (potentially nonlinear) manifold.

 If this is hard to picture, take a look at figure 15.2. A sphere is a smooth, three-
dimensional manifold. We can approximate a sphere by breaking it up into a series
of flat surfaces that combine together (the more of these surfaces we use, the more
closely we can approximate the sphere). This is shown on the left side of figure 15.2.
Imagine that someone gave you a flat sheet of paper and a pair of scissors, and asked
you to create a sphere. You might cut the sheet into the kind of shape shown on the
right side of figure 15.2. You could then fold this flat sheet of paper to approximate
the sphere. Can you see that the flat, two-dimensional cutting is a lower-dimensional
representation of the sphere? This is the general principle behind LLE, except that
it tries to learn the manifold that represents the data, and represents it in fewer
dimensions.

15.2

Two dimensionsThree dimensions

Figure 15.2 A sphere is a three-dimensional manifold. We can reconstruct
a sphere as a series of linear patches that connect to one another. This
three-dimensional manifold of a sphere can be represented in two
dimensions by cutting a sheet of paper in a certain way.

In this chapter, I’ll show you in more detail how the SOM and LLE algorithms work
and how we can use them to reduce the dimensions of data collected on various flea
beetles. I’ll also show you a particularly fun example of how LLE can “unroll” some
complex and unusually shaped data.

What are self-organizing maps?
In this section, I’ll explain what SOMs are, how they work, and why they’re useful for
dimension reduction. Consider the purpose of a map. Maps conveniently represent
the layout of a part of the globe (which is not flat) in two dimensions, such that areas
of the planet that are close to each other are drawn close to each other on the map.
This is a convoluted way of saying that you’ll find India drawn closer to Sri Lanka than
to Madagascar, because they are closer to each other in space.

The goal of a SOM is very similar; but instead of countries, towns, and cities, the
SOM tries to represent a dataset in two dimensions, such that cases in the data that
are more similar to each other are drawn close to each other. The first step of the

348 CHAPTER 15 Self-organizing maps and locally linear embedding

algorithm is to create a grid of nodes in a two-dimensional lattice (like the grid of
bowls in figure 15.1).

15.2.1 Creating the grid of nodes

In this section, I’ll fully explain what I mean when I say the SOM algorithm creates a
grid of nodes. Much like the grid of bowls we were sorting beads into in figure 15.1,
the SOM algorithm starts by creating a grid of nodes. For now, you can just think of a
node as a bowl into which we will eventually put cases from the dataset. I’ve used the
word grid to help you picture the lattice structure of the nodes, but the word map is
more commonly used, so we’ll use this from now on.

 The map can be made up of square/rectangular nodes, much like square grid refer-
ences on a map; or hexagonal nodes, which fit together snugly like a honeycomb. When
the map is made of square nodes, each node is connected to four of its neighbors (you
could say they’re its north, south, east, and west neighbors). When the map is made of
hexagonal nodes, each node is connected to six of its neighbors (northeast, east, south-
east, southwest, west, and northwest). Figure 15.3 shows two different ways that square
and hexagonal SOMs are commonly represented. The left-side representation shows
each node as a circle, connected to its neighbors with lines or edges. The right-side repre-
sentation shows each node as a square or hexagon, connected to its neighbors across its
flat sides. The dimensions of the map (how many rows and columns there are) need to
be decided upon by us; I’ll show you how to choose an appropriate map size later in the
chapter. Remember, we’re still thinking of these nodes as bowls.

==

==

Figure 15.3 Common graphical representations of square and hexagonal self-organizing maps.
The top two maps show a grid of rectangular nodes that are each connected to four neighbors.
The bottom two maps show a grid of hexagonal nodes that are each connected to six neighbors.

349What are self-organizing maps?

NOTE SOMs were created by a Finnish computer scientist named Teuvo
Kohonen, so you will sometimes see them called Kohonen maps. The SOM algo-
rithm has been so popular that Professor Kohonen is the most frequently
cited Finnish computer scientist of all time.

Once the map has been created, the next step is to randomly assign each node a set
of weights.

15.2.2 Randomly assigning weights, and placing cases in nodes

In this section, I’ll explain what I mean by the term weights, and what they relate to. I’ll
show you how these weights are randomly initialized for every node in the map.

Imagine that we have a dataset with three variables, and we want to distribute the
cases of this dataset across the nodes of our map. Eventually, we hope the algorithm
will place the cases in the nodes such that similar cases are in the same node or a
nearby node, and dissimilar cases are placed in nodes far away from each other.

After the creation of the map, the next thing the algorithm does is randomly assign
each node a set of weights: one weight for each variable in the dataset. So for our exam-
ple, each node has three weights, because we have three variables. These weights are just
random numbers, and you can think of them as guesses for the value of each of the vari-
ables. If this is hard to visualize, take a look at figure 15.4. We have a dataset containing
three variables, and we are looking at three nodes from a map. Each node has three
numbers written under it: one corresponding to each variable in the dataset. For exam-
ple, the weights for node 1 are 3 (for var 1), 9 (for var 2), and 1 (for var 3). Remember,
at this point these are just random guesses for the value of each variable.

Next, the algorithm chooses a case at random from the dataset and calculates
which node’s weights are the closest match to this case’s values for each of the vari-
ables. For example, if there were a case in the dataset whose values for var 1, var 2, and
var 3 were 3, 9, and 1, respectively, this case would perfectly match the weights of node
1. To find which node’s weights are most similar to the case in question, the distance is
calculated between each case and the weights of each node in the map. This distance
is usually the squared Euclidean distance. Remember that Euclidean distance is just
the straight-line distance between two points, so the squared Euclidean distance just
omits the square root step to make the computation faster.

In figure 15.4, you can see the distances calculated between the first case and each
of the node’s weights. This case is most similar to the weights of node 1, because it has
the smallest squared Euclidean distance to them (93.09).

NOTE The illustration in figure 15.4 shows only three nodes, for brevity, but
the distance is calculated for every single node on the map.

Once the distances between a particular case and all of the nodes have been calcu-
lated, the node with the smallest distance (most similar to the case) is selected as that
case’s best matching unit (BMU). This is illustrated in figure 15.5. Just like when we put
beads into bowls, the algorithm takes that case and places it inside its BMU.

350 CHAPTER 15 Self-organizing maps and locally linear embedding

3
9

1

17 11
21

7
–6

dist = (3 – (–0.2)) + (9 – (–0.1)) + (1 – 0.8) = 93.091
2 2 2

dist = (7 – (–0.2)) + (1 – (–0.1)) + (11 – 0.8) = 157.12
2 2 2

dist = (7 – (–0.2)) + (–6 – (–0.1)) + (21 – 0.8) = 494.73
2 2 2

Var 1

–0.2

–0.9

1.2
...

Var 2

–0.1

–0.2

0.5

...

Var 3

0.8

0.7

0.0

...

1. Initialize random
weights for
each node.

3. Measure distances
between this case
and each node’s
weights.

2. Randomly select
a case from
the data.

Node
1

Node
2 Node

3

Figure 15.4 How distances between each case to each node are calculated.
The arrows pointing from each variable to each node represent the weight for
that variable on that particular node (for example, the weights of node 1 are
3, 9, and 1). Distance is calculated by finding the difference between a node’s
weights and a case’s value for each variable, squaring these differences, and
summing them.

Var 1

–0.2

–0.9

1.2
...

Var 2

0.1

–0.2

0.5

...

Var 3

0.8

0.7

0.0

...

Find the node with
the smallest

distance to the
selected case

(best matching unit).

Figure 15.5 At each stage of the
algorithm, the node whose weights have
the smallest distance to a particular
case is selected as the best matching
unit (BMU) for that case.

15.2.3 Updating node weights to better match the cases inside them

In this section, I’ll show you how the weights of a case’s BMU and the weights of the
surrounding nodes are updated to more closely match the data. First, though, let’s
summarize our knowledge of the SOM algorithm so far:

351What are self-organizing maps?

1 Create the map of nodes.
2 Randomly assign weights to each node (one for each variable in the dataset).
3 Select a case at random, and calculate its distance to the weights of every node

in the map.
4 Put the case into the node whose weights have the smallest distance to the case

(the case’s BMU).

Now that the BMU has been selected, its weights are updated to be more similar to the
case we placed inside it. However, it’s not only the BMU’s weights that are updated.
Nodes in the neighborhood of the BMU also have their weights updated (nodes that are
near to the BMU). We can define the neighborhood in a few different ways: a com-
mon way is to use the bubble function. With the bubble function, we simply define a
radius (or bubble) around the BMU, and all nodes inside that radius have their
weights updated to the same degree. Any nodes outside the radius are not updated at
all. For the bubble function, a radius of 3 would include any node within three direct
connections of the BMU.

Another popular choice is to update the node weights of the map based on how far
they are from the BMU (the farther from the BMU, the less the node’s weights are
updated). This is most commonly done using the Gaussian function. You can picture
this as though we fit a Gaussian distribution centered over the BMU, and the node
weights around the BMU are updated proportionally to the density of the Gaussian
over them. We still define a radius around the BMU that defines how broad or skinny
the Gaussian is, but this time it’s a soft radius that has no hard cutoff. The Gaussian
function is popular, but it’s a little more computationally expensive than the simple
bubble function.

NOTE The bubble and Gaussian functions used to update the weights of the
nodes in the neighborhood around the BMU are called neighborhood functions.

Our choice of neighborhood function is a hyperparameter, as it will affect the way our
map updates its nodes but cannot be estimated from the data itself.

NOTE You will sometimes see the set of weights for a node referred to as its
codebook vector.

Whichever neighborhood function we use, the benefit of updating node weights in a
neighborhood around the BMU is that, over time, doing so creates neighborhoods of
nodes that are similar to each other but still capture some variation in the data.
Another trick the algorithm uses is that, as time goes on, both the radius of this neigh-
borhood and the amount by which the weights are updated get smaller. This means
the map is updated very rapidly initially and then makes smaller and smaller updates
as the learning process continues. This helps the map converge to a solution that,
hopefully, places similar cases in the same or nearby nodes. This process of updating
node weights in the neighborhood of the BMU is illustrated in figure 15.6.

352 CHAPTER 15 Self-organizing maps and locally linear embedding

Iteration 500Iteration 1

Figure 15.6 Between the first and last iteration of the algorithm,
both the radius of the neighborhood around a BMU (the darkest
node) and the amount by which neighboring node weights are
updated get smaller. The radius of a Gaussian neighborhood
function is shown as a translucent circle centered over the BMU,
and the amount each neighboring node is updated is represented by
how dark its shading is. If the bubble neighborhood function was
shown, all nodes would be shaded the same (as they’re updated by
the same amount).

Now that we’ve determined the BMU for a particular case and updated its weights and
the weights of its neighbors, we simply repeat the procedure for the next iteration,
selecting another random case from the data. As this process continues, cases will likely
be selected more than once and will move around the map as their BMU changes over
time. To put it another way, cases will change nodes if the one they are currently in is
no longer their BMU. Eventually, similar cases will converge to a particular region of
the map.

The result is that over time, the nodes on the map start to fit the dataset better.
And eventually, cases that are similar to each other in the original feature space will be
placed either in the same node or in nearby nodes on the map.

NOTE Remember that the feature space refers to all possible combinations of
predictor variable values.

Before we get our hands dirty by building our own SOM, let’s recap the whole algo-
rithm to make sure it sticks in your mind:

1 Create the map of nodes.
2 Randomly assign weights to each node (one for each variable in the dataset).
3 Select a case at random, and calculate its distance to the weights of every node

in the map.
4 Put the case into the node whose weights have the smallest distance to the case

(the case’s BMU).
5 Update the weights of the BMU and the nodes in its neighborhood (depending

on the neighborhood function) to more closely match the cases inside it.
6 Repeat steps 3-5 for the specified number of iterations.

353Building your first SOM

15.3 Building your first SOM
In this section, I’ll show you how to use the SOM algorithm to reduce the dimensions
of a dataset into a two-dimensional map. By doing so, we hope to reveal some struc-
ture in the data by placing similar cases in the same or nearby nodes. For example, if a
grouping structure is hidden in the data, we hope that different groups will separate
to different regions of the map. I’ll also show you the algorithm’s hyperparameters
and what they do.

NOTE Remember that a hyperparameter is a variable that controls the per-
formance/function of an algorithm but cannot be directly estimated from
the data itself.

Imagine that you’re the ringleader of a flea circus. You decide to take measurements
for all of your fleas to see if different groups of fleas perform better at certain circus
tasks. Let’s start by loading the tidyverse and GGally packages:

library(tidyverse)

library(GGally)

15.3.1 Loading and exploring the flea dataset

Now let’s load the data, which is built into the GGally package; convert it into a tib-
ble (with as_tibble()); and plot it using the ggpairs() function we discovered in
chapter 14.

data(flea)

fleaTib <- as_tibble(flea)

fleaTib

A tibble: 74 x 7
head aede1 aede2 aede3tars1 tars2species

<int> <int> <int> <int> <int> <int><fct>

Loading and exploring the flea datasetListing 15.1

1 Concinna 191 131 53 150 15 104
2 Concinna 185 134 50 147 13 105
3 Concinna 200 137 52 144 14 102
4 Concinna 173 127 50 144 16 97
5 Concinna 171 118 49 153 13 106
6 Concinna 160 118 47 140 15 99
7 Concinna 188 134 54 151 14 98
8 Concinna 186 129 51 143 14 110
9 Concinna 174 131 52 144 14 116

10 Concinna 163 115 47 142 15 95
... with 64 more rows

ggpairs(flea, mapping = aes(col = species)) +
theme_bw()

354 CHAPTER 15 Self-organizing maps and locally linear embedding

We have a tibble containing 7 variables, measured on 74 different fleas. The species
variable is a factor telling us the species each flea belongs to, while the others are con-
tinuous measurements made on various parts of the fleas’ bodies. We’re going to omit
the species variable from our dimension reduction, but we’ll use it later to see
whether our SOM clusters together fleas from the same species.

 The resulting plot is shown in figure 15.7. We can see that the three species of fleas
can be discriminated between using different combinations of the continuous vari-
ables. Let’s train a SOM to reduce these six continuous variables into a representation
with only two dimensions, and see how well it separates the three species of fleas.

Cor : 0.0263
Concinna: 0.766

Heptapot.: 0.558

Cor : 0.0957
Concinna: 0.683

Heptapot.: 0.774

Cor : 0.673
Concinna: 0.722

Heptapot.: 0.647

Cor : 0.335
Concinna: 0.221

Heptapot.: 0.495

Cor : 0.562
156.0: 0nacinnCo

Heptapot.: 0.396

Cor : 0.593
64a:cioncinna: 0.46C

8690.t.:potaepH

Cor : 0.781
Concinna: 0.482

Heptapot.: 0.0811

Cor : 0.122
na:inncCo 8520.

Heptapot.: 0.0469

:rCo 0.313
ana:ncCo in . 6420

ot.:pptaeH 0710.

:rCo 1.250
na:inncCo 9410.

Heptapot.: 250.1

Cor : 0.572
Concinna: 0.189

Heptapot.: 0.28

Cor : 0.488
Concinna: 0.0699

Heptapot.: 0.424

Cor : 0.516
Concinna: 0.397

Heptapot.: 0.299

Cor : 0.785
Concinna: 0.449

Heptapot.: 0.327

Cor : 0.479
Concinna: 0.361

Heptapot.: 0.0487

species tars1 tars2 head aede1 aede2 aede3

species
tars1

tars2
head

aede1
aede2

aede3

0246 0246 0246 120 150 180 210 240 110 120 130 140 555045 120 130 140 150 8 10 12 14 16 1109070

0

10

20

30

150

200

110
120
130
140

45

50

55

120
130
140
150

8
10
12
14
16

50

70

90

110

Figure 15.7 A matrix of plots created using the ggpairs() function, plotting all variables against each other
from the flea dataset. Because the individual plots are quite small, I’ve manually zoomed in on one plot with a
virtual magnifying glass (much like one you might need to use to see the fleas).

15.3.2 Training the SOM

Let’s train our SOM to place fleas in nodes such that (hopefully) fleas of the same species
are placed near each other and fleas of different species are separated. We start by install-
ing and loading the kohonen package (named after Teuvo Kohonen, of course). The next
thing we need to do is create a grid of nodes that will become our map. We do this using
the somgrid() function (as shown in listing 15.2), and we have a few choices to make:

 The dimensions of the map
 Whether our map will be made of rectangular or hexagonal nodes

355Building your first SOM

 Which neighborhood function to use
 How the edges of the map will behave

I’ve used the arguments of the somgrid() function to make these choices, but let’s
explore what they each mean and how they each affect the resulting map.

Loading the kohonen package and creating a SOM gridListing 15.2

install.packages("kohonen")

library(kohonen)

somGrid <- somgrid(xdim = 5, ydim = 5, topo = "hexagonal",
neighbourhood.fct = "bubble", toroidal = FALSE)

CHOOSING THE DIMENSIONS OF THE MAP

First, we need to choose the number of nodes in the x and y dimensions, using the xdim

and ydim arguments, respectively. This is very important because it determines the size
of the map and the granularity with which it will partition our cases. How do we choose
the dimensions of our map? This, as it turns out, isn’t an easy question to answer. Too
few nodes, and all of our data will be piled up so that clusters of cases merge with each
other. Too many nodes, and we could end up with nodes containing a single case, or
even no cases at all, diluting any clusters and preventing interpretation.

The optimal dimensions of a SOM depend largely on the number of cases in the
data. We want to aim to have cases in most of the nodes for a start, but really the opti-
mal number of nodes in the SOM is whichever best reveals patterns in the data. We
can also plot the quality of each node, which is a measure of the average difference
between each case in a particular node and that node’s final weights. We can then
consider choosing a map size that gives us the best-quality nodes. In this example,
we’ll start by creating a 5 × 5 grid, but this subjectivity in selecting the dimensions of
the map is arguably a weakness of SOMs.

TIP The x and y dimensions of the grid don’t need to be of equal length. If I
find a grid dimensionality that reveals patterns reasonably well in a dataset, I
may extend the map in one dimension to see if this further helps to separate
clusters of cases. There is an implementation of the SOM algorithm called
growing SOM, where the algorithm grows the size of the grid based on the
data. After you finish this chapter, I suggest you have a look at the Growing-
SOM package in R: https://github.com/alexhunziker/GrowingSOM.

CHOOSING WHETHER THE MAP HAS RECTANGULAR OR HEXAGONAL NODES

The next choice is to decide whether our grid is formed of rectangular or hexagonal
nodes. Rectangular nodes are connected to four adjacent nodes, whereas hexagonal
nodes are connected to six adjacent nodes. Thus when a node’s weights are updated,
a hexagonal node will update its six immediate neighbors the most, whereas a rectan-
gular node will update its four immediate neighbors the most. While hexagonal nodes

https://github.com/alexhunziker/GrowingSOM

356 CHAPTER 15 Self-organizing maps and locally linear embedding
can potentially result in “smoother” maps in which clusters of data appear more
rounded (whereas clusters of data in a grid of rectangular nodes may appear “blocky”),
it depends on your data. In this example, we’ll specify that we want a hexagonal topol-
ogy by setting the topo = "hexagonal" argument.

TIP I usually prefer the results I get from hexagonal nodes, both in terms of
the patterns they reveal in my data and aesthetically.

CHOOSING A NEIGHBORHOOD FUNCTION

Next, we need to choose which neighborhood function we’re going to use, supplying
our choice to the neighbourhood.fct argument (note the British spelling). The two
options are "bubble" and "gaussian", corresponding to the two neighborhood func-
tions we discussed earlier. Our choice of neighborhood function is a hyperparameter,
and we could tune it; but for this example we’re just going to use the bubble neigh-
borhood function, which is the default.

CHOOSING HOW THE MAP EDGES BEHAVE

The final choice we need to make is whether we want our grid to be toroidal (another
word to impress your friends with). If the grid is toroidal, nodes on the left edge of the
map are connected to the nodes on the right edge (and the equivalent for nodes on
the top and bottom edges). If you were to walk off the left edge of a toroidal map, you
would reappear on the right! Because nodes on the edges have fewer connections to
other nodes, their weights tend to be updated less than those of nodes in the middle
of the map. Therefore, it may be beneficial to use a toroidal map to help prevent cases
from “piling up” on the map edges, though toroidal maps tend to be harder to inter-
pret. In this example, we will set the toroidal argument to FALSE to make the final
map more interpretable.

TRAINING THE SOM WITH THE SOM() FUNCTION

Now that we’ve initialized our grid, we can pass our tibble into the som() function to
train our map.

fleaScaled <- fleaTib %>%
select(-species) %>%
scale()

fleaSom <- som(fleaScaled, grid = somGrid, rlen = 5000,
alpha = c(0.05, 0.01))

We start by piping the tibble into the select() function to remove the species factor.
Cases are assigned to the node with the most similar weights, so it’s important to scale
our variables so that variables on large scales aren’t given more importance. To this
end, we pipe the output of the select() function call into the scale() function to
center and scale each variable.

Training the SOMListing 15.3

357Building your first SOM

 To build the SOM, we use the som() function from the kohonen package, supply-
ing the following:

 The data as the first argument
 The grid object created in listing 15.2 as the second argument
 The two hyperparameter arguments rlen and alpha

The rlen hyperparameter is simply the number of times the dataset is presented to the
algorithm for sampling (the number of iterations); the default is 100. Just like in other
algorithms we’ve seen, more iterations are usually better until we get diminishing
returns. I’ll show you soon how to assess whether you’ve included enough iterations.

 The alpha hyperparameter is the learning rate and is a vector of two values. Remem-
ber that as the number of iterations increases, the amount by which the weights of each
node is updated decreases. This is controlled by the two values of alpha. Iteration 1
uses the first value of alpha, which linearly declines to the second value of alpha at the
last iteration.

 The vector c(0.05, 0.01) is the default; but for larger SOMs, if you’re concerned
the SOM is doing a poor job of separating classes with subtle differences between
them, you can experiment with reducing these values to make the learning rate
even slower.

NOTE If you make the learning rate of an algorithm slower, you typically need
to increase the number of iterations to help it converge to a stable result.

15.3.3 Plotting the SOM result

Now that we’ve trained our SOM, let’s plot some diagnostic information about it. The
kohonen package comes with plotting functions to draw SOMs, but it uses base R
graphics rather than ggplot2. The syntax to plot a SOM object is plot(x, type,
shape), where x is our SOM object, type is the type of plot we want to draw, and shape
lets us specify whether we want the nodes to be drawn as circles or with straight edges
(squares if the grid is rectangular, hexagons if the grid is hexagonal).

Plotting SOM diagnosticsListing 15.4

par(mfrow = c(2, 3))

plotTypes <- c("codes", "changes", "counts", "quality",
"dist.neighbours", "mapping")

walk(plotTypes, ~plot(fleaSom, type = ., shape = "straight"))

NOTE I prefer to draw straight-edged plots, but the choice is aesthetic only.
Experiment with setting the shape argument to "round" and "straight".

There are six different diagnostic plots we can draw for our SOM, but rather than writ-
ing out the plot() function six times, we define a vector with the names of the plot

358 CHAPTER 15 Self-organizing maps and locally linear embedding
types and use walk() to plot them all at once. We first split the plotting device into six
regions by running par(mfrow = c(2, 3)).

 We could achieve the same thing with purrr::map(), but purrr::walk() calls a
function for its side effects (such as drawing a plot) and silently returns its input
(which is useful if you want to plot an intermediate dataset in a series of operations
that pipe into each other). The convenience here is that purrr:::walk() doesn’t
print any output to the console.

WARNING The kohonen package also contains a function called map(). If
you have the kohonen package and the purrr package loaded, it’s a good
idea to include the package prefix in the function call (kohonen::map()
and purrr::map()).

The resulting plots are shown in figure 15.8. The Codes plot is a fan plot representa-
tion of the weights for each node. Each segment of the fan represents the weight for a
particular variable (as designated in the legend), and the distance the fan extends
from the center represents the magnitude of its weight. For example, nodes in the
top-left corner of my plot have the highest weights for the tars2 variable. This plot
can help us to identify regions of the map that are associated with higher or lower val-
ues of particular variables.

tars1
tars2
head

aede1
aede2
aede3

Codes plot

0

0.
03

0.
04

0.
05

0.
06

0.
07

50004000300020001000

Training progress Counts plot

1

2

3

4

6

7

Quality plot

0.5

1

1.5

Neighbor distance plot

2

3

4

5

6

7

Mapping plot

Figure 15.8 Diagnostic plots for our SOM. The Codes fan plot for each node indicates the weight for
each variable. The Training Progress plot shows the mean distance between each case and its BMU
for each iteration. The Counts plot shows the number of cases per node. The Quality plot shows the
mean distance between each case and the weights of its BMU. The Neighbor Distance plot shows the
sum of differences between cases in one node and cases in neighboring nodes. The Mapping plot
draws the cases inside their assigned nodes.

359Building your first SOM

NOTE Do your plots look a little different than mine? That’s because the
node weights are randomly initialized each time we run the algorithm. Argu-
ably, this is a disadvantage of the SOM algorithm, as it may produce different
results on the same data when run repeatedly. This disadvantage is mitigated
by the fact that—unlike t-SNE, for example—we can map new data onto an
existing SOM.

The Training Progress plot helps us to assess if we have included enough iterations
while training the SOM. The x-axis shows the number of iterations (specified by the
rlen argument), and the y-axis shows the mean distance between each case and its
BMU at each iteration. We hope to see the profile of this plot flatten out before we
reach our maximum number of iterations, which it seems to in this case. If we felt that
the plot hadn’t leveled out yet, we would increase the number of iterations.

 The Counts plot is a heatmap showing the number of cases assigned to each node.
In this plot, we’re looking to be sure we don’t have lots of empty nodes (suggesting
the map is too big) and that we have a reasonably even distribution of cases across the
map. If we had lots of cases piled up at the edges, we might consider increasing the
map dimensions or training a toroidal map instead.

 The Quality plot shows the mean distance between each case and the weights of its
BMU. The lower this value is, the better.

 The Neighbor Distance plot shows the sum of distances between cases in one node
and cases in the neighboring nodes. You’ll sometimes see this referred to as a U matrix
plot, and it can be useful in identifying clusters of cases on the map. Because cases on
the edge of a cluster of nodes have a greater distance to cases in an adjacent cluster of
nodes, high-distance nodes tend to separate clusters. This often looks like dark
regions of the map (potential clusters) separated by light regions. It’s difficult to inter-
pret a map as small as this, but it appears as though we may have clusters on the left
and right edges, and possibly a cluster at the top center.

 Finally, the Mapping plot shows the distribution of cases among the nodes. Note
that the position of a case within a node doesn’t mean anything—they are just dodged
(moved a small, random distance) so that they don’t all sit on top of each other.

 The Codes plot is a useful way to visualize the weights of each node, but it becomes
difficult to read when you have many variables, and it doesn’t give an interpretable
indication of magnitude. Instead, I prefer to create heatmaps: one for each variable.
We use the getCodes() function to extract the weights for each node, where each row
is a node and each column is a variable, and convert this into a tibble. The following
listing shows how to then create a separate heatmap for each variable, this time using
iwalk() to iterate over each of the columns.

Plotting heatmaps for each variableListing 15.5

getCodes(fleaSom) %>%
as_tibble() %>%
iwalk(~plot(fleaSom, type = "property", property = .,

main = .y, shape = "straight"))

360 CHAPTER 15 Self-organizing maps and locally linear embedding

NOTE Recall from chapter 2 that each of the map() functions has an i equiv-
alent (imap(), imap_dbl(), iwalk(), and so on) that allows us to pass the
name/position of each element to the function. The iwalk() function is short-
hand for walk2(.x, .y = names(.x), .f), allowing us to access the name of
each element by using .y inside our function.

We set the type argument equal to "property", which allows us to color each node by
some numerical property. We then use the property argument to tell the function
exactly what property we want to plot. To set the title of each plot equal to the name of
the variable it displays, we set the main argument equal to .y (this is why I chose to use
iwalk() instead of walk()).

 The resulting plot is shown in figure 15.9. The heatmaps show very different pat-
terns of weights for each of the variables. Nodes on the right side of the map have
higher weights for the tars1 and aede2 variables and lower weights for the aede3 vari-
able (which is lowest in the bottom-right corner of the map). Nodes in the upper-left
corner of the map have higher weights for the tars2, head, and aede1 variables.
Because the variables were scaled before training the SOM, the heatmap scales are in
standard deviation units for each variable.

 Because we have some class information about our fleas, let’s plot our SOM, color-
ing each case by its species.

par(mfrow = c(1, 2))

nodeCols <- c("cyan3", "yellow", "purple")

plot(fleaSom, type = "mapping", pch = 21,
bg = nodeCols[as.numeric(fleaTib$species)],
shape = "straight", bgcol = "lightgrey")

Plotting flea species onto the SOMListing 15.6

tars1

−1

0

1

tars2

−1

0

1

head

−1

0

1

aede1

−1.5

−1

−0.5

0

0.5

1

1.5

aede2

−1.5

−1

−0.5

0

0.5

1

aede3

−2

−1.5

−1

−0.5

0

0.5

1

Figure 15.9 Separate heatmaps showing node weights for each original variable. The scales are in
standard deviation units.

361Building your first SOM

First, we define a vector of colors to use to distinguish the classes from each other.
Then, we create a mapping plot using the plot() function, and using the type =
"mapping" argument. We set the pch = 21 argument to use a filled circle to indicate
each case (so we can set a background color for each species). The bg argument sets the
background color of the points. By converting the species variable into a numeric
vector and using it to subset the color vector, each point will have a background color
corresponding to its species. Finally, we use the shape argument to draw hexagons
instead of circles, and set the background color (bgcol) equal to "lightgrey".

 The resulting plot is shown in figure 15.10. Can you see that the SOM has arranged
itself such that fleas from the same species (that are more similar to each other than
fleas from other species) are assigned to nodes near cases of the same species? I’ve
created a plot on the right side of figure 15.10 that used a clustering algorithm to find
clusters of nodes. I’ve colored the nodes by the cluster each node was assigned to, and
added thick borders that separate the clusters. Because we haven’t covered clustering
yet, I don’t want to explain how I did this (the code is available at www.manning
.com/books/machine-learning-with-r-the-tidyverse-and-mlr), but I wanted to show you
that the SOM managed to separate the different classes and that clustering can be per-
formed on a SOM! We’ll start covering clustering in the next chapter.

Mapping plotMapping plot

Figure 15.10 Showing class membership on the SOM. The left-side mapping plot shows
cases drawn inside their assigned nodes, shaded by which flea species they belong to. The
right-side plot shows the same information, but nodes are shaded by cluster membership
after applying a clustering algorithm to the nodes. The solid black lines separate nodes
assigned to different clusters.

NOTE SOMs are a little different than other dimension-reduction techniques,
in that they don’t really create new variables for which each case is given a
value (for example, the principal components in PCA). SOMs reduce dimen-
sionality by placing cases into nodes on a two-dimensional map, rather than
creating new variables. So if we want to perform cluster analysis on the result
of a SOM, we can use the weights to cluster the nodes. This essentially treats

http://www.manning.com/books/machine-learning-with-r-the-tidyverse-and-mlr
http://www.manning.com/books/machine-learning-with-r-tidyverse-and-mlr
http://www.manning.com/books/machine-learning-with-r-the-tidyverse-and-mlr

362 CHAPTER 15 Self-organizing maps and locally linear embedding

each node as a case in a new dataset. If our cluster analysis returns clusters of
nodes, we can assign cases from the original dataset to the cluster that their
node belongs to.

15.3.4 Mapping new data onto the SOM

In this section, I’ll show you how we can take new data and map it onto our trained
SOM. Let’s create two new cases with all of the continuous variables in the data we
used to train the SOM.

Exercise 1
Create another map using the somgrid() function, but this time set the arguments
as follows:

 topo = rectangular
 toroidal = TRUE

Train a SOM using this map, and create its mapping plot, as in figure 15.10. Notice
how each node is now connected with four of its neighbors. Can you see how the
toroidal argument affects the final map? If not, set this argument to FALSE, but
keep everything else the same, and see the difference.

Plotting flea species onto the SOMListing 15.7

newData <- tibble(tars1 = c(120, 200),
tars2 = c(125, 120),
head = c(52, 48),
aede1 = c(140, 128),
aede2 = c(12, 14),
aede3 = c(100, 85)) %>%

scale(center = attr(fleaScaled, "scaled:center"),
scale = attr(fleaScaled, "scaled:scale"))

predicted <- predict(fleaSom, newData)

par(mfrow = c(1, 1))

plot(fleaSom, type = "mapping", classif = predicted, shape = "round")

Once we define the tibble, we pipe it into the scale() function, because we trained the
SOM on scaled data. But here’s the really important part: a common mistake is to scale
the new data by subtracting its own mean and dividing by its own standard deviation.
This will likely lead to an incorrect mapping, because we need to subtract the mean and
divide by the standard deviation of the training set. Fortunately, these values are stored as
attributes of the scaled dataset, and we can access them using the attr() function.

TIP If you’re not quite sure what the attr() function is retrieving, run
attributes(fleaScaled) to see the full list of attributes of the fleaScaled
object.

363Building your first SOM
We use the predict() function with the SOM object as the first argument and the
new, scaled data as the second argument, to map the new data onto our SOM. We can
then plot the position of the new data on the map using the plot() function, supply-
ing the type = "mapping" argument. The classif argument allows us to specify an
object returned by the predict() function, to draw only the new data. This time, we
use the argument shape = "round" to show what the circular nodes look like.

 The resulting plot is shown in figure 15.11. Each case is placed in a separate
node whose weights best represent the case’s variable values. Look back at figures
15.9 and 15.10 and see what you can infer about these two cases based on their posi-
tion on the map.

Using SOMs for supervised learning
We’re concentrating on SOMs for their use as unsupervised learners for dimension
reduction. This is probably the most common use for SOMs, but they can also be used
for both regression and classification, making SOMs very unusual among machine
learning algorithms.

In a supervised setting, SOMs actually create two maps: let’s call them the x and
y maps. The x map is the same as what you’ve learned so far; the weights of its
nodes are iteratively updated such that similar cases are placed in nearby nodes
and dissimilar cases are placed in distant nodes, using only the predictor variables
in the dataset. Once the cases are placed into their respective nodes on the x map,
they don’t move. The weights of the y map’s nodes represent values of the out-
come variable. The algorithm now randomly selects cases again and iteratively
updates the weights of each y map node to better match the values of the outcome
variable of the cases in that node. The weights could represent a continuous out-
come variable (in the case of regression) or a set of class probabilities (in the case
of classification).

We can train a supervised SOM using the xyf() function from the kohonen package.
Use ?xyf() to learn more.

Mapping plot

Figure 15.11 New data can be mapped onto
an existing SOM. This mapping plot shows a
graphical representation of the nodes to which
the two new cases are assigned.

364 CHAPTER 15 Self-organizing maps and locally linear embedding
What is locally linear embedding?15.4
In this section, I’ll explain what LLE is, how it works, why it’s useful, and how it dif-
fers from SOMs. Just like UMAP, the LLE algorithm tries to identify an underlying
manifold that the data lies on. But LLE does this in a slightly different way: instead
of trying to learn the manifold all at once, it learns local, linear patches of data
around each case and then combines these linear patches to form the (potentially
nonlinear) manifold.

NOTE An oft-quoted mantra of the LLE algorithm is to “think globally, fit
locally”: the algorithm looks at small, local patches around each case and uses
these patches to construct the wider manifold.

The LLE algorithm is particularly good at “unrolling” or “unfurling” data that is
rolled or twisted into unusual shapes. For example, imagine a three-dimensional data-
set where the cases are rolled up into a Swiss roll. The LLE algorithm is capable of
unrolling the data and representing it as a two-dimensional rectangle of data points.

 So how does the LLE algorithm work? Take a look at figure 15.12. It starts by select-
ing a case from the dataset and calculating its k-nearest neighbors (this is just like in
the kNN algorithm from chapter 3, so k is a hyperparameter of the LLE algorithm).
LLE then represents this case as a linear, weighted sum of its k neighbors. I can
already hear you asking: what does that mean? Well, each of the k neighbors is

1
2
3
4
5 0.30

0.20
0.25
0.35
0.10

Weighted
sum 2.8 3.0 0.9

Original
case 2.9 3.0 0.8

2.9
2.8
1.8
1.8
3.1

x

1.0
3.9
1.8
3.6
2.0

y

0.6
0.6
1.0
0.9
0.1

z Weight

x

y

z

x

y1

2

3

4

5
1

2

3

4

5

2. Low-dimensional
coordinates are
found for the cases
that preserve
these weights.

1. Each case is
reconstructed
as a weighted
sum of its k

neighbors.

Figure 15.12 The distance between each case and every other case is calculated,
and their k-nearest neighbors are assigned (distance along the z-axis in the top-left
plot is indicated by the size of the circle). For each case, the algorithm learns a set
of weights, one for each nearest neighbor, that sum to 1. Each neighbor’s variable
values are multiplied by its weight (so row 1 becomes x = 3.1 × 0.1, y = 2.0 × 0.1,
z = 0.1 × 0.1). The weighted values of each neighbor are summed (the columns are
summed) to approximate the original values of the selected case.

365Building your first LLE
assigned a weight: a value between 0 and 1, such that the weights for all the k-nearest
neighbors sum to 1. The variable values of a particular neighbor are multiplied by its
weight (so the weighted values are a fraction of the original values).

NOTE Because the LLE algorithm relies on measuring the distance between
cases to calculate the nearest neighbors, it is sensitive to differences between
the scales of the variables. It’s often a good idea to scale the data before
embedding it.

When the weighted values for each variable are added up across the k-nearest neigh-
bors, this new weighted sum should approximate the variable values of the case for
which we calculated the k-nearest neighbors in the first place. Therefore, the LLE
algorithm learns a weight for each nearest neighbor such that, when we multiply each
neighbor by its weight and add these values together, we get the original case (or an
approximation). This is what I mean when I say LLE represents each case as a linear,
weighted sum of its neighbors.

 This process is repeated for each case in the dataset: its k-nearest neighbors are cal-
culated, and then weights are learned that can be used to reconstruct it. Because the
weights are combined linearly (summed), the algorithm is essentially learning a linear
“patch” around each case. But how does it combine these patches to learn the mani-
fold? Well, the data is placed into a low-dimensional space, typically two or three
dimensions, such that the coordinates in this new space preserve the weights learned
in the previous step. Put another way, the data is placed in this new feature space such
that each case can still be calculated from the weighted sum of its neighbors.

15.5 Building your first LLE
In this section, I’ll show you how to use the LLE algorithm to reduce the dimensions
of a dataset into a two-dimensional map. We’ll start with an unusual example that
really shows off the power of LLE as a nonlinear dimension-reduction algorithm. This
example is unusual because it represents data shaped in a three-dimensional S that is
unlike something we’re likely to encounter in the real world. Then we’ll use LLE to
create a two-dimensional embedding of our flea circus data to see how it compares
to the SOM we created earlier.

15.5.1 Loading and exploring the S-curve dataset

Let’s start by installing and loading the lle package:

install.packages("lle")

library(lle)

Next, let’s load the lle_scurve_data dataset from the lle package, give names to its
variables, and convert it into a tibble. We have a tibble containing 800 cases and 3
variables.

366 CHAPTER 15 Self-organizing maps and locally linear embedding
data(lle_scurve_data)

colnames(lle_scurve_data) <- c("x", "y", "z")

sTib <- as_tibble(lle_scurve_data)

sTib

A tibble: 800 x 3
zyx

<dbl> <dbl> <dbl>
1 0.955 4.95 -0.174
2 -0.660 3.27 -0.773
3 -0.983 1.26 -0.296
4 0.954 1.68 -0.180
5 0.958 0.186 -0.161
6 0.852 0.558 -0.471
7 0.168 1.62 -0.978
8 0.948 2.32 0.215
9 -0.931 1.51 -0.430

10 0.355 4.06 0.926
… with 790 more rows

This dataset consists of cases that are folded into the shape of the letter S in three
dimensions. Let’s create a three-dimensional plot to visualize this, using the plot3D
and plot3Drgl packages (starting with their installation).

install.packages(c("plot3D", "plot3Drgl"))

library(plot3D)

scatter3D(x = sTib$x, y = sTib$y, z = sTib$z, pch = 19,
bty = "b2", colkey = FALSE, theta = 35, phi = 10,
col = ramp.col(c("darkred", "lightblue")))

plot3Drgl::plotrgl()

The scatter3D() function allows us to create a three-dimensional plot, and the
plotrgl() function lets us rotate it interactively. Here is a summary of the arguments
to scatter3D():

 x, y, and z—Which variables to plot on their respective axes.
 pch—The shape of the points we wish to draw (19 draws filled circles).
 bty—The box type that’s drawn around the data ("b2" draws a white box with

gridlines; use ?scatter3D to see the alternatives).
 colkey—Whether we want a legend for the coloring of each point.
 theta and phi—The viewing angle of the plot.

Loading the S-curve datasetListing 15.8

Plotting the S-curve dataset in three dimensionsListing 15.9

367Building your first LLE

 col—The color palette we want to use to indicate the value of the z variable.
Here, we use the ramp.col() function to specify the start and end colors of a
color gradient.

Once we’ve created our static plot, we can turn it into an interactive plot that we can
rotate by clicking and rotating it with our mouse, by simply calling the plotrgl()
function with no arguments.

TIP You can use your mouse scroll wheel to zoom in and out of this interac-
tive plot.

The resulting plot is shown in figure 15.13. Can you see that the data forms a three-
dimensional S? This is an unusual dataset for sure, but one which I hope demonstrates
the power of LLE for learning the manifold that underlies a dataset.

x

y

z

Figure 15.13 The S-curve dataset
plotted in three dimensions using the
scatter3D() function. The shading
of the points is mapped to the z
variable.

15.5.2 Training the LLE

Aside from the number of dimensions to which we want to reduce our dataset (usually
two or three), k is the only hyperparameter we need to select. We can choose the best-
performing value of k by using the calc_k() function. This function applies the LLE
algorithm to our data, using different values of k in a range we specify. For each
embedding that uses a different k, calc_k() calculates the distances between cases in
the original data and in the low-dimensional representation. The correlation coeffi-
cient between these distances is calculated (ρ, or “rho”) and used to calculate a metric
(1 – ρ ^ 2) that can be used to select k. The value of k with the smallest value for this

368 CHAPTER 15 Self-organizing maps and locally linear embedding
metric is the one that best preserves the distances between cases in the high- and low-
dimensional representations.

 Here is a summary of the arguments of calc_k():

 The first argument is the dataset.
 The m argument is the number of dimensions we want to reduce our dataset

into.
 The kmin and kmax arguments specify the minimum and maximum values of

the range of k values the function will use.
 The cpus argument lets us specify the number of cores we want to use for paral-

lelization (I used parallel::detectCores() to use all of them).

NOTE Because we’re calculating an embedding for each value of k, if our
range of values is large and/or our dataset contains many cases, I recommend
parallelizing this function by setting the parallel argument to TRUE.

When this function has finished, it will draw a plot showing the 1 – ρ2 metric for each
value of k (see figure 15.14).

The calc_k() function also returns a data.frame containing the 1 – ρ2 metric for
each value of k. We use the filter() function to select the row containing the lowest
value of the rho column. We will use the value of k that corresponds to this smallest
value, to train our final LLE. In this example, the optimal value of k is 17 neighbors.

NOTE This is a little confusing because, actually, we want the highest value of
rho (ρ), which gives us the smallest value of 1 – ρ2. Despite this column being
called rho, it contains the values of 1 – ρ2, and so we want the smallest of
these values.

5 201510
k

1.
0

0.
8

0.
6

0.
4

0.
2

1
−

ρ
2

Figure 15.14 Plotting 1 – ρ2 against k to find the optimal value of k. The solid horizontal line
indicates the value of k with the lowest 1 – ρ2.

369Building your first LLE
Finally, we run the LLE algorithm using the lle() function, supplying the following:

 The data as the first argument
 The number of dimensions we want to embed into as the m argument
 The value of the k hyperparameter

lleK <- calc_k(lle_scurve_data, m = 2, kmin = 1, kmax = 20,
parallel = TRUE, cpus = parallel::detectCores())

lleBestK <- filter(lleK, rho == min(lleK$rho))

lleBestK

k rho
1 17 0.1469

lleCurve <- lle(lle_scurve_data, m = 2, k = lleBestK$k)

15.5.3 Plotting the LLE result

Now that we’ve performed our embedding, let’s extract the two new LLE axes and plot
the data onto them. This will allow us to visualize our data in this new, two-dimensional
space to see if the algorithm has revealed a grouping structure.

sTib <- sTib %>%
mutate(LLE1 = lleCurve$Y[, 1],

LLE2 = lleCurve$Y[, 2])

ggplot(sTib, aes(LLE1, LLE2, col = z)) +
geom_point() +
scale_color_gradient(low = "darkred", high = "lightblue") +
theme_bw()

We start by mutating two new columns onto our original tibble, each containing the
values of one of the new LLE axes. We then use the ggplot() function to plot the two
LLE axes against each other, mapping the z variable to the color aesthetic. We add a
geom_point() layer and a scale_color_gradient() layer that specifies the extreme
colors of a color scale that will be mapped to the z variable. This will allow us to
directly compare the position of each case in our new, two-dimensional representa-
tion to its position in the three-dimensional plot in figure 15.13.

 The resulting plot is shown in figure 15.15. Can you see that LLE has flattened out
the S shape into a flat, two-dimensional rectangle of points? If not, take a look back at
figure 15.13 and try to relate the two figures. It’s almost as if the data had been drawn
onto a folded piece of paper, and LLE straightened it out! This is the power of mani-
fold-learning algorithms for dimension reduction.

CalculatingListing 15.10 k and performing the LLE

Plotting the LLEListing 15.11

370 CHAPTER 15 Self-organizing maps and locally linear embedding

15.6 Building an LLE of our flea data
One criticism that is sometimes leveled at LLE is that it is designed to handle “toy
data”—in other words, data that is constructed to form interesting and unusual shapes,
but which rarely (if ever) manifests in real-world datasets. The S-curve data we worked
on in the previous section is an example of toy data that was generated to test algo-
rithms that learn a manifold that the data lies on. So in this section, we’re going to see
how well LLE performs on our flea circus dataset, and whether it can identify the clus-
ters of fleas like our SOM could.

 We’re going to follow the same procedure as for the S-curve dataset:

1 Use the calc_k() function to calculate the best-performing value of k.
2 Perform the embedding in two dimensions.
3 Plot the two new LLE axes against each other.

This time, let’s map the species variable to the color aesthetic, to see how well our
LLE embedding separates the clusters.

Performing and plotting LLE on the flea datasetListing 15.12

–1

0

1

2

20–1–2 1

LLE1

LL
E

2

0

1

2

3
z

Figure 15.15 Plotting the two-dimensional embedding of the S-curve data. The shading of the
points is mapped to the z variable, the same as in figure 15.11.

lleFleaK <- calc_k(fleaScaled, m = 2, kmin = 1, kmax = 20,
parallel = TRUE, cpus = parallel::detectCores())

lleBestFleaK <- filter(lleFleaK, rho == min(lleFleaK$rho))

lleBestFleaK

k rho
1 12 0.2482

lleFlea <- lle(fleaScaled, m = 2, k = lleBestFleaK$k)

371Building an LLE of our flea data
fleaTib <- fleaTib %>%
mutate(LLE1 = lleFlea$Y[, 1],

LLE2 = lleFlea$Y[, 2])

ggplot(fleaTib, aes(LLE1, LLE2, col = species)) +
geom_point() +
theme_bw()

The resulting plots are shown in figure 15.16 (I combined the plots into a single fig-
ure to save room). LLE seems to do a decent job of separating the different species of
fleas, though the result isn’t quite as impressive as the way LLE was able to unravel the
S-curve dataset.

NOTE Sadly, because each case is reconstructed as a weighted sum of its
neighbors, new data cannot be projected onto an LLE map. For this reason,
LLE cannot be easily used as a preprocessing step for other machine learning
algorithms, as new data can’t be passed through it.

Exercise 2
Add 95% confidence ellipses for each flea species to the lower plot shown in figure 15.16.

5 10 15 200
k

Concinna Heikert. Heptapot.

–2

–1

0

1

–2 10–1 2 3
LLE1

LL
E

2
0.

8
0.

41
−

ρ
2

Figure 15.16 Plotting the output of listing 15.12. The top plot shows 1 – ρ2 for different values
of k. The lower plot shows the two-dimensional embedding of the flea data, shaded by species.

372 CHAPTER 15 Self-organizing maps and locally linear embedding
Strengths and weaknesses of SOMs and LLE15.7
While it often isn’t easy to tell which algorithms will perform well for a given task, here
are some strengths and weaknesses that will help you decide whether the SOM or LLE
will perform well for you.

 The strengths of SOMs and LLE are as follows:

 They are both nonlinear dimension-reduction algorithms, and so can reveal
patterns in the data where linear algorithms (like PCA) may fail.

 New data can be mapped onto an existing SOM.
 They are reasonably inexpensive to train.
 Rerunning the LLE algorithm on the same dataset with the same value of k will

always produce the same embedding.

The weaknesses of SOMs and LLE are these:

 They cannot natively handle categorical variables.
 The lower-dimensional representations are not directly interpretable in terms

of the original variables.
 They are sensitive to data on different scales.
 New data cannot be mapped onto an existing LLE.
 They don’t necessarily preserve the global structure of the data.
 Rerunning the SOM algorithm on the same dataset will produce a different

map each time.
 Small SOMs can be difficult to interpret, so the algorithm works best with large

datasets (greater than hundreds of cases).

Exercise 3
Using the original somGrid we created, create another SOM, but increase the number
of iterations to 10,000, and set the alpha argument to c(0.1, 0.001) to slow the
learning rate. Create the mapping plot just like in exercise 1. Retrain and plot the
SOM multiple times. Is the mapping less variable than before? Can you think why?

Exercise 4
Repeat our LLE embedding, but embed in three dimensions instead of two. Plot this
new embedding using the scatter3() function, coloring the points by species.

Exercise 5
Repeat our LLE embedding (in two dimensions), but this time use the unscaled vari-
ables. Plot the two LLE axes against each other, and map the species variable to
the color aesthetic. Compare this embedding to the result using scaled variables.

373Solutions to exercises
Summary
 SOMs create a grid/map of nodes to which cases in the dataset are assigned.
 SOMs learn patterns in the data by updating the weights of each node until the

map converges to a set of weights that preserves similarities among the cases.
 New data can be mapped onto an existing SOM, and SOM nodes can be clus-

tered based on their weights.
 LLE reconstructs each case as a linear weighted sum of its neighbors.
 LLE then embeds the data in a lower-dimensional feature space that preserves

the weights.
 LLE is excellent at learning complex manifolds that underlie a set of data, but

new data cannot be mapped onto an existing embedding.

Solutions to exercises
1 Train a rectangular, toroidal SOM:

somGridRect <- somgrid(xdim = 5, ydim = 5, topo = "rectangular",
toroidal = TRUE)

fleaSomRect <- som(fleaScaled, grid = somGridRect, rlen = 5000,
alpha = c(0.05, 0.01))

plot(fleaSomRect, type = "mapping", pch = 21,
bg = nodeCols[as.numeric(fleaTib$species)],
shape = "straight", bgcol = "lightgrey")

Making the map toroidal means that nodes on one edge are connected to
adjacent nodes on the opposite side of the map.

2 Add 95% confidence ellipses for each flea species to the plot of LLE1 versus
LLE2:

ggplot(fleaTib, aes(LLE1, LLE2, col = species)) +
geom_point() +
stat_ellipse() +
theme_bw()

3 Train a SOM with more iterations, but a slower learning rate:

fleaSomAlpha <- som(fleaScaled, grid = somGrid, rlen = 10000,
alpha = c(0.01, 0.001))

plot(fleaSomAlpha, type = "mapping", pch = 21,
bg = nodeCols[as.numeric(fleaTib$species)],
shape = "straight", bgcol = "lightgrey")

While the positions of the groups change between repeats, there is less
variation in how well cases from the same species cluster together.
This is because the learning rate is slower and there are more iterations.

374 CHAPTER 15 Self-organizing maps and locally linear embedding
4 Train an LLE in three dimensions:

lleFlea3 <- lle(fleaScaled, m = 3, k = lleBestFleaK$k)

fleaTib <- fleaTib %>%
mutate(LLE1 = lleFlea3$Y[, 1],

LLE2 = lleFlea3$Y[, 2],
LLE3 = lleFlea3$Y[, 3])

scatter3D(x = fleaTib$LLE1, y = fleaTib$LLE2, z = fleaTib$LLE3, pch = 19,
bty = "b2", colkey = FALSE, theta = 35, phi = 10, cex = 2,
col = c("red", "blue", "green")[as.integer(fleaTib$species)],
ticktype = "detailed")

plot3Drgl::plotrgl()

5 Train an LLE on the unscaled flea data:

lleFleaUnscaled <- lle(dplyr::select(fleaTib, -species),
m = 2, k = lleBestFleaK$k)

fleaTib <- fleaTib %>%
mutate(LLE1 = lleFleaUnscaled$Y[, 1],

LLE2 = lleFleaUnscaled$Y[, 2])

ggplot(fleaTib, aes(LLE1, LLE2, col = species)) +
geom_point() +
theme_bw()

As we can see, the embedding is different depending on
whether the variables are scaled or not.

Part 5

Clustering

Our next stop in unsupervised learning is clustering. Clustering covers a
range of techniques used to identify clusters of cases in a dataset. A cluster is a set of
cases that are more similar to each other than they are to cases in other clusters.

 Conceptually, clustering can be considered similar to classification, in that we
are trying to assign a discrete value to each case. The difference is that while clas-
sification uses labeled cases to learn patterns in the data that separate the classes,
we use clustering when we don’t have any prior knowledge about class membership
or whether there are distinct classes in the data. Clustering therefore describes a set
of algorithms that try to identify a grouping structure within a dataset.

 In chapters 16 through 19, I’ll arm you with different clustering techniques
that can handle a range of clustering problems. Validating the performance of a
clustering algorithm can be a challenge, and there may not always be an obvious
or even a “correct” answer, but I’ll teach you skills to help maximize the informa-
tion you get from these approaches.

Clustering by finding
centers with k-means
Our first stop in clustering brings us to a very commonly used technique: k-means
clustering. I’ve used the word technique here rather than algorithm because k-means
describes a particular approach to clustering that multiple algorithms follow. I’ll talk
about these individual algorithms later in the chapter.

NOTE Don’t confuse k-means with k-nearest neighbors! K-means is for
unsupervised learning, whereas k-nearest neighbors is a supervised algo-
rithm for classification.

K-means clustering attempts to learn a grouping structure in a dataset. The k-means
approach starts with us defining how many clusters we believe there are in the
dataset. This is what the k stands for; if we set k to 3, we will identify three clusters
(whether these represent a real grouping structure or not). Arguably, this is a

This chapter covers
 Understanding the need for clustering

 Understanding over- and underfitting for
clustering

 Validating the performance of a clustering
algorithm
377

378 CHAPTER 16 Clustering by finding centers with k-means
weakness for k-means, because we may not have any prior knowledge as to how many
clusters to search for, but I’ll show you ways to select a sensible value of k.

 Once we have defined how many clusters, k, we want to search for, k-means will ini-
tialize (usually randomly) k centers or centroids in the dataset. Each centroid may not
be an actual case from the data but has a random value for every variable in the data.
Each of these centroids represents a cluster, and cases are assigned to the cluster of
the centroid closest to them. Iteratively, the centroids move around the feature space
in a way that attempts to minimize the variance of the data within each cluster but
maximizes the separation of different clusters. At each iteration, cases are assigned to
the cluster of the centroid that is closest to them.

 By the end of this chapter, I hope you’ll understand a general approach to cluster-
ing and what over- and underfitting look like for clustering tasks. I’ll show you how to
apply k-means clustering to a dataset and ways of evaluating clustering performance.

16.1 What is k-means clustering?
In this section, I’ll show you how the general procedure for k-means clustering works
and then explain the various algorithms that implement it and how they differ. K-means
algorithms partition cases in a dataset into k clusters, where k is an integer defined by us.
The clusters returned by k-means algorithms tend to be n-dimensionally spherical
(where n is the number of dimensions of the feature space). This means the clusters
tend to form a circle in two dimensions, a sphere in three dimensions, and a hyper-
sphere in more than three dimensions. K-means clusters also tend to have a similar
diameter. These are traits that may not be true of the underlying structure in the data.

 There are a number of k-means algorithms, but some commonly used ones are as
follows:

 Lloyd algorithm (also called Lloyd-Forgy algorithm)
 MacQueen algorithm
 Hartigan-Wong algorithm

The Lloyd, MacQueen, and Hartigan-Wong algorithms are conceptually quite simi-
lar but have some differences that affect both their computational cost and their
performance on a particular problem. Let’s go through each algorithm to explain
how it works.

16.1.1 Lloyd’s algorithm

In this section, I’ll show you the easiest of these three algorithms to understand:
Lloyd’s algorithm. Imagine that you’re a sports scientist, interested in the biophysical
differences among runners. You measure the resting heart rate and maximum oxygen
consumption of a cohort of runners, and you want to use k-means to identify clusters
of runners that might benefit from different training regimens.

 Let’s say you have prior reason to believe there may be three distinct clusters of
athletes in the dataset. The first step in Lloyd’s algorithm is to randomly initialize k

379What is k-means clustering?

(three in this case) centroids in the data (see figure 16.1). Next, the distance between
each case and each centroid is calculated. This distance is commonly the Euclidean
distance (straight-line distance) but can be other distance metrics, such as the Man-
hattan distance (taxi cab distance).

Resting heart rate

M
ax

 O
2

co
ns

um
pt

io
n

M
ax

 O
2

co
ns

um
pt

io
n

M
ax

 O
2

co
ns

um
pt

io
n

M
ax

 O
2

co
ns

um
pt

io
n

M
ax

 O
2

co
ns

um
pt

io
n

M
ax

 O
2

co
ns

um
pt

io
n

Iteration 2Iteration 1Initial centroids

Iteration 5Iteration 4Iteration 3

Resting heart rateResting heart rate

Resting heart rate Resting heart rateResting heart rate

Figure 16.1 Five iterations of k-means clustering. In the top-left plot, three initial
centers are randomly generated in the feature space (crosses). Cases are assigned
to the cluster of their nearest center. At each iteration, each center moves to the
mean of the cases in its cluster (indicated by arrows). The feature space can be
partitioned up into Voronoi cells (I'll discuss these shortly), indicated by the shaded
regions, that show regions of the feature space closest to a particular centroid.

NOTE Because k-means relies on a distance metric, it’s important to scale vari-
ables if they are measured on different scales; otherwise, variables on larger
scales will disproportionately influence the result.

Each case is assigned to the cluster represented by its nearest centroid. In this way,
each centroid serves as a prototype case for its cluster. Next, the centroids are moved,
such that they are placed at the mean of the cases that were assigned to their cluster in
the previous step (this is why the approach is called k-means).

The process now repeats itself: the distance between each case and each centroid is
calculated, and cases are assigned to the cluster of the nearest centroid. Can you see
that, because the centroids update and move around the feature space, the centroid
nearest to a particular case may change over time? This process continues until no
cases change clusters from one iteration to the next, or until a maximum number of
iterations is reached. Notice that between iterations 4 and 5 in figure 16.1, no cases
change clusters, so the algorithm stops.

380 CHAPTER 16 Clustering by finding centers with k-means

NOTE Because the initial centers are usually randomly selected, it’s import-
ant that we repeat the procedure several times, with new random initial cen-
ters each time. We can then use the centers that start with the lowest within-
cluster sum of squared error.

Let’s summarize the steps of Lloyd’s algorithm:

1 Select k.
2 Randomly initialize k centers in the feature space.
3 For each case:

a Calculate the distance between the case and each center.
b Assign the case to the cluster of the nearest centroid.

4 Place each center at the mean of the cases assigned to its cluster.
5 Repeat steps 3 and 4 until no cases change clusters or a maximum number of

iterations is reached.

In figure 16.1, can you see how at each iteration, the positions of the centroids are
updated (the arrows) such that they move toward the center of genuine clusters? At
each iteration, we can partition the feature space into polygonal (or polytopal, in
more than two dimensions) regions around each centroid that show us the regions
that “belong” to a particular cluster. These regions are called Voronoi cells ; and if a case
falls inside one of them, this means the case is closest to that cell’s centroid and will be
assigned to its cluster. Visualizing Voronoi cells on a plot (sometimes called a Voronoi
map) is a useful way of visualizing how a clustering algorithm has partitioned the fea-
ture space.

16.1.2 MacQueen’s algorithm

MacQueen’s algorithm is extremely similar to Lloyd’s algorithm, varying just subtly in
when the centroids get updated. Lloyd’s algorithm is called a batch or offline algorithm,
meaning it updates the centroids together at the end of an iteration. MacQueen’s
algorithm, on the other hand, updates the centroids each time a case changes clusters
and once the algorithm has passed through all the cases in the data.

NOTE Whereas Lloyd’s algorithm is said to be a batch or offline algorithm,
MacQueen’s is said to be an incremental or online algorithm, because it updates
the centroids each time a case moves clusters, rather than after a pass through
all the data.

Just like with Lloyd’s algorithm, MacQueen’s algorithm initializes k centers, assigns
each case to the cluster of the nearest centroid, and updates the position of the cen-
troid to match the mean of its nearest cases. Then the algorithm considers each case
in turn and calculates its distance to each centroid. If the case changes clusters
(because it’s now closer to a different centroid), both the new and old centroid posi-
tions are updated. The algorithm continues through the dataset, considering each
case in turn. Once all cases have been considered, the centroid positions are updated

381What is k-means clustering?

again. If no cases change clusters, the algorithm stops; otherwise, it will perform
another pass.

 A benefit of MacQueen’s algorithm over Lloyd’s algorithm is that it tends to con-
verge more quickly to an optimal solution. However, it may be slightly more computa-
tionally expensive for very large datasets.

 Let’s summarize the steps of MacQueen’s algorithm:

1 Select k.
2 Randomly initialize k centers in the feature space.
3 Assign each case to the cluster of its nearest center.
4 Place each center at the mean of the cases assigned to its cluster.
5 For each case:

a Calculate the distance between the case and each centroid.
b Assign the case to the cluster of the nearest centroid.
c If the case changed clusters, update the position of the new and old centroids.

6 Once all cases have been considered, update all centroids.
7 If no cases change clusters, stop; otherwise, repeat step 5.

16.1.3 Hartigan-Wong algorithm

The third k-means algorithm is a little different from the Lloyd and MacQueen algo-
rithms. The Hartigan-Wong algorithm starts by initializing k random centers and
assigning each case to the cluster of its nearest center, just as we saw in the other two
algorithms. Here’s the different bit: for each case in the dataset, the algorithm calcu-
lates the sum of squared error of that case’s current cluster if that case was removed, and
the sum of squared error of each of the other clusters if that case was included in those
clusters. Recall from previous chapters that the sum of squared error (or simply the
sum of squares) is the difference between each case’s values and its predicted values
(in this context, its centroid), squared and summed across all the cases. If you prefer
this in mathematical notation, have a look at equation 16.1.

Equation 16.1

SS xi ck–()2

i k∈
=

where i ∈ k is the ith case belonging to cluster k, and ck is the centroid of cluster k.
The cluster with the smallest sum of squared error (when including the case cur-

rently under consideration) is assigned as the cluster for that case. If a case changed
clusters, then the centroids of the old and new clusters are updated to the mean of the
cases in their cluster. The algorithm continues until no cases change clusters. As a
result, a case could be assigned to a particular cluster (because it reduces the sum of
squared error) even though it is closer to the centroid of another cluster.

Let’s summarize the steps of the Hartigan-Wong algorithm:

1 Select k.
2 Randomly initialize k centers in the feature space.

382 CHAPTER 16 Clustering by finding centers with k-means

3 Assign each case to the cluster of its nearest center.
4 Place each center at the mean of the cases assigned to its cluster.
5 For each case:

a Calculate the sum of squared error for its cluster, omitting the case under
consideration.

b Calculate the sum of squared error for the other clusters, as if that case were
included.

c Assign the case to the cluster with the smallest sum of squared error.
d If the case changed clusters, update the position of the new and old centroids.

6 If no cases change clusters, stop; otherwise, repeat step 5.

The Hartigan-Wong algorithm tends to find a better clustering structure than either
the Lloyd or MacQueen algorithms, although we are always subject to the “no free
lunch” theorem. Hartigan-Wong is also more computationally expensive than the other
two algorithms, so it will be considerably slower for large datasets.

 Which algorithm do we choose? Well, the choice is a discrete hyperparameter, so
we can use hyperparameter tuning to help us choose the best-performing method and
make sure we don’t make the Wong choice!

16.2 Building your first k-means model
In this section, I’ll show you how to build a k-means model in R, using the mlr package.
I’ll cover creating a cluster task and learner, and some methods we can use to evaluate
the performance of a clustering algorithm.

 Imagine that you’re looking for clusters of white blood cells from patients with
graft versus host disease (GvHD). GvHD is an unpleasant disease where residual white
blood cells in transplanted tissue attack the body of the patient receiving the trans-
plant. You take a biopsy from each patient and measure different proteins on the sur-
face of each cell. You hope to create a clustering model that will help you identify
different cell types from the biopsy, to help you better understand the disease. Let’s
start by loading the mlr and tidyverse packages:

library(mlr)

library(tidyverse)

16.2.1 Loading and exploring the GvHD dataset

Now let’s load the data, which is built into the mclust package, convert it into a tibble
(with as_tibble()), and explore it a little. We have a tibble containing 6,809 cases and
4 variables, each of which is a different protein measured on the surface of each cell.

Loading and exploring the GvHD datasetListing 16.1

data(GvHD, package = "mclust")

gvhdTib <- as_tibble(GvHD.control)

383Building your first k-means model
gvhdTib

A tibble: 6,809 x 4
CD8CD3CD8bCD4

<dbl> <dbl> <dbl> <dbl>
2261324201991

2 294 311 241 164
3 85 79 14 218
4 19 1 141 130
5 35 29 6 135
6 376 346 138 176
7 97 329 527 406
8 200 342 145 189
9 422 433 163 47

10 391 390 147 190
... with 6,799 more rows

NOTE Calling data(GvHD, package = "mclust") actually loads two datasets:
GvHD.control and GvHD.pos. We’re going to work with the GvHD.control
dataset, but at the end of this section, I’ll get you to build a clustering model
on the GvHD.pos dataset too.

Because k-means algorithms use a distance metric to assign cases to clusters, it’s
important that our variables are scaled so variables on different scales are given equal
weight. All of our variables are continuous, so we can simply pipe our entire tibble
into the scale() function. Remember that this will center and scale each variable by
subtracting the mean and dividing by the standard deviation.

gvhdScaled <- gvhdTib %>% scale()

Next, let’s plot the data using our good friend ggpairs() from the GGally package.
This time, we modify the way ggpairs() draws the facets. We use the upper, lower,
and diag arguments to specify what kind of plots should be drawn above, below, and
on the diagonal, respectively. Each of these arguments takes a list where each list ele-
ment can be used to specify a different type of plot for continuous variables, discrete
variables, and combinations of the two. Here, I’ve chosen to draw 2D density plots on
the upper plots, scatterplots on the lower plots, and density plots on the diagonal.

 To prevent overcrowding, we want to reduce the size of the points on the lower
plots. To change any of the graphical options of the plots (such as size and color of the
geoms), we just need to wrap the name of the plot type (literally) inside the wrap()
function, along with the options we’re changing. Here, we use wrap("points", size =
0.5) to draw scatterplots on the lower panels, with a smaller point size than the
default.

NOTE Remember that geom stands for geometric object, referring to graphical
elements like lines, dots, and bars on a plot.

Scaling the GvHD datasetListing 16.2

384 CHAPTER 16 Clustering by finding centers with k-means

library(GGally)

ggpairs(GvHD.control,
upper = list(continuous = "density"),
lower = list(continuous = wrap("points", size = 0.5)),
diag = list(continuous = "densityDiag")) +

theme_bw()

NOTE The default diagonal plot for continuous variables is a density plot. I
explicitly defined it as such here anyway so you can see how you can control
the upper, lower, and diagonal plots independently.

The resulting plot is shown in figure 16.2. Can you see different clusters of cases in the
data? The human brain is pretty good at identifying clusters in two or even three
dimensions, and it looks as though there are at least four clusters in the dataset. The
density plots are useful to help us see dense regions of cases, which simply appear
black in the scatterplots.

Creating pairwise plots withListing 16.3 ggpairs()

CD4 CD8b CD3 CD8

C
D

4
C

D
8b

C
D

3
C

D
8

600400200060040020006004002000 8006004002000800

0.000

0.001

0.002

0.003

0

200

400

600

0

200

400

600

800

0

200

400

600

800

Figure 16.2 ggpairs() plot of each variable against every other variable in our GvHD dataset.
Scatterplots are shown below the diagonal, 2D density plots are shown above the diagonal, and 1D
density plots are drawn on the diagonal. It appears as if there are multiple clusters in the data.

16.2.2 Defining our task and learner

In this section, I’ll show you how to define a clustering task and clustering learner. In
mlr, we create a clustering task by using the makeClusterTask() function (no surprises
there). We supply our scaled data (converted into a data frame) as the data argument.

385Building your first k-means model

IMPORTANT Notice that, unlike creating a supervised learning task (for classi-
fication or regression), we no longer need to supply the target argument.
This is because in an unsupervised learning task, there is no labels variable to
use as a target.

Let’s use the listLearners() function that you learned about all the way back in
chapter 3 to see what algorithms have been implemented by the mlr package so far. At
the time of writing, only nine clustering algorithms are available to us. Admittedly, this
is far fewer than the number of algorithms available for classification and regression,
but mlr still provides some useful tools for clustering. If you want to use an algorithm
that mlr doesn’t currently wrap, you can always implement it yourself (visit the mlr
website to see how: http://mng.bz/E1Pj).

 Now let’s define our k-means learner. We do this using the familiar makeLearner()
function, this time supplying "cluster.kmeans" as the name of the learner. We use
the par.vals argument to supply two arguments to the learner: iter.max and nstart.

NOTE Just as the prefixes for classification and regression learners were
classif. and regr., respectively, the prefix for clustering learners is cluster..

gvhdTask <- makeClusterTask(data = as.data.frame(gvhdScaled))

listLearners("cluster")$class

"cluster.dbscan""cluster.Cobweb"[1] "cluster.cmeans"
"cluster.FarthestFirst" "cluster.kkmeans"[4] "cluster.EM"

"cluster.XMeans""cluster.SimpleKMeans"[7] "cluster.kmeans"

Creating a cluster task and learner with mlrListing 16.4

kMeans <- makeLearner("cluster.kmeans",
par.vals = list(iter.max = 100, nstart = 10))

The iter.max argument sets an upper limit for the number of times the algorithm
will cycle through the data (the default is 10). The k-means algorithms will all stop
once cases stop moving clusters, but setting a maximum can be useful for large data-
sets that take a long time to converge. Later in this section, I’ll show you how to tell if
your clustering model has converged before reaching this limit.

The nstart argument controls how many times the function will randomly initial-
ize the centers. Recall that the initial centers are usually randomly initialized some-
where in the feature space: this can have an impact on the final centroid positions
and, therefore, the final cluster memberships. Setting the nstart argument higher
than the default value of 1 will randomly initialize this number of centers. For each set
of initial centers, the cases are assigned to the cluster of their nearest center in each
set, and the set with the smallest within-cluster sum of squared error is then used for
the rest of the clustering algorithm. In this way, the algorithm selects the set of centers
that is already most similar to the real cluster centroids in the data. Increasing nstart

is arguably more important than increasing the number of iterations.

http://mng.bz/E1Pj

386 CHAPTER 16 Clustering by finding centers with k-means

TIP If you have a dataset with very clearly separable clusters, setting nstart
higher than 1 might be a waste of computational resources. However, unless
your dataset is very large, it’s usually a good idea to set nstart > 1; in listing
16.4, I set mine to 10.

16.2.3 Choosing the number of clusters

In this section, I’ll show you how we can sensibly choose the value of k, which defines
the number of centers, and therefore clusters, that our model will identify. The need
to choose k is often cited as a weakness of k-means clustering. This is because choosing
k can be subjective. If you have prior domain knowledge as to how many clusters
should theoretically be present in a dataset, then you should use this knowledge to
guide your selection. If you’re using clustering as a preprocessing step before a super-
vised learning algorithm (classification, for example), then the choice is quite easy:
tune k as a hyperparameter of the whole model-building process, and compare the
predictions of the final model against the original labels.

 But what if we have no prior knowledge and no labeled data to compare against?
And what happens if we get our selection wrong? Well, just like for classification and
regression, clustering is subject to the bias-variance trade-off. If we want to generalize
a clustering model to the wider population, it’s important we neither overfit nor
underfit the training data. Figure 16.3 illustrates what under- and overfitting might
look like for a clustering problem. When we underfit, we fail to identify and separate
real clusters in the data; but when we overfit, we split real clusters into smaller, non-
sensical clusters that simply don’t exist in the wider population.

Variable 1

V
ar

ia
bl

e
2

Variable 1

V
ar

ia
bl

e
2

Variable 1

V
ar

ia
bl

e
2

OverfitUnderfit Optimal

Figure 16.3 What under- and overfitting looks like for clustering tasks. In the
left-side plot, the clusters are underfit (fewer clusters have been identified than
actually exist). In the right-side plot, the clusters are overfit (real clusters are
broken up into smaller clusters). In the center plot, an optimal clustering model
has been found that faithfully represents the structure in the data.

Avoiding over- and underfitting clustering problems is not straightforward. People
have proposed many different methods for avoiding over- and underfitting, and they
won’t all agree with one another for a particular problem. Many of these methods rely
on the calculation of internal cluster metrics, which are statistics that aim to quantify the
“quality” of a clustering result.

387Building your first k-means model

NOTE What constitutes “good-quality” clusters is poorly defined and some-
what subjective, but people typically mean that each cluster is as compact as
possible, while the distances between clusters are as large as possible.

These metrics are “internal” because they are calculated from the clustered data
itself rather than by comparing the result to any external label or ground truth. A
common approach to selecting the number of clusters is to train multiple clustering
models over a range of cluster numbers and compare the cluster metrics for each
model to help choose the best-fitting one. Three commonly used internal cluster
metrics are as follows:

 Davies-Bouldin index
 Dunn index
 Pseudo F statistic

USING THE DAVIES-BOULDIN INDEX TO EVALUATE CLUSTERING PERFORMANCE

The Davies-Bouldin index (named after its creators, David Davies and Donald Boul-
din) quantifies the average separability of each cluster from its nearest counterpart. It
does this by calculating the ratio of the within-cluster variance (also called the scatter)
to the separation between cluster centroids (see figure 16.4).

Variable 1

V
ar

ia
bl

e
2

Variable 1

V
ar

ia
bl

e
2

Distance betweenIntracluster variance
centroids

Figure 16.4 The Davies-Bouldin index calculates the intracluster (within-cluster)
variance (left-side plot) and the distance between the centroids of each cluster
(right-side plot). For each cluster, its nearest neighboring cluster is identified, and
the sum of their intracluster variances is divided by the difference between their
centroids. This value is calculated for each cluster, and the Davies-Bouldin index
is the mean of these values.

If we fix the distance between clusters but make the cases within each cluster more
spread out, the Davies-Bouldin index will get larger. Conversely, if we fix the within-
cluster variance but move the clusters farther apart from each other, the index will get
smaller. In theory, the smaller the value (which is bounded between zero and infinity),
the better the separation between clusters. Boiled down into plain English, the Davies-
Bouldin index quantifies the mean separability between each cluster and its most sim-
ilar counterpart.

388 CHAPTER 16 Clustering by finding centers with k-means
USING THE DUNN INDEX TO EVALUATE CLUSTERING PERFORMANCE

The Dunn index is another internal cluster metric that quantifies the ratio between
the smallest distance between points in different clusters, and the largest distance
within any of the clusters, referred to as the cluster’s diameter (see figure 16.5). These
can be any distance metric but are commonly the Euclidean distance.

 The intuition here is that if we maintain the same diameter of our clusters but
move the closest pair apart, the Dunn index will get larger. Conversely, if we maintain

Calculating the Davies-Bouldin index
It’s not necessary for you to memorize the formula for the Davies-Bouldin index (in
fact, it’s reasonably complex). If you are interested, we can define the scatter within
clusters as

scatterk = (1–
nk

Σ
nk

i∈k
(xi – ck)2)1/2

where scatterk is a measure of the scatter within cluster k, nk is the number of cases
in cluster k, xi is the ith case in cluster k, and ck is the centroid of cluster k.

The separation between clusters can be defined as

separationj,k = (Σ
N

1≤ j≤k
(cj – ck)2)1/2

where separationj,k is a measure of the separation between clusters j and k, cj and
ck are their respective centroids, and N is the total number of clusters.

The ratio between the within-cluster scatter and the separation between two clusters
is then calculated as

ratioj,k =
scatterj + scatterk

separationj,k

This ratio is calculated for all pairs of clusters, and for each cluster, the largest ratio
between it and the other clusters is defined to be Rk. The Davies-Bouldin index is then
simply the mean of these largest ratios:

DB = 1–
N

Σ
N

k=1
Rk

Variable 1

V
ar

ia
bl

e
2

Variable 1

V
ar

ia
bl

e
2

Smallest distance
between clusters

Largest distance
within a cluster

Figure 16.5 The Dunn index
quantifies the ratio between the
smallest distance between cases
in different clusters (left-side plot)
and the largest distance within a
cluster (right-side plot).

389Building your first k-means model

the same distance between cluster centroids but shrink the diameter of the clusters
(by making the clusters denser), the Dunn index will also increase. As such, the num-
ber of clusters resulting in the largest Dunn index is the one that results in the largest
minimum distance between clusters and the smallest maximum distance between
cases within a cluster.

USING THE PSEUDO F STATISTIC TO EVALUATE CLUSTERING PERFORMANCE

The pseudo F statistic is a ratio of the between-cluster sum of squares to the within-cluster
sum of squares (see figure 16.6). The between-cluster sum of squares is the squared dif-
ference between each cluster centroid and the grand centroid (the centroid of the data
as if it was all in one big cluster), weighted by the number of cases in that cluster,
added up across each cluster. This is another way of measuring how separated the clus-
ters are from each other (the farther the cluster centroids are from each other, the
smaller the between sum of squares will be). The within-cluster sum of squares is the
squared difference between each case and its cluster’s centroid, added up across each
cluster. This is another way of measuring the variance or dispersion within each cluster
(the denser each cluster is, the smaller the within-cluster sum of squares will be).

Calculating the Dunn index
It’s not necessary for you to memorize the formula for the Dunn index. If you are inter-
ested, we can define the Dunn index as

Dunn = min
1≤ i≤k

 {min (
k

δ (ci,cj)
max

1≤ i≠ i≤k
Δ(ck)) }

where δ(ci,cj) represents all pairwise differences between cases in clusters i and j,
and δ(ci) represents all pairwise differences between cases in cluster k.

Variable 1

V
ar

ia
bl

e
2

Variable 1

V
ar

ia
bl

e
2

Between-cluster
sum of squares

Within-cluster
sum of squares

Figure 16.6 The pseudo F statistic is
the ratio of the between-cluster sum of
squares (right-side plot) to the within-
cluster sum of squares (left-side plot).
The grand centroid is shown as a
square in the right-side plot.

Because the pseudo F statistic is also a ratio, if we maintain the same cluster variance
but move the clusters farther apart, the pseudo F statistic will increase. Conversely, if
we maintain the same separation between the cluster centroids but make the clusters

390 CHAPTER 16 Clustering by finding centers with k-means
more spread out, the pseudo F statistic will decrease. As such, the number of clusters
that results in the largest pseudo F statistic is, in theory, the one that maximizes the
separation of the clusters.

These are just three among the many commonly used internal cluster metrics, and at
this point you might be wondering why there isn’t just one metric that tells us how
well separated our clusters are. The reason is that these metrics will tend to agree with
each other when we have very clear, well-defined clusters, but will start to disagree
with each other as the solution becomes more ambiguous, with some of the metrics
performing better than others in certain circumstances. For example, internal cluster
metrics that rely on calculating sums of squares may prefer to select a number of clus-
ters that results in clusters of equal diameter. This may not be an optimal number of
clusters if the real clusters have very unequal diameters. As such, it’s often a good idea
to consider multiple internal cluster metrics as evidence when choosing the number
of clusters.

 So internal cluster metrics like these can help us find the optimal number of clus-
ters. But there is still always a danger that we might overfit the training data by over-
clustering. One approach to avoid overclustering is to take multiple bootstrap samples
(sampling cases with replacement) of the data, apply the clustering algorithm to each
sample, and compare how well the cluster memberships agree between samples. If
there is high stability (in other words, the clustering result is stable between samples),
then we have more confidence that we are not fitting the noise in the data.

 For clustering algorithms that are able to predict the clusters of new data, like the
k-means algorithms, another approach is to use a cross-validation-like procedure. This
involves splitting the data into training and test sets (using k-fold, for example), training

Calculating the pseudo F statistic
It’s not necessary for you to memorize the formula for the pseudo F statistic. If you
are interested, we can define the pseudo F statistic as

Pseudo F =
SSbetween/(k – 1)

SSwithin/(n – k)

where SSbetween and SSwithin are calculated as

SSbetween = Σ
N

k
nk (ck – cg)2

SSwithin = Σ
N

k
Σ
nk

i∈k
(xi – ck)2

where there are N clusters, nk is the number of cases in cluster k, ck is the centroid
of cluster k, and cg is the grand centroid of all the cases.

391Building your first k-means model
the clustering algorithm on the training set, predicting the cluster membership of the
cases in the test set, and calculating internal cluster metrics for the predicted clusters.
This approach has the benefit of allowing us both to test cluster stability and to calcu-
late the metric on data the algorithm never saw. This is the approach we’ll use to
select the optimal number of clusters using k-means in this chapter.

NOTE With k-means clustering, new data can be projected onto an existing
clustering model by simply assigning the new cases to the cluster of the near-
est centroid.

16.2.4 Tuning k and the algorithm choice for our k-means model

In this section, I’ll show you how we can tune k (the number of clusters) and our choice
of k-means algorithm, using a cross-validation-like approach with internal cluster met-
rics applied to the predicted clusters. Let’s start by defining our hyperparameter search
space using the makeParamSet() function. We define two discrete hyperparameters
over which to search for values: centers, which is the number of clusters the algorithm
will search for (k), and algorithm, which specifies which of the three algorithms we
will use to fit the model.

TIP Just as we’ve seen before, we can use getParamSet(kMeans) to find all
the hyperparameters available to us.

We then define our search method as a grid search (to try every combination of
hyperparameters) and define our cross-validation approach as 10-fold.

kMeansParamSpace <- makeParamSet(
makeDiscreteParam("centers", values = 3:8),
makeDiscreteParam("algorithm",

values = c("Hartigan-Wong", "Lloyd", "MacQueen")))

gridSearch <- makeTuneControlGrid()

kFold <- makeResampleDesc("CV", iters = 10)

Now that we’ve defined our search space, let’s perform the tuning. To use the Davies-
Bouldin index and the pseudo F statistic performance measures, you’ll first need to
install the clusterSim package.

TIP Two other internal cluster metrics are implemented by mlr: silhouette
and G2 (use listMeasures("cluster") to list the available metrics). Both
metrics are more computationally expensive to compute, so we won’t use
them here, but they are additional metrics to help us decide on an appropri-
ate number of clusters.

Defining how the hyperparameters will be tunedListing 16.5

392 CHAPTER 16 Clustering by finding centers with k-means
To perform tuning, we use the tuneParams() function. Because we didn’t use this
function during the dimension-reduction part of the book, let’s refresh our memory
of the arguments:

 The first argument is the name of the learner.
 The task argument is the name of our clustering task.
 The resampling argument is the name of our cross-validation strategy.
 The par.set argument is our hyperparameter search space.
 The control argument is our search method.
 The measures argument allows us to define which performance measures we want

to calculate for each iteration of the search. Here, we ask for the Davies-Bouldin
index (db), Dunn index (dunn), and pseudo F statistic (G1), in that order.

TIP We can supply a list of as many performance metrics as we want. All of
them will be calculated for each iteration of the search, but the combina-
tion of hyperparameters that optimizes the value of the first metric in the list
will always be returned from tuning. The mlr package also “knows” which
metrics should be maximized and which ones should be minimized for best
performance.

Just to reiterate: when we perform the tuning, for each combination of hyperparame-
ters, the data will be split into 10 folds, and the k-means algorithm will be trained on
the training set of each fold. The cases in each test set will be assigned to their nearest
cluster centroid, and the internal cluster metric will be calculated on these test set
clusters. Calling the result of the tuning shows us that Lloyd’s algorithm with four clus-
ters gave the lowest (most optimal) Davies-Bouldin index.

install.packages("clusterSim")

tunedK <- tuneParams(kMeans, task = gvhdTask,
resampling = kFold,
par.set = kMeansParamSpace,
control = gridSearch,
measures = list(db, dunn, G1))

tunedK

Tune result:
Op. pars: centers=4; algorithm=Lloyd
db.test.mean=0.8010,dunn.test.mean=0.0489,G1.test.mean=489.5331

NOTE At the end of the tuning process, did you get the warning did not con-
verge in 100 iterations? This is how to tell whether you’ve set the iter.max
argument too low in your learner definition. Your choices are to either choose

Performing the tuning experimentListing 16.6

393Building your first k-means model
to accept the result as is, which may or may not be a near-optimal solution, or,
if you have the computational budget, increase iter.max.

To get a better understanding of how our three internal metrics vary with both cluster
number and algorithm choice, let’s plot the tuning process. Recall that to do this, we
first need to extract the tuning data from our tuning result using the generateHyper-
ParsEffectData() function. Call the $data component from the kMeansTuningData
object so you can see how it’s structured (I won’t print it here, for the sake of space).

NOTE Notice that we have a metric we didn’t ask for: exec.time, which
records how long it took to train a model with each combination of hyperpa-
rameters, in seconds.

Let’s plot this data such that we have a different facet per performance metric and a
different line per algorithm. To do this, we first need to gather the data such that the
name of each performance metric is in one column and the value of the metric is in
another column. We do this using the gather() function, naming the key column
"Metric" and the value column "Value". Because we only want these columns gath-
ered, we supply a vector of columns we don’t want to gather. Print the new, gathered
dataset to make sure you understand what we did. Having the data in this format
allows us to facet by algorithm and plot separate lines for each metric.

 To plot the data, we use the ggplot() function, mapping centers (the number of
clusters) and Value to the x and y aesthetics, respectively. By mapping algorithm to
the col aesthetic, separate geom_line() and geom_point() layers will be drawn for
each algorithm (with different colors). We use the facet_wrap() function to draw a
separate subplot for each performance metric, setting the scales = "free_y" argu-
ment to allow different y-axes for each facet (as they have different scales). Finally, we
add the geom_line() and geom_point() layers and a theme.

kMeansTuningData <- generateHyperParsEffectData(tunedK)

kMeansTuningData$data

gatheredTuningData <- gather(kMeansTuningData$data,
key = "Metric",
value = "Value",
c(-centers, -iteration, -algorithm))

Exercise 1
Change our kmeans definition (created in listing 16.4) such that the value of iter.max
is 200. Rerun the tuning procedure in listing 16.6. Does the error about not converg-
ing disappear?

Plotting the tuning experimentListing 16.7

394 CHAPTER 16 Clustering by finding centers with k-means

ggplot(gatheredTuningData, aes(centers, Value, col = algorithm)) +
facet_wrap(~ Metric, scales = "free_y") +
geom_line() +
geom_point() +
theme_bw()

The resulting plot is shown in figure 16.7. Each facet shows a different performance
metric, and each separate line shows one of the three algorithms. Notice that the clus-
tering models with four clusters (centers), the Davies-Bouldin index is minimized,
and the Dunn index and pseudo F statistic (G1) are maximized. Because lower values
of the Davies-Bouldin index and higher values of the Dunn index and pseudo F statis-
tic indicate (in theory) better-separated clusters, all three of the internal metrics agree
with each other that four is the optimal number of clusters for this dataset. There is
also very little disagreement between the different algorithms, particularly at the opti-
mal value of four clusters.

exec.time G1.test.mean

db.test.mean dunn.test.mean

43 5 6 7 8 3 4 5 6 7 8

0.03

0.04

0.05

350

400

450

0.8

0.9

1.0

1.1

1.2

0.5

1.0

1.5

2.0

mrithoAlg
ongn−WartigaH

oydLl

MacQueen

V
al

ue

Centers

Figure 16.7 Plotting our tuning process. Each subplot shows the values of a different internal
cluster metric. The different lines indicate the performance of each of the three different algorithms.

The greatest difference between the algorithms is their training time. Notice that
MacQueen’s algorithm is consistently faster than either of the others. This is due to
the algorithm updating its centroids more frequently than Lloyd’s and having to
recompute distances less often than Hartigan-Wong. The Hartigan-Wong algorithm

395Building your first k-means model

seems to be the most computationally intense at low cluster numbers but overtakes
Lloyd’s algorithm as the number of clusters increases beyond seven.

NOTE The tuning process selected Lloyd’s algorithm because its Davis-Bouldin
index was slightly smaller than for the other algorithms. For very large data-
sets, computation speed may be more important to you than a performance
increase this small, in which case you might prefer to select MacQueen’s algo-
rithm due to its shorter training time.

16.2.5 Training the final, tuned k-means model

In this section, we’ll use our tuned hyperparameters to train our final clustering model.
You’ll notice that we’re not going to use nested cross-validation to cross-validate the
whole model-building process. While the k means algorithm is able to predict cluster
membership for new data, it isn’t typically used as a predictive technique. Instead, we
might use k-means to help us better define classes in our dataset, which we can later
use to build classification models.

 Let’s start by creating a k-means learner that uses our tuned hyperparameter val-
ues, using the setHyperPars() function. We then train this tuned model on our gvhd-
Task using the train() function and use the getLearnerModel() function to extract
the model data so we can plot the clusters. Print the model data by calling kMeans-
ModelData, and examine the output; it contains a lot of useful information. By extract-
ing the $iter component of the object, we can see that it took only three iterations
for the algorithm to converge (far fewer than iter.max).

Training a model with the tuned hyperparametersListing 16.8

tunedKMeans <- setHyperPars(kMeans, par.vals = tunedK$x)

tunedKMeansModel <- train(tunedKMeans, gvhdTask)

kMeansModelData <- getLearnerModel(tunedKMeansModel)

kMeansModelData$iter

[1] 3

Finding the optimal number of clusters is not a well-defined problem; so, although
internal metrics give evidence as to the correct number of clusters, you should still
always try to validate your cluster model visually, to understand whether the result
you’re getting is sensible (at the very least). This may seem subjective, and it is, but it’s
much better for you to use your expert judgment than to rely solely on internal met-
rics. We can do this by plotting the data (as in figure 16.2) but coloring each case by its
cluster membership.

TIP If the correct number of clusters is difficult for you to determine, it
could be there simply aren’t well-defined clusters in the data, or you may
need to do further exploration, including generating more data. It may be

396 CHAPTER 16 Clustering by finding centers with k-means

worth trying a different clustering method: for example, one that doesn’t find
spherical clusters like k-means does, or one which can exclude outliers (like
DBSCAN, which you’ll meet in chapter 18).

To do this, we first add the cluster membership of each case as a new column in our
gvhdTib tibble, using the mutate() function. We extract the vector of cluster member-
ships from the $cluster component of the model data and turn this into a factor
using the as.factor() function, to ensure that a discrete color scheme is applied
during plotting.

 We then use ggpairs() to plot all variables against each other, mapping kMeans-
Cluster to the color aesthetic. We use the upper argument to plot density plots on
plots above the diagonal and apply the black-and-white theme.

gvhdTib <- mutate(gvhdTib,
kMeansCluster = as.factor(kMeansModelData$cluster))

ggpairs(gvhdTib, aes(col = kMeansCluster),
upper = list(continuous = "density")) +

theme_bw()

The resulting plot is shown in figure 16.8. To the eye, it looks like our k-means model
does a pretty good job of capturing the structure in the data overall. But look at the
plot of CD8 versus CD4: cluster three appears to be split. This suggests that either we

Plotting the clusters usingListing 16.9 ggpairs()

CD4 CD8b CD3 CD8 kMeansCluster

C
D

4
C

D
8b

C
D

3
C

D
8

kM
eans

C
luster

0

500

0

500

0

500

0

500

0

200 400 6002000600400 200 400 600 8000200 400 600 8000 1 2 3 4

0.000

0.002

0.004

0.006

0.008

0

200

400

600

0

200

400

600

800

0

200

400

600

800

Figure 16.8 ggpairs() plot with the k-means cluster membership mapped to the color aesthetic.
Box plots and histograms show how the values of the continuous variables vary between clusters.

397Building your first k-means model

have underclustered our data, or these cases have been assigned to the wrong cluster; or
perhaps they are simply outlying cases, the importance of which is overstated by the
density plot.

16.2.6 Using our model to predict clusters of new data

In this section, I’ll show you how we can use an existing k-means model to predict clus-
ter membership of new data. As I mentioned already, clustering techniques are not
intended to be used for predicting classes of data—we have classification algorithms
that excel at that. But the k-means algorithm can take new data and output the clusters
to which the new cases are closest. This can be useful when you are still exploring and
trying to understand the structure in your data, so let me demonstrate how.

 Let’s start by creating a tibble containing the data for a new case, including a value
for each variable in the dataset on which we trained the model. Because we scaled the
training data, we need to scale the values for this new case. Remember that it’s import-
ant to scale new data we pass through a model according to the mean and standard
deviation of the data used to train the model. The easiest way to do this is to use the
attr() function to extract the center and scale attributes from the scaled data.
Because the scale() function returns an object of class matrix (and the predict()
function will throw an error if we give it a matrix), we need to pipe the scaled data into
the as_tibble() function to turn it back into a tibble.

 To predict which cluster the new case belongs to, we simply call the predict()
function, supplying the model as the first argument and the new case as the newdata
argument. We can see from the output that this new case is closest to the centroid of
cluster 2.

Predicting cluster membership of new dataListing 16.10

newCell <- tibble(CD4 = 510,
CD8b = 26,
CD3 = 500,
CD8 = 122) %>%

scale(center = attr(gvhdScaled, "scaled:center"),
scale = attr(gvhdScaled, "scaled:scale")) %>%

as_tibble()

predict(tunedKMeansModel, newdata = newCell)

Prediction: 1 observations
predict.type: response
threshold:
time: 0.01

response
1 2

You’ve now learned how to apply k-means clustering to your data. In the next chapter,
I’ll introduce hierarchical clustering, a set of clustering methods that help reveal a hier-
archy in our data. I suggest that you save your .R file, because we’re going to continue

398 CHAPTER 16 Clustering by finding centers with k-means
using the same dataset in the next chapter. This is so we can compare the perfor-
mance of k-means and hierarchical clustering on the same dataset.

Strengths and weaknesses of k-means clustering16.3
While it often isn’t easy to tell which algorithms will perform well for a given task, here
are some strengths and weaknesses that will help you decide whether k-means cluster-
ing will perform well for you.

 The strengths of k-means clustering are as follows:

 Cases can move between clusters at each iteration until a stable result is found.
 It may be faster to compute than other algorithms when there are many vari-

ables.
 It is quite simple to implement.

The weaknesses of k-means clustering are these:

 It cannot natively handle categorical variables. This is because calculating the
Euclidean distance on a categorical feature space isn’t meaningful.

 It cannot select the optimal number of clusters.
 It is sensitive to data on different scales.
 Due to the randomness of the initial centroids, clusters may vary slightly between

runs.
 It is sensitive to outliers.
 It preferentially finds spherical clusters of equal diameter, even if the underly-

ing data doesn’t fit this description.

Summary
 Clustering is an unsupervised machine learning technique concerned with find-

ing sets of cases in a dataset that are more similar to each other than to cases in
other sets.

 K-means clustering involves the creation of randomly placed centroids that iter-
atively move toward the center of clusters in a dataset.

 The three most commonly used k-means algorithms are Lloyd’s, Mac-Queen’s,
and Hartigan-Wong.

 The number of clusters for k-means needs to be selected by the user. This can be
done graphically, and by combining internal cluster metrics with cross-validation
and/or bootstrapping.

Exercise 2
Cluster the GvHD.pos dataset in the same way we did with the GvHD.control dataset. Is
the choice of cluster number as straightforward? You may need to manually supply a
value for the centers argument, rather than rely on the output of the tuning procedure.

399Solutions to exercises
Solutions to exercises
1 Increase the iter.max of our k-means learner to 200:

kMeans <- makeLearner("cluster.kmeans",
par.vals = list(iter.max = 200, nstart = 10))

tunedK <- tuneParams(kMeans, task = gvhdTask,
resampling = kFold,
par.set = kMeansParamSpace,
control = gridSearch,
measures = list(db, dunn, G1))

The error about not converging disappears when we set iter.max to 200.

2 Use k-means to cluster the GvHD.pos dataset:

gvhdPosTib <- as_tibble(GvHD.pos)

gvhdPosScaled <- scale(gvhdPosTib)

gvhdPosTask <- makeClusterTask(data = as.data.frame(gvhdPosScaled))

tunedKPos <- tuneParams(kMeans, task = gvhdPosTask,
resampling = kFold,
par.set = kMeansParamSpace,
control = gridSearch,
measures = list(db, dunn, G1))

kMeansTuningDataPos <- generateHyperParsEffectData(tunedKPos)

gatheredTuningDataPos <- gather(kMeansTuningDataPos$data,
key = "Metric",
value = "Value",
c(-centers, -iteration, -algorithm))

ggplot(gatheredTuningDataPos, aes(centers, Value, col = algorithm)) +
facet_wrap(~ Metric, scales = "free_y") +
geom_line() +
geom_point() +
theme_bw()

tunedKMeansPos <- setHyperPars(kMeans, par.vals = list("centers" = 4))

tunedKMeansModelPos <- train(tunedKMeansPos, gvhdPosTask)

kMeansModelDataPos <- getLearnerModel(tunedKMeansModelPos)

mutate(gvhdPosTib,
kMeansCluster = as.factor(kMeansModelDataPos$cluster)) %>%

ggpairs(mapping = aes(col = kMeansCluster),
upper = list(continuous = "density")) +

theme_bw()

The optimal number of clusters is less clear than for GvHD.control.

Hierarchical clustering
In the previous chapter, we saw how k-means clustering finds k centroids in the fea-
ture space and iteratively updates them to find a set of clusters. Hierarchical clus-
tering takes a different approach and, as its name suggests, can learn a hierarchy of
clusters in a dataset. Instead of getting a “flat” output of clusters, hierarchical clus-
tering gives us a tree of clusters within clusters. As a result, hierarchical clustering
provides more insight into complex grouping structures than flat clustering meth-
ods like k-means.

 The tree of clusters is built iteratively by calculating the distance between each
case or cluster, and every other case or cluster in the dataset at each step. Either the
case/cluster pair that are most similar to each other are merged into a single clus-
ter, or sets of cases/clusters that are most dissimilar from each other are split into
separate clusters, depending on the algorithm. I’ll introduce both approaches to
you later in the chapter.

This chapter covers
 Understanding hierarchical clustering

 Using linkage methods

 Measuring the stability of a clustering result
400

401What is hierarchical clustering?

17.1

By the end of this chapter, I hope you’ll understand how hierarchical clustering
works. We’ll apply this method to the GvHD data from the last chapter to help you
understand how hierarchical clustering differs from k-means. If you no longer have
the gvhdScaled object defined in your global environment, just rerun listings 16.1
and 16.2.

What is hierarchical clustering?
In this section, I’ll give you a deeper understanding of what hierarchical clustering is
and how it differs from k-means. I’ll show you the two different approaches we can
take to perform hierarchical clustering, how to interpret a graphical representation of
the learned hierarchy, and how to choose the number of clusters to retain.

When we looked at k-means clustering in the last chapter, we only considered a sin-
gle level of clustering. But sometimes, hierarchies exist in our dataset that clustering
at a single, flat level is unable to highlight. For example, imagine that we were looking
at clusters of instruments in an orchestra. At the highest level, we could place each
instrument into one of four different clusters:

 Percussion
 Brass
 Woodwinds
 Strings

But we could then further split each of these clusters into sub-clusters based on the
way they are played:

 Percussion
– Played with a mallet
– Played by hand

 Brass
– Valve
– Slide

 Woodwinds
– Reeded
– Non-reeded

 Strings
– Plucked
– Bowed

Next, we could further split this level of clusters into sub-clusters based on the sounds
they make:

 Percussion
– Played with a mallet

– Timpani
– Gong

402 CHAPTER 17 Hierarchical clustering
– Played by hand
– Hand cymbals
– Tambourine

 Brass
– Valve

– Trumpet
– French horn

– Slide
– Trombone

 Woodwinds
– Reeded

– Clarinet
– Bassoon

– Non-reeded
– Flute
– Piccolo

 Strings

– Plucked
– Harp

– Bowed
– Violin
– Cello

Notice that we have formed a hierarchy where there are clusters of instruments within
other clusters, going all the way from a very high-level clustering down to each individ-
ual instrument. A common way to visualize hierarchies like this is with a graphical rep-
resentation called a dendrogram. A possible dendrogram for our orchestra hierarchy is
shown in figure 17.1.

tim
pa

ni

ha
nd

cy
m

ba
ls

go
ng

ta
m

bo
ur

in
e

tru
m

pe
t

fre
nc

h
ho

rn

tro
m

bo
ne

cl
ar

in
et

ba
so

on

flu
te

pi
cc

ol
o

ha
rp

vi
ol

in

ce
llo

percussionbrasswoodwindstrings

Figure 17.1 Dendrogram
showing an imaginary clustering
of instruments in an orchestra.
Horizontal lines indicate the
merging of separate clusters. The
height of a merge indicates the
similarity between the clusters
(lower merge, higher similarity).

403What is hierarchical clustering?

Notice that at the bottom of the dendrogram, each instrument is represented by its
own vertical line, and at this level, each instrument is considered to be in a cluster of its
own. As we move up the hierarchy, instruments in the same cluster are connected by a
horizontal line. The height at which clusters merge like this is inversely proportional
to how similar the clusters are to each other. For example, I have (subjectively) drawn
this dendrogram to suggest that the piccolo and flute are more similar to each other
than how similar the bassoon and clarinet are to each other.

Typically, when finding a hierarchy in data like this, one end of the dendrogram
displays every case in its own cluster; these clusters merge upward until eventually, all
the cases are placed into a single cluster. As such, I’ve indicated the position of our
strings, woodwinds, brass, and percussion clusters, but I have continued clustering
these clusters until there is only one cluster containing all the cases.

The purpose of hierarchical clustering algorithms, therefore, is to learn this hierar-
chy of clusters in a dataset. The main benefit of hierarchical clustering over k-means is
that we get a much finer-grained understanding of the structure of our data, and this
approach is often able to reconstruct real hierarchies in nature. For example, imagine that
we sequence the genomes (all the DNA) of all breeds of dog. We can safely assume that
the genome of a breed will be more similar to the genome of the breed(s) it was derived
from than it is to the genomes of breeds it was not derived from. If we apply hierarchical
clustering to this data, the hierarchy, which can be visualized as a dendrogram, can be
directly interpreted as showing which breeds were derived from other breeds.

The hierarchy is very useful, but how do we partition the dendrogram into a finite
set of clusters? Well, at any height on the dendrogram, we can cut the tree horizontally
and take the number of clusters at that level. Another way of imagining it is that if we
were to cut a slice through the dendrogram, however many individual branches would
fall off is the number of clusters. Look back at figure 17.1. If we cut the tree where I’ve
labeled the strings, woodwinds, brass, and percussion, we would get four individual
clusters, and cases would be assigned to whichever of these four clusters they fell
within. I’ll show you how we can select a cut point later in this section.

NOTE If we cut the tree closer to the top, we get fewer clusters. If we cut the
tree closer to the bottom, we get more clusters.

Okay, we have an understanding of what hierarchical clustering algorithms try to
achieve. Now let’s talk about how they achieve it. There are two approaches we can
take while trying to learn hierarchies in data:

 Agglomerative
 Divisive

Agglomerative hierarchical clustering is where we start with every case isolated (and
lonely) in its own cluster, and sequentially merge clusters until all the data resides
within a single cluster. Divisive hierarchical clustering does the opposite: it starts with
all the cases in a single cluster and recursively splits them into clusters until each case
resides in its own cluster.

404 CHAPTER 17 Hierarchical clustering

17.1.1 Agglomerative hierarchical clustering

In this section, I’ll show you how agglomerative hierarchical clustering learns the
structure in the data. The steps of the algorithm are quite simple:

1 Calculate some distance metric (defined by us) between each cluster and all
other clusters.

2 Merge the most similar clusters together into a single cluster.
3 Repeat steps 1 and 2 until all cases reside in a single cluster.

An example of how this might look is shown in figure 17.2. We start with nine cases (and
therefore nine clusters). The algorithm calculates a distance metric (more about this
soon) between each of the clusters and merges the clusters that are most similar to each
other. This continues until all the cases are gobbled up by the final supercluster.

 So how do we calculate the distance between clusters? The first choice we need
to make is what kind of distance we want to compute. As usual, the Euclidean and

Variable 1

V
ar

ia
bl

e
2

Variable 1

V
ar

ia
bl

e
2

Variable 1

V
ar

ia
bl

e
2

7 clusters8 clusters9 clusters

Variable 1

V
ar

ia
bl

e
2

Variable 1

V
ar

ia
bl

e
2

Variable 1

V
ar

ia
bl

e
2

4 clusters5 clusters6 clusters

Variable 1

V
ar

ia
bl

e
2

Variable 1

V
ar

ia
bl

e
2

Variable 1

V
ar

ia
bl

e
2

1 cluster2 clusters3 clusters

Figure 17.2 Agglomerative hierarchical clustering merges clusters that are closest
to each other at each iteration. Ellipses indicate the formation of clusters at each
iteration, going from top left to bottom right.

405What is hierarchical clustering?
Manhattan distances are the most popular choices. The second choice is how to calcu-
late this distance metric between clusters. Calculating the distance between two cases
(two vectors) is reasonably obvious, but a cluster contains multiple cases; how do we
calculate, say, Euclidean distance between two clusters? Well, we have a few options
available to us, called linkage methods:

 Centroid linkage
 Single linkage
 Complete linkage
 Average linkage
 Ward’s method

Each of these linkage methods is illustrated in figure 17.3. Centroid linkage calculates
the distance (Euclidean or Manhattan, for example) between each cluster’s centroid
to every other cluster’s centroid. Single linkage takes the distance between the nearest
cases of two clusters, as the distance between those clusters. Complete linkage takes
the distance between the furthest cases of two clusters, as the distance between those
clusters. Average linkage takes the average distance between all the cases of two clus-
ters, as the distance between those clusters.

Variable 1

V
ar

ia
bl

e
2

Single linkage

Variable 1

V
ar

ia
bl

e
2

Complete linkage

Variable 1

Centroid linkage

V
ar

ia
bl

e
2

Variable 1

V
ar

ia
bl

e
2

Ward’s method

Variable 1

Average linkage

V
ar

ia
bl

e
2

Variable 1

V
ar

ia
bl

e
2

Figure 17.3 Different linkage methods to define the distance between clusters.
Centroid linkage calculates the distance between cluster centroids. Single linkage
calculates the smallest distance between clusters. Complete linkage calculates
the largest distance between clusters. Average linkage calculates all pairwise
distances between cases in two clusters and finds the mean. Ward’s method
calculates the within-cluster sum of squares for each candidate merge and
chooses the one with the smallest value.

406 CHAPTER 17 Hierarchical clustering

Ward’s method is a little more complex. For every possible combination of clusters,
Ward’s method (sometimes called Ward’s minimum variance method) calculates
the within-cluster sum of squares. Take a look at the examples for Ward’s method in
figure 17.3. The algorithm has three clusters to consider merging. For each candidate
merge, the algorithm calculates the sum of squared differences between each case and
its cluster’s centroid, and then adds these sums of squares together. The candidate
merge that results in the smallest sum of squared differences is chosen at each step.

17.1.2 Divisive hierarchical clustering

In this section, I’ll show you how divisive hierarchical clustering works. Unlike agglom-
erative clustering, divisive clustering starts with all cases in a single cluster and recur-
sively divides this into smaller and smaller clusters, until each case resides in its own
cluster. Finding the optimal split at each stage of clustering is a difficult task, so divi-
sive clustering uses a heuristic approach.

At each stage of clustering, the cluster with the largest diameter is chosen. Recall
from figure 16.5 that a cluster’s diameter is the largest distance between any two cases
within the cluster. The algorithm then finds the case in this cluster that has the largest
average distance to all the other cases in the cluster. This most-dissimilar case starts its
own splinter group (like a rebel without a cause). The algorithm then iterates through
every case in the cluster and assigns cases to either the splinter group or the original
cluster, depending on which they are most similar to. In essence, divisive clustering
applies k-means clustering (with k = 2) at each level of the hierarchy, in order to split
each cluster. This process repeats until all cases reside in their own cluster.

There is only one implementation of divisive clustering: the DIANA (DIvisive
ANAlysis) algorithm. Agglomerative clustering is more commonly used and is less
computationally expensive than the DIANA algorithm. However, mistakes made early
in hierarchical clustering cannot be fixed further down the tree; so whereas agglomer-
ative clustering may do better at finding small clusters, DIANA may do better at find-
ing large clusters. In the rest of the chapter, I’ll walk you through how to perform
agglomerative clustering in R, but one of the exercises is to repeat the clustering using
DIANA and compare the results.

17.2 Building your first agglomerative hierarchical
clustering model
In this section, I’ll show you how to build an agglomerative hierarchical clustering
model in R. Sadly, there isn’t an implementation of hierarchical clustering wrapped
by the mlr package, so we’re going to use the hclust() function from the built-in stats
package.

The hclust() function that we’ll use to perform agglomerative hierarchical clus-
tering expects a distance matrix as input, rather than the raw data. A distance matrix
contains the pairwise distances between each combination of elements. This distance
can be any distance metric we specify, and in this situation, we’ll use the Euclidean

407Building your first agglomerative hierarchical clustering model

distance. Because computing the distances between cases is the first step of hierarchi-
cal clustering, you might expect hclust() to do this for us. But this two-step process of
creating our own distance metric and then supplying it to hclust() does allow us the
flexibility of using a variety of distance metrics.

 We create a distance matrix in R using the dist() function, supplying the data we
want to compute distances for as the first argument and the type of distance we want
to use. Notice that we’re using our scaled dataset, because hierarchical clustering is
also sensitive to differences in scale between variables (as is any algorithm that relies
on distance between continuous variables):

gvhdDist <- dist(gvhdScaled, method = "euclidean")

TIP If you want a more visual example of what a distance matrix looks like,
run dist(c(4, 7, 11, 30, 16)). Don’t try to print the distance matrix we cre-
ate in this section—it contains more than 2.3 × 107 elements!

Now that we have our distance matrix, we can run the algorithm to learn the hierar-
chy in our data. The first argument to the hclust() function is the distance matrix,
and the method argument allows us to specify the linkage method we wish to use to
define the distance between clusters. The options available are "ward.D", "ward.D2",
"single", "complete", "average", "centroid", and a few less commonly used ones
that I haven’t defined (see ?hclust if you’re interested in these). Notice that there
seem to be two options for Ward’s method: the option "ward.D2" is the correct imple-
mentation of Ward’s method, as I described earlier. In this example, we’re going to
start by using Ward’s method ("ward.D2"), but I’ll get you to compare the result of
this to other methods as part of this chapter’s exercises:

gvhdHclust <- hclust(gvhdDist, method = "ward.D2")

Now that hclust() has learned the hierarchical clustering structure of the data, let’s
represent this as a dendrogram. We can do this by simply calling plot() on our clus-
tering model object, but the tree is a little clearer if we first convert our model into a
dendrogram object and plot that. We can convert our clustering model into a dendro-
gram object using the as.dendrogram() function. To plot the dendrogram, we pass it
to the plot() function. By default, the plot will draw a label for each case in the origi-
nal data. Because we have such a large dataset, let’s suppress these labels using the
argument leaflab = "none".

Plotting the dendrogramListing 17.1

gvhdDend <- as.dendrogram(gvhdHclust)

plot(gvhdDend, leaflab = "none")

The resulting plot is shown in figure 17.4. The y-axis here represents the distance
between clusters, based on whatever linkage method (and distance metric) we used.

408 CHAPTER 17 Hierarchical clustering

Because we used Ward’s method, the values of this axis are the within-cluster sum of
squares. When two clusters are merged together, they are connected by a horizontal
line, the position of which along the y-axis corresponds to the distance between those
clusters. Therefore, clusters of cases that merge lower down the tree (which is earlier
in agglomerative clustering) are more similar to each other than clusters that merge
further up the tree. The ordering of cases along the x-axis is optimized such that simi-
lar cases are drawn near each other to aid interpretation (otherwise, the branches
would cross). As we can see, the dendrogram recursively joins clusters, from each case
being in its own cluster to all the cases belonging to a supercluster.

Exercise 1
Repeat the clustering process, but this time specify method = "manhattan" when
creating the distance matrix (don’t overwrite any existing objects). Plot a dendrogram
of the cluster hierarchy, and compare it to the dendrogram we got by using Euclidean
distance.

10
0

80
60

40
20

0

Figure 17.4 The resulting dendrogram representing our hierarchical clustering model. The y-axis
represents the distances between cases. Horizontal lines indicate the positions at which cases/
clusters merge with each other. The higher the merge, the less similar the clusters are to each other.

The hierarchical clustering algorithm has done its job: it’s learned the hierarchy, and
what we do with it is up to us. We may want to directly interpret the structure of the
tree to make some inference about a hierarchy that might exist in nature, though in
our (large) dataset, that could be quite challenging.

Another common use of hierarchical clustering is to order the rows and columns
of heatmaps, for example, for gene expression data. Ordering the rows and columns of
a heatmap using hierarchical clustering helps researchers identify clusters of genes
and clusters of patients simultaneously.

Finally, our primary motivation may be to identify a finite number of clusters
within our dataset that are most interesting to us. This is what we will do with our clus-
tering result.

409Building your first agglomerative hierarchical clustering model

17.2.1 Choosing the number of clusters

In this section, I’ll show you ways of deciding how many clusters to extract from a hier-
archy. Another way of thinking about this is that we’re deciding what level of the hier-
archy to use for clustering.

To define a finite number of clusters following hierarchical clustering, we need
to define a cut point on our dendrogram. If we cut the tree near the top, we’ll get
fewer clusters; and if we cut the tree near the bottom, we’ll get more clusters. So
how do we choose a cut point? Well, our friends the Davies-Bouldin index, the
Dunn index, and the pseudo F statistic can help us here. For k-means clustering, we
performed a cross-validation-like procedure for estimating the performance of dif-
ferent numbers of clusters. Sadly, we can’t use this approach for hierarchical cluster-
ing because, unlike k-means, hierarchical clustering cannot predict cluster membership of
new cases.

NOTE The hierarchical clustering algorithms themselves can’t predict the
cluster membership of new cases, but you could do something like assigning
new data to the cluster with the nearest centroid. You could use this approach
to create separate training and test sets to evaluate internal cluster metrics on.

Instead, we can make use of bootstrapping. Recall from chapter 8 that bootstrap-
ping is the process of taking bootstrap samples, applying some computation to each
sample, and returning a statistic(s). The mean of our bootstrapped statistic(s) tells
us the most likely value, and the distribution gives us an indication as to the stability
of the statistic(s).

NOTE Remember that to get a bootstrap sample, we randomly select cases
from a dataset, with replacement, to create a new sample the same size as the
old. Sampling with replacement simply means that once we sample a particular
case, we put it back, such that there is a possibility it will be drawn again.

In the context of hierarchical clustering, we can use bootstrapping to generate multi-
ple samples from our data and generate a separate hierarchy for each sample. We can
then select a range of cluster numbers from each hierarchy and calculate the internal
cluster metrics for each. The advantage of using bootstrapping is that calculating the
internal cluster metrics on the full dataset doesn’t give us an indication of the stability
of the estimate, whereas the bootstrap sample does. The bootstrap sample of cluster
metrics will have some variation around its mean, so we can choose the number of
clusters with the most optimal and stable metrics.

Let’s start by defining our own function that takes our data and a vector of clus-
ter memberships and returns our three familiar internal cluster metrics for the data:
the Davies-Bouldin index, the Dunn index, and the pseudo F statistic. Because the
function we’ll use to calculate the Dunn index expects a distance matrix, we’ll include
an additional argument in our function to which we’ll supply a precomputed dis-
tance matrix.

410 CHAPTER 17 Hierarchical clustering

cluster_metrics <- function(data, clusters, dist_matrix) {
= clusterSim::index.DB(data, clusters)$DB,list(db
= clusterSim::index.G1(data, clusters),G1
= clValid::dunn(dist_matrix, clusters),dunn

clusters = length(unique(clusters))
)

}

Follow the function body with me so what we’re doing makes sense. We use the func-
tion() argument to define a function, assigning it to the name cluster_metrics
(this will allow us to call the function using cluster_metrics()). We define three
mandatory arguments for the function:

 data, to which we will pass the data we’re clustering
 clusters, a vector containing the cluster membership of every case in data
 dist_matrix, to which we will pass the precomputed distance matrix for data

The body of the function (the instructions that tell the function what to do) is defined
inside curly brackets ({}). Our function will return a list with four elements: the
Davies-Bouldin index (db), the pseudo F statistic (G1), the Dunn index (dunn), and
the number of clusters. Rather than define them from scratch, we’re using predefined
functions from other packages to compute the internal cluster metrics. The Davies-
Bouldin index is computed using the index.DB() function from the clusterSim pack-
age, which takes the data and clusters arguments (the statistic itself is contained in
the $DB component). The pseudo F statistic is computed using the index.G1() func-
tion, also from the clusterSim package, and takes the same arguments as index.DB().
The Dunn index is computed using the dunn() function from the clValid package,
which takes the dist_matrix and clusters arguments.

 Our motivation for defining this function is that we’re going to take bootstrap sam-
ples from our dataset, learn the hierarchy in each, select a range of cluster numbers
from each, and use our function to calculate these three metrics for each number of
clusters within each bootstrap sample. So now, let’s create our bootstrap samples.
We’ll create 10 bootstrap samples from our gvhdScaled dataset. We’re using the map()
function to repeat the sampling process 10 times, to return a list where each element
is a different bootstrap sample.

Defining theListing 17.2 cluster_metrics function

Creating bootstrap samplesListing 17.3

gvhdBoot <- map(1:10, ~ {
gvhdScaled %>%

as_tibble() %>%
sample_n(size = nrow(.), replace = TRUE)

})

NOTE Remember that ~ is just shorthand for function().

411Building your first agglomerative hierarchical clustering model
We’re using the sample_n() function from the dplyr package to create the samples.
This function randomly samples rows from a dataset. Because this function cannot
handle matrices, we first need to pipe our gvhdScaled data into the as_tibble() func-
tion. By setting the argument size = nrow(.), we’re asking sample_n() to randomly
draw a number of cases equal to the number of rows in the original dataset (the . is
shorthand for “the dataset that was piped in”). By setting the replace argument equal
to TRUE, we’re telling the function to sample with replacement. Creating simple boot-
strap samples really is as easy as this!

 Now let’s use our cluster_metrics() function to calculate those three internal
metrics for a range of cluster numbers, for each bootstrap sample we just generated.
Take a look at the following listing, and don’t go cross-eyed! I’ll take you through the
code step by step.

metricsTib <- map_df(gvhdBoot, function(boot) {
d <- dist(boot, method = "euclidean")
cl <- hclust(d, method = "ward.D2")

map_df(3:8, function(k) {
cut <- cutree(cl, k = k)
cluster_metrics(boot, clusters = cut, dist_matrix = d)

})
})

TIP The map_df() function is just like map(), but instead of returning a list,
it combines each element row-wise to return a data frame.

We start by calling the map_df() function so that we can apply a function to every ele-
ment of our list of bootstrap samples. We define an anonymous function that takes
boot (the current element being considered) as its only argument.

 For each element in gvhdBoot, the anonymous function computes its Euclidean
distance matrix, stores it as the object d, and performs hierarchical clustering using
that matrix and Ward’s method. Once we have the hierarchy for each bootstrap sam-
ple, we use another map_df() function call to select between three and eight clusters
to partition the data into, and then calculate the three internal clustering methods on
each result. We’re going to use this process to see which number of clusters, between
three and eight, gives us the best internal cluster metrics values.

 Selecting the number of clusters to retain from a hierarchical clustering model is
done using the cutree() function. We use this function to cut our dendrogram at a
place that returns a number of clusters. We can do this either by specifying a height at
which to cut, using the h argument, or by specifying a specific number of clusters to
retain, using the k argument (as done here). The first argument is the result of calling
the hclust() function. The output of the cutree() function is a vector indicating the
cluster number assigned to each case in the dataset. Once we have this vector, we can

Calculating performance metrics of our clustering modelListing 17.4

412 CHAPTER 17 Hierarchical clustering

call our cluster_metrics() function, supplying the bootstrap data, the vector of clus-
ter membership, and the distance matrix.

WARNING This took nearly 3 minutes to run on my machine!

If what we just did is a little unclear to you, print the metricsTib tibble to see what the
output looks like. We have a tibble with one column for each of the internal cluster
metrics, and a column indicating the number of clusters for which the metrics were
calculated.

 Let’s plot the result of our bootstrapping experiment. We’re going to create a sep-
arate subplot for each internal cluster metric (using faceting). Each subplot will show
the number of clusters on the x-axis, the value of the internal cluster metric on the
y-axis, a separate line for each individual bootstrap sample, and a line that connects
the mean value across all bootstraps.

metricsTib <- metricsTib %>%
mutate(bootstrap = factor(rep(1:10, each = 6))) %>%
gather(key = "Metric", value = "Value", -clusters, -bootstrap)

We first need to mutate a new column, indicating the bootstrap sample each case
belongs to. Because there are 10 bootstrap samples, evaluated for 6 different numbers
of clusters each (3 to 8), we create this variable by using the rep() function to repeat
each number from 1 to 10, six times. We wrap this inside the factor() function to
ensure it isn’t treated as a continuous variable when plotting. Next, we gather the data
so that the choice of internal metric is contained within a single column and the value
of that metric is held in another column. We specify -clusters and -bootstrap to tell
the function not to gather these variables. Print this new tibble, and be sure you under-
stand how we got there.

 Now that our data is in this format, we can create the plot.

Transforming the data, ready for plottingListing 17.5

Calculating metricsListing 17.6

ggplot(metricsTib, aes(as.factor(clusters), Value)) +
facet_wrap(~ Metric, scales = "free_y") +
geom_line(size = 0.1, aes(group = bootstrap)) +
geom_line(stat = "summary", fun.y = "mean", aes(group = 1)) +
stat_summary(fun.data="mean_cl_boot",

geom="crossbar", width = 0.5, fill = "white") +
theme_bw()

We map the number of clusters (as a factor) to the x aesthetic and the value of the inter-
nal cluster metric to the y aesthetic. We add a facet_wrap() layer to facet by internal
cluster metric, setting the scales = "free_y" argument because the metrics are on
different scales. Next, we add a geom_line() layer, using the size argument to make

413Building your first agglomerative hierarchical clustering model

these lines less prominent, and map the bootstrap sample number to the group aes-
thetic. This layer will therefore draw a separate, thin line for each bootstrap sample.

TIP Notice that when you specify an aesthetic mapping inside the ggplot()
function layer, the mapping is inherited by all additional layers that use that
aesthetic. However, you can specify aesthetic mappings using the aes() func-
tion inside each geom function, and the mapping will apply to that layer only.

We then add another geom_line() layer that will connect the mean across all boot-
strap samples. By default, the geom_line() function likes to connect individual values.
If we want the function to connect a summary statistic (like a mean), we need to spec-
ify the stat = "summary" argument and then use the fun.y argument to tell the func-
tion what summary statistic we want to plot. Here we’ve used "mean", but you can
supply the name of any function that returns a single value of y for its input.

Finally, it would be nice to visualize the 95% confidence interval for the bootstrap
sample. The 95% confidence intervals tell us that, if we were to repeat this experiment
100 times, 95 of the constructed confidence intervals would be expected to contain
the true value of the metric. The more the estimates agree with each other between
bootstrap samples, the smaller the confidence interval will be. We want to visualize the
confidence intervals using the flexible stat_summary() function. This function can
be used to visualize multiple summary statistics in many different ways. To draw the
mean ± 95% confidence intervals, we use the fun.data argument to specify that we
want "mean_cl_boot". This will draw bootstrap confidence intervals (95% by default).

NOTE The other option would be to use "mean_cl_normal" to construct the
confidence intervals, but this assumes the data is normally distributed, and
this may not be true.

Now that we’ve defined our summary statistics, let’s specify the geom that we’re going
to use to represent them, using the geom argument. The geom "crossbar" draws what
looks like the box part of a box and whiskers plot, where a solid line is drawn through
the measure of central tendency that we specified (the mean, in this case) and the
upper and lower limits of the box extend to the range of the measure of dispersion we
asked for (95% confidence limits, in this case). Then, according to my preference, we
set the width of the crossbars to 0.5 and the fill color to white.

The resulting plot is shown in figure 17.5. Take a moment to appreciate how beau-
tiful the result is after all the hard work we just put in. Look back at listing 17.6 to
make sure you understand how we created this plot (stat_summary() is probably the
most confusing bit). It seems that the number of clusters resulting in the smallest
mean Davies-Bouldin index and the largest mean Dunn index and mean pseudo F sta-
tistic is four. Take a look at the thin lines representing each individual bootstrap. Can
you see that some of them might have led us to conclude that a different number of
clusters was optimal? This is why bootstrapping these metrics is better than calculating
each metric only once using a single dataset.

414 CHAPTER 17 Hierarchical clustering
17.2.2 Cutting the tree to select a flat set of clusters

In this section, I’ll show you how we can finally cut the dendrogram to return the clus-
ter labels for our desired number of clusters. Our bootstrapping experiment has led
us to conclude that four is the optimal number of clusters with which to represent the

Exercise 2
Let’s experiment with another way we could visualize these results. Start with the fol-
lowing operations using dplyr (piping each step into the next):

1 Group the metricsTib object by Metric.
2 Use mutate() to replace the Value variable with scale(Value).
3 Group by both Metric and clusters.
4 Mutate a new column, Stdev, equal to sd(Value).

Then pipe this tibble into a ggplot() call with the following aesthetic mappings:

 x = clusters
 y = Metric
 fill = Value
 height = Stdev

Finally, add a geom_tile() layer. Look back at your code and make sure you under-
stand how you created this plot and how to interpret it.

Figure 17.5 Plotting the result of our bootstrap experiment. Each subplot shows the result of a
different internal cluster metric. The x-axis shows the cluster number, and the y-axis shows the
value of each metric. Faint lines connect the results of each individual bootstrap sample, while the
bold line connects the mean. The top and bottom of each crossbar indicate the 95% confidence
interval for that particular value, and the horizontal line represents the mean.

G1

3 4 5 6 7 8

3000

3500

4000

4500

dunn

3 4 5 6 7 8

0.02

0.03

0.04

as.factor(clusters)

db

43 5 6 7 8
0.8

1.0

1.2

1.4
V

al
ue

415Building your first agglomerative hierarchical clustering model
structure in our GvHD dataset. To extract a vector of cluster memberships represent-
ing these four clusters, we use the cutree() function, supplying our clustering model
and k (the number of clusters we want to return). We can visualize how our dendrogram
is cut to generate these four clusters by plotting the dendrogram as before and calling
the rect.hclust() function with the same arguments we gave to cutree().

gvhdCut <- cutree(gvhdHclust, k = 4)

plot(gvhdDend, leaflab = "none")

rect.hclust(gvhdHclust, k = 4)

This function draws rectangles on an existing dendrogram plot to show which branches
are cut to result in the number of clusters we specified. The resulting plot is shown in
figure 17.6.

Next, let’s plot the clusters using ggpairs() like we did for our k-means model in
chapter 16.

gvhdTib <- mutate(gvhdTib, hclustCluster = as.factor(gvhdCut))

ggpairs(gvhdTib, aes(col = hclustCluster),
upper = list(continuous = "density"),
lower = list(continuous = wrap("points", size = 0.5))) +

theme_bw()

Cutting the treeListing 17.7

Plotting the clustersListing 17.8

10
0

80
60

40
20

0

Figure 17.6 The same plot as in figure 17.4, but this time with rectangles indicating the
clusters resulting from cutting the tree

416 CHAPTER 17 Hierarchical clustering
The resulting figure is shown in figure 17.7. Compare these clusters with the ones
returned by our k-means model in figure 16.8. Both methods result in similar cluster
membership, and the clusters from our hierarchical clustering also seem to underclu-
ster cluster 3.

17.3 How stable are our clusters?
In this section, I’ll show you one more tool to evaluate the performance of our clus-
tering model. In addition to calculating internal cluster metrics on each bootstrap
sample in a bootstrapping experiment, we can also quantify how well the cluster
memberships agree with each other between bootstrap samples. This agreement is
called the cluster stability. A common way to quantify cluster stability is with a simi-
larity metric called the Jaccard index (named after the botany professor who pub-
lished it).

 The Jaccard index quantifies the similarity between two sets of discrete variables.
Its value can be interpreted as the percentage of the total values that are present in
both sets, and it ranges from 0% (no common values) to 100% (all values common to
both sets). The Jaccard index is defined in equation 17.1.

Equation 17.1

CD4 CD8b CD3 CD8 hclustCluster

C
D

4
C

D
8b

C
D

3
C

D
8

hclustC
luster

600200 40006004002000 200 400 600 8000200 400 600 8000 800 1 2 3 4

0.000
0.002
0.004
0.006
0.008

0
200
400
600

0

200

400

600

800

0
200
400
600
800

500

0

500

0

500

0

500

0

Figure 17.7 ggpairs() plot showing the result of our hierarchical clustering model. Compare these
clusters to the ones obtained by k-means in figure 16.8.

Jaccard index number of values in both sets
total number of unique values
--
 100×=

417How stable are our clusters?
For example, if we have two sets

a = {3, 3, 5, 2, 8}

b = {1, 3, 5, 6}

then the Jaccard index is

If we cluster on multiple bootstrap samples, we can calculate the Jaccard index
between the “original” clusters (the clusters on all the data) and each of the bootstrap
samples, and take the mean. If the mean Jaccard index is low, then cluster member-
ship is changing considerably between bootstrap samples, indicating our clustering
result is unstable and may not generalize well. If the mean Jaccard index is high, then
cluster membership is changing very little, indicating a stable clustering result.

 Luckily for us, the clusterboot() function from the fpc package has been written
to do just this! Let’s first load the fpc package into our R session. Because cluster-
boot() produces a series of base R plots as a side effect, let’s split the plotting device
into three rows and four columns to accommodate the output, using par(mfrow =
c(3, 4)).

library(fpc)

par(mfrow = c(3, 4))

clustBoot <- clusterboot(gvhdDist, B = 10,
clustermethod = disthclustCBI,
k = 4, cut = "number", method = "ward.D2",
showplots = TRUE)

clustBoot

10runs:resamplingofNumber

4data:infoundclustersofNumber

Clusterwise Jaccard bootstrap (omitting multiple points) mean:
[1] 0.9728 0.9208 0.8348 0.9624

The first argument to the clusterboot() function is the data. This argument will accept
either the raw data or a distance matrix of class dist (it will handle either appropri-
ately). The argument B is the number of bootstrap samples we wish to calculate, which

UsingListing 17.9 clusterboot() to calculate the Jaccard index

Jaccard index 2
6

 100× 33.3%= =

418 CHAPTER 17 Hierarchical clustering
I’ve set to 10 for the sake of reducing running time. The clustermethod argument is
where we specify which type of clustering model we wish to build (see ?clusterboot for
a list of available methods; many common methods are included). For hierarchical
clustering, we set this argument equal to disthclustCBI. The k argument specifies
the number of clusters we want to return, method lets us specify the distance metric to
use for clustering, and showplots gives us the opportunity to suppress the printing of
the plots if we wish. The function may take a couple of minutes to run.

 I’ve truncated the output from printing the result of clusterboot() to show the
most important information: the clusterwise Jaccard bootstrap means. These four val-
ues are the mean Jaccard indices for each cluster, between the original clusters and
each bootstrap sample. We can see that all four clusters have good agreement (> 83%)
across different bootstrap samples, suggesting high stability of the clusters.

 The resulting plot is shown in figure 17.8. The first (top-left) and last (bottom-
right) plots show the clustering on the original, full dataset. Each plot between these
shows the clustering on a different bootstrap sample. This plot is a useful way of graphi-
cally evaluating the stability of the clusters.

–2

–4
–1

1

–1 0 1
dpoints[,1]

dp
oi

nt
s[

,2
]

dp
oi

nt
s[

bs
am

p,
][,

2]

dp
oi

nt
s[

bs
am

p,
][,

2]

dp
oi

nt
s[

bs
am

p,
][,

2]

dpoints[bsamp,][,1]dpoints[bsamp,][,1]dpoints[bsamp,][,1]
2 3 4 –2

–4
–1

1
dp

oi
nt

s[
bs

am
p,

][,
2]

–1 0 1 2 3 4

dpoints[bsamp,][,1]
–2

–4
–1

1

–1 0 1 2 3

–2

–4
–2

0
2

dp
oi

nt
s[

bs
am

p,
][,

2]

–1 0 1 2 3 4

dp
oi

nt
s[

bs
am

p,
][,

2]

dpoints[bsamp,][,1]
–2

–4
–1

1

–1 0 1 2 3 4dp
oi

nt
s[

bs
am

p,
][,

2]

–2

–4
–1

1

–1 0 1 2 43

dpoints[bsamp,][,1]dpoints[bsamp,][,1]
–2

–4
–1

1

–1 4210 3

dp
oi

nt
s[

,2
]

dpoints[,1]
–2

–4
–1

1

–1 4210 3dp
oi

nt
s[

bs
am

p,
][,

2]

dpoints[bsamp,][,1]
–2

–4
–1

1

–1 4210 3dp
oi

nt
s[

bs
am

p,
][,

2]

dpoints[bsamp,][,1]
–2

–4
–1

1

–1 4210 3

dp
oi

nt
s[

bs
am

p,
][,

2]

–2

–4
–1

1

–1 4210 3
dpoints[bsamp,][,1]

–2

–4
–2

2
0

–1 4210 3 4

Figure 17.8 The graphical output of the clusterboot() function. The first and last plots show
the full, original clusters of data, while the plots in between show the clusters on the bootstrap
samples. The cluster membership of each case is indicated by a number. Notice the relatively high
stability of the clusters.

419Strengths and weaknesses of hierarchical clustering
Strengths and weaknesses of hierarchical clustering17.4
While it often isn’t easy to tell which algorithms will perform well for a given task, here
are some strengths and weaknesses that will help you decide whether hierarchical
clustering will perform well for you.

 The strengths of hierarchical clustering are as follows:

 It learns a hierarchy that may in and of itself be interesting and interpretable.
 It is quite simple to implement.

The weaknesses of hierarchical clustering are these:

 It cannot natively handle categorical variables. This is because calculating the
Euclidean distance on a categorical feature space isn’t meaningful.

 It cannot select the optimal number of “flat” clusters.
 It is sensitive to data on different scales.
 It cannot predict cluster membership of new data.
 Once cases have been assigned to a cluster, they cannot be moved.
 It can become computationally expensive with large datasets.
 It is sensitive to outliers.

Exercise 3
Use the clusterboot() function to bootstrap the Jaccard index for k-means cluster-
ing (with four clusters), just like we did for hierarchical. This time, the clustermethod
should be equal to kmeansCBI (to use k-means), and you should replace the method
argument with algorithm = "Lloyd". Which method results in more stable clusters:
k-means or hierarchical clustering?

Exercise 4
Use the diana() function from the cluster package to perform divisive hierarchical
clustering on the GvHD data. Save the output as an object, and plot the dendrogram
by passing it into as.dendrogram() %>% plot(). Compare this to the dendrogram
we got from agglomerative hierarchical clustering. Warning: this took nearly 15 min-
utes on my machine!

Exercise 5
Repeat our bootstrapping experiment with agglomerative hierarchical clustering, but
this time fix the number of clusters to four and compare the different linkage methods
on each bootstrap. Which linkage method performs the best?

420 CHAPTER 17 Hierarchical clustering

Exercise 6
Recluster the data using hclust(), using the linkage method indicated as the best
from exercise 5. Plot these clusters using ggpairs(), and compare them to those
we generated using Ward’s method. Does this new linkage method do a good job of
finding clusters?

Summary
 Hierarchical clustering uses the distances between cases to learn a hierarchy of

clusters.
 How these distances are calculated is controlled by our choice of linkage method.
 Hierarchical clustering can be bottom-up (agglomerative) or top-down (divisive).
 A flat set of clusters can be returned from a hierarchical clustering model by

“cutting” the dendrogram at a particular height.
 Cluster stability can be measured by clustering on bootstrap samples and using

the Jaccard index to quantify the agreement of cluster membership between
samples.

Solutions to exercises
1 Create a hierarchical clustering model using the Manhattan distance, plot the

dendrogram, and compare it:

gvhdDistMan <- dist(gvhdScaled, method = "manhattan")

gvhdHclustMan <- hclust(gvhdDistMan, method = "ward.D2")

gvhdDendMan <- as.dendrogram(gvhdHclustMan)

plot(gvhdDendMan, leaflab = "none")

2 Plot the bootstrap experiment in an alternate way:

group_by(metricsTib, Metric) %>%
mutate(Value = scale(Value)) %>%
group_by(Metric, clusters) %>%
mutate(Stdev = sd(Value)) %>%

ggplot(aes(as.factor(clusters), Metric, fill = Value, height = Stdev)) +
geom_tile() +
theme_bw() +
theme(panel.grid = element_blank())

3 Use clusterboot() to evaluate the stability of our k-means model:

par(mfrow = c(3, 4))

clustBoot <- clusterboot(gvhdScaled,
B = 10,

421Solutions to exercises
clustermethod = kmeansCBI,
k = 4, algorithm = "Lloyd",
showplots = TRUE)

clustBoot

k-means seems to give more stable clusters.

4 Cluster the data using the diana() function:

library(cluster)

gvhdDiana <- as_tibble(gvhdScaled) %>% diana()

as.dendrogram(gvhdDiana) %>% plot(leaflab = "none")

5 Repeat the bootstrap experiment, comparing different linkage methods:

cluster_metrics <- function(data, clusters, dist_matrix, linkage) {
list(db = clusterSim::index.DB(data, clusters)$DB,

G1 = clusterSim::index.G1(data, clusters),
dunn = clValid::dunn(dist_matrix, clusters),
clusters = length(unique(clusters)),
linkage = linkage

)
}

metricsTib <- map_df(gvhdBoot, function(boot) {
d <- dist(boot, method = "euclidean")
linkage <- c("ward.D2", "single", "complete", "average", "centroid")

map_df(linkage, function(linkage) {
cl <- hclust(d, method = linkage)
cut <- cutree(cl, k = 4)
cluster_metrics(boot, clusters = cut, dist_matrix = d, linkage)

})
})

metricsTib

metricsTib <- metricsTib %>%
mutate(bootstrap = factor(rep(1:10, each = 5))) %>%
gather(key = "Metric", value = "Value", -clusters, -bootstrap, -linkage)

ggplot(metricsTib, aes(linkage, Value)) +
facet_wrap(~ Metric, scales = "free_y") +
geom_line(size = 0.1, aes(group = bootstrap)) +
geom_line(stat = "summary", fun.y = "mean", aes(group = 1)) +
stat_summary(fun.data="mean_cl_boot",

geom="crossbar", width = 0.5, fill = "white") +
theme_bw()

Single linkage seems the best, indicated by DB and Dunn,
though pseudo F disagrees.

422 CHAPTER 17 Hierarchical clustering
6 Cluster the data using the winning linkage method from exercise 5:

gvhdHclustSingle <- hclust(gvhdDist, method = "single")

gvhdCutSingle <- cutree(gvhdHclustSingle, k = 4)

gvhdTib <- mutate(gvhdTib, gvhdCutSingle = as.factor(gvhdCutSingle))

select(gvhdTib, -hclustCluster) %>%
ggpairs(aes(col = gvhdCutSingle),

upper = list(continuous = "density"),
lower = list(continuous = wrap("points", size = 0.5))) +

theme_bw()

Using single linkage on this dataset does a terrible job of finding
clusters! This is why visual evaluation of clusters is important:
don't blindly rely on internal metrics only!

Clustering based on
density: DBSCAN

and OPTICS
Our penultimate stop in unsupervised learning techniques brings us to density-
based clustering. Density-based clustering algorithms aim to achieve the same thing
as k-means and hierarchical clustering: partitioning a dataset into a finite set of
clusters that reveals a grouping structure in our data.

 In the last two chapters, we saw how k-means and hierarchical clustering identify
clusters using distance: distance between cases, and distance between cases and
their centroids. Density-based clustering comprises a set of algorithms that, as the
name suggests, uses the density of cases to assign cluster membership. There are
multiple ways of measuring density, but we can define it as the number of cases per
unit volume of our feature space. Areas of the feature space containing many cases
packed closely together can be said to have high density, whereas areas of the fea-
ture space that contain few or no cases can be said to have low density. Our intu-
ition here states that distinct clusters in a dataset will be represented by regions of
high density, separated by regions of low density. Density-based clustering algo-
rithms attempt to learn these distinct regions of high density and partition them

This chapter covers
 Understanding density-based clustering

 Using the DBSCAN and OPTICS algorithms
423

424 CHAPTER 18 Clustering based on density: DBSCAN and OPTICS
into clusters. Density-based clustering algorithms have several nice properties that cir-
cumvent some of the limitations of k-means and hierarchical clustering.

 By the end of this chapter, I hope you’ll have a firm understanding of how two of
the most commonly used density-based clustering algorithms work: DBSCAN and
OPTICS. We’ll also apply some of the skills you learned in the previous chapters to
help us evaluate and compare the performance of different cluster models.

What is density-based clustering?18.1
In this section, I’ll show you how two of the most commonly used density-based clus-
tering algorithms work:

 Density-based spatial clustering of applications with noise (DBSCAN)
 Ordering points to identify the clustering structure (OPTICS)

Aside from having names that were seemingly contrived to form interesting acronyms,
DBSCAN and OPTICS both learn regions of high density, separated by regions of low
density in a dataset. They achieve this in similar but slightly different ways, but both
have a few advantages over k-means and hierarchical clustering:

 They are not biased to finding spherical clusters and can in fact find clusters of
varying and complex shapes.

 They are not biased to finding clusters of equal diameter and can identify both
very wide and very tight clusters in the same dataset.

 They are seemingly unique among clustering algorithms in that cases that do
not fall within regions of high enough density are put into a separate “noise”
cluster. This is often a desirable property, because it helps to prevent overfitting
the data and allows us to focus on cases for which the evidence of cluster mem-
bership is stronger.

TIP If the separation of cases into a noise cluster isn’t desirable for your appli-
cation (but using DBSCAN or OPTICS is), you can use a heuristic method
like classifying noise points based on their nearest cluster centroid, or adding
them to the cluster of their k-nearest neighbors.

All three of these advantages can be seen in figure 18.1. The three subplots each show
the same data, clustered using either DBSCAN, k-means (Hartigan-Wong algorithm),
or hierarchical clustering (complete linkage). This dataset is certainly strange, and
you might think you’re unlikely to encounter real-world data like it, but it illustrates
the advantages of density-based clustering over k-means and hierarchical clustering.
The clusters in the data have very different shapes (that certainly aren’t spherical) and
diameters. While k-means and hierarchical clustering learn clusters that bisect and
merge these real clusters, DBSCAN is able to faithfully find each shape as a distinct
cluster. Additionally, notice that k-means and hierarchical clustering place every single
case into a cluster. DBSCAN creates the cluster “0” into which it places any cases it con-
siders to be noise. In this case, all cases outside of those geometrically shaped clusters

425What is density-based clustering?
are placed into the noise cluster. If you look carefully, though, you may notice a sine
wave in the data that all three fail to identify as a cluster.

 So how do density-based clustering algorithms work? Well the DBSCAN algorithm is
a little easier to understand, so we’ll start with it and build on it to understand OPTICS.

18.1.1 How does the DBSCAN algorithm learn?

In this section, I’ll show you how the DBSCAN algorithm learns regions of high den-
sity in the data to identify clusters. In order to understand the DBSCAN algorithm,
you first need to understand its two hyperparameters:

 epsilon (ε)
 minPts

The algorithm starts by selecting a case in the data and searching for other cases
within a search radius. This radius is the epsilon hyperparameter. So epsilon is simply how
far away from each case (in an n-dimensional sphere) the algorithm will search for
other cases around a point. Epsilon is expressed in units of the feature space and will
be the Euclidean distance by default. Larger values mean the algorithm will search
further away from each case.

 The minPts hyperparameter specifies the minimum number of points (cases) that
a cluster must have in order for it to be a cluster. The minPts hyperparameter is there-
fore an integer. If a particular case has at least minPts cases inside its epsilon radius
(including itself), that case is considered a core point.

 Let’s walk through the DBSCAN algorithm together by taking a look at figure 18.2.
The first step of the algorithm is to select a case at random from the dataset. The

dbscan hclust kmeans

600400200060040020006004002000

100

200

300

x

y

Figure 18.1 A challenging clustering problem. The dataset shown in each facet contains clusters of
varying shapes and diameters, with cases that could be considered noise. The three subplots show
the data clustered using DBSCAN, hierarchical clustering (complete linkage), and k-means (Hartigan-
Wong). Of the three algorithms used, only DBSCAN is able to faithfully represent these shapes as
distinct clusters.

426 CHAPTER 18 Clustering based on density: DBSCAN and OPTICS
algorithm searches for other cases in an n-dimensional sphere (where n is the number
of features in the dataset) with radius equal to epsilon. If this case contains at least minPts
cases inside its search radius, it is marked as a core point. If the case does not contain
minPts cases inside its search space, it is not a core point, and the algorithm moves on to
another case.

 Let’s assume the algorithm picks a case and finds that it is a core point. The algo-
rithm then visits each of the cases within epsilon of the core point and repeats the same
task: looks to see if this case has minPts cases inside its own search radius. Two cases
within each other’s search radius are said to be directly density connected and reachable
from each other. The search continues recursively, following all direct density connec-
tions from core points. If the algorithm finds a case that is reachable to a core point
but does not itself have minPts-reachable cases, this case is considered a border point.
The algorithm only searches the search space of core points, not border points.

V
ar

ia
bl

e
2

ε

Variable 1

Variable 1

V
ar

ia
bl

e
2

Variable 1

V
ar

ia
bl

e
2

V
ar

ia
bl

e
2

Variable 1

4. Noise point

Stop when no more
reachable cases.

Move to next
unvisited point.

Are the reachable
cases core points?

Is the selected case
a core point?

3. Border points are within
a core point’s ε, but don’t
have minPts in their own.

5. Cluster of
connected cases

2. Search ε of
reachable cases.

1. Core points contain
≥ minPts in their ε.

Figure 18.2 The DBSCAN algorithm. A case is selected at random, and if
its epsilon radius (ε) contains minPts cases, it is considered a core point.
Reachable cases of this core point are evaluated the same way until there
are no more reachable cases. This network of density-connected cases is
considered a cluster. Cases that are reachable from core points but are
not themselves core points are border points. The algorithm moves on to
the next unvisited case. Cases that are neither core nor border points are
labeled as noise.

427What is density-based clustering?
 Two cases are said to be density connected if they are not necessarily directly density con-
nected but are connected to each other via a chain or series of directly density-connected
cases. Once the search has been exhausted, and none of the visited cases have any
more direct density connections left to explore, all cases that are density connected to
each other are placed into the same cluster (including border points).

 The algorithm now selects a different case in the dataset—one that it hasn’t visited
before—and the same process begins again. Once every case in the dataset has been
visited, any lonesome cases that were neither core points nor border points are added
to the noise cluster and are considered too far from regions of high density to confi-
dently be clustered with the rest of the cases. So DBSCAN finds clusters by finding
chains of cases in high-density regions of the feature space and throws out cases occu-
pying sparse regions of the feature space.

NOTE Not searching outward from border points helps prevent the inclusion
of noise events into clusters.

That was quite a lot of new terminology I just introduced! Let’s have a quick recap to
make these terms stick in your mind, because they’re also important for the OPTICS
algorithm:

 Epsilon—The radius of an n-dimensional sphere around a case, within which
the algorithm searches for other cases

 minPts—The minimum number of cases allowed in a cluster, and the number
of cases that must be within epsilon of a case for it to be a core point

 Core point—A case that has at least minPts reachable cases
 Reachable/directly density connected—When two cases are within epsilon of each other
 Density connected—When two cases are connected by a chain of directly density-

connected cases but may not be directly density connected themselves
 Border point—A case that is reachable from a core point but is not itself a core

point
 Noise point—A case that is neither a core point nor reachable from one

18.1.2 How does the OPTICS algorithm learn?

In this section, I’ll show you how the OPTICS algorithm learns regions of high density
in a dataset, how it’s similar to DBSCAN, and how it differs. Technically speaking,
OPTICS isn’t actually a clustering algorithm. Instead, it creates an ordering of the
cases in the data in such a way that we can extract clusters from it. That sounds a little
abstract, so let’s work through how OPTICS works.

 The DBSCAN algorithm has one important drawback: it struggles to identify clus-
ters that have different densities than each other. The OPTICS algorithm is an
attempt to alleviate that drawback and identify clusters with varying densities. It does
this by allowing the search radius around each case to expand dynamically instead of
being fixed at a predetermined value.

428 CHAPTER 18 Clustering based on density: DBSCAN and OPTICS
 In order to understand how OPTICS works, I need to introduce two new terms:

 Core distance
 Reachability distance

In OPTICS, the search radius around a case isn’t fixed but expands until there are at
least minPts cases within it. This means cases in dense regions of the feature space will
have a small search radius, and cases in sparse regions will have a large search radius.
The smallest distance away from a case that includes minPts other cases is called the
core distance, sometimes abbreviated to ε'. In fact, the OPTICS algorithm only has one
mandatory hyperparameter: minPts.

NOTE We can still supply epsilon, but it is mostly used to speed up the algo-
rithm by acting as a maximum core distance. In other words, if the core dis-
tance reaches epsilon, just take epsilon as the core distance to prevent all cases
in the dataset from being considered.

The reachability distance is the distance between a core point and another core point
within its epsilon, but it cannot be less than the core distance. Put another way, if a case
has a core point inside its core distance, the reachability distance between these cases is
the core distance. If a case has a core point outside its core distance, then the reach-
ability distance between these cases is simply the Euclidean distance between them.

NOTE In OPTICS, a case is a core point if there are minPts inside epsilon. If we
don’t specify epsilon, then all cases will be core points. The reachability dis-
tance between a case and a non-core point is undefined.

Take a look at the example in figure 18.3. You can see two circles centered around the
darkly shaded case. The circle with the larger radius is epsilon, and the one with the
smaller radius is the core distance (ε'). This example is showing the core distance for
a minPts value of 4, because the core distance has expanded to include four cases (includ-
ing the case in question). The arrows indicate the reachability distance between the
core point and the other cases within its epsilon.

V
ar

ia
bl

e
2

Variable 1

Reachability distance for
cases inside core distance

is equal to 'ε

Core distance
= 4for minPts

ε

ε '

Reachability distance for
case outside core distance

Figure 18.3 Defining the core distance and
reachability distance. In OPTICS, epsilon (ε)
is the maximum search distance. The core
distance (ε') is the minimum search distance
needed to include minPts cases (including
the case in question). The reachability
distance for a case is the larger of the core
distance and the distance between the case
in question, and another case inside its
epsilon (maximum search distance).

429What is density-based clustering?
Because the reachability distance is the distance between one core point and another
core point within its epsilon, OPTICS needs to know which cases are core points. So
the algorithm starts by visiting every case in the data and determining whether its core
distance is less than epsilon. This is illustrated in figure 18.4. If a case’s core distance is
less than or equal to epsilon, the case is a core point. If a case’s core distance is greater
than epsilon (we need to expand out further than epsilon to find minPts cases), the case
is not a core point. Examples of both are shown in figure 18.4.

Now that you understand the concepts of core distance and reachability distance, let’s
see how the OPTICS algorithm works. The first step is to visit each case in the data
and mark it as a core point or not. The rest of the algorithm is illustrated in figure 18.5,
so let’s assume this has been done. OPTICS selects a case and calculates its core dis-
tance and its reachability distance to all cases inside its epsilon (the maximum search
distance).

 The algorithm does two things before moving on to the next case:

 Records the reachability score of the case
 Updates the processing order of cases

The reachability score of a case is different from a reachability distance (the terminol-
ogy is unfortunately confusing). A case’s reachability score is defined as the larger of
its core distance or its smallest reachability distance. Let’s rephrase: if a case doesn’t
have minPts cases inside epsilon (it isn’t a core point), then its reachability score will be
the reachability distance to its closest core point. If a case does have minPts cases inside
epsilon, then its smallest reachability distance will be less than or equal to its core dis-
tance, so we just take the core distance as the case’s reachability score.

V
ar

ia
bl

e
2

Variable 1

V
ar

ia
bl

e
2

Variable 1

ε

ε
ε

ε

'
'

Cases for which ' areε ε≤
considered core points.

Cases for which ' > areε ε
not considered core points.

Figure 18.4 Defining core points in OPTICS. Cases for which the
core distance (ε') is less than or equal to the maximum search
distance (ε) are considered core points. Cases for which the core
distance is greater than the maximum search distance are not
considered core points.

430 CHAPTER 18 Clustering based on density: DBSCAN and OPTICS

V
a

ri
a

b
le

 2

Variable 1

V
a

ri
a

b
le

 2

Variable 1

V
a

ri
a

b
le

 2

Variable 1

V
a
ri
a
b
le

 2

Variable 1

V
a
ri
a
b
le

 2

Variable 1

V
a
ri
a
b
le

 2

Variable 1

1. Calculate core and
reachability distances.

2. Update processing order
based on distances.

3. Move to the next core point
in the processing order.

4. Continue updating and
following the processing
order.

5. Continue updating and
following the processing
order.

6. When there are no more
neighbors, go to next unvisited
case.

ε

ε

'

Figure 18.5 The OPTICS algorithm. A case is selected, and its core distance (ε') is measured. The
reachability distance is calculated between this case and all the cases inside this case’s maximum
search distance (ε). The processing order of the dataset is updated such that the nearest case is
visited next. The reachability score and the processing order are recorded for this case, and the
algorithm moves on to the next one.

NOTE Therefore, the reachability score of a case will never be less than its
core distance, unless the core distance is greater than the maximum, epsilon,
in which case epsilon will be the reachability score.

Once the reachability has been recorded for a particular case, the algorithm then
updates the sequence of cases it’s going to visit next (the processing order). It updates
the processing order such that it will next visit the core point with the smallest reach-
ability distance to the current case, then the one that is next-farthest away, and so on.
This is illustrated in step 2 of figure 18.5.

The algorithm then visits the next case in the updated processing order and
repeats the same process, likely changing the processing order once again. When
there are no more reachable cases in the current chain, the algorithm moves on to
the next unvisited core point in the dataset and repeats the process.

Once all cases have been visited, the algorithm returns both the processing order
(the order in which each case was visited) and the reachability score of each case. If we
plot processing order against reachability score, we get something like the top plot
in figure 18.6. To generate this plot, I applied the OPTICS algorithm to a simulated

431What is density-based clustering?

4003002001000
Ordered case number

R
ea

ch
ab

ili
ty

 s
co

re

x

y

0.00

0.0

0.0

0.2

0.4

0.6

0.8

0.05

0.10

0.15

0.20

0.90.60.3

Figure 18.6 Reachability plot of a simulated dataset. The top plot shows the reachability plot
learned by the OPTICS algorithm from the data shown in the bottom plot. The plots are shaded
to indicate where each cluster in the feature space maps onto the reachability plot.

dataset with four clusters (you can find the code to reproduce this at www.manning
.com/books/machine-learning-with-r-the-tidyverse-and-mlr). Notice that when we plot
the processing order against the reachability score, we get four shallow troughs, each
separated by spikes of high reachability. Each trough in the plot corresponds to a region
of high density, while each spike indicates a separation of these regions by a region of
low density.

NOTE The deeper the trough, the higher the density.

The OPTICS algorithm actually goes no further than this. Once it produces this plot,
its work is done, and now it’s our job to use the information contained in the plot to

www.manning.com/books/machine-learning-with-r-the-tidyverse-and-mlr
www.manning.com/books/machine-learning-with-r-tidyverse-and-mlr
www.manning.com/books/machine-learning-with-r-the-tidyverse-and-mlr

432 CHAPTER 18 Clustering based on density: DBSCAN and OPTICS
extract the cluster membership. This is why I said that OPTICS isn’t technically a clus-
tering algorithm but creates an ordering of the data that allows us to find clusters in
the data.

 So how do we extract clusters? We have a couple of options. One method would be
to simply draw a horizontal line across the reachability plot, at some reachability
score, and define the start and end of clusters as when the plot dips below and back
above the line. Any cases above the line could be classified as noise, as shown in the
top plot of figure 18.7. This approach will result in clustering very similar to what the
DBSCAN algorithm would produce, except that some border points are more likely to
be put into the noise cluster.

4003002001000
Ordered case number

4003002001000
Ordered case number

R
ea

ch
ab

ili
ty

 s
co

re

0.00

R
ea

ch
ab

ili
ty

 s
co

re

0.00

0.05

0.10

0.15

0.20

0.05

0.10

0.15

0.20

Figure 18.7 An illustration of different ways clusters can be extracted from a reachability plot.
In the top plot, a single reachability score cut-off has been defined, and any troughs bordered by
peaks above this cut-off are defined as clusters. In the bottom plot, a hierarchy of clusters is
defined, based on the steepness of changes in reachability, allowing for clusters within clusters.

433Building your first DBSCAN model
Another (usually more useful) method is to define a particular steepness in the reach-
ability plot as indicative of the start and end of a cluster. We can define the start of a
cluster as when we have a downward slope of at least this steepness, and its end as
when we have an upward slope of at least this steepness. The method we’ll use later
defines the steepness as 1 – ξ (xi, pronounced “zy,” “sigh,” or “kzee,” depending on
your preference and mathematics teacher), where the reachability of two successive
cases must change by a factor of 1 – ξ. When we have a downward slope that meets this
steepness criterion, the start of a cluster is defined; and when we have an upward
slope that meets this steepness, the end of the cluster is defined.

NOTE Because ξ cannot be estimated from the data, it is a hyperparameter
we must select/tune ourselves.

Using this method has two major benefits. First, it allows us to overcome DBSCAN’s
limitation of only finding clusters of equal density. Second, it allows us to find clusters
within clusters, to form a hierarchy. Imagine that we have a downward slope that starts
a cluster, and then we have another downward slope before the cluster ends: we have a
cluster within a cluster. This hierarchical extraction of clusters from a reachability plot
is shown in the bottom plot in figure 18.7.

NOTE Notice that neither of these methods works with the original data.
They extract all the information to assign cluster memberships from the
order and reachability scores generated by the OPTICS algorithm.

18.2 Building your first DBSCAN model
In this section, I’m going to show you how to use the DBSCAN algorithm to cluster a
dataset. We’ll then use some of the techniques you learned in chapter 17 to validate its
performance and select the best-performing hyperparameter combination.

NOTE The mlr package does have a learner for the DBSCAN algorithm
(cluster.dbscan), but we’re not going to use it. There’s nothing wrong with
it; but as you’ll see later, the presence of the noise cluster causes problems for
our internal cluster metrics, so we’re going to do our own performance vali-
dation outside of mlr.

18.2.1 Loading and exploring the banknote dataset

Let’s start by loading the tidyverse and loading in the data, which is part of the mclust
package. We’re going to work with the Swiss banknote dataset to which we applied
PCA, t-SNE, and UMAP in chapters 13 and 14. Once we’ve loaded in the data, we con-
vert it into a tibble and create a separate tibble after scaling the data (because DBSCAN
and OPTICS are sensitive to variable scales). Because we’re going to imagine that we
have no ground truth, we remove the Status variable, indicating which banknotes are
genuine and which are counterfeit. Recall that the tibble contains 200 Swiss banknotes,
with 6 measurements of their dimensions.

434 CHAPTER 18 Clustering based on density: DBSCAN and OPTICS

library(tidyverse)

data(banknote, package = "mclust")

swissTib <- select(banknote, -Status) %>%
as_tibble()

swissTib

A tibble: 200 x 6
Top DiagonalLeft Right BottomLength

<dbl><dbl> <dbl><dbl> <dbl> <dbl>
9.79131.131215.1 141

2 215. 130. 130. 8.1 9.5 142.
3 215. 130. 130. 8.7 9.6 142.
4 215. 130. 130. 7.5 10.4 142
5 215 130. 130. 10.4 7.7 142.
6 216. 131. 130. 9 10.1 141.
7 216. 130. 130. 7.9 9.6 142.
8 214. 130. 129. 7.2 10.7 142.
9 215. 129. 130. 8.2 11 142.

10 215. 130. 130. 9.2 10 141.
... with 190 more rows

swissScaled <- swissTib %>% scale()

Let’s plot the data using ggpairs() to remind ourselves of the structure of the data.

Loading the tidyverse packages and datasetListing 18.1

Plotting the dataListing 18.2

library(GGally)

ggpairs(swissTib, upper = list(continuous = "density")) +
theme_bw()

The resulting plot is shown in figure 18.8. It looks as though there are at least two
regions of high density in the data, with a few scattered cases in lower-density regions.

18.2.2 Tuning the epsilon and minPts hyperparameters

In this section, I’ll show you how to select sensible ranges of epsilon and minPts for
DBSCAN, and how we can tune them manually to find the best-performing combina-
tion. Choosing the value of the epsilon hyperparameter is, perhaps, not obvious. How far
away from each case should we search? Luckily, there is a heuristic method we can use to
at least get in the right ballpark. This consists of calculating the distance from each
point to its kth-nearest neighbor and then ordering the points in a plot based on this dis-
tance. In data with regions of high and low density, this tends to produce a plot contain-
ing a “knee” or “elbow” (depending on your preference). The optimal value of epsilon is
in or near that knee/elbow. Because a core point in DBSCAN has minPts cases inside its

435Building your first DBSCAN model

epsilon, choosing a value of epsilon at the knee of this plot means choosing a search dis-
tance that will result in cases in high-density regions being considered core points. We
can create this plot using the kNNdistplot() function from the dbscan package.

Plotting the kNN distance plotListing 18.3

Length Left Right Bottom Top Diagonal
Length

Left
B

ottom
R

ight
Top

D
iagonal

7 8 9 10 11 12 8 9 10 11 12 138 139 140 141 142

0.0
0.3
0.6
0.9

129.0
129.5
130.0
130.5
131.0

129.0
129.5
130.0
130.5
131.0

7
8
9

10
11
12

8
9

10
11
12

138
139
140
141
142

214.0214.5215.0215.5216.0 129.0 129.5 130.0 130.5 131.0129.0 129.5 130.0 130.5 131.0

Figure 18.8 Plotting the Swiss banknote dataset with ggpairs(). 2D density plots are shown above
the diagonal.

library(dbscan)

kNNdistplot(swissScaled, k = 5)

abline(h = c(1.2, 2.0))

We need to use the k argument to specify the number of nearest neighbors we want to
calculate the distance to. But we don’t yet know what our minPts argument should be,
so how can we set k? I usually pick a sensible value that I believe is approximately cor-
rect (remember that minPts defines the minimum cluster size): here, I’ve selected 5.
The position of the knee in the plot is relatively robust to changes in k.

The kNNdistplot() function will create a matrix with as many rows as there are cases
in the dataset (200) and 5 columns, one for the distance between each case and each of
its 5 nearest neighbors. Each of these 200 × 5 = 1,000 distances will be drawn on the plot.

We then use the abline() function to draw horizontal lines at the start and end of
the knee, to help us identify the range of epsilon values we’re going to tune over. The
resulting plot is shown in figure 18.9. Notice that, reading the plot from left to right,
after an initial sharp increase, the 5-nearest-neighbor distance increases only gradu-
ally, until it rapidly increases again. This region where the curve inflects upward is the

436 CHAPTER 18 Clustering based on density: DBSCAN and OPTICS
knee/elbow, and the optimal value of epsilon at this nearest-neighbor distance in this
inflection. Using this method, we select 1.2 and 2.0 as the lower and upper limits over
which to tune epsilon.

 Let’s manually define our hyperparameter search space for epsilon and minPts.
We use the expand.grid() function to create a data frame containing every combi-
nation of the values of epsilon (eps) and minPts we want to search over. We’re going
to search across values of epsilon between 1.2 and 2.0, in steps of 0.1; and we’re going to
search across values of minPts between 1 and 9, in steps of 1.

dbsParamSpace <- expand.grid(eps = seq(1.2, 2.0, 0.1),
minPts = seq(1, 9, 1))

Now that we’ve defined our hyperparameter search space, let’s run the DBSCAN algo-
rithm on each distinct combination of epsilon and minPts. To do this, we use the pmap()
function from the purrr package to apply the dbscan() function to each row of the
dbsParamSpace object.

Defining our hyperparameter search spaceListing 18.4

Exercise 1
Print the dbsParamSpace object to give yourself a better intuition of what expand
.grid() is doing.

10008006004002000

0.5

1.0

1.5

2.0

2.5

3.0

Points (sample) sorted by distance

5-
N

N
 d

is
ta

nc
e

Figure 18.9 K-nearest neighbor distance plot with k = 5. Horizontal lines have been drawn using
abline() to highlight the 5-NN distances at the start and end of the knee/elbow in the plot.

437Building your first DBSCAN model
swissDbs <- pmap(dbsParamSpace, dbscan, x = swissScaled)

swissDbs[[5]]

objects.200forclusteringDBSCAN
1=1.6, minPts=epsParameters:

The clustering contains 10 cluster(s) and 0 noise points.

1 2 3 4 5 6 7 8 9 10
1 189 1 1 1 3 1 1 1 1

Available fields: cluster, eps, minPts

We supply our scaled dataset as the argument to dbscan()’s argument, x. The output
from pmap() is a list where each element is the result of running DBSCAN on that par-
ticular combination of epsilon and minPts. To view the output for a particular permuta-
tion, we simply subset the list.

 The output, when printing the result of a dbscan() call, tells us the number of
objects in the data, the values of epsilon and minPts, and the number of identified clus-
ters and noise points. Perhaps the most important information is the number of cases
within each cluster. In this example, we can see there are 189 cases in cluster 2, and just
a single case in most of the other clusters. This is because this permutation was run with
minPts equal to 1, which allows clusters to contain just a single case. This is rarely what
we want and will result in a clustering model where no cases are identified as noise.

 Now that we have our clustering result, we should visually inspect the clustering to
see which (if any) of the permutations give a sensible result. To do this, we want to
extract the vector of cluster membership from each permutation as a column and
then add these columns to our original data.

 The first step is to extract the cluster memberships as separate columns in a tibble.
To do this, we use the map_dfc() function. We’ve encountered the map_df() function
before: it applies a function to each element of a vector and returns the output as a
tibble, where each output forms a different row of the tibble. This is actually the same
as using map_dfr(), where the r means row-binding. If, instead, we want each output
to form a different column of the tibble, we use map_dfc().

NOTE I’ve truncated the output here for the sake of space.

clusterResults <- map_dfc(swissDbs, ~.$cluster)

clusterResults

A tibble: 200 x 81
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11

<int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int>

Running DBSCAN on each combination of hyperparametersListing 18.5

Cluster memberships from DBSCAN permutationsListing 18.6

438 CHAPTER 18 Clustering based on density: DBSCAN and OPTICS

1 1 1 1 1 1 1 1 1 1 0 0
2 2 2 2 2 2 2 2 2 2 1 1
3 2 2 2 2 2 2 2 2 2 1 1
4 2 2 2 2 2 2 2 2 2 1 1
5 3 3 3 3 3 3 3 3 2 0 0
6 4 4 4 4 4 2 2 2 2 0 0
7 5 2 2 2 2 2 2 2 2 0 1
8 2 2 2 2 2 2 2 2 2 1 1
9 2 2 2 2 2 2 2 2 2 1 1

10 6 2 2 2 2 2 2 2 2 2 1
... with 190 more rows, and 70 more variables

Now that we have our tibble of cluster memberships, let’s use the bind_cols() func-
tion to, well, bind the columns of our swissTib tibble and our tibble of cluster mem-
berships. We call this new tibble swissClusters, which sounds like a breakfast cereal.
Notice that we have our original variables, with additional columns containing the
cluster membership output from each permutation.

NOTE Again, I’ve truncated the output slightly to save space.

swissClusters <- bind_cols(swissTib, clusterResults)

swissClusters

A tibble: 200 x 87
V4V3V2V1Top DiagonalLeft Right BottomLength

<dbl> <int> <int> <int> <int><dbl> <dbl><dbl> <dbl> <dbl>
1 215. 131 131. 9 9.7 141 1 1 1 1
2 215. 130. 130. 8.1 9.5 142. 2 2 2 2
3 215. 130. 130. 8.7 9.6 142. 2 2 2 2
4 215. 130. 130. 7.5 10.4 142 2 2 2 2
5 215 130. 130. 10.4 7.7 142. 3 3 3 3
6 216. 131. 130. 9 10.1 141. 4 4 4 4
7 216. 130. 130. 7.9 9.6 142. 5 2 2 2
8 214. 130. 129. 7.2 10.7 142. 2 2 2 2
9 215. 129. 130. 8.2 11 142. 2 2 2 2

10 215. 130. 130. 9.2 10 141. 6 2 2 2
... with 190 more rows, and 77 more variables

In order to plot the results, we would like to facet by permutation so we can draw a
separate subplot for each combination of our hyperparameters. To do this, we need to
gather() the data to create a new column indicating permutation number and another
column indicating the cluster number.

Binding cluster memberships to the original dataListing 18.7

Gathering the data, ready for plottingListing 18.8

swissClustersGathered <- gather(swissClusters,
key = "Permutation", value = "Cluster",
-Length, -Left, -Right,
-Bottom, -Top, -Diagonal)

439Building your first DBSCAN model
swissClustersGathered

A tibble: 16,200 x 8
Top Diagonal Permutation ClusterLeft Right BottomLength

<int><dbl> <chr><dbl> <dbl><dbl> <dbl> <dbl>
1 215. 131 131. 9 9.7 141 V1 1
2 215. 130. 130. 8.1 9.5 142. V1 2
3 215. 130. 130. 8.7 9.6 142. V1 2
4 215. 130. 130. 7.5 10.4 142 V1 2
5 215 130. 130. 10.4 7.7 142. V1 3
6 216. 131. 130. 9 10.1 141. V1 4
7 216. 130. 130. 7.9 9.6 142. V1 5
8 214. 130. 129. 7.2 10.7 142. V1 2
9 215. 129. 130. 8.2 11 142. V1 2

10 215. 130. 130. 9.2 10 141. V1 6
... with 16,190 more rows

Great—now our tibble is in a format ready for plotting. Looking back at figure 18.8, we
can see that the variables that most obviously separate clusters in the data are Right and
Diagonal. As such, we’ll plot these variables against each other by mapping them to the
x and y aesthetics, respectively. We map the Cluster variable to the color aesthetic
(wrapping it inside as.factor() so the colors aren’t drawn as a single gradient). We
then facet by Permutation, add a geom_point() layer, and add a theme. Because some
of the cluster models have a large number of clusters, we suppress the drawing of what
would be a very large legend, by adding the line theme(legend.position = "none").

ggplot(swissClustersGathered, aes(Right, Diagonal,
col = as.factor(Cluster))) +

facet_wrap(~ Permutation) +
geom_point() +
theme_bw() +
theme(legend.position = "none")

TIP The theme() function allows you to control the appearance of your plots
(such as changing background colors, gridlines, font sizes, and so on). To
find out more, call ?theme.

The resulting plot is shown in figure 18.10. We can see that different combinations of
epsilon and minPts have resulted in substantially different clustering models. Many of
these models capture the two obvious clusters in the dataset, but most do not.

Plotting cluster memberships of permutationsListing 18.9

Exercise 2
Let’s also visualize the number and size of the clusters returned by each permuta-
tion. Pass our swissClustersGathered object to ggplot() with the following aes-
thetic mappings:

 x = reorder(Permutation, Cluster)
 y = fill = as.factor(Cluster)

440 CHAPTER 18 Clustering based on density: DBSCAN and OPTICS

(continued)

Also add a geom_bar() layer. Now draw the same plot again, but this time add a
coord_polar() layer. Change the x aesthetic mapping to just Permutation. Can you
see what the reorder() function was doing?

V75 V76 V77 V78 V79 V8 V80 V81 V9

V67 V68 V69 V7 V70 V71 V72 V73 V74

V59 V6 V60 V61 V62 V63 V64 V65 V66

V50 V51 V52 V53 V54 V55 V56 V57 V58

V42 V43 V44 V45 V46 V47 V48 V49 V5

V34 V35 V36 V37 V38 V39 V4 V40 V41

V26 V27 V28 V29 V3 V30 V31 V32 V33

V18 V19 V2 V20 V21 V22 V23 V24 V25

12
9.

0
12

9.
5
13

0.
0
13

0.
5
13

1.
0
12

9.
0
12

9.
5
13

0.
0
13

0.
5
13

1.
0
12

9.
0
12

9.
5
13

0.
0
13

0.
5
13

1.
0
12

9.
0
12

9.
5
13

0.
0
13

0.
5
13

1.
0
12

9.
0
12

9.
5
13

0.
0
13

0.
5
13

1.
0
12

9.
0
12

9.
5
13

0.
0
13

0.
5
13

1.
0
12

9.
0
12

9.
5
13

0.
0
13

0.
5
13

1.
0
12

9.
0
12

9.
5
13

0.
0
13

0.
5
13

1.
0
12

9.
0
12

9.
5
13

0.
0
13

0.
5
13

1.
0

Right

D
ia

go
na

l

V10 V17V16V15V14V13V12V11V1

138
139
140
141
142

138
139
140
141
142

138
139
140
141
142

138
139
140
141
142

138
139
140
141
142

138
139
140
141
142

138
139
140
141
142

138
139
140
141
142

138
139
140
141
142

Figure 18.10 Visualizing the result of our tuning experiment. Each subplot shows the Right and
Diagonal variables plotted against each other for a different permutation of epsilon and minPts. Cases
are shaded by their cluster membership.

441Building your first DBSCAN model

How are we going to choose the best-performing combination of epsilon and minPts?
Well, as we saw in chapter 17, visually checking to make sure the clusters are sensible is
important, but we can also calculate internal cluster metrics to help guide our choice.

 In chapter 17, we defined our own function that would take the data and the clus-
ter membership from a clustering model and calculate the Davies-Bouldin and Dunn
indices and the pseudo F statistic. Let’s redefine this function to refresh your memory.

cluster_metrics <- function(data, clusters, dist_matrix) {
list(db = clusterSim::index.DB(data, clusters)$DB,

G1 = clusterSim::index.G1(data, clusters),
dunn = clValid::dunn(dist_matrix, clusters),
clusters = length(unique(clusters))

)
}

To help us select which of our clustering models best captures the structure in the
data, we’re going to take bootstrap samples from our dataset and run DBSCAN using
all 81 combinations of epsilon and minPts on each bootstrap sample. We can then cal-
culate the mean of each of our performance metrics and see how stable they are.

NOTE Recall from chapter 17 that a bootstrap sample is created by sampling
cases from the original data, with replacement, to create a new sample that’s
the same size as the original.

Let’s start by generating 10 bootstrap samples from our swissScaled dataset. We do
this just as we did in chapter 17, using the sample_n() function and setting the replace
argument equal to TRUE.

Defining theListing 18.10 cluster_metrics() function

Creating bootstrap samplesListing 18.11

swissBoot <- map(1:10, ~ {
swissScaled %>%

as_tibble() %>%
sample_n(size = nrow(.), replace = TRUE)

})

Before we run our tuning experiment, DBSCAN presents a potential problem when
calculating internal cluster metrics. As we saw from the discussion about them in
chapter 16, these metrics work by comparing the separation between clusters and the
spread within clusters (however they define these concepts). Think for a second about
the noise cluster, and how it will impact these metrics. Because the noise cluster isn’t a
distinct cluster occupying one region of the feature space but is typically spread out
across it, its impact on internal cluster metrics can make the metrics uninterpretable
and difficult to compare. As such, once we have our clustering results, we’re going to
remove the noise cluster so we can calculate our internal cluster metrics using only
non-noise clusters.

442 CHAPTER 18 Clustering based on density: DBSCAN and OPTICS

NOTE This doesn’t mean it’s not important to consider the noise cluster
when evaluating the performance of a DBSCAN model. Two cluster models
could theoretically give equally good cluster metrics, but one model may
place cases in the noise cluster that you consider to be important. You should
therefore always visually evaluate your cluster result (including noise cases),
especially when you have domain knowledge of your task.

In the following listing, we run the tuning experiment on our bootstrap samples. The
code is quite long, so we’ll walk through it step by step.

Performing the tuning experimentListing 18.12

metricsTib <- map_df(swissBoot, function(boot) {
clusterResult <- pmap(dbsParamSpace, dbscan, x = boot)

map_df(clusterResult, function(permutation) {
clust <- as_tibble(permutation$cluster)
filteredData <- bind_cols(boot, clust) %>%

filter(value != 0)

d <- dist(select(filteredData, -value))

cluster_metrics(select(filteredData, -value),
clusters = filteredData$value,
dist_matrix = d)

})
})

First, we use the map_df() function, because we want to apply an anonymous function
to each bootstrap sample and row-bind the results into a tibble. We run the DBSCAN
algorithm using every combination of epsilon and minPts in our dbsParamSpace using
pmap(), just as we did in listing 18.5.

Now that the cluster results have been generated, the next part of the code applies
our cluster_metric() function to each permutation of epsilon and minPts. Again, we
want this to be returned as a tibble, so we use map_df() to iterate an anonymous func-
tion over each element in clusterResult.

We start by extracting the cluster membership from each permutation, converting
it into a tibble (of a single column), and using the bind_cols() function to stick this
column of cluster membership onto the bootstrap sample. We then pipe this into the
filter() function to remove cases that belong to the noise cluster (cluster 0). Because
the Dunn index requires a distance matrix, we next define the distance matrix, d,
using the filtered data.

At this point, for a particular permutation of epsilon and minPts for a particular
bootstrap sample, we have a tibble containing the scaled variables and a column of
cluster membership for cases not in the noise clusters. This tibble is then passed to
our very own cluster_metrics() function (removing the value variable for the first
argument and extracting it for the second argument). We pass the distance matrix as
the dist_matrix argument.

443Building your first DBSCAN model

 Phew! That took quite a bit of concentration. I strongly suggest that you read back
through the code and make sure each line makes sense to you. Print the metricsTib
tibble. We end up with a tibble of four columns: one for each of our three internal
cluster metrics, and one containing the number of clusters. Each row contains the
result of a single DBSCAN model, 810 total (81 permutations of epsilon and minPts and
10 bootstrap samples for each).

 Now that we’ve performed our tuning experiment, the easiest way to evaluate the
results is to plot them.

Preparing the tuning result for plottingListing 18.13

metricsTibSummary <- metricsTib %>%
mutate(bootstrap = factor(rep(1:10, each = 81)),

eps = factor(rep(dbsParamSpace$eps, times = 10)),
minPts = factor(rep(dbsParamSpace$minPts, times = 10))) %>%

gather(key = "metric", value = "value",
-bootstrap, -eps, -minPts) %>%

mutate_if(is.numeric, ~ na_if(., Inf)) %>%
drop_na() %>%

group_by(metric, eps, minPts) %>%
summarize(meanValue = mean(value),

num = n()) %>%
group_by(metric) %>%
mutate(meanValue = scale(meanValue)) %>%
ungroup()

We first need to mutate() columns indicating which bootstrap a particular case used,
which epsilon value it used, and which minPts value it used. Read as far as the first line
break in listing 18.13 to see this.

Next, we need to gather the data such that we have a column indicating which of
our four metrics the row is indicating, so that we can facet by each metric. We do this
using the gather() function before the second line break in listing 18.13.

At this point, we have a problem. Some of the cluster models contain only a sin-
gle cluster. To return a sensible value, each of our three internal cluster metrics
requires a minimum of two clusters. When we apply our cluster_metrics() func-
tion to the clustering models, the function will return NA for the Davies-Bouldin index
and pseudo F statistic and INF for the Dunn index, for any model containing only a
single cluster.

TIP Run map_int(metricsTib, ~sum(is.na(.))) and map_int(metricsTib,
~sum(is.infinite(.))) to confirm this for yourself.

So let’s remove INF and NA values from our tibble. We do this by first turning INF val-
ues into NA. We use the mutate_if() function to consider only the numeric variable
(we could also have used mutate_at(.vars = "value", …)), and we use the na_if()

444 CHAPTER 18 Clustering based on density: DBSCAN and OPTICS
function to convert values to NA if they are currently INF. We then pipe this into
drop_na() to remove all the NA values at once.

 Finally, to generate mean values for each metric, for each combination of epsilon
and minPts, we first group_by()metric, eps, and minPts, and summarize() both the
mean and number of the value variable. Because the metrics are on different scales,
we then group_by()metric, scale() the meanValue variable, and then ungroup().

 That was some serious dplyring! Again, don’t just gloss over this code. Start again
from the top and read all of listing 18.13 to be sure you understand it. Also be com-
forted that I didn’t just write this all out the first time; I knew what I wanted to achieve,
and I worked through the problem line by line. At each step, I looked at the output to
make sure what I had done was correct and to work out what I needed to do next.
Print out the metricsTibSummary so you understand what we end up with.

 Fantastic. Now that our tuning data is in the correct format, let’s plot it. We’re
going to create a heatmap where epsilon and minPts are mapped to the x and y aesthet-
ics, and the value of the metric is mapped to the fill of each tile in the heatmap. There
will be a separate subplot for each metric. Also, because we removed rows containing
NA and INF values, some combinations of epsilon and minPts have fewer than 10 boot-
strap samples. To help guide our choice of hyperparameters, we’re going to map the
number of samples for each combination to the alpha aesthetic (transparency),
because we may have less confidence in a combination of hyperparameters that has
fewer bootstrap samples. We do this all in the following listing.

ggplot(metricsTibSummary, aes(eps, minPts,
fill = meanValue, alpha = num)) +

facet_wrap(~ metric) +
geom_tile(col = "black") +
theme_bw() +
theme(panel.grid.major = element_blank())

Aside from mapping the num variable to the alpha aesthetic, the only new thing here is
geom_tile(), which will create rectangular tiles for each combination of the x and y
variables. Setting col = "black" simply draws a black border around each individual tile.
To prevent major gridlines being drawn, we add the layer theme(panel.grid.major =
element_blank()).

 The resulting plot is shown in figure 18.11. We have four subplots: one for each of
our three internal cluster metrics, and one for the number of clusters. A hole at the
top right in each internal metric’s subplot shows where this area of the hyperparame-
ter tuning space resulted in only a single cluster (and we removed these values). Sur-
rounding the hole are tiles that are semitransparent, because some of the bootstrap
samples for these combinations of epsilon and minPts resulted in only a single cluster
and so were removed.

Plotting the results of the tuning experimentListing 18.14

445Building your first DBSCAN model
NOTE Your plot looking a little different than mine? This is because of the
random sampling we used to create the bootstrap samples. A similar pattern
should be present, however.

Let’s use this plot to guide our final choice of epsilon and minPts. It isn’t necessarily
straightforward, because there is no single, obvious combination that all three inter-
nal metrics agree on. First, let’s avoid combinations in or around the hole in the
plot—I think that’s a pretty clear starting point. Next, let’s remind ourselves that, in
theory, the best clustering model will be the one with the lowest Davies-Bouldin index
and the largest Dunn index and pseudo F statistic. So we’re looking for a combination
that best satisfies those criteria. With this in mind, before reading on, look at the plots
and try to decide which combination you would choose.

 I think I would choose an epsilon of 1.2 and a minPts of 9. Can you see that with this
combination of values (the top left in each subplot), the Dunn and pseudo F statistic
are near their highest, and the Davies-Bouldin index is at its lowest? Let’s find out
which row of our dbsParamSpace tibble corresponds to this combination of values:

9)==dbsParamSpace$minPts&1.2==which(dbsParamSpace$eps

73[1]

dunn G1

clusters db

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

eps

m
in

P
ts

Num
2.5

5.0

7.5

10.0

0

2

4

MeanValue

21.91.81.71.61.51.41.31.221.91.81.71.61.51.41.31.2

Figure 18.11 Visualizing the cluster performance experiment. Each subplot shows a heatmap for the
number of clusters, Davies-Bouldin index (db), Dunn index (dunn), and pseudo F statistic (G1) returned
by the cluster models. Each tile represents the combination of epsilon and minPts, and the depth of
shading of the tile indicates its value for each metric. The blank region at the top right in the metric
plots indicates a region with no data, and semitransparent tiles indicate fewer than 10 samples.

446 CHAPTER 18 Clustering based on density: DBSCAN and OPTICS
Next, let’s use ggpairs() to plot the final clustering. Because we calculated the inter-
nal cluster metrics, not considering the noise cluster, we’ll plot the result with and
without noise cases. This will allow us to visually confirm whether the assignment of
cases as noise is sensible.

filter(swissClustersGathered, Permutation == "V73") %>%
select(-Permutation) %>%
mutate(Cluster = as.factor(Cluster)) %>%
ggpairs(mapping = aes(col = Cluster),

upper = list(continuous = "density")) +
theme_bw()

We first filter our swissClustersGathered tibble to include only rows belonging to
permutation 73 (these are the cases clustered using our chosen combination of epsilon
and minPts). Next, we remove the column indicating the permutation number and
convert the column of cluster membership into a factor. We then use the ggpairs()
function to create the plot, mapping cluster membership to the color aesthetic.

 The resulting plot is shown in figure 18.12. The model appears to have done a
pretty good job of capturing the two obvious clusters in the dataset. Quite a lot of
cases have been classified as noise. Whether this is reasonable will depend on your

Plotting the final clustering with outliersListing 18.15

13 0 1 2

0.0

0.5

1.0

1.5

7

7

ClusterDiagonalTopBottomRightLeftLength

B
ottom

Left
R

ight
Length

Top
D

iagonal
C

luster

7 8 138 139 140 141 14210 11 12989 10 11 12

21
4.

0
21

4.
5

21
5.

0
21

5.
5

21
6.

0

12
9.

0

12
9.

5

13
0.

0

13
0.

5

13
1.

0
12

9.
0

12
9.

5
13

0.
0

13
0.

5
13

1.
0

129.0
129.5
130.0
130.5
131.0

129.0
129.5
130.0
130.5
131.0

8
9

10
11
12

8
9

10
11
12

138

0
12.5

0
12.5

0
12.5

139
140
141
142

Plotting our final DBSCAN cluster model withFigure 18.12 ggpairs(). This plot includes the noise
cluster.

447Building your first DBSCAN model

goal and how stringent you want to be. If it’s important to you that fewer cases are
placed in the noise cluster, you may want to choose a different combination of epsilon
and minPts. This is why relying on metrics alone isn’t good enough: expert/domain
knowledge should always be considered where it is available.

 Now let’s do the same thing, but without plotting outliers. All we change here is to
add Cluster != 0 in the filter() call.

filter(swissClustersGathered, Permutation == "V73", Cluster != 0) %>%
select(-Permutation) %>%
mutate(Cluster = as.factor(Cluster)) %>%
ggpairs(mapping = aes(col = Cluster),

upper = list(continuous = "density")) +
theme_bw()

The resulting plot is shown in figure 18.13. Looking at this plot, we can see that the
two clusters our DBSCAN model identified are quite neat and well separated.

Plotting the final clustering without outliersListing 18.16

129.6

130.0

130.4

1 2

0.0

0.5

1.0

1.5

7

Length BottomRightLeft ClusterDiagonalTop

Top
B

ottom
R

ight
Left

Length
D

iagonal
C

luster

7 8 140 141 14212139111099 101112

21
4.

4

21
4.

8
21

5.
2

21
5.

6

12
9.

6

13
0.

0

13
0.

4
13

1.
0

12
9.

0
12

9.
5

13
0.

0

13
0.

5

129.5
130.0
130.5

9

10

11

12

8
9

10
11
12

0

12.5
0

12.5
139
140
141
142

Figure 18.13 Plotting our final DBSCAN cluster model with ggpairs(). This plot excludes the
noise cluster.

WARNING Make sure you always look at your outliers. It’s possible for DBSCAN
to make clusters look more important than they are when outliers are removed.

Our clustering model seems pretty reasonable, but how stable is it? The final thing
we’re going to do to evaluate the performance of our DBSCAN model is calculate the

448 CHAPTER 18 Clustering based on density: DBSCAN and OPTICS
Jaccard index across multiple bootstrap samples. Recall from chapter 17 that the
Jaccard index quantifies the agreement of cluster membership between clustering
models trained on different bootstrap samples.

 To do this, we first need to load the fpc package. Then we use the clusterboot()
function the same way we did in chapter 17. The first argument is the data we’re going
to be clustering (our scaled tibble), B is the number of bootstraps (more is better,
depending on your computational budget), and clustermethod = dbscanCBI tells the
function to use the DBSCAN algorithm. We then set the desired values of epsilon and
MinPts (careful: note the capital M this time), and set showplots = FALSE to avoid
drawing 500 plots.

NOTE I’ve truncated the output to show the most important information.

library(fpc)

clustBoot <- clusterboot(swissScaled, B = 500,
clustermethod = dbscanCBI,
eps = 1.2, MinPts = 9,
showplots = FALSE)

clustBoot

Number of resampling runs: 500

Number of clusters found in data: 3

Clusterwise Jaccard bootstrap (omitting multiple points) mean:
[1] 0.6893 0.8074 0.6804

We can see the Jaccard indices for the three clusters (where cluster 3 is, confusingly,
the noise cluster). Cluster 2 has quite a high stability: 80.7% of cases in the original
cluster 2 are in agreement across the bootstrap samples. Clusters 1 and 3 are less sta-
ble, with ~68% agreement.

 We’ve now appraised the performance of our DBSCAN model in three ways: using
internal cluster metrics, examining the clusters visually, and using the Jaccard index to
evaluate their stability. For any particular clustering problem, you will need to evaluate
all this evidence together to make a decision as to whether your cluster model is
appropriate for the task at hand.

Calculating the Jaccard index across bootstrap samplesListing 18.17

Exercise 3
Use dbscan() to cluster our swissScaled dataset, keeping epsilon as 1.2 but set-
ting minPts to 1. How many cases are in the noise cluster? Why? The fpc package
also has a dbscan() function, so use dbscan::dbscan() to use the function from
the dbscan package.

449Building your first OPTICS model
Building your first OPTICS model18.3
In this section, I’m going to show you how we can use the OPTICS algorithm to create
an ordering of cases in a dataset and how we can extract clusters from this ordering.
We will directly compare the results we get using OPTICS to those we generated using
DBSCAN.

 To do this, we’re going to use the optics() function from the dbscan package.
The first argument is the dataset; just like DBSCAN, OPTICS is sensitive to the vari-
able scale, so we’re using our scaled tibble.

swissOptics <- optics(swissScaled, minPts = 9)

plot(swissOptics)

Just like the dbscan() function, optics() has the eps and minPts arguments. Because
epsilon is an optional argument for the OPTICS algorithm and only serves to speed
up computation, we’ll leave it as the default of NULL, which means there is no maxi-
mum epsilon. We set minPts equal to 9 to match what we used in our final DBSCAN
model.

 Once we’ve created our ordering, we can inspect the reachability plot by simply
calling plot() on the output from the optics() function; see figure 18.14. Notice
that we have two obvious troughs separated by high peaks. Remember that this indi-
cates regions of high density separated by regions of low density in the feature space.

Ordering cases with OPTICS and extracting clustersListing 18.18

200150100500

1.0

1.5

2.0

2.5

3.0

Reachability Plot

Order

R
ea

ch
ab

ili
ty

 d
is

ta
nc

e

Figure 18.14 The reachability plot generated from applying the OPTICS algorithm to our data.
The x-axis shows the processing order of the cases, and the y-axis shows the reachability distance
for each case. We can see two main troughs in the plot, bordered by peaks of higher reachability
distance.

450 CHAPTER 18 Clustering based on density: DBSCAN and OPTICS
Now let’s extract clusters from this ordering using the steepness method. To do so, we
use the extractXi() function, passing the output from the optics() function as the
first argument, and specifying the argument xi:

swissOpticsXi <- extractXi(swissOptics, xi = 0.05)

Recall that xi (ξ) is a hyperparameter that determines the minimum steepness (1 – ξ)
needed to start and end clusters in the reachability plot. How do we choose the value
of ξ? Well, in this example, I’ve simply chosen a value of ξ that gives a reasonable clus-
tering result (as you’ll see in a moment). As we know, this isn’t a very scientific or
objective approach; for your own work, you should tune ξ as a hyperparameter, just as
we did for epsilon and minPts for DBSCAN.

NOTE The ξ hyperparameter is bounded between 0 and 1, so this gives you a
fixed space to search within.

Let’s plot the clustering result so we can compare it with our DBSCAN model. We
mutate a new column in our dataset, containing the clusters we extracted using the
steepness method. We then pipe this data into the ggpairs() function.

swissTib %>%
mutate(cluster = factor(swissOpticsXi$cluster)) %>%
ggpairs(mapping = aes(col = cluster),

upper = list(continuous = "points")) +
theme_bw()

NOTE Because we have only a single noise case, this causes the computation
of the density plots to fail. Therefore, we set the upper panels to simply dis-
play "points" instead of density.

The resulting plot is shown in figure 18.15. Our OPTICS clustering has mostly identi-
fied the same two clusters as DBSCAN but has identified an additional cluster that
seems to be distributed across the feature space. This additional cluster doesn’t look
convincing to me (but we could calculate internal cluster metrics and cluster stability
to reinforce this conclusion). To improve the clustering, we should tune the minPts
and ξ hyperparameters, though we won’t do this here.

 You’ve learned how to use the DBSCAN and OPTICS algorithms to cluster your
data. In the next chapter, I’ll introduce you to mixture model clustering, a clustering
technique that fits a set of models to the data and assigns cases to the most probable
model. I suggest that you save your .R file, because we’re going to continue using the
same dataset in the next chapter. This is so we can compare the performance of our
DBSCAN and OPTICS models to the output of our mixture model.

Plotting the OPTICS clustersListing 18.19

451Strengths and weaknesses of density-based clustering
Strengths and weaknesses of density-based clustering18.4
While it often isn’t easy to tell which algorithms will perform well for a given task, here
are some strengths and weaknesses that will help you decide whether density-based
clustering will perform well for you.

 The strengths of density-based clustering are as follows:

 It can identify non-spherical clusters of different diameters.
 It is able to natively identify outlying cases.
 It can identify clusters of complex, non-spherical shapes.
 OPTICS is able to learn a hierarchical clustering structure and doesn’t require

the tuning of epsilon.
 OPTICS is able to find clusters of differing density.
 OPTICS can be sped up by setting a sensible epsilon value.

The weaknesses of density-based clustering are these:

 It cannot natively handle categorical variables.
 The algorithms cannot select the optimal number of clusters automatically.
 It is sensitive to data on different scales.
 DBSCAN is biased toward finding clusters of equal density.

313 0 1 2

0.0

0.5

1.0

1.5

7

Length Left Right Bottom DiagonalTop Cluster
Top

B
ottom

R
ight

Left
Length

D
iagonal

C
luster

7 8 13813914014114210 11 12989 10 11 12

21
4.

0
21

4.
5

21
5.

0
21

5.
5

21
6.

0

12
9.

0
12

9.
5

13
0.

0

13
0.

5

13
1.

0
12

9.
0

12
9.

5
13

0.
0

13
0.

5
13

1.
0

129.0
129.5
130.0
130.5
131.0

129.0
129.5
130.0
130.5
131.0

8
9

10
11
12

8
9

10
11
12

138

0
10

0
10

0
10

0
10

139
140
141
142

7

Plotting our final OPTICS cluster model withFigure 18.15 ggpairs()

452 CHAPTER 18 Clustering based on density: DBSCAN and OPTICS
Summary
 Density-based clustering algorithms like DBSCAN and OPTICS find clusters by

searching for high-density regions separated by low-density regions of the fea-
ture space.

 DBSCAN has two hyperparameters, epsilon and minPts, where epsilon is the search
radius around each case. If the case has minPts cases inside its epsilon, that case is
a core point.

 DBSCAN recursively scans epsilon of all cases density-connected to the starting
case in any cluster, categorizing cases as either core points or border points.

 DBSCAN and OPTICS create a noise cluster for cases that lie too far away from
high-density regions.

 OPTICS creates an ordering of the cases from which clusters can be extracted.
This ordering can be visualized as a reachability plot where troughs separated
by peaks indicate clusters.

Solutions to exercises
1 Print the result of using expand.grid(), and inspect the result to understand

what the function does:

dbsParamSpace

The function creates a data frame whose rows make up
every combination of the input vectors.

2 Plot the tuning experiment to visualize the number and size of the clusters
from each permutation:

ggplot(swissClustersGathered, aes(reorder(Permutation, Cluster),
fill = as.factor(Cluster))) +

geom_bar(position = "fill", col = "black") +
theme_bw() +
theme(legend.position = "none")

Exercise 4
Use dbscan() to cluster our unscaled swissTib dataset, keeping epsilon at 1.2 and
minPts at 9. Are the clusters the same? Why?

Exercise 5
Train extract clusters from our swissOptics object, using the xi values 0.035, 0.05,
and 0.065. Use plot() to see how these different values change the clusters
extracted from the reachability plot.

453Solutions to exercises
ggplot(swissClustersGathered, aes(reorder(Permutation, Cluster),
fill = as.factor(Cluster))) +

geom_bar(position = "fill", col = "black") +
coord_polar() +
theme_bw() +
theme(legend.position = "none")

ggplot(swissClustersGathered, aes(Permutation,
fill = as.factor(Cluster))) +

geom_bar(position = "fill", col = "black") +
coord_polar() +
theme_bw() +
theme(legend.position = "none")

The reorder function orders the levels of the first argument
according to the values of the second argument.

3 Use dbscan() with an epsilon of 1.2 and a minPts of 1:

1)=1.2, minPts=epsdbscan::dbscan(swissScaled,<-swissDbsNoOutlier

swissDbsNoOutlier

There are no cases in the noise cluster because the minimum cluster
size is now 1, meaning all cases are core points.

4 Use dbscan() to cluster our unscaled data:

9)=1.2, minPts=epsdbscan::dbscan(swissTib,<-swissDbsUnscaled

swissDbsUnscaled

The clusters are not the same as those learned for the scaled data.
This is because DBSCAN and OPTICS are sensitive to scale differences.

5 Extract different clusters from swissOptics using different values of xi:

swissOpticsXi035 <- extractXi(swissOptics, xi = 0.035)
plot(swissOpticsXi035)

swissOpticsXi05 <- extractXi(swissOptics, xi = 0.05)
plot(swissOpticsXi05)

swissOpticsXi065 <- extractXi(swissOptics, xi = 0.065)
plot(swissOpticsXi065)

Clustering based on
distributions with
mixture modeling
Our final stop in unsupervised learning techniques brings us to an additional
approach to finding clusters in data: mixture model clustering. Just like the other clus-
tering algorithms we’ve covered, mixture model clustering aims to partition a data-
set into a finite set of clusters.

 In chapter 18, I showed you the DBSCAN and OPTICS algorithms, and how
they find clusters by learning regions of high and low density in the feature space.
Mixture model clustering takes yet another approach to identify clusters. A mixture
model is any model that describes a dataset by combining a mix of two or more prob-
ability distributions. In the context of clustering, mixture models help us to identify
clusters by fitting a finite number of probability distributions to the data and itera-
tively modifying the parameters of those distributions until they best fit the under-
lying data. Cases are then assigned to the cluster of the distribution under which
they are most likely. The most common form of mixture modeling is Gaussian mix-
ture modeling, which fits Gaussian (or normal) distributions to the data.

This chapter covers
 Understanding mixture model clustering

 Understanding the difference between hard and
soft clustering
454

455What is mixture model clustering?
 By the end of this chapter, I hope you’ll have a firm understanding of how mixture
model clustering works and its differences and similarities when compared to some of
the algorithms we’ve already covered. We’ll apply this method to our Swiss banknote
data from chapter 18 to help you understand how mixture model clustering differs
from density-based clustering. If you no longer have the swissTib object defined in
your global environment, just rerun listing 18.1.

19.1 What is mixture model clustering?
In this section, I’m going to show you what mixture model clustering is and how it
uses an algorithm called expectation-maximization to iteratively improve the fit of the
clustering model. The clustering algorithms we’ve met so far are all considered hard
clustering methods, because each case is assigned wholly to one cluster and not to
another. One of the strengths of mixture model clustering is that it is a soft clustering
method: it fits a set of probabilistic models to the data and assigns each case a proba-
bility of belonging to each model. This allows us to quantify the probability of each
case belonging to each cluster. Thus we can say, “This case has a 90% probability of
belonging to cluster A, a 9% probability of belonging to cluster B, and a 1% probabil-
ity of belonging to cluster C.” This is useful because it gives us the information we
need to make better decisions. Say, for example, a case has a 51% probability of
belonging to one cluster and 49% probability of belonging to the other, how happy
are we to include this case in its most probable cluster? Perhaps we’re not confident
enough to include such cases in our final clustering model.

NOTE Mixture model clustering doesn’t, in and of itself, identify outlying cases
like DBSCAN and OPTICS do, but we can manually set a cut-off of probability if
we like. For example, we could say that any case with less than a 60% probability
of belonging to its most probable cluster should be considered an outlier.

So mixture model clustering fits a set of probabilistic models to the data. These models
can be a variety of probability distributions but are most commonly Gaussian distribu-
tions. This clustering approach is called mixture modeling because we fit multiple (a
mixture of) probability distributions to the data. Therefore, a Gaussian mixture model
is simply a model that fits multiple Gaussian distributions to a set of data.

 Each Gaussian in the mixture represents a potential cluster. Once our mixture of
Gaussians fits the data as well as possible, we can calculate the probability of each case
belonging to each cluster and assign cases to the most probable cluster. But how do we
find a mixture of Gaussians that fits the underlying data well? We can use an algorithm
called expectation-maximization (EM).

19.1.1 Calculating probabilities with the EM algorithm

In this section, I’ll take you through some prerequisite knowledge you’ll need to know
in order to understand the EM algorithm. This focuses on how the algorithm calcu-
lates the probability that each case comes from each Gaussian.

456 CHAPTER 19 Clustering based on distributions with mixture modeling
 Imagine that we have a one-dimensional dataset: a number line with cases distrib-
uted across it (see the top panel of figure 19.1). First, we must predefine the number
of clusters to look for in the data; this sets the number of Gaussians we will be fitting.
In this example, let’s say we believe two clusters exist in the dataset.

NOTE This is one of the ways in which mixture model clustering is similar to
k-means. I’ll show you the other way in which they are similar later in the
chapter.

A one-dimensional Gaussian distribution needs two parameters to define it: the mean
and the variance. So we randomly initialize two Gaussians along the number line by
selecting random values for their means and variances. Let’s call these Gaussians j and
k. Then, given these two Gaussians, we calculate the probability that each case belongs
to one cluster versus the other. To do this, we can use our good friend, Bayes’ rule.

 Recall from chapter 6 that we can use Bayes’ rule to calculate the posterior proba-
bility of an event (p(k |x)) given the likelihood (p(x |k)), prior (p(k)), and evidence
(p(x)).

Equation 19.1

k j

Randomly initialize Gaussians.

k j

k j

k
j

Calculate the posterior probability of each case
belonging to each Gaussian (expectation).

Update the means and variances of the
Gaussians (maximization).

Repeat the cycle of expectation-maximization
until convergence.

Figure 19.1 The expectation-maximization algorithm for two, one-dimensional Gaussians. Dots
represent cases along a number line. Two Gaussians are randomly initialized along the line. In the
expectation step, the posterior probability of each case for each Gaussian is calculated (indicated
by shading). In the maximization step, the means, variances, and priors for each Gaussian are
updated based on the calculated posteriors. The process continues until the likelihood converges.

p k x()
p x k() p k()×

p x()
--------------------------------=

457What is mixture model clustering?
In this case, p(k |x) is the probability of case x belonging to Gaussian k ; p(x |k) is the
probability of observing case x if you were to sample from Gaussian k ; p(k) is the prob-
ability of a randomly selected case belonging to Gaussian k ; and p(x) is the probability
of drawing case x if you were to sample from the entire mixture model as a whole. The
evidence, p(x), is therefore the probability of drawing case x from either Gaussian.

 When computing the probability of one event or the other occurring, we simply
add together the probabilities of each event occurring independently. Therefore, the
probability of drawing case x from Gaussian j or k is the probability of drawing it from
Gaussian j plus the probability of drawing it from Gaussian k. The probability of draw-
ing case x from one of the Gaussians is the likelihood multiplied by the prior for that
Gaussian. With this in mind, we can write our Bayes’ rule more fully, as shown in equa-
tion 19.2.

Equation 19.2

Notice that the evidence has been expanded to more concretely show how the proba-
bility of drawing case xi from either Gaussian is the sum of the probabilities of drawing
it from either independently. Equation 19.2 allows us to calculate the posterior proba-
bility of case xi belonging to Gaussian k. Equation 19.3 shows the same calculation, but
for the posterior probability of case xi belonging to Gaussian j.

Equation 19.3

So far, so good. But how do we calculate the likelihood and the priors? The likelihood
is the probability density function of the Gaussian distribution, which tells us the rela-
tive probability of drawing a case with a particular value from a Gaussian distribution
with a particular combination of mean and variance. The probability density function
for Gaussian distribution k is shown in equation 19.4, but it isn’t necessary for you to
memorize it:

Equation 19.4

where µk and σk
2 are the mean and variance, respectively, for Gaussian k.

 At the start of the algorithm, the prior probabilities are generated randomly, just
like the means and variances of the Gaussians. These priors get updated at each itera-
tion to be the sum of the posterior probabilities for each Gaussian, divided by the
number of cases. You can think of this as the mean posterior probability for a particu-
lar Gaussian across all cases.

p k xi()
p xi k() p k()×

p xi k()p k() p xi j()p j()+
---=

p j xi()
p xi j() p j()×

p xi k()p k() p xi j()p j()+
---=

p xi k() 1

2πσk
2

--------------------e

xi μk–()2

2σk
2

-----------------------–
=

458 CHAPTER 19 Clustering based on distributions with mixture modeling

19.1.2 EM algorithm expectation and maximization steps

Now that you have the necessary knowledge to understand how the posterior probabili-
ties are calculated, let’s see how the EM algorithm iteratively fits the mixture model.
The EM algorithm (as its name suggests) has two steps: expectation and maximiza-
tion. The expectation step is where the posterior probabilities are calculated for each
case, for each Gaussian. This is shown in the second panel from the top in figure 19.1.

 At this stage, the algorithm uses Bayes’ rule as we set out earlier, to calculate the
posterior probabilities. The cases along the number line in figure 19.1 are shaded to
indicate their posterior probabilities.

 Next comes the maximization step. The job of the maximization step is to update
the parameters of the mixture model, to maximize the likelihood of the underlying
data. This means updating the means, variances, and priors of the Gaussians.

 Updating the mean of a particular Gaussian involves adding up the values of each
case, weighted by their posterior probability for that Gaussian, and dividing by the
sum of all the posterior probabilities. This is shown in equation 19.5.

Equation 19.5

Think about this for a second. Cases that are close to the mean of the distribution will
have a high posterior probability for that distribution and so will contribute more to
the updated mean. Cases far away from the distribution will have a small posterior
probability and will contribute less to the updated mean. The result is that the Gauss-
ian will move toward the mean of the cases that are most probable under this Gaussian.
You can see this illustrated in the third panel of figure 19.1.

 The variance of each Gaussian is updated in a similar way. We sum the squared differ-
ence between each case and the Gaussian’s mean, multiplied by the case’s posterior, and
then divide by the sum of posteriors. This is shown in equation 19.6. The result is that the
Gaussian will get wider or narrower, based on the spread of the cases that are most prob-
able under this Gaussian. You can also see this illustrated in the third panel of figure 19.1.

Equation 19.6

μk

p k xi()xi
i 1=

n

p k xi()
i 1=

n

--------------------------------=

σ2
k

p k xi() xi μk–()2

i 1=

n

p k xi()
i 1=

n

---=

The last thing to be updated are the prior probabilities for each Gaussian. As men-
tioned already, the new priors are calculated by dividing the sum of the posterior
probabilities for a particular Gaussian, and dividing by the number of cases, as shown
in equation 19.7. This means that a Gaussian for which many cases have a large poste-
rior probability will have a large prior probability.

459What is mixture model clustering?
 Conversely, a Gaussian for which few cases have a large posterior probability will
have a small prior probability. You can think of this as a soft or probabilistic equivalent
to setting the prior equal to the proportion of cases belonging to each Gaussian.

Equation 19.7

Once the maximization step is complete, we perform another iteration of the expecta-
tion step, this time computing the posterior probabilities for each case under the new
Gaussians. Once this is done, we then rerun the maximization step, again updating
the means, variances, and priors for each Gaussian based on the posteriors. This cycle
of expectation-maximization continues iteratively until either a specified number of
iterations is reached or the overall likelihood of the data under the model changes by
less than a specified amount (called convergence).

19.1.3 What if we have more than one variable?

In this section, we’ll extend what you learned about how the EM algorithm works in
one dimension, to clustering over multiple dimensions. It is rare to come across a uni-
variate (one-dimensional) clustering problem. Usually, our datasets contain multiple
variables that we wish to use to identify clusters. I limited my explanation of the EM
algorithm for Gaussian mixture models in the previous section, because a univariate
Gaussian has only two parameters: its mean and variance. When we have a Gaussian dis-
tribution in more than one dimension (a multivariate Gaussian), we need to describe it
using its centroid and its covariance matrix.

 We’ve come across centroids in previous chapters: a centroid is simply a vector of
means, one for each dimension/variable in the dataset. A covariance matrix is a square
matrix whose elements are the covariance between variables. For example, the value in
the second row, third column of a covariance matrix indicates the covariance between
variables 2 and 3 in the data. Covariance is an unstandardized measure of how much
two variables change together. A positive covariance means that as one variable increases,
so does the other. A negative covariance means that as one variable increases, the other
decreases. A covariance of zero usually indicates no relationship between the variables.
We can calculate the covariance between two variables using equation 19.8.

Equation 19.8

NOTE While covariance is an unstandardized measure of the relationship
between two variables, correlation is a standardized measure of the relationship
between two variables. We can convert covariance into correlation by dividing
it by the product of the variables’ standard deviations.

pk

p k xi()
i 1=

n

n

---------------------------=

Cov x y,)(
xi x–() yi y–()

i 1=

n

n 1–

---=

460 CHAPTER 19 Clustering based on distributions with mixture modeling

The covariance between one variable and itself is simply that variable’s variance.
Therefore, the diagonal elements of a covariance matrix are the variances of each of
the variables.

TIP Covariance matrices are often called variance-covariance matrices for this
reason.

If the EM algorithm only estimated a variance for each Gaussian in each dimension,
the Gaussians would be perpendicular to the axes of the feature space. Put another
way, it would force the model to assume there were no relationships between the vari-
ables in the data. It’s usually more sensible to assume there will be some degree of
relationship between the variables, and estimating the covariance matrix allows the
Gaussians to lie diagonally across the feature space.

NOTE Because we estimate the covariance matrix, Gaussian mixture model
clustering is insensitive to variables on different scales. Therefore, we don’t
need to scale our variables before training the model.

When we’re clustering over more than one dimension, the EM algorithm randomly
initializes the centroid, covariance matrix, and prior for each Gaussian. It then calcu-
lates the posterior probability for each case, for each Gaussian in the expectation step.
In the maximization step, the centroid, covariance matrix, and prior probability are
updated for each Gaussian. The EM algorithm continues to iterate until either the
maximum number of iterations is reached or the algorithm reaches convergence. The
EM algorithm for a bivariate case is illustrated in figure 19.2.

Variable 1Variable 1

Variable 1Variable 1

V
ar

ia
bl

e
2

V
ar

ia
bl

e
2

V
ar

ia
bl

e
2

V
ar

ia
bl

e
2

Expectation step

Maximization step

k
j

Randomly initialize
Gaussians

Iterate until

1. Calculate posteriors
for each case.

2. Update the centroids,
covariance matrices, and
priors for each Gaussian.

3. Continue the cycle of
expectation-maximization
until the improvement in
likelihood is negligible.

convergence

Figure 19.2 The expectation-maximization algorithm for two, two-dimensional Gaussians.
Two Gaussians are randomly initialized in the feature space. In the expectation step, the
posterior probabilities for each case are calculated for each Gaussian. In the maximization
step, the centroids, covariance matrices, and priors are updated for each Gaussian, based
on the posteriors. The process continues until the likelihood converges.

461Building your first Gaussian mixture model for clustering

19.2

The mathematics for the multivariate case
The equations for updating the means and (co)variances are a little more complicated
than those we encountered in the univariate case. If you’re interested, here they are.

The mean of Gaussian k for variable a is

μk,a = Σ
n

i=1
(p(k⏐xi)
n × p(k)) xi,a

The centroid of the Gaussian is therefore just a vector where each element is the
mean of a different variable.

The covariance between variables a and b for Gaussian k is

(σk)a,b = Σ
n

i=1
(p(k⏐xi)
n × p(k))(xi,a – μ k,a)(xi,b – μ k,b)

where σk is the covariance matrix for Gaussian k.

Finally, in the multivariate case, the likelihood (p(xi|k)) now needs to take into account
the covariance, and so it now becomes

p(xi⏐k) =
1

√2π⏐Σk⏐

e–0.5(x→i – μ→k)T Σk
–1(x→i – μ→k)

Does this process seem familiar to you—iteratively updating the position of the clus-
ters based on how far cases in the data are from them? We saw a similar procedure for
the k-means algorithms in chapter 16. Gaussian mixture model clustering therefore
extends k-means clustering to allow non-spherical clusters or different diameters (due
to the covariance matrix) and soft clustering. In fact, if you were to constrain a Gauss-
ian mixture model such that all clusters had the same variance, no covariance, and
equal priors, you would get a result very similar to that provided by Lloyd’s algorithm!

Building your first Gaussian mixture model for
clustering
In this section, I’ll show you how to build a Gaussian mixture model for clustering.
We’ll continue using the Swiss banknote dataset so we can compare the results to the
DBSCAN and OPTICS clustering results. An immediate advantage of mixture model
clustering over DBSCAN and OPTICS is that it is invariant to variables on different
scales, so there’s no need to scale our data first.

NOTE For correctness, I should say that there’s no need to scale our data as
long as we make no prior specification of the covariances of the model com-
ponents. It’s possible to specify our prior beliefs of the means and covariances
of the components, though we won’t do that here. If we were to do this, it
would be important for the covariances to consider the scale of the data.

462 CHAPTER 19 Clustering based on distributions with mixture modeling
The mlr package doesn’t have an implementation of the mixture modeling algorithm
we’re going to use, so instead we’ll use functions from the mclust package. Let’s start
by loading the package:

library(mclust)

There are a few things I particularly like about using the mclust package for cluster-
ing. The first is that it’s the only R package I know of that prints a cool logo to the con-
sole when you load it. The second is that it displays a progress bar to indicate how
much longer your clustering will take (very important for judging whether there’s
time for a cup of tea). And third, its function for fitting the model will automatically
try a range of cluster numbers and try to select the best-fitting number. We can also
manually specify the number of clusters if we think we know better.

 Let’s use the Mclust() function to perform the clustering and then call plot() on
the results.

swissMclust <- Mclust(swissTib)

plot(swissMclust)

Plotting the Mclust() output does something a little odd (and irritating, as far as I’m
concerned). It prompts us to enter a number from 1 to 4, corresponding to one of the
following options:

1 BIC
2 Classification
3 Uncertainty
4 Density

Entering the number will draw the corresponding plot containing useful information.
Let’s look at each of these plots in turn.

 The first plot available to us shows the Bayesian information criterion (BIC) for the
range of cluster numbers and model types the Mclust() function tried. This plot is
shown in figure 19.3. The BIC is a metric for comparing the fit of different models,
and it penalizes us for having too many parameters in the model. The BIC is usually
defined as in equation 19.9.

Equation 19.9

where n is the number of cases, p is the number of parameters in the model, and L is
the overall likelihood of the model.

 Therefore, for a fixed likelihood, as the number of parameters increases, the BIC
increases. Conversely, for a fixed number of parameters, as the model likelihood

Performing and plotting mixture model clusteringListing 19.1

BIC n()pln 2 L()ln–=

463Building your first Gaussian mixture model for clustering
increases, the BIC decreases. Therefore, the smaller the BIC, the better and/or more
parsimonious our model is. Imagine that we had two models, each of which fit the
dataset equally well, but one had 3 parameters and the other had 10. The model with
3 parameters would have the lower BIC.

 The form of BIC shown in the plot is actually sort of the other way around and
takes the form shown in equation 19.10. After being rearranged this way, better fitting
and/or more parsimonious models will actually have a higher BIC value.

Equation 19.10

Now we know what the BIC is and how to interpret it, but what are all the lines in fig-
ure 19.3? Well, the Mclust() function tries a range of cluster numbers for us, for a
range of different model types. For each combination of model type and cluster num-
ber, the function evaluates the BIC. This information is conveyed in our BIC plot. But
what do I mean by model types? I didn’t mention anything about this when I showed
you how Gaussian mixture models work. When we train a mixture model, it’s possible
to put constraints on the covariance matrix to reduce the number of parameters
needed to describe the model. This can help to prevent overfitting the data.

 Each of the model types is represented by a different line in figure 19.3, and each
has a strange three-letter code identifying it. The first letter of each code refers to the
volume of each Gaussian, the second letter refers to the shape, and the third letter
refers to the orientation. Each of these components can take one of the following:

 E for equal
 V for variable

−2000

−2500

–3000

Number of components

B
IC

1 2 3 4 5 6 7 8 9

EII
VII
EEI
VEI
EVI
VVI
EEE

EEV
EVE
EVV
VEE
VVE
VEV
VVV

Figure 19.3 The BIC plot from our mclust model. The x-axis shows the number of clusters, the
y-axis shows the Bayesian information criterion (BIC), and each line shows a different model, with
the three-letter code indicating which constraints are put on the covariance matrix. In this arrangement
of the BIC, higher values indicate better-fitting and/or more parsimonious models.

BIC L 0.5 p n()ln××–=

464 CHAPTER 19 Clustering based on distributions with mixture modeling
The shape and orientation components can also take a value of I for identity. The
effects of the values on models are as follows:

 Volume component:
– E—Gaussians with equal volume
– V—Gaussians with different volumes

 Shape component:
– E—Gaussians with equal aspect ratios
– V—Gaussians with different aspect ratios
– I—Clusters that are perfectly spherical

 Orientation component:
– E—Gaussians with the same orientation through the feature space
– V—Gaussians with different orientations
– I—Clusters that are orthogonal to the axes of the feature space

So really, the Mclust() function is performing a tuning experiment for us and will
automatically select the model with the highest BIC value. In this case, the best model
is the one that uses the VVE covariance matrix with three Gaussians (use swiss-
Mclust$modelName and swissMclust$G to extract this information).

 That’s the first plot, which is certainly useful. Perhaps the most useful plot, how-
ever, is the one obtained from option 2. It shows us our final clustering result from the
selected model; see figure 19.4. The ellipses indicate the covariances of each cluster,

129.0 130.0 131.0 7 8 9 10 11 12

8129.0214.0
138

141

1211109131.0130.0216.0215.0

142140138

214.0

215.5

129.0

130.5

129.0

130.5

7

9

11

8

10

12

Length

Left

Right

Bottom

Top

Diagonal

Figure 19.4 The classification plot from our mclust model. All variables in the original data are plotted
against each other in a scatterplot matrix, with cases shaded and shaped according to their cluster.
Ellipses indicate the covariances of each Gaussian, and stars indicate their centroids.

465Strengths and weaknesses of mixture model clustering
and the star at the center of each indicates its centroid. The model appears to fit the
data well and seems to have identified three reasonably convincing clusters compared
to the two identified by our DBSCAN model (though we should use internal cluster
metrics and Jaccard indices to more objectively compare the models).

 The third plot is similar to the second, but it sets the size of each case based on its
uncertainty (see figure 19.5). A case whose posterior probabilities aren’t dominated
by a single Gaussian will have a high uncertainty, and this plot helps us identify cases
that could be considered outliers.

The fourth and final plot shows the density of the final mixture model (see figure 19.6).
I find this plot less useful, but it looks quite cool. To exit Mclust()’s plot() method,
you need to enter 0 (which is why I find this irritating).

19.3 Strengths and weaknesses of mixture model clustering
While it often isn’t easy to tell which algorithms will perform well for a given task, here
are some strengths and weaknesses that will help you decide whether mixture model
clustering will perform well for you.

 The strengths of mixture model clustering are as follows:

 It can identify non-spherical clusters of different diameters.
 It estimates the probability that a case belongs to each cluster.
 It is insensitive to variables on different scales.

131.0130.0129.0 7 8 9 10 11 12

8129.0214.0
138

141

1211109131.0130.0216.0215.0

138 140 142

214.0

215.5

129.0

130.5

129.0

130.5

7

9

11

8

10

12

Length

Left

Right

Bottom

Top

Diagonal

Figure 19.5 The uncertainty plot from our mclust model. This plot is similar to the classification plot,
except that the size of each case corresponds to its uncertainty under the final model.

466 CHAPTER 19 Clustering based on distributions with mixture modeling
The weaknesses of mixture model clustering are these:

 While the clusters need not be spherical, they do need to be elliptical.
 It cannot natively handle categorical variables.
 It cannot select the optimal number of clusters automatically.
 Due to the randomness of the initial Gaussians, it has the potential to converge

to a locally optimal model.
 It is sensitive to outliers.
 If the clusters cannot be approximated by a multivariate Gaussian, it’s unlikely

the final model will fit well.

Exercise 1
Use the Mclust() function to train a model, setting the G argument to 2 and the
modelNames argument to "VVE" to force a VVE model with two clusters. Plot the
results, and examine the clusters.

Exercise 2
Using the clusterboot() function, calculate the stability of the clusters generated
from a two-cluster and a three-cluster VVE model. Hint: Use noisemclustCBI as the
clustermethod argument to use mixture modeling. Is it easy to compare the Jaccard
indices of models with different numbers of clusters?

131.0130.0129.0 10 11 12987

8129.0214.0
138

141

1211109131.0130.0216.0215.0

142140138

214.0

215.5

129.0

130.5

129.0

130.5

7

9

11

8

10

12

Length

Left

Right

Bottom

Top

Diagonal

Figure 19.6 The density plot from our mclust model. This matrix of plots shows the 2D density of the
final model for each combination of variables in the feature space.

467Solutions to exercises
Summary
 Gaussian mixture model clustering fits a set of Gaussian distributions to the

data and estimates the probability of the data coming from each Gaussian.
 The expectation-maximization (EM) algorithm is used to iteratively update the

model until the likelihood of the data converges.
 Gaussian mixture modeling is a soft-clustering method that gives us a probabil-

ity of each case belonging to each cluster.
 In one dimension, the EM algorithm only needs to update the mean, variance,

and prior probability of each Gaussian.
 In more than one dimension, the EM algorithm needs to update the centroid,

covariance matrix, and prior probability of each Gaussian.
 Constraints can be placed on the covariance matrix to control the volume,

shape, and orientation of the Gaussians.

Solutions to exercises
1 Train a VVE mixture model with two clusters:

swissMclust2 <- Mclust(swissTib, G = 2, modelNames = "VVE")

plot(swissMclust2)

2 Compare the cluster stability of a two- and three-cluster mixture model:

library(fpc)

mclustBoot2 <- clusterboot(swissTib, B = 10,
clustermethod = noisemclustCBI,
G = 2, modelNames = "VVE",
showplots = FALSE)

mclustBoot3 <- clusterboot(swissTib, B = 10,
clustermethod = noisemclustCBI,
G = 3, modelNames = "VVE",
showplots = FALSE)

mclustBoot2

mclustBoot3

It can be challenging to compare the Jaccard indices between models with
different numbers of clusters. The model with three clusters may better
represent nature, but as one of the clusters is small, the membership is
more variable between bootstrap samples.

Final notes and
further reading
Take a moment to look back at all the topics we’ve covered throughout this book.
We’ve covered a huge amount of information, and now that we’re near the end of
the book, I’d like to put it all together to give you the bigger picture. At university, I
used to get frustrated with lecturers who would assume that because they had
taught something to us, we would simply remember it. I know this isn’t how most
people learn, and you may well have forgotten many of the details I tried to teach
throughout the book. That’s okay—I hope you feel that you can pick up this book
as a reference for future machine learning projects you might be working on. And
in this chapter, I summarize many of the broad, important concepts we touched on
throughout the book.

 After completing this book, you have a formidable number of machine learning
algorithms in your toolbox—enough to tackle a huge range of problems. I also
hope that you now know a general approach to machine learning and, importantly,
how to objectively evaluate the performance of your model-building processes.
While I’ve provided you with both “bread and butter” algorithms as well as modern

This chapter covers
 A brief summary of what we’ve covered

 A roadmap to further your knowledge
468

469A brief recap of machine learning concepts
ones, machine learning research is fast moving. There are many more algorithms I
didn’t cover, such as those used in deep learning, reinforcement learning, and anom-
aly detection. Therefore, in this chapter, I also provide you with several potential ave-
nues for future learning. When learning something new, I get frustrated when I reach
the end of the textbook and then have no idea where to go next; so, I’ll recommend
additional books and resources to further your learning.

20.1 A brief recap of machine learning concepts
In this section, I’ll summarize the general machine learning concepts we covered
throughout the book, referencing the relevant sections of the book as we go. These
concepts include the following:

 Types of machine learning algorithms
 The bias-variance trade-off
 Model validation
 Hyperparameter tuning
 Missing value imputation
 Feature engineering and feature selection
 Ensemble techniques
 Regularization

My hope is that now that you’ve completed the book, these concepts will fit more con-
cretely into your bigger picture of machine learning.

20.1.1 Supervised, unsupervised, and semi-supervised learning

Machine learning tasks can be divided into supervised and unsupervised tasks, based
on whether the algorithm has access to labeled data: whether we have access to the
ground truth when training the model. Algorithms that learn patterns in the data that
can be used to predict the ground truth are said to be supervised. Supervised machine
learning algorithms can be further distinguished, based on the kind of output variable
they predict. Supervised learning algorithms that predict categorical variables (or
classes) are said to be classification algorithms, while those that predict continuous vari-
ables are said to be regression algorithms.

NOTE Some algorithms—like k-nearest neighbors, random forest, and
XGBoost—can be used for both classification and regression.

Unsupervised algorithms learn patterns in the data without any form of ground truth.
We can differentiate these algorithms based on what their purpose is. Unsupervised
learning algorithms that can compress the information in a high-dimensional dataset
into a lower-dimensional representation are called dimension-reduction algorithms. Unsu-
pervised learning algorithms that find groups of cases that are more similar to each
other than cases in other groups are called clustering algorithms.

470 CHAPTER 20 Final notes and further reading
 You first encountered these definitions in section 1.2, all the way back in chapter 1.
I’ve reproduced figure 1.5 in figure 20.1: it summarizes the differences between super-
vised and unsupervised learning.

1. Classification and regression
algorithms are given labeled data.

2. They output classification and
regression models, respectively.

3. We pass unlabeled, new
data into the models.

4. Classification models predict
group membership.

5. Regression models predict
continuous variables.

1. Dimension-reduction and clustering
algorithms are given unlabeled data.

2. They output a lower-dimension
representation of the data and
clustering model, respectively.

3. We pass unlabeled, new
data into the models.

4. Dimension-reduction maps new data
onto the lower-dimensional representation.

5. Clustering models predict
cluster membership.

Labeled
data

Unlabeled,
new data

Unlabeled
data

Unsupervised

Supervised

Unlabeled,
new data

Mapped
onto new

representation

Predicted
clusters

New data
representation

Clustering
model

Predicted
groups

Predicted
values

New data
representation

Clustering
model

Classification
model

Regression
model

Classification
model

Regression
model

Classification
algorithm

Regression
algorithm

Dimension-
reduction
algorithm

Clustering
algorithm

Figure 20.1 Supervised vs. unsupervised machine learning. Supervised algorithms take data
already labeled with a ground truth and build a model that can predict the labels of new, unlabeled
data. Unsupervised algorithms take unlabeled data and learn patterns within it, such that new
data can be mapped onto these patterns.

471A brief recap of machine learning concepts

NOTE Although I didn’t mention this in chapter 1, not all unsupervised algo-
rithms can make predictions on new data. For example, hierarchical cluster-
ing and t-SNE models are unable to make predictions on new data.

There is an approach partway between supervised and unsupervised machine learn-
ing called semi-supervised learning. Semi-supervised learning is an approach, rather
than a type of algorithm, and is useful when we have access to partially labeled data. If
we expertly label as many of the cases in a dataset as is feasibly possible, then we can
build a supervised model using only these labeled data. We use this model to predict
the labels of the rest of the dataset. Now we combine the data with the manual labels
and pseudo-labels, and use this to train a new model.

 Figure 20.2 shows all the machine learning algorithms we used throughout this
book, partitioning them into supervised and unsupervised, and also classification,
regression, dimension reduction, and clustering. My hope is that you can refer to this
figure when deciding which algorithms are most suitable for the task at hand, and that
you will add to the algorithms listed here as your knowledge grows.

UnsupervisedSupervised

Regression
Ordinary least squares

Generalized additive models
Ridge, LASSO, and elastic net

K-nearest neighbors
Decision trees and random forests

XGBoost

Clustering
K-means

Hierarchical
DBSCAN / OPTICS
Mixture modeling

Dimension reduction
Principal components

t-SNE
UMAP

Self-organizing maps
Locally linear embedding

Classification
K-nearest neighbors
Logistic regression

Naive Bayes
Discriminant analysis

Support vector machines
Decision trees and random forests

XGBoost

Figure 20.2 Summary of the
algorithms we cover in the book,
whether they are supervised or
unsupervised learners, and whether
they can be used for classification,
regression, dimension reduction, or
clustering

20.1.2 Balancing the bias-variance trade-off for model performance

When training a predictive model, it’s important to evaluate how it will perform in the
real world. When evaluating the performance of our models, we should never evaluate
them using the data we used to train them. This is because models will almost always
perform better when making predictions on the data used to train them than when
making predictions on unseen data.

In chapter 3, you learned that an important concept to understand when evaluat-
ing model performance is the bias-variance trade-off. As the complexity of a model
increases, and the more closely it fits the training set, the more variable its predictions

472 CHAPTER 20 Final notes and further reading

will be on unseen data. Models that are too simple and don’t capture the relationships
in the data well are biased toward making consistently poor predictions. As we increase
the complexity of our model, its variance will increase, and its bias will decrease; the
inverse is also true.

 The bias-variance trade-off therefore describes the balance between overfitting
(training a model that fits the noise of the training set) and underfitting (training a
model that poorly fits the training set). Somewhere between a model that overfits and
a model that underfits is an optimally fitting model whose predictions generalize well
to unseen data. The way to tell if we are underfitting or overfitting is to use cross-
validation. However, even just passing the training set back through the model will tell
you if you’re underfitting, because the model will perform poorly.

20.1.3 Using model validation to identify over-/underfitting

To evaluate how well a model will make predictions on new data, we need to pass new,
unseen data through the model and see how closely its predictions match the ground
truth. One way of doing this would be to train the model on the data at hand and
then, as new data is generated, pass that data through the model to evaluate its predic-
tions. This process could make the model-building process take years, so a more realis-
tic approach is to split the data into training and test sets. In this way, the model is
trained using the training set and is given the test set on which to make predictions.
This process is called cross-validation, and you learned about it in chapter 3.

 There are multiple ways of splitting the dataset into training and test sets. Holdout
cross-validation is the simplest, where a proportion of cases in the dataset are “held
out” as the test set, and the model is trained on the remaining cases. Because the split
is usually random, the outcome from holdout cross-validation depends heavily on the
proportion of cases held out in the test set and on the cases that made it into the test
set. As such, holdout cross-validation can give quite variable results when run multiple
times, though it is the least computationally expensive method. I’ve reproduced fig-
ure 3.12 in figure 20.3: it shows a schematic illustrating holdout cross-validation.

 K-fold cross-validation randomly partitions the cases into k near-equally sized folds.
For each fold, the cases inside the fold are used as the test set, while the remaining

Training set Test set

Holdout CV

1. The data is randomly split into a training and test set.
2. A model is trained using only the training set.
3. Predictions are made on the test set.
4. The predictions are compared to the true values.

Figure 20.3 Holdout cross-validation. The data is randomly
split into a training set and a test set. The training set is used
to train the model, which is then used to make predictions on
the test set. The similarity of the predictions to the true values
of the test set is used to evaluate model performance.

473A brief recap of machine learning concepts

data is used as the training set. The mean performance metric of all the folds is then
returned. The advantage of k-fold over holdout cross-validation is that because each
case is used in the test set once, the results are less variable, although the results will
be sensitive to our choice of the number of folds. To make the result even more stable,
we can use repeated k-fold cross-validation, where the whole k-fold process is repeated
multiple times, randomly shuffling the cases for each repetition. I’ve reproduced fig-
ure 3.13 in figure 20.4: it illustrates k-fold cross-validation.

Test set

ng setTraini Test set

Test set

Test set

Test set

Fold 1

Fold 2

Fold 3

Fold 4

Fold 5

K-fold CV

1. The data is randomly split into K equal-sized folds.
2. Each fold is used as the test set once, where the rest

of the data makes the training set.
3. For each fold, predictions are made on the test set.
4. The predictions are compared to the true values.

Figure 20.4 K-fold cross-validation. The data
is randomly split into near equally sized folds.
Each fold is used as the test set once, and the
rest of the data is used as the training set.
The similarity of the predictions to the true
values of the test set is used to evaluate
model performance.

Leave-one-out cross-validation is the extreme of k-fold cross-validation, where the
number of folds is equal to the number of cases in the dataset. In this way, every case
in the dataset is used as the test set once, with the model being trained using all of the
other cases. Leave-one-out cross-validation tends to give more variable performance
estimates than k-fold, except where the dataset is small, in which circumstance k-fold
may give more variable estimates due to the small training set. I’ve reproduced figure
3.14 in figure 20.5; it illustrates leave-one-out cross-validation.

One of the most common mistakes many people make when training machine
learning models is not including their data-dependent preprocessing steps in their
cross-validation procedure. If this preprocessing includes the tuning of any hyperpa-
rameters, it’s important to use nested cross-validation. Doing so ensures that the data
we use for the final evaluation of the model hasn’t been seen by the model at all.

Nested cross-validation starts by splitting the data into training and test sets (this
can be done using the holdout, k-fold, or leave-one-out methods). This division is
called the outer loop. The training set is used to cross-validate each value of our hyper-
parameter search space. This is called the inner loop. The hyperparameter that gives
the best cross-validated performance from each inner loop is passed to the outer loop.
A model is trained on each training set of the outer loop, using the best hyperparame-
ter from its inner loop, and these models are used to make predictions on their test
sets. The average performance metrics of these models across the outer loop are then

474 CHAPTER 20 Final notes and further reading
reported as an estimate of how the model will perform on unseen data. I’ve repro-
duced figure 3.16 in figure 20.6; it illustrates nested cross-validation. In this example,
we are using 3-fold cross-validation for the outer loop, and 4-fold for the inner loop.

Case 1

Case 2

Case n

Leave-one-out CV

1. Use all of the data except a single case as the training set.
2. Predict the value of the single test case.
3. Repeat until every case has been the test case.
4. The predictions for each case are compared to the true values.

Figure 20.5 Leave-one-out cross-validation is the extreme of k-fold, where we
reserve a single case as the test set and train the model on the remaining data.
The similarity of the predictions to the true values of the test set is used to
evaluate model performance.

Test set ing setTrain

Test set Training setTraining set

Test setng setTraini

k = 1

k = 2

Winning k

Winning k

Winning kO
ut

er
 c

ro
ss

-v
al

id
at

io
n

lo
op

In
ne

r
cr

os
s-

va
lid

at
io

n
lo

op

Fold 3

Fold 2

Fold 1

......

k = 1

k = 2

......

k = 1

k = 2

... ...

Figure 20.6 Nested cross-validation.
The dataset is split into folds. For each
fold, the training set is used to create
sets of inner k-fold cross-validation.
Each of these inner sets cross-validates
a single hyperparameter value by
splitting the data into training and test
sets. For each fold in these inner sets,
a model is trained using the training set
and evaluated on the test set, using
that set’s hyperparameter value. The
hyperparameter from each inner cross-
validation loop that gives the best-
performing model is used to train the
models on the outer loop.

475A brief recap of machine learning concepts
20.1.4 Maximizing model performance with hyperparameter tuning

Many machine learning algorithms have hyperparameters that control how they
learn. A hyperparameter is a variable, setting, or option that cannot be estimated directly
from the data itself. The best way to select the optimal combination of hyperparame-
ters for any given algorithm and dataset is to use hyperparameter tuning.

 Hyperparameter tuning is the process of iteratively trying models with different
combinations of hyperparameters, and selecting the combination that gives the best-
performing model. The tuning process should accompany cross-validation, where, for
each combination of hyperparameters, a model is trained on the training set and eval-
uated on the test set.

 If the range of hyperparameter values we need to search over is small, then it is
often beneficial to employ a grid search method. In grid search, we simply try every
combination of hyperparameter values that we define in our search space. Grid search
is the only search method that is guaranteed to select the best-performing combina-
tion of hyperparameters in our search space.

 But when dealing with multiple hyperparameters, or when the search space
becomes very large, grid search can become prohibitively slow. In such situations, we
can employ random search instead. Random search randomly samples combinations
of hyperparameters from the search space, for as many iterations as we can afford.
Random search is not guaranteed to find the best-performing combination of hyper-
parameters, but it can usually find a close approximation in a fraction of the time
required by grid search.

Training set, test set, and … validation set?
You may see other people refer to splitting their data into a training set, a test set,
and a validation set. I want to show you how this is just a special case of nested
cross-validation. When using this approach, people train the model using the training
set with a range of hyperparameter values and use the test set to evaluate the per-
formance of these hyperparameter values. The model with the best-performing hyper-
parameter values is then given the validation set to make predictions on. The
performance of the model on the validation set is used as the final indicator of the
model-building process’s performance. The importance of this is that the validation
set isn’t seen by the model during training, including during hyperparameter tuning,
so there is no information leak for the model to learn patterns present in the valida-
tion set.

Now look again at the schematic in figure 20.6. Can you see that splitting the data
into training, test, and validation sets is just nested cross-validation using holdout
cross-validation for both the inner and outer loop? I explained this using the “nested”
nomenclature because it gives us a much more flexible toolset for evaluating model
performance than simply splitting the data into training, test, and validation sets. For
example, it allows us to use more complex cross-validation strategies for our inner
and outer loops, and even mix different strategies between them.

476 CHAPTER 20 Final notes and further reading

Whichever search method we use, as a data-dependent preprocessing step, it is
vital to include hyperparameter tuning in our cross-validation strategy, in the form of
nested cross-validation.

20.1.5 Using missing value imputation to deal with missing data

Missing value imputation is the practice of using sensible values to fill in missing data in
a dataset, such that we can still train a model using the full dataset. The alternative
would be to discard cases with any missing data.

A naive way to impute missing values is to simply replace missing values with the
mean or median for a continuous variable (as we did in chapter 4) or the mode for a
categorical variable. The problem is that this approach adds bias to any models you train
and throws away information about relationships in the data that may in fact have pre-
dictive value. A better approach, therefore, is to use another machine learning algo-
rithm to estimate sensible values for the missing data, based on the values of the other
variables for that case (as we did in chapters 9 and 10). For example, we could use the
k-nearest neighbors algorithm to find what the cases most similar to the one in question
have as their value for the missing value. As a data-dependent preprocessing step, miss-
ing value imputation should be included in the cross-validation process.

20.1.6 Feature engineering and feature selection

Feature engineering is the practice of extracting useful/predictive information from
existing variables when the data is currently in a less useful format. For example, this
could involve extracting gender from transcribed medical notes, or combining vari-
ous financial metrics to create an index of market stability. Feature engineering usu-
ally requires some domain knowledge and some thought about what features are
likely to impact the outcome variable. We first covered feature engineering in chapter
4, and we used it again in chapter 10.

Feature selection, on the other hand, is concerned with removing variables that con-
tribute no or little predictive information to the model. In doing so, we can protect
ourselves from both overfitting and the curse of dimensionality. You learned in chap-
ter 9 that feature selection can be done in two different ways: filter methods and wrap-
per methods.

Filter methods are computationally less expensive but are less likely to result in
an optimal selection of features. They rely on calculating some metric of the rela-
tionship between each feature and the outcome variable. This metric could simply
be the correlation between each feature and the outcome, for example. We can
then skim off a specific number or proportion of features that have a weaker rela-
tionship with the outcome.

Wrapper methods are more computationally expensive but are more likely to
result in a better-fitting model. They consist of iteratively fitting and evaluating models
with different permutations of the predictor variables. The combination of variables
that gives the best-performing model is chosen.

477A brief recap of machine learning concepts

Feature engineering and selection are extremely important—arguably more import-
ant than our choice of algorithm. We can use the most cutting-edge, high-performing
algorithm ever developed, but if our features are not making the most of the predic-
tive information they contain, or there are many irrelevant variables in the data, our
model won’t perform as well as it should. If our feature engineering/selection pro-
cesses are data dependent, it’s important to include them in cross-validation.

20.1.7 Improving model performance with ensemble techniques

The performance of most supervised machine learning algorithms can be improved
by combining them with an ensemble technique. Ensembling is where, instead of train-
ing a single model, we train multiple models that help us reduce overfitting and
improve the accuracy of predictions. There are three types of ensemble techniques:

 Bagging
 Boosting
 Stacking

You learned about ensemble techniques for classification and regression in chapters 8
and 12, respectively.

Bagging (also called bootstrap aggregating) consists of creating multiple bootstrap
samples from the original dataset and training a model on each sample in parallel.
New data is then passed to each individual model, and the modal or mean prediction
is returned (for classification and regression problems, respectively). Bagging helps us
to avoid overfitting and so can reduce the variance of our models. Bagging can be
used for virtually any supervised learning algorithm (and some clustering algorithms),
but its most famous implementation is in the random forest algorithm, which uses
classification/regression trees.

While bagging trains models in parallel, boosting trains models sequentially, where
each subsequent model seeks to improve on the mistakes of the existing chain of mod-
els. In adaptive boosting, cases that are incorrectly classified by the existing ensemble
of models are weighted more heavily, such that they are more likely to be sampled in
the next iteration. AdaBoost is the only well-known implementation of adaptive boost-
ing. In gradient boosting, the residual error of the existing ensemble is minimized by
each additional model. XGBoost is a famous implementation of gradient boosting
that uses classification/regression trees; but just like bagging, boosting can be used
with any supervised learning algorithm.

In stacking, we create base models that are good at learning different patterns in
the feature space. One model may then be good at predicting in one area of the fea-
ture space, but make mistakes in another area. One of the other models may do a
good job of predicting values in an area of the feature space where the others do
poorly. Predictions made by the base models are used as predictor variables (along
with all the original predictors) by a final stacked model. This stacked model is then
able to learn from the predictions made by the base models to make more accurate
predictions of its own.

478 CHAPTER 20 Final notes and further reading
20.1.8 Preventing overfitting with regularization

Regularization describes a set of techniques for limiting the magnitude of model
parameters to prevent overfitting. Regularization is particularly important for guard-
ing against overfitting due to the inclusion of predictors with little or no predictive
value. You learned in chapter 11 that the two most common forms are L2 and L1 reg-
ularization.

 In L2 regularization, the loss function of the model has a penalty added to it,
which is the L2 norm of the model parameters weighted by a tunable hyperparameter,
lambda. The L2 norm of the model parameters is the sum of squared parameter val-
ues. The effect of L2 regularization is that model parameters can be shrunk toward
zero (but never to zero, unless the ordinary least squares [OLS] estimate is zero), with
weaker predictors being penalized more greatly. Ridge regression is an example of L2
regularization being used to prevent overfitting in linear regression.

 In L1 regularization, we add the L1 norm to the loss function, weighted by
lambda. The L1 norm is the sum of the absolute parameter values. The effect of L1
regularization is that model parameters can be shrunk to zero, effectively removing
them from the model. L1 regularization is therefore a form of automatic feature selec-
tion. LASSO is an example of L1 regularization being used to prevent overfitting in
linear regression.

20.2 Where can you go from here?
You might be wondering what your next steps are in your machine learning educa-
tion. That really is up to you and what you want to achieve, but in this section I’ll point
you in the direction of some excellent resources you can use to further develop your
knowledge and skills. I’m a firm believer, though, that the best way to solidify new
knowledge is to use it—so use the techniques and algorithms you learned throughout
this book in your work, and teach them to your colleagues!

20.2.1 Deep learning

As I mentioned near the start of the book, I omitted deep learning (machine learning
using artificial neural networks) because I felt it deserves a book of its own. But no
machine learning education could be considered comprehensive without learning
about this extraordinary field. Neural networks are powerful tools for any machine
learning task, but if your work will revolve around computer vision, the classification
of images/video, or building models on other complex data such as audio files,
deep learning is a vital avenue for you to explore. For R, I cannot recommend more
highly Deep Learning with R by Francois Chollet and Joseph J. Allaire (Manning, 2018,
www.manning.com/books/deep-learning-with-r). This book is easily digestible by non-
specialists and will reinforce some of the basic machine learning concepts we have
covered here.

http://www.manning.com/books/deep-learning-with-r

479Where can you go from here?
20.2.2 Reinforcement learning

Reinforcement learning is a cutting-edge area of machine learning research and applica-
tion, where algorithms learn from experience by being rewarded when they make a
good decision. Often considered alongside supervised and unsupervised algorithms
to be the third class of machine learning algorithms, it has been used to create chess
bots that can outwit world champion chess players. If you’re interested in reinforce-
ment learning, I highly recommend Deep Learning and the Game of Go by Max Pumperla
and Kevin Ferguson (Manning, 2019, www.manning.com/books/deep-learning-and-
the-game-of-go).

20.2.3 General R data science and the tidyverse

If you want to improve your R data science skills in general, as well as become more
proficient with tools from the tidyverse (including some we didn’t use), I recommend
R for Data Science by Garrett Grolemund and Hadley Wickham (O’Reilly Media, 2016).

 If you want to become a ggplot2 master, then pick up a copy of ggplot2 by Hadley
Wickham (Springer International Publishing, 2016).

 If your R skills are pretty good and you want to learn more about how the language
works and how to do more advanced programming (such as object-oriented program-
ming), you’ll enjoy Advanced R by Hadley Wickham (CRC Press, 2019). You may
notice that this guy Hadley keeps popping up; if you want to keep up to date with the
R community and developments to the tidyverse, you can do worse than to follow him.

20.2.4 mlr tutorial and creating new learners/metrics

A few times in the book, I mentioned that a particular algorithm hadn’t yet been
implemented in mlr. The mlr package is meant to make your machine learning expe-
rience more streamlined, not less flexible; so if you wish to implement an algorithm in
another package (or your own) or a new performance metric, it really isn’t that hard
to do so yourself. You can find a tutorial on how to do this (as well as other useful
information and resources) on the mlr website: http://mng.bz/5APD.

20.2.5 Generalized additive models

If your work will involve modeling nonlinear relationships for regression tasks, I sug-
gest you delve deeper into the inner workings of generalized additive models (GAMs).
For R, a great place to do this is Generalized Additive Models: An Introduction with R by
Simon Wood (Chapman and Hall/CRC, 2017).

20.2.6 Ensemble methods

Ensemble methods got you excited? We only touched the surface in this book, using
ensembles for tree-based models. If you are convinced that ensembling can almost
always make models better, I suggest you dip into Ensemble Methods: Foundations and
Algorithms by Zhi-Hua Zhou (Chapman and Hall/CRC, 2012).

http://mng.bz/5APD
http://www.manning.com/books/deep-learning-and-the-game-of-go
http://www.manning.com/books/deep-learning-and-the-game-of-go

480 CHAPTER 20 Final notes and further reading
20.2.7 Support vector machines

Excited about how support vector machines (SVMs) can contort the feature space to
create linear boundaries? SVMs are very popular, and their theory is quite complex.
To learn more about how you can harness their predictive power, I recommend Sup-
port Vector Machines by Andreas Christmann and Ingo Steinwart (Springer, 2008).

20.2.8 Anomaly detection

Sometimes you’re not interested in the common patterns in your data. Sometimes it’s
the unusual, outlying cases that you’re really interested in. For example, you may be
trying to identify fraudulent activity on a credit card, or trying to identify rare bursts of
radiation from stars. Identifying such rare events in a dataset can be challenging, but
an area of machine learning called anomaly detection is dedicated to solving these prob-
lems. Some of the algorithms you met in this book can be repurposed for anomaly
detection, such as the SVM algorithm. If you have a penchant for the rare and
unusual, take a look at Anomaly Detection Principles and Algorithms by Kishan G. Mehro-
tra, Chilukuri K. Mohan, and HuaMing Huang (Springer, 2017).

20.2.9 Time series

Something I didn’t touch on in this book is time series forecasting. This is the area of
machine learning and statistics concerned with predicting the future state of a vari-
able, based on its previous states. Common applications of time series forecasting are
predicting fluctuations in stock market variables and forecasting weather patterns. If
you want to get rich or stay dry, I would start with Introductory Time Series with R by Paul
Cowpertwait and Andrew Metcalfe (Springer, 2009).

20.2.10Clustering

We’ve covered pretty good ground when it comes to clustering, but there is much
more for you to get your teeth into. To learn more, I recommend Data Clustering: Algo-
rithms and Applications by Charu Aggarwal (Chapman & Hall/CRC, 2013).

20.2.11Generalized linear models

Impressed at how the general linear model can be extended to predict classes as we
did in logistic regression? We can use the same principal to predict count data (as in
Poisson regression) or percentages (as in beta regression). The extended form of the
general linear model to handle situations where our outcome is not a normally distrib-
uted continuous variable is called the generalized linear model. It gives us extraordinary
flexibility when building predictive models, while still allowing complete interpretability
of the model parameters. To learn more, I recommend Generalized Linear Models With
Examples in R by Peter K. Dunn and Gordon K. Smyth (Springer, 2018), though you
may find it a tough read if you don’t already have a good mathematical grounding in
linear modeling.

481The last word
20.2.12Semi-supervised learning

If you have the common problem of data that is time-consuming and/or costly to
label manually, you can probably benefit from the application of semi-supervised
learning. To learn more, I recommend Semi-Supervised Learning by Olivier Chapelle,
Bernhard Scholkopf, and Alexander Zien (MIT Press, 2006).

20.2.13Modeling spectral data

If you’re going to be working with spectral data, or data that can be represented by
smooth functions, you’ll want a good grounding in functional data analysis (briefly
mentioned in chapter 10). Functional data analysis is where we use functions as vari-
ables in our models, rather than individual values. To learn more, I recommend Func-
tional Data Analysis by James Ramsay (Springer, 2005).

20.3 The last word
I really hope that the skills you’ve acquired through reading this book will help you
gain insight into a part of nature you’re studying, help you streamline and improve
your business practices, or just help you get more from your hobby data science proj-
ects. I also hope that the tidyverse skills we used throughout the book will help you to
write easier, more readable code, and that your new mlr skills will continue to make
your machine learning projects simpler.

 Thank you for reading!

appendix
Refresher on

statistical concepts

A.1

A.1.1

If you don’t come from a statistical background, or perhaps just want to refresh
your memory about some statistical concepts, this appendix aims to get you up to
speed with the basic knowledge you’ll need to get the most out of this book. If
you’re unsure whether you need to use this refresher, flick through the section
headings and make sure there’s nothing you don’t feel confident with. You won’t
need to memorize any of this material, only be aware of the important concepts.
Also feel free to reference any of the definitions here as you progress through
the book.

Data vocabulary
Let’s start with some basic vocabulary we’ll be using to describe data. There are
some variations in the way data scientists and statisticians use the terminology, so
I’ll try to make it clear which terms are equivalent and which I opt to use through-
out the book. In this section, we’ll discuss

■ The difference between a sample and a population
■ What we mean by rows, columns, cases, and variables
■ What the different types of variables are and how they differ

Sample vs. population

In data science and statistics, we’re usually trying to learn something about, or pre-
dict something in, the real world. Let’s say we’re interested in the tusk length of
hippos. It would be impossible to measure the tusk length of every hippo in the
world—there are simply too many, and they aren’t keen on us putting a ruler inside
482

483Data vocabulary
their mouth. So instead, we measure as many hippos’ tusks as is feasible, both in terms
of finance and hours of work. This smaller, more manageable number of hippos is
called our sample. We hope that the tusk lengths in our sample do a good job of repre-
senting the tusk lengths of all the hippos in the world, which is the population to which
we are trying to generalize our findings. This distinction between the sample and the
population is illustrated in figure A.1.

A difference between the sample and the population is referred to as sampling error
and arises because the sample is almost never a perfect representation of the popula-
tion. We hope to make sampling error as small as possible by using a sample that is as
large as possible and by not introducing bias when creating our sample (for example,
not selecting smaller hippos because they are less scary). If sampling error is too large,
we won’t be able to generalize our findings to the wider population.

A.1.2 Rows and columns

Once we’ve collected our data, most of the time we can structure it into a tabular for-
mat with rows and columns. A common way of representing data of this type in R is by
using a data frame.

 As explained in chapter 2, we often need to rearrange how tabular data is struc-
tured, depending on our goal. But most of the time, it’s desirable to format data such
that each row represents a single unit of our sample, and each column represents a
different variable. For our hippo example, each hippo would be a single unit in our
dataset, so each row would correspond to measurements made on a single hippo, as
shown in table A.1.

The population is the set of all
units we want to generalize our
results to. In this case, all hippos.

The sample is a subset of the
population we collect data on.
In this case, these four hippos.

Figure A.1 The difference between the population and the sample. The
population is the set of all units we would like to generalize our results to.
The population is often considered nearly infinite in size. The sample is a
more manageable subset we measure, which we hope will represent the
population.

484 APPENDIX Refresher on statistical concepts
We can create a data frame like this in R using the data.frame() function, as shown
in the following listing.

hippos <- data.frame(
Name = c("Harry", "Hermione", "Hector", "Heidi"),
TuskLength = c(32, 15, 45, 20),
Female = c(FALSE, TRUE, FALSE, TRUE)
)

In statistics, when the data is formatted like this, each row is said to correspond to one
subject in the data, with a subject here being a single hippo. In data science and
machine learning, it’s more common to see the term case to describe a single unit in
the data, so this is the term I use throughout the book.

 Columns that contain measurements made on each case are referred to as vari-
ables. When we’re trying to predict the value of one variable based on its relationships
with the others, we use terms to distinguish between the variable we want to predict
and the ones we are using to make the predictions. Statisticians call the variable we’re
trying to predict the dependent variable, while the variables we used to make these pre-
dictions are called the independent variables. In data science, you might be more likely
to hear the term outcome or response variable for the dependent variable and predictor
variables or features for the independent variables. I use the data science terminology
throughout the book.

A.1.3 Variable types

Different variables might be measured using different types of scales, meaning we
need to handle them differently. Throughout the book, I mention continuous vari-
ables, categorical variables, and sometimes logical variables.

 Continuous variables represent some measurement on a numeric continuum. For
example, the length of a hippo’s tusk would be represented as a continuous variable.
We can apply mathematical transformations to continuous variables. In R, continuous
variables are most commonly represented as integers or as doubles. An integer variable can

Table A.1 An example of data arranged in tabular format, where each row corresponds to
a single hippo and each column corresponds to a different variable. Note that, culturally,
hippos give their children names beginning with H.

Name TuskLength Female

FALSE32Harry

TRUE15Hermione

FALSE45Hector

TRUE20Heidi

Creating our hippo data frameListing A.1

485Vectors
only have whole numbers, whereas a double can also include non-zero digits after a dec-
imal point. In the data shown in table A.1, the TuskLength variable is numeric.

 Categorical variables have levels, each of which represents a different group or cate-
gory of objects. For example, let’s say we were comparing tusk length between common
hippos and pygmy hippos. Our data would contain a categorical variable indicating
which species of hippo each case in the data belonged to. In R, it’s common to repre-
sent categorical variables as factors, where the possible levels of the factor are predefined.
In the data shown in table A.1, the Name variable is categorical.

 Logical variables can take a value of TRUE or FALSE to indicate a binary outcome.
For example, we could include a logical variable to indicate whether the hippo tried
to bite us. Logical variables are most useful as arguments to functions, to control the
way they behave, or to select cases that are most interesting to us. In the data shown in
table A.1, the Female variable is logical.

 The next listing shows how we can use the class() function to determine what
kind of variable we’re working with.

class(hippos$Name)
[1] "factor"

class(hippos$TuskLength)
[1] "numeric"

class(hippos$Female)
[1] "logical"

A.2 Vectors
A vector is a set of numbers that encodes both magnitude and direction. Imagine a
coordinate system with an x-axis and a y-axis, as shown in figure A.2. If we pick a
point on the coordinate system, that point will have a value for each axis: let’s say x =
3 and y = 5. We can represent this point as the vector (3,5). The vector encodes magni-
tude, because we can calculate the distance between the point defined by this vector and
the origin of the coordinate system (0,0). The vector also encodes direction, because if
we draw a line connecting the origin (0,0) to this point (3,5), we can calculate the angle

UsingListing A.2 class() to determine variables types

0

1

2

3

4

5

6

0 1 2 3 4 5 6
x

y

(3,5)

(0,0)

Ma
i

gn tude

D
irection

Figure A.2 An example of a two-
dimensional vector at point x = 3,
y = 5. The arrow shows how vectors
encode magnitude, which we can
represent as their distance from the
origin (or another vector). The
curved line representing the angle
between the x-axis and the arrow
indicates how vectors encode
direction.

486 APPENDIX Refresher on statistical concepts

between this line and the axes of the coordinate space. Figure A.2 is an example of a
two-dimensional vector, but vectors can have as many dimensions as we like.

 We can perform operations with vectors, such as addition, subtraction, and mul-
tiplication, to create new vectors. We don’t do any complex mathematics using vec-
tors throughout the book, but I sometimes refer to vectors when we’re dealing with
concepts in more than two dimensions. For example, in some parts of the book I
refer to a vector of means, where each element in the vector is the mean of a differ-
ent variable.

 Confusingly, R has a data structure called an atomic vector that may or may not rep-
resent a mathematical vector. An atomic vector in R contains a set of values that must
all be the same type (this is where the word atomic comes from in the name). If the
atomic vector’s elements are numeric, then it will also be a vector in the mathematical
sense, because the values encode magnitude and direction. But if we have atomic vec-
tors with character or logical elements, neither of these can encode magnitude and
direction; so while we refer to them as vectors within R, they are not vectors in the
mathematical sense. Here is how we can create numeric, character, and logical atomic
vectors using the c() function.

A.3

Creating atomic vectors in RListing A.3

numericVector <- c(1, 31, 10)

characterVector <- c("common hippo", "pygmy hippo")

logicalVector <- c(TRUE, TRUE, FALSE)

Distributions
When we measure a variable, it’s often desirable to examine the range of values taken
on by the variable. We can do this, for example, using a histogram, where we plot the
possible values of our variable against the frequency with which we observed each of
them. The shape we get from plotting such a histogram represents the distribution of
our variable and tells us information such as where our variable is centered, how dis-
persed it is, whether its values are symmetrically distributed around its center, and
how many peaks it has.

We can summarize distributions of variables using a variety of statistics, such as
those that summarize the central tendency of the distribution, those that summarize
the dispersion, and those that summarize the shape and symmetry. Visually inspecting
the distributions of our variables is important, however, to help us decide the best way
to handle different variables.

Some distributions occur so frequently in nature that mathematicians have for-
mally defined them and studied their properties. This is useful, because if we find
that our variable approximates one of these well-defined distributions, we can sim-
plify our statistical modeling by assuming the variable in the underlying population
follows this distribution. Common examples of well-defined distributions are the

487Distributions
Gaussian (also called the normal) distribution, which is one of many bell-shaped dis-
tributions, and the Poisson distribution, which variables representing discrete counts
often follow.

 If we measured 1,000 hippo tusks and plotted a histogram of their lengths, we
might get something like the distribution shown in figure A.3. The bars of the histo-
gram represent the frequency with which a particular tusk length occurs in the dataset.
I’ve overlaid a theoretical normal distribution (the smooth line) over the histogram,
whose mean and standard deviation correspond to those of the data.

Distributions that are mathematically defined are often called probability distributions,
and they have a defined probability density function. The probability density function
for a particular distribution is an equation that we can use to calculate the probabil-
ity that a particular value came from that distribution. For example, let’s say we mea-
sured a hippo tusk as being 32 cm long. If we know the distribution that best
represents the lengths of all hippo tusks, we can use the probability density function
to estimate the probability of finding a hippo with a 32-cm tusk. You don’t need to
know or memorize any probability density functions before reading the book, but I
refer to them on occasion, so it’s useful for you to know what they are. Look back at
figure A.2: the smooth line I overlaid onto the histogram is the probability density
function for the Gaussian distribution with the same mean and standard deviation
as the data.

0

20

40

60

35302520
Length

C
ou

nt

Figure A.3 A histogram showing the distribution of an imaginary sample of hippo tusk lengths. The
distribution approximates a Gaussian distribution. The curved line represents the probability density
function of a Gaussian distribution with the same mean and standard deviation as the sample.

488 APPENDIX Refresher on statistical concepts
Sigma notationA.4
Mathematical notation can look intimidating to those not formally trained in its use.
But mathematical notation is really there to make our lives easier. While there are
some equations in this book, not one of them uses anything more complicated than
addition, subtraction, multiplication, and division. I do, however, use one symbol that
makes my life a lot easier; and once you get the hang of it, it will make your life easier
too (and make lots of equations seem less impenetrable). That symbol is the capital
Greek letter sigma, which looks like a strange “E” (Σ).

 In equations, capital sigma simply means to sum whatever is on the right-hand side
of it. You’ll usually see indices above and below the sigma that tell us where to start
and stop summing from. For example, instead of writing 1 + 2 + 3 + 4 + 5 = 15, we can
use the sigma notation shown in equation A.1.

Equation A.1

We can do this in R using the sum() function.

sum(1:5)

[1] 15

We can write more complicated expressions using sigma notation, and the indices give
us control over the range of values we want to sum over. Take a look at equation A.2
and try to work out what the value of x is.

Equation A.2

If the answer isn’t clear to you, perhaps thinking like a programmer will help. You can
think of sigma notation as a for loop for addition. If I was going to read equation A.2
aloud as a for loop, I would say, “For all values of i between 3 and 6, take the ith power
of 2 and subtract i, and then add up all these values.” This then becomes

■ 23 – 3 = 5
■ 24 – 4 = 12
■ 25 – 5 = 27
■ 26 – 6 = 58

and 5 + 12 + 27 + 58 = 102.
 We can do this in R by creating a function that calculates the value on the right-

hand side of the sigma sign, and passing it to the sum() function.

Using theListing A.4 sum() function in R

i
i 1=

5

 15=

2i i–
i 3=

6

 x=

489Central tendency
fun <- function(i) (2^i) - i

sum(fun(3:6))

[1] 102

Using sigma notation means that when we are summing dozens, hundreds, or even
thousands of numbers, we don’t have to write them all. So I hope you can see how sigma
notation makes out lives easier! I’m introducing it to you here because I’m going to use
it in the next section to remind you how to calculate the arithmetic mean.

A.5 Central tendency
When working with variables, it’s often important to get a sense of the center of their
distributions. There are multiple statistics we can use to summarize the center of a dis-
tribution; they give different information and are appropriate in different situations.
Statistics that provide such information are referred to as measures of central tendency,
and the three most common are the arithmetic mean, the median, and the mode.

A.5.1 Arithmetic mean

Much to the surprise of spreadsheet users, there is no formal mathematical concept of
an “average.” But when people colloquially speak of an “average,” what they usually
mean (pun intended) is the arithmetic mean. The arithmetic mean (or just the mean) is
simply the sum of all the values in a vector, divided by the number of elements. For
example, if I measure the tusk lengths of 5 hippos as being 32, 15, 45, 20, and 54, then
the mean is (32 + 15 + 45 + 20 + 54) / 5 = 33.2.

 Writing that out for just five hippo tusks is cumbersome enough, but imagine if I
had to write this for dozens of tusks! Instead, we can use our new friend, sigma nota-
tion. The arithmetic mean in sigma notation is shown in equation A.3.

Equation A.3

For our hippo example, x represents our vector of tusk lengths, i is an index telling us
which element of that vector to consider, and n is the total number of elements in the
vector. Then we can read equation A.3 aloud as “For each element of x between the
first and the last element, add the values of x. Then divide this value by the number of
elements in x.” We can do this in R using the mean() function.

mean(c(32, 15, 45, 20, 54))

[1] 33.2

UsingListing A.5 sum() for more complex functions

Using theListing A.6 mean() function in R

mean

xi
i 1=

n

n

--------------=

490 APPENDIX Refresher on statistical concepts

NOTE Wonder why I’m bothering to specify that this is the arithmetic mean?
That’s because there are two other types of mean, appropriate in other situa-
tions, called the geometric mean and the harmonic mean. I don’t mention them
in the book, so I won’t elaborate on them, but I suggest you find out more
about their uses.

The arithmetic mean is useful for summarizing the center of symmetrical distribu-
tions with a single peak, such as the Gaussian distribution. For distributions that are
asymmetric, have multiple peaks, or have outliers, however, the mean may not be a
good representative of the distribution’s central tendency.

NOTE The term outlier is used to describe a case that is considerably different
from the majority of the cases. It is a case that has an unusually high or low
value for one or more variables. There are many methods for identifying
whether a case is an outlier, but it really depends on the task at hand.

MedianA.5.2

The median is a robust measure of central tendency, meaning it is not severely influ-
enced by asymmetry or outlying cases in a distribution like the mean is. The median
also has a very simple interpretation: it is the value for which 50% of the cases are
larger and 50% of the cases are smaller. To calculate the median, we simply arrange
the elements of a vector in order of their size and pick the middle value.

 Let’s look back at the tusk lengths from earlier: 32, 15, 45, 20, and 54. Rearranging
the tusks in order of size gives us 15, 20, 32, 45, and 54, so the median is 32 because it’s
the middle value. If the vector has an even number of elements, the median is the
value that is midway between them. So if we measure another hippo tusk to be only 5,
arranging the elements in order now gives 5, 15, 20, 32, 45, and 54. This means the
median is midway between 20 and 32, which is 26. We can calculate the median in R
using the median() function.

A.5.3

Using theListing A.7 median() function in R

median(c(32, 15, 45, 20, 54))

[1] 32

median(c(32, 15, 45, 20, 54, 5))

[1] 26

Mode

The mode is generally used in slightly different situations than the mean and median.
Whereas the mean and median summarize the center of the distribution, the mode
tells us which individual value is most commonly observed across the distribution.

NOTE There is no function for calculating the mode in base R, but you can
write one yourself if you need to.

491Measures of dispersion

Measures of dispersionA.6
In addition to summarizing the center of a distribution, it’s often important to also
summarize how dispersed or spread out the values of the distribution are. There are
many different measures of dispersion that tell us slightly different information and
are appropriate in different situations, but they all give us an indication as to how
skinny or wide our distribution of values is. I’m going to remind you of four of these:
mean absolute deviation, standard deviation, variance, and the interquartile range.

A.6.1 Mean absolute deviation

Let’s start by talking about what I mean by the word deviation (this isn’t the same mean-
ing as your grandparents might use when chastising immoral behavior). The deviation
of an element in a distribution is how far that element’s value is from the mean of the
distribution. So if the mean length of our hippo tusks is 33.2 cm, the deviation of a 16.1-
cm tusk is –17.1 cm. Notice that this deviation is signed: it’s negative if the element is
smaller than the mean, and it’s positive if the element is larger than the mean.

NOTE The deviation between a value and an estimated value is called a resid-
ual, and I elaborate more on this in the body of the book.

To get an idea of the average (there’s that nondescript word again) difference
between all the elements and the mean of the distribution, we could take the mean of
all the deviations. The problem with this is that in an approximately symmetrical dis-
tribution, the positive and negative deviations will cancel each other out, and we’ll get
a mean deviation close to zero.

 Instead, we can take the absolute deviations by changing the sign of the negative
deviations to positive, and take the mean of these. This gives us the mean absolute
deviation, which will be larger when the data is spread out and smaller when the data
is concentrated around the center of the distribution. The equation for the mean
absolute deviation is shown in equation A.4, where the vertical lines indicate the abso-
lute value of the expression between them, and x– indicates the mean.

Equation A.4

We can calculate the mean absolute deviation in R using the mad() function. By
default, this function calculates the median absolute deviation, which is also commonly
used, so we use the center argument to specify that we want the mean.

Using theListing A.8 mad() function in R

MAD

xi x–
i 1=

n

n

--------------------------=

tusks <- c(32, 15, 45, 20, 54)

mad(tusks, center = mean(tusks))

[1]

492 APPENDIX Refresher on statistical concepts
Standard deviationA.6.2

While the mean absolute deviation is a very intuitive and sensible measure of disper-
sion, you won’t see it reported very often. That’s because people more commonly use
and report the standard deviation. The standard deviation is similar to the mean abso-
lute deviation, except for a few differences. First, instead of summing the absolute
deviations from the mean, we sum the squared deviations. We then divide this sum by
n – 1 (one fewer than the number of elements in the vector) and take the square root.
You can see this shown in equation A.5, where S is the standard deviation.

Equation A.5

We can calculate this in R using the sd() function.

sd(c(32, 15, 45, 20, 54))

[1] 16.42

Why use the standard deviation when the mean absolute deviation is much more intu-
itive? Because the standard deviation has some nice mathematical properties that
make it more convenient to work with. One important consequence of using the stan-
dard deviation rather than the mean absolute deviation is that because the differences
are squared, it is more greatly influenced by cases that are far from the mean. Another
convenience of the standard deviation is that if the data follows a Gaussian (normal)
distribution, then known proportions of the data will fall within certain standard devi-
ations away from the mean. This is elaborated on in figure A.4, which shows that for a
perfect Gaussian distribution, 68%, 95%, and 99.7% of the cases fall within one, two,
and three standard deviations of the mean, respectively.

A.6.3 Variance

The variance is very easy to calculate: it is simply the square of the standard deviation.
Its formula is the same as for the standard deviation, except of course that we drop the
square root symbol. This is shown in equation A.6, where S2 is the variance.

Equation A.6

If the variance and standard deviation are transformations of each other, why do we
need both? We don’t, really; but while the variance makes some statistical computa-
tions slightly simpler, the standard deviation has the advantage of having the same
units as the variable for which it’s calculated.

Using theListing A.9 sd() function in R

S

xi x–)(2

i 1=

n

n 1–

-------------------------------=

S2
xi x–()

2

i 1=

n

n 1–

-------------------------------=

493Measures of dispersion

We can calculate the variance in R using the var() function or by taking the square of
the standard deviation.

A.6.4

Using theListing A.10 var() function in R

0

10

20

30

40

4035302520
Length

C
ou

nt

99.7% of hippo tusks are within three standard deviations.

95% are within two standard deviations.

68% are within one standard deviation.

One standard deviation
away from the mean

Two standard deviations
away from the mean

Figure A.4 For a perfect, Gaussian-distributed variable, 68% of the cases lie within one standard
deviation’s distance of the mean. 95% and 99.7% of cases lie within two and three standard
deviations, respectively.

var(c(32, 15, 45, 20, 54))

[1] 269.7

sd(c(32, 15, 45, 20, 54))^2

[1] 269.7

Interquartile range

While the standard deviation and variance, in particular, are well suited for summariz-
ing the dispersion of symmetrical distributions with no outliers, we need ways to sum-
marize the dispersion of distributions that don’t play by these rules. The interquartile
range (IQR) is a good choice in such situations, because it is a robust statistic that isn’t
heavily influenced by outliers and asymmetry. Simply put, the IQR is the difference
between the first quartile and the third quartile.

If we arrange the elements of a vector in order of their values, the quartiles of the
vector are the elements for which 25%, 50%, 75%, and 100% of the other elements

494 APPENDIX Refresher on statistical concepts

have smaller values. The first quartile is a middle value between the smallest element
and the median: it splits the vector such that 25% of the elements are below it and
75% are above it. The second quartile is the median, splitting the vector such that
50% of the elements are above it and 50% are below it. The third quartile is a middle
value between the median and the largest element and splits the vector such that 75%
of the elements are below it and 25% of the elements are above it. The zeroth and
fourth quartiles are the smallest and largest elements, respectively.

NOTE I’ve left the definition of the first and third quartiles relatively ambigu-
ous, because there are no less than nine different methods of calculating
their exact values! These methods don’t always agree with each other, but
they always divide the elements of the vector into 25% and 75%, so we won’t
split hairs about them here.

A common graphical method of displaying the quartiles is using a box and whiskers
plot (sometimes just called a box plot). An example of a box and whiskers plot is
shown in figure A.5, with some imaginary data for the tusk length of three different
hippo species. The thick horizontal line shows the second quartile (the median) for
each hippo species. The lower and upper edges of the boxes represent the first and
third quartiles, respectively. The whiskers (the vertical lines extending out of the
boxes) connect the lowest and highest value for each species and therefore represent
the full range of the data.

10

20

30

40

Tu
sk

 le
ng

th

Extinct MalagasyPygmy hippoCommon hippo
hippo

Figure A.5 Box and whiskers plots for imaginary hippo tusk data. The thick horizontal
lines are the medians, the edges of the boxes represent the first and third quartiles,
and the vertical whiskers represent the full range.

NOTE Sometimes the whiskers don’t represent the full range. Often they indi-
cate the Tukey range, which is 1.5 times the IQR below and above the first and
third quartiles, respectively. Any cases outside this range are drawn as a dot to
highlight them as potential outliers.

495Measures of the relationships between variables

The IQR is the difference between the first and third quartiles of the vector and thus
tells us the range of the middle 50% of the elements in the vector. It is useful in situa-
tions where we have outlying cases and/or non-Gaussian-distributed data.

 We can calculate the IQR in R using the IQR() function (which is unusual in that
the function name is capitalized).

A.7

A.7.1

Using theListing A.11 IQR() function in R

IQR(c(32, 15, 45, 20, 54))

[1] 25

Measures of the relationships between variables
It’s very common to find that there are relationships between pairs of variables we are
working with. Even if two variables have no causal relationship, it’s not uncommon
that they will have a relationship. This could be a positive relationship, such that when
one variable increases in value, so does the other; or a negative relationship, where,
as one variable increases, the other decreases.

It’s important to be able to summarize relationships between pairs of variables in
terms of both their direction (positive, negative, or no relationship) and magnitude
(no relationship to perfect relationship). The two most common statistics used to
summarize the direction and magnitude of the relationship between two variables are
the covariance and the Pearson correlation coefficient.

Covariance

The covariance between two variables tells us how they covary. If the pair of variables
increase and decrease together, the covariance is positive; and if one variable increases
as the other decreases, the covariance is negative. If there is no relationship between
the pair of variables, the covariance is zero (but this practically never happens in the
real world).

It’s possible for two variables to have a covariance of zero (or near zero) but actu-
ally have a nonlinear relationship. Run the following code and see for yourself (note
how small the covariance value is):

x <- seq(-1, 1, length = 1e6)

y <- x^4

plot(x, y, type = "l")

cov(x, y)

To calculate the covariance, we consider a single case and find its deviation from the
mean of the first variable and then also from the second variable. We then find the
product of these deviations. This is done for all of the cases in the dataset, and these

496 APPENDIX Refresher on statistical concepts
products of deviations are added up and divided by n – 1 (one fewer than the number
of elements in the vector). This process is illustrated in equation A.7.

Equation A.7

We can calculate the covariance between two vectors in R using the cov() function.

tusks <- c(32, 15, 45, 20, 54)

weight <- c(18, 11, 19, 15, 18)

cov(tusks, weight)

[1] 44.7

The covariance is very useful mathematically, but as its units are the product of the val-
ues of both variables, its magnitude can be difficult to interpret. Covariance is there-
fore said to be an unstandardized measure of the relationship between variables, which
means we cannot compare covariances between pairs of variables measured on differ-
ent scales. A standardized version of covariance is correlation—or, more formally, the
Pearson correlation coefficient.

A.7.2 Pearson correlation coefficient

The Pearson correlation coefficient (or just the correlation coefficient) is a standard-
ized version of the covariance that is unitless and is bounded between –1 and +1. A
correlation of –1 indicates a perfect negative relationship between the pair of vari-
ables, a correlation of +1 indicates a perfect positive relationship, and a correlation of
zero indicates no relationship at all. These three extremes rarely occur in the real
world (if you get +1, check that you haven’t calculated the correlation between a vari-
able and itself), and a value somewhere between them is much more likely.

NOTE I’ve made it a point to call this the Pearson correlation coefficient
(after the statistician Karl Pearson) to distinguish it from other, perhaps less
commonly used, types: Kendall rank, Spearman, and point-biserial correla-
tion. These other types are useful in situations when the variables are not
both continuous and follow a Gaussian distribution, as is assumed by the Pear-
son correlation coefficient, but we don’t consider them in this book.

Calculating the Pearson correlation coefficient is simple if we know how to calculate
the covariance; we simply divide the covariance by the product of the standard devia-
tions of the variables. This is shown in equation A.8.

Equation A.8

Using theListing A.12 cov() function in R

Cov x y,)(

xi x–() yi y–()
i 1=

n

n 1–

---=

rxy
Cov x y,()

SxSy
-----------------------=

497Logarithms
Because the correlation coefficient (often represented by r) is standardized and unit-
less, we can compare its value between pairs of variables on different scales. We can
calculate the Pearson correlation coefficient between two vectors in R using the cor()
function.

tusks <- c(32, 15, 45, 20, 54)

weight <- c(18, 11, 19, 15, 18)

cor(tusks, weight)

[1] 0.8321

A.8 Logarithms
Logarithms, or logs, are mathematical functions that are the opposite of exponentia-
tion. For example, if 25 = 32, then log2(32) = 5. In this example, the base of the loga-
rithm is 2. In other words, the result of log2(32) is the exponent to which 2 must be
raised to get 32. Logarithms can have any base we like, depending on our reasons for
wanting to use a logarithmic function. The three most common choices are logs with
bases 2, 10, and Euler’s number (e), which is an important constant with a value of
approximately 2.718. The base of a logarithm is usually denoted as a subscript after
the log symbol (for example, log2 or log10); but when the base is e, the log is called the
natural logarithm and is usually denoted as ln.

NOTE You may see something like log(x) with no subscript. Depending on
the intended audience, this may be interpreted as log10(x) or loge(x). It’s
much better to be explicit about which one you mean.

Logarithms have many useful properties in mathematics and statistics. One is that
they can be used to compress extremely large values on a scale together with much
smaller values. For example, the log10 of the vector 1, 10, 100, 1,000, 10,000, 100,000 is
0, 1, 2, 3, 4, 5. So if we have a variable containing both very small and very large num-
bers, this variable can be made easier to work with if we log10-transform it.

 Another useful property of logs, particularly the natural logarithm, is that if there
is an exponential relationship between two variables (say, time and bacterial growth),
taking the log of one of the variables can linearize the relationship. Working with a
linear relationship between variables is often mathematically simpler.

 Take a look at the example in figure A.6. The left-hand plot shows a y variable with
both very small and very large values, where the relationship between the x and y vari-
ables is exponentially increasing. The right-hand plot shows the same data, but after
log10-transforming the y variable. You can see that, after the transformation, the y vari-
able can now be more easily visualized on a plot, and the relationship between the x
and y variables has been linearized.

Using theListing A.13 cov() function in R

498 APPENDIX Refresher on statistical concepts
x

Linear Log10

1 2 3 4 5 6 1 2 3 4 5 6

0

1

2

3

4

5

0

25000

50000

75000

100000

y lo
g 1

0(
y)

Figure A.6 The impact of log10 transformation on variables. The left-side plot shows a y
variable with both very small and very large values. In the right-side plot, the y variable has been
log10-transformed.

index
Symbols

[, subsetting with 28
+ symbol 37

A

abs argument 223
absolute confusion matrix 72
absolute deviations 491
accuracy 66, 71, 108
AdaBoost 189–190, 193, 477
adaptive boosting 190–191, 477
aesthetic mappings 36
agglomerative hierarchical clus-

tering models 404–406
building 406–416
choosing number of

clusters 409–414
cutting trees to select flat sets

of clusters 414–416
AI (artificial intelligence) 4, 16
algorithms

benchmarking 203–204
choosing for k-means

models 391–395
classes of 10–17

classification 13–14
clustering 13–14
dimension reduction 13–14
regression 13–14
semi-supervised

learning 10–13
supervised learning 10–13
unsupervised learning

10–13

DBSCAN 425–427
kNN

learning 56–59
overview of 56–59
tied votes 59

OPTICS 427–433
SVM

for linearly separable
data 146–148

for non-linearly separable
data 149–150

hyperparameters of
151–153

overview of 145–154
separable classes 148–149
with more than two

classes 153–154
tree-based

strengths of 184–185, 203
weaknesses of 184–185, 203

alpha hyperparameter 261–262,
274–275, 279, 357

anomaly detection 480
anonymous functions 47, 142
ANOVA 222
arithmetic mean 489–490
artificial intelligence (AI) 4, 16
atomic vectors 45–46, 486
Average linkage 405

B

backward search 227
bagging (bootstrap

aggregating) 187–189, 194,
477

base models 194
basis functions 242
batch (offline) algorithm

380
Bayes’ rule 123, 137, 456–458
Bayesian information criterion

(BIC) 462–464
bell-shaped distributions 487
benchmarking 186

algorithms against each
other 203–204

elastic net 277–279
kNN 301–303
LASSO 277–279
OLS 277–279
random forest 301–303
ridge 277–279
XGBoost 301–303

best matching unit (BMU) 349,
351–352

beta regression 480
between-cluster sum of

squares 389
bi category 97
biased model 67
bias-variance trade-off 67–70,

471–472
BIC (Bayesian information

criterion) 462–464
binomial logistic regression 13,

89
biplots 320
bivariate relationships 317
black-box models 212
BMU (best matching unit) 349,

351–352
499

INDEX500
boosted learners 297
boosting 477

adaptive 190–191
gradient 192–193
improving decision trees with

building XGBoost models
198–202

ensemble techniques
for 187–194

bootstrap aggregating
(bagging) 187–189, 194,
477

bootstrap samples 409, 411,
413

bootstrapping 409
border points 426–427
bottom-up pruning 174
box (whisker) plots 494
bty argument 366
bubble function 351

C

C hyperparameter 151–152
Call component 232
canonical discriminant function

coefficients 120
capital sigma 488
CART (classification and regres-

sion trees) 169
cases

placing in nodes 349
use of term 484

CatBoost 193
categorical hyperparameter 150
categorical outcome variable 89
categorical predictors

calculating likelihood for 140
multi-level 171–173

categorical variables 90, 243–244,
485

center argument 318, 491
centers, clustering by finding

building k-means
models 382–398

choosing algorithm for
k-means model 391–395

choosing number of
clusters 386–391

datasets in 382–384
defining learner 384–386
defining task 384–386
predicting clusters of new

data 397–398
tuning k 391–395

k-means clustering
Hartigan-Wong

algorithm 381–382
Lloyd algorithm 378–380
MacQueen algorithm

380–381
overview of 378–382

training k-means models
395–397

central tendency 489–490
arithmetic mean 489–490
median 490
mode 490

centroid linkage 405
centroids 118, 378–379, 381, 459
chaining functions 34–35
character vector (<chr>) 103
Chi-squared 222
choice argument 321
<chr> (character vector) 103
classes

discriminant analysis with
more than two 121–122

logistic regression with more
than two 97–98

of algorithms 10–17
classification 13–14
clustering 13–14
dimension reduction 13–14
regression 13–14
semi-supervised

learning 10–13
supervised learning 10–13
unsupervised learning 10–13

separable 148–149
SVM algorithm with more

than two 153–154
classes argument 221, 230
classification algorithms 13, 469
classification and regression

trees (CART) 169
classifying 13–14

based on odds with logistic
regression

building logistic regression
models 98–107

cross-validating logistic
regression model
107–108

odds ratio 108–110
predictions with

models 110
based on similarities with kNN

bias-variance trade-off
67–69

building kNN models 59–67
cross-validating kNN

models 70–77
cross-validation to identify

overfitting 69
cross-validation to identify

underfitting 69
hyperparameters 77–78
kNN algorithm 56–59
parameters 77–78
strengths of kNN 83–84
tuning k to improve

models 79–83
weaknesses of kNN 83–84

by maximizing separation with
discriminant analysis

building LDA models
125–131

building QDA models
125–131

strengths of LDA 132
strengths of QDA 132
weaknesses of LDA 132
weaknesses of QDA 132

with decision trees
building decision tree

models 176
cross-validating decision

tree models 183–184
datasets for 176–177
rpart algorithm 168–176
strengths of tree-based

algorithms 184–185
training decision tree

models 177–183
weaknesses of tree-based

algorithms 184–185
with naive Bayes 138–140

building naive Bayes
models 140–145

naive Bayes algorithm
136–140

strengths of naive Bayes 145
weaknesses of naive

Bayes 145
with SVM

building SVM models
155–162

cross-validating SVM
models 162–163

strengths of SVM
algorithm 163–164

SVM algorithm 145–154
weaknesses of SVM

algorithm 163–164

INDEX 501
closed-form solution 128
clustering 13–14, 480

evaluating performance with
Davies-Bouldin
index 387–388

evaluating performance with
Dunn index 388–389

evaluating performance with
pseudo F statistic
389–391

Gaussian mixture model
for 461–465

See also density-based cluster-
ing; hierarchical cluster-
ing; k-means clustering;
mixture model clustering

clustering algorithms 14, 390,
469

clustermethod argument 418
clusters 14, 337, 381, 405, 450

choosing number of 386–391
Davies-Bouldin index to

evaluate clustering
performance 387–388

Dunn index to evaluate clus-
tering performance
388–389

in agglomerative hierarchi-
cal clustering models
409–414

pseudo F statistic to
evaluate clustering
performance 389–391

cutting trees to select flat sets
of 414–416

defined 11
distances between 332
of data, predicting with

k-means models 397–398
stability of 416–418

codebook vector 351
Codes plot 359
coefficients (parameters) 109,

209, 232, 269
col argument 367
colkey argument 366
collinearity 14

consequences of 309–310
mitigating effects with dimen-

sion reduction 310–311
cols argument 106
colsample_bylevel hyper-

parameter 198, 300
colsample_bynode hyper-

parameter 198, 300

colsample_bytree
hyperparameter 198, 300

columns 483–484
complete linkage 405, 424
complexity parameter (cp) 175,

179
component scores 313, 323–324
conditional probabilities 137
confusion matrix 72–73, 75, 77
continuous outcome variable 89
continuous output variable 13
continuous predictors 140,

171–173
continuous variables 90, 484

predicting with k-nearest
neighbors 284–286

predicting with tree-based
learners 286–289

control argument 82, 162, 392
convergence 459
Cook’s distance 234
core distance 428
core point 425–428
cost hyperparameter 151–152,

158–159
Counts plot 359
covariance 122, 459, 495–496
covariance matrices 459–460
cp (complexity parameter) 175,

179
cpus argument 368
cross-entropy 339
cross-validation. See CV
cubic polynomial 238
curse of dimensionality 14, 116

consequences of 309
mitigating with dimension

reduction 310–311
CV (cross-validation) 69, 261,

278, 391, 472
decision tree models 183–184
feature selection in 229–231
hyperparameter tuning

and 81–83
kNN models 70–77

hold-out cross-validation
70–73

k-fold cross-validation
73–75

leave-one-out cross-
validation 75–77

logistic regression
models 107–108

missing value imputation
in 107–108, 229–231

SVM models 162–163
to identify overfitting 472–475
to identify underfitting 69,

472–475

D

data
computing component scores

of 323–324
computing UMAP embed-

dings of 343
high-dimensional 308
linearly separable 146–148
mapping onto SOMs 362–363
missing

in logistic regression
models 106

missing value imputation
for 476

non-linearly separable
149–150

plotting
in logistic regression

models 102–105
in SVMs 142–143

predicting clusters with
k-means models 397–398

spectral 481
types of, converting 27
vocabulary for 482–485

columns 483–484
rows 483–484
sample vs. population

482–483
variable types 484–485

data argument 410
data frames

converting into tibbles 26–27
tibbles vs. 27–29

concise output 27–28
converting data types 27
subsetting with [returns

tibbles 28
variables created sequen-

tially in tibbles 29
datasets

in decision trees 176–177
in dplyr 29–34
in elastic net models 263–264
in k-means models 382–384
in kNN models 60–62
in kNN regression

models 290–295
in LASSO models 263–264

INDEX502
datasets (continued)
in LDA models 125–127
in linear regression

models 216–218
in LLE 365–367
in logistic regression

models 99–100
in naive Bayes models 141–142
in PCA models 316–317
in QDA models 125–127
in ridge models 263–264
in SOMs 353–354
in SVM models 156

Davies-Bouldin index 387–388,
391, 394, 409, 413, 441, 445

DBSCAN (density-based spatial
clustering of applications
with noise) 424

DBSCAN models
algorithm for 425–427
building 433–448
datasets in 433–434
tuning epsilon

hyperparameter 434–448
tuning minPts

hyperparameter 434–448
decision stumps 189, 201
decision trees

classifying with
datasets for 176–177
rpart algorithm 168–176
strengths of tree-based

algorithms 184–185
weaknesses of tree-based

algorithms 184–185
improving with boosting

building XGBoost
models 198–202

ensemble techniques
187–194

improving with random for-
ests

benchmarking algorithms
against each other
203–204

building random forest
models 194–198

strengths of tree-based
algorithms 203

weaknesses of tree-based
algorithms 203

models
building 176
cross-validating 183–184
training 177–183

deep fake technology 17
deep learning 14–17, 478
define the learner stage, in

building machine learning
model 62

define the task stage, in build-
ing machine learning
model 62

defining
learners

in k-means models 384–386
in kNN models 64–65

tasks
in k-means models

384–386
in kNN models 63

degree hyperparameter 151,
158, 161

dendrograms 402–403, 407
density connected cases 427
density-based clustering

DBSCAN
building DBSCAN models

433–448
DBSCAN algorithm

learning 425–427
OPTICS

building OPTICS models
449–450

OPTICS algorithm
learning 427–433

overview of 424–433
strengths of 451–452
weaknesses of 451–452

density-based clustering
algorithms 424

density-connected cases 427
dependent variables 8, 484
detecting anomalies 480
DFs (discriminant functions)

120, 122–124, 129
diameter, of clusters 388, 406
DIANA (DIvisive ANAlysis)

algorithm 406
dichotomous variables 171
dimension reduction 13–14,

116, 118, 469
consequences of

collinearity 309–310
consequences of curse of

dimensionality 309
mitigating curse of dimension-

ality with 310–311
mitigating effects of collinear-

ity with 310–311

overview of 308–311
visualizing high-dimensional

data 308
dimensionality. See curse of

dimensionality
dimensions of maps 355
directly-density connected

cases 427
discriminant analysis 124–125

classifying by maximizing sep-
aration with 125–131

LDA
building models 125–131
predictions with 123–125
strengths of 132
weaknesses of 132

learning in 118–120
overview of 116–125
QDA 122–123

building models 125–131
predictions with 123–125
strengths of 132
weaknesses of 132

with more than two
classes 121–122

discriminant functions (DFs)
116, 120, 122–124, 129

discriminant score 121
dispersion, measuring 491–495

interquartile range 493–495
mean absolute deviation 491
standard deviation 492
variance 492–493

distance matrix 406
dist_matrix argument 410
distributions 486–487
divisive hierarchical

clustering 406
dodged nodes 359
dot plots 317
doubles 485
dplyr package 24, 28–35

chaining functions in
34–35

manipulating datasets
with 29–34

dummy variables 213
Dunn index 388–389, 394, 409,

413, 441, 445

E

edges of maps 348, 356
eigenvalues 313–314
eigenvectors 313–314

INDEX 503
elastic net
benchmarking 277–279
models

building 263–277
training 274–277

overview of 260–263
preventing overfitting

with 274–277
strengths of 279–280
weaknesses of 279–280

EM (expectation-maximization)
algorithm 455

calculating probabilities
with 455–457

expectations 458–459
embeddings 342

building t-SNE embeddings
332–337

performing t-SNE 333–335
plotting results of t-

SNE 335–337
computing UMAP embed-

dings of new data 343
See also LLE (locally linear

embedding)
engineering features 100–102,

476–477
ensemble techniques 479

bagging 187–194
boosting 187–194

adaptive 190–191
gradient 192–193

bootstrap aggregating
187–189

improving model perfor-
mance with 477

stacking 187–194
entropy (information gain)

169
epsilon hyperparameter

425–429, 434, 436, 439,
442, 444, 447

eta hyperparameter 198, 300,
333, 335

Euclidean distance 57, 309, 338,
340, 349, 388, 398, 411

Euler’s number 497
eval_metric

hyperparameter 198, 300
evidence 124
exhaustive search 227
expectation-maximization algo-

rithm. See EM algorithm
extreme gradient boosting. See

XGBoost

F

faceting system, ggplot2
103–104

facets 38
factors 485
feature engineering 100–102,

476–477
feature selection

automating in linear regres-
sion models 221–228

filter method for 222–227
in cross-validation 229–231
in linear regression

models 221–228
in logistic regression

models 100–102
overview of 476–477
wrapper method for

227–228
feature space 117, 287, 352
features 484
filter methods 221–222, 225–227,

476
filter wrapper 225
filtering data 30
first-degree polynomial 238
Fisher, Ronald 131
Fisher’s discriminant

analysis 131
five-fold cross-validation 179,

183
floating backward search

227–228
floating forward search 227
folds 73
for loops 43–45
forward search 227
FSelector package 222
functional data 295
functions

chaining in dplyr 34–35
side effects 47–48
side effects of 42–43

fuzzy search regions 338
fval argument 223
fw.mandatory.feat

hyperparameter 225

G

gamboost algorithm 245
gamma hyperparameter

151–152, 158–159, 161,
198, 300

GAMs (generalized additive
models) 237, 479

building 244–248
converting linear regressions

to nonlinear regressions
238–240

handling categorical
variables 243–244

learning smoothing
functions 242–243

splines and 241–244
strengths of 249
weaknesses of 249

Gaussian distribution 351,
486–487, 490, 492

Gaussian function 351
Gaussian mixture modeling 454,

461–465
Gaussian radial basis kernel 150
Gaussians 456–461
generalized additive models. See

GAMs
generalized linear models 211,

213, 480
Genetic algorithm method 227
geom (geometric object) 37,

383, 413
geometric mean 490
ggplot2 package 25, 35–40, 479
Gini gain 169–171, 288
global minimum 268
globally optimal splits 174
gradient boosting 186, 192–193,

477
graft versus host disease

(GvHD) 382–383, 398, 419
grammar of graphics 35
grand centroid 121, 389
greedy algorithms 174
grid search method 79, 159, 227,

475
grids of nodes 345–349
grouping variable 13
growing SOM 355
GvHD (graft versus host

disease) 382–383, 398, 419

H

hard-margin SVM 148–149
Hartigan-Wong algorithm

381–382, 424
HDclassif package 125
heatmaps 359–360, 408, 444
hexagonal nodes 355–356

INDEX504
hierarchical clustering 424
agglomerative 404–416
divisive 406
overview of 401–406
stability of clusters 416–418
strengths of 419–420
weaknesses of 419–420

high-dimensional data 308
hold-out CV (cross-

validation) 69–73, 472–473
calculating confusion

matrix 72–73
creating hold-out resampling

description 70–71
performing 71

hold-out resampling
descriptions 70–71

homogeneous learners 194
homoscedasticity 212, 279
Hughes phenomenon 118
hyperparameters

epsilon 434–448
minPts 434–448
of rpart algorithm 174–176
of SVM algorithm 151–153
training SVM models

with 161–162
tuning 79–83, 156–161, 180–

183, 295–296, 391–395,
434–448, 475–476

hyperplanes 146, 148

I

identity function 242
ill-posed problem 255
imputation mechanism 106
incremental algorithm 380
independent variables 8, 139,

484
information gain (entropy) 169
inner loop 81, 473, 475
integer vectors 100
integers 484
internal cluster metrics 386
interquartile range 493–495
IQR (interquartile range)

493–495
iterating over multiple lists

49–50
iter.max argument 385

J

Jaccard index 416–418

K

k hyperparameter 78, 289
kernel 150
kernel function 150
kernel hyperparameter 151, 158
kernel k-nearest neighbors 295
k-fold CV (cross-validation) 69,

472–473
calculating confusion

matrix 75
choosing number of

repeats 74–75
performing 74

kitchen-sink regression 254
KL (Kullback-Leibler)

divergence 331–332
kmax argument 368
k-means clustering 409

Hartigan-Wong
algorithm 381–382

Lloyd algorithm 378–380
MacQueen algorithm 380–381
overview of 378–382
strengths of 398
weaknesses of 398

k-means models
building 382–398
choosing algorithm for

391–395
choosing number of

clusters 386–391
Davies-Bouldin index to

evaluate clustering
performance 387–388

Dunn index to evaluate clus-
tering performance
388–389

pseudo F statistic to
evaluate clustering
performance 389–391

datasets in 382–384
defining learners 384–386
defining task 384–386
to predict clusters of new

data 397–398
training 395–397
tuning k 391–395

kmin argument 368
kNN (k-nearest neighbors)

algorithm for
learning 56–59
overview of 56–59
tied votes 59

benchmarking 301–303

classifying based on similari-
ties with

bias-variance trade-off
67–69

cross-validation to identify
overfitting 69

cross-validation to identify
underfitting 69

parameters 77–78
models

building 59–67
cross-validating 70–77
datasets in 60–62
defining learner 64–65
defining tasks 63
training 62, 65–67
tuning k to improve 79–83

predicting continuous vari-
ables with 284–286

regression models
building 289–296
datasets in 290–295
tuning hyperparameters

295–296
strengths of 83–84, 303
weaknesses of 83–84, 303

kNN classifier 62
knots 241
Kohonen maps 349
Kullback-Leibler (KL)

divergence 331–332

L

L1 norm 259–260
L1 regularization 478
L2 norm 255–259
L2 regularization 478
labeled data 11
lambdas 257–261, 265–267, 272,

275
LASSO (least absolute shrinkage

and selection operator)
252, 255, 478

benchmarking 277–279
L1 norm in 259–260
models

building 263–277
training 271–273

preventing overfitting
with 271–273

strengths of 279–280
weaknesses of 279–280

LASSO penalty 260, 262
lazy learners 58, 284

INDEX 505
LDA (linear discriminant
analysis) 118, 120, 122–123,
128–129

models
building 125–131
training 128–131

predictions with 123–125
strengths of 132
weaknesses of 132

leaf nodes (leaves) 169–170
learner argument 224
learners

creating 479
defining

in k-means models 384–386
in kNN models 64–65

tree-based 286–289
learning

in discriminant analysis
118–120

in logistic regression 90–97
reinforcement 479
semi-supervised 10–13,

469–471, 481
smoothing functions 242–243
supervised 10–13, 469–471
unsupervised 10–13, 469–471
See also deep learning; ML

(machine learning)
learning rate 198, 300, 333
least absolute shrinkage and

selection operator. See
LASSO

leave-one-out CV (cross-
validation) 69, 75–77, 473

calculating confusion
matrix 77

performing 76–77
LightGBM algorithm 193
likelihood 124

calculating for categorical
predictors 140

calculating for continuous
predictors 140

linear correlation 222
linear dimension-reduction

algorithm 328
linear discriminant analysis. See

LDA
Linear kernel 150
linear models 480
linear regression 88

converting to nonlinear
regressions with polyno-
mial terms 238–240

models
automating feature

selection 221–228
building 215–234
datasets in 216–218
imputing missing

values 218–221
including feature selection

in cross-validation
229–231

including imputation in
cross-validation 229–231

interpreting linear regres-
sion models 231–234

overview of 208–215
strengths of 234–235
weaknesses of 234–235
with categorical

predictors 213–215
with multiple predictors

210–213
linearly separable classes 111
linearly separable data 146–148
link functions 213
linkage methods 405
lists

multiple, iterating
simultaneously 49–50

returning atomic vectors
instead of 45–46

LLE (locally linear embedding)
building 365–371
datasets in 365–367
manifolds 345–347
overview of 364–365
plotting results of 369
strengths of 372
training 367–369
weaknesses of 372

Lloyd algorithm 378–380
local minimum 268
locally linear embedding. See

LLE
locally optimal splits 174
LOESS curve 217
log loss 192, 200
log odds 92–96, 109
logarithms 497
logical variables 485
logistic function 88, 90
logistic regression

classifying based on odds with
odds ratio 108–110
predictions with

models 110

learning in 90–97
models

building 98–107
cross-validating 107–108
datasets in 99–100
feature engineering

100–102
feature selection 100–102
missing data 106
plotting data 102–105
training 105–107

overview of 89–98
strengths of 111–112
weaknesses of 111–112
with more than two classes

97–98
logit function 92
logit regression 92
LOO argument 76
loss functions 192, 256, 258

M

m argument 368
machine learning. See ML
MacQueen’s algorithm 380–381,

395
MAE (mean absolute error) 226
Manhattan distance 340, 379
manifolds 345–347
map() 43–45, 47
mapping data onto SOMs

362–363
Mapping plot 359
maps

dimensions of 355
edges, behavior of 356
hexagonal nodes on 355–356
rectangular nodes on 355–356

MAR (missing at random)
219–220

margins 146
maxcompete hyperparameter

178
maxdepth 175, 179
max_depth hyperparameter

198, 300
maximize the variance 312
maxit argument 159
max_iter hyperparameter 333,

335
maxnodes hyperparameter 195,

298
maxsurrogate hyperparameter

178

INDEX506
MCAR (missing completely at
random) 219–220

mean absolute deviation 491
mean misclassification error

(MMCE) 66, 71, 83, 184,
207

mean square error (MSE) 226,
231

measures argument 66, 144, 392
measuring

dispersion 491–495
interquartile range 493–495
mean absolute deviation

491
standard deviation 492
variance 492–493

relationships between
variables 495–497

covariance 495–496
Pearson correlation

coefficient 496–497
median 490
median absolute deviation 491
merror 198
metric hyperparameter 340
metrics 479
mfrow argument 248
minbucket 176, 179
min_child_weight hyper-

parameter 198, 300
min_dist hyperparameter 340
minPts hyperparameter 425–429,

434, 436, 439, 442, 444, 447
minsplit 175, 179
missing at random (MAR)

219–220
missing completely at random

(MCAR) 219–220
missing value imputation 89,

106
for missing data 476
in cross-validation 107–108,

229–231
in linear regression models

218–221
missing values (NAs) 141, 218
mixture model clustering

building Gaussian mixture
model for clustering
461–465

EM algorithm
calculating probabilities

with 455–457
expectations 458–459

overview of 455–461

strengths of 465–466
weaknesses of 465–466
with more than one

variable 459–461
ML (machine learning)

AI and 6
algorithms, classes of 10–17

classification 13–14
clustering 13–14
deep learning 14–17
dimension reduction 13–14
regression 13–14
semi-supervised

learning 10–13
supervised learning 10–13
unsupervised learning

10–13
ethical impact of 17–19
overview of 4–10
R for 19

mlogloss 198
mlr package 60, 63, 99, 108, 162,

479
training kNN models with 62
tutorial for 479

MMCE (mean misclassification
error) 66, 71, 83, 184, 207

MNAR (missing not at random)
220

modal prediction 188
mode 490
models

converting parameters to odds
ratio 109–110

improving performance with
ensemble techniques 477

maximizing performance with
hyperparameter tuning
475–476

predictions with 83, 110
strengths of 343
tuning hyperparameters to

improve 79–83
MSE (mean square error) 226,

231
mtry hyperparameter 194, 297
multicollinearity 310
multi-level categorical

predictors 171–173
multinomial logistic

regression 13, 89, 97
multiple imputation 220
multiple regression 210
multivariate Gaussian 459
mutating variables 32

N

naive Bayes algorithm
-calculating likelihood for cate

gorical and continuous
predictors 140

for classification 138–140
models

datasets in 141–142
plotting data 142–143
training 140–145

overview of 136–140
strengths of 145
weaknesses of 145

NAs (missing values) 141, 218
natural logarithm 497
negative deviations 491
Neighbor Distance map

plot 359
neighborhood function 356
n_epochs hyperparameter 340
nested cross-validation 473
neural networks 14
newdata argument 397
n_neighbors hyperparameter

339
no free lunch theorem 8
node weights 350–352
nodes

grids of 345–349
hexagonal nodes on maps

355–356
placing cases in 349
rectangular nodes on

maps 355–356
nodesize hyperparameter 195,

298
noise 68
noise point 426–427
no-man’s land classification 154
nomos category 97
nonlinear dimension-reduction

algorithm 324, 328, 365
nonlinear regressions

converting linear regressions
to 238–240

with GAMs
building GAMs 244–248
splines and GAMs 241–244
strengths of GAMs 249
weaknesses of GAMs 249

non-linearly separable data
149–150

Normal Q-Q (quantile-quantile)
plot 233

INDEX 507
nrounds hyperparameter
198–199, 300

nstart argument 385–386
nth-degree polynomials 238, 240
ntree hyperparameter 194, 297
numerical encoding 199

O

odds, classifying based on
building logistic regression

models 98–107
datasets in 99–100
feature engineering

100–102
feature selection 100–102
missing data 106
plotting data 102–105
training 105–107

cross-validating logistic regres-
sion model 107–108

accuracy 108
missing value imputation in

cross-validation 107–108
logistic regression

learning 90–97
overview of 89–98
with more than two

classes 97–98
odds ratio 108–110

converting model parame-
ters to odds ratios
109–110

one-unit increases 110
predictions with models 110
strengths of logistic

regression 111–112
weaknesses of logistic

regression 111–112
offline (batch) algorithm 380
offline algorithm 380
OLS (ordinary least squares)

209–210, 253, 255–257, 259,
478

one versus all approach 153
one versus one approach 153
one versus rest approach 153
one-dimensional Gaussians 456
one-hot encoding 199
online algorithm 380
OPTICS (ordering points to

identify the clustering
structure) 424

algorithm 427–433
building models 449–450

optimal fitting 253
optimal linear hyperplane 146
ordering points to identify the

clustering structure. See
OPTICS

ordinary least squares (OLS)
209–210, 253, 255–257, 259,
277–279, 478

orthogonal 121
outcome variables 8, 484
outer cross-validation loop 183
outer loop 81–82, 473, 475
outliers 490, 493
out-of-bag error 196, 298
output classes 97
over-clustering 390
overfitting

cross-validation to identify 69,
472–475

preventing 277–279
preventing with elastic

net 274–277
benchmarking elastic

net 277–279
building elastic net

models 263–277
strengths of elastic net

279–280
weaknesses of elastic

net 279–280
preventing with LASSO

271–273
benchmarking

LASSO 277–279
building LASSO

models 263–277
strengths of LASSO

279–280
weaknesses of LASSO

279–280
preventing with regularization

478
preventing with ridge 265–270

benchmarking ridge
277–279

building ridge models
263–277

strengths of ridge 279–280
weaknesses of ridge

279–280

P

parallel argument 368
parallelization 298

parallelMap package 160
parameter space 79
parameters (coefficients) 77–78,

109–110, 209, 232, 269
par.set argument 80, 180, 392
par.vals argument 64, 385
PC1 (principal

component) 311, 322
PCA (principal component

analysis) 120, 308, 314,
361

maximizing variance
with 308–311

models
building 315–324
computing component

scores of new data
323–324

datasets in 316–317
overview of 311–315
performing 317–320
plotting results of 320–323
strengths of 324–325
weaknesses of 324–325

pch argument 366
Pearson correlation

coefficient 496–497
per argument 223
perfect collinearity 310
performance metrics 66, 69
perplexity hyperparameter 329,

333, 335
phi argument 366
piecewise polynomial

function 241
Platt scaling 154
plotting

data in logistic regression
models 102–105

data in naive Bayes
model 142–143

results of LLE 369
results of PCA 320–323
results of SOMs 357–362
results of t-SNE 335–337
results of UMAP 342

Poisson distribution 487
Poisson regression 480
Polynomial kernel 150
polynomial kernel function 161
polynomial terms 237–240
polytomous factor 214
position argument 143
positive deviations 491
posterior probability 123

INDEX508
predicting
clusters of data with k-means

models 397–398
continuous variables with

k-nearest neighbors
284–286

continuous variables with tree-
based learners 286–289

models for 83, 110
with LDA 123–125
with QDA 123–125

predictor variables 8, 117, 484
predictors

categorical predictors 140
continuous predictors 140,

171–173
multi-level categorical

predictors 171–173
principal axis 311–312
principal component analysis.

See PCA
prior probability 124–125
probabilities 455–457
probability density function 124,

487
probability distributions 487
property argument 360
pruning 174
pseudo F statistic 389–391, 409,

413, 441, 445
pure functions 42
purity 287, 289
purrr package

anonymous functions inside
map() family 47

iterating over multiple lists
simultaneously 49–50

replacing for loops with
map() 43–45

returning atomic vectors
instead of lists 45–46

walk() to produce function
side effects 47–48

Python 19

Q

QDA (quadratic discriminant
analysis) 122–123

models
building 125–131
datasets in 125–127
plotting data 127–128
training 128–131

predictions with 123–125

strengths of 132
weaknesses of 132

quadratic polynomials 238
Quality map plot 359
quartic polynomials 238
quartiles 493–494

R

R programming language
data science in 479
for machine learning 19

random forest
benchmarking 301–303
building models 194–198
building regression

models 297–299
improving decision trees with

benchmarking algorithms
against each other
203–204

strengths of tree-based
algorithms 203

weaknesses of tree-based
algorithms 203

regression with 286–289
strengths of 303
weaknesses of 303

random search 79, 136, 159, 227
reachability distance 428–429
reachability score 429–430
rectangular data 25
rectangular nodes 355–356
recursive partitioning algorithm.

See rpart algorithm
regression 13–14

with kNN
benchmarking kNN

301–303
building kNN regression

models 289–296
predicting continuous vari-

ables with k-nearest
neighbors 284–286

strengths of kNN 303
weaknesses of kNN 303

with random forest
benchmarking random

forest 301–303
building random forest

regression models
297–299

predicting continuous vari-
ables with tree-based
learners 286–289

strengths of random
forest 303

weaknesses of random
forest 303

with XGBoost
benchmarking

XGBoost 301–303
building XGBoost regres-

sion models 299–301
strengths of XGBoost

303
weaknesses of XGBoost

303
regular expressions 292
regularization 193, 254–255

overview of 251–252
preventing overfitting

with 478
reinforcement learning 479
relative argument 72
relative confusion matrix 72
repeated k-fold CV 73
repeats, choosing number

of 74–75
replacement 188
resampling argument 80, 82,

162, 392
resampling descriptions 70–71
residual error 192, 491
residual sum of squares 209
Residuals component 232
Residuals vs. Fitted plot 234
Residuals vs. Leverage

plot 234
response variables 484
ridge

benchmarking 277–279
models

building 263–277
datasets in 263–264
training ridge regression

models 265–270
preventing overfitting

with 265–270
strengths of 279–280
weaknesses of 279–280

ridge penalties 260
ridge regression

L2 norm in 255–258
overview of 252–255

rlen hyperparameter 357
RMSE (root mean square

error) 226, 232, 300–301
root nodes 169
rows 483–484

INDEX 509
rpart (recursive partitioning)
algorithm

continuous predictors
171–173

hyperparameters of 174–176
multi-level categorical

predictors 171–173
overview of 168–176
splitting trees with Gini

gain 169–171

S

sampling error 253, 483
sampling with replacement 409
scale argument 217, 318
Scale-Location plot 234
scales argument 264
scatter 387–388
scree plots 321–322
second-degree polynomial 238
selecting. See feature selection
self-organizing maps. See SOMs
semi-supervised learning 10,

12–13, 469–471, 481
separable classes 148–149
sequential forward selection

222
sequential search 227
shrinkage. See regularization
side effects of functions 42–43,

47–48
sigma notation 488–489
Sigmoid kernel 150
similarity

maximizing with t-SNE
building t-SNE embedding

332–337
strengths of t-SNE 343
weaknesses of t-SNE 343

maximizing with UMAP
building UMAP models

339–343
strengths of UMAP 343
weaknesses of UMAP 343

simple linear regression 210
Single linkage 405
slope parameters 257
smoothing functions

GAMs and 242–243
learning 242–243

soft clustering method 455
soft-margin SVM 148, 152
softmax function 97
som() function 356–357

SOMs (self-organizing maps)
building 353–363
creating grid of nodes

348–349
datasets for 353–354
grids of nodes 345–347
mapping new data onto

362–363
overview of 347–352
placing cases in nodes 349
plotting results of 357–362
randomly assigning

weights 349
strengths of 372
training 354–357

behavior of map edges 356
dimensions of map 355
hexagonal nodes on

map 355–356
neighborhood

function 356
rectangular nodes on

map 355–356
with som() function

356–357
updating node weights

350–352
weaknesses of 372

sparse data 309
spectral data 295, 481
splines, GAMs and 241–244

handling categorical
variables 243–244

learning smoothing
functions 242–243

splinter group 406
splitting trees 169–171
square root symbol 492
squared Euclidean distance 349
stacked model 194
stacking 187–194, 477
standard deviation 492
statistical learning 4
steepness 433, 450
stochastic gradient boosting 193
subplots of data 38
subsample hyperparameter 198,

300
sum of squares 8
supervised dimension

reduction 339
supervised learning 10–13,

469–471
support vectors 146
surrogate splits 178

SVMs (support vector
machines) 480

algorithm
for linearly separable

data 146–148
for non-linearly separable

data 149–150
hyperparameters of 151–153
overview of 145–154
separable classes 148–149
strengths of 163–164
weaknesses of 163–164
with more than two

classes 153–154
models

building 155–162
cross-validating 162–163
datasets in 156
training with tuned

hyperparameters
161–162

tuning hyperparameters
156–161

symmetrical distributions 493

T

t distribution 329
tasks

defining in k-means
models 384–386

defining in kNN models 63
taxi cab distance 340, 379
test set 69
theta hyperparameter 333, 335
threshold hyperparameter 223,

225
tibble package 25–29

converting data frames into
tibbles 26–27

creating tibbles 26
data frames vs. tibbles 27–29

concise output 27–28
converting data types 27
subsetting with [returns

tibbles 28
variables created sequen-

tially in tibbles 29
tidy data 23–25
tidyr package 40–42
tidyverse 479

dplyr package 29–35
chaining functions in 34–35
manipulating datasets

with 29–34

INDEX510
tidyverse (continued)
ggplot2 package 35–40
loading 25
overview of 23–25
purrr package 42–50

anonymous functions inside
map() family 47

iterating over multiple lists
simultaneously 49–50

replacing for loops with
map() 43–45

returning atomic vectors
instead of lists 45–46

walk() to produce function
side effects 47–48

tibble package 25–29
converting existing data

frames into tibbles
26–27

creating tibbles 26
differences between data

frames and tibbles
27–29

tidyr package 40–42
tied votes 59
time series 480
top-down pruning 174
toroidal argument 362
toroidal grids 356
train the model stage, in build-

ing machine learning
models 62

training
decision tree models

177–183
elastic net models 274–277
k-means models 395–397
kNN models 62, 65–67
LASSO models 271–273
LDA models 128–131
LLE 367–369
logistic regression models

105–107
naive Bayes models 143–145
QDA models 128–131
ridge regression models

265–270
SOMs 354–357

behavior of map edges
356

dimensions of map 355
hexagonal nodes on

map 355–356
neighborhood function

356

rectangular nodes on
map 355–356

with som() function
356–357

SVM models with hyper-
parameters 161–162

Training Progress plot 359
training set 69
tree-based algorithms

strengths of 184–185, 203
weaknesses of 184–185, 203

tree-based learners 286–289
trees

cutting to select flat sets of
clusters 414–416

splitting with Gini gain
169–171

trees argument 200
t-SNE (t-distributed stochastic

neighbor embedding)
embeddings 332–337
overview of 328–332
performing 333–335
plotting results of 335–337
weaknesses of 343

Tukey range 494
tuning hyperparameters 156–

161, 295–296, 391–395, 475–
476

epsilon in DBSCAN
models 434–448

for training decision tree
models 180–183

minPts in DBSCAN
models 434–448

to improve models 79–83
two-dimensional vector 486

U

U matrix plot 359
UMAP (uniform manifold

approximation and
projection) 328

building models 339–343
computing embeddings of

new data 343
overview of 337–339
performing 339–341
plotting results of 342
strengths of 343
weaknesses of 343

uncorrelated (orthogonal)
variables 314

uncorrelated trees 189

underfitting 67–69, 252–253,
386, 472–475

univariate Gaussian 459
unrolling data 364
unsupervised learning 10–13,

469–471
untidy data 24
updating node weights 350–352
usesurrogate hyperparameter

178

V

validation set 475
variable loading plots 320
variable loadings 318–319
variables

created sequentially in
tibbles 29

measuring relationships
between 495–497

covariance 495–496
Pearson correlation

coefficient 496–497
more than one with mixture

model clustering 459–461
types of 484–485

variance 492–493
maximizing with PCA

building PCA models
315–324

dimension reduction
308–311

strengths of PCA 324–325
weaknesses of PCA 324–325

variance-covariance
matrices 460

vectors 485–486
verbs 34
visualizing high-dimensional

data 308
Voronoi cells 380
votes, tied 59

W

walk() 47–48
Ward’s method 405–406
weak learners 189
weighted sum 243
weights

randomly assigning 349
updating node weights

350–352
See also node weights

INDEX 511
whisker (box) plots 494
wide format 42
within-cluster sum of

squares 389
wrapper function 162
wrapper methods 222, 225,

227–228, 476
wrappers 82, 229, 246

X

xdim argument 355
XGBoost (extreme gradient

boosting) 189, 193, 284,
289, 297, 469, 477

benchmarking 301–303
building models 198–202

building regression
models 299–301

strengths of 303
weaknesses of 303

Y

ydim argument 355

RELATED MANNING TITLES

Deep Learning with R
by François Chollet, with J. J. Allaire

ISBN 9781617295546
360 pages, $49.99
January 2018

Practical Data Science with R, Second Edition
by Nina Zumel and John Mount

ISBN 9781617295874
568 pages, $49.99
November 2019

Beyond Spreadsheets with R
by Dr. Jonathan Carroll

ISBN 9781617294594
352 pages, $49.99
December 2018

R in Action, Third Edition
by Robert I. Kabacoff

ISBN 9781617296055
625 pages, $59.99
Summer 2020

For ordering information go to www.manning.com

UnsupervisedSupervised

Regression
Ordinary least squares

Generalized additive models
Ridge, LASSO, and elastic net

K-nearest neighbors
Decision trees and random forests

XGBoost

Clustering
K-means

Hierarchical
DBSCAN / OPTICS
Mixture modeling

Dimension reduction
Principal components

t-SNE
UMAP

Self-organizing maps
Locally linear embedding

Classification
K-nearest neighbors
Logistic regression

Naive Bayes
Discriminant analysis

Support vector machines
Decision trees and random forests

XGBoost

Summary of the algorithms we cover in the book, whether they are supervised or
unsupervised learners, and whether they can be used for classification, regression,
dimension reduction, or clustering

Hefin I. Rhys

ISBN: 978-1-61729-657-4

M
achine Learning with R, the tidyverse, and mlr gets you
started in machine learning using R Studio and the
awesome mlr machine learning package. This practical

guide simplifi es theory and avoids needlessly complicated
statistics or math. All core ML techniques are clearly explained
through graphics and easy-to-grasp examples. In each engag-
ing chapter, you’ll put a new algorithm into action to solve a
quirky predictive analysis problem, including Titanic survival
odds, spam email fi ltering, and poisoned wine investigation.

What’s Inside
● Using the tidyverse packages to process and
 plot your data
● Techniques for supervised and unsupervised learning
● Classifi cation, regression, dimension reduction,
 and clustering algorithms
● Statistics primer to fi ll gaps in your knowledge

For newcomers to machine learning with basic skills in R.

Hefin I. Rhys is a senior laboratory research scientist at the
Francis Crick Institute. He runs his own YouTube channel
of screencast tutorials for R and RStudio.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/machine-learning-with-r-the-tidyverse-and-mlr

$49.99 / Can $65.99 [INCLUDING eBOOK]

Machine Learning
with R, the tidyverse, and mlr

DATA SCIENCE/R

M A N N I N G

“Easy language, clear
explanations, good examples . . .

I love this book!”
—Mario Giesel, Mediaplus

“This book is not only
very useful, it is also

 fun to read!”—Fernando García Sedano
Dinacell Electrónica

“Fantastic introduction
to the subject of

 machine learning.”—Luis Moux, EMO

“Lucid language, real-life
examples, in-depth coverage
of a variety of algorithms,

and exercises along
with answers to hone

 your skills.”—Prabhuti Prakash, Atos

See first page

	Machine Learning with R, the tidyverse, and mlr
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: A roadmap
	About the code
	liveBook discussion forum

	about the author
	about the cover illustration
	Part 1—Introduction
	1 Introduction to machine learning
	1.1 What is machine learning?
	1.1.1 AI and machine learning
	1.1.2 The difference between a model and an algorithm

	1.2 Classes of machine learning algorithms
	1.2.1 Differences between supervised, unsupervised, and semi-supervised learning
	1.2.2 Classification, regression, dimension reduction, and clustering
	1.2.3 A brief word on deep learning

	1.3 Thinking about the ethical impact of machine learning
	1.4 Why use R for machine learning?
	1.5 Which datasets will we use?
	1.6 What will you learn in this book?
	Summary

	2 Tidying, manipulating, and plotting data with the tidyverse
	2.1 What is the tidyverse, and what is tidy data?
	2.2 Loading the tidyverse
	2.3 What the tibble package is and what it does
	2.3.1 Creating tibbles
	2.3.2 Converting existing data frames into tibbles
	2.3.3 Differences between data frames and tibbles

	2.4 What the dplyr package is and what it does
	2.4.1 Manipulating the CO2 dataset with dplyr
	2.4.2 Chaining dplyr functions together

	2.5 What the ggplot2 package is and what it does
	2.6 What the tidyr package is and what it does
	2.7 What the purrr package is and what it does
	2.7.1 Replacing for loops with map()
	2.7.2 Returning an atomic vector instead of a list
	2.7.3 Using anonymous functions inside the map() family
	2.7.4 Using walk() to produce a function’s side effects
	2.7.5 Iterating over multiple lists simultaneously

	Summary
	Solutions to exercises

	Part 2—Classification
	3 Classifying based on similarities with k-nearest neighbors
	3.1 What is the k-nearest neighbors algorithm?
	3.1.1 How does the k-nearest neighbors algorithm learn?
	3.1.2 What happens if the vote is tied?

	3.2 Building your first kNN model
	3.2.1 Loading and exploring the diabetes dataset
	3.2.2 Using mlr to train your first kNN model
	3.2.3 Telling mlr what we’re trying to achieve: Defining the task
	3.2.4 Telling mlr which algorithm to use: Defining the learner
	3.2.5 Putting it all together: Training the model

	3.3 Balancing two sources of model error: The bias-variance trade-off
	3.4 Using cross-validation to tell if we’re overfitting or underfitting
	3.5 Cross-validating our kNN model
	3.5.1 Holdout cross-validation
	3.5.2 K-fold cross-validation
	3.5.3 Leave-one-out cross-validation

	3.6 What algorithms can learn, and what they must be told: Parameters and hyperparameters
	3.7 Tuning k to improve the model
	3.7.1 Including hyperparameter tuning in cross-validation
	3.7.2 Using our model to make predictions

	3.8 Strengths and weaknesses of kNN
	Summary
	Solutions to exercises

	4 Classifying based on odds with logistic regression
	4.1 What is logistic regression?
	4.1.1 How does logistic regression learn?
	4.1.2 What if we have more than two classes?

	4.2 Building your first logistic regression model
	4.2.1 Loading and exploring the Titanic dataset
	4.2.2 Making the most of the data: Feature engineering and feature selection
	4.2.3 Plotting the data
	4.2.4 Training the model
	4.2.5 Dealing with missing data
	4.2.6 Training the model (take two)

	4.3 Cross-validating the logistic regression model
	4.3.1 Including missing value imputation in cross-validation
	4.3.2 Accuracy is the most important performance metric, right?

	4.4 Interpreting the model: The odds ratio
	4.4.1 Converting model parameters into odds ratios
	4.4.2 When a one-unit increase doesn’t make sense

	4.5 Using our model to make predictions
	4.6 Strengths and weaknesses of logistic regression
	Summary
	Solutions to exercises

	5 Classifying by maximizing separation with discriminant analysis
	5.1 What is discriminant analysis?
	5.1.1 How does discriminant analysis learn?
	5.1.2 What if we have more than two classes?
	5.1.3 Learning curves instead of straight lines: QDA
	5.1.4 How do LDA and QDA make predictions?

	5.2 Building your first linear and quadratic discriminant models
	5.2.1 Loading and exploring the wine dataset
	5.2.2 Plotting the data
	5.2.3 Training the models

	5.3 Strengths and weaknesses of LDA and QDA
	Summary
	Solutions to exercises

	6 Classifying with naive Bayes and support vector machines
	6.1 What is the naive Bayes algorithm?
	6.1.1 Using naive Bayes for classification
	6.1.2 Calculating the likelihood for categorical and continuous predictors

	6.2 Building your first naive Bayes model
	6.2.1 Loading and exploring the HouseVotes84 dataset
	6.2.2 Plotting the data
	6.2.3 Training the model

	6.3 Strengths and weaknesses of naive Bayes
	6.4 What is the support vector machine (SVM) algorithm?
	6.4.1 SVMs for linearly separable data
	6.4.2 What if the classes aren’t fully separable?
	6.4.3 SVMs for non-linearly separable data
	6.4.4 Hyperparameters of the SVM algorithm
	6.4.5 What if we have more than two classes?

	6.5 Building your first SVM model
	6.5.1 Loading and exploring the spam dataset
	6.5.2 Tuning our hyperparameters
	6.5.3 Training the model with the tuned hyperparameters

	6.6 Cross-validating our SVM model
	6.7 Strengths and weaknesses of the SVM algorithm
	Summary
	Solutions to exercises

	7 Classifying with decision trees
	7.1 What is the recursive partitioning algorithm?
	7.1.1 Using Gini gain to split the tree
	7.1.2 What about continuous and multilevel categorical predictors?
	7.1.3 Hyperparameters of the rpart algorithm

	7.2 Building your first decision tree model
	7.3 Loading and exploring the zoo dataset
	7.4 Training the decision tree model
	7.4.1 Training the model with the tuned hyperparameters

	7.5 Cross-validating our decision tree model
	7.6 Strengths and weaknesses of tree-based algorithms
	Summary

	8 Improving decision trees with random forests and boosting
	8.1 Ensemble techniques: Bagging, boosting, and stacking
	8.1.1 Training models on sampled data: Bootstrap aggregating
	8.1.2 Learning from the previous models’ mistakes: Boosting
	8.1.3 Learning from predictions made by other models: Stacking

	8.2 Building your first random forest model
	8.3 Building your first XGBoost model
	8.4 Strengths and weaknesses of tree-based algorithms
	8.5 Benchmarking algorithms against each other
	Summary

	Part 3—Regression
	9 Linear regression
	9.1 What is linear regression?
	9.1.1 What if we have multiple predictors?
	9.1.2 What if our predictors are categorical?

	9.2 Building your first linear regression model
	9.2.1 Loading and exploring the Ozone dataset
	9.2.2 Imputing missing values
	9.2.3 Automating feature selection
	9.2.4 Including imputation and feature selection in cross-validation
	9.2.5 Interpreting the model

	9.3 Strengths and weaknesses of linear regression
	Summary
	Solutions to exercises

	10 Nonlinear regression with generalized additive models
	10.1 Making linear regression nonlinear with polynomial terms
	10.2 More flexibility: Splines and generalized additive models
	10.2.1 How GAMs learn their smoothing functions
	10.2.2 How GAMs handle categorical variables

	10.3 Building your first GAM
	10.4 Strengths and weaknesses of GAMs
	Summary
	Solutions to exercises

	11 Preventing overfitting with ridge regression, LASSO, and elastic net
	11.1 What is regularization?
	11.2 What is ridge regression?
	11.3 What is the L2 norm, and how does ridge regression use it?
	11.4 What is the L1 norm, and how does LASSO use it?
	11.5 What is elastic net?
	11.6 Building your first ridge, LASSO, and elastic net models
	11.6.1 Loading and exploring the Iowa dataset
	11.6.2 Training the ridge regression model
	11.6.3 Training the LASSO model
	11.6.4 Training the elastic net model

	11.7 Benchmarking ridge, LASSO, elastic net, and OLS against each other
	11.8 Strengths and weaknesses of ridge, LASSO, and elastic net
	Summary
	Solutions to exercises

	12 Regression with kNN, random forest, and XGBoost
	12.1 Using k-nearest neighbors to predict a continuous variable
	12.2 Using tree-based learners to predict a continuous variable
	12.3 Building your first kNN regression model
	12.3.1 Loading and exploring the fuel dataset
	12.3.2 Tuning the k hyperparameter

	12.4 Building your first random forest regression model
	12.5 Building your first XGBoost regression model
	12.6 Benchmarking the kNN, random forest, and XGBoost model-building processes
	12.7 Strengths and weaknesses of kNN, random forest, and XGBoost
	Summary
	Solutions to exercises

	Part 4—Dimension reduction
	13 Maximizing variance with principal component analysis
	13.1 Why dimension reduction?
	13.1.1 Visualizing high-dimensional data
	13.1.2 Consequences of the curse of dimensionality
	13.1.3 Consequences of collinearity
	13.1.4 Mitigating the curse of dimensionality and collinearity by using dimension reduction

	13.2 What is principal component analysis?
	13.3 Building your first PCA model
	13.3.1 Loading and exploring the banknote dataset
	13.3.2 Performing PCA
	13.3.3 Plotting the result of our PCA
	13.3.4 Computing the component scores of new data

	13.4 Strengths and weaknesses of PCA
	Summary
	Solutions to exercises

	14 Maximizing similarity with t-SNE and UMAP
	14.1 What is t-SNE?
	14.2 Building your first t-SNE embedding
	14.2.1 Performing t-SNE
	14.2.2 Plotting the result of t-SNE

	14.3 What is UMAP?
	14.4 Building your first UMAP model
	14.4.1 Performing UMAP
	14.4.2 Plotting the result of UMAP
	14.4.3 Computing the UMAP embeddings of new data

	14.5 Strengths and weaknesses of t-SNE and UMAP
	Summary
	Solutions to exercises

	15 Self-organizing maps and locally linear embedding
	15.1 Prerequisites: Grids of nodes and manifolds
	15.2 What are self-organizing maps?
	15.2.1 Creating the grid of nodes
	15.2.2 Randomly assigning weights, and placing cases in nodes
	15.2.3 Updating node weights to better match the cases inside them

	15.3 Building your first SOM
	15.3.1 Loading and exploring the flea dataset
	15.3.2 Training the SOM
	15.3.3 Plotting the SOM result
	15.3.4 Mapping new data onto the SOM

	15.4 What is locally linear embedding?
	15.5 Building your first LLE
	15.5.1 Loading and exploring the S-curve dataset
	15.5.2 Training the LLE
	15.5.3 Plotting the LLE result

	15.6 Building an LLE of our flea data
	15.7 Strengths and weaknesses of SOMs and LLE
	Summary
	Solutions to exercises

	Part 5—Clustering
	16 Clustering by finding centers with k-means
	16.1 What is k-means clustering?
	16.1.1 Lloyd’s algorithm
	16.1.2 MacQueen’s algorithm
	16.1.3 Hartigan-Wong algorithm

	16.2 Building your first k-means model
	16.2.1 Loading and exploring the GvHD dataset
	16.2.2 Defining our task and learner
	16.2.3 Choosing the number of clusters
	16.2.4 Tuning k and the algorithm choice for our k-means model
	16.2.5 Training the final, tuned k-means model
	16.2.6 Using our model to predict clusters of new data

	16.3 Strengths and weaknesses of k-means clustering
	Summary
	Solutions to exercises

	17 Hierarchical clustering
	17.1 What is hierarchical clustering?
	17.1.1 Agglomerative hierarchical clustering
	17.1.2 Divisive hierarchical clustering

	17.2 Building your first agglomerative hierarchical clustering model
	17.2.1 Choosing the number of clusters
	17.2.2 Cutting the tree to select a flat set of clusters

	17.3 How stable are our clusters?
	17.4 Strengths and weaknesses of hierarchical clustering
	Summary
	Solutions to exercises

	18 Clustering based on density: DBSCAN and OPTICS
	18.1 What is density-based clustering?
	18.1.1 How does the DBSCAN algorithm learn?
	18.1.2 How does the OPTICS algorithm learn?

	18.2 Building your first DBSCAN model
	18.2.1 Loading and exploring the banknote dataset
	18.2.2 Tuning the epsilon and minPts hyperparameters

	18.3 Building your first OPTICS model
	18.4 Strengths and weaknesses of density-based clustering
	Summary
	Solutions to exercises

	19 Clustering based on distributions with mixture modeling
	19.1 What is mixture model clustering?
	19.1.1 Calculating probabilities with the EM algorithm
	19.1.2 EM algorithm expectation and maximization steps
	19.1.3 What if we have more than one variable?

	19.2 Building your first Gaussian mixture model for clustering
	19.3 Strengths and weaknesses of mixture model clustering
	Summary
	Solutions to exercises

	20 Final notes and further reading
	20.1 A brief recap of machine learning concepts
	20.1.1 Supervised, unsupervised, and semi-supervised learning
	20.1.2 Balancing the bias-variance trade-off for model performance
	20.1.3 Using model validation to identify over-/underfitting
	20.1.4 Maximizing model performance with hyperparameter tuning
	20.1.5 Using missing value imputation to deal with missing data
	20.1.6 Feature engineering and feature selection
	20.1.7 Improving model performance with ensemble techniques
	20.1.8 Preventing overfitting with regularization

	20.2 Where can you go from here?
	20.2.1 Deep learning
	20.2.2 Reinforcement learning
	20.2.3 General R data science and the tidyverse
	20.2.4 mlr tutorial and creating new learners/metrics
	20.2.5 Generalized additive models
	20.2.6 Ensemble methods
	20.2.7 Support vector machines
	20.2.8 Anomaly detection
	20.2.9 Time series
	20.2.10 Clustering
	20.2.11 Generalized linear models
	20.2.12 Semi-supervised learning
	20.2.13 Modeling spectral data

	20.3 The last word

	Appendix—Refresher on statistical concepts
	A.1 Data vocabulary
	A.1.1 Sample vs. population
	A.1.2 Rows and columns
	A.1.3 Variable types

	A.2 Vectors
	A.3 Distributions
	A.4 Sigma notation
	A.5 Central tendency
	A.5.1 Arithmetic mean
	A.5.2 Median
	A.5.3 Mode

	A.6 Measures of dispersion
	A.6.1 Mean absolute deviation
	A.6.2 Standard deviation
	A.6.3 Variance
	A.6.4 Interquartile range

	A.7 Measures of the relationships between variables
	A.7.1 Covariance
	A.7.2 Pearson correlation coefficient

	A.8 Logarithms

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

